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Abstract  

 

In-situ non-thermal plasma infrared transmission and reflectance cells were designed, 

fabricated and commissioned in order to study the non-thermal plasma (NTP)-driven reaction 

of methane, carbon dioxide and dinitrogen.  This chemical system was chosen as a model to 

explore the application of in-situ FTIR spectroscopy to the study of NTP chemistry.  As the 

choice of catalysts for NTP processes has often been made on the basis of those materials 

active in the analogous thermally-driven processes, the NTP experiments were supported by 

experiments employing a commercial, diffuse reflectance infrared Fourier transform system 

utilising a commercial environmental chamber that could be heated to 600˚C. 

 

Initial experiments investigated the possible reaction of CO2 and N2 in the thermal and plasma 

systems, the latter providing benchmark data, both quantitative and qualitative, on the NTP 

reduction of CO2 to CO.  Experiments were also conducted on CH4 with N2, followed by 

studies using CH4, CO2 and N2 as the feed gas.  Whilst none of the thermal experiments 

showed additional species other than the rotationally-excited reactants, wholly unexpected 

results were obtained in the NTP experiments using CH4, CO2 and N2.  Nitrogen was fixed to 

produce both HCN and acetamide, whilst the chain oxides ketene and C5O2 were also 

produced along with CO and formaldehyde, and a liquid.  The results were interpreted in 

terms of a novel, three-zone model in which the liquid products played an active part in the 

production of the chain oxides. 

 

SnO2 and CeO2 were also investigated with respect to possible catalytic activity, but proved 

inactive in both the plasma and thermal systems. 

 

Ketenes and their dimers are important reactants that find use in the production of a wide 

range of chemicals in a diverse range of industries including pigments, pharmaceuticals and 

agrochemicals and as intermediates for the paper industry.  In addition, such chain oxides are 

known or proposed substrates for radical, nucleophilic addition and cycloaddition chemistry 

and hence are extremely useful chemical precursors: hence the work reported in this thesis 

could have significant potential implications for novel chemical synthesis.  In addition to 

terrestrial chemistry, the production of acetamide and the chain oxides could be highly 

relevant to the study of the interstellar origins of life and prebiotic chemistry. 
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Chapter 1. Introduction  

The work reported in this thesis is focused on the potential application of non-thermal plasma 

to the conversion of carbon dioxide (CO2) and methane (CH4) to value-added chemicals. The 

key analytical technique employed was in-situ Fourier Transform Infra Red (FTIR) 

spectroscopy to study the plasma glow and the plasma/solid interface. The aim of this chapter 

is to provide a review of the appropriate literature. 

 

 

1.1 Background 

Carbon dioxide is the most dominant greenhouse gas from the Kyoto Protocol “basket” of 

greenhouse gasses and emitted primarily from the combustion of fossil fuels. The 13th 

Greenhouse Gas Report from World Meteorological Organization (WMO) based on global 

observation through 2016 states that the carbon dioxide concentrations reached 403.3 parts 

per million in 2016, increased from 400 ppm in 2015 with an average growth of 2.21 

ppm/year [1, 2].  Significant increases have also occurred in the levels of CH4 and nitrous 

oxide (N2O), see table 1.1.  

 

 CO2 CH4 N2O 

Global abundance in 2016 403.3 ± 0.1ppm 1853 ± 2 ppb 328.9 ± 0.1ppb 

2016 abundance relative to year 

1750 

145% 257% 122% 

2015-2016 absolute increase 3.3 ppm 9 ppb 0.8 ppb 

2015-2016 relative increase 0.83% 0.49% 0.24% 

Mean annual absolute increase 

during last 10 years 

2.21 ppm/year 6.8 ppb/year 0.90 ppb/year 

Table 1.1. Global abundances of CO2, CH4 and N2O in 2016 [2]. 

 

In the United Kingdom (UK), net emissions of CO2 in 2016 were provisionally estimated to 

be 378.9 million tonnes of carbon dioxide and accounting for 81 per cent of total UK 

greenhouse gas emission, see table 1.2, where the energy supply sector was the largest 

contributor to the carbon emission followed by the transport sector (32%), residential sector 

(18%), business sector (16%) and industrial process (3%) [3]. 
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Table 1.2. UK greenhouse gas emission in 2016 [3]. 

 

Increasing demand for energy is by far the largest source of emissions of CO2 in the UK and 

worldwide and is expected to grow with fossil fuels remaining the dominant source. Growing 

population, industrialization and associated energy use from fossil sources is further 

accelerating the emission of CO2 and is consistent with the observed increase of global 

temperature as reported by Intergovernmental Panel on Climate Change (IPCC) [4], see fig. 

1.1. The IPCC predicted that the global temperature will continue to warm during the 21st 

century if the fossil-fuel burning continues at a business rate as today and arguably contribute 

to severe climatic phenomenon such as droughts in tropical regions, hurricanes and economic 

disruptions.  

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Change in average surface temperature reported in Climate Change 2014: 

Synthesis Report, by Intergovernmental Panel on Climate Change (IPCC)[4]. 

Gas Metric tonnes  

Net CO2 emissions (emissions minus removals) 378.9 

Methane (CH4) 51.6 

Nitrous oxide (N2O) 21.4 

Hydrofluorocarbons (HFC) 15.2 

Perfluorocarbons (PFC) 0.4 

Sulphur hexafluoride (SF6) 0.5 

Nitrogen trifluoride (NF3) 0 

Total greenhouse gas emissions 467.9 

                       1986 – 2005                                                       2081 - 2100 
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1.2 CO2 and CH4 mitigation and valorisation 

Reducing greenhouse gas (mainly CO2 and CH4) emissions is an extensive and long-term task 

and considered as one of the major scientific and technological challenges of the 21st century 

[5, 6]. There has been increasing pressure for scientists to develop efficient CO2/CH4 capture, 

storage and utilization systems in parallel to the multilateral agreement  adopted by the 175 

United Nations Framework Convention on Climate Change (UNFCCC) members [7, 8] 

including the United Kingdom. Several novel technologies are being developed to convert 

these main greenhouse gasses into value added chemicals, not only to tackle climate change 

but also to provide alternative energy sources. Besides the traditional thermal gas conversion, 

several alternative technologies are being investigated such as electrochemical and solar 

thermochemical methods, as well as the new technology of plasma catalysis. [9].  

 

1.3 Plasma  

Plasma is widely regarded as the fourth state of matter and is characterized by the presence of 

atoms, molecules, ions, energetic electrons and radicals having internal energies (with the 

exception of the electrons) unevenly distributed over the three degrees of freedom [10]. 

Energetic electrons are generated by direct current (DC), alternating current (AC) or pulsed 

electric fields between two electrodes using voltages in the kV range.  The electrodes are 

separated by a gap containing one or more dielectric materials. As well as ionising gas 

molecules, the electrons so generated collide with gas molecules and transfer their energy 

over about 10-15 to 10-8 s [11] via  processes such as excitation, ionisation, dissociation and 

charge transfer to produced radicals, ions, neutral atoms or molecules,  according to [10]:  

 

Excitation   e-   + M → M* + e-      (1.1) 

Ionisation   e-   + M → M+ + e- + e-       (1.2) 

Dissociation   e-   + NM → M + N + e-     (1.3) 

Charge transfer  M+   + N → M + N+      (1.4) 

    

where e- is the electron, M is a gas atom and NM is a gas molecule. 

 

The amounts and nature of these species (radicals, ions, neutral atom or molecules) are 

determined by several parameters such as feed gas composition, flow rate, gas temperature, 

and input power and thus make the design of plasma reactors critical. 
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In general, there are two types of artificial plasmas: thermal plasma and non-thermal plasma 

(NTP). Thermal plasma can be achieved in two ways, either using high temperatures, 

typically ca. 400 K to  20 000 K depending on the ease of ionization, or using high gas 

pressure [9]. Such plasmas find a wide range of applications including welding, coating and 

the treatment of hazardous waste materials [12]. However, thermal plasma is unsuitable for 

the efficient conversion of CO2 as the ionization and subsequent chemical process in thermal 

plasmas are determined by the temperature, see fig. 1.2, which shows the reduction of CO2 as 

an example [9].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Calculated theoretical thermal conversion (left axis) and corresponding energy 

efficiency (right axis) as a function of temperature for the reduction of CO2 to CO and O2. 

Adapted from Snoeckx [9].   

 

As can be seen from fig. 1.2, the maximum energy efficiency in thermal plasmas is limited to 

the thermodynamic equilibrium  efficiency and corresponding conversions of 47% and 80% at 

3500 K as reported by Snoeckx and his co-workers [9]. This is in contrast to NTPs where 

efficiencies of up to 90% have been reported [9, 13].  
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1.4 Non thermal plasma  

Non-thermal plasma at atmospheric pressure is produced by the partial ionization of a gas by 

electron impact using high AC or pulsed voltages in the kV range. The plasma is formed of 

many tiny current filaments or microdischarges with lifetimes of a few 10s of ns. These 

manifest themselves as current spikes in current/time profiles, typically monitored using high 

voltage probes and displayed on fast oscilloscopes.  The temperature of the electrons in such 

plasmas is typically 104 – 105 K [14], whilst the heavier species such as the ions and gas 

molecules remain at temperatures close to ambient.  This generates radicals, ions and 

vibrationally and electronically excited species not normally present in thermal equilibrium at 

room temperature [15, 16]. Thus the key advantage of NTP chemistry is that it makes a range 

of chemistries available that by conventional means, would require extremes of temperature 

and/or pressure that would be technically challenging and economically unfeasible. Thus, for 

example, in principle, ≥ 95%  of the energy of the plasma discharge at room temperature can 

be transferred from the excited electrons to induce vibrational excitation of CO2 to CO2*(ν) 

(eg. ν = 13 and 24 [17]).  Vibrational excitation leads to efficient dissociation to CO (1Ʃ) and 

O (3P), and vibrational excitation by NTP is a most effective means of stimulating the 

endothermic reactions relating to CO2 dissociation.  

 

The potential of the NTP technology is also exemplified by the work of  Nozaki et al [13] on 

the conversion of CH4 + water in nitrogen to H2 and C2 hydrocarbons at 3 wt.%Ni/SiO2 

pellets in a plasma tube reactor.  At temperatures > 200 °C, as well as improved conversion 

and efficiency, soot production was not observed, in contrast to the case in the absence of the 

catalyst.  Overall, the performance of the reactor operating at 600 °C was 136 MJ/kg H2, 88% 

selectivity for H2 and 64% conversion which compared well (for a non-optimised process) to 

standard steam reforming under the same conditions of 63 MJ/kg H2, 88% selectivity and 64% 

conversion.    

 

 

1.5 Non thermal plasma reactor used for CO2 and CH4 conversion 

1.5.1 Dielectric Barrier Discharge  

Dielectric Barrier Discharge (DBD) is the most common NTP generator for CO2-CH4 

conversion [18-20] and such reactors have been extensively studied. DBD reactors are 

generally in the form of  cylindrical packed bed discharge cells (PBDs, packed with dielectric 
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or catalyst pellets, not shown), planar volume discharge cells (VDs) or surface discharge 

reactors (SDs) as shown in figs. 1.3(a)-(c).   
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(b) 

 

 

 

 

 

 

 

(c) 

Figure 1.3. (a) PBD, (b) VD and (c) SD configurations [9, 21].  
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As can be seen from figs. 1.3(a)-(c), the arrangement of the electrodes and the dielectric 

materials are the main features that differentiate the various DBD reactors. In the volume 

discharge reactors, for example, streamers and plasma are generated between the two 

electrodes. However, unlike its volume-type counterpart, the plasma in the surface DBD 

discharge reactor is generated along the surface of one side of the dielectric layer [22].  

 

In PBD reactors, additional dielectric pellets, eg. Al2O3 or SiO2, typically of mm diameter are 

added to fill the space between the rod electrode and the wall of the reactor. Interestingly in 

such reactors, surface discharge and volume discharge are generated simultaneously. Surface 

discharge forms at the surfaces of the dielectric beads and the dielectric layers, whilst volume 

discharge forms in the spaces between the beads. The influence of the dielectric beads is 

generally to increase the electric field around the bead contact points. This has the effect of 

increasing the electron energy resulting in more energetic collisions and hence would be 

expected to increase the conversion rates of chemical reactions in the plasma, see the Manley 

equation (1.5) and equation (1.6) [23]:  

 

P = 4 f CD Vmin ∆V      (1.5) 

                                                                                                                                                        

where P = discharge power (W), f = voltage frequency (Hz), CD = capacitance of the dielectric 

(F), Vmin = the minimum voltage to sustain a discharge and ∆V = the difference between Vmin 

and the operating voltage; equation (1.5) assumes that CD >> capacitance of the gas.  The 

capacitance of the dielectric, CD, is given by: 

 

    CD = Ɛr  Ɛ0 A/d      (1.6) 

                         

where Ɛr is the relative dielectric constant, Ɛ0, is the vacuum permittivity (8.854 x 10-12 F m-1), 

A is the dielectric surface area (m2) and d is the thickness of the dielectric (m). Increasing the 

surface area of the dielectric, A, increases the capacitance, CD. In turn, increasing the 

dielectric constant increases the capacitance and hence, from equation (1.5), increases the 

discharge power.  Table 1.3 shows a selection of dielectric materials and their dielectric 

constants and table 1.4 summarises some of the findings in the conversion of CO2 and CH4 

using PBD, VD and SD reactors. 
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Table 1.3. Dielectric constant of different dielectric materials.

Materials Dielectric Constant Reference 

 SiO2 3.8 - 3.9 [24] 

Macor 6.03 [25] 

Al2O3 9.5 – 12 [26] 

ZrSiO4 9.1 [27] 

TiO2 31 - 114 [28] 

SnO2 9 - 14 [29] 

Teflon  1.89 – 1.93 [30] 

CeO2  24.5 [31] 

BaTiO3 130 - 1000 [32] 

Zeolite  1.55 – 1.71 [33] 

Quartz 4.2 [34] 

Acrylic 2.6 [34] 

Mica 6.0 [34] 

Activated Charcoal  12 [35] 

Si3N4 7.5 [24] 

Poly(octyl methacrylate) 3 [36] 

Polypropylene) 2.2 [36] 

Poly(isopropyl acrylate) 4.25 [36] 

SiO2 3.9 [32] 

SiO3N4 6 [32] 

RbBr 4.7 [32] 

LiF 9.2 [32] 

PbTiO3 200 – 400 [32] 

HfO2 40 [32] 

TaO5 27 [32] 

WO3 42 [32] 
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DBD type Feed gas  

mixtures 

Reaction products Temperature 

/Co 

Calcination 

temperature / Co 

Dielectric 

materials 

Ref. 

PBD CO2 carbon monoxide ambient 550  Ni/SiO2 [37] 

PBD CH4 acetylene, ethylene, ethane, propene and propane  ambient 400 - 600 Pt/γ-Al2O3 [38] 

PBD CH4 ethane,  ethylene, propane, propene and butane ambient 400 - 600 Ru/TiO2 [39] 

PBD CH4, N2, O2 

 

ethane,  ethene, ethyne, carbon monoxide,  carbon 

dioxide and nitrous oxide 

ambient n/a BaTiO3 [40] 

PBD CH4, CO2 acetylene,  ethylene ,  ethane,  propene,  propane 

and carbon monoxide 

ambient n/a Quartz [41] 

PBD CH4, CO2 carbon monoxide, H2 400 – 700 n/a Ni/Al2O3 [42] 

PBD CH4, N2, H2O carbon monoxide, H2, ethane,  propane and 

butane   

200 – 700  n/a Ni/SiO2 [43] 

PBD CH4, CO2, Ar ethane, ethylene, propane, propylene, methanol, 

ethanol and carbon monoxide 

120 – 290 n/a Al2O3 [44] 

PBD CH4, CO2, Ar ethane, ethylene, propane, propylene, methanol, 

ethanol and  carbon monoxide 

120 – 290 n/a Ag/Al2O3 [44] 

PBD CH4, CO2, Ar ethane, ethylene, propane, propylene, methanol, 

ethanol and  carbon monoxide 

120 – 290  n/a Pd/Al2O3 [44] 

PBD CH4, CO2 ethylene, acetylene, and propylene,  carbon 

monoxide, H2 

ambient n/a Quartz  [45] 

PBD CO2, N2 nitrous oxide, NOx, carbon monoxide and O2 ambient n/a Quartz [46] 
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Table 1.4. A summary of the studies on the use of DBD reactors for the conversion of CO2 and CH4 to higher hydrocarbons.

PBD CH4, Ar ethane, ethylene,  acetylene,  propane,  propene, 

butane and H2 

ambient n/a Al2O3 [47] 

PBD CH4, Ar ethane, ethylene,  acetylene,  propane,  propene, 

butane and H2 

ambient n/a MgO/Al2O3 [47] 

PBD CH4, Ar ethane, ethylene,  acetylene,  propane,  propene, 

butane and H2 

ambient n/a TiO2/Al2O3 [47] 

PBD CH4, CO2 carbon monoxide,  H2,  ethane, ethylene, 

acetylene,  propane,  propene, butane 

20-150 n/a Zeolite [48] 

PBD CH4, CO2, N2 ethane, propane, carbon monoxide and H2 24 - 500 n/a Quartz [49] 

PBD CH4, N2 acetylene,  hydrogen cyanide, ethane and 

ammonia 

ambient n/a Borosilicate 

glass 

[50] 

SD CH4, N2 ethane, ethylene, acetylene,  propane,  propene, 

butane, ammonia and H2 

ambient n/a Al2O3 [51] 

SD CH4, CO2, Ar carbon monoxide, ethylene, ethane,  tertiobutylic,  

acetaldehyde, acetone  and H2  

ambient n/a Quartz  [52] 

SD CH4, CO2, N2 carbon monoxide,  H2 and water ambient n/a Pyrex glass [53] 

SD CO2, H2 carbon monoxide dimethyl ether, methane,  H2 

and water 

ambient n/a Al2O3 [54] 

VD CH4, O2 methanol,  carbon monoxide,  carbon dioxide, 

water and ethane 

ambient n/a Quartz [55] 

VD CH4, N2 hydrogen cyanide and N2 ambient n/a Pyrex glass [56] 
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As can be seen from table 1.4, to date and in general, studies of NTPs have been carried out at 

temperatures above ambient often to investigate the conversion of CO2 and CH4 as a function 

of the gas temperature [44, 57] or to study the effects of catalyst loading [58], particle size 

[47] or catalyst calcination temperature [38, 39]. Generally, CO2 and CH4 were fed from a 

pressurized gas cylinder and the gas mixture was heated to the desired temperature using a 

tubular heat exchanger [59] or by the outer electrical heater [43, 44, 49] and the gas 

temperature was then measured at the surface of the reactor wall [44] and/or in the gap 

between the dielectric and grounded electrode [40, 57]. Although, CO2 and dry reforming 

methane are well known in NTP processing, the literature dealing with catalysis selection for 

the studies of such processes is quite limited [60]. Consequently, this leads to dielectric 

material/catalyst selection for NTP process being based on identifying those materials that are 

active for the same chemical processes when carried out in conventional, analogous thermal 

conversions operating under steady state conditions. However, plasmas are definitely not in a 

steady state as the plasma is itself driven by a succession of microdischarges (the amplitude 

and frequency of which depend strongly on the dielectric material between the electrode [61]) 

each with lifetime of a few tens of nanoseconds. The importance of this is that the lifetime of 

many species formed is only of this magnitude, with the result that decay of the molecular 

fragments takes place on timescales comparable to the discharges themselves. The assumption 

that catalysts active in thermal process will also be active in the analogous plasma-driven ones 

is something that should be scrutinized.  

 

Interestingly, it was realized that certain dielectrics could also act as catalysts and steer the 

reaction to yield different products with different catalysts, but the trends observed when 

using a range of such catalysts are simply not understood [15, 43, 47, 62]. The NTP 

conversion of CO2 to CO and O2 for example is inefficient in the absence of catalyst due to 

the back reaction CO + O → CO2 and exhibits poor energy efficiencies. However, the 

conversion can be improved using an appropriate material such as Ca0.7 Sr0.3TiO3 where a 

stronger and denser micro discharge were generated compared to alumina or silica glass [61], 

see fig. 1.4.   
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Figure 1.4. A comparison of CO2 conversion using three different materials in the NTP 

conversion of CO2 at a fixed frequency of 8 kHz. Adapted from Ruixing Li et al. [63].  

 

 

As can be seen from the fig. 1.4, CO2 conversion reached 18.8% when Ca0.7 Sr0.3TiO3 was 

used as a dielectric/catalyst compared to alumina (4.7%) or silica glass (3.8%). This is due to 

the fact that the value of CD of Ca0.7 Sr0.3TiO3 (CD = 431 pF) is higher than that of alumina (21 

pF) and silica glass (9 pF) owing to the increasing of the permittivity and, in turn, increasing 

the plasma power (P) as discussed previously.  

 

Zhang et al. [64] studied CO2 and CH4 conversion at SiO2-based materials and also showed 

that the catalyst can have a significant effect upon the conversion of CO2 and CH4. The NTP 

conversion of CO2 and CH4 in the presence of Ni/SiO2 resulted in lower conversion of CO2 

and CH4, and this was attributed to the reverse reaction of CO and H2 to CH4 and CO2. 

However, using NiFe/SiO2 as the catalyst increased the conversion of CH4 and CO2, 

suggesting that the presence of Fe increased the selectivity to H2 and enhanced the conversion 

of CH4.  

 

To date, it is generally perceived that plasma-driven catalytic (plasma catalytic) syntheses are 

too expensive in energy terms to compete with standard, thermal processes.  However, one 

highly topical potential application where energy efficiency is not a primary driver is the use 
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of electricity from renewable sources to generate chemical products.  Matching the production 

of electricity from renewable energy to demand is very difficult, and often the surplus is 

simply spilled: the storage of this surplus energy chemically by plasma catalysis is seen as a 

possible solution to this problem. The exciting prospect that plasma-catalysis may generate 

different, and potentially novel products, when compared to conventional thermal process also 

offers a firm foundation for the development of this pioneering technology, see fig. 1.5.   
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Figure 1.5. A comparison of CO2 and CH4 conversion by thermal catalysis, plasma-induced 

conversion and the combination of plasma and catalysis conversion using 1% Cu- 12% Ni/γ-

Al2O3 as the catalyst, 50% CH4 + 50% CO2 as the feed gas at a total flow rate of 60 cm3 min-1 

and a temperature of 450 oC. Adapted from Zhang et al. [58].  

 

 

As can be seen from fig. 1.5, the effects of the plasma catalytic conversion of CH4 and CO2 

was higher than the sum of thermal catalysis and plasma-induced conversion of CO2 and CH4. 

Under purely catalytic conditions, the catalyst was reported active at 300 oC and the 

conversions of CH4 and CO2 were about 10% and 13% respectively, at 450 oC. However, the 

conversions of CH4 and CO2 by plasma catalysis was greater than in the absence of catalyst 

and thermal catalysis, and the conversions of CH4 and CO2 were about 33% and 25%.  

Combining plasma with a catalyst clearly improves chemical conversion and/or offers 
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alternative mechanistic pathways with lower activation energies. The general working 

principle of a catalyst is shown in fig. 1.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Energy diagram illustrating the working principle of a catalyst. Adapted from 

Snoeck [9]. 

 

 

As can be seen from fig. 1.6, the presence of the catalyst opens a different reaction pathway 

(show in red) with a lower activation energy, ∆GA
╪: thus, reactive species are produced and 

interact with the catalyst at temperatures at which most purely thermally-driven processes 

would be slow.  Further, vibrationally excited molecules can have markedly different sticking 

probabilities and different chemistries on the surface of catalysts in contact with plasma [65] 

and it should be possible to enhance targeted reactions and suppress others by controlling the 

number density of electrons and electron and gas temperatures.   

 

Wang et al. [66] studied CO2 and CH4 conversion using three different catalyst materials in a 

DBD reactor, and also showed that plasma catalysis improved the chemical conversion of 

CO2 and CH4 and the selectivity of gaseous products compared to the analogous thermal 

process, see figs. 1.7.  
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Figure 1.7. A comparison of CO2 and CH4 conversion and gaseous products selectivities for  

catalysis activation only, plasma-induced conversion and plasma catalysis for three different 

catalyst materials in a DBD reactor at 30 oC and atmospheric pressure.  Adapted from Wang 

et al. [66] and Bogaerts and Neyts [67]. 

 

 

As can be seen from fig. 1.7, the selectivities of the gaseous products were found to be similar 

with H2, CO and C2H6 being the major products in the plasma and plasma catalysis 

experiments. Using Cu/Al2O3 as a catalyst with thermal activation gave no conversion at 

ambient temperature. Interestingly, in contrast to the selectivities of the gaseous products, the 

selectivities of the liquid products were different when Pt/Al2O3 and Au/Al2O3 were used, see 

fig. 1.8.  
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Figure 1.8. A comparison of CO2 and CH4 conversion and liquid products selectivities for  

catalysis activation only, plasma-induced conversion and plasma catalysis for three different 

catalyst materials in DBD at 30 oC and atmospheric pressure. Adapted from Wang et al. [66] 

and Bogaerts and Neyts [67]. 

 

 

As can be seen from fig. 1.8, the main liquid products were acetic acid, methanol, ethanol and 

a small amount of acetone with a total selectivity of 59% in the plasma experiments. The 

combination of plasma and catalysis gave the same liquid products, but HCHO an additional 

product when Pt/Al2O3 and Au/Al2O3 were employed as the catalyst.  

 

It is clear from the discussion above that the combination of plasma and catalysis has the 

potential to drive chemical process in new directions; however, the approach for chemical 

synthesis is relatively little-explored, probably because the fundamental understanding of such 

process is still lacking [67]. This, in turn, is due to the lack of analytical studies which are 
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able to provide molecular information. Hence the chemical mechanisms and kinetics involved 

are simply not understood [9, 15, 43, 47, 67].  

 

 

1.6 The non-thermal plasma conversion of CO2 and CH4  

Generally, NTP reactors for CO2-CH4 are most commonly of the packed-bed type, either as a 

variant of the tube reactors described in the previous section with the gap filled with the 

catalyst/dielectric pellets, or two plate electrodes separated by a gap filled with pellets [68].  It 

is not at all clear these configurations are optimum, as there is no theoretical basis for their 

design: such a basis requires the chemistry taking place in the reactor to be modelled. All 

designs so far have essentially been empirical; they have not as yet been formulated on the 

basis of known or estimated rate constants or reaction mechanisms. The interaction of highly 

excited and reactive species with solid surfaces is largely unknown, both in terms of the 

chemistry and the timescale over which such reactions take place [15].  For example, in the 

absence of information on the identities of the species present in non-thermal plasmas, and at 

the solid (dielectric and/or catalyst)/plasma interface, all possible species need to be included 

in the model (e.g. up to 150 molecules [69, 70]) which increases computing time and 

decreases the accuracy of the model. Previous Fourier Transform InfraRed (FTIR) 

spectroscopic studies in Newcastle strongly suggests that it should be possible to provide the 

hard experimental data required to aid effective modelling and hence reactor design [71].  

Furthermore, whilst the potential synergy between NTP and catalysis is widely acknowledged 

in the NTP community, it has not been possible to include catalysis in models: indeed, even 

accounting for chemical reactions on the chemically simple surfaces of the HV electrodes has 

proven too challenging [72] due to the lack of chemical information on the species present.   

 

 

1.7 Infrared Spectroscopy   

Ultraviolet-visible (UV Vis) absorption and emission spectroscopies have been employed for 

a number of years in the study of plasma as may be expected given the inevitable emission of 

light from plasma. Such studies give useful information on excited species [73, 74]; however, 

it is generally recognised that such studies need to be complemented by those employing 

techniques able to provide molecular information, eg. FTIR spectroscopy, particularly if these 
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can be carried out at timescales sufficiently short to match the microdischarges and hence the 

lifetimes of likely intermediates [15].  

 

The field of electrochemistry underwent a paradigm shift in the 1980s with the advent of in-

situ analytical methods for the study of the electrocatalyst/electrolyte interface and, in 

particular, the application of in situ FTIR spectroscopy with its ability to determine the 

identity of adsorbed and solution intermediates and products [75, 76]. The field of NTP 

catalysis is at a similar stage of development as electrochemistry was in the mid-1980s: whilst 

the plasma/catalyst surface has not been investigated extensively with in-situ FTIR, such 

studies have started to appear. There are numbers of studies on the downstream analysis of the 

exhaust from NTPs, such as work of Zaenab Abd Allah [72] in Manchester who employed 

FTIR to identify species generated on decomposition of dichloromethane (DCM) as a 

function of oxygen concentration in nitrogen plasma, and the work of Abdullah Al-Abduly in 

Newcastle [71] who reported an in-situ and downstream  spectroscopic study of NTP 

chemistry in an air-fed DBD plasma. However, studies of the catalyst in contact with plasma 

is only a recent phenomenon and are summarised in table 1.5. 

 

Researchers NTP Experiments FTIR studies 

region 

Reaction Products Ref 

Li et al. Deposition of Si from 

hexamethyldisiloxane  

Plasma region CH3, CH3, Si-(CH3), 

SiOx, Si-O-Si, 

[77] 

Rivallan et al. Conversion of 

Isopropyl alcohol 

(IPA) at Al2O3 

Plasma/catalyst 

interface 

acetaldehyde, 

acetone, 

crotonaldehyde, 

isobutene, 

isopropanol 

[78] 

Stere et al. Hydrocarbon assisted-

NOx removal from 

simulated diesel fuel 

over silver-based 

catalyst 

 

Plasma/catalyst 

interface

acetate, nitrate, 

carboxylate, 

isocynate 

[79] 
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Table 1.5. A summary of the FTIR studies of the catalyst in contact with plasma. 

 

The quality of the information that can be obtained from in-situ FTIR is exemplified by the 

work of Li et al. [77], Rivallan et al. [78], Stere et al [79], Rodriguez [80] and Jia and 

Rousseau [81]. These studies employed the Difused Reflectance approach [79, 80], 

transmission through catalyst as a wafer [78, 81] or passed the IR beam through the plasma 

glow above the solid surface [71, 77]. Rivallan and co-workers [78] employed the step scan 

approach to study the gas phase reduction of CO2 in a tube reactor (i.e they did not study the 

catalyst/plasma interface); however, they saw no reaction products or intermediates, although 

the authors did achieve a time resolution of ca. 400 μs. 

 

 

1.8  Plasma catalysis  

Gas phase conversions in NTPs remain inefficient and costly in energy terms.  To illustrate 

this, consider two of the most studied NTP reactions, the reduction of CO2 to CO and O2:   

CO2  CO2*(ν)  CO + O, O + O  O2, and methane conversion (reforming, partial 

oxidation etc).   The reduction of CO2 is inefficient due to the back reaction of O (3P) with 

CO, and a means must be found to stabilize the O atoms to prevent this.  With respect to 

chemical conversions involving CH4, it is generally accepted that the vibrational excitation of 

CH4 to CH4*(ν) is efficient, generating the vibrational excited state at up to 100x the number 

density of electrons [13]; however, this is wasted energy due to the short lifetime of CH4*(ν) 

(ns) and low threshold energies (ie. < 2 eV compared to C-H bonding in most hydrocarbons 

of 3 – 6 eV [68]).  The situation can be transformed if a suitable catalyst is employed, as can 

be seen from the work of Nozaki and co-workers detailed above (see section 1.4); in addition, 

it is clear that catalysis can have a significant effect upon the mechanism of a NTP-driven 

Rodriguez et al. Conversion of IPA at 

Al2O3, CeO2, and 

TiO2 

Plasma/catalyst 

interface 

aldehyde, 

carbonate, 

carboxylic acid, 

CO, OH 

[80] 

Jia and 

Rousseau 

Plasma-assisted 

reaction of acetone at 

CeO2 

Plasma region mesityl oxide, 

acetic acid, 

isobutene 

[81] 
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chemical conversion: for example, the conversion of toluene in an NTP reactor in the 

presence of NiO/WO3 results in total oxidation; however, using Mordenite as a catalyst 

favours phenol production while Faujasite favours partial oxidation and the formation of 

cresols [13, 73, 82].   

 

As was stated in section 1.5, despite the clear potential benefits of catalysis, it appears that 

catalysts for plasma processing are primarily selected on the basis of the materials that have 

proven effective for the analogous thermal processes, rather than on the basis of a well-

defined theoretical framework, which, if there is no interaction between plasma and catalyst is 

a fair assumption; however it is known, even on the physical level, that plasma induces 

changes in catalyst morphology, including particle size and roughness [83].  There are 

theories or part-theories to explain the effect of catalysis: eg. it is generally accepted that the 

sticking probabilities of vibrationally excited species, eg. CH4*(ν), are 10 – 104x greater than 

their ground states [68] and hence the addition of a suitable catalyst will significantly enhance 

the rate of a plasma reaction.  But an effective, validated theoretical model is urgently 

required if catalysis selection is to be effective, progress is to be made, and the full potential 

of plasma processing realised.  This has been, severely impeded by the absence of any 

information on the chemical identity and lifetimes of the reactive species in the plasma, and at 

the catalyst and/or dielectric/plasma interface (solid/plasma interface).  A variety of active 

species have been postulated in plasmas depending (of course) on the gas feed, eg. in CO2 

plasmas containing also CH4 (eg. re. reforming/partial oxidation to methanol) and/or H2O 

these include: CO2*(ν) (vibrationally excited CO2), CH4*(ν), CO2
+, CO2

-, O2
-, OH radicals, 

O3, O (3P) and O (1D).  Of these, O3 has been observed using UV Vis spectroscopy and O (3P) 

& CO2
+ by optical emission spectroscopy.  Despite the fact that CO2* is postulated as a key 

intermediate in the chemistry of CO2-containing plasmas [84], an excited form of CO2 was 

directly observed for the first time by Al-Abduly in Newcastle [71], which was incorrectly 

identified at the time as vibrationally-excited CO2. The work reported in this thesis showed 

this, in fact, to be rotationally-excited CO2.  

 

Plasma induced chemical conversions have been modelled using thermodynamic principles 

and literature rate constants; however, such models inevitably describe a fixed volume of gas 

[84] and hence do not take into account drift behaviour in the more relevant case of flowing 

gas.  Further, whilst the very significant potential offered by catalysis is widely acknowledged 
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in the NTP community, it has not proven possible to include catalysis in models.  A recurrent 

theme in the literature has been [85, 86] and remains [47, 62, 70] that trends observed when 

using a range of catalysts are not understood and the participation of the high voltage 

electrodes in chemical processes has been postulated [62] but remains unproven.  Again, the 

absence of information on the actual species present enhances the challenges faced by those 

attempting to model the processes taking place in NTPs. 

 

The lack of key information impacts on the design and optimisation of plasma reactors: thus 

NTP reactors are generally confined to gas phase reactions and are based on just three 

standard designs:  

 

(1) A (glass) tube reactor with a foil electrode on the outside and a rod electrode 

inside (in this case, the dielectric materials are the gas and glass reactor wall): 

the inner electrode could be coated with a catalyst such as Pt, Rh etc. 

 

(2) A previous but with the gap filled with dielectric beads or pellets.  

 

(3) A tube reactor with two disc electrodes separated by dielectric beads or pellets.  

In configurations (2) and (3) the dielectric material could be coated with a 

catalyst, eg Ni/SiO2. 

 

To date, there are no reliable quantifiable data on the identity of the species, active and 

otherwise, present in NTPs or on, or near, the solid/plasma surface.  As a result, catalysis in 

plasmas is ill-understood and the range of catalysts employed in plasma-driven conversions 

remains limited.  Further, the number of reactor designs is severely limited.  Until such 

molecular information is available, catalyst selection will remain guesswork and the potential 

of plasma chemical conversions will remain unfulfilled.   This conclusion is supported by the 

US Plasma 2010 Committee report [87]  which concluded that the interactions of plasmas 

with solid surfaces is one of the six critical challenges that define the research frontier, a view 

that is still very much reflected in the literature [61, 85].  
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1.9 Dielectric/catalyst materials and plasma cells to be investigated  

The dielectric/catalyst chosen for this work were Macor, CeO2 and SnO2 and were selected as 

dielectric materials in this work due to the following reasons: 

 

 Firstly, Macor (quartz (35–50%), magnesium oxide (15–20%), aluminium 

oxide (15–20%) and fluoride (1–5%)) was chosen as the dielectric for its 

reasonable dielectric constant, ca 6, and its stability over the temperature range 

of interest, 25–600 oC [25] rather than for any possible catalytic activity, 

initially to provide benchmark data as it was assumed Macor would be 

catalytically inactive, and had good thermal stability for comparison between 

thermal and plasma experiments. 

 

 Secondly, SnO2 was choosen as it is a catalyst in various chemical processes 

including the electrochemical reduction of CO2 to CO on SnO2 [88, 89] and the 

total oxidation of CH4 at SnO2 [90]: more importantly, previous studies in 

Newcastle had provided a wealth of IR data on the effect of temperature on 

SnO2 [91]. 

 

 Finally, CeO2 has been studied with respect to the thermally and plasma – 

driven conversion of IPA [92] and chlorobenzene [93] by IR spectroscopy and 

hence data was available for comparison and interpretation.  

 

 

1.10  Project aim and objectives 

The overall project aim of the project is to study the processes taking place in non-thermal 

plasma using FTIR spectroscopy. The system chosen for study was CH4 + CO2 + N2.  

 

The objectives were to: 

 

1. Commission IR plasma transmission and reflectance cells. 

2. Employ these cells to study the chemistries taking place in the plasma glow and 

plasma/dielectric and plasma/catalyst interfaces as a function of experimental 

conditions and catalyst. 
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3. Compare and contrast plasma and thermally driven data obtained using the same 

reactants and catalyst and hence assess the validity of catalyst selection based on 

activity in thermal process. 
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Chapter 2. Experimental 

This chapter describes the fabrication of the plasma cells (transmission and reflectance), the 

experimental equipment employed, the methods used during the project, and the analytical 

techniques used to analyse the FTIR spectra. 

 

2.1 Gases, Chemicals and Materials 

2.1.1 Gases  

N2 (N5.5/100%), CO2 (N5.0/100%), CH4 (N4.5/100%), and Ar (N5.5/100%)  were supplied 

by BOC Industrial gasses, UK. The gasses were mixed as appropriate and the compositions 

controlled using flow meters purchased from Roxspur Measurement & Control Ltd.  

  

2.1.2 Chemicals 

The reagents employed in the work presented in this thesis are shown in table 2.1. 

 

Chemicals Formula Analysis Supplier 

Tin (IV) chloride pentahydrate SnCl4.5H2O ≥ 98% Sigma Aldrich 

Cerium (IV) oxide CeO2 99.995% Sigma Aldrich 

Potassium bromide KBr FTIR grade Alfa Aesar 

Silver Nitrate  AgNO3 ≥ 98% Riedel-de Haen 

 

Table 2.1. List of reagents employed in the work reported in this thesis. 

 

2.1.3 Materials 

The materials employed throughout this work are shown in table 2.2.  

 

Materials Description Supplier 

Macor Quartz (35-50%), 

Magnesium oxide (15-20%), 

Aluminium oxide (15-20%) and 

Fluoride (1-5%) [1] 

Goodfellow Cambridge 

Stainless Steel Shim Thickness, 0.007 cm  RS Components 

Titanium Mesh, Ti  Thickness, 76.2 μm - 101.6 μm Dexmet Corp, USA 

Mirror 

 

Aluminum with SiO2 protective coated 

mirror, 50mm x 30mm x 4mm 

Simphoton, China 
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CaF2 windows 25 mm diameter, 3 mm thick  Crystran, UK 

Polytetrafluroethylene PTFE RS Components 

Silicone glue Loctite 595 transparent silicone glue RS Components 

 

Table 2.2. The materials employed in the work reported in this thesis. 

 

 

2.2 The gas delivery system  

The feed gasses were passed through a gas venturi mixing cylinder at a fixed flow rate and the 

composition was controlled using flow meters as shown in figs. 2.1(a) & (b). The venturi 

device was manufactured in-house and was made from a 18 cm long stainless steel tube. 
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Figure 2.1. (a) Schematic of gas line mixing system and (b) photograph of the venturi mixing 

cylinder.  

 

 

2.3 The non-thermal plasma infrared cells 

2.3.1 The non-thermal plasma infrared transmission cell 

The non-thermal plasma (NTP) infrared (IR) transmission cell, see figs. 2.2(a) & (b), was 

designed and fabricated in-house and was made from a 15 cm long cylindrical 

polytetrafluroethylene (PTFE) tube with an outer diameter of 6.3 cm and inner diameter of 2.5 

cm.  
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Figure 2.2. (a) Schematic and (b) photograph of the NTP IR transmission cell. 
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The high voltage electrodes were in the form of two plungers sealing against the inner walls 

of the PTFE via rubber ‘O’ rings. One of the plungers was hollow down its axis (a 4 mm 

diameter hole) and the feed gas was delivered via this channel and removed via an outlet in 

the top of the cell, see figs 2.3(a)-(d).  The electrodes were covered with 8 mm thick Macor 

caps fitted snugly over each disc electrode, one of which had a hole aligned with the central 

gas delivery channel.  
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Figure 2.3. (a) - (d) photographs of the arrangement of the  high voltage electrodes. 



Chapter 2 
__________________________________________________________________________________                                              
 

37 
 

Two infrared transparent CaF2 windows (25 mm diameter, 3 mm thick) were glued into PTFE 

cell using a silicone glue (Loctite 595, RS Components). The distance between the windows 

(pathlength) was 5.1 cm. The windows were positioned such that their centres aligned with 

the centre of the gap between the electrodes. The electrodes were connected to a NeonPro 

lamp transformer, NP100000-30 (Hyrite, China), see figs. 2.4(a) & (b), which provided an 

output up to 10 kV at a constant frequency of 24 kHz. A voltage controller (Carroll & 

Meynell) was used to control the input power to the high voltage (HV) transformers. The 

input power to the plasma was monitored using a digital power monitor, N67FU (Maplin, 

UK); the input powers quoted below were those obtained by subtracting the input power 

observed with plasma to the reading obtained with the system switched on but with no plasma 

initiated (4 W). The total plasma volume of the transmission cell was ca. 7.4 cm3 and the 

residence time at a total flow rate of 200 cm3 min-1 was 2.2 s.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)           (b)   

Figure 2.4. (a) Photograph of the high voltage power supply and (b) photograph of the 

voltage controller. 
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2.3.2 The non thermal plasma infrared reflectance cell 

The IR NTP reflectance cell, see figs. 2.5(a) – (c), was designed and constructed in-house 

loosely based on the (non-spectroscopic) surface dielectric barrier discharge cell employed by 

Šimek and co-workers [2]. The cell was mounted horizontally on the lid of the sample 

compartment of the spectrometer and the cell was jacketed with air cooling unit to allow 

careful control of the temperature of the gas in the body of the cell.  
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Figure 2.5. (a) Schematic of the NTP IR reflectance cell and (b) & (c) photographs of the 

NTP IR reflectance cell. 
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As can be seen from figs. 2.5(a) – (d), the reflectance cell was rectangular, 12.7 cm x 9.5 cm x 

3.5 cm, and fitted with cooling channels and channels for the input and exhaust of the feed 

gas. A stainless steel shim was employed as one electrode, hidden from the IR beam, on top 

of which was a 23 mm x 22 mm x 0.07 mm Al2O3 wafer and a 30 mm x 30 mm x 5 mm 

Macor plate. The Macor was covered by the second, Ti mesh electrode (50% open area) and 

both the Ti mesh and Macor were irradiated by the IR beam via a CaF2 plate window (25 mm 

diameter, 2 mm thick). The gap between the Macor and the widow was 5 mm.  

 

The same power supply was employed for the reflectance cell as for the transmission cell. In 

contrast to the transmission cell, which generated a volume discharge between the two Macor 

caps, the reflectance cell generated a surface discharge across the Macor and Ti Mesh. The 

plasma volume was 2 cm3 and the residence time at a flow rate of 30 cm3 min-1 was 4 s. 

 

Figures 26(a) & (b) show the in-house built optical bench which consisted of two mirrors at 

an angle of 57° to the vertical, 45 mm above the floor of the sample compartment and 100 

mm apart. The mirrors were positioned such that the angle of incidence on the CaF2 window 

was 24° and on 24° on the Macor.  
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Figure 2.6. (a) photograph and (b) Schematic of the optical bench employed with the in-situ 

FTIR for reflectance cell. 

 

 

2.4 The non-thermal plasma FTIR system  

An Agilent FTS7000 FTIR spectrometer with a Deuterated TriGlycine Sulfate (DTGS) 

detector was employed, see fig. 2.7. The IR beam passed through the plasma via CaF2 

windows to the detector via an Amtir-1 filter, 25mm x 2mm (Spectra-Tech, USA) to remove 

any stray light from the plasma.  
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Figure 2.7. (a) Photograph of the Agilent FTS7000 spectrometer and (b) photograph of the 

sample compartment of the spectrometer. 
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2.5 The thermal FTIR system 

In-situ FTIR experiments as a function of temperature were carried out using a Varian 670-IR 

spectrometer equipped with a ceramic air-cooled infrared source, a cooled DLaTGS detector 

and a Specac Environmental Chamber and diffuse reflectance unit [3], see fig. 2.8.  
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Figure 2.8. (a) Photograph of the FTIR Varian 670-IR spectrometer and (b) photograph of 

the Specac Environmental Chamber and diffuse reflectance unit. 
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The Specac reflectance accessory allows IR spectra to be collected under controlled 

atmosphere conditions from room temperature to 600 C and pressures from vacuum to 34 

atm at a ramp rate of 5o C/min. The IR beam was incident on the sample in the cell at angles 

from 20° to 76° with respect to the horizontal plane via a ZnSe window [4], see fig. 2.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Photograph of the environmental chamber employed for the in-situ FTIR 

experiments at varied temperature.  

 

As can be seen from fig. 2.9, the feed gas i.e. N2 (N5.5/100%), Ar (N5.5/100%), CO2 

(N5.0/100%) and CH4  (N4.5/100%)  were mixed as appropriate and admitted into the Specac 

Environmental Chamber via polyethylene tubing. Prior to each experiment, the catalyst 

(Macor disc (12.5 mm diameter, 2 mm thick), SnO2 or cerium (IV) oxide (CeO2)) was ground 

and mixed with IR transparent KBr (except the Macor) in the ratio (by mass) of KBr to 

sample 4:1 and placed in the sample cup. The IR spectra were collected from the powder 

samples using the diffuse reflection, as shown in figs. 2.10 and 2.11. 
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Figure 2.10. Schematic of light scattering from a powder sample [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11. Schematic of the diffuse reflectance optical system. Redrawn from  [5].  
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As may be seen from figs. 2.10 and 2.11, when IR light is incident on a powder sample it is 

reflected in all directions due to the variety of the powder shapes. Some of the IR beam is 

refracted as it enters the crystals and some is specularly reflected. Generally, when measuring 

an IR spectrum using the diffuse reflection method, the sample powder  is normally diluted in 

an alkali halide powder such as KBr. Mixing the catalyst,  i.e SnO2, with KBr allows for the 

IR beam to further penetrate the powder mixture and hence enhances the contribution of 

diffuse reflectance in order to maintain band shapes and intensities [6].  

 

Spectra were recorded in reflectance mode and then converted to an effective absorption using 

the Kubelka-Munk equation [7]. Thus a reference spectrum (SR, 100 co-added scans and 

averaged scans at 8 cm-1 resolution, ca. 2 minutes per scanset) was collected from pure KBr at 

room temperature before the spectrum of the catalyst sample i.e. SnO2/KBr was collected at 

25 oC. The temperature of the sample was then increased at 5 °C min-1 and a further spectrum 

collected at 50 ºC, after which spectra SS were collected every 50 ºC up to 600 ºC. The spectra 

were manipulated [7] according to:  

 

KM = (1-R)2/2R     (2.1) 

 

where    R = SR/SS       (2.2) 

 

and KM is the Kubelka-Munk function, R is the reflectance of a sample at infinite depth, SS is 

the single beam spectra of the powder, SR is the single beam of the standard reference powder 

and the Kubelka-Munk function plotted vs wavenumber. This data manipulation results in 

difference spectra in which peaks with positive amplitude arise from the gain of absorbing 

species in SS with respect to SR, and peaks with negative amplitude to the loss of absorbing 

species. In order to remove unchanging absorptions, spectra were simply subtracted from each 

other (eg. KM600C – KM300C); i.e. no subtraction factor was employed. 
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2.6 Catalyst preparation  

2.6.1 SnO2 Synthesis Method 

SnO2 nanopowders were prepared by a hydrothermal synthesis using a method adapted from 

Fujihara and co-workers [8] and by Christensen and co-workers in Newcastle [3]. The first 

step on the preparation was to dissolve the appropriate salts (see table 2.3) in 200 cm3 

dionized water (Milipore Milli-Q, 18 MΩ cm) and reflux at 95 oC for 3 hours in order to 

promote hydrolysis and the formation of a white precipitate of SnO2, see fig. 2.12. 

 

 

Table 2.3. The composition of the solutions employed in the reflux step to produce 

nanoparticulate SnO2 [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12. Photograph of the reflux apparatus. 

 

Sample Concentration of SnCl4 in 

final precursor solution/ M 

% Mole ratio               

Sn: Sb: Ni 

Mass of 

SnCl.5H2O / g 

Volume of 

H2O / cm3 

SnO2 0.1 100 : 0 : 0 7.01 200 
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Following refluxing, the nanoparticulate SnO2 precipitate was centrifuged to separate the 

precipitate from the solvent and washed 15 times with de-ionised (DI) water until the chloride 

ions had been removed completely (as determined by the addition of aqueous 0.1M AgNO3). 

The wet precipitate was then placed in a Teflon container (80 cm3, with lid), fitted into a 

stainless steel autoclave and heated at 180 oC (10 bar) for 24 hours, see figs 2.13(a) – (c). 

 

 

 

 

 

 

 

 

 

 

 

 

(a)          (b)   

 

 

 

 

 

 

 

 

 

 

 

   (c)          

Figure 2.13. Photograph of the hydrothermal synthesis apparatus: (a) the Teflon container, 

(b) the stainless steel autoclave and (c) the hydrothermal reactor.  
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After the hydrothermal treatment, the precipitate was then washed again with DI water until 

no further chloride appeared (as previous) and dried in an oven at 60 oC overnight. The 

powder was then calcined at 400 oC or 700 oC for 1 hour at a step rate of 6 oC min-1 before 

cooling to room temperature and denoted as SnO2 400 oC and SnO2 700 oC, respectively.  

 

 

2.6.2 Macor  

A 12.5 mm diameter, 2 mm thick Macor disc was employed as the catalyst and placed in the 

sample cup as shown in fig. 2.14. A reference spectrum was first collected from the Macor 

before the spectrum of the Macor collected at 25 oC. The temperature of the sample was then 

increased at 5 °C min-1 and a further spectrum collected at 50 ºC, after which sample spectra 

were collected every 50 ºC up to 600 ºC. Spectra were recorded as absorbances. 

 

 

 

 

 

 

 

 

 

Figure 2.14. Photograph of Macor disc in the sample cup. 

 

 

2.6.3 Cerium (IV) oxide  

Cerium (IV) oxide (CeO2) was obtained from Sigma Aldrich and used without further 

treatment. The powder was placed on the sample cup as shown in fig. 2.15. A reference 

spectrum was first collected from pure KBr at room temperature and the spectrum of the 

KBr/CeO2 was then collected at 25 oC. The temperature of the sample was then increased at 5 

°C min-1 and a further spectrum collected at 50 ºC, after which sample spectra were collected 

every 50 ºC up to 600 ºC. Spectra were recorded in reflectance mode. 
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(a)           (b) 

Figure 2.15. (a) Photograph of CeO2 in the sample cup for thermally driven experiment and 

(b) Photograph of CeO2 coated on Macor/Ti Mesh for plasmally driven experiment using IR 

reflectance cell. 

 

 

2.7 Typical in-situ NTP FTIR experiments using the transmission cell 

In a typical experiment using the IR transmission cell, the cell was first flushed with N2 at a 

flowrate of 200 cm3 min-1 for 30 minutes, after which the chosen feed composition was 

admitted to the cell at a total flow rate of 200 cm3 min-1 and a reference spectrum (SR, 100 co-

added and averaged scans at 8 cm-1 resolution, 60 seconds per scan set) was collected in the 

absence of plasma.  Sample spectra, SS, were then taken as a function of time after the high 

voltage power supply was switched on, and at regular intervals thereafter, up to 20 minutes. 

By using the first single beam (of the nitrogen gas with no plasma) as the reference spectrum 

(SR) all of the infrared active species present in the plasma were observed; using the second 

single beam as the reference spectrum resulted in difference spectra, showing only the 

changes incurred on initiating the plasma.  The methodology employed with the reflectance 

cell was the same except that a flow rate of 30 cm3 min-1 was used to allow sufficient 

residence time. The compositions of the gas feeds employed in the experiments are 

summarized in tables 2.4 and 2.5.  
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Table 2.4. The feed gas compositions employed in the transmission cell experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.5. The feed gas compositions employed in the reflectance cell experiments. 

 Composition CO2 /CH4 /N2 or Ar Power /W 

1 10.6% CO2 / 13.4% CH4 / 76.0% N2 20 

2 10.0% CO2 / 14.2% CH4 / 75.8% N2 24 

3 12.3% CO2 / 14.4% CH4 / 73.3% N2 28 

4 9.7 % CO2 / 90.3% Ar  14 

5 14.0% CH4 / 76.0% N2 20 

6 14.7% CH4 / 75.3% N2 24 

7 13.9% CH4 / 76.1% N2 28 

8 100% CO2 20 

9 11.7% CO2  / 88.3% N2 22 

10 13.3% CO2  / 86.7% N2 24 

11 12.2% CO2 / 87.8% N2 26 

12 12.2% CO2  / 87.8% N2 28 

13 5.0% CO2 / 12.7%  CH4 / 82.3% N2 28 

14 9.0% CO2 / 16.0%  CH4 / 75.0% Ar 20 

15 8.3% CO2 / 13.5% CH4 / 78.2% Ar 28 

16 54.0% CO2 / 20.0% CH4 / 16.0% N2 28 

 Composition CO2 /CH4 /N2 or Ar Power /W 

1 24% CO2  / 76 % N2 18 

2 28% CO2  / 72 % N2 24 

3 32% CO2  / 68 % N2 24 

4 49% CH4 / 51 % N2 18 

5 46% CH4 / 54 % N2 24 

6 100% N2 18 

7 100% N2 24 

8 12% CO2 / 39% CH4 / 49% N2 24 

9 10% CO2 / 10%  CH4 / 80 % Ar 14 

11 31.1% CO2 / 68.9% Ar 24 
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The nominal composition intended for the gas feeds for the CO2 + CH4 + N2  transmission 

cell experiments was 10% CO2 + 10% CH4 + 80% N2, with three exceptions (5% CO2, Ar 

instead of N2, 54% CO2).  As examples, input powers i.e. of 20 W and 28 W correspond to 

Specific Input Energies (SIEs) of 6.0 kJ dm-3 and 8.4 kJ dm-3, respectively, defined as [9]: 

 

SIE (kJ dm-3) = Discharge power (kW) / Total gas flow rate (dm3)  (2.4) 

 

These correspond to average electron energies per feed gas molecule of 3.9 – 5.5 eV.  The 

input power of 24W at a flow rate of 30 cm3 min-1 for the plasma reflectance cell corresponds 

to an SIE of 48.0 kJ dm-3. 

 

The temperature of the Macor caps of the transmission cell were monitored at an input power 

of 28 W using a RS-1327 IR Thermometer C infrared thermometer gun in experiments 

conducted without FTIR  data collection (as the cover to the sample compartment had to be 

removed), the temperature  of the Macor caps were found to increase to ca. 43 oC over 20 

minutes. This measurement was not possible with the plasma reflectance cell for safety 

reasons as the cell could not be manipulated and the thermometer gun would not fit into the 

sample compartment. However, the reflectance cell did employ a cooling gas stream as 

described in section 2.3.2.    

 

 

2.8 Typical in-situ NTP FTIR analysis procedure 

The spectra obtained in the plasma-driven experiments are presented as: 

 

Absorbance, A = log10 (SR / SS)                (2.5) 

 

This results in difference spectra in which peaks pointing upwards (i.e. to + absorbance) 

represent a gain in absorbing species at SS with respect to SR, and peaks pointing down (to – 

absorbance) represent the loss of absorbing species. The concentrations of the various species 

observed in the plasma experiments were calculated using the Beer-Lambert law: 

 

A = cL                   (2.6)
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where:  is the molar decadic extinction coefficient (M-1 cm-1), c = concentration (M) and L = 

optical path length (cm).  

 

Figures 2.16 and 2.17 show examples of typical single beam spectra obtained from N2, CH4 + 

N2 and CO2 + N2 and the resulting absorbance spectra which were employed to determine the 

concentrations of CH4 and CO2. 
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Figure 2.16. Typical FTIR spectra processing: (a) (i) a reference spectrum, (SR) collected 

from 200 cm3 min-1 N2 and (ii) a sample spectrum, SS collected after CH4 was admitted to the 

cell at a total flow rate of 200 cm3 min-1,  and (b) the resultant absorbance spectrum               

= log10 (SR / SS). Note the intense Q branches of the two bands. 
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Figure 2.17. Typical FTIR spectra processing: (a) (i) a reference spectrum, (SR) collected 

from 200 cm3 min-1 N2 and (ii) a sample spectrum, SS collected after CO2 was admitted to the 

cell at a total flow rate of 200 cm3 min-1,  and (b) the resultant absorbance spectrum = log10 

(SR / SS). Note the fundamental bands are saturating. 

 

 

As can be seen from fig. 2.16 (b), the bands with the intense features branches centred at 3017 

and 1302 cm-1 may be attributed to the P, Q and R branches of the v3 and v4 fundamentals of 

CH4 respectively [10]. Using the 1 cm gas cell and 100% CH4, the extinction coefficients at 

3086 cm-1 and 1346 cm-1 were determined as 3.5 ± 0.4 M-1 cm-1 and 6.4 ± M-1 cm-1, 

respectively. These values were checked using a 0.6 cm pathlength cell, repeated 5 times. 

However, the v3 band of the CH4 was too distorted by the absorptions due to excited CH4, 

CH4* (see section 4.1) to allow any quantitative measurements, hence the absorbance at 1346 

cm-1 of the v4 loss feature was employed to determine the degree of conversion of CH4. In 

terms of the production of CH4*, the only clear feature is the positive lobe of the v4 band at ca. 

3008 cm-1, but this is also distorted by the corresponding loss due to CH4, and hence this 

feature was only employed in a qualitative fashion. 
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The intense feature between 2300 and 2400 cm-1 in fig. 2.17 (b) is due to the P and R bands of 

the CO2 fundamental absorption [10, 11] and the features between 3500 and 4000 cm-1 are 

CO2 combination bands [12]. It is clear from the figure that the fundamental bands are 

saturating and hence cannot be employed for any quantitative measurements; hence it was 

decided to employ the CO2
 combination band to gain an idea of CO2 conversion. The feature 

are the least perturbed by the formation of excited CO2 [13], see section 3.2.  

 

The integrated extinction coefficient of 7.0 x 105 cm mol-1 reported by Bolis and co-workers 

[14] was employed for the CO absorption between 2002 and 2225 cm-1. This value was 

checked by determining the extinction coefficient of CO using a 1 cm pathlength transmission 

cell with 100% CO at 24 °C, and the value so obtained compared to that of Bolis et al. and 

found to be within 10%, see appendix 1. The same cell was employed to determine the 

integrated extinction coefficient of the combination bands of CO2 between 3491 and 3769    

cm-1, and this was found to be 6.5 x 105 cm mol-1, see appendix 2.  Using the thermal FTIR 

system and a static atmosphere of 3.7% CO2 + 96.3% N2, the integrated extinction coefficient 

of the CO2 combination bands was found to remain constant over the temperature range from 

25 °C to 150 °C of interest in this work.      

 

 

2.9  Data manipulation  

The conversion of CO2 and CH4 (%) is defined as: 

 

%CO2 = 100 x ([CO2]feed  - [CO2]glow)/ [CO2]feed             (2.7) 

 

where [CO2]glow is the concentration of CO2 in the plasma glow and [CO2]feed is that in the 

feed to the plasma cell, both measured using the integrated areas of the CO2 combination 

band.   

 

Similarly, the conversion of CH4: 

%CH4 = 100 x ([CH4]feed - [CH4]glow)/ [CH4]feed             (2.8) 

 

determined using the 1346 cm-1 feature.   
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The percentage of the CO2 in the feed gas, %CO2 feed is defined as: 

 

%CO2 feed = ([CO2]feed / 0.0408 M) x 100%               (2.9) 

 

where 0.0408 M is the concentration of 1 mole of ideal gas at 298 K and 1 atm. 

 

Similarly, percentage of the CH4 in the feed gas, %CH4 feed:  

 

%CH4 feed = ([CH4]feed / 0.0408 M) x 100%            (2.10) 

 

In the plasma experiments, the conversion of CO2 to rotationally-excited CO is: 

 

%CO* = 100 × [CO*]glow/[CO2]feed                  (2.11) 

 

where [CO2]feed is the concentration of CO2 in the feed to the plasma cell and [CO*]glow is the 

concentration of CO in the plasma glow.  The corresponding CO selectivity, %SCO* is:   

 

%SCO* = 100 × [CO*]glow/([CO2]feed – [CO2*]glow)           (2.12) 

 

The carbon balance, %C, is: 

 

%C = 100 × ([CO*]glow + [CO2*]glow)/[CO2]feed           (2.13) 

 

The energy efficiency for the production of CO is: 

 

CO /% = 100H/Ep,I               (2.14) 

 

where H is the enthalpy (279.8 kJ mol-1) of the process [15]: 

 

CO2 → CO + ½O2                    (2.15) 

 

at 300K.  Ep,CO is the energy expended in producing 1 mole of CO and assuming that the IR 

spectra record an average picture over the 1 minute data collection time.    
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All the calculations presented in this chapter are based on the integrated areas of the CO2 and 

CO2* combination bands and the P and R branches of the CO* absorption.  These are all 

subject to inevitable experimental error, particularly with respect to determining baselines: 

this is particularly relevant to the determination of the integrated absorptions of the CO* 

features as these are adjacent to the very strong CO2* fundamental.   

 

For the experiments employing the transmission cell, the estimated error in the baseline 

calculations of the CO* bands, i. e. between employing a linear vs curved baseline between 

the extremes of the spectral ranges employed, was ca. 10%.  The experimental error 

associated with the plasma reflectance cell was somewhat higher as the optical pathlength 

could not be measured directly (as was the case with the transmission cell) but was 

determined from calculations based on the optical configuration and the integrated intensity of 

the CO2 combination bands of 100% CO2. On this basis, the pathlength of the reflectance cell 

was ca. five times lower than that of the transmission cell (5.1 cm cff. ca. 1 cm) making 

baseline correction even less accurate due to the weaker CO absorptions. 

 

 

2.10 Material characterisation techniques 

2.10.1 X-ray diffraction (XRD) 

XRD analyse of the SnO2 and CeO2 were performed using PANalytical X’Pert Pro MPD, 

powered by a Philips PW3040/60 X-ray generator fitted with an X'Celerator detector, see fig. 

2.18. The diffraction data were acquired by exposing powder samples to Cu-Kα X-ray 

radiation, which has a characteristic wavelength () of 1.5418 Å and X-rays were generated 

from a Cu anode supplied with 40 kV and a current of 40 mA. 

 

The goal of the XRD analysis was to identify particle size, the interplanar spacing (d-

spacing), crystalline phases and the lattice parameters. The data were collected over a range of 

2-100o2θ with a step size of 0.0334o2θ and nominal time per step of 400 s, using the scanning 

X’Celerator detector and a nickel filter on the incident beam.  Fixed anti-scatter and 

divergence slits of 1/4o were used together with a beam mask of 10 mm and all scans were 

carried out in ‘continuous’ mode.  Average particle size was determined by using the Full 

Width at Half Maximum (FWHM) intensity of selected peaks via Scherrer’s equation: 
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t = 0.9 λ / B. cos θ               (2.26) 

 

where t is the particle size  (Å), λ is the wavelength of the Cu-Kα radiation (1.5406 Å), B is 

the FWHM in radians and θ is the Bragg angle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 2.18. Photograph of the PANalytical X’Pert Pro MPD x-Ray diffractometer.  

 

 

Phase identification was carried out by means of the X'Pert accompanying software program 

PANalytical High Score Plus in conjunction with the ICDD Powder Diffraction File 2 

Database (1999), ICDD Powder Diffraction File 4 - Minerals (2012), the American 

Mineralogist Crystal Structure Database (March 2010) and the Crystallography Open 

Database. 

 

All XRD measurement were carried out by Ms. Maggie White from School of Engineering, 

Newcastle University and table 2.6 summarises the particle size calculated from Scherrer’s 

equation of the CeO2, SnO2 400 °C and 700 °C nanopowders. 
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Table 2.6. The particle sizes of the CeO2, SnO2 400 °C and 700 °C nanopowders calculated 

from Scherrer’s equation. 

 

 

As may be seen from the table 2.6, the particle size of the SnO2 increased from 6.09 nm to 

17.06 nm after calcining at 700 °C indicates crystal growth due to sintering [16]. Similar 

trends were observed in the work of Maneelok in Newcastle [17, 18]  who reported the 

evolution of the particle size as a function of temperature.  Furthermore, as can be seen in 

figs. 2.19(a), the FWHM of the SnO2 nanopowder peaks decreased with increasing 

temperature and the peaks became sharper suggesting that the crystallinity improved [8] with 

increasing temperature, in agreement with the literature [17-20]. 
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Sample Calcination Temperature / °C Particle size /nm 

SnO2 400 6.09 

SnO2 700 17.06 

CeO2 As prepared 47.00 
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Figure 2.19. (a) The XRD patters of the SnO2 400 °C and 700 °C nanopowders prepared by 

hydrothermal synthesis and (b) The XRD patters of the CeO2 nanopowders purchased from 

Sigma Aldrich.  

 

 

2.10.2 The thermogravimetric analysis system 

The thermogravimetric analysis (TGA) measures the amount and rate of change in the mass 

of a sample, i.e CeO2, as a function of temperature or time in a controlled atmosphere. In this 

work, TGA were carried out in an atmosphere of flowing (40 cm3 min-1) O2-free nitrogen, in a 

Netzsch STA 449C TG-DSC (Thermogravimetry-Differential Scanning Calorimetry, or TG-

DSC) system, connected to a Netzsch Aeolos 403C Quadrupole Mass Spectrometer (QMS; 

m/z range 10-300). 95.5 mg of the CeO2 was placed in an alumina crucible and the 

temperature was then ramped from room temperature to 600 °C at a ramp rate of 5 °C min-1. 

At 600 °C, temperature was held for 10 minutes then cooled at 5 °C min-1 to room 

temperature.  All TGA measurement were carried out by Mr. Bernard Bowler from School of 

Natural and Environmental Sciences, Newcastle University and results of the TGA analyses 

are further discussed in Chapter 5.  
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Chapter 3. An in-situ study of non-thermal plasma fed with CO2, and N2 in plasma- and 

thermally driven experiments at Macor 

 

3.1 Introduction  

The aim of the work reported in this chapter was to study the non-thermal plasma – driven 

reduction of CO2 to CO and O in-situ infrared spectroscopy via a plasma transmission cell 

and a plasma reflectance cell. It was hoped that the comparison of the data obtained from the 

two cells would allow discrimination between processes taking place purely in the plasma 

glow from those at the plasma/dielectric surface. This chapter also reports, for the first time, a 

direct comparison of the IR spectroscopy of plasma- and thermally- driven reactions of CO2.  

 

3.2 The plasma-driven reaction of CO2 at Macor 

3.2.1 Plasma transmission cell 

Figure 3.1 shows a single beam spectrum of the plasma transmission cell at 25 °C with 

flowing 12.2% CO2 + 87.8% N2 and no plasma.  
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Figure 3.1.  Typical reference spectrum (8 cm-1 resolution, 100 scans per scan set, and 60 

seconds per spectrum) of the plasma transmission cell collected at a total flowrate of 200 cm3  

min-1. The gas composition was 12.2% CO2, 87.8% N2 with no plasma. 
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The P and R asymmetric stretch (3) bands of CO2 at 2340 and 2360 cm-1 [1-3] are clearly 

saturated, hence it was decided to employ the integrated intensities of the CO2 combination 

bands at 3728 cm-1 to gain some qualitative and quantitative indication of the conversion of 

CO2 during the plasma experiments as discussed in section 2.8.  The small feature around 

2260 cm-1 may be attributed to the 13C16O2 fundamental [4].   

 

Figure 3.2(a) shows selected spectra collected as a function of time at 28W input power 

employing the spectrum collected in fig. 3.1 as the reference.  The experiment in figs. 3.2(a) 

to (c) was repeated at input powers of 20, 22, 24 and 26 W, with no additional bands being 

observed.  As can be seen, the loss features at 3728, 3625, 2360 and 2340 cm-1 are due to CO2 

and the gain features at 2163 and 2116 cm-1  maybe attributed unambiguously to carbon 

monoxide [1, 5]. The structure between 2250 and 2500 cm-1 is due to the superposition of 

CO2 loss features at 2360 and 2340 cm-1 on the gain  features at 2306 and 2383 cm-1 due to 

rotationally-excited (CO2*). The CO2* bands are highly distorted due to the fact they are 

superimposed on the CO2 loss features, see the work of  Al-Abduly et al. [6] and fig. 3.2 (b). 
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Figure 3.2. (a) In situ FTIR spectra (8cm-1 resolution, 100 co-added and averaged scans, 60 

seconds per scanset) collected at the times shown on the figure at an input power of 28 W, (b) 

the CO2 fundamental region of figs. 3.2(a) and (c) the combination band region. The gas 

composition was 12.2% CO2 + 87.8% N2 and the reference spectrum was that taken with no 

plasma. 
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Figures 3.3(a) and (b) show the spectrum collected after 20 minutes in fig. 3.2 and the 

spectrum collected immediately prior to the plasma being initiated: in both cases, the 

reference spectrum employed was that taken with a nitrogen feed and no plasma. In another 

words, the spectra are “absolute” rather than “difference” spectra.  
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Figure 3.3.  (i) The spectrum collected after 20 minutes in fig. 3.2 and (ii) the spectrum 

collected immediately before the plasma was initiated: (a) CO2 asymmetric stretch region and 

(b) combination band region.  (c) The result of simulating the spectrum of CO2 at 100 °C and 

subtracting it from the simulated spectrum of CO2 at room temperature.  See text for details. 

 

 

Although the intensities of the combination bands decreased on application of the plasma, it is 

clear that the bands were broadened.  Given that the molecules present in the non-thermal 

plasma are at thermal equilibrium, then the spectra in figs. 3.2, 3.3(a) and 3.3(b) suggest that 

any CO2 present in the plasma is rotationally excited [6], and that this species is responsible 

for the combination and asymmetric stretch features in fig. 3.2.   

 

Figure 3.4 shows the spectrum collected after 2 minutes in fig. 3.2 using as the reference the 

single beam spectrum collected of the CO2/N2 feed with no plasma. As can be seen from the 

figure, the CO2* bands are very clear, as are the structures between 2200 and 2400 cm-1 and 

3500 and 3800 cm-1 due to the loss of ground state CO2 bands superimposed upon the CO2* 

gain features.   
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Figure 3.4. The spectrum collected after 2 minutes in fig. 3.2 using the spectrum collected 

with no plasma and the 12.2% CO2 + 87.8% N2 feed gas as reference. 

 

 

The features between 2200 and 2400 cm-1 in figs. 3.3 and 3.4 were modelled by Prof. Phillip 

Martin, School of Chemical Engineering and Analytical Science, The University of 

Manchester, using Spectralcalc and Origin and the difference spectrum obtained by 

subtracting the spectrum of CO2 at room temperature from that of the excited CO2 at 396 K 

are shown in fig 3.3(c). The figure supports the assignment of the gain features in fig. 3.2 to 

higher temperature, rotationally excited CO2 (CO2*).   This assignment was further supported 

by the behaviour of the CO absorption in the plasma experiments and the thermal experiment, 

see section 3.2.3. 

 

From figs. 3.2 and 3.3(a) it is apparent that there are clear gain features due to the P and R 

bands of CO near 2116 and 2176 cm-1 [1, 5] and these are due to the higher temperature, 

rotationally excited gas, as may be expected from the discussion above.  Thus, fig. 3.5 shows 

the spectra collected after 2 minutes and 20 minutes in the experiment in fig. 3.2, using the 

spectrum collected with the same gas feed but without plasma as the reference, with a 
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spectrum of CO gas in a 1 cm pathlength transmission cell at room temperature.  The pure CO 

and 2 minute spectra were scaled down to allow comparison.   
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Figure 3.5. (i) The spectrum (8 cm-1 resolution, 100 scans per scan set, and 60 seconds per 

spectrum) of CO in a 1 cm pathlength transmission cell and the spectra collected after (ii) 2 

minutes and (iii) 20 minutes during the experiment shown in figs. 3.2 and 3.4.  The CO 

spectrum was reduced by a factor of 16.8 and that taken after 2 minutes in the plasma 

experiment by a factor of 1.3 in order to aid comparison.  The plasma spectra employed the 

spectrum collected with same feed gas composition without plasma as the reference, and the 

CO spectrum employed the spectrum collected with the cell filled with nitrogen gas as the 

reference. 

 

 

As may be seen from the fig. 3.5, the CO bands in the spectra collected during the plasma 

experiment are somewhat broader than those of the room temperature CO, and the P and R 

maxima move apart as would be expected for CO if the molecule was rotationally excited 

(CO*). Bauerecker et al. [7] observed the rotation-vibration bandwidth of 13C16O to be 
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reduced by about 40% on cooling the gas from 300 K to 45 K, without any change in band 

centre. The resolution of the spectra obtained in the experiments reported in this work (8 cm-1) 

was chosen as the highest possible allowing for a reasonable data collection time.  However, 

temperature calculations based on the maxima of the P and R branches of CO [5] gave wide 

ranges when the resolution was taken into account: e.g. allowing ± 4 cm-1 for P and R 

branches nominally at 2172 and 2118 cm-1 resulted in temperatures between 210 and 382 K.  

Hence, in order to allow comparison within the data sets, ambient temperature was employed. 

 

The vibrationally excited form of the ground electronic state of CO2, CO2*(), is generally 

accepted as being the intermediate in the plasma-induced reduction of CO2 to CO and O2 for 

plasmas with lower mean electron energies than those in dielectric barrier discharges [8].  

This is clearly not the same species as the rotationally-excited CO2* observed in figs 3.2 and 

3.5.  CO2*() may be formed directly through collisions with electrons in the plasma [9, 

10]:  

 

    CO2 + e-   CO2*() + e-                   (3.1) 

 

or via collisional energy transfer from vibrationally excited species such as N2*()  [10]: 

 

CO2 + N2*()  CO2*() + N2               (3.2) 

 

whilst CO2*() decay can take place through relaxation to CO2 and photon emission or 

dissociation into CO and atomic oxygen [3, 4]: 

 

CO2*()  CO + O                    (3.3) 

O + O  O2                      (3.4) 

 

The dissociation of CO2 via reaction (3.3) can take place by two possible routes [8, 11]. (i) 

Excitation to vibrational levels of the ground excited state of CO2 which exceed the energy of 

the dissociation threshold, this results in ground state CO and singlet oxygen: 
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CO2*()  CO + O(1D)                     (3.5) 

 

(ii) Excitation to the first excited triplet state of CO2 via intersystem crossing resulting in 

ground state CO and ground state atomic oxygen:   

 

CO2*() + e-  CO2*() + e-  CO + O(3P) + e-                 (3.6) 

 

The latter is favoured due to the non-adiabatic intersystem crossing and the reduction in the 

energy required for dissociation [12, 13]. In CO2 feeds diluted with nitrogen, Snoeckx and co-

workers [14] postulate that the dissociation of CO2 depends upon the partial pressure of N2: 

thus, at low nitrogen pressure, the main reaction is the direct electron excitation of CO2 and 

subsequent reduction to CO and O2, as discussed above, equations 3.1 to 3.6.  In contrast, at 

high nitrogen partial pressure it is: 

 

CO2  + N2(A
u)  CO + O + N2                    (3.7) 

 

In other words, as the partial pressure of nitrogen increases, the electron energy is primarily 

employed to excite the nitrogen molecules to the metastable A
u state rather than for direct 

electron excitation of CO2, which may be the reason vibrationally excited CO2 was not 

detected in these experiments.       

 

The integrated absorption intensities of the CO2 combination bands and the CO fundamental 

were employed to gain some quantitative insight into the chemistry of the plasma glow, and 

the results are summarized in table 3.1.   
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Input power 

/W 

Time 

/Min 

[CO2]feed 

/10-3M 

[CO2*]glow 

/10-3M 

[CO*]glow 

/10-4M 

%CO* CO 

/% 

%C 

20 2 5.2 4.7 5.1 9.9 2.4 101 

 6  4.6 4.9 9.4 2.3 97.7 

 10  4.5 4.6 8.8 2.1 95.6 

 20  4.4 4.1 7.9 1.9 93.4 

        

22 2 4.8 4.3 4.3 10.2 2.1 99.6 

 6  4.1 4.1 9.3 1.9 96.0 

 10  4.1 4.1 8.7 1.8 94.1 

 20  4.0 4.0 7.8 1.6 92.3 

        

24 2 5.4 4.9 5.1 9.4 2.0 98.9 

 6  4.7 4.5 8.3 1.8 94.5 

 10  4.6 4.2 7.6 1.6 92.7 

 20  4.6 3.7 6.7 1.4 90.7 

        

26 2 5.0 4.4 5.3 10.7 1.9 99.2 

 6  4.2 4.5 9.1 1.6 94.5 

 10  4.2 4.1 8.2 1.5 91.8 

 20  4.1 3.5 7.0 1.2 89.4 

        

28 2 5.0 4.3 5.3 10.7 1.8 96.6 

 6  4.1 4.5 9.1 1.5 91.1 

 10  4.0 4.0 8.1 1.3 88.9 

 20  4.0 3.4 6.8 1.1 86.7 

        

20 (100% CO2)
╪ 2 40.8 - 14.1 3.5 6.6 - 

 6  - 13.0 3.2 6.0 - 

 10  - 11.8 2.9 5.5 - 

 20  - 9.8 2.4 4.6 - 

        

24 (100% CO2)
 ╪ 2 40.8 -    - 

 6  -    - 

 10  -    - 

 20  -    - 

        

14 (Ar) 2 4.4 3.9 4.6 10.3 3.1 98.9 

 6  3.8 4.2 9.5 2.8 95.6 

 10  3.8 4.0 8.9 2.6 93.4 

 20  3.7 3.4 7.7 2.3 90.2 
 
╪ CO2 and CO2* absorptions were saturated, rendering calculation of their concentrations etc. 

not feasible. 

 

Table 3.1. Summary of the data obtained in the experiments typified by IR plasma 

transmission Cell. 
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In general, the concentrations of both CO* and CO2* declined with time at all input powers, 

leading to a loss in carbon inventory, as is shown in table 3.1. Figure 3.6 shows a plot of the 

integrated absorbance of the CO band and the CO* combination bands in fig. 3.2 as a function 

of time, and fig. 3.7 the analogous plots normalized to their maximum values.  

Figure 3.6. Plots of the integrated absorbance of the CO* band and the integrated 

absorbance of the CO2* combination bands in fig. 3.2 as a function of time.    
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Figure 3.7.   Plots of the integrated absorbances of the CO* and CO2* combination bands in 

fig. 3.2 as a function of time. The plots were normalised to their maximum values. 

 

 

The broadening of the CO2 and CO features suggests the decline in the concentration of CO* 

is accompanied by a concomitant increase in the temperature of the gases in the plasma, and 

the two appear to be linked.  The chemical simplicity of the plasma system and lack of any 

additional product absorptions suggests that there is a process, or processes, taking place 

leading to carbon-containing products that are infrared inactive or present at steady-state 

concentrations below the detection limit of the FTIR system.  One example of the former is 

the Boudard reaction [15], which is commonly observed in plasma systems involving 

CO/CO2: 

 

2CO ↔ C + CO2      H0(298K) = -172 kJ mol-1              (3.8) 

 

No carbon deposits were observed on the walls or windows of the cell, but these could have 

been swept away by the feed gas.  As was stated above, the plasma temperature increased 

with operational time and input power: due to the exothermicity of reaction (3.8) and its 
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negative reaction entropy, the equilibrium constant for the process decreases with 

temperature, and hence less loss of CO due to the Boudouard reaction would be expected with 

time, in contrast to the observed results. 

 

As can be seen from table 3.1, the conversion of CO2 to CO after 2 minutes was ca. 10 – 11% 

irrespective of the input power, declining with time, as expected on the basis of figs. 3.6 and 

3.7.  The former observation was unexpected as an increase in conversion with increasing 

plasma power would be qualitatively expected on the basis of an increasing frequency of 

electron/gas collisions due to an increase in the discharge current (I = P/V0), as shown by 

Manley’s equation [16], see section 1.5. 

 

The IR plasma cell was in no way optimised for energy efficient operation, but a comparison 

of the energy efficiency for, for example, CO production with the literature values would at 

the least give confidence that the plasma system under study was not atypical, and this was 

confirmed.  Thus table 3.1 shows the values of CO observed during the various experiments.  

As may be seen from the table, the energy efficiency of CO production decreased with 

increasing operational time and increasing input power: e.g. at 20 W, CO declined from 2.4% 

after 2 minutes to 1.9% after 20 minutes, with analogous values of 1.8% to 1.1% at 28 W.   

Overall, the efficiency for CO production were broadly comparable to those reported in the 

literature, ie. ca. 1 - 2% [14, 17-19]. 

 

Table 3.1 also summarizes the data obtained using 100% CO2 and CO2 + Ar.  With respect to 

the former, it can be seen that, whilst the increase in CO2 results in an increase in the absolute 

amount of CO produced and the energy efficiency as would be expected, the fraction of CO2 

converted to CO decreases, from ca. 10% after 2 minutes to ca. 6 – 7%.  These data support 

the positive role of N2 in terms of its direct involvement in the reduction of CO2, see row (8) – 

(14) as well as the data obtained using Ar, see Table 3.1, where comparable conversion and 

energy efficiencies to those obtained using CO2 + N2 were obtained but at significantly lower 

input energy and ca. 20% lower CO2 in the feed gas.   Further, adding N2 or Ar is generally 

reported as rendering plasmas easier to ignite and having significant effect upon electron 

energy distribution functions [20].   
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3.2.2 Plasma reflectance cell 

Figure. 3.8(a) shows selected sample spectra collected at an input power of 24 W and a 

nitrogen flow rate of 30 cm3 min-1 using the plasma reflectance cell.  The spectrum collected 

immediately before the plasma was initiated was employed as the reference and sample 

spectra were collected every 2 minutes up to 20 minutes after the plasma was turned on. 

 

 

(a) 
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(b) 

Figure 3.8. (a) In situ FTIR spectra (8 cm-1 resolution, 100 co-added and averaged scans, 60 

seconds per scanset) collected at the  times shown on the figure at an input power of 24 W 

using the reflectance cell and nitrogen gas as the feed gas.  The spectrum collected 

immediately before the plasma was initiated was employed as the reference. (b) The single 

beam spectra from the experiment in fig. 3.8(a).  

 

 

As may be seen from the figs. 3.8, the spectra are featureless apart from two strong bands at 

1210 cm-1 (broad) and  1150 cm-1, that increase in intensity steadily with time.  Figure 3.9 

shows plots of the integrated absorptions of the two bands obtained from analogous 

experiments to that in fig. 3.8(a) as a function of input power from the spectra taken after 20 

minutes operation. As can be seen from the figure, clearly, the features also increase in 

intensity with input power. 
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Figure 3.9.  Plots of the integrated absorptions of the 1150 and 1210 cm-1 bands after 20 

minutes operation as a function of input power from the experiment in fig. 3.8 and analogous 

experiments. 

 

 

Figure 3.8(b) shows the single beam spectra corresponding to the absorbance spectra in fig. 

3.8(a) along with the reference spectrum collected immediately before the plasma was 

initiated.  As can be seen from the figure, the 1150 and 1210 cm-1 features were present before 

the plasma was initiated and simply increase in intensity as the plasma is turned on and with 

time thereafter. This suggests that the features have their origin in the oxides on the surface of 

the Macor and/or the Ti mesh. 

 

Figure. 3.10 shows a repeat of the experiment in figs. 3.8, using a feed gas composition of 

49% CO2 + 51% N2.  In addition to the features due to CO* and CO2*, the bands at 1150 and 

1210 cm-1 are also present, and again grow with operational time.   
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Figure 3.10. In situ FTIR spectra (8 cm-1 resolution, 100 co-added and averaged scans, 60 

seconds per scanset) collected at the times shown on the figure at an input power of 24 W 

using the reflectance cell and 49% CO2 + 51% N2 as the feed gas.  The spectrum collected 

immediately before the plasma was initiated was employed as the reference.  

  

 

Figure 3.11 shows the corresponding plots of the normalised integrated absorptions of the 

1150 and 1210 cm-1 features, and that of the 3 CO2 asymmetric stretch in fig. 3.10, as a 

function of time after the plasma was switched off and the cell flushed with nitrogen.  The 

absorptions were normalised to their values after 2 minutes flushing, to aid comparison.  The 

absorptions of the two features do not track the CO2 absorption, and the latter declines more 

rapidly.  This suggests that the 1150 and 1210 cm-1 bands are not due to a gas-phase species 

(as, perhaps, may be expected from the fact that they were not observed in the transmission 

cell experiments discussed above, although the presence of the Ti mesh is an additional factor 

in the reflectance experiments).  The relatively slow ‘relaxation’ of these bands argues against 

their being due to some form of electric field enhancement of the Ti-O bonds on the mesh or 
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the metal-oxygen bonds of the Macor, as such would be expected to relax as soon as the field 

was removed.  

 

Figure 3.11.  Plots of the normalized band absorptions of the 1150 cm-1, 1210 cm-1 and CO2 

asymmetric stretch from the flushing experiment in fig. 3.10.   

 

 

In addition, the features also appeared in experiments where N2 was replaced by argon. Figure 

3.12 which shows an analogous experiment to that shown in fig. 3.10, except using a feed gas 

composition of 31.0% CO2 + 69.0% Ar and an input power of 14 W (when Argon was 

employed in the feed, it was found that plasma was initiated and sustained at lower input 

power than when using N2, and the maximum power that could be employed was also lower); 

the 1150 and 1210 cm-1 features are clearly visible, growing with time, showing they are not 

due to nitrogen-containing species.     
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Figure 3.12.  In situ FTIR spectra (8cm-1 resolution, 100 co-added and averaged scans, 60 

seconds per scanset) collected using the plasma reflectance cell at the times shown on the 

figure at an input power of 14 W. The gas composition was 31.0% CO2 + 69.0% Ar and the 

reference spectrum was that taken with no plasma and a N2 gas feed.  Spectra were taken 

every 2 minutes after the plasma was initiated up to 20 minutes, but spectra are omitted for 

clarity.  

 

 

These features may be due to the transverse optical (TO) mode at 1210 cm-1 and the 

longitudinal optical (LO) mode at 1150 cm-1 of amorphous SiO2 present in the macor. These 

have previously been observed in the growth of thin films of SiO2 [21] and were observed on 

the high wavenumber side of the large SiO2 transverse optical peak due to the asymmetric 

stretch at 1070 cm-1. They are thought to be due to disorder-induced mode coupling in 

amorphous SiO2 with the exact positions varying dependent on conditions. In Lange’s work 

[21] they were shown to be stronger with ion bombardment.  .Whilst very interesting, it is not 

clear that the species responsible for the 1150 and 1210 cm-1 features participate in the 
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reduction of CO2 and hence are not relevant to the aim of this work.  Further work is 

recommended to elucidate this chemistry. 

 

Given the experimental uncertainties associated with the reflectance cell, and the fact that it is 

still under development, it is not possible to draw any meaningful, quantitative data from the 

spectra in fig. 3.9: suffice to state that the production of CO2* fell from 92% of the CO2 in the 

feed gas after 2 minutes operation to 89% after 20 minutes.  However, the data in fig. 3.7 

strongly suggests that this decrease in the formation of CO2* was not reflected in an increase 

in the conversion to CO*. 

 

The absence of any features due to the oxides of nitrogen in the various spectra discussed 

above is worthy of note, as such species have been observed in CO2 and N2 plasmas [14, 22] 

and the specific energy densities employed by these authors were comparable to those 

employed in the current work. The absence of such species may be due to catalytic activity of 

the Macor and/or differences in construction of the reactors leading to different electric fields 

and electron energies. 

 

 

3.2.3 The thermally driven reaction of CO2 at Macor 

The uncatalysed thermolysis of CO2 into CO and O2 takes place at negligible rates at 

temperatures < 1500 °C but the process is catalysed by metal oxides such as ZrO2, CeO2 and 

mixed Ce/Zr oxides such that thermolysis occurs at temperatures > 1200 °C [23].  Figure 3.13 

shows spectra collected from the Macor disc under nitrogen up to 600 °C, showing only the 

spectra taken every 100 °C, for clarity.   
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Figure 3.13.  In-situ FTIR spectra (8 cm-1 resolution, 100 co-added and averaged scans, 120 

seconds per scanset) collected as a function of temperature from a 12.5 mm diameter, 2 mm 

thick Macor disc in the thermal system. The atmosphere above the disc was N2.   Spectra were 

collected at 25 and 50 ºC, then every 50 ºC but not all spectra are shown, for clarity.   

 

 

As can be seen from the figure, the spectra are dominated by a structured, broad loss between 

3000 and 1000 cm-1, the broad gain of an O-H stretch with a maximum around 3360 cm-1, and 

sharp loss and gain features near 3700 cm-1 which may be attributed to isolated O-H stretches 

[24]. 

 

Figures 3.14(a) – (c) show the reflectance spectra collected in 23% CO2 + 77% N2 as a 

function of temperature up to 600 °C where fig. 3.14(a) shows all the spectra, fig. 3.14(b) the 

spectra up to 250 °C and fig. 3.14(c) the spectra from 250 to 600 °C.   
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Figure 3.14.  (a) In situ FTIR spectra (8 cm-1 resolution, 100 co-added and averaged scans, 

60 seconds per scanset) collected from a 12.5 mm diameter Macor disc in a static atmosphere 

of 23% CO2 + 77% N2 at the temperatures shown on the figure.  The temperature was ramped 

at 5 °C min-1.  The spectra in (a) up to 600 °C (b) 25 °C to 250 °C and (c) 250 °C to 600 °C.    

 

 

For comparison, fig. 3.15 shows the spectrum collected at 600 °C in fig. 3.14 along with 

spectra collected at the same temperature in analogous experiments using 36% CH4 + 64% N2 

and 21% CO2 + 43% CH4 + 36% N2, and fig. 3.16 shows a plot of the absorbance at 2000   

cm-1 in fig. 3.14(a) vs temperature.   
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Figure 3.15. (i) The FTIR spectrum (8 cm-1 resolution, 100 co-added and averaged scans, 120 

seconds per scanset) collected at 600 ºC in fig. 3.13, along with spectra collected at the same 

temperature in analogous experiments using (ii) 23% CO2 + 77% N2, (iii) 36% CH4 + 64% 

N2, and (iv) 21% CO2 + 43% CH4 + 36% N2. 

0 100 200 300 400 500 600
0.0

0.1

0.2

0.3

0.4

Temperature / °C

A
b

so
rb

a
n

ce
 a

t 
2
0
0
0
 c

m
-1

 

 

Figure 3.16.   A plot of the absorbance at 2000 cm-1 of the spectra in fig. 3.14(a) as a function 

of temperature. 

 

Figures. 3.14(a) – (c) are dominated by the very intense CO2 loss features at 2360 and 2340 

cm-1, and the CO2/CO2*  combination bands between 3500 and 4000 cm-1 are also clearly 
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seen, as are the structures due to the overlay of the asymmetric stretches due to the loss of 

CO2 and gain of CO2*. Figure 3.17 shows the spectrum collected at 100 ºC in fig. 3.14(a), and 

fig. 3.18 which compares the bands obtained in the thermal and plasma experiments directly.   

 

4000 3500 3000 2500 2000 1500 1000

0.000

0.005

0.010

0.015

0.020

A
b

so
rb

a
n

ce

Wavenumbers /cm-1

 

Figure 3.17.  The spectrum collected at 100 ºC in fig. 3.14(a). 
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Figure 3.18.  A comparison of (i) the spectrum obtained in the thermal experiment in fig. 

3.14(a) at 250 °C with (ii) that obtained after 20 minutes in the plasma experiment at 28 W in  

fig. 3.4.  Both spectra were offset to zero and the spectrum in (i) enhanced by a factor of 7.4 

to aid comparison. 
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As expected, the P and R bands due to CO are absent from the thermal spectra and, given the 

noise on the spectra in figs. 3.14(a) – (c) is ca. 4 x 10-4, this suggests the CO absorption at 

2116 cm-1 must be ≤ 4 x 10-4, hence [CO] ≤ 1.2 x 10-5 M and the conversion of CO2 to CO is 

≤ 0.1%, i.e. very low, as would be expected on the basis of the literature [23] and in complete 

contrast to the plasma experiments.  The bands around 2900 cm-1 are due to the protective 

polymer film on the beamsplitter of the spectrometer. 

 

 

3.3 Conclusions 

The combination of the FTIR reflectance and transmission plasma cells allowed reasonable 

estimations of the conversion of CO2 to CO, and provided a direct method of assessing the 

temperature of the gases in the plasma glow using the broadening of the CO absorption.  The 

conversion and energy efficiencies observed were comparable to those routinely reported in 

the literature, giving confidence in the approach. Further, and for the first time, the same 

chemical system was studied driven both by plasma and thermally, and the data compared and 

contrasted: whilst up to 9% conversion of the CO2 to CO was observed in the plasma 

experiments, no conversion was observed in the thermal experiment up to 600 ºC.   

 

Finally, strong plasma-induced absorptions were observed on the Ti/Macor which remained 

for some time after the plasma was stopped which remain unassigned, but have been 

tentatively attributed to transverse and longitudinal optical modes of SiO2 and  further work is 

needed to obtain definitive identification of these and the implications of their formation. 
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Chapter 4. An in-situ study of non-thermal plasma fed with CO2, CH4 and N2 in plasma- 

and thermally driven experiments at Macor. 

 

4.1 Introduction 

The aim of work reported in this chapter was to extend the initial studies described in Chapter 

3 to the in-situ FTIR investigation of the dry reforming of CO2 and CH4 at Macor. The work 

in this chapter is structured as follows: firstly, the initial characterisation of the system after a 

short run time is described, followed by a detailed study of the changes observed after longer 

run times; and finally the unexpected results so obtained are discussed and possible 

mechanisms are proposed which could pave the way for exploiting the major, untapped 

potential of plasma catalysis. 

 

4.2 Plasma transmission cell 

Figure 4.1 shows a spectrum taken before the 24 W run using 8.5% CO2 + 13.1% CH4 + 

78.4% N2 feed gas without plasma at a total flow rate of 200 cm3 min-1, referenced to N2 gas 

at the same flow rate, at 25 ºC.   

 

Figure 4.1. A spectrum (8 cm-1 resolution, 100 spectra per scan set, and 1 minute per 

spectrum) of 8.5% CO2 + 13.1% CH4 + 78.4% N2 at a total flow rate of 200 cm3 min-1 

through the plasma transmission cell at 25 ºC prior to experiment carried out at an input 

power of 24 W.  The reference spectrum was N2 gas at the same flow rate and temperature. 
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As was discussed in section 2.8,  the intense feature between 2300 and 2400 cm-1 is due to the 

P and R bands of the CO2 asymmetric stretch (3) fundamental absorption [1, 2] and the 

features between 3500 and 4000 cm-1 are CO2 combination bands (1 + 3 and 22 + 3) [3].  

It is clear from the figure that the fundamental bands are saturating and hence cannot be 

employed for any quantitative measurements; hence it was decided to employ the integrated 

areas of the CO2 combination bands between 3491 and 3769 cm-1 to estimate the CO2 

conversion, the absorption coefficient employed was 6.5 x 105 cm mol-1 [4] as was described 

in Chapter 2. Figure 4.2 shows the spectrum collected after 2 minutes at 24 W and the 

spectrum collected of the same CO2/CH4/N2 feed gas with no plasma, both using the nitrogen 

single beam spectrum as reference.  

 

 

Figure 4.2. In situ FTIR spectra (8 cm-1 resolution, 100 spectra per scan set, and 1 minute per 

spectrum) of the 8.5% CO2 + 13.1% CH4 + 78.4% N2 feed gas in the plasma transmission cell 

at a total flow rate of 200 cm3 min-1 and a temperature of ca. 25 ºC: (i) before initiating 

plasma and (ii) after 2 minutes operation at 24 W. In both cases, the reference spectrum was 

collected using nitrogen gas as the feed and without plasma.     
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Bands due to HCN and CO were observed and are discussed below.  After 2 minutes plasma 

operation, although the features other than HCN and CO appear to be due to room 

temperature CO2 and CH4 bands they are all marginally broader and the Q branches of the 4 

and 3 bands of CH4 are also shifted slightly.  This can be seen more clearly in fig. 4.3(a) 

which shows the spectrum in fig. 4.2 using the single beam spectrum collected with no 

plasma but with the same feed gas (8.5% CO2, 13.1% CH4 78.4% N2) , i.e. fig. 4.3(a) is a 

difference spectrum.  

 

 

 

(a) 
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(b) 

 

 

(c) 

Figure 4.3.  (a) The spectrum in fig. 4.2 but using the single beam spectrum collected with no 

plasma and using 8.5% CO2 + 13.1% CH4 + 78.4% N2 as the feed gas as the reference 

spectrum.  (b) & (c) Spectral simulations of the change in absorbance observed when the gas 

temperature is changed from 296 to 396 K. The simulated spectrum at 296 K was subtracted 

from that at 396 K so that a positive change (gain) in absorbance indicates an increase in 
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absorbance when the plasma is on. (b) CO2 in the asymmetric stretch region for a CO2 mixing 

ratio of 0.01 in air and an absorption path length of 1 cm with a spectral resolution of 8 cm-1; 

(c)  CH4 under the same simulation conditions. The features assigned as CO2* and CH4* are 

indicated by the positive change in absorbance features. Calculated using Spectralcalc 

(www.spectralcalc.com) and Origin. 

 

 

The broadening of the various features in fig. 4.2 compared to the room temperature 

absorptions of the feed gases can be seen in fig. 4.3(a) as the gain of “wings” either side of the 

CO2 and CH4 loss features, the much reduced fine structure on the 4 band and, in the case of 

the Q branches of the CH4 bands, as significantly reduced absorptions and the bipolar nature 

of the 3 Q branch.  The 3 band of CH4 and the asymmetric CO2 stretch were simulated by 

Prof. Phillip Martin, School of Chemical Engineering and Analytical Science, The University 

of Manchester, using Spectralcalc and the difference spectra obtained by subtracting the room 

temperature spectra from those at 396 K are shown in figs. 4.3(b) and (c): thus the gain 

features in fig. 4.2 were assigned to rotationally excited CO2, CO2* [5, 6] and CH4, CH4*, due 

to higher temperatures in the plasma leading to increased rotational excitation. There is no 

evidence of non-thermal vibrational excitation enhancement.  This is supported by the 

experiment carried out using the thermal FTIR system, see section 4.4.   

  

Figure 4.4 shows spectra collected after 20 minutes operation with plasma at 20, 24 and         

28 W, all using the spectra collected with the same gas feed but without plasma as the 

reference spectra.  As can be seen, in addition to CO2* and CH4*, other species were clearly 

produced in both liquid and gas phases: with respect to the former, a pale brown liquid was 

found to coat the internal walls and windows of the cell and subsequent experiments (see 

below) showed this to be composed of a number of species.   
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Figure 4.4. In-situ FTIR spectra (8cm-1 resolution, 100 spectra per scan set, and 1 minute per 

spectrum) collected after 20 minutes operation with plasma as a function of input power. The 

gas compositions are as shown on the figure at a total flow rate of 200 cm3 min-1 and a 

temperature of ca. 25 ºC; the reference spectrum was collected under the same conditions but 

with no plasma.  Sample spectra were collected every 2 minutes up to 20 min.    

 

 

It was decided to obtain a spectrum of the liquid: thus fig. 4.5 shows the spectrum collected 

after 20 minutes at 24 W in fig. 4.4 along with the spectrum collected at the end of the same 

experiment after the cell had been purged with N2 to remove all gas phase species: the latter 

spectrum was thus of the liquid film on the CaF2 windows. The spectrum taken after 20 

minutes operation had that taken after 2 minutes subtracted:  the reason for this can be seen in 

fig. 4.4, where the peaks between 2000 and 2250 cm-1 in fig. 4.4 are overlying the P and R 

bands of gas phase CO (see below) which remain essentially unchanged with time, indicating 

that the CO rapidly attains a steady state concentration: this is also the case for HCN and these 

observations are discussed further below.   
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Figure 4.5.  The spectrum collected (i) after 20 minutes at 24 W in the experiment in fig. 4.4 

along with (ii) that collected at the end of the same experiment after the cell had been sparged 

with N2, the peaks in the latter thus being due to the liquid film on the CaF2 windows.  The 

spectrum collected after 2 minutes was subtracted from the spectrum taken after 20 minutes to 

remove the unchanging CO and HCN absorptions, see text for details. 

 

By subtracting the spectrum taken after 2 minutes, the features between 2000 and 2250 cm-1 

were clearer, and this approach was adopted below. The IR spectra obtained at an input power 

of 24 W were typical of those obtained at 20, 22, 26 and 28 W, differing only in the relative 

intensities of the various features.   

 

The 1655 cm-1 band is directly associated with one or more of the components of the liquid 

film: as can be seen in fig. 4.4, the exact position of the band maximum and the peak shape 

varied from experiment to experiment suggesting contributions from more than one species 

however, for clarity, it is referred to as the 1655 cm-1 band in the discussion below.  As may 

be seen from fig. 4.5, as well as the liquid film (represented by the 1655 cm-1 band), gaseous 

products were observed, one of which showed a strong absorption at 2152 cm-1 which 

consistently decreased in intensity when the cell was sparged with N2.  This feature may be 
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attributed to ketene [7, 8], a carbon chain oxide; and the band at 2210 cm-1 in figs. 4.4 and 4.5 

may be attributed to another carbon chain oxide, C5O2 [9-11] which is a liquid at room 

temperature, hence its presence in the deposit [12].   

 

This is an important observation: the production of neither ketene nor C5O2 has been observed 

previously in NTP experiments irrespective of the nature or composition of the catalyst or 

dielectric, and this was achieved by using a catalyst comprised of earth-abundant elements.  

Further, ketenes and their dimers are important reactants that find use in the production of a 

wide range of chemicals [13-15] in a diverse range of industries including pigments, 

pharmaceuticals and agrochemicals and as intermediates for the paper industry.   The 2152 

cm-1 and 2210 cm-1 bands are in a distinctive spectral region that is populated by relatively 

few functional groups: in addition, their intensities do not, in general, track those of the other 

bands in figs. 4.4 and 4.5, lending support to their identification as chain oxides.  Further, 

ketene has been observed in a matrix FTIR study of products of benzene transformations in a 

pulsed glow discharge at low pressure in highly diluted mixtures of benzene with argon in the 

presence of small amounts of oxygen [16].  As an interesting aside, the observation of the 

production of ketene and C5O2 in a non-thermal plasma catalysed by common elements has 

direct relevance to the origin of life: e.g. C5O2 is a powerful tracer of the temperature history 

of formerly carbon monoxide-rich ices in molecular clouds and star-forming regions [17] and 

ketene is one of the Complex Organic Molecules (COMs) formed in prestellar cores [18].   

 

It is interesting to note from fig. 4.4 that the relative yield of ketene and C5O2 depends 

strongly on the input power, whilst the production of the liquid film does not appear to be so 

dependent; this suggests one method of potentially controlling the product distribution from 

the plasma process. 

 

 

4.3 The spectra collected after 2 minutes 

Figure 4.6 shows the spectra collected after 2 minutes of plasma operation at 28 W in the 

experiments shown in fig. 4.4 and analogous experiments carried out at the same input powers 

with varying gas feed compositions.   
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Figure 4.6. The spectrum collected after 2 minutes of plasma operation at 28 W in fig. 4.4, 

along with analogous experiments using gas feeds of various composition, as shown on the 

figure.   The insets show the spectral regions where formate and ketene absorb in the 

experiment carried out using 5.0% CO2 + 12.7% CH4 + 82.3% N2. 

 

 

The bands at 3334 cm-1 and 3286 cm-1 in fig. 4.6 were attributed to the P and R branches of 

HCN based on the work of Choi and Barker [19]; the paper also allows an estimate of the 

extinction coefficient of the 3334 cm-1 band of 2.8 M-1 cm-1. The features at 2167 and 2116 

cm-1 in fig. 4.6 may be attributed to CO [2, 4, 20]: the frequency of the former, in some cases, 

shifted by the presence of an underlying absorption, as shown by the inset of the spectrum 

from the experiment using 5.0% CO2 + 12.7% CH4 + 82.3% N2 in the figure.   

 

Figure 4.7 shows the CO region of the spectrum collected at 2 minutes and 24 W in the 

experiment in fig. 4.4, as well as that of a spectrum collected after 2 minutes operation at               

24 W in 13.4% CO2 86.6% N2, the latter was reduced by a factor of 1.3 to render the 2116   

cm-1 bands the same intensity.  The figure also shows the spectrum resulting from the 
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subtraction of the CO2 + N2 spectrum from that of CO2 + CH4 + N2: clearly, the CO bands are 

of the same intensities and frequencies, with the difference due to the presence of the 2152 

cm-1 ketene feature.  As stated in section 2.8, the integrated absorption coefficient of the CO 

band between 2002 and 2225 cm-1 was found to be 7.0 x 105 cm mol-1 in agreement with the 

work of Bolis and et. al. [21].   

 

Figure 4.7. (i) The CO region of the spectrum in fig. 4.4 collected at 24 W; (ii) a spectrum 

collected after 2 minutes operation at 24 W using 13.4% CO2 + 86.6% N2 as the feed gas, 

reduced by a factor of 1.3 to render the 2116 cm-1 band the same intensity as that in (i); (iii) 

The difference between the two spectra in (i) and (ii). 

 

Figure 4.8 which shows the spectra collected after 2 minutes in experiments utilising the feed 

gas compositions and input powers shown in rows 1(a) & (b), 3(a) & (b) and 5(a) & (b) of 

table 4.1 (ie nominally 10% CO2 + 10% CH4 + 80% N2 at 20W, 24W and 28W) and that taken 

after 2 minutes during the experiment using 5.0% CO2 + 12.7% CH4 + 82.3%N2 as feed gas 

(row 16), with the analogous spectra obtained using CO2 + N2, scaled and subtracted to annul 

the CO absorptions in each spectrum; the intensities of the ketene band so obtained are 

presented in the last column of table 4.1 which summarizes the data obtained from the 

experiments in fig. 4.6 along with data obtained in analogous experiments carried out as 
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blanks (omitting CO2 or CH4), replacing N2 with Ar and to probe the effect of input power, 

etc.  The spectra from the blank experiments are not included in this work for brevity: as the 

experiments using CO2 alone as the feed gas have been fully described in the previous 

chapter.  

 

Figure 4.8.  Spectra collected after 2 minutes at the input powers and gas feed compositions 

shown on the figure.  Plasma transmission cell, total flow rate 200 cm3 min-1.  All the spectra 

had the analogous spectra obtained using CO2+N2 at the same power scaled and subtracted 

to annul the CO absorptions in each spectrum. 
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Composition 

CO2/CH4/N2 or Ar 

Power 

/W 

[CO2]feed 

/10-3M 

[CH4]feed 

/10-3M 

Gain 

CO 

/10-4M 

%CO Gain 

HCN 

/10-4M 

Gain 

HCHO 

/10-4M 

Abs 

2152 cm-1 

/10-3 

1a 10.6%/13.4%/76.0% 20 4.3 5.5 3.7 8.6 2.5 0.04 3.2 

1b 12.7%/15.9%/71.4% 20 5.2 6.5 6.7 12.9 3.9 ? 6.3 

2 8.7%/12.8%/78.5% 22 3.5 5.2 3.5 10.0 2.8  ? 0 

3a 9.7%/13.7%/76.6% 24 4.0 5.6 4.7 11.8 3.0 0.05 6.5 

3b 8.5%/13.1%/78.4% 24 3.5 5.3 3.7  10.6 3.2 ? 0 

4 7.4%/11.0%/81.6% 26 3.0 4.5 4.0 13.0 3.9 ? 7.1 

5a 12.3%/14.4%/73.3% 28 5.0 5.9 6.2 12.4 3.6 ? 12.2 

5b  9.8%/15.7%/74.5% 28 4.0 6.4 5.3 13.3 5.0 ? 24.0 

          

6 15.0% CH4 85.0% N2 20 0 6.1 0 0 5.7 0 0 

7 12.3% CH4 87.7% N2 22 0 5.0 0 0 4.2 0 0 

8 16.2% CH4 83.8% N2 24 0 6.6 0 0 4.6 0 0 

9 13.0% CH4 87% N2 26 0 5.3 0 0 6.4 0 0 

10 15.0% CH4 85.0% N2 28 0 6.1 0 0 6.0 0 0 

          

11 12.9% CO2/87.1% N2 20 5.3 0 5.8 10.9 0 0 0 

12 9.7% CO2/90.3% N2 22 4.0 0 5.5 13.8 0 0 0 

13 13.4% CO2/86.6% N2 24 5.5 0 6.0 10.9 0 0 0 

14 12.3% CO2/87.7% N2 26 5.0 0 6.0 12.0 0 0 0 

15 12.4% CO2/87.6% N2 28 5.3 0 6.1 11.5 0 0 0 

          

16 5.0%/12.7%/ 82.3% N2 28 2.0 5.2 3.1 15.5 4.7 0 11.8 

          

17 9.6%/16.0%/74.4% Ar 20 3.9 6.5 2.8 7.2 0 0.07 0 

18 8.3%/13.5%78.2% Ar 28 3.4 5.5 2.7 7.9 0 0.05 0 

          

19 54.0%/18.0%/28.0% 28 22.0 7.3 8.8 4.0 0 0 0 

 

Table 4.1. The feed gas compositions employed in the work reported in this paper, and a 

summary of the data obtained from the spectra collected after 2 minutes during the various 

experiments. Abs 2152 cm-1 is the absorbance of the ketene band after subtracting the 

absorbance of CO, and %CO is the percentage of the CO2 feed converted to CO, see text for 

details. Rows 1(a) & (b), 3(a) and (b) and 5(a) and (b) show duplicate experiments carried 

out several months apart. ? entries indicate experiments in which the formaldehyde 

absorption could not be discerned clearly, e.g. due to overlying water bands due to 

adventitious water vapour. 
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It is very clear from the table that the production of ketene (and indeed the liquid products 

seen at longer times, see below) requires all three gases.  Further, at fixed composition, the 

gain of ketene increases with input power.  This may be due to the formation of the methyl 

radical from CH4 as the first intermediate in the production of ketene (see scheme 4.1): CH3 is 

known to be an important intermediate for example in the formation of acetic acid from CO2 

and CH4 [22]. 

 

 

 

Scheme 4.1 

 

The second inset on fig. 4.6 shows the spectral range between 1640 and 1900 cm-1 of the 

experiment using 8.3% CO2 + 13.5% CH4 + 78.2% Ar: the feature may be attributed to the P, 

Q and R branches of the 2 fundamental absorption of formaldehyde [2, 23].  The integrated 

extinction coefficient of formaldehyde over the range 1660 – 1820 cm-1 is ca. 1.25 × 10-17 cm 

mol-1 [24] and this was employed to calculate the concentration of formaldehyde in the plasma 

glow region. 
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It is clear from fig. 4.6 and table 4.1 that there is some conversion of CO2 and CH4 to CO, 

HCN and formaldehyde after 2 minutes, but that the major fraction of the reactant gases 

remain unreacted and present at an increased gas kinetic temperature with broadening due to 

higher rotational excitation as a result of the higher gas temperature: this is a reasonable 

assumption for atmospheric pressure.  In the absence and presence of CH4, the conversion of 

CO2 to CO (rows 1 – 5 and 11 – 15 in table 4.1) appears to be largely independent of input 

power, which is unexpected as the mean electron energy increases with power, and hence 

more conversion would be expected.  The conversions in CO2/N2 are comparable to those in 

CO2/CH4/N2 suggesting that CH4 played no part in the reduction of CO2 to CO.  This is 

because the main process is the single step electron dissociation of CO2.   

 

Increasing the dilution of the CO2 by N2 and N2+CH4 (rows 16, 5(a) & (b), 15 and 19) 

reduced the conversion of CO2 to CO by a factor of 4: ie. from 15.5% at 5.0% CO2 to 4% at 

54.0% CO2.  Xu and co-workers [25] interpret such behaviour in terms of an increase in the 

number density of higher energy electrons in CO2 non-thermal plasma on dilution with N2 or 

Ar.  The mean electron energy per molecule ranges from 3.9 to 5.5 eV at the lowest and 

highest input energies employed by us: given that the threshold energies for the excitation and 

ionization of CO2, N2, CH4 and Ar are all significantly above these values [26-29], see table 

4.2, this suggests that electrons in the high energy tail of the distribution must play a 

significant role.   

 

Species 
Excitation 

threshold /eV 

Ionization 

threshold /eV 

CO2 6.2 13.8 

CH4 10 12.65 

Ar 11.5 15.8 

N2 7.7 14.5 

Table 4.2. Electron impact excitation and ionization threshold energies [25-27, 29]. 

 

 

When N2 was replaced by Ar, the input power had little or no effect (rows 17 and 18), neither 

did changing the feedgas at 20 W.  However, at 28 W, the conversion to CO was reduced by 

ca. 36% compared to using N2.  The latter effect is unsurprising as the ionization energy of Ar 
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is high,15.76 eV [30] and it is generally accepted that, at the high concentrations of N2 

employed (70 – 90%), metastable N2 states will be primarily responsible for the conversion of 

both CO2 and CH4 [26, 30]: 

 

   N2 (A
3u

+) + CO2 → CO + O + N2                   (4.1) 

 

and the Penning dissociation of CH4: 

 

   N2 (A
3u

+) + CH4 → CH3 + H + N2                   (4.2) 

 

Table 4.3 shows the calculated mean electron energies for different compositions of 

CO2/CH4/N2/Ar assuming a reduced electric field, Td, of 200 and a temperature of 300 K 

using BOLSIG+ [31]. The first excitation threshold of N2 is 7.7 eV (see table 4.2) and the 

electron energy distribution in this work possesses a significant population with energy 

greater than this and so this mechanism is feasible in the plasma cell.  

 

 

 

 

 

 

 

 

 

 

Table 4.3. Mean electron energies for different percentage compositions calculated from 

BOLSIG+ [31] at a reduced electric field of 200 Td and a temperature of 300 K. 

 

 

In the absence of CO2, 9 – 12% of the CH4 (rows 6 – 10) was converted to HCN.  Although 

HCN is not a desired product, the presence of HCN shows that nitrogen fixation has occurred 

and it is produced in comparable quantities to CO, so its origin is of interest: as would be 

expected, CH4 is clearly essential for its formation, but a comparison of rows 1 – 5, 6 – 10, 16 

CO2 CH4 N2 Ar Mean electron energy /eV 

100 0 0 0 5.896 

0 100 0 0 5.523 

0 0 100 0 5.056 

 0 0 0 100 7.905 

50 50 0 0 5.612 

25 25 0 50 6.521 

25 25 50 0 5.409 
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and 19 strongly suggests that CO2 suppresses this process, due to the production of reactive O 

atoms favouring the oxidation pathways.   

 

The production of HCN increased with input power (see rows 1 – 5) in the presence of CO2 

and CH4, but showed no dependence upon power in the experiments using just CH4 and N2 

(rows 6 – 10).  The study of the plasma driven conversion of CH4/N2 mixtures is topical due 

to their relevance to the atmospheres of Titan and Triton (and the postulate that these are 

models for the early development of Earth) [32-34] and also with respect to natural gas 

conversion [35].  Horvath et al [34] have observed HCN at similar concentrations using the 

same SIE as here: thus the authors employed a cylindrical, co-axial quartz reactor packed with 

borosilicate beads and supplied with 10% CH4/N2 at SIEs of 1 to 30 kJ dm-3.  At an SIE of ca. 

8.4 kJ dm-3 the authors observed 10,500 ppm HCN in the exhaust from the reactor,                 

ca. 5 ×  10-4 M and comparable to the 6.0 × 10-4 M observed in this work in the plasmaglow at 

the same SIE.   

 

Horvath and co-workers postulated that the formation of HCN occurs via the reaction of CHx 

radicals with N atoms:  however, the dissociation energy of N2 is 9.756 eV [36] and the 

authors observed HCN at SIE as low as 1 kJ dm-3, equivalent to an average electron energy 

per molecule of 0.25 eV for a uniform electric field. However, in the packed bed plasma 

configuration enhanced electric fields are likely to arise between the beads leading to higher 

electron energies [22]. The high energy part of the electron energy distribution function is 

thus likely to be able to directly dissociate N2. 

 

The gas phase production of HCN in the plasma region is most likely produced by the 

following mechanism [34]. The initial step is electron impact reaction with CH4 which 

requires electron energies greater than 10 eV. The CHx radicals can then react further with N 

to produce HCN: 

 

CH4 + e- → CH3 + H 

CH4 + e- → CH2 + H2 

 

Followed by:  

CH3 + N → HCN + H2 
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CH3+ N → H2CN + H 

CH2 + N → HCN + H 

CH2 + N → CN + H2 

H2CN + N → HCN + NH 

CN + CH4 → HCN + CH3 

   H2CN + H → HCN + H2 

 

In contrast, Snoeckx and co-workers [35] in their cylindrical reactor without packing observed 

HCN at concentrations an order of magnitude lower than the findings in this work and 

Horvath: eg. at 6 kJ dm-3 using N2 concentrations from 1 to 87% Snoeckx et al. observed 

HCN at concentrations from 4.0 × 10-7 M to 1.7 × 10-5 M, respectively.  The authors attributed 

the very low HCN production to the fact that the SIE was lower than required to generate N2
+ 

which the authors and others have postulated ([35] and refs therein) are the intermediates in 

the formation of HCN [34], eg.: 

 

   N2(X
1g

+) + e-(15.63 eV) →  N2
+(X2g

+) + 2e-                  (4.3) 

 

However, it is not clear from the cited papers how N2 is an intermediate in the formation of 

HCN. 

  

As stated above, in this work, there was no clear relationship between the concentration of 

HCN in the plasma glow and the SIE: this and the lower dissociation energy of N2 favours the 

mechanism proposed by Horvath et al.   Interestingly, when N2 was replaced by Ar (table 4.1, 

rows 17 and 18), a new absorption appeared with branches at 3315 and 3263 cm-1 which we 

attribute to acetylene [2], see fig. 4.9. 
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Figure 4.9.  The spectrum collected after 2 minutes at 28 W using a feed gas of 8.3% CO2 + 

13.5% CH4 + 78.2% Ar. 

 

In general, CO was ca.1 – 3%, which is in broad agreement with the literature where 

efficiencies are generally quoted as ≤ 10% [27]: in addition, the cell was designed to allow 

spectroscopic monitoring of the plasma, rather than to maximize conversion efficiencies. It is 

estimated that bands due to O3, NO2 and N2O at 1051, 1628 and 2237 cm-1 [6] (having  

absorbances of 0.02) would be easily discerned in the spectra in fig. 4.4: using the reported 

extinction coefficients for these species [6], and therefore that if they are present it is at 

concentrations < ca. 10-5 M. 

 

 

4.4 The spectra collected at later times 

In order to maximize the peak intensities observed, the spectra collected during the 

experiment carried out at 28 W were selected for further study.  In addition, as stated above, 

given that the HCN and CO bands in general did not change with time in any of the 

experiments, the spectrum collected after 2 minutes at 28 W was subtracted from the spectra 

collected at later times, and the results are shown in fig. 4.10.   
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Figure 4.10. In-situ FTIR spectra (8cm-1 resolution, 100 spectra per scan set, and 1 minute 

per spectrum) collected as a function of time at a fixed input power of 28 W. The gas 

composition was 12.3% CO2 + 14.4% CH4 + 73.3% N2 at a total flow rate of 200 cm3 min-1 

and a temperature of ca. 25 ºC; the reference spectrum was collected under the same 

conditions but with no plasma.  Spectra were collected every 2 minutes up to 20 min.  The 

spectrum collected at 2 minutes was subtracted from those taken at longer times, see text for 

details. 

 

 

The loss and gain features in the CH4 and CO2 regions of the figure reflect the increased gas 

kinetic temperature of these species with time: in other words, the loss features are due to the 

less rotationally excited species. The HCN and CO bands are clearly absent, showing that 

these species had reached steady state concentrations in the plasma by 2 minutes.  Plots of the 

various features in fig. 4.10 are shown in figs. 4.11(a) and (b), and the analogous plots for the 

experiments carried out at the other input powers, are shown in figs. 4.12(a) - (d). The 

absorbance at 2295 cm-1 on the wing of the CO2* feature and absorbance at 3008 cm-1 on any 

wing of CH4* band were taken as indications of the increasing rotational excitation of these 

species with temperature.   
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(a) 

 
(b) 

Figure 4.11. (a) Plots of the intensities of the various features in fig. 4.10 as a function of 

time.  (b) The plots in (a) normalised to their maximum values.    
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.12.  Analogous plots to those shown in figs. 4.11(a) and (b) for the various features 

observed at input powers of (a) & (b) 20 W and (c) & (d) 24 W. 
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Figure. 4.11(a) shows plots of the band intensities as a function of operation time and fig. 

4.11(b) the corresponding plots of the intensities normalised to their maximum values.  The 

plots of CO intensity at 2116 cm-1 were calculated with respect to the reference spectrum 

taken with no input power, all other features were calculated from the difference spectra, with 

the spectrum collected at 2 minutes subtracted: the plots of the normalised intensities of the 

CO band can also be taken as representative of HCN.   

 

It is clear from figs. 4.10, 4.11(a), 4.11(b) and 4.12(a) – (d) that the intensities of the various 

features observed show that the species responsible show three types of behaviour: HCN and 

CO rapidly attain a steady state irrespective of the formation of the liquid film, suggesting 

these take place entirely in the plasma region.  The CO2, CO2* and 2152 cm-1 ketene bands 

show a rapid initial increase which tails away at longer times, but their concentrations in the 

plasma continue to grow: in contrast, the 2210 cm-1 C5O2, 1655 cm-1 and 3303 cm-1 bands 

take longer to develop and then increase fairly steadily.  This suggests that the three types of 

behaviour are due to species produced or consumed by three distinct processes although links 

between them may also be present. 

 

From fig. 4.10, it appears that the broad gain feature between 2500 and 3500 cm-1, which is 

distorted somewhat by 3 CH4* absorptions, is due to the same species as the 1655 cm-1 

feature and this was confirmed by plotting the intensities of the two features against each 

other, see figs. 4.13(a) – (c) for the experiments conducted at input powers of 20 to 28W (only 

the data for 20, 24 and 28W are shown for clarity).  The same procedure confirmed that the 

1512 cm-1 band was also due to this species, see Appendix 3.  A clue to the identity of this 

species was provided by the lack of any intense bands due to C-H stretches in figs. 4.2, 4.6, 

4.10 etc, along with the broad absorption between 2500 – 3500 cm-1 which appeared to 

comprise two bands.  On the basis of the literature [2, 37, 38],  the broad feature between 

2500 and 3500 cm-1 may be attributed to the N-H stretch of acetamide, the weak 2880 cm-1 

band to the asymmetric C-H stretch and the 1655 and 1512 cm-1 bands to the amide I (C=O 

stretch) and amide II (N-H in plane deformation), respectively.  As well as the carbon chain 

oxides, acetamide is also important to the study of prebiotic life as it is the largest interstellar 

molecule bearing the critical amide functionality [39]. 

 

 



Chapter 4 
__________________________________________________________________________________                                              
 

115 
 

 

(a) 

 

(b) 
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(c) 

Figure 4.13. Plots of the absorbance of the 3303 cm-1 band vs the broad absorbance at 1655 

cm-1 for the experiment in fig. 4.10 and the analogous experiments carried out at input 

powers of (a) 20 W (b) 24 W and (c) 28 W. (Corresponding to rows 1(a), 3(a) and 5(a) in 

table 4.1). 

 

The 1655 cm-1 feature also has contributions from the in-plane N-H bend, C-N stretch and C-

C-N deformation.  This is clearly not the only species present in the liquid film which shows a 

plethora of clearly defined (but as yet unidentified) bands below 2000 cm-1 as well as a 

significant broad underlying absorption suggesting a number of overlapping bands.  Further, 

the liquid film is a yellowish colour suggesting, for example, conjugated C=C and C=N 

bonds.  The postulate that the 1655 cm-1 band is a composite of a number of absorptions is 

supported by close inspection of the spectra collected after 4 minutes and 20 minutes in fig. 

4.10, where it can be seen that the absorption around 1655 cm-1 in the 4 minute spectrum 

comprises a number of peaks. 

  

Figure 4.14 shows preliminary data obtained using the plasma reflectance cell during a repeat 

of the experiment in fig. 4.4 experiment in which spectra were collected every 2 minutes after 

initiating the plasma at an input power of 24 W.  
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Figure 4.14. (i) Spectrum of the liquid deposit formed on the CaF2 windows of the 

transmission cell following a repeat of the experiment at 24 W in fig. 4.4.  At the end of the 

experiment, the cell was flushed thoroughly with N2 and a spectrum collected using the 

spectrum taken of the cell containing nitrogen prior to the experiment as the reference.  (ii) 

Spectrum of the liquid deposit on the CaF2 window of the reflectance cell following an 

analogous experiment at 24 W to that depicted in fig. 4.4.  See text for details. 

 

Figure 4.14 shows the spectrum collected after 20 minutes plasma operation and the spectrum 

of the deposit which remained after 10 minutes flushing with N2.  As a result of the shorter 

pathlength of the reflectance cell (1 cm), the CH4 4 bands are much weaker, revealing 

underlying absorptions due to the components of the liquid film: thus there are additional 

features at 1300 cm-1 (the 1296 cm-1 band in fig. 4.10 perturbed by the loss features due to 

CH4*) and 1016 cm-1.  In contrast to all the spectra observed using nominally the same feed 

gas composition in the transmission cell, where the 1752 cm-1 feature is relatively weak, this 

band is comparable in intensity to the feature at 1655 cm-1 in fig. 4.14.   

 

The spectrum collected using the reflectance cell includes information from both the window 

and the Macor, in contrast to the transmission cell spectrum which only shows the deposit on 
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the windows of the cell.  Further, the reflectance cell has one exposed Ti mesh electrode.  

This suggests that the 1752 cm-1 feature may be attributed to a species present in a higher 

amount at the Macor/Ti mesh than on the CaF2 window, and that this may be produced as a 

result of contact of the plasma with the mesh.  That the Macor and/or Ti are contributing to 

the spectrum in fig. 4.14(i) is shown by the bands at 1150 and 1219 cm-1.  As may be seen, 

both features decreased in intensity as the cell was flushed with N2: however, the latter band 

ceased to decrease, and changed structure.  This was due to the presence of two bands, one at 

ca. 1228 cm-1 (correlating with the 1234 cm-1 feature in fig. 4.10) due to the liquid film and a 

second, at 1210 cm-1 that increased in intensity in concert with the 1150 cm-1 band.  The 1150 

and 1210 cm-1 bands are associated with the Ti/Macor surface, as they appear in experiments 

using pure N2 as the feed gas, see figs. 4.15(a) and (b).  

(a) 
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(b) 

Figure 4.15. (a) In situ FTIR spectra (8cm-1 resolution, 100 co-added and averaged scans, 60 

seconds per scanset) collected at the  times shown on the figure at an input power of 24 W 

using the reflectance cell and nitrogen gas as the feed gas.  The spectrum collected 

immediately before the plasma was initiated was employed as the reference (b) Plots of the 

normalised absorbance of the 1150 and 1210 cm-1 with time before and after plasma 

exposure.   

 

As can be seen in figs. 4.15(a) and (b), the 1210 and 1150 cm-1 bands were induced by the 

plasma and relaxed slowly, i.e. over many minutes, when the plasma is turned off.  

Unfortunately, it has been unable to identify the species responsible for these absorptions to 

date and, whilst interesting, it is not clear that these species participate in the processes 

observed and hence are not relevant to the aim of this chapter.  Further work is recommended 

to investigate this chemistry. 

 



Chapter 4 
__________________________________________________________________________________                                              
 

120 
 

Figure 4.16 compares the spectra obtained after 20 minutes at an input power of 28 W with 

the corresponding spectra collected after 2 minutes subtracted using feed gas compositions 

selected to investigate the effect of CO2 and N2.  

 

 

Figure 4.16. In-situ FTIR spectra (8 cm-1 resolution, 100 spectra per scan set, and 1 minute 

per spectrum) collected after 20 minutes operation at input power of 28 W as a function of the 

gas compositions shown on the figure.  In each case, the corresponding spectrum collected 

after 2 minutes operation was subtracted.  Total flow rate was 200 cm3 min-1 the temperature 

ca. 25 ºC using the transmission cell. 

 

As can be seen, it is clear that excess CO2 or replacing N2 with Ar both prevent the production 

of the chain oxides and the liquid film, despite the presence of methane in both cases.  Thus 

the feed gas composition has a major effect upon the products observed.  The relative 

absorbances of the various hot CO2 and hot CH4 features essentially reflect the initial 

concentrations of the ground state species in the feed gas. 
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A summary of all the assignments is presented in table 4.4. 

 

Peak/ cm-1 Assignment 

3017 Q branch of 3 band of CH4 

1302 Q branch of 4 band of CH4 

  

3726  

Combination bands of CO2 3704 

3625 

3600 

  

2167 P branch CO 

2116 R branch CO 

  

3334 P branch HCN 

3286 R branch HCN 

  

2210 C5O2 

2152 H2C=C=O, ketene 

  

ca. 1767 P branch HCHO 

1745 Q branch HCHO 

ca. 1724 R branch HCHO 

  

ca. 3303 N-H stretch of acetamide and 

underlying liquid film absorption 

2880 Asymmetric C-H stretch of 

acetamide 

1655  Acetamide I and underlying liquid 

film absorption 

1512 Acetamide II and underlying liquid 

film absorption 

Table 4.4. A summary of the assignments of the various features in figs. 4.4 – 4.10.  See text 

for details. 

 

 

4.5  Thermal experiments 

Figure 4.17 shows the spectrum collected at 100 °C during an experiment in which the 

reference spectrum was collected at 25 °C and the temperature increased in steps up to        

600 °C, with further spectra collected at each step.  The spectra were collected from the 

Macor disc in 43% CH4 + 21% CO2 + 36% N2 in the sealed system (ie. batch mode).   
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Figure 4.17. The spectrum (8 cm-1 resolution, 100 spectra per scan set, and 1 minute per 

spectrum) collected at 100 °C during an experiment in which a Macor disc was heated in a 

static atmosphere of 43% CH4 + 21% CO2 + 36% N2 and spectra collected from the disc as a 

function of temperature from 25 ºC to 600 ºC.  The reference spectrum was collected at 25 °C.  

See text for details. 

 

It is clear from the figure the same features are observed in the 3 and 4 regions of the CH4 

absorption and either side of the fundamental absorption of CO2 as in the plasma experiments, 

supporting the assignments to CH4* and CO2*.  No other products were observed up to            

600 ºC, clearly showing that catalyst selection for plasma driven systems cannot be based 

solely on materials that work in thermally-activated processes.   

 

 

4.6 The reaction zones above Macor 

The plasma transmission and reflectance cells are both flow systems i.e. reactants were 

constantly supplied and products removed: however, the plots in figs. 4.10, 4.11(a) & (b) and 

figs. 4.12(a) - (d) show that the concentrations of CO2* and CH4* change relatively little with 

time, whilst the concentration of ketene in the plasma, and C5O2 in the liquid film increase.  
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Given that the input power and flow rate did not vary during the experiments, this suggests 

that the rate of formation of these products increased with time, whilst the rates of formation 

of HCN and CO (and possibly formaldehyde) remained constant. As stated above, this 

suggests parallel and separate reaction pathways: in addition, the data indicate that some 

aspect of the system is changing and steadily increasing the rate of formation of ketene etc.  A 

logical postulate would be the increasing build-up of reactive intermediates on the Macor 

surface: eg magnesium carboxylate and magnesium nitride, see schemes 4.1 and 4.2.   

 

 

 

 

 

 

 

 

 

 

Scheme 4.2 

 

 

The higher chain oxide C5O2 could then be produced via the reaction of methane and ketene 

(see scheme 4.1) according to: 

 

CH4 + 2H2C=C=O → C5O2 + 4H2                     (4.4) 

 

However, in all the 20 minute experiments discussed above, the reactions near to the Macor 

proceeded and indeed accelerated, as the liquid film formed.  In contrast, by the end of a two-

hour experiment, using essentially the same feed gas composition as that in fig. 4.10 and 28 

W input power, the production of all the species observed in fig. 4.10 had ceased, presumably 

as the Macor was completely covered, or covered beyond a maximum thickness of the liquid 

film: the latter possibility arises due to the fact that in all the experiments employing the 

nominal gas feed composition to the naked eye both the Macor caps were covered with the 

liquid film after only 20 minutes plasma operation.  Thus, it does not seem unreasonable to 

3Mg + N2 Mg3N2     magnesium nitride

   Mg3N2  + 3H2O 3MgO + NH3     ammonia

O

H

H

NH3

HOH

H
+

NH2

CH3O
acetamide
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postulate that, at thicknesses lower than some critical maximum, the film facilitates the 

production of the ketene and C5O2: for example, it has been reported that the penetration 

depth of electrons into an aqueous solution is ca. 12 nm [40]: in our case, the third reaction 

zone could be a layer within the liquid droplets defined by the penetration depth of the 

electrons, analogous in some ways to the catalysis taking place at the boundary between metal 

particles and oxide substrates [41].  Above the critical maximum thickness, defined 

presumably by the dielectric constant of the liquid film, the electric field decreases below that 

necessary to sustain the plasma.   

 

The data gained in this work thus suggest the presence of at least two reaction zones: one at 

the Macor/plasma interface and one that is the plasma bulk. A third zone involves the liquid, 

perhaps at its boundaries. This model is a development of the two-zone model proposed by 

Kim et al. [42] in which the active species in the plasma such as OH radicals and ground state 

O atoms occupy a thin layer perhaps 50 m thick above the catalyst and are available for 

reaction at the catalyst: above this layer, species produced in the plasma react in the same way 

as in the absence of catalyst.  

 

Our model is supported by an experiment in which isoprene was added to 11.0% CO2 + 

15.0% CH4 + 74.0% N2 in an attempt to trap ketene via a cycloaddition reaction [43]: instead, 

whilst CO2*, CO and HCN were still observed, wholly different liquid products were 

produced, the spectrum of which was identical to that reported by Scarduelli et al. [44], see 

fig. 4.18, and the isoprene simply polymerized on the Macor caps.  
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Figure 4.18.  The spectrum (8 cm-1 resolution, 100 spectra per scan set, and 1 minute per 

spectrum) collected at the end of an experiment in which 11.0% CO2 + 15.0% CH4 + 74.0% 

N2 was bubbled through isoprene and fed to the transmission cell.  Plasma was then initiated 

at 28 W for 20 minutes, after which the plasma was turned off and the cell flushed with N2.  

The spectrum was then collected using a spectrum collected of the N2-filled cell prior to the 

experiment as the reference. 

 

 

Scarduelli and co-workers employed a conventional NTP tube reactor fed with a 60:40 

mixture of CH4 and CO2 (no nitrogen); both electrodes of the reactor were isolated from the 

plasma by silica glass such that the plasma contacted only silica.  Our data and the results of 

Scarduelli et al. strongly suggest that the polymerization of the isoprene on the Macor 

essentially masked its catalytic properties and the reaction zone was thus confined to the 

plasma itself.  In other words, the presence of the Macor is essential for the specific liquid 

film composition obtained in our experiments discussed above, nitrogen is required to activate 

the Macor and the liquid film then has a direct influence on the production of ketene and 

C5O2, for example either by providing a liquid reaction zone where reactants/reactive 

intermediates can be concentrated, or by acting as a catalyst.  
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The chemical species observed here, namely: CO, HCN, HCHO, CH2CO, C2O5, and 

acetamide are very much a subset of the product species expected in the dry reforming 

reaction. H2 is one of the main products but could not be observed by our FTIR detection 

methods. However it would have been expected to observe hydrocarbons: C2H6, C2H4 and 

C2H2 which were either obscured in the spectra and/or below our detection limits. The one-

dimensional fluid model for a typical DBD plasma reactor for CO2/CH4 by de Bie et al [45] 

predicts these species as products but in this work with added N2 the routes to C2 species may 

be diverted by reaction with N atoms to preferentially form HCN. It is interesting that de Bie 

et al also predict ketene (CH2CO) but did not include C5O2 in the calculation. Interestingly, 

this is the first time that such carbon chain oxide have been observed in dry reforming 

reactions. 

 

 

4.7  Conclusions 

Macor contains the oxides of the earth-abundant elements Mg, Al and Si: despite its relatively 

simple composition it catalyses the production of a rich variety of products from the non-

thermal plasma conversion of CH4 and CO2 in nitrogen.  The processes observed include the 

fixing of nitrogen to both HCN and acetamide, and the production of the chain oxides C5O2 

and ketene.  CO and formaldehyde are produced, in addition to unreacted but rotationally-

excited CO2 and CH4, and a multicomponent liquid film.  The Macor is essential to the 

formation of the liquid film, as is nitrogen gas, and the liquid film, in turn, plays an important 

role in the production of C5O2 and ketene.  The formation of liquid products has been 

observed by others (see, for example, [45, 46]) but the possible wider significance of this has 

not hitherto been recognised: for example, by careful modification of the liquid film with 

added solvent and/or by careful choice of model liquids, it could be possible to ensure that the 

plasma-induced chemistry takes place at and close to the plasma/liquid interface as modelling 

of the potential distribution using slabs of dielectrics shows that the discontinuity in the 

electric field will be highest at this interface.  Hence it is believe this approach may offer a 

new dimension to plasma catalytic chemistry, one that helps to transform the technology into 

a viable option for large scale chemical syntheses through a paradigm shift in plasma catalysis 

and reactor design.     

 



Chapter 4 
__________________________________________________________________________________                                              
 

127 
 

Finally, it is clear that using Macor as a catalyst in the plasma-driven conversion of CO2 + 

CH4 + N2 results in radically-different chemical processes to those observed in the analogous 

thermal experiments, supporting the contention that the two processes demand different, 

tailor-made catalysts identified using in-depth investigations of mechanism and kinetics. 
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Chapter 5. In-situ FTIR studies of non-thermal plasma fed with CO2, CH4 and N2 over 

SnO2 and CeO2 and a comparison to the analogous thermally-driven process. 

 

 

5.1 Introduction  

This chapter reports the application of in-situ reflectance FTIR spectroscopy to the study of 

the thermal and plasma driven reaction of CO2, CH4 and N2 at two other potential catalysts: 

SnO2 – coated Macor and CeO2 – coated Macor. The data so obtained were compared to those 

obtained using uncoated Macor.  

 

5.2 The plasma- driven reaction of CO2, CH4 and N2 at Macor/Ti mesh with SnO2 

Figure 5.1 shows spectra collected using the plasma reflectance cell with a gas feed of CO2, 

CH4 and N2 with SnO2 700 oC coated Macor/Ti mesh at a total flow rate of 30 cm3 min-1 and 

24 W input power. The spectrum collected immediately before the plasma was initiated was 

employed as the reference and sample spectra were collected every 2 minutes up to 20 

minutes.  
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Figure 5.1. In situ FTIR spectra (8 cm-1 resolution, 100 co-added and averaged scans, 60 

seconds per scanset) collected at the times shown on the figure at an input power of 24 W. 

The gas composition was 10% CO2 + 24% CH4 + 66% N2 and the reference spectrum was 

that taken with no plasma. 
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As can be seen in fig. 5.1, no other species being observed other than the loss of CO2 and 

CH4. Bands due to CH4* are not apparent in fig. 5.1: however, a comparison of the figure 

with fig. 4.3(a) clearly shows the CH4 Q bands in fig. 5.1 are much smaller than those in fig. 

4.3(a), strongly suggesting that rotationally excited  CH4* is indeed produced. The experiment 

in fig 5.1 was repeated at an input power of 20 W, with no additional bands being observed. 

 

Figure 5.2 shows a plot of the absorbances of the CO2 combination band at 3625 cm-1 and 

CH4 band at 3085 cm-1 as a function of time, and fig. 5.3 shows the analogous plots 

normalized to their maximum values.   
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Figure 5.2. Plots of the absorbance of the CO2 at 3625 cm-1 and CH4 at 3085 cm-1 from the 

experiment in fig. 5.1 as a function of time. 
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Figure 5.3. Plots of the normalised absorbance in figs. 5.2 as a function of time. 

 

 

As can be seen in figs 5.2 and 5.3, the CH4 and CO2 loss features increase in intensity with 

time. The increasing loss of CO2 and CH4, and the reduced intensities of the CH4 Q branches 

suggest that CH4 (and CO2) are simply being rotationally excited in the plasma. In the 

transmission cell, the CO absorbance at 2176 cm-1 was typically 0.018 corresponding to 

0.018/5.1 ~ 0.003 in the reflectance cell which would not be discernible in fig. 5.1 and hence 

CO may have been produced but the reduced pathlength of the cell resulted in an absorbance 

below the detection limit.  

 

Figure 5.4 compares the spectrum collected after 20 minutes in fig. 5.1 to that collected in an 

analogous experiment using SnO2 400 oC coated Macor under the same experimental 

conditions.  
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Figure 5.4. In-situ FTIR spectra (8 cm-1 resolution, 100 spectra per scan set, and 1 minute per 

spectrum) collected after 20 minutes operation with plasma as a function of 

dielectric/catalyst. The gas compositions were: (i)  9% CO2 + 22% CH4 + 69% N2, (ii) 9% 

CO2 + 26% CH4 + 65% N2 and (iii) 3 % CO2 + 9 % CH4 + 88% N2 at a total flow rate of 30 

cm3 min-1; the reference spectrum was collected under the same conditions but with no 

plasma. The spectra were moved up by the absorbances shown in order to facilitate 

comparison.  

 

 

As can be seen, coating the Macor/Ti mesh with SnO2 in the plasma reflectance cell resulted 

in no observed products, even at higher input power. Thus it is clear that Macor has a direct 

catalytic influence on the production of ketene, acetamide and C5O2, as reported in Chapter 4. 

The experiment in fig 5.4 was repeated at input powers of 20 and 24 W for all blank 

experiments i.e N2 + CO2 and N2 + CH4, with no observed products as expected, see figs 

5.5(a) and (b). 
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Figure 5.5. In-situ FTIR spectra (8 cm-1 resolution, 100 spectra per scan set, and 1 minute per 

spectrum) collected after 20 minutes operation with plasma as a function of SnO2 calcination 

temperature. The gas compositions were: (i)  15.4% CO2 + 84.6% N2, (ii) 26% CO2 + 74% 

N2, (iii) 19.2% CO2 + 80.8% N2, (iv) 23.8% CO2 + 76.2% N2, (v) 26.5% CH4 + 73.5% N2, 

(vi) 21.5% CH4 + 78.5% N2, (vii) 23.6% CH4 + 76.4% N2 and (viii) 31.8% CH4 + 68.2% N2  

at a total flow rate of 30 cm3 min-1; the reference spectrum was collected under the same 

conditions but with no plasma.  
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5.3 The thermally driven reaction of CO2, CH4 and N2 with SnO2 

Figures 5.6 shows spectra collected during an experiment in which 20 mg SnO2 400 °C 

powder + 80 mg spectroscopic KBr were heated from 25 to 600 °C in the 100% N2 

atmosphere. As can be seen from the figure, there is a clear decrease intensity of the  bands at 

1260, 1625, 3479, 3555 cm-1 and the broad absorptions band between 2500 and 3500 cm-1 

corresponding to the loss of some form of water in agreement with the literature [1-3]. 
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Figure 5.6. In-situ FTIR spectra (100 co-added scans and averaged scans at 8 cm-1 resolution 

ca. 100 seconds per scanset) collected using the environmental chamber during an 

experiment in which a spectrum was collected at 25 oC and the temperature ramped at 5 oC 

min-1 and further spectra taken at the temperatures shown. The sample was SnO2 powder + 

KBr in the ratio 1:5 calcined at 400 oC in a static environment of 100% N2. The reference 

spectrum was collected in 100% N2 using pure KBr. 

 

 

As can be seen from fig. 5.6, there is a gain feature at 2340 and 2360 cm-1 attributed to CO2 

which may be due to impurities present in the sample compartment which react and release 

CO2 at temperatures ≥ 300 °C. In order to highlight the changes in the spectra in fig. 5.6 up to 
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300 °C more clearly, the spectrum collected at  25 °C was subtracted from those taken at 

higher temperatures, and the results are presented in fig. 5.7. 
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Figure 5.7. The spectra in fig. 5.6 collected up to 300 °C with the spectrum taken at 25 oC 

subtracted. 

 

 

Al-abadleh and Grassian [4], Devlin and co-workers [5] and Maneelok in Newcastle [6] 

observed similar features to those in fig. 5.7. Sharp loss features at 3620 cm-1 and 3552 cm-1 

may be attributed to the O-H stretches of isolated Sn-O-H groups; such features have been 

observed at 3610 cm-1 – 3640 cm-1 [7], 3467 cm-1 [8], 3620 cm-1, 3595 cm-1 and 3560 cm-1 

[6,9]. The broad loss feature with a maximum near 3000 cm-1 has been observed by other 

groups and has been attributed to the loss of the O-H stretches of hydrogen bonded Sn-OH 

groups [6,7]. A summary of the literature assignments of the various water features in fig. 5.7 

is presented in table 5.1. 
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Band /cm-1 Assignment Ref 

1245 O-H [1] 

1630 H-O-H deformation  [5] 

2500 O-H [1] 

3000 O-H [7] 

3555 O-H stretches Sn-O-H [7] 

3620 O-H [9] 

Table 5.1. A summary of the assignments in the literature of various features in the IR spectra 

in fig. 5.6 and 5.7.  

 

Figure 5.8 shows a plots of the Kubelka-Munk function at 2000 cm-1 from the spectra in fig. 

5.6. As can be seen, the number of free electrons is varying as the temperatures is increased, 

but not in a homologous fashion and there are three clear regions: (I) 25 – 150 oC, (II) 150 – 

250 oC and (III) 250 – 600 oC.  
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Figure 5.8. Plot of the Kubelka-Munk function with temperature at 2000 cm-1 from the spectra 

in  fig 5.6.  
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In region (I), there is very little change in the electronic absorption followed by a fall in 

region (II) and a steep increase in region (III). At temperatures > 250 oC, the water and other 

surface features on the SnO2 are lost as the free electron absorption increases suggesting that 

the increasing electronic conductivity of the SnO2 may be causing an increasing fraction of 

the refracted IR light to be fully absorbed with the consequent loss of information on surface 

species, in agreement with the work of Maneelok in Newcastle [6].  

 

Figures 5.9 shows spectra collected during an experiment in which a SnO2 700 °C powder 

sample was heated from 25 to 600 °C in 20% CO2 + 8% CH4 + 72% N2 atmosphere using 

KBr as the reference spectrum.  
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Figure 5.9. In-situ FTIR spectra (100 co-added scans and averaged scans at 8 cm-1 resolution 

ca. 100 seconds per scanset) collected using the environmental chamber during an 

experiment in which a spectrum was collected at 25 oC and the temperature ramped at 5 oC 

min-1 and further spectra taken at the temperatures shown. The sample was SnO2 powder + 

KBr in the ratio 1:5 calcined at 400oC in a static environment of CH4 +CO2 + N2. The 

reference spectrum was collected in 20% CO2 + 8% CH4 + 72% N2 using pure KBr. 
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As can be seen from the figure, there are a number of bands superimposed upon a curving 

baseline and there is a clear decrease intensity in Kubelka-Munk function in the band at 2500 

cm-1 and 3500 cm-1 corresponding to the loss of some form of water [1-3] as discussed 

previously. There is also clear loss of both CO2 and CH4 with no additional product bands 

being observed. At temperatures > 250 oC, the CO2 loss at 3500-3700 cm-1 became clearer as 

the overlying broad O-H absorption of water started to disappear. The experiment in fig 5.9 

was repeated with all blank experiments (i.e N2 + CO2 and N2 + CH4) for SnO2 400 oC and 

700 oC respectively, with no features attributable to products being oberved, see figs 5.10 (a)-

(d). 
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Figure 5.10. In-situ FTIR spectra (100 co-added scans and averaged scans at 8 cm-1 

resolution ca. 100 seconds per scanset) collected using the environmental chamber during an 

experiment in which a spectrum was collected at 25 oC and the temperature ramped at 5 oC 

min-1 and further spectra taken at the temperatures shown. The sample was SnO2 powder + 

KBr in the ratio 1:5 calcined at: (a) SnO2 400 oC in a static environment of 65% N2 + 35% 

CH4, (b) SnO2 700 oC in a static environment of 60% N2 + 40% CH4, (c) SnO2 400 oC in a 

static environment of 86% N2 + 14% CO2 and (d) SnO2 700oC in a static environment of 80% 

N2 + 20% CO2.  

 

 

As can be seen form fig. 5.10, it is clear that N2 with CO2 and/or CH4 do not react at SnO2 

under thermal activation. 
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5.4 The plasma driven reaction of CO2, CH4 and N2 at Macor/Ti mesh with CeO2 

Figure 5.11 shows spectra collected using the plasma reflectance cell with a gas feed of N2, 

CO2 and CH4 at a total flow rate of 30 cm3 min-1 and 20 W input power. The reference 

spectrum was collected under the same conditions but with no plasma and fig. 5.12 compares 

the spectrum collected after 20 minutes in fig. 5.11 to that collected in analogous experiment 

using Macor after the same time and under the same experimental conditions.  
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Figure 5.11. In situ FTIR spectra (8cm-1 resolution, 100 co-added and averaged scans, 60 

seconds per scanset) collected at the times shown on the figure at an input power of 20 W. 

The gas composition was 20.9% CO2 + 35.8% CH4 + 43.3% N2 and the reference spectrum 

was that taken with no plasma. 
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Figure 5.12. In-situ FTIR spectra (8 cm-1 resolution, 100 spectra per scan set, and 1 minute 

per spectrum) collected after 20 minutes operation with plasma as a function of 

dielectric/catalyst. The gas compositions are: (i)  20.9% CO2 + 35.8% CH4 + 43.3% N2 and 

(ii) 3 % CO2 + 9 % CH4 + 88% N2 as at a total flow rate of 30 cm3 min-1 and at an input 

power of 20 W ; the reference spectrum was collected under the same conditions but with no 

plasma. The spectra of Macor were multiplied by the factor shown in order to facilitate 

comparison.  

 

 

From figs. 5.11 and 5.12, it can be seen that the only features observed were due to the loss of 

CO2 and CH4, and these bands increased in intensity with time. It should be noted that, no 

conversion of N2, CO2, and CH4 was observed at SnO2 either in plasma reflectance cell, even 

at higher input power of 24 W. The differences between the data obtained with SnO2 and 

CeO2 on the one hand, and Macor on the other is a key observation, as it shows that these 

materials exhibited no catalytic activity and hence inhibited that of Macor when employed as 

coating. 
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5.5 Blank thermal experiments using CeO2 

Figure 5.13(a) shows the spectra collected at 25 oC during an experiment in which 

temperature the sample (20 mg of CeO2 was mixed with 80 mg of spectroscopic grade KBr) 

was ramped from 25 oC to 600 oC, and sample spectra (SS) were recorded in reflectance mode 

collected at regular intervals (referenced to pure KBr, SR) in a static N2 atmosphere. Figure 

5.13(b) shows all the spectra from the experiment and fig. 5.13(c) compares the spectra 

collected at 25 ˚C and 200 ˚C in fig. 5.13(b) over the spectral region in which the physisorbed 

CO2 occurs and both spectra were offset to RT = 1 at 2340 cm-1.  
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Figure 5.13.  Spectra (4 cm-1 resolution, 100 co-added and averaged scans, 120 s per 

scanset) collected as a function of temperature during an experiment in which the 

temperature of 20 mg CeO2 + 80 mg KBr was ramped from 25 °C to 600 °C in a static N2 

atmosphere. The spectrum collected at 25°C using KBr in the same atmosphere was employed 

as the reference.  (a) the spectrum taken at 25 °C, (b) all spectra collected during the 

experiment and (c) the spectra taken at (i) 25 °C and (ii) 200 °C showing the CO2 asymmetric 

stretch region. The spectra were moved up by the absorbances shown in order to facilitate 

comparison.  
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As can be seen from the figs. 5.13,  the spectra are dominated by strong absorptions due to 

hydrogen-bonded Ce-OH groups in between 2250 – 4000 cm-1 [11] and various forms of 

adsorbed carbonate at 900 – 1750 cm-1 [12-15].  The sharp feature at 3690 cm-1 in fig. 5.13(b) 

may be attributed to isolated OH [11], i.e. Ce-OH groups not hydrogen bonded and the band 

at 2340 cm-1 may be attributed to the assymetric stretch mode of physisorbed CO2 [16,17]. 

Interestingly, the band at 2340 cm-1 was present even up to 600 oC and may indicate that the 

CO2 was present in interstitial voids in the CeO2 [18].  Figure 5.13(c) compares the spectra 

collected at 25 oC and 200 oC in fig. 5.13(b) over the spectral region in which the physisorbed 

CO2 occurs. As can be seen, the asymmetric shape of the CO2 bands suggests the CO2 is 

physisorbed on a number of different sites [19]: the band maxima of the two features were the 

same and, as expected, the band at 200°C was broader than that at 25 °C suggesting some 

rotational excitation.  The small changes in band shape on heating may suggest some 

redistribution among surface sites.    

 

In general, the adsorption of CO2 on CeO2 has been well-studied, and a summary of the 

assignments of various features observed in the IR studies is presented in table 5.2.  In terms 

of the temperature at which the various forms of carbonate desorb or convert, Slostowski et. 

al. [19] divides the adsorbates into weakly adsorbed (hydrogen carbonate and bridged) which 

can be removed at room temperature by flowing nitrogen over the sample and strongly 

adsorbed (bidentate, monodentate and polydentate) which require a temperature of up to 500 

°C to remove them from the surface.  Yoshikawa and co-workers [20] present a somewhat 

detailed and different picture: with a temperature of 200 °C required for desorption of 

bicarbonate, 300 °C for monodentate and bidentate carbonate and 450 °C for the polydentate 

form.   Intuitively, however, it may be expected that those forms of carbonate with multiple 

metal-oxygen bonds (eg. bridged, bidentate and polydentate) would be more strongly bonded 

to the surface than monodentate carbonate and bicarbonate. 
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Adsorbed species 
References 

[15] [12] [14]   [19] 

Bicarbonate 

OO
+

H

O
Ce H

Ce
2+

Ce
2+

 

 

1600 

1398 

1215 

   I               II 
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OH
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854 
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Table 5.2. Summary of the assignments of various features observed in the IR studies of CO2 

on CeO2. 
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Figure 5.14(a) shows a TGA experiment in which a sample of CeO2 was heated in N2 to 600 

oC, allowed to cool and the change in its mass recorded as a function of temperature and 

repeated a further two times.  Figure 5.14(b) shows the m/z = 18, 32 and 44 responses 

recorded during the first heating of the sample along with the change in mass (note scaling 

factors).  As can be seen from the figures, the sample loses mass over the full temperature 

range, but most particularly between 25 and 150 °C and 300 and 400 °C; there is also a steady 

evolution of O2 over the full range, and of water up to ca. 400 °C.  CO2 is evolved in two 

distinct regions, 75 – 150 °C and 300 – 400 °C, the latter in broad agreement with the 

postulated existence of adsorbed carbonaceous species having various thermal stabilities.  

Figure 5.14(c) shows the mass change and the m/z = 18, 32 and 44 responses recorded during 

the second heating of the sample (run 2) in fig. 5.14(a): the responses are very similar to those 

observed during run 1, suggesting that, on being stored overnight in air, CO2 and water re-

adsorbed onto the sample surface.  Figure 5.14(d) shows the mass change and the m/z = 18, 

32 and 44 responses recorded during run 3: as may be seen from the figure, whilst there is no 

evolution of O2 or CO2, dehydration and/or dehydroxylation of the sample still took place 

[21], although with about 60% the amount of evolved H2O. This is associated with a very 

small mass loss of 0.05% compared with 0.15% for the previous two runs. 
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Figure 5.14.  (a) The thermogravimetric response of 55.5 mg of CeO2, heated in 40 cm3 min-1 

flowing N2 at heating rate of 5 °C min-1 from room temperature to 600 °C (Run 1).  The 

sample was held at 600 °C for 10 minutes and then cooled at 5 °C min-1 to room temperature.  

(b) & (c) The m/z = 18, 32 and 44 responses recorded during the first and second heating 

cycles (Runs 1 and 2, respectively) of the sample in (a): the m/z = 32 responses are enhanced 

by a factor of 3 and the m/z = 44 responses by a factor of 10.  (d) The m/z = 18, 32 and 44 

responses recorded during the third heating of the sample in (a), Run 3.  Run 1 was carried 

out on day 1 and the sample left in air overnight.  Run 2 was carried out on day 2 and the 

sample left in flowing nitrogen overnight and run 3 carried out the following day.   

 

 

Figures 5.15(a) – (d) show the spectra in fig. 5.13(c) presented as difference spectra 

reflecting, in broad terms, the temperature ranges identified in the TGA experiment: thus fig. 

5.15(a) shows the spectrum collected at 25 °C subtracted from those taken at 50 and 100 °C, 

fig. 5.15(b) the spectrum taken at 100 °C subtracted from those up to 250 °C, fig. 5.15(c) the 

spectrum collected at 250 °C subtracted from the 350 and 400 °C spectra and (d) the spectrum 

taken at 400 °C subtracted from those collected up to 600 °C.   
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Figure 5.15.  The spectra in fig. 5.13(a): (a) the spectrum taken at 25 °C subtracted from 

those collected at 50 and 100 °C; (b) the spectrum taken at 100 °C subtracted from those 

collected up to 250 °C; (c) the spectrum taken at 125 °C subtracted from those collected at 

300, 350 and 400 °C, the spectra were moved up by 0.009, 0.025 and 0.050, respectively and 

(d) the spectrum taken at 400 °C subtracted from those collected up to 600 °C.  The spectra 

collected at 450, 500, 550 and 600 °C were moved up by 0.030, 0.069, 0.110 and 0.155, 

respectively. 
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From figs. 5.15(a) – (d) it can be seen that there is a broad loss extending from ca. 2250 to 

3750 cm-1 accompanied by a band at ca. 1642 cm-1: by analogy to SnO2 [21], this may be 

attributed to the loss of hydrogen-bonded Ce-OH groups via the dehydration and possibly 

dehydroxylation of the CeO2.  There are also the loss and gain of sharp features above 3500 

cm-1 due to the redistribution/loss of isolated Ce-OH groups [13].  In figs. 5.15(a) and (b) 

there are gain features in the region of the assymetric stretch of physisorbed CO2: the absence 

of corresponding loss features in the same region suggest that there is a conversion of 

adsorbed carbonate/ bicarbonate species to CO2 and that these molecules are distributed 

across different sites. It may also be the case that some of the adsorbed carbonates, e.g. 

bicarbonates [19], are desorbing as CO2. Due to its relatively high frequency, the 1711 cm-1 

gain feature in figs. 5.15(a) and (b) is most likely due to bridged carbonate (see table 5.2).  

The peaks at 1570 and 1298 cm-1 in the same figures (the 1298 cm-1 feature appears at 1293 

cm-1 in fig. 5.15(a) due to distortion by the loss features either side) may be attributed to 

bidentate carbonate [12-15]: they are gained up to 100 oC and then lost between 100 and 250 

°C.  

 

Over the temperature range between 300 and 400 °C, the physisorbed CO2 band is bipolar, 

suggesting the transfer of more loosely bound CO2 to sites where the CO2 is more strongly 

adsorbed.  At higher temperatures, there is a marked loss of physisorbed CO2, also clear in 

fig. 5.13(c), presumably due to diffusion out of the voids and desorption into the gas phase: 

the amount of CO2 involved is too low for the corresponding gain features due to gas phase 

CO2 to be observed.  The gain feature at ca. 2120 cm-1 in fig. 5.15(d) may be due to CO 

adsorbed on Ce3+ sites [18], the latter  produced during the heating process and responsible 

for the evolution of O2 (see fig. 5.14(b)). 

 

Overall, from figs. 5.15(a) to (d) it is clear that heating the CeO2 causes a redistribution of the 

surface carbonate/bicarbonate species, with some apparently diffusing into the voids.  

Comparing the intensities of the various features below 1800 cm-1 in figs. 5.15(a) – (d) to the 

spectra in fig. 5.13(b), however, shows that the amount of adsorbed species is small.  Further, 

given the very wide variation in the band assignments in table 5.2, it is also clear that 

assigning the various features below 1800 cm-1 in any detail to specific forms of adsorbed 

carbonate or bicarbonate could be of limited validity.   
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5.5.1 The thermally driven reaction of CO2, CH4 and N2 with CeO2 

Figures 5.16(a) – (c) show the spectra collected using CeO2 heated in N2 at 150, 400 and 600 

°C in figs. 5.15(b) – (d) along with the spectra collected in analogous experiments using CeO2 

heated in N2 and CO2 and/or CH4. 
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Figure 5.16. The spectra in figs. 5.15(a) – (c) collected at 150 °C, 400 °C and 600 °C. (a) The  

spectra collected at 25 °C subtracted from those taken at 150 °C, (b) 400 °C – 150 °C and (c) 

600 °C – 400 °C. The gas composition are: (i) 100% N2, (ii), 25.5% CO2 + 74.5% N2, (iii) 

10.6% CH4 + 89.4% N2 and (iv) 12% CO2 + 38% CH4 + 50% N2.       

 

As can be seen from figs. 5.16, all experiments show very similar responses over the spectral 

range of CO2 absorption region in figs. 5.15(a) – (d) and as expected, no features were 

observed at CeO2 except those due to the loss of CO2 and/or CH4 and the gain features of 

CO2
*
 or CH4* respectively when CO2 and/or CH4 were added to the system. The band at 2342 

cm-1 may be attributed to the asymmetric stretch of physisorbed CO2 [16,17], however, this 

feature was somewhat distorted by the loss feature near 2340 and 2360 cm-1 due to the P and 

R asymmetric stretch (v3) bands of CO2 in the N2 + CO2 and N2 + CO2 + CH4 runs.  The broad 

band between ca. 3000 -3600 cm-1 may be due to the loss of hydrogen-bonded O-H from 

CeO2 and the sharp feature at 3692 cm-1 in fig 5.16(a) may be attributed to isolated OH [11]. 

Overall, in all cases, it is clear that, whilst the presence of adsorbed carbonates /bicarbonates 

inhibits the thermal reaction of at CeO2, the plasma-driven process is not inhibited at all and 

more importantly there are no reaction taking place in the plasma-driven reaction. 
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5.6 Conclusion 

The results obtained using coated Macor were somewhat different, with no reaction taking 

place in plasma-driven experiments on CeO2 and SnO2, whereas a number of adsorbed 

carbonates/bicarbonates were observed in the thermal experiment of CeO2 and no reaction of 

SnO2 on CO2 and/or CH4 even with different calcination temperature at all feed gases. The 

data gained in this work clearly showing that invalidity of catalyst selection for NTP-based on 

thermal activity and support the catalytic activity of Macor in the plasma-driven conversion of 

N2, CO2 and CH4 reported in the previous chapters. 
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Chapter 6. Conclusions and Future Work 

 

An in-situ non-thermal plasma (NTP) infrared (IR) transmission cell and an in-situ NTP IR 

reflectance cell were designed, fabricated and commissioned to study the dry reforming of 

CO2 and CH4 in dinitrogen at various potential catalysts.  The data so obtained were 

compared to results obtained from analogous thermally-driven experiments. 

 

The first material employed was Macor, a ceramic consisting of the oxides of Al, Mg and Si: 

this was chosen to provide benchmark data as it was not expected to be catalytically active, 

had a reasonable dielectric constant and was thermally stable.  

 

Before progressing to methane and CO2, the reduction of CO2 in the plasma was studied at 

Macor in the transmission cell.  Rotationally-excited CO2 was produced in the plasma, along 

with rotationally-excited CO: the latter was produced at conversions and energy efficiencies 

consistent with the literature.  N2 played an important part in the reduction as, in contrast to 

the chemistry observed in the absence of N2, the CO was produced via electron impact 

excitation of the N2 followed by energy transfer to CO2.  In general, the data obtained with the 

reflectance cell supported those obtained using the transmission cell when allowance was 

made for the increased residence time and specific input energies of the former. Two  

additional bands, at 1150 cm-1 and 1210 cm-1 were observed only when using the reflectance 

cell: these could only be due to the Macor and/or the Ti mesh electrode, did not appear to take 

part in the chemical processes observed and the origin of which remains obscure. 

 

Macor proved to be wholly unexpectedly active for the conversion of methane, CO2 and N2 to 

some important products.  The data were extremely interesting not just for the products but 

also for the possible mechanisms by which they were produced.  Thus, the chemistry took 

place in three reaction zones: in the bulk if the plasma remote from the Macor, at the 

plasma/Macor interface and at the interface between the plasma and the liquid phase products 

produced.  In addition to rotationally excited CO2 and CH4, HCN and CO were also produced 

in the bulk of the plasma, the CO due only to the reduction of CO2 and not influenced by the 

presence of methane. The HCN and CO were produced constantly and at the same rate at 

which they were swept out of the plasma region by the gas stream, hence attaining steady-

state concentrations within the first minute of turning on the plasma.  HCN was produced in 
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significant concentrations, which is undesirable, but it did show that nitrogen was being fixed.  

An oily liquid was produced through the reaction of CH4, CO2 and N2 catalysed by the Macor, 

a liquid that contained acetamide as well as other products.  The presence of acetamide 

showed that nitrogen had been fixed to give a more complicated molecule than HCN.  The 

chain oxides ketene and C5O2 were produced at the plasma/liquid interface catalysed or 

facilitated by the liquid film.  The formation of liquid products has been reported by others 

but the possible wider significance of this has not hitherto been recognised: it offers a wholly 

new dimension to plasma catalytic chemistry, one that could transform the technology into a 

viable option for large scale chemical syntheses through a paradigm shift in plasma catalysis 

and reactor design.  

 

The composition of the feed gas had a major effect upon product distribution as replacing N2 

by Ar not only inhibited the production of acetamide (as expected) but also stopped the 

production of the liquid film and chain oxides, strongly suggesting the participation of N2 in 

ways other than as a reactant: possibly via the “dark states” of nitrogen (atomic and 

molecular) acting as energy reservoirs facilitating reactive and dissociative collisions.    

 

The production of the chain oxides by a catalyst consisting of such abundant elements could 

have major implications for novel chemical synthesis: further, as well as the implication for 

terrestrial synthesis, the data could have significant implications for the study of the 

interstellar origins of life and prebiotic chemistry. 

 

CO2, CH4 and N2 did not react at temperatures up to 600˚C.  No reaction took place at SnO2 

or CeO2 in either the plasma or thermal experiments. 

 

In terms of possible future studies, the first step must be to unpick the catalytic activity of 

Macor by determining what component, or combination of components, produce the carbon 

chain oxides, acetamide and liquid film, by investigating if and to what extent simpler 

materials can effect the same chemistry as Macor, eg. Al2TiO5 and MgTiO3 with and without 

SiO2.   

 

The possible role of the liquid film product in the NTP-driven dry-reforming of CO2 and CH4 

in N2 should be investigated by modifying the reflectance cell to include well-defined 
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depressions and troughs to contain static and flowing liquids.  The first step should be to 

employ the liquid product, then the product diluted with suitable, inert solvents to decrease 

viscosity and then model liquids chosen for their properties including: dielectric constant, 

conductivity, viscosity and ability to dissolve one or more of the reactant gases (eg. 

monoethanolamines which are widely employed to trap CO2). 

 

All future IR studies should be carried out with complementary analytical techniques such as 

downstream UV Vis and IR analyses and, most especially, GC-MS. GC-MS analysis should 

be employed to determine and quantify the product distributions allowing conversion and 

energy efficiencies to be calculated. Coupled with the development of these in-line analytical 

techniques, the use of isotopically labelled materials, e.g. 13CH4, 
13C18O2, would facilitate the 

exploration of the possible reaction pathways, identify the origin of the fragments of the more 

complex organic structures generated during the process and thus allow selective production 

of the individual NTP components. 

 

It is clear that the interaction of the highly excited and reactive species generated in plasma 

with solid surfaces (catalysts, dielectrics) remains largely unknown both in terms of the 

chemistry and the timescale over which such reactions take place: the latter is important as 

non-thermal plasma is  driven by a succession of microdischarges (the amplitude and 

frequency of which depend strongly on the dielectric material between the electrodes) each 

with a lifetime of a few tens of nanoseconds. The importance of this is that the lifetime of 

many of the species formed is only of this magnitude, with the result that decay of the 

molecular fragments takes place on timescales comparable to the discharges themselves.  

Hence time-resolved studies using e.g. step-scan FTIR (timescales down to 10s of ns) should 

be employed to identify intermediates and their lifetimes.  Such data would be invaluable with 

respect to the production of valid, predictive models and hence the elucidation of mechanism 

and the identification of new and effective catalysts and new reactor designs. 
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Appendix 1 

Example of integrated absorption coefficient calculations for 100% CO at 2002 cm-1 to 2225 

cm-1 using 1 cm pathlentgh cell analysed by Origin. 
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Figure 1. The typical spectrum of 100% CO in a 1 cm pathlength transmission cell with no 

plasma and 100% N2 feed gas as the reference.   
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Figure 2. The integrated area of CO peaks in fig 1. analysed using Origin. 
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Appendix 1 

 

 

 

 

Table 2. Results gained from the Origin for fig. 2. 

 

Total integrated area = 29.3 cm-1 

 

A = Ɛ c L 

Ɛ = A / c L 

Ɛ = 29.3 cm-1/ (0.00004171 mol cm-3 x 1 cm) 

Ɛ = 702469 mol-1 cm  

Ɛ = 7.0 x 105 mol-1 cm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Area Integrated Area FWHM Center  Height  

1 14.5 54.93 2117.43 0.27 

2 14.8 50.92 2171.43 0.31 
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Appendix 2 

Example of integrated absorption coefficient calculations for 100% CO2 at 3491 cm-1 to 3768 

cm-1 using 1 cm pathlentgh cell analysed by Origin. 
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Figure 3. The typical spectrum of 100% CO2 in a 1 cm pathlength transmission cell with no 

plasma and 100% N2 feed gas as the reference.   
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Figure 4. The integrated area of CO2 peaks in fig 3. analysed using Origin. 
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Appendix 2 

 

 

 

 

 

 

Table 1. Results gained from the Origin for fig. 4. 

 

Total integrated area = 27.2 cm-1 

 

A = Ɛ c L 

Ɛ = A / c L 

Ɛ = 27.2 cm-1/ (0.00004171 mol cm-3 x 1 cm) 

Ɛ = 652121 mol-1 cm  

Ɛ = 6.5 x 105 mol-1 cm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Area Integrated Area FWHM Center  Height  

1 6.2 25.64 3599.16 0.20 

2 5.6 21.61 3626.16 0.24 

3 7.2 23.41 3703.31 0.26 

4 8.2 22.52 3730.32 0.36 
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Appendix 3 
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Intercept 9.75216E-4 ± 2.78672E-4

Slope 0.37945 ± 0.00489

Residual Sum of Squares 2.43306E-6

Pearson's r 0.99934

R-Square(COD) 0.99868

Adj. R-Square 0.99851
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Appendix 3 
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Figure 5. Plots of the absorbance of the 3303 cm-1 band vs the absorbance at 1512 cm-1 for 

the experiment in fig. 4.10 and the analogous experiments carried out at input powers of (a) 

20 W (b) 24 W and (c) 28 W. (Corresponding to rows 1(a), 3(a) and 5(a) in table 4.1). 
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Appendix 4 

Example of integrated absorption coefficient calculations for 100% CH4 at 1149 cm-1 to 1400 

cm-1 using 1 cm pathlentgh cell analysed by Origin. 
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Figure 6. The typical spectrum of 100% CH4 in a 1 cm pathlentgh transmission cell with no 

plasma and 100% N2 feed gas as the reference.   

1400 1350 1300 1250 1200 1150

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
2

4
6

.0
1

2
2

1

1
2

6
5

.3
0

0
3

2

1
3

0
3

.8
7

6
5

5

1
3

4
6

.3
1

0
4

 

Figure 7. The integrated area of CH4 peaks in fig 6. analysed using Origin. 
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Appendix 4 

 

 

 

 

 

 

Table 3. Results gained from the Origin for fig. 7. 

 

Total integrated area = 30.2 cm-1 

 

A = Ɛ c L 

Ɛ = A / c L 

Ɛ = 30.2 cm-1/ (0.00004171 mol cm-3 x 1 cm) 

Ɛ = 724046 mol-1 cm  

Ɛ = 7.2 x 105 mol-1 cm 

 

 

 

 

 

 

 

 

 

 

 

Area Integrated Area FWHM Center  Height  

1 3.9 15.9 1246.0 0.15 

2 4.6 19.2 1265.3 0.23 

3 10.7 10.8 1303.8 0.64 

4 11.0 42.1 1346.3 0.25 


