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Abstract

During the implant insertion phase of extracapsular hip fracture surgery, a
surgeon visually inspects digital radiographs to infer the best position for
the implant. The inference is made by “eye-balling”. This clearly leaves
room for trial and error which is not ideal for the patient.
This thesis presents an image analysis approach to estimating the ideal po-
sitioning for the implant using a variant of the deformable templates model
known as the Constrained Local Model (CLM). The Model is a synthesis of
shape and local appearance models learned from a set of annotated land-
marks and their corresponding local patches extracted from digital femur
x-rays.
The CLM in this work highlights both Principal Component Analysis (PCA)
and Probabilistic PCA as regularisation components; the PPCA variant be-
ing a novel adaptation of the CLM framework that accounts for landmark
annotation error which the PCA version does not account for. Our CLM
implementation is used to articulate 2 clinical metrics namely:
the Tip-Apex Distance and Parker’s Ratio (routinely used by clinicians to as-
sess the positioning of the surgical implant during hip fracture surgery)
within the image analysis framework. With our model, we were able to
automatically localise signi�cant landmarks on the femur, which were
subsequently used to measure Parker’s Ratio directly from digital radio-
graphs and determine an optimal placement for the surgical implant in
87% of the instances; thereby, achieving fully automatic measurement of
Parker’s Ratio as opposed to manual measurements currently performed
in the surgical theatre during hip fracture surgery.
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1 Introduction

In the orthopaedic management of hip fractures, a variety of techniques
depending on the nature, site and severity of the fracture are utilised. The
basis is usually to perform reduction, ensure proper healing and crucially
regain or retain function of the a�ected area.
It is estimated that more than 700,000 mortalities due to hip fractures
occur annually worldwide [1]; 24 per cent of which occur postoperatively
within a year [2].
In UK, hip and thigh injuries have been identi�ed as one of the leading
causes of emergency admissions and readmissions [3]–[5].

The primary objective of the ideal surgical treatment of intertrochanteric
fractures is to achieve stable �xation of the and early ambulation.
To this end, various intramedullary and extramedullary implants have been
designed (See Figure A.2): internal �xation with femoral nailing or sliding
screws [2], [6], [7].
These implants have advantages and disadvantages. Postoperative com-
plications such as implant failure, iatrogenic injuries, etc. result in 20
percent of cases where these implant techniques are used [8]–[10].
The “debate” between which is a better option for treatment has raged for
a long time in research circles. Some studies have noted that no
closure has been reached concerning the ideal implant due to an incomplete
understanding of the biological/biomechanical factors that govern the res-
toration of the a�ected area [11], [12]. However, one undesirable outcome
common to both is a phenomenon known as “cutout” where the implant
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1 Introduction
loses purchase to its attachment usually due to varus deviation or rotation
of the femoral head which sometimes leads to �xation failure [13]–[15].
Several studies have considered factors that may be responsible for cutout.
Most seem to lean towards the physical design of the implants [11], [16]–
[18]; others site patient-related medical conditions like osteoporosis as a
reason for this failure. Finite Element analysis has been used to assess the
mechanical competence of the bone [19]–[22]. However, only few studies
have considered placement of the implant as a predictor of �xation failure.
A pioneering study, proposed the Tip-Apex Distance (TAD) (See Figure A.1)
as a strong indicator of the probability of cutout [23]. In this study, the TAD
is de�ned as the sum of the distance from the lag screw tip to the apex of
the femoral head in millimetres(mm) on both the anterior-posterior (AP)
and lateral radiographs adjusted for magni�cation [16], [23], [24]. In a
later report, the results of a questionnaire completed by participating sur-
geons showed that although none of the surgeons directly quoted the use
of TAD, they supported the theory of a central and deep placement [24].
It has been reported in several studies that a TAD value of greater than 25
mm is highly likely to result in cutouts [13], [16], [17], [25] and some stud-
ies have suggested that a value less than 20 mm should be the ideal [17],
[26], [27]. So far, the TAD seems to be the “most accurate” predictor of
cutout although opinions following previous research in the area are split
concerning the ideal value of the TAD.

2



1.1 Motivation
1.1 Motivation

While the TAD remains the most reliable way of predicting cutout, this
metric lends itself to trial and error on the part of the surgeon as meas-
urements are carried out manually. As some studies have rightly ob-
served, expertise and experience are vital in the success of such proced-
ures. Baumgaertner [24] observed that experienced practitioners favour a
central-deep placement of the lag screw. While the technical competence
of a surgeon should not be underestimated, their fallibility cannot be ruled
out. The research challenge is: if it is possible to devise a means whereby
surgeons do not have to rely on intuition during this process; such that
a precise position can be predetermined before implant insertion com-
mences. Consequently, it will be bene�cial to devise a minimally invasive
and more accurate means to obviate the intrinsic trial and error involved
during the intraoperative period of the operation. A guidewire is usually
employed prior to implant insertion and it is vital that the operator gets the
insertion right in the minimum number of attempts ideally in ‘one-pass’
as a higher number of attempts is likely to be iatrogenic.

Thus the aim of this study is centred on the implementation of an
image analysis-based digital guidewire navigating tool to enable surgeons plan
the positioning to achieve an optimal location for the implant that satis�es
both conditions of the TAD and central-deep placement.

3



1 Introduction
1.2 Aim and Objectives

The aim of this project was the development of a digital-imaging surgical
navigation tool that may be used to estimate the optimal position of im-
plants on digital x-ray images during extra-capsular hip fracture surgery.
The key objectives were:

� To determine a suitable framework for annotation of the femur and
encoding of the shapes.

� To develop an automated system for identifying femur landmarks on
digital x-ray images.

� Evaluation of the performance of the landmark identi�cation system
based on the clinical metrics utilised by surgeons for implant place-
ment.

� Demonstrate how the system may be used in planning the insertion
path of the surgical implant.

4



1.3 Contributions
1.3 Contributions

This investigation carried out in this project culminated in the
development of a new fully automatic digital system for guidewire
insertion planning; based on the automatic detection of landmarks using
PCA and PPCA-based shape models within the CLM framework.
The system has the potential of transforming existing surgical procedures
in the management of intertrochanteric fracture surgery.
The following is a breakdown and brief description of the contributions.

1. A novel landmark detection model based on using PPCA in the CLM
framework : The use of PPCA in shape analysis is not new but the
use of PPCA within the CLM framework is a novel application which
demonstrates advantages over the staple PCA variant.

2. Identi�ed Parker’s Ratio and the Tip-Apex Distance metrics as ac-
tionable concepts: Parker’s ratio is metric that is used to determine
an optimal placement for surgical implants in intertrochanteric frac-
ture surgery. Existing estimates are made manually, however this
project has demonstrated that this estimates can be computed auto-
matically using landmark detection.

3. A fully automatic means of determining the Parker’s Ratio from
radiographs: These are measurements that are manually estimated
under current surgical procedures. This research has been able to
demonstrate that these measurements can be acquired through im-
age analysis. The use of computer vision as a means of measuring
Parker’s Ratio is a new concept presented in this thesis.

5



1 Introduction
4. A semi-automatic system for determining the centre of the femoral
head: The centre of the femoral head is a vital consideration in im-
plant positioning. The semi-automatic approach establishes a means
of locating the femoral head centre with minimal user input.

5. A fully automatic digital guidewire insertion planner: This is the big
picture of the research carried out in the project and has high clinical
relevance.

6



1.4 Thesis Outline
1.4 Thesis Outline

This thesis is made up of 6 chapters. The following are a summary of the
work carried out in the thesis:

Chapter 2 presents a critical review of work related to this thesis.
It speci�cally treats the parametric variants of the deformable model, de-
tailing the evolution from the primitive “Snakes” to the cutting-edge Con-
strained Local Model (CLM) used as the basis of this work. It also presents
a clear distinction between 2 classes of CLMs not immediately apparent in
literature and their predominant application areas.

Chapter 3 establishes the technical underpinning for the research carried
out such as methods and approaches used in image analysis. It elaborates
on techniques such as Principal Component Analysis (PCA), Probabilistic
Principal Component Analysis (PPCA), Machine Learning applications for
analysing the shape and texture of an object and how these techniques
can be combined in the CLM framework to achieve automatic landmark
identi�cation.

Chapter 4 de�nes and introduces the key medical concepts that underlie
the research project. It identi�es gaps, challenges and areas of hip
fracture surgerymanagement that can be potentially improved by computer-
assisted intervention.
Important concepts such as the Tip-Apex Distance and Parker’s ratio are
introduced and reconciled with applications of Image analysis.
The dataset used for analysis along with the anatomy of the femur - the
object of interest are also presented in this part.

7



1 Introduction
Chapter 5 describes the methodology used to implement the automatic
guidewire navigation tool. It presents an overview of the components
of the Constrained Local Model,namely: the shape model and appearance
model. The construction of each model, its constituent parts and the entire
process from image capture to localisation of landmark features is
documented.

Chapter 6 contains preliminary investigations performed in the research
which culminated in a conference paper.
A semi-automatic guidewire insertion planner that requires minimal input
from an operator is introduced. The importance and potential bene�ts of
the system are highlighted.

Chapter 7 details the development of a fully automated guidewire insertion
planning system; how image analysis can be used as a tool to identify an
optimal location for the implant. The various algorithms used to achieve
automatic landmark identi�cation are are implemented in the CLM
framework. The CLM is constructed and tested on a partitioned dataset
of training and test data with the overall aim of automatically detecting
landmarks of the femur. The results and analysis are also presented in
this chapter.

Chapter 8 gives a conclusion and suggestion for improvement and future
work. It also outlines the weaknesses of the designed system and
recommends alternative courses of action.

8



2 Literature Review

This chapter presents a critical review of related studies that underpin the
work carried out in this thesis.
It gives an overview of the Deformable Templates Model (DTM), which is
an object localisation framework used to learn the attributes of the object
of interest (OOI). The OOI in this instance, is the proximal femur. Particular
instances of the model and a review of the Constrained LocalModel (a variant
of the DTM) which is at the crux of the Image Analysis framework utilised
in this project is presented.

2.1 Deformable Models

“A deformable template model is a model, which deforms a shape to match a
target object in a given image within implicit or explicit optimisation

constraints.” - Fisker [28]

In recent times, utilising model-based approaches in image analysis has
proven very popular within the computer vision community.
The Deformable template model is an abstraction of the template-based
object matching technique (see [29] for a more detailed exposition) and has
been successfully applied to image understanding problems across various
domains such as facial recognition [30], [31], medical imaging [32]–[34],

9



2 Literature Review
general object recognition [35]–[37], etc. The attractiveness of these mod-
els lies in their ability to capture the properties of objects with large vari-
ability; and have naturally been the subject of intense research, evolving
over the years into di�erent forms and applications (see Figure 2.3) .

One of the earliest known deformable template models is the Active
Contour Model (ACM) – also known as Snakes formulated by Kass [35].

(a) Snake (dashed line) ini-
tialised close to the de-
sired boundary

(b) Snake iteratively driven
towards boundary

(c) Convergence achieved

Figure 2.1: Illustration of the operation of the ACM: The blue arrows signify
the migration of the Snake towards the desired boundary.

The ACM model models an object contour as a set of edge landmarks to
which an energy-based function is applied to govern local shape variation.
The Snake is initialised close to the desired boundary as shown in Figure
2.1 and driven towards the contour edges using an energy minimisation
principle. The Snake assumed to be elastic, is de�ned as a set of points zi

where i = 1, 2, ..., n, along a contour z(s), with internal and external energy
terms Einternal and Eexternal respectively. Einternal controls the way the snake
deforms and Eexternal governs the �tting of the Snake to the desired object.
The energy relation governing the Snake’s movement may be written as:

E∗snake =

∫ 1

0
Esnake(z(s)) (2.1.1)∫ 1

0
Esnake(z(s)) =

∫ 1

0
(Einternal(z(s)) + Eimage(z(s)) + Econ(z(s))) ds (2.1.2)

10



2.1 Deformable Models
The weakness of the ACM is the lack of its speci�city to the desired object,
often being drawn to edges that are not part of the object to be identi�ed; as
shown in Figure 2.2, where the ACM fails to localise the desired contour.

(a) Ideal boundary to be located
(blue contour)

(b) Failure to locate desired
boundary typical of both
ACMs and ASMs in challen-
ging conditions.

Figure 2.2: Failure of the ASM to locate a given boundary. In (b) it can be
seen that the model is attracted towards undesired edges.

To circumvent this challenge, the use of priori information has been ex-
plored to great e�ect [38].

Figure 2.3: A proximate evolution of Deformable Template Models.
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2 Literature Review
Cootes [39] formulated a ‘smarter’ version of snakes known as the Active
Shape Model (ASM) which improved on speci�city.
ASMs capture the variability of the desired object from a training set - a set
of similar instances of the object. The ASM learns the variability across the
training set by applying
Principal Component Analysis (see Section 3.1.4) to the normalised training
set. Normalisation is carried out after the shapes have been aligned
using General Procrustes Analysis (Section 3.1.3).

The initial ASM algorithm made use of edge detection to determine the
optimal landmark position relying on the pro�le normal to the bound-
ary of the model contour. Hence the landmarks were required to be loc-
ated on the strongest edges. In practice, this is not always feasible as
the strongest edges might occur at positions unrelated to the contour of
the desired shape. This e�ect is demonstrated in Figure 2.2(b) which is
typical of ASMs when the model encounters spurious edges and/or is not
initialised close enough to the desired contour. An iterative improvement
incorporates statistics of the grey-level pro�le normal to themodel bound-
ary. While this modi�cation does not require the strongest edges, ASMs
struggle with initialisation of the feature positions i.e. the model has to be
initialised as close as possible to the shape of interest. This makes ASMs
unsuitable for medical imaging problems as images in this domain vary
widely across a training set.
The often homogeneous texture around regions of interest also a�ects the
distinctiveness of the desired features, rendering ASMs ine�cient due to
their tendency to be attracted to spurious edges or get stuck in local
minima.

A further extension to ASMs known as the Active Appearance Model (AAM)
was proposed by [40]–[42] which utilises both the shape and textural in-
formation extracted from triangulated patches across the entire object. The
AAM utilises the entire object shape rather than the landmarks to drive
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2.2 Constrained Local Models
convergence. The model seeks to minimise the residual between the model
texture and the image of interest. Due to its heavy reliance on textures, the
AAM su�ers from the variation between training set samples and the test
image thus, �uctuations in illumination adversely a�ect the e�ciency of
AAMs; which is a typical occurrence in medical radiographs for example,
the appearance of soft tissue and organs surrounding bones in x-ray
images tend to give o� higher illumination than the objects of interest.

A more robust model known as Constrained Local Models (CLM) that com-
bines both textural and shape information was proposed by Cristinacce et
al. [43], [44]. The following section gives a review of CLMs and their
application.

2.2 Constrained Local Models

CLMs are similar to AAMs in the sense that they both utilise a template
model to generate feature templates to be matched to a search image.
However, while AAMs use triangulated patches over the entire image to
encode textural information, CLMs capture only textures surrounding each
landmark or feature point and uses a di�erent convergence procedure.
Thus the CLM is a joint model of shape (�nite con�guration of landmarks)
and texture (appearance around each landmark) used to search for and locate
the desired features in a test image. Local patches around each feature are
readily learned from annotated training images for each feature point.
The primitive CLM uses a statistical model to capture both shape and
appearance variations across a training set composed of similar
instantiations of the desired object. Developments in CLM methodology
have utilised classi�ers [45], regressors [46], [47], �lters [31] and neural
architecture [48], [49] to encode the local features of interest, achieving
more robustness and accuracy in the process.
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The most popular applications of the CLM in literature are in the facial
tracking and alignment domain [31], [43]–[45], [47], [50]–[54]. Recently,
CLMs have started becoming more popular in the medical imaging domain
[46], [55]–[57].

In literature, CLMmethodology has been shaped by two schools of thought.
While both agree that local response maps can be generated using arbitrary
detectors, both di�er in the choice of shape constraints. One approach
favours point distribution model (PDM) as the regularisation module of
the CLM while the other considers the CLM as a generalised framework
that combines an arbitrary constraint and local detectors - it therefore
considers the former as an instantiation of a more general framework.

We shall refer to both approaches as PDM-based CLMs and The Generalised
CLM respectively and now give an overview of these two areas in Sections
2.2.1 and 2.2.2.

2.2.1 PDM-based CLM

Due to the inherent pliability of CLMs, a number of variants to the
original model have been proposed. The �exibility of the model lies in its
modularity such that a number of regularisation techniques can be used to
constrain the desired shape while a variety of local feature detectors can
be chosen to learn local textures as noted in Section 2.2.
Research by [30], [43], [44], [46], [55]–[57] argues that the shape con-
straint must be a statistical shape model which is built using PCA, i.e.
PCA is used to decorrelate the shapes in the training set after the annot-
ated landmarks have been aligned using General Procrustes Analysis. This
yields a compact model that is able to deform based on the modes learned
from training. The resulting shape model is then used to regularise the
local responses. While PDM-based CLMs have retained the PDM as the
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2.2 Constrained Local Models
core of the regularisation module, proponents of the approach have ex-
ploited the local detector component of the CLM. Wang [45] demonstrated
this by using the Support Vector Machine (SVM) to learn local feature maps
around each landmark subject to the constraints of a PDM. This approach,
is also evident in excellent work carried out by Lindner [46], [55] in the
fully automatic segmentation of the proximal femur on digital radiographs
used to monitor osteoarthritis; where the local feature response maps were
learned using Random Forest Regression Voting and regularised using the
conventional PDM. Lindner et al [56] further demonstrated the versat-
ility of the approach in the detection of facial features and the annotation
of hand joints, achieving state-of-the-art performances in both instances.
This approach was also successfully applied in the automatic localisation
of vertebrae on x-ray images used in bone densitometry [57].

2.2.2 The Generalised CLM

Work carried out by [31], [53], [54] refers to the CLM a framework that
utilises any form of constraint to �t the response surface of the local
detectors; and this regards the PDM-based CLM as an instance of the
Generalised CLM.
This realisation of CLMs was demonstrated by Saragih [53] who used
regularised landmark mean-shifts rather than the canonical statistical shape
model to �t the response surfaces generated by a classi�er, citing the inab-
ility of the PCA shape model to perfectly estimate true landmark locations
due to the truncation of eigenvalues.
Asthana [47] further elaborated on this technique by proposing a novel
regression-based �tting method - Discriminative Response Map Fitting that
outperformed Saragih’s regularised landmark mean-shifts technique in
facial feature �tting. Another variant of the Generalised CLM is found in
Martin’s works [31], [54] where the landmark alignment goal is posed as
a Bayesian problem such that the observed shape is assumed to be the
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likelihood term and the training set of shapes are encoded as the prior in
Bayesian paradigm - the local responsemapswere extracted usingMinimum-
Output-Sum-of-Squared-Error (MOSSE) �lters.

While both approaches have been used with a great degree of success, it is
evident that the Generalised CLMs are more suited to facial feature �tting
problems and the PDM-based CLMs, while also successful in face align-
ment, are predominantly suited to medical image analysis problems.

In this work we depart slightly from the canonical CLM by employing the
use of the Probabilistic PCA (PPCA) technique as the regularisation model.
This is to account for any errors in measurement during the landmark an-
notation process. The PPCA technique is a latent variable model formulated
by Tipping and Bishop [58].

The idea of using PPCA to model shape variation is not a completely new
idea as [59] employed its use as a hierarchical Bayesian prior to estimate
3D shape and motion. Mutsvangwa [34] also utilised a PPCA-based SSM
to model the shape of the human scapula and humerus. However neither
of these approaches utilised PPCA within the CLM framework.

In this thesis, a PPCA-based PDM is constructed from manually annot-
ated training samples and used to �t local response maps extracted from
surrounding textures at each feature point (see Sections 3.1.5 and7.6 for
further details).
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2.2.3 Texture Models in Literature

The initial implementation of the CLM made use of normalised correlation
templates, constructed by averaging patch samples and normalising them.
However, such is the �exibility of the CLM, that a variety of methods could
be used to capture the local texture appearance for each feature point in an
image. For example Machine Learning methods have recently been used
for this purpose. [45] utilised Support Vector Machines to learn the local
texture features of the face while [46] used Random Forest Regression Vot-
ing (RFRV) to learn the local textures in the segmentation of the proximal
femur. [57] also utilised RFRV in the localisation of vertebrae on DXA im-
ages. A recent formulation [31] makes use of correlation �lters to learn an
optimal �lter representing the local response of local patches. A key ad-
vantage of using correlation �lters is the minimal training required, par-
ticularly due to the fact that negative samples don’t have to be explicitly
assigned unlike in the cases of SVMs or RFRV. Correlation �lters are pop-
ular in the object tracking domain [60], [61] but can be adapted for still
images as is the case in our work. Further details on Correlation �lters can
be found in Section 5.3.1.
Chapter 3 presents an in-depth background/theory of PDM, PCA, PPCA and
cognate techniques underpinning this work.
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3 Technical Background

This chapter is a synopsis of the methods and techniques that underpin
the development of the automated landmark identi�cation system.
The following sections present the underlying concepts of statistical shape
analysis used in this project (Section 3.1); an overview of Machine Learning
as it applies to this work is presented in Section 3.2 and an introduction to
the methods for automatic shape matching is presented in 3.3.

3.1 Statistical Analysis of Shape

Statistical Shape Analysis (SSA) encompasses the mathematical methods
used tomeasure and represent the geometric properties of an OOI such that
the variability and important attributes of the shape of the object within
a population is captured and accounted for by a statistical model. SSA
has broad applications in diverse �elds such as biology, architecture, ag-
riculture, etc. and can be broadly divided into two techniques. Namely:
Landmark-based and Deformation-based techniques. In the Landmark-based
approach, a given shape is characterised as a �nite set of key points along
the contours of the shape. A statistical model is used derive a compact
representation of a set of similar instances of the given shape. An altern-
ative to this approach is to regard the contours of the desired shape as a
con�guration of curves and/or surfaces. The Deformation-based approach
considers the relationships between shapes as a mapping of one shape to

19



3 Technical Background
another based on a force applied to the input shape. Thus the di�erence
between two given shapes is regarded as the smallest deformation between
the two. For a more detailed exposition on statistical shape analysis, see
Dryden’s excellent work [62].

3.1.1 What is shape?

Generally, shape may be thought of as the physical form or appearance of
an object. In image analysis, the shape of an OOI is identi�ed by its outline
or boundary and texture (analogous to form and appearance respectively).
The geometric properties of the shape are captured in the outline while the
colour may be represented by its texture or intensity.

In medical imaging, shape analysis may be contour-based or appearance-
based or a combination of both. In medical images particularly radio-
graphic or x-ray images, the homogeneity of the OOI varies across di�erent
instances due to the presence of artefacts as a result of surrounding organs
or tissue, anatomy, disease, gender etc. A medical approach to shape ana-
lysis otherwise known as morphometrics usually utilises geometric/size
measurements which do not account for the global shape of the object. In
this work the local textures around the shape outline are also taken into
account (see Section 3.3.1) in constructing a shape model. For the purpose
of this project, the following de�nition [63] for shape is adopted:

“Shape is the geometric information retrieved after the location, scale and
rotational e�ects have been �ltered out of an object.”

With this in mind, to build a �nite-dimensional representation of a shape,
a “connect-the-dots” approach is adopted i.e. landmarks or key-points are
placed along the contour of the object in a consistent manner.
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3.1 Statistical Analysis of Shape
Thus the shape is composed of a set of these landmarks. Landmarks should
be consistent across a set of similar shapes where they can be located re-
peatedly and reliably.
Landmark-based representation facilitates the statistical analysis of shapes
using the Point Distribution Model(PDM).

3.1.2 Point Distribution Models

The PDM also known as a Statistical Shape Model was �rst introduced circa
1992 [36].
It has since then been utilised extensively in numerous computer vision
applications related to shape analysis [30], [33], [42]–[44], [46], [56],
[64]–[68].

The PDM models a dataset of shapes according to their mean and a re-
stricted number of eigenvectors. Each shape is represented by landmark
points or coordinates located on their outlines. The PDM o�ers a compact
statistical description of the dataset based on a set of training samples.
The way it works is a dataset of shape vectors which represent the class of
objects to be extracted, is decomposed and reduced to learn the variability
patterns of the shapes in the dataset. The PDM captures the statistics of
the displacements of the landmarks across the training set. PDMs capture
the shape variation and eliminates redundancies across the dataset using
eigenvectors computed from PCA.

The model may be viewed as a ‘�exible’ model that deforms according to
constraints learned from the training set such that the model is able to
generate shape instances to match a novel shape(i.e. a similar shape to
those in the training set but not in the training set) with a high probabil-
ity.
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3 Technical Background
Mathematically, a shape x may be computed as

x = x̄ + ψb (3.1.1)
where x = (x1, y1, x2, y2, ..., xn, yn)T a 2n×1 vector, represents a 2D shape in-
stance of the training shapes consisting of n landmarks, x̄ is the mean of
the set of shapes while ψ de�ned by equation 3.1.2 is the PCA projection
matrix of t eigenvectors which corresponds to the t largest eigenvalues

ψ =


ψ1

ψ2...
ψt

 (3.1.2)

b = (b1, b2, ..., bt)
T is the t-dimensional model coe�cient vector given by:

b = ψT (x− x̄) (3.1.3)

The �rst step in building PDM is obtaining a dataset of sample shapes
whose landmarks have been annotated on the corresponding images. The
dataset should be chosen such that the variations of interest are represen-
ted across the images.

Assuming there is a shape of the OOI to be modelled, usually, these ob-
jects are found on digital images. For example in this project, the data-
set consists of digital x-ray images of the femur taken in the anterior-
posterior(AP) view only.

The images are collated into a set on which the shapes contours are annot-
ated as landmarks. The landmarks are usually 2 or 3 dimensional; although
this project deals with the 2D variant. These points are used to establish a
correspondence across the training set.
Due to rotation, scale and translation e�ects, the OOI tends to vary across
the dataset thus it becomes paramount that the contours undergo some
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form of standardisation which in this case is an alignment within a com-
mon coordinate frame. This ensures that all the shapes are compared on a
standard baseline.

3.1.3 Shape Alignment

To extract only shape information in accordance with the de�nition of
shape in [63], the members of the training set have to be aligned using
General Procrustes Analysis (GPA). The aim is to eliminate translation,
rotation and scaling e�ects leaving pure shape information by comput-
ing a transformation Gρ with parameters ρ that superimpose each training
vector unto a common reference frame so that

xref = Gρ(x) (3.1.4)
Prior to alignment, all shape vectors are whitened or centred i.e. the centre
of gravity of each shape is aligned. GPA is then applied to calculate the
transformation Gρ that best �ts shapes xi to a reference mean shape x̄ -
initialised with a random shape (usually chosen to be the �rst shape in the
dataset) in the training set. The best �t is based on an iterative compu-
tation for the minimum of the sum of square distances between a moving
shape and the reference mean shape i.e. based on equation 3.1.5

arg min
ρ

Σi|xi − Gρ(x̄)|2 (3.1.5)
until convergence is achieved. Principal Component Analysis is applied to
the aligned dataset to build the PDM.
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3.1.4 Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique used to not only reduce the
dimensions of a dataset but also capture the major variations across the
dataset. That is what makes it a very useful and popular tool for modelling
PDMs. In this case, PCA is used to encode the variation across the n shape
vectors x(i) in the datasetD =

{
x(i)
}n
i=1
aligned using the technique speci�ed

in 3.1.3. The PCA algorithm to compute a k - dimensional approximation
of the dataset D with dim(x(i)) = d may be stated as follows:

1. Compute x̄ the d × 1 sample mean vector and the d × d covariance
matrix

m =
1

n

n∑
i=1

x(i), C =
1

n− 1

n∑
i=1

(x(i) − x̄)(x(i) − x̄)T . (3.1.6)

2. Find the eigenvectors e(1), ..., e(d) of the covariance matrix C, sorted
such that e(i) is greater than e(j) for i < j.
Compose the matrix E = [e(1), ..., e(k)].

3. The lower dimensional representation of each data point xi is given
as:

pi = ET (x(i) − x̄). (3.1.7)

4. The approximate reconstruction of the original data-point
x(i) : x(i) ≈ x̄ + Ep(i) (3.1.8)

5. The total squared error over the dataset due to the approximation ε is:
ε =

N∑
n=1

(x(i) − x̃(i))2 = (n− 1)
d∑

j=k+1

λj (3.1.9)
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where x̃(i) is a reconstructed shape and λk+1...λn are the truncated eigen-
values. ε in 3.1.10 indicates how close the PDM is to approximating the
dataset. A small ε indicates a small deviation from the dataset and vice-
versa.

A strong advantage of PCA is its innate ability to simultaneously reduce the
dimensions of the data while retaining a strong variance across the training
set. As seen in 3.1.8, it is adequate to store the k largest eigenvalues and
corresponding eigenvectors such that∑k

i=1 λi stores a percentage of∑2n
i=1 λi

e.g 90%− 95%.

After dimensionality reduction, an accurate representation of the shape
vector x is written as:

x = x̄ + Ẽp̃ + ε (3.1.10)
The basis matrix E and vector p are the parameters controlling the PDM
such that p(i) speci�es the deviation from the mean and determines the
plausibility of shapes across the distribution. Each eigenvalue λi speci�es
the variance of its corresponding eigenvector e(i). The total sum of the
eigenvalues gives the total variance across the dataset. The signi�cant
shape variations are represented by the larger eigenvalues and the smaller
eigenvalues signal small and local variations.

A constraint is usually applied to the elements of p(i) to ensure that only
shapes with high similarity to the the shapes in the dataset are gener-
ated. The limits are applied with respect to the standard deviation from
the mean i.e. −3

√
λi ≤ p(i) ≤ 3

√
λi for √λi, 1 ≤ i ≤ k.

Assuming a Gaussian distribution across the elements of p(i),
a Mahalanobis distance constraint may be placed on the distribution.
Given an aligned shape xD the square of the Mahalanobis distance dM from
the mean shape x̄ is given by:

d2
M = (xD − x̄)Σ−1(xD − x̄) (3.1.11)
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Interpreting the PCA result in terms of Mahalanobis distance in equation
3.1.11 gives:

d2
M =

2n∑
i

p2
Di

λi
(3.1.12)

The intuition behind equation (3.1.12)1 is that the minimised squared
distance of dM implies a strong equivalence between xD and the shape
variance distribution across the dataset D.

After PCA is applied to the aligned shapes, the landmarks are projected
onto a new coordinate system. A dataset usually contains correlated and
redundant information since it consists of a set of di�erent instances of
the same object, PCA is used to eliminate this redundancy by �nding the
orthogonal axes along which the variance across the data is maximised.
These axes are referred to as principal components e1 and e2 such that
each vector x ∈ R2 may be represented as

x = x̄ + p1e1 + p2e2 (3.1.13)
To achieve dimensionality reduction, each vector may be written as

x ≈ x̄ + p1e1 (3.1.14)
where each vector is approximated by its nearest neighbour on the �rst
principal axis.
The dataset D could then be represented a single parameter statistical
model.

A transform Gρ is then used to transpose the data from the new axes to the
image domain.

x = Gρ(x̄ + Ẽp̃ + ε) (3.1.15)

1This equation is also equivalent to the χ2 distance between two variables.
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Note that Ẽ is the matrix containing the k eigenvectors corresponding to
the k largest eigenvalues while p̃ is the k dimensional vector of k shape
modes.

3.1.5 Probabilistic Principal Component Analysis

Given the dataset D =
{
x(i)
}n
i=1
, PCAmay be used to form lower dimensional

representations of D on the assumption that the elements of D lie close
to a linear subspace. However, no matter how close the approximation is
to the original data, there is always some “discrepancy” due to the data
not perfectly lying on the linear subspace. This is taken into account and
modelled using the probabilistic formulation of PCA known as Probabilistic
Principal Component Analysis (PPCA).
PPCA is a latent variable realisation of the classic PCA in section 3.1.4 which
is deduced from the standard Factor Analysis (FA)2 where the data x is
modelled as a linear aggregate of a latent or hidden variable z i.e.

x = µ+ Bz + ξ (3.1.16)
and z is assumed to be Gaussian with zero mean unit isotropic variance,
i.e. z ∼ N(0, I), µ is the maximum likelihood estimate of the data mean
and also sets the origin of the coordinate system, ξ is Gaussian distributed
noise with zero mean and covariance Σ i.e ξ ∼ N(0,Σ). B is an n× d factor
loading matrix that is equivalent to the basis matrix E in PCA.
However, where PPCA and FA di�er is in the assignment of the covariance
Σ, where Σ = σ2I for PPCA and Σ = diag(λ1, ..., λn) for FA.
Therefore, in PPCA,

B = Uk diag{λ1 − σ2, ..., λk − σ2}R (3.1.17)

2for in-depth treatment of FA, the reader is referred to [58], [69], [70]
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Where Uk is the n × k matrix whose column vectors span the k largest
eigenvalues λi i = 1, 2, ..., k of the covariance matrix Σ of x while R is an
arbitrary orthogonal matrix.

σ2 =
1

n− k

n∑
i=k+1

λi (3.1.18)

∴ B = Uk

(
Σk −

Ik
n− k

n∑
i=k+1

λi

)
R (3.1.19)

While PCA is e�ective in achieving dimensionality reduction it does not
take into account noise in the dataset which could result from errors in the
annotation of landmarks. PPCA accounts for this uncertainty by incorpor-
ating a noise parameter in the model.

3.1.6 Automatic Landmark Identi�cation

Acquisition of high quality ground-truth is vital for the application of im-
age identi�cation systems. In several research domains, general-purpose
datasets are utilised, however in real world applications such as medical
imaging, such datasets are not readily available and have to often rely on
manual annotation of images which is a subjective process, expensive, la-
borious and error-prone. Thus devising an alternate, objective and auto-
matic means of annotation is a hot research area.

An automated annotation system for images would require that feature
points along the contour of the image are located with a high degree of
accuracy, close to or better than manual annotation, without human in-
tervention. Each landmark therefore, would be a feature point of interest
and a detection system would be required to predict the position of each
landmark. While the feature detector operates locally, a shapemodel would
be required to globally constrain the possible feature positions within the
image.
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Automatic image annotation is not a new technique and has been applied in
many areas of image processing and computer vision such as satellite ima-
ging, pedestrian detection, medical imaging, agriculture, image retrieval
systems etc.
The application of automatic annotation in the medical domain is an im-
portant facet of patient management. Thus there have been applications
tailored to speci�c challenges such as a semi automatic hybrid system de-
veloped to annotate anatomical structures in brain MRI images [71], a sys-
tem that automatically labels landmarks in mammograms [72], the auto-
matic detection of retinal lesions [73], “Snakules” is an active contour-
based algorithm for annotating spicules on mammography [32], Lindner et
al [46] devised an excellent automatic segmentation system for the femur
on x-ray images. The basis for the automation was a random forest vot-
ing algorithm which is a machine learning (ML) technique used in making
predictions usually without human interference. One of the main object-
ives of this work is to automate the landmark identi�cation process and to
achieve this, ML techniques will be a key component of the system.
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3.2 Machine Learning

A computer(machine) is said to learn from experience E with respect to a task T
and performance measure P, if its performance at task T, measured by P improves

with experience E - Mitchell, 1997.

Machine Learning3(ML) is a branch of AI that enables computers learn
from data and improve from experience without explicit programming by
a human. Its application varies across several �elds including medicine,
�nance, engineering, etc. The following subsections present key concepts
of ML, and the speci�c techniques used in this work. Mitchell’s work along
with several others contain comprehensive and in-depth expositions on
the subject [69], [76]–[82]. If x(i) is the input vector representing the ith
n-dimensional training sample and y(i) the desired target of the ith sample.
Given a training set in the form (x1, y1), ..., (xn, yn) the aim of training the
model is to learn a function g that maps the input X to the output space
Y, i.e. g : X −→ Y such that g can correctly infer the desired output when
presented with valid test data. The overall goal of training a model is to
achieve good generalisation.

To accomplish this, the following usually precede model training :

� Data acquisition and preprocessing: This refers to identifying and ob-
taining suitable training samples and extracting training data that is
typical of the problem to solved.

3The term “Machine Learning” was �rst coined by Arthur Samuel in 1959 to describe the
transfer of human intelligence to machines [74]. A machine in this sense is an abstract
term that describes any autonomous system that may be implemented as software and
should not necessarily be perceived as a physical entity [75].
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� Feature extraction and selection: The input vector usually represents
those set of features, which are the most likely to in�uence the ac-
curacy of g .

� Identifying the suitable learning algorithm(s) and selecting the correspond-
ing parameters.

The algorithms are applied to the training dataset and the performance of
the model is evaluated using test data.

3.2.1 Training and Learning

The learning paradigm in machine learning is often accompanied by train-
ing, as both depend on the other. A system is trained to learn, and the level
of learning determines when training should stop. The way an ML system
learns is analogous to the way humans learn. Humans are able to learn
how to complete a task after being presented with few examples. The
same principles apply to ML where a computer is presented with examples
with the aim of completing a task. Its performance is evaluated based on
how well it learns from the examples and performs the given task. The
following paraphrased de�nition by [70] captures the concept of training
and learning in ML:

“A set of methods that may be used to train a computer to automatically learn
patterns in data and use the learned patterns to predict novel data or make

decisions under uncertainty.”
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In ML, a model is (usually) a concise representation of the information
learned from the underlying relationship between variables in a training
dataset.
Thus learning may be referred to as model learning or training - where a
model is taught to deduce some function from training data.
Usually, training data is a set of observations, where each is an input train-
ing vector, xi and target yi.

Just like humans have di�erent modes of learning, ML systems have dif-
ferent learning techniques.

3.2.2 Types of Learning

Learning in ML consists of 3 broad classes namely: Supervised Learning,
Unsupervised Learning and Reinforcement Learning.

� Supervised Learning: This refers to a mode of learning where the sys-
tem is trained with labelled data from which a model is learned and
subsequently used to make a decision on novel or unlabelled data.
Classi�cation which is the grouping of data into homogeneous classes
and Regression which is the prediction of numeric data are 2 examples
of Supervised Learning.

� Unsupervised Learning: refers to training a system with unlabelled data
such that the system is able to learn a model that best describes the
pattern within the data. Examples of this kind of learning are Cluster-
ing: where the algorithm discovers intrinsic groups or clusters within
the unlabelled data and Dimensionality Reduction: where the aim is to
achieve compression of the data i.e. the data is represented with fewer
components than the original form.
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3.2 Machine Learning
� Reinforcement Learning: This kind of learning is almost like a hybrid
between supervised and unsupervised learning. The system is not
presented with labelled examples but is rewarded for making the right
decision and penalized in some applications formaking the wrong de-
cision. The system learns based on the rewards received. The system
learns via “trial-and-error interaction” with data. It seeks actions that
are the most likely to maximise rewards within the learning space.

No particular method is deemed superior to the other, rather the type
of data and nature of the task to be accomplished tend to in�uence the
method applied. Sometimes two methods are combined to achieve a com-
plement such that each gives leverage to the other. For example unsuper-
vised learning may be used to discover a hidden pattern in a dataset with
no known structure and then the discovered pattern is used as a template
for successive datasets.

A vital stage of any learning task, is getting the right balance between
good generalisation4 and �tting in estimating a model from the dataset.
Over-�tting occurs when the model “over-learns” the training data with
the noise and other irrelevant information to an extent that it becomes
sensitive to minor perturbations in the dataset.

Consequently, it does not generalise well to novel data within the same
distribution. Conversely, if the model is unable to learn the underlying
relationships in the data such that it neither �ts nor generalises well to
the training data and novel data respectively, then under-�tting is said to
have occurred.

4Generalization refers to how well an estimator or model is able to respond to samples
similar to but not contained in the training set. This is a widely accepted benchmark
for assessing the performance of ML models or algorithms.
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3.2.3 Validation

In general, ML is not only about learning from data but also about util-
ising the learned information to make decisions when presented with sim-
ilar data. ML algorithms would not be very useful without some means of
evaluating the performance of a system. This is achieved via model val-
idation where a trained model performance is evaluated with test data - a
subset of the data from which the training data is acquired. The test set
is used to ascertain how well the trained model can generalise - i.e. make
good decisions when presented with novel data.

Ideally, the goal of the model should be to strike a good balance between
under-�tting and over-�tting. To achieve this, the performance of the
learning algorithm is monitored over time as it learns training data. As
learning progresses, the errors on the training and test data diminish nat-
urally. However, over-training would lead to the model learning exact
information and noise from the training set while the error on the test set
increases and the generalisation capacity decreases.

To avoid or limit over-�tting, a resampling procedure may be used such as
k-fold cross validation where the model is trained and tested k-times on
separate subsets of the training data. The model is then evaluated based
on its performance across the subsets. Another means of reducing over-
�tting is by reserving a validation dataset - a subset of the training data that
may be used to evaluate the performance of the model after the training
and testing procedure and indicate how the model may perform on unseen
samples. Overall, the concept of generalisation is key in building object
recognition models which is essentially what automatic shape annotation
is.
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3.3 Shape Matching

To achieve robust automatic annotation, a good model should be able to
generalise from speci�c examples within the training set to generic samples
without the set. Exploiting prior information about the shape under ques-
tion is an intuitive means of guiding the model and improving the general-
isation ability. The prior could be the global shape con�guration and local
textures surrounding the boundary of the desired object. These elements
may be captured in a deformable model5 whose modes of deformation are
governed by statistical parameters inferred from the distribution of the
shapes in the dataset. The deformable object framework facilitates the
representation and analysis of objects as a collection of salient features6
extracted from the dataset.

3.3.1 Feature Extraction and Detection

Feature detection is a very vast area of research; and many times, what
constitutes a feature is not readily discernible due to various levels of ab-
straction, which are usually proprietary to an application. As mentioned
in Section 3.3, a shape or object may be represented by a set of features.

In context of this project, the OOI is the femur and the features to be ex-
tracted are the landmark locations along the boundary of the femur. Auto-
mated annotation of the femur may be achieved then, by casting the prob-
lem as a feature detection one. There are several features that may be
extracted from a shape [83]–[85] depending on the application and a slew
of features that may be acquired from the texture of an image [86].
5Deformable models refer to a set of model-based techniques in Computer Vision that are
used to capture the variability of a homogeneous class of objects [37], [38].

6A feature in plain terms, is the attribute of an object acquired through some form of
measurement.
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3 Technical Background
In broad terms, shape features may be global or local while textural fea-
tures may be structural or statistical [87]. In the context of this project, the
features of interest are:

� The global shape of the femur encoded as a feature vector whose
coordinates are separate landmarks along the contour(more like a
sparse representation than dense) [88]; and

� The raw local textures surrounding each landmark, where each land-
mark is the centre of a reference window within which the enclosed
texture(patch) is extracted and concatenated in a vector of similar
patches.

The rationale behind using low-level shape and texture representations is
two-fold:

1. The encoding of the shape as vector of landmark coordinates, facil-
itates visualisation and also presents the shapes in a format readily
accessible for statistical manipulation a la the PDM discussed in Sec-
tion 3.1.2.

2. The acquisition of raw textures, enables an ML algorithm to learn
directly from the primitive textures and construct higher level rep-
resentations of the local patches.

Incorporating the global shape of the femur in detecting features ensures
that only feature points within the range of plausible shapes are explored
during detection while the textural component ensures that the landmarks
are matched to their corresponding local patches. There are many methods
in literature that have been used to explore the shape and texture attributes
of an object, such as snakes/active contours which is an edge-dependent
energy-based minimisation model that migrates a contour of points to-

36



3.3 Shape Matching
wards the desired feature [35] they are sensitive to noisy edges and are
not shape speci�c; the Active Shape Model(ASM) incorporates both shape
and texture attributes [36], [64]–[66] however it su�ers from spurious
edges,gets stuck in local minima and depends on a good initialisation very
close to the contour of the desired object; it also limits its search range to
only textures around the landmark and doesn’t exploit the full textural in-
formation [89]. The Active Appearance Models(AAM) [42], [67], [89] has
some advantages over the ASM, but it is sensitive to texture variation and
illumination [31], [67], [89]. In an attempt to overcome the weaknesses
of ASMs and AAMs, Mitchell [90] combined the ASM and AAM to segment
cardiac MR Images.

A relatively recent model combining both shape and texture information is
the Constrained Local Model(CLM) [43]–[45], [53] which circumvents the
disadvantages of ASMs and AAMs.

3.3.2 Constrained Local Models

The Constrained Local Model(CLM) is a framework or composite model
that integrates a shape model and local pattern model for matching a stat-
istical model shape to a novel image. The parameters of the model are
deduced from the training dataset of landmark annotated images.

The variances in shape between training images are modelled using PCA
or PPCA as described in Sections 3.1.4 and 3.1.5.

A function which could be a classi�er, discriminant, regressor or �lter is
trained to encode the local texture or appearance of a patch around each
landmark. The stack of the learned patches forms the patch model. Sub-
sequently, the patch model and shape model are synthesized to form the
CLMs.
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3 Technical Background
In the testing phase, the CLMs are matched against the test images such
that divergence between the model and each test sample is minimized.

CLMs are similar to AAMs but the di�erence is that the CLM uses local
texture patch information surrounding each landmark and employs a non-
linearised search protocol which is more e�cient and reliable [44], [53],
[55] than that of the AAM.Moreover, the construction of the CLM is �exible
and modular such that a variety of shape models and classi�ers could be
integrated in its framework. For example [46] utilised the random forest
classi�er to learn the appearance of the local textures, [45] used SVMs to
achieve the same purpose, [53] used the logistic regressor. A recent for-
mulation uses Minimum-Output-Sum-of-Squared-Error(MOSSE) �lters
to capture local texture responses within a Bayesian regularisation frame-
work [31] in tackling the facial alignment problem. Another method that
employs Discriminative Response Maps to �t local textures in a 3D facial
�tting problem, is yet another variation of the CLM [47].

3.3.3 Constructing the CLM

A composite shape and texturemodel is constructed from a training dataset
of manually labelled images as described in Section 3.1.2. Texture patches
around each landmark are extracted within a de�ned reference frame. Each
patch is whitened and a vector of textures representing an image instance
is formed by concatenating the whitened patches.

The combo of the vectorised patches and the normalised shape vectors
underpin the construction and operation of the CLM. Mathematically, the
model may be represented thus:

x = x̄ + Eωpω g = ḡ + Eτpτ (3.3.1)
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3.3 Shape Matching
where x̄ and ḡ are the mean shape and texture respectively; Eω and Eτ are
the shape and texture modes respectively; pω and pτ represent the shape
and texture parameters respectively.

Figure 3.1: A Generic Framework of the CLM

As mentioned earlier, the CLM integrates both shape and texture models
into a single model. This may be represented as

p = Bρ =

Mωpω

pτ

 (3.3.2)

Mω is the matrix of diagonal weights to compensate for the disparity in
units between the shape and texture models. PCA is applied to the com-
bined model to yield:

p =

Bω

Bτ

ρ (3.3.3)

M represents the combination of shape and texture modes while ρ is the
vector of coordinates encoding the variation of the composite model.
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3 Technical Background
3.3.4 CLM Search

After the composite model is constructed, it is used to search for the OOI
in a test image. The following procedure is used to search:

1: Make an initial guess of the feature point positions based on the trans-
formation Gω, landmark coordinates and shape parameters pω.

2: At each estimated feature point, within the reference frame, estimate
pτ and ρ by �tting equation (3.3.3)

3: Compute a response image R(i) per landmark by extracting surrounding
patches at each landmark and matching it to the local texture template. A
matching score is assigned to each feature point where a high score implies
a high response.

4: Update the landmark coordinates in accordance with a local high re-
sponse regularised within the global shape variation constraint i.e. subject
to the �tting of the shape model to maximise the match score by optim-
ising the objective function:

M(ω) =
n∑
i=1

R(i)(xi, yi)− η
k∑
i=1

p2
i

λi
(3.3.4)

pi are entries in pω and λi are the corresponding eigenvalues of the PDM.

M(ω) implies searching for a pair (xi, yi) that yields a high local response
R while maintaining the global shape variation represented by the second
term - the squaredMahalanobis distance. η is a weight that determines the
extent to which a high Mahalanobis distance is penalised. η may be em-
pirically determined from the manually labelled training dataset by com-
puting the ratio of the second term to the �rst term in equation 3.3.4.
M(·)may be solved by any non-linear optimisation algorithm although the
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3.3 Shape Matching
Nelder-Mead Simplex method is recommended [44], [55]. The optimiser
drives the update of the parameters and feature points until a satisfactory
minimum is achieved. The choice of similarity metric used to determine
the match between the local templates and patches in the reference frame
can also be varied. For example, normalised correlation [44], Mahalanobis
distance [36] and Haar-like based feature classi�cation [43].

3.3.5 Initialising the CLM

The general object detection problem requires some form of initialisation.
In the medical domain, with several computer-assisted procedures, ini-
tialisation is usually performed where an operator manually sets up cues
to aid a computer program in performing the desired task [91]–[94].

Deformable models also generally require an initial estimate of the feature
point positions prior to searching and optimisation. Recent trends how-
ever, strive to achieve total automation of the whole detection process. In
automatic landmark detection, a good initialisation is critical to the per-
formance of the detector. To this end, a typical approach is to employ a
2-stage detection routine by incorporating a global detector prior to the
�nal detection stage. The purpose of initialisation is to con�ne the search
space of the algorithm and reduce the probability of getting stuck in local
minima. Traditional image processing methods employ low-level routines
like thresholding and edge detection to create a binary masks that assign
the object’s pixels or region of interest (ROI) to the foreground and other
pixels to the background. While this might be e�ective for images with
good homogeneous intensity variation, it produces unsatisfactory results
for images with inconsistent gray-level distribution typical of medical im-
ages that usually have artefacts due to interference from surrounding or-
gans and tissues which tend to obscure the desired object.
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3 Technical Background
Template-based approaches o�er some improvement by raster scanning
the whole image where each pixel scanned is compared to the template and
classi�ed based on a matching score. However, changes in size,scale or
orientation yield undesirable results; thus, these methods perform better
when coupled with a heuristic, statistical descriptor or an ML algorithm as
is the case now with many modern object detection techniques which em-
ploy sophisticated learners in a sliding window with template matching to
achieve state-of-the-art object detection [46], [95], [96]. Computational
advantages can also be gained by scanning the image based on a grid of
locations or coordinates imposed onto the image, so that there is no need
to visit and evaluate every pixel.
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4 Clinical Background

This chapter covers the clinical background of the project and contains
the information on the dataset and the anatomy of the hip and fractures
and how computer-assisted surgery can improve the prospects of patient
recovery and surgeon performance.

4.1 Extracapsular Hip Fracture Surgery

Hip fractures1, are usually the subject of intensive orthopaedic treatment.
It is estimated that 86 000 of such casualties occur yearly in the UK. Glob-
ally, the numbers have been projected to increase from 1.3 million (in the
1990s) to 7 - 21 million by year 2050 [101], [102]. Mortality rates due to
a hip fracture are 5 - 10% past one month, 33% after a year while those
that survive, have been observed to become disabled or experience pains
[103].

Hip fractures are managed under perioperative care which comprises the
preoperative, intraoperative and postoperative phases [104].
Computer-Assisted mechanisms may be utilised in any of these phases.
1Also known as proximal femoral fractures: refer to fractures of the femur that occur
anywhere between the articular cartilage of the hip joint to 5cm below the distal region
of the lesser trochanter [97]. Formore information and the di�erent classes of fractures,
see [98]–[100].
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4 Clinical Background

Figure 4.1: Anatomy of the Hip Joint: The hip joint is often described as
a ball-and-socket joint, with the head-acetabulum structure.
The synovial cavity contains �uid that lubricates the joint and
allows for rotation of the head within the socket.

The preoperative stage is where the patient is prepared physically and psy-
chologically for surgery. Tests are conducted to determine the best course
of action. Preoperative planning usually includes computing assistance for
visualisation and simulation of the actual operation.

The intraoperative stage is when the actual surgery is carried out in the
operating ward and is actually the most critical phase, as care is taken
to ensure no iatrogenic harm comes to the patient, ensuring the patient
is stable and not in any form of discomfort. Autotransfusion is also per-
formed in most cases to limit blood loss.

Postoperative care involves monitoring the patient’s recovery and ensuring
there is no relapse or adverse side e�ect after surgery.

Computer-assisted devices and software are used to perform procedures
that are otherwise laborious and error-prone when performed manually.
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4.1 Extracapsular Hip Fracture Surgery

Figure 4.2: Anatomy of the Femur

4.1.1 Intertrochanteric Fractures

An intertrochanteric (IT) fracture is one that occurs within the proximal or
upper region of the femur. The femoral head, neck and trochanteric areas
make up the proximal femur (see Figure 4.2).
An IT fracture occurs between the greater trochanter and the lesser trochanter.
The classi�cation of fractures is important in determining suitable
treatment and management for the patient [105]. For example, the type of
implant required is speci�c to the kind of fracture.
Intertrochanteric fractures are �xed using metallic surgical implants2 or
nails to stabilise and secure the a�ected components in their original po-
sition. i.e. after any displaced fragments or bones have been bound back
in place. This minimises the risk of postoperative complications.

2Sliding hip screws are the standard implant of choice when managing intertrochanteric
fractures [27], [106]
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4 Clinical Background

(a) A Stable Fracture (b) An Unstable Fracture

Figure 4.3: Two basic types of fractures.

4.1.2 The Tip-Apex Distance

A complication that is usually associated with IT fractures is cutout - a phe-
nomenon where the inserted implant loses purchase of the femoral head
and is detached from the bone. Studies have attributed this occurrence to
the in�uence of several factors.

However, the most in�uential indicator according to research has been the
positioning of the implant [107], [108]. To this end, a metric known as the
Tip-Apex Distance (TAD) �rst formulated by [23], [24] is used to minimise
the risk of cutout. TAD is de�ned as the sum of the distances between
the tip of the lag screw and the apex(A) of the femoral head on both the
anteroposterior and lateral radiographs after calibration for magni�cation.
Fig. 4.4 illustrates the parameters and measurements used in calculating
the TAD. The TAD is calculated using the following formula:

TAD =

(
zap ×

∅ap

∅true

)
+

(
zlat ×

∅lat

∅true

)
(4.1.1)
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4.1 Extracapsular Hip Fracture Surgery
Where ∅ap,∅lat are the diameters of the implant, zap, zlat are the distances
between the tip of the implant and the apex, A , of the femoral head meas-
ured on the radiograph in the anteroposterior(ap) and lateral(lat) views
respectively. ∅true is the actual diameter of the implant. It should be noted
that the TAD metric is still manually estimated by orthopaedic surgeons.

Figure 4.4: Parameters of the Tip-Apex Distance illustrated.

Figure 4.5: Chart showing cutout incidents vs TAD.
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The common consensus is that the implant should be placed centrally and
deep [109] which lends credence to both metrics. However, the position-
ing of the implant still depends on manual estimation which is subjective
and at best performed by the more experienced surgeons but would still
leave room for error due to human fallibility. Hence the need for a more
reliable and objective means of estimating an optimal position of the im-
plant arises. [110] has already demonstrated that, the TAD can be estim-
ated digitally from a PAC archiving systemwithout the need for continuous
reference to the live �uoroscopes.

Nowadays, computer-aided surgery is on the rise as it boosts the surgeon’s
productivity and enables manually di�cult and laborious repetitive tasks
to be performed with ease.

4.1.3 Parker’s Ratio

Parker’s work [109] similar to [23], [24] in that it also investigated the
relationship between the positioning of the implant and the cutout phe-
nomenon, fundamentally established a statistical basis for the priorly sub-
jective conjecture pioneered by [111], [112] which recommends a deep and
central placement of the implant within the femoral head.

From Figure 4.6, Parker’s ratio, Pr, is given by:
Pr =

AB

AC
× 100 (4.1.2)

This evidently yields 0 ≤ Pr ≤ 100.
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4.1 Extracapsular Hip Fracture Surgery

Figure 4.6: Parker’s Ratio Illustrated

In Figure 4.7, the "circles" (red) represent the cutout incidents while the
"crosses"(green) signify the non-cutout incidents. A dense set of crosses
can be observed around the middle of the chart, which represents the ideal
location of the implant.
Note that the posterior (x − axis) and inferior (y − axis) cover the range :
0− 50 while the anterior (x− axis) and superior (y − axis) cover the range :
50− 100.

Pr, like TAD, takes into account both the AP and lateral views on the radio-
graph and demonstrated that for average values of Pr = 45, non-eventful
union occurred; cutout occurred in cases with average values of Pr = 58 cor-
responding to superior or posterior placements in the AP view and Pr = 36

corresponding to non-central placements in the lateral view. [26] also re-
ported that a value of Pr = 66 or more corresponds to a superior/anterior
position of the implant on AP/lateral radiographs which is likely to result
in cutout. Overall, Pr underpins the principle of a central-deep placement
of the implant.
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Figure 4.7: Interpretation of implant positions based on Parker’s Ratio.

4.2 Computer-Assisted Orthopaedic Surgery

Computer-assisted surgery involves the use of intelligent equipment to
navigate di�cult procedures during intraoperative surgery. They play a
vital role where precision, accuracy, repeatability and reliability are re-
quired. More often than not such procedures are risky for the patient in-
volved and demand a high level of expertise to execute.

Accurate positioning, implant alignment, precise drilling and construction
of the bone cavity to match the implant shape [113] is an instance of the
use of computer guided systems to manoeuvre surgical procedures. The
aim is to achieve minimally invasive treatment, ease of use, reduction in
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4.2 Computer-Assisted Orthopaedic Surgery
moving mechanical parts and even preclude human intervention in some
aspects as in the use of a virtual targeting device for K-Wire insertion
[114] which showed improvements over freehand methods. A relatively
new advancement is the integration of medical imaging modalities and
spatial positioning systems. Such provisions a�ord a surgeon the luxury
of a ‘mock surgery’ prior to the live operation while improving ergonom-
ics and boosting safety levels [115]. X-ray imaging is the visual mode of
choice for orthopaedics when it comes to the management of orthopaedic
trauma. However, its disadvantages include prolonged exposure to radi-
ation of both patient, surgeon and other associated personnel, scattered
radiation, repeated repositioning and refocusing of the c-arm to capture
x-rays [116]–[118]. The possibility of virtual �uoroscopes in lieu of live
�uoroscopes have been explored to reduce operating time [119], limit the
exposure to beams and improving the accuracy of positioning [120].

In the management of extracapsular hip fractures, x-rays are used to ex-
amine the nature of the fracture and establish the best form of treatment.
The aim is to achieve a stable reduction and �xation of the a�ected limb.
Ideally, a conservative approach to treatment should be adopted to avoid
complications during surgery. However, for hip trauma, surgical inter-
vention is highly recommended as conservative treatment often leads to
deformity and usually delays ambulation [97], [121]. Studies have shown
that the use of computer-based auxiliaries in the surgery theatre is bene-
�cial for example [122] carried out an evaluation of a 2D �uoroscopy-based
navigation system for guidewire positioning, it recorded a reduction in the
number radiographs and drilling attempts required. Similar results were
also recorded by [123] further highlighting themerits of computer-assisted
surgery. Preliminary work by [124], demonstrates how an implant may be
positioned with minimal input from an operator.
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4 Clinical Background
For Computer Assisted Surgery to be successful, there must be some form
of data to work with. Any computing-based system would be useless
without data to analyse. The following sub-section 4.3 gives a brief on
the data speci�c to this project.

“Data is the evidence of things sought for” - Okoli, 2017

4.3 Datasets

The thrust of this project is the image analysis of the femur on digital
radiographs or x-rays. To this end, 2 datasets of images were acquired.
The initial set: a collection of intraoperative digital radiographs obtained
from the local NHS, RVI and the second set sourced from an online digital
image bank. All images acquired were AP and Lateral views for the �rst
set and strictly AP views for the second set.

4.3.1 NHS Dataset

The images from NHS archive were retrieved by an orthopaedic surgeon.
The images were of varying quality and resolutions most of which were
plain radiograph �lms scanned to digital format. Due to the randomness
of the collation, some images were missing interesting parts - like the
femoral head; such images along with degraded samples were �ltered out.
All images were in .jpeg format, free of knowledge tags and metadata, thus
there was no con�dentiality breach.
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4.3.2 Online Digital Image Bank

The second set of images were sourced from an online stock images data-
base3. The images were deposited without any standard protocol thus they
were of varying sizes and quality, most of which were snapshots of the full
pelvic region along with the hips. These images were then preprocessed to
acquire the useful parts for example the hip joint/femur areas were cropped
out and resized, preserving aspect ratio to avoid aliasing. All images were
saved in .jpeg format.

It should be noted that the standard format of images utilised in the med-
ical domain are usually stored as Digital ImagingandCommunications inMedi-
cine (DICOM) format which can readily be converted to other image formats
such as the .jpeg used throughout this project. DICOM is a standard pro-
tocol universally adopted by clinics and medical practitioners. It is used to
store or transmit medical images and facilitates the integration of a variety
of medical imaging devices ranging from PCs, workstations, servers, scan-
ners, printers, networking hardware to Picture Archiving and Communication
Systems (PACS) irrespective of the vendor or manufacturer.

3www.dreamstime.com
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4.4 “Interesting Parts” of the Femur

The femoral head, neck and lateral cortex are referred to as the “inter-
esting” parts of the femur in this work. These are the main features con-
sidered when inserting an implant to �x an IT fracture. After a position for
the implant has been estimated, a path is drilled through the cortex, via
the neck into the head of the femur, then a guidewire is inserted through
this path over which the surgical implant is then inserted.

The guidewire position is observed on the x-ray to ensure an optimal posi-
tion before �nal insertion of the implant. See Figure 4.8(a) for an illustra-
tion of guidewire insertion. Figure 4.8(b) illustrates the ideal positioning
for the guidewire i.e. insertion along the shaft axis A−B via the neck axis
B and through the head centre C −Apex axis.

(a) Guidewire Insertion illustrated (b) Guidewire insertion Trajectory

Figure 4.8: Guidewire ideal insertion positions and direction approxim-
ately 135° to the shaft (A) along B − C via the neck and head
centres respectively.
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4.5 Project Rationale

It has been previously established in the preceding sections 4.1.2 and 4.1.3
that the positioning of the implant largely relies on the skill and/or exper-
ience of the surgeon performing the procedure and that cutout occurs due
to malpositioning of the implant. Therefore one of the key objectives is to
identify a means of aiding the surgeon; by precluding the manual aspect of
estimating the optimal position of the implant; thereby, improving patient
outcomes.

The studies carried out in this respect are geared towards the intersection
between orthopaedic surgery and computer vision (CV) or medical imaging
and investigates how CVmay be applied in alleviating some of the problems
present in current intertrochanteric fracture surgery procedures.

Using the TAD and Parker Ratio metrics, we have also been able to estab-
lish that the ideal positioning for the implant would be through a point
along the shaft axis, through the middle of the neck to the centre of the
femoral head. Chapter 6 presents the preliminary work carried out in this
respect.
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5 Methodology

This chapter presents a overview and description of the methods and tech-
niques underpinning the implementation of the Semi-Automatic Guidewire
Insertion Planning Tool and the Fully Automatic Guidewire Navigation Tool in
Chapters 6 and 7 respectively.

5.1 Overview

The research gap this thesis addresses, is the challenge of replacing the
existing manual, subjective positioning of implants currently employed by
orthopaedic surgeons with a more objective and automatic means. The
approach adopted is image analysis-based as radiographs are required to
assess the position of the implant. Due to the nature of the work and the
data available, we adopt a proof-of-concept approach, i.e. all concepts and
implementations are simulated to demonstrate that the proposed methods
are applicable in the real world. The actual application of the methods in
clinical trials is beyond the scope of this work.

As with any image-analysis pipeline, the �rst stage is the acquisition of
images, where each image must contain the OOI; in this project, the
proximal femur is the OOI (see Figure 4.2). For the semi-automatic digital
tool, six intraoperative x-ray images were obtained and 100 images were
acquired for the implementation of the automatic digital navigation tool.
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After the images have been captured, subsequent image analysis tech-
niques are applied. The assumptions taken into account are:

• The images consist of instances of the femur without fractures or
implants this is important because the presence of an implant in the
image will impede the performance of the navigation algorithm in
the case of the automatic digital tool since the implant will ‘compete’
with the regions of interest for signal detection.

• Magni�cation is not taken into account in our implementations as it
is only required in a live clinical demonstration.

For more details of the methodology used in the implementation of the
semi-automatic tool, refer to Section 6.2.

We now delve into the details of the methods used in implementing the
automatic guidewire navigation tool.

5.1.1 Automatic Guidewire Navigation Methods

The deformable models background presented in Chapter 2 is the basis for
the automatic tool, speci�cally the CLM variation. Figure 5.1 illustrates
the high-level procedure for implementing the CLM and can be coarsely
de�ned as an integration of two modules: a ShapeModel and an Appearance
Model.

The aim of the developing the proposed digital tool, is to automatically
compute the optimal placement for an implant subject to the constraint of
the clinical metrics described in Sections 4.1.2 and 4.1.3.
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5.1 Overview

Figure 5.1: A high-level Overview showing the steps for implementing the
CLM technique used for the Automatic Navigation Tool.

The challenge therefore, is to articulate these metrics within the CLM
framework. To achieve this, landmarks were strategically located along
the ROIs on the femur to enable measurement of these metrics based on
the annotations. The manually annotated landmarks and their corres-
ponding local patches are the input to the CLM. The expected output is
an automatic annotation of a test image with the optimal path of implant
insertion displayed and the corresponding Pr score computed.
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5.2 Building the Shape Model

After the images have been captured containing the ROIs, a shape model
is constructed using landmarks extracted from the ROIs. The landmarks
are manually annotated according to prede�ned criteria. This section de-
scribes the concepts and processes involved in constructing the shapemodel.

5.2.1 The Morphology of the Femur

The term morphology in this project, refers to the study and analysis of
the shape of the femur. This includes choice and identi�cation of relevant
parts and the annotation of the outline of the femur . For this sub-study,
the second dataset of images acquired from the online database as de-
scribed in 4.3.2 is utilised.

As mentioned in subsection 4.4 there are speci�c parts of the femur which
are of interest during surgery. These are the regions that are annotated
in this project. [46] carried out a ‘complete’ annotation of the proximal
femur using 65 landmarks to cover the entire outline of the femur - as a
precursor to a fully automatic segmentation system used to analyse radio-
graphs as a means of diagnosing osteoarthritis of the hip joint in patients.
The application in this work is towards a di�erent purpose and will there-
fore, follow a di�erent annotation scheme.

In Figure 5.2, 27 landmarks are identi�ed whose locations are concentrated
around the interesting parts of the femur, namely: The lateral cortex, neck
and head. The annotation was manually carried out using the Collection of
Landmarks for Identi�cation and Characterization (CLIC) package [125], [126].
Figure 5.2 shows a typical instance of the annotated femur.
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5.2 Building the Shape Model

Figure 5.2: Typical Annotation of the Femur showing the landmarks
labelled according to the context of this project.
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The selection of landmarks is an important phase in the shape modelling
process as it directly in�uences the performance of the PDM. Hence the
landmarks are placed in a consistent manner on each image to achieve a
good correspondence across the dataset.

A radiograph is essentially a 2D representation of a 3D object, thus, the
perceived shape may not always be “perfect” and the annotation of only
distinct landmarks is likely to yield a sparse representation of the shape.
To manage this, a combination of pure landmarks and pseudo-landmarks
equally spaced between the pure landmarks are inserted.

5.2.2 De�nition of Landmark Types

For the purpose of this work, a landmark is de�ned as a context-signi�cant
point on an object. By context, we refer to attributes that are speci�c to
particular applications e.g. anatomical, biological, location, mathemat-
ical etc. The landmarks used in the annotation scheme are categorised as
application-speci�c, anatomical and geometric. We brie�y describe the vari-
ous categories:

• Application-speci�c: Landmarks in this category refer to those that are
not distinct in appearance but the location is within a ROI and makes
it relevant to the task to be performed.

• Anatomical: Anatomical landmarks are those that have a distinct
appearance by virtue of their location at a corner or protrusion on an
object.

• Geometric: These landmarks do not have a distinct appearance or
location but may be situated using mathematics or geometry. e.g.
along the curved regions. They are also referred to as pseudo-landmarks.
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5.2 Building the Shape Model
Since a clinical interpretation is required, anatomical landmarks in com-
bination with some inconspicuous landmarks take on added signi�cance.
For example, landmark 1 in Figure 5.2 is highly signi�cant in the context
of IT fracture surgery, since this is the entry point of the implant, but it
is unlikely to have a high signi�cance in an alternative application, e.g.
the full segmentation of the femur. The other signi�cant landmarks are
landmarks 5 and 23 which represent the shortest distance between the 2
‘concave arcs’ of the femoral neck; and landmark 12 that represents the
central axis through the neck and head centre. Due to the variability and
sometimes ambiguity of the local features of the femur, particularly around
the head-acetabulum region, a geometric approach was incorporated to
annotate the head region by dividing the local circular contour between
landmarks 8 and 18 into equally spaced segments to achieve consistency
and repeatability in the annotation. The 27 annotated landmarks and their
labels are summarised in Table 5.1.
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Table 5.1: Landmark labels and descriptions
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5.2 Building the Shape Model

Figure 5.3: A �gure showing the annotated landmarks and the axis for op-
timal insertion.

5.2.3 Morphometric Variables

The parameters used in this study were selected based on clinically relevant
estimators. i.e. landmarks were strategically chosen to underpin the sig-
ni�cance of both the TAD and PRwhich is a central-deep axis via the lateral
cortex, through the centre of the neck and head. Figure 5.3 shows the axis
of optimal insertion via landmark 1, the midpoint between landmarks 6 and
23 through to the apex (red ‘x’) midpoint between landmarks 12 and 13 of
the femoral head which minimises the TAD and yields an acceptable PR
score. Together these variables are used to calculate or measure PR on a
given image.
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5 Methodology
5.2.4 The Shape Model

It is obvious that the annotation carried out in Section 5.2.1 and illustrated
in Figure 5.3, yields a sparse outline of the OOI. Due to the variations in
scale, rotation and translation across the dataset, normalisation is applied
to the extracted shapes. A 2-stage normalisation procedure is applied.

Firstly, GPA is used to align the shapes in the dataset w.r.t. scale, rotation
and translation. The following process describes GPA :

1. Select an arbitrary reference shape from the training dataset;

2. Superimpose the rest of the shapes in the set unto the reference shape;

3. Compute the mean shape of the superimposed set of shapes;

4. Compute the Procrustes distance between the mean shape and the
reference shape, go back to step 2 until convergence is reached i.e.
until there is negligible di�erence between the reference and the other
shapes in the set.

Mathematically, The Procrustes distance is computed by minimising the
closed form of equation 5.2.1.

|T (x1)− x2|2 (5.2.1)
Where T is given by equation 5.2.2.

T

a
b

 =

a −b

b a

x
y

+

tx
ty

 (5.2.2)

equation 5.2.1 is then di�erentiated w.r.t. (a, b, tx, ty).
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5.3 Building the Appearance Model
Secondly, the aligned shapes are decorrelated by setting their mean to zero
and variance to one. After the shapes have been suitably normalised, a
statistical model known as the PDM is used to encode a compact and con-
strained description of the shapes . This is usually achieved using PCA as
described in Section 3.1.4.

5.3 Building the Appearance Model

An appearance model is simply a description of the local texture sur-
rounding a landmark. The appearance model is constructed from the local
patches of speci�ed sizes extracted from each landmark. After the patches
have been extracted, they are processed by a detector and a local response
is computed. The aim is to learn a discrimination between a feature of
interest (foreground) and its background. We previously mentioned that
a number of detectors may be used to achieve this. However, the method
used in this project is correlation �lter-based technique, described in Sec-
tion 5.3.1.

5.3.1 Correlation Filter-based Local Detector

Correlation Filters (CFs) were �rst introduced by [127] as a means of learning
templates in the frequency domain as opposed to the spatial domain. The
�lter operates by convolving a square patch at its feature points, where a
high response or correlation peak corresponds to a positive feature point.
The canonical CF requires extensive training which makes it less attractive
especially for real-time applications. However, the advent of the MOSSE
�lter based on an adaptive training process, has proven to be a signi�cant
improvement on the traditional CF.
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5 Methodology
One of the strengths of the MOSSE �lter is its tendency to cope with
rotation, scaling, lighting e�ects and partially occluded features.
These �lters are also computationally e�cient.
Another important attribute ofMOSSE �lters is the ease withwhich patches
may be implicitly assigned as positive or negative samples1.

Figure 5.4 illustrates the work�ow for using MOSSE �lters to extract local
response patterns for building the patch model.

Figure 5.4: Work�ow of MOSSE �lter-based patch model for extracting
local response patterns.

The various steps from Figure 5.4 are described next.

• Initialisation: The landmarks extracted from the object serve as the
centre of the patches to be extracted. A typical initialisation routine
is to use the mean shape coordinates.
Given that deformable models are sensitive to initialisation, more
specialised routines could be employed to initialise themodels as close
to the optimal shape as possible.

• Extract patch: After the model has been suitably initialised, surround-
ing patches at each landmark are cropped to a speci�ed size, the size
should be large enough to capture meaningful local attributes for each

1A positive patch is simply a local window containing the foreground features, while a
negative patch is a window, not necessarily local, containing the background features.
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5.3 Building the Appearance Model
feature point but not too large, such that local context is lost.

• Preprocessing: The local patches are preprocessed following extraction
by �rstly undergoing contrast correction, usually achieved by using log
transformation given by equation 5.3.1.

S(i, j) = c log(1 + |P (i, j)|) (5.3.1)
Where S(·) and P (·) are the transformed and input intensity values
respectively at coordinates i, j;
c is a scaling constant given by: c = 255/ log(1 + |r|) and r represents
the maximum pixel value in a patch. After the contrast of the patch
has been transformed, the patch is normalised to have zero-mean and
unit standard deviation; the normalised patches are then multiplied
by a tapering function2, typically a 2D cosine window to minimise the
artefacts that occur due to frequency e�ects at the borders during
FFT operations by gradually driving the values away from the centre
towards 0.

• Apply Gaussian Window: The preprocessed patches are convolved by a
Gaussian window with σ = 2.0, to further attenuate the background
pixels; such that values that fall within and without the Gaussian
window, are assigned as positive and negative samples respectively.
The output of the Gaussian is the desired output.

• Compute Optimal Filter: Let x̌ be the patch under consideration and ȟ

be the correlation �lter. According to the Convolution theorem,
x⊗ h = F−1(x̌� ȟ

∗
) (5.3.2)

Where F−1(·) signi�es the inverse Fourier transform and x̌, ȟ are the
transformed vectors; ‘⊗’ is the convolution operator, ‘�’ indicates

2A tapering function, also referred to as a window or apodization function, is one used to
smooth a sample signal such that the edges of the sampled region tend towards zero.
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5 Methodology
element-wise multiplication and ‘∗’ represents the conjugate of a
vector.

A correlation output g, for an arbitrary positive sample xk, is given
by:

g = F−1(x̌k � ȟ
∗
) (5.3.3)

Hence,
ȟ
∗

=
ǧ∗

x̌k
(5.3.4)

Note that the division in equation 5.3.4 is element-wise. Performing
the operations in the frequency domain using FFT yields signi�cant
computational savings for an n × n patch i.e. O(n2 log n) using FFT
as opposed to O(n4) in the spatial domain. The MOSSE �lter is an
adaptation of equation 5.3.4 to multiple target features. MOSSE is
essentially an adaptive training method that is used to compute the
optimal �lter h from a set of training patches. This is achieved by
minimising the sum of squared di�erences between the desired and
actual correlation outputs. Mathematically, for N sample patches, the
optimal �lter may is written as:

min
ȟ
∗

N∑
n=1

‖x̌k � ȟ
∗ − ǧk‖22 (5.3.5)

The solution to equation 5.3.5 is found by solving for ȟ. It can be
shown that [61]:

ȟ
∗

=

∑N
k=1 ǧk � x̌∗k∑N
k=1 x̌k � x̌∗k

(5.3.6)

After the optimal �lter has been learned in the frequency domain, the in-
verse FFT is computed to yield a local spatial response, which is �tted
using the constraints posed by the PDM as illustrated in Figure 5.1 and de-
scribed in Section 5.2. A composite equation 3.3.4, representing the �tting
process is described in Section 3.3.4. The output of the whole process is
an optimal set of features, representing the landmark coordinates used to
guide an optimal insertion of the implant.
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5.4 Data
5.4 Data

The dataset used in this thesis comprises digital x-ray images, the an-
notated and extracted landmarks and their corresponding square patches.
The speci�c details of the images and their speci�cations are described in
Section 4.3.

5.5 CLM Initialisation

In Sections 2.1 and 3.3.5 it was highlighted that the CLM requires ini-
tialisation as is the case with every deformable template model. A naive
technique of initialisation is superimposing the mean shape onto the given
image and starting the search around the coordinates of the mean image.
However, this method of initialisation is only e�ective when mean shape
parameters are very close to the optimum of the target shape. In cases
where the target shape is far from the mean, the speed of convergence will
be slow, or the model could get stuck in local minima, or return a sub-
optimal shape. To circumvent these likely challenges, more streamlined
initialisation routines are usually employed. The use of Haar features is
a popular technique for most object detection problems [44], [46], [128],
the use of Hough forests is also an option [129]. The output of the initial-
isation phase is typically a bounding box that speci�es the detected object
after which the CLM is used to search for the optimal con�guration of
landmarks within the bounding box parameters. In our implementation,
we employ a machine learning technique known as boosting. Boosting is
a method that combines the output of simple classi�ers known as weak
learners to predict or estimate a target feature. Weak learners are es-
sentially classi�ers marginally better than random guessing. Examples of
weak learners are naive Bayes classi�er, logistic regression, decision trees
etc.
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Figure 5.5: Illustration of a decision tree

5.5.1 Initialisation using Decision Trees

Decision trees are a directed graph-like representation of queries and re-
sponses designed in a manner to arrive at a desired outcome. The queries
are usually directed towards features of interest which typically require yes
or no responses. Figure 5.5 illustrates a trivial example of the tree repres-
entation consisting of nodes and edges, where the internal nodes represent
queries and terminal or leaf nodes represent responses. In image analysis,
the nodes typically represent features of interest which could be raw pixel
values or extracted values from a feature descriptor such as Local Binary
Patterns (LBP) [130], Histogram of Oriented Gradients (HOG) [131], Haar
features, etc.

We utilise 1-level decision trees also known decision stumps or ‘1R’, as the
base learners in a boosted classi�er framework3. The initialisation process
is illustrated in Figure 5.6. The decision stumps are decision trees with
only one split, i.e. just one level of queries and responses.
3Boosted classi�ers are an ensemble of weak learners whose output has strong prediction
capability, due to the aggregation of the outputs from each weak learner.
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5.5 CLM Initialisation

Figure 5.6: High-level overview of the CLM initialisation process

The input to the tree consists of HOG features extracted from patches
within the ROIs. HOG features transform pixel-based values into gradient-
based representations by accumulating the total number of gradient ori-
entation instances within a localised window or frame such as a patch4. For
samples corresponding to the foreground, the classi�er returns a bound-
ing box location within which the shape model in Section 5.2 is initialised.
The implementation of this method can be found in Section 7.9.4.

4Full details of the HOG descriptor are beyond the scope of this work, but, may be found
in [131]
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6 A Semi-Automatic Guidewire
Insertion Planning Tool

This chapter details the preliminary work carried out by the author and has
been published in [124]. In Chapter 4 the signi�cance of a deep-central
placement was established. To achieve this, the implant must be inserted
along an axis corresponding to the centre of the femoral head. Thus we
propose a new method that computes the centre of the femoral head by
�tting a circle along the boundary of the femoral head where the centre of
the circle corresponds to the femoral head centre. This enables the sur-
geon or operator to objectively locate the femoral head centre rather than
manually estimating the position.
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6 A Semi-Automatic Guidewire Insertion Planning Tool
6.1 Introduction

In the orthopaedic management of extracapsular hip fracture surgery, sur-
geons usually rely on visual assessments of radiographs to estimate the
position of implants and often relying on intuition and experience. This is
the case in the treatment of intertrochanteric fractures, where the surgeon
estimates the position of the femoral head centre prior to the insertion of
the guidewire over which the implant is placed. This is a key phase of the
intraoperative procedure and strongly in�uences the postoperative out-
come of the surgery.

There are already several existing digital software such as OrthoView™,
MediCAD™and TraumaCAD™ for carrying out preoperative planning [132];
while Surgix™[133] is one of the few that is utilised during the intraoper-
ative phase of surgery.

The work carried out in this chapter lays the groundwork for the design
of a digital guide which will assist the specialist in the positioning of the
guidewire during intraoperative surgery.

Due to the natural shape of the femoral head which is almost circular, the
aim is to use the properties of a circle to locate the centre of the femoral
head such that the circle centre corresponds to the centre of the head. The
signi�cance of the centre of the femoral head is underpinned by years of
research and the experience of practitioners who strongly recommend that
the implant should be positioned centrally and deep [24]. This inherently
supports the TAD concept described in Section 4.1.2.

It can be inferred that a path along the medial axis of the femoral head
will minimise the TAD. We aim to achieve this by exploiting the shared
properties of the circle and femoral head.
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6.2 Method

Owing to the sensitivity and ethical requirements of the project, a simulation-
based approach was adopted. The experiments carried out during the de-
velopment of the digital tool required digital x-ray images; to this end,
six typical intraoperative digital x-ray images - three in the AP plane and
three in the lateral plane with dimensions 728 by 1036 were retrieved by
an orthopaedic surgeon on the research team, from the local trauma centre
– Royal Victoria In�rmary, Newcastle upon Tyne.

These were used to simulate the experiments. Any ethical obligations were
ful�lled by the surgeon.

A semi-automated approach is adopted to determine the centre of the
femoral head by exploiting the geometric properties of the femur. A con-
ventional approach to the problem would entail image enhancement, seg-
mentation and feature extraction. However, given the dimensions and
quality of the images, such an approach would not only be computation-
ally intensive but also unsuitable for real time applications. Thus a simple
method employing the use of circle geometry to locate the centre of the
femoral head is proposed. Figure 6.1 shows a summary of the adopted
approach.

It is easy to see that the contours of the femoral head closely model that of
a circle or partial circle. Circle geometry is applied to compute the centre-
location of the femoral head.
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6 A Semi-Automatic Guidewire Insertion Planning Tool

Figure 6.1: Steps to estimate the Femoral Head Centre

If we assume that p1, p2 and p3 are 3 arbitrary non-collinear points lying
on the circular contour of the femoral head in R2, as shown in �gure 6.2,
setting:

u = p2 − p1 (6.2.1)
v = p3 − p1 (6.2.2)

then u = (u1, u2); v = (v1, v2); and c = (c1, c2).

Where uk, vk, ck|k ∈ R2 represent the coordinates of chords Ou, Ov of the
circumscribing circle and its centre c respectively. Through vector algebra
and circle geometry, the centre c and radius r of the circle bounding the
femoral headmay be computed from equations (6.2.3) and (6.2.4) respect-
ively. L1,L2 in �gure 6.2 are perpendicular bisectors of u and v respect-
ively. Their intersection corresponds to the centre c of the circle.

c1 = 0.5
|u|2v2 − |v|2u2

u1v1 − v1u2
, c2 = 0.5

|v|2u2 − |u|2v2

u1v1 − v1u2
(6.2.3)

r = 0.5
|u||v||u− v|
|u× v|

(6.2.4)
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6.2 Method

Figure 6.2: Illustration of planes and points used to �nd the femoral head
centre.
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6.2.1 Keystroke Level Modelling

Keystroke Level Modelling (KLM) is a process used in interactive comput-
ing systems to predict the time required by an expert user to accomplish
routine tasks without encountering errors. The evaluation of the proposed
digital tool takes into account the time required to generate a mouse click
for the purpose of selecting points along the contour of the femoral head,
as equivalent to the time taken to click a link or button in [134], given as
3.73 seconds. This is because the clicks are not random clicks across the
image but must occur along the contours of the femoral head. Thus KLM
allows us take into account both the time taken to point to a target on the
display and the time taken to press the mouse.

6.3 Results

During procedures in theatre, surgeons have access to a radiographer to
operate the image intensi�er which consists of a C-Arm and display mod-
ule tethered together by a large communications/power cable (Figure 6.3).

Figure 6.3: Components for image intensi�cation during fracture surgery
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6.3 Results

Table 6.1: Typical Values Computed for Centre Coordinates and Radii, with
Mean and standard deviation(SD).

Centre (c1, c2) Radii (r)
509.24, 405.22 107.06
506.31, 407.92 108.91
506.33, 406.86 107.18
505.15, 406.03 106.76
507.72, 407.24 108.25
511.03, 405.14 107.23
504.32, 406.89 108.54
510.18, 405.75 104.74
508.67, 406.94 107.66
505.86, 406.39 107.31

Mean 507.48, 406.44 107.36
SD 2.13, 0.85 1.09

It is envisaged that three arbitrary points will be interactively chosen along
the arc of the displayed femoral head. The program then determines the
femoral head centre point from the returned coordinates along this arc.
The surgical procedure continues by placing an angled guide sleeve ori-
ented towards a prede�ned femur-shaft angle (typically 125°– 135°) prior
to guidewire insertion.

The projected circle and its centre are used a visual reference to aid the
surgeon in aligning the guidewire within the centre of the femoral head.
The circles circumscribing the femoral head were computed 10 times for
each image, the centre coordinates and radii were recorded. The average
position of the coordinates and their standard deviations were also com-
puted.
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Table 6.1 shows typical values generated for the femoral head centre and
radius for 10 iterations. Plots of the positions and radii and a summary of
the results is shown in Figure 6.4 and Table 6.2. As deduced from the
data, the determination of the femoral head centre using the proposed
method shows that it is reliable with the individual values not di�ering
signi�cantly from the average position.

Figure 6.4: Computed centre positions of the femoral head in the antero-
posterior and lateral views of the intraoperative images.

The proposed method o�ers the surgeon a quick visual guide to locate the
centre of the femoral head which will facilitate implant placement with
better accuracy.
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Table 6.2: Mean and Standard Deviation (SD) of Centre Coordinates/Radii
Computed for 10 Iterations
Images

Centre Radii (r)
c1, c2 Mean(SD) Mean(SD)

IM1 507.48(2.13) 406.44(0.85) 107.36(1.10)
IM2 200.66(1.79) 392.55(1.95) 101.35(1.75)
IM3 273.73(2.02) 502.43(1.50) 140.85(1.40)
IM4 301.79(1.65) 441.26(3.56) 98.03(1.74)
IM5 281.67(1.25) 502.99(1.69) 102.78(1.60)
IM6 338.56(3.06) 519.33(3.58) 126.59(2.95)

6.4 Analysis and Discussion

The computed values of the mean and standard deviation demonstrate that
the technique is highly accurate especially when the diameter of the im-
plant is considered. It should be noted that the computed values are in
pixels. The implants in the images used for this study are approxim-
ately 33 pixels in diameter which means the surgeon has approximately
±16 pixel-“margin for error” about the medial axis (Figure 6.5).

Figure 6.5: Illustration of standard deviation and its relationship to the
diameter of the surgical implant.
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Taking into account the generated data, the largest deviation from the
mean position is ±3.58 pixels. This bodes well for accuracy purposes.
Figure 6.6 shows that the desired measurements can be measured reliably
as 90% of the computed head centre coordinates fall within 2 standard de-
viations of the mean. Figure A.4 shows plots of the individual coordinates
of the head centre and the corresponding radii of the head. The “straight
lines” denote regularity in measurements of the head centre. The slight
�uctuations along the lines are due to variances in the manual selection of
boundary points. It should also be noted that the largest standard devi-
ation computed for the radii is ±2.95 pixels. This is also acceptable since
the contours of the femoral head in radiographic images are usually more
than a pixel thick.

During the implant insertion phase of the surgery, if the guidewire is
wrongly positioned, it has to be reinserted until a satisfactory position
is achieved. The position of the guidewire is observed under the image
intensi�er and once the implant is inserted, subsequent retractions are
impossible as this could destabilise the fracture. Thus, it is vital that the
guidewire is inserted correctly with the fewest number of attempts to ease
the pressure on the a�ected region.

Overall, the potential bene�ts of the tool to the surgeon include is less
manual estimation, improved accuracy, fewer guidewire passes (ideally
one pass), less wear on guidewire and surgical instruments, potentially
with a lower probability of iatrogenic harm for the patient.

The digital planner, has the potential of: improving the surgeon’s operat-
ive performance during insertion of the guidewire, aiding in the training
of junior clinicians and reducing surgical and anaesthetic time. The pro-
posed technique is both intuitive and simple, thus, with minimal training,
personnel would be able to grasp the operation of the tool. One of the
typical challenges encountered in image analysis of radiographs also ac-
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Figure 6.6: Plots of the computed femoral head centre for 6 images shown
along with the mean and 2 standard deviations.
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6 A Semi-Automatic Guidewire Insertion Planning Tool
knowledged in [135], is the determination of the femoral head centre which
is very di�cult due to the poor contrast pro�le around the femoral head-
synovial cavity interface and the interference by the acetabulum. However,
the new proposed method circumvents these challenges even on poorly
delineated edges, since it only requires three “visible” paths along the
boundary.

An experiment carried out by [135] suggests that the participation of an
operator in the manual selection of boundary points is laborious and re-
ports that �ve points are required for determining the femoral head centre.
Conversely, our proposed method requires only three points to achieve the
same purpose (Table 6.3).

In [135], the author posed the problem of locating the centre of the femoral
head as an ellipse-�tting problem our approach however, is posed as a
circle-�tting problem (See Figure 6.7 for comparisons). Although it might
be argued that more points chosen along the boundary will aid in the ac-
curacy of locating the head centre; while using fewer points (3 in this
instance) could skew the results with the presence of any outliers, it is
noteworthy that the outline of the circumscribing circle would clearly in-
dicate any abnormalities; thus, the operator could repeat the procedure to
achieve a better outcome. While [135] considered only AP view radiographs
of the femur in their experiments, it is worth mentioning that our work
takes into consideration both the AP and lateral view radiographs of the
femur.

Generally, using digital planning auxiliaries for orthopaedic surgery has
several merits. One of such advantages is the cost savings as observed in
a previous study on digital planning; where the �nancial outlay and the
e�ects of radiation were evaluated during the application of Template-
Directed Instrumentation in Total Knee Arthroplasty [136]. Although the
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Table 6.3: Comparison Between Circle and Ellipse-Fitting Approaches
Femoral Head Parameters Circle Ellipse

Number of points selected 3 5
Actual Time taken for manual selection <5s −‡
Time taken using keystroke-level analysis† < 11.19s 18.65s
Time taken to process selected points < 3ms 1s

† [134] predicts at least 3.73s per selection for a fast and skilled operator.
‡ data unavailable.

Figure 6.7: Comparison between Circle and Ellipse-Fitting Approaches

proposed method was successfully applied over a small dataset, there is an
intention to build on the existing application to account for a large dataset.
A potential bene�t of this, is the possibility of using the tool as a high-level
image technique to facilitate other low-level image analysis tasks such as:
object detection, segmentation, feature learning and extraction to aid in
automatic inference when presented with novel data.

The main weakness of the proposed method could stem from human fal-
libility and variability in measurements. But the analysis demonstrates
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6 A Semi-Automatic Guidewire Insertion Planning Tool
that the error is negligible. Another weakness is that the speed of the pro-
cess is likely to di�er from operator to operator since mouse operation will
vary amongst individuals. However, as noted previously, this work is the
foundation for a digital tool-kit that will be expanded into a more robust
application.

Re-operation or readmission due to misalignment of implants or post-
operative implant migration/failure incidents occurs in 2% to 11% of frac-
ture �xation cases [137]. Thus, the use of digital guidance intraoperatively
to improve accuracy and minimise adverse outcomes is a welcome devel-
opment.

The work carried out in this chapter forms the basis for a digital tool-kit
to be utilised by surgeons during extracapsular hip fracture surgery. It
prescribes a new and reliable method for computing and visualising the
femoral head centre as a guide to positively in�uence the outcome of hip
fracture surgery, requiring guidewire insertion during �xation. The ease
of application and repeatability of the proposed method makes it a be-
ne�cial adjuvant to orthopaedic surgery. It is promising that the method
is applicable even with poor quality radiographs occasionally seen during
intraoperative hip surgery and still produces reliable results despite the
degradation in quality.

Further research in this area will include implementation of the technique
in a simulation environment with sawbone1 models2 to evaluate the in�u-
ence of the technique on intraoperative parameters such as overall surgery
time, radiation exposure time, the number of �uoroscopic images used and
most importantly, the number of attempts and time taken for guidewire
insertion.
1www.sawbones.com
2Sawbones models refer to prototypes of real bones specially developed for use in tasks
where real anatomical models are required for "hands-on" practice of surgical proced-
ures. They are usually built out of foam, plastic or cortical shell.
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7 Implementation of the Fully
Automatic Guidewire Navigation
Tool

The work in this chapter has been prepared as a paper for publication in
IEEE Transactions on Medical Imaging under the following title: A Fully
Automatic Guidewire Insertion Planning Tool for Extracapsular Hip Frac-
ture Surgery.

In previous Sections 4.2 and 6.4 we noted that the use of automation
to leverage existing manual procedures that are error-prone and labor-
ious is one of the key advantages of computer-assisted surgical systems.
This chapter describes the implementation and evaluation of a fully auto-
mated system for estimating an optimal position for the insertion of the
guidewire and invariably the surgical implant.
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7.1 Introduction

In the management of intertrochanteric fracture treatments, surgical in-
tervention rather than conservative approaches is the recommended form
of �xation, whereby, the fracture is openly reduced and �xed with a sur-
gical implant. However, a recurring bottleneck is the process of locating
an optimal position to avoid or minimise the likelihood of cutout. Existing
procedures require the surgeon to manually estimate the optimal position
for the implant. However, this is usually a trial and error process which
could cause further injury to an already traumatised patient.

Two metrics known as the Tip-Apex Distance(TAD) [23], [24] and Parker’s
Ratio (PR) have been shown to be signi�cant indicators used to establish
a strong correlation between the positioning of the implant and the prob-
ability of cutout. However these metrics are still manually estimated.

Computer-assisted surgery has been reported to improve implant posi-
tioning and a reduction in the number of guidewire passes required prior
to implant placement [123], [133].

The purpose of this chapter is a demonstration of image analysis as a tool
for estimating an optimal position for implant placement in the manage-
ment of IT fracture surgery.

7.1.1 Related Work

The most similar work to this project was carried out by [135]. Although in
a slightly di�erent application regarding the femur neck fracture. It util-
ised a knowledge-based approach - a combination of geometry and low-
level image processing techniques in the localisation of parts of the femur
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7.2 Clinical Background
on radiographs as a cue for the positioning of a surgical implant. How-
ever while this yielded the desired results, it still required an operator’s
interference.

Surgix™[133] is a proprietary surgical guide system IT fracture surgery.
Although it is an image analysis based system, the details of the underly-
ing algorithms are not disclosed. However, clinical trials conducted using
Surgix demonstrated an improvement in the positioning of the implant
and reduced radioactive exposure.

7.2 Clinical Background

During surgery, the surgeon relies on visual assessments of radiographs to
guide the insertion of the implant. The TAD and PR previously described in
Chapter 4 are means by which surgeons manually evaluate the positioning
of an implant. TAD is de�ned as the sum of the distances between the tip of
the lag screw1 and the apex of the femoral head on both anteroposterior and
lateral radiograph views, adjusted for magni�cation. It is recommended
that TAD should be no more than 25mm to avoid cutout.

PR is also another metric that reconciles the positioning of the implant
with the occurrence of cutout. Both metrics though di�erent in terms of
measurement, indicate a central-deep placement as the ideal position for
an implant. Figures 4.4 and 4.6 in Chapter 4 illustrate the concepts of TAD
and PR respectively.

While it is evident that experienced practitioners tend to have more fa-
vourable outcomes in terms of implant failure, this is not the case for more
junior practitioners [24]. Hence, the need to develop a tool that enables an
1The lag screw is the speci�c part of the implant that lodges in the femoral head as a
means of �xing the fracture. We refer to it as an implant in this work.
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objective evaluation of the implant position irrespective of the personnel
performing the surgical procedure.

7.3 Technical Background

Although the advantages of computer-assisted interventions in orthopaedic
surgery are evident, such systems are not readily available in IT fracture
surgery. The presiding surgeon relies on a visual inspection of radiographs
or x-ray images of the a�ected region to estimate an optimal position for
the implant prior to the insertion of a guidewire.

A key component of a computer-guided system is a visualisation auxiliary.
We demonstrate how computer vision or image analysis could be incorpor-
ated into the surgical work�ow.

Feature detection in medical imaging is a prerequisite stage in many com-
puter vision and medical imaging tasks. In the context of this work, the
features to be detected are the landmarks. Feature detection in medical
imaging is a notoriously challenging task due to inconsistencies in intens-
ity variation caused by sensor noise, occlusions from surrounding organs,
variation in patients’ anatomy, etc.

However, most of these challenges can be circumvented by modelling a
prior of the object(s) of interest. A popular prior is the a shapemodel which
acts a global restraint that e�ectively allows only plausible shape instances
or features to be generated. The shape priormay be constructed using vari-
ous techniques, e.g. the minimum description length (MDL) [138], [139],
Gaussian Processes [140] and Bayesian regularisation [31], [54]. In our im-
plementation, we utilise the Statistical Shape Model (SSM) also known as
a PDM which is a staple in the medical imaging community.
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7.4 Encoding the Shape of the Femur

100 instances of femur were captured as x-rays, collated into a dataset
which was in turn partitioned into training and testing sets each consisting
of 70 and 30 instances respectively. Each femur in the training set was
annotated with landmarks along the regions or boundaries relevant to the
application. i.e. the head, neck and lateral cortex of the femur. Some
landmarks were identi�ed as having special signi�cance according to the
TAD and PR. These landmarks represent axis of the femur which would
exploit the signi�cance of TAD and PR. i.e. a central and deep position
for the implant. The problem then arises - how to automatically detect
these landmarks and then trace the optimal path for the positioning of the
implant.

After the landmarks on the femur have been annotated and extracted, the
next phase requires computing a representation or model that captures the
variance across the training dataset. The function of the shape model is
to constrain the global con�guration of the landmarks by optimising the
parameters of the chosen shape model. The parameters are learned from
the training dataset. These parameters are usually second order statistics
namely: the mean and covariance matrix. These are often su�cient to en-
code intra-class variability within and global variation across the training
dataset. PCA earlier described in Section 3.1.4 is the conventional tech-
nique used to build the shape model, however, other Bayesian regularisa-
tion techniques exist for this purpose [31], [53], [141].
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Figure 7.1: A plot of the aligned shape landmarks from the training set with
the red points representing the coordinates of the mean shape.
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7.5 The PCA-Shape Model

The training data comprises the shapes of di�erent instances of the femur
aligned using Generalised Procrustes Analysis after which PCA is performed
on the aligned shapes to both eliminate redundancy and capture a lower
dimensional representation of the data. PCA yields the parameters of the
PDM used to represent the training shapes in a succinct form. PCA has
proven to be a reliable model for shape representation and dimensional-
ity reduction, but its strictly orthogonal bases means that even plausible
shapes outside this subspace will not be accounted for. This inherent ’ri-
gidity’ in PCA would negatively a�ect it’s performance in estimating the
more noisy samples. The probabilistic version of PCA, is more �exible in
operation and takes into account the noise that is likely to be present in
the data; the noise in this context is measurement error due to the manual
labelling or annotation of landmarks. PPCA can be used in any instance
where PCA is used.

The following Section 7.6 elaborates on the use of PPCA in shape mod-
elling a domain where PCA has dominated for long. Recently, however,
probabilistic shape representations have become more popular [31], [34],
[53], [142].
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7.6 The PPCA-Shape Model

The PPCA shape model is not an entirely new idea; however it has not been
used anywhere in literature within the CLM framework. PPCA is regarded
as a generative model that estimates a signal based on an unobserved vari-
able; i.e. rather than directly learning a probability distribution from the
data, it learns the distribution of a hidden variable that is most likely to
generate the data itself.

x = x̄ +
n∑
i=1

Bizi + ξ (7.6.1)
x̄ is the sample mean otherwise referred to as the maximum likelihood
estimate, with ξ ∼ N (0,Σ) the noise or error term where Σ = σ2I.

PPCA is able to model a richer probability distribution of the given data
based on a linear relationship with a latent variable z written as:

x|z ∼ N (Bz+ µ, σ2I) (7.6.2)
x ∼ N (µ,Σx) (7.6.3)

Σx = BBT + σ2I; (7.6.4)
Σx is the covariance matrix of the data x. Note that as σ2 −→ 0 results in
the classic PCA.

Although Bi and zi in equation 7.6.1 play the same role as in PCA, (i.e. the
matrix of basis eigenvectors and vector of eigenvalues); they are computed
di�erently. See Section 3.1.5. Thus a new shape may be be generated after
these parameters have been estimated.
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7.7 Constrained Local Models

CLMs refer to a framework that integrates a PDM and a local appearance
model into a composite model. The PDM is realised by applying PCA to the
set of aligned2 landmarks extracted along the outlines of the objects in the
training set comprising 70 instances of the femur on digital radiographs.

7.7.1 A Point Distribution Model for the Femur

Let D =
{
x(i)
}n
i=1
represent the training set of �nite landmark coordinates

in R2; represented by n column vectors. The shape variation across D may
be approximated by the following linear relation, known as a PDM:

x(τ) = sRτ (x̄ + Ep) + tτ (7.7.1)
where x(·) represents the location of a landmark in the PDM with para-
meters τ = {s,R, t,p}; s represents the global scale, R and t are rotation
and translation point-wise transformations respectively; p denotes the de-
formation parameters. x̄ is the mean position of a landmark in the refer-
ence frame, E is the matrix of eigenvectors estimated from the covariance
matrix of D.

Note that p is de�ned by equation:
p = ET (x− x̄) (7.7.2)

which is derived from the projection of x onto the subspace spanned by E.
As described in Section 7.3 the PDM is used to impose a global constraint
on the con�guration of feature points. An exhaustive exposition on PDMs
may be found in [67]. For each landmark position, c, in the PDM within a
reference frame, we may rewrite equation 7.7.1 as:
2Alignment is usually carried out using General Procrustes Analysis
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xc(τ) = Tτ (x̄c + Ecp + ε) (7.7.3)
Where ε represents the residual that determines how close the PDM ap-
proximation �ts the dataset and Tτ is a global transform with parameters
of τ .

7.7.2 Local Texture Detectors

Without the appearance of neighbourhood surrounding the feature points,
the local context of the model will be lost. Thus, an appearance model
is built, using an ensemble of n independent local detectors which encode
the pattern of local textures around each landmark feature point [33], [68],
[143]. The PDM in 7.7.1 regularises the positions of these local detectors.

At each landmark location xi, in an image I, a correlation function di for
each detector Ci may be computed as:

Ci(I(xi)) = dTi I(Ωx) (7.7.4)
where Ωx ∈ I connotes the local neighbourhood in a reference frame
centred on a landmark. The local detectors are used to perform a exhaust-
ive search within Ωx from which texture exemplars are learned.

A number of detectors may be used to learn the local exemplars3 including
haar-like features [46], [128], Gaussian likelihood [39], linear logistic re-
gressor [31], [45], [54]. The outputs may be probabilistic as in [31], [45],
[53] or make use of similarity metrics [39], [43], [46].

A recent formulation exploited the correlation �lter speci�cally theMinimum-
Output-Sum-of-Squared-Error (MOSSE) �lter [31] in extracting response
3These local exemplars are in e�ect local response images or maps, characteristic of the
surrounding landmark textures.
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signals from local texture patches. We favour this approach in our work
due to the simplicity and ease with which �ltering operations can be ap-
plied to images using convolution.

7.8 Correlation Filter Based Detection

From an object detection perspective, correlation �lters are essentially 2D
kernels or templates that may be used to convolve an image at each of its
pixels. As is expected of �lters, the idea is to capture a high response in
the regions of an image that exhibit a high degree similarity to the ker-
nel. However, the template has to be constructed in such a manner that
it captures the optimal characteristics of the area under consideration to
achieve good discriminatory performance.

Correlation based �lters also tend to exhibit excellent performance even
in the presence of partial occlusions, rotation, scaling and lighting e�ects.
Another key advantage of correlation �lters is their signi�cant computa-
tional e�ciency where it takes O(ND logD) in the frequency domain and
O(D3 +ND2) in the spatial domain to perform computations.

While conventional classi�ers require an explicit assignments of positive
and negative samples, correlation �lters do not require explicit associ-
ations between positive and negative samples. Rather, these �lters assign
the peak of the output signal as the positive sample and the surrounding
areas as negative samples. The task then, is to estimate the parameters
that minimise the di�erence between the ideal response of the training
image and a test image.

There are several variants of correlation �lters employed in literature for
mostly tracking objects such as the Polytypic Sum of Squared Errors (POSSE)
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�lter [144] which is an ensemble of vector-valued �lters within the MOSSE
�lter framework; [145] proposed another variation that signi�cantly re-
duces ‘boundary e�ects’ in video tracking and a multi-channel spatial de-
rivation of the MOSSE �lter has also been formulated by [146] which casts
the optimal �lter learning task as a ridge regression problem in the spatial
domain.

We delve into the speci�cs of the MOSSE �lter in the following section as
this forms the basis for the local patch models in this work.

7.8.1 MOSSE Filter-Based Local Detector

The MOSSE �lter �rst proposed by [61] in a visual object tracking frame-
work, has shown impressive performance as a standalone detector and in
tandem with other detectors [31].

MOSSE computes an optimal �lter that minimises the Sum of Squared Dif-
ferences (SSD) error between the ideal correlation output and a test im-
age.

A convenience a�orded by this approach is that the correlation may be
performed in the frequency domain as a component-wise multiplication4
between the 2D Fast Fourier Transform F of an input image I and another
�lter, H. The relation may be expressed mathematically as:

G = F{I} ◦H∗ (7.8.1)
where ‘◦’ denotes a Hadamard product and “∗” a complex conjugate. The
correlation output is then expressed in the spatial domain by applying the
inverse of the Fourier transform, i.e. F−1{G}. In e�ect, MOSSE learns an
optimal map, H between N training images and the ideal output response
G.
4According to the Convolution Theorem.
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Formally this may be written as:

argmin
H∗

N∑
n=1

‖F{In} ◦H∗ −Gn‖22 (7.8.2)

where G ∈ Rk1×k2 is usually deduced as a uniformly sampled 2D Gaussian
with µ at the true landmark location and a su�ciently small value of σ2.

H∗ is found by solving:
H∗ =

∑N
n=1 Gn ◦ F{In}∗∑N

n=1F{In} ◦ F{In}∗ + e
(7.8.3)

where e regularises the division operation to preserve the uniqueness of
the division operation or avoid a division-by-zero error.

To circumvent the e�ects of artefacts due to the FFT operation, each sample
In is preprocessed prior to �ltering. The preprocessing steps as described
in Section 5.3.1 are:

1. Contrast correction by a log transformation;

2. Normalisation of pixel values so that In has a mean 0 and norm 1;

3. Multiplication of the image with a tapering function which is usually a
cosine window that gradually phases values close to the edge towards
zero; and has the added advantage of highlighting values at the centre
of the target object.

The MOSSE �lter CM, is also a linear based detector and may be written
as:

CMi (I(Ωxi)) = F−1{F{(I(Ωxi)} ◦H∗i (7.8.4)
where H∗ is the same as the MOSSE �lter computed from equation 7.8.3.
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7.9 Experiments

This section describes the methods and results of the application of the
CLM to the dataset.

7.9.1 Dataset

The dataset used in the experiment consists of 100 digital x-rays of the
femur in the AP view acquired from an online database as described in
4.3.2.

The dataset was randomly divided into 2 subsets: a training set of 70 im-
ages and a test set of 30 images. The test set were used as ground-truth
to evaluate the performance of the automatic landmark detection system.
Each one was annotated with known landmarks corresponding to the an-
notation scheme in Section 5.2.1. 27 landmarks per image were extracted
and stored in a 54×70matrix used to build the PDM while the correspond-
ing local patches were concatenated in a 1024× 27 matrix of local intensity
values per image.

7.9.2 Applying the CLM Detector

The goal of the CLM is to align the local response of each �lter to its optimal
location. In this section, 2 techniques are formulated to achieve optimal
global alignment and �t the local feature responses.

2 Statistical models previously described in Sections 3.1.4 and 3.1.5 are the
basis for the alignment of the global shape and are combined with the
MOSSE �lters to perform feature detection. We coin these as PCA-MOSSE
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and PPCA-MOSSE to re�ect the use PCA-based PDM and PPCA-based PDM
as global constraints. The PCA based PDM is the standard variant applied
in several literature and already covered in 3.1.2. The PPCA variant is de-
veloped in this section.

7.9.3 CLM Search

After the CLM has been constructed, the next task is to locate novel in-
stances of the learned features from images within the test set. The search
process per landmark, may be summarised in the following few lines:

1. Make an initial estimate of the feature position;

2. For each feature point, apply a local detector to search the neighbour-
hood of the landmark, fromwhich a local response image is extracted;

3. Apply a �tting function to each response image;

4. Optimise the �tting function and shape/pose parameters, τ to locate
the best feature point;

5. Do steps 2 to 4 until the convergence criterion is met.

The search procedure is initiated within a standard window centred around
each feature point; every pixel response within this frame is evaluated by
the local detector, according to the quality of �t. The computed responses
within each window are aggregated to form a response image correspond-
ing to a particular landmark.

Note that the highest response is not necessarily the optimal feature point
since it is only a based on the local search. The PDM is used to constrain the
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response locations within the space of plausible shapes. This is achieved
by iterative optimisation of the following equation:

x(τ ) =

n∑
i=1

CMi [Tτ (x̄c + Eip + ε)] (7.9.1)

The search is conducted within a speci�ed radius r at each position then
equation 7.7.3 is used to solve for τ with ε = 0 and update each landmark
position.

In our experiments, we used a search window of 128 × 128 in the training
phase but reduced to a radius of 32 × 32 during the search in the testing
phase5 which is somewhat analogous to the relaxation employed by [46]
in the segmentation of the proximal femur.

7.9.4 CLM Initialisation

As mentioned earlier in Section 3.3.5, the CLM requires initialisation like
every other part-based or deformable model; to reduce the computational
burden and also the possibility of getting stuck in local extrema.

Since the upper femur is the main ROI and lies in the upper half of the im-
age, any initialisation is performed within this region. Ideally, the femoral
shaft region should be the best candidate for initialisation, but our PDM
doesn’t take into account the shaft region. Thus, we found the neck-
greater trochanter region to be the most suitable due to the relatively
strong contrast between the foreground and the background unlike the
head region where the acetabulum response competes with that of the the
actual contour of the femoral head.

5[31] used a similar approach though it was a 40× 40 window. We use 32× 32 since x-ray
medical images are more noisy and completely di�erent from facial images.
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The pose of the femur across the dataset guarantees that the exterior neck-
greater trochanter region would be ‘north-eastwards’ in the image. Note
that since the the femur pose is fairly consistent (i.e. upright in the AP
view), a coarse initialisation is su�cient as opposed to [46], where a rig-
orous global initialisation routine was employed to account for the large
variance in pose across the dataset.

A boosted classi�er6was trained onHistogram of Oriented Gradients (HOG)
features to return a bounding box of the femoral neck area. The base
learners consist of Decision Stumps. The CLM was then initialised within
the bounding box locations.

Table 7.1 shows the detection performance of the classi�er which yielded
a True Positive Rate (TPR) of 90%, a False Positive Rate of 83.3% and a True
Negative Rate of 91.7%.

Figure 7.2 shows examples of successfully detected femoral neck region
with associated bounding boxes while 7.4 shows instances the failed loc-
alisation attempts.

Figure 7.2: Successful instances of the localisation of femoral neck
patches.

6A standard implementation of the boosted classi�er is readily available in MATLAB’s
Computer Vision System Toolbox.

105



7 Implementation of the Fully Automatic Guidewire Navigation Tool

Figure 7.3: Successful neck localisation instances on the full femur.
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Table 7.1: Summary of results showing the True Positives (TP), False Pos-
itives (FP) and True Negatives (TN) from the detection of the
femoral neck region using Decision Stumps .
TP FP TN Positive Samples Negative Samples
9 1 11 10 12

On inspection, it was observed that the failure was due to the texture pat-
tern in one of the images which resembles arti�cial textures not usually
associated with such medical images, while the other instance is an ex-
ample of an image with a poor contrast pro�le such that the foreground
and background are almost indiscernible.

Figure 7.4: Unsuccessful Detection of the Femoral Neck Region
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7.9.5 Automatic Landmark Detection

After the initialisation, the search for optimal features were carried out
using the PCA-MOSSE and PPCA-MOSSE detectors, the optimal landmark
locations were returned and plotted on the corresponding test image.
Since the 2 detectors use the same patch model, the response images at
each landmark are essentially the same.

Figure 7.5 shows a sample image and the detected landmarks while 7.6
illustrates the detections with a subset of its landmarks and corresponding
responses.

Figure 7.5: The Landmarks detected by the CLM
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Figure 7.6: Illustration of responses from landmarks 1, 6, 10, 13, and 23

As this is a project that requires signi�cant clinical interpretation, the de-
tectors were assessed in terms of the clinical connotation. Parker’s Ratio
metric Pr was used to evaluate the positioning of the detected axis of entry
for the surgical implant.

Pr was calculated for 26 of the images, which yielded an average of Pr =

53.64; well below the threshold indicated by [26]. 4 of the images failed to
yield any detections due to the degraded nature of the images.
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A well known challenge encountered in the processing of medical images
particularly in x-rays is the inconsistency of the contrast pro�le of the
images.

Figure 7.7: Thresholded image of the femur showing a merge of the head
and acetabulum due to the poor contrast pro�le around the re-
gion.

This happened to be a problem around the femoral head region of the acet-
abulum and the ball joint. There is always a high tendency for the acet-
abulum to be detected rather than the femoral head itself. Figure 7.7 il-
lustrates the problem, where a simple thresholding operation causes the
head-acetabulum region to merge and lose its distinct structure. This is
a major reason why ‘naive’ low-level imaging processing tasks perform
poorly on x-ray images.

In Figure 7.6 this e�ect can be seen around landmarks 10 and 13, where the
acetabulum response is the highest in the local region. The use of a PDM
as a prior helps in circumventing the challenge by guiding the convergence
away from the acetabulum towards the head. This is possible because the
the locations of the acetabulum are not encoded in the PDM.
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7.9 Experiments

Table 7.2: Parker’s Ratio P apexr , P 12
r and P 13

r computed for 10 images at the
apex, landmarks 12 and 13 respectively.

P apexr P 12
r P 13

r Pφ

53.21 54.62 60.93 2.25
52.19 53.38 59.48 2.26
52.40 54.31 59.35 2.25
52.72 52.60 60.47 2.26
52.47 54.48 61.83 2.25
52.74 52.11 60.00 2.27
55.23 52.97 60.72 2.26
54.73 52.17 59.66 2.27
52.79 52.34 61.21 2.26
54.26 54.90 59.75 2.25

Mean 53.27 53.69 60.42 2.26
SD 1.07 1.09 0.82 0.0073

Figure 7.8: Chart showing the values computed for Parker’s Ratio based on
the landmarks detected. It shows how the estimated values are
well below the threshold indicated by Pervez [26].

111



7 Implementation of the Fully Automatic Guidewire Navigation Tool
Table 7.2 shows Pr calculated for the apex, landmarks 12 and 13 with av-
erage values of 53.27, 53.69, 60.42, and 2.26°respectively; Note that the
Pr averages of the ‘displaced axes’ are still below the threshold. Pφ is the
average angle between the axes formed by the apex and landmarks 12 and
13;

Figure 7.9: The depiction of the axes of insertion based on the landmarks 1,
12 and 13

The ‘displaced axes’ refer to the dotted lines from landmark 1 to landmarks
12 and 13 (See Figure 7.9).

The angles between theses axes and the central axis were calculated to
be approximately 2°. Intuitively, an increase in this angle either side of
the central axis will increase both Pr and the TAD and likely result in the
occurrence of cutout, similar to the Calcar-referenced Tip-Apex Distance
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7.9 Experiments
(CalTAD) for intertrochanteric fractures as reported in [147] and [148].

Although there has been no signi�cant research or literature that draws a
correlation between Pφ and the cutout phenomenon, our hypothesis is that
the axis of insertion into the femoral head should not be more than 2° from
the cortex-apex axis to forestall incidents of cutout.

Figure 7.10 shows the results of using the PPCA shape model to estimate
ground truth and Figure 7.11 shows the results of using the PCA shape
model to estimate ground truth. On observation, the PPCA model exhibits
narrow limits (upper and lower, i.e. UOA and LOA) of agreement: ±2.44 and
±1.34 in Figures 7.10(a) and (b) respectively, implying a small bias and
therefore, a strong equivalence to the ground-truth. The PCA model tends
to have wider limits of agreement particularly evident in 7.11(b), ±24.06.
This implies that the PPCA model estimates are closer to the ground-truth
values than that of the PCA.

The PPCA model shows an even spread of the landmarks while the PCA
model tends to be more ‘compact’ and ‘cluster’ in certain spaces. This
tendency is particularly evident in Figure 7.11(b) and is likely due to the
inherent nature of both models; where the PPCA model is more �exible
and can learn non-linear deformations and cope better than its PCA coun-
terpart on noisy data. The PCA model, due to its rigid bases and the ab-
sence of a noise term is restricted in its ability to model non-linear shape
deformations.
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7 Implementation of the Fully Automatic Guidewire Navigation Tool

(a) (b)

Figure 7.10: Bland-Altman Plots showing PPCA Estimate versus Ground
truth Annotations

(a) (b)

Figure 7.11: Bland-Altman Plots showing PCA Estimate versus Ground
truth Annotations

A grey area in the implementation of this system is the uncertainty of
the location of the line spanning the femoral head used to calculate Pr
a potential improvement in this regard would be the provision of expert
annotated images as this will further heighten clinical relevance.
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8 Conclusion and Further Work

The main objective of the project was the development of a fully automatic
guidewire insertion planning system.

There are already some existing computer-assisted interventions used for
intraoperative surgery, but intertrochanteric fracture surgerymanagement
is yet to to bene�t from such interventions and the most pivotal part of the
surgery which is the proper placement of the femoral head is still carried
out manually.

There have been metrics in literature namely the Tip-Apex Distance and
Parker’s Ratio that have been known to predict the probability of cutout.

The investigations carried out in this work established a potential means
for estimating an optimal position of the surgical implant through image
analysis of radiographs. While the results look promising, the radiographs
used in the analysis were not intraoperative radiographs (see Chapter 6 for
samples) but those commonly used in the preoperative stage for diagnosis
or surgical planning and sometimes used in the postoperative phase for
monitoring surgical outcomes.

However, we argue that the methods developed can still be applied on in-
traoperative radiographs with little adjustment to the methods and tech-
niques presented in this project. Getting access to such radiographs would
require the support of a medical researcher or a clinician.
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8 Conclusion and Further Work
An aspect of this research that is still open for further investigation is clin-
ical testing of the developed system as this will ultimately determine how
successful or bene�cial the system is. To trial such systems in the �rst in-
stance, a mock surgery session is staged where sawbone prototypes of the
femur or cadaver are used in testing. A bottleneck in the research carried
out is in the morphometric analysis of the femur as manual annotations of
the femur were carried out by the researcher. It is expected that the an-
notations would be more consistent and accurate were the annotation task
to be performed by an expert. An alternative option is to perform mul-
tiple instances of the annotation by di�erent individuals based on a gold
standard speci�ed by the expert; after which inter-observer and intra-
observer variability analysis are used to evaluate the quality of manual
annotations.

An area for further research that might be worth investigating further is
the minimisation of the manual annotation process or the elimination en-
tirely particularly with regards to deformable object modelling or parts-
based object analysis. Incorporating other imaging modalities such as MRI
and CT scans might be useful in this aspect as such images are usually less
noisy than x-rays.

This project has the potential to transform the orthopaedic surgery work-
�ow by minimising surgery time, undue x-ray exposure and placing both
experienced and junior surgeons on a ‘level playing �eld’; whereby the
surgical outcome is not necessarily dependent on the experience of the
surgeon. The system developed could also be a potential training and prac-
tising tool for practitioners to hone their skills further.

116



References

[1] O. Johnell and J. Kanis, ‘An estimate of the worldwide prevalence,
mortality and disability associated with hip fracture’, Osteoporosis
International, vol. 15, no. 11, pp. 897–902, 2004.

[2] R. Smektala, C. Ohmann, S. Paech, E. Neuhaus,M. Rieger, W. Schwabe,
P. Debold, A. Deimling, M. Jonas, K. Hupe et al., ‘On the prognosis
of hip fractures. assessment of mortality after hip fractures by ana-
lyzing overlapping segments of longitudinal data’, Der Unfallchirurg,
vol. 108, no. 11, pp. 927–8, 2005.

[3] J. Luthi, B. Burnand, W. McClellan, S. Pitts and W. Flanders, ‘Is
readmission to hospital an indicator of poor process of care for pa-
tients with heart failure?’, BMJQuality& Safety, vol. 13, no. 1, pp. 46–
51, 2004.

[4] M. Roland, M. Dusheiko, H. Gravelle and S. Parker, ‘Follow up of
people aged 65 and over with a history of emergency admissions:
Analysis of routine admission data’, Bmj, vol. 330, no. 7486, pp. 289–
292, 2005.

[5] E. Demir and T. Chaussalet, ‘A systematic approach in de�ning
readmission’, in Computer-Based Medical Systems, 2009. CBMS 2009.
22nd IEEE International Symposium on, IEEE, 2009, pp. 1–7.

[6] A. Lešić, M. Jarebinski, T. Pekmezović, M. Bumbaširević, D. Spasovski
and H. D. Atkinson, ‘Epidemiology of hip fractures in belgrade, ser-
bia montenegro, 1990–2000’, Archives of orthopaedic and trauma sur-
gery, vol. 127, no. 3, pp. 179–183, 2007.

117



References
[7] M. Szpalski and R. Gunzburg, ‘Prevention of hip lag screw cut-out

in osteoporotic patients’, Bulletin Hospital for Joint Diseases Volume,
vol. 60, no. 2, pp. 2001–2002, 2001.

[8] A. Lenich, E. Mayr and A. Rüter, ‘Hip replacement after failed in-
ternal �xation in patients with proximal femur fracture–a simple
procedure?’, Zentralblatt fur Chirurgie, vol. 127, no. 6, pp. 503–506,
2002.

[9] W. Werner-Tutschku, G. Lajtai, G. Schmiedhuber, T. Lang, C. Pirkl
and E. Orthner, ‘Intra-and perioperative complications in the sta-
bilization of per-and subtrochanteric femoral fractures by means
of pfn’, Der Unfallchirurg, vol. 105, no. 10, pp. 881–885, 2002.

[10] H. Handoll, C. Sherrington and M. Parker, ‘Mobilisation strategies
after hip fracture surgery in adults’, CochraneDatabase SystRev, vol. 1,
2007.

[11] R. Simmermacher, J. Ljungqvist, H. Bail, T. Hockertz, A. Vochteloo,
U. Ochs, C. vd Werken et al., ‘The new proximal femoral nail anti-
rotation (pfna®) in daily practice: Results of a multicentre clinical
study’, Injury, vol. 39, no. 8, pp. 932–939, 2008.

[12] J. Zou, Y. Xu and H. Yang, ‘A Comparison of Proximal Femoral Nail
Antirotation and Dynamic Hip Screw Devices in Trochanteric Frac-
tures’, en, Journal of International Medical Research, vol. 37, no. 4,
pp. 1057–1064, Aug. 2009.

[13] K. De Bruijn, D. den Hartog, W. Tuinebreijer and G. Roukema, ‘Reli-
ability of predictors for screw cutout in intertrochanteric hip frac-
tures’, eng, The Journal of Bone and Joint Surgery. American Volume,
vol. 94, no. 14, pp. 1266–1272, Jul. 2012.

[14] A. S. Kumar, V. Parmar, J. Bankart, S. Williams and W. Harper,
‘Comparison of accuracy of lag screw placement in cephalocondylic
nails and sliding hip screw plate �xation for extracapsular frac-
tures of the neck of femur’, International orthopaedics, vol. 30, no. 5,
pp. 320–324, 2006.

118



References
[15] A. S. Kumar, V. Parmar, S. Kolpattil, S. Humad, S. Williams and W.

Harper, ‘Signi�cance of hip rotation on measurement of tip apex
distance during �xation of extracapsular proximal femoral frac-
tures’, Injury, vol. 38, no. 7, pp. 792–796, 2007.

[16] M. B. Sommers, C. Roth, H. Hall, B. C. Kam, L. W. Ehmke, J. C. Krieg,
S. M. Madey andM. Bottlang, ‘A laboratorymodel to evaluate cutout
resistance of implants for pertrochanteric fracture �xation’, Journal
of orthopaedic trauma, vol. 18, no. 6, pp. 361–368, 2004.

[17] A. Lobo-Escolar, E. Joven, D. Iglesias and A. Herrera, ‘Predictive
factors for cutting-out in femoral intramedullary nailing’, Injury,
vol. 41, no. 12, pp. 1312–1316, 2010.

[18] A. Lenich, H. Vester, M. Nerlich, E. Mayr, U. Stöckle and B. Fücht-
meier, ‘Clinical comparison of the second and third generation of
intramedullary devices for trochanteric fractures of the hip-blade
vs screw’, Injury, vol. 41, no. 12, pp. 1292–1296, 2010.

[19] G. H. Van Lenthe and R. Müller, ‘Ct-based visualization and quanti-
�cation of bone microstructure in vivo’, IBMSBoneKEy, vol. 5, no. 11,
pp. 410–425, 2008.

[20] J. Vander Sloten and G. van Lenthe, ‘Towards improved assessment
of bone fracture risk’, in Advanced Technologies for Enhanced Quality
of Life, 2009. AT-EQUAL’09., IEEE, 2009, pp. 21–21.

[21] P. Prendergast, ‘Finite element models in tissue mechanics and
orthopaedic implant design’, Clinical Biomechanics, vol. 12, no. 6,
pp. 343–366, 1997.

[22] Y. Bourgeois, Y. Petit and Y. G-La�amme, ‘Finite element model of
a greater trochanteric reattachment system’, in Engineering inMedi-
cine and Biology Society (EMBC), 2010 Annual International Conference of
the IEEE, IEEE, 2010, pp. 3926–3929.

[23] M. Baumgaertner R, S. Curtin, D. Lindskog and J. Keggi, ‘The value
of the tip-apex distance in predicting failure of �xation of per-

119



References
itrochanteric fractures of the hip’, English, Journal of Bone & Joint
Surgery-American Volume, vol. 77, no. 7, pp. 1058–64, Jul. 1995.

[24] M. R. Baumgaertner and B. D. Solberg, ‘Awareness of Tip-Apex Dis-
tance Reduces Failure of Fixation of Trochanteric Fractures of the
Hip’, en, J Bone Joint Surg Br, vol. 79-B, no. 6, pp. 969–971, Nov.
1997.

[25] J. A. Geller, C. Sai�, T. A. Morrison and W. Macaulay, ‘Tip-apex
distance of intramedullary devices as a predictor of cut-out fail-
ure in the treatment of peritrochanteric elderly hip fractures’, en,
International Orthopaedics, vol. 34, no. 5, pp. 719–722, Jun. 2010.

[26] H. Pervez, M. J. Parker and S. Vowler, ‘Prediction of �xation failure
after sliding hip screw �xation’, Injury, vol. 35, no. 10, pp. 994–998,
2004.

[27] M. Güven, U. Yavuz, B. Kadıoğlu, B. Akman, V. Kılınçoğlu, K. Ünay
and F. Altıntaş, ‘Importance of screw position in intertrochanteric
femoral fractures treated by dynamic hip screw’, Orthopaedics&Trau-
matology: Surgery & Research, vol. 96, no. 1, pp. 21–27, 2010.

[28] R. Fisker,Making deformable templatemodels operational. Institute of
Mathematical Modelling, Technical University of Denmark, 2000.

[29] A. K. Jain, Y. Zhong and M.-P. Dubuisson-Jolly, ‘Deformable tem-
plate models: A review’, Signal processing, vol. 71, no. 2, pp. 109–129,
1998.

[30] T. Cootes, D. Cristinacce and V. Petrovic, ‘Statistical Models of Shape
and Texture for Face Recognition’, Toward Category-Level Object Re-
cognition, pp. 525–542, 2006.

[31] P. Martins, J. F. Henriques, R. Caseiro and J. Batista, ‘Bayesian con-
strained local models revisited’, IEEE transactions on pattern analysis
and machine intelligence, vol. 38, no. 4, pp. 704–716, 2016.

[32] G. S. Muralidhar, A. C. Bovik, J. D. Giese, M. P. Sampat, G. J. Whit-
man, T. M. Haygood, T. W. Stephens and M. K. Markey, ‘Snak-
ules: A Model-Based Active Contour Algorithm for the Annotation

120



References
of Spicules on Mammography’, IEEE Transactions onMedical Imaging,
vol. 29, no. 10, pp. 1768–1780, Oct. 2010.

[33] T. F. Cootes, M. C. Ionita, C. Lindner and P. Sauer, ‘Robust and ac-
curate shape model �tting using random forest regression voting’,
in European Conference on Computer Vision, Springer, 2012, pp. 278–
291.

[34] T. Mutsvangwa, V. Burdin, C. Schwartz and C. Roux, ‘An automated
statistical shape model developmental pipeline: Application to the
human scapula and humerus’, IEEE Transactions on Biomedical En-
gineering, vol. 62, no. 4, pp. 1098–1107, 2015.

[35] M. Kass, A. Witkin and D. Terzopoulos, ‘Snakes: Active contour
models’, International journal of computer vision, vol. 1, no. 4, pp. 321–
331, 1988.

[36] T. F. Cootes, C. J. Taylor, D. H. Cooper and J. Graham, ‘Training
models of shape from sets of examples’, in BMVC92, Springer, 1992,
pp. 9–18.

[37] T. Albrecht, M. Lüthi and T. Vetter, ‘Deformable models’, Encyclo-
pedia of Biometrics, pp. 337–343, 2015.

[38] T. McInerney and D. Terzopoulos, ‘Deformable models in med-
ical image analysis: A survey’, Medical image analysis, vol. 1, no. 2,
pp. 91–108, 1996.

[39] T. F. Cootes and C. J. Taylor, ‘Active shape models-’smart snakes’.’,
in BMVC, vol. 92, 1992, pp. 266–275.

[40] G. J. Edwards, T. F. Cootes and C. J. Taylor, ‘Face recognition using
active appearance models’, in European conference on computer vision,
Springer, 1998, pp. 581–595.

[41] ——, ‘Advances in active appearance models’, in Computer Vision,
1999. The Proceedings of the Seventh IEEE International Conference on,
IEEE, vol. 1, 1999, pp. 137–142.

121



References
[42] T. F. Cootes, G. J. Edwards and C. J. Taylor, ‘Active appearance

models’, IEEE Transactions on pattern analysis andmachine intelligence,
vol. 23, no. 6, pp. 681–685, 2001.

[43] D. Cristinacce and T. F. Cootes, ‘Feature detection and tracking with
constrained local models.’, in BMVC, vol. 1, 2006, p. 3.

[44] D. Cristinacce and T. Cootes, ‘Automatic feature localisation with
constrained localmodels’, PatternRecognition, vol. 41, no. 10, pp. 3054–
3067, 2008.

[45] Y. Wang, S. Lucey and J. F. Cohn, ‘Enforcing convexity for improved
alignment with constrained local models’, in Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE, 2008,
pp. 1–8.

[46] C. Lindner, S. Thiagarajah, J. Wilkinson, T. Consortium, G. Wallis
and T. Cootes, ‘Fully automatic segmentation of the proximal femur
using random forest regression voting’, IEEE transactions on medical
imaging, vol. 32, no. 8, pp. 1462–1472, 2013.

[47] A. Asthana, S. Zafeiriou, S. Cheng and M. Pantic, ‘Robust discrim-
inative response map �tting with constrained local models’, in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2013, pp. 3444–3451.

[48] T. Baltrusaitis, P. Robinson and L.-P. Morency, ‘Constrained local
neural �elds for robust facial landmark detection in the wild’, in
Computer Vision Workshops (ICCVW), 2013 IEEE International Conference
on, IEEE, 2013, pp. 354–361.

[49] A. Zadeh, T. Baltrusaitis and L.-P. Morency, ‘Convolutional experts
network for facial landmark detection’, in Proceedings of the Inter-
national Conference on Computer Vision & Pattern Recognition (CVPRW),
Faces-in-the-wild Workshop/Challenge, vol. 3, 2017, p. 6.

[50] S. Lucey, Y. Wang, M. Cox, S. Sridharan and J. F. Cohn, ‘E�cient
constrained local model �tting for non-rigid face alignment’, Image
and vision computing, vol. 27, no. 12, pp. 1804–1813, 2009.

122



References
[51] S. Lucey, Y. Wang, J. Saragih and J. F. Cohn, ‘Non-rigid face track-

ing with enforced convexity and local appearance consistency con-
straint’, Image and vision computing, vol. 28, no. 5, pp. 781–789,
2010.

[52] J. M. Saragih, S. Lucey and J. F. Cohn, ‘Face alignment through
subspace constrained mean-shifts’, in Computer Vision, 2009 IEEE
12th International Conference on, Ieee, 2009, pp. 1034–1041.

[53] ——, ‘Deformable model �tting by regularized landmark mean-
shift’, International Journal of Computer Vision, vol. 91, no. 2, pp. 200–
215, 2011.

[54] P. Martins, R. Caseiro, J. F. Henriques and J. Batista, ‘Likelihood-
enhanced Bayesian constrained local models’, in Image Processing
(ICIP), 2014 IEEE International Conference on, IEEE, 2014, pp. 303–307.

[55] C. Lindner, ‘Statistical shape analysis of the proximal femur: De-
velopment of a fully automatic segmentation system and its applic-
ations’, PhD thesis, University of Manchester, 2014.

[56] C. Lindner, P. A. Bromiley, M. C. Ionita and T. F. Cootes, ‘Robust and
accurate shape model matching using random forest regression-
voting’, IEEE transactions on pattern analysis and machine intelligence,
vol. 37, no. 9, pp. 1862–1874, 2015.

[57] P. A. Bromiley, J. E. Adams and T. F. Cootes, ‘Localisation of ver-
tebrae on DXA images using constrained local models with random
forest regression voting’, in Recent Advances in Computational Meth-
odsandClinical Applications for Spine Imaging, Springer, 2015, pp. 159–
171.

[58] M. E. Tipping and C. M. Bishop, ‘Mixtures of probabilistic principal
component analyzers’, Neural computation, vol. 11, no. 2, pp. 443–
482, 1999.

[59] L. Torresani, A. Hertzmann and C. Bregler, ‘Nonrigid structure-
from-motion: Estimating shape and motion with hierarchical pri-

123



References
ors’, IEEE transactions onpatternanalysis andmachine intelligence, vol. 30,
no. 5, pp. 878–892, 2008.

[60] D. S. Bolme, B. A. Draper and J. R. Beveridge, ‘Average of synthetic
exact �lters’, in Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, IEEE, 2009, pp. 2105–2112.

[61] D. S. Bolme, J. R. Beveridge, B. A. Draper and Y. M. Lui, ‘Visual
object tracking using adaptive correlation �lters’, in Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on, IEEE, 2010,
pp. 2544–2550.

[62] I. L. Dryden and K. V. Mardia, Statistical analysis of shape. Wiley,
1998.

[63] D. G. Kendall, ‘A survey of the statistical theory of shape’, Statistical
Science, pp. 87–99, 1989.

[64] T. F. Cootes, A. Hill, C. J. Taylor and J. Haslam, ‘The use of active
shape models for locating structures in medical images’, in Biennial
International Conference on Information Processing in Medical Imaging,
Springer, 1993, pp. 33–47.

[65] T. F. Cootes, A. Hill, C. J. Taylor and J. Haslam, ‘Use of active shape
models for locating structures in medical images’, Image and vision
computing, vol. 12, no. 6, pp. 355–365, 1994.

[66] T. F. Cootes, C. J. Taylor, D. H. Cooper and J. Graham, ‘Active shape
models-their training and application’, Computer vision and image
understanding, vol. 61, no. 1, pp. 38–59, 1995.

[67] T. F. Cootes, C. J. Taylor et al., Statisticalmodels of appearance for com-
puter vision. Technical report, University of Manchester, 2004.

[68] D. Cristinacce and T. F. Cootes, ‘A comparison of shape constrained
facial feature detectors’, in Automatic Face and Gesture Recognition,
2004. Proceedings. Sixth IEEE International Conference on, IEEE, 2004,
pp. 375–380.

[69] D. Barber, Bayesian reasoning and machine learning, eng. Cambridge:
Cambridge University Press, 2012.

124



References
[70] K. P.Murphy,Machine learning: aprobabilistic perspective, eng, ser. Ad-

aptive computation andmachine learning. Cambridge, Mass. ; Lon-
don: MIT Press, 2012.

[71] W. Huizinga, D. H. J. Poot, J. .-.-M. Guyader, R. Klaassen, B. F.
Coolen, M. van Kranenburg, R. J. M. van Geuns, A. Uitterdijk, M.
Pol�iet, J. Vandemeulebroucke, A. Leemans, W. J. Niessen and S.
Klein, ‘PCA-based groupwise image registration for quantitative
MRI’, Medical Image Analysis, vol. 29, pp. 65–78, Apr. 2016.

[72] J. E. Iglesias and N. Karssemeijer, ‘Robust Initial Detection of Land-
marks in Film-ScreenMammograms UsingMultiple FFDMAtlases’,
IEEE Transactions on Medical Imaging, vol. 28, no. 11, pp. 1815–1824,
Nov. 2009.

[73] G. Quellec, S. R. Russell and M. D. Abràmo�, ‘Optimal �lter frame-
work for automated, instantaneous detection of lesions in retinal
images’, IEEE transactions onmedical imaging, vol. 30, no. 2, pp. 523–
533, 2011.

[74] A. L. Samuel, ‘Some studies in machine learning using the game of
checkers’, IBM Journal of research and development, vol. 44, no. 1.2,
pp. 206–226, 2000.

[75] G. Isabelle, ‘Feature extraction foundations and applications. pat-
tern recognition’, 2006.

[76] T. M. Mitchell, ‘Machine learning. 1997’, Burr Ridge, IL: McGrawHill,
vol. 45, no. 37, pp. 870–877, 1997.

[77] T. M. Mitchell, ‘Does machine learning really work?’, AI magazine,
vol. 18, no. 3, p. 11, 1997.

[78] T. M. Mitchell, The discipline of machine learning. Carnegie Mellon
University, School of Computer Science, Machine Learning Depart-
ment, 2006, vol. 3.

[79] C. Bishop, ‘Pattern recognition and machine learning (informa-
tion science and statistics), 1st edn. 2006. corr. 2nd printing edn’,
Springer, New York, 2007.

125



References
[80] Y. Anzai, PatternRecognition andMachine Learning, English, 1 edition.

Morgan Kaufmann, Dec. 2012.
[81] M. I. Jordan and T. M. Mitchell, ‘Machine learning: Trends, per-

spectives, and prospects’, Science, vol. 349, no. 6245, pp. 255–260,
2015.

[82] S. Theodoridis,Machine learning: aBayesianandoptimizationperspect-
ive. Academic Press, 2015.

[83] S. Belongie, J. Malik and J. Puzicha, ‘Shape context: A new descriptor
for shape matching and object recognition’, in Advances in neural in-
formation processing systems, 2001, pp. 831–837.

[84] M. Yang, K. Kpalma and J. Ronsin, ‘A survey of shape feature ex-
traction techniques’, in. IN-TECH, 2008.

[85] Y. Zhao and S. Belkasim, ‘Multiresolution fourier descriptors for
multiresolution shape analysis’, IEEESignal ProcessingLetters, vol. 19,
no. 10, pp. 692–695, 2012.

[86] N. Sebe and M. S. Lew, ‘Texture features for content-based re-
trieval’, in Principles of visual information retrieval, Springer, 2001,
pp. 51–85.

[87] M. S. Nixon and A. S. Aguado, Feature extraction & image processing
for computer vision. Academic Press, 2012.

[88] O. Van Kaick, H. Zhang, G. Hamarneh and D. Cohen-Or, ‘A survey
on shape correspondence’, in Computer Graphics Forum, Wiley Online
Library, vol. 30, 2011, pp. 1681–1707.

[89] T. F. Cootes, C. J. Taylor et al., ‘Statistical models of appearance for
medical image analysis and computer vision’, in Proc. SPIE medical
imaging, vol. 4322, 2001, p. 5.

[90] S. C. Mitchell, B. P. Lelieveldt, R. J. van der Geest, J. Schaap, J. H.
Reiber andM. Sonka, ‘Segmentation of cardiac mr images: An active
appearance model approach’, inMedical Imaging 2000, International
Society for Optics and Photonics, 2000, pp. 224–234.

126



References
[91] M. Poon, G. Hamarneh and R. Abugharbieh, ‘E�cient interactive 3d

livewire segmentation of complex objects with arbitrary topology’,
Computerized Medical Imaging and Graphics, vol. 32, no. 8, pp. 639–
650, 2008.

[92] Y.-C. J. Hu, M. D. Grossberg and G. S. Mageras, ‘Semi-automatic
medical image segmentation with adaptive local statistics in con-
ditional random �elds framework’, in Engineering in Medicine and
Biology Society, 2008. EMBS 2008. 30th Annual International Conference
of the IEEE, IEEE, 2008, pp. 3099–3102.

[93] A. Saad, G. Hamarneh and T. Moller, ‘Exploration and visualization
of segmentation uncertainty using shape and appearance prior in-
formation’, IEEE Transactions on Visualization and Computer Graphics,
vol. 16, no. 6, pp. 1366–1375, 2010.

[94] Y.-F. Chen, P.-C. Huang, K.-C. Lin, H.-H. Lin, L.-E. Wang, C.-C.
Cheng, T.-P. Chen, Y.-K. Chan and J. Y. Chiang, ‘Semi-automatic
segmentation and classi�cation of pap smear cells’, IEEE Journal of
Biomedical and Health Informatics, vol. 18, no. 1, pp. 94–108, 2014.

[95] P. F. Felzenszwalb, R. B. Girshick, D. McAllester and D. Ramanan,
‘Object Detection with Discriminatively Trained Part-Based Mod-
els’, IEEETransactions onPatternAnalysis andMachine Intelligence, vol. 32,
no. 9, pp. 1627–1645, Sep. 2010.

[96] T. Malisiewicz, A. Gupta and A. A. Efros, ‘Ensemble of exemplar-
SVMs for object detection and beyond’, in 2011 International Confer-
ence on Computer Vision, Nov. 2011, pp. 89–96.

[97] D. Oliver, R. Gri�ths, J. Roche and O. Sahota, ‘Hip fracture’, BMJ
clinical evidence, vol. 2010, 2010.

[98] J. Manninger and G. Kazár, ‘Pathology of femoral neck fractures’,
in Internal �xation of femoral neck fractures: An atlas, J. Manninger, U.
Bosch, P. Cserháti, K. Fekete and G. Kazár, Eds. Vienna: Springer
Vienna, 2007, pp. 29–51.

127



References
[99] C. Bulstrode, J. Wilson-MacDonald, D. M. Eastwood and J. Fairbank,

Oxford textbook of trauma and orthopaedics. Oxford University Press,
2011.

[100] P. Adam, ‘Treatment of recent trochanteric fracture in adults’, Or-
thopaedics & Traumatology: Surgery & Research, vol. 100, no. 1, S75–
S83, 2014.

[101] B. Gullberg, O. Johnell and J. Kanis, ‘World-wide projections for hip
fracture’, Osteoporosis international, vol. 7, no. 5, pp. 407–413, 1997.

[102] R. Osterkamp, ‘Population developments in germany until 2050’,
Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen, vol. 76,
no. 1, pp. 10–18, 2005.

[103] M. Parker and A. Johansen, ‘Hip fracture’, BMJ: BritishMedical Journal,
vol. 333, no. 7557, p. 27, 2006.

[104] T. Goodman and C. Spry, Essentials of perioperative nursing. Jones &
Bartlett Publishers, 2016.

[105] J. Ahn and J. Bernstein, ‘In brief: Fractures in brief: Intertrochanteric
hip fractures’, Clinical Orthopaedics and Related Research®, vol. 468,
no. 5, pp. 1450–1452, 2010.

[106] H. Andruszkow, M. Frink, C. Fromke, A. Matityahu, C. Zeckey, P.
Mommsen, S. Suntardjo, C. Krettek and F. Hildebrand, ‘Tip apex
distance, hip screw placement, and neck shaft angle as potential
risk factors for cut-out failure of hip screws after surgical treat-
ment of intertrochanteric fractures’, en, International Orthopaedics,
vol. 36, no. 11, pp. 2347–2354, Nov. 2012.

[107] V. Parmar and A. S. Kumar, ‘The importance of surgical education
in the accuracy of implant placement during hip fracture �xation’,
Journal of Orthopaedics and Traumatology, vol. 10, no. 2, pp. 59–61,
2009.

[108] J. Rubio-Avila, K. Madden, N. Simunovic and M. Bhandari, ‘Tip to
apex distance in femoral intertrochanteric fractures: A systematic

128



References
review’, Journal of Orthopaedic Science, vol. 18, no. 4, pp. 592–598,
2013.

[109] M. J. Parker, ‘Cutting-out of the dynamic hip screw related to its
position’, Bone & Joint Journal, vol. 74, no. 4, pp. 625–625, 1992.

[110] L. J. Johnson, M. R. Cope, S. Shahrokhi and P. Tamblyn, ‘Measur-
ing tip-apex distance using a picture archiving and communication
system (PACS)’, Injury, vol. 39, no. 7, pp. 786–790, 2008.

[111] C. C. Mainds and R. J. Newman, ‘Implant failures in patients with
proximal fractures of the femur treated with a sliding screw device’,
Injury, vol. 20, no. 2, pp. 98–100, 1989.

[112] T. R. Davis, J. Sher, A. Horsman, M. Simpson, B. Porter and R.
Checketts, ‘Intertrochanteric femoral fractures. mechanical failure
after internal �xation’, Bone& Joint Journal, vol. 72, no. 1, pp. 26–31,
1990.

[113] J.-H. Chung, S.-Y. Ko, D.-S. Kwon, J.-J. Lee, Y.-S. Yoon and C.-H.
Won, ‘Robot-assisted femoral stem implantation using an intramedulla
gauge’, IEEE Transactions on Robotics and Automation, vol. 19, no. 5,
pp. 885–892, 2003.

[114] T. Mendel, M. Hänni, B. Gueorguiev, D. Wohlrab and G. O. Hof-
mann, ‘The virtual isocentric aiming device: A newmechanical tar-
geting concept’, Archives of orthopaedic and trauma surgery, vol. 131,
no. 12, pp. 1655–1662, 2011.

[115] E. J. Hazan, ‘Computer-assisted orthopaedic surgery: A new paradigm’,
Techniques in Orthopaedics, vol. 18, no. 2, pp. 221–229, 2003.

[116] C. T. Mehlman and T. G. DiPasquale, ‘Radiation exposure to the
orthopaedic surgical team during �uoroscopy:" how far away is far
enough?"’, Journal of orthopaedic trauma, vol. 11, no. 6, pp. 392–398,
1997.

[117] J. A. Alonso, A. Maxwell, D. Shaw and G. Hart, ‘Scattered radiation
during �xation of hip fractures-is distance alone enough protec-
tion’, in Engineering in Medicine and Biology Society, 2000. Proceedings

129



References
of the 22nd Annual International Conference of the IEEE, IEEE, vol. 2,
2000, pp. 995–997.

[118] G. Singer, ‘Occupational radiation exposure to the surgeon’, Journal
of theAmericanAcademyofOrthopaedic Surgeons, vol. 13, no. 1, pp. 69–
76, 2005.

[119] D. M. Kahler, ‘Image guidance: Fluoroscopic navigation.’, Clinical
orthopaedics and related research, vol. 421, pp. 70–76, 2004.

[120] K. T. Foley, D. A. Simon and Y. R. Rampersaud, ‘Virtual �uoroscopy:
Computer-assisted �uoroscopic navigation’, Spine, vol. 26, no. 4,
pp. 347–351, 2001.

[121] H. H. Handoll andM. J. Parker, ‘Conservative versus operative treat-
ment for hip fractures in adults’, The Cochrane Library, 2008.

[122] M. Müller, P. Belei, M. de la Fuente, M. Strake, O. Weber, C. Burger,
K. Radermacher and D.Wirtz, ‘Evaluation of a 2d �uoroscopy-based
navigation system for insertion of the dynamic hip screw (dhs): An
experimental study’, RoFo: Fortschritte auf dem Gebiete der Rontgen-
strahlen und der Nuklearmedizin, vol. 183, no. 6, pp. 536–542, 2011.

[123] D. Mayman, E. Vasarhelyi, W. Long, R. Ellis, J. Rudan and D. Pi-
chora, ‘Computer-assisted guidewire insertion for hip fracture �x-
ation’, Journal of orthopaedic trauma, vol. 19, no. 9, pp. 610–615,
2005.

[124] A. B. Okoli, J. B. Penny, W. L. Woo and S. S. Dlay, ‘Guidewire inser-
tion planning for extracapsular hip fracture surgery’, in Biomed-
ical Circuits and Systems Conference (BioCAS), 2014 IEEE, IEEE, 2014,
pp. 105–108.

[125] J. Dujardin and D. Slice, ‘Geometric morphometrics. contributions
to medical entomology’, Encyclopedia of Infectious Diseases. Modern
Methodologies, Wiley & Sons, pp. 435–447, 2007.

[126] J.-P. Dujardin, ‘Morphometrics applied to medical entomology’, In-
fection, Genetics and Evolution, vol. 8, no. 6, pp. 875–890, 2008.

130



References
[127] C. F. Hester and D. Casasent, ‘Multivariant technique for multiclass

pattern recognition’, Applied Optics, vol. 19, no. 11, pp. 1758–1761,
1980.

[128] P. Viola and M. Jones, ‘Rapid object detection using a boosted cas-
cade of simple features’, in Proceedings of the 2001 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition. CVPR 2001,
vol. 1, 2001, I–511–I–518 vol.1.

[129] C. Lindner, S. Thiagarajah, J. M.Wilkinson, G. A.Wallis, T. F. Cootes,
arcOGEN Consortium et al., ‘Accurate bone segmentation in 2d ra-
diographs using fully automatic shape model matching based on
regression-voting’, in International ConferenceonMedical ImageCom-
puting and Computer-Assisted Intervention, Springer, 2013, pp. 181–
189.

[130] T. Ojala, M. Pietikäinen and D. Harwood, ‘A comparative study of
texture measures with classi�cation based on featured distribu-
tions’, Pattern recognition, vol. 29, no. 1, pp. 51–59, 1996.

[131] N. Dalal and B. Triggs, ‘Histograms of oriented gradients for hu-
man detection’, in ComputerVisionandPatternRecognition, 2005. CVPR
2005. IEEEComputer SocietyConferenceon, IEEE, vol. 1, 2005, pp. 886–
893.

[132] O. Alexa, B. Veliceasa, B. Puha and D. Cimpoesu, ‘Digital templat-
ing in surgical treatment of trochanteric fractures’, in E-Health and
Bioengineering Conference (EHB), 2013, IEEE, 2013, pp. 1–4.

[133] A. Herman, A. Dekel, I. B. Botser and E. L. Steinberg, ‘Computer-
assisted surgery for dynamic hip screw, using Surgix, a novel in-
traoperative guiding system’, en, The International Journal of Medical
Robotics and Computer Assisted Surgery, vol. 5, no. 1, pp. 45–50, Mar.
2009.

[134] J. Sauro, ‘Estimating productivity: Composite operators for key-
stroke levelmodeling’, in International ConferenceonHuman-Computer
Interaction, Springer, 2009, pp. 352–361.

131



References
[135] T. O. Ozanian and R. Phillips, ‘Image analysis for computer-assisted

internal �xation of hip fractures’, Medical Image Analysis, vol. 4,
no. 2, pp. 137–159, 2000.

[136] A. R. Hsu, C. E. Gross, S. Bhatia and B. R. Levine, ‘Template-directed
instrumentation in total knee arthroplasty: Cost savings analysis’,
Orthopedics, vol. 35, no. 11, e1596–e1600, 2012.

[137] R. Greiner-Perth, Y. Allam, H. El-Saghir, F. Röhl, J. Franke and
H. Böhm, ‘Analysis of reoperations after surgical treatment of de-
generative cervical spine disorders: A report on 900 cases’, Central
European Neurosurgery, vol. 70, no. 01, pp. 3–8, 2009.

[138] R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton and C. J.
Taylor, ‘Aminimumdescription length approach to statistical shape
modeling’, IEEETransactions onMedical Imaging, vol. 21, no. 5, pp. 525–
537, 2002.

[139] R. Pilgram, C. Walch, M. Blauth, W. Jaschke, R. Schubert and V.
Kuhn, ‘Knowledge-based femur detection in conventional radio-
graphs of the pelvis’, Computers inBiologyandMedicine, vol. 38, no. 5,
pp. 535–544, May 2008.

[140] M. Lüthi, T. Gerig, C. Jud and T. Vetter, ‘Gaussian process morph-
able models’, IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 2017.

[141] Q. Zhao, K. Okada, K. Rosenbaum, D. J. Zand, R. Sze, M. Summar
and M. G. Linguraru, ‘Hierarchical constrained local model using
ica and its application to down syndrome detection’, in Interna-
tional Conference on Medical Image Computing and Computer-Assisted
Intervention, Springer, 2013, pp. 222–229.

[142] T. Albrecht, M. Luthi, T. Gerig and T. Vetter, ‘Posterior shape mod-
els’, Medical image analysis, vol. 17, no. 8, pp. 959–973, 2013.

[143] I. Matthews and S. Baker, ‘Active appearance models revisited’,
International journal of computer vision, vol. 60, no. 2, pp. 135–164,
2004.

132



References
[144] R. Tokola and D. Bolme, ‘Ensembles of correlation �lters for object

detection’, in Applications of Computer Vision (WACV), 2015 IEEEWinter
Conference on, IEEE, 2015, pp. 935–942.

[145] H. Kiani Galoogahi, T. Sim and S. Lucey, ‘Correlation �lters with
limited boundaries’, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 4630–4638.

[146] ——, ‘Multi-channel correlation �lters’, in Proceedings of the IEEE
International Conference on Computer Vision, 2013, pp. 3072–3079.

[147] P. R. Kuzyk, R. Zdero, S. Shah, M. Olsen, J. P. Waddell and E. H.
Schemitsch, ‘Femoral head lag screw position for cephalomedullary
nails: A biomechanical analysis’, Journal of orthopaedic trauma, vol. 26,
no. 7, pp. 414–421, 2012.

[148] S. Li, S.-M. Chang, Y.-M. Jin, Y.-Q. Zhang, W.-X. Niu, S.-C. Du,
L.-Z. Zhang and H. Ma, ‘A mathematical simulation of the tip-
apex distance and the calcar-referenced tip-apex distance for in-
tertrochanteric fractures reduced with lag screws’, Injury, vol. 47,
no. 6, pp. 1302–1308, 2016.

[149] J. M. Go�n, P. J. Jenkins, R. Ramaesh, P. Pankaj and A. H. Simpson,
‘What is the relevance of the tip-apex distance as a predictor of lag
screw cut-out?’, PloS one, vol. 8, no. 8, e71195, 2013.

133





Appendices

135





Appendix A

A.1 Tip-Apex Distance Illustrated

Figure A.1: This illustrates how TAD is computed taking into account the
views and other parameters (adapted from Go�n et al. [149]).

TAD =

(
Xap ×

Dap

Dtrue

)
+

(
Xlat ×

Dlat

Dtrue

)
(A.1.1)

Where: Dap = implant diameter in AP view. Dlat = implant diameter in
lateral view. Xap = distance between the tip of the implant and the apex in
the AP view. Xlat = distance between the tip of the implant and the apex
in the AP view. Dtrue = actual diameter of the implant.
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A.2 Typical implants used in Extracapsular Hip
Fracture Surgery

Figure A.2: Examples of implants used for intramedullary nailing.

(a) Well-aligned Implant (b) Cutout Incident

Figure A.3: How an implant looks under an x-ray
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A.3 Centre coordinates and radii plots for the Semi-automatic Tool
A.3 Centre coordinates and radii plots for the

Semi-automatic Tool

Figure A.4: Plots of the computed femoral head centre for 6 images shown
along with the radius of the circumscribing circle.
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A.4 Overview of Template-Based Object Matching
Techniques

Figure A.5: An overview of Template-based Object-Matching Techniques
(adapted from Jain et al. [29] )
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