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Abstract 

Estrogens are emerging contaminants classified as endocrine disrupting compounds (EDC). 

They interrupt ecological systems by altering the sex phenotype of the aquatic life, even at very 

low concentrations (part per trillion). Estrogens are hydrophobic compounds, which suggests 

that other hydrophobic materials and microorganisms could act as potential adsorbents. 

Consequently, several hydrophobic bacteria were evaluated as estrogen adsorbents as they are 

a sustainable resource, reproduce easily, and comprise high biodiversity. 

The aim was to isolate an array of hydrophobic bacterial strains that could adsorb the estrogens 

to a level that had no health and ecological implication. The relationship between the bacterial 

hydrophobicity and their performance in removing estrogens was investigated. Commercial 

strains of Rhodococcus erythropolis were adapted with n-hexadecane and hexane growth 

substrates, and new bacterial species were isolated from the diesel-contaminated soil through a 

soil-enrichment process.  

During the adaptation process using n-hexadecane substrate, R. erythropolis DSM311 showed 

a 6.70 % increase in cell surface hydrophobicity (CSH) compared to the parent strain. Six new 

strains were isolated, including the Tsukamurella sp. SD2-1, which showed the highest 

hydrophobicity at 91.33 %. Preliminary studies showed SD2-1 strain had the highest estrone 

removal efficiency (63.00 %) of the tested strains. A bacterial growth phase hydrophobicity 

study revealed that the stationary phase SD2-1 cells (collected at day 10) had higher CSH and 

produced higher estrone removal (95.30 %) compared to the exponential phase cells (collected 

at day 5). Longer incubation times (i.e. 15 and 20 days) gave no significant improvement to the 

CSH and estrone removal performance.  

Overall, the adaptation and soil-enrichment process produced bacterial strains with higher 

hydrophobicity and estrone adsorption capacity than both Escherichia coli (control) and 

commercial strains (R. erythropolis), removing estrone down to 1.78 – 9.31 ng.L-1 , very near 

to the predicted no-effect (PNEC) concentration of 3.6 ng.L-1  for estrone reported by the 

European Commission.  
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Chapter 1 Introduction 

1.1 Background 

Endocrine disrupting compounds (EDC) have been identified as an emerging contaminants due 

to their harmful effects on humans and animals. It is suspected that they are associated with the 

alteration of reproductive functions in males and females even at effective concentrations of 

parts per trillion. Estrogen is a hormonal substance which is suspected to generate the adverse 

effect on the endocrine system similar to an EDC. Unfortunately, inefficient wastewater 

treatment processes can lead to an accumulation of estrogen in effluents which potentially could 

pass into surface waters. This undesirable scenario has increased enthusiasm among researchers 

for improving techniques and exploring possibilities to enhance the efficiency of their removal 

and to ensure that safe water supplies reach consumers.  

An appropriate method for pollutant removal is usually evaluated by assessing their key 

physicochemical characteristic (Hamid and Eskicioglu, 2012), which in the context of estrogens 

would be the water solubility index. Most estrogen compounds, namely the natural estrogens 

of estrone, estradiol, estriol and the synthetic estrogen ethinylestradiol, have been identified as 

being hydrophobic substances due to their low water solubility index (Koh et al., 2008; Racz 

and Goel, 2010; Thomas and Potter, 2013). However, attribution of hydrophobicity creates 

challenges in ensuring the complete removal of estrogen via wastewater treatment. Equal or 

more hydrophobic materials are required to establish binding attractions with the estrogen 

molecules, and therefore the estrogen can be extracted from the water (Kwon et al., 2006). 

Nevertheless, the efficient removal of estrogen is not normally achieved through  conventional 

wastewater treatment (Bergman et al., 2012) compared to a treatment plant which is 

additionally equipped with an advanced treatment system.  

Poor estrogen removal is observed because conventional wastewater treatment was not 

originally designed for estrogen removal (Hamid and Eskicioglu, 2012; Cook et al., 2016). 

Most treatment systems were designed according to wastewater treatment regulations that 

considered standard parameters such as concentrations of organic matter, nutrients and 

pathogens (Cook et al., 2016) that are monitored at the level of parts per million. Conversely, 

estrogens are typically present in wastewater at concentrations a million-fold lower, at part per 

trillion. Therefore, they were not previously detected and were not considered as a pollutant of 

concern in the regulations.  
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1.2 Significance of the study 

Adsorption and biodegradation are common advanced treatments that have been regularly 

adopted in tertiary treatment for the removal of estrogens from wastewater. An adsorption 

process is a promising option for estrogen removal due to its hydrophobic nature, a prominent 

characteristic that could be exploited in creating attraction if exposed to other hydrophobic 

materials. Activated carbon (AC) is a well-known commercial adsorbent effective for the 

physical adsorption of various polar and non-polar compounds, due to its microporous structure 

which provides a high surface area of binding sites. It has also been reported as a competent 

adsorbent for non-polar hormonal compounds, including estrogens (Rowsell et al., 2009; 

Hartmann et al., 2014; Hemidouche et al., 2017). Nevertheless, alternative low-cost materials 

need to be discovered due to the high production costs and sustainability issues with commercial 

AC.  

Microorganisms, and specifically bacteria are currently receiving a lot of attention in estrogen 

removal studies, since bacteria are a reproducible resource and can be obtained conveniently 

through a controlled cultivation process. However, the bacteria that may be useful for this 

adsorption process must have hydrophobic characteristics, so that they could interact with the 

hydrophobic estrogens, bind together and be extracted from water. In making use of the 

hydrophobic property, the aim of this study was to acquire hydrophobic bacterial species from 

the adaptation of commercial pure strains, and to isolate a new hydrophobic bacterial species 

from hydrophobic diesel-contaminated soils through an enrichment technique. Key elements 

involved in the adaptation and isolation process are the hydrocarbon growth substrates, which 

are supplied as the main carbon source for the bacteria to grow into hydrophobic cells. In 

addition, this research investigates the degree of estrogen removal contributed by both the 

adsorption and biodegradation processes of the bacteria. 

The process of adapting bacteria using hydrocarbon substrates is very similar to the common 

approaches employed with hydrocarbon-adapting bacteria for the bioremediation process of 

hydrocarbon-contaminated environments (de Carvalho et al., 2009). Meanwhile, the process of 

estrogen removal using an adsorption method is also commonly conducted in previous research. 

However, to the best of the present author’s knowledge, no research has yet been carried out 

using a combination of these two processes. Furthermore, none of the hydrophobic bacterial 

cells obtained from hydrocarbon-adapted bacteria have previously been utilised as adsorbents 

in the hydrophobic estrogen removal process. The hydrophobic bacterial strains adapted in this 

study are expected to be compatible adsorbents in removing estrogen from the wastewater. 

Details of the aims and objectives of the study are explained in the next section. 
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1.3 Aim and Objectives 

The aim of this study is to explore the potential of using hydrophobic bacteria as sustainable 

adsorbents for the removal of estrogenic compounds during wastewater treatment.  

The research objectives were developed according to the aim of the study. The objectives are 

as follows: 

1. To produce hydrophobic biomass of pure bacterial strains and soil-isolates by selective 

growth on minimal media supplemented with different hydrocarbon growth substrates. 

2. To determine the cell surface hydrophobicity (CSH) characteristics during batch 

cultivation of the bacteria. 

3. To investigate the correlation between the CSH values of the bacterial strains and 

estrogen adsorption performance in a treatment process, and optimize the estrogen 

removal performance using batch reactors. 

4. To enhance the estrone removal performance using the fed-batch cultivation of bacterial 

biomass production, and to gain a better understanding of the effect of a longer 

incubation period on bacterial adaptation of cell surface hydrophobicity (CSH)  and 

estrogen adsorption efficiency.  

5. To compare the performance of the thermally pre-treated hydrophobic SD2-1 bacterial 

strains with commercial adsorbents, activated carbon and zeolite, for their capacity to 

remove E1 from a synthetic wastewater. 
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1.4 Hypotheses 

The alternative hypotheses to be tested throughout the study are as follows: 

1. Increase in the hydrocarbon uptake capability allows for the better growth of bacteria. 

2. The pure strains of R. erythropolis, and soil-isolates, can adapt and grow in minimal 

media containing hydrocarbon substrates. 

3. The amount of substrate used in the cultivation significantly affects the bacterial growth 

and biomass production. 

4. The adapted and new isolated bacterial strains acquire higher cell surface 

hydrophobicity (CSH) compared to their parent strains after the adaptation process.  

5. The cell surface hydrophobicity (CSH) of bacterial strains increases throughout the 

bacterial growth cycle, particularly from the exponential to the stationary phases. 

6. The cell surface hydrophobicity (CSH) of the bacterial strains is correlated with their 

estrogen removal efficiency. 

7. The degree of estrogen adsorption from wastewater is proportional to quantity of 

bacterial biomass used. 

8. The performance of estrogen adsorption in batch reactors increases with the contact time 

applied. 

9. The adsorption of estrogen onto bacterial biomass is affected by the stage of bacterial 

growth phase that the biomass was harvested. 

10. The hydrophobic bacterial cell adsorbents are capable of removing estrone from 

wastewater below the relevant environmental quality standard values. 

11. Fed-batch bacterial cultivation for periods exceeding 10 days has a significant effect on 

cell cell surface hydrophobicity (CSH) level, and the performance of the bacterial 

biomass for estrogen adsorption. 

12. The removal of estrogen from wastewater using hydrophobic-adapted SD2-1 bacterial 

adsorbents is a viable alternative removal technology in comparison with activated 

carbon adsorption.  

13. Temperature of thermal pre-treatment affects the E1 adsorbing performance of SD2-1 

bacterial adsorbents. 
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1.5 Scope of the research 

This research was designed to investigate and find answers to the aim and objectives planned 

in Section 1.3. The experimental work was divided into five stages which are: 1) a hydrophobic 

adaptation of bacteria; 2) the Characterisation of the isolated and adapted bacterial strains; 3) 

the Estrogen removal in batch reactor; 4) Fed-batch culture bacteria for estrone removal and 5) 

Comparison of the estrone removal efficiency of bacterial and commercial adsorbents 

In Stage 1, the biological studies carried out involved the adaptation of a pure strain of the 

Rhodococcus erythropolis bacterium with different hydrocarbon substrates, and the isolation of 

hydrophobic bacterial species from diesel-contaminated soil (Section 3.2). Stage 2 involved the 

identification of isolated bacterial species, and the further molecular and physico-chemical 

characterisation of the adapted bacteria  (Section 3.3). The  bacteria isolated and adapted in 

Stage 1 were then used as candidate adsorbents and degrader microorganisms in the adaptation 

and biodegradation experiments in Stage 3. Throughout this stage, process of removal of 

estrogen was investigated extensively in order to determine which of the processes of 

biodegradation and adsorption was predominant, the optimisation of the treatment process, and 

the development of a quantitative analytical method for the measurement of estrogens utilising 

HPLC-ECD (electrochemical detection) detection instruments (Section 3.4).  

The optimum conditions, as determined in Stage 3, were adopted in Stage 4, in which the 

bacteria were cultured in fed-batch reactors with feeding every 5 days for up to 20 days, and 

the bacterial biomass was then utilised to investigate the effect of this culture method on 

estrogen removal efficiency (Section 3.5). Finally, Stage 5 involves comparison of the 

efficiency of estrone removal by the bacterial strain and commercial adsorbents, desorption 

process and adsorption isotherm study (Section 3.6).  
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Chapter 2 Literature review 

Wastewater can be a combination of used water from a variety of point-sources that typically 

include domestic, industrial and storm sewage produced by communities in residential, 

industrial or commercial areas. It may carry many types of pollutant considering it was 

produced from different sources and activities that without proper treatment can potentially 

have adverse effects on humans as well as the environment. Conventional wastewater treatment 

systems are established to create ideal conditions for the removal of pollutants and ultimately 

to ensure that safe final effluent can be discharged back to the environment. 

The quality of treated wastewater from conventional wastewater treatment is monitored 

according to regulated standards for effluent, including parameters such as biochemical oxygen 

demand (BOD), chemical oxygen demand (COD), the nutrients phosphorous and nitrogen, total 

suspended solids (TSS), pathogen indicators, and pH. However, recent advances in chemical 

detection systems have revealed micropollutants in wastewater at extremely low concentrations 

of parts per trillion that were previously overlooked (Metcalf and Eddy, 2003). The 

micropollutants, including emerging contaminants, require more efficient removal techniques 

beyond the scope of conventional wastewater treatment (Barceló and Petrovic, 2008; Cook et 

al., 2016). This has increased the significance of advanced treatment in the wastewater 

treatment process because these emerging contaminants, specifically endocrine disrupting 

compounds (EDC), can alter the genetic and physiological traits of the aquatic populations, 

even at very low concentrations, and affect their reproductive systems  (Adeel et al., 2016). 

2.1 Regulations  

Estrogens are hormonal pollutants recognised as EDC due to their negative effect of 

interrupting the functions of endocrine glands, which are organs that synthesize hormones in 

the circulatory systems of humans and animals. They have been classified as micropollutants 

when present in the environment in soil, wastewater or water bodies. As mentioned in Section 

Chapter 1, estrogens have not been listed as a monitored parameter in wastewater treatment 

regulations due to their typically low concentrations. Nevertheless, given the harmful effect 

these compounds can cause, many environmental agencies have started to develop guidelines 

and scientific reports related to the adverse implications of EDC (including estrogen) and to 

define acceptable threshold levels.  

2.1.1 Guidelines of EQS and PNEC level  

In England and Wales, the monitoring of the emerging contaminants (ECs), including 

estrogens, has been managed by the European Commission, in which a watch lists of emerging 
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contaminants of concern were identified in the Water Framework Directive (European 

Commission, 2016). An Environmental Quality Standard (EQS) level of estrogens was derived 

from information on the predicted no-effect concentration (PNEC) made by the researchers and 

agencies. Usually, in monitoring levels of emerging contaminants, EQS is classified as both the 

long-term effect concentration through an Annual Average concentration (AA-EQS), and a 

short-term effect level, the Maximum Acceptable Concentration (MAC-EQS). The AA-EQS 

was derived from a monthly monitoring of the adverse effect concentration towards aquatic 

ecosystems including water, sediment and biotic. Presence of 17α-ethinylestradiol  (EE2) in 

water is considered to be safe at a concentration below 0.1 ng.L-1 by AA-EQS monitoring 

(European Commission, 2016) (Table 2.1). Moreover, 17β-estradiol (E2) which usually 

monitored together with estrone (E1) (as E2 can potentially be converted to E1) has been 

recommended safe when present at a level below 0.4 ng.L-1 (Section 2.2.1). However, no EQS 

level has been established for E1, hence the PNEC of 3.6 ng.L-1 was recommended to be used 

in place of a defined  EQS (European Commission, 2016). Any concentration lower than these 

AA-EQS and PNEC values was considered safe and protected against the occurrences of 

chronic effect (Lepper, 2005). Furthermore, higher threshold level for MAC-EQS usually set 

because any exposure at this concentration may lead to acute toxicity effect to the aquatic life. 

However, the acute effects for E1, E2 or EE2 have been considered not to be significant, and 

therefore no MAC-EQS has been derived for these compounds (European Commission, 2011). 

Table 2.1 The proposed monitoring levels of estrogens in water (European Commission, 2016). 

Substance Environmental quality standard (EQS) (ng.L-1) Additional info by 
EC 

Long-term exposure           
(AA-EQS) 

Short-term exposure  
(MAC-EQS) 

Estrone (E1) No established value Not relevant PNEC of 3.6 ng.L-1 
was recommended 

17β-estradiol (E2) 0.4 Not relevant - 

17α-ethinylestradiol  
(EE2) 

0.1 Not relevant - 

In addition, the World Health Organization (WHO) and United Nations Environment Program 

(UNEP) have also published EDC guidelines in 2012, in which E2 and E1 were classified as 

natural hormones that lead to the feminisation of fish populations (Bergman et al., 2012), 

without addressing any limit of concentration for adverse effects.  
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2.2 Estrogens in wastewater 

The removal of the main pollution load of wastewater, namely grease, suspended solids and 

some organic matter, can be accomplished through primary treatment, leaving the remaining 

suspended solids and volatile suspended solids and organic matter to be further removed in the 

secondary treatment of conventional wastewater (Metcalf et al., 2003). Nevertheless, in many 

cases the effluent collected after the secondary treatment process will contain emerging 

contaminants (ECs) which could ultimately pass into the water body without additional tertiary 

treatment. 

2.2.1 Detection of estrogens in conventional wastewater treatment plants 

With regard to the inefficiency of estrogen removal during conventional treatment, estrogens 

have been detected as being present in the effluents from many wastewater treatment plants 

around the world. Table 2.2 lists some of the data on estrogen content of conventional 

wastewater treatment effluents. The Environment Agency of the United Kingdom detected the 

presence of estrogen compounds in the final effluents of sewage treatment plants around the 

UK, notably E1, E2 and EE2  (1 - 100, 1 – 22, and 1 - 3.2 ng.L-1, respectively), and all were at  

higher concentrations than the EQS and PNEC (Gross-Sorokin et al., 2004).  In addition, an 

average of 20 ng.L-1 of E1 was found in the final effluents from 25 treatment plants, well above 

its PNEC of 3.6 ng.L-1. Four years later, lower amounts of estrogen were detected in effluents 

from activated sludge treatment plants in urban areas in the UK Midlands compared to the 

amounts found by Gross-Sorokin et al. (2004), with concentrations detected being 22.4, 1.3, 

and 1.5 ng.L-1 for E1, E2 and EE2, respectively (Ifelebuegu, 2011).  These are also above the 

recommended EQS and PNEC levels (Section 2.1.1). 

E1 was also found to be present at the highest levels compared to other estrogens in the effluent 

of domestic treatment plant treating the wastewater produced by a community of approximately 

30,000 people in Japan (Nakada et al., 2006). Levels of 22.2 - 154 ng.L-1 of E1 was found in 

this effluent, but no E2 and EE2 was detected, which was assumed to be due to successful 

removal during the treatment process. Moreover, Pessoa et al. (2014) measured the amounts of 

estrogens in wastewater treatment plants in Brazil, and found very high amounts of estrogens 

present in effluents of five treatment plants of mainly contained domestic sewage. E1 had the 

highest concentration among all estrogens (1 - 2080 ng.L-1), compared to 1 – 387 for E2, and 1 

- 176 ng.L-1 for EE2. This extremely high level of E1 was suspected to occur due to low rainfall 

and high temperatures 25 – 29 °C during the sampling period that consequently reduced the 

dilution factor of the wastewater. These levels are considered to be very serious by the present 
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author, as the estrogens are present in effluents at levels of over hundred times higher than their 

EQS and PNECs, and consequently may carry serious risks to human health and aquatic life. 

In a more recent study in South Africa, moderate amounts of 3 – 78, 4 – 107, and 1 - 8 ng.L-1 

for E1, E2 and EE2, respectively, were found in the final effluent of wastewater treatment plant 

treating domestic sewage from 300,000 people, including storm water (Manickum and John, 

2014). The amounts present in this wastewater treatment plant however, were still above the 

PNEC for all of the estrogens. Similar concentrations of estrogens were found in a wastewater 

treatment plant in Switzerland, namely  71 - 154, 91, and 18 ng.L-1 for E1, E2 and EE2, 

respectively (Margot et al., 2013b). 

Overall, the amount of estrogens present in effluents often exceeded the PNEC level, except for 

the treatment plants in Japan in which E2 and EE2 were not detected. These findings indicate 

that most conventional treatment systems, both conventional activated sludge (CAS)  (Nakada 

et al., 2006; Ifelebuegu, 2011; Margot et al., 2013a; Manickum and John, 2014) and waste 

stabilization ponds (Pessoa et al., 2014) were inefficient in removing estrogen to the 

recommended safe levels (limited to these case studies only).  

In addition, based on these case studies, E1 had the highest concentration in all of the treatment 

plants, at average concentrations of 182.62 ng.L-1 in influents and 88.51 ng.L-1 in effluents 

(Table 2.2). For the purpose of conducting research into estrogen removal, a slightly higher 

level such as 200 ng.L-1 could be a realistic initial concentration for these estrogens. 
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Table 2.2. Levels of estrogens concentration detected in effluent of conventional wastewater treatment plants. 

WWTP 
location 

Year of 
sampling 
conducted 

Concentration of estrogen (ng.L-1 ) Detection 
instrument 

References e 

Influent Effluent 

E1 E2 EE2 E1 E2 EE2 

UK March 2002 NRb NRb NRb 1.0 - 100.0 
Mean: 20.0 

1.0 - 22.0 
Mean: NR 

1.0 - 3.2 
Mean: NR 

SPE and GC-
MS 

1 

Japan January  and 
July 2004 

15.1  -  18.2 
Mean: 16.6 

3.9  -  23.4 
Mean:13.6 

NDc 

Mean: 0 
22.2 - 154.0 
Mean:88.1 

NDc - 7.0 
Mean: 3.5 

NDc 

Mean: 0 
SPE and 
HPLC 

LC/MS/MS 

2 

UK 2008 109.1 - 
116.1 
Mean: 112.5 

74.4 - 82.6 
Mean: 78.5 

1.1 - 1.5 
Mean: 1.3 

14.5 - 22.4 
Mean: 18.45 

1.3 (± 0.6) 
Mean: 1.3 

0.4 (± 0.5) 
Mean: 0.4 

SPE and 
LCMS/MS 

3 

Brazil April 2012 LODa - 3050 
Mean: 566 

LODa - 776 
Mean: 143 

LODa - 
3180 
Mean: 421 

LODa - 2080 
Mean: 242 

LODa - 
397 
Mean: 48 

LODa - 
176 
Mean: 124 

SP and 
GC/MS 

4 

South 
Africa 

March-June 
2012 

13 - 351 
Mean: 84 

20 - 199 
Mean: 119 

10 - 95 
Mean: 30 

3 - 78 
Mean: 23 

4 - 107 
Mean: 20 

1 - 8 
Mean: 3 

SPE and 
ELISA 

5 

Switzerland June - 
October 
2010 

Mean: 134  Mean: 14  Mean: 5.3  Mean: 71 Mean: 1.3 Mean: 
<1.9 

SPE and LC-
MS/MS 

6 

Averaged 2002 - 2012 182.62 73.62 91.52 88.51 14.82 25.86   
a,  1 ng.L-1;  b, no record; c, not detected; d, prorate data from references 2 to 6 only because data in reference 1 was not completed; 1, 

Environment Agency (2007); 2, Nakada et al. (2006); 3, Ifelebuegu (2011); 4, Pessoa et al. (2014); 5, Manickum and John (2014); 6, Margot et 

al. (2013b)   
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2.2.2 Fate of estrogens in conventional wastewater treatment systems 

Conventional wastewater treatment systems have been identified as giving inefficient estrogen 

removal (Section 2.2.1). Therefore, further investigation on the performance of wastewater 

treatment unit processes has been conducted by several researchers to find the most efficient 

and inefficient estrogen removal points. Figure 2.1 schematically illustrates a model of 

conventional wastewater treatment units and additions of tertiary treatment, with their targeted 

pollutant removal. Functions of each unit operation were compared against the level of 

estrogens removal efficiencies (Table 2.3).  

According to Bevan et al. (2012) and Grassi et al. (2013), estrogens cannot be efficiently 

removed from wastewater through the coagulation process employed in primary treatment 

because the treatment unit is designed for the purpose of removing colloidal and suspended 

solids only. Moreover, in a wastewater treatment plant (WWTP) in China, only 6.4 % of E1 

and E2, and 39.6 % of EE2 were removed from wastewater following its primary treatment 

(Zhang et al., 2011). The levels of estrogen removal were found to increase to 49.5, 69.2, and 

100 % for E1, E2, and EE2, respectively, after the secondary treatment was completed, 

achieving final concentrations of 10.2 ng.L-1 of E1, and 19.2 ng.L-1 of E2 and undetected levels 

of EE2. Therefore, this conventional WWTP was considered to achieve complete removal of 

only for EE2, whereas E1 and E2 remained above their recommended PNEC and EQS levels.  

A study of treatment unit performance in two WWTPs (WWTP A and WWTP B) in the UK 

also recorded very poor estrogen removal in the primary treatment unit, contributing to only 0 

– 13.3 % removal (Ifelebuegu, 2011). In WWTP B, a conventional plant, the degree of estrogen 

removal was found to improve in a secondary treatment unit giving 79.5, 98.4, and 73.3 % 

removal of E1, E2, and EE2, respectively. However, the final concentrations of 22.4, 1.3, and 

0.4 ng.L-1 of E1, E2 and EE2, respectively, were still above the PNEC levels, and can be 

considered to still have potentially harmful effects on aquatic populations. However WWTP A 

with tertiary sand filters showed higher estrogen removal occurred in the secondary treatment 

unit followed by further reduction in the tertiary treatment. These findings proved that 

additional advanced treatment can increase the performance of estrogen removal, even though 

the final concentration in the effluents were still above the recommended levels of the EQS and 

PNEC. The work of Margot et al. (2013b) supported the findings of Ifelebuegu (2011), showing 

the removal of E1 and E2 could be further improved after advanced treatment using powdered 

activated carbon (PAC) was carried out. An additional 43 % of EE2 has been removed in 

advanced treatment (adsorption process) using the PAC. 
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Therefore, the tertiary treatment case studies conducted by Bevan et al. (2012), Ifelebuegu 

(2011) WWTP A, and Margot et al. (2013b) have shown tertiary treatment can give an 

additional degree of estrogen removal. These findings proved that primary treatment such as 

sedimentation and coagulation process (Figure 2.1) were designed only to fulfil its main 

purpose of removing solids and is not suitable for the removal of smaller molecules, notably 

micropollutants such as estrogens. In addition, adopting secondary treatment in conventional 

WWTPs can only fulfil the purpose of achieving water quality based on standard parameters in 

the current regulations that include TSS, VSS, BOD, COD, total N, NH3, total P and pathogen 

indicators, but not the removal of micropollutants such as estrogens. An enhancement in 

estrogens removal has been detected whenever an advanced treatment unit operation was 

adopted after the secondary treatment process. This indicates the significance of supporting a 

conventional wastewater treatment with a tertiary treatment system, with regard to achieving 

more efficient estrogen removal. Even though the final concentration of the estrogens did not 

reach the required EQS and PNEC recommended by the European Commission, some of the 

concentrations were very close to the proposed safe level, therefore further improvements of 

water quality could potentially be achieved by using advanced treatment methods. 
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Figure 2.1. Removal of pollutants and standard parameters in conventional wastewater treatment systems and the addition of advanced treatment 

processes. Source: Barceló and Petrovic (2008) and Water Environment Federation (2009). 
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Table 2.3. Average concentrations of estrogens (ng.L-1) and percentage of estrogen removal in different treatment units of WWTPs. Point 2 to point 

4 mentioned are points after unit operation for the measurements of estrogen. 1, concentration (ng.L-1). 

References Types of estrogens Unit process of wastewater treatment plant 

  Influents 
1Conc. 
  

Point 2: Point 3: Point 4: Advanced 
treatment 
process   Primary treatment Secondary treatment Tertiary treatment 

  1Conc. Removal 1Conc. Removal 1Conc. Removal 

Bevan et 
al. (2012) 

Estrone (E1) No record   0 %   0 %   50.0 % Chlorination 
17β-estradiol (E2)     0 %   0 %   50.0 % 
17α-ethinylestradiol  (EE2)     0 %   0 %   50.0 % 

Zhang 
2011 

Estrone (E1) 20.2 18.9 6.4 %  10.2 49.5 % - - 
17β-estradiol (E2) 62.5 58.5 6.4 %  19.2 69.2 % 
17α-ethinylestradiol  (EE2) 6.3 3.8 39.6 %  ND ND 

Ifelebuegu 
(2011) 

WWT B 

Estrone (E1) 109.1 112.3 -2.9 % 22.4 79.5 %  - - 
17β-estradiol (E2) 82.6 72.6 12.1 % 1.3 98.4 %  
17α-ethinylestradiol  (EE2) 1.5 1.3  13.3 % 0.4 73.3 %  

Ifelebuegu 
(2011) 

WWT A 

Estrone (E1) 119.3 121.0 -1.0 %  54.3 54.5 % 20.3  83.0 % Sand filters 
17β-estradiol (E2) 44.2 42.8 3.0 %  1.1 97.5 % <1.0 97.7 % 
17α-ethinylestradiol  (EE2) 0.9 0.9 0 %  0.5 44.4 % 0.4 55.6 % 

Margot et 
al. (2013b) 

Estrone (E1) 134.0 No record 71 58.0 %   92.0 % Adsorption by 
powdered 

activated carbon 17β-estradiol (E2) 14.0 No record 1.9 91.0 %   >83.0 % 

17α-ethinylestradiol  (EE2) 5.3 No record 1.3 18.0 %   61.0 % 
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2.2.3 Fate of estrogens  

The release of estrogens into the environment has been associated with various sources; namely 

domestic sewage, industrial sewage, animal production, agriculture and landfill leachate. 

Estrogens can be either be natural hormones produced by humans and animals such as estrone 

(E1), 17β-estradiol (E2) and estriol (E3) or synthetic hormones 17α-ethinylestradiol (EE2). 

Figure 2-1 illustrates the entry points of estrogens into water bodies.  

 
Figure 2.2 Points of entry of endocrine-disrupting compounds into the water supply (Moore et 

al., 2011). 

Natural hormones are naturally produced in the female body for the maintenance of health and 

tissue reproduction (Silva et al., 2012). These hormones are passed into domestic sewage 

through urine and faeces, as illustrated as Point 1 in Figure 2.2. Nevertheless, estrogens that are 

produced by either humans or animals eventually take the form of conjugated estrogens, which 

are physiologically inactive forms of the compound and relatively soluble in the water. The 

estrogens excreated through faeces and urine are either conjugated as glucuronide estrogens 

(GLU) or sulfate estrogens (SLU). These weakly active forms however can be associated with 

environmental problems because they can be readily deconjugated by the Escherichia coli 

(E.coli) in the faeces itself and eventually derived into free estrogens notably E1, E2 and E3 

(Hamid and Eskicioglu, 2012). Further details on the mechanism of the adverse effects of 

hormones are discussed in Section 2.3.  

1 2 3 4 5 
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In addition, EE2 is a synthetic hormone the excretion of which is normally associated with the 

consumption of contraceptive pills, and it is also released at Point 1. Furthermore, it can also 

be released into water bodies due to poor wastewater treatment by the pharmaceutical industry 

(Point 2) (Barceló and Petrovic, 2008). Many studies relating to the natural production of 

estrogens by women have been conducted as this is believed to be the main contributor to the 

release of estrogens in sewage. Estrogens have also been found to be produced by males, 

however the amounts excreted are considered very small compared to the amounts excreated 

by women, especially pregnant women who produce E1 at 550 - 787 µg.day-1 per capita, and 

E2 at 277 - 393 µg.day-1 (Fleming, 2015; Adeel et al., 2016). Nevertheless, the accumulation 

of estrogens in wastewater are also believed to include contributions from the livestock industry 

that exceed the amounts produced by women (Moore et al., 2011; Adeel et al., 2016). The entry 

of such estrogens (Point 3) into wastewater has been detected at extremely high levels of 

approximately 83,000 kg/year of estrogen, which is claimed to be produced by livestock 

farming around the world compared to 30,000 kg/year of estrogen produced by the entire human 

population of 7 billion, with a further 700 kg/year of EE2 coming from oral contraceptives  

(Adeel et al., 2016). Agriculture (Point 4) has also been recorded as producing large amounts 

of estrogen waste due to the practice of using livestock manure as a fertiliser in organic farming. 

Finally, estrogens are also released into the environment from the disposal of sewage sludge to 

landfill and its land application (Hamid and Eskicioglu, 2012). 

There are a variety of sources of estrogen entering the environment which will pass to water 

bodies if not treated adequately, with livestock and domestic sewage providing the highest 

contribution of estrogens to the environment. The background characteristics of wastewater 

containing estrogens will also vary widely; vegetable oils, protein and urea are present in 

domestic wastewater, high levels of specific chemicals in wastewater from industry, high 

biological contents in livestock wastewater, high chemical and biological contents from other 

agricultural sources and landfill waste. Consequently, since there is no single uniform 

background wastewater composition, a synthetic wastewater was chosen as a model in the 

present study of estrogen removal (Section 6.3.1).  

2.3 Adverse effects of estrogens 

2.3.1 Estrogens as endocrine disrupting compounds 

Estrogens are endocrine disrupting compounds that have been reported to interrupt functions of 

hormones in living organisms by having mimicry (agonistic) or blocking (antagonistic) effects 

(Birkett and Lester, 2002), the disruption of secretion and transport of hormones, or the 

disruption of hormone receptor functions (Acerini and Hughes, 2006; Goksøyr, 2006). The 
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endocrine system consists of a set of glands that produce hormones essential for body functions 

such as growth, reproduction, cell maintenance, metabolism, etc. Cells contain receptor binding 

sites as illustrated in Figure 2.3. 

 
Figure 2.3 The targeted cell with its binding site: (a) natural response (b) agonistic effect (c) 

antagonistic effect by endocrine disrupting compounds (Birkett and Lester, 2002) 

A certain low concentration of natural hormones is required to eventually become attached to 

the receptor in order to produce the desired effect in the body. The receptor has a high affinity 

for a specific hormone, and only a small quantity of the hormone can produce a response in the 

cell when it has bound to the receptor (Birkett and Lester, 2002). However, the presence of an 

EDC as a hormone mimic, may ultimately bind itself to the receptor and produce an effect that 

can be harmful to the body, such as binding of estrogen to receptors in male organisms. This 

mechanism is recognised to be an agonistic effect (Figure 2.3) that eventually produces 

feminisation in male fish. This effect could take place at very small concentrations of parts per 

trillion due to the high affinity of the cell receptor towards hormonal substances (Mortensen 

and Arukwe, 2007)  

This agonistic effect can take place with levels of estrogens present in water bodies or drinking 

water and alter the sexuality of aquatic populations and cause long-term adverse effects in 

humans. Studies of fish populations affected by exposure to estrogens have proven the existence 

of the feminisation effect. Kirby et al. (2004) found a feminising effect which was observed to 

reduce male fish sperm quality and inhibit testicular growth. Reductions in sperm quality, as 

well as quantity in male fish correlated with the presence of estrogen compounds in the liver. 

The estrogen had stimulated liver tissue to produce vitellogenin, an egg yolk protein, which 

was later transported into the testes tissue and developing eggs which interrupted testicular 
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functions. This feminisation could take place whenever fish were exposed to estrogens E1, E2 

and EE2 in the long-term, particularly when exceeding their specific PNECs.  

2.3.2 Case studies related to the feminisation effect 

Concentrations of 31.8, 5.0 and 10 ng.L-1 for E1, E2 and EE2, respectively, have been reported 

to cause vitellogenin induction in several species of fish, whereas concentrations of  318.0, 

320.0 and 10.0 ng.L-1 can inhibit testicular growth in male fish (Gross-Sorokin et al., 2004). 

However, these values that found to affect the sexual trait of fish are higher than the 

recommended EQS values of 0.4 and 0.1 ng.L-1 for E2 and EE2 respectively, and PNEC of 3.6 

ng.L-1 for E1 (Section 2.1.1). This difference exists to ensure a good safety margin is achieved 

between the known estrogenic effect concentration and the EQS threshold concentrations. 

Estrogens have also been reported to affect the populations of wildlife species other than fish, 

with mussels (Elliptio complanata) being found to experience a feminisation effects as they 

grew in water suspected of containing estrogens from two municipal effluents, and the 

feminisation bio-marker vitellogenin also being recorded in male mussels (Goksøyr, 2006; 

Gagné et al., 2011). However, no measurements of estrogen concentration were made in this 

study, but the production of vitellogenin was considered by the researchers to be connected 

with the presence of estradiol. Feminisation was found to occur at rates 1.7 - 2.3-fold higher 

downstream of the discharge compared to upstream, confirming the effluent affected the 

mussels. 

Evidence of feminisation in mussels and fish populations has strongly supported the theory that 

concentrations of low parts per trillion (ng.L-1) of hormone mimic substances, but at levels 

higher than the EQS and PNEC, were replacing natural hormones and bonded to receptor cells 

producing an adverse response in the production of vitellogenin in the male fish or mussel cells. 

Naturally, Vitellogenin would only be present in females for the purpose of producing eggs. In 

addition, the synthetic estrogen 17α-ethinylestradiol  (EE2) has been shown to be 11 - 27 times 

more harmful than the natural estrogen E2, which is itself is 2.3 to 3.2 times more potent than 

E1 for aquatic populations (Thorpe et al., 2003). But, even though E1 has been reported to be 

the least potent estrogen with regard to feminisation, the relatively high concentrations of E1 

found in typical wastewaters (Section 2.2.1) are typically double the amounts of E2 and EE2, 

making it equally harmful in the environment, and requiring its reduction or removed.  

2.4 Characteristics of Estrogens 

Effective treatment of wastewater effluents is clearly needed to prevent feminisation effects in 

ecosystems, and successful estrogen removal can be achieved by obtaining adequate 

information on its characteristics allowing for effective treatment design. 
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2.4.1 Hydrophobicity of estrogen compounds 

 

 
Figure 2.4 Cyclopentanoperhydrophenanthrene: the basic structure of steroidal compounds. 

Estrogen is a steroidal hormone comprising the basic cyclopentanoperhydrophenanthrene 

molecular structure (Zarrow, 2012). The aromatic structure has four fused carbon rings as 

illustrated in Figure 2.4. Addition of a hydrophobic side chain functional group to 

cyclopentanoperhydrophenanthrene actually contributes to increase hydrophobicity in estrogen 

compounds (Koga et al., 2011), and the degree of estrogenicity has been reported to rely on the 

size and degree of branching of the alkyl group, and its positioning on the phenol ring 

(Routledge and Sumpter, 1997; Racz and Goel, 2010). The E1, E2 and EE2 estrogens have been 

found to be hydrophobic due to the presence of several methyl attached to their phenolic 

structure, as can be observed in Figure 2.5. In addition, their water solubility indices were 

detected to be very low in the range of 0.8 - 3.3 mg.L-1 at 25 °C (Table 2.4). Their hydrophobic 

character is a key attribute to be taken into account in developing any estrogen removal strategy, 

so that targeted compatible materials or techniques can be employed to extract them from 

wastewater or other environmental samples.  

Based on the hydrophobicity index listed in Table 2.4, estrone (E1), 17β-estradiol (E2) and 

estriol (E3) have similar water solubility (13.0 mg.L-1). In terms of octanol-water partition (Log 

Kow), E2 has the highest value followed by E1 for typical natural estrogens detected in the 

wastewater. Therefore, both of E2 and E1 were evaluated to find which one is more suitable to 

be employed as estrogen model in the current study, since the proposed removal process was 

based on a hydrophobic mechanism. 
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Table 2.4 List of selected estrogen compounds and their main characteristics. 

Compounds Empirical 
Formula 

Source/ 
application 

Molecular 
Weight (g.mol-1) 

Water 
solubility 
(mg.L-1) 

Log 
Kow 

Structure 

Estriol (E3) C18H24O3  Natural hormone 288.4 13.0b 2.81a 

 

Estrone (E1) C18H22O2 Natural hormone 270.4 13.0a 3.43 a 

 

17β-estradiol 

(E2) 
C18H24O2 Natural hormone 272.4 13.0a 3.94 a 

 

17α-

ethinylestradiol  

(EE2) 

C20H24O2 
Synthetic hormone / 

Contraceptive pills 
296.4 4.8a 3.67 a 

 

a,  Adeel et al. (2016); b, Silva et al. (2012) 
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2.5 Advanced wastewater treatment processes 

There are many options for advanced treatment that could potentially be employed to ensure 

estrogen removal from wastewater. These include adsorption, biodegradation, membrane 

treatment, ozonation, advanced oxidation and chlorination (Hemidouche et al., 2017) (Table 

2.5.). 

2.5.1 Adsorption 

Commercial activated carbon, such as powdered activated carbon (PAC), has been reported as 

an excellent adsorbent material for many substances, including polar and non-polar compounds 

such as estrogens (Snyder et al., 2007; Hartmann et al., 2014). Complete removal of 100 ng.L-

1 estrone (E1) was achieved using PAC, and 97 % of E2 was removed. However the final E2 

concentration was above the PNEC. The degree of estrogen removal attributed to the PAC was 

considered to be high, and the PNEC levels were almost achieved for all of the estrogens. Thus 

the PAC adsorption process can be considered to be an efficient technique for the removal of 

estrogens. However, there are some drawbacks to the commercial use of activated carbon (AC) 

such as high energy use in its production, disposal and regeneration issues, and selectivity 

concerns given that the adsorption of hydrophobic compounds could be limited when both polar 

and non-polar substances are present in the same environmental sample  (Snyder et al., 2007; 

Hartmann et al., 2014).   

Using material with the same hydrophobic characteristics as AC, neutral hydrophobic resin was 

considered as a good alternative adsorbent to PAC, with a comparable adsorption capacity for 

E2 of 1359 μg.g-1 in distilled water. Lower capacity occurred in wastewater samples due to 

competition for adsorption sites by background organic substances in the wastewater 

(Hartmann et al., 2014). In addition, granular activated carbon (GAC) was also shown to be a 

good adsorbent for estrogens (Ifelebuegu et al., 2015). To overcome the high production cost 

for GAC, an adsorbent produced from black tea leaves was successfully found to have a good 

adsorption capacity for E2 (3.46 mg.g-1) with 96 % E2 removal demonstrated. Use of 

hydrophobic adsorbents (GAC, PAC, neutral resin and black tea leaves) were considered to be 

excellent options for advanced treatment of estrogens through the adsorption mechanism.  

Major drawback of high production cost of AC, and interference of polar compound in AC 

adsorption can be overcome by using alternative cheaper material with high selectivity to 

hydrophobic compound. Therefore removal of estrogens by adsorption is a process worthy of 

further investigation. 



22 

2.5.2 Membrane separation 

Use of membrane separation of microfiltration or ultrafiltration was previously recommended 

for the removal of contaminants in treatment plants with limited space. However, this 

technology was found to have high selectivity for particles larger than estrogens, which limits 

its estrogen removal efficiency (Snyder et al., 2007).  Interestingly, the use of a membrane 

bioreactor (MBR), a combination of membrane filter with an activated sludge reactor, enhanced 

its performance relative to conventional activated sludge treatment, giving complete removal 

of EE2 and E3, and almost 97 %  for the E1 (Trinh et al., 2012).  

2.5.3 Biodegradation 

Biodegradation by bacterial co-culture (LM1 and LY1 strains) was found efficient for 98 % of 

E2 removal (Li et al., 2018). In addition, activated sludge (AS) that usually contains mixure of 

diverse bacterial biomass, including estrogen-degrading bacteria that can completely remove 

E2 and E1 through a biodegradation process (Yoshimoto et al., 2004). Moreover, 

biodegradation usually coexists with adsorption in AS, immediate removal of estrogen being 

found to be largely attributed to adsorption with longer treatment processes allowing for 

enhanced removal by biodegradation. Longer treatment allows the bacteria community to keep 

growing while degrading the estrogen as their growth substrate (Racz and Goel, 2010).  

2.5.4 Ozonation 

Removal of estrogens by ozonation was found to completely remove EE2, however, the 

estrogenic activity was still present after the treatment due to the production of a by-product 

following the treatment process (Larcher et al., 2012). Unfortunately, the feasibility of adopting 

ozonation is limited by economic factors, as use of pure ozone (O3) involves high cost 

operations. Despite that, the use of lower amounts of O3 in combination with UV, can produce 

lower but effective degrees of estrogen removal (Pešoutová et al., 2014). However, estrogen 

adsorption by the PAC was found to be a more efficient process for E1 removal than ozonation 

(Margot et al., 2013a). 

2.5.5 Advanced oxidation 

Advanced treatment for estrogen removal by the advanced oxidation process of UV/H2O2 has 

been proven to completely remove E1, and give 90 % removal of EE2 from wastewater. 

However, its major shortcoming was its high energy and maintenance cost process (Hansen and 

Andersen, 2012). 
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2.5.6 Chlorination 

Chlorination is claimed to remove estrogen completely from wastewater. However, the 

presence of by-products (recalcitrant chlorinated compounds) generated during the treatment 

process has been found to exert estrogenic effects, and thus it is deemed inappropriate for 

treating estrogen compounds (Pauwels and Verstraete, 2006).  

2.5.7 Evaluation of the potential advanced treatment for estrogen removal 

Based on the evaluation of each advanced treatment process listed above, it is concluded that 

most of the processes can remove the estrogens efficiently. However, the current study aimed 

to develop a treatment that did not have any associated production of harmful by-products, and 

one that could utilise lower cost sustainable materials and processes. Consequently, 

Chlorination and ozonation were excluded as they produced estrogenic by-products. 

Moreover, treatment processes that classified as having high efficiency in removing estrogen 

but require either high cost for energy supply or maintenance were also avoided, which 

eliminated advanced oxidation. Furthermore, use of commercial activated carbon in an 

adsorption process was also deemed to have a high cost process despite being a potential 

advanced treatment that can target emerging hydrophobic contaminants like estrogens (Table 

2.5). Biodegradation was the basis for several estrogen removal studies (Racz and Goel, 2010; 

Hamid and Eskicioglu, 2012; Brasil Bernardelli et al., 2015) and is sustainable due to its use of 

natural bacteria, consequently this process was one of the processes investigated in the current 

research. To overcome the main drawback of high cost for the adsorption process, the 

identification of cheaper adsorbent materials was seen as a potential solution worthy of further 

investigation. Therefore advanced treatment of adsorption as well as biodegradation were 

selected as the estrogen removal processes in this study. 
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Table 2.5 Advantages and drawback of advanced treatment 

Treatment process Advantages/disadvantages of process Estrogen removal achieved Reference 

Adsorption 
 

Advantages: 

• Activated Carbon (AC) is an excellent commercial 
adsorbent for the polar and non-polar compounds. 

Disadvantages;  

• Thermal regeneration of AC requires a significant 
amount of energy and cost. Main drawback. 

• AC also attract hydrophilic contaminants that attach 
faster than hydrophobic compounds and occupied the 
binding site. 

• Initial concentration of 100 
ng.L-1.  

• 5 mg.L-1 PAC has lower 
removal percentage compare to 
35 mg.L-1. 

• E1 100 % removal (reduced to 
undetected level) 

• E2 97 % removal. 3 ng.L-1 
• EE2 96 % removal. 4 ng.L-1 

(Snyder et al., 
2007) 

Advantages reported: 
• Use of hydrophobic resin and AC. 
• Hydrophobic interaction as adsorption mechanism. 
Disadvantages reported: 
• Factor of competitive adsorption of other substances in 

real wastewater may reduce the adsorption capacity. 

• Capacity of adsorption for E2: 
Neutral resin 1359 μg.g-1; 
PAC 1322 μg.g-1. 

• Complete removal of E2 by 
resin and 98 % removal by 
PAC. 

Hartmann et al. 
(2014) 

Advantages reported: 
• Granular activated carbon (GAC) is an excellent 

commercial adsorbent for the removal of EDCs.  
• Drawback of high production cost of GAC. 
• Alternative cheaper material of black tea leaves (TLH) 

was found to be an excellent adsorbent. 
 

• TLH has an almost comparable 
adsorption capacity (Kf) to 
GAC.  

• Kf value for the adsorption of E2 
are 3.46 mg.g-1 for TLH and 4.01 
mg.g-1 for GAC. 

• GAC produced 96.98 % E2 
removal and TLH produced 
95.75 %. 

Ifelebuegu et al. 
(2015) 
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Treatment process Advantages/disadvantages of process Estrogen removal achieved Reference 

 Membrane 
Separation 
  

Advantages reported: 

• MBR: A combination of conventional activated sludge 
with Microfiltration / ultrafiltration (MF / UF).  

• High performance of removal for most trace organic 
contaminant  

• Membrane bioreactor has 97-
100 % removal for estrogen (E1, 
E2 and E3). 

• Final concentration of 1.5 ng.L-1 

for E1 and complete removal for 
EE2 and E3. 

(Trinh et al., 
2012) 

Disadvantages reported: 
• Microfiltration / ultrafiltration (MF / UF) are selective for 

big molecules and inefficient for estrogen removal unless 
membrane bioreactor (MBR) was adopted.  

 
(Snyder et al., 
2007) 

 Biodegradation Advantages reported: 

• Biodegradation by co-culture is efficient for the estradiol 
removal.  

• 98 % of E2 removal by the co-
culture 

(Li et al., 2018) 

Advantages reported: 

• Biodegradation by activated sludge is an efficient 
estrogen removal mechanism. 

• Adsorption co-exist with biodegradation in activated 
sludge. 

Other information: 

• Adsorption is predominant process compare to 
biodegradation for a high Kow compound. 

• Complete removal of E2 and E1 (Yoshimoto et 
al., 2004; Racz 
and Goel, 2010) 
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Treatment process Advantages/disadvantages of process Estrogen removal achieved Reference 

Ozonation • Comparison of performance between AC and ozonation. • 92 % of E1 removal via 
adsorption by PAC compare to 
90 % ozonation 

(Margot et al., 
2013b)  

Advantages reported: 
• The O3 treatment for estrogens of E2 and EE2 produced 

a less estrogenic by product. 

• Complete removal of EE2 with 
formation of by-product. 

(Larcher et al., 
2012) 

Disadvantages reported: 
• Feasibility of process depends on the economic factor as 

ozone treatment is a high cost process.  

  

Advanced 
oxidation 
 

Advantages reported: 
• Use of UV/H2O2 process  
• High estrogen removal. 
Disadvantages reported: 
• High energy and maintenance cost process. 

• 90 % removal of EE2 
• Complete removal of E1 

(Hansen and 
Andersen, 2012) 

Advantages reported: 
• Effective process for estrogen removal 
• Removal by the O3 is higher than the O3/UV. 

• 99 % removal of E1, E2, E3 and  
EE2 at 4.4 mg.L-1 of O3 

(Pešoutová et 
al., 2014) 

Chlorination Disadvantages: 
• Removed all E2, but treatment produced by-product of 

recalcitrant chlorinated that persists in the environment. 
i.e. mono- and dichlorinated E2; 4-chloro-E2 
(estrogenic compound) 

• Complete removal but produced 
other estrogenic by product 

 

(Pauwels and 
Verstraete, 
2006) 
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2.6 Potential of biodegradation and adsorption for estrogen removal 

In an advanced treatment such as activated sludge, the biodegradation and sorption processes 

are responsible for most of the estrogen removal. Nevertheless, the degree of estrogen removal 

by these mechanisms is uncertain (Ren et al., 2007a). Several researchers have reported that 

sorption typically accounts for less than 10.0 % of estrogen removal and other researchers have 

concluded that more than 30.0 % of estrogen removal (Table 2.6) can occur due to sorption 

(Racz and Goel, 2010). In addition, estrogen removal was reported to be largely attributed by 

the adsorption process compare to the biodegradation due to the high octanol-water coefficients 

of estrogen and inhibited activated sludge successfully removed 98.0 % of estrogen through the 

adsorption process (Ren et al., 2007b). In addition, a study conducted by Brasil Bernardelli et 

al. (2015) showed that 94.0 % of EE2 was removed after 1 hour of contact time and an 

additional 4.0 % after 24-hour incubation. This indicates estrogen removal is largely achieved 

by adsorption as it is known to be a spontaneous process, compared to biodegradation.   

Table 2.6. Contribution of biodegradation and adsorption processes in estrogen removal. 

References Contribution to estrogen removal (%) 
Adsorption Biodegradation 

Ren et al. (2007a) 98.0 2.0 

Racz and Goel (2010) 30.0  
Brasil Bernardelli et al. (2015) 94.0 4.0 

Generally, estrogen removal has been reported to be influenced by many factors including the 

characteristic of the sorbent (Brasil Bernardelli et al., 2015). A hydrophobic sorbent 

undoubtedly is an excellent material to interact with the hydrophobic estrogen. It has been 

suggested that hydrophobic estrogens such as E1, E2 and EE2 are theoretically drawn to be 

adsorbed by a hydrophobic solid, suggesting adsorption as predominant mechanism in estrogen 

removal, compared to biodegradation (Margot et al., 2013b). In addition, the percentage of 

estrogen removal due to adsorption and biodegradation also depends on the reactor design. In 

a typical activated sludge system, adsorption is a spontaneous process and it takes less than 1 

hour to achieve equilibrium for estrogen removal. On the other hand, biodegradation needs a 

longer time to be completed due to the enrichment of slow-growing bacterial culture (Racz and 

Goel, 2010).  Sludge age (Solids retention time, SRT) may also restrict the growth of some 

organisms in AS plants that are potentially capable of biodegradation. Therefore, removal of 

estrogen in a treatment system designed with a short hydraulic retention time (HRT) of less 

than 1 hour, removal is presumed to occur mainly through the adsorption process. In contrast, 
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an HRT longer than 1 hour allows for adsorption as well as biodegradation to occur, particularly 

if SRT is also long. Nevertheless, it is reported that adsorption should be achieved within 24 

hours to allow  for maximum removal (Ren et al., 2007b). 

In conclusion, adsorption and biodegradation have been proven to be efficient advanced 

treatment processes for estrogen removal. However, adsorption has been shown to be more 

effective compared to biodegradation whenever hydrophobic adsorbents are utilised. Even 

though adsorption has been reported to be complete within a short duration of less than 1 hour, 

an increase in hydraulic retention time will enhance estrogen removal, allowing higher degree 

of estrogen to be adsorbed. 

2.7 Adsorption process for estrogen removal  

Adsorption by activated carbon (AC) material is a known excellent process to increase 

efficiency of conventional treatment, which cheaper adsorbent materials is sought for 

alternative of AC. To evaluate potential of the alternative materials, understanding on 

mechanism of the adsorption by adsorbent of AC is to be investigated.   

2.7.1 Adsorption mechanism 

Adsorption is a mass transfer process associated with the accumulations of an adsorbate at the 

interface of two phases, such as liquid-solid phases in the removal of pollutants from 

wastewater. An adsorption mechanism can be classified according to its interaction mechanism 

as either a physisorption or chemisorption process.  

Physical adsorption takes place whenever forces between the sorbent and pollutant are greater 

than the forces among the particle molecules, and multi-layer attachment could build-up on the 

surface of an adsorbent through a physisorption process (Dąbrowski, 2001). In contrast, 

chemisorption occurs whenever electrons from the functional group in an adsorbent interact 

with a pollutant particle to form a strong bond (Ruthven, 2001). Both physisorption and 

chemisorption could happen on the outer surface of the adsorbent by surface diffusion as well 

as in its pores (pore diffusion) whenever the pollutant particles are small enough. Unfortunately, 

the accumulation of pollutants or molecules of other substances in wastewater could potentially 

block the pores (Figure 2.5) and reduce the rate of adsorption in a porous material such as 

activated carbon.  
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Figure 2.5 Mechanism of adsorption in an adsorbent particle (Tran et al., 2017). 

On the other hand, a porous adsorbent with micropores less than 2 nm in diameter contains a 

very high surface area for the binding sites (Ferhan Cecen, 2011). The physisorption process 

has also been described in terms of weak adsorbent-pollutant binding and it may be a reversible 

process (De Gisi et al., 2016). In terms of thermodynamics, an adsorption process that 

spontaneously occurs without an energy supply can be classified as exothermic, whereas 

endothermic adsorption must be supported with an external energy supply to initiate the 

bonding process (De Gisi et al., 2016).  

Physisorption occurring via exothermic adsorption is a preferable mechanism for this study as 

the spontaneous process would not require additional cost in providing energy to drive the 

process. The common use of activated carbon (AC) could also be replaced by a lower cost 

hydrophobic adsorbent. In addition, an alternative material without a pore structure but with a 

surface area almost similar to AC would be advantageous in avoiding the adverse effects of 

pore blockage in the sorption process. Apart from that, AC also has an affinity for hydrophilic 

molecules, which could reduce the availability of binding sites for hydrophobic molecules, as 

stated in Section 2.5.1.  
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2.7.2 Adsorption isotherm 

The adsorption of estrogen from wastewater onto an adsorbent such as AC involves a solid-

liquid adsorption system. The amount of contaminant (qt) which can be adsorbed on to a solid 

adsorbent at equilibrium can be represented by the following equation (Grassi et al., 2012):  

 

where Ce and C0 are the final and initial concentrations of the contaminant in the aqueous phase 

respectively. V is the solution volume and m is the adsorbent mass.  

The behaviour and adsorption characteristics can be predicted by using models of adsorption 

by using a series of experiments. The information are given as parameters within each 

adsorption model, whenever the experimental data fits well into it (small regression value). 

Selected isotherm models that has been commonly used for removal of pollutant from 

wastewater are shown in Table 2.7 (Grassi et al., 2012).  

In addition, the sorption behaviour of the contaminant can also be predicted by its specific 

sorption coefficient (Gomes et al., 2011). This sorption coefficient (Kd) indicates the ratio of 

estrogen’s total equilibrium concentration in solids (Cs) to that in the aqueous matrix (Cw): 

 

 Kd = Cs /Cw  

Based on the specific sorption coefficient equation, the higher the Kd value of a pollutant like 

estrogen, the higher its possibility to be adsorbed into the solid phase rather than remain in the 

wastewater. In addition, Racz and Goel (2010) reported that sorption is only negligible if a 

substance possesses a value of log Kd less than 2. According to Gomes et al. (2011), the log Kd 

values of E1, E2 and EE2 were 2.10, 2.27 and 2.45, respectively, with an activated sludge 

adsorbent. This indicates that adsorption can be a relevant mechanism for estrogen removal and 

should be investigated further. However, the value of log Kd for estrogen removal depends on 

the adsorbent material that is employed. 

  

 
qt = (C0-Ce) V 

m 
(Equation 2.1) 

(Equation 2.2) 
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Table 2.7 Isotherm models and parameters for adsorption characteristic. 

Isotherm model Formula Parameter of adsorption  

Langmuir  • Monolayer adsorption (Heraldy et al., 2016) 

• Energy of adsorption (constant of KL) 

• qe (mg/g) is the amount of adsorbate per mass 

unit of adsorbent. qm is the maximum 

adsorption capacity (mg.g-1). 

Freundlich qe = Kf Ce1/n • Adsorption capacity (Kf)  

• Adsorption intensity (1/n) 

• 1/n value gives the intensity of the adsorption 

(Chen, 2015). 

• Multi layer adsorption.  

qe (mg.g-1) is the amount of adsorbate per 

mass unit of adsorbent.  Ce is the final 

concentration of estrogen in aqueous. 

Brunauer, Emmet, 
and Teller (BET) 

Ln qe = ln qs 
-  KDε2 

• Free energy of adsorption (constant of KD) 

• Adsorption capacity (qs)  

 

2.7.3 Adsorbent and estrogen characteristics for successful adsorption process 

To ensure that successful interaction and binding could occur between the adsorbent and 

estrogen adsorbate, factors influencing the binding process need to be evaluated. These factors 

include adsorbent surface area, pH, contact time, water solubility of the type of adsorbent and 

type of estrogen, as well as the functional groups of the estrogen (Snyder et al., 2007; Kyzas et 

al., 2013). 

1. Adsorbent surface area. An adsorbent that has a high surface area contributes a large 

number of binding sites for estrogen attachment 

2. pH. Estrogens are neutral compounds compatible with neutral adsorbents for 

adsorption. Moreover, a high pH set in the treatment design has been detected to reduce 

the Log Kow  (octanol-water coefficient partition) of the estrogens and reduce their 

adsorption onto a hydrophobic adsorbent, so it is to be avoided (Borrirukwisitsak et al., 

2012). 

 
qe = qm KLCe 

1+ KLCe 
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3. Contact time. Adsorption is a spontaneous process that normally removes most of a 

pollutant within hours. Further removal is expected over a longer contact time such as 

between 24 to 48 hours (Racz and Goel, 2010). 

4. Low water solubility of the adsorbent. Low water solubility with weak solute-solvent 

bonds increases the adsorption rate due to the higher magnitude of forces between the 

estrogen and the adsorbent compared to the estrogen in water. Therefore a highly 

hydrophobic adsorbent should bond well with hydrophobic estrogen in the removal 

process. The molecular structure and behaviour of a contaminant of interest, such as its 

hydrophobicity, is an important factor in the adsorption process (Racz and Goel, 2010; 

Jiang et al., 2017) 

5. The functional group in estrogen. The existence of functional groups (ortho, meta, para 

and other branched functional groups) in estrogen molecules contributes to weak 

internal bonds and will increase the external attachment to the molecules of the 

adsorbent (Grassi et al., 2012; Hemidouche et al., 2017). 

2.8 Microorganisms as an adsorbent 

2.8.1 Potential of microorganisms as an adsorbent  

Potential materials which could act as adsorbents for estrogen removal should possess some of 

the criteria of ideal adsorbents mentioned in Section 2.7.3. 

 
Figure 2.6 Image of gram-positive rod-shaped bacteria captured by scanning electron 

microscope (SEM) (Asamizu et al., 2015). 

High surface area and high hydrophobicity are the prominent attributions to aim for. Recently, 

close attention has been paid to the application of prokaryotes in wastewater treatment due to 
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their biodiversity and various characteristics they can offer. However, as shown in Figure 2.6, 

prokaryotes such as bacteria do not have a porous structure like the one that contributes to the 

large surface area in AC. Nevertheless, the relatively small size of bacteria (3 – 5 μm lengths) 

provides the high surface area required to be an efficient adsorbent. The surface areas of some 

bacterial species as well as granular-activated carbon (GAC) recorded in previous studies are 

listed in Table 2.8. According to this data, the mean surface area of bacteria is 111 m2.g-1, which 

is approximately nine times lower than the surface area of GAC (966 m2.g-1). Even though the 

surface area of bacteria may be lower than that of commercial GAC, other disadvantages of 

activated carbon material such as pore blocking and affinity for hydrophilic compounds 

(Section 2.5.1) might reduce its adsorption performance to a level comparable to that of 

bacterial species (Snyder et al., 2007; Jiang et al., 2017). In addition, hydrophilic compounds 

were found to break through GAC filters more rapidly than hydrophobic contaminants (Snyder 

et al., 2007). The hydrophobic properties of some bacteria suggest they might work as an 

efficient adsorbent, and place them favourably in comparison with other conventional 

adsorbents like AC. Some bacteria that have been reported to be hydrophobic are Rhodococcus 

sp. (De Carvalho et al., 2004), Acinetobacter calcoaceticus  (Zita and Hermansson, 1997) and 

Pseudomonas aeruginosa (Bruinsma et al., 2001).  

Table 2.8 Surface area of potential of bacterial and commercial granular activated carbon 

adsorbent (GAC).  

Material/ microorganism Surface area 
(m2.g-1) 

Prorate 
(m2.g-1) 

References 

Rhodococcus erythropolis 90 

111a 

(Revil et al., 2012) 
Corynebacterium DSM6688 103 (Revil et al., 2012) 
Bacillus subtilis  140 (Revil et al., 2012) 

GAC 950 

966b 

(Alhamed and Bamufleh, 
2009) 

GAC 798 (Jung et al., 2001) 

GAC 1152 (Jung et al., 2001) 

a, Average surface area for bacterium; b, Average surface area for GAC 

2.8.2 Previous studies utilising bacteria for estrogen removal in wastewater treatment 

Various estrogen removal studies which include the exploitation of microbial communities have 

been conducted by several researchers. Most of the treatments were carried out either by using 

pure commercial bacterial strains (Larcher and Yargeau, 2013), inocula from activated sludge 

(Ren et al., 2007b; Zhang et al., 2012; Brasil Bernardelli et al., 2015; Zheng et al., 2016) or the 
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isolation of pure bacteria from diverse sources of prokaryotes in environmental samples of soil 

(Kurisu et al., 2010) or activated sludge (Villemur et al., 2013). 

Table 2.9 lists some of the research that has employed microbial communities in the estrogen 

removal process. An adsorption study carried out using deactivated sludge successfully 

obtained removal rates of 98.0, 93.6, and 98.0 % for E1, E2 and EE2 respectively (Ren et al., 

2007a). Nevertheless, in all cases the final concentration of estrogens was above the PNEC 

limits, which was believed to a result of the high initial concentrations employed. An adsorption 

process similar to that when adopting activated sludge was also used by Zhang et al. (2012) and 

Zheng et al. (2016). However lower percentages of estrogen removal were recorded at 80.0 % 

of EE2 and 64.7 % of E2.  

A different approach has been made by Villemur et al. (2013) when they isolated pure strains 

of Rhodococcus sp. and other bacterial species through an enrichment culture of activated 

sludge. Rhodococcus sp. was proven to be the most competent strain in removing estrogens 

through a biodegradation process. The bacteria were isolated in minimal media using estrogens 

as their sole growth substrate. It was concluded that the bacteria had recognised estrogens as its 

sole carbon source during the cultivation, adapted to it and maintained high levels of the 

degradative enzymes subsequently, degrading the estrogens present in the test wastewater. The 

same principles have been employed by Kurisu et al. (2010) utilising E2 as the substrate in the 

isolation process. However, the bacteria were isolated from mixture of soil samples, instead of 

activated sludge. Surprisingly, similar bacterial species of Rhodococcus sp. were also found, 

and were efficient at E2 removal (85 %), compared to Sphingomonas sp. Another Rhodococcus 

sp. has also been detected as estrogen-degrader by Larcher and Yargeau (2013), in which the 

pure strain of R. rhodochrous reduced EE2 from 5 mg.L-1 to levels undetectable by HPLC (limit 

of detection 125 μg.L-1).  
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Table 2.9. Previous studies of estrogen removal using microbial from activated sludge, pure bacterial and isolates bacteria. 

References Pure strain/ Isolates from 
environmental sample 

Pre-treatment/ adaptation of 
adsorbent material 

Adsorption/ 
Biodegradation 

Estrogen removal/ Final concentration 

Ren et al. 
(2007a) 

Activated sludge from 
sequencing batch reactor 
(SBR) 

Deactivated in heat 
treatment of 80°C. 

Adsorption in 24-hours 
(adsorption by 
hydrophobicity 
interaction) 

• Initial estrogen concentration 200 µg.L-1 
• 98 % removal for E1 and EE2              

(final concentration 4.0 µg.L-1) 
• 93.6 % removal for E2                                 

(final concentration 12.8 µg.L-1) 

Zhang et al. 
(2012) 

Activated sludge from 
WWTP in China 

Deactivated in heat 
treatment of 375 °C. 

Adsorption for 24-hours 
 

• Initial concentration 2.32 mg.L-1 EE2 
• 80 % removal in 1 hour                          

(final concentration 0.46 mg.L-1 EE2) 

Zheng et al. 
(2016) 

Activated aerobic 
granular sludge 

Deactivated in autoclave 
120 °C 

Adsorption in 2 hours 
(adsorption due to 
hydrophobic interaction) 

• Initial concentration 400 µg.L-1 E2 
• 64.7 % removal of E2                                

(final concentration 141.4 µg.L-1 E2) 

Brasil 
Bernardelli et al. 
(2015) 

Activated sludge from 
WWTP in Brazil 

Deactivated sludge by 
autoclave at 120 °C and 
activated sludge 

Adsorption and 
biodegradation  

Batch reactor for 24-hours 

• Initial 100 µg.L-1 
• Final concentration 23 µg.L-1 of E1, 18 

µg.L-1 of E2 and 2 µg.L-1 of EE2 in 
adsorption study 

• Adsorption provide more efficient 
removal. 
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References Pure strain/ Isolates from 
environmental sample 

Pre-treatment/ adaptation of 
adsorbent material 

Adsorption/ 
Biodegradation 

Estrogen removal/ Final concentration 

Villemur et al. 
(2013) 

Activated sludge 
contained enrichment 
culture  
Rhodococcus sp. 

Enrichment in minimal 
media and estrogens 
substrate  

Biodegradation fed-batch 
for 4 weeks adopting 
estrogen in polymer 

• Initial 1000 µg.L-1 
 

Kurisu et al. 
(2010) 

Rhodococcus sp. (R. equi 
and R. zopfi) and 
Sphingomonas sp. 
isolated from soil. 

Soil-enrichment in minimal 
media and E2 substrate 

Biodegradation • Initial 0.8 mg/4ml of E2 (200 mg.L-1) 
• Rhodococcus sp. removed 85 % E2 

(final concentration 30 mg.L-1 ) and 50 % 
E1 (final concentration 100 mg.L-1) 

• Sphingomonas sp. removed 65 % E2 
(final concentration 70 mg.L-1) and 70 % 
E1 (final concentration 60 mg.L-1 E1). 

Larcher and 
Yargeau (2013) 

Pure culture of B. 
subtilis, P. aeruginosa, 
P. putida, R. equi, R. 
erythropolis, R. 
rhodochrous, R. zopfi  

Pure culture obtained from 
Cedarlane Canada 

Biodegradation • Initial concentration of 5 mg.L-1 EE2 in 
350 ml sample 

• R. rhodochrous removed EE2 to 
undetected level. 

• R. equi removed 61 % EE2  

Fernández et al. 
(2017) 

Virgibacillus sp., 
Bacillus flexus and B. 
licheniformis isolated 
from deep sea sediment 
of mud volcano 

Enrichment in minimal 
media and phenanthrene 
(polyaromatic hydrocarbon) 
substrate. Then isolates 
were adapted in estrogen 
substrate 

Biodegradation in batch 
reactor for 32 days 

• Initial of 5 mg.L-1 E1 and E2 in media 
• Virgibacillus sp. complete removal of E2 
• Bacillus flexus 98.8 % E2 removal 
• B. licheniformis remove 80 % of E2 
• Complete removal for E1 by all species. 
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2.9 Adaptation of bacteria  

Process of adapting bacteria utilising hydrocarbon compounds has been used in oil-spill 

bioremediation where ideal conditions allow bacteria to biodegrade and breakdown the targeted 

contaminants into environmentally safer products (Vidali, 2001). In an oil-spill bioremediation 

process, the bacteria are usually enriched on oil-based substrates such as alkanes or haloalkanes. 

Research has successfully proven that the hydrocarbon-degrading bacteria obtained using 

alkanes is due to their high affinity for non-polar compounds (Erable et al., 2003) and 

consequently their hydrophobicity developed during the process.  

However, to date none of these hydrocarbon-adapted bacteria have been used for estrogen 

removal. Nevertheless, the similarity of hydrophobic characteristics could be exploited if an 

adsorption process were adopted as the removal process, regardless of different substrates used. 

In fact, a higher log Pow of hydrocarbon compound compared to estrogen could render an even 

more hydrophobic bacterial species than one enriched on estrogens. The cell surface 

hydrophobicity (CSH) of the adapted strains has been proven to increase compared to their 

parent strains after the adaptation process (Vasileva-Tonkova et al., 2008). They could 

potentially be more efficient adsorbents for the estrogen removal after adaptation. Helpfully, 

The enhancement of bacterial hydrophobicity quantified by simple hydrophobicity tests. 

2.9.1 Bacteria morphological changes 

Hydrocarbon is a non-polar compound that is known to be toxic and harmful to bacteria due to 

its hydrophobic characteristics. However, some bacteria possess ablity in developing tolerance 

towards the toxicity by altering their cell surface properties (Whyte et al., 1999), so they can 

access hydrocarbon substrates. The mechanism of alteration in bacterial cell when exposed to 

the toxic substrates were illustrated in Figure 2.7.  

To utilize the hydrocarbon substrate, the bacterial cytoplasmic membrane lipid has to undergo 

an alteration process. This mechanism is essential for the bacteria to maintain its membrane 

fluidity, as well as structural integrity. The alteration involves transformation of unsaturated 

cis-fatty acid to saturated trans-fatty acid, which eventually causes the membrane to be less 

permeable and more hydrophobic (Figure 2.7). This bacterial protection mechanism ultimately 

leads to the enhancement of their cell surface hydrophobicity, that later can facilitate the 

hydrocarbon uptake during the adaptation process (Bredholt et al., 2002). 
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Figure 2.7 Transformation of cis-fatty acid to trans-fatty acid in bacterial cytoplasmic 

membrane lipid during the adaption with hydrocarbon substrate. 

Enhancement of the bacterial cell surface hydrophobicity allows better cell adherence to the 

hydrocarbon droplets, creates direct contact (interfacial accession) between cell and 

hydrocarbon and allows the bacteria to access the carbon content inside the hydrocarbon. In 

addition, the amount of fatty acid in the bacterial cell membrane has also been reported to 

increase after the adaptation process is complete (Rodrigues and de Carvalho, 2015). 

Due to its hydrophobic characteristic, the hydrocarbon substrate is insoluble in the liquid media 

and is not efficiently available for the bacteria to access. However, a hydrocarbon-degrading 

bacteria can increase hydrocarbon uptake through adaptation mechanisms, namely the 

production of EPS and biosurfactants. Besides the alteration of cell lipid composition, the 

adapted bacteria can also produce an extracellular polymeric substance (EPS), or mucoid 

secretion, to bridge gaps between the bacteria cell and hydrocarbon substrate droplet, allowing 

bacteria to directly access the hydrocarbon. In general, this substance can be observed as slime 

that ultimately forms as a biofilm on a solid surface, and holds colonies of cells together as 

aggregates in a liquid medium (clumping of cells) (Figure 2.8). Furthermore, bacteria can also 

increase their hydrocarbon uptake by emulsifying the hydrocarbon droplets with biosurfactant 

(Lang and Philp, 1998; Kim et al., 2002). This mechanism will increase the hydrocarbon 

solubility for the bacteria to utilise (Tzintzun-Camacho et al., 2012). 

 

Unsaturated 

Cis-fatty acid 

Saturated 
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Figure 2.8 Scanning electron microscope micrograph of Rhodococcus sp. with the presence of 

EPS strands on the cell surface and between cells (Whyte et al., 1999). 

2.9.2 Adaptation of bacteria in previous studies 

According to Table 2.10, a pure strain of Rhodococcus erythropolis DCL14 has successfully 

been adapted with aliphatic alkane (n-alkanes) of C5 to C16. The Cell Surface Hydrophobicity 

(CSH) of the bacteria were observed to significantly increase with number of carbons in the 

alkane, with a CSH of 90 %  recorded for R. erythropolis grown in hexadecane (C16) (de 

Carvalho et al., 2009). Furthermore, C10 - C19 of n-alkanes, aromatic and polyaromatic 

hydrocarbon have been used for the adaptation of pure strains of Rhodococcus ruber and 

Rhodococcus opacus Serebrennikova et al. (2014). The mean CSH of these Rhodococcus sp. in 

alkanes were two-fold lower than the measurement of CSH of Rhodococcus erythropolis by (de 

Carvalho et al., 2009). Nevertheless, the CSH of the Rhodococcus ruber was recorded to 

increase from 35 % in the parent strain compare to 50 % in the adapted strain, indicating that 

adaptation still occurred. Isolation of Rhodococcus erythropolis from crude oil-contaminated 

soil in minimal media supplied with n-hexane has been recorded to increase CSH from 16 % to 

29 % in only 24 hours (Stancu, 2014), suggesting that CSH increases as the culture ages. In 

conclusion, the Rhodococcus sp. possesses tolerance to the toxicity of n-alkanes, including n-

hexane and n-hexadecane. Their CSH were shown to significantly increase after an adaptation 

period (compared to parent strain) and adaptation increased  with increasing hydrocarbon chain 

length (de Carvalho et al., 2009) , and with incubation period (Stancu, 2014). Furthermore, 

isolation of other bacterial species from environmental samples in minimal media supplied with 

hexadecane has produced a moderate CSH species, such as Arthrobacter sp. at 66 % CSH 

(Vasileva-Tonkova et al., 2008) and A. bouvetii achieved 72 % CSH (Tzintzun-Camacho et al., 

2012). Finally, the adaptation of a pure strain of Pseudomonas frederiksbergensis on 
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hexadecane substrate has shown CSH to increase from 10 % to 88 % after 10 days. This also 

supports the theory that CSH increases with the incubation period.   

Based on the findings that n-hexadecane is a competent hydrocarbon substrate, relative to other 

alkane such as n-hexane, and that Rhodococcus erythropolis shows the highest CSH (>90) this 

research investigated the adaptation of pure Rhodococcus erythropolis utilising n-hexadecane 

and n-hexane as growth substrate, and how factors influencing CSH of bacteria, such as 

incubation time, alkane chain length and comparison with parent strain were related to their 

estrogen removal properties. 
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Table 2.10. Adaptation of bacteria to increase hydrophobicity by cultivation in minimal media (MM1) adopting hydrocarbon substrate 

Bacterium  Pure strain/ isolated from 
environmental sample.  

Hydrocarbon 
substrate 

CSH1 (the highest) Adaptation and 
hydrophobicity 
process 

References 

Rhodococcus 
erythropolis DCL14 

Pure strain provided by  
Wageningen Agricultural 
University 

C5 to C16 n-
alkane 

Rhodococcus 
erythropolis  >90 % 

MATH de Carvalho et 
al. (2009) 

Rhodococcus ruber 
and Rhodococcus 
opacus 

Pure strain provided by 
the RSC2 

C10-C19 of n-
alkane, aromatic 
and polyaromatic 
hydrocarbons 

R. ruber IEGM 615 
• 35 % (parent strain)   
• 50 % (isolated strain) 
R. opacus IEGM 249 
• 47 % (parent strain)   
• 15 % (isolated strain) 

MATH Serebrennikova 
et al. (2014) 

Rhodococcus 
erythropolis 

isolated from 
a crude oil-contaminated 
soil 

Cyclohexane, n-
hexane, n-decane 
and aromatics 

R. erythropolis in n-hexane  
• 16 % after 1 hour  
• 29 % after 24 hours 

Low hydrophobicity  
BATH 

Stancu (2014) 

Arthrobacter sp. 
HW-8 and 14 other 
species. 

Previously isolated from 
lubricant-polluted WWTP 
in Sofi. 

Hexadecane Arthrobacter sp. 
HW-8 (66.5 %) 

Minimal media 
supplied with 1.5 % 
hexadecane (15 days) 

Vasileva-
Tonkova et al. 
(2008) 

Xanthomonas sp., 
Acinetobacter 
bouvetii, Shewanella 
sp. and Defluvibacter 
lusatiensis 

Isolated from an oil-
contaminated site Mexico 

Hexadecane A. bouvetii  
72 % 

Presence of 
biosurfactant by the A. 
bouvetti  

Tzintzun-
Camacho et al. 
(2012) 

Pseudomonas 
frederiksbergensis 

Previously isolated Hexadecane • 10 % after 1 day  
• 88 % after 10 days 

MATH Abdel-Megeed 
et al. (2014) 

1, Regional Specialized Collection of Alkanotrophic Microorganisms 
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2.10 Cell Surface Hydrophobicity (CSH) 

Cell surface hydrophobicity (CSH) is an important parameter that can be measured to 

investigate the physicochemical profile of the adapted bacterial strains. The hydrophobicity 

index can be determined by an array of techniques that have been established by previous 

researchers. The common techniques available are microbial adhesion to hydrocarbon (MATH) 

(Rosenberg et al., 1980; Rosenberg, 2006), contact angle measurement (Bruinsma et al., 2001), 

salting-out aggregation (Del Re et al., 2000), and hydrophobic interaction chromatography 

(Oliveira et al., 2001).  Preferences of adopting specific techniques seem to be very closely 

related to the samples attribution. Nevertheless, MATH and contact angle are the most popular 

method in bacterial hydrophobicity study due to its simple and accurate method (Oliveira et al., 

2001; Rosenberg, 2006).  

 
Figure 2.9 Microbial adhesion to hydrocarbon assay. Turbid suspension of bacteria with n-

hexadecane (left), bacterial cell partitioned between aqueous and oil phase (right) 

(Rosenberg, 2006). 

MATH is a measurement of the percentage of bacterial cell adhere in the hydrocarbon compared 

to the aqueous phase Figure 2.9. According to its protocol, the attachment of cells in aqueous 

phase represented in optical density is made with a spectrophotometer after a thorough mix of 

culture and separation of phase completed. The CSH can be calculated using the Equation 2.3. 

CSH (%) = [1 – (A0 – A1)/A0] x 100 %.  (Equation 2.3) 

Where A0 is the initial optical density (OD) of the bacterial culture and A1 is the OD for the 

aqueous phase after separation completed. A very hydrophobic bacteria will have a higher 

hydrophobicity percentage. 
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Figure 2.10 Measurement of contact angle for different interfacial tensions (Van Loosdrecht et 

al., 1987). 

Alternatively, the contact angle is a measurement of wettability of a solid surface by a liquid, 

which in this context means wettability of a bacteria biofilm by an axisymmetric drop of water. 

The contact angle can be determined by Young equation  

γLV cos θ = γsv - γSL       (Equation 2.4) 

which require information such as the surface tension between solid (S), liquid (L) and vapour 

(V), water drop volume and water droplet diameter as illustrated in Figure 2.10. These data can 

be determined in experiments utilising stereomicroscope that can  capture the image of the 

droplet and digitise  the image to measure the data (Drumm et al., 1989).  

Several researchers claim the MATH technique has some drawbacks due to its two-phase 

bacterial partitioning technique. The attachment of bacteria into the different phases was 

suggested to associate with attachment due to the hydrophobic effect and electrostatic forces, 

that interfere the actual hydrophobicity measurement (Doyle, 2000; Oliveira et al., 2001). 

However, Rosenberg (2006) had cleared the argument by stating that the electrostatic effect 

will only affect the attachment process if a low ionic strength of buffer were adopted instead of 

the actual PUM buffer proposed in the original MATH technique (Rosenberg et al., 1980). The 

low ionic strength buffer allows for less hydrophobic interactions and the electrostatic 

interaction increases (Rosenberg, 2006). Therefore, MATH technique is still reliable as a 

bacterial hydrophobicity assay in addition to the contact angle measurement.  

  

VAPOUR 

LIQUID 

SOLID Bacterial biofilm 

Water droplet 
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Chapter 3 Experimental and analytical methods 

3.1 Introduction 

Five stages of experimental work were planned to explore the potential of using hydrophobic 

bacteria as sustainable adsorbents in estrogen removal. An overview of the workflows is 

summarised in Figure 3.1 and brief descriptions of each stage are given in the subsequent 

sections. Full details of the methodology is given in the individual sections and chapters as 

stated in Table 3.1- Table 3.4. 

3.2 Stage 1: Hydrophobic adaptation of bacteria 

This study was undertaken in order to adapt commercial strains of bacteria and soil-isolates into 

hydrophobic bacterial cells. The commercial strains were Rhodococcus erythropolis 

NCIMB13064 and DSM311, and the soil-isolates were obtained through a process of soil-

enrichment of diesel-contaminated soils. The hydrophobic-adaptation process was conducted 

by culturing the strains in minimal media supplemented with hydrocarbon growth substrates. 

Hydrocarbons were chosen as growth substrates (main carbon source) due to their high octanol-

water coefficient, which was considered a good indicator of hydrophobic compounds.  

A preliminary study was initially conducted to determine the most appropriate culture method 

that gave optimum hydrocarbon uptake during the adaptation process (Section 4.4.3). Aliphatic 

hydrocarbons of n-hexadecane and n-hexane were assessed to identify the most suitable growth 

substrate for the bacteria to grow on, concurrently with other nutrients in the minimal media 

(Section 4.4.4). Furthermore, the optimum concentration of hydrocarbon (substrate) giving 

maximum biomass yield was also investigated (Section 4.4.5). Monitoring of the bacterial 

growth phase (Section 4.4.6) and morphological characteristic were also carried out (Section 

4.4.7). Details of the methodology used to investigate the bacterial adaptation process in Stage 

1 are described in Table 3.1. 
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Figure 3.1 Summary of the workflow for evaluating hydrophobic bacterial adsorbents for 

estrogens removal. S1-S5 represent Stage 1 to Stage 5 of the experimental study. 

Isotherm model 
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Development of estrogen 
quantification method 

Removal of estrone in different 
bacterial growth phase 

Desorption study 

Comparison of bacterial adsorbent 
with GAC and zeolite  

Stage 1 – Hydrophobic adaptation of bacteria 

 

S1 

Stage 2 – Characterisation of the isolated 
and adapted bacterial strains 

Stage 3 – Estrogen removal in batch reactors 

Stage 4 – Estrone removal by 
bacteria grown in 
fed-batch culture  

Stage 5 - Comparison of the estrone removal efficiency 
of bacterial and commercial adsorbents 

 

Preliminary hydrocarbon substrate 
supply 

Types of hydrocarbon substrate 

Optimisation of substrate dosage 

Cell surface hydrophobicity 
(CSH) measurement 

Gram stain 
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Table 3.1 Methodology for hydrophobic adaptation of bacteria (Stage 1). 

Experimental study Details of methodology 

Preparation of minimal media Section 4.3 

General method of the bacterial adaptation process  Section 4.4 

Preliminary study of cultivation on n-hexadecane Section 4.4.3 

Types of growth substrate study Section 4.4.4 

Optimization of growth substrate concentration Section 4.4.5 

Growth monitoring Section 4.4.6 

Microscopic observation Section 4.4.7 

Isolation of bacteria from soil- soil enrichment study Section 4.6 

3.3 Stage 2: Characterization of the isolated and adapted bacterial strains 

Characteristics of the hydrophobic-adapted bacterial strains R. erythropolis DSM311, 

NCIMB13064 and soil-isolates PD2-1, PD2-1, PD2-3, SD1-1 and SD2-1 obtained from Stage 

1, were investigated further in Stage 2.  

The hydrophobicity of the bacteria can be represented by their cell surface hydrophobicity 

(CSH). Therefore the measurement of the bacterial CSH for culture incubation period of 3, 5 

and 10 days were carried out using microbial attachment to hydrocarbon (MATH) method 

(Section 5.3.1). The most hydrophobic strains were identified and the effect of the bacterial 

growth phase on the CSH of the bacteria was also assessed. Gram stain characterisation was 

also carried out to differentiate the bacteria based on their cell wall constituents (Section 5.3.2), 

Gram-positive bacteria having a thicker cell wall, in contrast to Gram-negative. Finally, a 

process of identification of the bacterial genera or species was conducted by DNA extraction, 

PCR amplification, and Sanger sequencing (out-sourced) (Section 5.3.3). DNA sequence data 

and DNA chromatograms of the bacteria were then analysed (Section 5.3.4). Experimental tasks 

that were developed for Stage 2 are listed in Table 3.2 and details of the methodology is 

discussed in Chapter 5. 
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Table 3.2. Methodology for the characterisation of bacterial strains (Stage 2). 

Experimental study Details of methodology 

CSH measurement  Section 5.3.1 

Gram stain characterisation Section 5.3.2 

DNA extraction Section 5.3.3 

PCR amplification, DNA quantification and sequencing Section 5.3.4 

3.4 Stage 3 - Estrogen removal in batch reactor 

Estrogens removal (E2 and E1) was investigated using hydrophobic-adapted bacterial strains 

and compared to the E.coli. Development of the estrogen quantification method was firstly 

made to define the solid phase extraction (SPE) and HPLC-ECD procedures for estrogen 

analysis (Section 6.4). The first estrogen removal investigation, namely the preliminary study 

of estrogen removal (Section 6.5) was conducted using all of the adapted bacteria in order to 

find any relationship between degree of estrogen removal and the CSH of the bacterial strains, 

and to select the best bacteria for further work. A high concentration of estrogens (1 mg.L-1) in 

synthetic wastewater (Section 6.3.1) was employed to evaluate the best bacterial adsorbent 

using thermal pre-treated bacteria (Section 6.3.2). In additional batch experiments, live bacteria 

were employed in the removal process to assess the mechanism of estrogen removal from the 

two processes of biodegradation and adsorption.  

Lower concentrations (200 ng.L-1) of estrogen was then employed in the optimisation of 

estrogen removal studies, i.e: effect of contact time; and adsorbent dosage (Sections 6.7.1 and 

6.7.2). Effect of exponential and stationary growth phases of the bacterial cells on estrogen 

removal and CSH were also investigated. The experimental work is listed in Table 3.3 and 

details of the methodology for the Stage 3 study is given in Chapter 6.  

3.5 Stage 4 – Estrone removal by bacteria grown in fed-batch culture 

A potential improvement in degree of estrone (E1) removal was further evaluated by using a 

longer growth adaptation period with bacterial strains SD2-1 (isolate) and R. erythropolis 

DSM311. Fed-batch cultivation method was employed to achieve higher hydrocarbon uptake 

and growth of biomass over 15 and 20 days, and to avoid the inhibition of bacterial growth 
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caused by excess free phase hydrocarbons in the media. Full details of the methodology is 

reported in Chapter 7. 

Table 3.3 Methodology for the estrogen removal in batch reactor (Stage 3). 

Experimental study Details of methodology 

Quantification of bacterial biomass Section 6.2.1 

Preparation of estrogen stock and synthetic wastewater Section 6.3.1 

Pre-treatment of the bacterial adsorbent biomass Section 6.3.2 

Development of the estrogen quantification method Section 6.4 

Preliminary estrogen removal study Section 6.5 

Optimization – contact time Section 6.7.1 

Optimization – adsorbent dosage Section 6.7.2 

Removal of estrone using different bacterial growth 

phase 

Section 6.7.3 

 

3.6 Stage 5 - Comparison of the estrone removal efficiency of bacterial and commercial 

adsorbents 

The performance of strain SD2-1 adsorbent for estrone (E1) removal was compared against 

commercial adsorbents. Bacterial biomass adsorbent from strain SD2-1, and granular activated 

carbon (GAC) and zeolite were added into reactors to follow E1 removal (Sections 8.2.1 and 

8.2.2). In addition, the SD2-1 bacterial adsorbent was thermally pre-treated by two different 

methods (85 °C and 100 °C) to assess its effect on E1 removal.  

To determine the E1 recovery, further experiments were carried out on the desorption of E1 

from the SD2-1 bacterial adsorbent after adsorption (Section 8.2.3). Finally, an isotherm study 

was also conducted for the SD2-1 adsorbent to investigate its adsorption capacity and the 

affinity of the adsorption process using parameters obtained from isotherm models (Section 

8.2.4). Full details of the methodology is given in Chapter 8 and is summarized in Table 3.4. 
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Table 3.4 Methodology for the comparison of performance of bacterial SD2-1 bacterial 

adsorbent with commercial adsorbents, desorption and isotherm studies (Stage 5). 

Experimental study Details of methodology 

Preparation of bacterial adsorbent Section 8.2.1 

Comparison of adsorption properties of SD2-1 

bacterial adsorbents with activated carbon and zeolite 

Section 8.2.2 

Desorption process Section 8.2.3 

Isotherm model Section 8.2.4 
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Chapter 4 Hydrophobic adaptation of commercial strains of bacteria and 

hydrophobic bacteria isolated from soil 

4.1 Introduction 

The commercial strain of  Rhodococcus erythropolis has previously been used in research 

because it has the capacity to grow on hydrocarbon substrates without suffering any toxic 

effects (Alvarez, 2010).  However, when R. erythropolis undergoes growth on relatively toxic 

hydrocarbon substrates, it must undergo adaptation before it can grow effectively. This 

adaptation brings about alterations in cellular morphology and an increase in cell surface 

hydrophobicity. Adapted strains possess high cell surface hydrophobicity (CSH), retain their 

ability to grow on hydrocarbon substrates, and retain their morphology in subsequent 

generations (Vasileva-Tonkova et al., 2008). Moreover, other microbes inhabiting 

hydrocarbon-contaminated soils may also retain the same hydrocarbon tolerance. Therefore, 

commercial strains R. erythropolis NCIMB3064 and DSM311, as well as isolates from soil, 

were used in this adaptation study. Factors affecting the adaptation were also investigated.  

4.2 Aim 

To generate highly hydrophobic bacterial biomass with high CSH by the adaptation of R. 

erythropolis and other bacterial isolates using extended culturing on hydrocarbons.  

4.2.1 Objectives 

The objectives of this study were:  

1. To identify the most efficient cultivation technique that allows for optimum 

hydrocarbon uptake. 

2. To obtain hydrophobic biomass using pure bacterial strains and soil-isolates by selective 

growth on minimal media supplemented with different hydrocarbon growth substrates. 

3. To investigate the effect of varying substrate dosage during the bacterial growth phase, 

in order to find the optimum dosage for high bacterial biomass productivity. 

4.2.2 Hypotheses 

The following hypotheses were proposed in this study: 

1. Increase in the hydrocarbon uptake capability allows for the better growth of bacteria. 

2. The pure strains of R. erythropolis, and soil-isolates, can adapt and grow in minimal 

media containing hydrocarbon substrates. 
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3. The amount of substrate used in the cultivation significantly affects the bacterial growth 

and biomass production. 

4.2.3 Hydrocarbon substrates 

Hydrocarbons are organic compounds made of hydrogen and carbon elements, and are 

classified as being either saturated or unsaturated  (Timmis et al., 2010).  The saturated 

hydrocarbons have no polar functional groups which makes them inert, and physically attracted 

towards non-polar or hydrophobic materials (Timmis et al., 2010). Therefore it was considered 

that these would make ideal growth substrates in the bacterial hydrophobic-adaptation process. 

Unfortunately, most hydrocarbons are toxic to microorganisms as they can accumulate in the 

bacterial cell membrane, and eventually disrupt the cell membrane (Heipieper and Martínez, 

2010). Only bacteria with ability to adapt to hydrocarbon can overcome this toxicity effect, and 

grow on these hydrocarbons (Section 4.1). Straight chain hydrocarbons (aliphatic) have been 

identified to have less toxicity than aromatic hydrocarbons. High molecular weight 

hydrocarbons, such as n-hexadecane CH3(CH2)12CH3, have a high carbon content, and therefore 

represent good carbon sources for bacterial growth. 

Indeed, n-hexadecane has previously been employed successfully as a growth substrate in the 

adaptation of Rhodococcus erythropolis and Acinetobacter bouvetii (Vasileva-Tonkova et al., 

2008; Tzintzun-Camacho et al., 2012). The CSH of these strains was found to increase after the 

adaptation process. R. erythropolis has also been reported to be a competent hydrocarbon-

degrading species, and can even degrade halogenated hydrocarbons, such as 1-chlorobutane, 

due to its strong dehalogenase activity (Armfield et al., 1995; Erable et al., 2003). Furthermore, 

R. erythropolis also can degrade n-hexane  (Peng et al., 2007), n-hexadecane and other n-alkane 

compounds (de Carvalho et al., 2009), using them as sole carbon sources.  

4.2.4 Mechanism of hydrocarbon uptake in the adaptation process 

Cultivation of bacteria in hydrocarbons requires that they first access the hydrocarbon 

molecules, followed by transportation of the hydrocarbon through bacterial cell membrane to 

the cell cytoplasm, where degradation of the hydrocarbon by the action of bacterial intracellular 

enzymes (Hua and Wang, 2014). 

Thus, in order to access the hydrocarbons substrate, the bacteria must have adapted their cell 

membranes to be tolerant to it, which consequently leads to an increase in their CSH (Section 

2.9.1). Hydrocarbons are not only potentially toxic, but also have very low water solubility, 

which limits the concentration of dissolved molecules for the bacteria to access. Therefore, to 
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investigate the most efficient cultivation method, the utilisation of hydrocarbon, with its 

probable uptake pathways were assessed. 

4.3 Preparation of growth media 

Liquid Modified minimal media (MM1) was prepared according to the main components 

suggested by Erable et al. (2003), but using the trace elements reported by Gimkiewicz and 

Harnisch (2013), in deionized water, as specified in Table 4.1.  The trace element solution was 

added to the minimal media at a rate of 10 ml per litre.  

Table 4.1 Components in (i) Modified minimal media (MM1) and (ii) Trace elements solution.  

 
Solid Modified minimal media agar (MM1A) was prepared from MM1 and washed agar (12 

g.L-1) and used in agar plates. The latter was prepared beforehand by soaking agar powder 

(bacteriological agar Lab M Limited) for 3 days in deionized water to reduce its nutrient content 

to the lowest concentration. The solution was sterilized by autoclaving at 121 ºC for 15 minutes 

immediately after preparation.  

4.4 Hydrophobic adaptation method 

4.4.1 Hydrophobic adaptation of pure bacterial strains (R. erythropolis) 

This section is about pure bacteria, an equivalent study of soil bacteria is reported in Section 

4.6. Adaptation of pure bacterial strains obtained as freeze-dried ampoules was carried out 

according to the experimental flow in Figure 4.1.  

 

Modified minimal 
medium (MM1) 

Amount 
(g.L-1) 

NH4Cl 0.85 

KH2PO4 0.56 

Na2HPO4.2H2O 0.86 

K2SO4 0.17 

MgSO4.7H2O 0.37 

Yeast Extract 0.02 

Bacteriological agar                          
(washed and used for solid 
media only) 

12.00 

 

Trace elements 
solution 

Amount (g.L-1) 

MgSO4.7H2O 3.00 

MnSO4.H2O 0.50 

NaCl 1.00 

FeSO4.7H2O 0.10 

CoCl2.2H2O 0.10 

CaCl2.2H2O 0.10 

ZnCl2 0.13 

CuSO4.H2O 0.01 

AlK(SO4)2 0.01 

H3BO3 0.01 
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Figure 4.1 Workflow for the pure bacterial strain (R. erythropolis) adaptation process 

4.4.2 Revival of freeze-dried bacterial strains 

The commercial strain of R. erythropolis NCIMB 13064 was purchased from NCIMB Ltd, and 

another five R. erythropolis strains, namely NCIMB10422, NCIMB11148, NCIMB9905, 

NCIMB9409 and DSM311 were provided by Bath University. All of the strains were cultured 

initially in nutrient agar (NA) (Nutrient agar LAB 8, Lab M Limited) and incubated at 26°C for 

3 days. A single colony of bacteria growing in each of the agar plates was then sub-cultured in 

a 500 ml Erlenmeyer flask containing 100 ml of nutrient broth (NB) (Nutrient broth No.2, Lab 

M Limited) at 26 °C in the shake incubator at 155 rpm for another 3 days. 500 μl of the bacteria 

culture was then collected after 3 days of incubation and mixed with 500 μl of 40 % (v/v) 

glycerol in 2.5 ml cryovial (Thermofisher Scientific). This bacteria glycerol stock was then kept 

at -80 ºC to preserve it.  

Preliminary study of 
cultivation on n-

hexadecane 

Effect of                  
types of growth 

substrate 

Effect of                
substrate dosage 

 

Growth monitoring 
of bacterial strains 

Microscopic 
observation 

Revival of freeze-dried 
bacterial strains 

Substrate model: n-hexadecane 
Bacterial model: NCIMB13064 

Substrates: n-hexadecane and n-hexane. 
Bacterial model: Strain NCIMB13064 

Substrate: n-hexadecane  
Bacterial model: Strains NCIMB13064 

Substrate: Most efficient growth 
substrate at its optimum concentration.  
Bacterial strains: NCIMB13064 and 
DSM311. 

All pure Rhodococcus erythropolis 
strains: NCIMB13064 and DSM311 

  Parameters: 
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4.4.3 Preliminary study of cultivation on n-hexadecane 

A preliminary study to evaluate the most efficient cultivation method using n-hexadecane 

growth substrate was tested using cultures of bacteria in different cultivation conditions, so that 

the best cultivation method could be employed in the subsequent adaptation studies.  

Hydrocarbon (n-hexadecane) substrate was supplied using three different culture techniques: 

Hydrocarbon in liquid MM1 (HLM); Hydrocarbon mixed in MM1A agar (HMA); and 

Hydrocarbon surface -drops on MM1A agar (HDA) (Figure 4.2). HLM was prepared by adding 

500 μl.L-1 of n-hexadecane in the liquid MM1, and HMA was prepared by adding 500 μl.L-1 of 

n-hexadecane in solid MM1 prepared (Section 4.3), before it solidified. In addition, HDA was 

prepared by adding 500 μl.L-1 of n-hexadecane in several drops on the solid MM1.  

A single colony of NCIMB13064 bacterial strain as model was cultured in each of the HLM, 

HMA and HDA culture media and incubated in 26 °C and 155 rpm for 3 days. Growth 

measurements and observations were made according to colony forming units (CFU) that 

appear on the agar plate culture, or by the observation of turbidity and particulate bacterial cells 

in the liquid culture (Table 4.2). Any turbid liquid culture was sub-cultured in NA to reconfirm 

that the turbid solution and particulate matter present were bacterial cells. 

 

 
Figure 4.2 Three different cultivation method using n-hexadecane growth substrate in minimal 

media (MM1). Minimal media (MM1) was prepared according to protocol in 

Section 4.3. 

4.4.4 Types of growth substrate 

Strain NCIMB13064 (the bacterial model) was sub-cultured in 100 ml of liquid MM1 in a 250 

ml Erlenmeyer flask and supplied with 50 μl (500 μl.L-1) of hydrocarbon substrate either n-

(iii) Hydrocarbon surface -
drops on MM1A agar  
(HDA) 

(ii) Hydrocarbon mixed 
in MM1A agar 
(HMA) 

(i) Hydrocarbon in liquid 
MM1 (HLM) 
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hexadecane or n-hexane separately in triplicate. A control flask was prepared similarly without 

substrate. Observation of bacterial growth was carried out on the culture after 3 days of 

incubation by measuring the optical density at 600 nm on a UNICAM 8625 UV-VIS 

Spectrometer. OD readings were taken against deionised water. 

4.4.5 Effect of growth substrate concentration 

R. erythropolis NCIMB13064 was cultured in 100 ml liquid minimal media and supplied with 

30 and 50 µl of n-hexadecane for concentrations of 300 μl.L-1 and 500 μl.L-1 and control 

(without substrate). Growth of bacteria in each substrate volume was monitored using methods 

of optical density measurement, and plate counts of colony forming unit (CFU). The bacterial 

suspension (2 ml) was taken every 3 hours and the growth was measured using a UV 

spectrophotometer at wavelength of 600 nm. At the same time, 50 μl of this bacterial culture 

was spread onto nutrient agar and incubated for 3 days for the colony count. A series of dilutions 

in Ringer’s solution was made whenever required for a high growth sample. Agar plates with 

more than 300 CFU were neglected, and instead a plate from a diluted sample with less than 

300 CFU was used for enumeration. 

4.4.6 Growth monitoring of bacterial strains DSM311 and NCIMB13064 

The R. erythropolis NCIMB13064 and DSM311 were cultured in 100 ml liquid (MM1) and 

added with n-hexadecane (for 300 μl.L-1 and 500 μl.L-1) and growth monitoring experiment was 

conducted with the same protocol described in Section 4.4.5. 

4.4.7 Microscopic observation 

R. erythropolis NCIMB13064 and DSM311 were cultivated separately in 10 ml of minimal 

media with 5 μl (500 μl.L-1) of n-hexadecane and incubated for 3 days in 26 °C and 155 rpm.  

Then 10 % of formalin was added to the bacterial culture and left for 1 day to inhibit the 

bacterial growth. 5 μl of the inhibited bacteria were then transferred onto a glass slide and 

observed under a fluorescent microscope, model Nikon ECLIPSE Ci, equipped with QImaging 

software. Observations were made under normal light because the bacteria were from a pure 

culture and all the uniformly rod-shaped images observed were considered to be bacteria cells. 

4.5 Results and discussion - Adaptation of pure bacterial strains 

After three days of incubation, only 2 bacterial strains grew on the nutrient agar (NA) plates 

(Table 4.2), namely R. erythropolis NCIMB13064 and DSM311. No sign of growth were found 

in the NA plates of bacterial strains R. erythropolis NCIMB10422, NCIMB11148, 

NCIMB9905 and NCIMB9409. The hydrocarbon adaptation process was therefore carried 

forward only with the two viable strains. 
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Table 4.2 Observation of bacterial growth for pure cultures of R. erythropolis (different strains) 

in NA after 3 days of incubation in 26 °C. All bacterial strains were obtained as 

freezed-dried cultures.  

Bacterial strain Sign of bacterial growth 

NCIMB13064 Presence of bacterial colonies 

NCIMB10422 No colony formation 

NCIMB11148 No colony formation 

NCIMB9905 No colony formation 

NCIMB9409  No colony formation 

DSM311 Presence of bacterial colonies 

4.5.1 Preliminary study of cultivation on n-hexadecane 

The substrate supply study was conducted using 3 different methods, with n-hexadecane as the 

model substrate. In order to determine the best cultivation method, the presence of bacterial 

growth (R. erythropolis NCIMB13064) in each method was followed (Table 4.3). After 3 days 

of incubation, presence of suspended particulate matter (presumed to be bacterial cells) and 

culture turbidity were observed in the HLM culture, and some colonies of bacteria appeared in 

the HMA culture. However, bacterial colony growth was not seen in the HDA culture. These 

observations indicate that the HLM method allows bacteria to access the hydrocarbon 

efficiently, through the possible pathways postulated by previous studies (Noordman and 

Janssen, 2002; Hua and Wang, 2014). The pathways reported are: uptake of dissolved 

hydrocarbon (DH); direct contact of cells to large hydrocarbon drops (DCL); direct contact of 

cells to submicron-sized of hydrocarbon droplets (DCS); and biosurfactant-mediated uptake 

(BM). Usually, direct contact between hydrophobic compounds such as large hydrocarbon 

drops (DCL) and the hydrophobic region of a bacteria cell is prevented by the bacterial outer 

cellular membrane which is usually hydrophilic (Sikkema et al., 1995). However, hydrocarbon-

degrading bacteria overcome this barrier by adapting their outer membrane component, giving 

them an increased cell surface hydrophobicity (CSH). Consequently, adapted strains have 

higher CSH and are competent to uptake the hydrocarbon directly from droplets in the media 

(DCL). These adapted bacteria could also access the dissolved hydrocarbon (DH) and 

submicron-sized hydrocarbon droplets (DCS) as well, because the orbital shaker promotes high 

dissolution of hydrocarbon into the media, and allows dispersion of hydrocarbon into fine 

colloidal droplets in the aqueous media. Under the microscope, bacteria appear at the 

hydrocarbon: water interface. Physical dispersion of the hydrocarbon creates a greater surface 
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area and allows for more contact with the growing bacteria (Ławniczak et al., 2011). The liquid 

culture method also allows the bacteria to produce biosurfactant (for BM), which lowers the 

interfacial tension between the immiscible surface of the hydrocarbon and water (Diniz Rufino 

et al., 2014), facilitating adhesion of bacterial cells to the hydrophobic hydrocarbon (Mishra 

and Singh, 2012). The existence of the biosurfactants was assumed due to the appearance of a 

turbid milky white emulsion early in the growth period, which then developed into a more off-

white opaque dispersion as the bacterial cells grew.  

Table 4.3 Observation of growth of R. erythropolis NCIMB13064 according to the methods of 

cultivation on n-hexadecane. 

Method of cultivation 
(substrate supply) 

Observations Probable substrate 
uptake pathways* 

Hydrocarbon in liquid 
MM1 (HLM) 
 

Presence of suspended particulate 
matters (PM) / bacterial cells and 
turbid culture. Sub-culturing of culture 
in NA confirmed the PM as bacterial 
cells, as they grew in the agar. 

DH, DCL, DCS 
and BM 

Hydrocarbon mixed in 
MM1A agar (HMA) 

Presence of bacteria detected in 
bacterial colonies. 

Restricted amount 
of DH  

Hydrocarbon surface -
drops on MM1A agar  
(HDA) 

No bacterial colony formation DCL, with poor 
asses to nutrients 
beneath the agar. 

* DH: dissolved hydrocarbon; DCL; direct contact of cells to large hydrocarbon drops; DCS: 

direct contact of cells to submicron-sized of hydrocarbon droplets; BM: biosurfactant-

mediated uptake. Observation was made after 3 days of culture in 26 °C and 155 rpm 

incubator.  

However, routes for hydrocarbon uptake in hydrocarbon mixed in MM1A agar (HMA) were 

limited. The degree of growth in the HMA was less due to small amount of dissolved 

hydrocarbon (DH) that was available to bacteria (diffusion only), compared to HLM cultures 

(diffusion, dispersion and solubilisation of hydrocarbon). Moreover, zero growth was observed 

in HDA because the direct contact between the bacterial cell and hydrocarbon droplet was the 

only uptake mechanism, and generated relatively toxic concentrations. Also, the bacteria did 

not have good access to both the hydrocarbon on the agar surface, and the aqueous nutrients 

beneath the agar surface, at the same time. Therefore, it was concluded that subsequent 

adaptation experiments would be best conducted by adopting liquid cultivation such as the 

HLM method. 
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4.5.2 Types of growth substrate 

Figure 4.3 shows growth of R. erythropolis NCIMB13064 in minimal media supplemented with 

different types of hydrocarbon, and reveals that significant differences in bacterial growth 

(optical density) (p < 0.05), one-way ANOVA). In addition, through a Post-hoc (Dunnette t-

test) analysis (Table 4.4), use of n-hexadecane as growth substrate was confirmed to 

significantly increase (p < 0.05) the strain NCIMB13064 bacterial growth (OD: 1.129 ± 0.007) 

compared to the control (OD: 0.085 ± 0.009). However, addition of n-hexane (same amount) to 

the culture was found to bring no effect (p > 0.05) to the bacterial growth (OD: 0.084 ± 0.005).  

 
Figure 4.3 Growth of R. erythropolis NCIMB13064 (as optical density, OD600nm) on two growth 

substrates after 3 days of incubation. 

 

Table 4.4 Optical density for a culture of R. erythropolis NCIMB13064 in minimal media 

supplied with different growth substrates, and statistical analysis of the effect of 

substrate type on bacterial growth (in terms of optical density). 

Statistical analysis Substrate 

Control Hexane n-hexadecane 

 Optical Density (Mean) 0.085 ± 
0.009 

0.084 ± 
0.005 

1.129 ±  
0.007 

 Post Hoc test* (Significant value, p)  0.981 0.000 

* Comparison of substrate with control 
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Furthermore, neither visual bacterial cell suspensions nor change in optical density was 

observed in the culture grown in n-hexane.  Additions of different amounts of n-hexane (250 – 

2000 μl.L-1) to the culture was also carried out to find its optimum concentration, in case the 

initial concentration was either insufficient or excessive for bacterial growth. However, no 

visual signs of growth were observed at any of these concentrations (Figure 4.4) as shown by 

the fact that no increment of optical density took place in any of the culture flasks. The 

numerical results from varying the substrate concentration are shown in Figure 4.5. 

.  

Figure 4.4 Culture of R. erythropolis NCIMB13064 in MM1 supplied with different n-hexane 

concentration (250 μl.L-1 to 2000 μl.L-1) after 3 days of incubation. 

 

Figure 4.5 Growth of R. erythropolis NCIMB13064 in 100 ml of MM1 liquid medium and 250 

to 2000 μl.L-1 of n-hexane growth substrate. Bacteria were enumerated for 

measurement of optical density at each time point using a spectrophotometer. 
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In contrast, there was strong evidence of growth in the culture of strain NCIMB13064 in higher 

amounts of n-hexadecane (Figure 4.6 and 4.7). The visual turbidity of the bacterial culture was 

observed to increase with increases in n-hexadecane concentration (Figure 4.6), as well as the 

optical density (Figure 4.7). The growth pattern (increase of OD) in Figure 4.7 indicates that 

the use of a suitable hydrocarbon, such as n-hexadecane, can successfully support bacterial 

growth, in contrast to n-hexane. 

 

Figure 4.6 Cultures of R. erythropolis NCIMB13064 in MM1 supplied with different n-

hexadecane concentrations (250 μl.L-1 to 2000 μl.L-1) after 3 days of incubation. 

 

 
Figure 4.7 Growth of R. erythropolis NCIMB13064 in 100 ml of MM1 liquid medium and 250 

to 2000 μl.L-1 of n-hexadecane growth substrate. Bacteria were enumerated at each 

time point using a spectrophotometer at 600 nm. 
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However, compared to a previous study, Stancu (2014) found that R. erythropolis (strain IBBPo1  

isolated from crude oil-contaminated soil) could grow on n-hexane. However, the cell surface 

hydrophobicity (CSH) of their adapted strain was found to be very low (29 %), which confirms 

that n-hexane was not an efficient growth substrate for the hydrophobic-adaptation of bacteria.  

In contrast, R. erythropolis (strain DCL14) was found to utilize n-hexadecane well, and adapted 

into highly hydrophobic cells (CSH of 92 %) (de Carvalho et al., 2009). Moreover, culture of 

strain DCL14 in shorter chain n-alkanes, such as n-hexane, produced very low CSH compared 

growth on longer chain hydrocarbons. This confirms that n-hexane is not an efficient substrate 

for initiating hydrophobic-adaptation, especially for strain NCIMB13064 which gave extremely 

poor growth on n-hexane compared to strains IBBPo1 and DCL14. Therefore, the longer-chain 

hydrocarbon of n-hexadecane was confirmed as the most suitable growth substrate for bacterial 

strain NCIMB13064. In theory, n-hexadecane should be a suitable substrate to induce 

hydrophobic-adaptation of bacteria, due to its high octanol-water partition coefficient (log Pow) 

of 8.8, compared to 3.50 of the n-hexane (Geok et al., 2003). The high log Pow of n-hexadecane 

shows that it has higher water repelling characteristics compared to hexane, which suggests that 

it might be a more favourable substrate for the bacteria to grow on. Furthermore, midsize n-

alkanes (C10 to C18 in length) such as n-hexadecane, have been proven to be more readily 

available growth substrates than n-alkanes with either longer or shorter chains (Pepper et al., 

2014) including n-hexane (C6).  

The most important finding was that a short-chain aliphatic alkane (<C10) such as n-hexane 

(Table 4.5) was toxic for the microbial species due to its higher water solubility, notably 9.50 

mg.L-1 compared to a very low value of 9 x 10-4 mg.L-1 for n-hexadecane (C16). The n-hexane 

would therefore be more toxic because its high water solubility would allow it to dissolve more 

fully in the aqueous phase, and then to readily access the microbial cell membrane, and 

ultimately alter the membrane fluidity, causing the bacterial cell to lose its integrity (Tarradellas 

et al., 1996; Pepper et al., 2014). This means, bacterial cells would be more likely to be 

disrupted and would be less able to grow. These chemical properties explain why the R. 

erythropolis NCIMB13064 grew well in a substrate of n-hexadecane (C16 chain) but were 

inhibited from growing in n-hexane (C6). It was concluded that, in future experiments, the 

bacteria should be grown only in n-hexadecane as substrate, and not in hexane. Therefore, n-

hexadecane was utilised to study the effect of substrate dosage on the growth of bacteria in 

subsequent experiments. 
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Table 4.5 Physicochemical properties of the hydrocarbons used as growth substrates for the 

adaptation of bacteria. 

Substrate Formula Molecular weight 
(g.mol-1) 

Octanol-water 
partition coefficient         

(log Pow) 

Solubility 
(mg.L-1) 

n-hexadecane C16H34 226.44 8.80 a 9.00 x 10-4 b 

n-hexane C6H14 86.178  3.50 a 9.50 c  

References: a Geok et al. (2003); b Stroud et al. (2007); c Sigma-aldrich (2016) 
 

4.5.3 Effect of growth substrate concentration 

The objective was to investigate different growth substrate concentrations which supported the 

greatest level of bacterial growth. A minimum concentration of substrate for good growth 

bacteria was sought in order to minimise the cost of producing the bacterial biomass that might 

be used subsequently as an adsorbent for estrogens in a full-scale process, particularly to 

improve the chance of it being a cheaper adsorbent material than activated carbon.  

From Figure 4.7, the growth of bacteria for 500 μl.L-1 and 1,000 μl.L-1 of substrate showed very 

similar results, which indicates that 500 μl.L-1 was an adequate substrate concentration to be 

investigated further. In addition, a substrate concentration of 2000 μl.L-1 was not considered 

optimal because it add substrate cost compare to the 500 μl.L-1 yet improve cell yield by less 

than 50 % (only a 0.5 OD increase).  

The best substrate concentration was further investigated by culturing the strain NCIMB13064 

in n-hexadecane at 0, 300 and 500 μl.L-1 (Figure 4.8). Growth of the bacteria was found to 

increase rapidly from three days of incubation onwards. Significant increases (p < 0.05) in 

numbers of colony forming units (CFU) were found between the substrate dosages at day 3 to 

day 5 of the incubation period (Table 4.6). The highest bacterial growth was observed in the 

culture of strain NCIMB13064 in 500 µl.L-1 of substrate dosage (n-hexadecane) compared to 

the 300 µl.L-1 dose and the control. This confirms that the growth of strain NCIMB13064 was 

significantly affected by the dose of substrate added to the culture. Therefore, the alternative 

hypothesis is accepted.  
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Figure 4.8 Growth of strain NCIMB13064 in 100 ml of liquid MM1 medium containing 300 

μl.L-1 or 500 μl.L-1 of n-hexadecane growth substrate. The Control was prepared 

without substrate. Bacteria were enumerated at each time point point as CFU per 

100 ml using NA plate. 

 

Table 4.6 Mean colony forming units (CFU) of Rhodococcus erythropolis NCIMB13064 grown 

at different substrate (n-hexadecane) concentrations. Analysis of bacterial growth 

was made between the substrate dosages. 

Substrate 
dosage 

Bacterial growth, CFU (106) 
Day 1 Day 2 Day 3 Day 4 Day 5 

Control1 0.00a 8.67a 12.00a 14.00a 28.33a 

300 µl.L-1 4.67b 12.67a 40.67b 63.33b 71.33b 

500 µl.L-1 1.33a 16.00a 78.00c 140.00c 180.67c 

a, b, c Means that do not share a letter are significantly different (p < 0.05), but these 

comparisons are only valid within each day and not valid between days.  

1 Control: culture containing bacteria without substrate.  
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4.5.4 Relationship between CFU and optical density methods of enumeration 

It should be noted that the growth of bacteria in the optimum substrate concentration study 

(Section 4.4.5) was measured using colony forming units instead of optical density. The reason 

for monitoring the bacterial growth in CFUs was to eliminate the possibility that hydrocarbon-

degrading bacteria could have increased their hydrocarbon uptake during the cultivation by 

producing the biosurfactants, which could also have contributed a turbidity characteristics of 

the bacterial culture by producing emulsions of the growth substrate with similar optical 

properties as the bacterial suspensions (Section 2.9.1). This theory can also be supported by the 

observation that turbidity did not appear in the no-substrate control flask because the bacteria 

could not initiate the production of biosurfactants without the presence of n-hexadecane. The 

emulsified substrate molecules and biosurfactant might produce a milky appearance in the 

growth medium making the optical density reading a less reliable method of enumerating 

bacterial cells. A biosurfactant, possibly trehalose tetraesters (Figure 4.9) (Petrikov et al., 2013) 

that was present in the culture of R. erythropolis using n-hexadecane was a cell-bound molecule. 

Therefore the amount of biosurfactant increased proportionally with bacterial growth; however, 

the turbidity does not represent the actual growth of cells directly (Figure 4.10). Furthermore, 

the bacterial cells were observed to begin aggregating as clumps after 4 to 5 days of the 

incubation. At this point, the aggregates would slightly reduce the scattering of bacteria relative 

to the same amount of biomass as single dispersed cells, leading to a lower optical density 

measurement. Thus, the measurement of CFUs was considered to be more reliable for accurate 

monitoring of bacterial growth.  

 

Figure 4.9 Structure of glycolipid biosurfactant trehalose tetraesters produced by Rhodococcus 

sp. bacteria during the cultivation of the bacteria with hexadecane growth substrate 

(Petrikov et al., 2013). 
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The precise relationship between culture optical density and CFU is shown in Figure 4.10, and 

shows a good correlation with a linear regression of R2 = 0.8467. This implies that the optical 

density is not perfectly proportional to CFU but is a fair estimate of it, and can serve as a good 

working estimate of bacterial growth (Section 4.5.2). However, the OD value cannot be used 

as an accurate parameter in a detailed investigation such as studies on bacterial growth phases, 

in which case CFU measurement is deemed to be a more reliable measurement of bacterial 

biomass for future experiments.   

 
Figure 4.10 Relationship between bacterial concentration (CFU.ml-1) and optical density (OD 

at 600 nm) for Rhodococcus erythropolis NCIMB13064 grown for 5 days with 

500 µl.L-1 hexadecane. 

4.5.5 Bacterial growth phase  

Rhodococcus erythropolis NCIMB13064 and DSM311 were grown for five days, and daily 

enumeration of the CFU made using NA as described in Section 4.5.3. As the experiment 

proceeded severe aggregation appeared as predicted. Therefore further CFU measurement was 

not conducted after 5 days, due to the presence of bacterial clumps, and actual bacterial growth 

could not be measured either from optical density or CFU measurement. Similarly, the use of 

flow cytometer for total numbers of bacterial cells for growth monitoring was also not suitable 

because the bacteria cells could not be dispersed properly, even though bacterial dispersion 

techniques by vortex spinning, addition of surfactants, such as Triton X-100, 100, Tween 80 

and sonication for up to 5 hours were carried out. Furthermore, the hydrophobic aggregated 

cells could severely block the flow cytometer machine, and therefore its use was avoided.  
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From the earlier CFU growth monitoring, strain NCIMB13064 gave its optimum growth at 500 

μl.L-1 of substrate. Its exponential growth phase appeared to occur around day 3 to day 5 (Figure 

4.11) and the stationary phase was presumed to occur after day 5 of incubation. Equally, 

measurements of CFU for bacterial strain DSM311 (Figure 4.12) were only conducted for 4 

days due to the severe aggregation of bacterial cells. These cell aggregations occurred because 

hydrocarbon-degrading bacteria increase hydrocarbon uptake by producing extracellular 

polymeric substance (EPS), which was a sticky substance that bridges between the bacterial 

cells and hydrocarbon droplets, allowing direct access to the hydrocarbon by the bacterial cell 

(Section 2.9.2). The strain DSM311 was found to have similar trend of growth to that of strain 

NCIMB13064, with exponential growth phase between day 3 and day 5, and the stationary 

phase was also presumed to occur after day 5. Similar to strain NCIMB13064, its optimum 

growth substrate was also found to be 500 µl.L-1 of n-hexadecane.  

 

 
Figure 4.11 Growth curve of Rhodococcus erythropolis NCIMB13064 cultivated in liquid 

medium supplied with 300 μl.L-1 and 500 μl.L-1 of n-hexadecane growth substrate 

and control without substrate. Bacteria were enumerated at each time point as CFU 

per 100 ml using NA plates. 
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Figure 4.12 Growth curve of strain Rhodococcus erythropolis DSM311 cultivated in liquid 

medium supplied with 300 μl.L-1 and 500 μl.L-1 of n-hexadecane growth substrate 

and control without substrate. Bacteria were enumerated at each time point point as 

CFU per 100 ml using NA plates. 

 

4.5.6 Morphology image for the adapted bacteria 

Through morphological observations, both of the bacterial strains NCIMB13064 and DSM311 

appeared as rod-shaped cells, which was expected as they were known to be Rhodococcus 

erythropolis (Figure 4.13). Moreover, size of bacterial cells strain NCIMB13064 and DSM311 

were measured to be in the ranges of 1.5 - 2.5 µm and 1.0 - 2.0 µm, respectively. Strain DSM311 

was observed to grow in large clusters, which was presumed to be related to the presence of 

EPS. However, this effect was less prominent in the strain NCIMB13064. 
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Figure 4.13 Images of the adapted R. erythropolis NCIMB13064 and DSM311 cultivation using 

MM1 media with n-hexadecane (500 µl.L-1) growth substrate, observed under 1000 

times magnification using fluorescent microscope. 

 

 

  

DSM 311 NCIMB 13064 
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4.6 Methodology - Isolation of bacteria from soil 

Samples of diesel-contaminated soils were used to isolate hydrophobic microorganisms living 

in oily soil conditions and adapted to the hydrophobic environment it represents. The soils were 

collected from two points in Cockle Park farm, Morpeth. Placed in sample collection bags 

labelled as Soil 1 and Soil 2 which were kept for not more than 1 week at room temperature (22 

± 2 °C). The isolation of bacteria was conducted according soil-enrichment technique as 

summarised in Figure 4.14. 

 

Figure 4.14 Experimental steps for the isolation of hydrophobic bacterial species from diesel-

contaminated soil through soil enrichment technique. 

Soil enrichment experiment: 
Culture of soils in minimal media 

and growth substrate  
(n-hexane or n-hexadecane).  
Incubated for 7 and 21 days. 

 

Sub-culture in hydrocarbon-mixed 
minimal agar (HMA) 

 

Sub-culture of single colony onto 
slant agar 

 

Sub-culture the isolated colony in 
liquid minimal media (HLM) 

 

Isolates were stored in 20 % glycerol 
stock at -80 °C 
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The isolation process was carried out by culturing 50 g (field moist weight) of each soil sample 

in 100 ml of liquid minimal media (MM1) supplied with 500 µl.L-1 of n-hexane or n-

hexadecane in 250 ml Erlenmeyer flasks at 26 ºC and 155 rpm in an orbital shaker incubator. 

After 7 and 21 days of incubation, samples of the enrichment culture were taken using a 

sterilized inoculation loop, and sub-cultured (streaked) in a hydrocarbon-mixed agar (HMA) 

containing n-hexadecane or n-hexane, similar to the cultivation technique in Section 4.4. The 

HMA was used in this experiment even though it was not the best medium for efficient 

hydrocarbon uptake, however this culture technique was suitable for separation of single 

bacterial colonies capable of direct growth on the hydrocarbon. The streaked agar cultures were 

incubated in 26 ºC for 5 days to obtain visible colonies. All non-identical (visually) single 

colonies that grew on the agar plate were then picked and sub-cultured in slant agar tubes 

prepared beforehand with the same solid MM1 media and substrates (4.3). The cultures were 

incubated in 26 °C for 5 day, and pure bacterial colonies which appeared in the slant agar were 

then sub-cultured in liquid MM1 with substrates of either n-hexane or n-hexadecane for 3 days. 

1 ml of each bacterial culture was then preserved in 20 % glycerol stock at -80 °C and all isolates 

were labelled. The experimental work is summarised in Figure 4.15.  

 

Figure 4.15 Experimental steps for the isolation of hydrophobic bacterial cells from diesel-

contaminated soils using soil-enrichment technique. 
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Further investigations for optimum substrate dosage and growth monitoring were carried out 

for the soil-isolates strains using protocols similar to the pure bacterial strains (Section 4.4.6.).  

4.7 Results and discussion - Isolation of bacteria from soil 

Using soil-enrichment technique, five potentially different strains of bacteria were successfully 

isolated. Three strains were isolated after 7 days of soil enrichment and another two were 

isolated after 21 days. Details of the findings are described and discussed in the subsequent 

sections. 

4.7.1 Types of substrate 

Growth of bacterial colonies were found in soil enrichment cultures supplied with n-hexadecane 

substrate, but no sign of growth was found using n-hexane substrate (Figure 4.16). These results 

are similar to those in the adaptation of pure bacterial strains (Section 4.5.2), which indicates 

that only n-hexadecane was found to be suitable growth substrate. Bacterial strains isolated 

after 7 days of enrichment were labelled as soil-isolates PD2-1, PD2-2 and PD2-3, whereas the 

21 days-isolated strains were recorded as SD1-1 and SD2-1 (Table 4.7). 

 

Figure 4.16 Culture of diesel-contaminated soils in hydrocarbon-mixed agar (HMA) with (i) n-

hexane and (ii) n-hexadecane substrates, for the separation of single colonies of new 

bacterial strains. 

 

 

(i) Sub-culture of soil in               
n-hexane HMA 

(ii) Sub-culture of soil in                            
n-hexadecane HMA 
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Table 4.7 Bacterial strains isolated from diesel-contaminated soils using enrichment culture 

added with hydrocarbon substrates in 7 or 21 days of incubation period. 

Isolate code Growth substrate Soil-enrichment incubation period 

PD2-1 n-hexadecane 7 days 

PD2-2 n-hexadecane 7 days 

PD2-3 n-hexadecane 7 days 

SD1-1 n-hexadecane 21 days 

SD2-1 n-hexadecane 21 days 
 

4.7.2 Optimum concentration of growth substrate 

The optimum substrate concentration was determined for each of the soil-isolates by monitoring 

growth of the isolates in minimal media supplied with different n-hexadecane concentrations 

(0 - 500 µl.L-1). Bacterial concentration, as numbers of the bacterial colonies (CFU), growing 

in each of the culture were analysed statistically using one-way ANOVA (Table 4.8).  

Table 4.8 Growth (CFU per 100 ml) of the soil-isolate bacterial strains in MM1 supplied with 

different n-hexadecane growth substrate concentrations after 5 days of incubation. 

Substrate concentration 
(hexadecane)  

Bacteria growth (CFU) after 5 days incubation 

PD2-1 PD2-2 PD2-3 SD1-1 SD2-1 

Control (no substrate) 60b 1,000 c 200 b 60 c 0 b 

300 µl.L-1  31,200 a 8,000 b 24,200 a 2,990 b 2,950 a 

500 µl.L-1  29,710a 56,000 a 32,800 a 7,980 a 4,140 a 

a, b, c Means that do not share a letter are significantly different (p < 0.05), but these comparisons 

are only valid within each strain and not valid between strains.  

All of the soil-isolates were found to have better growth in the minimal media supplemented 

with n-hexadecane compared to control (contained the inoculation culture of bacteria in 

minimal media without substrate) after 5 days of incubation. The bacterial growth in both of 

300 µl.L-1 and 500 µl.L-1 concentrations were determined to be significantly (p < 0.05) higher 

than controls. This indicates that n-hexadecane was a suitable carbon source that can be 

accessed by all of the bacterial strains, because they had been exposed to it during the 

enrichment process and they were considered to have successfully undergone induction of the 

alkane hydroxylase enzyme (Tebyanian et al., 2013; Chiciudean et al., 2017). Moreover, the 
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isolated bacteria were also predicted to be hydrophobic strains as they had survived in 

hydrophobic environments (diesel saturated soil).  

In theory, higher substrate dosage should enhance the bacterial growth, unless an excessive 

amount has inhibited it. Therefore, additions of higher concentrations of n-hexadecane (500 

µl.L-1) into the culture significantly improved growth of strains PD2-2 and SD1-1 compared to 

300 µl.L-1. However, isolates of strains PD2-1, PD2-3 and SD2-1 were found to give no 

statistically similar growth at 300 µl.L-1 and 500 µl.L-1 of n-hexadecane (Table 4.8). Therefore, 

to maintain the same culture conditions, and without compromising their growth efficiencies, 

all of the bacterial strains were subsequently grown on 500 µl.L-1 of n-hexadecane in future 

experiments. 

4.7.3 Growth phase of the soil-isolate bacteria 

Results from growth of the soil-isolate bacterial strains PD2-1, PD2-2, PD2-3, SD1-1 and SD2-

1 in minimal media supplemented with different n-hexadecane concentrations including 

controls (no substrate) are presented in Figure 4.17 - Figure 4.21. 

 
Figure 4.17. Growth curve of soil isolate PD2-1 in 100 ml of MM1 liquid medium and n-

hexadecane growth substrate. Bacteria were enumerated at each time point as CFU 

per 100 ml using NA plates. 
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Figure 4.18 Growth curve of soil isolate PD2-2 in 100 ml of MM1 liquid medium and n-

hexadecane growth substrate. Bacteria were enumerated at each time point as CFU 

per 100 ml using NA plates.  

 

Figure 4.19 Growth curve of soil isolate PD2-3 in 100 ml of MM1 liquid medium and n-

hexadecane growth substrate. Bacteria were enumerated at each time point as CFU 

per 100 ml using NA plates. 
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Figure 4.20 Growth curve of soil isolate SD1-1 in 100 ml of MM1 liquid medium and n-

hexadecane growth substrate. Bacteria were enumerated at each time point as CFU 

per 100 ml using NA plates  

 

Figure 4.21 Growth curve of soil isolate SD2-1 in 100 ml of MM1 liquid medium and n-

hexadecane growth substrate. Bacteria were enumerated at each time point as 

CFU per 100 ml using NA plates. 
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According to the shape of the growth curves for the soil-isolate bacteria, at day 5 of incubation, 

all of the bacteria appeared to be either at the middle or end of the exponential phase. Therefore, 

in subsequent experiments, all of the soil-isolate bacteria were either grown for 5 days to 

achieve exponential growth phase cells, or grown for 10 days to achieve stationary phase cells, 

as biomass produced at these two different growth states was evaluated as a potential 

wastewater treatment process for estrogen removal (Chapter 6). 

4.7.4 Morphology of soil-isolate bacteria 

Microscopic images of the soil-isolates bacteria observed under 10,000 times magnification 

using a fluorescence microscope (under normal light) are shown in Figure 4.22 and Figure 4.23. 

 

Figure 4.22 Images of soil-isolate bacterial strains: (i) PD2-1 (ii) PD2-2 and (iii) PD2-3  isolated 

after 7 days of cultivation using MM1 media with n-hexadecane (500 µl.L-1) growth 

substrate, observed under 1000 times magnification using fluorescent microscope. 

(ii) Soil-isolate strain PD2-2 (i) Soil-isolate strain PD2-1 

(iii) Soil-isolate strain PD2-3 
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Figure 4.23 Images of soil-isolates bacterial strains: (i) SD1-1 and (ii) SD2-1 that isolated after 

21 days of cultivation using MM1 media with n-hexadecane hexadecane (500 µl.L-

1) growth substrate, observed under 1000 times magnification using fluorescent 

microscope. 

The soil-isolate bacterial strains of SD1-1 and SD2-1 isolated after 21 days of enrichment were 

observed to grow in clumps (Figure 4.3), however, in contrast, discrete cell growth was 

observed in the cultures of strains isolated after 7 days of enrichment (PD2-1, PD2-2 and PD2-

3) (Figure 4.22). The clumping bacterial growth that observed under the microscope was 

presumed to occur due to the presence of extracellular polymeric substance (EPS) (Section 

4.5.5). Initially, the presence of EPS during the hydrophobic bacterial adaptation does not seem 

to make sense because EPS is typically a highly hydrated hydrophilic polysaccharide (Liu et 

al., 2008). However, EPS can also exhibit hydrophobic properties (Flemming and Wingender, 

2010), which due the presence of methyl-linked polysaccharides, and acetyl groups in the EPS 

molecular structure. This indicates that aggregation of cells in n-hexadecane cultures could be 

due to the presence of hydrophobic EPS that facilitates the hydrocarbon uptake (Kim et al., 

2002; Tzintzun-Camacho et al., 2012).  

In addition, the soil-isolates of SD1-1 and SD2-1 underwent soil-enrichment in n-hexadecane 

for 21 days, 3 times longer than PD2-1, PD2-2 and PD2-3 (7 days). This longer exposure may 

also have produced a more hydrophobic bacteria, which might be more suitable to be employed 

in the removal of estrogens from wastewater. Further investigations on the hydrophobicity of 

the adapted bacterial strains is reported in Chapter 5. 

(i) Soil-isolate strain SD1-1 (ii) Soil-isolate strain SD2-1 
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4.8 Conclusion  

R. erythropolis strains NCIMB13064 and DSM311 were found to have a tolerance and able to 

grow on hydrocarbon substrate, and culture of solid and liquid minimal media with n-

hexadecane as sole carbon were the most efficient cultivation conditions. 

Type of substrate was considered to significantly affect the adaptation process as the adapted 

bacteria grew well on the highly hydrophobic substrate (n-hexadecane) in preference to n-

hexane which has a lower octanol-water partition coefficient. 

Substrate concentration significantly affected the level of bacterial growth, with lower 

concentrations (less than 300 µl.L-1) deemed to be limiting on growth, but this was not true for 

all strains as higher concentrations (500 µl.L-1) did not always improve growth compared to 

lower concentrations  (300 µl.L-1). Therefore an optimum concentration of 500 µl.L-1 of n-

hexadecane was identified as a suitable growth substrate for the hydrophobic-adaptation 

process. 

Overall, the main objective (Section 1.3 (1)) of obtaining hydrophobic biomass through the 

adaptation of pure bacterial strains and soil-bacterial isolates using a hydrophobic compound 

of hydrocarbon, i.e. n-hexadecane, as growth substrate has been successfully achieved. 
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Chapter 5 Characterisation of the isolated and adapted bacterial strains 

5.1 Introduction  

A study of the physicochemical characteristics of the adapted strains of R. erythropolis 

NCIMB13064 and DSM311, as well as the new strains isolated from soil (Chapter 4), was 

conducted according to workflow in Figure 5.1. In theory, the adapted R. erythropolis 

NCIMB13064 and DSM311 were expected to exhibit higher cell surface hydrophobicity (CSH) 

compared to the parent strains. Furthermore, the new soil-isolate strains were expected to show 

strong hydrophobic characteristics immediately after isolation from soil, since they had been 

exposed to hydrophobic growth substrates for up to 7 or 21 days during the isolation process. 

Theoretically, this could generate high CSH after adaptation, making them potentially ideal 

bacterial adsorbents for estrogen removal. 

 
Figure 5.1 Workflow of experimental analysis conducted on the bacteria strains. 

5.2 Aim 

The aim of this study was to investigate the effect of adaptation on pure commercial strains of 

bacteria and new bacterial strains isolated from soil using a hydrophobic growth substrate, and 

to identify the new isolated species.  

5.2.1 Objectives 

In order to accomplish the aim, the following objectives were developed: 

Measurement of cell surface hydrophobicity (CSH) of 
the adapted pure species (R. erythropolis NCIMB13064 
and DSM311) and soil-isolates bacterial strains (PD2-1, 
PD2-2, PD2-3, SD1-1 and SD2-1) 

Species identification of soil-isolate bacterial strains 
(DNA extraction, PCR amplification, DNA 
quantification and sequencing) 

Gram stain analysis for the soil-isolate bacterial strains 
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1. To study the effect of growth substrate adaptation of the selected bacteria on their CSH 

characteristics.  

2. To study the CSH profile during the batch cultivation of the bacteria. 

5.2.2 Hypotheses 

The alternative hypotheses that were proposed related to the objectives are; 

1. The adapted and new isolated bacterial strains acquire higher CSH compared to their 

parent strains after the adaptation process.  

2. The CSH of bacterial strains increases throughout the bacterial growth cycle, 

particularly from the exponential to the stationary phases. 

5.3 Methodology 

5.3.1 Cell surface hydrophobicity (CSH) measurement 

Cell surface hydrophobicity (CSH) of bacteria can be measured by the microbial adherence to 

hydrocarbon (MATH) technique (Rosenberg, 2006) or contact angle (Section 2.10). 

Unfortunately, the contact angle technique requires a smooth, uniform surface of bacteria, 

which is usually prepared by filtering bacterial cells through a membrane filter (Oliveira et al., 

2001). This procedure requires a drop of water to be placed on this uniform layer of bacteria so 

that the contact angle between the axisymmetric shape of the water droplet and the bacterial 

layer can be measured. However, this procedure is not possible for bacterial cells that exhibit 

an aggregation effect producing a non-uniform thickness of cells (Figure 5.2). Therefore this 

method was not used in the current study, and the MATH technique was deemed to be more 

reliable. In addition the MATH technique is both simple and rapid technique.  

The CSH of the bacterial strains was measured according to MATH technique, and was 

evaluated at days 3, 5 and 10 of incubation during batch growth. Day 3 of incubation represents 

the beginning of bacterial growth (the end of lag phase), day 5 is the middle of exponential 

phase, and day 10 represents the stationary phase of bacterial growth, as determined in Chapter 

3. The measured values of CSH of the bacterial strains were compared to E.coli as the negative 

control. E.coli was chosen as the negative control because it is typically found in wastewater 

which carries various pollutants, including estrogens, and would therefore receive only low 

exposure to hydrophobic substrates in the environment.  

Phosphate urea magnesium (PUM) buffer was prepared before the experimental work by 

diluting 22.2 g K2HPO4.3H2O, 7.26 g KH2PO4, 1.8 g urea, 0.2 g MgSO4.7H2O in distilled water 

into 1.0 litre solution (Rosenberg et al., 1980). All bacterial strains of NCIMB13064, DSM311, 
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PD2-1, PD2-2, PD2-3, SD1-1 and SD2-1 were cultivated separately in 10 ml of minimal media 

(MM1) (Section 4.3) and added with 5 μl of n-hexadecane (500 μl.L-1) as the growth substrate 

in 20 ml glass universal tubes. The bacteria were cultivated in triplicate for 3, 5 and 10 days of 

incubation.  Bacterial cells were harvested at the end of the incubation period and centrifuged 

at 4,000 g for 10 minutes, before being washed twice with PUM buffer to remove the residual 

n-hexadecane. The washed cells were then reconstituted in PUM to an initial optical density 

(A0) between 0.4 - 1.0 at a wavelength of 600 nm using the UNICAM 8625 UV-VIS 

Spectrometer.  

1.2 ml of the culture solution was then taken out and added with 200 μl of new n-hexadecane 

reagent in a glass tube. The culture solution and hydrocarbon mixture was vortexed at full speed 

for 2 minutes and left at room temperature for 1 hour for the partitioning of the aqueous and oil 

phases. Because speed can affect the mixing process, the vortex speed was maintained at a 

uniform level in each CSH measurement assay. 2 ml of the aqueous phase was carefully 

extracted using a needle and its optical density was measured and recorded as A1. Based on the 

recorded A0 and A1 data, the percentage of the bacterial cell adhesion to the hydrocarbon was 

calculated according to Equation 2.3 (Section 2.10) for cell surface hydrophobicity. The 

measurements were repeated for all of the bacterial strains prepared in triplicate.  

5.3.2 Gram stain characterisation 

Gram stain analysis was conducted for each bacterial strain to differentiate between Gram 

positive and Gram negative types. This identification could provide general information on 

changes in bacterial morphology. Gram detection assays were carried out according to the Gram 

staining protocol (Smith and Hussey, 2005).  

All of the bacterial strains were cultivated in 10 ml of minimal media (Section 4.3) supplied 

with 5 μl of hexadecane (500 μl.L-1) and incubated for 3 days. A drop of sterile deionized water 

was placed on top of a microscope glass slide and an appropriate amount of bacteria colony 

was dispensed from the agar plate using the inoculating loop onto the water drop, spread out as 

a thin layer biofilm. Heat smearing was carried out by passing the slide through a flame for a 

few seconds. The crystal violet dye was applied on top of the smear and left for 1 minute and 

washed with water to remove any remaining stain which was unattached the cells. Gram Iodine 

was applied for 1 minute and then washed away. A decolorizing process with 95 % ethanol 

solution was conducted afterwards and washed with water after 1 minute. The final stain of 

Safranin was then applied to the smear, washed with water and air-dried before being observed 

under a wide field fluorescence microscope fitted with a colour camera (Leica DM6 - upright).  
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5.3.3 DNA Extraction and PCR amplification 

This experiment was only conducted for the soil-isolate bacterial strains PD2-1, PD2-2, PD2-

3, SD1-1 and SD2-1 in order to identify their species. These bacterial strains were cultured for 

3 days in liquid MM1 (Section 4.3) and n-hexadecane growth substrate (500 μl.L-1) , and then 

DNA extraction was carried out utilizing a FastDNATM  SPIN Kit for Soil according to the 

manufacturer’s protocols (MP Biomedicals, UK). The extracted DNA products were stored at 

-80 ºC and thawed prior to the PCR amplication process.  

The extracted DNA was amplified by PCR with universal primer pair P8FpL (5’-

AGTTTGATCCTGGCTCAG-3’) and P806R (5’- GGACTACCAGGGTATCTAAT-3’). A 

negative control of sterile water was also prepared for the PCR process. The chemicals for the 

experiment, 17.75 μl nuclease-free water, 2.5 μl buffer, 0.5 μl dNTP, 0.25 μl enzyme and 1 μl 

each of primers P8FpL and P806R (McCabe et al., 1996) were all supplied by Sigma-Aldrich. 

All of the chemicals were added to a 2 ml PCR sterile tube and mixed. The same mixture content 

was replicated in 6 PCR tubes, and then 2 μl of each DNA sample (5 bacterial strains), as well 

as a 2 μl of sterile water (control) were added separately to the mixture. Samples and control 

were amplified in in a MyCycler Thermal Cycler (BioRad Laboratories, Hercules, CA, USA) 

with the following conditions: 1) initial denaturing step at 94 ºC/ 4 min, 2) 35 cycles of 

denaturation (94 ºC/ 60 s), annealing (58 ºC/ 45 s) and extension (72 ºC/ 60 s) and 3) final 

extension at 72 ºC/ 7 min. The amplified DNA of the PCR product was stored at -80 °C. 

5.3.4 Detection of DNA fragments size, quantification, and sequencing 

Agarose gel electrophoresis analysis was carried out to investigate the bacterial DNA fragments 

sizes. One litre of 50X TAE buffer (Omega Bio-tek, Inc) was prepared beforehand. Agarose 

gel (1.5 %) was prepared by dissolving 1.5 g of agarose powder (A9539, Sigma Aldrich) in 100 

ml TAE 50X buffer, prepared in a 250 ml Duran bottle in a microwave oven at 100 °C  for 3 

minutes. Nancy dye (20X) 20 ml (Sigma-Aldrich) was added to the agar mixture at 50°C and 

it was then poured into the casting tray and left for 30 minutes to allow it to solidify. The 

solidified agar was then placed in the electrophoresis chamber containing the TAE buffer.  

Each of the amplified DNA sample (5 μl) (Section 5.3.3) was added to each clean 2 ml PCR 

tube containing 2 μl buffer. A DNA ladder solution (7 μl) (Invitrogen E-gel DNA ladder, 

Thermo Fischer Scientific) and DNA/buffer mixture (7 μl) were added separately into the agar 

well. The process was repeated for all DNA samples in separate wells. A negative control was 

added without the DNA sample. The electrical voltage was set at 94V for 90 minutes to allow 

the DNA fragments to travel in the agar matrix. After 90 minutes, the agar was carefully taken 

out from the chamber and placed in the UV E-Gel imager (Invitrogen, Thermo Fischer 
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Scientific). A photograph of the fragment band on the agar was captured for DNA fragment 

size identification.  

The amplified PCR product was then purified (Qiagen MinElute kit, Qiagen) according to the 

protocol provided by the manufacturer. QubitTM dsDNA HS assay kit was used to quantify 

DNA by using the Qubit 2.0 Fluorometer, and concentration of the DNA samples can be 

calculated using Equation 4.1: 

 

Where the QF value is the value given by the Qubit 2.0 Fluorometer, and X is the volume of 

sample in microliters, added to the assay tube. All of the purified DNA samples were then 

adjusted according to the conditions required by the Sanger sequencing service provider (DBS 

Genomics, Durham University). 20 μl of each sample was added to a single tube and sent to 

Durham University together with the same PCR primers. Information about the samples such 

as DNA fragment size, concentration and primer details were provided together with the sample 

packages. 

Data on DNA nucleotide sequence were analysed in Snapgene software and aligned to each 

other using CLUSTALX software. Phylogenetic analysis was conducted with MEGA software, 

to construct distance-based tree.  

5.4 Results and discussion - cell surface hydrophobicity 

The CSH investigations carried out were; CSH of pure R. erythropolis NCIMB13064 and 

DSM311 (compared to after adaptation); and comparison of the CSH values of all strains of 

pure adapted R. erythropolis strains, soil-isolates strains and E. coli. 

 
Figure 5.2 Filtered bacterial cell of (i) soil-isolate strain SD2-1 and (ii) R. erythropolis DSM311 

cultured in liquid MM1 and n-hexadecane growth substrate. 

Concentration of samples (ng.ml-1) = QF value x (200/X) 

 
(Equation 4.1) 

(i)   (ii) 
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5.4.1 Hydrophobicity of the pure strain of R. erythropolis and soil-isolates bacteria 

CSH values for the adapted bacterial strains measured at different incubation times. According 

to Figure 5.3, the CSH of the bacterial strains adapted with n-hexadecane vary with incubation 

time, with continuous increments in its level with longer incubation times for the bacterial 

strains DSM311, NCIMB13064, SD2-1 and PD2-1. However, a different pattern of changes in 

CSH was found in SD1-1, PD2-3, and for the negative control strain of E. coli, where the CSH 

value increased between day 3 to day 5 of incubation and then declined towards the end of the 

incubation period. This indicates that the moderate (60 - 65 %) CSH values obtained at day 5 

of incubation had fallen by day 10 to 13 - 43 %, causing the SD1-1 and PD2-3 strains to lose 

most of their hydrophobicity characteristics. The reduction of CSH in these strains is believed 

to happen due to the cells having actually entered the death phase (Figure 5.4). 

 

 
Figure 5.3 Cell surface hydrophobicity of adapted pure R. erythropolis strains, soil-isolate 

bacterial strains and E. coli at 3, 5 and 10 days of incubation using the MATH 

hydrophobicity measurement technique. Broken red line indicates the most 

hydrophobic strains. 
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Figure 5.4 Growth phase of: (i) SD1-1 and (ii) PD2-3 during the adaptation process. Cultivation 

in liquid MM1 supplied with different volumes of  n-hexadecane growth substrate 

(figures extracted from Chapter 3). 

It is suggested that strains that continuously increased their CSH values from day 3 to day 10 

(DSM311, NCIMB13064, SD2-1) had successfully undergone adaptation (Figure 5.3) and 

developed into highly hydrophobic cells. More specifically, R. erythropolis DSM311 achieved 

67 % of hydrophobicity after 3 days, which increased to 87 % at day 5, and achieved the highest 

CSH among all of the bacteria, finally reaching 93 % on day 10. Similar increments of CSH 

were observed in the strain NCIMB13064, with 69 % CSH measured on day 3, increasing to 

92 % on day 10. The soil-isolate strain SD2-1 developed a CSH of 78 % at day 3, which 

increased to 91 % by day 10. Therefore, the latter three strains were selected for further 

investigation as they showed the best CSH and were considered the most promising strains on 

that basis for the removal of the hydrophobic estrogen contaminants from water. In comparison, 

E. coli as the negative control had very low CSH values, between 21 to 32 %, confirming it to 

be a hydrophilic strain (Mitra et al., 2005) which should not have the capability of removing 

estrogen efficiently.   

The bacterial adaptation process was found to successfully improve CSH value of the NCIMB 

13064, DSM 311 and SD2-1 strains, which became highly hydrophobic as the incubation time 

increased. Presumably, the longer incubation times allowed the bacteria adapt to the 

hydrophobic conditions (environmental stress) by altering their membrane lipid component and 

subsequently the hydrophobicity of the cell surface increased, as proposed by Baumgarten et 

al. (2012). So, further investigations was carried out to compare the CSH values between the 

adapted and parent strains of NCIMB13064 and DSM311. In addition, CSH development 

through the growth cycle for the strain SD2-1 was also observed.   

(i) (ii) 
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5.4.2 Effect of adaptation on the CSH of pure bacterial species R. erythropolis  

The CSH values for the adapted strain DSM 311 (DSM311-A) and its parent strain (DSM311-

P) were measured between day 3 to day 10 to investigate effect of adapting the bacteria in 

minimal media and n-hexadecane growth substrate.  (Table 5.1 and  Figure 5.5).  

Table 5.1 Paired t-test analysis of cell surface hydrophobicity of R. erythropolis DSM311 

comparing the adapted cells and the parent strain. 

Samples 
Cell surface hydrophobicity (CSH) (%) 

Day 3 Day 5 Day 10 
DSM311-P 85.67a 87.00a 87.33b 

DSM311-A 67.33b 87.00a 92.67a 

a,b Means that do not share a letter are significantly different (p < 0.05). 

Comparisons are only valid within each day and not valid between days. 

 Figure 5.5 Cell surface hydrophobicity of the hydrocarbon-adapted R. erythropolis strain 

DSM311 (cultivated in liquid MM1 and n-hexadecane as growth substrate) 

compared to the parent strain cultivated in nutrient broth (NB). 

Based on the measurement of CSH values of the adapted DSM311 (DSM311-A) and its parent 

strain (DSM311-P) shown in  Figure 5.5, a significant difference in CSH (p < 0.05) was present 

at day 3 of the incubation period. The CSH of DSM311-A was found to be 67.33 %, which was 
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lower than that of DSM311-P at 85.67 ± 2.08 %. This was an unexpected result, because the 

adaptation of bacterial cells with hydrocarbon was expected to increase their hydrophobicity 

instead of reducing it. However, the CSH of DSM311-A was then observed to increase from 

67.33 ± 4.16 % to 87.00 ± 3.00 % at day 5, and reached 92.67 % at the end of the 10 days 

incubation, which was significantly higher than the value for DSM311-P at 10 days. The lower 

CSH of DSM311-A compared to DSM311-P at day 3 could be best explained by assuming that 

the bacterial cell was still at the stage of adapting to the hydrophobicity of the n-hexadecane, 

and its CSH was not yet fully developed, or some other factors in the different growth media 

(MM1 and NB) were influencing the hydrophobicity. However, as the incubation time 

increased, DSM311-A had already adapted well to the hydrophobic conditions and achieved 

higher CSH at day 5 (87%) and day 10 (92.67 %). In comparison, as predicted, the DSM311-P 

showed an almost constant CSH for the whole incubation period, with an increase of only 

1.66 %, from 85.67 to 87.33 %. Statistically, there was a significant increase in CSH (p < 0.05) 

in R. erythropolis strain DSM311 after 10 days of the adaptation process, to a value of 92.67 ± 

2.89 % CSH compared to 87.33 ± 1.15 % CSH for parent strain (DSM311-P).  

A very similar pattern of CSH development through the growth cycle was observed for the 

R.erythropolis strain NCIMB13064 (Figure 5.6). According to the analysis in Table 5.2, the 

initial CSH of the adapted strain (NCIMB13064-A) increased considerably from 69.33 % at 

day 3 to 92 % after 10 days of incubation. Even though the percentage of CSH of the 

NCIMB13064-A was initially lower than its parent strain (NCIMB13064-P) between days 3 to 

5, it increased to a significantly higher level than the parent strain at day 10. In summary, both 

of the adapted strains DSM311-A and NCIMB-A had a significantly higher CSH (p < 0.05) than 

their parent strains once they reached stationary phase (day 10 of incubation). According to 

these results, the null hypothesis can be rejected and the adaptation of pure bacterial strains with 

n-hexadecane growth substrate was shown to significantly increase the CSH of the bacterial 

cells. 
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Figure 5.6 Cell surface hydrophobicity of the hydrocarbon-adapted R. erythropolis strain 

NCIMB13064 (cultivated in liquid MM1 and n-hexadecane as growth substrate) 

compared to the parent strain cultivated in liquid broth. 

Table 5.2 Paired-t-test analysis of cell surface hydrophobicity of R. erythropolis strain 

NCIMB13064 comparing the adapted cells and the parent strain. 

Samples 
Cell Surface Hydrophobicity (%) 

Day 3 Day 5 Day 10 

NCIMB13064-P 86.00a 84.67a 85.33a 

NCIMB13064-A 69.33b 80.00a 92.00b 

a, b Means that do not share a letter are significantly different (p < 0.05). 

Comparisons are only valid within each day and not valid between days. 
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Table 5.3. Adaptation of pure bacterial strains (Rhodococcus erythropolis) in minimal media 

and hydrocarbon growth substrates. Comparison of the current and previous studies. 

Experimental design/ 
result 

Present study de Carvalho et al. 
(2009) 

Stancu (2014) 

Bacterial species R. erythropolis 
strain DSM311 

R. erythropolis 
strain DCL14 

R. erythropolis 
strain IBBPO1 

Growth substrate n-hexadecane n-hexadecane n-hexane 

Concentration of 
growth substrate 

500 μlL-1 
(0.05 %) 

1 % 5 % 

CSH by MATH 92.67 % > 90 % 29 % 

When compared to a similar experiment conducted by de Carvalho et al. (2009) (Table 5.3), 

the CSH of the adapted strains in the current study was found to be similarly high (> 90 %). 

However, the concentration of n-hexadecane growth substrate utilised in the current study was 

20-fold lower than the amount used in that research, which indicates the adaptation process in 

current study was possibly more efficient. In contrast, a very poor CSH (29 %) was obtained 

by Stancu (2014), which suggests n-hexane is not an effective substrate to trigger physiological 

adaptation and the development of high levels of hydrophobicity. This result can be related to 

the discussion in Section 4.5.2, where n-hexane with its higher water solubility was found to 

inhibit the growth of R. erythropolis strain DSM311. However, it was used successfully as the 

growth substrate for R. erythropolis IBBPO1 by  Stancu (2014), which suggests that their strain 

was more hydrophilic and possibly not suitable for estrogen removal. In conclusion, the adapted 

R. erythropolis obtained in the current study was found to be a highly hydrophobic strain 

obtained and could be cultured more economically on much lower levels of growth substrate 

(n-hexadecane) compared to previous research, and represents an ideal candidate strain for 

effective estrogen removal. 

5.4.3 Comparison of CSH for soil-isolate bacteria at different incubation periods   

CSH values of the most hydrophobic soil-isolate bacterium (SD2-1) obtained from the soil 

enrichment technique identified in Section 5.4.1,  was measured at day 3, day 5 and day 10 of 

cultivation to investigate changes in hydrophobicity related to incubation time (Figure 5.7). 

Statistical analysis of CSH value by one-way ANOVA and Tukey analysis (Table 5.4) revealed 

that the CSH of SD2-1increased significantly (p < 0.05) with incubation time, starting from 78 

± 4.36 % at day 3 and increasing to 86 ± 3 % at day 5, with  further enhancement of CSH to 
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91.33 ± 2.31 % after 10 days of incubation. According to the results, the null hypothesis can be 

rejected, and it was confirmed that a significant increase in CSH took place when cultivating 

the SD2-1 in minimal media supplied with n-hexadecane growth substrate for a longer 

incubation periods (3 – 10 days). 

Table 5.4 Profile of cell surface hydrophobicity for the soil-isolate bacterium strain SD2-1 

grown in n-hexadecane growth substrate. 

Soil-isolate bacterium Cell Surface Hydrophobicity, CSH (%) 

Day 3 Day 5 Day 10 

Strain SD2-1 78.00a 86.00ab 91.33b 

a,b Means that do not share a letter are significantly different (p < 0.05) 

 

 

Figure 5.7 Cell surface hydrophobicity of soil-isolate bacteria (SD2-1) at different incubation 

times. 

5.5 Results and discussion – Gram stain 

Analysis of bacteria for Gram stain status was conducted to distinguish between groups of 

bacteria based on different cell wall constituents. The identification of bacterial Gram 

classification was accomplished by observing the colour of the bacterial cells in microscopic 
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images (Budin et al., 2012). Gram-positive bacteria were identified by the presence of violet 

cells and Gram-negative species with pink cells. This is because gram-positive bacteria have 

thick layer of peptidoglycan in their cell walls that could retain the crystal violet stain, surviving 

the decolourization process. Meanwhile, Gram-negative bacteria have thin layer of the 

peptidoglycan that allows for decolourization by the alcohol, and this colourless cell was later 

stained pink due to the application of safranin dye.  

According to Figure 5.8, all of the isolated bacteria PD2-1, PD2-2, PD2-3, SD1-1 and SD2-1 

were Gram-positive, which suggests they have the ability to maintain cell viability at a higher 

concentrations of organic compounds (n-hexadecane growth and enrichment substrate) than 

Gram-negative strains (De Carvalho et al., 2004). This explains why all of the isolated bacteria 

were Gram-positive. 
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Figure 5.8 Microscopic images from bacterial Gram stain analysis of pure R. erythropolis 

(conducted as verification) and soil-isolates  bacteria.

Soil-isolate bacteria SD2-1 Soil-isolate bacteria SD1-1 

Soil-isolate bacteria PD2-1 

R. erythropolis NCIMB13064 R. erythropolis DSM311 

Soil-isolate bacteria PD2-2 
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5.6 Results and discussion – bacterial identification 

5.6.1 DNA fragment detection and Quantification  

Viewing of agarose gel electrophoresis samples (Figure 5.9) confirmed that all of the bacteria 

have approximately 700 - 800 DNA fragments. The concentrations of the PCR-amplified DNA 

as quantified by the Qubit 2.0 Fluorometer and determined using Equation were between 6,400 

– 15,860 ng.ml-1 (Table 5.5). This information concerning the DNA fragments and 

quantification was passed to Durham University together with the DNA products and primers 

used in the PCR amplication for species detection by Sanger Sequencing. 

 

 
Figure 5.9 Identification of DNA fragments size in gel electrophoresis technique. 

 
Table 5.5 DNA quantification for soil-isolates bacterial strains.  

Strains QF value* DNA concentration (ng.ml-1) 

PD2-1     36.7 7,340 

PD2-2    72.2 14,440 

PD2-3 79.3 15,860 

SD1-1     72.6 14,520 

SD2-1   32.0 6,400 

*QF value was quantified by the Qubit 2.0 Fluorometer and DNA concentration was 

determined by using Equation 4.1. 

  SD1-1   SD2-1   SD2-2  PD2-1   PD2-2  PD2-3   negative 
   control 

800 

700 
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5.6.2 Sequencing 

The DNA nucleotide sequences and chromatogram results obtained from Durham University 

were analysed in Snapgene software. Nucleotide sequences were aligned to each other using 

CLUSTALX software and overlapping chromatogram peaks and bases were identified and 

corrected. The final corrected DNA sequences of each bacterial strain (Appendix 1) was then 

run in the Nucleotide Basic Local Alignment Search Tool (BLAST) NCBI and significant 

matches for genes were obtained. The species detected for each bacterial strain according to the 

BLAST library are as in Table 5.6. In addition, phylogenetic analysis was conducted with 

MEGA software and distance-based tree was conducted (Appendix 2).  

Table 5.6 Significant species detected based on sample DNA sequencing and database 

sequences in the BLAST library. 

Bacteria Significant species (%) 

SD1-1 99 % Rhodococcus erythropolis 

SD2-1 99 % Tsukamurella tyrosinosolven 

100 % Tsukamurella pulmonis  

100 % Tsukamurella pseudospumae 

PD2-1 99 % Rhodococcus erythropolis 

PD2-2 99 % Rhodococcus erythropolis 

PD2-3 99 % Rhodococcus erythropolis 

The soil-isolate strain SD2-1, previously determined to have the highest value of CSH was 

found to belong to the bacterial genus Tsukamurella, and the other isolated bacteria (PD2-1, 

PD2-2, PD2-3 and SD1-1) were Rhodococcus erythropolis species. Tsukamurella sp. and 

Rhodococcus erythropolis are bacteria which contain mycolic acid. This is a component present 

in the outer layer of the cell membrane (Onaka et al., 2011; Safaei et al., 2017), and it creates 

a highly impermeable outer barrier membrane (Onaka et al., 2011), which contributes to the 

high hydrophobicity of R. erythropolis and Tsukamurella sp. This shared characteristic is a 

major reason these genera have the capability to be isolated and adapted using hydrophobic 

compounds as growth substrates (e.g. n-hexadecane).  
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5.6.3 Comparison of CSH of the soil-isolate bacteria with previous studies 

Adaptation of the genera of Tsukamurella sp. using hydrocarbon of n-hexadecane has been 

studied previously (Tebyanian et al., 2013; Chiciudean et al., 2017), however these publications 

have several shortcomings.  

Table 5.7 Comparison of main parameters from past studies and present study for the adaptation 

of Tsukamurella sp. using n-hexadecane growth substrate. 

Bacterial species Amount of n-
hexadecane (v/v) 

CSH (%) Reference 

T. tyrosinosolvens 2.5 % 29 Tebyanian et al. (2013) 

T. carboxydivorans 1.0 % No record Chiciudean et al. (2017) 

T. tyrosinosolvens / T. 
pulmonis/        
T. pseudospumae 

0.05% 
(500 μl.L-1) 

91 Current study 

A bacterial isolate from a petroleum reservoir soil, T. tyrosinosolven, has been found to be the 

most active hydrocarbon degrading-species for n-hexadecane among other isolates (Tebyanian 

et al., 2013). Nevertheless, the CSH of this bacterium was found to be only 29 %, suggesting it 

is not is not a particularly hydrophobic strain, and this presumably occurred because a very high 

amount (2.5 % v/v) of n-hexadecane was added as the bacterial growth substrate during its 

cultivation. This high concentration might have inhibited the bacterial growth sufficiently to 

cause cell death, and the presence of dead cells might have influenced the measurement of CSH. 

A similar effect took place in the SD1-1 and PD2-3 strains, which showed a drop in CSH upon 

entering the death phase, compared to the high CSH (91 %) of Tsukamurella strain SD2-1 in 

the present study (Section 5.4.1). Unfortunately, no measurement of CSH was made during the 

adaptation and investigation of n-hexadecane biodegradation by T. carboxydivorans species 

(Chiciudean et al., 2017)  so the theory of cell death affecting CSH remains speculative.  

5.7 Conclusion 

The adaptation of pure bacterial strains of R. erythropolis, NCIMB13064 and DSM311, to 

generate higher hydrophobicity after culturing in n-hexadecane (Chapter 4) has successfully 

produced adapted strains with high CSH. Based on the statistical analysis of the CSH levels of 

DSM311, this adapted strain was found to acquire higher CSH compared to its parent strain, 

proving that the hydrophobic adaptation had been successfully achieved. The CSH changes 
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support the assumption previously made in Chapter 4, where adapted DSM311 and 

NCIMB13064 strains were suspected of altering the properties of their membrane lipid to 

become saturated, as a protection mechanism against the toxicity of hydrocarbons and one 

which finally develops greater hydrophobic characteristics in the cell.  

In addition, the SD2-1 bacterial strain isolated from diesel-contaminated soil was also found to 

be a highly hydrophobic bacterium, with CSH at a similar level to Rhodococcus erythropolis 

DSM 311 and NCIMB13064 strains (90 - 93% CSH). This strain was identified as 

Tsukamurella sp., a Gram-positive bacteria, according to Sanger sequencing analysis. Both 

Tsukamurella sp. and Rhodococcus erythropolis have previously been found to contain mycolic 

acid which creates a highly impermeable outer barrier membrane. In other words, in addition 

to altering the properties of its membrane lipid, these bacterial strains also have the ability to 

come into contact with free phase n-hexadecane without suffering toxicity effects. Based on the 

significant differences in CSH of the adapted and parent strains, these findings support the 

hypothesis that the adapted and new isolate bacterial strains acquire higher CSH after the 

adaptation process compared to their unadapted parent strains.  

In addition, the CSH of the adapted R. erythropolis strains DSM 311 and NCIMB13064, and 

Tsukamurella sp. SD2-1 was also found to increase with the bacterial growth phase, that the 

CSH of stationary phase bacteria being higher than that of exponential phase. In theory, longer 

incubation period allows the bacteria undertake further adaptation with each successive 

generation. However, other soil-isolate bacteria exhibited reductions in CSH towards the end 

of the incubation period and finally lost most of their hydrophobic characteristics.  

Bacterial strains obtained in the current study with the highest CSH levels, were the adapted R. 

erythropolis strains DSM311 (93 %) and NCIMB (92 %), and the soil-isolate bacterium 

Tsukamurella sp. SD2-1 (91 %). These strains were considered to have high potential for use 

as novel adsorbents and degraders capable of removing estrogens from municipal wastewater 

by a new tertiary treatment process. Tsukamurella sp. SD2-1 is the only high CSH strain to 

have been isolated from soil in the current study, whereas several R. erythropolis strains were 

isolated from soil, notably PD2-1, PD2-2, PD2-3 and SD1-1 but have lower CSH. The latter 

strains were deemed to be less favourable for further investigation as potential bacterial 

adsorbents in the subsequent estrogen removal studies (Chapter 6).  

In summary, the objective (Section 1.3 (2)) of investigating the CSH profile of the bacteria has 

been met, and the findings support the hypothesis (Section 1.4) that the CSH of the pure bacteria 

increases after the adaptation, and the CSH varies during different phases of bacterial growth. 
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Chapter 6 Estrogen Removal in Batch Reactors  

6.1 Introduction 

Estrogens have been reported to cause adverse impacts on aquatic organisms, effects being 

observed at trace level of part per trillions and higher. These  effects have been suggested to 

take place at Environmental Quality Standards of 0.4 ng.L-1 for E2 and predicted no-effect 

concentration (PNEC) of 3.6 ng.L-1 for E1 (European Commission, 2016).    

In municipal wastewaters, the presence of estrogens has been detected at various 

concentrations, determined by factors such as source of the wastewater as well as sampling 

season. They can be present at concentrations below the limit of quantification by GC-MS 

(Qiang et al., 2013) up to concentrations as high as 3050 ng.L-1 (E1) (Pessoa et al., 2014). A 

mean concentration of approximately 184 ng.L-1 of E1 has been calculated for the influents of 

municipal wastewater treatment plants (WTP) based on a comparison of case studies in the 

literature (Section 2.2.1). However, due to the inefficient removal of estrogens by conventional 

WTP, an average of 88.51 ng.L-1 of E1 is found in their effluents. To achieve higher estrogen 

removal, therefore, advanced treatments such as adsorption and biodegradation have been 

proposed as tertiary processes for WTP. Some of the previous adsorption studies evaluated the 

use of adsorbent materials, including activated carbon (Ifelebuegu et al., 2006), and activated 

sludge (Ren et al., 2007b). The adsorption of estrogens in these studies was reported to take 

place due to the electrostatic interaction between the adsorbent materials and the estrogen 

molecules. In addition, the adsorption process is also mediated by hydrophobic interactions 

(Margot et al., 2013b; Hartmann et al., 2014; Ifelebuegu et al., 2015; Jiang et al., 2017). Apart 

from adsorption, biodegradation has also been identified as an efficient mechanism involved in 

estrogen removal from wastewater, through work on activity of activated sludge and pure 

bacterial strains (Yoshimoto et al., 2004; Larcher and Yargeau, 2013). However, no previous 

research has been carried out using hydrophobic bacteria adapted specifically for use as an 

adsorbent material for the purpose of estrogen removal.  

In the present study, several hydrophobic-adapted strains of R. erythropolis and soil-isolate 

bacteria were successfully obtained in the microbiological study (Chapter 4 and Chapter 5), and 

were evaluated as potential adsorbents for estrogen removal. According to the CSH assays 

conducted in Chapter 5, values of the cell surface hydrophobicity (CSH) of the bacteria were 

found to vary, with some of them exhibiting highly hydrophobic characteristics. The highly 

hydrophobic strains were presumed to be most competent in establishing interactions with the 
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hydrophobic estrogen compounds, either through adsorption or biodegradation process, and 

were assessed further in this chapter for these characteristics through batch reactor studies. 

6.1.1 Aim 

To gain a better understanding of the effects of adapting bacteria into hydrophobic strains, in 

terms of their effectiveness in removing estrogen, via adsorption as well as biodegradation 

processes. 

6.1.2 Objectives  

To address this aim, the following objectives were set:  

1. To examine correlations between the CSH values of bacterial strains and their 

performance in adsorbing estrogen from wastewater using batch reactors. 

2. To determine the optimum dosage of bacterial biomass for effective estrogen removal. 

3. To determine the optimum contact time for the estrogen removal process. 

4. To evaluate the performance of estrogen removal by live bacteria allowing for 

biodegradation and adsorption, and inhibited bacteria where the sole mechanism was 

adsorption. 

5. To understand whether harvesting bacterial biomass from different phases of the 

bacterial batch growth cycle can affect the estrogen removal performance.  

6.1.3 Hypotheses 

1. The CSH of the bacterial strains is correlated with their estrogen removal efficiency. 

2. The degree of estrogen adsorption from wastewater is proportional to quantity of 

bacterial biomass used. 

3. The performance of estrogen adsorption in batch reactors increases with the contact time 

applied. 

4. The adsorption of estrogen onto bacterial biomass is affected by the stage of bacterial 

growth phase that the biomass was harvested. 

6.1.4 Experimental work plan 

The estrogen removal processes were conducted in batch reactors utilizing synthetic wastewater 

as the sample medium, and estrone (E1) as the model pollutant due to its hydrophobicity and 

the high concentration found normally in municipal wastewater. A summary of the 

experimental plan is shown in Figure 6.1. 
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Figure 6.1 Flow sheet of the work plan evaluating removal of estrogens using of hydrocarbon-

adapted bacteria. 

Removal of estrogens adopting batch reactors 

Evaluation of removal of estrone in the exponential 
and stationary phases 

Preliminary study:  

• Comparison of performance of different strains 

• Evaluation of performance in oestrogen removal 
by live bacteria for biodegradation and adsorption, 
and inhibited bacteria for sole adsorption process  

Preparatory experiment: preparation of oestrogens 
stock and synthetic sewage, and pre-treatment of 
bacterial adsorbent 

 

Optimisation of removal of estrone according to            
optimum contact time and adsorbent dosage 

Development of the solid phase extraction (SPE) 
method 
 

Quantification of bacterial biomass 
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Experiments to understand how estrogen removal involved both adsorption and biodegradation 

process are summarised in the Figure 6.2.  

 

Figure 6.2 Process of estrogen removal adopting adsorption and biodegradation processes in 

batch reactors. 

6.2 Ratio of biomass: estrogen ratio on estrogen removal 

The amount of bacterial biomass added to the batch reactor had to be fixed at a suitable amount, 

measured in biomass weight. To assign an appropriate ratio of biomass to estrogen, the amount 

of bacteria was quantified in weight because measurement in terms of colony forming units 

(CFUs) through the agar-plating method would have limited the quantification method to live 

bacterial cells only, whereas the total adsorption has components contributed from both live 

and dead bacterial cells. In addition, the quantification of bacteria in terms of the total number 

of cells using the flow cytometry method was not applicable due to the natural aggregation of 

the hydrophobic bacterial cells in aqueous media.  

Comparable ratios of the weight of bacteria to estrogen present in the water were evaluated with 

reference to the literature. During assays optimising of removal of estrone, an identified volume 

of the bacterial culture, representing 2.5 mg of dry weight bacteria cells was added to 500 ml 

of synthetic wastewater containing 200 ng.L-1 of estrone. The mass ratio (w/w) of bacterial 

biomass to estrogen was fixed at 25,000:1.  
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Adsorption / 

biodegradation 

 
*Solid Phase 

Extraction 

Estrogen detection 
(HPLC-ECD / LC-

MS) 

Evaporation and re-
constitution 

(targeted analyte is 
estrogens) 



101 
 

6.2.1 Quantification of bacterial biomass 

Volume of the bacterial culture representing for 2.5 mg of biomass dry weight was determined 

at day 5 of growth incubation period. Before the measurement of weight, the bacteria were 

cultivated beforehand, where a single colony of each strain was cultivated in 10 ml of minimal 

media with 5 μl of n-hexadecane as growth substrate, and incubated for 5 and 10 days at 26 °C 

and 155 rpm, in triplicate. Each 10 ml bacterial culture was filtered through a 0.2 μm cellulose 

nitrate membrane filter (11407-47-ACN; Sartorius) in a sterile vacuum magnetic filtration unit 

(Sentino® funnel; Pall laboratory, UK). The membrane filter had previously been dried 

overnight at 105 °C before filtration.  The filters, containing the harvested bacterial cells were 

then dried in the same oven overnight and then cooled in a silica desiccator. The final constant 

weight of the biomass which represented 10 ml of culture was recorded, and the volume 

required for 2.5 mg of biomass weight was calculated from the results. 

6.3 Preparation and pre-treatment process 

Several preliminary experimental studies were conducted before the estrogen removal process 

was quantified. These were the preparation of estrogen stock and synthetic wastewater, thermal 

pre-treatment of the bacterial adsorbent, and the development of a method for the concentration 

of estrogen before analysis. Details of this experimental work are described in the following 

sections. 

6.3.1 Preparation of estrogen stock and synthetic wastewater 

A 100 mg.L-1 of estradiol stock solution was prepared by diluting E2 powder (99 %) purchased 

from Sigma Aldrich in a solvent mixture of 50:50 acetonitrile to methanol in a sterile amber 

bottle. This was kept for up to 3 months at -20 °C in the freezer. A working solution of 1 mg.L-

1 was then prepared by diluting the stock in an aqueous solution of 10 % acetonitrile in sterilised 

bottle kept for up to 1 week at 4 °C. The same protocol was applied for the preparation of 

estrone (E1) and estriol (E3) stocks separately. 

A synthetic wastewater sample was prepared according to the OECD Synthetic Sewage 

specifications (Pholchan et al., 2008) using the chemicals listed in Table 6.1.  The chemicals 

were dissolved in deionised water to 1 litre of solution, and mixed using a magnetic stirrer for 

homogenisation before being autoclaved. The sterile synthetic sewage stock was kept at 4 °C 

for not more than 1 week. It was diluted 100-fold with natural bottled spring water (Nestle Pure 

Life Bottled Water), containing typical wastewater levels dissolved minerals but no chlorine, 

for use in the estrogen removal experiments. 
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Table 6.1 Composition of the synthetic wastewater according to OECD Synthetic Sewage 

specifications.Composition of the synthetic wastewater according to OECD 

Synthetic Sewage specifications.  

Reagent Amount (g.L-1) 

CaCl2.2H2O 1.6 

MgSO4.7H2O 0.8 

K2HPO4 11.2 

NaCl 2.8 

Urea 12.0 

Meat extract 44.0 

Peptone 64.0 

 

6.3.2 Pre-treatment of the bacterial adsorbent biomass 

The current study employed an inhibition technique to denature the bacterial enzymes (to stop 

biodegradation processes) without altering the morphological and hydrophobicity characteristic 

of the bacterial cells, which are essential for the adsorption process.  

In general, inhibition processes are classified as either Chemical or Physical treatments (Huang 

and Yeung, 2015). In chemical treatment, denaturing of enzymes can be achieved by using 

alcohol, however this can also lead to dehydration of the bacterial cell and serious shrinkage of 

the cell structure (Chao and Zhang, 2011). The chemicals can penetrate the cell membrane and 

may change the morphology and hydrophobicity of the adapted strains. Therefore, alcohol is 

not suitable for the inhibition of bacteria in the current study.  

In contrast, Physical inhibition, namely thermal pre-treatment can denature the bacterial 

enzymes whilst preserving the cell morphology (Ren et al., 2007b). However, the temperature 

of inhibition is a critical factor to be considered, and 80 °C for 30 minutes is normally selected 

because it preserves cell morphology, whereas a temperature of 121 °C does not (Lunsman and 

Lick, 2005).  

The adapted and isolated bacterial strains NCIMB13064, DSM311, SD1-1, SD2-1, PD2-1, 

PD2-2 and PD2-3 were cultivated in 25 ml universal tubes containing 10 ml of liquid MM1 

(Section 4.3) and 5 μl of n-hexadecane, and incubated at 25 °C at 155 rpm for five days. At the 

end of the incubation period, one set of the bacterial cultures were thermally inactivated in an 
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oven at 85 °C for 1 hour. Subsequently, this thermal inhibition step was increased to 85 °C 

instead of the 80 °C, to avoid reductions of temperature during the process of loading samples 

into the oven and the duration of the inhibition process was increased to 1 hour instead of 30 

minutes so as to ensure that all bacterial cells had been inhibited properly (no viable cells were 

seen on agar plate growth checks). 50 μl of the thermally treated bacterial culture was then sub-

cultured in nutrient agar (NA) purchased from Lab M Ltd. This was done to check that all of 

the bacteria had been successfully inhibited and that no signs of growth were seen after three 

days of incubation (25 °C). A separate set of bacterial cultures was to be used without thermal 

pre-treatment as live bacteria cells to allow biodegradation process to contribute to the overall 

estrogen removal process.  

6.4 Development of the estrogen quantification method 

Solid phase extraction (SPE) was adopted before the measurement of estrogens, for the 

purposes of removing any interfering substances present in the wastewater, and to concentrate 

the low levels of estrogen (ng.L-1) from a high volume of sample into 1 ml of sample containing 

substantially higher concentrations that could be detected by LC-MS and HPLC-ECD. The 

wastewater concentration of estrone was initially set at two different concentrations, 1 mg.L-1 

which was used in the preliminary experiments, and 200 ng.L-1 which was used in the 

optimisation study. The high initial concentration of estrone was used in the preliminary study 

to facilitate the effective monitoring of its removal when the quantification assay was still under 

development, and the lower concentration was adopted for the optimisation experiments to 

investigate the efficiency of removal at levels close to the actual concentrations found in 

municipal wastewater. An appropriate SPE cartridge capacity required for the high initial 

concentrations of estrogen was determined in preliminary tests to ensure the quantification 

process was not affected by poor recovery from the SPE cartridges.   

6.4.1 Development of the estrogen quantification method for high estrogen concentrations 

(part per thousand) 

To determine the appropriate cartridge that would produce optimum recovery, further 

development of the method was conducted. Capacity of the cartridge was calculated according 

to the amount of analyte it could bind, given the percentage of analyte recovery. 

50 ml of 1 mg.L-1 E2 stock was added to 50 ml of deionised water for an initial concentration 

of 1 mg.L-1 in 250 ml Duran bottles, in quadruplicate. Solutions which contained a total of 50 

μg of E2 were vortexed to homogenise estrogen content in the water. Then, 50 ml of solution 

from each of two bottles were loaded into two Oasis PRiME HLB 3 cc /60 mg cartridges 
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(duplicate). Meanwhile, 1ml of solution from each of another 2 bottles was loaded into another 

2 cartridges. A washing process was then carried out using 3 ml of 10 % methanol to remove 

substances other than estrogen from the water sample, followed by the elution of the targeted 

E2 analyte with 5 ml of acetonitrile: methanol solvent at a ratio of 90:10. The solution was then 

evaporated at 60 °C in a RapidVap VertexTM evaporator before being reconstituted in 1 ml of 

10 % acetonitrile. Protocols for the SPE method are summarised in Figure 6.3 (i). The extracted 

estrogen solution was then filtered using a 0.22 μm syringe filter (SF13PTFE022NS; Stratlab 

Ltd., UK) into HPLC amber vials and analysed via HPLC-ECD (Section 6.8). The amount of 

estrogen recovered from the SPE was calculated by analysing the area of the E2 chromatogram 

peak provided by the HPLC-ECD compared to the standards that were prepared in the range of 

1 - 50 μg.ml-1. 

6.4.2 Development of the estrogen quantification method for low estrogen concentrations 

(part per trillion) 

500 ml of 200 ng.L-1 samples of E1, E2 and E3 mixtures (carrying 100 ng of each estrogen) in 

synthetic wastewater were loaded into a larger capacity OASIS HLB 6 cc /200 mg SPE 

cartridge to determine its recovery rate. The SPE elution was conducted according to the 

protocol shown in Figure 6.3 (ii). 
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Figure 6.3 Solid phase extraction protocol (i) Oasis PRiME HLB and (ii) Oasis HLB cartridge 
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6.5 Preliminary estrogen removal experiments (part per thousand) 

6.5.1 Evaluating the performance of bacterial strains in removal of estradiol  

A preliminary experiment was conducted mainly to evaluate some of the most efficient bacterial 

strains (based on CSH value) which were expected to produce a high degree of estrogen 

removal. These shortlisted bacterial strains were then utilised in more extensive estrogen 

removal assays.  

 
Figure 6.4 Batch reactors for the preliminary experiment to evaluate the most efficient bacterial 

strains for use in subsequent work. The 50 ml samples contained 1 mg.L-1 of 17β-

estradiol (E2) in synthetic wastewater. 

2.5 mg samples of each bacterial biomass of strains NCIMB13064, DSM311, PD2-1, PD2-3, 

SD1-1, SD2-1 as well as E. coli, as a calculated volume from the stock biomass (Section 6.2) 

was added to 50 ml of synthetic wastewater containing 1 mg.L-1 of E2. The batch reactors were 

agitated for 24 hours at 20 °C in an orbital incubator as 155 rpm. 1 ml of each sample was 

loaded into an Oasis PRiME HLB cartridge 3 cc/60mg and SPE was conducted according to 

the protocol shown in Figure 6.3 (i) before analysis by HPLC-ECD (Section 6.8). 

6.5.2 Evaluating the performance of bacterial strains in removal of estrone 

Similar preliminary experiment was further conducted except E1 was used as estrogen model 

and all bacterial strains had previously been inhibited before the estrogen removal process. 

6.5.3 Comparison of estrone removal by live and inhibited bacteria 

The above experiment was repeated using live bacterial strains (no thermal pre-treatment) (LB) 

to compare the performance in estrogen removal of live (both adsorption and biodegradation 

processes) and thermally inhibited (adsorption process only) bacteria (IB). The tops of reactors 

containing live bacterial cells were left open and the incubator was wedged open to allow for 

oxygen supply. All samples were tested in duplicate.  
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6.6 General adsorption process (part per trillion) 

This experiment was conducted using estrogen at a lower concentration of 200 ng.L-1, which is 

near to the average amount present in real wastewater as determined in the literature (Section 

2.2.1). Batch reactors with high volumes (500 ml) were employed (Figure 6.5). 

 

 
Figure 6.5. Batch reactors for optimisation of estrogen removal via adsorption process. The 500 

ml samples contained 200 ng.L-1 of estrone in synthetic wastewater. 

A 200 ng.L-1 of E1 in 500 ml of synthetic wastewater in 1.0 litre of amber bottle was prepared 

by adding 100 μl of 1.0 mg.L-1 of estrogen stock (Section 6.3.1). 5.0 mg of adsorbent was added 

to 500 ml of synthetic wastewater containing 200 ng.L-1 of E1. The batch reactors were agitated 

for 24 hours at 20 °C in an orbital incubator as 155 rpm. A volume of 500 ml of each sample 

was loaded into an Oasis PRiME HLB cartridge 6cc/200mg and SPE was conducted according 

to the protocol shown in Figure 6.3 (ii) before analysis by HPLC-ECD (Section 6.8). 

6.6.1 General quantification process for estrone concentrations (part per trillion) 

The final concentrations of estrone in batch reactors were measured after completion of 24-hour 

reaction process. Adsorbents were removed from the wastewater by centrifugation at 4,000 rpm 

and 500 ml of each supernatant was loaded into the OASIS HLB 6cc 200 mg SPE cartridge 

according to the protocol described in Figure 6.3 (ii) before analysis by HPLC-ECD (Section 

6.8). The larger capacity SPE cartridge of OASIS HLB 6cc 200 mg was used compared to the 

preliminary study due to the higher volume of sample (500 ml) employed. 

6.7 Optimisation process 

Optimisation of the estrogen removal process was conducted by determining the optimum 

contact time and adsorbent dosage.  
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6.7.1 Contact time 

The experiment was carried out using a parallel method, lower concentrations of estrogen and 

high reactor volumes (500 ml) were employed. A serial method (removing multiple time-course 

samples from the same bottle) was impractical because the volume of all aliquots taken from a 

reactor in interval enumeration must not exceed 1 % of the total, as recommended by the 

Organisation for Economic Co-operation Development (2000). The amount of 1 % from 500 

ml at a concentration of 200 ng.L-1 would carry an extremely small amount of estrogen, below 

the limit of detection of the instrument, and therefore the removal process could not have been 

monitored properly. Therefore, this optimisation study used the parallel method, and the SD2-

1 bacterial strain was employed as the adsorbent model.  

The bacterial strain SD2-1 was cultivated for 5 days and then was thermally pre-treated (Section 

6.3.2). Estrone (E1) was then added at a concentration of 200 ng.L-1 in a 500 ml of synthetic 

wastewater contained in a batch reactor of 1 litre amber bottle. A 2.5 mg (9.0 ml bacterial 

culture) of the thermally pre-treated SD2-1 culture was added into the reactor. A series of 18 

triplicate reactors were incubated at 20 °C and 250 rpm for 10 minutes, 30 minutes, 1 hour, 6 

hours, 12 hours and 24 hours of adsorption. After completion of the adsorption process, the 

concentration of estrone was then quantified (Section 6.6.1). 

6.7.2 Effect of bacterial adsorbent dosage 

The concentration of the inhibited bacterial strain SD2-1 adsorbent was varied in a range from 

low to high amounts of biomass (0.3 to 10 mg.L-1). The biomass quantities were achieved by 

adding 0.6, 1, 3, 6, 9, 12, 15 and 18 ml volumes of biomass sample (Table 6.1). These different 

masses of bacterial adsorbent were added to identical 1 litre amber bottles containing 500 ml 

of synthetic wastewater and 200 ng.L-1 of E1, and agitated at 250 rpm in an incubator at 20 °C. 

After 24 hours, final concentration of E1 was measured according to Section 6.6.1. 

6.7.3 Exponential vs Stationary bacterial growth phase performance 

The highest CSH of bacterial strains SD2-1, DSM 311 and NCIMB13064, were collected while 

at their exponential and stationary growth phases, which were previously identified as taking 

place on days 5 and 10 respectively. Volumes of biomass representing 5.0 mg of the exponential 

and stationary phase bacterial adsorbent was determined beforehand (Table 6.8). The bacterial 

cultures were thermally pre-treated (Section 6.3.2) and added to batch reactors containing 200 

ng.L-1 of E1 in 500 ml of synthetic wastewater. Each set of exponential and stationary phase 

reactors were prepared in triplicate. The reactors were agitated in an incubator at 250 rpm at 

20 °C for 24 hours and estrogen was quantified as in Section 6.6.1. 
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Table 6.2 Volume of bacterial strain SD2-1 representing different concentration of biomass 

adsorbent. 

Biomass concentration 
(mg.L-1) 

Volume 
(ml) 

0.0 0.0 

0.3 0.6 

0.5 1.0 

1.6 3.0 

3.3 6.0 

5.0 9.0 

6.6 12.0 

8.3 15.0 

10.0 18.0 
 

6.7.4 Comparison of estrone removal by live and inhibited bacteria 

Removal of estrone by the stationary growth phase of live bacterial strains (LB) was also 

measured to compare the performance with thermally inhibited bacteria (IB). 10 mg.L-1 of 

bacterial adsorbent strains NCIMB13064, DSM311 and SD2-1 were added to the batch reactors 

containing 200 ng.L-1 of E1 in 500 ml of synthetic wastewater. Each set of LB and IB reactors 

were prepared in triplicate and agitated in an incubator at 155 rpm (allow for biodegradation 

process) and 250 rpm (adsorption only) respectively at 20 °C for 24 hours and final 

concentration of estrone was quantified as in Section 6.6.1.  

6.8 Estrogen quantification 

6.8.1 Measurement of estrone in HPLC-ECD 

The concentration of estrone (E1) in the liquid phase of the reactors containing synthetic 

wastewater was purified and extracted using SPE, was determined by employing an HPLC with 

electrochemical detection (ECD). In the HPLC system, a Thermo Scientific HPLC UltiMate 

3000 RS Pump, UltiMate 3000 RS autosampler and column compartment were used. A reverse 

phase UHPLC column was used (Accucore C18), with dimensions 100 mm× 21 mm and 2.6 

μm particle size (Thermo Scientific). Ninety microliters of estrone standard mixtures or samples 

in the isocratic profile mobile phase of 62:38 (v/v) of solvent A:B were injected in the column 

at a flow rate of 0.4 ml.min-1 for 5 minutes. Solvent A was water-acetonitrile (95:5, v/v) with 

0.1 % formic acid, and Solvent B was acetonitrile-water (95:5) with 0.1 % formic acid buffer. 

The UHPLC column was connected to the electron capture detection (ECD) chamber of an 
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UltiMate 3000 ECD-3000RS Electrochemical Detector. Boron-doped cell potential was set at 

1800 mV. The concentration of E1 was then determined based on its peak area in the HPLC-

ECD chromatogram (Section 6.9.3). 

6.8.2 Degree of estrogen removal 

Degree of estrogen removal was calculated using Equation 6.1.  

 

Where C0 is the initial concentration, Ce is the final concentration of estrogen (after removal 

treatment) (Ifelebuegu et al., 2015). 

6.9 Results and discussion 

6.9.1 Growth yields from bacterial cultures and soil-isolates 

Biomass production was measured in 10 ml cultures grown on liquid MM1 (Table 4.1) after 5 

days of incubation for each bacterial strain, and the results summarised in Table 6.3. From a 

statistical analysis using One-way ANOVA and Tukey pairwise comparisons, it was 

determined that there were no significant differences in the biomass weight between all of the 

adapted bacterial strains. However, when compared to E. coli, all of the bacterial strains were 

found to exhibit significantly lower growth yield (p < 0.05). The objective of this experiment 

was to determine the volume of bacterial culture representing 2.5 mg of biomass adsorbent so 

that the appropriate volume could be added to each batch reactor in the adsorption experiments. 

The biomass weight obtained from 10 ml of each bacterial culture was then converted into a 

volume representing 2.5 mg biomass (Table 6.4). 

C0 – Ce 

C0 
x   100% =  Removal of estrogen by 

the adsorbent (%) 
(Equation 6.1) 
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Table 6.3. Dry-weight of hydrophobic-adapted bacterial strains biomass measured after 5 days 

of incubation for the exponential growth phase cells.  

Biomass yield for different bacterial strains (mg / 10 ml)1 

DSM311 NCIMB13064 SD1-1 SD2-1 PD2-1 PD2-2 PD2-3 E.coli 

3.95b 3.55 b 3.00 b 2.80 b 3.35 b 2.85 b 4.80 b 13.75 a 

a,b Means that do not share a letter are significantly different (p < 0.05). 

1 The Liquid MM1 was used for the adapted bacterial strains and nutrient broth for the E.coli. The 

initial test showed that E.coli could not grow on n-hexadecane growth substrate. Data not presented. 

 

Table 6.4 Volume of bacterial cultures representing 2.5 mg of biomass adsorbent when 

harvested at day 5 of incubation.  

Strains Volume of bacterial 
culture (ml) 

DSM311 6.0 

NCIMB 7.0 

SD2-1 8.9 

SD1-1 8.3 

PD2-1 7.9 

PD2-2 8.7 

PD2-3 5.2 

E. coli 1.8 

 

6.9.2 Development of SPE method for the preliminary experiments 

A preliminary trial with loadings of different volumes, e.g. 1 ml and 50 ml of synthetic 

wastewater containing 1 mg.L-1 estrogen were tested to determine the capacity of the SPE 

cartridge (Oasis PRiME HLB 3 cc /60 mg cartridge) in order to assess its capacity in subsequent 

experiments. In practice, it was decided that either a reactor sample of 50 ml that carries 50 μg 

of analyte could be loaded into the cartridge or, alternatively, a lower volume of 1 ml (carrying 

1 μg) that represents 2 % of the total sample could be used, provided the recovery rate is within 

71 - 95 % (Fayad et al., 2013). 
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Figure 6.6 Recovery rate for different volumes of samples carrying 17β-estradiol (E2) analyte 

loaded into the SPE cartridge of the Oasis PRiME HLB 3 cc / 60 mg. The E2 

concentration was the same in both samples. 

Results for analyte recovery rates using the 3 cc / 60 mg SPE cartridge of Oasis PRiME HLB 

are shown in Figure 6.6. A volume of 50 ml (carrying 50 μg of estrogen) was found to produce 

an extremely low average recovery rate of 5.44 ± 0.10 %, presumably because the column 

became overloaded. In contrast, a good recovery rate of 72.35 ± 5.16 % was obtained by loading 

a 1 ml sample which carried 1μg of analyte. The latter recovery rate was in the range 

recommended (Fayad et al., 2013). Therefore, the volume of samples that would be needed for 

analysis was set at 1 ml, as this was compatible with the capacity of the cartridge, and was 

utilised in the preliminary experiment comparing the performance of the bacterial strains.  

6.9.3 SPE method development for the optimisation experiment 

A higher capacity of cartridge (OASIS HLB 6 cc / 200 mg) was employed for the optimisation 

experiment, and its recovery rate for 100 ng of estrogens was determined. Figure 6.7 displays 

a typical chromatogram from the HPLC-ECD system, with peaks identified for each estrogen 

compound, in which E3 eluted first at a retention time of 1.4 minutes, followed by E2 at 3.8 

minutes and lastly E1 at 5.6 minutes. The specific retention times were identified from separate 

runs of each estrogen as individual calibration standards. 
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Figure 6.7 Chromatogram showing E1, E2 and E3 peaks observed in the HPLC-ECD system. 

Areas of the identified peaks of E1, E2 and E3 were calculated and compared against the areas 

of a 6-point standard curve in the range 20 ng to 150 ng. Using the response  derived from 

standards, the concentration of estrogens was determined and the average recovery rate for 100 

ng of analyte was found to be 81 % for E1, 94 % for E2 and 67 % for E3 (Figure 6.8). Therefore, 

the OASIS HLB 6cc 200 mg cartridge was considered to be a better extraction tool for E1 and 

E2 in the optimisation study than the Oasis PRiME HLB 3 cc/ 60 mg SPE cartridge. 

Nevertheless it was suggested as less suitable for E3 due to its lower percentage of recovery.  

 
Figure 6.8. Recovery rate of 500 ml of 200 ng.L-1 sample, containing 100 ng of estrogen 

compound in the OASIS HLB 6 cc 200 mg SPE cartridge. 
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6.9.4 Preliminary evaluation of estrogen removal performance by bacterial strains 

This preliminary study was conducted using the adapted bacterial strains collected after 5 days 

of incubation. The purpose of this study was to investigate relationship between the cell surface 

hydrophobicity (CSH) of the bacteria and their performance in removing estrogens. The first 

estrogen removal assay was conducted using E2 due to its high hydrophobicity. The adapted 

bacteria and E.coli were all added to the reactors without being thermally pre-treated in order 

to give a preliminary evaluation on their performance in removing estrogen.  

Figure 6.9 presents results of final concentrations of E2 and E1 after the estrogen removal 

treatment. Degree of estrogen removal was calculated using Equation 6.1 (Section 6.8.2). All 

value were reported as measured after the SPE extraction and were not adjusted for loses during 

SPE. Strains of PD2-1 and NCIMB13064 were thought to completely degrade and adsorbed all 

of the E2, however 0.2 mg.L-1 and 0.44 mg.L-1 of E1 were also found in the reactors 

respectively. The presence of E1 considered that E2 has been partially degraded into E1, thus, 

complete removal of estrogens was eventually not achieved. The high estrogen removal in 

reactor containing NCIMB13064 correlates with its high CSH. However, bacterial strains 

DSM311 and SD2-1, which were also found to have high CSH values (Section 5.4.1) reduced 

the E2 level to 0.29 mg.L-1 and 0.16 mg.L-1, respectively. Nevertheless, high amounts of E1 

were detected in the reactors, and this does not represent efficient performance in terms of total 

estrogen removal. Poor total estrogen removal efficiency was observed for almost all of the 

bacterial strains except NCIMB13064 and PD2-1. As expected from the CSH results, E.coli 

showed the lowest degree of total estrogen removal, probably due to its hydrophilic 

characteristics (CSH of 38 %). E. coli was selected as control as it is always presents in 

municipal wastewater and does not have the capability to degrade estrogens. 
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Figure 6.9 Final concentrations of estrogen (E2 and E1) after combined biodegradation and 

adsorption processes with live hydrocarbon-adapted bacterial strains compared to 

E.coli from initial concentration of 1.0 mg.L-1 of E2 in 1 ml samples. 

Interestingly, 0.76 mg.L-1 final concentration, or 76 % recovery, of estrogen was detected in the 

abiotic control sample, and this was slightly higher than the cartridge recovery rate of 72.35 % 

obtained in the method development (Section 6.9.2). This confirms that reduction in the final 

concentration of estrogens in the samples containing bacterial adsorbents were due to the 

bacterial activity, and there was negligible interference from glassware adsorption, soluble 

organic matter adsorption, or photo-degradation. 

Unfortunately, the conversion of E2 to E1 seen in this study, and reported in several other 

biodegradation studies (Yu et al., 2013; Fernández et al., 2017) made the quantification of 

bacterial performance relatively complicated. Therefore, the evaluation of estrogen removal in 

subsequent assays was conducted by employing E1 as the model estrogen compound since it 

has the same aqueous solubility as E2, at 13.0 mg.L-1 (Silva et al., 2012; Adeel et al., 2016).   
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6.9.5 Evaluating the performance of bacterial strains in removing estrone 

Further experiments on the removal of estrone (E1) were carried out, focussing on removal 

mechanism of adsorption, by utilising thermally pre-treated biomass to inhibit biodegradation 

processes (Section 6.5.2). Final concentrations of E1 in the liquid phase after 24 hours of 

adsorption are shown in Figure 6.10 and the percentage of E1 removal presented in Figure 6.11. 

The removal process taking place in these reactors is considered to be mainly attributed to the 

adsorption process, due to the thermal inhibition of the bacterial cells. The biodegradation 

process was considered to be absent due to the denaturing of the bacterial enzymes in thermal 

pre-treatment at 85 °C. In addition, the reactor contents were odourless at the end of the 

experiment, in contrast to the strong odour which was usually found after the 

biodegradation/adsorption removal process with live cells, due to the decomposition of organic 

matter by the live bacteria (Garcha et al., 2016).  

 
Figure 6.10 Final concentrations of E1 in the liquid phase after the adsorption process. The 

adsorbents were thermally inhibited hydrophobic-adapted bacterial strains, the 

reactor contained synthetic wastewater with an initial E1 concentration of 1 mg.L-

1. 
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Figure 6.11 Degree of E1 removal in the liquid phase after the adsorption process. The 

adsorbents were thermally inhibited hydrophobic-adapted bacterial strains, the 

reactor contained synthetic wastewater with an initial E1 concentration of 1 mg.L-

1.  

Throughout this experiment, the SD2-1 bacteria was found to produce the highest estrone (E1) 

removal of 64.5 ± 16.3 % in comparison to the other adapted bacterial strains shown in Figure 

6.11, with final concentration of 0.35 mg.L-1 remaining in the aqueous phase after treatment 

(Figure 6.10). Nevertheless, results of one-way analysis of variance (ANOVA) shown in Table 

6.5 demonstrate that no significant difference (p > 0.05) E1 removal efficiency was found 

between the bacterial strains. The test however, could discriminate between strains with strong 

or weak estrone removal ability. 

Table 6.5 Analysis of degree of estrone (E1) removal in the adsorption process using inhibited 

hydrophobic-adapted bacterial strains. 

Bacterial 
strains 

Estrogen Removal (%) 
NCIMB 
13064 

PD2-3 E.coli SD1-1 PD2-1 DSM311 SD2-1 

Estrone (E1) 
removal (%) 

35b 41ab 43ab 46ab 49ab 49ab 64.5a 

a.b Means that do not share a letter are significantly different (p < 0.05). 
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As noted above, the SD2-1 strain produced higher E1 removal than the other bacterial strains, 

and therefore it was considered to be the most efficient bacterial strain in removing estrogens. 

This was followed by strain DSM311, at 49 % removal. These two higher rates of removal 

correlated with the high cell surface hydrophobicity (CSH) values of 87 % for DSM311 and 

86 % for SD2-1, (Section 5.4.1). Based on the previous CSH experiments, the SD2-1, DSM311 

and NCIMB13064 strains had been predicted to be the best candidate bacterial strains for the 

removal of estrogen due to their high CSH recorded in the range of 78 – 87 %. Surprisingly, 

NCIMB13064, with a CSH of 80 %, was shown to produce the poorest estrogen removal, which 

was even lower than that of E. coli which had the lowest CSH of 38 %.  It is thought that this 

strain may have lost its hydrophobicity during the experimental work, and a thorough 

investigation of this was conducted and is discussed in Section 6.9.9.  

6.9.6 Comparison of estrone removal by the Live and Inhibited bacteria 

In addition to the adsorption process carried out using the inhibited bacteria (IB), estrone 

removal adopting live bacterial cells (LB) was also conducted. 

 
Figure 6.12 Comparison of estrone removal in reactors containing live bacteria (LB), or 

thermally inhibited bacteria (IB). All strains (except E.coli) had been adapted to 

generate hydrophobic strains using hydrocarbon growth substrate. Performance 

levels were compared with E. coli. 
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In theory, the actual process that could take place in the live bacteria (LB) reactor is suggested 

to be a combination of biodegradation and adsorption processes. Live bacterial cells have the 

ability to degrade the estrone compound and at the same time adsorb estrone molecules onto 

their highly hydrophobic cell surface. Nevertheless, according to the results of the analysis 

shown in Figure 6.12, the degree of estrone removal by strains in the LB reactor were actually 

lower than those in the Inhibited Bacteria (IB) reactor containing thermally pre-treated cells. 

The lower removal of estrone indicates that some interfering factor must have existed in the LB 

reactor, preventing the effective estrone removal by adsorption, because both biodegradation 

and adsorption should have taken place in the LB reactor and given higher removal than the IB 

reactor (adsorption processes only). This assumption of the presence of an interfering factor is 

supported by a number of publications in which either the adsorption or the biodegradation of 

estrogen has been reported to decline rapidly due to the presence of surfactants in wastewater 

(Zhang and Zhou, 2005; Kaczorek et al., 2008; Koh et al., 2008; Kaczorek and Olszanowski, 

2011). Similarly, biological surfactants, known as biosurfactants, were considered to be the 

main inhibition factor that reduced the estrogen removal performance in the LB reactor in the 

present study. As discussed in Section 4.5.2, biosurfactants production were observed during 

the adaptation of the live bacteria with n-hexadecane growth substrate. Biosurfactants were 

known to be present in this culture due to the rapid emulsification of the hexadecane. In 

addition, the presence of biosurfactants was also observed as the formation of high turbidity in 

the LB reactors after the removal reactions were completed, compared to the IB reactor (Figure 

6.13). The live bacteria in the LB reactor continued to grow during the removal process, using 

nutrients from the wastewater and residuals of hydrocarbon may have been carried over from 

the original bacterial culture, or from carbon sources stored intracellularly, and this led to the 

production of biosurfactants. In theory, additional amounts of glycolipid biosurfactant in the 

reactor will have increased the solubility of estrogen, in a process similar to the increasing 

solubility of hydrocarbon substrate for bacterial growth during the adaptation process. This 

eventually may have reduced the hydrophobicity of the estrogen and prevented its attachment 

to the hydrophobic bacterial cells, causing the reduction of the adsorption process due to less 

physical contact in LB reactor (Kaczorek et al., 2008; Kaczorek and Olszanowski, 2011).  
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Figure 6.13. (i) The presence of biosurfactant in the reactor with live bacteria (LB) compared 

to the control (bottle on the left) and (ii) the clear solutions in reactors with inhibited 

bacteria (IB) 

In addition to having lower levels of adsorption due to the presence of biosurfactants, removal 

of estrone via biodegradation in the LB reactor was inefficient because it is likely that none of 

the bacterial strains were good estrogen-degraders. R. erythropolis has been reported to have a 

moderate estrogen degrading ability in compared to other Rhodococcus genera such as R. equi 

and R. rhodochrous (Larcher and Yargeau, 2013). Moreover, it has also been shown to have a 

lower biodegradation performance, at only 10 % the added estrogen, compared to 47 % when 

a co-substrate was added (O'Grady et al., 2009). In contrast, E. coli has been shown to be 

capable to synthesizing a natural conjugated estrogen, such as glucuronide, converting it into 

the active form estrogens in wastewater, thus bring out the harmful effect (Duong et al., 2011). 

Because E1 is an unconjugated estrogen compound that E.coli could not degrade, and E. coli’s 

low CSH should restrict the binding of E1, E.coli was expected to have the poorest performance 

in removing estrone in the LB reactor, which is what was observed (Figure 6.12).  

In addition, relatively poor estrone removal (by biodegradation) occurred in all LB reactors 

because the bacteria had been previously grown in minimal media containing n-hexadecane 

growth substrate. Induction of estrogen degradative enzyme was suspected to not occur during 

the short-term (24 hour) exposure assays compared to 5 day period of adaptation that gave 

induction of cell hydrophobicity when cells were grown on n-hexadecane. Therefore 

biodegradation of estrone by the bacterial strains was difficult in the absence of the enzyme, as 

they could not use estrone for growth substrate (Li et al., 2018).   
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These factors explain the lower estrogen removal produced in the LB reactor compared to the 

IB reactor. It may indicate that hydrophobic bacteria adapted using n-hexadecane may not be 

suitable for employment in the biodegradation process, but perform efficiently in  estrone 

removal through an adsorption process due to their high CSH. In this light, further possible 

enhancements of removal performance were investigated through optimisation processes, and 

are presented in subsequent sections. 

6.9.7 Optimisation of contact time 

A study of the optimisation of estrogen removal was conducted using an initial concentration 

of 200 ng.L-1 estrone (E1), which is close to the actual amounts present in real wastewater 

influent. According to the results shown in Figure 6.14, the concentration of E1 in the batch 

reactors containing thermally inhibited bacteria (IB) was found to rapidly decline from the 

initial concentration of 200 ng.L-1 to 59.79 ± 1.75 ng.L-1 after only 10 minutes of contact, and 

then continued to decline slowly over the next hour, finally reaching its minimum of 47.62 ± 

1.37 ng.L-1 after 24 hours of contact time. Statistical analysis using one-way ANOVA indicated 

that there was a significant effect (p < 0.05) of adsorption contact time on the concentration of 

E1, which was found took place in 30 minutes contact time (Table 6.6). However, the final 

values of concentration were found to gradually decrease only slightly until the end of 

incubation (24 hours) without significant differences. This indicates that the adsorption of E1 

reached its equilibrium after 30 minutes and was complete after 24 hours. 

Table 6.6. Final concentration of estrone (E1) in the liquid phase after the adsorption process 

according to contact time. 

Analysis  Final concentration (ng.L-1) 
 Contact time 
(hours) 0.00 0.17 0.5 1.0 6.0 12.0 24.0 

Bacterial 
strain SD2-1 200a 59.79b 

± 1.75 
51.17c 
± 4.47 

48.04c 
± 1.97 

51.60c 
± 0.02 

52.79c 
± 1.43 

47.62c 
± 0.96 

a, b, c Means that do not share a letter are significantly different (p < 0.05).  
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 Figure 6.14 Effect of contact time on estrone (E1) removal using 2.5 mg (5 mg.L-1) of SD2-1 

bacterial adsorbent and an initial estrone concentration of 200 ng.L-1  

Generally, the adsorption of E1 has been reported to be a spontaneous process which achieves 

its equilibrium in less than one hour (Ren et al., 2007b; Racz and Goel, 2010), or more than 1 

hour (Zhang et al., 2012; Hartmann et al., 2014; Zheng et al., 2016), and in some adsorption 

experiments, tests were only conducted over 24 hours (Hemidouche et al., 2017). Consequently, 

contact time is found to have a significant effect on the efficiency and equilibrium of the 

adsorption process, although the effect may vary depending on other factors such as type of 

adsorbent as well as the experimental set-up. 

6.9.8 Optimisation of adsorbent dosage 

Further optimisation of the estrone (E1) removal process was conducted by investigating the 

effect of adsorbent dosage. The amount of Tsukamurella sp. SD2-1 bacterial adsorbent added 

was varied and the contact time was fixed at 24 hours. The objective of this study was to find 

an optimum dosage of biomass in order to achieve the best E1 removal performance at realistic, 

environmentally relevant E1 levels. The bacterial adsorbent dosage was varied between 0.0 – 

10.0 mg.L-1, which the highest dosage of 10.0 mg.L-1 contains 5.0 mg of adsorbent added to 

500 ml of synthetic water. 
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Table 6.7. Final concentration of estrone (E1) in the liquid phase after 24 hours of the adsorption 

with different dosages of Tsukamurella sp. SD2-1 bacterial adsorbent. 

Adsorbent 
dosage 
(mg.L-1) 

Final concentration of estrone (E1) (ng.L-1) 

0 0.3 0.5 1.6 3.3 5.0 6.6 8.3 10.0 

Bacterial 
strain SD2-1 

168.5a 41.44b 31.77bc 27.11bc 19.35cd 18.88cde 8.95def 4.82ef 3.08f 

0 ± 2.34 ± 0 ± 8.02 ± 5.33 ± 0.39 ± 2.22 ± 2.49 ± 3.08 

a, b, c, d, e, f Means that do not share a letter are significantly different (p < 0.05). 

 
Figure 6.15. Effect of adsorbent dosage on estrone (E1) removal using SD2-1 bacterial 

adsorbent. Initial estrone concentration was 200 ng.L-1, and final concentration was 

measured after 24 hours of adsorption.  

Through statistical analysis using one-way ANOVA and Tukey pairwise comparison, it was 

found that adding different dosages of Tsukamurella sp. SD2-1 bacterial adsorbent to the reactor 

produced  significantly different (p < 0.05) concentrations of estrone (Table 6.7).  
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The highest bacterial adsorbent dosage of 10 mg.L-1 (equal to 5.0 mg of biomass) added into 

the reactor had the highest degree of adsorption, leaving a final estrone concentration of 3.08 ± 

3.08 ng.L-1 of E1 in the wastewater, when compared to the effect of 9 ml of adsorbent (equal to 

2.5 mg of biomass) which gave a final estrone concentration of 18.88 ng.L-1, which had been 

used in the preliminary experiment (Section 6.5).  This is due to the fact that the supply of more 

adsorbent into the reactor will provide a higher surface area for the attachment of the estrogen, 

especially when a highly hydrophobic Tsukamurella sp. SD2-1 comes into contact with the 

hydrophobic estrone molecule. Therefore, adsorbent dosage has been determined to be a factor 

which significantly affects the performance of adsorption. Further increases in adsorbent 

dosage greater than 18 ml is predicted to produce even better E1 removal and lower final 

concentrations, but this was not tested. However, the addition of more adsorbent would add 

cost to the process. The use of 5.0 mg of bacterial biomass compared to 100 ng of E1 in the 500 

ml reactions represents a ratio of 50,000:1 adsorbent: analyte in w/w. This achieved final 

estrone levels below the PNEC of E1 (3.6 ng.L-1). 

In comparison, the final concentration 18.88 ng.L-1, achieved using 2.5 mg of the same amount 

of bacterial adsorbent gave less than half the final estrone concentration at 47.62 ng.L-1. It is 

suspected that the stock solution of E1 used in this experiment had become degraded and thus 

lower concentrations of estrone were obtained. However, the observed pattern of the reduction 

in E1 concentration with bacterial dosage (the line in Figure 6.15 does not appear to have 

plateaued) suggests that increases in adsorbent dosage would lead to lower final concentrations 

of estrone, due to the higher adsorption of E1 by the additional bacterial cells. 

6.9.9 Estrogen removal by bacterial adsorbents prepared from different phases of growth  

To investigate further enhancement of the removal of E1, the adsorption process was conducted 

using bacterial adsorbents prepared at different growth phases for bacterial strains showing the 

highest CSH values, namely Tsukamurella sp. SD2-1, R. erythropolis DSM311 and R. 

erythropolis NCIMB13064. Exponential and stationary phase bacterial cells were harvested at 

days 5 and 10 of the incubation period respectively, as previously identified in Chapter 4. 

Reaction conditions were standardised to 24 hours of contact time, 200 ng.L-1 E1, and 5.0 mg 

of bacterial adsorbent dosage. Actual volumes of adsorbent preparation that was needed for 5.0 

mg of biomass at the exponential and stationary phase of each bacterial strains determined at 

day 5 and day 10, respectively, are presented in Table 6.8.  
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Table 6.8. Volumes of the biomass adsorbent preparation needed to achieve 5.0 mg of bacterial 

biomass, at the exponential and stationary phases of bacterial growth. 

Strains 
Volume of bacterial culture (ml) 

Exponential phase (day 5)  Stationary phase (day 10) 

DSM311 12.00 9.33 

NCIMB 14.00 8.542 

SD2-1 18.00 8.542 
 

Figure 6.16 Degree of E1 removal by adsorption for bacterial strains with the highest CSH 

(DSM311, NCIMB13064 and SD2-1), comparing biomass adsorbents prepared 

from the exponential and stationary growth phases. Reactions contained 5.0 mg of 

bacterial biomass and an initial E1 concentration of 200 ng.L-1.  

Figure 6.16 shows a comparison of the performance of estrogen removal by the exponential 

phase (EP) and stationary phase (SP) of Tsukamurella sp. SD2-1, R. erythropolis DSM311 and 

R. erythropolis NCIMB13064. High percentages of estrogen removal are identified in the batch 

reactors containing SD2-1 and DSM311 strains, with the SP reactor of the SD2-1 adsorbent 

removing 95.35 ± 0.08 % of estrogen from the water samples, compared to 57.63 ± 1.10 % in 
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the EP reactors. These estrogen removal levels were found to be significantly different using 

the 2-sample t-test (p < 0.05) (Table 6.9). In addition, the percentages of removal were also 

found to be significantly different (p < 0.05) in the batch reactors consisting of the stationary 

phase DSM311 strain (95.30 ± 0.33 %) compared to the exponential phase DSM311 (55.57 ± 

5.05 %) (Figure 6.16).  

Table 6.9 Analysis of the degree of estrone removal by adsorption for bacterial strains with the 

highest CSH (DSM311, NCIMB13064 and SD2-1), comparing biomass adsorbents 

prepared from the exponential and stationary growth phases. Reactions contained 5.0 

mg of bacterial biomass and an initial estrone (E1) concentration of 200 ng.L-1. 

Bacterial strains Estrone removal (%) * 
Significance                         

(p-value)   
Exponential phase 

(EP) 
Stationary phase 

(SP) 

Tsukamurella sp. SD2-1 57.63 95.35 0.000 

R. erythropolis DSM311  55.57 95.30 0.005 

R. erythropolis NCIMB13064 43.16 77.41 0.044 

* Estrogen removal by Live Bacteria (LB) due to adsorptiona and biodegradation, estrogen 

removal by thermal Inhibited Bacteria (IB) is due to adsorption only. 

Interestingly, the reactors containing adsorbent from NCIMB13064 strain unexpectedly 

produced lower estrogen removal compared to SD2-1 and DSM311, despite having the highest 

cell surface hydrophobicity of these three strains. Even though the level of estrogen removal in 

the NCIMB13064 SP reactor was approximately 18 % lower than that in the SP reactors 

containing SD2-1 and DSM311 adsorbents, the NCIMB13064 SP reactor still adsorbed 

estrogen significantly (p < 0.05) better than the equivalent EP reactor with 77.41 ± 14.1 % 

compared to 43.2 ± 10.8 %, being observed, respectively. The higher degree of estrogen 

removal in SP reactors for all of the bacterial strains represents very strong evidence that 

different bacterial growth phases affect estrogen removal performance. Moreover, the increase 

in adsorption percentage in all SP reactors can be correlated with the higher CSH values of 

stationary bacterial cells compared to the exponential phase (Table 6.9).  
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Table 6.10 CSH values of bacterial strains as a function of the growth phase (data reproduced 

from Chapter 3) 

Bacterial strains Exponential phase 
CSH (%) 

Stationary phase 
CSH (%) 

Tsukamurella sp. SD2-1 86 91 
R. erythropolis DSM311 87 93 
R. erythropolis NCIMB13064 80 92 

These results clearly support the hypothesis that a higher cell surface hydrophobicity leads to 

higher estrogen adsorption characteristics. However, a slightly contradictory findings is the 

high CSH of NCIMB13064 which gave lower estrogen removal performance than SD2-1 and 

DSM311, so clearly the adsorption process is strain-specific to some degree, and not simply 

based on the CSH values as measured by the method used in this research. Alternatively, it 

might have been possible that NCIMB13064 hydrophobicity had decreased during the 

experimental work so that the strain has lost its hydrophobic characteristics slightly before the 

adsorption tests were carried out. To verify this assumption, the CSH of the stationary phase 

for all strains (SD2-1, DSM311 and NCIMB13064) was re-measured, in which strain 

NCIMB13064 was actually found to be only 57 ± 9.88 %, a 35 % reduction (from the original 

measurement of 92 ± 1.73 %. Whereas strains of SD2-1 and DSM311 had only 1 % increase 

(92 ± 2.60 %) and 3 % reduction (90 ± 1.07 %) respectively. 

Table 6.11 Re-measurement of CSH value for bacterial strains in stationary growth phase. 

Bacterial strains Stationary phase 
CSH (%) 

Tsukamurella sp. SD2-1 92 ± 2.60 

R. erythropolis DSM311 90 ± 1.07 

R. erythropolis NCIMB13064 57 ± 9.88 

This confirms that this strain had lost some of its hydrophobic characteristics, leading to a 

reduced estrogen removal performance. Consequently, the adapted NCIMB13064 strain is 

assumed to highly sensitive to environmental conditions (such as repeated culturing and 

storage) compared to the other bacterial strains adapted in this study. The reduction in 

hydrophobicity could be associated with factors such as a loss of bacterial plasmids (Lachica 

and Zink, 1984), mutation and changes in temperature (Ofek and Doyle, 1994). Possibly, the 

adapted R.erythropolis NCIMB13064 was more thermally sensitive than commercial 

R.erythropolis. The latter has been reported to have high tolerance to low temperatures 
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(Eriksson et al., 2001; de Carvalho and ds Fonseca, 2005) and to the thawing process (Eriksson 

et al., 2001). Nevertheless, the stationary phase DSM 311 and SD2-1 bacterial strains did 

successfully remove the estrogen from the initial concentration of 200 ng.L-1, achieving final 

concentrations of 4.65 ng.L-1 and 4.70 ng.L-1, which are levels very near to the predicted no-

effect concentration (PNEC) of 3.6 ng.L-1. As identified in the literature review, bacterial strains 

adapted with the hydrocarbon (n-hexadecane) have higher CSH values in their stationary phase 

compared to the exponential phase (Vasileva-Tonkova et al., 2008). 

6.9.10  Comparison of estrogen removal by biodegradation and adsorption process 

Given that the stationary phase bacteria have been found to have higher CSH and are also 

determined to be a more efficient adsorbents for estrogen, compared to the exponential phase, 

an evaluation of estrogen removal adopting live stationary phase bacterial cell was also 

conducted. A similar comparison was also carried out in the preliminary study but using 

stationary phase cells.   

 

Figure 6.17 Degree of estrogen removal in reactors with adsorbent biomass from live and 

thermally inhibited bacterial strains prepared at the stationary growth phase. 
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Table 6.12 Analysis of degree of estrogen removal in reactors with adsorbent biomass from live 

and thermally inhibited bacterial strains prepared at the stationary growth phase.  

Bacterial strains 
(stationary phase) 

Estrone removal (%)* Significance  
 (p-value) IB reactor LB reactor 

Tsukamurella sp. SD2-1 95.35 42.37 0.000 

R. erythropolis DSM311 95.30 44.43 0.003 

R. erythropolis NCIMB13064 77.40 56.84 0.139 

* Estrogen removal by Live Bacteria (LB) due to adsorption and biodegradation, estrogen 

removal by thermal Inhibited Bacteria (IB) is due to adsorption only. 

Figure 6.17 shows the level of estrogen removal in the reactors containing the thermally 

inhibited (IB) and live (LB) hydrophobic-adapted bacterial strains. Results of a 2-sample t-test 

(Table 6.12), confirm that reactors fed with the LB cells (SD2-1 and DSM311 strains) had 

significantly (p < 0.05) lower estrogen removal (42.37 % and 44.43 %) compared to the 

equivalent IB reactors, 95.35 % and 95.30 %, respectively. This result is similar to those 

obtained in the preliminary study (Section 6.9.6).  These results confirm that performance of 

estrogen removal using live bacterial cell is poor due to the interference factors, notably the 

presence of biosurfactant produced by the live bacterial cells. In addition, the turbid water 

samples and strong bad odour produced in the LB reactors also indicate the production of 

biosurfactants and that some biodegradation process (such as degradation of carried over 

hexadecane) was occurring. Besides R.erythropolis, Tsukamurella sp. also has been shown to 

produce glycolipid biosurfactants, specifically trehalose compounds, when it is cultivated in 

media supplied with hexadecane growth substrate (Kügler et al., 2014). In contrast, the clear 

and odourless water samples previously observed in the IB reactors imply that biodegradation 

did not take place in these reactors, and the estrogen removal which occurred was solely due to 

adsorption. However, removal of estrogen in reactors containing NCIMB13064 bacterial strains 

was found to have no significant (p > 0.05) connection with the thermal inhibitory factor (Table 

6.12). This happened due to the reduction of the CSH of the stationary phase NCIMB13064 

bacterial cells, hence leading to low adsorption (77.41 %) in these IB reactors. 

In a recent publication, a biodegradation study of estrogen removal was conducted using a live 

hydrocarbon-adapted bacterial strain (Fernández et al., 2017). Complete removal of E1 was 

obtained using a Bacillus sp. adapted with the hydrocarbon phenanthrene, which is in contrast 

to the low estrogen removal from biodegradation observed in the current study. Assuming that 
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both R. erythropolis and Bacillus sp. are estrogen degraders (O'Grady et al., 2009; Larcher and 

Yargeau, 2013), the high estrogen  removal reported by  Fernández et al. (2017) is probably 

because the Bacillus sp. had previously been isolated using hydrocarbon, and then adapted to 

estrogens before being employed in the estrogen removal study. Therefore, the hydrocarbon-

adapted bacteria had already undergone adaptation to estrogen, and induction of estrogen 

degradative enzyme had occurred, allowing them to degrade the estrogen. Furthermore, 

biosurfactant was probably absent as no hydrocarbon involved in the latter bacterial adaptation 

culture, immediately before the estrogen removal test was conducted. Moreover, no CSH 

measurement was carried out on the bacteria in that study, and estrogen removal by adsorption 

process was not conducted. However, this is the only study found in the literature which 

employed hydrocarbon-adapted bacteria for estrogen removal. The current investigation 

confirms that even though the biodegradation process was found to be low, the adsorption 

process produced a very high level of estrogen removal (95.35 %), which is very comparable 

to the complete removal of estrone reported by Fernández et al. (2017). 

6.10  Conclusions  

In making use of hydrocarbon-adapted bacteria as adsorbents, different degrees of estrogen 

removal were found among the different bacterial strains due to their diverse CSH values. The 

SD2-1 bacterial strain was found to produce significantly better estrogen removal compared to 

the other bacterial strains considered here, due to its high CSH, when the ratio of biomass 

adsorbent to estrogen was fixed at 25,000:1 (w/w). However the estrogen removal was found 

to be moderate due to the low ratio of biomass to adsorbent used.  

From the optimisation experiments, the minimum contact time was found to be 30 minutes, 

with the best removal observed for 60 minutes contact, with no further improvements in 

removal efficiency arising for longer contact time. These findings have confirmed the 

hypothesis that the performance in the adsorption of estrogen increases with contact time in the 

reactor, but this is limited to the first hour only.  

The optimum adsorbent dosage was found to be at 50,000:1 (w/w) of bacterial adsorbent to 

estrogen analyte. Contact time and dose of adsorbent are both known to be factors that influence 

the adsorption process (Snyder et al., 2007; Ifelebuegu et al., 2015) and the current study 

supports the  alternative hypothesis that performance of estrogen adsorption increases with the 

amount of bacterial biomass and contact time applied in the batch reactor.  

Moreover, further increase of estrogen removal efficiency was demonstrated using stationary 

growth phase compared to the exponential phase bacterial cells. This verified the alternative 
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hypothesis, that different stages of bacterial growth affect estrogen removal by adsorption 

process. As the stationary phase cells of the bacterial strains have higher CSH compared to 

exponential phase cells, and produced higher estrogen removal, this also supports the 

hypothesis that the CSH of the bacterial strain correlates with efficiency in estrogen removal.  

However, the adapted R. erythropolis strain NCIMB13064 was found to produce lower 

estrogen removal due to the reduction of its CSH, and it was concluded to be a more sensitive 

strain (to the loss of hydrophobic properties) compared to its parent strain (R. erythropolis), and 

this reduction in CSH affected its capability to adsorb the hydrophobic estrogen molecules.  

Apart from adsorption, the removal of estrogen via biodegradation in live hydrocarbon-adapted 

bacteria was not found to be a major contributing process, particularly for live bacteria where 

interfering factors (biosurfactant production) were considered to reduce estrogen removal 

efficiency.  

Overall, the bacterial strains of Rhodococcus erythropolis DSM311and Tsukamurella sp. SD2-

1 have been successfully hydrocarbon-adapted to become hydrophobic strains (high CSH) , and 

these strains have been shown to be very effective bacterial adsorbents for estrone removal by 

a predominantly adsorption-based process. There is considerable potential to employ these 

bacterial strains, or an adsorbent material based on attenuated cells of these bacteria, for large-

scale tertiary removal of estrogen from wastewater. These bacteria are readily “hydrophobic-

adapted” and could be produced cheaply utilising low-cost hydrocarbon substrates, which may 

include diesel fuel as an extremely low-cost hydrocarbon growth substrate. 

In summary, bacterial cells with high CSH were found to produce higher estrogen removal and 

were effective at an adsorbent dosage of 500 µl.L-1.  An optimum contact time of 60 minutes, 

and use of biomass harvested from the stationary growth phase (10 days bacterial cultivation) 

were identified as the most effective conditions for estrogen removal. Therefore, the objective 

(Section 1.3 (3)) of investigating any correlation between the cell surface hydrophobicity (CSH) 

of bacterial strains and their estrogen adsorption performance has been achieved.  
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Chapter 7 Fed-batch culture bacteria for estrone (E1) removal 

7.1 Introduction 

In stationary growth phase, bacterial strains of Rhodococcus erythropolis DSM311 and 

Tsukamurella sp. SD2-1 were found to effectively remove 95.00 - 95.35 % of estrone from the 

initial concentration of 200 ng.L-1 to final concentrations between 9.3 – 9.4 ng.L-1. To 

investigate the potential for complete, or at least higher, removal of estrone, the bacterial strains 

were hydrophobic-adapted for a longer incubation periods of more than 10 days. To ensure that 

the bacteria were fully adapted to the hydrocarbon without being affected by possible inhibitory 

effects from excess substrate, and at the same time avoiding substrate limitation, a fed-batch 

cultivation technique was employed. The process was conducted over a longer incubation of 20 

days, thus doubling the adaptation period of the previous batch culture. Longer exposure to the 

hydrophobic growth substrate was expected to produce more hydrophobic bacterial biomass 

adsorbent for improved adsorption of estrone (E1).  

In a previous study, Tzintzun-Camacho et al. (2012) used 13 g.L-1 of n-hexadecane, which is 

equal to 16.8 ml.L-1 of growth substrate in a hydrocarbon-adaptation study with an incubation 

period of 15 days. In comparison, the adaptation of bacteria used in the current study (Chapter 

4) was conducted using 0.5 ml.L-1 of n-hexadecane for a maximum of 10 days. The high amount 

of substrate used by these authors, 30 times higher than the current study, was not preferred as 

it was considered that might inhibit bacterial growth, and the presence of dead bacteria might 

have produced a low cell surface hydrophobicity (CSH) value. The researchers found that 

Acinetobacter bouvetii, with an initial value of 80 % CSH, started to show a decrease in CSH 

to 60 % after only four days of incubation, and continued to decrease to an extremely low CSH 

of 6 % after 15 days of incubation. This scenario presumably took place due to increases in the 

number of dead cells following the inhibition, therefore, the CSH could not increase higher than 

the 80 % value. Moreover, use of a higher volume of 25 ml.L-1 of growth substrate for the 

adaptation of Tsukamurella tyrosinosolven (a similar bacterium to Tsukamurella sp. SD2-1 

used in the current study) in 10 days of batch cultivation, also produced a low CSH of 29 % 

(Tebyanian et al., 2013), compared to 91 % obtained with the same genus in the current study.  

Therefore, to avoid producing low CSH, a fed-batch cultivation method was considered to be 

the most appropriate technique for the longer adaptation of bacteria that employed a minimal 

quantity of hydrocarbon substrate to avoid the inhibition of growth. The investigation sought 

to confirm the actual effect of longer adaptation process on the CSH of the bacteria, and how it 

affected the efficiency of the bacterial biomass adsorbent for the sorption of estrone. 
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7.1.1 Aims 

To investigate whether the culturing conditions for production of the hydrophobic bacterial 

strains affected their CSH and estrogen adsorption characteristics. 

7.1.2 Objectives  

To study the optimization of the estrone removal process using the fed-batch cultivation of 

bacterial biomass production, and to gain a better understanding of the effect of a longer 

incubation period on bacterial adaptation of CSH and estrogen adsorption efficiency.  

7.1.3 Hypotheses 

The alternative hypotheses of this study are as follows: 

1. The hydrophobic bacterial cell adsorbents are capable of removing estrone from 

wastewater below the relevant environmental quality standard values. 

2. Fed-batch bacterial cultivation for periods exceeding 10 days has a significant effect on 

cell CSH level, and the performance of the bacterial biomass for estrogen adsorption. 

7.2 Methodology 

The experimental work plan is demonstrated in Figure 7.1, and the methodology is described 

in more detail below. Part per trillion concentration (200 ng.L-1) of E1 was used for all 

adsorption process in this chapter. 

 
Figure 7.1 Flow of work plan for the enhancement of estrone removal by fed-batch cultivated 

bacteria 

Fed-batch culture of bacteria for 15 and 20 days 
of incubation 

Cell surface hydrophobicity measurement 

Adsorption process for removal of estrone (E1) 

Thermal pre-treatment of bacteria 
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7.2.1 Fed-batch cultivation and biomass production 

Biomass weight was measured for the bacterial strains SD2-1 and DSM311 that were cultivated 

in the fed-batch, to establish the volume of bacterial culture that represented the 5.0 mg of 

bacterial biomass required to be supplied to the reactors during assays.  

Bacterial strains SD2-1 and DSM 311 were cultured on NA plates, and single colonies of the 

bacteria were then cultured in 10 ml of liquid MM1 medium with 500 μl.L-1 of n-hexadecane 

growth substrate in glass universal tubes for a fed-batch culture as displayed in Figure 7.2. The 

cultivation was carried out in 25 °C and 155 rpm incubator for 15 and 20 days. After 10 days 

of incubation, and standing at room temperature for 3 hours, all of the liquid phases in the 

bacterial cultures were discarded, leaving the settled bacteria cells at the bottom of the tubes. 

10 ml of new liquid MM1 medium and 5 μl of n-hexadecane were added to the tubes under 

aseptic conditions in order to avoid contamination. The solution was incubated under the same 

conditions for another 5 days. At the end of 15 days incubation, measurement of the biomass 

weight for the day 15 bacterial culture was conducted according to the quantification of 

bacterial biomass protocol described in Section 6.2.1. 

 

Figure 7.2 Schematic diagram of the fed-batch culture method for producing the bacterial 

adsorbent. Liquid MM1 growth media and n-hexadecane growth substrate were 

renewed after 10 days and 15 days of incubation. The bacterial culture were collected 

at 15 and 20 days. 

The process was repeated in a separate set of universal tubes over 20 days of incubation. These 

batches were fed three times, the original feed on day 0, and then further medium replacement 

as described above on day 10 and day 15. The day 20 biomass was quantified at the end of the 

Bacterial cells 

Remaining  
substrate + liquid 
MM1 

New 
substrate  + 
liquid MM1 

Waste 

Bacterial 
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incubation as described above.  All of the bacterial strains were cultivated and quantified in 

triplicate. 

7.2.2 Pre-treatment of bacterial adsorbent 

The bacterial adsorbent was thermally pre-treated in an oven at 85 °C for 1 hour according to 

the procedure detailed in Section 6.3.2. 

7.2.3 Adsorption process for treatment of estrone 

The adsorption process was conducted using the bacterial adsorbents SD2-1 and DSM311 

which were harvested at day 15 and 20 in the reactor in triplicate according to the adsorption 

process described in Section 6.6 and measurement of estrone concentration in Section 6.6.1. 

Data on degree of E1 removal, as well as E1 final concentration for treatment using day 5 and 

day 10 of bacterial age (culture period) were reproduced from the adsorption assays in (Section 

6.9.9). 

7.2.4 Cell surface hydrophobicity measurement 

CSH was determined for the bacterial strains SD2-1 and DSM311after the longer incubation 

periods, 15 and 20 days, was conducted according to the microbial attachment to hydrocarbon 

(MATH) protocol described in Section 5.3.1. 

7.3 Results 

7.3.1 Biomass weight 

The volumes of bacterial culture representing 5.0 mg biomass are reported in Table 7.1. The 

respective amounts of thermally pre-treated bacterial culture collected at days 15 and 20 of 

incubation were added to each reactor in duplicate.  

Table 7.1 Biomass weight of the hydrophobic-adapted bacterial strains SD2-1 and DSM311 

and their amounts in volumes that represent 5.0 mg of biomass as determined at Day 

15 and Day 20 of incubation.  

Bacterial strain Biomass weight  
(mg/10 ml) 

Volume of bacterial culture 
representing 5.0 mg biomass (ml) 

Day 15 Day 20 Day 15 Day 20 

SD2-1 8.7 10.6 5.827 4.740 

DSM311 10.3 12.80 4.893 3.937 
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7.3.2 Estrone removal by batch reactors 

Figure 7.3 displays the final concentrations of estrone (E1) in the batch reactors containing 

thermally pre-treated biomass from bacterial strains DSM311 and SD2-1 grown in fed-batch 

culture for 5, 10, 15 and 20 days.  

The final concentrations of estrone shown in Figure 7.3 decline rapidly in a linear trend over 

with the length, which  a significant (p < 0.05) reduction in concentration has been detected 

from the initial concentration to day 5, followed by day 10 (Table 7.2) as previously reported 

in Chapter 6. The reduction in estrone concentrations demonstrates a high degree of adsorption, 

and this was attributed to the increased bacterial CSH levels from their exponential to stationary 

growth phases (Figure 7.4 and Figure 7.5).  

 
Figure 7.3 Final concentration of estrone in the batch reactors containing thermally pre-treated 

hydrophobic-adapted biomass from bacterial strains SD2-1 and DSM311. Initial 

estrone (E1) concentration was 200 ng.L-1. 
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Table 7.2 Final concentration of estrone in the batch reactors containing thermally pre-treated 

hydrophobic-adapted biomass from bacterial strains SD2-1 and DSM311. Initial 

estrone (E1) concentration was 200 ng.L-1. 

Strains  Final concentration of estrone in rectors (ng.L-1) 
(1Different incubation time bacteria) 

D0 D5 D10 D15 D20 

SD2-1 200a 84.74 b 9.31c 9.22 c 27.77 c 

DSM311 200a 106.32b 9.39c 9.82 c 8.35 c 

1    Different incubation time; D5: Day 5; D10: Day 10; D15: Day 15; D20: Day 20. Data for D5 

and D10 was reproduced from adsorption assays (Section 6.9.9).  
a, b Means that do not share a letter are significantly different (p < 0.05). Comparison between 

days of incubation. 

Table 7.3 Degree of estrone removal in the batch reactors containing thermally pre-treated 

hydrophobic-adapted biomass from bacterial strains SD2-1 and DSM311. Initial 

estrone (E1) concentration was 200 ng.L-1. 

Strains  Removal of estrone (%) 
(1Different incubation time bacteria) 

D0 D5 D10 D15 D20 

SD2-1 0.0a 57.63b 95.35 c 95.39 c 86.11 c 

DSM311 0.0a 55.57 b 95.30 c 95.09 c 95.83 c 

1    Different incubation time; D5: Day 5; D10: Day 10; D15: Day 15; D20: Day 20. Data for D5 

and D10 was reproduced from adsorption assays (Section 6.9.9). 
a, b, c Means that do not share a letter are significantly different (p < 0.05). Comparison between 

days of incubation. 

The estrone concentration then stabilised between days 10 to 20 for both the SD2-1 and 

DSM311 bacterial strains. Surprisingly, the use of a longer culture growth period of 15 days 

for the SD2-1 bacterial strain was observed to further decrease the E1 concentration by a small 

amount 1.0 % lower than the final concentration of day 10 cells. This change was not found to 

be significant (p > 0.05), (Table 7.3). In terms of the removal efficiency, 95.39 % of E1 was 

removed from the SD2-1 reactor compared to 95.35 % as obtained previously using the day 10 

bacterial adsorbent of the same strain (Table 7.3). 
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In comparison, the DSM311 bacterial strain did not show improved E1 removal with biomass 

grown for periods in excess of 10 days, the reactor with 15 day biomass having a slightly 

(around 5 %) higher final concentration of E1 than the 10 day biomass, and the mean final 

concentration of estrogen was 9.82 ng.L-1 and 9.39 ng.L-1 for the 10 day and 15 day reactors, 

respectively. The DSM311 bacterial strain that incubated for 20 days was found to produce a 

higher E1 removal efficiency of 95.83 %, which represents a final concentration of 8.35 ng.L-

1.  

In contrast, the concentration of E1 in the reactor with Tsukamurella sp. SD2-1 bacterial 

adsorbent from 20 day biomass was found to increase to 27.77 ng.L-1. This is an unexpected 

increase in concentration and can be explained by the existence of aggregation effects in the 

hydrocarbon-adapted bacterial strains. This aggregation caused the bacterial cells to clump 

together during growth, and this persisted after heat treatment and remained in adsorbent 

biomass used in the reactors. This reduced the surface area of the bacteria during the adsorption 

reaction, and exposed fewer binding sites for the attachment of estrone molecules. The lower 

degree of estrone removal with the 20 day biomass of the SD2-1 bacterial strain occurred 

because a more severe aggregation effect was observed in this strain compared to DSM311, 

especially for the longest culture period.  

Statistical analysis using one-way analysis of variance (ANOVA) and the Tukey pairwise test 

shown in Table 7.2 and 7.3 indicate that none of the final E1 concentrations in the reactors 

containing day 15 (D15) and day 20 (D20) biomass from both bacterial strains were 

significantly different from the concentrations with biomass taken from the day 10 cultures. 

Further investigation of the CSH values of the strains at day 15 and day 20 was conducted to 

investigate the reason for insignificant increases in E1 removal being observed with biomass 

taken from the 15 day and 20 day culture period compared to the 10 day biomass (Section 

7.3.3). 
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7.3.3 Effect of extended fed-batch culture periods on cell surface hydrophobicity and 

estrogen adsorption 

The CSH of the bacterial strain SD2-1 was measured for culture periods of 3 to 20 days and 

results are shown in Figure 7.4. 

Figure 7.4 Cell surface hydrophobicity of Tsukamurella sp. SD2-1, measured for culture 

periods of 3 to 20 days. 

The CSH of strain SD2-1 has increased continuously over the first 10 days of culture, starting 

at 78 ± 4.35 % on day 3 and reaching a maximum of 91.33 ± 2.30 % on day 10 (Figure 7.4). 

Then it decreases to 90.67 ± 3.51 % on day 15, and continued to decline slightly for the day 20 

biomass to 90 ± 4.35 %. A total CSH reduction of 1.33 % after day 10 onwards explained the 

absence of significant improvement in the degree of estrone removal in the reactors containing 

the 15 day and 20 day SD2-1 biomass. This reduction in CSH may in part explain the higher 

final estrone concentration, increasing from 9.22 ng.L-1 to 27.77 ng.L-1 for reactors containing 

biomass from the 15 day and 20 day cultures, respectively (Figure 7.3). This was thought to 

occur due to the small reduction in CSH (0.67 %) and the severe aggregation effect on SD2-1 

bacterial cells. Reductions in surface area ultimately decrease the amount of E1 that can be 

adsorbed. The effect of aggregation on bacteria grown for longer incubation periods has also 

been discussed in Chapter 4, and is a phenomenon also reported in previous studies (Flemming 

and Wingender, 2010). 

78.00

86.00

91.33 90.67 90.00

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22

C
el

l S
ur

fa
ce

 H
yd

ro
ph

ob
ic

ity
 (C

SH
) (

%
)

Incubation time (days)



140 
 

Figure 7.5 Cell surface hydrophobicity of the fed-batch culture of the hydrophobic-adapted 

bacterial strains of DSM311, enumerated every five days of incubation. 

A similar trend of small reductions in CSH were also observed in the adapted DSM311 strain 

for incubation periods in excess of 10 days (Figure 7.5). Specifically, the CSH of 92.67 ± 2.89 % 

measured on day 10 reduced by 1 % for a 15 day incubation to 91.67 ± 0.58 %, and to 91.67 ± 

2.08 % at day 20. The small reduction in CSH at day 15 yielded a slightly lower degree of E1 

removal in the D15 reactor compared to D10 reactor (Table 7.3). However, higher removal took 

place in the D20 reactor, with final E1 8.35 ng.L-1, despite the biomass having almost identical 

CSH to the day 15 biomass. Nevertheless, this improved E1 removal efficiency, compared to 

D15 reactor, was insignificant and probably due to experimental error such as the actual 

numbers of bacterial cells growing in separate culture tubes, i.e. having slightly different growth 

rates. 

Overall, the insignificant difference in the removal of estrone between bacterial cultures 

incubated for 10 days compared 15 and 20 days was considered to reflect the almost constant 

CSH of the bacterial strains over this period. This is probably due to the fact that the bacterial 

cells are in the same growth stage between day 10 and 20, i.e. the stationary phase. The CSH 

was predicted to decrease gradually as the bacteria started to enter their death phase.  

Even though use of fed-batch cultivation for periods longer than 10 days cultivation in the 

current study did not produce a higher CSH strain, the use of the lower growth substrate 
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concentration ensured the production of good CSH levels of 91.0 % and 92.3 % for SD2-1 and 

DSM311 respectively, compared to the 80 % (Tzintzun-Camacho et al., 2012) and 29.0 % 

(Tebyanian et al., 2013) obtained in the previous studies. 

7.4 Conclusion 

Reactors containing bacterial adsorbent grown in culture periods in excess of 10 days did not 

give any significant improvement in the estrogen removal efficiency because the bacterial cells 

were in the same stationary growth phase, and generally had similar CSH levels. It is concluded 

that the adsorption of estrone using the thermally pre-treated biomass of hydrocarbon-adapted 

bacterial strains is affected by the level of bacterial CSH, which is also related to different 

growth phases. The alternative hypothesis, that fed-batch bacterial cultivation in excess of 10 

days (i.e: 15 and 20 days) has a significant effect on the estrone removal process is therefore 

rejected.  

Therefore, the objective (Section 1.3 (4)) to demonstrate enhanced estrogen removal by using 

fed-batch cultivation with bacterial growth periods in excess of 10 days (i.e: 15 and 20 days) 

was not achieved. Nevertheless, 95.30 - 95.35 % of estrone being adsorbed by using the D10 

bacterial adsorbent of DSM311 and SD2-1, respectively, are considered to provide good 

removal performance, reducing estrone from 200 ng.L-1 down to 9.31 - 9.39 ng.L-1, and almost 

achieving the PNEC standards of 3.6 ng.L-1 (European Commission, 2016). 
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Chapter 8 Comparison of the estrone removal efficiency of bacterial and 

commercial adsorbents 

8.1 Introduction   

The bacterial isolate SD2-1 was found to exhibit high cell surface hydrophobicity (CSH) in its 

stationary growth phase and to give a high degree of estrone (E1) adsorption, and was therefore 

selected to evaluate its performance in comparison with commercial adsorbents, namely 

activated carbon and zeolite. In addition, variations in the bacterial thermal pre-treatment 

method were also considered in this study, where observations were made on the effect of 

different temperatures on the morphology of the bacteria and their estrone adsorption 

efficiency. 

8.1.1 Aims 

To compare the E1 adsorption properties of adsorbents prepared from hydrophobic adapted 

bacteria with that of the commercial adsorbents. 

8.1.2 Objectives  

In order to accomplish the aforementioned aim, the following objectives were set:  

1. To compare the performance of the thermally pre-treatment hydrophobic SD2-1 

bacterial strains with commercial adsorbents, activated carbon and zeolite, for their 

capacity to remove E1 from a synthetic wastewater. 

2. To investigate the effect of the pre-treatment temperature used to activate the SD2-1 

bacterial biomass on the performance of E1 adsorption from a synthetic wastewater. 

3. To investigate specific aspects of E1 adsorption process, including the mechanism of 

interaction and the reversibility of the adsorption-desorption process.  

4. To determine the adsorption isotherm parameters using the best fitted isotherm model 

for E1 adsorption using adsorbents from the SD2-1 bacterial strain. 

8.1.3 Hypotheses 

1. The removal of estrogen from wastewater using hydrophobic-adapted SD2-1 bacterial 

adsorbents is a viable alternative removal technology in comparison with activated 

carbon adsorption.  

2. Temperature of thermal pre-treatment affects the E1 adsorbing performance of SD2-1 

bacterial adsorbents. 
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3. The adsorption of E1 using the hydrophobic-adapted SD2-1 bacterial biomass is mainly 

attributed to its hydrophobicity. 

4. The adsorption of E1 using the hydrophobic-adapted SD2-1 bacterial biomass is a 

reversible process. 

8.1.4 Comparison of adsorption properties of SD2-1 bacterial adsorbents with activated 

carbon and zeolite 

Activated carbon (AC) is an excellent material that has been used in various adsorption 

processes for the removal of a variety of emerging contaminants, including estrogen (Grassi et 

al., 2013; Hemidouche et al., 2017). This is due to its high surface area and high affinity for 

various types of pollutants. However, there are several issues, and drawbacks with its 

commercial application, particularly the high embodied energy requirement linked in its 

production, and the high production cost (Snyder et al., 2007). Details of the characteristics of 

activated carbon have been discussed in the literature review in Chapter 2.  

Zeolites are alternative adsorbents, being crystalline microporous aluminosilicate minerals, 

which have been used widely in industrial applications as efficient molecular sieves and 

adsorbent materials (Gleichmann et al., 2016). Naturally occurring zeolites, however, are rarely 

pure and vary in pore size, often making them unsuitable for practical applications (Ackley et 

al., 2003). Thus, commercial zeolites are usually synthetic materials, with uniform pore 

structures and composition. They have been produced industrially in large quantities using 

silica, alumina and sodium hydroxide via a heating process, and this is costly. In recent studies, 

alternative cheaper raw materials have been suggested such as clay mineral (Ugal et al., 2010), 

silica content materials and industrial fly ash (Franus et al., 2014; Tauanov et al., 2017). These 

synthetic zeolites generally have microporous structures which can accommodate various 

cations for adsorption including heavy metals (Na et al., 2011). They have also been recorded 

as good adsorbents for emerging contaminants such as perfluorinated compound (PFC) (Ochoa-

Herrera and Sierra-Alvarez, 2008), which have hydrophobic characteristics similar to estrone.  

Therefore, considering the potential drawbacks associated with conventional adsorbents, the 

hydrophobic-adapted Tsukamurella sp. SD2-1 could be a potential alternative adsorbent for 

removing estrone, and possibly other estrogens, from wastewater. Furthermore, because 

Tsukamurella sp. SD2-1 biomass comprises small bacterial cells, this provides a high collective 

surface area, which facilitates adsorption processes. One of the main advantages of 

Tsukamurella sp. SD2-1 biomass is that it can be produced cheaply in large quantities, 

particularly as relatively low temperatures are needed for its cultivation, thus requiring less 



144 
 

energy. In addition, the SD2-1 biomass exhibits high hydrophobicity, and has been shown to 

produce very high adsorption performance (Chapter 6), but this needs to be put into perspective 

with the performance of AC and zeolites. Therefore, determining the performance of 

Tsukamurella sp. SD2-1 in adsorbing estrone compared to activated carbon and zeolite, could 

give an indication of the potential commercial applicability the Tsukamurella sp. SD2-1 

bacterial adsorbent for treating wastewaters that contain estrogens. 

8.1.5 Effect of different thermal pre-treatment temperatures on bacterial morphology and 

biomass adsorption characteristics 

An extensive study was conducted to assess the effects of different thermal pre-treatments 

temperatures on the performance of Tsukamurella sp. SD2-1 in adsorbing estrone. A higher 

temperature of 100 °C was applied in thermal pre-treatment process, compared to the 85 °C 

adopted in the previous assays. The bacterial cells pre-treated at 100  °C were assumed to be 

disrupted at this higher temperature, which is close to the autoclaving temperature of 121 °C 

(Lunsman and Lick, 2005). In theory, the broken cells of bacteria might provide a higher surface 

area for higher adsorption compared to the intact cells pre-treated at 85 °C. Alternatively, 

changes in the bacterial morphology of either broken or shrunken cells might affect their 

adsorption properties negatively. These factors were evaluated in this section.  

8.1.6 Desorption of adsorbed estrone 

A desorption experiment was also carried out to provide supporting evidence that the removal 

of estrone which was observed in reactors containing thermally pre-treated bacterial biomass 

(Section 8.1.5) was due to an adsorption mechanism, rather than a biodegradation or 

modification mechanism, in which case it should be recoverable by desorbing back into the 

liquid phase. Up to the current point, the adsorption of estrone by Tsukamurella sp. SD2-1 

biomass has been assumed to be a physical adsorption process because the removal of 

hydrophobic estrogen from the aqueous phase is related to the hydrophobicity of the bacterial 

biomass. Therefore, the adsorption of estrone by the bacterial adsorbents was predicted to be a 

reversible process because physical adsorption (physisorption) is commonly a reversible 

process (Zhang et al., 2012). However, even so, 100 %  analyte recovery is not always 

achievable from an adsorbed state because the efficiency of the desorption process can be 

affected by many factors; namely, morphology of the adsorbent, temperature, activation energy 

and the reaction order (Amiaud et al., 2015). 
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8.1.7 Isotherm model 

The performance of adsorption can be further understood and predicted by using adsorption 

models, and two of the most commonly used models, the Freundlich and Langmuir adsorption 

models, were evaluated in the current study. General Freundlich and Langmuir models can be 

represented by the equations (7.1) and (7.2) respectively.  

  Log qe = Log Kf + (1/n) Log Ce      (Equation 7.1) 

      (Equation 7.2) 

 

Where qe is the amount of adsorbate per mass unit of adsorbent at equilibrium, Kf is the 

adsorbent capacity and Ce is the final adsorbate concentration, 1/n is the Freundlich adsorption 

capacity, qm as the maximum adsorption capacity, and KL is the Langmuir adsorption constant.  

Selection the most suitable isotherm model for the adsorption of estrone using the hydrophobic-

adapted bacteria was made by determining the best fit of the data according to its correlation 

coefficient (R2).  

8.2 Methodology 

8.2.1 Preparation of bacterial adsorbent 

Single colonies of SD2-1 bacteria were cultivated in 10 ml of liquid minimal media (MM1) 

with 5.0 μ of n-hexadecane added, in glass universal tubes and incubated at 20 °C and 250 rpm 

for 10 days (to reach stationary phase). Then the bacterial cultures were thermally pre-treated 

for 1 hour in ovens at temperatures of 85 °C and 100 °C. 10 μl of each pre-treated bacterial 

culture were taken and prepared for microscopic observation at 10,000 times magnification 

using a fluorescent microscope, model Nikon ECLIPSE Ci, equipped with QImaging software. 

The commercial adsorbents, granulated activated carbon (GAC) and zeolite, were dried in a 

100 °C oven overnight and stabilised in a desiccator containing silica gel. Stable weights of 5.0 

mg for the AC and zeolite were measured.  

8.2.2 Adsorption process 

A concentrated synthetic wastewater was prepared according to the protocol described in 

Section 6.3.1, and diluted one-hundred-fold with spring water. 500 ml of the diluted synthetic 

wastewater was added into reactors together with 1 ml of 100 μg.L-1 estrone (E1) to give an 

initial concentration of 200 ng.L-1. A 5.0 mg of activated carbon and zeolite were added into 

separate reactors. Alternatively, 8.542 ml of the SD2-1 bacterial cultures pre-treated at 85 °C 

and 100 °C, representing 5.0 mg of biomass dry weight, were added separately to another set 

qe =   KL.qm.Ce 

1 + KL.Ce 
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of reactors. All reactors containing each of the adsorbents were prepared in triplicate. The 

reactors were incubated in a shaking incubator at 20 °C and 250 rpm for 24 hours. Then samples 

were removed from the reactors and centrifuged at 4200 rpm for 10 minutes (Sigma 3-16P, 

SciQuip Ltd.) and the liquid phase was collected, leaving the settled bacterial pellet at the 

bottom of the centrifuge tube. All of the liquid phase samples were loaded into solid phase 

extraction (SPE) OASIS HLB 6cc 200 mg cartridges and extracted according to the SPE 

protocol described in Section 6.6.1, and the final eluate was filtered using 0.22 μm syringe filter 

(Stratlab Ltd.) into HPLC vials for analysis of the final concentration using the HPLC-ECD 

(Section 6.8). Control reactor without adsorbent has not been carried out because adsorption by 

the glassware was proven to be negligible, and the degree of estrogen loss is similar to the losses 

in cartridge (16 - 18%) (Section 6.9.3). 

8.2.3 Desorption process 

The remaining bacterial pellets in the centrifuge tubes were added to new reactor bottles which 

were filled with 500 ml of deionised water. The reactors were agitated in the incubator at 250 

rpm for 24 hours at 20 °C. The water samples were then centrifuged and loaded into the SPE 

and the process of SPE extraction and estrone analysis was conducted as defined in Section 

6.6.1. An additional control experiment was carried out using estrone dissolved in deionised 

water was also made, and the same parameters and protocol were adopted, except the synthetic 

wastewater medium was replaced with deionised water.  

8.2.4 Isotherm model 

Different concentrations of estrone, namely 50, 100, 200 and 500 ng.L-1 were prepared by 

adding 25, 50, 100 and 250 μl of 1.0 mg.L-1 of E1 respectively into each reactor contained 500 

ml synthetic wastewater. 5.0 mg of SD2-1 bacterial adsorbent, represented in 8.542 ml of 85 °C 

pre-treated biomass (Section 6.3.2) was also added to each reactor. The adsorption reaction, 

separation of adsorbent from aqueous phase, SPE concentration and final analysis of the estrone 

concentration by HPLC-ECD system was carried out according Section 6.6.1 . Data of the 

adsorption parameter, including final concentration analysed were fitted into the isotherm 

models of Freundlich and Langmuir (Section 8.1.7). 

8.3 Results and discussion 

8.3.1 Adsorption process 

Table 8.1 shows the results of one-way ANOVA and Tukey pairwise analysis of the percentages 

of E1 removal and adsorption capacities in reactors containing different type of adsorbents.  
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Table 8.1 Performance of estrone removal and estrone adsorption capacities in the aqueous 

phase of reactors containing different adsorbents. Type of adsorbents are: GAC, 

granulated activated carbon; SD2-1(85), SD2-1 strain pre-treated at 85 °C; and SD2-

1(100), SD2-1 strain pre-treated at 100 °C. Initial estrone concentrations were 200 

ng.L-1. 

Analysis  Type of adsorbents 

GAC SD2-1(85) SD2-1 (100) Zeolite 

Final concentration 
of E1 (ng.L-1) 0.00 1.78 62.14 66.55 

Removal 
performance ( % ) 

100a 99.11 a 68.93 b 66.73 b 

1Adsorption capacity 
(ng.mg-1) 20a 19.82a 13.79b 13.35 b 

a, b Values that do not share a letter are significantly different. Comparison valid between types 

of adsorbents only. 
1 Mass of estrone (ng) adsorbed per mass of adsorbent (mg) 

The estrone in the activated carbon reactors was found to have been completely removed from 

its initial concentration of 200 ng.L-1, due to its high adsorption efficiency. Meanwhile, the 

reactor of SD2-1(85) had an E1 mean final concentration of 1.78 ng.L-1, which represent 

99.11 % of removal (Figure 8.1), achieving a final concentration below the predicted no-effect 

concentration (PNEC) of 3.6 ng.L-1. In contrast, only 68.93 % of E1 has been removed from 

the reactor with SD2-1(100), and the final concentration of estrone in the aqueous phase was 

found to be 62.14 ng.L-1, which exceeds PNEC level. A similarly low removal performance 

was found in the zeolite reactors, where only 66.73 % of the estrone was removed, producing a 

final concentration of   66.55 ng.L-1.  

According to Table 8.1, there is no significant difference between the estrone removal 

performance in the SD2-1(85) reactor and the activated carbon reactor which gave complete 

removal. The excellent performance can also be found by comparing the adsorbents’ adsorption 

capacities (Table 8.1 and Figure 8.1), results showing the SD2-1(85) adsorption capacity (19.82 

ng.mg-1) was not significantly different from GAC (20.00 ng.mg-1). However, SD2-1(100) and 

zeolite had significantly lower adsorption capacities compared to GAC. 
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Figure 8.1 Estrone (E1) adsorption capacity of adsorbents in the aqueous phase of reactors 

containing different adsorbents.  Type of adsorbents are: GAC, granulated activated 

carbon; SD2-1(85), SD2-1 strain pre-treated at 85 °C; and SD2-1(100), SD2-1 

strain pre-treated at 100 °C. Initial estrone concentrations were 200 ng.L-1.  

This indicates that the hydrophobic SD2-1 strain is an efficient adsorbent material with a 

performance that is statistically indistinguishable from that of GAC. The high degree of 

adsorption by the SD2-1 bacteria cells and GAC are both closely related to the hydrophobic 

interaction between the estrone and bacterial cells, or GAC. The adsorption of negatively and 

neutrally charged micropollutants onto AC is also suggested to be mainly due to hydrophobic 

interactions, whereas the adsorption of positively charged compounds by GAC has been 

determined to be mainly influenced by electrostatic or ionic interactions (Margot et al., 2013b). 

Because estrone is a neutral micropollutant it is assumed to have a highly hydrophobic affinity 

for activated carbon, and hydrophobicity is considered to be the dominant adsorption interaction 

of this compound with GAC (Margot et al., 2013b; Hartmann et al., 2014), apart from other 

mechanisms such as π-π interaction which can occur between estrone and activated carbon 

surface (Jiang et al., 2017). Due to the equal estrone adsorption performance of GAC and 

bacterial adsorbent SD2-1(85), and considering the neutral charge of bacteria and hydrophobic 

characteristics of estrone, the adsorption mechanism most likely involves hydrophobic 

interaction between the bacteria and estrogen compound. During the adsorption process, the 

hydrophobic surface of SD2-1(85) bacterial adsorbent attract the hydrophobic estrone 
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molecule. Then the estrone molecules attached to the bacterial cell adsorbent (solid phase) are 

then removed from the aqueous phase along with the bacterial cells during the separation phase 

(centrifugation), and reduced levels of estrone remain in the aqueous phase, with almost 

complete removal being achieved after the adsorption process. 

However, significantly lower degrees of estrone removal were found in the reactors with SD2-

1(100), as well as for the zeolite reactor, compared to the GAC reactor (Table 8.1). The degree 

of removal was also found to be significantly lower than that of SD2-1(85), and thus the 

biomass pre-treatment temperature was found to be an influencing factor on bacterial adsorbent 

efficiency. As has been previously predicted (Section 8.1.5), the bacterial cells were physically 

disrupted by the 100 °C inhibition temperature, with cells being observed to be broken (Figure 

8.3) compared to the intact cells displayed for the 85 °C pre-treatment temperature (Figure 8.2). 

It can be deduced that the broken cells were less suitable for the attachment of estrone 

molecules, and this was closely associated with the loss of their hydrophobicity characteristics 

(Figure 8.3), despite the assumption that broken cells have a higher surface area than intact 

cells.  

Reactors containing zeolite adsorbent showed this adsorbent gave relatively low adsorption of 

estrone, presumably because this pure synthetic zeolite has a preference for cation molecules 

through an ionic bonding mechanism, rather than having hydrophobic adsorption properties. 

The zeolite that has previously been reported to be an excellent adsorbent for anionic 

perfluorochemical (PFC) surfactants is actually a specifically hydrophobic-modified zeolite 

known as NaY80 (Ochoa-Herrera and Sierra-Alvarez, 2008), and this material could not be 

tested in the current study, explaining the poor results for estrone removal by the pure zeolite 

that was used. The poor adsorption of estrone by pure zeolite also supports the theory that the 

adsorption of estrone requires hydrophobic interactions to be established between the adsorbent 

and the estrogen molecule, and the hydrophobic bacterial cell surface provides this type of 

surface. In addition, natural zeolite has been proven to be an inefficient adsorbent for 17β-

estradiol (E2), and only functions as an excellent adsorbent with 98 % of E2 removal after it 

has undergone a surface-modification with the hexadecyltrimethylammonium (HDTMA) 

surfactant (Dávila-Estrada et al., 2016) when the surface of the zeolite would be converted from 

being hydrophilic to hydrophobic due to the presence of the organic-rich surfactant layer on the 

zeolite surface following modification. These results indicate that the major mechanism in the 

adsorption of hydrophobic micropollutants such as estrogen and PFC is dominated by 

hydrophobic interactions, and this can also be achieved using hydrophobic-adapted bacterial 
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biomass such as that from Tsukamurella sp. SD2-1, an activated carbon material such as GAC, 

or a hydrophobic-modified zeolite. 

Figure 8.2 Intact structure of Tsukamurella sp. SD2-1 bacterial cells pre-treated  at 85 °C for 1 

hour. Cell morphology observed at 10,000 times magnification using a fluorescence 

microscope. 

 

Figure 8.3 Disrupted structure of Tsukamurella sp. SD2-1 bacterial cells that inhibited at 

100  °C for 1 hour. Cell morphology observed at 10,000 times magnification using a 

fluorescence microscope. 
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8.3.2 Desorption process 

The amounts of estrone adsorbed onto the surface of the bacterial adsorbent and then desorbed 

back to the aqueous phase were measured to determine the reversibility of the adsorption 

process and the degree of estrone recovery that was possible from the adsorbent. Figure 8.4 

shows the amounts of estrone that could be adsorbed to  and subsequently desorbed from the 

bacterial biomass adsorbent.  

 
Figure 8.4 Amount of estrone found to be adsorbed from synthetic wastewater by the SD2-1 

bacterial adsorbent pre-treated at temperatures of 85 °C and 100 °C and subsequently 

desorbed back to the aqueous phase. Reactors each contained 500 ml of synthetic 

wastewater and 200 ng.L-1 of estrone, carrying a total amount of 100 ng of estrone. 

Table 8.2 shows the degree of estrone recovery, and any difference between the pre-treatment 

temperatures according to the 2-sample t-test and Tukey pairwise analysis using Minitab 17 

statistical software.  
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Table 8.2 Recovery efficiency of estrone from the desorption process compared to the amount 

of estrone previously adsorbed onto the bacterial adsorbent. Bacterial adsorbents 

were pre-treated at temperatures of 85 °C and 100 °C. Reactors each contained 500 

ml of synthetic wastewater and 200 ng.L-1 of estrone, carrying a total amount of 

100 ng f estrone. 

Strains  Percentage of recovery (relative to adsorption amount)  
  Mean ( % )* St Dev 

SD2-1(85) 38.28a 6.97 
SD2-1(100) 61.25b 0.60 

* Means that do not share a letter are significantly different. 

Consequently, for the SD2-1(85) adsorbent,  38.28 ± 6.97 %  of the total  available estrone was 

found to be desorbed back into the deionised water, representing an aqueous concentration of 

37.94 ng.L-1 being formed from the  99.11 ng of estrone bound to the intact cells of SD2-1(85) 

after 24 hours contact time. In comparison, 61.25 ± 0.60 %  of estrone was recovered from the 

total amount of 68.93 ng adsorbed on the disrupted SD2-1(100) cells. Firstly, these results 

reveal that a very effective adsorption process was obtained using intact bacterial cells pre-

treated at 85 °C. Secondly, the amount of estrone successfully recovered from the adsorbed 

state on bacterial cells pre-treated at 85 °C is relatively low compared to the total amount 

adsorbed. In contrast, a higher desorption performance was recorded for the bacterial cells pre-

treated at 100 °C. Consequently, it can be deduced that the poor desorption performance 

observed with SD2-1(85) in comparison to SD2-1(100) was because the attachment of the 

estrone to the intact cell structure of SD2-1 bacterial cells was relatively stronger than to the 

broken SD2-1 (100) cells. In other words, higher desorption performance occurred with SD2-

1(100) cells due to the ability of the broken cells to release the estrone molecules more readily.  

Nevertheless, the recovery of estrone in both reactors was considered to be only moderate, at 

38 – 61 %. These findings are similar to those of previous studies, where 100 %  desorption and 

analyte recovery has not usually been obtained. However, no complete study of the adsorption 

and desorption processes of estrogen compounds using pure or mixed bacterial species has been 

conducted before, except for activated sludge and wastewater sludge which were assumed to 

contain microbes. Different degrees of desorption have been cited in past studies, including 

60 % desorption of EE2 recovered from wastewater sludge adsorbent (Tenenbaum et al., 2014), 

while very low levels of desorption of estrogen compounds, less than 1.1 % , were found 

following the adsorption of E1, E2, E3 and EE2 by activated sludge (Ren et al., 2007a). These 
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poor recovery rates were considered to be related to the slow rate of desorption compared with 

the adsorption process, and that the adsorption of estrogen onto bacterial adsorbents or sludge 

is not completely reversible (Ren et al., 2007a; Rimmer, 2010; Marti and Batista, 2014). In 

addition, the use of solvents in the aqueous phase of the desorption process has been shown to 

affect the degree of desorption of estrogen compounds (Zhang et al., 2012). Specifically, the 

addition of 50 % acetonitrile was found to increase the percentage of desorption of EE2 to 

97.2 %, double the amount of 41.2 %  obtained using distilled water only. Use of co-solvent in 

the desorption process was also found to increase the EE2 solubility and decreased the 

interaction between the EE2 and the sludge (Zhang et al., 2012). 

In parallel work, the level of desorption of pesticides from soil particles has also been found to 

be lower than their adsorption, and is affected by various factors such as the controlled ambient 

temperature during the desorption process (Rani and Sud, 2015). The degree of recovery of the  

pesticide (triazophos) was found to be higher during desorption at 40 °C compared to 20 °C or 

10 °C (Rani and Sud, 2015), which confirms that the desorption process requires an energy in 

order for the analyte molecules to be released from the adsorbent. 

To investigate the desorption process further, an additional control experiment was carried out 

using estrone dissolved in deionised water as the adsorption medium. This showed the 

adsorption of estrone from deionised water by the SD2-1 bacterial strain (Figure 8.5) was much 

less efficient than its adsorption from synthetic wastewater (Figure 8.4), with only 38.38 ng of 

estrone being adsorbed in the reactor containing estrone dissolved in deionised water (Figure 

8.5). This result can be explained by the fact that the deionised water would have disrupted the 

bacterial cells due to osmotic stress (Vadillo-Rodríguez and Dutcher, 2011), causing the 

bacteria to lose their previously intact hydrophobic surface and consequently decreasing their 

estrone adsorption characteristics. This effect was absent in the reactor containing synthetic 

wastewater as the background medium for the SD2-1(85) bacterial adsorbent (Figure 8.5), 

because the hydrophobic properties of the intact bacterial cells were well preserved in this 

medium. This allowed them to exert their full adsorption potential for estrone present in the 

wastewater sample. In addition, a very low amount of estrone was found to be subsequently 

desorbed back in the aqueous phase during the desorption process in deionised water. The cells 

that break open from osmotic stress appear visibly very different from thermally pre-treated 

cells, and do not possess the same estrogen adsorption capacity, probably due to the different 

mechanism of the processes that caused the disruption of the cells. 
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Figure 8.5 Amount of estrone found to be adsorbed from deionised water by the SD2-1 bacterial 

adsorbent pre-treated at temperatures of 85 °C and subsequently desorbed back to 

the aqueous phase. Reactors each contained 500 ml of synthetic wastewater and 200 

ng.L-1 of estrone, carrying a total amount of 100 ng of estrone. 

 

8.3.3 Isotherm model 

Data of the final concentrations of estrone following adsorption, using different initial 

concentration, were plotted according to the Freundlich and Langmuir model (Section 8.1.7) 

and their correlation coefficients evaluated. The modeling results show that the estrone 

adsorption data is not perfectly linear, however it is best fitted in the Freundlich model with its 

correlation coefficient (R2) of 0.9103 (Figure 8.7), compared to lower R2 value of 0.741 for the 

linear Langmuir model (Figure 8.6). Therefore only the Freundlich model was used in 

calculation of isotherm parameters. The sorption coefficient (Kf) is described as an estimation 

of the adsorption capacity, and the sorption constant (1/n) is seen as a measure of the strength 

of adsorption (Gomes et al., 2011; Ifelebuegu, 2012).  
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Table 8.3 Transformed data on the adsorption of estrone (E1) from different initial 

concentrations as fitted to the isotherm models. 

Initial 
concentration, 

Co (ngL-1) 

Final 
concentration, 

Ce (ngL-1) 

Amount of estrone 
adsorbed/ adsorbent 
weight, qe (ng.mg-1) 

Ce/qe (mg) Log 
Ce 

Log 
qe 

50.00 0.36 10.00 0.04 -0.44 1.00 

200.00 4.60 39.08 0.12 0.66 1.59 

350.00 92.18 51.56 1.79 1.96 1.71 

500.00 118.83 76.23 1.56 2.07 1.88 

700.00 180.00 103.90 1.74 2.26 2.02 

1000.00 259.00 148.20 1.75 2.41 2.17 

 

 

 

Figure 8.6 Data on estrone adsorption fitted into the Langmuir model 
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Figure 8.7 Data on estrone adsorption fitted into the Freundlich model 

Using experimentally determined sorption data from Table 8.4, the empirical relationship of 

the Freundlich isotherm was established and value of the adsorption capacity (Kf) and sorption 

constant (1/n) of the SD2-1 bacterial adsorbent for E1 were found to be 16.23 ng.mg-1 and 

0.3481 respectively (Table 8.4). Consequently, the adsorption capacity of  the SD2-1 bacterial 

biomass was found to be half that of the 29.84 ng.mg-1 found for GAC in previous work (Li et 

al., 2012). However, the GAC adsorption capacity was measured using a drinking water sample, 

which would have contained much lower background concentrations of organic matter 

compared to the synthetic wastewater used in the present study. Therefore the organic matter 

would have reduced the performance of adsorbent for the specific estrone analyte. The presence 

of organic matter in real wastewater has been shown to reduce the adsorption capacity of GAC 

for estrogens by approximately 34 – 37 % when compared to adsorption from a pure water 

sample, e.g. ultra-pure water, as well as drinking water (Hartmann et al., 2014; Hemidouche et 

al., 2017). Consequently, the adsorption capacity of the hydrophobic-adapted bacterial 

adsorbent (SD2-1) is to be very comparable capacity to the GAC, and the lower Kf  values seen 

in this study was mainly due to the interference of dissolved background organic matter present 

in the synthetic wastewater medium.  
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Table 8.4 Freundlich sorption coefficient for the estrone in the adsorption process using the 

adapted-bacterial adsorbent from strain SD2-1.  

Isotherm model Log Kf Kf  (ng.mg-1) 1/n 

Freundlich 1.21 16.23 0.3481 

8.4 Conclusions 

The SD2-1 adsorbent pre-treated at an ideal temperature of 85 °C was found to be a very 

efficient material for the adsorption of estrogen from synthetic wastewater, with a performance 

level comparable to that of activated carbon. It has successfully been show to reduce estrone 

levels from an initial concentration of 200 ng.L-1 to a final concentration of 1.78 ng.L-1, below 

the PNEC for E1. Therefore the alternative hypothesis is accepted, which is that removal of 

estrogen using a hydrophobic bacterial cell adsorbent is a potentially viable alternative removal 

technology compared to activated carbon and the objective (Section 1.3 (5)) of comparing the 

performance of the thermally pre-treated SD2-1 bacterial adsorbents to commercial adsorbents 

was achieved. 

The use of higher temperatures for the pre-treated of bacterial cells, 100 °C pre-treatment, was 

found to disrupt the structure of the bacterial cells and to alter their hydrophobicity, thereby 

producing lower levels of estrone removal. This supports the  hypothesis that bacterial pre-

treated temperature has a critical effect on the performance of the bacterial biomass adsorbing 

estrogens. In addition, the adsorption of estrone to the bacterial adsorbent and activated carbon 

were concluded to operate by the same mechanism, namely hydrophobic interaction with the 

estrogen adsorbate, rather than by ionic bonding. This explained the high efficiency seen with 

the hydrophobic-adapted bacterial adsorbent in removing estrone from the synthetic 

wastewater.  

Furthermore, recovery of estrone during the desorption process was linked to the degree of  

adsorption achieved during the adsorption step. Poor desorption and low degree of estrone 

recovery was affected by the factor of cell morphology of the bacterial cells, with higher degrees 

of estrone desorption and recovery being achieved from cells that were disrupted. Use of 

deionised water as the aqueous phase for the desorption process without solvent also reduced 

degree of the recovery.  

Finally, the adsorption of estrone using the bacterial adsorbent of SD2-1 strain fitted the linear 

Freundlich model, with 16.23 ng.mg-1 adsorption capacity, and after taking the effects of 

interfering background organic matter into account, the SD2-1 adsorbent was considered to 
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have comparable performance to activated carbon. The adsorption of estrone was identified to 

be associated with a physisorption process that was only partially reversible.  

  



159 
 

Chapter 9 General conclusions and recommendations 

The aim of this study was to explore the potential of using hydrophobic bacteria as sustainable 

adsorbents for the removal of estrogens from wastewater and to evaluate their capability of 

removing selected estrogens to below their Environmental Quality Standard. The research 

involved a preliminary study of the removal of estradiol (E2) from water, followed by a more 

comprehensive investigation of the removal of estrone (E1) from synthetic wastewater, and 

how the results compared to the requirements of the the Water Framework Directive Watch 

List. The annual average concentration in the Environmental Quality Standard (AA-EQS) for 

E2 is recommended to be below 0.4 ng.L-1. However, since an AA-EQS has not yet been 

established for E1, the predicted no-effect concentration (PNEC) of 3.6 ng.L-1 is recommended 

by the WFD to be a level that is considered to be safe when present in water (European 

Commission, 2016). In the long-term, the complete removal of the estrogen compounds from 

water is an ultimate goal, which is a concern for all environmentalists. Several findings that  

have been identified throughout this study support the aim and also contribute new knowledge 

relevant to this issue. The main outcomes from this study, as well as recommendations that can 

be considered as a consequence of the work, are summarised below.  

9.1 General conclusions 

9.1.1 Adaptation of bacterial strains into hydrophobic adsorbents 

To ensure the efficient removal of estrogens from water, this study focuses on the interaction 

between the estrogen and hydrophobic microorganisms, particularly the study of hydrophobic-

adapted bacterial strains that might be developed further as potentially viable adsorbents for use 

in drinking water treatment.  Initial findings revealed that the adaptation of commercial strains 

of Rhodococcus erythropolis strains DSM 311 and NCIMB13064 after culturing on a 

hydrocarbon growth substrate, were found to show increased bacterial cell surface 

hydrophobicity (CSH) by up to 6 %. The type of hydrocarbon used as growth substrate was 

found to be a major factor in the adaptation process, and the medium chain-length hydrocarbon 

n-hexadecane was identified as an appropriate growth substrate for the adaptation process. 

Moreover, short-chain alkanes such as n-hexane were found to be too toxic to the bacteria, and 

inhibited their growth, due to the lower octanol-water partition coefficients, which made this 

substrate much more water-soluble and able to disrupt the bacterial cells. Initial 7-day 

enrichment cultures were conducted to isolate bacteria from diesel contaminated-soil, and this 

provided several new hydrophobic strains. Of these, strain SD2-1, later identified as a 

Tsukamurella sp., was found to be the most hydrophobic strain under test. A longer soil-
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enrichment incubation period of 21 days provided more hydrophobic isolates in addition to 

those from the 7-day enrichment. The R. erythropolis NCIMB13064, R. erythropolis DSM311 

and Tsukamurella sp. SD2-1 strains have been determined to be the most hydrophobic bacterial 

strains to arise from the adaptation process during the growth cycle. Unfortunately, the adapted 

R. erythropolis NCIMB13064 strain was found to experience a loss of hydrophobicity when 

the glycerol stock was stored over 2 months with a 35 % reduction in CSH compared to the 

strain that was preserved. This could have been due to loss of genetic material (e.g. plasmids) 

causing physiological changes. Another factor that was found to affect the successful adaptation 

of hydrophobic characteristics is the dosage of the growth substrate. 50 μl of n-hexadecane in a 

100 ml of culture (500 µl.L-1) was determined to be the optimum substrate dosage for bacterial 

growth. However, higher concentrations of n-hexadecane should be avoided because its toxicity 

could inhibit bacterial growth and, furthermore, would add additional cost to adsorbent 

production. Interestingly, the CSH of the adapted bacteria were identified to increase rapidly at 

the beginning of the batch growth cycle. The CSH increased during the exponential growth 

phase, reaching high CSH values that persisted into the stationary phase for most strains. In 

theory, the hydrophobicity increased when the membrane lipid composition of the bacteria cells 

altered so that they became saturated when exposed to the hydrocarbon. As the incubation 

period extended into the exponential phase, the bacteria became more fully adapted, and 

generated greater hydrophobic characteristics in the cells, meeting the objective of investigating 

the CSH characteristics during different phases of bacterial growth. Nevertheless, the levels of 

hydrophobicity gradually decreased when the bacteria entered, or approached the death phase. 

Consequently, further increases in hydrophobicity did not occur with extended growth periods, 

rather, there was often a reduction in CSH due to cell death. In conclusion, the R. erythropolis 

NCIMB13064, R. erythropolis DSM311 and Tsukamurella sp. SD2-1 were found to have their 

highest CSH levels of 90 – 93 % in their stationary phase, and were adopted as the best potential 

adsorbents for the removal of hydrophobic micropollutants such as estrone in subsequent 

experiments. The high CSH values obtained meant that the objective of adapting bacterial 

species into a potentially useful hydrophobic adsorbent by using a hydrophobic growth 

substrate has been achieved. 

9.1.2 Removal of estrone 

Different degrees of estrone (E1) removal from synthetic wastewater were obtained using the 

adapted bacterial strains, and this was considered to involve both adsorption and biodegradation 

processes. However, the main outcome of these experiments was to show that the R. 

erythropolis DSM311 and Tsukamurella sp. SD2-1 with the highest CSH values also provided 
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the highest removal rates of E1. However, the E1 removal efficiency of the adapted R. 

erythropolis NCIMB13064, was very low because it had lost its hydrophobicity. This indicates 

a very strong connection between the bacterial CSH and the estrone adsorption efficiency of 

the biomass, and meets Objective 3 (Section 1.3).  

Apart from the CSH of the bacterial adsorbent, contact time and bacterial adsorbent dosage 

were also found to affect the efficiency of the E1 removal process. In addition, the temperature 

used for bacterial pre-treatment was also found to indirectly influence the adsorption efficiency, 

with poor E1 adsorption resulting from the loss of hydrophobic attachment sites of the disrupted 

cells following 100 °C pre-treatment, compared to the 85 °C pre-treatment that preserved the 

intact cells.   

Further investigation of E1 removal using bacteria in different growth phases indicated that 

cells in the stationary growth phase give higher E1 adsorption performance than those in the 

exponential phase, and this correlated with higher CSH in the stationary phase. Providing longer 

growth incubation periods (more than 10 days) during extended fed-batch cultures of the 

bacterial cells that were then used as adsorbents, as identified in the objectives, however, did 

not produce a significant increase in the adsorption efficiency. This was due to the almost 

constant bacterial CSH values obtained, regardless of the growth incubation period, and only 

very small insignificant differences were found for the degree of E1 removal by these cultures, 

compared to the single batch cultures.  

In contrast, an unexpected lower E1 removal rate was observed using live bacterial cells, even 

though the conditions allowed for both biodegradation and adsorption processes to occur. The 

lower degree of E1 removal was finally determined to be due to the presence of the interfering 

effect of biosurfactants, which solubilised the E1 within the aqueous phase. Because R. 

erythropolis has been reported as an estrogen-degrading bacteria (O'Grady et al., 2009; Larcher 

and Yargeau, 2013) it should have degraded E1 in these experiments. However, the presence 

of the biosurfactants appeared to reduce the efficiency of biodegradation as well as adsorption. 

The biosurfactant of trehalose lipid, a possible component of the biosurfactants, has been shown 

to increase E1 solubility (Kügler et al., 2014), which possibly gave poor attachment to the 

hydrophobic bacterial cells, and reduced uptake and biodegradation . This was thought to arise 

due to the presence of residues of hydrocarbon growth substrates being carried over with the 

bacterial cells when added to the reactor, allowing the cells to grow in the reactor and produced 

biosurfactant. Thus, in future studies, the live bacterial cells should be separated from the 

aqueous phase (containing the n-hexadecane residue) prior to being added to the reactor for the 

biodegradation and adsorption of E1. 
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In experiments comparing the bacterial adsorbents from stationary phase Tsukamurella sp. 

SD2-1 with commercial adsorbents, granular activated carbon and zeolite, it was shown that 

very high E1 removal efficiency (99 %) could be achieved with the bacteria adsorbent, which 

was close to the complete removal shown by the activated carbon. After adsorption by 

stationary phase Tsukamurella sp. SD2-1 cells, the final aqueous E1 concentration was recorded 

as 1.78 ng.L-1, which is below the PNEC level for this hormone, proving that the SD2-1 strain 

isolated from soil could potentially provide an effective drinking water treatment process for 

use at full-scale. In contrast, synthetic zeolites gave lower removal performance compared to 

SD2-1 and granular activated carbon, due the different (ionic) bonding mechanism provided by 

these adsorbents. This indicates that major route for the adsorption of E1 in this study was 

through hydrophobic interaction with the adsorbent, and explains similarity in the efficiency of 

the hydrophobic adsorbent SD2-1 with that of granular activated carbon. Therefore, as 

identified in the objectives, the capacity of removal of E1 by the SD2-1 bacterial adsorbent was 

found to be comparable to the commercial adsorbent activated carbon, but higher than zeolite. 

In experiments that investigated the E1 adsorption-desorption reversibility, only 37 % of the E1 

could be recovered from the bacterial adsorbent due to the slow desorption rate, the 

heterogeneous physicochemical properties of the bacteria and aqueous medium. This low 

degree of recovery from the bacterial adsorbent is supported by previous research, in which 

only 60 % (Tenenbaum et al., 2014) and less than 10% (Ren et al., 2007a) of estrogen could be 

recovered from activated sludge, due to desorption of estrogens being a slower process than 

adsorption (Rimmer, 2010; Marti and Batista, 2014). These studies used activated sludge which 

contains inorganic, organic and microbiological components instead of pure strains of bacteria, 

and to date there is no study reporting the desorption of estrogen pollutants from pure strain 

bacterial adsorbents. 

 In conclusion, adaptation of bacteria in minimal media and n-hexadecane has successfully 

improved the hydrophobicity of a commercial strain of R. erythropolis (DSM311), and 

produced a very hydrophobic isolate of Tsukamurella SD2-1. These hydrophobic strains shown 

to be efficient adsorbents for the removal of estrone below its PNEC level, and to have almost 

comparable performance to that of granular activated carbon.  

9.2 Implication of the current research 

From this investigation, bacterial adsorbents appear to be excellent alternatives to commercial 

adsorbents for reducing estrogen concentrations in municipal wastewater before discharge to 

the environment, or during potable water treatment, ensuring the reduction of E1 concentrations 

to levels below those causing adverse environmental effects or human health implications. 
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Potentially, the use of hydrophobic bacterial adsorbents could reduce the cost of estrogens 

removal without compromising the high performance already provided by the use of activated 

carbon. Consequently, the bacterial adsorbents identified in this bench-scale study could readily 

be upscaled to a pilot scale study, to identify whether a cheaper hydrocarbon substrate material 

might be adopted instead of the laboratory grade of n-hexadecane used in this research, in order 

to demonstrate further the low cost treatment objectives of this study. In addition, hydrophobic-

adapted bacterial adsorbents could also be applied to the adsorption of other estrogen 

compounds, notably the synthetic estrogen 17α-ethinylestradiol (EE2). Even though it is 

frequently found in lower concentrations than estrone (E1) in real wastewater, EE2 has been 

determined to be a more potent estrogen compound than estrone. Moreover, the hydrophobic-

adapted R. erythropolis DSM311 and Tsukamurella spp. SD2-1 may also have potential in the 

removal of other hydrophobic emerging contaminants, where the effectiveness of removal can 

be expected to be related to the level of hydrophobicity of the bacterial cell which determines 

the level of adsorption. Moreover, hydrophobic adsorption is a non-specific process, unlike 

biodegradation which requires specific catabolic enzymes for different contaminants. 

9.3 Recommendation for future work 

There are areas for improvement in the current studies which could potentially be investigated 

to gain a better understanding of the underlying adsorption mechanisms, and to produce more 

efficient techniques in the elimination of estrogens from water. The performance of the adapted 

bacterial strains in removing E1 in terms of both adsorption and biodegradation process was 

assessed, and two of the highest CSH strains were found to provide high adsorption 

performance. Further studies on the estrogen removal process using mixtures of pure 

hydrophobic bacterial species could potentially give a better understanding of how interactions 

in the microbial community affect performance in the biodegradation and adsorption of 

estrogen. In addition, their variability in enzyme content and physicochemical properties might 

lead to compensatory effects, which improve the estrogen catabolic activity, and enable higher 

rates of attachment of estrogen molecules in the adsorption process. Mixtures of strains with 

the highest CSH values of SD2-1 and DSM311 would be the most prominent combination to 

be investigated to provide answers as to how this combination removes estrogen differently 

from the pure strains. Furthermore, an extensive study related to biodegradation could also be 

conducted using the adapted strains. It is proposed that the addition of live hydrocarbon-adapted 

bacterial strains into adsorption reactors should be made without carrying over culture media, 

because the hydrocarbon residues carried over promote the production of biosurfactants that 

inhibit the efficiency of biodegradation. To implement the addition of only bacterial cells, their 
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separation from the liquid phase can be achieved adopting a centrifugation step. As an estrogen-

degrading species, live R. erythropolis is expected to be able to degrade and adsorb estrogen 

well as long as biosurfactants are absent. However, the biodegradation performance of 

Tsukamurella sp. SD2-1 strain is uncertain since it has not been reported to be an estrogen 

degrading-species in any past studies, and therefore its biodegradation properties should be 

determined in future work. 

Apart from the design of experiments, the use of different but closely related growth substrates, 

notably with longer molecular chains of aliphatic alkane, should be investigated. Aliphatic 

alkanes with high carbon content of more than n-C12, such as n-C14 and n-C16, are 

recommended (Serebrennikova et al., 2014) due to their higher octanol-water partition 

coefficients and hydrophobicity. In addition, a cheap alternative growth substrate, such as 

diesel, should be evaluated for the cost-effective adaptation of bacteria on a large scale, because 

the lower price of such chemicals could reduce the cost of estrogen treatment significantly, and 

this would be potentially more appropriate in a pilot study.  

Finally, a continuous growth reactor should be evaluated which can provide an optimised 

environment for the production of bacterial biomass adsorbent, allowing the cells to develop 

their maximum levels of hydrophobicity, and ultimately to enhance their performance in 

estrogen removal. Further growth studies should be explored in which bacteria are grown as 

biofilms on porous or segmented surfaces that can provide high surface area for contact with 

the process water. These biofilm support matrices could be made from cheap hydrophobic 

materials, such as polypropylene or polystyrene, which should facilitate the attachment of the 

growing hydrophobic bacterial biofilm. This approach would also generate an immobilised 

form of the biomass that could be used in a conventional packed bed filter in much the same 

way as GAC filters contain particles of carbon adsorbent. Such “bioadsorbent” filters could be 

operated in parallel, one for hydrophobic biomass formation, the other for estrogen treatment, 

with the roles of treatment flow and biomass growth being alternated when the adsorption 

capacity of the adsorbent had been reached. 
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Appendix 1 

Clean DNA sequences for the soil-isolates bacteria and significant species detected in BLAST. 

Strains Clean sequences of samples (based on the F8FpL (forward) and P806R (reverse) primers) Significant species (%) 

SD1-1 CTGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGTAAGGCCTTTCG
GGGTACACGAGCGGCGAACGGGTGAGTAACACGTGGGTGATCTGCCCTGCACTTCGGGATAA
GCCTGGGAAACTGGGTCTAATACCGGATATGACTTCAGGTTGCATGACTTGGGGTGGAAAGA
TTTATCGGTGCAGGATGGGCCCGCGGCCTATCAGCTTGTTGGTGGGGTAATGGCCTACCAAG
GCGACGACGGGTAGCCGACCTGAGAGGGTGACCGGCCACACTGGGACTGAGACACGGCCCA
GACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGA
CGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGCAAG
TGACGGTACCTGCAGAAGAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG
GGTGCAAGCGTTGTCCGGAATTACTGGGCGTAAAGAGTTCGTAGGCGGTTTGTCGCGTCGTTT
GTGAAAACCAGCAGCTCAACTGCTGGCTTGCAGGCGATACGGGCAGACTTGAGTACTGCAGG
GGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGC
GAAGGCCGGGTCTCTGGGCAGTAACTGACGCTGAGGAACGAAAGCGTGGGTAGCGAACAGG
ATTAGAT 

99 % Rhodococcus 
erythropolis 

SD2-1 CCTGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAACGGTAAGGCCCTTC
GGGGTACACGAGTGGCGAACGGGTGAGTAACACGTGGGTGACCTGCCCTGTACTTCGGGATA
AGCCTGGGAAACTGGGTCTAATACCGGATATGACCTTCCCCTGCATGGGGGTTGGTGGAAAG
CTTTTGCGGTACAGGATGGGCCCGCGGCCTATCAGCTTGTTGGTGGGGTAATGGCCTACCAA
GGCGACGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCC
AGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCG
ACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGTAGGGACGAAGCGCAA
GTGACGGTACCTACAGAAGAAGCACCGGCCAACTACGTGCCAGCAGCCGCGGTAATACGTA
GGGTGCGAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCACGTCGT
CTGTGAAAACCCGAGGCTTAACCTCGGGCCTGCAGGCGATACGGGCAGACTTGAGTACTGTA
GGGGAGACTGGAATTCCTGGTGTAGCGGTGGAATGCGCAGATATCAGGAGGAACACCGGTG
GCGAAGGCGGGTCTCTGGGCAGTAACTGACGCTGAGGAGCGAAAGCGTGAGTAGCGAACAG
GATTAGATA 

99 % Tsukamurella 
tyrosinosolven 
100 % Tsukamurella 
pulmonis  
100 % Tsukamurella 
pseudospumae 
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Strains Clean sequences of samples (based on the F8FpL (forward) and P806R (reverse) primers) Significant species (%) 

PD2-1 CTACATGCAGTCGAGCGGTTAGGCCTTTCGGGGTACACGAGCGGCGAACGGGTGAGTAACAC
GTGGGTGATCTGCCCTGCACTTCGGGATAAGCCTGGGAAACTGGGTCTAATACCGGATATGA
CTTCAGGTTGCATGACTTGGGGTGGAAAGATTTATCGGTGCAGGATGGGCCCGCGGCCTATC
AGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGACGACGGGTAGCCGACCTGAGAGGGTGA
CCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATAT
TGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGT
AAACCTCTTTCAGCAGGGACGAAGCGCAAGTGACGGTACCTGCAGAAGAAGCACCGGCTAA
CTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTGTCCGGAATTACTGGGCGTA
AAGAGTTCGTAGGCGGTTTGTCGCGTCGTTTGTGAAAACCAGCAGCTCAACTGCTGGCTTGC
AGGCGATACGGGCAGACTTGAGTACTGCAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAA
ATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTGGGCAGTAACTGACGC
TGAGGAACGAAAGCGTGGGTAGCGAACAGGATTAGAT 

99 % Rhodococcus 
erythropolis 

PD2-2 CGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAGCGGTAAGGCCTTTCGG
GGTACACGAGCGGCGAACGGGTGAGTAACACGTGGGTGATCTGCCCTGCACTTCGGGATAAG
CCTGGGAAACTGGGTCTAATACCGGATATGACCTCAGGTTGCATGACTTGGGGTGGAAAGAT
TTATCGGTGCAGGATGGGCCCGCGGCCTATCAGCTTGTTGGTGGGGTAATGGCCTACCAAGG
CGACGACGGGTAGCCGACCTGAGAGGGTGACCGGCCACACTGGGACTGAGACACGGCCCAG
ACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGAC
GCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGCAAGT
GACGGTACCTGCAGAAGAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGG
GTGCAAGCGTTGTCCGGAATTACTGGGCGTAAAGAGTTCGTAGGCGGTTTGTCGCGTCGTTTG
TGAAAACCAGCAGCTCAACTGCTGGCTTGCAGGCGATACGGGCAGACTTGAGTACTGCAGGG
GAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCG
AAGGCGGGTCTCTGGGCAGTAACTAGACGCTGAGGAACGAAAGCGTGGGTAGCGAACAGGA
TTAG 

 

99 % Rhodococcus 
erythropolis 
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Strains Clean sequences of samples (based on the F8FpL (forward) and P806R (reverse) primers) Significant species (%) 

PD2-3 CTTAACACATGCAAGTCGAGCGGTAGGCCTTTCGGGGTACACGAGCGGCGAACGGGTGAGTA
ACACGTGGGTGATCTGCCCTGCACTTCGGGATAAGCCTGGGAAACTGGGTCTAATACCGGAT
ATGACNTCAGGTTGCATGACTTGGGGTGGAAAGATTTATCGGTGCAGGATGGGCCCGCGGCC
TATCAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGACGACGGGTAGCCGACCTGAGAGGG
TGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAA
TATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGT
TGTAAACCTCTTTCAGCAGGGACGAAGCGCAAGTGACGGTACCTGCAGAAGAAGCACCGGCT
AACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTGTCCGGAATTACTGGGCG
TAAAGAGTTCGTAGGCGGTTTGTCGCGTCGTTTGTGAAAACCAGCAGCTCAACTGCTGGCTTG
CAGGCGATACGGGCAGACTTGAGTACTGCAGGGGAGACTGGAATTCCTGGTGTAGCGGTGA
AATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTGGGCAGTAACTGACG
CTGAGGAACGAAAGCGTGGGTAGCGAACAGGATTAG 

99 % Rhodococcus 
erythropolis 
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Appendix 2 
Phylogenetic tree for the soil-isolates strains 
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