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Abstract 

This thesis looks at the direct drive power take off options for the OpenHydro tidal energy turbine and 

includes an investigation of the existing permanent magnet generator. The squirrel cage induction 

machine was chosen as an alternative design after reviewing the literature. The lack of rare earth magnet 

content of the induction machine was an opportunity to improve the cost competiveness of the 

OpenHydro tidal turbine to alternative renewable energy sources. The induction machine has been 

utilised with a gearbox in tidal turbines elsewhere, but in this work a direct drive design has been created. 

The generator of the OpenHydro turbine is positioned on the outer rim of the turbine blades, the rotor 

has a 14m outer diameter. Segmentation of the generator simplifies the construction and assembly of 

the turbine and also improves the fault tolerance of the turbine, depending on the coil connections.  

The existing permanent magnet design was evaluated with a simplified linear FEA model which 

underwent both manual and numerical optimisation. The optimisation found that the magnet mass could 

be reduced with minimum impact on the performance of the generator. 

To design and model the induction machine, each individual segment was wrapped to form a rotary 

induction machine, the conventional design process was then used to design the segment. FEA models 

of three designs were used to investigate the number of segments, with the best design then manually 

optimised. The study produced a model that was comparable to the permanent magnet generator 

performance, but with a lower power factor. 

The turbine features a buoyant shaft less rotor and as a consequence the generator suffers from 

eccentricity. The effect of eccentricity on the individual segments of both the permanent magnet and 

induction machine was investigated using linear FEA models. The eccentricity impacted the permanent 

magnet design in the voltage and EMF whereas the current was affected for the induction machine 

design. A numerical model, based on publications, was created to evaluate the effect on the fully 

assembled generator. The model was able to reproduce the presented inductances. 

For the comparison of the two designs the material costs of the permanent magnet and induction machine 

were calculated. The available power of a deployment site was calculated using the simulated 

efficiencies of the two generators, the models were run across the speed range corresponding to the tidal 

speeds. The cost of this energy sold was then used to compare the two generators over a 15 year lifetime. 

The capital cost of the induction machine design was 17% lower than that of the permanent magnet, 

over a 15 year lifetime the net income of the induction machine was 16% lower at a rated speed of 

25rpm. The optimised permanent magnet design has 0.1% higher net income and a 9% lower capital 

cost than the original permanent magnet design. The profitability index is higher than both the original 

and induction machine. 
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Chapter 1. Introduction 

1.1. The importance of tidal energy 

Fossil fuel power stations have reliably met UK energy demands for decades, and older power stations 

are being decommissioned. The construction of new facilities are opposed due to environmental 

concerns, and therefore alternative energy sources are required. Solar and wind technologies have been 

developed in recent years to work alongside existing energy sources to meet the growing energy 

demands of the UK. Tidal energy is a currently untapped resource with the UK possessing 48% [1] of 

the available energy along European coasts. Tidal energy is estimated to be capable of providing 

12 TWh/year [1] to the UK grid. Projects have been investigating the extraction of energy from the sea 

using tidal stream and wave technology. There are various projects in development such as the Seagen-S 

a 2 MW turbine, which has generated 3 GWh between 2008-2012 [2]. Another project is the 

OpenHydro turbine rated at 2.2 MW, with sites capable of producing a total of 1 GW currently being 

developed [3]. Each site is capable of supporting multiple turbines in an array, the Bay of Fundy site 

has a 4 MW tidal array that has the potential to expand to a 300 MW tidal array [4].  

Tidal energy is extremely predictable years in advance, however there are challenges such as the high 

development costs. Unlike wave energy devices, tidal energy devices are commonly located on the sea 

bed. This negates the hazardous surface conditions that occur during storms. The manufacturing costs 

of the turbine are determined by the material costs, the assembly and machining costs. A complex 

turbine design results in a high manufacturing cost. The deployment of a turbine requires offshore 

cranes, transport and divers (in the case of submerged turbines) resulting in high deployment costs. To 

operate the turbine in rough conditions the turbine has to be fault tolerant, the turbine design determines 

the operational and maintenance costs. This thesis is partnered with the company OpenHydro and 

focuses on the OpenHydro tidal turbine. The motivation of the project is to improve the cost 

competiveness of tidal energy, with established renewable technology such as wind and solar.  

1.2. Tidal energy extraction 

Tidal energy refers to the kinetic energy of a large body of water, the extraction of this energy is the 

conversion of the kinetic energy to useful electrical energy that is fed to the grid. Large dams and 

barrages have been in operation for decades harnessing the kinetic energy from a body of water. Tidal 

barrages extract energy based on the change in water height (potential energy) and tidal stream which 

extracts kinetic energy directly from the flow of tidal water. 

1.2.1. Tidal barrage 

Tidal barrages isolate a section of shore referred to as a basin, when the sea level is higher than the 

basin the sluice gates are opened. This allows the water to move into the basin via channels containing 
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turbines. When the basin level matches the sea level the sluice gates are closed until the tide ebbs, at 

which point the basin water level is higher than sea level. The sluice gates are opened and water flows 

from the basin into the sea via the turbine [5]. Figure 1 shows a side view of a tidal barrage. 

 

Figure 1: Tidal barrage 

One of the most notable successful tidal barrages is the La Rance barrage, capable of producing 

500 GWh/year shown in Figure 2. A barrage was proposed for the Severn estuary but concerns over 

wildlife dependent on the mudflats caused the proposal to be rejected. However a contradictory view 

was published by R. Kirby et al [6] in which it is claimed that a barrage would actually improve the 

environmental conditions. The Severn estuary has been a site of interest with papers published as early 

as 1949 [7] discussing a possible barrage.  

 

Figure 2: La Rance tidal barrage [8] 

1.2.2. Tidal lagoons 

The operation of tidal lagoons is similar to tidal barrages [9], while the power generation capacity is 

reduced so is the environmental impact. Consequently tidal lagoons receive less opposition to 

deployment. Figure 3 shows the proposed deployment site for a tidal lagoon in Swansea Bay. 

Sea 

Basin 
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1.2.3. Tidal stream 

Tidal stream devices operate similar to a tidal barrage without the surrounding architecture. The turbine 

is situated on the sea bed and extracts energy from the tidal currents [11]. However deploying the turbine 

below the surface increases the difficulty of the maintenance therefore increasing the operational cost.  

The long term plan for the deployment of these machines is to place them in arrays similar to how wind 

turbines are arranged, this is to maximise the potential of power extracted from the site. An investigation 

of the environmental impact of an array of marine current turbines is necessary for each potential 

deployment site, an example of this type of investigation can be found in [12-14]. The turbine restricts 

the surrounding water flow consequentially creating a wake that affects turbines further downstream. 

The effect of this wake or turbulence on the downstream turbine is dependent on the ambient turbulence 

intensity (ATI), the authors [13] concluded that areas that have a higher ATI results in a narrower wake 

and the stream recovers quicker resulting in less of an environmental impact. 

  

 

Figure 3: 320 MW Pathfinder project, Swansea Bay [10] 
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1.3. The OpenHydro turbine 

A marine current turbine (MCT) is a device that converts the kinetic energy to electrical energy, where 

the kinetic energy is provided by the tidal variation. The operation of an MCT is somewhat similar to 

wind turbines except that the fluid density is significantly greater, as energy is provided by the flow of 

water instead of air. There are 2 categories of generator designs, direct drive and geared. The turbine 

shown in Figure 4 is the OpenHydro turbine that uses a rim-driven generator. The active parts of the 

generator are placed around the outer rim of the blades, this type of generator is a direct drive generator. 

A direct drive generator does not require a gearbox, however the generator must be designed to operate 

at low speeds. This results in the number of poles being quite large and increases the weight of the 

generator. However the absence of a gearbox means there is one less potential failure point in the 

turbine.  

This project is partnered with the company OpenHydro, the technical design data of a commercial 

generator was provided by OpenHydro. The OpenHydro turbine is a shaft-less design using a permanent 

magnet synchronous generator. The rotor is neutrally buoyant and free to rotate in a large flooded gap. 

The present generator design is a surface mounted permanent magnet machine [15], the generator is 

heavily reliant on expensive rare earth materials to generate the air gap field. For example a 2 MW tidal 

turbine might rotate at just 25 rpm, in which case the generator torque is almost 1 MNm. As the torque 

is related to machine active volume, direct drive machines tend to be large and heavy. 

The company OpenHydro was formed in 2005 and OpenHydro has achieved a number of industry firsts, 

including being the first to deploy a tidal turbine at the European Marine Energy Centre (EMEC) [3]. 

The original turbine prototype was 6 m in diameter with the latest prototype being 16 m in diameter. 

The company is based in Ireland with projects across the globe including the Bay of Fundy in Nova 

Scotia and in Japan.  

 
Figure 4: OpenHydro Turbine [16]  
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1.4. Project aims and objectives 

The overall aim is to improve the cost competiveness of the OpenHydro tidal turbine by focusing on 

the generator and the associated costs. 

Objectives: 

1. Optimisation of the existing permanent magnet generator 

2. Design an alternative generator (Induction generator) 

3. Comparison of the optimised generator and the alternative design 

1.5. Contributions to knowledge 

 A Feasibility study of a direct drive squirrel cage induction machine for use in a tidal turbine. 

 Presented a modified design procedure of large scale squirrel cage induction machine. 

 Comparison of direct drive permanent magnet design and induction machine based on material 

costs and energy supplied. 

 Eccentricity study of large scale induction machine based on existing literature. 

1.6. Publications 

L. A. Naugher, N. J. Baker, and G. Atkinson, "Large air gap squirrel cage induction generator 

for a tidal turbine," in 8th IET International Conference on Power Electronics, Machines and 

Drives (PEMD 2016), 2016, pp. 1-6. 

N. J. Baker, L. A. Naugher, “Large direct drive generators: The induction machine as an 

alternative to permanent magnet machines.” in 7th IET International Conference on 

Renewable Power Generation (RPG 2018), accepted and awaiting publication. 

1.7. Thesis overview 

Chapter 2 Tidal turbines – This chapter reviews other tidal turbine prototypes as well as reviews 

alternative machine types for this application.  

 

Chapter 3 Permanent magnet optimisation – This chapter focuses on the existing generator, 

simplification for modelling, manual and numerical optimisation. 

 

Chapter 4 Induction machine design – This chapter describes the design procedure of the alternative 

design and manual optimisation. 

 

Chapter 5 Eccentricity – This chapter introduces the concept of eccentricity of the turbine and begins 

to investigate the effect on both the permanent magnet and induction designs. 

 

Chapter 6 The cost of energy – This is a comparison of the two designs based on material costs and 

energy generation. 
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Chapter 2. Tidal turbines and tidal energy 

This chapter reviews the OpenHydro device and other tidal turbine prototypes and reviews alternative 

machine types for this application. Turbines, other than the OpenHydro turbine, are reviewed and the 

electrical machines used are identified. The different types of electrical machines are introduced and 

assessed with regards to the suitability for the application 

2.1. Tidal turbine system 

The system to extract the tidal energy can be generalised as in Figure 5. The turbine is deployed offshore 

connected by subsea cables to an onshore control unit. The subsea cables transfer the power from the 

turbines as well as monitoring data to the control unit. The energy is provided to the grid by the control 

unit.  

The challenges to tidal turbines are not just physical but also economic, the system costs can be broken 

down into deployment, manufacture, operational and maintenance costs. The turbine system has high 

deployment costs as offshore cranes, transport and divers (in the case of submerged turbines) are 

required to successfully install the turbine at the desired deployment site. The manufacturing costs of 

the turbine are driven by not only the material costs but includes the assembly and machining costs, a 

complex turbine design results in a high cost. The operational and maintenance costs are determined by 

the robustness of the turbine to operate in rough conditions.  

 

Figure 5: Generalised tidal turbine system 
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2.1.1. OpenHydro turbine system 

The original turbine prototype was 6 m in diameter with the latest prototype being 16 m in diameter. 

The company is based in Ireland with projects across the globe including the Bay of Fundy in Nova 

Scotia and in Japan. The system is being actively developed, such as a custom control unit as opposed 

to an onshore solution and the construction of a custom barge for turbine deployment and retrieval.  

The OpenHydro tidal turbine is deployed in arrays with a subsea control unit referred to as the turbine 

control centre (TCC). Figure 6 shows an example of a tidal array at a deployment site, the TCC is capable 

of controlling multiple turbines within the array. Rather than multiple cables to shore the TCC 

consolidates the outputs of the turbines and delivered to shore by a single cable. The OpenHydro turbine 

uses a direct drive generator and the active parts of the generator are placed around the outer rim of the 

blades. The generator must be designed to operate at low speeds as a direct drive generator does not 

have a gearbox. This increases the weight of the generator and the number of poles are quite large. 

However the absence of a gearbox means there is one less potential failure point in the turbine. As the 

torque is related to machine active volume, direct drive machines tend to be large and heavy. 

The OpenHydro turbine is a shaft-less design using a permanent magnet synchronous generator and the 

present generator design is a surface mounted permanent magnet machine [15]. Expensive rare earth 

materials are required to generate the air gap field. The rotor is neutrally buoyant and free to rotate in a 

large flooded gap. The turbine prototype is rated as 2.2 MW and has a diameter of 16 m. 

 

Figure 6: OpenHydro tidal turbine system 

2.1.2. The power coefficient and the tip speed ratio 

The amount of available power is dependent on the tidal speed (v) as shown in Equation (1) [17], the 

power coefficient (Cp) is a measure of efficiency of the conversion of tidal energy to mechanical energy. 

The power coefficient is dependent on the tip speed ratio (λ) Figure 7 is a typical power coefficient curve 

from [18] and shows this relationship. The power that is available for extraction is limited to 59% of the 

site’s potential, the same as for wind turbines and is known as the Betz limit [19].  

 
𝑃 =  

1

2
. 𝜌. 𝑣 3. 𝜋. 𝑅2. 𝐶𝑝 (1) 
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Figure 7: Typical power coefficient curve 

Different power coefficient equations are presented in [18], originally these equations were determined 

for wind turbines from [20]. Cp2, Cp3 and Cp4 are calculated based on the blade pitch (β) which is fixed 

for the OpenHydro turbine. Figure 8 shows the power coefficient using the different equations for a 

blade pitch of 25o. Cp5 was determined from Equation (2) presented in [1], the equation was obtained by 

fitting the curve of the data from a tidal turbine prototype. 

 𝐶𝑝5 = 0.01395. λ2(1.3172. 𝑒(−0.3958.λ+1.539) − 0.0867. cos (0.4019. λ − 5.6931)) (2) 

 

 

Figure 8: Different power coefficient calculations 

The tip speed ratio, Equation (3) [17], is the relation of the turbine angular velocity (𝜔𝑟) and the tidal 

flow speed, the tip speed ratio depends on the turbine radius (R). 

 𝜆 =  
𝑅. 𝜔𝑟

𝑣
 (3) 

  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1 2 3 4 5 6 7 8 9 10 11

P
o

w
er

 C
o

ef
fi

ci
en

t,
 C

p

Tip speed ratio, λ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12 14

P
o

w
er

 c
o

ef
fi

ci
en

t

Tip speed ratio

Cp1 Cp2 Cp3 Cp4 Cp5Cp1 Cp2 Cp3 Cp4 Cp5 



Chapter 2. Tidal turbines and tidal energy 

9 | P a g e  

Figure 9 shows the tip speed ratio of a fixed blade turbine, this shows the cut in and cut out speeds of 

the turbine. The cut in speed is the speed at which the turbine losses are negligible, the cut out speed is 

the speed threshold at which the turbine is disabled. Speeds above the cut out threshold could potentially 

damage the turbine therefore the turbine is disabled to protect the generator. If the blade pitch can be 

adjusted then the tip speed ratio can be held constant until the nominal angular velocity after which the 

angular velocity is held constant and as a result the tip speed ratio decreases.  

The OpenHydro turbine uses fixed blades and the tip speed ratio is variable, the simplest method of 

determining the power extracted is by assuming a constant power coefficient. This assumption results 

in an overestimation of the extracted turbine power. A constant power coefficient signifies a constant 

tip speed ratio. To model the variable tip speed ratio and therefore a variable power coefficient, the 

relationship between the tidal speed and the turbine speed was assumed to be linear. Figure 10 shows 

the resultant linear relationship of tidal and turbine speeds. The gradient of the line can be determined 

by assigning, referred to as mapping, the tidal speed to a turbine speed. The tip speed ratio and hence 

the corresponding turbine speeds can then be determined for all tidal speeds.  

Figure 9 shows the tip speed ratio when the tidal speed 2.75 m/s was mapped to the rated turbine speed 

of 15 rpm, referred to as TSR15. When the tidal speed 2.75 m/s was mapped to the rated turbine speed 

of 25 rpm the tip speed ratio was referred to as TSR25. Figure 9 shows that the tip speed ratio is higher 

when the tidal speed 2.75 m/s is assigned to 25 rpm and this corresponds to a higher power coefficient, 

Figure 7. 

 

Figure 9: Tip speed ratio  
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Figure 10: Linear relationship of tidal speed and turbine speed 

 

2.1.3. Tidal power 

The turbine power can be calculated using Equation (1), Figure 11 shows the calculated power of the 

turbine assuming a constant power coefficient and using the values from Cp5. The extracted power is 

higher when assuming a constant power coefficient. The power is limited to the rated value, the graph 

only shows the power for positive flow speed however the turbine is bidirectional and as such generates 

when the tide is reversed the graph has the same shape however inverted in the Y-axis. 

 

Figure 11: Marine power against tidal flow speed, with cut in and cut out speeds. 
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2.2. Tidal resource modelling 

Tidal resource modelling is a complex process and each deployment site offers unique challenges to an 

MCT. The depth and bathymetry of the deployment site can affect the turbine and the turbine affects the 

environment. The effect of the turbines on the surrounding environment has been investigated by [13]. 

A deployment site will contain more than a single MCT as the turbines will be deployed in arrays similar 

to wind farms shown in Figure 12. The impact of a MCT on a second MCT downstream has been 

investigated by [13], it was concluded that in a fast flowing stream MCTs can be deployed closer 

together as the stream recovers faster. 

 

Figure 12: Tidal turbine array [21] 

The tidal models are used to investigate the environmental impacts of an MCT at the deployment site, 

in this instance the model is used to determine the occurrences of the tidal speeds. The power generated 

by the turbine at each speed can be used to determine the annual tidal energy yield of the turbine. 

Resources such as a tidal atlas [22] provide tidal speeds for 6 hours before and 6 hours after high water. 

The tidal speeds are determined by the tidal height variation using the computation of rates method 

presented in the atlas [22]. For the purpose of comparing the generator energy yields the tidal speed 

variation can be modelled using Equation (4) from [23].  

Where K0 is determined by the peak mean spring tidal speed and K1 from the ratio of the peak mean 

spring tidal speed and the peak mean neap tidal speed. T0 is the spring neap period, 12.4 hours, and T1 is 

the tidal period, 353 hours. To compare the two methods a test site in Rosyth harbour, Figure 13 [24], 

was chosen, the tide height data was provided from [25] for the 12th and 13th February 2018. The data 

required for Equation (4) for the same site was provided by [26]. Figure 14 shows the tidal speed 

variation over 24 hours at the Rosyth site for both methods.  

 
𝑣(𝑡) = (𝐾0 + 𝐾1. cos (

2𝜋𝑡

𝑇1
)) . cos (

2𝜋𝑡

𝑇0
) (4) 
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Figure 13: Rosyth harbour site  

 

Figure 14: Comparison of tidal speed based on the tidal atlas and from the equation 

The equation assumes a perfectly sinusoidal variation in tidal speed, however the tidal atlas data in 

Figure 14 shows that the tidal speed variation is distorted. The frequency of the tidal speed from the tide 

atlas is variable whereas the equation assumes a fixed frequency. The equation is capable of providing 

tidal speeds for different sites and easily expanded to provide data for any time periods. The tidal atlas 

provides an accurate tidal speed variation however the atlas is site dependent. The tidal atlas requires 

the site tidal height predictions to provide data for the same time periods.  

  

Test site 
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2.2.1. OpenHydro site model 

Figure 15 shows the global deployment sites of various OpenHydro projects, Table 1 shows the peak 

mean spring and neap speeds at four of these deployment sites. The Bay of Fundy off the coast of Nova 

Scotia and Raz Blanchard in Normandy are both deployment sites for the 16 m turbine. The Bay of 

Fundy is known for rapid tidal speeds appropriate for a tidal turbine, and was chosen for use as the 

theoretical deployment site for the designs presented in later chapters. 

 

Figure 15: OpenHydro project deployment sites [4] 

Figure 16 demonstrates a monthly semi-diurnal tide for the Bay of Fundy. The tidal speeds were 

calculated using the data provided in Table 1 for the Bay of Fundy [26] and Equation (4).  

Table 1: OpenHydro deployment site data from the webAtlas [26] 

Deployment Site peak mean spring speed, m/s peak mean neap speed, m/s 

Raz Blanchard, Normandy 4.48 2.53 

Torr head, Ireland 2.06 1.08 

Eday Test Site, Orkney Island 1.49 0.83 

Bay of Fundy, Nova Scotia 4 1.88 

 

 

Figure 16: Model monthly semi-diurnal tide 
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2.2.2. Tidal speed occurrences 

The tidal speed data of Figure 16 is used to determine the turbine power using Equation (1), Figure 17 

shows the histogram of the tidal data. The moving average trend-line has been applied to accentuate that 

the majority of the hours per year are around the speed of 2.75 m/s. The high tidal speeds, 4 m/s and 

higher do not occur as often as tidal speeds in the range of 2.5-3 m/s. The tidal turbines of Table 2 are 

designed to achieve the rated performance at a speed of 3 m/s. As tidal speeds around this value occur 

the most often. Designing the turbine to operate at its rated value at these speeds results in the turbine 

generating power more efficiently than if the turbine was designed for an operational tidal speed of 4 m/s 

or higher. 

 

Figure 17: Histogram of tidal speed and annual occurrence 
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2.3. Demands on electrical machine 

In some renewable energy applications, notably wind, the mass and size of the electric machine are 

critical – directly affecting the mechanical requirements of the supporting tower. In other generator 

applications, however, the turbine has to be large to capture the rated power and so arguably the torque 

density of the machine is less important. The diameter of the OpenHydro generator is dictated by the 

diameter of the blades – around 14 m for a 2 MW machine. Shear stress is used as an indication of the 

performance of an electric machine. The shear stress is the tangential force applied to a surface area on 

the rotor. The turbine has a rated torque of 1 MNm, and the active area envelope for the machine is 

approximately 22 m2. The rated torque can therefore be reached by a shear stress of 6.5 kN/m2, 

conventional machines typically have shear stress values of 10-40 kN/m2 [27]. 

By designing the generator to be as mechanically robust as possible the operational periods between 

maintenance can be increased. The operational environment of the marine current turbine causes the 

maintenance and repair costs to be expensive. These costs account for approximately 15% of the cost of 

energy of a tidal turbine[28], therefore the ideal generator should be low maintenance and robust. This 

would reduce the turbine cost in the long term by reducing the number of maintenance cycles over the 

life of the turbine.  

The machine will have to operate in an environment with powerful tides capable of not only damaging 

the machine, but also capable of moving the machine without proper ballast. Therefore the generator 

requires a base with substantial weight however this makes it difficult to transport the turbine. 

2.4. Types of tidal turbines 

As previously stated there are various tidal stream projects in development a few of them are presented 

here. 

2.4.1. SeaGen-S 

The SeaGen-S designed by Marine Current Turbines [29] uses two 1 MW geared squirrel cage induction 

generators. The turbines are mounted to a pylon and are capable of being lifted above sea level for ease 

of access for maintenance. With the pylon above the water the placement of the farm needs careful 

consideration to avoid disrupting ships. 

 
Figure 18: SeaGen-S deployment 
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2.4.2. AR-1500 

Designed by Atlantis [30] and constructed by Lockheed Martin, this turbine has a permanent magnet 

synchronous generator connected to a planetary gearbox. The turbine is secured with a gravity base, the 

weight of the base holds the turbine in place. This reduces site preparation and hence costs, however it 

complicates maintenance. 

 

Figure 19: Submerged AR-1500  

2.4.3. SR2000 

Constructed by Scotrenewables [31] the SR2000 has a similar set up as the SeaGen-S with two 1 MW 

squirrel cage induction generators. However the turbines are connected to retractable arms, during transit 

the arms are positioned next to the barge. The arms can be retracted during harsh weather conditions to 

protect the turbines. The barge contains the turbine drive cabinets as well as monitoring equipment. The 

barge is held in place with tethers, with a subsea cable delivering the generated power to the grid 

onshore. As the barge is situated on the surface recovery of the device for maintenance is simple, the 

barge is untethered and the turbines are retracted then the barge can be towed to the docks. 

 

Figure 20: Deployed SR2000  
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2.4.4. HS1000 

The HS1000 produced by ANDRITZ HYDRO Hammerfest [32] also utilises a geared 1 MW squirrel 

cage induction generator mounted to a gravity base similar to the AR-1500. 

 

Figure 21: ANDRITZ HYDRO Hammerfest HS1000  

2.4.5. CoRMat 500 

The CoRMat 500 designed by Nautricity [33], the turbine has a double rotor axial flux permanent 

magnet generator. The CoRMat is a counter rotating turbine and the rotors are connected to two sets of 

blades with one rotor rotating clockwise and the other rotates counter clockwise. This effectively 

doubles the relative rotational speed of the turbine without requiring a gearbox [34]. 

 
Figure 22: CoRMat 500 being installed at EMEC  
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2.4.6. Comparison of the turbines 

Table 2 lists the parameters of the reviewed turbines, it can be easily identified that the permanent 

magnet and induction machine are commonly used in tidal turbines. Both topologies are simple and 

robust. Another feature is that the cut in speed is 1 m/s and the rated speed is 3 m/s. In the case of the 

SeaGen-S and the SR2000 only the data for a single generator is shown. At present OpenHydro has the 

greatest installed capacity, however there are many projects that are planned for deployment in the 

future. OpenHydro has an advantage as the deployment and installation have been developed to reduce 

costs and time required; a turbine can be deployed to the site in two hours [4].  

The electrical torque (Te), Equation (5) [27], of a machine can be calculated based on the shear stress 

(σ), the active area and the radius (r). The active area is the surface area of the air gap, it is calculated 

based on the circumference of rotor and the axial length (l). The turbine torque (Tm), Equation (6) [17], 

is calculated from the fluid density (ρ), the tidal speed (v), the turbine radius (R), the power coefficient 

(Cp) and the tip speed ratio (λ). The ratio of the turbine and generator radius can be evaluated using 

Equation (7) [17] created by equating the turbine and electrical torque, where (
𝑙

𝑟
) is referred to as the 

aspect ratio of the machine. E. Spooner [17] identified that a direct wind turbine designed with an aspect 

ratio of 0.5 results in a generator 5-10% of the turbine diameter. A direct drive tidal turbine designed 

with an aspect ratio of 0.5 would result in a generator diameter 25-30% of the turbine diameter. A rim 

generator under the same conditions as a direct drive turbine has a lower tip speed ratio and aspect ratio. 

However the rim generator is capable of operating with higher torque. 

 𝑇𝑒 =  𝜎. 2. 𝜋. 𝑟2. 𝑙 (5) 

 𝑇𝑚 =  
𝜌. 𝑣2. 𝜋. 𝑅3. 𝐶𝑝

2. 𝜆
 (6) 

 
𝑟3

𝑅3
=

𝜌. 𝑣2. 𝐶𝑝

4. 𝜆. 𝜎. (
𝑙
𝑟)

 (7) 

 

Table 2: Tidal turbines 

Turbine 
SeaGen-

S 
AR-1500 SR2000 HS1000 OpenHydro 

CoRMat 

500 

Rated power, kW 1000 1500 1000 1000 2200 500 

Turbine diameter  

(including blades), m 
20 18 16 21 16 N/A 

Direct drive or gear 

box 
Gearbox Gearbox Gearbox Gearbox 

Direct 

drive 
Direct drive 

Generator SCIG PMSG SCIG SCIG PMSG DRAFPMG1 

Fixed or pitched blades Pitch Pitch Fixed Pitch Fixed Fixed 

Yaw system No Yes No Yes No Yes 

Rated operation tidal 

speed, m/s 
2.5 3 3 N/A 3 N/A 

Cut in speed, m/s 1 1 1 N/A 1 N/A 

Total installed 

capacity2, kW 
1200 [2] 

3000 

[35] 

2000 

[31] 

3000 

[35] 
8250 [4] 500 [34] 

1 – Double rotor axial flux permanent magnet generator;  

2 – Total installed capacity including prototypes as of 09/04/2018 
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2.5. Electrical machines 

This section reviews possible generator technologies, different electrical machines are considered for 

use in the tidal turbine. The advantages and disadvantages of each machine are presented in 

consideration of the application.   

2.5.1. Squirrel cage induction generator (SCIG) 

The squirrel cage induction generator has been used extensively in industry due to its simple 

construction and the capability to operate in extreme conditions. This generator is capable of variable 

speed with established control methods and when the machine is disconnected no electromotive force 

(EMF) is produced by the rotor which is good for fault tolerance. The synchronous speed of 8 pole SCIG 

at 50 Hz is 750 rpm and 3000 rpm for a 2 pole SCIG. For a synchronous speed of 30 rpm the SCIG 

would require 200 poles, resulting in large outer diameter. A gearbox increases the speed allowing a 

readily available SCIG to be used. A gearbox requires regular maintenance and with variable speed 

operation the gearbox would experience additional fatigue due to the rapid changes of torque [36, 

pp.191]. A direct drive design for the OpenHydro turbine would result in a large machine with a large 

number of poles. 

When connected to a fully rated inverter, as a synchronous PM machine must be, they can also operate 

at variable speed with established control methods at high efficiency points, Table 3. Typical air gap 

lengths of a SCIG are in the range of 0.5-1 mm however the OpenHydro turbine forces an air gap of 

12 mm. The large air gap length requires a large magnetisation current resulting in a poor power factor, 

a low power factor increases the rating of the convertor and hence its costs. 

 

Figure 23: Connection of a conventional SCIG to the grid 

 

Table 3: 460V, 4 pole, open frame design B performance, [37, pp. 429] 

Power Rating (kW) Nominal full load efficiencies (%) 

3.7 87.5 

37 93 

370 95.8 

2.5.2. Doubly fed induction generator (DFIG) 

The doubly fed induction generator has become popular for large wind turbines due to the controllability 

of the rotor field current via slip rings. The armature winding is connected directly to the grid so that the 

speed and magnitude of the rotating field is constant. The field winding is coupled to the grid through a 

convertor that only requires a partial rating of the power of the machine. Variable speed is achieved by 

varying the rotor current frequency. The typical DFIG would require a gearbox however a direct drive 

Gearbox IG 
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design would result in a large diameter slip ring which requires a large amount of copper. The slip rings 

would require regular maintenance, and would require additional copper for the slip rings for the direct 

drive design. The DFIG and PMSG were compared by S. Beneghali et al [38] for a geared tidal turbine, 

the authors built a test rig with a PMSG and a DFIG to provide practical data such as efficiency and 

power generated. Tidal data of a deployment site at Raz Blanchard was used to estimate the annual 

energy yield of each machine and concluded that annually the PMSG extracts more energy than the 

DFIG [38]. This conclusion neglected the impact of the rotor brushes on the maintenance of the turbine. 

The lifetime cost of replacing the brushes can heavily outweigh the initial cost of a fully rated convertor 

for a SCIG. 

 

Figure 24: Grid connection of a typical DFIG 

2.5.3. Brushless doubly fed induction generator (BDFIG)  

The BDFIG has the controllability of the DFIG without the disadvantage of slip rings. The BDFIG has 

two sets of windings, both situated on the stator with a normal cage rotor. The rotor magnetic field is 

controlled by the second set of windings on the stator. The winding responsible for controlling the rotor 

magnetic field is connected to the grid via a partially rated power convertor. The winding responsible 

for the rotating magnetic field is connected directly to the grid. The avoidance of the slip rings lowers 

the maintenance requirements of the machine. The machine has a complex design, structure and 

operation. This would affect the implementation of the machine as a marine current turbine but remains 

a valid option for this application. 

 

Figure 25: Connection of the BDIG to the grid [39] 

 

  

Gearbox IG 
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2.5.4. Wound field synchronous generator (WFSG) 

The WFSG operates with a rotating magnetic field from the armature winding, this AC excitation is 

provided by the grid via a fully rated power convertor for variable speed operation. The field winding 

requires DC excitation to create the magnetic field that interacts with the rotating field. The DC 

excitation is provided via carbon brushes and a commutator, these brushes need to be regularly checked 

and maintained similar to the slip rings of the DFIG. 

 

Figure 26: 2 pole wound field synchronous machine [40] 

2.5.5. Permanent magnet synchronous generator (PMSG)  

The operation of the PMSG is the same as the WFSG except that the field excitation is provided by 

permanent magnets. These magnets are usually of the rare earth variety due to the high remanence flux 

density, this type of magnets are more expensive than the ferrite counterparts. This machine is low 

maintenance with a simple structure that can be easily constructed. As such it has proven popular in 

marine current turbines, regardless of the high costs involved in the machines manufacturing.  

Permanent magnet designs offer high torque density per unit volume and per unit mass. Performance is 

often expressed as shear stress, the force reacted per unit of air gap area, and typical air cooled machines 

may reach 10-20 kN/m2, with PM topologies achieving in the range of 30-40 kN/m2 [17]. The high 

remnant flux density offers a high magnetic loading, meaning the active area of the air gap, and hence 

total machine can be relatively small. The PMSG is also known to operate at a high efficiency [41], 

predominantly because there are no I2R losses associated with setting up magnetic field coils as found 

in other machine topologies. 

Assembly and handling, especially of large machines, is challenging. The large diameter of direct drive 

design means that a robust mechanical structure is required to resist the large magnetic forces. The 

design of a axial flux rim generator identified that the turbine structural mass accounts for 80% of the 
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total mass [42]. The use of air-cored coils mitigates the radial attractive forces, however this increases 

the magnetic air gap length adversely affecting the machine’s performance. 

 

Figure 27: Permanent magnet synchronous machine [43] 

2.5.6. Switched reluctance generator (SRG) 

Unlike the previous machines that produce torque using the BIl mechanism the SRG generates torque 

from the reluctance action of the rotor [36, pp. 320]. In the previous machines this reluctance torque is 

known as cogging torque, this is the reluctance of the rotor teeth to move from alignment with the stator 

teeth. It is a negative mechanism for other machines causing torque ripple. The rotor and stator of the 

SRG have saliency to align the rotor and stator. The rotor of the SRG is made of solid steel and increases 

the overall weight of the machine. A 20 kW SRG was constructed for use in a wind turbine that 

demonstrated ≃ 80 % efficiency for various loadings [44]. This type of machine would require 

additional filters in the convertor to remove the current harmonics. The harmonics would need to be 

removed before connecting this machine to the grid to comply with stringent grid codes. 

 

Figure 28: Switched reluctance machine [36] 
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2.5.7. Double stator axial flux permanent magnet generator (DSAFPMG) 

The magnets of this machine are polarised in the axial direction of the machine rather than radial. This 

design utilises a second stator with the rotor positioned between the two stators. The attractive forces 

are balanced and thus reduces the wear on the bearings [43, pp.122]. The use of a double stator helps 

reduce the mechanical stress on the rotor and it also improves the fault tolerance of the machine, as 

should one stator fail the machine can still operate at half the rated performance[45]. The machine 

requires a large radius or a large number of poles otherwise the length of the end windings can be greater 

than the slot length resulting in poor utilisation of the windings [43, pp.123]. As a direct drive generator 

typically has a large diameter and a substantial number of poles this should not be an issue for the 

application of a marine current turbine. However it is noted that the stator laminations are packed in a 

circumferential direction increasing the difficulty of manufacturing [43, pp. 123]. This limits the 

practicality of this type of machine, as the purpose of this project is to design a machine that is capable 

of extracting tidal energy economically.  

 

Figure 29: Double stator axial flux permanent magnet generator [45] 

2.5.8. Transverse flux generator (TFG) 

Transverse flux machines are known to have high torque densities implying this topology may achieve 

the desired performance using less magnet material. Transverse flux machines generally use radial 

magnets with an axial path in the stator. The TFG has hoop windings around the stator periphery this 

results in a large self-inductance. As a consequence the TFG suffers from poor power factor typically in 

the range of 0.35-0.55 [46], this has to be compensated by the convertor.  
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Figure 30: Transverse flux machine [47] 

2.5.9. Claw pole generator (CPG) 

There are two types of claw pole machine: stator claw pole and the rotor claw pole. The stator claw pole 

has the claws on the stator with hoop coils and radial magnets. The rotor claw pole has the claws located 

on the rotor with axial magnets and a standard stator. The stator claw pole, Figure 31a, suffers from low 

power factor due to the hoop coils. The rotor claw pole, Figure 31b, shows an advantage of the claws 

being located on the rotor as the rotor can be used with a conventional stator design. The number of 

poles is dependent on the number of claws. 

  

(a) (b) 
Figure 31: (a) Stator claw pole [48]; (b) Rotor claw pole [49] 
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2.6. Discussion of electrical machines 

The uncertainty surrounding the market price of the rare earth materials has many companies 

considering different topologies of machine to avoid the associated risk of rare earth materials. Although 

the price seems to have stabilised the unpredicted spike in rare earth materials market prices has 

unsettled many consumers. The prospect of new rare earth mines in Greenland and Canada has 

contributed to alleviating the concerns of wary consumers. This provides a consistent supply of rare 

earth materials with a stable market price, the cost of construction of a PMSG is the same regardless of 

the time of its construction. The permanent magnet machine and the induction machine are two extremes 

of magnet content for this application and there is precedence of using a SCIG in tidal turbines albeit 

with a gearbox. 

The size of the flooded gap between the rotor and stator in the OpenHydro turbine, which is large due 

to mechanical constraints, is a concern in this application. The air gap increases the leakage inductance 

thereby decreasing the power factor of the generator. To compensate, an over rated convertor is required. 

Overall, for the induction machine design to be competitive with the existing PMSG, it needs to have a 

lower manufacturing cost as well as competing on physical size and efficiency. 

2.7. Summary 

The chapter has reviewed other tidal turbine projects, where a trend toward permanent magnet and 

induction machines was observed. Comparing the various machine types, the squirrel cage induction 

generator was chosen as the alternative to the existing permanent magnet design. Due to the simple and 

robust nature of the squirrel cage induction generator. 

The challenges that tidal turbines face were introduced, the high deployment costs are independent of 

the generator design and can only be reduced by optimisation of the deployment method. However the 

manufacturing costs of the turbine can be reduced by optimising the generator, reducing the quantity of 

materials used. The manufacturing and assembly process can be simplified, and the associated costs 

reduced, by designing the generator with a simple topology. The design has to be fault tolerant and 

variable speed to operate in rough conditions.   

The deployment site determines the potential available power for extraction and some of the OpenHydro 

deployment sites were assessed using the web atlas. To determine the extractable power the tidal cycle 

for a site is necessary, tidal models vary from simple to complex and a simple method was chosen for 

use in Chapter 6. This method assumes that the semi-diurnal tide is symmetrical with the same peak 

spring speed.  
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Chapter 3. Permanent magnet machine 

The aim of this chapter is to describe the existing topology and provide an optimised design for 

comparison with a squirrel cage induction generator. As such a general description of the electrical 

machine currently used is presented. A finite element model is introduced and used to optimise the 

design in terms of magnet mass and performance.  

3.1. The existing permanent magnet design 

The initial model provided by OpenHydro demonstrated that the generator consists of 72 stator 

segments and 144 rotor segments. Figure 32 shows a single stator segment and two rotor segments. 

Each stator segment consists of three coils with one coil per phase, the coils are air cored single tooth 

windings suspended in resin. The lack of stator teeth reduces the radial attractive forces as well as slot 

harmonics, however the resin is a barrier to good heat dissipation. The coils have poor cooling and as 

the coils operate in higher temperatures this corresponds to a faster degradation of winding insulation.  

The magnets are surface mounted and there are 288 poles and 576 magnets in total, as each segment 

has 2 poles and each pole consists of 2 magnets. The magnets are axially segmented, this shortens the 

eddy current path reducing losses by reducing the path resistance. The axial length of the magnets is 

270 mm. The magnets are also submerged in resin to protect against corrosion from contact with the 

flooded air gap. The resin coated magnets are covered with a nonmagnetic cover. Due to the saliency 

of the rotor a surface mounted permanent magnet machine has high windage losses. The cover presents 

a uniform surface reducing the mechanical windage losses. Table 4 contains the design parameters of 

the permanent magnet design.  

 

Figure 32: Single stator segment and two rotor segments 
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Table 4: Permanent magnet design parameters 

Number of segments 72 

Number of phases 3 

Nominal frequency 50 Hz 

Number of coils per phase 72 

Winding type  Air core single tooth   

Number of poles 288 

Inner radius 7.136 m  

Outer radius 7.260 m 

Speed 25 rpm 

 

3.2. The simplified FEA model 

The initial 3D model was a mechanical CAD model and contained many features that have limited 

effects on the magnetic circuit. These features such as chamfers and bolts add significant time to the 

solver and mesh generation. A detailed design study of the permanent magnet synchronous generator 

initially focused on simplifying the model. The model simplification was a continuation of the work in 

[15], where the authors identified a difference between the measured EMF and the EMF from the 2D 

finite element analysis (FEA) model. The difference was attributed to the end windings and therefore a 

3D model was required for the investigation. 

The authors of [15] found that removing the surrounding iron had no discernible impact on the result 

accuracy and concluded that there was no leakage path through the surrounding iron. Therefore the 

surrounding iron was removed to simplify the model and to improve the computation speed. Figure 33 

shows both the full CAD model and the simplified model. The authors further demonstrated that the 

large scale of the generator allows a single pole pair to be modelled as linear, with little effect on the 

accuracy of the model. 

  

 

Figure 33: Simplification of the CAD model 
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3.2.1. Linear model validation 

The model could be simplified further due to the scale of the turbine a segment could be modelled as 

linear. The linear model removes the unnecessary mesh from the origin point to the inner rotor radius 

improving the computation time, Figure 34 shows the linear model used in the study. The linear model 

results required validation so the results of the simplified CAD model in Figure 33 were used for 

comparison. The typical speed of a turbine is usually below 100 rpm [38] the rotary model was run with 

a synchronous speed of 25 rpm the corresponding linear speed was approximately 18 m/s. The centre 

coil of the simplified CAD model was used for comparison to the single coil of the linear model. The 

models have been constructed using the FEA software Magnet [50], and have been solved for the no-

load condition. 

Table 5: Model geometry parameters 

Model Linear 
Simplified 

CAD 

Number of coils 1 3 

Air gap length, mm 12 12 

Rotor back iron 

Length, mm 450 450 

Height, mm 18 18 

Width, mm 303 303 

Magnets 

Length, mm 270 270 

Height, mm 32 32 

Width, mm 46 46 

Coil 

Length, mm 356 356 

Height, mm 12.44 12.44 

Width, mm 71.1 71.1 

Inner radius, mm 24.5 24.5 

Stator core back 

Length, mm 452 452 

Height, mm 45 45 

Width, mm 303 625 
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Figure 35 shows that the flux linkage from the linear model is comparable to that from the simplified 

CAD model. The peak flux linkage of the linear model is slightly higher believed to be caused by 

rounding errors when converting the model dimensions. Following the higher peak flux the linear model 

peak EMF, Figure 36, is also higher than from the CAD. Minor discrepancies between the model speeds 

exist due to truncation by the FEA software. As the EMF is the rate of change of the flux linkage with 

respect to time, the higher flux linkage of the linear model results in a higher EMF. The linear model 

reduces the complexity of the solver mesh allowing more models to be solved in a shorter time frame.  

A current was applied to both models, the forces produced by the CAD model and the simplified model 

are shown in Figure 37. For the comparison, the force of the linear model was translated by 120o 

and -120o and the 3 phase forces were rectified to produce the waveform in Figure 37. The average 

force of the CAD model was 796 Nm and 816 Nm for the linear model, the force of the linear model is 

2% higher and deemed acceptable. These results show that the linear model is suitable for use in the 

optimisation of the permanent magnets. 

 

Figure 35: Flux linkage generated in the coils of both the OpenHydro model and the simplified linear 

model respectively 
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Figure 34: Linear single pole pair model 
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Figure 36: EMF of the CAD and simple linear model  

 

 

Figure 37: Force of the CAD and simplified linear model 
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3.3. Optimisation 

The magnets constitute a large portion of the generator material costs, to reduce these costs an 

investigation was carried out to reduce the mass of the rare earth magnets. To provide greater accuracy 

a large number of models must be solved to locate an optimum point that yields a reduction in rare earth 

materials. This reduction should have little effect on the generator performance to be viable and 

therefore various combinations of the magnet dimensions were modelled. A visual basic script, 

constructed in the excel developer workspace, was used to create the models in the FEA software JMag.  

The script that generates the combinations of magnet dimensions can be described by representing the 

magnet width, height and length as row vectors containing n elements. The row vector W contains the 

width measurements, H contains the height measurements and L the length measurements. The dot 

product of these row vectors produces the 3 matrices that represent the dimension combinations for 

constant width X, constant height Y and constant length Z respectively. Figure 38 shows the magnets 

in the model and the plane of the dimensions. 

W = [𝑎1 … 𝑎𝑛] H = [𝑏1 … 𝑏𝑛] L = [𝑐1 … 𝑐𝑛] 

X=Ht.L Y=Lt.W Z=Wt.H 

 

 
Figure 38: Magnet dimensions 
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3.3.1. Constraints 

The average of the force in the direction of translation was used as a constraint of the studies, a force 

threshold was set as 95% of the average force generated by the original model. The force of the model 

is determined by the nodal force of the moving components, the force is for the loaded condition. Only 

models with a force greater than the threshold were considered. The average of the force is calculated 

over 6 electrical periods neglecting the first electric period, this mitigates the effects of the initial step 

calculations on the average force. The applied current is constant for all variations. 

A 5% derating of the machine was judged to be acceptable as the turbine power was restricted to 2 MW 

due to the set maximum torque leaving a 0.1 MW over rating to account for abrupt speed variations. 

Figure 11 shows that the turbine operates at peak power at speeds of 4 m/s or higher and from Figure 

17 speeds of 4 m/s or higher only occur 1116 hours per year. The derating would affect the turbine’s 

performance for 1116 hours per year and would have minimal effect on the net income. However, the 

reduction of the capital costs is substantial. The decrease in capital costs increases the net income of the 

turbine at the end of its lifetime, and the cost of energy is dependent on the turbine’s capital costs as 

stated in Chapter 1. To be competitive with wind and solar the cost of energy has to be reduced.  

The air gap length is a physical constraint of the turbine due to the mechanical design. The 12 mm air 

gap is the physical distance between the rotor and stator, the magnets have a resin layer as well as a 

non-magnetic cover to protect the magnets from the water in the flooded air gap. The stator coils are 

also submerged in resin, and the effective air gap length is closer to 30 mm due to the lack of stator 

teeth. The model air gap length is held constant while the back iron position is adjusted to account for 

the magnet height variation. 

The magnet width affects the spatial harmonics of the flux in the air gap, the air gap flux density of the 

maximum and minimum magnet width is shown in Figure 39. The fast fourier transform (FFT) of the 

flux densities, Figure 40, shows that the 3rd harmonics are higher for the minimum magnet width. The 

3rd harmonic is a triplen harmonic, and as the turbine is a star connected 3 phase system the triplen 

harmonic current is only of consequence if the system becomes unbalanced. The increased fundamental 

of the maximum magnet width is due to the additional magnet material, as the magnet height and length 

were constant for the simulation. 
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Figure 39: Air gap flux density for maximum and minimum magnet width 

 

 

Figure 40: Harmonics of the flux densities of the maximum and minimum magnet widths 
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3.3.2. Coarse design study 

A coarse study was used to quickly identify any optimum points that would yield a large reduction in 

magnet mass. The decrement in length (dZ) was set as 12 mm, and the decrements of width (dX) and 

height (dY) are both set as 1.8 mm. Six sets of data for each parameter were chosen as 63 results in 216 

models. To solve a single model takes 10-15 minutes therefore to solve 216 models would require 36-54 

hours, this was judged as an acceptable timeframe.  

Figure 44 is the graph of constant magnet height and shows the results from the variation of the magnet 

width and length. The graph of constant magnet length, Figure 43, shows the resultant average force 

with variation of the magnet width and height. Figure 44 is the graph of constant magnet width and 

illustrates the variation of average force with variation of the magnet length and height. 

The graph of constant height shows that the length can be reduced to a value between 135-123 mm, up 

to 9%, with the initial width without dropping below the force threshold. The width can be reduced to 

43.2 mm, 8% of the original value, before failing to exceed the force threshold but only for the 

maximum length. The graph of constant length shows that the height can be reduced to 30.2 mm, up to 

11.25% of the original value, and still exceed the force threshold. As before the minimum width was 

43.2 mm for the maximum height and length. The graph of constant width corroborates the values of 

height and length from the previous graphs. Table 6 shows the best magnet dimensions from the three 

graphs as well as for the original magnet dimensions, PM-72-0. The table shows the calculated magnet 

mass and the force. Reducing the magnet height significantly reduces the magnet mass and causes a 

slight reduction of force.  

Table 6: Magnet dimensions and mass 

Design 
Dimensions, mm (% of original dimensions) 

Mass per magnet, kg Force, N 
Height Width Length 

PM-72-0 32 (100%) 46 (100%) 270 (100%) 2.98 302.83 

PM-72-1 32 (100%) 45 (98%) 270 (100%) 2.92 294 

PM-72-2 30.2 (94%) 45 (98%) 270 (100%) 2.75 288 

PM-72-3 28.4 (77%) 46.8(102%) 270 (100%) 2.69 289 

 

 

Figure 41: Initial design PM-72-3 
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Figure 42: FEA results of the coarse design study showing variation of average force with the magnet 

width and length 

  
Figure 43: FEA results of the coarse design study showing variation of average force with the magnet 

width and height 

  
Figure 44: FEA results of the coarse design study showing variation of average force with the magnet  

height and length 
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3.3.3. Fine design study 

Using the results of the previous study the range for length was set as 135-123 mm, for height 

32-28.4 mm and the width was set 46.8-43 mm. The decrements were set as dX = 0.5 mm, dY = 0.5 mm 

and dZ = 1.7 mm. The number of data sets of the fine design study was increased to eight providing 

512 models. Figure 46 is the graph of constant magnet height, and shows the findings of variation of 

the magnet width and length. Figure 47 is the graph of constant magnet length and shows the resultant 

average force with variation of the magnet width and height. Figure 48 is the graph of constant magnet 

width and illustrates the variation of average force with variation of the magnet length and height. 

Table 7 shows the best magnet dimensions from the three graphs, Figure 46, Figure 47 and Figure 48, 

with the calculated mass. Table 7 demonstrates that a reduction in the magnet height has a more 

significant impact on the mass than a reduction of the length or width. Figure 45 shows the design that 

achieved the best magnet mass reduction, PM-72-16. 

Table 7: Magnet dimensions and mass of the fine design results 

Design 
Dimensions, mm(% of original dimensions) 

Mass per magnet,kg Force, N 
Height Width Length 

PM-72-5 32 (100%) 46.3 (101%) 249.6 (92%) 2.77 288.67 

PM-72-6 32 (100%) 44.8 (97%) 256.4 (95%) 2.76 289.14 

PM-72-7 31.5 (98%) 46.8 (102%) 249.6 (92%) 2.76 288.99 

PM-72-8 32 (100%) 43.3 (94%) 263.2 (97%) 2.74 288.71 

PM-72-9 32 (100%) 43.8 (95%) 259.8 (96%) 2.73 288.00 

PM-72-10 30.5 (95%) 46.8 (102%) 253 (94%) 2.71 288.96 

PM-72-11 29.5 (92%) 46.8 (102%) 256.4 (95%) 2.65 288.30 

PM-72-12 29 (91%) 46.8 (102%) 259.8 (96%) 2.64 289.34 

PM-72-13 30 (94%) 43.3 (94%) 270 (100%) 2.63 288.00 

PM-72-14 28.5 (89%) 46.8 (102%) 263.2 (97%) 2.63 290.26 

PM-72-15 29.5 (92%) 43.8 (95%) 270 (100%) 2.62 288.00 

PM-72-16 28.5 (89%) 44.8 (97%) 270 (100%) 2.59 288.03 

 

 

Figure 45: PM-72-16 
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Figure 46: FEA results of the fine design study showing variation of average force with the magnet  width 

and length 

 

Figure 47: FEA results of the fine design study showing variation of average force with the magnet  width 

and height 

 

Figure 48: FEA results of the fine design study showing variation of average force with the magnet  height 

and length 
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3.3.4. Numerical optimisation 

A mass reduction of 13.1% was the best result of the design studies, and to identify other possible 

solutions the optimiser of the FEA software JMag was used. The optimiser used was a quadratic 

response surface model, alternatively a genetic algorithm could have been implemented. JMag creates 

a response surface based on the existing results, a solution that matches the objective function is then 

identified. Equation (8) is the second order polynomial equation from [51] for a three factor response 

surface. The regression coefficient βi (i = 1, 2, 3) are referred to as the first order effects and the 

βij (i = 1, 2, 3; j = 1, 2, 3) terms are the second order effects. 

𝜂 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽11𝑋1
2 + 𝛽22𝑋2

2 + 𝛽33𝑋3
2 + 𝛽12𝑋1𝑋2 + 𝛽13𝑋1𝑋3 + 𝛽23𝑋2𝑋3 (8) 

η – Response variable 

X – Input factors 

β – Regression coefficient 

The response data was the average force and the objective function was set to minimise the magnet 

mass, a constraint of average force was applied. The magnet height, width and length are the input 

factors. Each input factor is assigned three levels (the maximum, median and minimum of the input 

factor range) and a model is created for each level. The results of the model are used to determine the 

next input factor levels and generates the models, this process continues until the number of iterations 

meet the set maximum.  

The constraints of the previous design studies were applied to the optimiser. The magnet height range 

was set as 28-33 mm, the length was set 100-140 mm and the width was 40-47 mm Figure 49 shows 

the results of the 200+ models. 85% of the models of Figure 49 failed to exceed the force threshold, the 

15% that succeeded are shown in greater detail in Figure 50. Figure 50 highlights two models of interest, 

these correspond to a minimum mass compliant machine, PM-72-17, and an alternative lower mass 

machine achieving a smaller decrease in force, PM-72-18. These results show that the magnet mass per 

segment can be reduced by 11% with a decrease in force per segment of only 4%. Alternatively the 

magnet mass per segment can be reduced by 5.5% with only a 0.6% force reduction. The magnet 

dimensions of the cases are in Table 8. 

Table 8: Case dimensions 

Model 
Dimensions, mm 

Mass per magnet, kg Average force, N 
Height Width Length 

PM-72-0 32 46 270 2.98 302.83 

PM-72-17 28.02 45.45 277.5 2.65 291.17 

PM-72-18 28.6 46.99 279.28 2.82 301 
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Figure 49: Optimisation results of 225 cases 

 

 

 - PM-72-0;  -PM-72-17;  - PM-72-18;  - Other cases 

Figure 50: Optimisation cases exceeding the force threshold 
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3.4. Power and efficiency 

The efficiency and power of the generator at various speeds was required to determine the annual energy 

yield. A partial linear FEA model of a single stator segment and 2 rotor segments was used with 

boundary conditions to reduce computation time. The stator segment consists of the core back and 3 

coils, 1 coil per phase, and each rotor segment has 2 poles and a back iron. The model was controlled 

by simple current control; i.e. a sinusoidal current to match the turbine torque. The mechanical power 

is the power of the turbine as presented in Figure 11 and derived from Equation (1). The efficiency is 

calculated from the electrical power and the mechanical power. Losses such as windage and vibration 

loss are neglected.  

Table 9 shows the efficiencies across the turbine speed range of the original magnet dimensions and the 

best designs of the fine design study and the numerical optimiser. The method of calculating the turbine 

speed range was presented in more detail in Chapter 2. Based on a fixed tip speed ratio, the table presents 

the turbine speeds, power and efficiencies when the tidal speed is mapped to a rated turbine speed of 

25 rpm and 15 rpm respectively (see section 2.1.2). The permanent magnet machine has a high 

efficiency across the turbine speed range. Table 9 shows that when the TSR25 is chosen the mechanical 

power of the turbine at 25 rpm is lower than the mechanical power than TSR15. 

Table 9: Efficiency vs turbine speed 

Turbine speed, rpm mechanical power, kW 
Efficiency 

PM-72-0 PM-72-16 PM-72-17 

TSR25 TSR15 TSR25 TSR15 TSR25 TSR15 TSR25 TSR15 TSR25 TSR15 

8.18 5.35 31.27 29.01 95% 95% 95% 95% 95% 95% 

10.39 6.71 60.44 56.84 96% 96% 96% 96% 96% 96% 

12.66 8.07 103.28 98.51 96% 96% 96% 96% 96% 96% 

15.00 9.44 162.09 156.89 96% 97% 96% 97% 96% 97% 

17.40 10.82 238.98 234.88 97% 98% 96% 98% 96% 98% 

19.87 12.21 335.89 335.38 97% 97% 96% 97% 97% 98% 

22.40 13.60 454.57 461.35 97% 98% 96% 97% 96% 98% 

25.00 15.00 596.60 615.75 97% 97% 96% 97% 96% 97% 

27.66 16.41 763.36 801.58 97% 97% 96% 97% 96% 97% 

30.39 17.82 956.05 1021.86 96% 97% 96% 97% 96% 97% 

33.18 19.24 1175.71 1279.63 96% 97% 96% 97% 96% 97% 

36.04 20.67 1423.17 1577.94 96% 97% 96% 97% 96% 97% 

38.96 22.11 1699.13 1919.89 96% 97% 96% 97% 96% 97% 

41.95 23.55 2004.09 1984.64 96% 97% 96% 97% 96% 97% 

45.00 25.00 2004.09 1984.64 97% 97% 97% 97% 97% 97% 
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3.5. Selection of final machine 

Both the fine design study and numerical optimiser provided a good reduction in magnetic material. 

The fine design study best result, PM-72-16, achieved a magnet mass reduction of 13.1% and a force 

reduction of 4.9%.  

The FEA optimisation indicated two promising designs. One achieved a 5% magnet mass reduction 

with negligible effect on the force. The other had 11% magnet mass reduction for a 3.9% force 

reduction, and this was chosen for use in the comparison as the aim is to improve the cost effectiveness 

of tidal turbines by reducing the generator costs.  

The design PM-72-16 from the fine design study will be used for the comparison to the induction 

machine design in Chapter 6. 

3.6. Summary 

The PMSG model has been simplified with a significant reduction in computation time by use of a 

linear model. This has allowed a design study to be conducted where the magnet dimensions were 

modified to identify an optimum magnet mass for the generator. The model current was held constant 

and the resultant force variation was purely due to the variation of the magnet dimensions. If a constant 

force was desired then the electric loading would have to increase to account for the reduction of the 

magnetic loading. The increase in the electric loading increases the coil ohmic losses and results in 

higher coil temperatures. The higher temperatures reduce the expected lifespan of the coils increasing 

the probability of a segment failure.  

The design study identified that the magnet height could be reduced up to 11% with little effect on the 

average force. From the design studies a mass reduction of 13% for a force reduction of 5% was 

achieved by reducing the magnet height. 
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Chapter 4. Induction machine 

The induction machine was chosen as an alternative to the permanent magnet synchronous generator 

for further study due to its simple and robust construction, from the literature there is precedent of its 

use in tidal turbines. The aim of this chapter is to design an alternative to the permanent magnet machine 

capable of giving the same performance in the same space envelope. This chapter introduces the design 

methodology, the segmentation, the design process, the limitations to the design of the OpenHydro 

turbine, the optimised designs and finally the optimised alternative design is presented. The fully 

assembled machine consists of a large number of poles due to the low turbine speed. Also the axial 

length is short compared to the large diameter of the machine, in typical machines the axial length is 

larger than the diameter. 

4.1. Design specification 

For the induction machine design to be comparable to the permanent magnet machine the induction 

machine has to fit within the same cavity. Figure 51 shows a section of the rim generator identifying 

the available stator and rotor volumes. The most challenging constraint is the air gap length (lg). A large 

air gap length means a large stator leakage inductance, which in turn causes poor power factor resulting 

in higher running costs or a more expensive convertor. The stator thickness (Hs) is restricted so the slots 

have to be designed with consideration of the core back depth. The rotor thickness (Hr) is also restricted 

and similarly the depth of the bars in the rotor has to be carefully considered. Table 10 lists the space 

envelope for the designs. The original PMSG has a power rating of 2.2 MW and treating each segment 

as a separate machine the segment rating is 30 kW. For the induction machine to compete the power 

rating has to be of the same magnitude. The rated speed of the turbine was set as 25 rpm. 

 

Table 10: Design parameters 

Maximum axial length (Lamax), m 0.5 

Maximum rotor inner diameter (Dirmax), m 14.116 

Rotor outer diameter (Dor), m 14.248 

Stator inner diameter (Dis), m 14.272 

Maximum stator outer diameter (Dosmax), m 14.396 

  

 
Figure 51: Section of the rim generator 
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4.2. Number of segments 

Similar to the permanent magnet design, the proposed induction machine was assumed to be segmented 

to aid the generator assembly. This introduces the segment number (Sn) as an additional variable to the 

design process. If the number of segments is great then each segment is relatively small and light, 

however this limits the design process. Whereas a small number of segments constitutes a large heavy 

segment, this increases the difficulty of assembly as a large segment increases the amount of design 

choices, e.g. the number of slots. This can either be utilised to increase the number of poles per segment 

or increase the number of slots per pole per phase. 

To determine the optimal number of segments three designs were created with 40, 60 and 100 segments 

corresponding to a segment span of 9o, 6o and 3.6o respectively. Figure 52 shows the different segment 

span of the different number of segments. The 60 segments was chosen as it corresponds to a segment 

span similar to the permanent magnet design. The 100 segments represents a high number of segments 

and 40 segments was chosen for the small segment number representation. The segment span and 

volume of the rotor and stator cavities has been calculated from Equation (9), using the parameters from 

Table 10. Equation (9) was derived from the equation for the area of a segment. Assuming that the 

available volume was filled only with steel, the mass per segment for the segment numbers are shown 

in Table 11. From the table the mass of the 100 segment design is less than half the mass of the 40 

segment design. 

   

40 Segments (9o span) 60 Segments (6o span) 100 Segments (3.6o span) 
Figure 52: Segment span 

 

 𝑉𝑜𝑙𝑢𝑚𝑒 =  
𝜋

4. 𝑆𝑛
. (𝐷𝑜𝑢𝑡𝑒𝑟

2 − 𝐷𝑖𝑛𝑛𝑒𝑟
2) (9) 

 

Table 11: Segmentation mass 

Number of 

segments 
Segment span, m 

Rotor segment 

volume, m3 
Stator segment 

volume, m3 
Mass per segment, 

kg 

40 1.12 0.03676 0.03490 548.17 

60 0.75 0.0245 0.02327 365.45 

100 0.45 0.0147 0.01396 219.27 

Axial length = 0.5 m; Steel density = 7650 kg/m3 
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4.3. Modelling the segment 

4.3.1. Wrapping the segment 

The segment could be designed as a linear induction machine (LIM), as the large diameter of the 

machine results in an arc that is effectively linear, as shown in Figure 51. The design of linear induction 

machines includes the longitudinal and transverse end effects and the concept of goodness factor. The 

goodness factor of a machine is a metric developed by Eric Laithwaite [52] for assessing the machine 

based on the suitability for the application. Goodness factor is calculated from the machine speed, 

electrical circuit resistance and the magnetic circuit reluctance, a value greater than one indicates an 

efficient design. The longitudinal effects act at the end of the stator as the rotor moves out from under 

the stator the flux links to the end of the stator block. The transverse edge effect refers to the complex 

patterns of flux density caused by the eddy currents when the rotor width is narrow when compared to 

the pole pitch [53]. Wrapping the segment to form a rotary model has two key benefits, first the 

conventional output coefficient method can be used. Secondly MotorSolve can be used for rapid design 

validation, as MotorSolve can only generate rotary models. MotorSolve [54] is a software package 

created by Infolytica. MotorSolve is capable of building FEA models based on templates and can be 

used for rapid prototyping.   

 

Segment circumferential length (S1) 

Rotary circumferential length (S2) 

Segment radius (R1) 

Rotary radius (R2) 

Segment angle (α) 

Figure 53: Equating the segment circumferential length to the rotary model 

To create the rotary model from the segment, the segment arc length of the stator inner diameter was 

equated to the rotary model circumferential length. Figure 53 shows the parameters for determining the 

rotary model diameter. Equation (10) was derived by equating the circumferential lengths S1 = S2 and 

allows the radius R2 to be determined. Using the stator inner diameter as presented earlier, R1 = 7.136 m 

and α is dependent on the number of segments, 6o for the 60 segment design. Using these values R2 = 

0.11893 m so that the inner stator diameter of the rotary segment (Dis’) = 0.23787 m and with lg fixed 

at 0.012 m due to mechanical constraints the rotary rotor outer diameter (Dor’) = 0.21387 m. 

 𝑅2 =  
𝛼

360
. 𝑅1 (10) 

  

S1 

R1 

R2 

S2 
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4.3.2. Initial design parameters 

It is recommended that the value of the slot width (bos) is at least three times the air gap length [37, pp. 

17], to reduce the stator leakage inductance. With lg fixed at 0.012 m by mechanical constraints the slot 

width needs to be greater than 0.036 m, for the same segment length this means reducing the number 

of stator slots (Ns). From Equation (11) [37] either the number of pole pairs (Pp), the number of slots 

per pole per phase (q) or the number of phases (m) can be varied to reduce Ns. The simplest solution is 

to reduce q to 1, however this produces a square MMF in the air gap of the machine increasing the 

power of the odd harmonics. Alternatively the number of phases can be reduced from 3 to 2, however 

control systems and drives for 3 phase systems are readily available and off the shelf. Therefore the 

number of pole pairs is the best option for reducing Ns, as setting Pp = 1 halves Ns allowing slot widths 

greater than 0.036 m.  

 𝑁𝑠 = 2. 𝑃𝑝. 𝑞. 𝑚 (11) 

To determine the synchronous speed of the rotary model (ω2) the linear speed of the segment was 

calculated based on the turbine speed (ω1) resulting in Equation (12). The corresponding frequency was 

calculated using Equation (13) [37]. The initial parameters of the different designs are shown in Table 

12. 

 

Table 12: Comparison of the complete machine to the rotary segment 

Number of segments 40 60 100 

Speed, rpm 996 1500 2496 

Rated power , kW 55 36 22 

Frequency, Hz 33.3 25 41.6 

Number of poles 2 1 1 

Stator inner diameter, m 0.35668 0.23787 0.14267 

Rotor outer diameter, m 0.33268 0.21387 0.11867 

Segment angle, degrees 9 6 3.6 

 

4.4. Development of the analytical design model 

The design process is laid out in Figure 54, the analytical design model (ADM) is a tool that uses 

analytical equations to aid the induction machine design based on the initial parameters. The initial 

designs were validated using the software MotorSolve, the optimised designs from the ADM were 

simulated using the FEA software JMag. 

 
𝝎𝟐 = 𝝎𝟏.

𝑹𝟏

𝑹𝟐

 (12) 

 

𝑭 =  
𝝎𝟐. 𝑷𝒑

𝟔𝟎
 (13) 
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Figure 54: Design workflow 

4.4.1. Output coefficient method 

The method used to design the induction machine was based on that presented in [37], also found in 

[55, pp. 388] and [56, pp.138]. Like most machine design methodologies, it is an iterative process. The 

initial variables for the machine design are listed below. 

Line voltage (Vline) Synchronous speed (ns) 

Rated power (Pn) Supply frequency (F) 

Number of phases (m) Number of pole pairs (p1) 

Power factor (cos ɸ) Phase connection, Delta or Wye 

Efficiency () Machine saturation factor (Ks) 

Number of slots/pole/phase (q)  

Some of these have already been determined in the previous section, all three designs are 3-phase with 

a line voltage of 415 V. Ideally the segment design would have efficiency greater than 90%, however 

with an air gap length of 12 mm a target efficiency of 80% was more appropriate. It was decided that 

the power factor would be sacrificed to achieve a higher efficiency, with the knowledge that a converter 

would be used to control the machine and provide power factor correction. During the design process 

efforts were made to prevent the power factor from becoming less than 0.5, as the rating and therefore 

the cost of the convertor is inversely proportional to the power factor. 

4.4.2. Saturation factor estimation 

The saturation factor can be broken into two key components: the tooth saturation factor (Kts) and the 

core back saturation factor (Kcs). These are numerical values that represent the degree of saturation in 

the teeth and core back respectively. The most important of these values is Kts as it is used in the initial 

stages of the design and affects the overall design. No guidance for estimating Kts is provided in [37], 

so a method was developed to provide an estimate from the maximum flux densities of the rotor and 

stator teeth. These parameters are selected and used at a later stage in the design method. The tooth flux 

density is used as a basis for estimating Kts. Kts can be broken into two terms: the stator tooth saturation 

factor (Ktss) and the rotor tooth saturation factor (Ktsr). 

Initial performance 

characteristics 

JMag 

MotorSolve 

ADM-Generate machine 

geometry 

Initial design 

Solve using FEA 

ADM-Optimisation 
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The method proposed here is based on the difference between the magnetic energy (EM) and co-energy 

(EC) as a measure of saturation of the machine. When operating within the linear region of the material 

the magnetic energy and co-energy are effectively equal. However as the material saturates and 

operational point moves into the non-linear region the energies are no longer equal. The degree of 

saturation can be represented as a factor by dividing the energy difference (dE) by a reference energy 

value. The reference energy value is determined by setting a reference point on the B-H curve of the 

steel material, beyond which the material can be considered fully saturated. Figure 55 shows the B-H 

curve of the silicon steel M600-65A, the B-H curve can be viewed as two linear regions with a 

connecting non-linear region referred to as the ‘knee’. To determine the saturation reference flux density 

(BREF) the last ten B-H datapoints of the material were plotted and a linear trendline was applied. From 

the equation of the trendline the value of the Y intercept was set as BREF, the number of data points used 

by the trendline was varied to check for convergence.  

The reference magnetic energy (EM-REF) and co-energy (Ec-REF) of BREF can then be found from the B-H 

curve of the material, Figure 55. The energy reference (EREF) was set to the largest energy value, this 

was used as the base for the energy per unit scale. For example a design uses the material M600-65A, 

the desired peak stator tooth flux density (Bts) is set as 1.5 T and the desired peak rotor tooth flux density 

(Btr) is 1.55 T. The corresponding energy values are shown in Table 13. The subscripts refer to the stator 

and rotor values. The Equations (14) and (15) calculate the independent saturation factor of the stator 

and rotor, and (16) determines the value of Kts. This provides an initial estimation of Kts for use with the 

analytical method, the value of Kts may change during the design iterations.  

Table 13: Flux density and energy values for saturation factor calculation 

BREF = 1.8 T 
EC-REF = 1533 J; EM-REF = 13353 J; 

EREF  = EM-REF =13353 J 

Bts = 1.5 T 
ECS = 360.79 J; EMS = 1649.21J; 

dES = 1288.42 J 

Btr = 1.55 T 
ECR = 438.29 J; EMR = 2289.71 J; 

dER = 1851.42 J 

 

 𝐾𝑡𝑠𝑠 =  
dES

EREF
=  

1288.42

13353
= 0.096 (14) 

 𝐾𝑡𝑠𝑟 =  
dER

EREF
=  

1851.42

13353
= 0.139 (15) 

 1 + 𝐾𝑡𝑠 =  1 + 𝐾𝑡𝑠𝑟 + 𝐾𝑡𝑠𝑠 = 1 + 0.139 + 0.096 = 1.24 (16) 
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4.4.3. Initial sizing of the machine 

The inner stator diameter can be calculated using the shear stress calculated from the permanent magnet 

design, σ = 6.5 kN/m2, and the initial parameters of the three designs. Table 14 compares the stator 

inner diameter of the three designs calculated using Equation (17) [37] with the diameters presented in 

Table 12. The stack aspect ratio (λ) is the ratio of the axial length and the pole pitch. Equation (17) was 

rearranged so that the shear stress was the subject of the calculation. The shear stress of the machines 

with the stator inner diameter calculated from Equation (10) could be calculated and compared to the 

permanent magnet design. 

Table 14 demonstrates that the difference between the stator inner diameters from both equations does 

not exceed 10%. The difference in the stator inner diameter of the 60 and 100 segments is 3% and 1% 

respectively. However, the difference in shear stress is significant with the 40 segment having a shear 

stress 34% lower than the permanent magnet design. The shear stress of the 60 segment is 10 % higher 

and the 40 segment is 3% higher than the permanent magnet design. A high shear stress demonstrates 

a high torque produced for a small rotor volume. 

 𝐷𝑖𝑠 =  √
4. 𝑃𝑃

𝜋2. 𝜆. 𝜎
(0.1641. 𝑃𝑛.

𝑃𝑃

𝐹
)

3

 (17) 

 

Table 14: Comparison of inner stator diameter 

Number of segments 40 60 100 

Equation (17) (10) (17) (10) (17) (10) 

Stator inner diameter, m 0.3236 0.3567 0.2452 0.2379 0.1443 0.1427 

Shear stress, N/m2 6500 4855 6500 7116 6500 6724 

  

 

Figure 55: B-H curve of M600-65A with reference point and rotor tooth operational point 
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4.4.4. Stator design 

The individual segments have previously been compared to a linear induction machine (LIM) and the 

choices of the windings for a LIM are appropriate for this design. Using the LIM winding configurations 

the coils are contained within the segment and prevents the coils spanning across segments. With the 

coils contained the segments can be constructed in modules that are mounted into the frame of the 

turbine. The most common configurations as outlined by Boldea et al in [37, pp. 593-595] are single 

layer, double layer, triple layer and fractional windings. None of these configurations are flawless and 

have benefits that suit particular applications of linear machines.   

The double layer winding, a common choice for a conventional SCIG, in a linear machine requires two 

additional slots for a fully pitched winding. In a conventional rotary machine a double layer winding 

allows efficient use of the slots and results in shorter end windings. Short pitching a double layer 

winding is simple and reduces the harmonics in the windings. However the first and last slots are only 

half filled and the slots are not fully utilised, and short pitching the coils requires additional slots. This 

winding configuration has short end windings and a simple construction, this is recommended for large 

LIMs with an odd number of poles [37, pp. 594]. The slot layout of the double layer winding is shown 

in Figure 56. 

The triple layer winding also has short end windings, this winding can be short pitched to remove 

harmonics and provides an even number of poles. However it requires deep slots to accommodate the 

additional layers, this is difficult for machines with a limited stator volume. The slot layout of the triple 

layer winding is shown in Figure 57. 

Fractional slot windings have very short end windings and these are recommended for machines with a 

limited volume [37, pp. 594]. The coils are simple to construct with being concentrated as opposed to 

distributed. If the machine has a small number of poles and current symmetry is important to reduce 

vibration and noise. It is suggested that the use of 2 phases with this winding would be better than 3 

phases [37, pp. 595]. The slot layout of the fractional winding is shown in Figure 58.  

 
Figure 56: Double layer winding slot layout 

 
Figure 57: Triple layer slot layout 

 
Figure 58: Fractional winding slot layout 
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The single layer winding has large end windings but this type of winding makes good use of the slots 

as each slot is filled. This configuration provides an even number of poles, however it cannot be short 

pitched to reduce harmonics. The coils have a simple construction which helps simplify the design of 

the machine. 

Of these windings the two that are suitable for the OpenHydro design are the single layer winding and 

the fractional slot winding. For simplicity the initial design will use a single layer winding, the fractional 

slot winding is similar to the air cored winding in the PMSG. 

A 3 phase machine with single layer winding requires different tiers, also referred to as planes, for the 

overhang of the coils. This overhang can be arranged in 2 or 3 tiers depending on the arrangement of 

the coils, typically a concentric arrangement is used with single layer windings. Concentric windings 

can be broken into 3 types: concentric continuous chain, concentric broken chain and split concentric 

[55, pp. 202]. The concentric continuous chain only requires 2 overhang planes commonly used in 

machines with only 2 or 3 slots per pole per phase [55, pp. 203].  

The concentric broken chain requires an additional overhang plane, however the advantage of this type 

of concentric winding is that it avoids coils across joints in machines with split stators [55, pp. 203]. 

The split concentric is mainly used in large machines where there are more than four slots per pole per 

phase. For the segment design the concentric broken chain will be used for the coils so 3 tiers are 

required for the end windings of the coils. The disadvantage of this type is that the end winding losses 

are unsymmetrical. An example of a concentric broken chain winding is shown, Figure 59. 

 

Figure 59: Concentric broken chain end windings 

4.4.5. Rotor design 

There are several options for the rotor bar profile such as the single bar, deep bar and double bar. The 

OpenHydro machine will be driven by an inverter as variable speed is required, a suitable rotor slot 

profile for an inverter driven induction machine is shown in Figure 60 as presented by Zhao et al [57]. 

The authors recommend that the ratio of hb2/d2 < 1.5 and the ratio of d1/d2 > 0.9 for lower rotor leakage 
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inductance and improved power factor [57]. More importantly, this causes a more consistent power 

factor across the frequency range. 

By setting the ratio d1/d2 = 1 the bar then resembles a rectangular bar which simplifies the construction 

of the design without affecting the design’s performance. The initial design used trapezoidal bars with 

round backs, Figure 61 demonstrates the evolution of the bar design. Figure 62 shows the final design 

from MotorSolve.  

 

 Slot depth (Hb) Bar lower width (d2)  

 Rotor bar depth (hb2) Bar width (Wb)  

 Central trapezoidal height (hb1) Rotor bridge width (Wor)  

 Bar upper width (d1) Rotor bridge height (hor)  

Figure 60: Rotor slot shape for invertor driven induction machine 

The rectangular bars were designed using the equations for trapezoidal slots, the variables were altered 

until the ratio of the upper and lower bar widths was approximately unity. For the bar design to be more 

representative of the bars used in the models Equations (18)- (20) were derived. The bar angle (β) is a 

variable of the bar design as is the rotor tooth width (Wtr). 

 
𝑊𝑏 =

𝜋. (𝐷𝑜𝑟 − 2. ℎ𝑜𝑟 + 𝑊𝑜𝑟. tan(𝛽)) − 𝑁𝑟 . 𝑊𝑡𝑟

𝑁𝑟 + 𝜋. tan(𝛽)
 (18) 

 
ℎ2 =

1

2
. (𝑊𝑏 − 𝑊𝑜𝑟) . tan(𝛽) (19) 

 𝐻𝑏 = ℎ1 + ℎ2 + ℎ𝑜𝑟 (20) 
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Figure 61: Progression from trapezoidal bars with rounded back to rectangular bars 

 

 

Figure 62: Optimised design 
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4.4.6. Validity of the slot width guideline in a large air gap machine 

A design guideline for induction machines is to ensure the slot opening is at least three times the air gap 

length. With this design the air gap length is fixed at 12 mm and that the slot opening should be greater 

than 36 mm. The validity of the slot width design guideline for a large air gap design was investigated. 

The analytical equations, presented below, were used to investigate the relationship of the slot width 

and the design performance. Models with various stator slot widths were created, with the slot and 

copper area held constant. The rotor design was also consistent for each study. It was identified that 

reducing the slot width (bos) decreased the torque (T) and increased the efficiency (𝜂). The power factor 

(𝑐𝑜𝑠𝜃) was constant and the rated current (I1n) reduced. Equations (21)-(31) are presented here as found 

in [37], and are used to investigate the impact of a slot width less than the designated guideline width.  

The torque equation from the ADM, Equation (21), was evaluated and it was observed that the stator 

phase leakage reactance (X1) varied significantly by varying the stator slot width. As the slot width is 

reduced it was expected the slot leakage would increase. Equation (22) shows that the slot leakage is 

dependent on the permeance, reducing the slot opening increases the permeance. Equation (23) shows 

the relationship between the slot opening and the permeance. From Equations (21)-(23), it can be 

observed that as the stator slot opening is decreased the torque also decreases. Similarly the reduction 

of the slot opening causes the stator slot permeance (λss) to increase, as a smaller opening improves the 

leakage flux path. As the stator leakage reactance is dependent on the permeances the stator leakage 

reactance increases proportionally. The torque is reduced due to this increased leakage reactance.  

In summary, the observed relationship from Equations (21)-(23) is bos↓= λss↑= X1↑= T↓. 

 

𝑇 =
𝑉𝑝ℎ𝑎𝑠𝑒

2. (
𝑅2

′

𝑠 )

(𝑅1 + 𝐶1. (
𝑅2

′

𝑠 ))

2

+ (𝑋1 + 𝐶1. 𝑋2
′ )2

.
𝑚. 𝑃𝑝

2. 𝜋. 𝐹
 

(21) 

Torque (T), Nm 

Phase voltage (Vphase), V 

Slip (s) 

Stator phase resistance (R1), Ω 

Rotor cage resistance referred to stator (R2’), Ω 

Torque coefficient (C1) 

Stator phase leakage reactance (X1), Ω 

Rotor cage leakage reactance (X2’), Ω 

Number of phases (m) 

Number of pole pairs (Pp) 

Electrical frequency (F), Hz 

 
𝑋1 =

16. 𝜋2. 10−7. 𝐹. 𝑊1
2. (𝜆𝑠𝑠 + 𝜆𝑧𝑠 + 𝜆𝑡𝑡𝑠 + 𝜆𝑜𝑠)

𝑃𝑝. 𝑞
 (22) 

Stator slot leakage permeance (λss), WbA-1 

Stator zigzag leakage permeance (λzs), WbA-1  

Stator end winding leakage permeance (λos), WbA-1 

Stator tooth leakage permeance (λtts), WbA-1 

Stator slots per pole per phase (q) 
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𝜆𝑠𝑠 =  

ℎ𝑐𝑠 + 3. ℎ𝑜𝑠

3. 𝑏𝑜𝑠
 (23) 

Copper height (hcs), m Wedge height (hos), m 

The magnetisation reactance was observed to rise almost equally with the stator phase leakage 

reactance. The magnetisation current (Iµ) was observed to decrease and Equation (24) shows that this 

increases the first term. The value of the stator phase leakage reactance has negligible effect on the 

magnetisation reactance. Equations (24)-(30) show that a reduction in the stator opening results in the 

magnetisation reactance increasing. The observed relationship shows that reducing the stator slot 

opening reduces the Carter coefficient (Kc). The Carter coefficient is a factor that increases the air gap 

length to account for the slotting of the stator and rotor. Reducing the effective air gap length reduces 

fundamental MMF (F1m) hence a lower magnetisation current is required to drive the magnet circuit. 

As a consequence of this the magnetisation reactance (Xm) is increased. 

The observed relationship is bos↓= Kc↓= F1m↓= Iµ↓= Xm↑. 

 

𝑋𝑚 =  (√(
𝑉𝑝ℎ𝑎𝑠𝑒

𝐼𝜇
)

2

− 𝑅1
2) − 𝑋1 (24) 

Magnetisation reactance (Xm)–, Ω 

Magnetisation current (Iµ), Arms 
 

 
𝐼𝜇 =

𝜋. 𝑃𝑝. 𝐹1𝑚. 𝑎𝑖

2. 𝑚. √2. 𝑊1. 𝐾𝑤1

 (25) 

Fundamental MMF (F1m), At 

Number of turns per phase (W1) 

Fundamental winding factor (Kw1) 

Number of parallel current paths (ai) 

 
𝐹1𝑚 = 2. (

𝐵𝑔

𝜇0
. 𝑙𝑔. 𝑘𝑐 + 𝐹𝑚𝑡𝑠 + 𝐹𝑚𝑡𝑟) + 𝐹𝑚𝑐𝑠 + 𝐹𝑚𝑐𝑟 (26) 

Peak air gap flux density (Bg), T 

Permittivity of a vacuum (µ0), WbA-1  

Air gap length (lg), m 

Carter coefficient (kc) 

Stator tooth MMF (Fmts) 

Rotor tooth MMF (Fmtr) 

Stator core back MMF (Fmcs) 

Rotor core back MMF (Fmcr) 

 𝐾𝑐 = 𝐾𝑟. 𝐾𝑠 (27) 

 𝐾𝑠 =
𝜏𝑠

𝜏𝑠 −
𝑏𝑜𝑠

2

5. 𝑙𝑔 + 𝑏𝑜𝑠

 
(28) 

Rotor Carter coefficient (Kr) 

Stator Carter coefficient (Ks) 

Stator slot opening width (bos), m 

Stator slot pitch (τs), m 
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As the stator leakage reactance increases proportionally to the magnetisation reactance the power factor 

is effectively constant. The power factor relationship in Equation (29) is based on the ratio of the leakage 

reactance and the magnetisation reactance. 

From Equation (30), for a constant power factor the rated current has to decrease at the same rate as the 

magnetisation current. Reducing the rated current reduces the loss power which in turn increases the 

efficiency, Equation (31). 

Using the ADM equations, Equations (21)-(31), the effect of the slot aspect ratio was investigated whilst 

all other dimensions were held constant. The slot depth increased as the slot width decreased, however 

the core back depth was also held constant and therefore the stator outer diameter was restricted to 

prevent it exceeding the maximum outer diameter. Figure 63 shows that reducing the slot opening below 

36 mm can marginally improve efficiency and power factor, however it shows that the design guideline 

can be relaxed with a large air gap machine. Figure 63 shows the efficiency from the JMag FEA model 

compared to the efficiency from the ADM, the ADM predicts a greater variation of efficiency with the 

slot opening. The graph includes the efficiency calculated in a single instance and after a convergence 

loop referred to as ADM(6) it was found that the values of current and efficiency effectively converged 

after 6 loops.  

  

 

𝑐𝑜𝑠𝜃 ≈
1 +

𝑋1 + 𝑋2
′

𝑋𝑚

1 −
𝑋1 + 𝑋2

′

𝑋𝑚

 (29) 

 
𝑐𝑜𝑠𝜃 ∝

𝐼𝜇

𝐼1𝑛
 (30) 

 
𝜂 =

𝑃𝑚𝑒𝑐ℎ

𝑃𝑚𝑒𝑐ℎ + 3. 𝐼1𝑛
2. 𝑅1 + 3. 𝑅2

′ . (𝐼1𝑛. 𝑘𝑖)2
 (31) 
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Figure 63: Efficiency variation with slot opening, using FEA and ADM 

 

 
Figure 64: Power factor variation with slot opening, using FEA and ADM 
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4.4.7. Execution of the proposed analytical design method 

The complete design process is shown in Figure 65, the initial sizing of the machine is decided based 

on the design parameters. The stator design determines the stator characteristics such as the number of 

stator slots, the type of windings and the slot shape. The rotor design follows based on the choices made 

for the stator. The equivalent circuit parameters such as the leakage inductances and resistances are 

calculated based on the machine geometry. The performance of the induction machine is calculated as 

a motor and the results are compared to the desired values of torque, efficiency, current and power 

factor. If the design is acceptable then a FEA model is simulated to validate the analytical results.  

 

Figure 65: Design flowchart 
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Initial sizing of the machine 

The initial size of machine determines the stator inner diameter, the axial length (La), the pole pitch (T) 

and the slot pitch (Ts). The stator inner diameter is set by the number of segments and calculated as in 

4.3, the axial length is calculated based on the number of pole pairs, the stator inner diameter and the 

stacking factor (SF). Equation (32) is the method of calculating the axial length from [37], typical 

stacking factors for a single pole pair design are between 0.6-1[37],  

 
𝐿𝑎 =

𝑆𝐹. 𝜋. 𝐷𝑖𝑠

2. 𝑃𝑝
 (32) 

The pole pitch is determined by the number of poles and calculated from Equation (33) and the slot 

pitch, Equation (34), is set by the number of phases and the number of slots per pole per phase. Both 

equations are conventional and found in the induction machine design handbook [37]. 

 
𝑇 =  

𝜋. 𝐷𝑖𝑠

2. 𝑃𝑝
 (33) 

 
𝑇𝑠 =

𝑇

𝑚. 𝑞
 (34) 

Stator design 

To begin the stator design the number of stator slots (Ns) has to be determined, the number of stator 

slots are defined by the chosen number of pole pairs, phases and slots per pole per phase, Equation (11) 

[37]. 

The short pitch factor (kp) and distribution factor (kd) are calculated based on the slot mechanical angle 

and the winding factor (kw1) was then found by the multiplication of the two factors. An estimate of the 

saturation factor is set using the method in 4.4.2, this establishes the flux density shape factor (αi) and 

the form factor (kf). An estimate of the air gap flux density (Bg) is required to calculate the pole flux 

(𝜑), Equation (35) [37].  

 𝜑 = 𝛼𝑖. 𝑇. 𝐿𝑎. 𝐵𝑔 (35) 

All the designs are star connected and the coil layout was chosen in 4.4.4, the number of turns per phase 

(W1) was determined using Equation (36) [37]. The machine is designed as a motor thus the EMF is 

lower than the voltage. The EMF is established by multiplying the phase voltage with the EMF constant 

(ke). The EMF constant is established by the number of pole pairs using Equation (37) [37]. 

 
𝑊1 =

𝑘𝑒 . 𝑉𝑝ℎ

4. 𝑘𝑓 . 𝑘𝑤1. 𝑓. 𝜑
 (36) 

 𝑘𝑒 = 0.98 − (0.005. 𝑃𝑝) (37) 
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The number of conductors per slot (ns) was calculated from the number of parallel paths (ai), the number 

of turns per phase, the number of pole pairs and the number of slots per pole per phase. An integer 

number of conductors per slot needs to be chosen, the number of turns per phase and the air gap flux 

density are recalculated.  

The rated current (I1n) is required to calculate the wire cross sectional area (Acu), and a value of current 

density has to be selected. The rated current was calculated from the rated power, the rated voltage and 

chosen values of efficiency and power factor. Parallel conductors in the same current path such as using 

Litz wire reduces the amount of current per conductor. However the number of conductors per slot is 

increased and the wire cross sectional area is decreased by the number of parallel conductors (ap). 

Various dimensions of commercially available round, square and rectangular conductors are provided 

in lookup tables. The choice of conductor is important as a high fill factor can be achieved with square 

and rectangular wires. The arrangement of the conductors within the slot also needs consideration, as 

an example Figure 66 shows 10 rectangular conductors arranged in a slot. The vertical arrangement of 

five rows and two columns has the best thermal pathways, as each conductor has at least one side in 

contact with the slot. However the end windings are more difficult as the conductors have to be bent 

along the width of the conductor. The horizontal arrangement has two rows and five columns, the three 

centre conductors in the top row have no contact with the slot and have the worst thermal pathway. The 

slot width and height are determined by the choice of the conductor arrangement and the tooth width 

was calculated by subtracting the slot width from the slot pitch.  

 

Figure 66: Vertical and horizontal conductors in a slot 
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Rotor design 

The rotor outer diameter is defined by the stator inner diameter and the air gap length, the number of 

rotor bars (Nr) is selected to reduce noise and vibration [37]. The bar current is calculated using Equation 

(38) [37], and the ratio of the stator and rotor MMF (ki) is decided using Equation (39) [37]. 

 
𝐼𝑏 =

𝑘𝑖. 2. 𝑚. 𝑊1. 𝑘𝑤1. 𝐼1𝑛

𝑁𝑟
 (38) 

 𝑘𝑖 = (0.8. 𝑃𝐹) + 0.2 (39) 

With the bar current known and the rotor bar current density selected, the rotor slot area can be 

determined. Similarly the end ring current (Ier) can be established from Equation (40) [37], and the end 

ring cross sectional area is defined by the choice of the end ring current density. 

 
𝐼𝑒𝑟 =

𝐼𝑏

2. sin (
𝜋. 𝑃𝑝

𝑁𝑟
)

 
(40) 

The rotor bar tooth width (Wtr) is calculated from the lamination factor, the rotor slot pitch (Tr) and the 

rotor tooth flux density (Btr). The rotor bar dimensions are determined as presented in 4.4.5 with values 

of the rotor bar angle and the rotor bridge width and height selected. Figure 67 shows the end rings and 

bars of a squirrel cage, the end ring dimensions are defined by the bar dimensions. The end ring height 

(Her) is calculated from Equation (41) [37], and the end ring width (Wer) is determined from the end 

ring cross sectional area and the end ring height. The end ring height is either the same as the rotor bar 

height or 20% larger determined by the factor c which has a value in the range of 1-1.2. 

 
𝐻𝑒𝑟 = 𝑐. (𝐻𝑏1 + ℎ𝑜𝑟 +

1

2
. (𝑊𝑏 − 𝑊𝑜𝑟). tan(𝛽) +

1

2
. 𝑊𝑏) (41) 

 

Figure 67: Half section of the squirrel cage 

Her Wer 
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Equivalent circuit parameter calculation 

The equivalent circuit parameters are useful to predict the performance of the designs, to calculate the 

performance the methods presented in [37] and [55] are included. Values are required for both the stator 

and rotor resistances and inductances as well as for the magnetisation inductance and the core loss 

resistance. The resistances are calculated based on the geometry of the generator and the resistance 

equation accounts for the increased winding temperature. The stator and rotor inductances are calculated 

based on the permeance of the slot as well as the permeance of the loss paths. The methods to calculate 

the permeances of the paths from both [56] and [37] are incorporated into the ADM. With the design’s 

equivalent circuit parameters calculated the torque, current, efficiency and power factor at various 

values of slip can be ascertained. If the performance is acceptable the design is validated using 

MotorSolve.  
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4.5. The initial designs 

The three initial designs are shown in Figure 68, the software MotorSolve was used to validate the 

performance of the designs. MotorSolve is a FEA software package that can quickly size an electric 

machine based on a number of parameters. The design can be modified after the initial sizing process 

or the sizing process can be by-passed. The output of the software provides an equivalent circuit, graphs 

of torque, power factor, RMS current, RMS line voltage and efficiency versus speed.  

The torque of the 60 segment model is shown in Figure 69, the torque is calculated by the ADM based 

on the geometry of the design. Table 16 lists the equivalent circuit values from the ADM and from 

MotorSolve. The ADM predicts a lower peak torque than MotorSolve, the magnitude of the peak torque 

is dependent on the rotor reactance, a lower reactance results in a higher peak torque. However in this 

case the difference in the peak torques can be attributed to the difference between the stator reactance. 

The graph also shows the ADM calculations using the MotorSolve equivalent circuit values. The model 

was then checked using the FEA software JMag, as shown the peak torque is comparable to the peak 

torque calculated by the ADM. However the values of torque at higher slip are significantly lower, this 

can be attributed to the ratio of the rotor inductance and resistance. 

 

Table 15: MotorSolve design data 

Number of segments 40 60 100 

Line voltage, VRMS 415 415 415 

Synchronous speed, rpm 996 1500 2496 

Frequency, Hz 33.3 25 41.6 

Number of pole pairs 2 1 1 

Slots/pole/phase 2 2 1 

Number of stator slots 24 12 6 

Number of rotor slots 28 17 12 

 

 

   

Figure 68: From left to right are the 40, 60 and 100 segment designs 
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Table 16: Comparison of ADM and MotorSolve 

Parameters ADM Motorsolve 

Stator resistance, Ω 0.0972 0.0828 

Referred rotor resistance, Ω 0.1255 0.12 

Stator inductance, H 0.00256 0.00216 

Referred rotor inductance, H 0.00381 0.00386 

Stator reactance, Ω 0.4028 0.3393 

Referred rotor reactance, Ω 0.5981 0.6063 

 

 

Figure 69: Torque of the 60 segment 

The torque, efficiency and power factor of the three models are shown in Figure 70, Figure 71 and 

Figure 72. From the profile of the torque curve these designs can be identified as type B induction 

machines, with operation as a generator the values of the starting torque and current are not relevant 

with respect to the operational values. The torque of the 40 segment is significantly greater than for the 

100 segment however efficiency is comparable. The 60 segment has a higher power factor which is 

desirable as it reduces the convertor rating. 
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Figure 70: Torque-speed graph of the MotorSolve model 

 

 

Figure 71: Efficiency of the MotorSolve model 

 

 
Figure 72: Power factor of the MotorSolve model 
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Table 17: Efficiency of the three designs for small variations of slip from JMag 

Slip IM-40-0 IM-60-0 IM-100-0  

0% 32% 28% 19% 

1% 72% 80% 66% 

2% 80% 86% 78% 

3% 81% 87% 82% 

4% 81% 87% 83% 

5% 80% 85% 84% 

6% 78% 84% 83% 

7% 76% 83% 83% 

8% 74% 81% 82% 

9% 72% 79% 81% 

10% 70% 78% 80% 

 

Table 18: Total mechanical power of the three designs for small variations of slip from JMag 

Slip IM-40-0 IM-60-0 IM-100-0  

0% 9.42E+04 6.84E+04 4.42E+04 

1% 5.36E+05 7.38E+05 3.83E+05 

2% 9.56E+05 1.41E+06 7.41E+05 

3% 1.27E+06 1.99E+06 1.08E+06 

4% 1.49E+06 2.46E+06 1.38E+06 

5% 1.62E+06 2.83E+06 1.66E+06 

6% 1.68E+06 3.09E+06 1.91E+06 

7% 1.69E+06 3.27E+06 2.12E+06 

8% 1.66E+06 3.38E+06 2.31E+06 

9% 1.62E+06 3.43E+06 2.46E+06 

10% 1.56E+06 3.43E+06 2.59E+06 

 

Table 19: Power factor of the three designs for small variations of slip from JMag 

Slip IM-40-0 IM-60-0 IM-100-0  

0% 0.09 0.06 0.07 

1% 0.21 0.22 0.16 

2% 0.32 0.36 0.26 

3% 0.39 0.46 0.34 

4% 0.42 0.52 0.41 

5% 0.43 0.55 0.46 

6% 0.43 0.56 0.50 

7% 0.42 0.56 0.52 

8% 0.41 0.55 0.54 

9% 0.40 0.54 0.55 

10% 0.38 0.53 0.56 
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The graphs show the performance of the designs across a wide range of slip from MotorSolve, while 

the tables contain the results from the models running with a smaller variation of the slip from JMag. 

The graphs show that the 100 segment has the highest efficiency across the slip range however the 60 

segment is capable of higher power factor. The 60 segment design operates at a lower slip than the 100 

segment design, this indicates stable operation with little risk of operating in the unstable region of the 

torque/slip profile. The 40 segment design fails to achieve the desired power rating and has the worst 

power factor and efficiency.  

From the tables in terms of peak efficiency the 60 segment design is the best, achieving an efficiency 

of 87% with the 40 segment design being the worst with a peak efficiency of 81%. In terms of 

mechanical power the 60 segment design achieved the rated value of 2.2 MW with an efficiency of 

87%. In comparison the 100 segment design only achieves the rated mechanical power at a slip of 7% 

and a corresponding efficiency of 81%.  

These three design have been taken forward for detailed design and are referred to as IM-40-0, IM-60-0 

and IM-100-0 respectively.  
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4.6. 40 segment optimisation 

Due to the initial 40 segment design failing to meet the desired rated mechanical power, the machine 

was redesigned. The 40 segment is the largest of the designs and as such it has the most freedom with 

regards to design choices such as the pole number, the key challenge is to ensure the design fully utilises 

the available space. Using guidelines developed earlier, section 4.4.6, the number of poles was reduced 

and the number of slots per pole per phase was increased to maintain the number of stator slots. The 

alternative design is referred to as IM-40-1.  

Table 20: 40 Segment designs 

Design IM-40-0 IM-40-1 

Number of stator slots 24 24 

Number of slots per pole per phase 2 4 

Number of pole pairs 2 1 

 

Table 21:Efficiency of the initial design and the redesigns 

Slip Original (IM-40-0) Redesign 1 (IM-40-1) 

0.1% 32% 25% 

1% 72% 51% 

2% 80% 70% 

3% 81% 76% 

4% 81% 78% 

5% 80% 79% 

6% 78% 78% 

7% 76% 77% 

8% 74% 76% 

9% 72% 75% 

10% 70% 73% 

 

Table 22:Total mechanical power of the initial design and the redesigns 

Slip Original (IM-40-0) Redesign 1 (IM-40-1) 

0.1% 9.42E+04 1.24E+05 

1% 5.36E+05 3.88E+05 

2% 9.56E+05 9.14E+05 

3% 1.27E+06 1.37E+06 

4% 1.49E+06 1.76E+06 

5% 1.62E+06 2.07E+06 

6% 1.68E+06 2.30E+06 

7% 1.69E+06 2.46E+06 

8% 1.66E+06 2.57E+06 

9% 1.62E+06 2.63E+06 

10% 1.56E+06 2.65E+06 
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Table 23:Power factor of the initial design and the redesigns 

Slip Original (IM-40-0) Redesign 1 (IM-40-1) 

0.1% 0.09 0.12 

1% 0.21 0.19 

2% 0.32 0.31 

3% 0.39 0.40 

4% 0.42 0.46 

5% 0.43 0.49 

6% 0.43 0.52 

7% 0.42 0.53 

8% 0.41 0.53 

9% 0.40 0.53 

10% 0.38 0.52 

4.7. 60 segment optimisation 

The design of the IM-60-0 showed an acceptable performance, however to improve the power factor 

various parameters such as the line voltage, stator and rotor slot openings and turns per phase were 

altered. The number of rotor bars were also varied to improve the harmonics of the segment model. 

 

The key factor that affects the power factor is the slot leakage flux, a recommended design rule is to 

design the slot opening to be greater than three times the air gap length. With a 12 mm air gap obeying 

this rule creates a slot opening of 36 mm or greater. This results in a large Carter coefficient, causing a 

large air gap MMF and consequently a large magnetisation current. The magnetisation current is a 

component of the rated current. Equation (31) from [55, pp.275] shows that the efficiency has an 

inversely proportional relationship to the current squared. As part of the design process the 

magnetisation current of IM-60-0 was predicted to be 67% of the rated current, for the first redesign the 

focus was to reduce the magnetisation current. 

Equation (25) was used for the calculation, the magnetisation MMF and the number of turns per phase 

are responsible for the large value of the magnetisation current. The number of pole pairs and the 

fundamental winding factor were considered constant, reducing the fundamental MMF and increasing 

the number of turns per phase helped reduce the magnetisation current. The largest factor of Equation 

(26) is the air gap MMF. To reduce the air gap MMF both the Carter coefficient and the air gap flux 

density were reduced. The air gap flux density and the turns per phase have an inverse relationship, by 

increasing the turns per phase to reduce the magnetisation current the air gap flux density is reduced. 

The Carter coefficient depends on the stator and rotor slot openings. Reducing the width of the slot 

openings reduces the Carter coefficient, however this increases the slot leakage flux decreasing the 

power factor of the machine.  
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The power factor of the induction motor is affected by the ratio of the magnetisation current and the 

rated current [55, pp. 337]. Reducing the magnetisation current for the same rated current causes the 

power factor to increase.  

Table 24:Redesign of the 60 segment model 

design IM-60-0 IM-60-1 IM-60-2 IM-60-3 IM-60-4 

Number of slots per pole per phase  2 2 2 2 2 

Number of rotor bars 17 17 17 18 16 

Line voltage 415 415 690 690 690 

 

4.7.1. Comparison of the designs 

The first redesign (IM-60-1) was created following the method to reduce the magnetisation current. 

Table 25 shows the efficiency, below 3% slip, of the IM-60-1 was an improvement compared to 

IM-60-0. At the rated slip, 3%, the efficiency was improved by 14%. As predicted the power factor of 

IM-60-1 was increased however this occurs at a higher slip than the rated slip.  

For the second redesign (IM-60-2) emphasis was placed on the stator ohmic losses as this was calculated 

to be two thirds of the total losses. The line voltage (Vline) was increased to 690 V to reduce the rated 

current and therefore reduce the stator ohmic losses. Table 25 shows that the efficiency of IM-60-2 

increased by 19% compared to IM-60-0 but only 5% compared to IM-60-1. The efficiency has increased 

but the peak power factor has been reduced, the power factor of IM-60-2 is equal to the power factor of 

IM-60-0. A feature that is consistent throughout the three designs is the number of rotor bars (Nr), Nr 

= 17. The number of bars of the segmental designs are unsymmetrical and the rotor will experience 

unbalanced radial forces. In the fully assembled machine the bars are balanced with 1020 bars in total. 

Table 25: Efficiency of the original design and redesigns 

Slip IM-60-0 IM-60-1 IM-60-2 IM-60-3 IM-60-4 

0.1% 28% 39% 38% 33% 50% 

1% 80% 86% 84% 83% 89% 

2% 86% 89% 88% 88% 91% 

3% 87% 89% 87% 88% 90% 

4% 87% 87% 85% 87% 88% 

5% 85% 86% 83% 86% 87% 

6% 84% 84% 81% 84% 85% 

7% 83% 82% 79% 83% 83% 

8% 81% 81% 77% 81% 81% 

9% 79% 79% 75% 79% 79% 

10% 78% 77% 73% 78% 77% 
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Table 26: Total mechanical power of the original design and redesigns 

Slip IM-60-0 IM-60-1 IM-60-2 IM-60-3 IM-60-4 

0.1% 6.84E+04 8.31E+04 9.09E+04 7.53E+04 6.40E+04 

1% 7.38E+05 8.57E+05 9.12E+05 8.03E+05 6.07E+05 

2% 1.41E+06 1.62E+06 1.68E+06 1.54E+06 1.13E+06 

3% 1.99E+06 2.24E+06 2.26E+06 2.17E+06 1.54E+06 

4% 2.46E+06 2.72E+06 2.65E+06 2.69E+06 1.83E+06 

5% 2.83E+06 3.07E+06 2.89E+06 3.10E+06 2.02E+06 

6% 3.09E+06 3.29E+06 3.00E+06 3.42E+06 2.13E+06 

7% 3.27E+06 3.43E+06 3.02E+06 3.64E+06 2.17E+06 

8% 3.38E+06 3.49E+06 2.98E+06 3.79E+06 2.16E+06 

9% 3.43E+06 3.49E+06 2.90E+06 3.88E+06 2.12E+06 

10% 3.43E+06 3.46E+06 2.80E+06 3.91E+06 2.06E+06 

 

Table 27: Power factor of the original design and both redesigns 

Slip IM-60-0 IM-60-1 IM-60-2 IM-60-3 IM-60-4 

0.1% 0.06 0.06 0.07 0.04 0.07 

1% 0.22 0.29 0.32 0.16 0.34 

2% 0.36 0.46 0.48 0.26 0.52 

3% 0.46 0.56 0.56 0.32 0.59 

4% 0.52 0.60 0.58 0.36 0.62 

5% 0.55 0.61 0.58 0.37 0.61 

6% 0.56 0.61 0.56 0.38 0.60 

7% 0.56 0.60 0.54 0.38 0.58 

8% 0.55 0.58 0.52 0.38 0.55 

9% 0.54 0.57 0.50 0.37 0.53 

10% 0.53 0.55 0.48 0.36 0.51 

 

4.8. 100 segment optimisation 

The key challenge of the 100 segment design is the limited segment volume that restricts the design 

choices. The redesign of the 100 segment was referred to as IM-100-1and the initial 100 segment is 

referred to as IM-100-0. The 100 segment design has the least flexibility in terms of design choices 

hence the single alternative with an increased number of turns and rotor bars. 

Table 28: Redesign of the 100 segment model 

Design IM-100-0 IM-100-1 

Number of rotor bars 12 20 

Number of turns per phase 70 150 
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Table 29: Efficiency of the original design and redesigns 

Slip IM-100-0 IM-100-1 

0.1% 19% 3% 

1% 66% 65% 

2% 78% 77% 

3% 82% 81% 

4% 83% 82% 

5% 84% 82% 

6% 83% 82% 

7% 83% 81% 

8% 82% 80% 

9% 81% 78% 

10% 80% 77% 

 

Table 30: Total mechanical power of the original design and redesigns 

Slip IM-100-0 IM-100-1 

0.1% 4.42E+04 5.10E+03 

1% 3.83E+05 3.67E+05 

2% 7.41E+05 7.50E+05 

3% 1.08E+06 1.09E+06 

4% 1.38E+06 1.37E+06 

5% 1.66E+06 1.60E+06 

6% 1.91E+06 1.77E+06 

7% 2.12E+06 1.89E+06 

8% 2.31E+06 1.96E+06 

9% 2.46E+06 2.00E+06 

10% 2.59E+06 2.01E+06 

 

Table 31: Power factor of the original design and both redesigns 

Slip IM-100-0 IM-100-1 

0.1% 0.07 0.09 

1% 0.16 0.25 

2% 0.26 0.41 

3% 0.34 0.53 

4% 0.41 0.62 

5% 0.46 0.67 

6% 0.50 0.70 

7% 0.52 0.72 

8% 0.54 0.72 

9% 0.55 0.71 

10% 0.56 0.70 

 

The power factor of IM-100-1 is the highest of all the models however the efficiency is reduced to 78% 

for the rated power of 2 MW.  



Chapter 4. Induction machine 

72 | P a g e  

4.9. Selection of segment number 

From the optimisation of the three segment designs the 60 segment achieves the best efficiency with 

IM-60-1 providing an efficiency of 89% at the rated power with a power factor of 0.56. The design 

IM-60-1 was chosen to be taken forward, the design was unwrapped to form a linear segment for 

comparison to the permanent magnet linear model. 

4.10. JMag linear model of IM-60-1 

The linear model based on the dimensions of the rotary model was used for further optimisation of the 

design. The linear model better resembles the actual segment. Solving a 3D transient study of the 

segment model provides the cogging torque and losses, the effect of the gaps between adjacent segments 

can also be investigated. The stator slot dimensions are the same as for the rotary model, however the 

width of the tooth root is now smaller due to the unwrapping of the previous model. All dimensions 

related to the stator inner diameter have been fixed so the stator slot width and the stator tooth tip width 

are fixed. When the stator is unwrapped the difference in the length of the stator at the back of the slot 

is removed from the stator tooth root width. The slot dimensions are shown in Figure 73. 

 

Figure 73: Stator tooth and slot dimensions of the initial design 

 

 
Figure 74: The linear segment 

 

 
Figure 75: The linear segment with steel spacers 
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Figure 76: The linear segment with wider teeth 

Unwrapping the design results in a shorter translator as shown in Figure 74, the gap between the 

translator segments introduces a severe spatial harmonic as shown in the force graph Figure 77. The air 

gap was replaced with steel spacers, this mitigated the ripple as shown in Figure 78. However by 

distributing the additional steel evenly amongst the translator teeth and maintaining the bar dimensions 

the ripple was removed, Figure 79. 

 
Figure 77: Force of the linear segment 

 
Figure 78: Force of the linear segment with steel spacers 
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Figure 79: Force of the linear segment with wider teeth 

The teeth in the induction machine stator results in a higher attractive force in the machine and with the 

eccentricity of the rotor this could limit the operational range of the machine. The rotor resists rotating 

and the machine is started by the flow of the tide. This means the machine can only operate with strong 

tidal flows and the duration of strong tidal flows is limited. 

4.11. Performance of linear induction machine over the tidal speed range 

Similar to the permanent magnet machine, the efficiency across the turbine speeds was found assuming 

two rated speeds of 25 rpm and 15 rpm. The induction machine model was controlled with a simple 

Volts per Hertz method. The mechanical power is controlled to match the available tidal power from 

Figure 11 in 2.1.3.  

The induction machine was designed with a power rating of 2.2 MW; however the tidal speeds that 

correspond to this power only occur 1116 hours per year. The available tidal power, calculated using 

Equation (1), is 600 kW at a tidal speed of 2.75 m/s. The machine was designed to have high 

performance at a rated speed of 25 rpm. The model was controlled so that the power of model matched 

the tidal power, and using TSR25 the tidal power is 596 kW at a turbine speed of 25 rpm. Table 32 shows 

that the efficiency is only 58%. TSR15 maps the tidal speed of 4 m/s to 25 rpm and the model achieves 

an efficiency of 82%. Table 32 shows that the design achieves high efficiency at high speeds when the 

power ratings are close to the rated power, and at lower speeds the design performs poorly. The design 

has been overrated for the application as it only achieves a high efficiency at the higher tidal speeds 

unlike the permanent magnet design.  
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Table 32: Efficiency vs turbine speed 

Turbine speed, rpm mechanical power, kW Efficiency 

TSR25 TSR15 TSR25 TSR15 TSR25 TSR15 

8.18 5.35 31.27 29.01 4% 3% 

10.39 6.71 60.44 56.84 8% 3% 

12.66 8.07 103.28 98.51 12% 5% 

15.00 9.44 162.09 156.89 27% 9% 

17.40 10.82 238.98 234.88 36% 16% 

19.87 12.21 335.89 335.38 44% 23% 

22.40 13.60 454.57 461.35 52% 32% 

25.00 15.00 596.60 615.75 58% 42% 

27.66 16.41 763.36 801.58 82% 51% 

30.39 17.82 956.05 1021.86 89% 59% 

33.18 19.24 1175.71 1279.63 92% 65% 

36.04 20.67 1423.17 1577.94 93% 71% 

38.96 22.11 1699.13 1919.89 93% 80% 

41.95 23.55 2004.09 1984.64 92% 81% 

45.00 25.00 2004.09 1984.64 92% 82% 
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4.12. Summary 

Three induction machines based on different numbers of segments have been created and the designs 

were then taken forward for redesign. The 100 segment design has the least design choices (slots per 

pole combinations), the alternative achieved a high power factor at the expense of efficiency. The 

original 40 segment design failed to meet the specification, but the redesign achieved the rated power 

with a low efficiency and power factor. The 60 segment design has shown promise and has been through 

four redesigns, the first improved the efficiency and at higher slip the power factor. The first redesign 

IM-60-1 was chosen for the comparison, due to having the best efficiency of all the designs and the best 

power factor of the 60 segment designs.  

The number of segments of the three designs were chosen as 40, 60 and 100 to represent the minimum, 

median and maximum segment size. These numbers of segments could provide insight to the 

advantages and disadvantages of the segment size during the design process. It was identified that a 

high number of segments provides a small segment size, which is advantageous to the construction of 

the turbine, however the design choices are limited. Conversely a low number of segments provides a 

great amount of freedom with respect to the design yet the construction is more complex. Therefore the 

optimum number of segments produces a segment of moderate mass and an arc length that does not 

limit the design choices.  

The segment model IM-60-1 was then used to create a linear model, the translator was shorter due to 

unwrapping the segment and this introduced a severe spatial harmonic to the force. By widening the 

rotor teeth the spatial harmonic was removed. The efficiencies of the induction machine have been 

calculated across the turbine speed range, the design has been over rated and as a consequence the 

efficiencies at low speed are low.  
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Chapter 5. Eccentricity 

This chapter investigates the effect of eccentricity in the OpenHydro turbine, the aim of the chapter is 

to assess the effect of eccentricity on both the permanent magnet generator and the induction generator 

and compare the designs robustness. To this end the linear FEA segment models of both machines are 

modelled with various air gap lengths. An analytical method for the modelling of the fully assembled 

induction generator is also presented to assess the effect with multiple segments. 

5.1. The problem of eccentricity 

Eccentricity is a condition that occurs when the rotor is not concentric to the stator, Figure 80 shows a 

radially eccentric rotor. Axial eccentricity can also occur. Eccentricity is a concern in electrical 

machines due to the forces and speeds when in operation. The effects of eccentricity vary from minor 

failure like increasing the bearing wear, to a catastrophic failure such as the rotor colliding with the 

stator [58]. There are two distinguishable types of eccentricity, static eccentricity refers to a 

misalignment of the rotor and stator that is constant when the machine is operating. Dynamic 

eccentricity is a misalignment that rotates while the machine is under operation. Eccentricity is a 

mechanical failure and occurs due to manufacturing defects or during machine assembly. A static 

eccentric condition can develop into a dynamic eccentric condition as the bearings experience excessive 

wear and the shaft can deflect. Eccentricity is more common in large machines, typically due to large 

unbalanced magnetic forces, a weak shaft or a heavy rotor mass. Generally the amount of eccentricity 

is small and results in more maintenance cycles due to the excessive bearing wear. However the 

OpenHydro turbine features a shaft-less rotor using hydrodynamic bearings.  

 

Figure 80: Rotor eccentricity 
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A hydrodynamic bearing has no moving components, the bearing utilises a thin film of lubricant 

between the journal and the bearing surfaces. The minimum thickness of the film is dependent on the 

mass of the journal and the velocity. The OpenHydro turbine utilises squeeze film bearings, the exact 

layout is commercially sensitive but Figure 81 is an indicative layout. A squeeze film bearing 

compresses the lubricant between the bearing surface and journal. The coil covers of the stator act as 

the bearing surface and the magnet covers act as the journal. The compression of the lubricant results 

in a positive pressure capable of supporting a load [59]. The lubricant of the OpenHydro turbine is the 

surrounding sea water, which contains abrasive contaminates such as grains of sand damaging the rotor 

and stator surfaces.  

The other increase in the bearing wear is from a collision which is an immediate failure rather than a 

gradual failure. The eccentricity of the OpenHydro turbine has a greater impact on the magnetic circuit 

rather than the mechanical aspects usually associated with eccentricity. The force of a collision between 

the rotor and the bearing block is diminished by the lubricant. As the rotor is able to freely move within 

the stator frame the impact on the electric loading of the machine is of interest. 

 
Figure 81: Hydrodynamic squeeze film bearing 

5.2. Eccentricity in the permanent magnet segment 

An eccentric condition in the permanent magnet generator causes unbalanced radial magnetic forces; 

however this effect is mitigated by the air cored coils used in the OpenHydro machine. To overcome 

this the turbine has complex connections between stator segments so that if a segment is damaged the 

coils are disconnected. This allows the turbine to continue operating at a lower power rating and limits 

the damage to a single segment. The cables and connector blocks used are expensive due to the 

generator ratings and the environmental conditions resulting in a higher manufacturing cost.  

To simulate the eccentric condition on a segment the FEA permanent magnet linear model of PM-72-16, 

Figure 82, was set with various air gap lengths (lg). The air gap lengths corresponded to the opening 

and closing of the air gap as experienced by a segment due to eccentricity. To investigate the effect of 

eccentricity on the EMF of a segment the model was run under no load at a linear speed corresponding 

to a turbine speed of 25 rpm.  
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Figure 82: Permanent magnet linear model 

The EMF increases, almost linearly, as the air gap closes due to eccentricity. Figure 83 shows the 

resultant no load EMF and air gap flux density with respect to the air gap length. The nominal air gap 

length is 12 mm, if the air gap closes to only 6 mm then from Figure 83 the EMF increases by 17%. 

Whereas the air gap of the segment 180o opposite would open to 18 mm and the EMF of that segment 

decreases by 14%. Under load the drop in EMF causes a reduction in the segment power, the effect of 

the EMF drop is dependent on the control method. A voltage control method controls the machine using 

the voltage and running the machine as a generator requires the voltage to be lower than the EMF. 

During eccentricity if the EMF drops lower than the voltage the segment behaves as a motor. A current 

control method would see the efficiency of the segment drop as the electric power is reduced for the 

same mechanical power applied.  

 
Figure 83: Graph of EMF and flux density with an eccentric condition 

5.3. Eccentricity in the induction machine segment 

The effect of eccentricity in the induction machine is more complicated to describe as the closing of the 

air gap reduces the magnetisation current of the segment. As the air gap length increases, assuming that 

the torque component of the current is constant, the segment current will increase due to the increase in 

the magnetisation current. A prolonged eccentric condition risks damaging the coils due to the higher 

electric loading of the segment. Connecting the opposite segments in series should balance the phase 

current during eccentricity.  

To simulate the effect of eccentricity on a segment the linear induction machine FEA model was used, 

Figure 76 in Chapter 4. The model was run under loaded condition and a linear speed corresponding to 

a turbine speed of 25 rpm. As stated in Chapter 4 Equations (25) and (26) from [37] demonstrate that 

as the air gap closes the MMF and magnetisation current are reduced. The magnetisation current is a 
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component of the rated current. A reduction of the magnetisation current results in the rated current 

decreasing and Figure 84 shows the results of the FEA model. As the air gap increases the segment 

force decreases and inversely the rated current increases. The nominal air gap length is the same as the 

PM model, 12 mm, if the air gap closes to only 6 mm the current decreases by 6% and the force increases 

by 5% whereas air gap of the opposite segment opens to 18 mm and the current increases by 6% and 

force decreases by 4%. 

Similar to the permanent magnet segment the current increase causes the ohmic losses to increase 

reducing the efficiency. Unlike the permanent magnet machine the stator teeth provide good thermal 

pathways. 

 

Figure 84: Linear IM segment force and current with eccentricity 

5.4.  Eccentricity model 

Traditionally industry adopted a wait and see approach towards machine failures, investigating the 

cause only after a failure occurred. Health monitoring of machines uses the currents to identify faults 

as they develop, allowing repairs before a complete failure. Toliyat et al [60] developed an analytical 

model of an induction machine to identify an eccentric condition in the machine based on the stator 

currents. This model has been used in numerous studies of fault conditions in induction machines [61-

63] and has further developed to include conditions such as axial eccentricity, saturation and skew [64, 

65]. This method of modelling eccentricity is referred to as the modified winding function approach, 

MWFA, as it was derived from the winding function approach, WFA. The model has already been 

developed for the induction machine, therefore it was decided that the model would be used to 

investigate the eccentricity of the induction machine design. To model the permanent magnet design 

the MWFA could be modified at a later date. This model was used to investigate eccentricity in the 

fully assembled induction machine, as the FEA only provides results of a single segment. The MWFA 
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can represent both dynamic and static eccentricity, however only the static eccentricity is accounted for. 

As with static eccentricity the matrices are simpler to solve as the stator inductance is independent of 

rotor position, all the equations presented here are purely for static eccentricity. 

5.4.1. The windings function approach 

The winding function, N(), is determined from the turns function, n(), as expressed by Equation (42) 

[66], where 〈n()〉 is the average of the turns function. The turns function is based on the physical 

position of the coils in the machine. Figure 85 shows a coil in a stator frame, the turns function is formed 

by sweeping around the stator and assigning values of either equal to the number of conductors in the 

slot or zero as determined by the coil span. Equation (43) clarifies this process. The angle  in Figure 

85 represents the coils position relative to a fixed axis. This axis can be set anywhere on the stator 

periphery and independent of the rotor angle (θr). 

 

Figure 85: Stator model 

The winding function of a single phase is the sum of the winding functions of all the coils within that 

phase (m) as expressed by Equation (44), the upper limit (a) is equal to the number of coils per phase. 

Figure 86 shows the phase winding function of the machine used in [60] without an eccentric condition. 

 
𝑁𝑚 =  ∑ 𝑁𝑚𝑖

𝑎

𝑖=1

 (44) 

Without eccentricity the air gap length is considered constant and therefore independent of the stator 

angle. However in the case of eccentricity this is no longer the case as the average can be calculated 

using Equation (45) [65]. The average turns function becomes a function of the stator angle as the air 

gap length varies with respect to the stator angle.  

 𝑁() = 𝑛() − 〈𝑛()〉 (42) 

 𝑛() =  {
+𝑛𝑛 

1
≤  ≤ 

2

0 
1

>  > 
2

 (43) 
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 〈𝑛(ɸ)〉 =
1

2. 𝜋. 〈𝑙𝑔
−1(ɸ)〉

. ∫ 𝑛(ɸ). 𝑙𝑔
−1(ɸ) 𝑑ɸ

2𝜋

0

 (45) 

 

Figure 86: Winding function a single phase 

The winding function of the rotor bars are determined in the same way, each bar is considered as a 

phase with a single turn. Figure 87 shows the winding function for a single rotor bar, each subsequent 

bar has the same winding function except with a displacement equal to the rotor bar slot pitch relative 

to the stator angle (ɸ). 

 

Figure 87: Winding function of a rotor bar 

5.4.2. Inductance 

The MWFA can be used to determine the inductances of the machine, the mutual inductance between 

the phase windings can be calculated by use of Equation (46) [60]. This equation needs to be modified 

to incorporate the eccentricity condition, the air gap length (lg) and the average radius (ravg) both need 

to be integrated as they are functions of the stator angle as expressed in Equation (47) [60].  

 
𝐿𝑎𝑏(𝜃𝑟) =  

𝜇0. 𝑟𝑎𝑣𝑔. 𝑙𝑎

𝑙𝑔
. ∫ 𝑁𝑎(). 𝑛𝑏()𝑑

2𝜋

0

 (46) 
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𝐿𝑎𝑏(𝜃𝑟) =  𝜇0. 𝑙𝑎 . ∫ 𝑁𝑎(). 𝑛𝑏(). 𝑟𝑎𝑣𝑔(). 𝑙𝑔1

−1()𝑑
2𝜋

0

 (47) 

In the case of the self-inductances of the phases the turns function in Equation (47) can be removed and 

instead the winding function is squared as in Equation (48) [67].  

 
𝐿𝑎𝑏(𝜃𝑟) =  𝜇0. 𝑙𝑎 . ∫ (𝑁𝑎())

2
. 𝑟𝑎𝑣𝑔(). 𝑙𝑔1

−1()𝑑
2𝜋

0

 (48) 

The air gap length due to eccentricity in Equation (49) [60, 61] is a function of the severity of the 

eccentric condition and the stator angle. Where δ is the amount of static eccentricity expressed as a 

factor. 

 𝑙𝑔1() = 𝑙𝑔 − 𝛿. 𝑙𝑔. cos  (49) 

The inverse air gap length is approximated using Equation (50) [60], the terms A0 and A1 are shown in 

Equations (51) and (52) [60, 61]. As shown in the equations for a static eccentric condition the air gap 

length is independent of the rotor position, however with dynamic eccentricity the air gap length is a 

function of the rotor position.   

 
𝑙𝑔1

−1() =  
𝐴0

𝑙𝑔
+

𝐴1

𝑙𝑔
. cos (50) 

 
𝐴0 =  

1

√1 − 𝛿2
 (51) 

 
𝐴1 =  

2 − √1 − 𝛿2

𝛿. √1 − 𝛿2
 (52) 
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5.5. Model validation  

As discussed earlier the MWFA has been validated against practical results [60-65]. The MWFA 

equations in the previous sections were implemented in a Matlab script for the purpose of modelling 

eccentricity in the fully assembled IM machine. The same machine parameters, as presented in Toliyat’s 

paper [60] in Table 33, were used to validate the Matlab script. The script can found in Appendix A: 

Eccentricity Matlab script. 

The resultant inductances calculated by the script are compared to the results presented in the paper. 

Figure 88, Figure 89 and Figure 90 on page 85 are graphs of various mutual inductances from the Matlab 

script overlapped with the results from [60], the results show good correlation to those presented in the 

paper. A comparison of Figure 88 and Figure 90 shows that with 50% static eccentricity the mutual 

inductance is no longer symmetrical.  

The transient period refers to the period of time before the current and voltage of the machine settle to 

steady state values. During the transient period the amplitudes of the current and voltage are larger than 

the steady state values. As inductance affects the time constant it can be inferred that a generator with 

eccentricity will have a longer transient period. A prolonged transient period results in the generator 

operating at a higher current and voltage for a longer period of time. This reduces the life span of the 

conductor insulation as well as increases ohmic losses.  

 

Table 33: 3-phase 1 hp induction motor, with double layer windings 

Stator outer diameter 0.2286 m Stator resistance 3.5332 Ω 

Stator inner diameter 0.127 m Stator leakage inductance 0.028 H 

Axial length 0.102 m Rotor bar resistance 68.34 µΩ 

Air gap length 0.000456 m Rotor bar leakage inductance 0.28 µH 

Average radius 0.0633 m End ring segment resistance 1.56 µΩ 

Number of stator turns in series 90 End ring segment leakage inductance 0.03 µH 

Number of stator slots 36 Number of slots short pitched 1 

Number of poles 4 Number of rotor bars 28 
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Figure 88: Results from [60] combined with the predictions from the Matlab model of the mutual 

inductance of stator phase a and rotor loop 1 with no eccentricity 

 

Figure 89: Results from [60] combined with the predictions from the Matlab model of the magnetising 

inductance of rotor loop 1 with 50% static eccentricity 

 

Figure 90: Results from [60] combined with the predictions from the Matlab model of the mutual 

inductance of stator phase a and rotor loop 1 with 50% static eccentricity 
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5.6.  60 Segment induction machine 

The best induction machine design was selected in the discussion of Chapter 4 as the geometry of the 

design, IM-60-1, was used with the eccentricity model and presented in Table 34. Figure 91, Figure 92 

and Figure 93 are graphs of various mutual inductances. The effect of eccentricity on the inductance is 

clearly shown in Figure 93 as the peak mutual inductance varies with the rotor position. There are 120 

poles hence 60 inductance cycles per rotor rotation. 

Table 34: IM-60-1 parameters 

Stator outer diameter 14.364 m Number of stator turns in series 32 

Stator inner diameter 14.272 m Number of stator slots 720 

Axial length 0.448 m Number of poles 120 

Air gap length 0.012 m Number of slots short pitched 0 

Average radius 7.13 m Number of rotor bars 1020 

 

 

Figure 91: Mutual inductance of stator phase a and rotor loop 1 with no eccentricity from the Matlab 

model 

 

Figure 92: Magnetising inductance of rotor loop 1 with 50% static eccentricity from the Matlab model 
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Figure 93: Mutual inductance of stator phase a and rotor loop 1 with 50% static eccentricity 

Each segment has 2 poles therefore each inductance cycle represents a single segment. The segment 

positioned at 0 radians has a mutual inductance of 0.136 mH but the opposite segment at 3.14 radians 

has a mutual inductance of 0.0363 mH. The higher mutual inductance demonstrates better magnetic 

coupling between the stator and rotor and that the rotor is closer to the segment. The close proximity of 

a segment and the rotor reduces the magnetisation current. Conversely the opposite segment is further 

from the rotor and requires a larger magnetisation current.  

5.7. Summary 

The FEA segment models of both the induction machine and permanent magnet design show that the 

current per segment is dependent on the air gap length. As current influences the ohmic losses this 

reduces the efficiency of the segment, the permanent magnet design has poor thermal conductivity 

however the induction machine has a higher current loading. The eccentricity analytical model shows 

that the induction machine inductances vary significantly with eccentricity. The variation of inductance 

results in a longer transient period. A longer transient period is detrimental to the efficiency and the 

lifespan of the generator. During the transient period the amplitudes of the current and voltage are larger 

than the steady state values and the generator operates at a higher electric loading for a longer period of 

time. This increases the ohmic losses and reduces the life span of the conductor insulation.    
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Chapter 6. The cost of energy 

This chapter aims to determine the best choice of machine for the OpenHydro tidal turbine, rather than 

just a comparison based on efficiency an economic model is used. The economic model allows a 

comparison between the permanent magnet design and the induction machine designs by assessing the 

designs based on the material costs as well as the power generated. The economic comparison is based 

on a 15 year lifetime. 

6.1. Overview of key factors affecting cost 

There are various costs involved with tidal turbines and to assess the best machine type for this 

application these costs need to be estimated fairly. The capital costs and maintenance costs need to be 

exceeded by the energy sold over the lifetime of the project, otherwise the project is not financially 

feasible. 

6.1.1. Capital costs 

The capital costs are the costs of the initial set up of an operational turbine, this consists of cost of 

material, labour and components. The deployment, installation and connection costs are also included 

in the capital costs. These costs are applied in the initial year. 

6.1.2. Operational and maintenance costs 

This is the turbine costs incurred over the operational lifetime such as maintenance costs, both planned 

and unplanned, observation costs and the cost of any legal requirements such as permits. These costs 

can be recurring depending on the frequency of planned maintenance, for example a five year 

maintenance cycle would apply these costs to years 5 and 10. The maintenance cost of year 15 would 

be omitted as the turbine would be recovered for decommissioning with a 15 year lifetime, so only the 

cost of recovering the turbine would be applied. The duration of maintenance also influences the income 

of the year as the turbine is not operational. 

6.1.3. Energy supply 

The energy supply cost is the most important aspect as this determines whether the project is a success 

or a failure. This cost can be quantified by the income earned from selling the energy produced by the 

turbine. Before reaching a conclusion it is important to consider how the cost of energy per turbine can 

vary depending on the number of deployed turbines. For a tidal turbine to be cost competitive with 

alternative renewable energy the cost of energy needs to be low to reduce the energy cost to consumers. 

It is assumed that the deployed turbine is a prototype, hence a high cost of energy is required to cover 

the costs of the prototype system. A strike price is the fixed price at which a commodity can be bought 

or sold for. For this comparison the cost of energy is assumed to be a strike price over the turbine’s 

lifespan.  
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6.2. Turbine capital costs 

6.2.1. Installation and deployment costs 

The installation and deployment costs are high due to the fact the turbine is still within the prototype 

stages but in the future, when the tidal farms are fully established, the deployment costs will become 

negligible. The initial outlay of purchasing a single custom barge, which is adequate for an entire tidal 

farm, means these costs have been reduced drastically. Overall, there is a negligible difference between 

the permanent magnet and induction designs due to the substantial costs involved with both the 

installation and deployment factors. It can be assumed that the costs are the same for both machines and 

have, therefore, been removed from the economic model.  

 

Figure 94: OpenHydro deployment barge [68] 

6.2.2. Material costs 

The permanent magnet and induction designs share some common materials, such as the electric steel 

and copper. Table 35 shows the costs used for calculating the machining costs of the two machines. 

Table 36 contains the volume of segment materials for both the induction machine and permanent 

magnet machine designs. The material mass is determined by the volume and density and the material 

costs of the designs were calculated by multiplying the cost per kilogram with the material mass. Figure 

95 shows that IM-60-1 requires significantly more copper than PM-72-16 to achieve the desired 

performance. However Figure 95 also shows that the magnets have a significantly higher cost compared 

to the steel and copper. Purchase of the materials in bulk is more cost effective especially with the 

establishment of a dedicated production facility. 
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Table 35:Material cost per kilogram 

Materials £/kg 

Nd-Fe-B £ 60.00 

Copper £ 9.60 

Electric steel £ 4.00 

Aluminium £ 1.60 

 

Table 36: Design volume per segment 

Part PM-72-16 IM-60-1 

Stator  

Core back, m3  0.011956 0.011637 

End winding, m3 0.001001 0.008171 

Copper, m3  0.001889 0.005467 

Rotor 

Nd-Fe-B, m3  0.002758 - 

Core back, m3 0.004888 0.007533 

End ring, m3 - 0.035928 

Bar, m3 - 0.004227 

 

 

Figure 95: Material costs  
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6.2.3. Labour costs 

Tidal turbines are an emerging technology with most devices still within the prototype stage which 

means, without manufacturing precedence, it is difficult to accurately estimate the labour costs. In 2012 

OpenHydro produced 6 turbines over the course of a year, a turbine being produced every 2 months. 

To estimate labour costs, the workforce salary is only a single aspect as the facility overheads also have 

to be included. Size of the workforce, the machinery costs, the building rent and the facility running 

costs are also required. These costs are unknown quantities and several assumptions would be required. 

A simpler assumption would be that labour costs are similar for both the induction and permanent 

magnet design and therefore these costs are neglected from the economic model. 

6.3. Operational and maintenance costs 

These costs are difficult to predict without practical data provided from deployed prototype turbines. 

As the OpenHydro turbine is still in the prototype stages a fixed maintenance cycle has yet to be 

employed, however work is ongoing to determine the optimum method based on the existing prototypes. 

The maintenance costs of the induction machine are difficult to estimate based on existing machines 

due to the shaft-less rotor and large air gap. The maintenance costs of the induction machine are 

neglected from the economic model. As the comparison focuses on the generator and as the mechanical 

aspect of the turbine is constant the associated cost is also neglected from the economic model. 

Eccentricity increases the required segment current and the higher current loading increases the winding 

temperatures causing the winding insulation to degrade faster reducing the operational lifetime of the 

winding. The reduction in the winding lifetime results in maintenance becoming more frequent. The 

largest cost associated with the maintenance is the retrieval of the turbine and shorter periods between 

maintenance cycles increases these costs.  

6.4. Drive system 

Both the induction machine and permanent magnet machine utilise a fully rated 4 quadrant drive system 

with two back to back active rectifiers. However, due to the higher reactive power of the induction 

machine the power rating of the drives are higher. OpenHydro has developed a subsea substation 

capable of controlling multiple turbines referred to as the turbine control centre (TCC). The internal 

configuration and rating are unknown as are the involved costs; Figure 96 shows the TCC being tested. 

The reduction in power factor caused by eccentricity and the low power factor of the induction machine 

would be included with the drive costs, as a lower power factor increases the reactive power rating of 

the drive system and therefore its cost.  
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Figure 96: Turbine control centre [69] 

6.5. Annual tidal energy 

Figure 97 shows the annual energy extracted from the tides for each tidal speed derived from Figure 17 

and Figure 11 when the tidal speed is mapped to 15 rpm. Figure 98 shows the energy extracted when 

the tidal speed is mapped to 25 rpm. This data combined with the efficiencies of the permanent magnet 

and induction machine designs for the different speeds can be used to determine the cost of energy. This 

data is used in the economic analysis for comparison. 

 

Figure 97: Annual energy extraction when 2.75 m/s is mapped to 15 rpm 
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Figure 98: Annual energy extraction when 2.75 m/s is mapped to 25 rpm 

6.6. Net present value  

The cumulative net present value (CNPV) method was chosen for the comparison as the CNPV method 

is commonly used to assess potential projects. A discount factor (DF) of 7% was applied and the cost 

of energy was set as £120/MWh. The value of money is not constant, £10 15 years ago is not equal to 

£10 in the present, but this is accounted for by the cumulative present value factor (CPVF). Table 37 

shows the CPVF values for each year of the 15 year lifetime, calculated using Equation (53) [70].  

 
𝐶𝑃𝑉𝐹 =

1 − (1 + 𝐷𝐹)−𝑦𝑒𝑎𝑟

𝐷𝐹
 (53) 

 

Table 37: Cumulative present value factors 

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

CPVF 0.9 1.8 2.6 3.3 4.1 4.7 5.3 5.9 6.5 7.0 7.5 7.9 8.3 8.7 9.1 

Table 38 shows the yearly income of the turbine over the 15 years, these results suggest that the rate of 

return of the first year is 3% with the turbine becoming profitable in less than a year. However this 

neglects to take account of the installation and deployment costs, and the turbine may not be profitable 

until year 5. Another measure to compare the machines by is the profitability index (PI). This is the 

ratio of the lifetime costs and the initial capital costs. A higher PI signifies a more profitable venture. 

Table 38 shows that the induction machine has a lower capital cost but the net income of the original 

permanent magnet machine is higher. The profitability index of the induction machine is only slightly 
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higher than the permanent magnet machine for TSR25. The optimised permanent magnet design has a 

lower capital cost than the original design and has a net income resulting in a higher profitability index. 

Table 38: Net present values of the PM-72-16 and IM-60-1 

Year PM-72-0 PM-72-16 IM-60-1 
 TSR15 TSR25 TSR15 TSR25 TSR15 TSR25 

0 -£158,029 -£158,029  -£144,368  -£144,368  -£131,652  -£131,652  

1  £625,656   £595,176   £624,959   £594,288   £400,155   £499,818  

2 £1,210,381  £1,151,416   £1,209,032   £1,149,698   £774,133   £966,937  

3  £ 1,756,853   £1,671,266   £1,754,895   £ 1,668,773   £1,123,644  £1,403,497  

4  £2,267,574   £2,157,107   £2,265,047   £2,153,889   £1,450,290  £1,811,497  

5  £2,744,884   £2,611,164   £2,741,825   £2,607,269   £1,755,567  £2,192,805  

6  £3,190,968   £3,035,517   £ 3,187,412   £3,030,988  £2,040,872  £2,549,168  

7  £3,607,869   £3,432,108   £ 3,603,848  £3,426,988  £2,307,512  £2,882,218  

8  £3,997,496   £3,802,754   £ 3,993,041  £3,797,081   £2,556,709  £3,193,479  

9  £4,361,633   £4,149,152   £4,356,773  £4,142,962   £2,789,603  £3,484,378  

10  £4,701,949   £4,472,888   £4,696,709  £4,466,215   £3,007,261  £3,756,245  

11  £5,020,000   £4,775,446   £5,014,406   £4,768,322   £3,210,680  £4,010,327  

12  £5,317,245   £5,058,210   £5,311,319   £5,050,664   £3,400,791  £4,247,787  

13  £5,595,044   £5,322,475   £5,588,809   £5,314,535   £3,578,465  £4,469,712  

14  £5,854,669   £5,569,452   £5,848,144   £5,561,143   £3,744,515  £4,677,118  

15  £6,097,309   £5,800,272   £6,090,514   £5,791,619   £3,899,702  £4,870,956  

Net income  £5,939,280   £5,642,243   £5,946,146   £5,647,251   £3,768,050  £4,739,304  

P.I. 38.58 36.70 42.19 40.12 29.62 37.00 

 

6.7. Summary 

Certain aspects have been neglected from the comparison, such as labour costs, as it is difficult to 

estimate the actual time frame required to build either machine. Maintenance costs are also neglected 

as the cost of extraction significantly exceeds any maintenance or manufacturing costs, this is purely 

due to the deployment environment. In the future, when the infrastructure is in place, this may not be 

the case. Although at the time of writing the generator accounts for, at most, 10% of the overall project 

cost.  

The capital cost of the induction machine design is 17% lower than that of the permanent magnet, 

however, over a 15 year lifetime the net income of the induction machine is 16% lower at a rated speed 

of 25 rpm. In comparison at a rated speed of 15 rpm the net income of the induction design is 37% 

lower due to the low efficiency. It is evident that the profitability index of the induction machine is 

lower than the original permanent magnet design. The optimised permanent magnet design has 0.1% 

higher net income and a 9% lower capital cost than the original permanent magnet design. Furthermore, 

the profitability index is higher than both the original and induction machine. 
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Chapter 7. Conclusion 

7.1. Overview 

From the reviewed literature the squirrel cage induction machine was chosen as an alternative design 

to the permanent magnet machine. The removal of rare earth magnet content for the direct drive turbine 

was an opportunity to improve the cost competiveness of the OpenHydro tidal turbine to alternative 

renewable energy sources. 

Both the permanent magnet and induction machine were segmented, which simplifies the construction 

and assembly of the turbine. It also improves the fault tolerance of the turbine depending on the coil 

connections.  

7.1.1. Permanent magnet optimisation 

The permanent magnet design underwent both manual and numerical optimisation with a simplified 

linear FEA model. The results of the optimisation showed that the magnet mass could be reduced with 

minimum impact on the performance of the generator. 

7.1.2. Squirrel cage induction generator 

The induction machine segment was wrapped to form a rotary induction machine, the conventional 

design process was then applicable. The number of segments were investigated with FEA models of 

three designs; the best design was then manually optimised. The study produced a model that was 

comparable to the permanent magnet generator performance. 

7.1.3. Eccentricity 

The effect of eccentricity on the individual segments of both the permanent magnet and induction 

machine was investigated using linear FEA models. A numerical model, based on published work, was 

created to evaluate the effect on the fully assembled generator.  

7.1.4. The cost of energy 

The material costs of the permanent magnet and induction machine were calculated for comparison. 

The available power of a deployment site was calculated, then the efficiencies of the two generators 

across the speed range were applied to determine the power extraction. The cost of this energy sold was 

then used to compare the two generators over a 15 year lifetime.  
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7.2. Permanent magnet generator 

The original model of the permanent magnet generator included features that had no effect on the 

magnet circuit such as chamfers and bolts, these features increased the computation time to solve the 

model due to the unnecessary mesh. The model has been simplified with a significant reduction in 

computation time and due to the scale of the turbine the model can be made linear with little effect on 

the results. A design study using the simplified linear model has been conducted where the magnet 

dimensions were modified to identify an optimum magnet mass for the generator. The study identified 

that the magnet height could be reduced up to 11% with little effect on the average force. The best 

design from the design studies achieved a mass reduction of 13% with a force reduction of 5% by 

reducing the magnet height. 

7.3. Squirrel cage induction generator 

The induction machine was chosen as the alternative to the permanent magnet machine due to the lack 

of expensive rare earth magnetic material. Three induction machines based on different numbers of 

segments have been created and the designs were then taken forward for redesign. The 100 segment 

design has the least flexibility in its design and it was found that the alternative achieved a high power 

factor at the expense of efficiency. The original 40 segment design failed to meet the specification; 

however, the redesign achieved the rated power with a low efficiency and power factor. The 60 segment 

design has been through four redesigns, the first improved the efficiency and the power factor. The first 

redesign of the 60 segment, IM-60-1, was chosen for the comparison as it has the best efficiency of all 

the designs and the best power factor of the 60 segment designs  

A linear model has been created based on the segment model IM-60-1, the translator was shorter due to 

shorter circumference of the rotor this introduced a severe spatial harmonic to the force. By widening 

the rotor teeth the spatial harmonic was removed.  

7.4. Eccentricity 

The OpenHydro turbine has a shaft-less rotor which allows the rotor to move freely within the stator 

frame. To investigate the effect of eccentricity on the induction machine and the permanent magnet 

machines the FEA linear models were set with varying air gap lengths. The FEA segment models of 

both the induction machine and permanent magnet design showed that the current per segment was 

dependent on the air gap length. But as the current influences the ohmic losses this reduces the 

efficiency of the segment. The permanent magnet design has poor thermal conductivity and high 

operating temperatures, causing the winding insulation to degrade faster reducing the lifetime of the 

coil. However the induction machine has a higher current loading resulting in higher losses and, due to 

the varying phase inductance, a lower power factor.  
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The FEA models focused on the effect on a single segment to model the eccentricity effect on the fully 

assembled machine and an analytical model from published literature was scripted. The eccentricity 

analytical model showed that the induction machine inductances vary significantly with eccentricity. 

The inductance influences the settling time to steady state values and the power factor of the machine. 

7.5. The cost of energy 

To compare the designs it was decided that an economic analysis would be the fairest method as both 

the machine performance and the material costs are assessed. The cumulative net present value method 

was chosen for the comparison, the CNPV method is commonly used to assess potential projects. 

Certain aspects have been neglected from the comparison, such as labour costs as it is difficult to 

estimate the actual time frame required to build either machine. Maintenance costs are also neglected 

as the cost of extraction significantly exceeds any maintenance or manufacturing costs as this is purely 

due to the deployment environment. In the future when the infrastructure is in place this may not be the 

case, however the generator accounts for 10% of the overall project costs at the time of writing. 

The machines are both considered to have a lifetime of 15 years. Another measure to compare the 

machines is the profitability index, this is the ratio of the lifetime costs and the initial capital costs. A 

higher profitability index signifies a more profitable venture.  

The capital cost of the induction machine design is 17% lower than that of the permanent magnet, 

however over a 15 year lifetime the net income of the induction machine is 16% lower when the tidal 

speed is mapped to a turbine speed of 25 rpm. When the tidal speed is mapped to 15 rpm, the net income 

of the induction machine is 37% lower corresponding to the lower efficiency. The profitability index of 

the induction machine is lower than the original permanent magnet design. The optimised permanent 

magnet design has 0.1% higher net income and a 9% lower capital cost than the original permanent 

magnet design. The profitability index is higher for the optimised permanent magnet design than both 

the original and induction machine. 

7.6. Future work 

Changing the winding of the induction machine from a concentric broken chain winding to a 

concentrated single tooth winding reduces the end winding length. The short end winding reduces the 

stator phase resistance, however this type of winding increases MMF harmonics of the design. It is 

expected that the large air gap would filter the harmonics due to the fringing effect of the magnetic 

field. The single tooth winding significantly increases the number of poles and the power factor has 

squared proportional relationship with the number of poles. The frequency is also dependent on the 

number of poles as the stator and rotor leakage reactance increase proportionally to the frequency.  
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As an example: using the 40 segment design for a coil span of 1 (a single tooth winding) with 24 stator 

slots, 20 poles are required compared to the original 2 per segment. As a result for 40 segments the total 

number of poles increases from 80 to 800 and the frequency increases from 16.6 Hz to 166 Hz. 

The MWFA model was used to a degree to investigate the effect of eccentricity with regards to the fully 

assembled induction machine. A similar investigation can be done for the permanent magnet machine 

based on [71]. The MWFA model originated with a synchronous machine therefore it should be possible 

to adapt the MWFA to work for the permanent magnet design. 

From the FEA models the effect of eccentricity on a single segment was observed whereas with the 

MWFA model only the phase components could be observed. Through the observations of the MWFA 

it was found that the phase voltage and current is dependent on the segment connections and that the 

MWFA is based on the MMF, it is independent of the coil connections. To investigate the optimum coil 

connections to mitigate the effect of eccentricity, further work may include modification of the MWFA 

to accommodate the coil connections. 

The number of segments could be further investigated as the 40 segment design could be adapted to 

provide a 20 segment design. The segment arc length of the 20 segment design would be equivalent to 

the arc length of two connected 40 segments. Likewise an 80 segment design could be viewed as half 

the 40 segment design. From the 60 segment design a 30 and a 120 segment design could be developed 

and the 100 segment could provide 50 and 200 segment designs. Though the 120 and 200 segments are 

not feasible due to the restricted volume of the segment.  

During the course of the project it was observed that work regarding transmission methods for offshore 

renewable energy sources was on-going. The use of DC transmission offered lower losses compared to 

AC transmission which presented the idea of combining each segment with an active rectifier. The 

segment could then be controlled individually and monitored. The power would be delivered to shore 

by DC transmission with an additional cable for the data from the built in active rectifiers. The power 

could then be converted by an onshore substation and fed to the grid.  

  



Chapter 7. Conclusion 

99 | P a g e  

7.7. Summary 

The permanent magnet generator of the OpenHydro turbine has been successfully optimised with little 

loss in performance for a reduction in rare earth magnetic material. The squirrel cage induction machine 

was identified as a possible alternative to the permanent magnet design, the resultant design has been 

over rated for this application. The lower efficiencies of the induction machine across the turbine speed 

range reduces the possible net income of the generator over a 15 year lifetime. The permanent magnet 

machine has a higher capital cost than the induction machine but achieves good efficiency across the 

turbine speed range. This results in a high net income that offsets the high material costs of the 

permanent magnet generator.  

To conclude, the present induction machine design is not competitive with the optimised permanent 

magnet design and it can be recommended that the permanent magnet design is the best choice for the 

application of a large air gap direct drive tidal turbine.  
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Appendix A: Eccentricity Matlab script 

A1.  Validation model script 

%System Variables 

H = 3048;                %Number of samples 

dx = 2*pi/H;             %Number of steps in radians 

 

%Stator Variables 

nn = 30;                 %Number of turns per coil 

Ns = 36;                 %Number of stator slots 

As = 2*pi/Ns;            %Stator mechanical angle 

Pp = 2;                   %Number of pole pairs 

q = Ns/(3*2*Pp); 

Beta = 2*pi*Pp/Ns;       %Beta is the electrical angle between adjacent stator slots 

Alpha = Beta*1;     %Alpha = Beta*Number of slots short pitched 

%Rotor Variables 

 

Nr = 28;                 %Number of rotor slots 

Ar = 2*pi/Nr;            %Rotor mechanical angle 

BarNo = 1; 

 

%Preallocating Arrays 

count = 1;               %Counter for the arrays 

Coilna  = zeros(1,H); 

Phi2    = zeros(1,H); 

Barna   = zeros(Nr,H); 

BarNa   = zeros(Nr,H); 

NaNb    = zeros(1,H); 

NaNc    = zeros(1,H); 

NbNc    = zeros(1,H); 

Igeff   = zeros(1,H); 

geff    = zeros(1,H); 

AvgR    = zeros(1,H); 

Rr = zeros(Nr+1,Nr+1); 

 

ICoilNaBarna = zeros(Nr,H); 

ICoilNbBarna = zeros(Nr,H); 

ICoilNcBarna = zeros(Nr,H); 

Barna1  = zeros(Nr,H); 

BarNa1  = zeros(Nr,H); 

MBarna  = zeros(Nr,H); 

MBarNa  = zeros(Nr,H); 

IBar    = zeros(Nr,H,Nr); 

 

for phi = 0:dx:2*pi-dx, 

    if((phi>=As)&&(phi<=pi/2)||(phi>pi+As)&&(phi<=3*pi/2)), 

        Coilna(1,count) = +nn; 

    else 

        Coilna(1,count) = 0; 

    end 

    if((phi>0+2*As)&&(phi<=(pi/2+As))||(phi>pi+2*As)&&(phi<=(3*pi/2+As))), 

        Coilna(2,count) = +nn; 

    else 

        Coilna(2,count) = 0; 

    end 

    if((phi>0+3*As)&&(phi<=(pi/2)+(2*As))||(phi>(pi)+(3*As))&&(phi<=(3*pi/2)+(2*As))), 

        Coilna(3,count) = +nn; 

    else 

        Coilna(3,count) = 0; 

    end 
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    if((phi>(0))&&(phi<=(pi/2+As))||(phi>(pi))&&(phi<=(3*pi/2+As))), 

        Coilna(4,count) = +nn; 

    else 

        Coilna(4,count) = 0; 

    end 

    if((phi>(0+As))&&(phi<=(pi/2)+2*As)||(phi>(pi+As))&&(phi<=(3*pi/2+2*As))), 

        Coilna(5,count) = +nn; 

    else 

        Coilna(5,count) = 0; 

    end 

    if((phi>(0)+(2*As))&&(phi<=(pi/2)+3*As)||(phi>(pi)+(2*As))&&(phi<=(3*pi/2)+3*As)), 

        Coilna(6,count) = +nn; 

    else 

        Coilna(6,count) = 0; 

    end 

    Phi2(count) = phi; 

    count = count+1; 

end; 

count = 1; 

%Rotor Turns Function 

label = 'Rotor turns function'; 

disp(label) 

for BarNo = 1:1:Nr, 

    for phi = 0:dx:2*pi-dx, 

        if((phi>(BarNo-1)*Ar)&&(phi<=BarNo*Ar)), 

            Barna(BarNo,count) = 1; 

        else 

            Barna(BarNo,count) = 0; 

        end 

        count = count+1; 

    end; 

    count = 1; 

    BarNa(BarNo,:) = Barna(BarNo,:)-mean(Barna(BarNo,:)); 

end 

 

%-----------------------------------------------------------------------% 

%Modified Winding Function Approach 

U0 = 4*pi*10^-7;                    %Permeability of vacuum  

Rrotor = 0.07;                          %Rotor radius, m 

Rstator = 0.063525019;                   %Stator inner radius, m 

g = 0.000456438;                    %Air gap length, m 

%AvgR = Rs - g/2;                   %Average radius, m 

la = 0.1024128;                     %Axial length, m 

Igeff1 = g^-1; 

 

dg = 1*10^-32;                          % Rotor deviation approximately zero for no eccentricity condition 

 

 

A0 = 1/(g*sqrt(1-dg^2)); 

A1 = 2*(1-sqrt(1-dg^2))/(g*dg*sqrt(1-dg^2)); 

count = 1; 

for phi = 0:dx:2*pi-dx, 

    geff(1,count) = g - dg*g*cos(phi); 

    Igeff(1,count) = A0+A1*cos(phi); 

    AvgR(1,count) = Rstator - geff(1,count)/2;   

    count = count + 1; 

end; 

 

Shift = floor(As*q/dx);%Pp*dx)); 

Coilna1 = Coilna; 

Coilna = sum(Coilna); 

Coilnb = circshift(Coilna,[0 2*Shift]); 

Coilnc = circshift(Coilna,[0 4*Shift]); 
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MCoilna = sum(Coilna.*Igeff)*(2*pi-dx)/(2*pi*H*A0); 

MCoilnb = sum(Coilnb.*Igeff)*(2*pi-dx)/(2*pi*H*A0); 

MCoilnc = sum(Coilnc.*Igeff)*(2*pi-dx)/(2*pi*H*A0); 

 

MCoilNa = Coilna - MCoilna; 

MCoilNb = Coilnb - MCoilnb;%circshift(MCoilNa,[0 2*Shift]); 

MCoilNc = Coilnc  - MCoilnc;%-1*circshift(MCoilNa,[0 Shift]); 

 

for BarNo = 1:1:Nr, 

    MBarna(BarNo,:) = sum(Barna(BarNo,:).*Igeff)*2*pi/(2*pi*H*A0);%*2*pi/H; 

    MBarNa(BarNo,:) = Barna(BarNo,:) - MBarna(BarNo,:); 

end;     

%-----------------------------------------------------------------------% 

%Inductance 

Constant = U0*la; 

 

%Stator Inductance 

Laa = Constant*sum(AvgR.*Igeff.*MCoilNa.*Coilna)*(2*pi-dx)/H; 

Lbb = Constant*sum(AvgR.*Igeff.*MCoilNb.*Coilnb)*(2*pi-dx)/H; 

Lcc = Constant*sum(AvgR.*Igeff.*MCoilNc.*Coilnc)*(2*pi-dx)/H; 

 

Lac = Constant*sum(AvgR.*Igeff.*MCoilNa.*Coilnc)*(2*pi-dx)/H; 

Lab = Constant*sum(AvgR.*Igeff.*MCoilNa.*Coilnb)*(2*pi-dx)/H; 

Lbc = Constant*sum(AvgR.*Igeff.*MCoilNb.*Coilnc)*(2*pi-dx)/H; 

 

Lss(1,1) = Laa; 

Lss(1,2) = Lab; 

Lss(1,3) = Lac; 

Lss(2,1) = Lab; 

Lss(2,2) = Lbb; 

Lss(2,3) = Lbc; 

Lss(3,1) = Lac; 

Lss(3,2) = Lbc; 

Lss(3,3) = Lcc; 

 

 

%Mutual & Rotor Inductance 

count = 1; 

for BarNo = 1:1:Nr, 

    for RotorPos = 0:dx:2*pi-dx, 

        Shift = floor(RotorPos/dx);       

        Barna1(BarNo,:) = circshift(Barna(BarNo,:),[0 Shift]); 

        %BarNa1(BarNo,:) = circshift(MBarNa(BarNo,:),[0 Shift]); 

         

        ICoilNaBarna(BarNo,count) = sum(MCoilNa.*Barna1(BarNo,:).*Igeff.*AvgR)*2*pi/H; 

        ICoilNbBarna(BarNo,count) = sum(MCoilNb.*Barna1(BarNo,:).*Igeff.*AvgR)*2*pi/H; 

        ICoilNcBarna(BarNo,count) = sum(MCoilNc.*Barna1(BarNo,:).*Igeff.*AvgR)*2*pi/H; 

            

        %IBar(BarNo,count) = sum(BarNa1(BarNo,:).*Barna1(BarNo,:).*Igeff.*AvgR)*2*pi/H; 

        count = count + 1; 

    end; 

    count = 1; 

end; 

 

Lar = Constant.*ICoilNaBarna; 

Lbr = Constant.*ICoilNbBarna; 

Lcr = Constant.*ICoilNcBarna; 

Lsr(:,:,1) =    Lar; 

Lsr(:,:,2) =    Lbr; 

Lsr(:,:,3) =    Lcr; 
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Barna1 = zeros(Nr,H); 

for BarNoZ = 1:1:Nr, 

    for BarNo = 1:1:Nr, 

       for RotorPos = 0:dx:2*pi-dx, 

            Shift = floor(RotorPos/dx);  

            Barna1(BarNo,:) = circshift(Barna(BarNo,:),[0 Shift]); 

            BarNa1(BarNoZ,:) = circshift(BarNa(BarNoZ,:),[0 Shift]); 

            IBar(BarNo,count,BarNoZ) = sum(BarNa1(BarNoZ,:).*Barna1(BarNo,:).*Igeff.*AvgR)*2*pi/H;  

            count = count + 1; 

        end; 

        count = 1; 

    end; 

end;     

Lbar = Constant.*IBar; 

 

%-----------------------------------------------------------------------% 

%Voltage and Current 

 

f = 60; 

H1 = 128;                   % Number of samples 

dX = (1/f)/H1;                %Timestep 

CycleNo = 30; 

S = 0.01;               %Slip 

phi = 0:dX:CycleNo*(1/f); 

Va = 294*cos((2*pi*f*phi)-(2*pi/3)); 

Vb = 294*cos((2*pi*f*phi)+(2*pi/3)); 

Vc = 294*cos((2*pi*f*phi)); 

Vs =[Va;Vb;Vc]; 

 

Vr = zeros(Nr+1,CycleNo*H1+1);  %Preallocating array 

 

V = [Vs;Vr]; 

AngVel = 2*pi*(f/Pp);               %Synchronous speed in Rad/S 

 

 

Kps = cos(Alpha/2); 

Kds = (sin(q*Beta/2))/(q*sin(Beta/2)); 

Kws = Kps * Kds; 

 

Ke = 0.5/(Kws*90); 

Ki = (3*Kws*90)/(Nr*0.5*1); 

 

 

R1 = 3.5332;                      %Stator phase resistance, ohms 

Rb = 68.34*10^-6;            %Rotor bar resistance, ohms 

Re = 1.56*10^-6;              %End ring resistance, ohms 

 

Ls = 0.028;                          %Stator leakage inductance, H 

Lb = 0.28*10^-6;              %Rotor bar leakage inductance, H 

Le = 0.03*10^-6 ;             %End ring leakage inductance, H 

 

%Rotor bar resistance matrix 

for BarNoZ = 1:1:Nr+1, 

    for BarNo = 1:1:Nr+1, 

        if (BarNo == BarNoZ),   

                Res = 2*(Rb + Re); 

        elseif (BarNo == BarNoZ+1||BarNo == BarNoZ-1||BarNo == Nr && BarNoZ 

==1||BarNo==1&&BarNoZ==Nr), 

            Res = -Rb; 

        else 

            Res = 0; 

        end; 
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 if (BarNo == Nr+1||BarNoZ==Nr+1), 

            Res = -Re; 

        end; 

 

        if(BarNo== Nr+1&&BarNoZ == Nr+1), 

                Res = Nr*Re; 

        end; 

         

        Rr(BarNoZ, BarNo) = Res;   %Rotor resistance  

             

    end; 

end;     

 

%Rotor inductance matrix 

Lrr = zeros(Nr,H,Nr);    % Preallocating array 

 

TempMatrix = zeros(1,Nr); 

AddMatrix =zeros(Nr,Nr); 

 

TempMatrix(1,1) = 2*(Lb+Le); 

TempMatrix(1,2) = -Lb; 

TempMatrix(1,end) = -Lb; 

AddMatrix(1,:) = TempMatrix; 

for Count = 2:1:Nr, 

    AddMatrix(Count,:) = circshift(TempMatrix,[0,Count]); 

end;  

 

for Count = 1:1:H,    

    Lrr(:,Count,:) =  squeeze(Lbar(:,Count,:)) + AddMatrix; 

end; 

TempMatrix = zeros(1,H,Nr); 

TempMatrix(1,:,:) = Le; 

Lrr = [Lbar;TempMatrix]; 

Lrr(:,:,end+1) =  Le; 

Lrr(end,:,end) = Nr*Le; 

 

Rs = [R1 0 0;0 R1 0; 0 0 R1]; 

 

dLsr = diff(Lsr,1,2)/dx;                       %Differentiation of Lsr 

dLsr(:,end+1,:) = 0; 

 

Rrref = (Ki/Ke).*Rr; 

Lrrref = (Ki/Ke).*Lrr; 
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A2.  60 Segment script 

%System Variables 
SegNum = 60;                             %Number of segments 
SegAngle = 2*pi/SegNum;      %Segment angle in rads 
H1 =256;                                    %Number of samples per segment 
dx = SegAngle/H1;                     %Number of steps in rads per segment 
H = H1*SegNum;                        %Number of samples  
  

  
%Stator Variables 
nn = 32;                                      %Number of turns per coil 
Ns = 720;                                    %Number of stator slots 
As = 2*pi/Ns;                            %Stator slot mechanical angle 
Pp = 60;                                       %Number of pole pairs 
q = Ns/(3*2*Pp);                       %Number of slots per phase per pole pair 
Beta = 2*pi*Pp/Ns;                   %Beta is the electrical angle between adjacent stator slots 
Alpha = Beta*1;                         %Alpha = Beta*Number of slots short pitched 
m = 3;                                         %Number of phases 
  
%Rotor Variables 
  
Nr = 1020;                  %Number of rotor slots 
Ar = 2*pi/Nr;             %Rotor mechanical angle 
BarNo = 1; 
  
%Preallocating Arrays 
count = 1;                %Counter for the arrays 
Coilna  = zeros(2,H); 
Coilna1  = zeros(2,H1); 
Phi2    = zeros(1,H); 
Barna   = zeros(Nr,H); 
BarNa   = zeros(Nr,H); 
NaNb    = zeros(1,H); 
NaNc    = zeros(1,H); 
NbNc    = zeros(1,H); 
Igeff   = zeros(1,H); 
geff    = zeros(1,H); 
AvgR    = zeros(1,H); 
Rr          = zeros(Nr+1,Nr+1); 
  
ICoilNaBarna = zeros(Nr,H); 
ICoilNbBarna = zeros(Nr,H); 
ICoilNcBarna = zeros(Nr,H); 
Barna1  = zeros(Nr,H); 
BarNa1  = zeros(Nr,H); 
MBarna  = zeros(Nr,H); 
MBarNa  = zeros(Nr,H); 
%IBar    = zeros(Nr,H,Nr); 
  
%Stator Turns Function 
for phi = 0:dx:SegAngle-dx, 
    if((phi>=As)&&(phi<=As*q*m)),%||(phi>pi+As)&&(phi<=3*pi/2)), 
        Coilna1(1,count) = +nn; 
    else 
        Coilna1(1,count) = 0; 
    end 
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    if((phi>0+2*As)&&(phi<=(As*q*m+As))),%||(phi>pi+2*As)&&(phi<=(3*pi/2+As))), 
        Coilna1(2,count) = +nn; 
    else 
        Coilna1(2,count) = 0; 
    end 
    count = count+1; 
end; 
  
count = 1; 
  
%Rotor Turns Function 
for BarNo = 1:1:Nr, 
    for phi = 0:dx:2*pi-dx, 
        if((phi>(BarNo-1)*Ar)&&(phi<=BarNo*Ar)), 
            Barna(BarNo,count) = 1; 
        else 
            Barna(BarNo,count) = 0; 
        end 
        count = count+1; 
    end; 
    count = 1; 
    BarNa(BarNo,:) = Barna(BarNo,:)-mean(Barna(BarNo,:)); 
end 
  
%-----------------------------------------------------------------------% 
%Modified Winding Function Approach 
U0 = 4*pi*10^-7;                    %Permeability of vacuum  
Rrotor = 7.124;                           %Rotor radius, m 
Rstator = 7.136;                    %Stator inner radius, m 
g = 0.012;                      %Air gap length, m 
%AvgR = Rs - g/2;                    %Average radius, m 
la = 0.4482;                      %Axial length, m 
Igeff1 = g^-1; 
  
dg = 1*10^-32;    %Rotor deviation approximately zero for no eccentricity condition 
  
A0 = 1/(g*sqrt(1-dg^2)); 
A1 = 2*(1-sqrt(1-dg^2))/(g*dg*sqrt(1-dg^2)); 
count = 1; 
for phi = 0:dx:2*pi-dx, 
    geff(1,count) = g - dg*g*cos(phi); 
    Igeff(1,count) = A0+A1*cos(phi); 
    AvgR(1,count) = Rstator - geff(1,count)/2;   
    count = count + 1; 
end; 
  
Shift = floor(As*q/dx);%Pp*dx)); 

 
Coilna = repmat(Coilna1,1,SegNum); 
Coilna = sum(Coilna); 
Coilnb = circshift(Coilna,[0 2*Shift]); 
Coilnc = circshift(Coilna,[0 4*Shift]); 
  
MCoilna = sum(Coilna.*Igeff)*(2*pi-dx)/(2*pi*H*A0); 
MCoilnb = sum(Coilnb.*Igeff)*(2*pi-dx)/(2*pi*H*A0); 
MCoilnc = sum(Coilnc.*Igeff)*(2*pi-dx)/(2*pi*H*A0); 



Appendix A: Eccentricity Matlab script 

107 | P a g e  

  
MCoilNa = Coilna - MCoilna; 
MCoilNb = Coilnb - MCoilnb;%circshift(MCoilNa,[0 2*Shift]); 
MCoilNc = Coilnc  - MCoilnc;%-1*circshift(MCoilNa,[0 Shift]); 
  
for BarNo = 1:1:Nr, 
    MBarna(BarNo,:) = sum(Barna(BarNo,:).*Igeff)*2*pi/(2*pi*H*A0);%*2*pi/H; 
    MBarNa(BarNo,:) = Barna(BarNo,:) - MBarna(BarNo,:); 
end;     
 

A3.  60 Segment inductance calculations script 

Constant = U0*la; 
  
%Stator Inductance 
Laa = Constant*sum(AvgR.*Igeff.*MCoilNa.*Coilna)*(2*pi-dx)/H; 
Lbb = Constant*sum(AvgR.*Igeff.*MCoilNb.*Coilnb)*(2*pi-dx)/H; 
Lcc = Constant*sum(AvgR.*Igeff.*MCoilNc.*Coilnc)*(2*pi-dx)/H; 
  
Lac = Constant*sum(AvgR.*Igeff.*MCoilNa.*Coilnc)*(2*pi-dx)/H; 
Lab = Constant*sum(AvgR.*Igeff.*MCoilNa.*Coilnb)*(2*pi-dx)/H; 
Lbc = Constant*sum(AvgR.*Igeff.*MCoilNb.*Coilnc)*(2*pi-dx)/H; 
  
Lss(1,1) = Laa; 
Lss(1,2) = Lab; 
Lss(1,3) = Lac; 
Lss(2,1) = Lab; 
Lss(2,2) = Lbb; 
Lss(2,3) = Lbc; 
Lss(3,1) = Lac; 
Lss(3,2) = Lbc; 
Lss(3,3) = Lcc; 
 
%Mutual & Rotor Inductance 
count = 1; 
for BarNo = 1:1:Nr, 
    for RotorPos = 0:dx:2*pi-dx, 
        Shift = floor(RotorPos/dx);       
        Barna1(BarNo,:) = circshift(Barna(BarNo,:),[0 Shift]); 
                 
        ICoilNaBarna(BarNo,count) = sum(MCoilNa.*Barna1(BarNo,:).*Igeff.*AvgR)*2*pi/H; 
        ICoilNbBarna(BarNo,count) = sum(MCoilNb.*Barna1(BarNo,:).*Igeff.*AvgR)*2*pi/H; 
        ICoilNcBarna(BarNo,count) = sum(MCoilNc.*Barna1(BarNo,:).*Igeff.*AvgR)*2*pi/H; 
            
        count = count + 1; 
    end; 
    count = 1; 
end; 
  
Lar = Constant.*ICoilNaBarna; 
Lbr = Constant.*ICoilNbBarna; 
Lcr = Constant.*ICoilNcBarna; 
Lsr(:,:,1) =    Lar; 
Lsr(:,:,2) =    Lbr; 
Lsr(:,:,3) =    Lcr; 
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A4.  Current and torque calculation script 

clearvars  Index1 Array RotorElecAngle RotorAngVel RotateElec; 

clearvars A B dLsrsupp I Te Tetemp;  

 

%Initialisation States 

f = 55; 

T = 1/(2*f); 

H1 =128;                       % Number of samples 

TimeStep = (T)/H1;              %Timestep in seconds 

CycleNo = 60; 

  

C = eye(3+Nr+1,3+Nr+1); 

D = zeros(3+Nr+2,3+Nr+1); 

  

J = 0.02;                    %Moment of inertia, kg.m^2 

b = 0.000124;            %Coefficient of friction 

c = 6;                         %Constant of Tm  

 

%Voltage Calculations% 

t1 = 0:TimeStep:CycleNo*T; 

Va = 230*cos((2*pi*f*t1)-(2*pi/3)); 

Vb = 230*cos((2*pi*f*t1)+(2*pi/3)); 

Vc = 230*cos((2*pi*f*t1)); 

Vs =[Va;Vb;Vc]; 

  

Vr = zeros(Nr+1,CycleNo*H1+1); 

V= [Vs;Vr]; 

 

%Prealloctaing Arrays 

I = zeros(3+Nr+1,CycleNo*H1+1);   %Initial states 

Itemp = zeros(3+Nr+1,CycleNo*H1+1); 

Te = zeros(1,CycleNo*H1); 

RotorAngVel = zeros(1,CycleNo*H1); 

 

for t = 0:TimeStep:CycleNo*TimeStep*H1-TimeStep, 

    

    Index1 = round(t/TimeStep)+1; 

   Array(1,Index1) = RotorElecAngle;  

   RotorElecAngle =RotorElecAngle - 2*pi*floor(RotorElecAngle /(2*pi)); 

   RotateElec = fix(RotorElecAngle/dx) +1; 

  

    [A, B, dLsrsupp] = 

InductanceMatrix(t,Lss,dLsr,Lsr,Lrr,RotorAngVel(1,Index1),RotateElec,Rs,Rr); 

  

%Current calculations 

      

   Itemp(:,Index1) = B\V(:,Index1)-(B\A)*I(:,Index1); 

   

   [I(:,Index1+1) y ~] = Integra(Index1, TimeStep, Itemp(:,1:Index1)); 

     

   Te(1,Index1+1) = 

0.5.*((I(1:3,Index1)'*dLsrsupp')*I(4:end,Index1)+(I(4:end,Index1)'*dLsrsupp)*I(1:3,Index1)); 

   Tetemp = (1/J).*Te(1,1:Index1); 

    RotorAngVel(1,Index1+1) = (Integra(Index1, TimeStep, (Tetemp))); 
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    RotorElecAngle = Integra(Index1,TimeStep,RotorAngVel(1,1:Index1)); 

   

end; 

 

A5. Functions 

A5i. Integra function 

function [Y1,y,x] = Integra(Index1, TimeStep, X) 
x(:,1) = X(:,1); 
y(:,1) = x(:,1); 
  
for n = 1:1:Index1-1, 
        y(:,n) = x(:,n); 
        x(:,n+1) = x(:,n) + TimeStep.*X(:,n);   
end 
    Y1 = y(:,end); 
end 

A5ii. InductanceMatrix function 

function [A, B, dLsrsupp] = InductanceMatrix(t,Lss,dLsr,Lsr,Lrr,Wr,RotateElec,Rs,Rr) 
Ke = 0.0059; 
Ki = 18.2291; 
C = eye(32,32); 
D = zeros(32,32); 
if(RotateElec ==89), 
   RotateElec = 90; 
end; 
    dLsrsupp =[squeeze(dLsr(:,RotateElec,:)); squeeze(dLsr(1,RotateElec,:))'] ; 
    Lsrsupp = [squeeze(Lsr(:,RotateElec,:));zeros(1,3)]; 
    Lrrrefsupp = squeeze(Lrr(:,RotateElec,:)); 
     
    L =  [Lss Lsrsupp'; Lsrsupp (Ki/Ke).*Lrrrefsupp]; 
    R = [Rs zeros(3,29);zeros(29,3) (Ki/Ke).*Rr]; 
     
    Z1 = Wr.*dLsrsupp'; 
    Z2 = Wr.*dLsrsupp; 
    Z3 =  Wr.*Lrrrefsupp; 
    dL = [zeros(3,3) Z1; Z2 Z3]; 
     
    A = (R+dL); 
    B = L; 
    
end   
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