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Abstract 

Groundwater use for small-scale irrigation in sub-Saharan Africa is low, though is 

expected to increase in the near future. There is currently limited understanding of 

shallow groundwater resources, which are most likely to be exploited by poor rural 

communities due to their accessibility. This PhD study aimed to determine the potential 

for use of shallow groundwater for small-scale irrigation and the resilience of the 

resources to increased abstraction, land-use change and climate variability. 

Research was conducted principally at a study site in northwest Ethiopia with seasonal 

rainfall and a predominance of rainfed agriculture. The shallow aquifer comprises a thin 

weathered regolith above largely impermeable basalt. Hydrochemistry analyses 

suggested little connection between the shallow aquifer and a deep fractured aquifer.  

To fill gaps in formal hydrometeorological monitoring, a community-based monitoring 

programme was initiated. Statistical comparisons confirmed that the datasets were of as 

high or higher quality as those from formal networks, remote sensing and reanalyses.  

A recharge assessment estimated annual recharge of 280-430 mm, confirming that a 

sufficient renewable shallow groundwater resource is available for small-scale irrigation. 

Four nested catchments were modelled using SHETRAN, a physically-based spatially-

distributed modelling program. The modelling identified the foot of hillslopes and narrow 

valleys as showing the greatest potential for irrigated agriculture as groundwater in those 

locations remained available and accessible for the longest periods. Potential future 

scenarios were run in the SHETRAN models considering likely climate variability, land 

use change and increasing abstraction. Around 35% of arable land in the modelled 

catchments had shallow groundwater available throughout the dry season. During 

simulated multi-year droughts, a significant percentage of arable land still had sufficient 

groundwater available for irrigation of a second growing season. Conversion of pasture 

and scrubland to cultivated land did not have a significant impact on water resources 

while degradation of highlands to bareground had a positive impact. The severest impact 

on water resources resulted from increased coverage of Eucalyptus. Notably, simulation 

of increased abstraction and irrigation at smallholder levels had little impact on surface 

and groundwater availability. 

This study demonstrates the potential for greater exploitation of shallow groundwater for 

small-scale irrigation by rural communities and the resilience of the resource to climate 

variability, land use change and increasing abstraction. 
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Chapter 1. Introduction 

 

1.0 Chapter summary 

This chapter provides the context of the PhD research, which will be explored in greater 

detail in Chapter 2. The overall aims are presented along with the research questions that 

this study attempts to answer. A general methodology states how the research was 

conducted and how the chapters link together. Finally, an outline of the thesis explains 

what can be found in each chapter. 

1.1 Context 

The availability of groundwater in Africa and its potential for agricultural use has been 

increasingly reported in recent years with many authors predicting that a rapid expansion 

in groundwater exploitation may be about to happen in sub-Saharan Africa (SSA) 

(MacDonald et al., 2012a; Namara et al., 2013; Pavelic et al., 2013a; Villholth, 2013; 

Baguma et al., 2017). Such a growth in the exploitation of groundwater resources in South 

and East Asia since the 1970s promoted improved living standards and fostered economic 

development (Calow et al., 2009a; Narayanamoorthy, 2010). MacDonald et al. (2012a) 

estimate the total groundwater storage in Africa to be 0.66 million km3. Despite this 

seemingly extremely high groundwater availability, over 90% of agriculture in Africa is 

rainfed (Wani et al., 2009; McClain, 2013) and Siebert et al. (2010) report that only 3.3% 

of arable land in SSA is irrigated, compared to 37% in Asia (Figure 1-1). Such figures 

suggest there is ample water and space to expand areas under irrigation. Indeed, the 

renewable groundwater resources per capita in some of the Asian countries that 

experienced the “Green Revolution” stand at ~600 m3/a in China and ~400 m3/a in India, 

while in SSA the available quantity is ~2400 m3/a (FAO (2003) cited in Giordano (2006)). 

Considering the sustainability of the available resource, Frenken (2005) using FAO 

AQUASTAT data, showed that the Sudano-Sahel region uses only 35% of its total 

internally renewable water resource while coastal West Africa uses just 1.3%. The maps 

in Figure 1-1 show a remarkable contrast between Asia and Africa; however, fifty years 

ago, prior to the Green Revolution, the Asia map would have looked similar to how the 

Africa map looks today. 
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Figure 1-1. Comparison between South and East Asia, and Africa of percentage area irrigated by 

groundwater (adapted from Siebert et al. (2010)). 

Small-scale irrigation, in particular from groundwater, is increasingly promoted by 

governments, donors and NGOs as an important tool to alleviate poverty, improve food 

security, boost rural employment and economic development, promote gender equality, 

and mitigate against increasing climate variability (Kay, 2001; Ngigi and Denning, 2009; 

Abric et al., 2011; Villholth, 2013). In the latter case, groundwater behaviour is significant 

in that it responds slowly to drought, unlike the “flashy” response of surface water (Figure 

1-2). Therefore, groundwater is considered able to buffer short-term climate impacts 

(Calow et al., 1997; MacDonald et al., 2009). 

 

Figure 1-2. Contrasting response and recovery behaviour of groundwater and surface water to drought 

(from Robins and Fergusson (2014)). 

Smallholders themselves, where they can find the necessary means and finances, prefer 

groundwater irrigation in comparison to large-scale irrigation schemes, due to the 
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autonomy it provides and the enhanced livelihoods created by moving from subsistence 

to market-oriented agriculture (Giordano et al., 2012; Dittoh et al., 2013). Groundwater 

is further preferred because it is generally available at the point of use, can often be 

developed quickly with low capital cost by individuals, and is available on-demand 

(Foster and Shah, 2012). It is well documented that abundant groundwater abstracted via 

deep formal systems can provide secure and perennial water availability. However, 

deeper systems require large initial investment, high maintenance, and strict farmer 

organisation to deal with water-sharing. Shallow informal systems, which tend to be 

farmer-driven rather than in the control of the public sector, are spontaneous and 

autonomous (Kay, 2001; Villholth, 2013). For example: in Tanzania, surveys by Sokile 

and van Koppen (2004) revealed that more than 70% of water users prefer to settle water 

disputes via informal channels, such as local water users associations (WUAs), rather 

than relying on formal state-based institutions; and in Ghana, private smallholder 

irrigation already employs 45 times more people and covers 25 times more area than 

public irrigation schemes (Giordano et al., 2012).  

The focus of this study concerns the utilisation of shallow groundwater resources for 

small-scale irrigation. Notably, Figure 1-3 shows that low to moderate-yielding shallow 

aquifers predominate in the more densely populated areas. There is little agreement in the 

literature over how shallow is “shallow” when it comes to groundwater. For this research, 

shallow groundwater is defined as <25 m. Although there are exceptions around the 

world, 25 m depth is considered the maximum feasible limit of excavation of “hand-dug” 

wells (Watt and Wood, 1977; Abbott, 2013). In addition, much of the existing small-scale 

groundwater irrigation depends on a water table depth less than 5 m because of power 

limits on water-lifting and because of available technology. Motorised pumps are much 

less common than manual lifting methods in SSA – used in less than 20% of water-lifting 

cases in various surveys conducted by Namara et al. (2013) – due to smallholder farmers’ 

lack of capital and ability to obtain credit. This means that groundwater irrigation is 

restricted to shallow hand-dug wells for poorer farmers; depths of 50 m – the definition 

of shallow by some authors – cannot be regarded as easily accessible for small-scale 

irrigation. Because poor rural communities manually excavate wells, the predominance 

of consolidated and crystalline bedrock restricts the potential locations for manual well 

excavation. However, unconsolidated sediments cover approximately 25% of Africa 

(Guiraud, 1988). What’s more, when river valley sediments and regolith above crystalline 

basement or more recent volcanics are considered, the extent of the shallow geology with 
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potential for manually-excavated or manually-drilled wells becomes pervasive (a 

conclusion supported by the work of Fussi (2011); Fussi et al. (2016)).  

 

 

Figure 1-3. The aquifer productivity map across Africa, estimated depth to groundwater, and population 

density map (adapted from MacDonald et al. (2011)). 

The importance of these shallow materials as locally important aquifers is well reported. 

Typically simultaneously reported is the dearth of observations of such groundwater 

systems, in particular sustained time-series data (Martin and Van De Giesen, 2005; 

Robins et al., 2006; Calow et al., 2009b; MacDonald et al., 2009; Taylor et al., 2009; 

Ethiopian ATA, 2013). This scarcity of data leads to poor understanding of the resource. 

What’s more, any attempts to model the hydrogeological system to improve 

understanding would be problematic without monitoring data. Community-based 

monitoring data was utilised for this research to circumvent the issue of the lack of formal 

hydrometeorological time-series data. In addition to providing data in locations where 

there are sparse formal alternatives, benefits to the local community include an increased 

understanding of their resource and a sense of ownership and empowerment (Garduño 

and Foster, 2010; Conrad and Hilchey, 2011; Buytaert et al., 2014).  

It is not straightforward to define what is meant by “small-scale”, or “smallholder”, 

irrigation. The World Bank (2003) defines smallholders as those having a low asset base 
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and less than 2 ha of cropped land. The FAO defines smallholders as farmers with 

“limited resource endowments, relative to other farmers in the sector” (Dixon et al., 

2003). Essentially, “small-scale irrigation” is used to describe irrigation activities of small 

spatial extent and/or involving a low number of irrigating farmers, although it is also 

applied to irrigation schemes that have a high degree of local involvement at planning 

and development stage, use locally available resources and technology, and have a local 

impact  (Adams and Carter, 1987). The latter such situation is frequently described as 

“informal” to draw a distinction from centrally planned and bureaucratically controlled 

schemes. While for many authors “informal” irrigation is synonymous with 

“smallholder”, it is noted that many others draw a distinction between “smallholder” and 

“small-scale” citing examples such as the large-scale irrigation projects in Egypt and 

Sudan of 50+ ha that are farmed by hundreds of smallholders each occupying <1 ha (Kay, 

2001). The only consensus on small farms seems to be the lack of a clear definition 

(Nagayets, 2005). The working definition used here is from Adams and Carter (1987), 

though in this study smallholder and small-scale irrigation are used interchangeably: 

“…the management of the supply of water to crops or other economically useful plants, 

which is organised and controlled by the landholder or groups of landholders; the extent 

of such activities does not normally exceed 10 ha per farm family, and may be as little as 

0.1 ha.” A study by Nagayets (2005) revealed that Ethiopia tops the list of African 

countries with small farms, having almost 9.5 million small farms (<2 ha), comprising 

87% of all farms within the country. Incidentally, the top two countries on the global list 

are China and India with ~190 million and ~93 million small farms. 

1.2 Aims 

The aims of this PhD research were, firstly, to determine the potential for small-scale 

irrigation and the resilience of shallow groundwater resources used by rural communities 

at a representative study site in Ethiopia. Secondly, to develop transferable methodologies 

for assessment of shallow groundwater resources throughout SSA. The following 

questions were researched: 

1. Do shallow aquifers have the requisite properties, in terms of hydraulic 

conductivity, potential well yield, specific yield, aquifer geometry and 

hydrochemistry, for productive groundwater use? 

2. Due to the scarcity of time-series data, are community-based hydrometeorological 

monitoring programmes able to produce useful, high quality data comparable to 

formal data sources? 
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3. Can shallow groundwater be considered a renewable resource, and; which 

recharge assessment methods provide the highest confidence in the calculated 

recharge amounts when applied to these types of aquifers?  

4. Are there identifiable zones that show the greatest potential for sustainable 

intensification of agriculture through shallow groundwater irrigation? 

5. How will climate variability, land use change and increased abstraction impact 

shallow groundwater resources and surface water? 

1.3 Study site  

The principal research, including field investigations, was conducted for a field site in 

Ethiopia (Figure 1-4). The field site was chosen to be representative of a much wider area. 

The site is currently reliant on rainfed agriculture though has been identified by the 

Ethiopian Agricultural Transformation Agency (ATA) as a location for potential future 

agricultural expansion: Currently 90-95% of farmed land in SSA is rainfed (Wani et al., 

2009; McClain, 2013). The field site is at high elevation within highlands and experiences 

high annual rainfall, which mostly falls during the five-month wet season; the Ethiopian 

Highlands are laterally extensive comprising 50% of Ethiopia, consequently they are 

known as the roof of Africa, and highland areas with >1000 mm/a seasonal rainfall exist 

across Central and West Africa (Frenken, 1997). Cenozoic volcanics underlie the field 

site: Around 40% of Ethiopia is underlain by Cenozoic volcanic rocks (Prave et al., 2016) 

and similar geology can be all along the East African Rift. Ethiopia is classified as a “low-

income economy” by the World Bank (World Bank, 2017b), which translates on the 

ground to poor access to agricultural equipment and markets and poor ability to cope with 

climate or other stresses: 27 of SSA’s 48 countries are classified as low-income. The 

study site is detailed in Chapters 3 and 4 while the transferability of the research is 

discussed further in Chapter 9. 
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 Figure 1-4. Study site location. 

1.4 Methodology  

A graphic showing the step-by-step methodology is presented in Figure 1-5. Following 

desk study analysis of data relating to the study sites, extensive field investigations were 

conducted during three visits to Ethiopia. Time-series hydrometeorological data were 

analysed from a community-based monitoring programme and formal sources for use in 

modelling studies. Recharge assessments were conducted to estimate the renewable 

shallow groundwater resource. Models were constructed combining data from field 

investigations and hydrometeorological monitoring. At local scales, community 

monitored networks allowed direct comparison between modelled hydrological responses 

and field observations of groundwater levels and river flow. The modelling furthered the 

development of the conceptual model, increasing understanding of the shallow 

groundwater system, and enabling production of groundwater potential zone maps that 

revealed the best locations for groundwater abstraction for productive use. Simulations 

were run with potential future climate variability, land use and abstraction scenarios. 

Modelling outputs were processed to assess the impact of these potential future scenarios 

on the shallow groundwater resource and on surface water resources.  

Dangila 

study site

Ethiopia
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Figure 1-5. Methodology flow chart. 

1.5 Thesis outline 

Chapter 1 gives the context of the research and defines terms used throughout the thesis, 

presents the aim and research questions, and introduces the methodology applied to 

answer those questions. 

Chapter 2 is a literature review that presents Asia’s “Green Revolution” as justification 

for the study as well as providing background information on African hydrogeology and 

the African climate. The chapter then reviews literature identifying the research gap this 

PhD study aims to fill. It is noted here that this thesis does not have a single all-inclusive 

literature review as each chapter and some sections within chapters have their own 

relevant literature reviews. 

Chapter 3 provides background information from desk study of the study site for which 

the research was predominantly conducted.  

Chapter 4 details the field investigations conducted at the study site that led to the 

development of the described conceptual model. 
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Chapter 5 concerns community-based monitoring, detailing the programme setup in order 

to gather hydrometeorological time-series data for the project. The chapter presents the 

statistical comparison study conducted against data from formal sources in order to assess 

the quality of the community data. 

Chapter 6 discusses groundwater recharge assessments. The multiple recharge estimation 

techniques applied are described and critically analysed.  

Chapter 7 presents the modelling of the shallow aquifer. Model selection, construction 

and calibration are described along with the resulting insights and update on the 

conceptual model. Maps of shallow groundwater potential for irrigation generated from 

the modelling are shown and discussed. 

Chapter 8 presents the modelling of potential future climate, land use and abstraction 

scenarios for assessment of impacts on the surface and shallow groundwater resources.  

Chapter 9 draws together findings from all chapters and presents conclusions with 

reference to the project aims. The chapter provides recommendations for stakeholders 

and discusses the transferability of the results and the methodology, and presents 

limitations of the study. Finally, suggestions are provided for future work. 
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Chapter 2. Literature review 

 

2.0 Chapter overview 

Firstly, information is provided on the “Green Revolution” that occurred in Asia in the 

1960s and 70s explaining the potential for irrigation to have positive impacts on food 

security, poverty alleviation, and gender equality, amongst other benefits. Justification 

for this PhD research is then provided with literature concerning how such a green 

revolution could occur in sub-Saharan Africa (SSA). This is followed by a background 

on African hydrogeology and the African climate along with projections of future changes 

to climate and land use. The chapter then details the research gap, namely: insufficient 

understanding of shallow aquifers in sub-Saharan Africa, their potential for productive 

use, and their resilience.  

2.1 The role of groundwater in Asia’s “Green Revolution”  

Growth in the exploitation of shallow groundwater resources in South and East Asia since 

the 1970s has promoted living standards and fostered economic development (Calow et 

al., 2009a; Narayanamoorthy, 2010). The impact on hunger and poverty from the 

explosion in use of groundwater irrigation (GWI), combined with the spread of higher 

yielding crops, fertilizers and modern pest control methods, has been such that it is known 

as Asia’s “Green Revolution” (Evenson and Gollin, 2003; Hazell, 2009).  

In Bangladesh, the area irrigated by groundwater increased from zero to 2.8 million ha 

between 1980 and 2000. From the 1950s to 2000, the number of mechanised wells in 

India increased from <100,000 to 19 million. In Bangladesh over the same time period 

the increase in mechanised wells was <1000 to 1 million, while in Hubei Province, China, 

mechanised wells increased from 730 to 840,000, and in Punjab, Pakistan, the number 

increased from <1000 to 500,000. In India, agricultural productivity increased by 80% 

per ha. Conversely, the number of people living below the poverty line from the 1970s to 

2000 decreased from 250 million to 29 million in China, from 45% to 28% in Pakistan 

and from 71% to 44% in Bangladesh. The latter figures are even more remarkable when 

it is considered that global population doubled from three to six billion between 1960 and 

2000, and in South and East Asia, national populations more than doubled (Palmer-Jones, 

1992; Shah et al., 2003; Hussain et al., 2006; World Bank, 2017b). 

The Green Revolution proved that the positive impacts from expansion of GWI can 

include, at the local level (list adapted from Bhattarai et al. (2001)):  



11 

 

 Greater food security as communities are less reliant on there being consistent 

rains 

 Increased cropping intensity 

 Crop diversification 

 More wealth to enable purchase of fertilizers, pesticides and insecticides leading 

to higher crop yield 

 Year-round cropping opportunities 

 Improved livelihoods 

 Increased farm employment 

 Less labour-intensive agriculture causing increased school attendance 

 Improved gender equality because girls are no longer walking long distances for 

water so can receive a better education and suffer less drudgery 

 Increased wealth has a positive impact on off-farm activities and employment 

such as house building and shops/markets 

 The water can also be used for bathing, providing health benefits, and for 

livestock. 

At national level:   

 Causes a decline in food prices that also helps the urban poor who still spend 50% 

of their income on food 

 Increases export revenue, for example coffee from Vietnam and rice from 

Thailand. 

The list above shows that expansion of GWI directly and indirectly targets many of the 

United Nations Sustainable Development Goals (SDGs) (Figure 2-1). In addition to Goals 

1-6, 8, 10, 11 and 15, Goal 13 “Climate Action” is also targeted, as GWI is a means to 

mitigate against increasing climate uncertainty.  
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Figure 2-1. The United Nations Sustainable Development Goals (SDGs) (UN, 2015). 

The impact of irrigation on farming income has been the focus of numerous studies. 

Research by Bhatia (1991) in Bihar, India, revealed additional net income due to 

improved irrigation access of Rs 2,511 (~£30) per ha. This translates to farm income in 

irrigated areas of Bihar being 77% higher than income in unirrigated areas. The study 

further states how only 32% of the cropped area of Bihar is irrigated while that value is 

60% for the state of Haryana, also in north India. Consequently, the rural population living 

below the poverty line stands at 51% in Bihar and 15% in Haryana. This shows how 

improved access to irrigation contributes toward poverty alleviation and the improvement 

of livelihoods in a region. A similar study by Ut et al. (2000) in Vietnam showed a 68% 

increase in cropping intensity from irrigated over rainfed agriculture and a consequent 

increase in income of US$188/ha. A broad study by Giordano et al. (2012) found that 

having access to water during the dry season made a large difference to farmers’ incomes 

and nutrition: In Madhya Pradesh, India, farmers’ incomes who began irrigating pulses 

and wheat increased by more than 70%.  

Bangladesh is analogous to the potential of SSA where shallow wells have proved easier 

to manage and more cost-effective than deep wells which has encouraged investment in 

shallow GWI. The outcome has been an increase in irrigated area and an improvement 

from monopolistic water and food markets to oligopolistic markets (Akteruzzaman et al., 

1998). Hossain and Islam (2000) reported how women in rural areas have benefitted 

particularly in Bangladesh, because prior to the increased access to safe water, they had 
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to carry water over long distances, with significant impact on their health and 

productivity.  

2.2 The potential for such a green revolution in sub-Saharan Africa 

There are several studies available in the literature that suggest the green revolution is 

both possible for SSA and has already begun (e.g. Inocencio et al. (2007); Foster et al. 

(2008)). Giordano et al. (2012) provide examples from Tanzania where growing irrigated 

vegetables contributes half of the dry season cash income of smallholders, and in Zambia, 

35% more is earnt by smallholders who cultivate vegetables in the dry season with 

irrigation than those who do not. A study in Ghana by Dittoh et al. (2013) showed the net 

revenue from groundwater irrigation ($631.51/acre) was significantly greater than from a 

reliance on rain ($129.46/acre) and that irrigators regard pumps as “saviours”, but the 

major constraint is the financial means to buy them. Giordano et al. (2012) further state 

how investing in motor pumps could benefit 185 million people in SSA and generate net 

revenues up to US$ 22 billion per year. They estimate that 400,000 pumps were imported 

into Ethiopia in the last decade, and that there are 20,000 motor pumps in Burkina Faso, 

160,000 in Ghana, 70,000 in Tanzania, and 15,000 in Zambia. However, manual water-

lifting is still used by 70% of irrigators in Ethiopia, and from 84 to 91% of irrigators in 

the other aforementioned countries. 

A key difference with Asia is the generally lower yield of wells in SSA (low-productivity 

basement aquifers vs productive alluvial aquifers) that restricts their cooperative use (an 

important factor in the achievements of Bangladesh) because a single well typically has 

only sufficient yield, generally less than 1 l/s, to irrigate a single smallholding 

(MacDonald and Davies, 2000). However, this may not be entirely disadvantageous. The 

low-yielding nature of typical SSA aquifers may provide, according to MacDonald et al. 

(2012b), “a solution to the intractable problem of sharing common-pool natural resources 

equitably (Hardin’s “Tragedy of the Commons”). In low permeability aquifer 

environments, overpumping of an individual well is unable to exert much influence 

beyond the hectare-sized plot on which most farming is conducted in sub-Saharan Africa. 

As a result, the in situ hydrogeological conditions will restrict localised overexploitation 

naturally.”  

As of 2010, only 3.3% of arable land in sub-Saharan Africa was under irrigation, with a 

groundwater demand of 2.178 km3/year (Siebert et al., 2010). Increasing the area of land 

under irrigation will require increasing groundwater abstraction. Carter and Alkali (1996) 
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quote several studies from rural areas of West Africa with groundwater abstraction 

estimates of 1-4 mm/a, increasing at 0.027 mm/a in line with population growth. 

Expansion of agriculture is widely considered to be the only pathway to long-term and 

pro-poor economic development in SSA, by stimulating growth in the wider economy 

and absorbing excess labour through advances in the rural non-farm economy (Adelman, 

1984; Collier and Dercon, 2014; Dawson et al., 2016).  

2.3 African hydrogeology 

In this context, an understanding of the hydrogeology is from the point of view of 

understanding the potential groundwater resource. The availability of groundwater 

resources is critically dependent on the geology, the degree of weathering and fracturing, 

and recharge (whether historical or recent). According to MacDonald et al. (2008), the 

SSA region can be divided into four hydrogeological provinces (Figure 2-2):  

1. Crystalline basement, which occupies 40% of the land area.  

2. Consolidated sedimentary rocks: 32% 

3. Volcanic rocks: 6% 

4. Unconsolidated sediments: 22%. 

 

Figure 2-2. The hydrogeological environments of SSA (from MacDonald and Davies (2000)). 
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As can be seen in Figure 2-2, Precambrian crystalline basement is pervasive across SSA. 

It comprises igneous and metamorphic rocks greater than 541 million years old. Where 

unweathered and unfractured, the basement rocks contain negligible groundwater, 

however, important aquifers can develop within fracture zones and the weathered mantle 

(Wright and Burgess, 1992). Deep fractures within basement rocks are tectonically 

controlled and can be important sources of groundwater, especially where sub-vertical 

and below a thin or absent weathered zone. The weathered mantle, or regolith, consisting 

of variously gravelly and clayey decomposing parent rock, can be 90 m thick in tropical 

regions, though is more commonly in the range of 20-30 m (MacDonald et al., 2005). 

Regolith hydrogeology is discussed more thoroughly in Chapter 3. 

Large sedimentary basins are present within SSA that store vast quantities of 

groundwater. However, in semi-arid and arid regions the groundwater is largely non-

renewable, or fossil, having been recharged in the past when rainfall was much greater; 

any abstraction is essentially water mining (Döll, 2009). The best aquifers are found 

within sandstone and limestone units; unfortunately, around 65% of consolidated 

sedimentary rocks are low-permeability mudstones (Aplin et al., 1999). Where the 

mudstones are hard, groundwater may be obtained from fracture zones. Similarly, older 

sandstones may be cemented and it is again secondary (fracture) porosity that is targeted 

for groundwater abstraction (MacDonald et al., 2005). Limestones generally make good 

aquifers, though where fractures are enlarged through dissolution, i.e. karsts, giving high 

groundwater flow and infiltration rates, there can be high vulnerability to contamination 

and saline intrusion (Robins et al., 2007). 

Volcanic rocks of SSA are mostly of Cenozoic age and formed during three major pulses 

of late Eocene, mid-Miocene, and Plio-Pleistocene age related to the opening of the East 

African Rift, though some volcanic rocks date from the Jurassic (Baker et al., 1972). The 

groundwater potential of volcanic terrains is extremely variable, reflecting the complexity 

of the geology. Volcanic sequences are often 100s m thick, consisting of interbedded 

lavas and pyroclastic rocks. Massive lava flows can be impermeable, though extensive 

jointing can allow groundwater infiltration and flow (MacDonald and Davies, 2000). The 

junctions between lava flows often develop into important conduits as cracks, joints and 

rubble develop when the base of the more recent lava flow rapidly cooled (Kehinde and 

Loehnert, 1989). Ash layers are generally of low permeability but have high storage, 

therefore, useful aquifer systems can form where ash is present in alternating layers with 

fractured or rubbly lavas (MacDonald et al., 2005).  
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Relatively young (less than a few million years old) unconsolidated sediments range from 

coarse gravels and sands to silts and clays, and from regionally extensive (e.g. coastal or 

deltaic) deposits 100s m thick to thin strips of alluvium beside small rivers (MacDonald 

et al., 2005). Large unconsolidated sedimentary aquifers (UNSAs) can be highly 

productive where sand and gravel beds are continuous over 10s-100s km (Guiraud, 1988). 

However, depending on the depositional environment, complex multi-layered aquifers 

can form with sands and gravels interbedded with silt and clay aquitards; the sediments 

varying laterally every few metres (MacDonald and Davies, 2000). Small UNSAs, less 

than 100 m in width and with sediments less than 10 m in thickness, form locally 

important aquifers, typically in valleys, deposited by modern rivers; groundwater is 

usually close to the surface so pumping lifts are small (Owen, 1989; Carter and Alkali, 

1996). Proximity to a river gives a reliable source of recharge though in semi-arid areas 

where surface water is rare, i.e. sand rivers, recharge occurs during infrequent flood 

events (Hussey, 2007; Love et al., 2007). 

2.4 The African climate 

The climate of Africa is best portrayed by the updated Köppen-Geiger climate type map 

presented in Figure 2-3, based on global climate classification studies conducted by 

Köppen a hundred years previous (Köppen and Geiger, 1930; Peel et al., 2007). The map 

shows that only three of the main climate types are present in Africa and, of these, the 

dominant climate type by land area is the arid B (57.2%), followed by tropical A (31.0%) 

and temperate C (11.8%). The map is ground-truthed against 1436 precipitation and 331 

temperature stations.  
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Figure 2-3. Köppen-Geiger climate type map of Africa with description of climate symbols and defining 

criteria (from Peel et al. (2007)). 
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The North African coast with its temperate “Mediterranean” climate is not considered as 

part of this study. Irrigated agriculture is unlikely until a latitude of approximately 18oN 

is reached and the climate of this area is well described by Nicholson (1984):  “The sub-

Saharan region immediately south of the Sahara Desert is characterized by low, highly 

variable rainfall and a landscape that undergoes a marked and abrupt change between wet 

and dry seasons within a year. Moving southwards, the rainfall increases along with the 

length of the rainy season. Rainfall gradients are steep; as much as 100 mm per 100 km 

in West Africa, passing from 100 mm in the northern region of the Sahelo-Saharan zone 

to over 1600 mm in the Guinean zone. The duration of the rainy season also varies greatly, 

ranging from 1-month in the desert margin to more than 8-months in the Guinean coastal 

zone. Hence, the transition from desert to the humid tropics is abrupt.”      

In the semiarid sub-Saharan zones, wet and dry seasons are controlled by the subtropical 

high-pressure zone and the inter-tropical convergence zone (ITCZ). The ITCZ lies at the 

convergence of the northeasterly and southeasterly trade winds; in Africa that relates to 

the transition between the dry northeasterly harmattan winds of the Sahara and the moist 

southwesterly monsoon flow originating from the tropical Atlantic. This convergence 

moves northward during May to October bringing heavy cloud and intense rainfall. Rainy 

season length at particular latitudes reflects the number of months that the ITCZ 

dominates the local climatology  (Nicholson, 1984). 

Moving southwards to equatorial latitudes within the Congo Basin the rainy season has a 

bimodal distribution peaking in April and again in October with short dry seasons running 

from December to February and June to August (Washington et al., 2013). Further east 

towards the East African coast is anomalously dry for its equatorial latitude primarily due 

to the rain shadow effect of the Rwenzori Mountains and the Ethiopian Highlands.  

As latitude increases in a southerly direction, a unimodal rainfall regime is again 

established during opposing months to that seen in the northern hemisphere. Rains are 

greatest during November to January decreasing south of approximately 20oS where the 

Namib and Kalahari Deserts are located, although the east coast at this latitude does not 

experience such aridity. The southern coast of the continent enjoys a temperate 

“Mediterranean” climate.  

Figure 2-4 shows the mean annual rainfall distribution across the continent as described 

in the previous paragraphs.  
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Figure 2-4. Mean annual precipitation map of Africa (from Kitamirike (2008)). 

There are abundant publications on the climatic history of Africa, which describe 

observed trends in precipitation and temperature. Hulme et al. (2001) investigated how 

the African climate has changed over the last 100 years and report the following: “The 

continent of Africa is warmer than it was 100 years ago. Warming through the 20th 

century has been at the rate of about 0.5°C per century, with slightly larger warming in 

the June–August (JJA) and September–November (SON) seasons than in December–

February (DJF) and March–May (MAM). The six warmest years in Africa have all 

occurred since 1987, with 1998 being the warmest. This rate of warming is not dissimilar 

to that experienced globally, and the periods of most rapid warming—the 1910s to 1930s 

and the post-1970s—occur simultaneously in Africa and the rest of the world.”  While 

most of the continent is experiencing warming, large areas of cooling are noted, such as 

along the coastal margins of Senegal/Mauritania and South Africa (of up to 1oC per 

century), within Nigeria/Cameroon and in Somalia/Ethiopia/Sudan. In contrast, as can be 

seen on Figure 2-5, warming of nearly 2°C per century is observed over the interior of 

southern Africa and in the Mediterranean countries of northwest Africa.  

10000 



20 

 

A glance at African news on any particular day starkly reveals Africa’s notorious climate 

variability. The following headlines all originated within the same 24-hour period on 29-

30th December 2016: “Namibia drought threatens food security” (The Namibian, 2016), 

“DR Congo floods leave 50 dead in Boma” (BBC, 2016), “Uganda: Government to build 

Shs4 trillion irrigation scheme in Pallisa …to address a persistent dry spell” (All Africa, 

2016), “Sahara Snow Falls Once Again After 37 Years!” (Travelers Today, 2016), 

“Drought mitigation package for Zim” (The Herald, 2016), and most tellingly though not 

exclusively considering Africa; “Freaky weather the new normal” (The Straits Times, 

2016). The inherent and often extreme temporal and spatial variability of the African 

climate is well known (Nicholson, 1984; Cooper et al., 2008; Washington et al., 2013). 

Interannual rainfall variability is large over most of Africa with multi-decadal variability 

having been identified in many regions. Hulme et al. (2001) discuss three regions that 

exhibit contrasting rainfall variability characteristics: “the Sahel displays large multi-

decadal variability with recent drying, East Africa a relatively stable regime with some 

evidence of long-term wetting, and southeast Africa also a basically stable regime, but 

with marked inter-decadal variability. There is no simple correlation between temperature 

and rainfall in these three regions.” The pattern of rainfall trends presented in Figure 2-5 

shows that parts of the eastern, and particularly the western, Sahel are drying by up to 

25% per century. A moderate drying trend is also observed over a large part of southern 

Africa. A wetting trend can be seen across much of the rest of the continent especially 

over a wide zone south of the equator where wetting by over 10% per century is occurring.  
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Figure 2-5. Mean linear trends in annual temperature (oC per century) and annual rainfall (% per century) 

over the period 1901-1995 (from Hulme et al. (2001)). 

Looking further back into history by analysing varied records such as journals, diaries, 

tree rings, animal distributions and ice core data, Nicholson (1981) presents historical 

climatology for Africa. It is reported that droughts were widespread across Africa in 

1820-1840, with higher than average rains during 1870-1895, followed by further 

droughts in 1895-1920 being particularly severe in 1913/14. African lake levels (e.g. Lake 

Chad, Malawi, Victoria, Tanganyika, etc.) were greatest around 1750 and again around 

1850 with much lower levels in between, before 1750 and at all times since 1850. The 

Sahel region has become increasingly arid since the 1600s. Africa was very arid during 

the ice age peak 18000BP (before present) when the Sahara extended further south and 

the Kalahari reached further north (similar to the 1830s and the 1968-73 drought years). 

6000-5000BP was wetter with a populated Sahara and greater humidity in east and 

southern Africa (like the end of the 1800s).  

Sylla et al. (2013) explain how rainfall distribution is critical over Africa for applications 

such as drought and flood forecasting, water resources management and agricultural 

planning. Simulating and understanding the spatial and temporal precipitation variability 

at the necessary timescale is a challenge, as it requires high quality observation data. 

Change in annual mean temperature Change in annual mean rainfall
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Datasets are available for Africa blending satellite and ground observations but they 

suffer from likely uncertainty due to limitations in density and quality of available 

stations. 

Maystadt and Ecker (2014) state how a growing body of evidence shows a causal 

relationship between extreme weather events and civil conflict incidence at the global 

level. For example, they estimate that a one standard deviation increase in drought 

intensity and length in Somalia raises the likelihood of conflict by 62%. 

Buontempo et al. (2014) present an ensemble climate projection for Africa; a regional 

climate model (RCM) for Africa, which improves over the GCM. The model runs from 

1949 to 2100 and, they state, it captures annual temperature and rain cycles well but 

slightly overestimates rainfall. For scenario A1b, rapid economic growth though with a 

balance of fossil and non-fossil energy sources (Nakicenovic and Swart, 2000), the 

predictions are:  

 Temperature to increase everywhere in Africa by 3-4oC 

 General increase in rain between 8oS and 8oN 

 Generally becoming wetter in the east, in particular in the Congo basin 

 General drying in the west, especially the Guineas 

 Reduction in rainfall seasonality, i.e. less rain in the wet season and more rain in 

the dry season.  

Estimating the impact of climate change on water resources, Döll and Flörke (2005) used 

two climate scenarios (A2 and B2, a divided world of self-reliant nations and a divided 

but ecologically friendly world, respectively (Nakicenovic and Swart, 2000)) and two 

GCMs, to present a global-scale estimation of diffuse groundwater recharge. Their global 

scale maps of recharge quantities were validated against ground observations, though 

these were mostly streamflow hydrograph assessments, few comparison studies were 

from Africa, and those were predominantly in arid and semi-arid locations. The change 

in annual recharge from 1961-90 to the 2050s was predicted to be an increase  of around 

100 mm between the equator and 8oN, as well as in the Horn of Africa and parts of East 

Africa, otherwise an increase of about 30 mm in the east. While annual recharge was 

predicted to decrease by 100 mm in Southwest Africa and the Mauritania coast area, and 

generally decrease by around 30 mm in the west.  

However, many authors cast doubt on the predictive skill of GCMs for data-poor regions 

such as Africa (Hulme et al., 2001; Cooper et al., 2008; Taye et al., 2015). Bonsor et al. 
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(2010) further state that from a water resources point of view, “the exclusion of daily or 

inter-annual climatic variability within GCMs is particularly important, as it is this very 

short-term climatic variability which is thought to be highly important in simulating the 

effect of intense rainfall events and the future frequency of droughts.” What’s more, 

translating the predicted estimates of precipitation totals and intensity into more useful 

variables, such as groundwater recharge, is extremely difficult (Bates et al., 2008). As 

well as the direct impact of climate change on groundwater resources we also have to 

consider the impact of changes in human behaviour (Taylor et al., 2013). For example, 

sometimes recharge will decrease due to increased evapotranspiration caused by 

warming, while sometimes recharge will increase due to increased irrigation as the 

growing season lengthens. 

2.5 Land use change 

Future changes to land use / land cover (LULC) may be entirely anthropogenic or could 

be climate related. Foster and Cherlet (2014) discuss the links between LULC and 

groundwater noting how deforestation will increase recharge on flat ground but on 

sloping ground there is a risk of soil erosion and eventual loss of recharge. This has been 

observed during field visits elsewhere in Ethiopia, such as in Robit Bata kebele near Bahir 

Dar and in Boloso Bombe woreda in SNNPR. In both cases, deforestation is said by local 

officials to be due to increasing demand for wood for charcoal by a growing population, 

in addition to overgrazing. Afforestation, not uncommon in Ethiopia due to increased 

demand for eucalyptus for house-building and for charcoal, is likely to decrease recharge 

as the evapotranspirative demand will rise (Jagger and Pender, 2003; Farley et al., 2005). 

Conversion of native vegetation or pasture to cropped land would generally cause slight 

increases in recharge, especially during fallow periods. Obviously under irrigated 

conditions, especially flood irrigation, recharge significantly increases (Scanlon et al., 

2005).  

Notable examples of the impact of land use change on groundwater can be found in West 

Africa. Most of the rivers in the region (except in the Sahel) have seen a significant 

decrease in discharge since the 1970s, due to a decrease in rainfall and consequent 

lowering of the water table and reduction in baseflow contribution (Mahé and Paturel, 

2009). Conversely, the much-discussed “Sahelian paradox” concerns how, despite 

drought since the 1960s, groundwater levels in the Sahel and Niger River discharge have 

been increasing. For example, the water table in southwest Niger rose continuously by 4 

m from 1963-2007 despite a ~23% reduction in monsoonal rains from 1970-1998 
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(Favreau et al., 2009). This is due to vegetation clearance, mostly for firewood and 

livestock fodder, in addition to expansion of cropped lands and overgrazing leading to an 

increase in bare and crusted soils. Hortonian overland flow has increased forming 

temporary endorheic ponds, which then infiltrate creating groundwater “mounds”. Leduc 

et al. (2000) estimate a 150% increase in groundwater storage since the 70s. The recharge 

rates measured in the Sahel are similar to those from similarly semi-arid regions of 

Australia following land clearance (Favreau et al., 2002). Endorheic basins becoming 

exorheic have increased the contributing basin area giving rise to more intense but shorter 

annual floods creating flooding problems and shorter duration stream flow (Amogu et al., 

2010). Specifically, the Niger River now has a two-flood hydrograph: previously there 

was a single flood from June-September rains in the Guinea Highlands, which is delayed 

by the Inner Niger Delta so arrives downstream from November. Now there is an 

additional local (red) flood caused by August and September monsoons (Descroix et al., 

2012).  

Lambin and Ehrlich (1997) showed using continental-scale remotely sensed surface 

temperature and vegetation indices that, for the period 1982-1991, climate variability is 

responsible for most LULC changes. However, human-driven LULC changes were 

observed to have a lower degree of reversibility and are, therefore, cumulative over time. 

Concerning the Ethiopian Highlands in particular, Ali et al. (2011) showed that wetter 

regions have seen a large shift since the 1970s with croplands replacing pasture. This is 

less significant in drier regions as water scarcity prevents a large shift to cropping. 

2.6 Research gap 

It is a commonly expressed view that the hydrogeology of sub-Saharan Africa (SSA) is 

under-studied and poorly understood (Robins et al., 2006; Calow et al., 2009b; Taylor et 

al., 2009). In a review titled “Identifying the barriers and pathways forward for expanding 

the use of groundwater for irrigation in Sub-Saharan Africa” by Pavelic et al. (2013b), 

the first presented major obstacle is the inadequate knowledge of the aquifer systems. 

This view is prevalent not just among researchers but is shared by the host governments 

who could provide the most benefit to the SSA populace in the form of intervention 

planning with better understanding of the hydrogeology. For example, Ethiopia’s 

Ministry of Water Resources state: “Ethiopia’s hydrogeology is complex and at present 

only partly understood” (MoWR, 2011), and from Uganda’s Ministry of Water and 

Environment: “Because of the limited knowledge on the groundwater,... movement of 

water across local, national and international boundaries are not known” (MoWE, 2009). 
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This research gap has been succinctly posed by Lapworth et al. (2013) discussing West 

Africa; “Ideally, a thorough quantitative understanding of aquifer properties and recharge 

mechanisms under a variety of climate, land use and geological environments is required 

to confidently assess current groundwater availability, and forecast future availability 

under different scenarios”.  

Research remains limited into the impacts of climate on groundwater resources (Bovolo 

et al., 2009; MacDonald et al., 2009; MacDonald et al., 2011). A significant disadvantage 

is the poor availability of groundwater data, e.g. groundwater levels and withdrawals. As 

a result, according to Taylor et al. (2013): “our ability to evaluate fully the responses of 

ground water to climate variability and change, to estimate directly groundwater 

replenishment, and to constrain models and satellite observations, is severely impaired. 

There is, for example, a profound lack of knowledge regarding the quantity of 

groundwater storage in most aquifers that may be sustainably used.” 

The research gap is particularly apparent with regard to shallow groundwater, at least to 

shallow groundwater in aquifers at less than 25 m depth. A number of studies have been 

conducted on the resilience of African groundwater resources, particularly in the face of 

predicted climate change. A study by MacDonald et al. (2011) concluded that 

“…groundwater possesses a high resilience to climate change in Africa and should be 

central to adaptation strategies. Increasing access to improved groundwater sources based 

on handpumps is likely to be highly successful”. MacDonald et al reached similar 

conclusions in a 2009 study. However, in both cases “shallow” groundwater resources 

were considered those from boreholes of up to 50 m depth. Boreholes, especially at depths 

beyond 25 m, are unfeasible for the small-scale groundwater considered as part of this 

project, being beyond the technical and financial limit of poorer communities. As such, 

many of the conclusions reached by the aforementioned studies are less appropriate for 

poor rural communities. This view is shared by Lapworth et al. (2013) who state that 

“although shallow groundwater sustains the vast majority of improved drinking-water 

supplies in rural Africa, there is little information on how resilient this resource may be 

to future changes in climate.” 

Shallow groundwater resources are particularly sensitive to variations in recharge. Such 

variations are highly likely with land use changes and increasing climate variability 

(Carter and Parker, 2009; Taylor et al., 2013; Smerdon, 2017). General circulation model 

(GCM) simulations offer a range of possible future climate scenarios for SSA from 

increasing aridity to greater rainfall; both predicted for the western Sahel for example 



26 

 

(Hulme et al., 2001; Sheen et al., 2017). Most studies agree that an increase in extreme 

events, such as intense storms, is likely. How this will translate to changes in effective 

rainfall and the partitioning of this effective rainfall between different water resources 

through altered patterns of surface run-off, soil moisture and groundwater recharge, is 

unclear (BGR, 2008; Owor et al., 2009; Bonsor et al., 2010).  

The few examples of published studies concerning shallow hydrogeological systems in 

SSA are often quite specific and include a recent paper on permeability variations in 

laterite soils in Nigeria by Bonsor et al. (2014), a method for estimating shallow 

groundwater availability in small South African catchments by Ebrahim and Villholth 

(2016), and many studies on groundwater quality in urban and peri-urban shallow 

aquifers (e.g. Onwuka et al. (2004); Kulabako et al. (2007); Takem et al. (2015)). These 

studies are in addition to several recharge studies to assess the sustainability of abstraction 

of shallow groundwater, such as Edmunds et al. (1991) in NW Senegal and several from 

Nigeria (e.g. Carter and Alkali (1996); Goes (1999); Akpan et al. (2013)). Sand rivers, 

particularly in Zimbabwe and Botswana, are one shallow aquifer type that has received 

more attention in the literature, though generally in the form of technical reports and it is 

still typically quoted that greater research is called for to increase understanding of the 

long-term sustainability of the resource (Owen, 1989; Davies et al., 1998; Hussey, 2007). 

While these examples detail specific aspects of the shallow hydrogeology, there is a 

general lack of transferrable shallow hydrogeological studies. This shortcoming was 

identified by Taylor and Howard back in 1998 discussing the prevalent regolith shallow 

aquifer systems: “… basic questions regarding both the geochemical evolution and the 

hydrogeological nature of the regolith [in SSA] remain unsolved. Particular concerns are 

the hydrogeological characteristics of the aquifer material, the hydraulic interaction of the 

regolith with the underlying bedrock aquifer and the nature of groundwater recharge”; 

their study still remains one of very few on shallow regolith aquifers. Another notable 

example is the heavily studied 4.6 km2 Romwe catchment in southern Zimbabwe (e.g. 

Macdonald et al. (1995); Bromley et al. (1999); Butterworth et al. (1999)). Groundwater 

level monitoring, pumping tests, and hydrochemistry analysis from multiple boreholes, 

piezometers and hand-dug wells revealed differences in aquifer properties and recharge 

quantities in different zones of the regolith aquifer dependent on the nature of the 

underlying crystalline basement. Zones with the greatest potential for well-siting were 

identified considering geology and topography and a successful (for domestic use and 

some small-scale irrigation) large diameter collector well was installed. It is noted that 
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none of the studies cited in this paragraph investigated the resilience of the shallow 

groundwater resource beyond conducting a recharge assessment. 

Reasons are occasionally suggested for the general lack of investigation of shallow 

aquifers. They include: hydrogeological complexity in the case of Ethiopia (MoWR, 

2011; Kebede, 2013), and investigations being limited to areas of highest population 

density in the case of Ghana (Dapaah-Siakwan and Gyau-Boakye, 2000). Generally, 

authors simply state that a better understanding of the shallow hydrogeology from the 

point of view of potential agricultural use is a necessity (Giordano, 2006; Namara et al., 

2011; Evans et al., 2012; Pavelic et al., 2013a). A recent review of groundwater 

conditions in fifteen SSA countries by Pavelic et al. (2012) concluded that “Quantitative 

information on aquifer characteristics, groundwater recharge rates, flow regimes, quality 

controls and use is still rather patchy”. 

The aims of this PhD research clearly target a research gap that has been often identified 

by others. That is: insufficient understanding of shallow aquifers in sub-Saharan Africa, 

their potential for productive use, and their resilience. A study of smallholder shallow 

groundwater irrigation development in Ghana by Namara et al. (2011), though stated by 

the authors to be applicable throughout SSA, concludes that to get maximum benefit from 

groundwater, the following are required: 

1. “Better understanding of the nature and extent of the existing use of groundwater, 

so that it is considered more in national planning and policy. 

2. Better understanding of the hydrogeology, so that expansion can be profitably 

planned. 

3. Reducing some of the other identified constraints, including: 

a. provision of land tenure security through innovative institutional 

arrangements; 

b. provision of decision support tools, such as easy to comprehend 

groundwater maps for assessing the precise sitting of wells; 

c. improving access to appropriate and affordable drilling technologies; 

d. introducing tube-well technology, where applicable; 

e. provision of research-based (or founded) extension advise on agronomic 

practices (i.e. soil fertility management, crop protection, etc.) and water 

management systems; 

f. training farmers in safety precautions regarding the handling of agro-

chemicals; 
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g. improving the supply chain of complementary inputs (e.g. improved seeds, 

fertilizer, herbicides, etc.); and 

h. improving output marketing systems by, for example, organising farmers 

using shallow groundwater irrigation into commodity value chains.” 

From the above list, points 1, 2 and 3b are directly targeted through this PhD research 

while points 3e, 3f and 3h were touched upon, though not always with prior intention in 

the case of coming across pesticide application without the use of protective equipment. 
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Chapter 3. Study site background 

 

3.0 Chapter overview 

Chapter 2 provided a background on the potential for a sustainable growth in the use of 

shallow groundwater for irrigation by rural communities in sub-Saharan Africa. Whether 

or not such an expansion is possible in sub-Saharan Africa is principally dependent on 

the hydrogeology and the climate. Following this broad continental-scale study, Chapter 

3 will zoom in to the regional and local-scale, providing background information on the 

study site for which the research was conducted. Following a report on study site 

selection, information is given from desk study, including analysis of received data, 

concerning climate, agriculture, socio-economics, governance structures, geography and 

geology. 

3.1 Site selection 

The study site is Dangila woreda in northwest Ethiopia.  A woreda is the second smallest 

administrative unit in Ethiopia, equivalent to a UK district. Dangila woreda was selected 

at the onset of the AMGRAF project in September 2013, 12-months prior to 

commencement of the PhD research.  The field site was established in March 2014 with 

the aid of a catalyst grant under the NERC-DFID-ESRC UPGro research programme. See 

Appendix C for further details of UPGro and AMGRAF. Several areas of Ethiopia had 

been identified by the Ethiopian ATA (Agricultural Transformation Agency) for an 

intensification of agriculture, one of which being the southern portion of the Lake Tana 

basin. Several woredas in the basin were considered based on their accessibility, the 

dominant farming system, and their status within the Agricultural Growth Programme. In 

collaboration with in-country partners, the Geological Survey of Ethiopia (GSE) and 

International Water Management Institute (IWMI), Dangila woreda was selected as the 

study site. In terms of geology, climate, and level of socio-economic and agricultural 

development, Dangila woreda is considered representative of a wide area of upland 

Ethiopia. In particular, the study site was chosen to represent an important type of shallow 

aquifer. The distribution of this aquifer type can be seen in Figure 3-1 where volcanic 

rocks cover a large proportion (~50%) of Ethiopia. The representativeness of the study 

site climate can be seen in Figure 3-2 where high rainfall areas are widespread; 

approximately 50% of Ethiopia receives >1000 mm/a rainfall and the country-wide 

average is 817 mm/a (Fazzini et al., 2015). 
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Figure 3-1. Ethiopia hydrogeological map (adapted from BGS (2018)). 

Study site
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Figure 3-2. Ethiopia precipitation map (adapted from BGS (2018)). 

Dangesheta kebele was chosen as a focus community within Dangila woreda to assess 

the potential of the shallow groundwater resource to support increased irrigation use. A 

kebele is the smallest administrative unit in Ethiopia, equivalent to a parish or ward. 

Dangesheta is one of 27 rural kebeles within Dangila woreda. The selection of 

Dangesheta kebele for hydrogeological study followed collaboration with GSE and 

IWMI, and a field visit in September/October 2013 by the AMGRAF research team prior 

to commencement of this PhD. The rural kebeles were ranked for intervention, according 

to:  

(i) Access to market, i.e. proximity to an all-weather road and distance to market: 

both necessary for the adoption of groundwater irrigation  

(ii) Experience in small-scale irrigation 

(iii) Potential of shallow groundwater, i.e. evidence of existing shallow 

groundwater use. Shallow groundwater is here defined as <25 m: that which 

is accessible to poor rural communities using manual excavation methods.  

3.2 Country context 

Ethiopia is a large landlocked country in the Horn of Africa comprising mostly wet 

highlands though with large arid areas in the east and north. It is the second most populous 

country in Africa with a population of ~104 million in 2017 and a population growth rate 

of ~2.5% per year (World Bank, 2017b). Ethiopia is considered a low-income country by 

the World Bank with its per capita income of $590 being significantly lower than the 

Study site
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regional average. However, the country has experienced remarkable economic growth 

and development in recent years, primarily attributed to two factors:  

1. The absence of widespread drought; rainfall and gross domestic product (GDP) 

have been shown to be strongly linked in recent decades (Figure 3-3) (Grey and 

Sadoff, 2007). 

2. A model of development that has driven investment in public infrastructure 

(World Bank, 2015). 

As a result, Ethiopia has achieved an annual economic growth rate of 10% per year and 

has seen a reduction in its population living below the poverty line (income-based 

poverty) from 44% to 30% since 2000 (REACH, 2015). Between 1990 and 2015, in 

aiming to achieve Millennium Development Goal (MDG) #7 “To ensure environmental 

sustainability”, Ethiopia ranked fifth in the world in increasing clean water access to its 

rural population with an increase of 37.5 million people with safe access or from 3% to 

49% (WHO, 2015). However, the multi-dimensional poverty index (MPI), that considers 

health, education and living standards, still places 87.3% of Ethiopia’s population in 

poverty (REACH, 2015). 

 

Figure 3-3. The link between annual rainfall and GDP growth in Ethiopia. Above average rainfall since 

2006 has led to consistent GDP growth of around 10% (REACH, 2015). 

3.3 Site description  

Dangila woreda lies approximately 70 km southwest of Bahir Dar, the capital city of the 

Amhara Region, in northwest Ethiopia (Figure 3-4). The woreda has an area of 

approximately 900 km2 with one significant population centre, Dangila town. 
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Figure 3-4. Location of Dangila woreda field site showing woreda boundary (blue) and position within 

Ethiopia (Geographical map of Ethiopia from Ezilon (2017)). 

Dangila woreda ranges in elevation from around 1600 m in the southwest to 2400 m in a 

central hilly belt, dropping again in the east, which includes Dangila town, to around 

2100 m. The northwestern border is formed by an escarpment, which falls over 700 m 

towards the Benishangul-Gumuz Region. Much of Dangila woreda is formed of low hills 

and expansive floodplains (Figure 3-5). West of the central hills drains to the Beles River, 

Dangila 

Bahir Dar 

Lake Tana 

Town/City 

Addis Ababa  
450 km 
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while the east of the woreda drains via the Gilgel Abay River into Lake Tana.  The Beles 

and Lake Tana are both part of the Blue Nile, or Abay, river basin, the largest tributary 

of the Nile that contributes 65% of the total Nile flow (Yates and Strzepek, 1998). 

 

 

        Dangila woreda boundary 
        River network 

Dangila 
town 
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Figure 3-5. Geography of Dangila woreda study site (image source: Google.Earth; Imagery ©2017 

DigitalGlobe), position within the Lake Tana Basin (map from MoWR), and position within the Nile 

Basin (map from PRI (2017)). 

Dangila woreda has a population of around 175,000, of which 140,000 are rural (CSA, 

2012). Most of the 35,000 urban population reside within Dangila town. Crop–livestock 

mixed subsistence farming is the primary source of livelihood.  

Studies from nearby areas of the Amhara Region typically show an increasing trend in 

deforestation and an increasing trend in land converted to cultivation. For example, a 

study by Zeleke and Hurni (2001) in Dembecha woreda, 80 km southeast of Dangila, 

showed a 99% decrease in natural woodland since the 1950s and a 95% increase in 

cultivated land. In the Koga watershed, 30 km east of Dangila, Yeshaneh et al. (2013) 

report a 51% decrease in natural woodland over the same period and an increase in 

agricultural land of only 5%, despite an increase in settlement size of 2,733%. This 
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increase in settlement size is a clear indication of the population pressures that the region 

is experiencing.  

3.4 Agriculture 

Rainfed agriculture predominates with the main crops of teff (Eragrostis tef), maize, 

barley and millet together making up 90% of the area coverage. The products are mostly 

sold locally to local traders and brokers. The current product markets are regarded as 

satisfactory and farmers feel that they received a fair price (Belay and Bewket, 2013). 

Crop rotation and intercropping (less common) are practised. According to a survey by 

Belay and Bewket (2013), conducted in three rural kebeles of Dangila woreda, 

approximately 14% of cropland is irrigated, which equates to about 0.20 ha of irrigated 

land per household. Despite this small size, irrigated land is seen as important in terms of 

both cash income and household nutritional benefits. Irrigated crops are generally 

vegetables, fruits and cash crops, e.g. onions, chilli peppers, coffee, rather than the 

dominant cereals. In all cases in the survey, streams (86%) and springs (14%) provided 

the irrigation water, with diversions constructed from locally available materials, such as 

soil, tree branches, stones, and teff straw and chaff. Small groups of 5-10 households, who 

share irrigation water from a common source, construct and maintain such systems. 

Elected water user committees (WUCs) manage the rotational process of water sharing. 

Notable in the study by Belay and Bewket (2013) is the lack of shallow groundwater use 

from traditional hand-dug wells (HDWs). This is likely due to the high and hilly 

topography, and consequent abundance of streams, of much of the three kebeles studied.  

A recent and broader study by Abera (2017) of the Lake Tana Basin revealed that of the 

Megech, Gumara-Rib and Gilgel Abay catchments, the latter of which includes the 

eastern half of Dangila woreda, around 84% of cultivated land relies solely on rainfall 

while 9% utilises flood recession and only 7% is irrigated. Similarly noted is that cereals 

dominate the rainfed season comprising over 74% of cultivated land. Abera (2017) reports 

“crop production and the rearing of livestock are closely integrated on the small farms, 

with livestock utilizing crop residue and providing draft power for ploughing and 

transport. Purchase of improved seed and use of chemical fertilizer is common, but per 

hectare application is low. Most farms use traditional methods of cultivation, harvesting 

and threshing. Only one crop is produced per year in rainfed areas. Crop losses are high 

both in the field and during harvesting and storage. The combination of a reliance on 

rainfed production, only one crop per year, small and degraded plots, a low use of 

purchased inputs, traditional cultivation methods and high post-harvest losses means that 
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production is low and varies substantially from year-to-year. Most farm households in the 

[Lake Tana] Sub-Basin are accordingly exceptionally poor. They market only a small 

fraction of their total output, and often this is to meet urgent cash needs and requires the 

repurchase of staples later in the year.” Whereas fertilizer application occurs for rainfed 

crops, pesticides are more common for irrigated crops, though communities are not 

adequately informed of the associated hazards. Therefore, farmers use such chemicals 

without thorough understanding of the health and environmental impacts. Similarly, 

farmers are apparently unaware of recommended seed rates for most crops. Too low or 

high seed rate, combined with poor land preparation, reduces productivity (Abera, 2017). 

In December 2013 as part of the AMGRAF project, Dr Elizabeth Oughton (Newcastle 

University) and Dr Gebrehaweria Gebregziabher (IWMI), working with officers from the 

Dangila Woreda Agricultural Office, conducted focus groups in two rural kebeles. The 

investigations revealed that decisions over cropping, in both fields and backyards, are 

overwhelmingly made by males of the household, even though females and children 

provide labour for backyard agriculture. Secondly, there are a high proportion of female-

headed households in this region, as women that have been widowed, divorced or 

abandoned are not permitted to remarry. Although women may retain legal ownership of 

fields, they require male labour to farm them. Clearly, changes in the availability and 

management of irrigation water could have very different effects on men and women 

affecting relative poverty, livelihood and environment (Oughton and Gebregziabher, 

2014).  

At the onset of the AMGRAF project, Dr Jaime Amezaga investigated the governance 

aspects of water use in the region:  Ethiopia has a history of watershed management 

initiatives dating back to the 1970s. The basic approach has shifted from top-down 

planning to community-based approaches. There is now a supportive policy and legal 

framework in the form of policies that facilitate decentralised and participatory 

development, institutional arrangements that allow and encourage public agencies at all 

levels to work together, and an approach to natural resources that reflects local legislation 

and tenure practices. The institutional and legal framework designed by the Ministry of 

Water Resources (MoWR) promotes farmer-managed small-scale irrigation through the 

establishment of irrigation user communities (IUCs) under the national cooperative law 

starting from 2002. Recently, 233 IUCs were reported to have been established in the 

region, but their success is variable. Recently prepared (2010) draft regulations for 

Irrigation Water Users Associations are currently under consideration (Amezaga, 2014). 
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3.5 Climate 

According to the Köppen–Geiger climate classification system, this region of Ethiopia is 

categorised as humid subtropical (Peel et al., 2007). There is little annual temperature 

variation though high diurnal variation due to the elevation. A median annual daily 

maximum temperature of 25 oC and minimum of 9 oC have been measured at the National 

Meteorological Agency (NMA) weather station in Dangila. The median annual total 

rainfall is 1541 mm, as measured (since 1987) at the Dangila NMA weather station, 91% 

of which falls during May to October (Figure 3-6). The main June-September rains, 

known in Ethiopia as kiremt, are principally controlled by the seasonal northward advance 

of the inter tropical convergence zone (ITCZ), in addition to the upper-level tropical 

easterly jet (TEJ) and convergence in the Red Sea region (Conway, 2000). Both the Choke 

Mountains to the east and Lake Tana to the north affect the pattern of rainfall in the study 

area. Most rain events are convective, have a duration shorter than 1-hour and often occur 

in the late afternoon  (Haile et al., 2009). 

 

Figure 3-6. Monthly median, 10th and 90th percentile rainfall, and mean maximum and minimum 

temperatures as measured (since 1987) by the NMA at the Dangila weather station. 

The region experiences high interannual variability in rainfall, with historical annual 

rainfall totals ranging from below 1000 mm to over 2000 mm.  Interannual variations in 

rainfall total are related to cyclone development in the southwest Indian Ocean; 

specifically, a high frequency of tropical cyclones causes a delay in the onset of the rainy 

season, due to a failure of the early short, or belg, rains, throughout the Ethiopian 

Highlands (Shanko and Camberlin, 1998). Variation in kiremt rainfall total is related to 

the El Niño–Southern Oscillation (ENSO) and TEJ; specifically, a strong ENSO or a poor 
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TEJ often results in drought, though ENSO and TEJ may temper the effects of each other 

and the exact interrelationship remains uncertain (Seleshi and Zanke, 2004; Segele and 

Lamb, 2005; Diriba and Anthony, 2007). Analysis of this climate variability can be found 

in Chapter 8.  

A single NMA weather station is present within Dangila woreda, situated in Dangila 

town. Another weather station, and the NMA regional office, is located in Bahir Dar. 

There are four further rain gauges in villages along the road between Dangila and Bahir 

Dar, and three rain gauges in the hills to the south of Dangila towards Addis Ababa. 

Further information and analysis of these monitoring sites is presented in Chapter 5. 

3.6 Geology  

The 1:2,000,000 scale Geological Map of Ethiopia by Tefera et al. (1996) states that the 

geology of the area predominantly consists of Quaternary basalt and trachyte above 

Eocene-Oligocene flood basalts and trachyte. There is much disagreement over the 

thickness of the flood basalts in northwest Ethiopia, ranging from 250 m (Hautot et al., 

2006) to 1500 m (Pik et al., 1998) to ~4000 m (Hofmann et al., 1997), though the 

generally accepted range is 500-3000 m (Mohr, 1983). There is further disagreement over 

the age of the flood basalt formations that cover 25% of Ethiopia’s land surface (Figure 

3-7), with some studies stating the entire vast volcanic plateau sequence was erupted in 

an event lasting just a million years, approximately 30 million years ago (Hofmann et al., 

1997). These Ethiopian flood basalts are a classic example of mantle source continental 

flood volcanism and the youngest global example of a major continental volcanic plateau 

(Kieffer et al., 2004).  
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Figure 3-7. Generalised Cenozoic geology of the regions bordering the Main Ethiopian Rift (MER) 

system (simplified from the Geological Map of Ethiopia). Circled “A” is the location of Addis Ababa and 

“B” is the Dangila woreda study site. From Prave et al. (2016). Note that there are some discrepancies 

between the geological units, their ages and positions, on this map, the Figure 3-8 map, and the 

descriptions within the text. This reflects the lack of agreement in the published literature. 

The deep geology at the study site was traditionally known as the Termaber flood basalts, 

though is more recently termed the Upper Basalt sequence (Kebede, 2013). Another series 

of volcanics are present in the area, though there is some uncertainty as to whether these 

are present above the flood basalts at the field site: The Miocene-Pliocene shield 

volcanics, erupted from large shield volcanoes (approximately 22 Ma) that today form 

the Choke Mountains to the southeast of Lake Tana (Figure 3-8), contain more rhyolitic, 

trachytic and ash layers than the flood basalts (Kieffer et al., 2004; Kebede, 2013). 

Overlying this thick flood basalt and/or shield volcanic sequence across a large area south 

of Lake Tana are more volcanic rocks of middle-Pleistocene to Holocene age, i.e. 10,000 

B
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to 1 million years old (Mohr, 1963). These thinly bedded and often scoriaceous basalts 

and trachytes were erupted from relatively small and local Strombolian volcanoes 

(Kieffer et al., 2004; Kebede, 2013), many of which are still visible, the locations are 

shown on Figure 3-8. Largely impermeable dykes, sills and faults are present within the 

region though these are most likely confined to the pre-Quaternary geology (Kebede, 

2013) and, as such, should have little impact on the shallow aquifer. 

 

Figure 3-8. Geological map of the northern part of the Ethiopian plateau depicting the distribution of the 

volcanic rocks, shield volcanoes and Strombolian cones (from Ayalew (2011)). MER = Main Ethiopian 

Rift.  
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Lake Tana itself had been believed to have been formed by the intersection of three graben 

rift systems (Chorowicz et al., 1998). However, a recent study suggests that Lake Tana is 

a collapsed caldera created during a super eruption around 30 million years ago (Prave et 

al., 2016).  

The basalts and trachytes found around Dangila woreda have had little time, less than 

1 million years, for weathering and regolith formation in comparison to the majority of 

the African continent. However, a review of various physical and chemical weathering 

experiments of igneous rocks by Cawsey and Mellon (1983) indicates that significant 

physical weathering may occur over relatively short periods of time (years), whereas 

chemical weathering processes require much longer periods before the effects are readily 

observed, though still just 100s to 1000s of years. Indeed, the Pleistocene-Holocene 

volcanics south of Lake Tana have been observed to be more highly weathered than the 

10-30 million years older flood basalts in the surrounding area (Poppe et al., 2013). 

3.7 Regolith hydrogeology 

Weathered materials that can be considered regolith overlie the Cenozoic volcanic rocks 

of the study site. The generally accepted definition of “regolith” is the unconsolidated 

heterogeneous material, including soil, which overlies the bedrock (Merrill, 1897). 

Regolith consists of physically broken and, generally, chemically altered rocks (Scott and 

Pain, 2009). While sometimes considered a synonym, “saprolite” refers to in-situ 

weathered materials, whereas regolith may include transported materials (Taylor and 

Eggleton, 2001). In this thesis, “regolith”, “weathered regolith” and “weathered mantle” 

are used interchangeably. 

Acworth (1987) describes the typical weathered profile, which forms above crystalline 

(including volcanic) bedrock:  Four weathering zones are present between the fresh rock 

and the soil (Figure 3-9). Each zone is always present but may be so thin as to be 

insignificant. The interface between zones is generally planar as it is related to the water 

table but the interface between zone ‘d’ and bedrock can be highly irregular. Zones ‘a’ 

and ‘b’ are generally clay-rich and have low hydraulic conductivity. Zone ‘c’ acts as 

storage and fractures in zone ‘d’ are the transmissive parts. If hydraulic conductivity is 

high in zone ‘c’, then drainage will occur from zone ‘b’ above. 



43 

 

 

Figure 3-9. Typical weathering profile developed upon crystalline rocks (from Acworth (1987)) 

Acworth (1987) goes on to state that recharge is highest where zone ‘d’ directly underlies 

stony soils whereas minimal recharge occurs where thick zones ‘a’ and ‘b’ exist. 

However, there will be lateral flow between horizons. Hilly or plains areas have a higher 

groundwater potential as weathering basins will have coalesced laterally as relief has been 

lowered, with the result that an extensive zone ‘c’ saprolite aquifer has been produced 

extending into the area previously occupied by the zone ‘d’ fractured material. Reduction 

in relief also causes a reduction in groundwater flow as water table contours are a subdued 

reflection of surface topography. In general, well sites should  be  chosen  towards  the  

middle  of  the  slope where  the  depth  of  weathering  and  saturated  material is  

maximized.  

Jones (1985) reports that saprolite profiles tend to have similar characteristics over a wide 

variety of rock types. This conclusion is extremely important for this PhD project. It 

means that findings from shallow hydrogeological assessments conducted at the field site 

may be transferrable across SSA, even to areas with different bedrock geology. Jones 

(1985) states that geomorphological development by cyclic erosion has resulted in a 

predictable distribution of the regolith aquifer and the analysis of data from over one 

thousand wells shows it to be hydrogeologically uniform. This uniformity is traced to the 

geomorphological development of the landscape; of lesser importance is the mineral 
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composition of the parent rock. However, some studies have identified differences in 

regolith hydrogeological characteristics occurring over short distances related to local 

variation in parent geology (e.g. Macdonald and Edmunds (2014)). Jones (1985) 

description of a typical weathering profile above crystalline rocks in Africa is in 

agreement with Acworth (1987) (Figure 3-9) and he further adds that the lower part of 

the profile, the weathering front, if freely draining with active groundwater flow, will 

preserve a relatively clay-free, gravel-like texture. The grain size of the saprolite 

diminishes upwards until the clayey part of the saprolite is encountered and where the 

groundwater flow is impeded. Furthermore, chemical weathering occurs without 

significant volume change (indicated by undisturbed persistent quartz veins) though 

dissolution removes mass causing structural unloading allowing deeper joints and fissures 

to open, which allow deeper groundwater penetration. The transferability of the findings 

from this study to other types of geology in SSA is discussed in Chapter 9. 
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Chapter 4. Field investigations and development of conceptual 

model 

 

4.0 Chapter overview 

Chapter 3 presented background information on the study site. The process provided 

understanding of the climate, geology, agriculture, socio-economics and governance 

issues prior to the field visits and enabled planning of fieldwork. Chapter 4 provides 

descriptions and analysis of information from field investigations, essentially detailing 

how the hydrogeological conceptual model was derived.  

4.1 Field visits  

Three field visits were conducted to Dangila woreda, in March/April 2015 at the end of 

the dry season, in October/November 2015 at the end of the wet season, and in 

January/February 2017 during the dry season. The first two visits were for approximately 

a month with around 2-3 weeks in the field in Dangila and the surrounding area, the 

remaining time being spent with local partners in Addis Ababa and Bahir Dar. The third 

visit was for 2.5 weeks, principally spent in Boloso Bombe woreda in SNNPR Region in 

southwest Ethiopia for a different research project, though with a few days in Dangila 

woreda.  

4.2 Aims 

The aims of the field visit were to develop a conceptual model for use in subsequent 

recharge and modelling studies. The field investigations conducted during this process 

allowed the first research question from Chapter 1 to be evaluated, namely: Do shallow 

aquifers have the requisite properties, in terms of hydraulic conductivity, potential well 

yield, specific yield and aquifer geometry, for productive groundwater use?  

4.3 Study site observations 

Situated on the Addis Ababa to Bahir Dar highway, Dangila town is a popular transport 

stop with more services, such as; markets, hotels and banks, than are seen in similar sized 

towns in nearby woredas. Being well connected on the transport network, there is 

potential for an increase in agricultural production due to good access to markets. The 

majority of the woreda is devoted to agriculture. Seasonally inundated 

floodplains/grasslands are utilised as pasture with mixed cropping and dwellings 

occupying the adjacent slopes (Figure 4-1). Natural woodland is generally only found 

around hilltop churches and along more steeply sloping riparian strips. The higher steeper 
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mountains often have thin soils and are covered with low scrub-like vegetation. Abera 

(2017) notes that much of the steeper highland areas have been degraded through overuse 

and erosion. Dangila town is by far the largest settlement in the woreda and, other than 

Abadira town to the north, and Chara and Giza in the west, dwellings and the population 

are quite scattered. 

 

Figure 4-1. Typical wet season and dry season scenery in Dangila woreda of floodplain pasture 

surrounded by low hills with small (<1 ha) individual plots of rainfed agriculture.  

The flatter kebeles in the east of the woreda, e.g. Dangesheta, Zelesa, Zeguda and Workit, 

that were most frequented for this PhD research exhibit very few stream diversions like 

those observed by Belay and Bewket (2013) during their study of irrigation in the woreda. 

However, most households have their own HDW for backyard irrigation. Such plots 

generally occupy <0.25 ha and are more likely to be planted with fruits, vegetables, coffee 

and khat (Catha edulis) than the main crops listed above. The typical observed backyard 

irrigation system involves a rope and bucket and a watering can. Some smallholders have 

the more efficient pulley and double bucket system while others have rope-and-washer 

pumps often supplied by NGOs. Only one treadle pump was observed among the 

hundreds of wells visited during the three field visits. Despite the advantages of being 

less energy-intensive, locally-made and low cost (1300-3000 Birr or $60-150), broken-

down rope-and-washer pumps were frequently observed. Indeed, a study by MetaMeta 

(2014) revealed that 35-50% of rope-and-washer pumps in the areas of Ethiopia they 

surveyed were non-functional. 

The main rainfed crops have a 5-8 month cropping cycle and are harvested in October 

following the first substantial dry spell at the end of the rainy season. This dry period is 

necessary to dry out the crop thus an extended wet season, according to the local 

community, is a hindrance. The generally flat and seasonally inundated floodplains are 
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almost exclusively used for pasture for cows, sheep and goats, usually tended by local 

children. Other observed floodplain activities were occasional observations of harvesting 

wetland vegetation for animal fodder and small plant nurseries can sometimes be found 

beside perennial reaches of streams during the dry season. While the floodplain marginal 

areas are sought after for cropping to take advantage of residual moisture and shallow 

water tables, cropping is largely non-existent within Dangila woreda on the floodplains 

themselves. 

4.4 Hydrology 

During the dry season field visits, rivers were commonly observed to have dry reaches 

between areas of flow. Similarly, flowing springs often form small streams, which later 

dry up. Dry and low-flow reaches are commonly observed on large flat floodplains where 

the rivers are losing water to the underlying sediments whereas upstream in narrower 

steeper valleys there may be substantial flow. An example is the Amen River, which flows 

through the centre of Dangila town but later dries up upon reaching the large floodplain 

of the Kilti River (Figure 4-2).    

 

Figure 4-2. The flowing Amen River at the gauge location in Dangila town (left) and the stagnant or dry 

Amen River (right) approximately 5 km downstream shortly after reaching the extensive Kilti floodplain. 

The floodplains become inundated during the wet season from spring discharge at their 

edges and from pluvial flooding as opposed to overbank flow. These features appear akin 

to “dambos”, which are discussed in the following section. 

To increase understanding of the hydrology, gauge boards were installed in the Kilti and 

Brante rivers that were monitored by the local community. Additionally, a manual 

raingauge was installed and groundwater level was monitored in five hand-dug wells. 

Further detail is provided of the community-based monitoring programme in Chapter 5. 



48 

 

4.5 Dambos 

The definition of a “dambo” is under debate in earlier studies but is generally as described 

in a review paper by von der Heyden (2004):  “… shallow, seasonally waterlogged 

depressions forming the headwaters of ephemeral and perennial streams in subtropical 

and tropical Africa.”  Dambo profiles are “primarily concave, with shallow slopes and 

gradients of less than 6o (usually less than 2o). The size and shape of the dambo surface 

in plan vary widely, with dambos ranging from several square kilometres of wide, oval 

wetland to narrow, tortuous structures barely 100 m in length.”  This definition matches 

the pervasive floodplain wetland land form observed in Dangila woreda, as do the 

characteristics, such as: (non-calcic) soils characteristics of 30-50% coarse sand, <10% 

clays, low EC, and pH 5.3-6.5, and; a clay layer from in-situ weathering that forces soil 

water to discharge at the level of the dambo at dambo verges.  

Studies on dambos are predominantly from Malawi, South Africa, Zambia and 

Zimbabwe, and though the term appears in papers concerning Ethiopia, specific dambo 

studies are non-existent. Published literature on dambos generally ranges from the late 

1980s to the early 2000s then dries up (attempted contact with authors has not revealed 

why this occurred).  

Uncertainty and conflicting hypotheses exist in the literature concerning the role dambos 

play within catchments, relating to evapotranspiration (ET), dry season baseflow, and 

attenuation of flood flow. The review paper by von der Heyden (2004) states: 

1. Evapotranspiration from a dambo will likely be greater than from interfluves when 

the latter is vegetated by short grasses and shrubs. 

2. Baseflow and dry season flow augmentation is primarily a function of aquifer 

groundwater discharge, with a secondary contribution from surface water storage 

within a dambo.  However, viewing the surface water as a separate entity from the 

groundwater system is illogical as the surface water is an above-ground extension 

of the groundwater table. 

3. Storm flow is retarded and attenuated during the early wet season, through soil 

infiltration and dambo filling. The extent of this retardation and attenuation is a 

function of the soil characteristics. Following saturation of soils, the dambo effects 

little influence over storm flow, with flashy responses to rainfall events noted. 

A geochemical study on a dambo in the Zambia copperbelt with long term monitoring by 

von der Heyden and New (2003) discusses the three issues in contention with the role of 
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dambos, agreeing with the points presented above:  ET is increased but the main outlet of 

a dambo is surface water flow; floods are retained at the onset of the wet season but the 

dambo quickly fills and has no effect on downstream floods; dambos only contribute to 

dry season surface flows until mid-dry season – later in the dry season dambos must be 

fed by deeper aquifers. The study site has a two-aquifer system – the shallow regolith and 

the deeper aquifer – akin to Dangila, and the hydrochemistry results for wetlands, deep 

groundwater and surface water also match.  

An earlier review paper by Bullock (1992) generally matches the conclusions drawn by 

the von der Heyden (2004) review. Bullock states that ET is highest at dambo edges 

though these areas make up only 10% of a dambo. The paper agrees that dambos are not 

so significant for low-flow augmentation and references to this in many papers are from 

misunderstandings of available literature. 

McCartney and Neal (1999) present a case study from Zimbabwe with coarse to medium 

loamy sand soils and a low-permeability clay lens. Low slope and low hydraulic 

conductivity (K) mean that when saturated most flow is over the surface rather than 

through the dambo. Deeper groundwater showed higher alkalinity indicative of 

weathering, whereas shallow groundwater did not, confirming that the clay lens acts as a 

barrier to upward flow. The study suggests pipe-flow is significant in natural pipes ~0.4 

m below surface. During the wet season, 70% of storm flow is “new” water; 10 days 

following a storm event, most water is “return” water having passed through soils first. 

Contradictory to other studies, they state that most water loss is via ET, though they do 

note that there is still much uncertainty. 

A lengthy technical report by McFarlane (1989) describes the contrasting theories of 

dambo formation:  (i) fluviatile, with fining up sediments, or (ii) within irregularly 

lowered land formed by differential leaching with colluvium fill. McFarlane (1989)’s 

Malawi example argues against a fluviatile formation because some dambos are circular, 

others cross watersheds, others are discrete (endorheic); exactly as observed in 

Dangesheta (Figure 4-3). This is suggestive of formation due to irregular lowering of the 

land caused by differential leaching. Further arguments against fluviatile formation 

presented by McFarlane (1989) include:  

 Dambos often contain smectite but it is not seen in interfluves because it is from 

local weathering 
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 Some dambos have stepped forms which would have required multiple climate 

change episodes 

 There is a lack of sufficient energy in low gradient streams with little higher 

catchment for formation of such features 

 There is a lack of stratification of sediments with often vein quartz within clays.  

Also described is the dambo-peripheral zone being characteristically sandy, which 

“shows up well on the air photos as a light toned belt”; this can be seen on Google.Earth 

satellite imagery around Dangila (Figure 4-3). At the Malawi study site, the dambo 

peripheral belts are preferred localities for HDWs because the water table is near to the 

surface; again, such a pattern can be observed in Dangila. Mechanisms for dambos 

in-setting in the landscape include:  1) repeated dissolution and deposition (i.e. as seen in 

African bauxite and laterite terrains), 2) physical subsidence as saprolite loses mechanical 

strength, 3) upstream retreat of gully head and subsequent deposition on downstream 

dambo. The lack of bauxite and laterite terrains makes mechanism 1 inapplicable at 

Dangila. The geomorphology of the narrower, steeper dambos in hilly areas are 

suggestive of mechanism 3, though mechanism 2 is likely to be dominant in Dangila 

woreda. When discussing mechanism 2, McFarlane (1989) talks about HDWs in dambos 

being notorious for collapsing; this may be another reason why the Dangila local 

communities do not excavate wells in dambos and the only HDWs observed in dambos 

are concrete-ring-lined MoWR installed handpumps. Many authors suggest grass slows 

surface water flows off of dambos at the onset of the wet season, a delay of around a 

month (McCartney and Neal, 1999), though McFarlane (1989) suggests it actually takes 

a month for cracks to be closed by swelling clays before runoff is promoted. Interfluve 

runoff would penetrate a dambo at the sandy periphery rather than over the surface; the 

lack of surface deposits is evidence of this. 
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Figure 4-3. “Hanging” floodplain basins above the Brante river valley and the locations of the community 

monitored raingauge and hand-dug wells, Dangesheta kebele. Image source: Google.Earth; Imagery 

©2015 DigitalGlobe). 

4.6 Geology  

Outcrops are visible in riverbeds, occasionally on steeper slopes and in a few man-made 

excavations. Examples of the geology are more commonly visible as large boulders 

within superficial materials, particularly in riverbeds and banks (Figure 4-4). The basalts 

are variously massive, fractured and vesicular with variations occurring in short distances. 

The more massive basalt often forms higher ground with valleys and floodplains 

overlying more fractured and vesicular basalt, which is more easily weathered and eroded. 

 

Figure 4-4. Vesicular basalt boulders in the Brante riverbed, Dangesheta kebele (left). As-dug weathered 

basalt beside a well under construction on the edge of the Brante river floodplain. 
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Above the solid geology lies weathered basalt regolith, itself overlain by red clayey loam 

soils. The red soils become more lithic and clayey with depth, grading into the regolith 

usually with no obvious boundary. As-dug materials beside wells under construction 

show the degree of weathering decreasing with depth. The regolith becomes greyer, 

stronger, and must be chiselled as it deepens though it is still quite friable (Figure 4-4). 

Local communities report there are rarely problems with well sidewall collapse. The most 

friable and excavatable regolith is the result of weathering of low-density vesicular or 

scoriaceous basalt. Often solid geology is reached abruptly and well excavation is halted. 

The superficial materials underlying the floodplains are often browner in colour being 

more organic-rich. Deep and wide desiccation cracks suggest a high clay content, though 

the alluvial materials are occasionally very sandy and gravelly.  

Depth to the top of the solid geology is variable. Wells are typically excavated until 

further excavation becomes impossible, therefore, the location of rockhead can be 

inferred from well depth. Over all the field visits, 80 wells were measured for estimation 

of regolith thickness; more wells were visited but access for measurement, such as in the 

case of wells fitted with handpumps, was not always possible. Rockhead was generally 

found to be deeper in more steeply sloping areas and shallower in floodplains. For 

example, in the north of Dangila woreda in Afafe Eyesus kebele, a hilly area with large 

slopes, wells were found to be 14 to 17 m deep (Figure 4-5), whereas wells adjacent to 

the floodplains in much flatter Dangesheta kebele are often just 3 to 4 m deep. Rivers 

have often incised to the level of the rockhead where solid basalt forms the riverbed with 

banks of only 1 to 3 m in height (Figure 4-5). Measurements and information from the 

well and river surveys are presented in Appendix F. 

 

Figure 4-5. Very deep (approximately 15 m) exposure of regolith in a gully on a large slope, which leads 

to the Amen River, Kuandisha kebele (left). Massive and fractured basalt bedrock exposed in the bed of 

the Gizani River, Sehara kebele. Note the low (~1 m) river banks in this floodplain. 
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In a study of gully formation and upland erosion by Tebebu et al. (2010) at a site south 

of Lake Tana, approximately 50 km from Dangila woreda, they note that the area consists 

of vertisols, which comprise only soils’ A-horizon then ‘C’ (no soil B-horizon) (see 

Figure 3-9). The study further reports that the area is underlain by shallow highly 

weathered and fractured basalt. The fractures are highly interconnected with limited clay 

infillings. Surface exposures of weathered basalt (saprolite) can be found on the hilltops 

and in mid-slope areas on the hillsides. A black clayey layer, regolith zone ‘b’, (note this 

is different to the soil B-horizon as shown in Figure 3-9) is often present above the basalt 

and a brown silty loam is common (zone ‘a’), as well as a compact stony friable layer 

(zone ‘c’). These observations match those made during fieldwork for this PhD project in 

both Dangila woreda and north of Bahir Dar at Robit-Bata kebele (when assisting a Bahir 

Dar University student with his PhD fieldwork); these two locations being either side of 

the study area of Tebebu et al. (2010). Such complementary observations indicate that 

the “typical” regolith profile reported by Acworth (1987), Jones (1985), and others, is 

applicable to this study site and the surrounding area. 

4.7 Hydrogeology  

In addition to season, topography appears to govern shallow groundwater availability. 

The variations in geology are sufficiently subtle, particularly concerning the regolith, 

which forms the shallow groundwater aquifer, to be less of a control on the hydrogeology 

than geomorphology.  

Near the end of the dry season in March/April within the floodplains where the solid 

geology is at a depth of around 4 m, the water table lies at 2-4 mbgl (metres below ground 

level). The water table can often be seen as a seepage face at this depth within riverbank 

sections in floodplain sediments (Figure 4-6). However, on the larger and steeper slopes 

where rockhead is around 15 m deep the water table is at a depth of 12-15 m. Thus, the 

shallow aquifer is thicker on slopes giving deeper water tables and generally greater 

saturated aquifer thickness though possibly with lower hydraulic conductivity (as 

suggested by pumping tests). Superficial deposits are thinner in floodplains and the 

material has higher hydraulic conductivity due to the visible sand and gravel content and 

the possible presence of enhanced fracturing below the floodplains (refer to the earlier 

discussion on dambos).  
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Figure 4-6. Visible water table in the banks of the Amen River, Dangila kebele (left). Massive basalt 

boulders visible within regolith in a cutting for an irrigation canal near Giza. 

It is noted that farmers often talk of a well excavation striking rock at a shallow depth and 

being dry, then when the well is relocated a short distance away (~10 m) rock is struck at 

greater depth and the well fills with water. Such a situation is commonly ascribed to 

heterogeneous rockhead, however, the unsuccessful wells are perhaps more likely to be 

due to the presence of large and massive basalt boulders lying higher in the weathered 

profile as are often visible in riverbank sections (Figure 4-6).  

Despite the shallow aquifer being considered the regolith above the solid geology, it is 

likely that fractures in the upper layers of the bedrock are influential to the 

hydrogeological regime. However, fissure flow is unlikely as any fractures are probably 

filled with weathered material with similar properties to the overlying regolith. The 

precise depth and degree of fracturing of the solid geology is very difficult to estimate 

without subsurface investigations or geophysics. Heterogeneities within the weathered 

basalt regolith, such as the clay content and the fractured or vesicular nature of the pre-

weathered rock, determine the productivity of a well, though this is similarly very difficult 

to assess prior to excavation. 

During the AMGRAF catalyst period in February and March 2014, 143 hand-dug wells 

were surveyed by Demis Alamirew of GSE. A further 64 wells were surveyed by me 

during field visits in March/April 2015 and October/November 2015.  The surveys 

included GPS location, depth and water level measurements, description of geology, 

topography, land use, pump/lifting device and cover, in-situ measurement of water 

temperature, pH and electrical conductivity, and discussions with local community over 

the well’s use, seasonality and history. The information gathered during the water point 

surveys is tabulated in Appendix F. 
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Water point surveys also included assessment of springs, many of which are used by the 

local community, whether developed or not, to collect water for domestic and potable 

use. Flow rates vary from over 20 l/s at Lunk in Sehara kebele, where water is piped to 

tanks to supply the towns of Giza and Chara, to unmeasurably small seepages, though 

often over a large area giving a combined high total flow rate and often forming streams 

(Figure 4-7). Where springs and seepages emerge from gullies they commonly occur at 

contacts between regolith and bedrock or gravelly regolith and more solid regolith (Figure 

4-7). Springs and seepages are also very common around the edges of floodplains where 

the water table from the surrounding slopes intercepts the ground surface (Figure 4-8). 

 

Figure 4-7. Small spring emerging from contact between gravelly and more solid regolith (left). Large 

area of seepages emerging at contact between regolith and massive basalt bedrock forming the riverbed. 

 

Figure 4-8. Developed spring in the centre of a floodplain, which is completely submerged in the wet 

season (left). Spring emerging at the end of the wet season around the edge of a floodplain. 

4.8 Pumping tests  

Eight pumping tests were conducted on shallow hand-dug wells in order to gain 

information on the shallow aquifer properties. This particular aspect of the field 

investigations was presented at the 7th RWSN (Rural Water Supply Network) Forum 
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"Water for Everyone" in Abidjan, Côte d’Ivoire, in November/December 2016. The 

resulting peer-reviewed conference paper titled “Properties of shallow thin regolith 

aquifers in sub-Saharan Africa: a case study from northwest Ethiopia” (Walker, 2016), is 

presented as Appendix A. The paper essentially states that the drawdown and recovery 

were analysed separately, applying the Moench (1985) and Barker and Herbert (1989) 

methods respectively, providing consistent results, confirming suitability of methods. 

Hydraulic conductivity estimates ranged from 0.2 to 6.4 m/d (mean = 2.3 m/d, median = 

1.6 m/d) in the dry season and ranged from 2.8 to 22.3 m/d (mean = 9.7 m/d, median = 

6.5 m/d) in the wet season when the water table was higher. This difference indicates the 

importance of excavating wells as deeply as possible to increase the likelihood of 

intercepting more transmissive layers. Specific yield estimations have a wider range 

(0.00001 to 0.32) and are more uncertain though the mean of 0.09 (median of 0.08) is 

reasonable. Estimates of well yield average 0.5 l/s though this increases to >1 l/s in the 

wet season; giving optimism that small-scale abstraction and irrigation is achievable. 

4.9 Hydrochemistry 

A water sampling and in-situ testing programme was undertaken with the aims of: 

identifying water types, assessing aquifer connectivity, groundwater aging, assessing 

recharge mechanism, analysing the consistency of the hydrochemistry, and to identify 

losing and gaining reaches of surface water. The water sampling and in-situ testing 

programme undertaken during the field visits is described in Appendix B and details of 

the sampling and testing locations can be found in Appendix F. In summary, 49 samples 

of shallow and deep groundwater, surface water and rainwater were sampled during the 

first two field visits; many of these being repeat samples from the same locations. 

Laboratory analysis involved measurement of major ions, some trace elements, and stable 

isotopes oxygen-18 and deuterium (δ18O and δ2H). In-situ testing involved measurement 

of pH, electrical conductivity (EC), total dissolved solids (TDS), temperature, and radon-

222 concentration.  

The shallow groundwater is consistent in chemistry both spatially and temporally. 

Residence time is low, indicated by low EC and ionic concentrations, suggesting that the 

resource could be vulnerable to drought. Surface water and shallow groundwater belong 

to the “bicarbonate calcium” type typical of recent recharge. The deep groundwater is of 

“bicarbonate sodium” type indicative of higher mineralisation due to longer residence 

time and greater distance of flow. The shallow groundwater samples from the wet season 

are very similar in chemistry to surface water samples indicating a high degree of and 
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rapid interconnectivity. This was expected in the wet season from the observed very 

shallow water table. There is no hydrochemical evidence to suggest mixing between the 

shallow and deep groundwaters; they belong to clearly different water types. What’s 

more, Radon-222 measurements showed the opposite of what would be expected if 

surface water and shallow groundwater were being drawndown by abstraction from the 

deep boreholes: 222Rn concentrations would be lower in the vicinity of the abstracting 

boreholes as groundwater discharge would be prevented but the reverse was measured. 

Radon-222 measurements did suggest that the large floodplains in river valleys are areas 

of groundwater discharge from the shallow regolith aquifer, whereas the narrower valleys 

with basalt riverbeds are not discharge areas. However, it should be noted that the faster, 

more turbulent flow through rocky reaches would have a degassing effect on the river 

water thus reducing radon-222 concentrations (Cook et al., 2003). 

Other interesting findings resulted from comparing individual samples collected during 

the same visit. Wells reported by the community to have good year-round supply often 

showed greater stable isotope enrichment and higher ionic concentrations than would be 

expected from their topographic position close to a flow divide. Often, across the flow 

divide, there was a dambo. The higher enrichment (through evaporation when inundated) 

and higher concentrations (due to the longer residence time) suggest the sampled water 

originated in the dambo, which provides continuous groundwater supply through the dry 

season with groundwater flow paths contradicting surface water flow paths.  

Considering only hydrochemistry and not microbial content, the analyses indicate that the 

shallow groundwater tested is suitable for both irrigation and domestic use: Ethiopia is 

known for having problems with fluorosis caused by excess fluorine in groundwater 

(though the issue is typically confined to the Rift Valley and deep boreholes, (Tekle-

Haimanot et al., 2006)) but here F- levels were below the WHO recommended maximum; 

nitrate was suspected to be a possible contaminant due to the proximity of pit latrines and 

wells but NO3
- levels were also below the WHO limit, and; sodium adsorption ratios 

(SAR) were well below the acceptable limit for irrigation water.  

4.10 Conceptual model 

The shallow and deep aquifers have little interconnectivity while the shallow aquifer and 

surface water are in connection particularly during the wet season when large expanses 

are inundated. Recharge is rapid and groundwater residence time is low. 
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The clay content of the floodplain sediments means that early rains may quickly create a 

low-permeability layer at shallow depth, which may exacerbate flooding as surface water 

would pass overland into the river systems and local recharge would be restricted. 

However, the constricted floodplain outlets restrict discharge, thus creating wetlands that 

increase infiltration through coarser lenses or slowly through the low-K layer. If there is 

a surface water / groundwater disconnection, it probably only occurs at the beginning of 

the wet season and during dry season rains when the water table is deeper. During the wet 

season, because the shallow aquifer under floodplains is only a few metres thick, 

sufficient water would enter this aquifer laterally, even if not vertically, to create a single 

connected surface and groundwater body. 

The floodplains fully saturate and flood during the wet season and discharge in directions 

not necessarily matching surface water flow paths. Groundwater flows laterally from 

floodplain basins and probably also flows into and through regolith-filled fractures in the 

upper portion of the basalt bedrock. Numerous surveyed wells were said to have good 

perennial supplies despite appearing to be close to watershed boundaries. Further 

investigation often reveals up-gradient floodplains that may lie across a surface watershed 

divide though the solid bedrock topography promotes groundwater flow in the direction 

of the well. Stable isotope results of groundwater from wells in such locations show 

evaporation at recharge consistent with infiltration below a floodplain wetland. Published 

literature on regolith and saprolite hydrogeology supports this hypothesis where shallow 

low-K layers direct infiltration perpendicular to surface contours whereas groundwater 

flow predominantly occurs in the deeper higher-K layers immediately above the solid 

bedrock and may be in a different direction, as shown in Figure 4-9. The literature 

indicates that regolith is often thickest on slopes and this has been confirmed by surveys 

of well depth. The greater saturated thickness of aquifer in these areas leads to greater 

well yield, as there is more likelihood of intercepting more transmissive layers. 
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Figure 4-9. Cross sections showing the conceptual model during the wet and dry seasons. The cross 

section represents a situation common in Dangesheta, such as a west-east section from the floodplain 

containing MW2 and MW3, through MW1 to the Brante River (Figure 4-3). Note the unsaturated zone 

flow and very shallow groundwater flow in contradictory directions to the dominant regolith aquifer 

groundwater flow during the wet season. Note the dominant regolith aquifer groundwater flow direction 

disregarding the surface water flow divide during the dry season. 

The situation of the wet season in the conceptual model in Figure 4-9 of seemingly having 

groundwater flow in two different directions at the same place is an example of shallow-

flow in the upper soil and regolith layers after storm events but with the 

main groundwater flow in the opposite direction, which would be exacerbated by a low-

K layer higher up within the regolith as much of the literature describes. Such a situation 

was first described by Toth (1963) where local groundwater flow systems are at odds with 

regional flow systems and diagrams based on his paper are found in most hydrogeology 

textbooks (Figure 4-10).  
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Figure 4-10. Schematic diagram of a regional groundwater flow system (from van der Heijde (1988)). 

4.11 Conclusions 

In addition to allowing development of the conceptual model described in the previous 

section, the field investigations indicated that the shallow aquifer has suitable properties 

for an increase in productive groundwater use. While hydraulic conductivity and 

consequently well yield are quite low, systems of multiple or large diameter wells 

providing storage of water could be employed. Aquifer thickness and specific yield are 

also quite low but not too low to prevent productive shallow groundwater use.  
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Chapter 5. Filling the observational void: Scientific value 

and quantitative validation of hydrometeorological 

data from a community-based monitoring 

programme 

5.0 Chapter overview 

Chapter 4 described the field investigations that led to development of a hydrogeological 

conceptual model. To enable resource assessment, time series data was also required; the 

acquisition and analysis of such data is the basis of Chapter 5. This chapter shows how 

community-based hydrometeorological monitoring programmes can provide reliable 

high-quality measurements comparable to formal observations, thus answering research 

question 2 from Chapter 1. Time series of daily rainfall, river stage and groundwater 

levels obtained by a local community in Dangila woreda, have passed accepted quality 

control standards and have been statistically validated against formal sources. In a region 

of low-density and declining formal hydrometeorological monitoring networks, a 

situation shared by much of the developing world, community-based monitoring can fill 

the observational void providing improved spatial and temporal characterisation of 

rainfall, river flow and groundwater levels. Such time series data are invaluable in water 

resource assessment and management, particularly where, as shown here, gridded rainfall 

datasets provide gross under or over estimations of rainfall and where groundwater level 

data are non-existent. Discussions with the local community during workshops held at 

the setup of the monitoring programme and since have demonstrated that the community 

have become engaged in the project and have benefited from a greater hydrological 

knowledge and sense of ownership of their resources. This increased understanding and 

empowerment is at the relevant scale required for effective community-based 

participatory management of shallow groundwater and river catchments.  

This aspect of the research was published in Journal of Hydrology in 2016: 

Walker, D., Forsythe, N., Parkin, G. and Gowing, J. (2016) 'Filling the observational void: 

Scientific value and quantitative validation of hydrometeorological data from a 

community-based monitoring programme', Journal of Hydrology, 538, pp. 713-725. 

https://doi.org/10.1016/j.jhydrol.2016.04.062 

The co-authors provided support in planning and final editing of the paper; all the 

analysis, writing the paper and preparing figures was conducted by David Walker. 
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The text and figures comprising the published manuscript are provided here with little 

alteration. The study area section has largely been deleted to avoid repetition with 

Chapters 3 and 4 while the supplementary material is provided in full as Appendix C. 

5.1 Introduction 

Continuous time series of rainfall, river flow and groundwater level vary in their 

availability. For many areas of, particularly the developing, world, such data is patchy or 

non-existent. Unfortunately, the areas of greatest data scarcity typically coincide with 

areas that suffer the greatest impacts from adverse hydrological conditions where more 

data could be used to better assess the current situation and to forecast future scenarios 

allowing for better mitigation and adaptation strategies. The importance of quantitative 

information on the rainfall, which controls spatially and temporally variable water 

resources, and of measurements of the surface/groundwater resources themselves is not 

in doubt (Washington et al., 2006; Conway et al., 2009; Bonsor and MacDonald, 2011). 

Satellite and reanalysis rainfall products are often promoted as the solution to low-density 

gauge networks, however, the greatest accuracy of such products is achieved in areas with 

abundant ground observation data to aid calibration (Fekete et al., 2004; Dinku et al., 

2008; Symeonakis et al., 2009). What’s more, the necessary spatial averaging means 

spatial resolution is commonly insufficient for smaller than regional scale hydrological 

and hydrogeological studies. Datasets at the relevant scale to inform local resource 

management strategies are increasingly being obtained by local communities providing a 

low-cost and highly useful source of hydrometeorological time series data where they 

would be otherwise unavailable (Liu et al., 2008a; Gomani et al., 2010). The numerous 

additional benefits of such community-based monitoring programmes include the 

engagement and empowerment of local communities in their own water resources 

(Conrad and Hilchey, 2011; Buytaert et al., 2014). A recent editorial in Nature discussing 

the rise of “citizen science” in various fields states that data quality is the prime concern 

of critics (Nature, 2015). The majority of the literature presenting community-based 

monitoring programmes has sought to detail the benefits brought to the community 

though few (if any) papers have attempted to quantitatively validate the collected data in 

a statistical manner akin to the abundant literature validating remote sensing products 

against ground observations. It will be determined here whether community-based 

monitoring can provide data that can be satisfactorily validated against formal sources to 

provide improved spatial and temporal resolution, and whether it can supply reliable 

hydrogeological data where there are no formal alternatives. As formal monitoring 
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networks continue to decline in many parts of the world, we determine if community-

based monitoring programmes can be a viable complement.  

5.2 Sub-Saharan Africa context 

Rain gauge distribution across sub-Saharan Africa (SSA) is sparse, particularly in 

comparison with Europe, North America and South Asia. There are 1152 World 

Meteorological Organization (WMO) World Weather Watch stations in Africa at an 

average station density of just one per 26,000 km2, 8 times lower than the WMO 

minimum recommended level (Washington et al., 2006). Figure 5-1 shows the network 

of WMO stations clearly indicating the sparsity of stations in Africa and their uneven 

distribution resulting in substantial areas going unmonitored. Within SSA, rain gauge 

densities are highest in coastal West and Southern Africa, and the East Africa Highlands 

of Kenya and Uganda, whereas areas of greater aridity are underrepresented. 

Furthermore, it is widely reported that rain gauge networks in SSA are in decline as 

weather services make cut backs (Nicholson, 2001; Washington et al., 2004; Maidment 

et al., 2014). Willmott et al. (1994) report a peak in African rain gauge density occurring 

in the 1950s and a sharp decline after 1970. South Africa has generally been commended 

for its relative abundance of rain gauges although Pegram and Bardossy (2013) report 

that even South African rain gauge records are dying off; after mid-2000 they found that 

out of the 279 gauges in the 5 regions only 180 survived until 2008. A more extreme 

example is Angola which had over 500 meteorological stations as a Portuguese colony 

which were all but destroyed during four decades of civil war until a government 

rebuilding programme had increased the number to eight by 2007 (Cain, 2015). 

 

Figure 5-1. The global network of World Weather Watch stations colour-coded to show reporting rates 

(from WMO, 2003)). 
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River flow monitoring networks in SSA are unfortunately experiencing a similar decline 

to meteorological monitoring networks. Monitoring stations globally have been 

decreasing in number over the last few decades. Tourian et al. (2013) note that among the 

8424 identified gauging stations in the Global Runoff Data Center (GRDC) database only 

40% of stations provide discharge data after 2003. Many of these monitoring stations 

going offline were located in SSA. The requirement to reverse the trend of decreasing 

hydrological monitoring is a widely held view (Kundzewicz, 1997; Owor et al., 2009; 

Taylor et al., 2009). 

Even so, surface water is densely monitored in comparison with groundwater. There is 

general agreement that a better understanding of the shallow hydrogeology of SSA from 

the point of view of potential agricultural use is a necessity (Giordano, 2006; Namara et 

al., 2011; Evans et al., 2012; Pavelic et al., 2013a). Lapworth et al. (2013) state the issue 

succinctly; “Ideally, a thorough quantitative understanding of aquifer properties and 

recharge mechanisms under a variety of climate, land use and geological environments is 

required to confidently assess current groundwater availability, and forecast future 

availability under different scenarios”. A recent review of groundwater conditions in 15 

SSA countries (Pavelic et al., 2012) concluded that: “Quantitative information on aquifer 

characteristics, groundwater recharge rates, flow regimes, quality controls and use is still 

rather patchy”. 

Invariably simultaneously reported alongside comments on the need for greater 

understanding of SSA hydrogeology is the dearth of observations of groundwater 

systems, in particular sustained time series data (Martin and Van De Giesen, 2005; Calow 

et al., 2009b; MacDonald et al., 2009; Taylor et al., 2009; Ethiopian ATA, 2013). The 

situation with groundwater data is different to the aforementioned decreasing 

meteorological and hydrological time series data because there have never been many 

monitoring systems in place. For example; considering the hydrogeology atlas of the 

SADC region (the Southern African Development Community which includes fifteen 

member states south of and inclusive of the Democratic Republic of Congo and 

Tanzania), Robins et al. (2006) report that only six of the member states (Lesotho, 

Mauritius, Namibia, South Africa, Swaziland and Zimbabwe) have formal monitoring 

networks involving water level and some type of water quality measurements. In the 

remaining countries, sporadic measurement occurs though in an ad hoc fashion with little 

or no data reaching the national groundwater authority. This issue is not restricted to 

southern Africa as Martin and Van De Giesen (2005) report that the only data on shallow 
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aquifers in Ghana and Burkina Faso is the total number of wells in a region while even 

production figures for small formalised piped groundwater supplies are not recorded. 

Dapaah-Siakwan and Gyau-Boakye (2000) who conducted broad-scale hydrogeological 

research in this region of West Africa chose to ignore shallow aquifers altogether because:  

“Even though many hand-dug wells have been constructed in various hydrogeologic 

formations (a total of about 60,000 as of March 1998; Ministry of Works and Housing, 

1998), these were not taken into consideration in the analyses for this paper due to the 

dearth of data from these sources.”  The limited groundwater data available in SSA is 

almost exclusively from deep abstraction boreholes, however, shallow groundwater is the 

resource that is accessible and exploited by the majority of rural communities via 

hand-dug wells.  

5.3 Community-based monitoring  

It is increasingly advocated that community involvement should be strongly supported by 

the scientific community to improve links between science and local level planning policy 

(Ridder and Pahl-Wostl, 2005). While there are an increasing number of published works 

on stakeholder participation in environmental decision-making, there are few concerning 

a participatory approach in quantitative environmental monitoring. The potential benefits 

of community-based monitoring are listed by Conrad and Hilchey (2011), compiled from 

an extensive literature review across a variety of fields, and include: 

 Increasing environmental democracy (sharing of information). 

 Scientific literacy (Broader community/public education). 

 Social capital (volunteer engagement, agency connection, leadership building, 

problem-solving and identification of resources). 

 Citizen inclusion in local issues. 

 Data provided at no cost to government.  

 Ecosystems being monitored that otherwise would not.  

 Government desire to be more inclusive is met.  

 Support/drive proactive changes to policy and legislation.  

 Can provide an early warning/detection system. 

Published studies of data collection from non-specialists, often termed “citizen science”, 

commonly involve the collection of “snapshots” of, for example; wildlife, soil type, or 

plants (Roy et al., 2012; Vianna et al., 2014; Rossiter et al., 2015). Monitoring of bird 

populations in programmes such as eBird (Sullivan et al., 2009), where several million 
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species/date/location records are added monthly from around the world and believed to 

be the largest citizen science project in existence (Hochachka et al., 2012), are the only 

known studies where time series data is collected by non-specialists though the data are 

not necessarily gathered at regular times from the same locations. These momentary 

observations are less useful for most hydrological applications where complete time 

series of transient data are required. The theory and practice of citizen science in 

hydrology and water resources management has emerged mainly through experiences in 

developed countries in response to growing environmental activism. To date its scope is 

limited and there are only a few published examples within the hydrology and water 

resources literature of successfully implemented community-based monitoring 

programmes: 

The APWELL project, instigated in the 1990s, developed participatory monitoring 

including 230 rain gauges and 2100 observation wells across 370 villages in the most 

drought-prone region of Andhra Pradesh, India. The project provided farmers with the 

necessary knowledge, data and skills to understand and manage their groundwater 

resource. The outcome was more efficient groundwater use, increased crop yield, and 

poverty reduction  (Garduño et al., 2009; Garduño and Foster, 2010). 

Gomani et al. (2010) detail an “integrated participatory approach” in setting up a 

monitoring network in a large (2780 km2) catchment in Tanzania as part of a project with 

an overall aim of assessing climate change impacts and land use options. The approach 

aimed to assimilate local and expert knowledge with some voluntary monitoring by the 

community including weather, river flow and groundwater measurements. 

A smaller scale community-based monitoring programme in South Africa with the overall 

objective of watershed management for the increase of food production and improving 

rural livelihoods is detailed by Kongo et al. (2010). This monitoring network was 

extremely equipment intensive and involved monitoring weather, river flow, deep and 

shallow groundwater, sediment load, overland flow, soil moisture and crop transpiration. 

It is claimed that the participatory aspect led to an appreciation of the research, which 

sustained the goodwill of the community to safeguard the instruments and structures 

comprising the network. It is stressed that there is always a process to be followed when 

engaging stakeholders that needs to be based on trust, honesty and friendship. 

Buytaert et al. (2014) present case studies detailing the benefits of community 

involvement in hydrological issues from Peru; identifying the hydrological impacts of 
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land use change on ecosystems in remote upland areas beyond the range of formal 

monitoring networks, from Ethiopia; engaging farmers to rehabilitate gullies following 

soil erosion caused by poorly implemented land management practices, from Nepal; 

where communities have taken the lead in water sharing arrangements in an arid region, 

and from Kyrgyzstan;  where water users associations (WUAs) are being set up who are 

installing monitoring schemes to replace those which died out at the end of the Soviet 

period. 

The few other published case studies of water resource community-based monitoring 

programmes generally concern monitoring of water quality for various applications. They 

include; water quality monitoring in rural Mexico for public health where no professional 

assessments exist (Burgos et al., 2013); for monitoring river sediment load and nutrient 

contamination to assess the impact of soil erosion in a remote area of Mindanao, the 

Philippines (Deutsch et al., 2005), and; biological measurements (faecal coliform levels 

and macroinvertebrate indices) for protection of aquatic habitats in Georgia, USA 

(Conners et al., 2001). 

This paper presents a case study of a community-based monitoring programme in 

Ethiopia and aims to show that community measured hydrometeorological data can pass 

strict published quality control procedures. Such data can be validated against formal 

sources proving that the data is reliable, of high quality, and can offer improved spatial 

and temporal resolution over formal ground observation and gridded datasets. To our 

knowledge, there are no other published examples of attempts to rigorously validate data 

from community-based monitoring programmes. 

5.4 Project context 

5.4.1 AMGRAF research project 

The AMGRAF (Adaptive Management of shallow GRoundwater for small-scale 

irrigation and poverty alleviation in sub-Saharan AFrica) research project commenced in 

2013 with the overarching aim of establishing whether development of shallow 

groundwater resources for small-scale irrigation (and other purposes) can be used 

sustainably to alleviate poverty in SSA. The first field site selected was Dangila woreda 

in northwest Ethiopia; an area identified by the Ethiopian ATA (Agricultural 

Transformation Agency) for an increase in irrigated agriculture. Further information on 

the AMGRAF research project can be found in Appendix C. 
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5.4.2 Study area 

The Dangila woreda study area was described in Chapters 3 and 4; the location is shown 

again in Figure 5-2 with nearby hydrometeorological monitoring stations.  

 

 Figure 5-2. Location map of the study area in the Amhara region of Ethiopia. Map shows formal rain 

gauges and river gauges near to Dangila woreda. Lake Tana is visible at the top of the map. 

The community-based monitoring programme was initiated in February 2014. The 

community were consulted and involved in siting the rain and river gauges and identifying 

the wells to be monitored (Figure 5-3 and Figure 5-4). Hydrologically suitable areas were 

identified, i.e. narrow channels and valleys for the river gauges where river stage 

fluctuations would be most pronounced and open areas with no overhead obstructions for 

the rain gauge. Certain locations were excluded for being too open where the community 

expressed concern over the security of the equipment. Ultimately, the rain gauge was 

situated within the smallholding of the community member who would monitor the 

gauge. The monitored wells were chosen to provide a transect from close to the river and 

floodplain up towards a watershed boundary that would include successful wells with 

perennial supply and also unreliable seasonal wells. Another influence on monitoring well 

selection was the route that could be taken by the community member who would 

measure well level, which leads in a broad circle from his house to his place of work 

(Figure 5-3). 
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Figure 5-3. Locations of monitoring points (close to arrowhead in Figure 5-2). MW = monitoring well, 

DSC = Dangesheta Service Cooperative, DAO = Dangesheta Agricultural Office. (Image source: 

Google.Earth; Imagery ©2015 DigitalGlobe). 

The five monitoring wells are manually dipped every two days with a dip meter and the 

rain gauge is measured daily at 9am by reading the level of the internal graduated 

cylinder. The river gauges are monitored daily at 6am and 6pm by reading the river stage 

from the permanently installed gauge boards. Hard copy records of measurements are 

provided by community monitors on a monthly basis to the Dangila woreda office, where 

they are transferred to an Excel spreadsheet and forwarded to the research team. Further 

information on the monitoring network can be found in Appendix C. 

 

Figure 5-4. Photographs of (left to right) the Kilti River gauge, the rain gauge, and measuring 

groundwater level at monitoring well MW5. 

5.5 Data analysis methods 

5.5.1  Sources of error 

Potential errors in rainfall measurements can broadly be divided into two categories; 

sampling error and observational error. Sampling error results from spatial and temporal 

variability of rainfall. Sampling error increases with increased rainfall and decreases with 

increased gauge density and duration of rainfall event (Huff, 1970). Therefore, warmer 

regions where convective storms of high-intensity and short duration are common will 

see the greatest errors, particularly where rain gauge density is low (the Ethiopian 
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Highlands fit this category). Observational error can be due to inaccurate measurements 

on individual days arising through observer errors, either during measurement or 

transcription. Detecting such errors is problematic because the skewed distribution of 

daily rainfall quantities signifies that in all but the most extreme cases a suspect 

measurement has a considerable likelihood of being correct (New et al., 2001). 

Measurement biases arise through gauge undercatch caused mostly by wind turbulence 

around a gauge though splash and evaporation can also have an effect (Legates and 

Willmott, 1990; Peterson et al., 1998; New et al., 2001). 

The sources of error presented above are similarly applicable to river stage and 

groundwater level measurements. Biases can arise from taking measurements relative to 

poorly chosen reference points or due to equipment maintenance issues. Other 

observational errors which may be more likely to result from measurements by non-

professionals include family or work commitments necessitating adjustments to 

observation time or a temporary change in observer.  

5.5.2 Quality control 

The quality control procedures of WMO, as presented in their “Guide to climatological 

practices”,   have been followed in order to verify whether a reported data value is 

representative of what was intended to be measured and has not been contaminated by 

unrelated factors (WMO, 2011). Checks recommended by WMO comprise:   

 Format tests, e.g. impossible dates or words in numeric fields, typically caused by 

transcription errors.  

 Completeness tests, e.g. missing data, which may or may not be important; a 

missing daily rainfall total during a wet period could have a significant effect on 

the monthly rainfall total whereas a single missing groundwater level 

measurement would not be crucial.  

 Consistency tests, further divided into four types of check:  

o internal consistency checks, e.g. do maximum measurements exceed 

minimum or is wind direction between 0o and 360o (such tests are less 

applicable for this community data);  

o temporal consistency checks, where the amount of change with prior and 

subsequent values is not greater than might be expected for the given time 

interval;  
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o spatial consistency checks, comparing observations with what would be 

expected based on observations from neighbouring locations;  

o summarisation consistency checks, e.g. do annual rainfall totals equal the 

sum of monthly and daily totals (this is less applicable for the community 

data where only daily measurements are received).  

 Tolerance tests, which set upper and lower limits on possible values with recourse 

to historical values or via spatial interpolation methods.  

Similar to temporal and spatial consistency checks, care must be taken with tolerance 

tests to avoid excluding correct and particularly informative extreme values, such as 

happened with the Boscastle flood of 2004 in Cornwall, UK and the Great Storm of 1987 

in southeast England when seemingly anomalous measurements could have improved 

forecasts to provide more warning of what became disastrous weather events (Woodroffe, 

1988; Golding et al., 2005). 

Considering the community data received in this case study, the initial screening 

procedure would reveal any gross errors, which may simply be typographical errors 

revealed by format and consistency tests, or extended gaps in the measurements revealed 

by completeness tests. Errors were revealed by this visual inspection including; received 

spreadsheets often had a mixture of English and Amharic characters which were not 

recognised by all computers, commas were often used in place of decimal points or spaces 

were present either side of decimal points, and there were occasional errors in the 

conversion from the Ethiopian to the Gregorian/Western calendar. Such errors were 

simple to rectify.  

An additional quality control procedure is the double mass check, which involves plotting 

the cumulative data of one station against the cumulative data of another nearby station. 

If the data records are consistent, a straight line is obtained. Data from stream flow gauges 

can be compared with data for other flow gauges in the same general area, and, similarly, 

data for rainfall gauges can be compared. Where an inconsistency is observed, such as a 

break in the slope of the line, an investigation into the cause should be performed. 

Relocation of weather stations and dam constructions are examples of causes of such 

breaks in slope in rainfall and river flow data respectively (O’Donnell, 2012). 

5.5.3 Validation of hydrometeorological data 

There is much published literature which aims to validate alternative sources of rainfall 

measurements against ground observations from formal institutions (Robinson et al., 
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2000; Nicholson et al., 2003; Wolff et al., 2005; Ebert et al., 2007). The validation 

methodologies used are similar and consist of statistical comparisons typically evaluating 

correlation coefficient, error and bias. The alternative rainfall sources comprise satellite 

and reanalysis products. Specific examples covering Ethiopia include validation of 

different gridded rainfall datasets by Dinku et al. (2007) and Dinku et al. (2008). 

Published literature concerning validation of river flow and groundwater level data 

generally compares modelling simulations to observations (Beven, 1993; Refsgaard and 

Knudsen, 1996; Motovilov et al., 1999). No examples have been found in the literature 

of validation of data from community-based monitoring. 

For this study, the community and formal data were compared using the Pearson 

correlation coefficient (PCC) and bias. PCC is the typical standard (including in all the 

studies cited in the previous paragraph) used to validate data from an alternative source 

against a formal source:  a negative or low value indicating poor performance and 

questionable validity. However, because PCC simply measures the strength of the linear 

relationship between the datasets, a high PCC would result from a match in the structure 

of the data even if absolute values varied significantly. Therefore, bias is also computed 

to determine whether variation is systematic and could therefore be reduced with bias 

correction, or is due to random error. High seasonal variation between absolute 

measurements mean bias is a more useful descriptive indicator than other methods of 

calculating error such as mean error and RMS error. Gridded datasets have been evaluated 

using the same methodology in order to compare their performance with that of the 

community data. 

𝑷𝑪𝑪 =  
𝑵 ∑ 𝑪. 𝑭 − (∑ 𝑪). (∑ 𝑭)

√(𝑵 ∑ 𝑪𝟐 − (∑ 𝑪)
𝟐

). (𝑵 ∑ 𝑭𝟐 − (∑ 𝑭)𝟐)

  

 

 

(5-1) 

𝑩𝒊𝒂𝒔 =  
∑ 𝑪

∑ 𝑭
 

(5-2) 

Where 𝐶 = community monitored data or gridded data set, 𝐹 = formal ground 

observation data, and 𝑁 = number of data pairs. 

The seasonality of the climate in this region means high correlations would be expected 

during the long dry season when little to no rainfall occurs and surface/groundwater levels 

are relatively static. Therefore, statistical comparisons were separately conducted for the 

wet season onset (May-June), wet season peak (July-August), wet season retreat 
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(September-October), and the dry season (November-April), as well as for the full time 

series. 

5.5.4 Behavioural differences in data 

It is important to note that the formal and the community monitoring locations are not 

immediately adjacent and, as such, near-perfect correlations and zero bias are not 

expected. Variations in groundwater and river levels and in rainfall due to geographic 

position provide insights into local hydrogeology, hydrology and meteorology and the 

lower PCC derived from such variations does not call for rejection of data as long as the 

quality control procedures are passed. What’s more, seemingly extreme values should not 

always cause the rejection of data during the quality control process but should be 

investigated properly. Local knowledge gained through field visits combined with 

anecdotal evidence from contacts in the area means extreme observations highlighted for 

rejection during tolerance tests may be correctly incorporated and are highly valued. 

5.6 Rainfall 

5.6.1 Formal ground observations 

Rainfall data in Ethiopia is collected by the NMA. The density of rain gauges is low, as 

can be seen in Figure 5-2, with only one rain gauge within 900 km2 Dangila woreda and 

only an additional eight within a surrounding area of 5000 km2. All the rain gauges 

outside of the woreda, particularly those to the south, lie at significantly different altitudes 

to Dangila woreda. In addition, the rain gauges to the northeast of the woreda lie along a 

straight line; the Dangila to Bahir Dar highway, which leads to unconfident extrapolation 

of rainfall data either side of the highway via methods such as Kriging or Thiessen 

polygons. Rainfall data has been collected for the nine rain gauges shown in Figure 5-2 

with the available datasets varying in length. Dangila is the closest NMA rain gauge to 

Dangesheta at 5.7 km distant to the south and at approximately the same altitude (~11 m 

difference). The Dangila rainfall record is the third longest (since 1987) but more 

importantly is the most complete while all other rain gauges have significant data gaps, 

often for a year or more. For these reasons of proximity and completeness, the Dangila 

rainfall record is used to evaluate the performance of the alternative rainfall sources (see 

Appendix C for further information substantiating the use of Dangila data for validation 

purposes). 
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5.6.2 Community data 

At the time of writing, 18-months of data were available; March 2014 to October 2015, 

which span two wet seasons. The wet season is pronounced with approximately 85% of 

rainfall recorded between May and October. However, the wet season of 2014 was 

atypical in that it started earlier, ended later, and had a less pronounced peak in July and 

August compared to historical records from the NMA for all nearby rain gauges. A double 

mass check conducted for rainfall from the community-based monitoring programme 

against Dangila NMA confirms a reliable record (Figure 5-5); based on double mass 

checks it appears more reliable than records from most of the alternative formal rain 

gauges. 

 

Figure 5-5. Double mass check of rainfall for Dangila NMA with Dangesheta community showing a good 

linear relationship indicating a consistent record. Note that a good record is considered to be a straight 

line and not necessarily x=y. 

Closer to the community rain gauge than the NMA formal rain gauge is an electronic 

automatic weather station, which is 960 m to the north beside the Dangesheta Agricultural 

Office (DAO on the map in Figure 5-3) and at approximately the same altitude (~14 m 

difference). Installed by Bahir Dar University in March 2015, the electronic weather 

station incorporates a tipping bucket rain gauge, though unfortunately it stopped 

recording during the peak of the wet season leading to limited data with which to conduct 

comparisons. 

5.6.3 Gridded datasets 

The gridded remote sensing and reanalysis rainfall datasets that have been considered are 

TRMM, ERA-Interim, NASA MERRA, JRA-55 and NCEP (see Appendix C for further 

information). The spatial resolution of these gridded datasets varies from 0.25o x 0.25o, 

or ~28 x 28 km, (TRMM) to 1.25o x 1.25o, or ~140 x 140 km, (JRA-55) though this 
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coarsest dataset provides the longest time series; since 1958. Such large grid squares over 

this region of Ethiopia necessarily comprise large altitudinal ranges, often of several 

thousand metres, and where multiple NMA rain gauges are present within a grid square 

the observed variations in rainfall totals can be very high. 

5.6.4 Performance of alternative rainfall sources 

Spatial consistency testing conducted as part of the quality control procedure involved 

plotting daily rainfall totals from Dangila NMA, Dangesheta community, and Dangesheta 

electronic rain gauges. The plots were very similar but with a slight shift in the peaks. It 

was immediately apparent that there had been an error in conversion from the Ethiopian 

to the Gregorian/Western calendar and when the community rainfall time series was 

shifted by a day the peaks matched. Further investigation of rainfall data from the 

electronic rain gauge revealed that daily totals were summed from a 24-hour period 

spanning midnight to midnight. When the totals were recalculated for a 9 am to 9 am 

period, as per the formal and community measurements, the timing of peaks from all three 

datasets were in agreement. Values for the tolerance tests could be taken from the 

extensive formal rainfall datasets from the nine nearby rain gauges, which were also used 

for consistency testing. All community rainfall data passed quality control testing. 

Before correlating daily rainfall from the community gauge with the formal source, it was 

necessary to determine what PCC could be considered good performance. By correlating 

rainfall from the other nearby NMA rain gauges with that from Dangila, variations in 

PCC would show the degree of spatial and temporal variation in rainfall. The PCC was 

calculated using as long a time series as available for each rain gauge; the results are 

presented in Figure 5-6a. As would be expected, the PCC increases as distance from the 

Dangila rain gauge decreases because error due to spatial and temporal variation lessens. 

The trendline is projected to the distance of the community rain gauge (5.7 km) and it can 

thus be stated that a PCC below this line (less than approximately 0.68) likely includes a 

degree of observational error. 

Because the community data is available only from March 2014, the same period was 

used to evaluate the relative performance of the gridded datasets. JRA-55 and NCEP are 

excluded because the data were not available for this evaluation period. Where multiple 

seasons have occurred, i.e. wet season peak in 2014 and 2015, the mean PCC is taken; 

nowhere was it necessary to take means of markedly different values (Figure 5-6b). 
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Figure 5-6. Variation with distance of Pearson correlation coefficient (PCC) between daily rainfall from 

Dangila NMA rain gauge and other NMA rain gauges close to Dangila woreda (a). Pearson correlation 

coefficient (PCC) between daily rainfall from Dangila NMA rain gauge and alternative sources (b). 

Immediately apparent from Figure 5-6b is that the community data outperforms the 

gridded datasets for all seasons. Localised short-lived storm events leading to high spatial 

and temporal variability are proposed for the reason behind the poor correlation of all 

alternative sources of rainfall data during the wet season peak. When all the data is 

considered (the far right of the graph), the PCC of 0.73 for the community data is greater 

than the value predicted in Figure 5-6a and the discrepancies with the formal dataset can 

therefore be considered sampling rather than observational error. Because they are just 

900 m apart, it would be expected that the community rain gauge and the electronic rain 

gauge would correlate better than the dataset pairs presented in Figure 5-6b; indeed the 

calculated PCC is 0.84. 

Analysis of bias is presented in Figure 5-7a. Again, the community data shows the least 

bias and, importantly, the greatest consistency, suggesting that the bias is due to 

systematic error. This error could be due to undercatch as the community rain gauge is 

close to a small tree, which may provide some sheltering. However, when compared to 

the nearby electronic rain gauge which is in an open position like the Dangila NMA rain 

gauge, bias is just 1.05, suggesting that the bias of ground observations in Figure 5-7a is 

primarily due to spatial variability. 
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Figure 5-7. Bias between daily rainfall from Dangila NMA rain gauge and alternative sources (a). Note 

that bias is computed as a ratio and the bold line at 1.0 represents zero bias. Median monthly rainfall 

totals as percentage of annual total for Dangila NMA rain gauge and gridded datasets (b). 

Figure 5-6 and Figure 5-7a suggest that the gridded datasets perform poorly for this 

location, particularly in comparison to the community-based monitoring. To test whether 

the gridded datasets always perform poorly or solely for the period of overlap with the 

community data, the full available time series were analysed and monthly totals are 

considered in order to smooth out extreme events that reduce the PCC during daily rainfall 

analysis. When median monthly totals are normalised to annual total (Figure 5-7b) the 

performance of the gridded datasets is improved. However, capturing the wet season peak 

still appears to be problematic which could have serious consequences for water resource 

assessment if these datasets were to be relied on in place of ground observations. 

5.7 River flow 

5.7.1 Formal observations 

River flow data in Ethiopia is collected by the Ministry of Water, Irrigation and Electricity 

(MoWIE). It can be seen in Figure 5-2 that two river gauges lie within Dangila woreda 

though the most useful for this project are named “Amen @ Dangila”, which is upstream 

of the community Kilti gauge, and “Kilti Nr Durbete”, which is downstream of the 

community Kilti and Brante gauges and situated outside the woreda. Measurement of 

river stage at these locations is taken from depth gauge boards and the available time 

series spans 1988 to 2014 though with some significant gaps in the data lasting from 

months to years. 

5.7.2 Community data 

The two MoWIE monitored river gauges within Dangila woreda are located on ephemeral 

streams and it appears that either measurement does not always take place or monitoring 

records have not yet been completely digitised. A continuous time series of river stage 

measurements is therefore only available from the community-based monitoring 
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programme. Following a decision taken by the community themselves, measurements 

take place twice a day as opposed to the daily formal river monitoring. In addition, with 

no external prompting, the community members who conduct the monitoring regularly 

add notes to their river stage records noting if a flood peak passed at a particular time and 

at what level. Such information is not available from formal sources. 

The full time series of rainfall and river stage measurements collected by the Dangesheta 

community are presented in Figure 5-8. It can be seen that the rivers are very flashy with 

sharp peaks in river stage quickly following rainfall events. 

 

Figure 5-8. Complete time series to date of daily Kilti and Brante river stage, and rainfall measurements 

from the community-based monitoring programme (2014-2015). 

5.7.3 Performance of alternative river flow sources 

A complete twice-daily record of river stage is held which is straightforward to cross-

examine between rivers and with rainfall to determine if all peaks and troughs pass 

consistency tests. Suitable values for tolerance testing were derived from anecdotal and 

physical evidence obtained during field visits to the monitoring sites; such as the Kilti 

River’s maximum peak in October 2014, which damaged the river gauge. Quality control 

procedures were passed for all of the community monitored river data. 

Unfortunately, there is only a very short period of overlap between the formal and the 

community river flow data. Therefore, correlations with formal sources are not 

considered the principal method of validating the river flow data. However, correlating 

the overlapping data between formal (Kilti and Amen) and community (Kilti and Brante) 

daily totals gives 0.52-0.58, similar to the correlation between the two formal river flow 

sources for their complete daily records, PCC = 0.58. 
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A unit runoff check involves dividing the (monthly) runoff by the catchment area in order 

to determine the runoff as a depth. This is compared for consistency with values obtained 

from nearby hydrologically similar catchments. This check is particularly useful in 

identifying abrupt changes in river flows resulting from river basin management activities 

(O’Donnell, 2012). Unit runoff checks were conducted for the Kilti and Brante flow 

measurements from the community-based monitoring programme and for the formal flow 

measurements for the Kilti and Amen (Figure 5-9). The differences in unit runoff depths 

from the formal sources are increasingly significant from 1997 to 2001 and 2007 to 2010. 

This may be due to a period of unreliability of the rating curve and ongoing revision 

efforts which was the explanation given by MoWIE for considering the 2014 data to be 

unreliable (S. Mamo, personal communication, 10 December 2015). Thus, no conclusions 

should be drawn from the poor match with the community data during the 6-month 

overlap in 2014 (Figure 5-9). It can be seen on the unit runoff check that there is a 

reasonable match between the two community monitored rivers, at least as good a match 

as has typically been seen between the two formally monitored rivers in previous years. 

 

Figure 5-9. Unit runoff checks for river flow data from community-based monitoring and formal sources. 

Gaps indicate insufficient flow measurements to calculate monthly totals. Note that the 2014 formal 

measurements are considered by MoWIE to be unreliable. 

When river flows (daily totals) are correlated against rainfall from the NMA Dangila rain 

gauge, the PCCs are lower for all seasons and for all gauges (Figure 5-10) than was 

achieved when validating rainfall and groundwater data. The low values reflect the 

geography and hydrogeology of the catchments where peak floods have been observed to 

occur with a very short time lag after the onset of a rainfall event. Very heavy overnight 

storms were experienced during fieldwork though when the rivers were visited early the 

following morning the river stage had already dropped from the level still visible on the 

banks to the level observed the previous day. Because rainfall measurements are 

cumulative and river stage measurements are momentary, monitoring would have to be 

undertaken at a much higher frequency in order to achieve better correlations with 
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rainfall. However, the PCCs in Figure 5-10 are similar for both the formal and the 

community measurements particularly when all seasons are considered. 

 

Figure 5-10. Pearson correlation coefficient (PCC) between daily rainfall from Dangila NMA rain gauge 

and river flow measurements (daily totals) from formal and community sources. Note that “All” includes 

incomplete months excluded from other seasons explaining the contrast in relative PCC of, in particular 

community monitored Kilti, data from individual seasons to “All”. 

5.8 Groundwater level data 

5.8.1 Formal observations 

The community monitored groundwater level data is the only means of assessing water 

table depth and recession anywhere within Dangila woreda. Extremely limited data on 

boreholes and groundwater are available from formal sources (see Appendix C). 

5.8.2 Community data  

It would be expected, given that the monitoring wells are in close proximity (maximum 

separation of 970 m), that groundwater levels from different wells would follow a similar 

pattern of seasonal variation. Peaks in water level during dry spells or plateaus spanning 

numerous rainfall events would suggest unreliable data. It is immediately obvious from 

Figure 5-11 that the patterns in water level response are consistent, quality control 

procedures have been passed (with a single exception discussed below) and the validity 

of the data is confirmed when statistical comparisons are conducted between wells and 

with river stage. 

Minor abstraction occurs from the monitoring wells at the level of a few buckets (20-50 

litres) per day for domestic use. If abstraction took place immediately prior to 

measurement then a drawdown of a few centimetres may be incorporated into the 

observation. Such discrepancies between aquifer and well groundwater level are likely 

within the expected measurement error. Furthermore, measurement took place as much 

as possible early in the morning prior to well abstraction.  
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Figure 5-11. Complete time series to date of groundwater level and rainfall measurements from the 

community-based monitoring programme (2014-2015). It is noted that wells MW1, MW3 and MW5 dry 

out in the dry season and their minimum groundwater levels represent the basal level of the well. The gap 

in the well MW4 time series is discussed in Section 5.8.3. 

Differences in amplification of water level responses to particular rainfall events have 

physical reasons: either due to features of the well itself, e.g. MW1 and MW5 peak the 

most significantly as they are open to direct precipitation and overland flow, or due to 

aquifer characteristics, e.g. MW4 declines the most gradually, proposed to be due to a 

lack of high-transmissivity layers, such as fractured bedrock within the shallow weathered 

regolith aquifer, which are present in other well bores (during workshop discussions the 

local community spoke of not striking rock when excavating MW4 unlike in other wells, 

particularly MW1 and MW5 where a rapid decline in water level is observed at the onset 

of the dry season). Analysis of the differences in well responses and discussions during 

community workshops have been invaluable in gaining a greater understanding of the 

shallow hydrogeology in the area. 

5.8.3 Performance of alternative groundwater level sources 

The quality control procedures had to be most carefully applied to the groundwater level 

data. Completeness tests showed occasional gaps of two days rather than the expected 

measurements every other day with some gaps of three days and one exceptional gap of 

eight days. It is noted that these larger gaps occur during the dry season when there is 

little groundwater level fluctuation and there are just as many measurements at a higher 

than required frequency on consecutive days. No groundwater level dataset was excluded 

for reasons of completeness. Consistency tests often highlighted errors where large 

“steps” in the data were present from one month of measurements to the next. Further 

investigations typically revealed that a spreadsheet had been labelled incorrectly and 
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when the data was switched to the correct well the consistency test was passed. One such 

step in the data which failed according to spatial consistency (neighbouring wells do not 

show such a large drop at that time) and temporal consistency (such a large overnight 

drop has no physical explanation) has yet to be resolved and the excluded month can be 

seen in well MW4 in Figure 5-11. Other than this single month of data for one particular 

well and following some corrective reorganisation of datasets, the groundwater level data 

passes quality control procedures. 

The groundwater level data cannot be validated against formal sources as no such data 

exists. Figure 5-12 shows the Pearson correlation coefficient between water level 

responses of different monitoring wells. Bias is inapplicable because the response of each 

well is expected to vary in absolute value; such variations are due to differing well and 

water table depths, variations in aquifer properties and differences in position on the 

groundwater flow path. Accordingly, precise agreement, i.e. correlations of 1, would not 

be expected. Indeed, it is the subtle differences in groundwater level response that are 

aiding understanding of the shallow hydrogeology of the area. Analysis was conducted 

for individual seasons and for the full time series. 

 

Figure 5-12. Pearson correlation coefficient (PCC) between community monitored groundwater level data 

from monitoring wells MW1-5. 

Figure 5-12 shows that there is very good correlation between monitoring wells; the mean 

PCC between all wells for the full time series is 0.86. The raw data was investigated 

where the PCC is below 0.75 and in all cases a physical reason was apparent such as 

comparisons between wells during a period where one was predominantly dry (e.g. MW1 

for long periods). 

To further validate the groundwater level data, correlations were conducted with river 

stage from the two nearby community-monitored gauges. River depth is being compared 

to depth to groundwater thus when river stage is high it would be expected that depth to 
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the water table would be low and a perfect correlation would yield -1. However, the flashy 

response of the rivers to rainfall events and the lag until groundwater responds means it 

is unlikely that very close to -1 would be obtained but the results should still be high in 

the negative. The results of the correlations are presented in Table 5-1 and show highly 

satisfactory correlations with an average of -0.73. 

Table 5-1. Pearson correlation coefficient (PCC) between community monitored river stage and 

groundwater level from monitoring wells MW1-5 for the entire time series. 

 Brante river stage vs; Kilti river stage vs; 

Well: MW1 MW2 MW3 MW4 MW5 MW1 MW2 MW3 MW4 MW5 

PCC: -0.75 -0.80 -0.76 -0.63 -0.83 -0.70 -0.76 -0.73 -0.64 -0.74 

 

5.9 Discussion 

5.9.1 Qualitative and quantitative value of community-based monitoring 

observations 

The qualitative value of the community data is in contributing to the conceptual 

understanding of the shallow groundwater system. Conceptual understanding has only 

been possible with a combination of fieldwork and analysis of differences in well and 

river responses using data from the community-based monitoring programme. Slow 

declines in groundwater levels following rainfall events can indicate high storativity of 

the aquifer and significant river baseflow throughout the dry season can indicate an 

aquifer with the potential for exploitation. 

The community data has quantitative value through providing complete time series 

spanning numerous seasons. For the purpose of understanding the shallow 

hydrogeological system to enable simulation of the impacts of increased abstraction, land 

use change, and climate variability; physically-based numerical models are being 

constructed using SHETRAN (Ewen et al., 2000). Construction and calibration of these 

necessarily transient models at scales useful for local management of water resources is 

only possible with the time series of river flow and groundwater level gathered by the 

community. Alongside traditional methods such as chloride mass balance (CMB), 

recharge assessments for the Dangesheta area are being conducted using the RIB model 

(Xu and van Tonder, 2001; Sun et al., 2013) and water table fluctuation method; neither 

of which would be possible without the time series of groundwater level. The close 

agreement of the community-gathered and nearest formal rainfall dataset gives 
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confidence that the formal rainfall dataset can be used in the models to extend the time 

series prior to the commencement of the community-based monitoring programme. 

Consistency of anomaly patterns as evidenced by the PCC between community gathered 

and gridded rainfall datasets enables selection of the most appropriate gridded dataset for 

infilling gaps in formal ground observation rainfall totals, which occurred historically. 

A key value of community-based monitoring programmes is the engagement of the local 

community, which, as the wider research programme progresses, will hopefully evolve 

to active management of their resources. The value to the local community has been 

expressed as a feeling of partnership in the project rather than constantly being subjects 

of research. Questions posed by the Dangesheta community during recent workshops 

involving the dissemination of findings demonstrated a level of engagement and an 

increase in hydrological knowledge that was not observed during workshops at the project 

onset. Proffered reasons for differences between recession curves for groundwater levels 

from various wells, e.g. zones of aquifer with greater storage properties, have been 

incorporated into conceptual models. The community also speak of a sense of pride that 

their community are participating in the programme that may have implications beyond 

Dangesheta. 

This research has shown that high quality hydrometeorological data for various 

applications can be collected by non-specialists from local communities. The data can 

reliably supplement that from formal sources or provide time series where no formal 

alternatives are available. 

5.9.2 Recommendations for ensuring quality data production 

The potential for community-based monitoring programmes to infill gaps in sparse, 

declining or non-existent formal monitoring networks is clear. However, there are 

numerous critical factors for ensuring quality data production. The early involvement of 

the local community is important to instil a sense of ownership of the equipment and the 

project. Assistance in site selection for monitoring points is an ideal way to engage the 

community early and was achieved in this case via the focus groups and participatory 

mapping workshops. Variations in well level responses indicate the monitoring wells 

were successfully identified to provide information on aquifer zones with varying 

potential for exploitation. Selection of the community members to be involved in the 

programme is particularly crucial. The completeness of these community datasets and 

their success in passing the WMO quality control standards indicates selection of 

monitoring personnel was successful in this case. Known and respected community 
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members who live or work in close proximity to the monitoring points should be selected, 

if willing to participate, to ensure security of the equipment and to demonstrate to the 

community, simply by their involvement, that the programme has value. We are aware of 

community-based monitoring programmes in other areas of Ethiopia that have suffered 

issues such as vandalism of equipment (Zemadim et al., 2014) and falsification of data 

(D.L. Yiak, personal communication, 5 April 2015). In these cases, monitoring or in-situ 

downloading of data has been conducted by outside (unknown to the community) people 

or a casually selected community member who may have been purely interested in the 

financial incentive. Notably, these examples were more equipment intensive and offered 

higher financial incentives than the Dangesheta case. Vandalism or data falsification have 

not been encountered during this study further confirming the value of community 

participation in site selection and nomination of community members to undertake the 

monitoring. The importance of feedback has been reported to us concerning Dangesheta 

and other examples of community-based monitoring programmes in Ethiopia:  this could 

be delivered through visits and support as well as workshops presenting the collected 

data, eliciting from the community what the data reveals, explaining what the data is being 

used for, and giving the community the opportunity to ask questions, provide their own 

explanations for patterns in the data, and give suggestions for improving the community-

based monitoring programme. The continued performance of the community-based 

monitoring programme in generating high-quality observations is evidence of the value 

of the workshops. 

5.9.3 Wider application of community-based hydrometeorological monitoring 

It has been shown that community-based monitoring can be used to provide improved 

spatial density of measurements in areas of sparse and/or declining formal monitoring 

networks. In addition, where there exist relatively high densities of formal 

hydrometeorological monitoring points, community-based monitoring still has much to 

offer.  

Gridded datasets are a viable alternative source of rainfall data in many regions though it 

has been shown here that over complex terrain with large differences in altitude gross 

over and under estimations of rainfall totals are possible, especially where grid size is 

large. Community-based monitoring can provide data of sufficient quality to add to the 

ground observation datasets used to calibrate and validate these gridded datasets. 
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5.10 Conclusions 

The research shows that high-quality daily rainfall totals, sub-daily river stage and daily 

to sub-weekly groundwater level measurements are achievable by an astutely 

implemented and managed community-based monitoring programme. Formal rain gauge 

networks in many regions of the world are inadequately dense to provide confident 

interpolation of rainfall quantities. Gridded datasets with their necessarily low resolutions 

often cannot achieve good agreement with ground observations particularly in areas of 

spatial heterogeneity of intense convective precipitation and particularly when sub-

monthly rainfall totals are required. Formal river monitoring networks are also 

insufficient with few available datasets for use in modelling catchments at less than the 

regional scale. Furthermore, formal river monitoring networks, along with formal rain 

gauge networks, are in decline as national institutions embark on cost-cutting practices; 

an issue which is particularly severe in less economically developed countries. In sub-

Saharan Africa, groundwater level monitoring networks are essentially non-existent when 

it comes to shallow groundwater – the resource used by the majority of poor rural 

communities. It has been shown that community-based monitoring can provide high 

quality data to help fill these observational voids. Data screening for quality control 

indicates reliable and consistent measurements, as good as formal monitoring, can be 

obtained by local communities. Community-based monitoring can improve spatial and 

temporal characterisation of rainfall, river flow and groundwater level, reducing the 

uncertainty of using extrapolated/interpolated values from formal and gridded datasets or 

from modelling simulations. Statistical comparisons of the community-based monitoring 

data against formal sources and against other data simultaneously gathered by the local 

community validate their quality for use in further study. Our research has shown that 

benefits to the community include a greater understanding of their local hydrology and 

hydrogeology, a sense of ownership of their water resources, and a sense of being a 

research partner as opposed to a subject. Such increased hydrological understanding in 

sub-Saharan Africa provides the basis for communities to manage their own resources, 

which could increase food security by reducing reliance on rainfed agriculture.  

It is noted here that the community-gathered data from Dangesheta beyond the period 

covered in this chapter (collected after publication of the associated paper) passed through 

the same quality control procedures. This longer time series of consistently high-quality 

data was utilised in subsequent chapters.
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Chapter 6. Insights from a multi-method recharge estimation 

comparison study 

 

6.0 Chapter overview 

Chapter 5 showed that high quality hydrometeorological time series can be obtained from 

community-based monitoring programmes, in addition to informing the conceptual 

model. The community gathered data was therefore approved for use in resource 

evaluations. Chapter 6 concerns the recharge assessment conducted for Dangila woreda 

that aimed to answer research question number 3 from Chapter 1: Can shallow 

groundwater be considered a renewable resource, and; which recharge assessment 

methods provide the highest confidence in the calculated recharge amounts when applied 

to these types of aquifers?  

Although most recharge estimation studies apply multiple methods to identify the 

possible range in recharge values, many do not distinguish clearly enough between 

inherent uncertainty of the methods and other factors affecting the results. We 

investigated the additional value that can be gained from multi-method recharge studies 

through insights into hydrogeological understanding, in addition to characterising 

uncertainty. Nine separate groundwater recharge estimation methods, with a total of 17 

variations, were applied. These gave a wide range of recharge values from 45 to 

814 mm/a. Critical assessment indicated that the results depended on what the recharge 

represents (actual, potential, minimum recharge or change in aquifer storage), and spatial 

and temporal scales, as well as uncertainties from application of each method. Important 

insights into the hydrogeological system were gained from this detailed analysis, which 

also confirmed that the range of values for actual recharge was reduced to around 280-

430 mm/a. This chapter demonstrates that even when assumptions behind methods are 

violated, as they often are to some degree especially when data are limited, valuable 

insights into the hydrogeological system can be gained from application of multiple 

methods. 

This aspect of the research was published in Groundwater journal in 2018: 

Walker, D., Parkin, G., Schmitter, P., Gowing, J., Tilahun, S.A., Haile, A.T. and Yimam, 

A.Y. (2018) 'Insights from a multi-method recharge estimation comparison study', 

Groundwater (in press). 
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The co-authors provided support in planning and final editing of the paper, or were 

involved in data collection; all the analysis, writing the paper and preparing figures was 

conducted by David Walker. 

The paper is provided here with little alteration; the study area section has been largely 

reduced to avoid repetition with Chapters 3 and 4, though some climatic and geological 

information is repeated where particularly important for the recharge study. The 

supporting information is provided in full as Appendix D. It is noted that one of the 

recharge estimation methods applied utilised SHETRAN modelling, which is not 

described in detail until Chapter 7. Brief information on the SHETRAN modelling is 

provided in this chapter and in Appendix D. 

6.1 Introduction 

Estimates of groundwater recharge allow quantification of renewable groundwater 

resources and can be used to indicate aquifer vulnerability to contamination or drought, 

assess groundwater contribution to streams (baseflow) and wetlands, and identify the 

implications of changes to land use, land cover or climate (Misstear, 2000; de Vries and 

Simmers, 2002; Healy, 2010). Several notable reviews published over the past decades 

discuss various methodologies of estimating groundwater recharge (Simmers, 1988; 

Lerner et al., 1990; Scanlon et al., 2002; Healy, 2010). It is well known, and stated by 

these reviews, that groundwater recharge estimates often vary between methods due to 

the uncertainties inherent with each method, the different spatiotemporal scales at which 

they operate, and the type of recharge they represent. It is normally recommended, 

therefore, that multiple methods be used. However, recharge estimation methods are often 

chosen in practice according to data availability even though the method may not be the 

most suitable for the particular climate or hydrogeological conceptual model. Often, the 

violation of a method’s assumptions may only become apparent when the recharge result 

is compared to results from different methods. In addition, some recharge estimation 

studies do not make a clear distinction between the reasons why the recharge results 

differ, whether it is due to genuine uncertainties in data and methods, unsatisfied 

assumptions, different spatiotemporal scales, or if the method is actually computing a 

different type of recharge. However, recognising these distinctions in multi-method 

recharge estimation comparison studies can help to provide useful insights into the 

hydrogeological system.  

A recharge assessment was conducted at a study site in northwest Ethiopia (Dangila 

woreda, a local administrative district), in the context of an investigation into the 
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resilience of shallow groundwater resources used for irrigation by rural communities. 

Following recommended approaches, e.g. Scanlon et al. (2002) and Healy (2010), several 

techniques were initially applied, and it was found that they gave a wide range of recharge 

estimates. This is commonly reported in the literature, e.g. Berehanu et al. (2017) and 

Afrifa et al. (2017), although it is less common for studies to report investigation of the 

reasons for the range of values. Some previous studies, typically using at most three to 

five recharge estimation techniques, have considered the basis for differing recharge 

estimates in more detail, and concluded that the range of recharge estimates contains 

useful information to inform further understanding of the conceptual model (e.g. Coes et 

al. (2007); King et al. (2017)). For our study, there were sufficient data of suitable quality 

to apply a larger number of recharge estimation methodologies at a single site, so a wider 

investigation was made to assess which of the most commonly applied recharge 

estimation methods could help to provide insights and increase understanding of the 

hydrogeological system. Nine different recharge estimation techniques were applied, with 

a total of 17 variations, including variants of methods and variations in how input data 

were derived. The methods are presented here in order of increasing data requirement and 

complexity: an empirical method, streamflow hydrograph methods (three variations), soil 

moisture balance (two variations), basin water balance (three variations), chloride mass 

balance, water table fluctuation (two variations), rainfall infiltration breakthrough, and 

physically-based modelling. The ninth method is large-scale mapping and modelling 

(three variations) from which recharge values have been obtained for comparison from 

published studies. 

The three aims of this paper are to:  

1. Demonstrate quantitatively the range of recharge results that can be 

calculated from as many methods as feasible for the study site, and analyse 

the underlying reasons for the different recharge values  

2. Assess the utility of applying multiple methods in order to gain insights on 

the hydrogeological system 

3. Provide a recharge estimate with uncertainty for Dangila woreda.  

The study highlights and analyses the general problem of interpretation of variability in 

recharge estimates obtained from different methods. It is noted that all methods were 

applied even if assumptions may not be fully complied with, since this is a factor relevant 

to uncertainty in recharge estimation in many published studies. It is not uncommon for 

recharge results to be reported without explicit statement of assumptions and limitations 
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or the type of recharge being computed (Sophocleous, 1985; Wood, 1999; Halford and 

Mayer, 2000). It may only be through identifying significant discrepancies between 

recharge results from different methods that violation of a method’s assumptions are 

realised and the hydrogeological conceptual model can be amended and better 

understood. Additionally, this study provides a useful recharge estimate for a shallow 

aquifer in northwest Ethiopia. Published recharge estimation studies from sub-Saharan 

Africa are not great in number, not well geographically distributed, and many are grey 

literature (Bonsor and MacDonald, 2010; Wang et al., 2010; Pavelic et al., 2012; Chung 

et al., 2016). The majority of studies are concentrated in arid and semi-arid regions due 

to water scarcity in these areas. However, many regions of apparent high rainfall also 

experience water scarcity during the dry season (Rijsberman, 2006) and when sub-

Saharan Africa’s variable climate unpredictably delivers low wet season rains (Van 

Koppen, 2003; Bonsor et al., 2010).   

6.2 Groundwater recharge 

Lerner et al. (1990) provide the classical definition of recharge: “the downward flow of 

water reaching the water table, forming an addition to the groundwater reservoir”. This 

defines “actual recharge” and is referred to as such by many authors, e.g. Scanlon et al. 

(2002); Misstear et al. (2007); Healy (2010). According to Rushton (1997), the term 

“actual recharge” is used to distinguish it from potential or minimum recharge. Potential 

recharge is water passing downward through the unsaturated zone that could potentially 

contribute to the aquifer. Potential recharge is the term used by many authors for recharge 

computed from unsaturated zone methods as this infiltrated water may be subject to losses 

(e.g. root zone uptake, interflow then surface discharge) before contributing to the aquifer 

(e.g. Simmers (1988); Rushton (1997); Healy (2010)). Minimum recharge refers to 

groundwater discharge to rivers or springs, when the two quantities are considered to be 

in balance. It is termed minimum recharge because other losses (e.g. evaporation from the 

saturated zone, seepage to deeper aquifers) may have occurred since the water was 

recharged (e.g. Szilagyi et al. (2003); Vegter and Pitman (2003); Risser et al. (2005)). 

In humid regions characterised by shallow water tables and gaining rivers, diffuse (or 

direct) recharge dominates. In arid regions characterised by deep water tables and losing 

rivers, recharge is usually focussed (or indirect) along river corridors with rates generally 

limited by water availability at the surface (Allison, 1988; Scanlon et al., 2002). The 

factors that influence the amount and type of recharge (diffuse or focussed) include: 

precipitation (volume, intensity, duration); topography (slope, above ground storage); 
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vegetation (cropping pattern, rooting depth) and evapotranspiration; soil and subsoil 

types; flow mechanisms in the unsaturated zone (uniform or preferential); bedrock 

geology; available groundwater storage; presence of influent rivers, and; presence of karst 

features (Misstear, 2000). 

6.3 Recharge estimation methods 

Various techniques are available for estimating recharge, the selection of which is not 

straightforward (Lerner et al., 1990; Scanlon et al., 2002). Each technique has different 

assumptions as well as limitations. Therefore, it is recommended to use multiple methods 

to reduce uncertainty and to improve conceptual understanding of recharge at a study site 

(de Vries and Simmers, 2002; Healy and Cook, 2002). Generally, selection of a technique 

is dependent on data availability, which is often lacking in many regions. Such data 

scarcity can lead to the selection of a less suitable recharge estimation method as well as 

no additional methods to corroborate the findings. Rather than data driving the 

methodology used, the user should select methodologies depending on the desired 

spatiotemporal resolution. This is easier for primary data collection but less obvious when 

dependent on secondary data sources. Then the user must determine what the recharge 

result represents, according to the fundamental theory of the method applied and the 

satisfaction of the assumptions.  

6.4 Study area  

6.4.1 General description 

The study site is Dangila woreda within the Amhara Region of northwest Ethiopia, 70 km 

southwest of Bahir Dar on the Addis Ababa to Bahir Dar road (Figure 6-1).  
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Figure 6-1. Location map of the study area. 

6.4.2 Climate 

The climate of the region is moist subtropical with little annual temperature variation 

though high diurnal variation. The median annual total rainfall is 1541 mm, as measured 

(1987-2017) at the National Meteorological Agency (NMA) weather station in Dangila 

town, 91% of which falls during May to October (Figure 6-2). Both the mountains to the 

east and Lake Tana to the north affect the pattern of rainfall in the study area. Most rain 

events have a duration shorter than 1-hour and often occur in the late afternoon (Haile et 

al., 2009). 

 

Figure 6-2. Monthly median, 10th and 90th percentile rainfall, and mean maximum and minimum 

temperatures as measured (1987-2017) by the NMA at the Dangila weather station. 
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6.4.3 Hydrogeology 

Bedrock geology consists of Cenozoic basalt and trachyte (Tefera et al., 1996) that are 

variously massive, fractured and vesicular. Above the bedrock lies weathered basalt 

regolith, itself overlain by red clayey loam soils (nitisol). The superficial materials of the 

floodplains are occasionally very sandy and gravelly though deep and wide desiccation 

cracks suggest a high clay content (vertisol).  

Diffuse (direct) recharge dominates across the study site (Figure 6-3) with quantities 

likely to vary according to local position. Upslope areas will receive less recharge due to 

higher runoff and interflow gradients whereas overland flow, interflow and groundwater 

flow collect in the topographic lows. The large floodplains, which are prevalent in the 

landscape, become waterlogged in the wet season from direct rainfall and spring 

discharge (rather than from overbank flooding).  

 

Figure 6-3. Conceptual model of the study site. 

6.5 Data used in the study 

In this study, nine frequently used methods were applied using data from all possible 

hydrological zones. Additional methods were explored and rejected for various reasons, 

as discussed in Appendix D. The data requirements for the various methods applied are 

shown in Table 6-1. Meteorological data was measured by the NMA weather station in 

Dangila town: the only formal weather station in the district. River flow data in Ethiopia 

is collected by the Ministry of Water, Irrigation, and Electricity (MoWIE): Amen and 

Kilti river flow data were utilised, the latter catchment forming a large portion of Dangila 

district, even though the gauging station lies outside the district (Figure 6-1). The 

available time series date from 1988 (Amen) and 1997 (Kilti) to late 2014, though there 

are occasional gaps in the data. In addition to these formal data sources, 

hydrometeorological time series are available from a community-based monitoring 

programme at Dangesheta village from March 2014 to January 2017. River stage in the 

Brante river was measured twice-daily, rainfall was measured daily in a manual 
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raingauge, and groundwater levels were measured bi-daily in five wells since March 2014 

and daily in 25 wells since February 2015. The hand-dug wells have an average diameter 

of 1 m with depths ranging from 3-21 m. Rainfall and river stage from the community-

based monitoring have been validated against formal sources confirming the quality of 

the data (Walker et al., 2016). The Amen (37.0 km2) and Brante (65.5 km2) are sub-

catchments of the Kilti (631.7 km2). The catchment-scale recharge assessment methods 

were applied to all three catchments. Thirty-one shallow groundwater samples were 

collected for chloride analysis, from locations distributed throughout the study site, in 

March/April 2015 and October/November 2015. Rain could only be sampled during the 

second field visit because it did not rain during the four weeks of the earlier dry season 

visit, nor during a third visit in January 2017. Three samples were collected from two 

sites and occurred whenever rainfall was sufficient to enable direct sampling. All samples 

were filtered upon collection and, to prevent evaporation, the nalgene bottles were 

completely filled and kept in a refrigerator prior to laboratory analysis by Dionex ion 

chromatography. Additional data used in development of the conceptual model and 

required to parameterise models resulted from three periods of fieldwork, which included 

pumping tests on hand-dug wells (Walker, 2016), geological surveys, hydrochemistry and 

stable isotope sampling, radon-222 measurements, water point surveys, and workshops 

with the local community (further information is provided in Appendix D). Proportions 

of different land use land cover (LULC) types were taken from ADSWE (2015). 

Data from three large-scale mapping and modelling recharge studies were also assessed. 

The global-scale WHYMAP (WHYMAP, 2016) by BGR (the German Federal Institute 

for Geosciences and Natural Resources) and UNESCO gave recharge values of 20-

100 mm/a for the study site, the continental-scale map by Altchenko and Villholth (2015) 

gave 100-300 mm/a, and a national-scale map by Ayenew et al. (2008b) gave 250-400 

mm/a. Further information on the large-scale mapping and modelling can be found in 

Appendix D.     
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Table 6-1. Hydrological zone, spatial scale, and data requirements of the applied recharge estimation 

techniques. 
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Empirical A D 


            



a 

Stream hydrograph SW C   


           

SMB UZ D  


            

Water balance A C  






           

CMB SZ D 


   


 


         

WTF SZ L      


 


       

RIB SZ L  


    


 


       

Phys. based modelling A C  






   


























  

Large-scale mapping A R             



b 

 

A = all zones, SW = surface water, UZ = unsaturated zone, SZ = saturated zone, R = regional (1000s km2), 

D = district (woreda), C = catchment (10s-100s km2), L = local (100s m2). 

a Access to literature only required if developing a new empirical equation.  

b Assuming consideration of published studies as opposed to developing new large-scale maps.  

6.6 Recharge estimation methodologies 

6.6.1 Empirical method 

In an attempt to establish a rainfall-recharge relationship for Ethiopia, a thorough and 

systematic literature search was conducted. Appendix D provides detailed information on 

the literature search and a map of the study site locations, which were distributed around 

Ethiopia (Figure D1). Forty-nine quantitative studies were located that provided 102 

annual recharge estimates to plot against annual rainfall (Figure 6-4). A quadratic 

trendline, reflecting an increase in recharge disproportionate to increasing precipitation, 

achieved the best R2 and standard error. The resulting relationship is presented as Eqn. 6-

1. Separating the data into the geographic (and consequently, climatic and geological) 

regions as shown in Figure 6-4 and fitting linear trendlines gave similar recharge values 

as the trendlines plot close to the quadratic regression line. Additional analysis of site-

specific, rather than regional, rainfall intensity, topography, soils and vegetation is 

beyond the scope of this study. The regression line is not extended to rainfall below 
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500 mm/a as this is considered the lower limit of applicability of Eqn. 6-1. Where rainfall 

is below 500 mm/a, the relationship with recharge is more complex (Bonsor and 

MacDonald, 2010) and there were insufficient studies from which a relationship could be 

established. 

𝑹 =  𝟏𝟑𝟔. 𝟔 −  𝟎. 𝟑𝟎𝟎𝟓𝑷 + 𝟎. 𝟎𝟎𝟎𝟐𝟕𝟏𝑷𝟐 (6-1) 

Where R is recharge and P is annual precipitation.  

 

Figure 6-4. Plot showing the relationship between annual rainfall and annual recharge in Ethiopia based 

on 102 recharge estimates from 49 studies across the country. S = standard error, R2 (adj.) = adjusted 

coefficient of determination. The Tigray, Afar, Dire Dawa group has semi-arid climate and highly 

heterogeneous geology ranging from Precambrian crystalline to Mesozoic sandstones and limestones to 

Quaternary volcanics, generally overlain by leptosols with sparse and herbaceous vegetation. Rift Valley 

and central Ethiopia have subtropical highland and tropical savanna climate with Quaternary volcanic 

geology, highly heterogeneous soils and rainfed cropland and mosaic forest and grassland. The Lake Tana 

Basin has a tropical highland monsoon climate and Cenozoic volcanic rocks overlain by luvisols or 

vertisols closer to the lake with mosaic cropland/grassland/shrubland/forest (Tefera et al., 1996; Peel et 

al., 2007; Arino et al., 2012; Jones et al., 2013). 

6.6.2 Streamflow hydrograph analysis (three methods) 

Recharge estimation using streamflow hydrograph methods typically involves separating 

the baseflow component (Figure D2 in Appendix D) and idealising that precipitation 

entering the aquifer as recharge must be balanced by groundwater discharge into rivers 

that forms baseflow. However, there are several ways in which groundwater can be 

depleted without contributing towards baseflow, including abstractions, leakage to deeper 

aquifers, and evapotranspiration from the saturated zone. Without quantifying these 

fluxes, equating baseflow to recharge will lead to underestimation of recharge. It is 

important to remind, therefore, that quantifying baseflow is an estimate of groundwater 

discharge and provides a minimum estimate of recharge (Szilagyi et al., 2003; Vegter and 
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Pitman, 2003; Risser et al., 2005). Three streamflow hydrograph methods were used in 

this study, the baseflow recession method presented by (Meyboom, 1961), and two digital 

recursive filter tools, the Web GIS based Hydrograph Analysis Tool (WHAT) (Lim et al., 

2005) and WETSPRO (Willems, 2009). Details of the application of these methods are 

presented in Appendix D.  

6.6.3 Soil moisture balance (SMB)  

The Thornthwaite-Mather (1955, 1957) (T-M) method is essentially a water balance of 

the root zone performing monthly book-keeping of precipitation, evapotranspiration and 

soil moisture. Deep infiltration below the root zone occurs only when field capacity is 

exceeded (see Steenhuis and Van Der Molen (1986)). The direct runoff component is 

dealt with by applying a runoff factor or by subtracting a portion of soil moisture surplus; 

both methods were applied here. Details of the parameterisation and the tabulated 

calculations can be found in Appendix D.  

A key assumption of unsaturated zone methods, such as the SMB method, is that the soil 

moisture surplus will infiltrate to the water table. However, this water may flow laterally 

through the unsaturated zone as interflow without necessarily recharging the aquifer 

(Misstear, 2000; Hendrickx and Flury, 2001). Hence, Simmers (1988), Rushton (1997), 

Healy (2010) and others refer to the recharge computed from unsaturated zone methods 

as potential recharge.  

6.6.4 Basin water balance  

The water balance, or water budget, simplifies the full water balance equation by 

neglecting Qin, A, Qout and S in 

𝑷 + 𝑸𝒊𝒏 =  𝑹𝑶 + 𝑨𝑬𝑻 + 𝑹 + 𝑨 + 𝑸𝒐𝒖𝒕 + ∆𝑺 (6-2) 

Where P is precipitation, Qin is groundwater flow into the basin, RO is runoff (i.e. 

overland flow and interflow out of the basin), AET is actual evapotranspiration (from the 

unsaturated and saturated zones and from surface water), R is recharge, A is abstraction, 

Qout is groundwater flow out of the basin, and S is the change in storage. The 

assumptions are that S is balanced over long time-periods (this appears valid from 

groundwater level records), Qin and Qout are negligible as these are headwater catchments 

with thin aquifers and rivers founded on bedrock (hence no groundwater flow beneath the 

gauge), and abstraction is negligible due to sparse wells with manual-lifting technology. 

AET is not straightforward to estimate and was calculated with three methods for 

comparison: (1) The T-M method; (2) Application of Turc’s formula (Turc, 1954), and; 
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(3) A value estimated by Allam et al. (2016) for this region of the Tana Basin by 

combining remote sensing and river flow records. The average AET values were 789, 831 

and 931 mm/a, respectively. See Appendix D for details of the AET and runoff 

estimations. Accurate quantification of all the fluxes is always troublesome though is 

required in order to leave an accurate residual that is equated to actual recharge (Scanlon 

et al., 2002). 

6.6.5 Chloride mass balance (CMB)  

The CMB method requires mean annual precipitation, chloride concentration of that 

precipitation and chloride concentration of the groundwater, is independent of whether 

recharge is diffuse or focussed, and integrates recharge rates both spatially across a region 

and temporally over long time-periods. The method has several assumptions (Bazuhair 

and Wood, 1996): 

 All chloride within groundwater originates from precipitation, i.e. there are no 

alternative chloride sources such as evaporites or pollution. 

 Chloride is conservative in the system (this is generally the case as chloride is not 

adsorbed, is unlikely to form salts, and has rare biochemical interaction). 

 Recycling of chloride does not occur within the basin area. 

 The chloride concentration in runoff is equal to that in precipitation. 

 Evaporation of groundwater does not occur upgradient of groundwater sampling 

points. 

The basic equation applicable for evaluation of recharge using the CMB is 

𝑹 =
(𝑷𝒆𝒇𝒇)(𝑪𝒍𝒘𝒂𝒑)

𝑪𝒍𝒈𝒘
 

(6-3) 

Where R is annual recharge, Peff is average annual effective precipitation (rainfall minus 

direct runoff), Clwap is the weight-average chloride concentration in precipitation 

including dry deposition, and Clgw is the average chloride concentration in groundwater. 

Clgw averaged 2.10 mg/l with a standard deviation of 1.33 mg/l and Clwap averaged 0.68 

mg/l (standard deviation = 0.32 mg/l). Details of the parameterisation can be found in 

Appendix D.  

6.6.6 Water table fluctuation (WTF) 

In the WTF method, the upward movement of groundwater level with respect to time is 

an indication of recharge and the downward movement indicates recession of 

groundwater; no assumptions are made regarding recharge mechanism (see Healy and 
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Cook (2002) for details). Groundwater recharge R is calculated for a particular well by 

multiplying the change in water level of two successive groundwater level readings by 

the specific yield Sy of the aquifer:   

𝑹 = 𝑺𝒚 ∗ ∆𝒉
∆𝒕⁄      (6-4) 

Where h is water level and t is time. To correctly estimate h, it is necessary to extrapolate 

the antecedent recession curve to the point below the peak, i.e. the point that the 

groundwater level curve would have reached without precipitation (Figure D5). This 

extrapolation was conducted manually on each of the 30 well hydrographs, following the 

graphical method described by Delin et al. (2006). For comparison, another approach was 

followed that involves calculating the water level rise from one day to the next with a 

negative rise, i.e. a fall in groundwater level, counting as zero. This method would be 

expected to underestimate recharge because groundwater recession with the absence of 

recharge is not considered (e.g. Delin et al. (2006); Choi et al. (2007); Varni et al. (2013)). 

Sy of 0.08 was used, obtained from 11 pumping and recovery tests in the area (Walker, 

2016).  

6.6.7 Rainfall infiltration breakthrough (RIB)  

The RIB method is a model for groundwater recharge estimation developed by Xu and 

Beekman (2003) based on the cumulative rainfall departure (CRD) method (Wenzel, 

1936). The conditions at the field site fit well the requirements detailed by (Sun et al., 

2013): “… the RIB model is best suited for shallow unconfined aquifers with relatively 

low transmissivity”. The model considers not only rainfall from a single event but the 

series of preceding events that influence breakthrough of water at the water table (for 

details see Xu and van Tonder (2001) and Sun et al. (2013)). Time series of rainfall are 

required, plus groundwater level and aquifer Sy. The RIB method utilised data from the 

30 community-monitored wells and raingauge in addition to Sy of 0.08 (Walker, 2016). 

Further details can be found in Appendix D. As with the WTF method, there is the 

possibility of accounting for groundwater level rise from lateral flows in recharge 

estimation. 

6.6.8 Physically-based modelling 

SHETRAN (Système Hydrologique Européen TRANsport) is a physically-based 

spatially distributed finite difference modelling system for coupled surface and 

subsurface water flow in river basins and is openly available at 

http://research.ncl.ac.uk/shetran/. SHETRAN is well established in the literature, having 
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been applied to a variety of situations (e.g. Birkinshaw and Ewen (2000b); Bathurst et al. 

(2011a); Starkey et al. (2017)), however, it has not previously been used to quantify 

recharge. Model setup requires a DEM, catchment mask, geological, soil, vegetation and 

LULC information. Further details of SHETRAN, including how recharge is computed 

within the model and how the models were parameterised, can be found in Appendix D. 

Three nested catchments were modelled, details of which are in Table 6-2. The calibration 

procedure involved adjusting geological layer thicknesses, aquifer properties, channel 

characteristics, Strickler overland flow roughness coefficient, and evapotranspiration 

characteristics until satisfactory matches with observed groundwater level and river 

discharge data were achieved. The nested nature of the catchments meant a final matching 

set of optimum parameters was selected to satisfy the calibration requirements of all 

catchments. Table 6-2 shows calibration statistics for a calibration period; subsequent 

simulations during a validation period were deemed acceptable (see Appendix D). 

Table 6-2. Details of the three catchments modelled using SHETRAN (see Figure 6-1 for locations).  

Catchment Area (km2) Resolution (m) Run length Calibration                                   NSE RMSE 

Amen 37 100x100 17 years (Jan 98 to Sep 14) River flow 0.79 0.19 m3/s 

Kilti  632 500x500 18 years (Apr 97 to Oct 14) River flow 0.78 1.47 m3/s 

Brante  66 100x100 3 years (Mar 14 to Jan 17) GW levels 0.69 2.01 m 

 

NSE = Nash-Sutcliffe efficiency. RMSE = root mean square error. 

6.7 Recharge results  

Recharge estimates from the various methods show high variability: 45-814 mm/a or 

3-53%MAP (median annual precipitation) for the median annual recharge (Figure 6-5 

and Table 6-3). The WHYMAP and Meyboom methods were rejected for this study with 

full reasoning provided in Appendix D. 
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Figure 6-5. Median annual recharge estimates from all the techniques. The error bars give the interannular 

recharge range. T-M = Thornthwaite-Mather method of runoff or AET estimation. R-S = Remote sensing 

method of AET estimation.  

Table 6-3. Tabulated recharge results shown on the plot in Figure 6-5. 

 Annual recharge (mm) 

Technique Minimum Median Maximum 

WHYMAP 20 60 100 

Continental map 100 200 300 

National map 250 325 400 

Empirical  317  

Meyboom 25 45 98 

WHAT 146 190 295 

WETSPRO 121 176 283 

SMB (T-M) 168 374 471 

SMB (runoff factor) 253 547 840 

Water balance (Turc’s) 392 493 802 

Water balance (T-M) 434 535 844 

Water balance (R-S) 292 393 702 

CMB  427  

WTF (graphical) 666 814 872 

WTF (simple) 682 752 793 

RIB 283 451 466 

SHETRAN 260 279 317 
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6.8 Sensitivity analyses 

Measured input data and modelling parameters were individually adjusted by ±10% to 

assess sensitivity. For some methods, only measured input data could be adjusted, e.g. 

rainfall or groundwater level fluctuation. For other methods, it was possible to adjust 

modelling parameters determined during additional investigations, calibration or by 

“expert opinion”, e.g. the recession constant for WHAT and WETSPRO analysis. 

Additionally, to suggest the range of uncertainty, recharge was computed by each method 

using the likely maximum deviation in parameter values. Table 6-4 details the parameter 

adjustment and Figure 6-6 shows the sensitivity and uncertainty for each method.  

Table 6-4. Parameters and input data adjusted for the sensitivity and uncertainty analysis. 

Method Parameters/input data individually 

adjusted by ±10%. Most sensitive 

parameter underlined. 

Maximum likely deviation of 

parameters/input data giving the uncertainty 

range. 

Empirical Annual average rainfall 95% prediction interval from the rainfall-recharge 

relationship curve 

WHAT River flow, BFImax, recession constant Derived BFImax and maximum/minimum recession 

constant that still gave an acceptable baseflow 

separation 

WETSPRO River flow, recession constant, w Maximum/minimum recession constant and w that still 

gave an acceptable baseflow separation 

SMB (T-M) Rainfall, PET, MC, LULC proportions, % 

surplus to runoff 

Combined adjustment by ±10% of % surplus to runoff, 

MC and LULC proportions* 

SMB (runoff factor) Rainfall, PET, MC, LULC proportions, 

runoff factor 

Combined adjustment by ±10% of runoff factor, MC 

and LULC proportions* 

Water balance 

(Turc’s) 

Rainfall, temperature (for AET), runoff Combined adjustment by ±10% of rainfall, temperature 

(for AET) and runoff* 

Water balance (T-M) Rainfall, AET, runoff Combined adjustment by ±10% of rainfall, AET and 

runoff* 

Water balance (R-S) Rainfall, AET, runoff Combined adjustment by ±10% of rainfall, AET and 

runoff* 

CMB Annual average rainfall, Clgw, Clwap Measured range of Clwap (0.38-1.12 mg/l) 

WTF (graphical) Water level fluctuation, Sy Measured range of Sy (0.05-0.3) 

WTF (simple) Water level fluctuation, Sy Measured range of Sy (0.05-0.3) 

RIB Water level fluctuation, rainfall, Sy Measured range of Sy (0.05-0.3) 
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SHETRAN (phys. 

based modelling) 

Rainfall, PET, Strickler coefficient, Sy, 

hydraulic conductivity, layer thicknesses, 

AE/PE ratio 

Combined adjustment of layer thicknesses and AE/PE 

ratio by ±10%, and Sy and hydraulic conductivity 

within measured range that still gave an acceptable 

calibration 

 

BFImax = maximum value of long-term ratio of baseflow to total streamflow. w = portion contributing 

directly to runoff. PET = Potential evapotranspiration. MC = root zone storage. AE/PE = actual to 

potential evaporation ratio. See methodological descriptions in Appendix D for more information on these 

parameters. 

* The range in parameter/input data was uncertain, i.e. there was no constraining measured range nor 

calibration targets.  

 

Figure 6-6. Comparison of the sensitivity of each recharge estimation method to ±10% adjustment in 

measured input data and modelling parameters (left) and range of uncertainty when the maximum likely 

deviations are applied (right).  

The left plot in Figure 6-6 highlights the varying sensitivity of the methods. For example, 

it shows the water balance methods’ high sensitivity to rainfall input and, essentially, 

lower sensitivity to any single parameter when the number of parameters increases (e.g. 

SMB and SHETRAN). The right plot in Figure 6-6 highlights the varying range of 

uncertainty in recharge result from different methods, which is dependent on the degree 

of uncertainty in the input parameters. For example, while the WTF and RIB methods 

show low sensitivity to a 10% variation in parameters, the recharge result has high 

uncertainty because the measured range in Sy was high; Sy is commonly uncertain due to 

the difficulties in accurate measurement and the heterogeneous nature of many aquifers. 

Uncertainty reduces with those methods that involve calibration, e.g. WHAT and 

SHETRAN, as the maximum possible deviation in parameter values decreases. 

0% 10% 20% 30% 40%

Empirical

WHAT

WETSPRO

SMB (T-M)

SMB (runoff factor)

Water balance (Turc's)

Water balance (T-M)

Water balance (R-S)

CMB

WTF (graphical)

WTF (simple)

RIB

SHETRAN

0% 50% 100% 150% 200% 250% 300%

Maximum absolute change in recharge result when:

most sensitive parameter/input data adjusted by +10%               parameters/input data adjusted by likely maximum range



104 

 

Additionally, when there is high uncertainty in input data, Figure 6-6 suggests which 

methods may be better selected.  

6.9 Discussion 

6.9.1 Reasons for the range in results 

The range of recharge results presented in Figure 6-5 does not necessarily mean that some 

results are incorrect, as they need to be considered in the context of their spatiotemporal 

scale, what they represent, and the limitations of each method. A recharge value that is 

comparatively high or low can provide insights on the conceptual model, especially if 

previously the conceptual model expected the method to provide an actual recharge 

estimate, and insights on uncertainty. A summary of the methods is provided in Table 

6-5. 

Table 6-5. Summary of methods and suggestions for lessening uncertainty in the recharge results. It 

should be restated here that while the specific methods usually compute the specified type of recharge, 

this is particular to the conceptual model of the study site. 

Method Type of recharge 

computed 

Under/over 

estimatesa 

Uncertaintyb How to lessen uncertaintyc 

WHYMAP Actual Under Rejected because its scale is inappropriate for this study resulting 

in gross underestimation of recharge 

Continental map Actual Under High Use other methods 

National map Actual Applicable High Use other methods 

Empirical Actual Applicable High Increase number of recharge studies considered 

with greater geological, soils, vegetation and 

climate detail 

Meyboom Minimum Under Rejected due to problems of application on the study site 

hydrographs resulting in gross underestimation of recharge 

WHAT Minimum Under Low Utilise longer river flow time series and 

additional series from nested catchments 

WETSPRO Minimum Under Low-medium As above 

SMB (T-M) Potential Applicable Medium Increase rainfall and PET measurement density, 

utilise higher resolution soil and vegetation 

mapping and use a daily computation time step 

SMB (runoff factor) Potential Over Low-medium As above 

Water balance (Turc’s) Actual Over Medium-high Increase rainfall and PET measurement density, 

utilise higher resolution vegetation mapping for 

better AET estimation, and use a daily 

computation time step 

Water balance (T-M) Actual Over Medium As above 

Water balance (R-S) Actual Applicable Low-medium As above 

CMB Actual Applicable Medium Increase rainfall chloride sampling frequency  
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WTF (graphical) Change in storage Over High Obtain more Sy estimates, utilise piezometers 

that are not biased towards good groundwater 

supply 

WTF (simple) Change in storage Over High As above 

RIB Change in storage Over Medium-high As above 

SHETRAN (phys. 

based modelling) 

Actual Applicable Low Increase rainfall and PET measurement density, 

obtain more Sy and hydraulic conductivity 

estimates, and aquifer geometry measurements 

(e.g. with geophysics), utilise more river flow 

and groundwater level records for calibration  
 

a In comparison to the estimated actual recharge range for the study site of 280-430 mm/a. 

b This relates to the sensitivity and uncertainty ranges in Figure 6-6 and the robustness of the method. 

c The suggestions present a best-case scenario should time and budget allow. 

As previously stated, unsaturated zone methods may overestimate recharge, explaining 

why the SMB methods applied here show high recharge values, i.e. they are calculating 

potential recharge. The other uncertainty relates to which method to choose to determine 

the amount of runoff; application of a runoff factor based on measured river flows has 

lower uncertainty.  

The streamflow hydrograph methods provide the lowest recharge estimates, supporting 

their classification as computing minimum recharge. While the Meyboom method was 

rejected (see Appendix D), the similarity of the WHAT and WETSPRO recharge results 

provides confidence in their minimum recharge estimates. 

Considering the WTF and RIB methods, the suggestion by Healy and Cook (2002) that 

monitoring wells should be positioned in a “representative” location is reasonable for 

purposely installed piezometers, but hand-dug wells will naturally be excavated where 

generations of experience indicate has good potential for groundwater abstraction, i.e. 

there is a bias towards areas that receive lateral in addition to vertical recharge. It is 

unsurprising then that the WTF methods give the highest recharge estimates of all 

methods as they are actually computing the change in aquifer storage on a much smaller 

scale (10s of metres) than the other methods. The RIB method utilised the same 

groundwater level datasets and Sy, though is constrained by the incorporation of a rainfall 

time series thus giving lower recharge estimates.  

The empirical method is simple, but is built upon a substantial quantity of work by the 

authors of the studies used in the development of the method. However, confidence in the 

recharge result is low, due to several factors:   
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 Confidence in the quality of the published studies: The generation of the rainfall-

recharge relationship considered recharge estimates from all identified studies, 

even though 56% used only a single recharge estimation method and there was 

often uncertainty if the conceptual model meant applicability of assumptions or 

the type of recharge computed.   

 Confidence in the transferability of the results: Figure D1 in Appendix D shows 

that the geographical distribution of the studies is biased to the Lake Tana Basin, 

Tigray, Dire Dawa, and around Addis Ababa. These four regions have specific 

rainfall intensity, evapotranspiration, hydrogeological and topographic 

characteristics that control the recharge rate.  

 Confidence in the appropriateness of using annual rainfall total: Considering only 

the annual total rainfall fails to recognise the importance of rainfall intensity and 

distribution throughout the year. For example, a unimodal and a bimodal rainfall 

pattern would give different recharge rates even with the same annual total rainfall 

(Kingston and Taylor, 2010).  

The water balance methods should give actual recharge if the other fluxes are accurately 

quantified. While we may have a degree of confidence in values used for runoff and 

precipitation, AET is difficult to estimate, as the range in AET estimates from the three 

applied methods attests. The relatively high recharge estimates from the water balance 

methods are likely to be a symptom of underestimation of AET and greater uncertainty 

comes with decreasing robustness of AET estimation. 

There is some uncertainty in the CMB recharge result due to the small number of rainfall 

chloride measurements and the assumption that chloride is not introduced into 

groundwater from any other source but precipitation. This assumption is valid at the study 

site regarding pollution and evaporites, which are not present, however, 

evapotranspiration from the saturated zone or from seepages that re-infiltrate may cause 

an increase in the chloride concentration of groundwater. The discrepancy in recharge 

result of the CMB method may be because it averages over a longer period and larger 

area than the other applied methods. 

SHETRAN modelling computes the change in aquifer storage for each cell, which 

becomes actual recharge when integrated over the catchment area as adjacent lateral 

inflows cancel. There is high confidence in these recharge estimates due to: substantial 

locally derived data was used to set up and calibrate the models as opposed to relying on 

just a few, potentially highly localised, input datasets or relying on averages; interannual 
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variations in recharge totals correlate well between catchments with r = 0.81, and; 

recharge estimates are not sensitive to adjustments in individual parameter values. The 

spatially distributed nature of the model means that spatial variations in recharge due to 

lateral groundwater flow can be observed and understood, rather than providing 

misleading recharge estimations. Similarly, interannual variations in storage can be 

observed and measured rather than assumed to be negligible. However, this robustness of 

method depends on quantity and quality of data available for model setup, calibration and 

validation in addition to requiring a skilled operator with the necessary time available. 

Exploring the models’ mass balances indicated why the SHETRAN recharge estimates 

are lower than those from other methods: recharge is reduced because, unlike other 

methods here presented, SHETRAN computes canopy and open water evaporation, both 

of which are significant at this site.  

The map presented by Ayenew et al. (2008b) was produced only at Ethiopian 

national-scale and incorporates more local studies and experience than is possible with 

global or continental-scale maps. Therefore, assuming that those local studies were 

conducted robustly, the national map gives a recharge estimate for which we have greater 

confidence. 

6.9.2 Insights gained on the conceptual model 

The obvious insights gained from the multi-method comparison was that not all methods 

were computing actual recharge or the results would be more similar (given similar 

spatiotemporal scale). Therefore, some assumptions must have been unsatisfied, which, 

rather than invalidating a method altogether, meant that the method was computing 

potential or minimum recharge or change in aquifer storage. Insights gained on the 

conceptual model mostly concern the amount and type of evapotranspiration, and the 

spatial variability of groundwater availability. High recharge values from the SMB 

methods indicate that all infiltration, which unsaturated zone methods are actually 

measuring, does not form recharge and there is likely to be interflow followed by 

discharge and/or evapotranspiration. The streamflow hydrograph methods’ lowest 

recharge estimates indicate that groundwater is depleted prior to contributing to baseflow. 

Evapotranspirative losses from the saturated zone must be significant, which was thought 

likely given the shallow wet season water tables and spring/seepage-fed inundated 

floodplains. High recharge values from the water balance methods are also suggestive 

that evapotranspiration may have been underestimated. Further evidence for this is the 

lower recharge estimate from SHETRAN that is due to its comprehensive simulation of 
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canopy and open water evaporation and transpiration from the unsaturated and saturated 

zones resulting in greater total evapotranspiration losses. The high recharge values from 

the water table fluctuation methods, and high variability between wells, demonstrate the 

spatial variability in groundwater availability. The results show that groundwater flow, 

interflow and storage in certain areas can provide high potential for abstraction. Examples 

of other studies where fewer methods were applied and useful insights were gained are 

included in Appendix D.  

6.9.3 Recharge estimate for Dangila woreda 

Considering which types of recharge and spatiotemporal scales are relevant to this study, 

we restate the purpose as being to determine the resilience of shallow groundwater 

resources used for irrigation by rural communities in the Dangila area of Ethiopia; 

estimates of long-term annual actual recharge at multiple catchment-scales are therefore 

of primary interest. Although spatial assessments of aquifer storage change for small-

scale shallow aquifers, particularly at the seasonal-scale, are also of significant interest to 

identify areas with the greatest potential for groundwater abstraction.  

Considering the different types of recharge (see Table 6-5), while the median recharge 

values from all of the methods used range from 45 to 814 mm/a, we expect that the long 

term actual recharge averaged over the general study area lies somewhere between the 

minimum and potential values of 176 and 547 mm/a, given by the lowest streamflow 

hydrograph and highest SMB methods, respectively. The range of median values given 

by all actual recharge methods is 279-535 mm/a.  

With regard to spatial scales, the methods based on groundwater level time series are 

highly localised and dependent on lateral inflows and other local factors, with values of 

recharge for individual wells from the RIB and the WTF methods ranging from under 

100 to over 1600 mm/a. At the catchment-scale, recharge values for the three catchments 

for each method used were generally consistent (see Appendix D), indicating some spatial 

consistency at this scale. 

Having separated out and considered results by different types of recharge and spatial 

scales, determination of reliable actual recharge estimates for the general area around 

Dangila requires consideration of the confidence given to each relevant method. This can 

be based on factors discussed earlier, including: temporal representativeness of time-

series data; spatial representativeness of data; errors and uncertainties in input data; 

sensitivity of models to parameter values and input data; whether assumptions of methods 
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are met. We have greatest confidence in the water balance method using the higher AET 

rate, the CMB method, and the SHETRAN modelling. Thus, we identify a reliable 

recharge range for the Dangila area of 280-430 mm/a, which is consistent with the range 

from the national map (Ayenew et al., 2008b). 

6.10 Conclusions 

Nine methods, with 17 variations, of groundwater recharge estimation were applied for a 

shallow aquifer in Ethiopia resulting in a wide range of median annual recharge values 

from 45 to 814 mm. This research shows that application of a range of methods may give 

a broad range of recharge values, but that it may not be necessary to discard results that 

appear to be outliers as these provide useful information. Consideration must be given to 

exactly what the “recharge” value represents: potential, minimum, or actual recharge, or 

change in aquifer storage. It is clear from the results presented that some methods 

providing estimates of potential recharge or storage change are likely to deliver 

overestimates of actual recharge while others that represent minimum recharge will 

deliver underestimates of actual recharge. Considering each method’s spatiotemporal 

scale and uncertainty, we conclude that the most reliable recharge estimates for actual 

recharge in the general Dangila area are in the range 280 to 430 mm/a. 

Insights gained from the multi-method comparison study, including in particular 

assessment of results from methods where the usual assumptions were not strictly valid, 

enabled the hydrogeological system be better understood. Firstly, by indicating that 

evapotranspiration is significant from a) the saturated zone, and b) the unsaturated zone 

following infiltration past the root zone due to interflow and seepage. Secondly, by 

revealing the spatial variation of the change in aquifer storage, which locally can be 

significantly higher than actual recharge estimates, giving further insight and confidence 

that areas could be identified with high potential for abstraction for small-scale irrigation. 

Even though our recharge range is comparable to the national map results, we now have 

much higher confidence in the results and better understanding of our catchments and 

aquifers from our analyses. 

This study has demonstrated for an extensive range of commonly used recharge methods 

applied at a single site that, in addition to quantifying uncertainty of recharge estimations, 

results from multi-method comparisons should be clearly interpreted in relation to the 

types of recharge and spatiotemporal scale they represent, but can also provide additional 

benefits through improved hydrogeological understanding. 
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Chapter 7. Modelling the shallow aquifer 

 

7.0 Chapter overview  

The recharge assessments in Chapter 6 showed that the Dangila woreda shallow aquifer 

has the potential to support development of small-scale irrigation. How the resource 

availability varies spatially and temporally is the subject of Chapter 7. This chapter 

presents information on the many catchment-modelling options and explains why 

SHETRAN was chosen and how the program works. Details are provided on model 

construction and parameterisation followed by a description and results of the calibration 

process. The modelling aims were to simulate observed historical conditions to improve 

understanding of the hydrogeological system; this improved understanding is described. 

The resulting maps of shallow groundwater potential for irrigation are shown and 

discussed. 

7.1 Catchment modelling 

7.1.1 Introduction 

The conceptual model of the study site, presented in Chapter 4 and developed though 

field investigations and observations, illustrates our understanding of the shallow aquifer 

system. However, the static nature of the conceptual model means it alone is insufficient 

to enable us to inform water resource management strategies. Due to the standard issue 

of paucity of observational data, we cannot confidently make predictions for areas or 

time-periods where data is unavailable. While Chapter 6 gave an estimation of recharge 

– the renewable portion of aquifer storage – that is also insufficient to inform water 

resource management strategies. Bredehoeft (2002) stated quite clearly, following on 

from works by Theis (1940), Brown (1963) and Sophocleous (2000): “The idea that 

knowing recharge is important in determining the size of a sustainable groundwater 

development is a myth… The important entity in determining how a groundwater system 

reaches a new equilibrium is capture. How capture occurs in an aquifer system is a 

dynamic process. For this reason, hydrologists are occupied in studying aquifer dynamics. 

The principal tool for these investigations is the groundwater model.” To understand the 

dynamic nature of a hydrogeological system it must be modelled numerically, which 

allows the conceptual model to be tested and consequently updated. Spatial variation of 

fluxes and storage can be analysed. What’s more, potential changes to conditions at the 

study site can be simulated for assessment of impacts (see Chapter 8).  
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7.1.2 Purpose of the modelling 

The initial aim of the modelling was to increase hydrogeological understanding of the 

shallow groundwater system to aid in development of the conceptual model. The 

following research questions were posed:   

a. Are the models satisfactorily reflecting reality in terms of river flows and 

groundwater levels?  

b. Are the parameter values appropriate considering field investigations and 

published literature?  

c. What effect does incorporating various hydrogeological features presented in key 

regolith and dambo literature, but not necessarily identified in the field, have on 

the simulations? 

d. Is groundwater availability recharge controlled or storage controlled? 

Once these questions were answered satisfactorily and the models were considered to be 

simulating current conditions well, the objective was then to answer research question 4 

from Chapter 1: Are there easily identifiable zones that show the greatest potential for 

sustainable intensification of agriculture through shallow groundwater irrigation? 

7.1.3 Model types 

A model is by definition a simplified representation of a real-world system or process 

(Fetter, 2001; Wagener, 2003). A conceptual model, such as that described for the Dangila 

study site (presented in Chapter 4), aims to describe the hydrogeological/hydrological 

system with a much reduced complexity reflecting a qualitative understanding of how the 

system works. On the other hand, a numerical model applies equations to link the 

quantitative inputs and outputs of a system in order to emulate observations enabling us 

to better understand the spatial and temporal variation (Refsgaard and Abbott, 1990). 

Numerical hydrogeological and hydrological models have a broad range of applications: 

from large-scale studies of impacts of climate change on groundwater resources, e.g. 

Goderniaux et al. (2009); Jackson et al. (2011); Ali et al. (2012); to small-scale flood 

frequency estimation, e.g. Prudhomme et al. (2003); Blazkova and Beven (2009); Calver 

et al. (2009); to multi-scale studies of aquifer contamination (e.g. Conan et al. (2003); 

Harvey et al. (2006); Karatzas (2017). In these cases and many others, numerical 

modelling is a useful tool to aid decision-making concerning water resource management, 

adaptation planning, risk mitigation, hydraulic structure design, and remediation strategy, 

amongst other applications. 
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Hydrological models are generally classified in three main groups: (1) empirical “black 

box”, (2) lumped conceptual or “grey box”, and (3) physically-based distributed or “white 

box” (Refsgaard and Knudsen, 1996; Devia et al., 2015). Empirical black box models are 

based entirely on mathematical relationships between observed data and hydrological 

inputs/outputs (Refsgaard, 1996), examples include data-driven approaches and neural 

network models (e.g. Sudheer et al. (2002); Wu and Chau (2010); Kan et al. (2015)). The 

next class of models are more physically-meaningful with mathematical functions 

describing fluxes between different storages (Todini, 2007) such as SIMHYD (Peel et al., 

2000) or TOPMODEL (Beven et al., 1984). Physically-based models are the most 

complex of the numerical hydrological model types, being the most extreme in their 

detailed representation of physical processes and in the number of parameters that must 

be evaluated (Parkin et al., 1996). Physically-based models have been in use for 

catchment hydrology for almost 50 years, following the blueprint proposed by Freeze and 

Harlan (1969). Owing to their distributed nature and implication of sound physical 

reasoning, physically-based models have often been considered to be particularly 

applicable to modelling changes to catchments (e.g. climate or land use) and spatial 

variation of inputs and outputs (e.g. Beven and O'Connell (1982); Abbott et al. (1986a); 

Bathurst (2011)). For these reasons, a physically-based model was selected for use in this 

study. 

Probably the most commonly used groundwater model is the MODFLOW program from 

the U.S. Geological Survey, used in various guises for over 40 years by academics and 

consultants (McDonald and Harbaugh, 1988; Refsgaard et al., 2010; Hughes et al., 2017). 

MODFLOW was not selected for this study for several reasons. Firstly, it only simulates 

flow in the saturated zone and is not recommended for use when there are important 

surface water processes such as floods to consider (Cushman and Tartakovsky, 2016). 

Consequently, the U.S. Geological Survey developed GSFLOW by combining 

MODFLOW and their precipitation runoff modelling system (PRMS) to better simulate 

surface/groundwater interactions. Secondly, evapotranspiration packages (e.g. ETS and 

EVT) allow limited vegetation specific adjustment, essentially only evapotranspiration 

extinction depth and the rate of evapotranspiration per hydraulic head (i.e. from the 

saturated zone). Given the climate of the study site with its long dry season and the low 

storage volume of the aquifer due to its thinness, it is important from a water resource 

assessment perspective to have accurate representation of evapotranspiration. 

Parameterisation of rooting depth, leaf area index, and proportional vegetation cover are 

desirable, as well as simulation of evapotranspiration rates according to soil moisture 
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levels and pressure, particularly when the land use / land cover (LULC) change 

simulations are expected to most strongly impact on the surface and groundwater regimes 

through changes to evapotranspiration. Thirdly, time series data available to calibrate a 

model are sparse, in spatial and temporal extent. A physically-based model allows 

investigation of the conceptual model and spatial responses of the system, constrained by 

sensitivity analyses and the available observational data. Fourthly, the graphical user 

interfaces on which MODFLOW is run are expensive. An important criterion of this PhD 

project is that all the shallow groundwater investigations should be able to be repeated in 

different regions of sub-Saharan Africa by local researchers; hence, freely available 

software was prioritised. 

7.1.4 SHETRAN 

SHETRAN is a physically-based spatially distributed finite difference modelling system 

for modelling coupled surface and subsurface water flow in river basins (Ewen et al., 

2000). The main advantages of SHETRAN over alternative physically-based spatially 

distributed river basin modelling systems are its comprehensive nature and capabilities 

for modelling subsurface flow and transport. The subsurface is treated as a variably 

saturated heterogeneous porous medium, and fully three-dimensional flow and transport 

can be simulated for combinations of confined, unconfined, and perched systems. The 

‘‘unsaturated zone’’ is modelled as an integral part of the subsurface, and subsurface flow 

and transport are coupled directly to surface flow and transport (Ewen et al., 2000). 

SHETRAN is freely available at http://research.ncl.ac.uk/shetran/. 

SHETRAN originated from SHE (Système Hydrologique Européen), which was 

developed in the 1980s by the British Institute of Hydrology, Danish Hydraulic Institute 

(DHI), and SOGREAH, France (see Abbott et al. (1986a)). The program has since 

evolved in two directions, as MIKE-SHE, further developed by DHI on a commercial 

trajectory, and as SHETRAN, developed at Newcastle University (Refsgaard et al., 

2010). The improvements over the original SHE program were in the incorporation of 

fully three-dimensional subsurface components in additional to solute and sediment 

transport modules (Ewen et al., 2000). The main physical processes represented in the 

water flow component of SHETRAN (the sediment and solute transport components were 

not used for this study) are shown in Table 7-1. These physical processes are represented 

by physical, mostly partial differential, equations that are listed in Table 7-2.  
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Table 7-1. Main processes represented in the water flow component of SHETRAN (after Ewen et al. 

(2000)). 

Water flow component               Processes 

Surface water flow on the ground 

surface and in stream channels; 

soil-water and groundwater flow 

in unsaturated and saturated 

zones, including systems of 

confined, unconfined and perched 

aquifers 

 

Canopy interception of rainfall 

Evaporation and transpiration 

Infiltration to subsurface 

Surface runoff (overland, overbank, and in channels) 

Snowpack development and snowmelt 

Storage and 3D flow in variably saturated subsurface 

Combinations of confined, unconfined, and perched 

aquifers 

Transfers between subsurface and river water 

Groundwater seepage discharge 

Well abstraction 

River augmentation and abstraction 

Irrigation  

 

Table 7-2. Flow equations for SHETRAN applicable in this study (after Ewen et al. (2000)). 

Process Equation Reference 

Subsurface flow Variably saturated flow equation (3D) Parkin (1996) 

Overland flow Saint-Venant equations, diffusion approximation 

(2D) 

Abbott et al. (1986b) 

Channel flow Saint-Venant equations, diffusion approximation 

(flow in a network of 1D channels) 

Abbott et al. (1986b) 

Canopy interception 

and drip 

Rutter equation Abbott et al. (1986b) 

Evaporation Fraction of potential evaporation derived from 

Penman-Monteith equation 

Abbott et al. (1986b); 

Allen et al. (1998) 

 

A SHETRAN model is divided into a grid with each cell comprising a column of finite 

difference cells (Figure 7-1). Where geological layer thicknesses vary between adjacent 

columns, the number of cells may differ; to minimise computational difficulties, yet give 

a very flexible system, each cell in each column exchanges water with a maximum of two 

cells in each adjacent column (Figure 7-1) (Ewen et al., 2000). The columns, along with 

channel links, form the main computational structures in SHETRAN. Channel links run 

along the edges of grid elements (as shown for the four modelled catchments in Figure 

7-4) and are assigned widths and cross-sections. Stream-aquifer interaction occurs 
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through a channel’s bed, which is handled in the same way as flows at the ground surface, 

and through channel sides, where a time-varying lateral head boundary condition is 

prescribed (Parkin, 1996). 

 

Figure 7-1. SHETRAN columns of finite difference cells showing modelled processes and geological 

layers consistent with the four modelled catchments, including lateral connections between layers of 

differing thickness. 

SHETRAN has a high data requirement; the datasets required for parameterisation are 

listed below: 

 Meteorological time series  

 Mask delineating the catchment 

 Topography including presence of lakes 

 Size and location of columns, river links and finite-difference cells 

 Soil/rock types and depths  

 Porosity and specific storage of soils/rocks 

 Hydraulic conductivity for soils/rocks 

 Land use/vegetation  

 Canopy drainage parameters and storage capacities 

 Ground cover fractions 

 Vegetation root density over depth  

 Human-controlled:  

o channel flow diversions and discharges 

Surface water

Water table

Soil

Regolith

Basalt

Vertical flows

Lateral flows

Unsaturated 
zone

Saturated 
zone
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o Rates of abstraction and artificial recharge 

The datasets are combined as layers for the construction of a SHETRAN model (Figure 

7-2). 

 

Figure 7-2. The data layers incorporated into a SHETRAN model (after Lewis (2016)). 

SHETRAN is proven in the literature, having been used for a variety of catchment 

modelling studies. Examples include modelling nitrate transport in a catchment in 

southwest England (Birkinshaw and Ewen, 2000a), modelling landslide sediment yield 

in the Spanish Pyrenees (Bathurst et al., 2006), and estimating runoff and flood peaks in 

a catchment in Maharashtra, India (Naseela et al., 2015). Chapter 6 included a novel use 

of SHETRAN for recharge assessment, for which new code was required for the 

SHETRAN program (Walker et al., 2018). The use of SHETRAN detailed in this Chapter 

is similar to previous uses available in the literature that have assessed impacts of climate 

variability and LULC change. For example, Lukey et al. (2000) used SHETRAN to 

estimate the impact of reforestation on a heavily eroded “badlands” environment in 

southeast France showing how runoff and sediment yield would decrease. Bathurst et al., 

(2011a and 2011b) modelled four Latin American catchments with SHETRAN to show 

the degree of forest cover required for different-sized catchments to affect peak discharge 
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from extreme rainfall events. Schmidt et al. (2008) modelled various LULC scenarios, 

adjusting the area of pasture and native vegetation, for a catchment in New Zealand to 

assess changes to sediment yield. Two independent studies for southern Iberia used 

downscaled global circulation model (GCM) and regional climate model (RCM) outputs 

with SHETRAN to simulate potential runoff reduction due to climate change (Mourato 

et al., 2014; Guerreiro et al., 2017). Notably, of all the mentioned studies, only that by 

Guerreiro et al. (2017) had a significant consideration of hydrogeology, the other studies 

essentially only considered shallow soil water in their subsurface component. While 

SHETRAN has been used to assess the impacts of groundwater abstraction on river flows 

(Parkin et al., 2007), it has not (knowingly) previously been used to assess the potential 

for groundwater abstraction nor the impacts of the onset of groundwater abstraction on 

surface and groundwater resources nor the impacts of climate variability and LULC 

change on those resources. Similarly, SHETRAN has had limited application in Africa 

with only a single study found in the literature that assessed soil erosion at a catchment 

in Burkina Faso (Op de Hipt et al., 2017). In addition, a conference paper was identified 

online of uncertain origin and date detailing a study from Uganda where it was shown 

that land use change to increased agricultural land has a had a greater impact on flood 

occurrence and surface water availability than a slight upward trend in precipitation 

(Bernard et al., ?). Again, neither of these African studies had a significant groundwater 

component.  

7.1.5 Methodology 

Catchment models were built using SHETRAN based on the conceptual model and data 

from field investigations and open source remote sensing products. Calibration of 

uncertain parameters against groundwater levels and river flow led to further 

development of the conceptual model. Once the models were considered to be 

satisfactorily representing the natural system, post-processing of spatially distributed 

SHETRAN outputs could be used to create maps of varying potential for shallow 

groundwater abstraction for irrigation.   

7.1.6 Similar modelling studies 

Modelling studies from the Lake Tana Basin are not uncommon in the literature, with a 

predominance in the use of the SWAT (Soil and Water Assessment Tool) catchment 

modelling system. Frequent studies involve predicting flows and sediment yields of the 

rivers that feed Lake Tana, often for assessment of land degradation (e.g. (Setegn et al., 

2008; Easton et al., 2010; Setegn et al., 2010; Addis et al., 2016)). SWAT is highly used 
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being freely available, applicable on geographic information system (GIS) interfaces on 

which much of the required data is also freely available, and is straightforward to set up 

and calibrate. However, van Griensven et al. (2012) are critical of SWAT’s application 

in the Upper Nile Basin countries due to reported use of unrealistic parameter values, a 

lack of reporting of parameter values making critical evaluation impossible, a general 

lack of attention to vegetation parameters, and comparison of SWAT applications at the 

same study site by different research teams and/or model versions giving very different 

results. Less common from the Tana Basin are modelling studies with explicit 

consideration of groundwater. Chebud and Melesse (2009) used MODFLOW to estimate 

the groundwater contribution of the Gumera watershed to Lake Tana. Even though 

Kebede et al. (2006) and Kebede et al. (2011), using a water balance and chemical 

isotopes, also showed groundwater contribution to Lake Tana, most modelling studies 

consider the lake and groundwater as separate entities in order to simplify the modelling 

by including an empirical groundwater component (e.g. Wale et al. (2009); Dargahi and 

Setegn (2011)).  

Further afield in a small (2 km2) sub-basin of the Zenako-Argaka basin Tigray, with a 

shallow aquifer similar to Dangila (vertisol and colluvium above trap basalts), 

Walraevens et al. (2009) used a combination of a runoff model and a soil moisture balance 

model to estimate recharge and a MODFLOW groundwater flow model calibrated against 

occasional groundwater level measurements from six piezometers. This study increased 

hydrogeological understanding and gave insights into recharge and discharge 

mechanisms of the aquifer to improve the effectiveness of the implemented water 

conservation measures. Also in Tigray, in the 5260 km2 Geba Basin, Gebreyohannes et 

al. (2013) used the spatially distributed water balance model WetSpass to produce maps 

of long-term average runoff, evapotranspiration and recharge. The maps showed where a 

groundwater could be abstracted during the wet season to supplement rainfed agriculture 

when rains are poor. However, the safe yield was simply calculated as 25% of 

groundwater recharge for the particular location; groundwater flow was not modelled and 

no aquifer parameters (transmissivity or specific yield) were incorporated into the model.  

This study appears to be the first in the region that explicitly models shallow groundwater, 

coupled with surface water, in order to assess the potential of the shallow aquifer resource 

for productive use. 
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7.2 Model construction 

7.2.1 Modelled catchments and resolution 

The four modelled catchments are shown in Figure 7-3. Table 7-3 provides information 

on the catchments. The decision to model four nested catchments of different sizes was 

to assess if optimum parameters achieved through calibration could satisfactorily be 

applied to all the models giving confidence in the optimum parameter uniqueness, to 

assess if there was any scale dependency in results, and to assess the required resolution 

for mapping of groundwater abstraction potential and impacts of changes. The smaller 

models (Brante and Amen) have a resolution of 100 m while the smaller Kilti model, 

“Kilti-Dangesheta”, has a resolution of 200 m, and the larger “Kilti-Durbete” has a 

resolution of 500 m (Figure 7-4). As high a resolution as possible was chosen within the 

limits of the expected simulation run time, and considering the DEM had a resolution of 

~90 m. 

 

Figure 7-3. Location map of the four modelled catchments. 
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Table 7-3. Information about the catchments modelled with SHETRAN. 

Name Referred to as: Gauge Monitored 

by: 

Area Model 

resolution 

Sub-

catchment 

of: 

Kilti Kilti-Durbete,  

larger Kilti 

model 

Kilti@Durbete MoWIE 632 km2 500 m Gilgel 

Abay 

Amen Amen Amen@Dangila MoWIE 37 km2 100 m Smaller 

Kilti model 

Kilti Kilti-

Dangesheta, 

smaller Kilti 

model, Kilti-sub 

Dangesheta 

community 

Dangesheta 

community 

165 km2 200 m Larger 

Kilti model 

Brante Brante Dangesheta 

community 

Dangesheta 

community 

66 km2 100 m Larger 

Kilti model 

 

7.2.2 Digital elevation model (DEM) and catchment masks 

The original SHETRAN model constructed by Dr G. Parkin during the one-year 

AMGRAF project under a NERC catalyst grant used an ASTER GDEM with a 25 m 

resolution from The Ministry of Economy, Trade, and Industry (METI) of Japan and the 

United States National Aeronautics and Space Administration (NASA). It was 

determined during the first field visit in March/April 2015 that this DEM was inaccurate. 

The stream network is created within SHETRAN according to DEM elevations and many 

of the created streams were not observed on the ground or streams that run parallel had 

been merged by SHETRAN. This ground-truthing led to the selection of an alternative 

DEM from NASA’s Shuttle Radar Topography Mission (SRTM) which, while of a lower 

resolution (3 arc-seconds, or approximately 90 m), proved to give the best representation 

of the topography of the area of focus. The DEM and minimum DEM were resampled 

from the SRTM DEM using QGIS, an open source geographic information system 

application, to the required resolution for each model. The catchment boundaries, or 

catchment masks, were delineated and resampled using tools within the QGIS GRASS-

GIS toolbox. Lakes layers were unnecessary as no lakes are found within the catchments.  
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Figure 7-4. SHETRAN grid, DEM and stream networks for the four modelled catchments. Note the different horizontal and vertical scales of the catchments.  
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Figure 7-5. Maps showing the distribution of the hydrogeological and LULC zones of the four modelled catchments. 
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7.2.3 Meteorology 

SHETRAN models require time series of precipitation and potential evapotranspiration 

(PET). Daily precipitation was available from the Ethiopian National Meteorological 

Agency (NMA) for the weather station within Dangila town from 1st January 1994 to 31st 

October 2015. The Dangila town weather station is the only formal monitoring station 

within Dangila woreda and any of the modelled catchments. Daily precipitation is also 

available from the Dangesheta community-based monitoring programme from 10th March 

2014 to 8th January 2017. The quality of the data from the community-based monitoring 

programme was confirmed by statistical comparisons with data from formal sources as 

described in Chapter 5 and in Walker et al. (2016). PET was calculated using the 

standardised FAO-56 Penman-Monteith reference evapotranspiration (Allen et al., 1998), 

which requires maximum and minimum daily temperatures, wind speed, sunshine hours 

and relative humidity. These parameters were available from the NMA for the Dangila 

weather station at a monthly time-step from January 1985 to December 2006 and daily 

from 10th January 2010 to 31st October 2015. Attempts to obtain the missing (2007-2009) 

PET data and obtain precipitation and PET data since November 2015 proved 

unsuccessful; despite visits to the NMA regional office in Bahir Dar and promises made 

by their staff. In order to fill the gaps in the PET data, it was determined that using average 

monthly values was satisfactory: The interannual variation in monthly PET totals is low, 

as can be seen in Figure 7-6; the coefficient of variation for interannual monthly values 

ranges from only 3.4% (September) to 6.8% (June). The single meteorological monitoring 

station operating at any one time within the catchments means the precipitation and PET 

layer for SHETRAN was homogenous across the whole catchment. 

 

Figure 7-6. Interannual variation in monthly PET at Dangila. 

0

1

2

3

4

5

6

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M
o

n
th

ly
 a

v
e

ra
g

e
 P

E
T

 (
m

m
/d

a
y
)

1985 1986 1987 1988 1989 1990 1991 1992
1993 1994 1995 1996 1997 1998 1999 2000
2001 2002 2003 2004 2005 2006 2007 2008
2009 2010 2011 2012 2013 2014 2015



124 

 

7.2.4 Soils and geology 

Hydrogeological zones 

Chapter 4 provided details of the geological investigations. Essentially, loamy soils 

overlie regolith that overlies very low permeability basalt. The soils and geology layer 

for input into SHETRAN relied on field investigations as soil and geological mapping of 

the area is not available at sufficiently high resolution. The observed variation in well 

depths, differences in monitored well responses, variation in well pumping/recovery test 

results, geological and soil observations, and discussions with local communities led to 

the definition of three hydrogeological zones. It is noted that each zone is a land type and 

not a specific location, i.e. there are multiple locations designated as each zone. 

1. The first zone comprises the widespread and often expansive floodplains. These 

features are flat or of very low gradient and provide year-round pasture for 

livestock. Desiccation cracked surfaces during the dry season indicate a clay-rich 

composition though sandy and gravelly patches are observed, particularly closer 

to flowing channels. The floodplains are generally waterlogged during the wet 

season, more from spring discharges at their edges and pluvial flooding rather 

than from streams bursting their banks. The regolith of zone 1 is considered to 

have a lower hydraulic conductivity than other zones due to the presence of the 

clays (this was also reported by McCartney and Neal (1999) following slug testing 

at dambos in Zimbabwe). Riverbank sections were observed to be homogenous, 

therefore, an additional soil layer above the regolith is not incorporated. The basalt 

bedrock of zone 1 may have a higher hydraulic conductivity than other zones 

because an area of preferential leaching leading to the formation of the dambo 

must have greater fracturing or a higher content of more permeable materials, 

however, such fracturing may be filled with clays from the enhanced weathering 

once again reducing the hydraulic conductivity.  

2. The second and most abundant zone comprises all areas that are neither 

floodplains (zone 1) nor hillslopes (zone 3). The zone is characterised by low 

rolling foothills with shallow slopes comprising the highest population density 

and greatest agricultural intensity. Expanses of zone 2 may be split by zone 1 

floodplains or such floodplains may sit or “hang” within higher areas of zone 2 

thus being both up and down gradient of zone 2. Numerous small sub-basins are 

formed within the low hills of zone 2 generally draining to a zone 1 feature. 

Hydraulic conductivity of the zone 2 regolith has been determined from well 
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pumping and recovery tests and is considered higher than in zone 1 due to a lower 

clay content and less settlement, which would close pores and fractures. The basalt 

bedrock of zone 2 may be of lower hydraulic conductivity than zone 1 because 

differential leaching has not occurred in these areas.    

3. The third zone comprises the upland areas. This zone is characterised by higher 

relief and ephemeral streams, often deeply incised into thicker regolith. While 

agriculture may be present, more common is scrub-like vegetation. Dwellings are 

fewer as population density is lower. Wells are deeper and generally poor 

providers of water during the dry season. Zone 3 typically forms the perimeter of 

the catchments. Well pumping and recovery tests were not conducted in areas that 

fit the zone 3 definition, however, discussions with local communities suggests 

that regolith hydraulic conductivity is less in zone 3 as wells recover slower than 

elsewhere. The basalt bedrock is considered similar to that of zone 2.   

Delineation of the zones was conducted by analysis of ground-truthed Google.Earth 

imagery and slope analysis using QGIS. The zone 1 floodplains are simple to visually 

identify on Google.Earth though ground-truthing was conducted during the field visits to 

confirm the ease of identification and delineation. A sample area of ground-truthed 

floodplains were digitised by hand by drawing polygons on Google.Earth then importing 

into QGIS. Using the “slope” tool within the terrain analysis toolbox and applying it to 

the DEM, the gradient thresholds were varied until the delineated zones matched the 

digitised floodplains. The same methodology was used to define the zone 3 hillslope 

areas. The gradients selected to delineate the three zones are presented in Table 7-4. The 

distribution of the zones is shown in Figure 7-5. 

Table 7-4. The slope gradients used to delineate the three zones using ArcGIS analysis of the SRTM 

DEM, and, based on field measurements, the mean well depths used to determine the base of the regolith, 

and the regolith aquifer properties. 

Zone Gradient Mean well depth (m) Mean hydraulic 

conductivity (m/d) 

Mean specific yield 

(-) 

1 0 – 1.4o 6.64 7.5 0.09 

2 1.4 – 6o 7.59 2.1 0.09 

3 > 6o 12.00 1.1 0.09 
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Layer thicknesses 

As described above, the models were constructed with three layers: soil, regolith and 

basalt bedrock. Soil layer thickness was varied during modelling from 0 to 2.5 m in 

accordance with sections that could occasionally be observed in riverbanks and well 

bores. The thickness of the regolith layer was determined from well surveys. Wells are 

typically excavated until manual excavation is no longer possible due to the presence of 

strong rock, therefore, well depth is inferred to be the base of the regolith layer, which is 

the top of the basalt bedrock. Demis Alamirew of GSE surveyed 143 hand-dug wells 

during the AMGRAF catalyst period in February and March 2014 and I surveyed 64 wells 

during the field visits in March/April 2015 and October/November 2015. Where wells 

had been re-visited only the most recent measurements of depth were considered for 

inference of the regolith thickness. Access to the well bore below hand pumps and, with 

some exceptions, rope-and-washer pumps was not possible, therefore, recorded 

measurements were often provided word-of-mouth. Such word-of-mouth measurements 

have not been accepted for analysis of regolith depth because when such measurements 

could be tested, large discrepancies were common. Typically, this is due to the traditional 

local measuring unit of the cubit simply being doubled to provide the depth in metres or 

being translated directly into metres rather than cubits. Such measurements are also reliant 

on good memory as the particular well may have been excavated and sealed many years 

previously. Following exclusions, 80 wells could be used for estimating regolith 

thickness. The average well depths per zone are shown in Table 7-4; these depths are 

analogous to the top of the basalt bedrock. 

The underlying basalt is 500-3000 m thick (Mohr, 1983). Only the upper part of this 

sequence was incorporated in the models; the part which is considered to interact with the 

shallow aquifer where fracturing and weathering are enhanced. Basalt layer thickness was 

varied during modelling from 0 to 10 m with zero corresponding to a completely 

impermeable bedrock and 10 m being the likely maximum limit of hydrogeological 

interaction with the regolith aquifer. As the depth of fracturing of the basalt bedrock was 

not observable, 10 m was selected based on discussion with local expert opinion (Demis 

Alamirew, GSE hydrogeologist, personal communication, 17th March 2015); ultimately 

this value was reduced during the modelling process. 
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Aquifer properties 

Pumping tests were undertaken during the first and second field visits as described in 

Chapter 3 and in Walker (2016). Hydraulic conductivity estimates averaged 2.29 m/d in 

the dry season and 9.65 m/d in the wet season when the water-table was higher. This 

difference indicates vertical heterogeneity of the regolith with more transmissive layers 

occurring at shallower depth that are only intercepted when the water column is higher. 

Specific yield estimations have a wider range and are more uncertain with an average of 

0.09. 

The tested wells were categorised into the three hydrogeological zones, according to slope 

gradient, land use and observable geology, then the mean hydraulic conductivity, 

considering both dry and wet season tests, was determined. The specified hydraulic 

conductivity and storage values for each zone are presented in Table 7-4. It is noted that 

most of the wells lie in zone 1 from a point of view of slope gradient though they are 

situated immediately on the edge of floodplains rather than within them. The calculated 

hydraulic conductivity for these zone 1 wells is higher than for zone 2 and 3 wells even 

though the floodplain regolith is considered to be clay-rich and of lower permeability. It 

has been reported that the floodplain or dambo edges are typically sandy and quite 

permeable (McFarlane, 1989) which may explain these high values from the pumping 

tests. The hydraulic conductivity values are not considered representative of zone 1 as a 

whole and were reduced for the modelling. The same specific yield value was used for 

regolith in all zones due to the greater uncertainty in its estimation.  

7.2.5 Land use land cover (LULC) 

LULC was divided into three zones matching the hydrogeological zones described 

previously. Zone 1 is characterised as grassland as the floodplains are almost always and 

entirely utilised as pasture. Zone 2 is categorised as arable because the majority comprises 

land devoted to rainfed agriculture. The crops planted are 87% cereals (39% maize, 35% 

teff and 13% millet), with the rest being pulses, oilseeds, sugarcane, potatoes, vegetables, 

fruits, onions, garlic, and tomatoes (Belay and Bewket, 2013), the latter few generally 

occupying backyard plots. In addition to these crops within zone 2, the vegetation actually 

ranges from grassland to Eucalyptus plantations with some areas of bare ground near 

areas of habitation. Zone 3 with its higher gradients is categorised as shrub due to the 

characteristic scrub-like vegetation, though in reality the hillslopes also contain lesser 

amounts of crops, grassland and forest, with dense native forest occurring around 

churches. How SHETRAN converts the potential evapotranspiration time series into 
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actual evapotranspiration is specific for each of these zones. Each zone within SHETRAN 

differs in rooting depth and root density at different depths, ground coverage at maximum 

seasonal extent, canopy storage capacity, leaf area index, and AET/PET at particular soil 

moisture tensions. These parameter values were estimated from ground observations in 

order to generalise vegetation and crop types followed by consultation of the key 

instructional texts for calculating water demand; FAO24 (Doorenbos and Pruitt, 1975) 

and FAO56 (Allen et al., 1998), and other published studies providing detail of particular 

vegetation types, particularly, Canadell et al. (1996); Dardanelli et al. (1997); Cain (1998) 

and; Fan et al. (2016).  

7.3 Model calibration 

7.3.1 Introduction 

Theoretically, all parameters could have been measured in the field, though in reality, this 

is rarely possible due to cost, time and experimental constraints, as well as problems of 

scaling (Beven et al., 1980). Therefore, some calibration of parameters is required to 

provide confidence that the catchment model is representing reality. Calibration of 

physically-based models can be complex and expensive/time-consuming due to 

sophisticated model structures, computation requirements and the large number of 

parameters (Blasone et al., 2007; Zhang et al., 2013). Manual calibration requires 

rigorous and purposeful adjustment of parameter values, is extremely time-consuming, 

tedious and can be subjective (Refsgaard, 1997). However, this time is well spent as, in 

addition to achieving satisfactory calibration statistics, hydrogeological understanding is 

greatly increased and the conceptual model can be updated and validated. 

7.3.2 Calibration data 

Datasets from two sources were used to quantitatively calibrate the models: 

1. The Dangesheta community-based monitoring programme 

a. Groundwater levels from five wells 

b. River stage for the Brante and Kilti rivers, converted to river flow 

2. Formal data from the Ministry of Water, Irrigation and Electricity (MoWIE) 

a. River flow records for the Kilti and Amen rivers 

The community-based monitoring data was discussed in Chapter 5 and Walker et al. 

(2016). The time series used span 10th March 2014 to 8th January 2017. River flow records 

are available from MoWIE for the Kilti and Amen rivers from 17th April 1997 to 
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4th October 2014 and 26th April 1988 (though are continuous only from 1998) to 27th 

September 2014 respectively.  

In addition to the quantitative calibration of modelled to observed groundwater level time 

series, a qualitative groundwater calibration took place in other areas of the catchments. 

The groundwater data used were occasional groundwater level measurements taken 

around the catchments on multiple field visits, and anecdotal or observational evidence 

of areas prone to flooding in the wet season or of dry wells in the dry season. 

An issue with calibrating modelled against observed discharge is that the Brante and 

Amen rivers were observed to have ephemeral reaches. During dry season field visits 

when there was flow at the gauge sites, reaches both upstream and downstream of the 

gauges were observed to be dry. Generally, the rivers appeared to be losing through the 

flat floodplains where the rivers were dry and gaining through the narrow basalt riverbed 

flowing reaches. Incidentally, radon-222 measurements during the wet season field visit 

suggested that this pattern is reversed in the wet season with groundwater discharge in 

the floodplains (see Chapter 4).  

Concerning calibrating modelled to observed groundwater levels, the individual well 

responses are often controlled by features unique to those wells. For example, rapid rises 

in water level of monitoring well MW5 are due to overland flow directly entering the well 

via termite and rat holes (such information was proffered during community workshops) 

and MW3 has no lid meaning direct precipitation will influence the groundwater 

hydrograph. Some features that are hydrogeologically significant, such as MW4 

maintaining its groundwater level longer into the dry season due to its position directly at 

the foot of a slope and recharge area, are not represented at the resolution of the models; 

even at the 100 m resolution of the finest models. Given that the monitoring wells often 

dry out in the dry season, it is known that the water table is below the well base at their 

locations but the precise water table depth is uncertain. In addition, the wells are subject 

to abstraction for domestic and agricultural use (water for livestock and backyard 

irrigation). Abstracted volumes may be low in total and have minimal effect on the overall 

well response but the timing of abstraction could be immediately prior to measuring, i.e. 

first thing in the morning, therefore some measurements may not be showing natural 

aquifer response to recharge and discharge. What’s more, the monitoring wells are 

clustered in a small area of around 0.5 km2, though their positions were selected to be 

representative of the wider area. 
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7.3.3 Calibration methodology  

The five community monitored wells are within the Brante catchment that is within the 

larger Kilti catchment. However, only the Brante model is of sufficiently fine resolution 

that all the wells lie in different cells. Therefore, the Brante model was chiefly calibrated 

against groundwater level data, as well as against the community river flow data. At the 

same time, the Amen and Kilti models were calibrated against their longer period river 

flow records. A set of optimum parameters was selected iteratively that satisfied the 

groundwater level calibration of the Brante and the river flow calibration of the Amen 

and Kilti rivers. This was while also considering the river flow of the Brante and smaller 

Kilti model and the qualitative groundwater level observations. The search for matching 

optimum parameters to suit all four modelled catchments is justified due to the nested and 

overlapping nature of the catchments in addition to the observed similarities in soils, 

geology and LULC. 

The calibration parameters are those identified from literature to be sensitive in 

SHETRAN modelling (e.g. Bathurst et al. (2004); Bathurst et al. (2011a); Starkey et al. 

(2017)) in addition to parameters considered uncertain for this study site:  

 The Strickler coefficient is the inverse of the Manning roughness coefficient and 

controls the speed of runoff. It is essentially a friction factor representing raindrop 

impact, flow channelization, obstacles such as rocks and vegetation, surface 

frictional drag, and erosion and transport of sediment (Engman, 1986). The 

Strickler coefficient value was initially selected based on literature review of 

modelling studies in similar environments. The adjusted range was from 0.5 to 

10.0 m-1/3/s. 

 The AE/PE ratio controls the amount of evaporative loss. The values were 

adjusted with consideration of the SHETRAN mass balance output in order to 

achieve satisfactory long-term discharge totals. The ratios reduce with depth and 

were adjusted between 0.1 and 1.0. 

 Hydraulic conductivity, specific yield and specific storage values were adjusted 

within the range estimated from the pumping tests and based on hydrogeological 

experience and textbook values in the case of soils and basalt (e.g. Fredlund et al. 

(1993); Fetter (2001)). The adjusted ranges for hydraulic conductivity were: soil 

10-100 m/d, regolith 0.2-22.3 m/d, and basalt 1 x 10-5 to 1 x 10-2 m/d. for specific 

yield the adjusted ranges were: soil 0.05-0.4 and regolith 0.03-0.32. Specific 

storage of basalt was adjusted between 1 x 10-3 to 1 x 10-6 m-1. 
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 Soil and geological layer thicknesses were adjusted within the range observed in 

the field: soil 0-3 m, regolith 3-15 m and basalt 0-10 m. 

Calibration and validation periods were selected to give “typical” ranges of hydrological 

conditions and ran from the end of a wet season recession to the same point one, two or 

three years later. In addition to visual comparison of plotted observed and simulated data, 

the following performance indicators were utilised: Nash-Sutcliffe Efficiency (NSE) 

coefficient (Nash and Sutcliffe, 1970), where a value greater than 0.5 is considered 

acceptable (Moriasi et al., 2007), and root mean square error (RMSE), with units 

matching the compared data thus the value should be as low as possible. NSE is very 

sensitive to peak flows (Krause et al., 2005), therefore, given the flashy nature of the 

rivers with short-lived and relatively extremely high peaks, NSE (and RMSE) were 

calculated on baseflow following hydrograph separation. For the Brante model, NSE and 

RMSE were calculated on groundwater levels in the five monitoring wells, excluding the 

periods when the wells were dry as during this time the piezometric surface was at an 

unknown level below the well base. A validation period was run to confirm that the 

calibrated parameters still produced a satisfactory simulation for independent input 

datasets. However, it is inappropriate to calibrate the models purely against absolute 

values of the observed river flow and groundwater level time series using standard 

statistical techniques such as NSE and RMSE because high skill will not necessarily mean 

the model is representative of the natural system and vice versa. The purpose of the 

modelling is to assess availability of groundwater for productive use outside of the wet 

season, therefore, a realistic representation of groundwater seasonal response is deemed 

the most important process to simulate, rather than precise and entire groundwater level 

time series at five specific points. Simulated river flow was also assessed by comparing 

cumulative monthly flow totals using the full model run rather than calibration and 

validation periods). Monthly rather than daily flow totals are used for calibration in order 

to negate the aforementioned effects of temporarily dry reaches and flashy peaks. 

Achieving good daily matches between observed and simulated flows was not 

particularly important in this study; rather, understanding of the long-term water balance 

was critical. Comparing simulated to observed river flow purely using NSE proved an 

unsatisfactory calibration methodology as a good NSE could be achieved even when 

annual flow totals or cumulative monthly flow totals were mismatched.  
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7.3.4 Calibration results 

The groundwater level calibration of the Brante model gave acceptable NSE values, 

however, RMSE was quite large (Table 7-5). This is suspected to be due to the varying 

well depths indicating heterogeneous aquifer thickness while the cells in which the wells 

lie have uniform aquifer thickness. Consequently, the model was simulating greater 

groundwater fluctuation where the aquifer is specified thicker than the wells indicate is 

the reality and vice versa (Figure 7-7). Correct simulation of the groundwater behaviour 

was the main calibration criterion for the model. Sample groundwater hydrographs are 

shown in Figure 7-7 that are representative of the three zones: Zone 1 floodplains areas 

known to have shallow water tables, flood during the wet season though often dry out in 

the dry season, Zone 2 cultivated and inhabited interfluve areas with groundwater 

response somewhere between Zones 1 and 3, and Zone 3 hilly areas observed to have 

deep water tables and known anecdotally to suffer water scarcity in the dry season. These 

observed and anecdotal responses can be seen in the simulated groundwater hydrographs, 

therefore, calibration was deemed satisfactory. The difference in the observed and 

simulated hydrograph for monitoring well MW3 in Figure 7-7 is due to the model output 

being the groundwater fluctuation of a 100 m x 100 m cell whereas the observed 

hydrograph is at a point with unique soil and geology parameters, particularly regarding 

layer thicknesses and elevations. What’s more, the particular well is located just beyond 

the edge of a floodplain whereas the simulated output represents the floodplain itself. It 

is common at the study site for backyard agriculture plots of <0.1 ha to have multiple 

wells all with different depths and water levels, therefore, it was unsurprising that a better 

match could not be achieved between the simulated and observed groundwater 

hydrographs. The further semi-quantitative groundwater level calibration was also 

considered satisfactory for the Amen, Kilti and Kilti-sub models as SHETRAN correctly 

simulated Zone 1 floodplain areas (shallow water tables and wet season floods), and zone 

3 hilly areas (deep water tables and dry season water scarcity). 
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Table 7-5. Details and statistics of the calibration and validation periods. 

Catchment Calibration period No. of days NSE RMSE 

Brante* Mar 2014 to Mar 2015 (year 1) 365 0.69 2.01 m 

Amen Apr 1999 to Apr 2001 (years 2-3) 731 0.79 0.19 m3/s 

Kilti Apr 1998 to Apr 2000 (years 2-3) 731 0.78 1.47 m3/s 

Kilti-sub Mar 2015 to Mar 2016 (year 2) 365 0.64 0.27 m3/s 

     

Catchment Validation period No. of days NSE RMSE 

Brante* Mar 2015 to Mar 2016 (year 2) 365 0.53 2.08 m 

Amen Mar 2010 to Mar 2013 (years 13-15) 1096 0.75 0.13 m3/s 

Kilti Apr 2004 to Apr 2007 (years 8-10) 1096 0.67 2.30 m3/s 

Kilti-sub Jan 2016 to Jan 2017 (year 3) 365 0.08 1.17 m3/s 

 * Calibration is against groundwater levels rather than river flow. 

 

Figure 7-7. Simulated groundwater hydrographs from the Brante model showing three typical and 

representative hydrographs for each zone. Top: Representing Zone 1 floodplains and showing observed 

groundwater hydrograph for monitoring well MW3. Middle: Representing Zone 2 inhabited and 

cultivated foothills. Bottom: Representing Zone 3 hilly areas. It is restated that the monitoring wells all lie 

within Zone 1 cells, therefore, observed hydrographs cannot be included in the Zones 2 and 3 plots. 
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The observed and simulated river flow hydrographs match well for the Amen and Kilti-

Durbete models (Figure 7-8) and both have good NSE and RMSE values for the 

calibration and validation periods (Table 7-5). More importantly, the simulated 

cumulative flow totals match well with observed (Figure 7-9). Using the optimum 

calibrated parameter values in the Kilti-Dangesheta model gave good calibration statistics 

for the calibration period but not for the validation period. However, the cumulative flow 

totals comparison is good, as it is for the Brante. Therefore, the calibration was considered 

satisfactory and confidence was given in the uniqueness of the optimum parameter values 

as a satisfactory calibration was achieved for all the nested catchments utilising the same 

values.  

 

Figure 7-8. Simulated and observed river flow hydrographs. 
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Figure 7-9. Simulated and observed cumulative monthly flow totals. 

7.3.5 Optimum parameter values 

The optimum parameter values are considered those that gave satisfactory calibration of 

both groundwater levels in the short duration (3-year) Brante model and river flows in the 

longer duration (17 and 18-year) Amen and Kilti-Durbete models. Further validation 

occurred when satisfactory calibration statistics and simulated vs observed plots were 

achieved from running the set of optimum parameter values in the Kilti-Dangesheta 

model. Calibration occurred for all models concurrently; therefore, while slight 

adjustments to parameter values could give slightly better individual calibrations, the 

differences were minor. The optimum parameter values are presented in Table 7-6. The 

aquifer properties remain similar to the observed and measured values, and to literature 

values in the case of basalt (e.g. Fetter (2001)). Strickler coefficients are at the low end 

of literature values (e.g. Engman (1986)) reflecting the hummocky tussocky floodplains, 

the rough surfaces produced by ox ploughing in small plots that are not conducive to 

forming rills, and the often dense underbrush of the shrub (Figure 7-8). The relatively 

high AE/PE for the arable zone reflects the high proportion of tall crops such as maize 

and sugar cane that have high water demand, i.e. PET would be greater than the grass 
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reference value calculated using the Penman-Monteith FAO56 method (Doorenbos and 

Pruitt, 1975; Allen et al., 1998).   

 

Figure 7-10. Photographs of hummocky tussocky floodplain (left) and rough surface left by ox ploughing. 

Table 7-6. Optimum calibrated parameter values for the SHETRAN models.  

Zone Layer / vegetation Parameter Optimum value 

1 

Floodplains 

Regolith Hydraulic conductivity 0.5 m/d 

Specific yield 0.08 

Depth 6.6 mbgl 

Basalt Hydraulic conductivity 0.0003 m/d 

 Specific storage 0.001 m-1 

Depth 8.6 mbgl 

Grassland Strickler coefficient 1.0 m-1/3/s 

AE/PE  1.0 (at soil moisture tension of -0.1 m) 

0.85 (-1.0 m) 

0.65 (-10.0 m) 

0.45 (-20 m) 

0.25 (-50 m) 

2 

Cultivated 

and 

populated 

areas 

Soil Hydraulic conductivity 20 m/d 

Specific yield 0.1 

Depth 0.5 mbgl 

Regolith Hydraulic conductivity 0.25 m/d 

Specific yield 0.08 

Depth 11.0 mbgl 

 Basalt Hydraulic conductivity 0.0003 m/d 

 Specific storage 0.001 m-1 

 Depth 13.0 mbgl 

Arable Strickler coefficient 1.5 m-1/3/s 

AE/PE  1.0 (at soil moisture tension of -0.1 m) 

0.9 (-1.0 m) 

0.8 (-10.0 m) 

0.6 (-20 m) 

0.4 (-50 m) 
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3 

Upland areas 

Soil Hydraulic conductivity 20 m/d 

Specific yield 0.1 

Depth 0.25 mbgl 

Regolith Hydraulic conductivity 0.5 m/d 

Specific yield 0.08 

Depth 12 mbgl 

Basalt Hydraulic conductivity 0.0001 m/d 

 Specific storage 0.00001 m-1 

Depth 12.5 mbgl 

Shrub Strickler coefficient 1.0 m-1/3/s 

AE/PE  

 

1.0 (at soil moisture tension of -0.1 m) 

1.0 (-1.0 m) 

0.8 (-10.0 m) 

0.6 (-20 m) 

0.4 (-50 m) 

 

7.4 Improved hydrogeological understanding from the calibration 

7.4.1 Sensitivity to certain parameters 

Adjustment of geological layering and of parameter values during calibration not only 

informed and confirmed the conceptual model but also was essentially a sensitivity 

analysis. The parameter to which the models were most sensitive was layer thickness with 

a few metres adjustment to soil, regolith or basalt depth leading to large changes in 

groundwater and river flow hydrographs. Therefore, the likely heterogeneous thickness 

of the soil and regolith layers, as indicated by variations in well depth, has significant 

impacts on local groundwater flow and river level. It would be extremely difficult to 

simulate these very local impacts accurately; it would require very high resolution 

modelling following widespread geophysical investigations to three-dimensionally map 

the layers. 

7.4.2 Absence of a clay-rich low hydraulic conductivity layer 

The key regolith literature (Jones (1985) or Acworth (1987)) place a clay-rich low-K layer 

within the regolith profile below the soil (zones ‘a’ and ‘b’ of Figure 3-9). This layer was 

simulated in the model runs, placed between the soil and regolith at thicknesses of 0.5-

1.0 m with hydraulic conductivity of 0.001 to 0.01 m/d. However, the model repeatedly 

crashed due to excessive river discharges and drying out of aquifer cells, i.e. rainfall could 

not sufficiently infiltrate. This suggests that such a low-K layer is absent at this depth, or 

at least there are preferential flow pathways to the aquifer. Observed storm peaks in 

discharge are not at such high levels that suggest infiltration does not occur during intense 
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rainfall events. The regolith has a high clay content throughout and the absence of a layer 

of particularly high clay and consequent very low hydraulic conductivity may be due to 

the relatively young age of the bedrock (Benvenuti et al., 2002). 

7.4.3 Absence of fractured bedrock high hydraulic conductivity layer 

The key regolith literature also describe a fractured bedrock high-K layer at the base of 

the regolith profile (zone ‘d’ of Figure 3-9). Inclusion or exclusion of fractured basalt as 

a thin (<1 m) high hydraulic conductivity (20-75 m/d) layer between the regolith and 

basalt does not have a significant impact on the model results. When the fractured layer 

was ascribed a hydraulic conductivity >40 m/d, the model would only run when the basal 

basalt hydraulic conductivity was significantly reduced, and it was this adjustment to the 

basal basalt that had a greater impact on the simulation. The relatively young age of the 

basalt bedrock may mean that significant fracturing has not had time to occur. 

7.4.4 Hydrogeological importance of the basal basalt bedrock 

The greatest impact on simulated river flows and groundwater levels resulted from 

adjustment of basal basalt hydraulic conductivity. Decreasing the hydraulic conductivity 

increases the wet season baseflow significantly while decreasing the specific storage and 

porosity decreases recession length. Prior to the modelling, it was suspected that the basalt 

bedrock was impermeable, therefore, no basalt was simulated in the model and the base 

of the regolith formed the base of the model. However, the simulations gave 

unsatisfactory river flow and groundwater levels. To achieve a better simulation, some 

permeability had to be applied to a basalt basal layer. The thickness of this layer has less 

of an influence than the hydraulic conductivity. When the layer was simulated to be thick 

(>10 m) the model would not run, even when transmissivity was equal to a thinner layer, 

suggesting that underlying the regolith of the catchments is a thin, slightly weathered and 

fissured, basalt layer above impermeable basalt bedrock.  

7.4.5 Absence of leakage to a deeper aquifer 

The conceptual model was of a shallow thin perched aquifer with possible leakage to a 

deeper aquifer. That deeper aquifer is likely to comprise fractured and scoriaceous zones 

within the deeper basalts and trachytes (Kebede, 2013). Leakage to a deeper aquifer was 

simulated by allowing gravity drainage through the base of the model. This was initially 

applied only below the zone 1 floodplains because the dambo literature suggests more 

fractured bedrock may be present there (McFarlane, 1989). Allowing gravity drainage 

had little effect on the simulations until the zone 1 basalt hydraulic conductivity was 

increased to allow greater groundwater flow out of the model. It was clear from the 
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hydrographs that the adjustment of the basalt hydraulic conductivity had a greater effect 

on the simulation than leakage as groundwater flowed laterally into streams more rapidly. 

Therefore, the modelling suggests that leakage to a deeper aquifer is not significant at 

these scales; a conclusion supported by field evidence described in Chapter 4.  

7.4.6 Evapotranspiration from groundwater 

The heavy wet season rains lead to very shallow water tables across much of the study 

site for 4-6 months of the year. This was most apparent at the seasonally inundated 

floodplains that were generally still too wet to cross on foot during the second field visit 

in October 2015 a month or so after significant rains had ceased. Springs and seepages 

remain active for much of the year and the shallow water tables support phreatophytes. 

Consequently, it was suspected that the evapotranspiration loss from the saturated zone 

would be significant. This was confirmed by SHETRAN modelling during the recharge 

assessment method comparison presented in the previous Chapter. 

7.5 Mapping the potential of shallow groundwater for irrigation use 

7.5.1 Methodology 

Once the models were considered to be simulating natural conditions well, analysis could 

be conducted on the model outputs. Because SHETRAN is fully spatially distributed, 

variations in groundwater level across the catchments could reveal areas that have the 

best potential for exploitation of the shallow groundwater resource for irrigation (Figure 

7-11). Such areas could be identified by slow groundwater recessions at the end of the 

wet season and an abstractable saturated thickness of aquifer throughout the dry season.  

 

Figure 7-11. Maps showing The Brante catchment and SHETRAN model outputs of water table depth at 

the peak of the wet and dry seasons and the transition between the two seasons. 
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Post-processing was conducted using a Python script that analysed the groundwater level 

in every cell during every day of a simulation. The script counted the number of days per 

hydrological year that groundwater was available for abstraction in each cell. This was 

defined as a groundwater level >0.5 m above the base of the regolith, i.e. the groundwater 

level was not in the basal basalt layer below the base of wells and a sufficient water 

column was present to allow pumping by mechanical or motorised means. The annual 

counts of groundwater availability were averaged for the full model runs and groundwater 

potential zones were assigned as follows: 

High: <10 days per year when groundwater is unavailable – Irrigation is possible 

year-round. 

Medium: 10-100 days per year of groundwater unavailability – Irrigation is 

possible for a second growing season in addition to the main rainfed growing 

season. 

Low: 100-200 days per year when groundwater is unavailable – Irrigation is 

unlikely to be possible outside of the wet season. 

Very low: >200 days per year when groundwater is unavailable – Irrigation 

outside of wet season impossible. 

It may seem that the criteria are strict as very low potential areas may still have available 

groundwater for 165 days of the year. However, this period of groundwater availability 

would obviously coincide with the wet season when no irrigation is required due to the 

rains. 

7.5.2 Groundwater potential maps 

The maps of potential for groundwater abstraction are presented in Figure 7-10. The 

patterns of zoning make most sense when the maps are overlain on Google.Earth and the 

viewing angle, or tilt, and transparency are adjusted to enable simultaneous viewing of 

topography and land use.  

Figure 7-13, Figure 7-14 and Figure 7-15 show examples of the commonly observed 

relationships between the groundwater potential zoning, topography and land use. The 

high potential areas are found at the foot of hillslopes and in narrow valleys. Medium 

potential zones typically surround areas of high potential or are themselves surrounded 

by areas of low potential. Low-lying land and floodplains are typically areas of low 

potential and small hills in their midst are often medium potential. Very low potential 
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zones are mountainous areas and ridges, typically around the catchment boundaries. 

Commonly, the low potential areas clearly appear lighter in colour and drier on 

Google.Earth while medium and higher potential areas appear darker. These observations 

were ground-truthed during the January 2017 field visit. At that time of year, only 

Eucalyptus is cultivated and plantations were noticeably less water-stressed in the areas 

of high potential than those in low potential zones (Figure 7-16). 
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Figure 7-12. Maps showing potential of shallow groundwater for irrigation use. 
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Figure 7-13. Southern extremes of the Brante and Amen groundwater potential maps overlain on 

Google.Earth. 

 

Figure 7-14. Central portion of the Brante and Amen groundwater potential maps overlain on 

Google.Earth. 
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Figure 7-15. Northern portions of the Kilti-Dangesheta, Amen and Brante groundwater potential maps 

overlain on Google.Earth. A and B are the locations of the photographs in Figure 7-16. 

 

Figure 7-16. Photographs taken during the dry season (January 2017) showing water-stressed Eucalyptus 

in a low potential zone (left) and healthier Eucalyptus in a high potential zone at the foot of a slope. See 

Figure 7-15 for the photograph locations. 

Production of the groundwater potential maps revealed that the 500 m resolution of the 

Kilti-Durbete model was too coarse to correctly locate the different potential zones. There 

was agreement in potential zone correspondence to topography and land use for the other 

three models and general agreement in the overlapping portions of the Kilti-Dangesheta 

and Amen models. However, the Kilti-Durbete model could not identify the high potential 

zone narrow valleys and thin strips at the foot of slopes, nor the very low potential ridges 
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around catchment boundaries. Figure 7-17 compares the potential maps produced from 

the different catchment models illustrating that the Kilti-Durbete model gives contrasting 

results of high potential in low-lying and floodplain areas. Slight variations in topography 

that have been revealed the controlling factor on groundwater availability cannot be 

picked up at coarse resolution. Therefore, no confidence could be given to the Kilti-

Durbete potential map for advising on most suitable well locations for productive use. 

The 200 m resolution Kilti-Dangesheta potential map appears to perform well, though the 

100 m resolution Amen and Brante maps are preferable for making intervention 

recommendations given the small-scale agriculture of typically <1 ha plot size that 

dominates the area. These maps are of use should a government ministry, private investor, 

NGO, or other organisation wish to implement irrigation in the area; resources could be 

focussed in the zones with highest potential. The groundwater potential maps were 

provided to relevant stakeholders during the January 2017 field visit; including the 

Dangesheta kebele office, the Dangila woreda office, the Abay River Basin Authority 

(ARBA) in Bahir Dar and the Ministry of Agriculture and Natural Resources (MoANR) 

in Addis Ababa. The response was positive and a follow up research project is underway 

with these partners with workshops planned for May 2018 where the maps will be further 

presented and described.    

 

Figure 7-17. All four catchments’ groundwater potential maps overlain on Google.Earth (left) and the 

same view but showing only the Kilti-Durbete potential map. 

7.6 Discussion and conclusions 

SHETRAN was chosen to model the shallow aquifer due to its comprehensive nature, 

ability to model coupled surface and subsurface, saturated and unsaturated components, 

and because the spatially distributed outputs would aid in understanding the behaviour of 

the hydrogeological system in all parts of the catchments.  
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Four catchments were modelled at different resolutions, from 100 m to 500 m, and their 

nested nature meant one set of parameter values should satisfy calibration for all the 

models. Calibration was chiefly against groundwater levels for the Brante model and river 

flows for the Kilti-Durbete, Amen and Kilti-Dangesheta models, though with qualitative 

calibration of groundwater levels for all models.  

The initial aim of the modelling, to increase hydrogeological understanding of the shallow 

groundwater system, was certainly achieved. Referring back to the specific research 

questions posed in Section 7.1.2: Are the models satisfactorily reflecting reality in terms 

of river flows and groundwater levels?  

Calibration was satisfactory in terms of the long-term behaviour and water balance. 

However, short-term (daily) response was not necessarily picked up and groundwater 

level calibration was problematic due to the point locations of the observational time 

series vs cell-wide simulated outputs that could not incorporate monitoring well 

specificities such as: very local elevation and topography, geological heterogeneities (soil 

and regolith layer thicknesses, hydraulic conductivities and specific yields), and direct 

water ingress via precipitation and overland flow. This is a generic problem in spatial 

models representing point measurements. The models did produce the general range of 

observed responses and were considered valid for the scenarios analysis presented in 

Chapter 8. 

Again from 7.1.2: Are the parameter values appropriate considering field investigations and 

published literature?  

The calibration procedure and sensitivity testing adjusted parameters within either 

measured ranges or, where impossible to measure, within published ranges. The optimum 

values were similar to those measured and were deemed appropriate. Model outputs are 

sensitive to geological layer thicknesses. The few exposures available in well bores and 

riverbanks, and the depths to bedrock inferred from well depth measurements, suggest 

layer thicknesses are heterogeneous even within short distances. Therefore, the layer 

thicknesses are ascribed in the models with uncertainty, which further explains the 

problematic groundwater level calibration given the sensitivity to this parameter. 

From 7.1.2: What effect does incorporating various hydrogeological features presented in 

key regolith and dambo literature, but not necessarily identified in the field, have on the 

simulations?  
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The calibration and sensitivity testing process allowed update and confirmation of the 

conceptual model, revealing a lack of a clay-rich low permeability layer beneath the 

floodplains and lack of a high permeability fractured layer at the top of the basalt. 

However, there is evidence supporting a permeable horizon, although not with very high 

permeability that may be associated with fractured basalts; seepage through this layer to 

a deeper aquifer is minimal. Likelihood of the presence of such features was determined 

by their improvement or worsening impact on, in terms of comparisons between 

simulated and observed, groundwater levels and river flows. The use of SHETRAN to 

provide recharge estimates as described in Chapter 6 confirmed that evapotranspiration 

from the unsaturated zone is significant. 

From 7.1.2: Is groundwater availability recharge controlled or storage controlled?  

Assessment of the spatiotemporal variability of recharge and storage indicated that 

shallow groundwater availability is storage rather than recharge controlled. This was 

unsurprising given the high recharge estimates presented in Chapter 6 and the thinness of 

the aquifer as described in Chapter 4. 

The final objective, to identify areas that show the greatest potential for the onset of 

irrigation using shallow groundwater, was achieved with production of the groundwater 

potential maps. Maps of the potential to utilise shallow groundwater for irrigation were 

produced by processing the SHETRAN water table depth outputs using Python, which 

were then overlain on Google.Earth. Areas described as being of high potential were 

where groundwater was on average available year-round, allowing just 10 days of 

unavailability. Such zones were typically found at the bases of hillslopes and in narrow 

valleys, corresponding to around 17% of the study site. Medium potential zones had 10-

100 days of unavailability and were found surrounding areas of high potential or formed 

“islands” of higher relief areas within low-lying floodplains (corresponding to 

approximately 31% of the study site). Low potential areas (100-200 days of groundwater 

unavailability) comprised much of the low-lying land including the floodplains (~46% of 

the study site) while very low potential zones (>200 days of unavailability) were located 

in mountainous areas and ridges (~6% of the study site). These maps could be utilised for 

intervention planning and were provided during the third field visit in January 2017 to 

local, regional and national stakeholders, who showed interest and requested follow up 

discussions and possible workshops (planned for May 2018 as part of a subsequent 

research project).   
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While a complete SHETRAN modelling study would not be feasible to evaluate the 

abstraction and irrigation potential for every new site, the topographic and geological 

identifiers of high potential zones can be located during desk study analysis of 

topographic and geological maps followed by ground truthing, e.g. geological 

observations, well depth measurements and dry season well productivity assessments. 
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Chapter 8. Resilience of shallow groundwater 

resources 

 

8.0 Chapter overview  

Chapter 7 provided justification for the use of SHETRAN and described the model 

construction, parameterisation and calibration processes. The models could next be used 

to simulate potential future scenarios, which is the basis of Chapter 8. This chapter details 

the likely future scenarios that may affect surface and shallow groundwater resources. A 

multimethod drought analysis is presented revealing the historical climate variability in 

the area. SHETRAN modelling of the potential future climate, land use and abstraction 

scenarios is described and results are presented of the impacts on surface and groundwater 

availability. 

8.1 Introduction 

8.1.1 Context 

Groundwater is often considered a potential saviour for sub-Saharan Africa’s 

unfortunately prevalent issues of food security, poverty and vulnerability to climate 

change (Carter and Bevan, 2008; Calow et al., 2009b; Taylor et al., 2009; MacDonald et 

al., 2012a). Rural communities, being poorer and more vulnerable, have the most to gain 

from increased groundwater use, and these communities are most likely, or only have the 

capacity, to exploit shallow groundwater. Reports are common of water table decline in 

parts of the world like India, China and Pakistan where a rapid growth in abstraction for 

small-scale irrigation, not only increased food security and alleviated poverty, but has 

caused a worryingly drastic depletion of groundwater resources (Konikow and Kendy, 

2005; Aeschbach-Hertig and Gleeson, 2012; Reshmidevi and Nagesh Kumar, 2014). It is 

also well known qualitatively and empirically the likely effects of climate and land use 

land cover (LULC) change on water resources, e.g. increased storm intensity and 

urbanisation and/or cultivation encroaching on natural vegetation, all of which would 

increase rapid runoff and decrease recharge and baseflow (Meyer and Turner, 1992; 

Arnell, 2004; Liu et al., 2008b). However, few (if any) studies have been conducted at 

community scales in sub-Saharan Africa to determine what will happen quantitatively to 

the shallow groundwater resource if smallholders actually start abstracting it, and in the 

face of climate variability and LULC change. 
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8.1.2 Purpose of modelling 

Chapter 7 showed how the modelling aims were achieved, in terms of increasing 

hydrogeological understanding of the shallow groundwater system, developing the 

conceptual model, and identifying areas with the greatest potential for sustainable 

intensification of agriculture through irrigation. The objective for the second phase of the 

modelling was to answer research question 5 from Chapter 1: How will climate 

variability, LULC change and increased abstraction impact the shallow groundwater 

resource and surface water? 

The groundwater potential maps give satisfactory guidance under current conditions in 

terms of the recent climate, current land use and likely slow initiation of shallow 

groundwater abstraction for irrigation. But going forward, climate variability is predicted 

to become more extreme (Bates et al., 2008; Taye et al., 2015) and population pressures 

will likely lead to reductions in natural vegetation cover (Hurni et al., 2005; Amsalu et 

al., 2007) and increased groundwater abstraction (Awulachew et al., 2007; Evans et al., 

2012). It is important to understand how these changes will impact the surface and 

groundwater resources. Further modelling of potential future scenarios was conducted to 

determine the resilience of the shallow groundwater resource. 

8.1.3 Methodology 

The second part of the modelling study involved simulating the potential impacts of future 

scenarios on surface and groundwater resources. As discussed in Chapter 2, the likely 

causal changes are climate, land use, and abstraction. The initial step was to assess 

existing climate variability by conducting a drought analysis of historical data. A 

literature review was also conducted of trends identified in highland Ethiopia 

meteorology and projected climate change. The aims of these climate variability 

assessments were the derivation of synthetic rainfall and potential evapotranspiration 

(PET) time series for incorporation into the SHETRAN models presented in Chapter 7. 

Ground observations, remote sensing analysis and literature review of LULC change 

trends determined LULC scenarios for incorporation into the SHETRAN models by 

adjusting the original land cover/vegetation layer. Groundwater abstraction and irrigation 

were simulated by SHETRAN at calculated rates in distributed locations. The simulations 

were run for 200 years in order to observe a full range of impacts on surface and 

groundwater. Variations in shallow groundwater and surface water availability were 

analysed to assess the impacts of the potential future scenarios. 
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8.1.4 Similar modelling studies 

Many studies have investigated hydrological response to climate and LULC change in 

Ethiopia. Legesse et al. (2003), for the Lake Ziway area of central Ethiopia, used the 

physically based distributed Precipitation Runoff Modelling System (PRMS) to simulate 

predicted changes in rainfall, temperature and transition between cultivated/grazing land 

and native forest. Despite problems of data scarcity and calibration of peak river flows, 

suspected to be due to errors from extrapolation of ratings when flow was above the 

gauge, their simulations saw changes of 20-30% in stream discharge. Koch et al. (2012) 

conducted a study using the SWAT model, which is very widely used in Ethiopian studies 

(see Chapter 7), evaluating LULC change against hydrological response in the northwest 

Highlands of Ethiopia, approximately 120 km from Dangila. Poor input data (gaps in 

hydrometeorological time series and a coarse DEM) meant the model could only achieve 

an acceptable calibration with monthly river flows (Nash and Sutcliffe efficiency (NSE) 

daily = 0.24, NSE monthly = 0.71). The authors also stated that SWAT struggled with the 

strong seasonality, i.e. floods in the wet season and dry streams with only subsurface flow 

in the dry season. Cultivated land had increased in proportional coverage from 53 to 70%, 

largely at the expense of grasslands, shrubs and bushes and simulations showed higher 

peak runoffs and decreased low flows, but it is stated that the results are unreliable and 

further modelling should be conducted. These studies, and similar for various catchments 

around Ethiopia giving similar results, have no explicit simulation of groundwater flow 

nor its response to climate and LULC change. While there are groundwater modelling 

studies evaluating formal abstraction on deep aquifers in Ethiopia (e.g. Ayenew et al. 

(2008a); Asrie and Sebhat (2016); Kerebih and Keshari (2017)),  no examples of 

modelling studies have been found from anywhere in Africa simulating the effects of 

potential increases or onset of shallow groundwater abstraction.  

8.2 Identifying potential future scenarios 

8.2.1 Climate variability 

Taye et al. (2015) state that when an ENSO (El Niño Southern Oscillation) event is 

followed by La Niña in the same year, there is a 67% chance of an extreme flood occurring 

in the Upper Blue Nile region. Conversely, they found that 83% of ENSO events starting 

in April–June cause droughts in the Upper Blue Nile region. Seleshi and Zanke (2004) 

found only links between ENSO events with summer droughts. Seleshi and Zanke (2004) 

demonstrated no trends in total annual rainfall, seasonal rainfall, or the number of rainy 

days per year in the Ethiopia Highlands. Meze-Hausken (2004) similarly detected no 
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trends in rainfall data for the same region; however, interestingly, farmers' perceptions 

indicate progressively unfavourable conditions over the previous 20-30 years. While 

trends have not been identified in rainfall in the Upper Blue Nile Basin, the considerable 

interannual rainfall and river flow variation is well reported, e.g. Conway (2000); Hurni 

et al. (2005); Kebede et al. (2006). For example,  annual rainfall totals measured at 

weather stations in the area of the study site range from a minimum of 1185 mm/a to a 

maximum of 2009 mm/a at Dangila (1987-2015) and from 1059 to 2043 mm/a at 

Meshenti (1987-2013). The annual flow totals of the Kilti measured at the Durbete gauge 

ranges from a minimum of 206 Mm3/a to a maximum of 396 Mm3/a (1997-2014), though 

this range is an underestimate as there is missing data during very wet periods due to the 

gauge being overtopped or damaged. The local climate variability was analysed further 

and is discussed in later sections. 

8.2.2 Climate change 

Buontempo et al. (2014), using a regional climate model (RCM), predicted for this region 

of Ethiopia by 2100: an increase in rainfall of 2 mm/d from September to May (the dry 

season) and a decrease of 2 mm/d in June-August (wet season), in other words a decrease 

in rainfall seasonality, while the IPCC (Intergovernmental panel on climate change) 

predict an intensification of extreme rainfall events for Ethiopia as a whole (Bates et al., 

2008). Laprise et al. (2013), using combinations of GCMs and RCMs, project no change 

in this region in January-March precipitation up to 2100, whereas for July-September 

precipitation the various models give projections from -1 to +1 mm/d. Clearly, there is 

significant uncertainty in climate change projections. This arises from underlying 

uncertainties in the emissions scenarios used to force the climate models and in the 

assumptions made of physical processes of climatic systems within GCMs (Bonsor et al., 

2010). Hulme et al. (2001) state that while GCMs simulate changes to African climate 

due to increased greenhouse gas concentrations, two very important climate drivers either 

are represented poorly in the case of the influence of ENSO or are not represented at all 

in the case of LULC change. Bonsor et al. (2010) agree that the predictive capability of 

GCMs in data-poor regions like Africa has significant limitations. They give the example 

of the Sahel where some GCMs predict significant drying and others predict progressive 

wetting. These uncertainties are evident at the smaller regional scale as Taye et al. (2015) 

report various rainfall projections for the Upper Blue Nile Basin from studies using 

GCMs, some of which predict a wetter climate after the 2050s while others predict drying. 

Similarly, Mengistu and Sorteberg (2012) in modelling changes in streamflow in the Blue 

Nile due to climate change could not give confident predictions because the 47 
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temperature and precipitation scenarios they applied from 19 GCMs disagreed in both the 

strength and the direction of future precipitation changes.  

There is general agreement that temperatures in Africa will rise with climate change (e.g. 

New et al. (2001); Mitchell et al. (2004); Buontempo et al. (2014)). According to Hulme 

et al. (2001), based on the median of seven GCM experiments, temperatures around the 

continent will rise by around 1-2 oC by the 2080s with the B1-low scenario, or around 

4-7 oC by the 2080s with the A2-high scenario. While these temperature increases will 

certainly increase evapotranspiration, the uncertainties regarding changes to rainfall 

described in the previous paragraph mean the effects of temperature on soil moisture and 

water bodies are more problematic to forecast. 

Initial ideas for the future climate change scenarios involved downscaling multiple GCM 

and RCM outputs for the study site, or a simpler method of bias-correction of GCM/RCM 

outputs for an observed period then applied to projected data. However, as described 

above, the uncertainties in climate change prediction for the region and consequent 

scepticism in the projections meant it was decided not to incorporate a climate change 

scenario. What’s more, the observed climate variability shown in a later section is much 

greater than the projected daily average increases/decreases due to climate change. 

Simulating the observed extremes of climate variability is much less speculative than 

utilising GCM projections for which there is little confidence.  

8.2.3 Land use land cover (LULC) change 

From 1950 to 2000, the population of the Ethiopian highlands is estimated to have 

quadrupled, from approximately 16 million to 65 million; of which about 26 million 

reside in the Blue Nile Basin (Hurni et al., 2005). Such population increases lead to 

intensification of land use, including shortening and eventual abandonment of fallow 

periods, expansion of cultivated land into grazing land, and deforestation (Lambin et al., 

2001). A  literature review by Taye et al. (2015) reported that generally seen in the 

Ethiopian Highlands is a decrease of low flows and an increase of high flows, i.e. trending 

towards more hydrological extremes. The proposed cause is land use change: a decrease 

in natural vegetation and an increase in cropped land, overgrazing, and Eucalyptus 

planting. The result of these changes being greater transpiration and, consequently, 

reduced baseflow. Contrastingly, a comparison of a series of photographs by Nyssen et 

al. (2009) taken in the Rift Valley in 1868 by the British military expedition to Abyssinia 

and in 2008 show improved land management and vegetation cover, albeit often from 

Eucalyptus plantations, despite a ten-fold increase in population density, all of which 
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would decrease rapid run off. Past and future changes to LULC may be entirely 

anthropogenic or could be climate related. Either way, the trend towards less forest and 

increased coverage of cultivated land is widely reported, e.g. Abate (1994); Zeleke and 

Hurni (2001); Amsalu et al. (2007).  

Land degradation could be a threat at the Dangila study site as soil erosion has been 

observed to be occurring during field visits elsewhere in Ethiopia, such as in Robit Bata 

kebele near Bahir Dar and in Boloso Bombe woreda in SNNPR (Southern Nations, 

Nationalities and Peoples’ Region). In both cases, according to local officials, 

deforestation is due to increasing demand for firewood and charcoal production by a 

growing population, which is often followed by overgrazing. The rate of population 

growth in Dangila woreda is increasing; the total population increased from 149,000 to 

160,000 to 175,000 between the 1994, 2007 and 2012 censuses, respectively (CSA, 1994; 

2008; 2012). Even between field visits, the first in March 2015, the second in October 

2015, and the third in January 2017, expansion of house-building was observed at the 

edges of Dangila town on formerly cultivated land. This development can be observed 

using the “time slider” on Google.Earth (Figure 8-1), in addition to both deforestation of 

native woodland for house-building and afforestation of cultivated land for Eucalyptus 

(Figure 8-2). Analysis of Landsat imagery by Jaleta et al. (2016) for the Meja watershed 

(~200 km south of Dangila) revealed that Eucalyptus coverage had expanded from <1 to 

15% between 1976 and 2015, and farmers intended to plant more. The community around 

Dangila regularly speak of how the growing number of Eucalyptus plantations is 

negatively affecting water level in their hand-dug wells. The Eucalyptus is not only 

utilised locally for house building and charcoal, but, according to the Dangesheta kebele 

office agronomist and Abiyu et al. (2016), is transported to Tigray and exported to Sudan. 

Similar Google.Earth time slider assessment of the rural kebeles sees a growing number 

of houses, though they are still sparse, increases in Eucalyptus plantations in cultivated 

areas, and little conversion of pasture or shrubland to cultivated land. This latter 

observation is suggestive that the hydrological/agricultural regime is stable, therefore, 

encroachment onto the floodplain pasture to plant crops is considered too risky due to 

likely flood damage (this has been stated by the local community) and that highland areas 

are cultivated as much as they can be according to the gradient.  
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Figure 8-1. LULC change around Dangila town: increased house-building. (Image source: Google.Earth; 

Imagery ©2014 and 2016 DigitalGlobe). 
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Figure 8-2. LULC change around Dangila town: deforestation for conversion to house-building and 

afforestation of cultivated land for Eucalyptus. The forest types have been ground truthed. (Image source: 

Google.Earth; Imagery ©2005 and 2016 DigitalGlobe). 

There are several studies concerning the eco-hydrological impact of Eucalyptus in the 

Lake Tana Basin. Soil analysis and farmer surveys by Chanie et al. (2013) at Koga, 30 km 

northwest of the study site, revealed nutrient depletion and springs drying up following 

Eucalyptus planting. Growers were aware of these impacts but insisted on continued 

Eucalyptus planting due to the cash income generated. Simple plot experiments by 

Alebachew et al. (2015) at Mecha, 20 km northwest of the study site, showed large yield 

and biomass reduction (up to fifteen-fold) in maize and finger millet grown adjacent to 
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Eucalyptus plantations. The effects were not statistically significant beyond 20 m from 

tree stands. Enku et al. (2017a) monitored hourly groundwater level fluctuations in 

Eucalyptus plantations at Fogera and calculated dry season evapotranspiration of 

2300 mm, almost double the reference evapotranspiration, compared to 900 mm without 

Eucalyptus. The potentially negative impact of Eucalyptus led to its planting on farmland 

being banned in the Tigray Region in 1999 (Hagos et al., 1999). However, many authors 

claim its planting should be encouraged in marginal areas due to its general utility and 

potential to alleviate poverty among growers, even stating it could dry saturated lands for 

food production (Pohjonen and Pukkala, 1990; Jagger and Pender, 2003; Zegeye, 2010). 

Looking at the impact of Eucalyptus across all Ethiopia, there are many more studies 

available though most are conference proceedings and master’s theses and their impact 

assessments were generally conducted with community questionnaires. As they all state, 

further research is required on the impact of Eucalyptus on water resources. 

8.2.4 Groundwater abstraction 

Groundwater abstraction is currently minimal, only for domestic use and for backyard 

irrigation predominantly utilising rope and bucket technology. Should abstraction 

increase, the quantities and rates would depend on:  

(i) Irrigation water requirement – controlled by irrigation method, crop type, growing 

season length and climate 

(ii) Well yield – controlled by aquifer properties 

(iii) Water-lifting technology – controlled by availability, capital costs and running 

costs 

(iv) Area under irrigation – controlled by population size, access to water-lifting 

technology, market demand and access, and land available 

(i) A typical irrigation requirement would be 1 l/s/ha, pumping continuously 24 hours per 

day, based on the crop water demand of typical crops in the climate of the Ethiopian 

Highlands (Brouwer et al., 1992). The growing season length varies from up to 6-months 

for the main rainfed crops, to ~100 days for the short-cycle crops that would be most 

likely to be planted should a second irrigated growing season be possible (FAO, 2017). 

(ii) The pumping tests described in Chapter 4 and Appendix A suggest that abstraction at 

1 l/s/ha may not always be achievable. Although, the ease of well digging reported by the 

community and confirmed by the small backyard plots that often have several wells, 

means the required yield per hectare could be achieved by abstracting from multiple wells 

(one at a time abstracting from storage, allowing other wells to refill). (iii) The general 
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desire among farmers in Ethiopia is for motorised pumps, the barriers being capital costs 

and running costs (Evans et al., 2012). The shallow water tables and very short distance 

from well to crop mean simple motorised pumps could be utilised and fuel costs would 

be minimised. However, it must be borne in mind that at this altitude of ~2000 m, 

centrifugal/suction pumps will have a lift of only around 2-3 m and are likely to be 

unsuitable. (iv) Dangila has its own busy market and is around an hour from the important 

city of Bahir Dar on a good road; therefore, distance/time to market is not a restricting 

factor for agricultural expansion here. What’s more, rainfed land lies fallow for much of 

the year and would be available for dry season irrigation. Population growth is occurring, 

as described previously. An initiative offering water-lifting technologies directly or 

through credit would likely have to occur to kick-start irrigation in the area.  

The literature includes many studies on the impacts of water use on the Ethiopian Rift 

Valley lakes (e.g. Legesse and Ayenew (2006); Ayenew (2007)), and modelling studies 

on the impacts potential hydropower and irrigation schemes could have on Lake Tana 

(e.g. Alemayehu et al. (2010); McCartney et al. (2010)). However, no studies have been 

identified from Ethiopia assessing or simulating the likely increase of abstraction and 

irrigation nor impacts on shallow groundwater resources. 

8.2.5 Khat production 

Field visits to Robit-Bata kebele, approximately 8 km northeast of Bahir Dar, while 

assisting a Bahir Dar University project, revealed that since irrigation infrastructure had 

become available, much of the (observed) agricultural land had been given over to khat 

farming. This trend has been reported elsewhere in Ethiopia where the preference with 

irrigation is to opt for a cash crop such as khat (Meshesha et al., 2014). The infrastructure 

consists of tanks raised on Eucalyptus scaffolds or on topographic highs above hand-dug 

wells. The tanks are filled using rope-and-pulley double-bucket systems with irrigation 

then conducted manually with hoses (Figure 8-3). The leaves of the khat bush (Catha 

edulis Forsk) are a mild stimulant and have been chewed in parts of East Africa and 

Southern Arabia for centuries, reducing feelings of fatigue and hunger (Kalix and 

Braenden, 1985). Khat is chosen for its high profitability, its return during the same year 

as planting, and because it can be harvested, thus provide an income, year-round (Dube, 

2014). Khat accounts for 13.4% of Ethiopia’s export earnings (third after coffee and oil 

seed), Ethiopia being the primary global producer (Megerssa et al., 2014). Studies from 

Jimma zone in southwest Ethiopia have shown that khat chewing causes social problems 

such as family disintegration, health issues, lack of education when consumed by school 
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children, and increasing use of khat by 18-30 age group has negatively affected labour 

productivity (Dube, 2014; Megerssa et al., 2014). Some studies claim khat is grown at 

the expense of vegetables thus increasing food insecurity (Gebissa, 2010; Gezon, 2012). 

However, other studies claim the potential export earnings (unlike the regular fluctuations 

in the internationally controlled coffee price) and the fact that khat can be intercropped 

with vegetables and grown on marginal (steep or poor soil) agricultural land, mean its 

planting should be encouraged (Hailu, 2005; Klein et al., 2009). Studies explicitly 

researching the impact of khat growing on water resources have not been identified, 

though its year-round water demand is reported to have had negative impacts on lake and 

groundwater levels elsewhere in Ethiopia where exploited for irrigation, causing wells to 

require deepening and conflict between water users (Lemma, 2011; Meshesha et al., 

2014).  

 

Figure 8-3. Khat production in Robit-Bata kebele. 

Khat has only been observed in backyard plots within Dangila woreda for home 

consumption and consumption generally does not appear to be prevalent in Dangila 

compared to Bahir Dar; the local population has confirmed this anecdotally. The travel 

time to a major population centre from the rural kebeles of Dangila woreda may restrict 

the popularity of khat growing, unlike for Robit-Bata where the highest value freshly 

picked leaves can be at market in Bahir Dar very quickly. What’s more, though popular 

in Bahir Dar, especially with the young student population, khat production and 

consumption is prevalent mainly in the Islamic east of the country; namely Oromia and 

Harar Regional States (Lemessa, 2001; Gebissa, 2008). Therefore, an increase in khat 

production was not considered a potential future scenario for simulation. 
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8.3 Historical drought analysis 

8.3.1 Purpose, definition and methodology 

A drought analysis was conducted using methods that would also identify particularly 

wet periods. The purpose of the drought analysis was to assess the climate variability of 

the study site. Analysis of all types of drought, rather than focussing on rainfall quantities 

alone, would increase understanding of the likely impacts of climate variability. 

Consideration of extreme wet periods, in addition to droughts, is also important due to 

stakeholders reported (anecdotally) and observed negative impacts of high rainfall and 

floods. A comparative drought analysis of a nearby area would confirm that the study site 

meteorological time series spans sufficient climate variability extremes experienced in 

the region. These drought analyses would enable the generation of future climate 

variability scenarios for simulation in the models. 

According to the European Drought Centre (EDC, 2016): “Drought is a sustained and 

regionally extensive occurrence of below average natural water availability. Drought 

affects all components of the water cycle from a deficit in soil moisture, through reduced 

groundwater recharge and levels, and to low streamflows or dried up rivers…Drought 

should not be confused with aridity, which is a permanent feature of a dry climate. Neither 

with water scarcity which implies a long-term imbalance of available water resources and 

demands.” Sheffield et al. (2013) consider meteorological drought, agricultural drought 

(soil moisture), ecological drought, and hydrological drought (streamflow). Clearly, 

assessment of annual rainfall totals alone is insufficient in determining the presence and 

strength of a drought or wet period. The methods used here to evaluate dryness and 

wetness were:   

 SPI (standardised precipitation index)  

 SPEI (standardised precipitation-evapotranspiration index)  

 Annual river flow totals (unit runoff) 

 Growing season length – 2 methods: Segele and Lamb (2005) and Stern et al. 

(2006)  

 NDVI (normalized difference vegetation index)  

 LST (land surface temperatures)  

 Annual rainfall from ground observation, remote sensing and reanalysis products 

 Annual potential evapotranspiration (PET) from ground observation 

 SPI and SRA (standardised rainfall anomaly) from other published studies 
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 Local community perception 

The analyses were principally conducted for Dangila, with application of some methods 

at Bahir Dar to determine if years not represented within the Dangila hydrometeorological 

datasets were extreme drought or extreme wet years and, as such, should be incorporated 

into climate variability projections for Dangila. Note that all annual computations 

consider the hydrological year: 1st March to 28th/29th February. The following sections 

describe the methods and show results while a synthesis and comparison of results from 

all methods is provided last. 

8.3.2 Available hydrometeorological data 

In addition to the 22 years (1994-2015) of daily observations from the Dangila NMA 

weather station used for SHETRAN modelling, monthly rainfall totals are available from 

1987, though with abundant missing months of data prior to 1993. Historical monthly 

rainfall records were obtained from the Global Historical Climatology Network (GHCN) 

via the NOAA (National Oceanic and Atmospheric Administration) website (NOAA, 

2017). Two periods were available for Dangila: 1955-1969 (with many missing months) 

and an almost complete record from 1922-1934. 

Bahir Dar weather data is commonly analysed in the literature due to its long available 

time series. It was obtained for this study for comparison with the Dangila data, especially 

to assess climate variability during periods when Dangila data is unavailable, i.e. the 

infamous early 1980s droughts. The available daily data from the Bahir Dar NMA 

weather station is from 2007 to 2015, and monthly data from 2002, though there are long 

(12+ months) missing periods. Daily rainfall and average temperature data has been 

sourced from the NOAA website for 1961-2000. 

The other local raingauge observations (see Chapter 5) were not utilised due to their short 

and discontinuous records. The NOAA website does not have data for these raingauges. 

River flow records were available from MoWIE for the Kilti and Amen rivers from April 

1997 to October 2014 and April 1988 (though are continuous only from 1998) to 

September 2014 respectively. 

Remote sensing and reanalysis rainfall products were downloaded from online open 

sources for the grid squares containing the Dangila and Bahir Dar weather stations 

respectively. The following products and periods were utilised: TRMM (1998-2014), 

ERA-Interim (1979-2014), NASA-MERRA (1979-2014), NCEP (1979-2008), and JRA-
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55 (1979-2013); see Chapter 4 for more detail on these remote sensing and reanalysis 

products.  

Normalised difference vegetation index (NDVI) and land surface temperature (LST) were 

obtained from MODIS (moderate-resolution imaging spectroradiometer) on-board the 

Terra and Aqua satellites. The data availability is dictated by the operational periods of 

the satellites: 2001 (NDVI) and 2003 (LST) to 2013. The data products are available at a 

16-day timestep and a resolution of 250 m that were spatially averaged across Dangila 

woreda. 

8.3.3 SPI (standardised precipitation index) 

SPI is a normalised index of precipitation deficit or excess at specified time-scales, first 

presented by McKee et al. (1993). It is the method recommended by the World 

Meteorological Organisation (WMO) for monitoring drought severity (WMO, 2012) 

because when using a long time-step it is stated that it identifies agricultural and 

hydrological drought. A probability density function is determined to describe the 

observations, then, once the distribution is established, the cumulative probability of an 

observed precipitation amount is computed and the inverse normal (Gaussian) function is 

applied to the probability resulting in the SPI (Guttman, 1998). Open source code is 

available to run SPI analyses using R requiring monthly rainfall totals for a suggested 

minimum of 30-years. A drought event is defined as a period in which the SPI is 

continuously negative and reaches a value of -1.0 or less. The drought begins when the 

SPI first falls below zero and ends with the next positive value (McKee et al., 1993). The 

gradations are 0 to -0.99 = mild drought, -1 to -1.49 = moderate drought, -1.5 to -1.99 = 

severe drought, ≤-2 = extreme drought. The same gradations are applied in the positive 

for wet periods.  

When considering the impact of drought on agriculture, it is most applicable to analyse 

SPI for particular seasons. Poor spring rains would delay planting or prevent crops from 

developing whereas poor summer rains would damage crops and shorten the growing 

season. Obviously when poor spring rains are followed by poor summer rains, the impact 

is exacerbated. Spring in this region is defined as March to May (13% of long-term mean 

annual rainfall) in accordance with the onset of some rain; late November to February 

experiences almost zero rainfall. Summer is considered June to October (84% of long-

term mean annual rainfall) when the onset of the wet season is clearly visible in late May-

early June rainfall totals, peaking in July and August, and dropping off in late October. 

Thus, for spring the SPI is analysed at a 3-month time-step and calculated for May (the 
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end of the time-step) while for summer the SPI is analysed at a 5-month time-step and 

analysed for October. SPI was calculated with all available years combined in a single 

series (deleting the gaps) for the most robust probability density function estimate (Figure 

8-4). SPI indicates extreme droughts in Dangila for spring 2003 and summer 1995. While 

there are a few severe droughts and wet periods, mostly the SPI oscillates between mild 

and moderate, wet and drought. 

 

Figure 8-4. SPI calculated for Dangila for spring (3-month, March-May) and summer (5-month, June-

October). Note the non-continuous year sequence. 

8.3.4 SPEI (standardised precipitation-evapotranspiration index) 

SPEI, developed by Vicente-Serrano et al. (2010), builds on SPI by incorporating 

evapotranspiration. It is mathematically similar to SPI though computes a climatic water 

balance with the addition of temperature data. Like SPI, open source code is available to 

run SPEI analyses using R requiring monthly rainfall totals. The drought and wet period 

gradations match those for SPI. Analysis was similarly conducted for spring and summer 

seasons with all available years combined in a single series (Figure 8-5), though the lack 

of historical temperature data restricted the time series length. SPEI is applied with less 

confidence than SPI due to the shorter time series. SPEI indicates extreme drought in 

Dangila for summer 1995, otherwise, there are a few severe droughts and wet periods but 

mostly SPEI oscillates like SPI between mild and moderate, wet and drought. 

 

Figure 8-5. SPEI calculated for Dangila for spring (3-month, March-May) and summer (5-month, June-

October). Note the non-continuous year sequence, which is different to the SPI plot in Figure 8-4. 



164 

 

8.3.5 River flow totals 

To directly assess hydrological drought, river flows were converted to unit runoff (total 

annual flow divided by basin area) and the percentage variation from the mean was 

computed. Figure 8-6 shows that there is high interannual variation in river flow, though 

with consistently lower flow in both rivers from 2002-2005. The Amen is a small 

(37 km2) catchment nested within the much larger (632 km2) Kilti catchment, therefore, 

it is intriguing that in 2001, 2007, 2010 and 2012, the two rivers show divergence from 

mean unit runoff in opposite directions. It could be explained by the small size of the 

Amen catchment meaning localised intense storms would significantly affect the flow 

records whereas the effects would be diluted within the large catchment. 

 

Figure 8-6. Kilti and Amen Rivers’ percentage variation in unit runoff from the mean. 

8.3.6 Rainfed crop growing season length 

Segele and Lamb (2005), in investigating wet season variability as a cause of drought and 

famine in Ethiopia, proposed a method for identifying growing season length. Assessment 

is conducted on daily rainfall totals with thresholds of onset, cessation and dry-spell 

determined by reported crop requirements and research of Ethiopian meteorology and 

agriculture. Onset is defined as the first day of the year’s first wet-spell of at least three 

days totalling 20 mm or more rainfall, provided there were no sequences of eight or more 

dry (<0.1 mm) days in the subsequent 30 days. Cessation is the first day of a dry-spell 

(<0.1 mm/d) of at least 20 days. A similar method of measuring growing season length, 

proposed by Stern et al. (2006), was also applied. Onset is defined as the first occasion 

with more than 20 mm of rainfall in a 2-day period after 1st April and no dry spell of 10 

days or more within the following 30 days. Cessation is the first day after 1st September 

that the water balance drops to zero. The daily water balance is computed with effective 

rainfall (rainfall minus PET) and soil capacity. The soil capacity value was specified as 



165 

 

150 mm/m based on the FAO-UNESCO world soils database and mapping (see Batjes 

(1997) and Nachtergaele et al. (2010)). Figure 8-7 shows that the interannual variability 

in growing season length is significant, ranging from 140-237 days with Segele and Lamb 

(2005) and 156-252 days with Stern et al. (2006). The typical range is April/May to 

October/November with the few cessations in December mostly estimated by the Stern et 

al. (2006) method, which generally predicts a later cessation. The Segele and Lamb 

(2005) cessations match observed and anecdotal evidence better, which is understandable 

as the method was tuned specifically for Ethiopian climate and agriculture. 

 

Figure 8-7. Growing season length at Dangila. Dashed lines indicate where onset or cessation lies within 

missing data. 

8.3.7 NDVI (normalized difference vegetation index)  

The NDVI  is derived from the red/near-infrared reflectance ratio from the amounts of 

near-infrared and red light reflected by vegetation and captured by the satellite sensor 

(Pettorelli et al., 2005). The index is based on the fact that chlorophyll absorbs red light 

whereas the mesophyll leaf structure scatters near-infrared (Myneni et al., 1997). 

Therefore, NDVI values range from −1 to +1, where negative values equate to vegetation 

absence. NDVI may be able to identify droughts by revealing lengthy periods of low 

greenness or, conversely, periods of high greenness could indicate the length of the wet 

season (Peters et al., 2002). Simple methods were derived to conduct the analyses. NDVI 

data at 250 m spatial and 16-day temporal resolution was downloaded from the NASA-

MODIS website (https://modis.gsfc.nasa.gov/data/dataprod/mod13.php). The absolute 

NDVI values per pixel were then averaged across Dangila woreda for each time step. To 

reveal possible droughts the number of 16-day periods with NDVI in the lowest 10th 

percentile and lowest 20th-percentile were counted for each year. To estimate wet season 

length the number of 16-day periods with NDVI above the 50th percentile and 75th 

percentile were counted for each year. Figure 8-8 shows the high interannual variability 
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in greenness and little correspondence between the two plots (which is not unexpected as 

the left plot assesses the dry season and the right plot assesses the wet season). 

 

Figure 8-8. Counts of 16-day periods of spatially averaged absolute NDVI values above/below thresholds 

to identify dry and wet years. High counts in the NDVI dry years plot (left) indicate prevalent dry 

conditions and low counts in the NDVI wet season length plot indicate short growing seasons. 

8.3.8 LST (land surface temperatures)  

The data used is the difference in LST between the MODIS Terra satellite measurement 

at 13:30 and MODIS Aqua satellite measurement at 10:30, spatially averaged across the 

woreda, again on a 16-day cycle. A high positive difference when LST is greater at 13:30 

means low soil (or canopy) moisture; this would be expected in the dry season. A high 

negative difference means LST is greater at 10:30, therefore, there is evaporative cooling 

at 13:30; this would be expected in the wet season. Daily difference in LST may be able 

to identify droughts by revealing long periods of high positive difference, which equate 

to low soil or canopy moisture. Figure 8-9 shows there is little variation in mean LST 

daily difference during the dry season and spring; however, there is greater interannual 

variation during the wet season with clearly wetter and drier years.  
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Figure 8-9. Mean of LST daily difference per season. The greater the positive value the lower the soil and 

canopy moisture content. 

8.3.9 Annual rainfall totals  

To assess purely meteorological drought and to make interesting comparison to other 

drought analysis methods, annual rainfall totals from ground observations, remote sensing 

and reanalysis were compared. Apparent from Figure 8-10 and Figure 8-11 is the 

interannual variability in rainfall total and the overestimation in totals from most of the 

reanalysis products. The Pearson correlation coefficients between annual totals from 

remote sensing and reanalysis against ground observations are <0.60 for all the products. 

 

Figure 8-10. Median and percentile annual rainfall totals for Dangila from ground observations, remote 

sensing and reanalysis products. 
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Figure 8-11. Annual rainfall totals for Dangila from ground observations, remote sensing and reanalysis 

products. 

8.3.10 Annual potential evapotranspiration (PET) totals  

PET was calculated using the Penman-Monteith FAO56 method (Allen et al., 1998) with 

meteorological data from the Dangila NMA weather station. It can be seen in Figure 8-12 

that there is little interannual variability in PET totals; the coefficient of variation is just 

3%. 

 

Figure 8-12. Annual potential evapotranspiration totals from Dangila. 

8.3.11 SPI (standardised precipitation index) and SRA (standardised rainfall 

anomaly) from other published studies 

Regional and nearby drought assessments appear in the literature and these were 

compared with the Dangila analyses. SPI analysis of the northwest highlands of Ethiopia 

was conducted by Viste et al. (2013) for spring and summer periods 1972-2010. Bewket 

and Conway (2007) applied the SRA method (annual rainfall minus mean annual rainfall 

all divided by standard deviation of annual rainfall) to several raingauge records of which 

the 1962-2003 Bahir Dar assessment was considered here. The Bahir Dar SRA 

assessment by Ayalew et al. (2012) was also considered as the different time series, 1979-

2008, gives different results to the previous study. 

0

500

1000

1500

2000

2500

3000

3500

4000

A
n
n
u
a
l 
ra

in
fa

ll 
(m

m
)

Dangesheta community obs. Dangila ground obs.

TRMM NCEP

JRA-55 ERA-Interim

NASA-MERRA

Dangila



169 

 

8.3.12 Local community perception 

Rather than being conducted systematically, whenever the opportunity arose during field 

visits, such as at community workshops (Figure 8-13), questions were put to the local 

community regarding historical droughts and wet periods. Given that the great majority 

of the agriculture is rainfed and domestic water comes from shallow wells; local farmers 

and communities would be uniquely aware of all types of drought. Common responses 

were that Dangila woreda does not suffer the type of droughts for which Ethiopia is 

renowned, though the early 80s droughts were felt, and that the climate is becoming less 

predictable. Indeed, there was a frost for the first time in living memory a few nights prior 

to the January 2017 field visit, which caused visible damage to banana plants (Figure 

8-13). It was commonly stated that 2014 was wet and 2015 was dry, these being in recent 

memory. Memory triggers were given to the community for earlier suspected wet and dry 

years with mixed results. A number of people remembered that 2012 was a poor growing 

season because it was quite recent and due to the memory trigger of the death of Prime 

Minister Meles Zenawi and the succession of Hailemariam Desalegn. The year before 

millennium of the Ethiopian calendar, 2006 in the Gregorian calendar, was remembered 

as being very wet in Dangila and causing flooding across Ethiopia. Earlier memory 

triggers included elections, the war with Eritrea, football world cups and the Olympics 

but there was little agreement in dry/wet years, perhaps complicated by Ethiopia’s unique 

calendar and usually having to converse through a translator. Furthermore, Meze-

Hausken (2004) explains how statistical rainfall anomalies do not always create 

memorable droughts as more depends on the preceding environmental, socioeconomic 

and cultural conditions (preceding soil moisture, crop prices, increased population 

densities due to migration, low soil fertility, low seed availability, poor crop choice, low 

availability of aid, etc.) that impact people’s preparedness.    

 

Figure 8-13. Community workshop in Dangesheta (left) and frost damage to banana plant in January 

2017. 
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8.3.13 Synthesis of results 

The different spatial and temporal scales of the drought analysis methods mean they 

cannot be compared quantitatively to rank years in terms of dryness. However, a 

qualitative comparison can be conducted using Table 8-1. There were many interesting 

findings from this drought analysis:  

 There is general agreement between methods; often enough to justify their 

applicability for drought/wet period analysis in this area. 

 Prior to the early-1990s, there are insufficient data to apply multiple methods to 

confidently identify drought/wet years. 

 Drought years are identified as: 1995, 2002-2003, 2009, 2012 

 Wet years are identified as: 1999-2000, 2006, 2013-2014 

 The requirement for using more complex drought analysis methods rather than 

relying only on annual rainfall totals is illustrated by 2012, which had above 

average annual rainfall, but the timing of the rainfall meant it was one of the worst 

years, in terms of drought, on record.  

 The reanalysis products perform particularly poorly in the early-80s where the 

famous drought years are recorded as being especially wet. 
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Table 8-1. Identification of drought/wet years and comparison of drought analysis methods for Dangila. X = insufficient data for analysis. v = very. Note the jump from 1933 

to 1956. For SPI, SPEI and SPI/SRA from other studies: v dry and v wet are <-2 and >2 respectively, dry and wet are <-1.5 and >1.5 respectively. For river flow: v high and 

v low are >±40% difference in unit runoff from the mean, high and low are >±20% difference in unit runoff from the mean. For growing season length: v long and v short are 

>±20% difference from mean length in days, long and short are >±10% difference from mean length in days. For NDVI dry year: dry is >3 16-day periods in the 10%ile and 

>4 in the 20%ile, wet is <2 16-day periods in the 10%ile and <4 in the 20%ile. For NDVI wet season length: long is >12 16-day periods in the 50%ile and >8 in the 75%ile, 

short is <11 16-day periods in the 50%ile and <7 in the 75%ile. For LST wet season daily difference: dry and wet are >±70% difference from the mean daily difference. 

Annual rainfall: dry is rainfall total <10%ile, wet is >90%ile. 

Year SPI SPEI River flow Growing 

season length 

NDVI LST Annual rainfall Annual 

PET 

Viste et al. (2013) 

NW Highlands * 

Bewket and 

Conway 

(2007) 

Bahir Dar 

SRA 

Ayalew et 

al. (2012) 

Bahir 

Dar 

SRA 

Local 

community 

perception spring summer spring summer Kilti Amen Segele 

and 

Lamb 

(2005) 

Stern 

et al. 

(2006) 

dry 
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wet 

season 

length 

wet season 

daily 

difference 
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1922   X X X X X X X X X  X X X X X X X X X X  

1923   X X X X X X X X X  X X X X X X X X X X  

1924   X X X X X X X X X  X X X X X X X X X X  

1925   X X X X X X X X X dry X X X X X X X X X X  

1926   X X X X X X X X X  X X X X X X X X X X  

1927 dry  X X X X X X X X X  X X X X X X X X X X  

1928  dry X X X X X X X X X  X X X X X X X X X X  

1929   X X X X X X X X X  X X X X X X X X X X  

1930  dry X X X X X X X X X dry X X X X X X X X X X  

1931   X X X X X X X X X dry X X X X X X X X X X  

1932   X X X X X X X X X  X X X X X X X X X X  

1933   X X X X X X X X X  X X X X X X X X X X  

1956   X X X X X X X X X  X X X X X X X X X X  

1957   X X X X X X X X X  X X X X X X X X X X  

1958   X X X X X X X X X  X X X X X X X X X X  

1959   X X X X X X X X X  X X X X X X X X X X  

1960  wet X X X X X X X X X  X X X X X X X X X X  

1961   X X X X X X X X X  X X X X X X X X X X  

1962   X X X X X X X X X  X X X X X X X X  X  
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1963   X X X X X X X X X  X X X X X X X X  X  

1964   X X X X X X X X X  X X X X X X X X wet X  

1965   X X X X X X X X X  X X X X X X X X dry X  

1966   X X X X X X X X X  X X X X X X X X  X  

1967  wet X X X X X X X X X  X X X X X X X X  X  

1968   X X X X X X X X X  X X X X X X X X  X  

1969   X X X X X X X X X dry X X X X X X X X  X  

1970 X X X X X X X X X X X X X X X X X X X X  X  

1971 X X X X X X X X X X X X X X X X X X X X wet X  

1972 X X X X X X X X X X X X X X X X X X dry   X  

1973 X X X X X X X X X X X X X X X X X X   v wet X  

1974 X X X X X X X X X X X X X X X X X X   v wet X  

1975 X X X X X X X X X X X X X X X X X X dry   X  

1976 X X X X X X X X X X X X X X X X X X    X  

1977 X X X X X X X X X X X X X X X X X X    X  

1978 X X X X X X X X X X X X X X X X X X    X  

1979 X X X X X X X X X X X X X  wet  wet X      

1980 X X X X X X X X X X X X X  wet wet wet X   dry dry  

1981 X X X X X X X X X X X X X  wet  wet X      

1982 X X X X X X X X X X X X X  wet wet wet X  v dry v dry v dry v dry 

1983 X X X X X X X X X X X X X  wet wet wet X      

1984 X X X X X X X X X X X X X  wet   X  dry  dry v dry 

1985 X X X X X X X X X X X X X  wet wet wet   dry    

1986 X X X X X X X X X X X X X  wet  wet  v dry     

1987 X X X X X X X X X X X X X  wet wet wet   v dry dry   

1988 X X X X X X X X X X X X X           

1989   X X X  X X X X X  X  wet       wet  

1990 X X X X X  X X X X X X X dry     dry     

1991 X X X X X  X X X X X X X    dry  dry     

1992     X  X X X X X X X       v dry    

1993     X X X X X X X  X         wet  

1994     X X long  X X X  X        dry dry  

1995  v dry  v dry X X short short X X X dry X  dry dry    dry dry dry  

1996   wet  X v high long long X X X  X           

1997     X X long v long X X X  X wet      v dry dry   

1998     X high  short X X X   wet          
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1999  wet  wet  v high v long long X X X wet    wet        

2000  wet  wet high v high  long X X X wet wet           

2001     low v high    long X      dry       

2002      v low   dry  X   dry   dry  dry     

2003 v dry  dry   v low v short v short dry  dry   dry     v dry   v wet  

2004      low v short short wet            X   

2005      v low               X   

2006     v high  v long v long   wet  wet   wet     X v wet wet 

2007   X X high low   wet  wet          X   

2008 wet  X X v high    wet  dry          X   

2009 dry  X X  v low short   short   dry X dry dry   v dry  X X  

2010   X X   short short dry  wet  dry X dry dry     X X  

2011   X X       dry   X     X X X X  

2012 dry  X X   v short  dry short dry   X     X X X X dry 

2013  v wet X X  v high      wet  X   wet  X X X X  

2014 v wet  X X   v long  X X X wet  X X  wet  X X X X wet 

2015   X X X X   X X X  X X X X X  X X X X dry 

* Viste et al. (2013) present only droughts, not wet periods.
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8.3.14 Comparison between Dangila and Bahir Dar drought analyses 

A similar drought analysis was conducted for Bahir Dar, details of which are provided in 

Appendix E. The analysis indicated that Bahir Dar generally experienced the same 

drought and wet periods as Dangila, that there are particularly dry and wet periods that 

are not represented in the available Dangila time series, and that reanalysis does not pick 

up the early-80s droughts, misrepresenting those years as being particularly wet.  

8.4 Generation of synthetic meteorological time series 

8.4.1 Purpose  

The SHETRAN models presented in Chapter 7 were run for as long as possible according 

to the length of the river flow or groundwater level calibration time series or the length 

of the daily rainfall and PET time series, whichever was shorter. To fully assess the 

potential effects of climate variability on the shallow groundwater and surface water 

resources, it was necessary to run the SHETRAN models for longer periods than as 

presented in Chapter 7. Very dry years have been identified from the drought analysis but 

because the time series simulated in the models were quite short, extreme years rarely 

occur consecutively. Whereas, a longer time series is more likely to contain extended 

droughts and different dry/wet year sequences. Therefore, a long time series of daily 

rainfall and PET needs to be generated. Unfortunately, the pre-1994 Dangila rainfall data, 

from the NMA or from GHCN, are monthly totals, which are inappropriate for the daily 

simulation required in this study. However, a longer time series of daily rainfall data is 

available for Bahir Dar and drought analysis showed that the climate is similar. A long 

time series could be generated for incorporation into SHETRAN, combining Dangila and 

Bahir Dar daily meteorological data if the datasets are comparable.  

8.4.2 Comparison between Dangila and Bahir Dar rainfall 

Bahir Dar lies 70 km northeast of Dangila, at 300 m lower altitude and adjacent to Lake 

Tana, therefore has a slightly different climate. For that reason, it was necessary to test 

whether the Bahir Dar data could be used to inform the longer period climate at Dangila, 

i.e. are the coincident portions of the datasets sufficiently similar. Details of the statistical 

analyses are provided in Appendix E. Essentially, satisfactory correlation testing of 

rainfall totals and wet days justified the use of Bahir Dar rainfall years in the Dangila time 

series used for the climate variability future scenario SHETRAN simulations. Further 

statistical comparisons indicated that climatic extremes, both wet and dry, were not 

captured within the 22-year Dangila rainfall dataset used in the SHETRAN modelling; 

confirming what was discovered during the drought analysis. Notably, the Bahir Dar 
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dataset includes the infamous Ethiopian droughts of the early-80s and the very wet early-

70s.  

8.4.3 Methodology  

One option for generating a synthetic daily rainfall time series is the use of a Markov 

chain model or other weather generator. The models generate new time series using the 

persistence and periodicity of observed historical data to estimate transitional 

probabilities between dry and wet conditions (Haan et al., 1976). Unfortunately, the 

available Dangila daily rainfall time series is short and, we now know from the Bahir Dar 

analysis, does not include the climatic extremes that would lead to a satisfactory 

probability distribution function for generating the full range of likely climate variability. 

What’s more, long periods of zero rainfall (at Dangila that is typically from mid-

November to early March) limit the applicability and effectiveness of rainfall generators 

(Kilsby et al., 2007). 

Therefore, the existing years of Dangila daily rainfall would be randomly arranged into a 

longer sequence for simulation with SHETRAN. However, the previous section and the 

drought analyses confirmed that additional extreme years should be added to the 22-year 

Dangila dataset to simulate the full range of climate variability experienced in Dangila 

but not represented in its meteorological record. Scaling the existing Dangila data 

according to the rainfall range identified at Bahir Dar would be subjective as rules would 

have to be generated governing the scaling factor for rainfall above and below certain 

thresholds and whether to create or eliminate zero rainfall days. Instead, the extreme years 

from the Bahir Dar time series were simply added unchanged to the sequence of Dangila 

daily rainfall years. 

To decide which additional years to add, the analysed years were approximately ranked 

according to drought severity. Only 25 years at Dangila had sufficient datasets to enable 

confident ranking. The 25 ranked years were divided into three eight-year periods to 

represent the dry, normal (nine years) and wet conditions. The highest and lowest eight 

years in the drought ranking are presented in Table 8-2 along with the eight driest and 

wettest years from Bahir Dar. The ranking is approximate because rarely were enough 

data available to apply more than a few of the possible analysis methods per year. Any 

years in either column of Table 8-2 not represented in the Dangila time series were 

incorporated, i.e. 1964, 1965, 1971, 1973, 1974, 1980 and 1982 (note that only monthly 

rainfall records for 1964 and 1965 are available at Dangila thus the daily Bahir Dar 

records were added). 
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Table 8-2. Approximate ranking of available years according to drought severity, showing the eight worst 

(driest) and eight wettest years and the corresponding annual rainfall total. 

Extreme drought Extreme wet 

Year Dangila 

(mm/a) 

Bahir Dar 

(mm/a) 

Year Dangila 

(mm/a) 

Bahir Dar 

(mm/a) 

1982 ? 890 1973 ? 2035 

1980 ? 1114 1974 ? 1966 

1995 1186 1182 2014 2005 1712 

2003 1375 ? 1999 1965 1460 

2009 1451 ? 2006 1867 1652 

2012 1640 ? 1971 ? 1859 

2002 1351 ? 2000 1889 ? 

1965* 1639 1089 1964* 1420 1783 

* Selected primarily due to the Bahir Dar annual rainfall total. 

PET time series for the additional rainfall years were not available. However, they may 

be of questionable applicability at Dangila with its higher altitude and lower average 

temperature. Therefore, existing years of Dangila PET time series were selected and 

matched to rainfall total to coincide with the added rainfall years. Such practice was 

robust as Figure 8-12 and analysis in Chapter 7 revealed the small interannual variability 

in PET with a very low coefficient of variation (3.4-6.8%) between interannual monthly 

totals. 

The meteorological time series were randomly arranged using a Python script into a 

200-year sequence based on the 29 existing years (22 from Dangila and 7 from Bahir 

Dar). A 200-year sequence was considered long enough to allow generation of multi-year 

drought and wet periods while not being too computationally time-consuming.  

8.5 SHETRAN modelling 

8.5.1 Initial/preceding conditions 

Given that river discharge reduces to almost zero and groundwater drops to similar levels 

at the end of each dry season, and that groundwater levels reach the surface in many areas 

at the peak of the wet season, it was expected that there would be little “memory” in the 

hydrological system and only a single year run-in period would be necessary. To test this 

hypothesis, the subsurface water storage (including the saturated and unsaturated zones) 

outputs from the SHETRAN models were divided by hydrological year and analysed.  

The correlations in Table 8-3 show that the conditions of the previous year have no 

statistically significant influence on the conditions of the following year, with the 
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exception of the correlation between the mean subsurface water storage and the previous 

year’s minimum. Importantly, the minimum subsurface water storage, which controls the 

abstractable quantity of groundwater during the dry season, is independent of whether the 

previous year was wet or dry. Table 8-4 shows that subsurface water storage varies little 

year on year with very small standard deviation, coefficient of variation, and absolute 

range. Therefore, rainfall is sufficient during the wet season for the shallow aquifer to 

essentially fill up every year.  This is evident from observational and anecdotal evidence, 

as well as from SHETRAN outputs, of the large expanses of inundated floodplain during 

the wet season.  The small range in absolute subsurface water storage shows that there is 

little interannual variation and that the system is storage-controlled rather than recharge-

controlled regarding groundwater availability. This is a significant conclusion in itself 

though understanding the spatial distribution of groundwater availability and how it 

varies necessitated the more detailed modelling.   

Table 8-3. Correlations between subsurface water storage from one year to the next for the Amen and 

Kilti-Durbete catchments for 1998 to 2014 as computed by SHETRAN. SSW = subsurface water storage. 

 SSW min and previous 

year’s: 

SSW max and previous 

year’s: 

SSW mean and previous 

year’s: 

 mean min. max. mean min. max. mean min. max. 

Amen         

Pearson 0.40 0.09 0.40 -0.10 0.56 0.34 0.38 0.82 0.52 

P-value 0.13 0.73 0.13 0.71 0.02 0.19 0.15 0 0.04 

Kilti-Durbete         

Pearson 0.34 0.02 0.43 0.01 0.64 0.40 0.36 0.81 0.55 

P-value 0.20 0.93 0.10 0.96 0.01 0.13 0.17 0 0.03 
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Table 8-4. Statistics of annual subsurface water storage in Amen and Kilti-Durbete catchments for 1998 

to 2014 as computed by SHETRAN. SSW = subsurface water storage (spatially averaged mm), CV = 

coefficient of variation. 

 Amen Kilti-Durbete 

 SSW 

mean 

SSW 

min. 

SSW max. SSW mean SSW min. SSW max. 

Mean 3042 2805 3237 3212 2959 3417 

St. deviation 26.1 37.2 12.0 35.1 40.6 11.6 

CV 0.9% 1.3% 0.4% 1.1% 1.4% 0.3% 

Minimum 3006 2750 3207 3165 2895 3386 

10th percentile 3011 2758 3224 3173 2906 3402 

Median 3040 2803 3238 3215 2950 3419 

90th percentile 3075 2862 3251 3241 3018 3428 

Maximum 3087 2869 3252 3310 3029 3429 

 

This analysis confirmed that a single year spin up period was sufficient. The models were 

run for 201 years and the first year was discarded. The first year spin up period added was 

2011 because this year falls in the centre of the drought analysis ranking; 2011 is ranked 

15 of 29 and has close to mean and median annual total rainfall. 

8.5.2 Modelled catchments 

The potential future scenario simulations were run on the higher resolution (100 m) Amen 

and Brante catchment SHETRAN models described in Chapter 7. The Kilti-Durbete 

model was excluded as the groundwater potential mapping exercise suggested that the 

500 m resolution was insufficient to capture groundwater level subtleties to enable 

community-scale resource assessment.  The Kilti-Dangesheta model was also excluded 

from future scenario simulation, partly due to its lower (200 m) resolution and partly due 

to computational restraints (Amen and Brante 201-year simulations were run on eight 

powerful and fast Dell Blade servers and still took 4-7 days to run).  

8.6 Measuring potential impacts 

8.6.1 Additional irrigated growing seasons 

Cultivation in Dangila woreda is predominantly rainfed. The aim of using shallow 

groundwater for irrigation would be to enable a second growing season after the main 

rainfed growing season. Therefore, increasing food security, employment and wealth, as 

well as having a host of additional benefits described elsewhere such as improved 

nutrition and gender equality. The most likely onset of a second growing season would 
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be straight after harvest of the main rainfed crop, taking advantage of residual soil 

moisture and shallow water tables following the wet season. Harvest currently takes place 

in October, which could be immediately followed by land preparation then seed sowing. 

A potential second growing season is therefore simplified to begin on 1st November, and 

be of 3-month duration. Traditional short-cycle crops in Ethiopia are wheat (104-170 day 

cropping cycle), barley (91-174 days) and teff (78-123 days) (Meze-Hausken, 2004; 

Reynolds, 2008) (cropping cycle lengths from FAO (2017)). However, research has 

shown that small-scale farmers prefer to grow high-value vegetables and cash crops when 

irrigated agriculture becomes an option (Kloos, 1991; Rockström et al., 2002; Emana et 

al., 2015). Therefore, more likely, and more suitable for the prescribed growing season 

length of 3-months, short-cycle crops include: okra (75-90 days), chilli peppers (82-97 

days), chickpea (78-135 days) and tomato (75-130 days). These crops have all been 

observed locally under backyard irrigation and are grown under rudimentary irrigation 

elsewhere in Ethiopia (Wiersinga and de Jager, 2009); tomatoes being preferably grown 

outside of the rainy season in the Lake Tana Basin otherwise they are vulnerable to pests 

and disease (Abera, 2017).  

8.6.2 Groundwater availability 

Whether or not a second irrigated growing season is possible depends on groundwater 

availability throughout that growing season. The length of groundwater availability will 

vary by location and for each location it will vary interannually. To assess this variability 

of shallow groundwater availability, the SHETRAN output of spatiotemporal distribution 

of water table depth was processed using Python. The most useful measure of impact on 

the shallow groundwater resource from the potential future scenarios would be a measure 

of how much the proportion of the catchment where a second growing season is possible 

varies spatially and interannually. The processing and analysis methodology was as 

follows: 

1. The groundwater level accessibility threshold was assigned as per Chapter 7: 

Groundwater is considered accessible when the level is >0.5 m above the base of 

the regolith, i.e. the water table is not in the basal basalt layer below the base of 

wells and a sufficient water column is present to allow pumping by mechanical or 

motorised means. 

2. For each cell, the days from 1st November onwards when groundwater level was 

above threshold were counted and the cell was assigned a category: 
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o Failure: groundwater is partially or unavailable for the 3-month period, 

therefore, a second growing season after the main rainfed growing season 

using shallow groundwater for irrigation is impossible. 

o Success: groundwater is available for the whole 3-month period, therefore, 

a second growing season is possible. 

o High success:  groundwater is available year-round, therefore, a second, 

and possibly a third, growing season are possible. 

3. The proportional spatial coverage of “Failure”, “Success” and “High success” was 

determined for each simulated hydrological year and plotted. 

4. In addition to assessing how climate variability affects the proportional areas, the 

initial run was considered the baseline against which the land use and abstraction 

scenarios were compared. 

5. For quantitative comparison of the potential future scenarios, cumulative 

frequency curves were plotted of the proportional coverage of “High success” for 

each land use and abstraction scenario. These plots show the degree to which 

groundwater availability is affected by the different scenarios.  

An example of a success/failure plot is given in Figure 8-14 based on the historic Amen 

catchment time series rather than a new 201-year simulation. The format of this plot was 

developed with consideration of the paper by Forni et al. (2016) that discusses 

visualisations to condense model results into meaningful formats for decision makers. 

The aim was to combine spatiotemporal, multivariate, multi-scenario information into an 

easily explainable and understandable format for local stakeholders.  

 

Figure 8-14. Example plot of proportional coverage of failure (only rainfed agriculture possible), success 

(second growing season possible) and high success (second and third growing season possible; shallow 

groundwater available year-round) per year for the Amen catchment historic time series.  
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Apparent from Figure 8-14  is that a substantial proportion of the catchment always 

achieves “High success” whereas “Success” is always a small proportion and the majority 

of the arable land has potential for only rainfed agriculture. This realisation led to the 

cumulative frequency curves being plotted for proportional coverage of “High success” 

as described above. Also apparent by the high proportion of failure are the drought years 

of 2002-2003, 2009 and 2012 as revealed in the Drought Analysis section.   

8.6.3 Surface water availability 

The impact on surface water resources were also considered in terms of availability. The 

processing and analysis methodology was as follows: 

 A low flow threshold of 1 l/s was set as the lower limit of productive flow.  

 The SHETRAN outputs of daily discharge were assessed by counting the number 

of days per year with flow <1 l/s. 

As with groundwater availability, for quantitative comparison of the potential future 

scenarios, cumulative frequency curves were plotted of the percentage of each year that 

the low flow threshold was exceeded (flow <1 l/s). These plots show the degree to which 

surface water availability is affected by the different scenarios. It should be noted that 

SHETRAN provides this information on groundwater and surface water availability for 

conversion into spatial plots if required. 

8.7 Climate variability 

The 200-year simulations applying the synthetic rainfall and PET time series indicated 

that interannual variability in shallow groundwater availability would be high. This can 

be seen visually in Figure 8-15 and Figure 8-16 and is confirmed by the statistics in Table 

8-5. On average, a little over 30% of the catchments could be cultivated under irrigation 

all year. The average proportional coverage of high success is almost identical for both 

catchments, though with greater interannual variability in the Amen catchment as shown 

by the high coefficient of variation of ~36%. However, even in the worst drought years, 

7 and 10% of the Amen and Brante catchments have groundwater available for year-

round irrigation. The worst cluster of drought years can be seen during a four-year period 

from years 6-9 in Figure 8-15 and Figure 8-16, although, the proportion of the arable land 

that could sustain a second and third growing season only once drops below 20% during 

this period for the Amen catchment and only twice drops below 25% for the Brante. The 

coverage of success is lower for the Brante catchment though is generally very low for 

both. This is significant and indicates that either year-round irrigation is feasible or only 
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rainfed agriculture is possible for most areas. Therefore, irrigated cultivation need not be 

restricted to short-cycle crops, but the main long-cycle crops usually grown in the wet 

season may be grown under irrigation.  

 

Figure 8-15. Amen catchment baseline plot of proportional coverage of failure (only rainfed agriculture 

possible), success (second growing season possible) and high success (second and third growing season 

possible; shallow groundwater available year-round) per year for the 200-year simulation showing the 

potential impact of climate variability on groundwater availability. 

 

Figure 8-16. Brante catchment baseline plot of proportional coverage of failure (only rainfed agriculture 

possible), success (second growing season possible) and high success (second and third growing season 

possible; shallow groundwater available year-round) per year for the 200-year simulation showing the 

potential impact of climate variability on groundwater availability. 
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 Table 8-5. Statistics of proportional coverage of high success, success, and failure from Amen and Brante 

baseline 200-year simulations. CV = coefficient of variation, c10 = 10th percentile, c90 = 90th percentile. 

 Amen Brante 

 High success Success Failure High success Success Failure 

Mean 31.4% 2.8% 65.8% 31.7% 0.6% 67.6% 

St.dev 11.2% 2.4% 10.5% 7.9% 0.8% 7.6% 

CV 35.9% 84.3% 15.9% 24.9% 126.4% 11.3% 

Min. 6.9% 0% 30.4% 10.3% 0% 46.8% 

c10 14.5% 0.3% 52.7% 19.9% 0% 59.7% 

Median 33.9% 2.1% 63.8% 34.2% 0.4% 65.5% 

c90 43.6% 6.4% 79.4% 39.6% 1.5% 78.4% 

Max. 68.4% 12.8% 91.5% 53.0% 6.6% 89.3% 

 

The simulations presented here formed the baseline for comparison when applying the 

potential future LULC and abstraction scenarios.  

8.8 Land use land cover (LULC) change 

8.8.1  Simulated LULC scenarios 

The LULC change scenarios were selected based on observations and on literature review 

of changes occurring in the region as described earlier caused by a growing population. 

Essentially, a sensitivity analysis approach was used since detailed LULC spatial 

information was not available, e.g. from processed satellite images. LULC change 

simulations involved adjusting the proportional coverage of LULC classes. The coverage 

of a particular class was increased by 10, 20, 50 and 100% over another class: 

1. Pasture was progressively converted to arable land to simulate encroachment of 

cultivation onto floodplain or other grasslands. 

2. Highland areas were progressively converted to arable land to simulate increasing 

cultivation on areas currently considered marginal due to slope or naturally 

vegetated areas that are being cleared. 

3. Highland areas were progressively converted to bareground to simulate excessive 

firewood collection and overgrazing. 

4. Arable areas were progressively converted to Eucalyptus to simulate expansion 

of plantations. 

The full range of LULC scenarios simulated is shown in Table 8-6. 
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Table 8-6. The potential future climate variability, LULC and abstraction scenarios simulated with 

SHETRAN. 

 LULC scenario LULC 

change 

Abstraction 

rate 

Abstraction 

period 

Abstraction area  

Baseline Existing - - - - 

1 – 4 Pasture converted 

to arable 

10% 

20% 

50% 

100% 

- - - 

5 – 8 Highlands 

converted to arable 

10% 

20% 

50% 

100% 

- - - 

9 – 12  Highlands 

converted to 

bareground 

10% 

20% 

50% 

100% 

- - - 

13 – 20  Arable land 

converted to 

Eucalyptus (two 

variations) 

10% 

20% 

50% 

100% 

- - - 

21 – 23 Existing - 1 l/s/ha 3 months  10% of arable area 

50% of arable area 

100% of arable 

area 

 

The particular cells that had their LULC converted were randomly selected within their 

land class with a Python script. The two additional LULC classes that were not run in the 

historical models discussed in Chapter 7 were bareground and Eucalyptus. Bareground 

was simulated with a higher Strickler coefficient of 2.0 m-1/3/s, a low AET/PET ratio and 

proportional vegetation coverage reduced to zero. Eucalyptus was simulated in two ways:  

1. With a low Strickler coefficient of 0.5 m-1/3/s, high AET/PET ratios, increased 

rooting depth and root density at depth, high leaf area index (4.0) and increased 

canopy storage capacity; the parameter values were based on numerous studies 

including some that reported field investigations from the Lake Tana Basin, e.g. 

Moroni et al. (2003); White et al. (2010); Chanie et al. (2013).  

2. With parameters as for variation 1 and with increased PET for the cells containing 

Eucalyptus. The PET time series was calculated using the FAO56 Penman-
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Monteith method although in trees PET is higher because of the lower 

aerodynamic resistance compared to the reference crop short grass. A multiplier 

of 1.5 was applied to the PET time series for areas of Eucalyptus to simulate the 

additional expected evapotranspirative loss. This multiplier is applied with some 

uncertainty as published studies on the topic include: Enku et al. (2017a) who 

measured evapotranspiration of Eucalyptus to be double the reference PET in the 

Lake Tana Basin; Sharma (1984) measured Eucalyptus evapotranspiration up to 

three times reference PET in the wet season of Australia though it was generally 

equal in the dry season; Roohi and Webb (2016) quote a value for Eucalyptus of 

15-20% greater than PET, and; Hutley et al. (2000) measured evapotranspiration 

of Eucalyptus of around a third of PET (the latter two studies are also from 

Australia). The average variation in additional evapotranspiration of Eucalyptus 

above PET measured in these studies led to the selection of the 1.5x PET 

multiplier. 

8.8.2 Results for simulated LULC scenarios 

Firstly, considering the conversion of pasture to arable land, Figure 8-17 and Figure 8-18 

show that the impacts on surface and groundwater availability are negative and, though 

quite small for the Amen catchment, are significant for the Brante catchment. The 

negative impact is due to the greater evapotranspiration losses of the simulated crops over 

grasses. The reason for the discrepancy between catchments is the higher proportion of 

pasture in the Brante catchment, 47% compared to 34% of the Amen, which when 

converted has a correspondingly greater impact on the overall catchment water balance. 

 

Figure 8-17. Cumulative frequency curves showing the impact of converting pasture to arable land on 

shallow groundwater availability (the proportional coverage of high success). 
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Figure 8-18. Cumulative frequency curves showing the impact of converting pasture to arable land on 

surface water availability (the proportional of the year when flow is <1 l/s). 

Secondly, considering the conversion of highlands to arable land, almost no impacts are 

seen on surface and groundwater availability in either catchment (Figure 8-19 and Figure 

8-20). The principal reason is the small proportional coverage of the highland LULC 

category, 17% for the Amen and 5% for the Brante catchments. In addition, the water 

demand of the scrub-like vegetation is only slightly greater than the common tall crops 

such as maize and sugarcane, hence little difference in the overall water balance, and 

therefore only slight positive impacts on surface and groundwater availability were 

expected and seen.  

Potentially significant for the scenarios converting pasture or highlands to arable land, 

though not specifically simulated in the models, is the impact of tillage on infiltration. 

While there is research that shows that the roughness resulting from ploughing required 

by some crops increases infiltration (e.g. Lipiec et al. (2006); de Almeida et al. (2018)) 

other research suggests tillage decreases infiltration (e.g. Abid and Lal (2009); Tuzzin de 

Moraes et al. (2016)). 
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Figure 8-19. Cumulative frequency curves showing the impact of converting highlands to arable land on 

shallow groundwater availability (the proportional coverage of high success). 

 

Figure 8-20. Cumulative frequency curves showing the impact of converting highlands to arable land on 

surface water availability (the proportional of the year when flow is <1 l/s). 

Thirdly, regarding the degradation of highlands to bareground, significant positive 

impacts are seen on surface and groundwater availability in both catchments (Figure 8-21 

and Figure 8-22). There is an increase in flashiness of the river levels but more significant 

is the reduction in evapotranspirative losses causing an increase in recharge maintaining 

groundwater levels and surface water flows for longer into the dry season. However, 

importantly, the modelling does not simulate hillslope erosion commonly observed 

elsewhere in Ethiopia. The positive hydrological impacts may be temporary until gully 

formation and soil erosion lower water tables.  
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Figure 8-21. Cumulative frequency curves showing the impact of degrading highlands to bareground on 

shallow groundwater availability (the proportional coverage of high success). 

 

Figure 8-22. Cumulative frequency curves showing the impact of degrading highlands to bareground on 

surface water availability (the proportional of the year when flow is <1 l/s). 

Finally, Figure 8-23 and Figure 8-24 show that the expansion of Eucalyptus plantations 

on arable land had the greatest impacts of all the LULC scenarios. The increase in 

evapotranspirative losses significantly reduces surface and groundwater availability. The 

negative impacts are greater for the Amen catchment even though the proportional 

coverage of arable land is similar for both catchments, 50% (Amen) and 48% (Brante). 

The second variation in Eucalyptus parameterisation shows greater impacts, explained by 

the increased PET time series applied to Eucalyptus cells. The uncertainty over the correct 

simulation of the increased evapotranspiration from Eucalyptus means the most likely 

hydrological impacts are somewhere between the results of the two alternative methods. 
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Figure 8-23. Cumulative frequency curves showing the impact of expanding Eucalyptus plantations on 

arable land on shallow groundwater availability (the proportional coverage of high success). The two 

variations refer to alternative methods of parameterising the Eucalyptus LULC category. 
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Figure 8-24. Cumulative frequency curves showing the impact of expanding Eucalyptus plantations on 

arable land on surface water availability (the proportional of the year when flow is <1 l/s). The two 

variations refer to alternative methods of parameterising Eucalyptus LULC category. 

8.9 Increased groundwater abstraction 

8.9.1 Simulated abstraction scenarios 

The future abstraction scenarios are based on literature review of the “Green Revolution” 

in South and East Asia where cheap pumps and energy subsidies kick-started the 

explosion in small-scale irrigation. Therefore, this future scenario carries the assumption 

that pumps, fuel and irrigation infrastructure are going to become available at low cost 

and/or a government ministry, NGO or private investor provides, directly or via credit, 

the necessary equipment. As defined previously, the most likely future abstraction rate is 

1 l/s/ha and the most likely pumping period would be a second growing season 

immediately after harvest of the main rainfed crop for 3 months (1st November to 31st 

January). The most likely short-cycle crop types, as discussed in Section 8.6.1, would be 

high-value vegetables and cash crops such as okra, chilli peppers and tomatoes. The areas 
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subjected to abstraction and irrigation were 10%, 50% and 100% of the area of arable 

land cover; this translated as 177, 887 and 1773 cells for the Amen model and 300, 1500 

and 3000 cells for the Brante model. This arbitrary distribution of abstraction and 

irrigation was specified based on the Asia examples where small-scale irrigation 

expanded autonomously. The resolution of the models meant that one cell was one hectare 

in size, therefore, to simulate a well abstracting at 1 l/s/ha, an abstraction of 1 l/s was 

applied to the selected cells. Irrigation occurred in the same cell as the groundwater was 

abstracted and at the same time, i.e. there was no storage for later irrigation. Irrigation 

was simulated as additional rainfall input specifically onto cells with abstracting wells. 

Wells were simulated, as observed, to be of the same depth as the regolith shallow aquifer. 

The range of abstraction scenarios is listed in Table 8-6. It is noted that the baseline case 

involves no abstraction as current levels of abstraction from the shallow aquifer are for 

domestic use and as such are low and sparsely distributed. 

8.9.2 Results for simulated abstraction scenarios 

The results from the abstraction simulations showed little impact on surface and shallow 

groundwater resources from abstracting and irrigating (Figure 8-25 and Figure 8-26). 

Shallow groundwater availability reduced as the area under abstraction and irrigation 

increased. However, surface water availability increased (at the expense of groundwater 

availability) as some excess irrigation water not evapotranspired by crops augmented dry 

season low flows. Return flow of irrigation water to river channels is well documented, 

often constituting a large proportion of flow (Blodgett et al., 1992; Smakhtin, 2001). 

What’s more, the simulations abstracted and irrigated at a constant rate regardless of 

occasional dry season rainfall, which would also contribute to return flows. The Amen 

and Brante catchments showed similar responses with the 10% arable area under 

irrigation simulation giving results very similar to the baseline, especially concerning 

shallow groundwater availability. The slight positive impact on surface water availability 

and negative impact on shallow groundwater availability showed that flow paths from 

fields to rivers must be rapid and are likely via surface runoff and unsaturated zone flow. 

It should be noted that the increase in surface water availability is measured at the outlet. 

It is possible that certain reaches may see slight decreases in surface water availability, 

though, this would be less significant given the method of abstraction (from hand-dug 

wells) compared to stream diversions for irrigation.  
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Figure 8-25. Cumulative frequency curves showing the impact of increasing abstraction and irrigation on 

shallow groundwater availability (the proportional coverage of high success).  

 

Figure 8-26. Cumulative frequency curves showing the impact of increasing abstraction and irrigation on 

surface water availability (the proportional of the year when flow is <1 l/s).  

8.10 Discussion and conclusions 

Even though rainfall, and therefore recharge, has high interannual variability, the shallow 

aquifer geometry means that availability of shallow groundwater is mostly storage- rather 

than recharge-controlled. This means that even in drought years, recharge is sufficient to 

substantially refill the thin regolith aquifer.  

Climate variability will strongly affect surface and groundwater availability with high 

interannual variation in proportional coverage of areas able to have an additional growing 

season after the main rainfed season. However, even during the most extreme and 

prolonged droughts, a substantial proportion of the catchment will still have available and 

accessible shallow groundwater for a second and possibly a third growing season. 

Examples of shallow groundwater resilience to climate variability include northern Ghana 
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where shallow groundwater irrigation has led to poverty alleviation (Laube et al., 2008). 

A particularly bad drought in 2006 led to many farmers losing crops due to water 

shortages, though many others simply dug their wells deeper and still found groundwater 

at <8 m. 

Increased abstraction for irrigation resulted in small impacts on surface and groundwater 

availability. This finding is significant and positive for farmers who gain access to pumps, 

to the local community who use groundwater for domestic supply, to downstream water 

users, and to ecosystems reliant on the same water resources. The finding somewhat 

contradicts the traditional view that considers excessive withdrawal followed by aquifer 

and surface water depletion to be a constraint on the use of shallow groundwater for small-

scale irrigation (e.g. Adams (1993); Giordano and Villholth (2007); Ngigi and Denning 

(2009)). Abric et al. (2011) extol the benefits of small-scale irrigation in West Africa then 

go on to describe how overdrafting of groundwater leads to continuous lowering of the 

water table and increased exploitation costs. However, their studied region of West Africa 

(Niger, Burkina Faso, Mali and Nigeria) receives much less rainfall and recharge than the 

Dangila study site and the shallow groundwater exploitation examples are somewhat 

large-scale, e.g. the Fadama Development Project in Nigeria (Inocencio et al., 2007). 

Similarly, the Haromaya watershed in eastern Ethiopia is an oft-cited example of 

excessive abstraction causing surface water bodies to dry up (e.g. Alemayehu et al. 

(2007); Werner et al. (2013)). However, this region of Ethiopia is also semi-arid, low 

transmissivity constrains excessive abstraction from the shallow aquifer (Tadesse et al., 

2010a) and reductions in lake volumes are most likely due to LULC change and land 

degradation (Gebere et al., 2016). The slight decreases in shallow groundwater 

availability simulated for the Dangila study site mean some local management of 

groundwater use may be required to negate conflicts between adjacent (upgradient-

downgradient) water users. However, the slight increases in surface water availability due 

to irrigation return flows mean wetlands and downstream surface water users would not 

be negatively impacted by small-scale irrigation. 

LULC change could have the greatest impact on water resources. However, it is noted 

that the 100% change scenario would be extremely unlikely; it was simulated mainly to 

see the direction the impacts on surface and groundwater resources could take. Wet 

season flooding prevents significant agriculture, of the type currently practised, on most 

of the floodplain pasture, high slope gradients would prevent all of the highland areas 

from being cultivated and the basic human need for food crops surely limits the land 
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allocation that can be made to Eucalyptus planting thus preventing it from taking over 

completely. In addition, the World Bank funded Sustainable Land Management Project 

is active in Ethiopia with a large budget and wide geographical reach aimed at preventing 

and restoring degraded land (World Bank, 2017a), therefore, it is hoped a 100% 

conversion of highlands to bareground would be avoided. The 50% change scenarios are 

less far-fetched though they may require a change to farming practices such as terracing 

of hillslopes and retreat cultivation of floodplains as seen on the edges of Lake Tana. The 

most likely and most impactful change is the increased planting of Eucalyptus. While 

there is uncertainty over which variation most accurately simulates its impact, if the first 

variation is considered the lower end of the impact range, then the negative effects on 

surface and groundwater availability are still pronounced. This finding is in agreement 

with the many observational studies in the literature that report decreased river flows and 

reduced groundwater levels following Eucalyptus planting, e.g. Van Lill et al. (1980); 

Sikka et al. (2003); Rodriguez Suarez et al. (2014) due to greater wet season interception 

and greater dry season evapotranspiration. The additional impact only briefly mentioned 

is the yield losses from crops grown in proximity to Eucalyptus plantations, which would 

obviously be more pronounced if the number of plantations increases.  

It has been shown that the shallow groundwater resource at Dangila woreda is resilient to 

climate variability, LULC change and increasing abstraction. There exists the potential 

for a sustainable intensification in irrigated agriculture. Whereas the maps presented in 

Chapter 7 showed the areas that, on average, have greatest potential for small-scale 

irrigation, the model outputs from this chapter reveal how the potential areas spatially 

vary under different climatic conditions and with future variations to land use and 

abstraction. This more detailed analysis enables greater targeting of areas for 

development of small-scale irrigation and provides more confidence that such 

development is sustainable.  
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Chapter 9. Conclusions, including recommendations, 

transferability, and future work 

 

9.0 Chapter overview 

Chapter 8 showed, through simulation of potential future scenarios with SHETRAN, that 

the shallow groundwater resource is resilient to climate variability, land use change, and 

increasing abstraction. This chapter will draw together findings from all the previous 

chapters presenting the conclusions with reference to the aim and research questions in 

Chapter 1. Recommendations are provided for stakeholders, and the transferability of the 

results and of the methodology is discussed. The limitations of the study are described 

before the final section gives suggestions for future work. 

9.1 Conclusions 

To conclude this thesis, we will revisit the aims and research questions presented in 

Chapter 1. The overall aims of this PhD research were: 

Firstly, to determine the potential for small-scale irrigation and the resilience of 

shallow groundwater resources used by rural communities at a representative 

study site in Ethiopia.  

The research demonstrated that shallow groundwater resources do have the potential for 

exploitation for small-scale irrigation and the most suitable areas were identified. The 

research also showed the resilience of the resource in the face of likely climate variability, 

and only the most extreme land use changes had severe negative impacts on the resource. 

Critically, the resource is resilient to small-scale abstraction for irrigation. 

Secondly, to develop transferable methodologies for assessment of shallow 

groundwater resources throughout SSA. 

The research demonstrated that citizen science for the collection of hydrometeorological 

time series is an effective measure in areas of data scarcity, benefitting both researchers 

and local stakeholders. Field hydrogeological investigative techniques were developed 

and local partners, such as Bahir Dar University students, were trained in their 

implementation for shallow groundwater assessment. The extensive recharge assessment 

revealed which methods are most appropriate for recharge estimation of shallow aquifers 

with wet, though seasonal, climates. The modelling indicated areas with highest potential 

for shallow groundwater exploitation and suggested simpler means for identification of 
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such areas without requiring costly and complex modelling, i.e. through field 

hydrogeological and geomorphological assessment and through local community 

discussions. 

The specific research questions in Chapter 1 were: 

1. Do shallow aquifers have the requisite properties, in terms of hydraulic 

conductivity, potential well yield, specific yield, aquifer geometry and 

hydrochemistry, for productive groundwater use? 

The field investigations conducted in Dangila woreda described in Chapter 4 showed that 

while hydraulic conductivity and consequently well yield, and specific yield  of this 

shallow aquifer are quite low, they are not too low for small-scale irrigation; especially, 

if abstraction commenced at the immediate cessation of the wet season when well yield 

is high. Specifically, dry season average K was 1.6 m/d while the wet season average was 

6.5 m/d; the greater saturated thickness led to interception of higher K layers thus 

increasing average K. These results gave dry season average yield of 0.2 l/s and wet 

season average of 1.7 l/s, while the median specific yield was 0.09. Multiple wells and/or 

wells of larger diameter would likely have to be excavated to increase well bore storage, 

as described in the recommendations section of this chapter. The aquifer is also quite thin 

in many areas (<5 m), which restricts the shallow groundwater volumes that can be stored. 

However, the modelling in Chapter 7 revealed areas where shallow groundwater is 

available year-round and when abstraction was modelled in Chapter 8, the resource was 

not depleted. Hydrochemistry analysis described in Chapter 4 indicated that the shallow 

groundwater is suitable for irrigation. What’s more, contrasting major ion and stable 

isotope hydrochemistry of the shallow and deep groundwaters suggest that there is little 

to no connection between the shallow regolith aquifer and the deep fractured aquifer. 

Radon-222 measurements support this conclusion, as shallow aquifer leakage was not 

identified. The stable isotope analysis also enabled development of a conceptual model 

where shallow groundwater flow does not necessarily match surface water flow directions 

from the small sub-catchment “dambos”. In summary, the research showed that shallow 

aquifers could have the requisite properties for productive use.   

2. Due to the scarcity of time-series data, are community-based hydrometeorological 

monitoring programmes able to produce useful, high quality data comparable to 

formal data sources? 
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As explained in Chapter 5, the satisfactory application of accepted quality control 

procedures and statistical comparisons with formal data sources indicated that the 

community-monitored hydrometeorological data from Dangila is of high quality. 

Furthermore, the community data often outperforms some formal and remote sensing or 

reanalysis data; especially concerning groundwater where there is no formal equivalent. 

The research showed that such citizen science data can infill the gaps in sparse and 

deteriorating formal monitoring networks. This hydrometeorological data was invaluable 

for the initial understanding of the hydrological system and the development of the 

conceptual model. The data were then used in the recharge assessments to assess if a 

renewable shallow groundwater resource was present. Finally, the time series data 

enabled modelling of the shallow groundwater as simulated river flows and groundwater 

levels were calibrated against the observed data.   

3. Can shallow groundwater be considered a renewable resource, and; which 

recharge assessment methods provide the highest confidence in the calculated 

recharge amounts when applied to these types of aquifers?  

Chapter 6 reported that recharge to the shallow aquifer was sufficient for small-scale 

irrigation to consider the shallow aquifer a renewable resource, i.e. groundwater would 

not be “mined”: The methods computing actual recharge gave a catchment-wide recharge 

estimation of 280-430 mm/a. A simplistic calculation can be run with this recharge 

estimate, albeit ignoring other factors relevant to irrigable area: If we specify a nominal 

irrigation demand of 1000 mm and take the median recharge value from the actual 

recharge range, a little over a third of the study site could be irrigated without exceeding 

the recharge rate. The recharge assessment also revealed the range of results that can be 

computed for a single site, from 45 to 814 mm/a, when multiple recharge estimation 

methods are applied. The discrepancy in recharge results can provide insights on the 

hydrogeological system allowing update of the conceptual model and informing the type 

of recharge computed by the different methods. Concerning recharge method selection, 

it is crucial to be sure of the spatiotemporal scale of the method, to use high quality input 

data, to have developed but be willing to further develop the conceptual model, and to 

know what type of recharge is being computed. In this study, the conceptual model meant 

streamflow hydrograph and soil moisture balance methods were computing minimum and 

potential recharge, respectively, rather than actual. If these methods are to be applied to 

shallow aquifers elsewhere, consideration of the conceptual model and application of 

additional methods is recommended. For identifying areas of shallow aquifers that may 
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be the most productive for irrigation, water table fluctuation methods that actually 

calculate change in aquifer storage can reveal areas of highest potential; certain wells 

analysed in this study showed “recharge” of over 1600 mm (incorporating lateral 

groundwater flow). 

4. Are there easily identifiable zones that show the greatest potential for sustainable 

intensification of agriculture through shallow groundwater irrigation? 

The modelling described in Chapter 7 showed that the base of hillslopes and narrow 

valleys, corresponding to approximately 17% of the study area, have the greatest potential 

for small-scale irrigation as the shallow groundwater resource remains available for the 

longest period in these areas. Areas with the least potential, where shallow groundwater 

was available for short periods, were high on steeper hills especially near ridges. 

Additionally, low potential areas were those where the aquifer is thinnest and easily 

drained such as the large flat floodplains. At shallow aquifers elsewhere, these locations 

should be easily identifiable from topographic maps and DEMs though well surveys 

would still be required for appreciation of aquifer thickness variations.  

5. How will climate variability, land use change and increased abstraction impact 

shallow groundwater resources and surface water? 

Chapter 8 revealed that, on average, around 35% of the modelled catchments’ arable land 

had available shallow groundwater year-round (Figure 9-1), allowing cultivation with 

irrigation, additional to the main rainfed growing season. Modelling of climate variability 

indicated that even during prolonged droughts, significant proportions of the catchments 

would still have the potential for a second crop planted immediately following the main 

rainfed crop harvest; Figure 9-1 shows that in years in the driest 5th percentile, around 

15% of the arable area has shallow groundwater available all year.  
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Figure 9-1. Output of climate variability model simulations showing the proportion of arable land that has 

shallow groundwater available in a particular year according to that year’s severity of dryness. 

Simulating progressive land use change had varying effects on shallow groundwater and 

surface water resources. Conversion of pasture (the floodplain grasslands) to arable land 

had a slight negative impact on shallow groundwater availability but very little effect on 

surface water. Converting highlands to cultivation had almost no impact on water 

resources whereas highlands degrading to bareground had a positive impact due to 

decreased evapotranspiration. Though it is noted that the likely related impacts of soil 

erosion and gully formation were not simulated and these would increase flashiness of 

the streams and probably decrease shallow groundwater availability through decreased 

infiltration and recharge. The land use change scenario that had the greatest (negative) 

impact was increasing the area of eucalyptus plantations.  

Increasing abstraction and irrigation at likely smallholder levels (rate of 1 l/s/ha) had 

small impacts on shallow groundwater and surface water availability. Simulation of a 3-

month irrigated growing season immediately following the main rainfed growing season 

led to slight reductions in shallow groundwater availability. However, rapid return flows 

of excess irrigation water led to slight increases in surface water availability. 

9.2 Recommendations 

9.2.1 Potential for the productive use of shallow groundwater 

This research indicated that there is available shallow groundwater for an expansion of 

small-scale irrigated agriculture at the study site (Chapter 7). What’s more, the shallow 

groundwater resource can be considered renewable (Chapter 6) and is resilient to climate 
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variability, land use change and increasing abstraction based on the simulated future 

scenarios (Chapter 8).  

The recommendation is for a second growing season to commence immediately after the 

main growing season, taking advantage of residual soil moisture and shallow water tables 

following the wet season. This would require immediate land preparation and planting 

following harvest of the main rainfed crop. This is of course with the assumption that 

pumps and irrigation infrastructure will become available. Cooperation between farmers 

regarding mobilisation and sharing of the infrastructure should not be problematic as land 

is currently cultivated cooperatively. There is some risk to planting a second long-cycle 

crop (e.g. grain), even in areas classed as “high potential”, as the modelling in Chapter 8 

showed that in the worst drought years, shallow groundwater available year-round is 

restricted to around 15% of the arable area of the catchments (Figure 9-1). Planting of a 

short-cycle crop carries less risk of insufficient irrigation water and is the more likely 

eventuality as research shows that small-scale farmers prefer to grow high-value 

vegetables and cash crops when irrigated agriculture becomes an option (Kloos, 1991; 

Rockström et al., 2002; Emana et al., 2015). While it has traditionally been feared that 

groundwater use for irrigation will have unacceptable impacts on domestic water supply, 

wetlands and other groundwater-dependent ecosystems (Adams, 1993; Giordano and 

Villholth, 2007; MacDonald et al., 2009), this research showed that the impacts from 

small-scale irrigation on surface and groundwater resources would be minor (Chapter 8). 

9.2.2 Abstraction strategy  

Pumping tests showed that potential well yields might not achieve the desired 1 l/s for 

irrigation of a hectare (Chapter 4). However, wells are not difficult to excavate, as 

reported by the local community and indicated by the small (<0.25 ha) backyard plots 

that commonly have multiple wells. Therefore, to expand irrigation onto the fields 

currently only utilised for rainfed agriculture, a high density of wells may have to be 

excavated. Therefore, pumping equipment will have to be mobile, or many pumps will 

be required, in order to switch to abstracting from a different well as each is depleted. In 

the meantime and overnight, the non-abstracting wells will refill naturally. The 

recommendation is for electric submersible pumps. Solar power would be preferable, 

though, the local community have spoken of the desire for small generators that could 

also be used at home: During workshops, the local community questioned having 

generators in fields to power pumps when they do not have light in their houses. The 

generally shallow water table means simple and low cost motorised vacuum or centrifugal 
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pumps would be sufficient, however, the altitude of ~2000 m means suction lift is 

restricted to around 2 m. Therefore, for such pumps to be practicable, shelves would need 

to be excavated at depths in the wells for pump placement, as described by Carter and 

Alkali (1996). 

9.2.3 Well design 

Large diameter wells would be required if shelves for pumping infrastructure were to be 

excavated, and larger diameter is also a recommendation from a point of view of storage. 

The reason for the multiple well recommendation is that the low transmissivity would 

lead to a well being pumped dry before it could naturally refill. Larger diameter wells 

would increase the well bore storage meaning less wells would be required and the 

pumping equipment could be moved less frequently. This is not a new idea to Ethiopia as 

large diameter wells are utilised for these same reasons in Tigray, where they are often 

stone-lined to prevent collapse (Woldearegay and Van Steenbergen, 2015). 

9.2.4 Floodplain cultivation 

Modelling the future land use change of conversion from pasture to cultivation indicated 

that this scenario would not have a significantly negative impact on surface and 

groundwater resources (Chapter 8). Therefore, could this scenario be encouraged? The 

generally flat and seasonally inundated floodplains are almost exclusively used as pasture 

for cows, sheep and goats, typically tended by local children. Other infrequently observed 

floodplain activities are harvesting of wetland vegetation for animal fodder and small 

plant nurseries found beside perennial reaches of streams during the dry season. While 

the floodplain marginal areas are sought after for cropping to take advantage of residual 

moisture and shallow water tables, cropping is largely non-existent within Dangila 

woreda on the floodplains themselves. Elsewhere in the Amhara Region, wetlands have 

been put to use for rice growing. A study by Tefera (2017) from Fogera Plain adjacent to 

Lake Tana reported that participation in the rice industry increased from 30 households 

in two kebeles with an area coverage of 6 ha in 1993/94 to 34,249 households in 24 

kebeles with an area of 20,230 ha by 2014/15. Fogera district now produces 60% of 

Ethiopia’s rice. Surveys and interviews revealed that ~55% of producers rely on rain and 

~45% supplement rainfall with irrigation water from rivers and springs. Multiple 

cropping cycles per year are practiced utilising residual moisture in seasonally 

waterlogged areas. In addition to local consumption or market sale, the grain straw was 

used for house construction, animal feed, as a fuel source, and as a raw material for some 

manufacturing processes. Floods and related water-borne diseases were serious problems 
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on the plains around Lake Tana (Sewmehon, 2012), however, with the introduction of 

rice as a crop, these water-rich ecosystems have developed from an environmental 

problem to an economic and lifestyle opportunity (Tefera, 2017). Rice production has had 

such a positive impact that the crop is known locally as “white gold” (MoWIE, 2015; 

AgroBIG, 2016). Tefera (2017) states that there was initial resistance to rice production 

due to a perception that the grain causes infertility in humans. This was apparently 

resolved through collaborative and “aggressive” promotion by the local agricultural 

research centre. It seems feasible for such a transformation of wetlands to occur in 

Dangila woreda. As in Fogera, the local population generally speak of the problems 

caused by the seasonally inundated floodplains, in particular the extended journey times 

as the wetlands can often not be crossed during the wet season, however, in Fogera the 

seasonal inundation is now considered a blessing rather than a curse (Tefera, 2017). 

Similar complaints, including of flooded or waterlogged fields, were recorded in the 

wider Gilgel Abay catchment by Abera (2017). Whereas Fogera plain occupies an 

expansive lakeshore position, an area of over 500 km2, there are many examples of much 

smaller scale agricultural exploitation of seasonally flooded land. A well-developed 

system of rice cultivation exists in small seasonal valley bottom swamps in Sierra Leone, 

which are also cultivated with such crops as wheat, tomatoes and onions during the dry 

season to take advantage of the better soil fertility compared to upland soils (Richards, 

1985; Dries, 1991). Small-scale ‘garden’ cultivation of rice with dry season crops at the 

margins, based on indigenous water management techniques, takes place in dambos of 

Zimbabwe, Zambia and Malawi (Dixon, 2003) that are geomorphologically similar to the 

features seen in Dangila. As long ago as 1998, Rwanda already had 165,000 hectares of 

wetlands, 50% of which are cultivated, and the Tanzania Ministry of Agriculture were 

developing policies for utilisation of its ~850,000 ha of wetlands (Inocencio et al., 2003). 

However, before promoting agricultural development of Dangila’s wetlands, it must be 

stated that there is currently little awareness of the status of Ethiopia’s wetlands 

ecosystems (Abebe and Geheb, 2003). These ecosystems support both aquatic and 

terrestrial biodiversity, e.g. around 25% of Ethiopia’s bird species are wetland-dependent 

(Wondefrash, 2003) and some wetland plants are used locally for medicinal purposes 

(Hailu, 2003). In addition, the hydrological controls of the floodplains in terms of 

groundwater recharge and flood control is uncertain (Abebe and Geheb, 2003). Both 

Dugan (1988) and Roggeri (2013), however, argue that the conversion of wetlands to a 

different ecosystem should be considered where a cost benefit analysis proves that 

conversion is the most effective means of contributing to the social and economic needs 
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of the human population. The current use of the floodplains is likely in relative harmony 

with the ecosystem: Fynn et al. (2015) discuss how even overgrazing does not impact 

such ecosystems because they are so waterlogged in the peak wet season that animals can 

only access the periphery allowing  vegetation to fully recover. 

9.2.5 Conversion from Eucalyptus to Pine 

The impact on surface and groundwater availability caused by increased Eucalyptus 

planting was the greatest of all proposed land use change scenarios modelled (Chapter 8). 

Eucalyptus planting is reported to be on the increase in the Lake Tana Basin even though 

farmers are aware of its negative impacts on groundwater levels, springs and streamflow, 

and on adjacent crop yield (Chanie et al., 2013; Alebachew et al., 2015; Jaleta et al., 

2016). The demand (locally, nationally to Tigray, and internationally to Sudan) for wood 

for house-building and charcoal production is unlikely to diminish in the short-term due 

to the high population growth rate and loss of native forest that could otherwise provide 

timber and firewood (Abiyu et al., 2016). Pine could be an alternative cash crop that is 

not as water intensive. Eucalyptus is popular because it is so highly productive with 

growth rates of >35 m3/ha/a and because of its short rotation length  of 6-8 years (Albaugh 

et al., 2013). However, in many parts of the world, pine is favoured, even though the 

growth rate is less at 25-27 m3/ha/a and the rotation period is longer at 15-25 years, as it 

is known to be less water intensive (Maier et al., 2017). Paired catchment studies are 

abundant in the literature comparing the effects of pine with that of Eucalyptus. Scott and 

Smith (1997) working at several sites in South Africa recorded streams drying up eight 

years after Eucalyptus afforestation of a catchment whereas in afforested pine catchments 

streams took 12 years to cease flowing. Lima et al. (1990) measured more than 200 mm 

greater evapotranspirative losses from Eucalyptus than pine and significant reductions in 

soil moisture at a site in Brazil. A global analysis of 26 catchment data sets with 504 

observations, including annual runoff and low flow by Farley et al. (2005) showed that 

Eucalyptus afforestation has the greatest impact on water yield reducing runoff by 75% 

(±10%), compared with a 40% (±3%) average decrease with pines and similar decreases 

of low flows. Research by Calder et al. (1993) at multiple sites in India showed how soil 

erosion was greater in Eucalyptus plantations compared to pine and soil moisture was 

greatly depleted, the latter conclusion also reported by many other studies, e.g. Lima et 

al. (1990); Zavala et al. (2009); Santos et al. (2016). Pinus canariensis, the Canary Island 

pine, may be a specific alternative for Ethiopia as the species is tolerant to climate 

variability, especially drought (Dr Juan Suarez, Forest Research, Roslin, personal 

communication, 18 December 2017 and Wieser et al. (2016)). The species has the lowest 
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canopy storage capacity of conifers (though it is still slightly greater than Eucalyptus) 

meaning more water is transferred to the soil surface (McPherson et al., 2017), and has 

been successfully forested for decades in South Africa (Richardson and Higgins, 2000). 

If the shallow groundwater resource is increasingly exploited, planting should consider 

the optimum tree cover that results in greatest recharge; above this the trees use too much 

water and below this there is increased overland flow (Ilstedt et al., 2016). 

9.3 Transferability of results 

9.3.1 Transferability within Ethiopia 

The transferability of this PhD research to other areas of Ethiopia can be identified from 

the map in Figure 9-2 of the main aquifer types within Ethiopia and their distribution. 

Aquifers termed “shallow” and “very shallow” have a wide distribution, approximately 

50% of the country (Kebede, 2013). What’s more, it is likely that the deeper volcanic 

aquifers have superficial geology very similar to Dangila woreda. Considering Ethiopia’s 

climate, all but the east and north has similarly high rainfall and seasonality to Dangila. 

Fieldwork elsewhere in Ethiopia, and travelling to those field sites, showed similarities 

in geomorphology with Dangila, i.e. expansive floodplain wetlands and low hills. 

  

Figure 9-2. Map of Ethiopia showing distribution of main aquifer types (from Kebede (2013)). 

Study site 

Legend 
Rhyolite Ridges – Aquicludes 
Deep Mesozoic Sediment Aquifers 
Very Deep Mesozoic Sediment Aquifers 
Very Deep Volcanic Aquifers 
Deep Volcanic Aquifers 
Shallow Volcanic Aquifers 
Very Shallow Alluvio-Lacustrine Aquifers 
Shallow Alluvio-Lacustrine Aquifers 
Shallow Basement Aquifers 
Very Shallow Basement Aquifers 
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9.3.2 Wider transferability within sub-Saharan Africa 

The field site was selected to be representative of shallow aquifers at a broader scale than 

northwest Ethiopia. It would be expected that the findings from this research in terms of 

areas of high and low potential and the resilience of the resource would be applicable in 

areas of similar climate, geology and geomorphology.  The map in Figure 9-3 shows areas 

of shallow (<25 m) water tables abound in SSA. Considering rainfall, a large swathe of 

the African continent between 10o North and 20o South receives rainfall of 800-3200 

mm/a (Figure 2-4) with a similar seasonality to Dangila (Guiraud, 1988; Frenken, 1997). 

Within that rainfall zone and within the shallow water tables zone, young (Cenozoic to 

Quaternary) volcanic rocks are present all along the East African Rift from Eritrea to 

Malawi and in unconnected areas such as western Cameroon/eastern Nigeria and 

southwest Sudan (MacDonald et al., 2011). In addition, key texts on regolith state that 

hydrogeological properties are similar independent of parent rock age and mineralogy 

(Jones, 1985). The abundance of crystalline rock in Africa (Figure 2-2) suggests shallow 

weathered regolith aquifers overlying very low to zero permeability bedrock, as at the 

study site, may be common, though the transferability to these areas requires further 

research. Similar geomorphology to Dangila may be expected in the previously 

mentioned regions due to the similar climate and geology (Grove, 1986; Burke and 

Gunnell, 2008). 
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Figure 9-3. map of Africa with estimated depth to groundwater (from Bonsor and MacDonald (2011)) 

9.4 Transferability of methodology 

The methodology of this research is confidently transferable. While a thorough review of 

background information and previous work is always recommended (Chapter 3), not all 

the field investigations applied here (Chapter 4) would have to be carried out during a 

shallow groundwater resource assessment. Surveys of wells (measuring the depth, 

groundwater level and determining the seasonality) are invaluable for assessment of 

aquifer geometry, groundwater recession rates and areas of highest/lowest potential for 

increased abstraction. Such surveys, including questioning local stakeholders, enable 

qualitative determination of aquifer properties. If modelling is required, or accurate 

estimation of potential well yield, pumping tests must be applied to quantitatively 

determine aquifer properties, even though with hand-dug wells and manual water-lifting 

the method is quite rough-and-ready. Hydrochemistry and stable isotope analysis are 

useful in revealing aquifer connectivity and recharge mechanisms enabling development 

of the conceptual model.  
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Citizen science for the gathering of hydrometeorological time series (Chapter 5) is being 

successfully applied as part of a REACH accelerated project, “Water security risk science: 

local knowledge for participatory resource management”, (REACH, 2018) in Boloso 

Bombe woreda, SNNPR, based on, and improving, the Dangila programme. Other 

successful citizen science programmes with which potential collaborations have been 

discussed include Sierra Leone where community-based monitoring continued 

throughout the 2014-2016 Ebola virus epidemic when formal monitoring halted (Prof. 

Richard Carter and Peter Dumble, personal communication, 13 September 2016) and 

Burkina Faso where market gardeners plot groundwater levels in order to decide which 

crops to grow that season, or which alternative activities to pursue in the case of low 

levels, based on groundwater availability (Djibril Barry, WaterAid, personal 

communication, 8 December 2016). The latter example shows that, ultimately, 

communities conducting the monitoring can independently utilise the data for resource 

management with no external influence.  

The techniques applied during the recharge assessment (Chapter 6) are all transferable, 

though again, not all must be applied in shallow groundwater assessment studies. It is 

recommended, however, to apply as many methods as the available quality data allows 

as then more can be learnt about the hydrogeological system from the discrepancies in 

the results and greater confidence can be had over the final actual recharge range.  

The degree of parameterisation and time taken for calibration and simulation means 

SHETRAN modelling would not be feasible for shallow groundwater resource 

assessment at every study site (Chapter 7). However, as shown here, if time and data 

permit, SHETRAN can be used to show areas of greatest potential for productive 

groundwater use and determine the resilience of the resource in the face of various future 

scenarios (Chapter 8). The modelling results indicate that areas of groundwater potential 

could feasibly be identified from topographic and geological mapping 

9.5 Limitations of the study 

This discussion will consider the chapters separately. The limitation of the methodology 

being applied at a single study site is the subject of the discussion in the transferability 

section of this chapter. It should be noted that many of the limitations presented below 

may be considered opportunities for future work.  
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Limitations revealed by the literature review presented in Chapter 2  

Literature review revealed that the widespread use of groundwater for irrigation in South 

and East Asia suggested such growth could occur in SSA. However, as stated by 

MacDonald et al. (2009), the rapid expansion in groundwater use experienced in parts of 

Asia was only made possible through provision of cheap energy, credit and market 

integration, which catalysed private investment in productive aquifers, such as the deep 

sedimentary aquifer in Gujarat and the extensive basaltic aquifers of the Deccan (Kulkarni 

et al., 2000). Policies in Asia in the 1960s supported intensification of small-scale 

agriculture through massive public investment and price guarantees to raise smallholders’ 

incomes (Birner and Resnick, 2010). African governments today are dealing with greater 

conditionality structures from structural adjustment policies set up in the 1980-90s and 

African smallholders must deal with lower and more volatile prices (Dorward et al., 

2004). Additional factors compound the situation: Africa has traditionally seen a greater 

diversity in crops, i.e. the green revolution in Asia was dominated by just two crops, rice 

and wheat, and in Mexico by just maize and wheat (Mellor, 2014); SSA is more 

vulnerable to climate change (Collier et al., 2008), and; physical infrastructure is far 

inferior to Asia, leading to high input prices, notably fertiliser, and low output prices 

(Rashid et al., 2013; Mellor, 2014).  

At local-scale, there are numerous examples from SSA where the impact of smallholder 

irrigation has not lived up to expectations. Comas et al. (2012) report a situation in 

Mauritania where farmers resorted back to traditional rainfed and flood recession (beside 

the Senegal River) cropping because the returns were exceeded by start-up loan 

repayments and running costs. Considering drip irrigation systems introduced by NGOs, 

Friedlander et al. (2013) conducted surveys in Ethiopia, Malawi, Senegal and Zambia and 

found that 36% of farmers had abandoned the systems. The authors admit there is bias in 

their sampling technique towards successful adoption and present findings by Kulecho 

and Weatherhead (2005) from Kenya where 78% of farmers had abandoned drip 

irrigation systems within two years and by Belder et al. (2007) from Zimbabwe where 

68% of farmers had abandoned the systems within 1-2 years. Reasons for abandonment 

included water shortage, effort of dismantling, storing and reassembling the system 

according to season, and lack of funds for replacements following damage due to 

vandalism and by animals (particularly common with subsistence farmers). The final 

negative example comes from Fogera, east of Lake Tana in Ethiopia and approximately 

110 km northeast of the Dangila study site, where pumps can be rented cheaply and used 
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autonomously, unlike river diversions and dams that are controlled by water user 

committees (WUCs). Dessalegn and Merrey (2015) report that, seeing as there is no driver 

for cooperation, over-abstraction has led to water shortages with some rivers running dry 

in the dry season and a necessary shift from water intensive crops such as onions to grain. 

It is clear from these few examples that uptake of small-scale groundwater irrigation alone 

will not solve all problems of food insecurity and poverty. The important issues of 

availability of credit, ensuring equality for women and other disadvantaged groups, strong 

governance, and fluctuating crop prices are beyond the scope of this study. However, the 

fundamental issues of shallow groundwater availability and resilience were investigated 

and proved optimistic. The final example from Fogera in the previous paragraph bears 

out the requirement for such investigations. 

Chapter 4. Field investigations and development of conceptual model 

The field investigations described in Chapter 4 that led to development of the conceptual 

model were limited by the lack of exposures of the underlying geology. Basalt bedrock 

was frequently visible in streambeds (Figure 4-5) though exposures of the weathered 

regolith that constitutes the shallow aquifer were uncommon. Riverbank sections were 

present but the floodplains where these sections existed may have a different composition 

to regolith elsewhere. Borehole logs are unavailable, therefore, characterisation of the 

regolith relied on inspections of the few wells under construction with adjacent as-dug 

materials (Figure 4-4), community discussions recalling well excavations, and the 

pumping tests conducted on hand-dug wells. Record keeping of well excavations with 

simple logging (ease of excavation, colour and texture of material, depth of excavation) 

would greatly aid future hydrogeological investigations.  

In addition to this limitation of thorough understanding of aquifer properties, 

understanding of aquifer geometry also had limitations. Estimates of aquifer thickness 

were gained through extensive well depth and riverbank depth measurements. Such 

measurements were applicable where wells were excavated to basalt bedrock and the river 

had incised to basalt bedrock. In the case of wells, communities revealed that wells were 

typically excavated until further excavation became impossible, i.e. the materials were 

too strong to excavate, which was inferred as the base of the regolith aquifer. However, 

logic and experience elsewhere suggest that wells excavated in areas with perennial water 

supply would have been excavated to a point below the water table when water inflow 

made further excavation problematic, dangerous, and unnecessary. This may or may not 



210 

 

coincide with the base of the aquifer. Local communities also spoke of wells being dry 

though when dug less than 10 m away they hit water. As shown in Figure 4-6, this may 

be due to residual basalt boulders within the regolith though it is likely to also be due to 

a heterogenous surface of the basalt/regolith boundary, which would be more of a zone 

than a boundary. Therefore, well depth measurements may not be ideal for estimating 

aquifer thickness, however, it was the only available option. Geophysical investigations 

could better estimate aquifer thickness. Two-, or ideally three-, dimensional electrical 

resistivity tomography (ERT) surveys should differentiate the low resistance saturated 

clay-rich regolith and the high resistance basalt bedrock. Although, resistivity results 

obtained from GSE for surveys conducted in the Dangila area prior to commencement of 

this PhD were inconclusive. GSE, partners in the AMGRAF catalyst project, could not 

be persuaded to provide the raw geophysical data nor conduct further surveys. 

Chapter 5. Filling the observational void: Scientific value and quantitative validation of 

hydrometeorological data from a community-based monitoring programme 

The limitation of the community-based monitoring described in Chapter 5 concerns the 

groundwater level measurements and their consideration in conceptual and numerical 

model development. Only five wells were monitored, and they were within a few 100 m 

of each other. Ideally, for more confident extrapolation of water table response, many 

more wells could be monitored across the catchment representing different topographical 

and geological locations. 

Chapter 6. Insights from a multi-method recharge estimation comparison study 

A conclusion of Chapter 6 is that there is sufficient renewable shallow groundwater for a 

sustainable intensification of small-scale irrigation. However, the study did not consider 

potential future climate impacts on recharge. While studies applying GCMs and RCMs 

generally predict increased rainfall totals for Ethiopia (e.g. Mitchell et al. (2004); IPCC 

(2007)), this may not necessarily lead to increased recharge for two reasons: Firstly, these 

same studies generally predict increasing rainfall intensity that could reduce recharge due 

to enhanced runoff; secondly, the studies generally project rainfall increasing in the dry 

season and lessening in the wet season (notwithstanding the increases in wet season 

rainfall intensity) and a higher proportion of dry season rainfall would likely be lost to 

evapotranspiration (Carter and Parker, 2009). This limitation of Chapter 6 is not 

considered significant due to the relatively high recharge totals computed, i.e. the shallow 
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aquifer is not a marginally sustainable resource where lack of consideration of climate 

change impacts would be a serious limitation. 

Chapter 7. Modelling the shallow aquifer 

The limitations of the modelling presented in Chapter 7 begin with the previously 

discussed limitations on thorough understanding of aquifer properties and geometry. 

Three hydrogeological categories were applied with particular properties and layer 

thicknesses. This categorisation was selected for simplicity due to a lack of data for 

assigning more categories. It is likely that the aquifer has some heterogeneity in properties 

and in thickness that was not represented in the models. A similar limitation is the 

assignment of the three LULC categories. Existing LULC mapping was not identified at 

sufficiently high resolution for incorporation into the models (e.g. Setegn et al. (2011); 

ADSWE (2015)) and other maps shared by local partner IWMI of uncertain origin). 

Generating new LULC maps based on remote sensing was beyond the scope of this PhD. 

The assignment of LULC categories based on field observations and slope analysis was 

validated with comparisons with Google.Earth, however, there are areas within the 

catchments that are not correctly represented, i.e. cultivated though flat areas and sloping 

floodplains comprising pasture. Utilisation of MODIS or Sentinel imagery could provide 

improved LULC mapping, though, as shown in Figures 8-1 and 8-2, LULC is dynamic at 

the study site and a static map may not be representative for long. In addition to the 

assignment of LULC categories, the vegetation properties applied within SHETRAN 

were necessarily averaged for each category. The “Arable land” category comprises 

vegetation with a range of properties (e.g. from onions to Eucalyptus), especially in areas 

close to settlements where plots may be <0.1 ha and are often intercropped. Even high 

resolution remote sensing imagery with extensive ground truthing may struggle to 

provide LULC mapping across the catchments for which realistic vegetation properties 

could be confidently assigned.  

Concerning the time series inputs to the models described in Chapter 7, the scarcity of 

rainfall and PET time series within the modelled catchments meant extrapolating rainfall 

and PET measurements from a single point. This was not a significant limitation for the 

smaller and more homogenous high resolution Brante and Amen models that were used 

for the subsequent future scenarios analysis. However, the larger two Kilti models have 

greater ranges of elevation and topography meaning the blanket rainfall and PET inputs 

may have less accuracy in some areas of the catchments. Additionally, the 

aforementioned localised groundwater level measurements used for calibration were a 
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limitation of the modelling; ideally, groundwater level time series spread across the 

catchments would have been utilised.  

A limitation on the conclusions of Chapter 7, that is the maps showing the potential for 

an increase of small-scale irrigation, is the non-consideration of land ownership, 

governance and the finance for and availability of irrigation equipment. These issues must 

be addressed alongside issues of water resource availability to render the maps 

practicable. 

Chapter 8. Resilience of shallow groundwater resources 

The fact that the future scenarios described in Chapter 8 do not consider climate change 

may be considered a limitation. Even though it was shown that observed climate 

variability was much greater than climate change projections, this variability could be 

expected to become more extreme but by how much is not known (Smerdon, 2017).  

The quite short daily rainfall time series available for Dangila and Bahir Dar were a 

limitation as they meant that a synthetic long period time series had to be developed for 

future scenario simulation. If longer time series would have been available, then the return 

period of agricultural and hydrological droughts could have been estimated.  

It is likely that the LULC change scenarios will occur in tandem though this was not 

simulated. However, this is considered only a minor limitation as the combined effects of 

LULC changes can be estimated from the results, i.e. conversion of pasture to cultivated 

land combined with increased Eucalyptus planting would significantly negatively affect 

water resources. Similarly, the non-simulation of simultaneous LULC change and 

increased abstraction is not considered a limitation due to the lack of significant impacts 

from the abstraction scenarios. Detailed analysis of historic aerial or satellite imagery 

could be used to estimate the rate of different LULC changes and the Asia example could 

be further analysed to assess the rate of irrigation uptake. However, simulation of these 

combined changes would still be uncertain going forward as the rates and type of LULC 

change and irrigation uptake will vary according to various factors such as crop and fuel 

prices, government policy, climate, population growth, etc.   

A further limitation in the future scenarios modelling was exposed by the uncertainty over 

accurate simulation of the cropping cycle, i.e. different crop growth stages are not 

represented. This could be reduced with the implementation of a crop model within the 

SHETRAN program that would provide greater confidence in the conclusion that small-
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scale abstraction and irrigation will not negatively impact shallow groundwater and 

surface water resources. 

Summary of limitations 

It should be noted that most of these limitations are omnipresent with hydrogeological 

and hydrological modelling: aquifer properties and dimensions are never certain, 

vegetation properties are always variable, time series data for model set up and calibration 

are always fewer than desirable, climate change effects are uncertain, and socioeconomic 

factors typically complicate conclusions. Some of these limitations could be reduced with 

further work that was beyond the scope or financial means of this PhD. Other limitations 

would be difficult to resolve and must be considered when making recommendations 

based on this study. 

9.6 Future work 

Future work would involve testing the research findings at other field sites in Ethiopia 

and elsewhere. The topographic criteria identified in Dangila for areas of high potential 

for abstracting groundwater and the criteria for low potential areas could be tested 

thoroughly with a modelling assessment as carried out during this research though it may 

be enough to conduct water point surveys during a field hydrogeological assessment and 

query local stakeholders. In addition to testing the findings in areas of similar young 

volcanic geology, it would be enlightening to conduct comparative research in areas of 

similar climate but crystalline bedrock to determine if regolith hydrogeology really is 

independent of bedrock age and type. If this is the case, then the transferability of this 

PhD research widens substantially. To further target the research gap concerning shallow 

aquifers, in addition to research of regolith aquifers above crystalline basement, other 

common shallow aquifer types could be targeted for research such as unconsolidated 

coastal and river valley aquifers, and coastal limestone aquifers. These studies should be 

conducted at community scale; the scale at which understanding the potential and 

resilience of the groundwater resource could have a direct benefit to poor rural 

communities.  

As climate varies, land use changes and abstraction increases, the community 

hydrometeorological monitoring data can confirm or otherwise the resilience of the 

shallow groundwater and surface water resources, validating the modelling. It is 

important to continue this monitoring with regular feedback of results to the local 

community. Research in East Africa by Comte et al. (2016) indicates that local 
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stakeholders are critical of researchers who commonly do not share project findings. The 

study also found that communities want to be actively involved in water resource 

management. Therefore, the hope is that the Dangesheta community become independent 

with the monitoring and utilisation of the monitoring data as occurred in the Burkina Faso 

example described in the transferability section of this chapter. 
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Appendix A: Properties of shallow thin regolith aquifers in 

sub-Saharan Africa: a case study from northwest Ethiopia 

 

The following section is taken from a peer-reviewed conference paper submitted to and 

orally presented at the 7th RWSN Forum "Water for Everyone" in Abidjan, Côte d’Ivoire, 

in November/December 2016.  

Citation: Walker, D. (2016) 'Properties of shallow thin regolith aquifers in sub-Saharan 

Africa: a case study from northwest Ethiopia', 7th RWSN Forum "Water for 

Everyone". Abidjan, Côte d’Ivoire, Nov-Dec 2016. Available at: 

https://rwsnforum7.files.wordpress.com/2016/12/full_paper_0061_submitter_0

166_walker_david-rev1.pdf Retrieved 14 March 2017. 

 

Note that the references, as with all the appendices, are included within the main 

references list. 

A-1 Introduction 

It is well discussed that the hydrogeology of sub-Saharan Africa is poorly understood, 

particularly regarding shallow groundwater resources (Robins et al., 2006; Calow et al., 

2009b; MacDonald et al., 2009), even though such resources sustain the majority of the 

continent’s population (Lapworth et al., 2013). A knowledge of aquifer properties allows 

for calculations and models to assess groundwater recharge, abstraction potential, 

contamination risk, impacts of future climate variability, and management strategies. 

However, few data are available on shallow aquifer properties for this region (Bonsor et 

al., 2014).  

The most useful shallow aquifer properties are; hydraulic conductivity (K) – the ease by 

which water moves through an aquifer, specific yield (Sy) – the volume of water that 

drains from the aquifer per unit surface area of aquifer per unit decline of the water table 

(the drainable porosity), and well yield – the rate at which water can be abstracted from 

a well. 

As part of an ongoing project assessing the vulnerability of shallow aquifers in sub-

Saharan Africa, pumping tests were first conducted during a field visit to Ethiopia in 

March/April 2015, timed to coincide with the end of the dry season and period of greatest 

water scarcity. Further testing was undertaken during a second field visit in 

https://rwsnforum7.files.wordpress.com/2016/12/full_paper_0061_submitter_0166_walker_david-rev1.pdf
https://rwsnforum7.files.wordpress.com/2016/12/full_paper_0061_submitter_0166_walker_david-rev1.pdf
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October/November 2015 at the end of the wet season. In order to estimate hydraulic 

conductivity, specific yield and well yield, tests were conducted on hand-dug wells in two 

locations within the Amhara region (Figure A-1). Both drawdown (the drop in water level 

within the well caused by pumping) and recovery (the increase in water level back to pre-

test level following cessation of pumping) were monitored then analysed using alternative 

methods.  

A-2 Testing Locations 

Seven wells were tested within Dangila woreda (Figure A-1), benefiting from and 

enhancing relationships established by a community-based monitoring programme which 

has been ongoing since March 2014 (Walker et al., 2016). A further well was tested in 

Robit-Bata kebele, 80 km northeast of Dangila woreda, close to the city of Bahir Dar. 

All of the wells tested were located within weathered basalt regolith above variously 

massive, vesicular and/or fractured basalt. Tested wells ranged in depth from 3.55 to 

10.09 metres below ground level (mbgl) with (often irregular) diameters of around a 

metre (+0.2 m). Wells are excavated by hand with picks and shovels until the solid 

geology is hit. Therefore, water column height is considered the saturated thickness of 

the aquifer and in the tested wells ranges from 0.54 to 3.85 m in the dry season and 1.99 

to 6.34 m in the wet season. These ranges of well geometries and water depths are typical 

of hand-dug wells in the areas. Wells were selected to cover a range of topographies from 

floodplains, to valley slopes, to higher elevations, in an area of moderate relief within the 

Ethiopian Highlands.  
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Figure A-1. Geographical distribution of testing locations. 

A-3 Methodology 

Motor pumps were not available, therefore, water was removed from wells using manual 

methods. Water-lifting incorporated a rope and bucket; the bucket being a modified 

HDPE water container. At least two people were involved in water-lifting (Figure A-2) 

which helped to maintain a largely constant discharge rate.  

A pressure transducer measuring every two seconds was placed in the well prior to 

starting a test and water levels were also manually measured using a dip-meter. The 

volume of the emptying water container was measured in addition to well diameter and 

depth. The number of buckets abstracted per minute was monitored to calculate the 

pumping rate. The pumping rate varied between wells from 2 litres/minute to 15 

litres/minute (with one exception) dependent on the size of the container and the depth to 

the water table; the smallest container and deepest water table giving the slowest pumping 

rate. The test in Robit-Bata kebele had a pumping rate of 30 litres/minute being the only 

tested well with a pulley and double bucket system, which leads to much more efficient 

water lifting.  

Water was abstracted until the well water column was reduced by at least 10%. The 

necessary time to remove the entire well volume or to reach steady-state conditions with 
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the equipment available would have been excessive and extremely labour-intensive. More 

importantly, given that the first field visit took place during the period of greatest water 

scarcity, it would have been unethical to attempt to reduce the water level in the wells to 

near empty. In order not to waste water, all containers that each household possessed were 

filled during pumping tests and further water was used for backyard irrigation and for 

watering livestock. The recovery of the water level was monitored with no additional 

abstraction.  

 

Figure A-2. Photographs of pumping tests. 

A-4 Analysis 

Selecting analysis methods was not straightforward. The shallow aquifer here may be 

unconfined, however, a low-permeability though leaky clay-rich layer is commonly 

observed in weathered igneous regolith profiles above more permeable material which 

hosts the aquifer (Taylor and Eggleton, 2001; Sharp, 2014).  In addition, it is suspected 

that fractures in the underlying solid geology are influential. There is further uncertainty 

over whether the wells are fully-penetrating; wells are generally excavated until solid 

geology is hit though they may be partially penetrating if a boulder was struck (such 

boulders are commonly observed in regolith stream bank sections) or where water tables 

are shallow (i.e. on floodplains).  

The Moench (1985) method was selected because it considers leaky aquifers and large-

diameter wells, i.e. well bore storage is included, and is straightforward to use on 

AquiferWin32 software. The method requires: well geometry, aquifer thickness, pumping 

rate, and a time-series of drawdown. Given that the period of pumping was quite short 

and did not reach steady state, only a small portion of curve was available for matching 

to provide values for hydraulic conductivity and specific yield. Therefore, there is a 
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potential error on the results though it is likely to be less than the natural variation of the 

aquifer material. However, the specific yield values resulting from this method were often 

considered impossibly low (< ~1 x 10-6), as they are computed from early time data which 

is considered in pumping test analysis to be the least reliable, and have not been included 

when calculating averages (Table A-1).  

Recovery data was analysed using nomograms presented by Barker and Herbert (1989) 

to facilitate application of the solution of Papadopulos and Cooper (1967) to recovery 

tests on large-diameter wells. The method requires: well geometry, pumping rate and 

period, drawdown at the end of pumping, and time taken for 25%, 50% or 75% recovery, 

and provides values for transmissivity (T) (the rate at which water flows horizontally 

through an aquifer; T = K multiplied by aquifer saturated thickness) and specific yield. 

Values for hydraulic conductivity were derived by dividing the transmissivity by the 

measured saturated thickness. 

Potential well yield is considered the maximum continuous abstraction, i.e. pumped to 

steady-state, that a well could be subjected to without drying out. In this case, “drying 

out” is considered to be a water depth of 0.3 m which is the minimum depth from which 

water could be abstracted using bucket and rope methods or without excessive sediment 

intake in a motor pump. Well yield (Q) was calculated with the application of the Thiem 

(1906) equation:   

𝑸 =  
𝑲(𝑯𝟐 −  𝒉𝟐)

𝑪 𝐥𝐨𝐠(𝑹
𝒓⁄ )

 
 (A-1) 

Hydraulic conductivity (K) was taken from the pumping test analyses, saturated thickness 

(H) and well radius (r) were as measured prior to testing, water depth (h) was fixed at 

0.3 m, C is a constant equal to 0.733, and the radius of the cone of depression (R) was 

varied from 5-20 m.  

A quick yield calculation was also conducted simply by dividing the recovered well 

volume by the time taken for recovery and multiplying by the abstractable saturated 

thickness. 

A-5 Results 

Given the uncertainties over well and aquifer geometry, hydraulic conductivity and 

specific yield results are sufficiently similar from the drawdown and recovery analyses to 

indicate suitability of methods (Table A-1). The largest differences in properties between 

testing methods are within the natural variation of the aquifer materials. 
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Table A-1. Aquifer properties determined by pumping tests; K = hydraulic conductivity and Sy = specific 

yield. The Sy results in italics are considered unreliable (see text) and were not used to calculate averages. 

Note the quick yield estimate is calculated during recovery, as described in the text. NR = no result. The 

test labelled “unable to analyse” (Well dw32) resulted in a drawdown time series that could not be 

explained or analysed (see plot in Sub-Appendix A-1). Note that an uppercase well ID, e.g. DW73, 

denotes a well originally surveyed by Demis Alamirew whereas lower case, e.g. dw6, indicates a well 

surveyed only by David Walker. 

     
Well yield (l/s) 

 Well ID Test length (mins) K (m/d) Sy quick Thiem 

End of the dry season 

Dangila 

Drawdown DW73 (MW2) 16 1.3 0.12  0.02 

 dw6 21 3.1 0.08  0.02 

 DW77 (MW4) 32 0.7 0.03  0.12 

 DW61 32 5.3 0.11  0.01 

 dw7 48 1.4 NR  0.01 

Recovery DW73 (MW2) 76 6.4 0.32 0.10 0.11 

 dw6 61 3.6 0.13 0.09 0.03 

 DW77 (MW4) 133 1.5 1 x 10-5 0.22 0.26 

 DW61 56 2.0 NR 0.05 0.01 

 dw7 114 0.2 0.06 0.05 0.001 

Robit-Bata 

Drawdown RB 13 1.8 0.03  0.20 

Recovery RB 138 0.4 NR 0.26 0.04 

End of the wet season 

Dangila 

Drawdown DW73 (MW2) 27 3.7 3.6 x 10-6  0.29 

 dw6 18 6.1 3.2 x 10-6  0.27 

 DW77 (MW4) 14 2.8 7.8 x 10-7  1.5 

 dw32 29 Unable to analyse 

 dw33 12 6.8 2.4 x 10-6  0.80 

Recovery DW73 (MW2) 41 22.3 0.05 1.0 1.8 

 dw6 65 19.0 0.1 0.31 0.76 

 DW77 (MW4) 30 6.2 0.07 2.5 2.8 

 dw32 46 Unable to analyse 

 dw33 82 10.3 0.1 0.50 1.2 

 

Significantly, the result from Robit-Bata is consistent with those from Dangila confirming 

field observations of the similarity of the regolith of both areas. This outcome suggests 

that conclusions reached on the hydrogeology may be transferrable to other shallow 

aquifers above basalt bedrock throughout Ethiopia. Continuing research is required to 
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determine if findings on the shallow aquifer in this region are potentially transferrable 

across a wider area as studies have shown that regolith has hydrogeologically similar 

characteristics across a variety of rock types (Jones, 1985). 

The mean dry season hydraulic conductivity values derived from all wells using analysis 

of both drawdown and recovery data is 2.3 m/d with a median of 1.6 m/d, a range of 0.2 

to 6.4 m/d and a standard deviation of 1.95. The mean wet season hydraulic conductivity 

is 9.7 m/d with a median of 6.5 m/d, a range of 2.8 to 22.3 m/d and a standard deviation 

of 7.19. This disparity between seasons is not only of transmissivity but hydraulic 

conductivity, therefore, is not explained by greater saturated thickness. Layers of higher 

hydraulic conductivity must exist within the higher water column during the wet season. 

The implication of this finding is significant; not only would wells excavated more deeply 

below the water table have higher well bore storage, but they are more likely to intercept 

more transmissive (water-bearing) layers providing greater yield, unless such layers only 

exist at shallower depths. Estimates of well yield are generally >1 l/s in the wet season 

when the water column is high though this may drop an order of magnitude during the 

dry season.  

The hydraulic conductivity results are comparable to studies of regolith elsewhere in 

Africa:  Olaniyan et al. (2010) report a range of 0.30 to 9.36 m/d (average: 2.13 m/d) from 

a study in Nigeria, Taylor and Howard (1998) report a range of 0.3 to 3.0 m/d in Uganda, 

while 0.05 to 1.5 m/d is reported by Chilton and Smith-Carington (1984) in Malawi. A 

textbook range for weathered igneous regolith presented by Taylor and Eggleton (2001) 

is 0.09 to 1.7 m/d. 

It is well reported that there are few data on specific yield of regolith, or indeed any, 

aquifers in Africa (MacDonald et al., 2012a). From all seasons and locations the specific 

yield range of 0.00001 to 0.32 and mean of 0.09 (median of 0.08 and standard deviation 

of 0.079) is similar to the wide range quoted by Jones (1985) of 0.00001 to 0.1 for Central 

Africa and higher than the 0.003 reported by Taylor et al. (2010). Bahir Dar University 

laboratory assessment of density, porosity and field capacity of five bulk samples enabled 

estimation of a specific yield range of 0.052 to 0.219 for weathered basalt regolith from 

Robit-Bata kebele (D. L. Yilak, personal communication, March 2015). A textbook range 

for specific yield of regolith presented by Fetter (2001) is 0.15 to 0.3. 
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A-6 Conclusions  

Pumping tests conducted on hand-dug wells in northwest Ethiopia provide mean 

hydraulic conductivity values of 2.3 m/d in the dry season and 9.7 m/d in the wet season 

(median = 1.6 and 6.5 m/d), and a mean specific yield value of 0.09 (median = 0.08). 

These values contribute to the extremely sparse data available in published literature for 

shallow regolith aquifers in sub-Saharan Africa. Calculations of well yield 

(average = 0.5 l/s) indicate that penetrating a substantial saturated thickness of aquifer 

(>3 m below water table) to maximise water column height is as important for achieving 

desirable yield as locating areas of high hydraulic conductivity. A well or borehole fitted 

with a handpump must be able to sustain a supply of >0.1 l/s (preferably 0.3 l/s) to supply 

a community (MacDonald et al., 2012a). Irrigation demand depends on crop type and 

local environmental conditions, though these are less significant when considering 

general feasibility. For the range of crops and conditions likely to be encountered at the 

study site, daily water use can be calculated as approximately 1 l/s/ha (Brouwer et al., 

1992). Given this calculated irrigation requirement, the well yield estimations give some 

optimism that small scale irrigation, in addition to the existing community supply, is 

achievable from hand-dug wells in shallow regolith aquifers. Further research is required 

to determine the transferability of findings, though similarities in results from wells some 

distance apart and with published results suggest the findings may be transferable to other 

areas of shallow weathered regolith aquifers across sub-Saharan Africa and certainly to 

shallow weathered basalt regolith aquifers within Ethiopia. Knowledge of aquifer 

parameters is vital in constructing models for simulation of climate change impacts and 

in developing management strategies for sustainable development of shallow 

groundwater resources.  
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Sub-Appendix A1 – Plotted pumping test data  

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1000 2000 3000 4000 5000 6000

D
ra

w
d

o
w

n
 (

m
)

Elapsed time (s)

Well: DW73 (MW2) - dry season

Dip meter

Pressure transducer

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1000 2000 3000 4000 5000 6000

D
ra

w
d

o
w

n
 (

m
)

Elapsed time (s)

Well: dw6 - dry season

Dip meter

Pressure transducer



287 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2000 4000 6000 8000 10000 12000

D
ra

w
d

o
w

n
 (

m
)

Elapsed time (s)

Well: DW77 (MW4) - dry season

Dip meter

Pressure transducer

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1000 2000 3000 4000 5000 6000

D
ra

w
d

o
w

n
 (

m
)

Elapsed time (s)

Well: DW61 - dry season

Dip meter

Pressure transducer



288 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2000 4000 6000 8000 10000 12000

D
ra

w
d

o
w

n
 (

m
)

Elapsed time (s)

Well: dw7 - dry season

Dip meter

Pressure transducer

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
ra

w
d

o
w

n
 (

m
)

Elapsed time (s)

Well: RB - dry season

Dip meter

Pressure transducer



289 

 

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 500 1000 1500 2000 2500 3000 3500 4000 4500

D
ra

w
d

o
w

n
 (

m
)

Elapsed time (s)

Well: DW73 (MW2) - wet season

Dip meter

Pressure transducer

0

0.05

0.1

0.15

0.2

0.25

0 1000 2000 3000 4000 5000 6000

D
ra

w
d

o
w

n
 (

m
)

Elapsed time (s)

Well: dw6 - wet season

Dip meter

Pressure transducer



290 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

0 500 1000 1500 2000 2500 3000

D
ra

w
d

o
w

n
 (

m
)

Elapsed time (s)

Well: DW77 (MW4) - wet season

Dip meter

Pressure transducer

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
ra

w
d

o
w

n
 (

m
)

Elapsed time (s)

Well: dw32 - wet season

Dip meter

Pressure transducer

Unable to analyse



291 

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1000 2000 3000 4000 5000 6000

D
ra

w
d

o
w

n
 (

m
)

Elapsed time (s)

Well: dw33 - wet season

Dip meter

Pressure transducer



292 

 

Appendix B. Hydrochemistry field investigations at Dangila 

woreda 

 

B-1 Introduction 

Groundwater sampling and in-situ testing was initially undertaken during the first field 

visit in March/April 2015 at the end of the dry season. All samples and tests were taken 

from traditional hand-dug wells (HDWs) or springs. Samples were analysed principally 

at laboratories in Ethiopia with some samples tested in the UK to assess consistency and 

accuracy of the results. Laboratory analysis consisted of major ion and stable isotope 

testing. In-situ testing consisted of measurement of field pH, temperature and electrical 

conductivity. 

Much of the sampling and testing was repeated during the second field visit in 

October/November 2015 at the end of the wet season. In addition, the sampling and 

testing regime included deep boreholes, surface water, rainwater, and radon-222 

measurements. 

B-2 Purpose of sampling and in-situ testing 

The aims of the sampling and in-situ testing programme were: 

 Identification of water types: (i) higher yielding wells may have a particular 

chemical signature; (ii) there may be areas where groundwater is chemically 

unsuitable for certain uses. 

 Assessment of aquifer connectivity: (i) if nearby wells and springs have 

contrasting hydrochemistry then it may indicate low connectivity, (ii) similar 

hydrochemistry at distant locations may indicate preferential groundwater flow 

paths. 

 Groundwater aging: (i) very low ionic concentrations would indicate recently 

recharged groundwater; (ii) it may be possible to estimate groundwater residence 

times to indicate areas of greatest storage and therefore the least vulnerability to 

climate variability. 

 Recharge mechanism: (i) estimations on the degree of evaporation prior to 

recharge could indicate if recharge occurs during intense storm events or is more 

diffuse, (ii) the role of floodplains to act as recharge basins could be evaluated, 

(iii) it would suggest whether recharge occurs locally or ubiquitously. 
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 Consistency of groundwater: (i) comparisons with testing results from previous 

studies will suggest whether the samples are representative, (ii) such comparisons 

will also show whether the groundwater is changing over time. 

 Identification of losing and gaining reaches of surface water to aid conceptual 

model development. 

B-3 Sampling locations 

Sampling locations were identified prior to the field visit utilising data collected by Demis 

Alamirew of GSE during fieldwork in February/March 2014 as part of the AMGRAF 

catalyst period. Sampling locations were selected to give a distribution of groundwater 

analyses from various catchments, topographic positions, altitudes, kebeles, positions in 

the catchment; e.g. close to the watershed or close to rivers, geologies; e.g. from fractured 

or vesicular basalt with or without regolith or alluvium, seasonal and perennial sources, 

springs and wells, shallow and deeper water tables, zones of various groundwater 

potential indicated by SHETRAN modelling of low-flows by Dr Geoff Parkin during the 

AMGRAF catalyst period, and zones of various groundwater potential indicated by 

Demis Alamirew according to geological formation and field investigations.     

It was not possible to keep entirely to the sampling location plan during the field visit due 

to occasional springs or wells being dry and a number of pumps being broken. 

Furthermore, the selection of sampling points according to geology, particularly 

regarding bedrock, was generally unfeasible due to outcrops being restricted to riverbeds 

and banks. Superficial geology was occasionally easier to identify from well excavation 

arisings or by peering into the well shaft. However, the generally ubiquitous weathered 

basalt regolith or clayey sandy floodplain materials above variously massive, vesicular 

and/or fractured basalt meant sampling according to precise geology was overly-

ambitious.  

The geographical distribution of the sampling locations is presented in Figure B-1. During 

the second field visit, ten locations were resampled; more resamples were proposed but 

non-functioning wells made this impossible. New sampling sites included transects of 

surface and groundwater to test hypotheses from the conceptual model development. The 

ease of in-situ testing meant that measurements were taken at many other sites in addition 

to the sampling locations; wherever it was thought results could provide useful 

information. 
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Figure B-1. Geographical distribution of sampling locations (red triangles) across Dangila woreda (black 

outline). The background is a DEM with green being the lowest elevation and blue the highest elevation. 

B-4 Sampling methodology 

Sampling was conducted in accordance with accepted international standards and 

guidelines (Gov. WA, 2009; CCME, 2011; IAEA, -). A polypropylene syringe was rinsed 

several times in sample water prior to filling for sample collection. Sample water was 

collected directly from the hand pump or rope-and-washer pump outlet, from a collection 

bucket on a rope (typically a doctored 10-litre HDPE jerry can) or the point of emergence 

of a spring (Figure B-2). New nalgene bottles were used for sampling, which were 

brought from the UK. Major ion samples were filtered through 0.2 μm Supor® Membrane 

into 125 ml bottles. Two 125 ml samples were collected and filtered at each sampling 

location, one for cation analysis and one for anions; the sample for cation analysis having 

the addition of three to four drops of nitric acid preservative. Stable isotope samples were 

collected in 60 ml bottles with no filtration or preservative. Care was taken to keep the 

bottles clean and avoid contamination during sampling. In addition to tightly capping, 

samples had their caps sealed further with electrical insulation tape to restrict the 

possibility of evaporation from the bottles.  
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Figure B-2. Receiving local assistance sampling and in-situ testing from a developed spring (left) and a 

rope and washer pump. 

Wells were not purged to commonly proposed standards prior to sampling. Pumping tests 

showed that the hydraulic conductivity of the shallow aquifer is quite low and water level 

recovery in the wells was slow following abstraction. Given that the first field visit took 

place during the period of highest water scarcity it would have been unethical to attempt 

to purge several (typically three) well volumes prior to sampling. What’s more, HDWs 

in the area have diameters of around a metre and consequently well bore storage is high. 

The necessary time to remove several well volumes with the equipment available would 

have been excessive and extremely labour-intensive. However, sampling preferentially 

took place from wells that experienced heavy use and/or following use in order for the 

collection of water by the local community to mimic controlled purging. In addition, 

sampling preferentially took place from sealed sources, which were not open to 

evaporation, such as hand pumps, rope-and-washer pumps, and springs at the point of 

emergence. To restrict the sampling of groundwater that had potentially undergone 

evaporation, samples from open wells were collected following abstraction of water 

during pumping tests, which in effect was a low volume purge of the well.     

On each sample bottle the sample number, site name, sampling date and required analysis 

was marked with indelible marker. For each sample location the following information 

was recorded: sample number, woreda, kebele, site name, GPS coordinates, GPS altitude, 

sampling date, geology, field pH, temperature, electrical conductivity, well depth, depth 

to water, pump or cover type, flow estimate (if a spring), adjacent land use, immediate 

topography, wider topography, mode of emergence (if a spring), use (e.g. domestic, 

irrigation, etc.), seasonality, and any other information that could be pertinent, such as the 

history of the feature, either observational or through conversation with local users.  
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Samples were stored in a cool dark place until transportation to the laboratory; the average 

storage period being eleven days for the first field visit and three days for the second. 

B-5 Major ion hydrochemistry 

B-5-1 Analysis  

Major ion analysis took place at ADSWE (Amhara Design & Supervision Works 

Enterprise) Laboratory in Bahir Dar, Ethiopia. ADSWE is a modern and professional soils 

and water testing laboratory currently working towards international accreditation. Anion 

analysis was undertaken by a Palintest 2700 photometer utilising Dionex ion 

chromatography, with the exception of bicarbonate and carbonate that was analysed by 

titration. A Nova 300 Series utilising atomic absorption spectroscopy undertook cation 

analysis. Analysis equipment was calibrated in accordance with manufacturer’s 

instructions. 

Major ion analysis consisted of testing for Ca2+, Mg2+, Na+, K+, HCO3
-, Cl-, SO4

2- and 

NO3
-. In addition, some samples were analysed for CO3

2-, F- and Fe2+. Analysis for Fe2+ 

was deemed pertinent due to common red staining of filters during sampling. Samples 

were analysed for F- because Ethiopia is known for having problems with fluorosis caused 

by groundwater, though excess F- in groundwater is generally found in the Rift Valley 

and from deep wells (Kloos and Haimanot, 1999; Tekle-Haimanot et al., 2006; Kebede, 

2013).  

B-5-2 Quality assurance 

A sample was collected in triplicate with one sample submitted blind to the laboratory 

and the third brought to the UK for analysis at Newcastle University. The average 

difference between measured concentrations of the samples tested by ADSWE was 

16.6%. The average difference between measured concentrations of ADSWE vs 

Newcastle University tested samples was 26.2% for anions and 71.1% for cations. The 

discrepancies between the triplicate samples appear high; particularly in the case of 

cations tested at Newcastle University, which gave significantly higher concentrations 

than for all samples analysed in Ethiopia. This sample also showed a high positive ionic 

balance error of 15.9%. The cause of the discrepancies was investigated and several 

possibilities can be ruled out: 

 Contact with the laboratories indicated that all equipment had been recently 

calibrated. 
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 A review of manufacturers’ datasheets and discussion with equipment operators 

revealed that the discrepancies are in excess of the tolerance of the analysis 

equipment. 

 Following discussion with operators of such equipment at Newcastle University, 

the natural variations in hydrochemistry within a sample could not account for 

such discrepancies.  

 The sample that appeared to contain excessive cations was retested at Newcastle 

University to determine if an erroneous result had been obtained. Almost identical 

concentrations were measured. 

It is therefore suggested that the sample with excessive cations had become contaminated. 

It is worth noting that, given the very low concentrations of all major ions, reduction of 

just 5 mg/l of calcium, magnesium and potassium would bring the ionic balance error 

within ±5%. However, the cation concentrations would still be significantly higher than 

those measured in Ethiopia. A sample collected in duplicate during the second field visit 

and analysed at ADSWE and at Newcastle University showed an average difference 

between measured concentrations of just 1.3% further suggesting that the triplicate 

sample from the first visit had become contaminated.  

Regarding the first field visit, ionic balance calculations in only 35% of the samples were 

within ±5% and 82% of samples were within ±10% with an average ionic balance error 

of 6.6%. From the second field visit, just 12.5% of samples were within ±5% while only 

43.8% of samples were within ±10% and the average ionic balance error is 12.9%. Three 

possibilities are identified which could (singularly or together) be causing the high ionic 

balance errors:   

1) Major ion concentrations within the groundwater samples are low, often at trace 

level. Therefore, trace elements, which are usually unimportant in calculating 

electroneutrality, are having an impact. For the first field visit, 73% of the ionic 

balance errors greater than ±5% are in the negative suggesting there are 

unanalysed cations affecting the ionic balance. To substantiate this claim, it was 

intended that subsequent testing regimes would include trace metal analysis such 

as aluminium and silica (considering the mineralogy of the shallow aquifer). 

Unfortunately, when the samples from the second visit were delivered to the 

ADSWE laboratory they informed us that such analysis could not be undertaken 

at that time due to a shortage of necessary equipment consumables. However, 

samples from the second visit in all but one case show high positive ionic 
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imbalances and therefore an excess of cations perhaps indicating the presence of 

unanalysed anions. This suggestion of unanalysed ions influencing 

electroneutrality is supported by the higher TDS of samples with greatest ionic 

balance error though analysed concentrations are not significantly different. 

2) Because the major ion concentrations are low, small errors in concentration 

measurement (due to the equipment, the operator, or minor contamination) would 

be amplified when calculating percentage errors. 

3) There is of course the third possibility that the major ion analysis is unreliable and 

significant conclusions should not be drawn from the groundwater chemistry 

analysis. 

B-5-3 Results 

The results of the major ion analysis are presented in Tbale B-1 and Table B-2. 

Considering the first field visit, there was not great variation among the shallow 

groundwater analyses. In trying to assign water types there are three samples with very 

low EC and dissolved ion concentrations (TDS all <25 mg/l) that could be considered the 

youngest, i.e. most recently recharged, groundwater. However, perhaps unexpectedly 

given the proposed short groundwater residence time, SI/A/C 1 and 3 are from sources 

with very good perennial supply. An older water type could be assigned to the 

groundwater with higher concentrations of HCO3
- and Ca2+ and highest EC (TDS all <150 

mg/l). Such groundwater (SI/A/C 7, 8, 9, 11 and 18) has a longer residence time though 

again, similar to the youngest water type, the sampling locations have few similarities. 

There are not significant enough differences to assign water types or identify a 

hydrochemical signature of the highest yielding sources. Although there is the possibility 

that all of the samples represent the water type for good perennial water sources because 

the seasonal wells were dry in March/April and couldn’t be sampled.  

Considering the second field visit, there is not great variation among and between the 

shallow groundwater and surface water analyses though the deep groundwater has a 

different signature. The deep groundwater has low calcium and high sodium suggesting 

ion exchange. pH is high at 8.8 (possibly due to release of CO2 from the water). The 

groundwater is likely to be old – as would be expected from boreholes >100 m deep – as 

it has high EC (>300 µS/cm), high bicarbonate and has taken time for Ca-Na exchange. 

Nitrate and sulphate are both low due to little human input and reducing waters. It may 

have been expected to see bicarbonate to sulphate exchange and this may have occurred 

followed by sulphate reduction, though there is no evidence of sulphide (not analysed but 
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no smell). However, sulphide could have precipitated out as FeS2, which is why iron 

concentration is lower than may be expected in a (suspected) low to zero dissolved 

oxygen water, though this sulphate reduction would have reduced the pH. Generally, the 

EC and ionic concentrations are lower than the first field visit, which indicates that at the 

end of the wet season the analysed groundwater had been recently recharged. However, 

repeat tests show very similar chemistries suggesting a longer (months rather than 

days/weeks) residence time. Surface water samples show similar chemistries to shallow 

groundwater samples though with EC at the lower end (around 100 µS/cm) and pH at the 

upper end (around pH 6.5).  

Table B-1. Results of in-situ testing and laboratory analysis from first field visit in March/April 2015. All 

the samples are shallow groundwater. 

 

* The field pH meter was suspected to have been reading 0.25-0.5 pH too low (see text). 

Triplicate samples highlighted grey (SI/A/C7, 8 and 9) with the sample tested at Newcastle University highlighted darkest. 

 

 

 

 

 

 

 

 

Calculated 

from EC

Temp. (oC) pH* EC (μS) TDS (mg/l) Ca2+ Mg2+ Na+ K+ Fe2+ Cl- F-
SO4

2- NO3
- HCO3

- CO3
2- δ18O δ2H

SI/A/C 1 DW43 20.9 5.19 50.62 25 8.83 1.07 0.08 2.65 0.1 1.5 0.31 2.8 2.7 25.8 0 1.70% -2.14 -0.17

SI/A/C 2 dw4 20.8 5.84 99.7 50 10.8 1.44 2.4 7.5 2.93 3.2 0.5 8.2 1.54 35.4 0 8.52% -1.81 0.23

SI/A/C 3 CS42 22.1 5.31 48.67 24 14.1 2.42 0.08 5.13 0.01 0.8 0.8 2.4 2.34 50.2 0 3.11% -1.56 -0.58

SI/A/C 4 DW56 22.9 5.53 171.9 87 12.5 2.28 0.08 0.15 0.01 2.6 0.21 1.5 4.85 48.8 0 -9.63% -1.24 3.64

SI/A/C 5 DW73 20.3 5.83 130.7 66 14.6 2.37 1.73 0.42 0.2 0.5 0.22 1.1 4.37 52.0 0 2.26% -1.55 1.98

SI/A/C 6 dw6 22.3 5.57 144.2 73 15.5 2.23 0.08 0.83 0.03 4.9 0.3 1.2 1.98 40.2 0 6.10% -2.54 -3.58

SI/A/C 7 DW79 25.2 6.88 334.9 172 19.4 3.4 0.08 1.74 0.01 3.7 0.31 1.1 2.9 85.2 0 -10.08% -1.91 no result

SI/A/C 8 DW79 25.2 6.88 334.9 172 17.5 3.07 0.08 3.43 0.01 4.1 0.41 2.3 3.05 80.3 0 -12.03% -1.36 1.67

SI/A/C 9 DW79 25.2 6.88 334.9 172 41.9 16.7 9.0 0.99 0.002 5.597 0.116 1.167 2.822 15.89%

SI/A/C 10 CS12 22 5.98 217.6 111 21.7 4.24 5.03 0.04 0.01 1.2 0.35 1.5 4.95 95.1 0 -2.08% -1.48 0.27

SI/A/C 11 DW18 25.9 6.66 481.9 249 19.8 3.61 17.55 3.21 0.01 2.1 0.43 2.1 1.99 152.2 0 -10.90% no result 0.59

SI/A/C 12 DW2 21.9 5.76 200.4 102 18.4 3.44 0.08 2.13 0.01 1.3 0.32 0.84 3.2 90.4 0 -12.03% -1.83 -2.12

SI/A/C 13 dw10 22.1 5.69 44.29 22 10.1 1.78 2.87 1.03 0.01 1.4 0.33 0.92 2.65 38.5 0 3.37% -1.95 -2.74

SI/A/C 14 DW21 24.7 6.17 174.0 88 17.4 2.81 4.6 1.54 0.01 1.3 0.4 6.2 1.48 60.2 0 5.60% -1.85 0.76

SI/A/C 15 DW22 24 6.31 264.4 135 18.8 2.94 2.54 2.29 1.65 0.7 0.56 1.6 1.22 97.3 0 -9.30% -2.86 -5.04

SI/A/C 16 dw15 23.4 5.69 196.8 100 18.7 3.12 0.1 1.14 4.3 1.7 0.28 1.4 2.37 86.1 0 -5.63% no result no result

SI/A/C 17 cs6 22.2 6.09 189.6 97 23.3 3.87 0.8 1.24 0.01 1.2 0.37 1.1 2.5 91.2 0 -2.00% -1.97 -1.45

SI/A/C 18 dw30 21.9 5.99 309.4 159 27.1 3.18 0.19 9.06 0.7 2.7 0.25 1.2 4.12 125.4 0 -8.67% -2.16 -0.02

no sample

Sample 

number

In-situ field measurement Laboratory analysis (mg/l) Ionic 

balance 

error

Laboratory analysis 

(%o VSMOW)
Location 

ID
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Table B-2. Results of in-situ testing and laboratory analysis from second field visit in October/November 

2015. 

 

* The field pH meter is no longer thought to have been reading low (see text). 

Duplicate samples highlighted grey (2SI/A/C18 and 19) with the samples tested at Newcastle University highlighted darkest. 

The piper diagrams in Figure B-3 show that the surface water and shallow groundwater 

belong to the “bicarbonate calcium” type typical of recent recharge. The deep 

groundwater is of “bicarbonate sodium” type indicative of higher mineralisation due to 

longer residence time and greater distance of flow. The shallow groundwater samples 

from the wet season plot more closely to the surface water samples indicating a high 

degree of interconnectivity between the surface and shallow groundwater. This was 

expected in the wet season from the observed very shallow water table. 

Calculated 

from EC

Temp. (oC) pH* EC (μS) TDS (mg/l) Ca2+ Mg2+ Na+ K+ Fe2+ Cl- F-
SO4

2- NO3
- HCO3

- δ18O δ2H

2SI/A/C1 DW56 Groundwater 22.9 5.61 167.7 107 15.88 6.5 8.65 1.91 2.70 1.10 10.50 51.85 22.09% 5.74 -0.47

2SI/A/C2 dw21 Groundwater 30.9 6.71 403.5 258 45.67 5.5 16.21 4.71 2.60 3.20 0.96 140.30 18.34% -0.45 -0.41

2SI/A/C3 cs6 Groundwater 22.9 6 188.70 121 19.85 5.5 13.1 0.85 2.70 5.20 3.76 54.90 27.99% 3.46 -0.01

2SI/A/C4 DTW3 Deep Groundwater 22.9 8.77 315 202 2.55 4.05 34.1 1.84 0.01 0.90 0.47 1.10 0.98 97.60 8.23% -3.98 -1.63

2SI/A/C5 dw31 Groundwater 21.8 5.55 136.4 87 14.73 5.01 10.4 1.24 2.20 8.10 3.70 51.85 17.72% 10.59 0.41

2SI/A/C6 D3 Deep Groundwater 21.8 8.81 335 214 0.97 4.51 34.5 1.86 0.01 2.50 0.64 0.50 1.44 97.60 6.23% -1.02 -1.61

2SI/A/C7 RFL39 Rain 0.380 1.912 0.799 16.96 1.58

2SI/A/C8 DW43 Groundwater 20.5 4.77 46.26 27 4.89 6.02 5.33 1.34 1.20 8.30 4.20 24.40 19.71% 9.57 0.21

2SI/A/C9 CS42 Groundwater 22.2 4.77 58.44 37 6.25 4.03 3.01 1.08 1.20 7.20 4.50 27.45 6.35% 1.46 -0.29

2SI/A/C10 DW22 Groundwater 21.7 5.46 133.3 85 18.07 7.03 5.51 2.25 1.60 2.01 6.20 24.85 49.89% 11.39 0.72

2SI/A/C11 DW21 Groundwater 22.1 5.19 167.1 107 18.55 5.02 5.37 1.05 11.5 7.04 1.16 46.15 12.41% 8.79 0.59

2SI/A/C12 DW73 Groundwater 20.9 5.3 110.9 71 8.87 7.01 1.97 1.68 0.3 8.12 10.5 42.6 4.70% 4.19 0.33

2SI/A/C13 dw6 Groundwater 22.2 5.41 133.8 86 12.48 5.02 1.73 0.57 4.8 7.05 4.2 24.85 19.57% 4.81 0.30

2SI/A/C14 dw18 Groundwater 1.75 -0.04

2SI/A/C15 DW77 Groundwater 22.3 5.24 146.6 94 4.23 0.31

2SI/A/C16 dw2 Groundwater 22.5 6.43 289 185 6.37 0.11

2SI/A/C17 RFL46 Wetland stream 21.8 6.83 99.35 64 10.98 1.59

2SI/A/C18 CS12 Groundwater 22.8 5.98 217.6 139 17.56 5.05 6.27 2.01 1.2 6.1 11.5 60.35 9.50% 6.99 1.03

2SI/A/C19 CS12 Groundwater 22.8 5.98 217.6 139 15.85 6.71 3.92 3.86 2.67 8.22 9.41 60.26 7.55% 6.37 0.96

2SI/A/C20 RFL48 River 23.1 6.39 106.6 68 13.49 0.92

2SI/A/C21 RFL49 Wetland 30.9 6.71 256.1 164 16.42 1.85

2SI/A/C22 RFL50 Rain 0.541 1.225 0.935 51.30 5.90

2SI/A/C23 RFL39 Rain 1.122 1.063 1.102

2SI/A/C24 RFL51 Wetland stream 20.3 6.84 83.26 53 23.14 0.35

2SI/A/C25 RFL52 Wetland stream 26.6 6.04 70.28 45 9.41 7.08 2.64 4.33 1.3 14 2.06 53.25 1.73% 23.44 0.92

2SI/A/C26 RFL53 River 23.1 6.18 91.1 58 21.97 0.64

2SI/A/C27 RFL55 River 22.3 6.27 93.45 60 23.13 1.29

2SI/A/C28 DW79 Groundwater 24.7 6.59 231.3 148 33.0 8.72 4.5 <1 0.001 2.119 1.146 6.485 86.43% 3.31 0.91

2SI/A/C29 cs9 Groundwater 23.2 5.75 124.8 79.8 2.65 0.50

2SI/A/C30 cs10 Groundwater 23.5 6.11 171.7 110 5.39 0.34

2SI/A/C31 RFL61 River 22.9 6.29 104.8 67 9.66 6.12 1.34 1.83 2.8 25.1 2.1 74.55 -26.00% 8.29 1.16

Sample type
Sample 

number

In-situ field measurement Ionic 

balance 

error

Laboratory analysis 

(%o VSMOW)
Laboratory analysis (mg/l)Location 

ID
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Figure B-3. Piper diagrams for different sources of water analysed within Dangila woreda. Average 

cation and anion concentrations are also given on the plots. 

Fluorine levels within all samples, including those from the deep aquifer, were below the 

WHO recommended maximum of 1.5 mg/l (WHO, 2011); the maximum measured was 

Calcium(Ca) Chloride(Cl) + Fluoride(F)
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Na = 1.7 mg/l
K = 0.6 mg/l

ANIONS
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SO4 = 8.2 mg/l
F = 0.5 mg/l

Shallow groundwater (wet season) 

Shallow groundwater (dry season) 
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0.8 mg/l. Pit latrines, occasionally in close proximity to wells, could elevate nitrate levels 

in shallow groundwater though all samples recorded well below WHO guidelines; the 

maximum measured was 11.5 mg/l. WHO does not give a guideline value for iron 

concentration in drinking water though four samples were above the 0.3 mg/l at which 

water discolours and staining can occur. The sodium adsorption ratios (SAR) were 

extremely low: ~3.0 for the deep groundwater samples and <1.0 for all other samples. 

SAR >3.0 is generally thought potentially problematic for irrigation water (Olson, 2012). 

Considering only hydrochemistry and not microbial content, the analyses indicate that all 

the groundwater tested is suitable for both irrigation and potable use.   

B-6 Stable isotope  

B-6-1 Analysis  

Dr Seifu Kebede, a renowned isotope hydrogeologist, at the School of Earth Science, 

Addis Ababa University, Ethiopia, conducted stable isotope analysis. Analysis was 

undertaken by a LGR DLT-100 utilising laser spectroscopy. Analysis equipment was 

calibrated in accordance with manufacturer’s instructions. Stable isotope analysis 

consisted of testing for δ18O and δ2H. 

B-6-2 Quality assurance 

A sample was collected in duplicate with one sample submitted blind to the laboratory. 

A result was not obtained for δ2H for one of the samples whereas for δ18O the results 

differed by 28.8%. This percentage difference seems high though it is a percentage of a 

low result, which actually equates to only 0.55%o VSMOW. Both results would plot in a 

very similar position on Figure B-4Figure B-4. Plot of all stable isotope results. Units are 

%o VSMOW. The dotted line equates to the Addis Ababa local meteoric water line 

derived from data presented by Rozanski et al. (1996) and the dashed line is the derived 

local evaporation line.. The blind submitted during the second field visit varies by 8.9% 

(δ18O) and 6.8% (δ2H) with small absolute differences. 

B-6-3 Results 

Unfortunately, analysis could not be completed on all of the samples. “No Result” on 

Table B-1, according to the laboratory, “means we haven’t gotten good results for those 

analysis and we have discarded them”. Each sample is analysed a number of times due to 

the sensitivity of the equipment and if the standard deviation of the results is above a 

certain threshold the result is rejected. The stable isotope results are presented in Figure 

B-4. 
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Figure B-4. Plot of all stable isotope results. Units are %o VSMOW. The dotted line equates to the Addis 

Ababa local meteoric water line derived from data presented by Rozanski et al. (1996) and the dashed 

line is the derived local evaporation line. 

Figure B-4 shows clear differences between water sources and notably between shallow 

groundwater sampled in the dry season and from the wet season. A local evaporation line 

can be drawn through the wet season shallow groundwater and surface water results at 

odds with the dry season shallow groundwater results, which plot close to the local 

meteoric water line. The surface water samples are indicative of evaporation causing 

enrichment, which would be expected as rainfall collects in dambo wetlands before 

accumulating to form streams and rivers. The wet season shallow groundwater results are 

also enriched and similar to the surface water results indicating recently recharged water 

that infiltrated from wetlands. The slightly lower enrichment of the shallow groundwater 

than the surface water suggests mixing with diffusely recharged and thus less evaporated 

and enriched water. The dry season shallow groundwater results plot close to the local 

meteoric water line suggesting diffuse recharge. This would be predicted, as the wetlands 

are dry outside of the wet season, therefore, there is less opportunity for evaporation at 

the time of infiltration in the dry season despite the higher temperatures and lower relative 

humidity. The deep groundwater was sampled during the wet season and plots well away 

from other wet season groundwater samples indicating little interconnectivity. The deep 

samples show the highest depletion meaning recharge could have occurred at a distant 
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high mountain area. The rainwater samples show very high enrichment. The cause of this 

enrichment is uncertain. Sampling was directly from falling rain during intense storms 

and at night so there was no opportunity for evaporation.  

B-7 In-situ testing  

B-7-1 Methodology 

A handheld Myron L Company Ultrameter II was used for in-situ water testing, calibrated 

immediately prior to the field visits. Testing was conducted in accordance with accepted 

international standards and guidelines (Gov. WA, 2009; IAEA, -). Testing comprised 

measurement of water temperature, pH and electrical conductivity. The sensor was 

thoroughly rinsed with sample water and the reading allowed to stabilise prior to a 

measurement being recorded. 

B-7-2 Results 

The results of in-situ testing from the locations where samples were collected are 

presented with the laboratory results in Table B-1 and Table B-2. Results from locations 

that had been tested a year previously during fieldwork by GSE are presented in Table 

B-3; there are eleven locations where testing was repeated. A total of 28 locations were 

subjected to testing in March/April 2015 following the 198 in February/March 2014 and 

a further 40 in October/November 2015.  

Table B-3. Comparison of in-situ testing results from February/March 2014, March/April 2015 and 

October/November 2015. 

 

* The field pH meter was suspected to have been reading 0.25-0.5 pH too low after the first field visit but now it is thought the 2014 

readings were too high (see text). 

Considering the first field visit, it was suspected that the handheld meter was falling out 

of calibration with regard to pH. The field pH results were consistently lower than tested 

previously whereas electrical conductivity results were almost identical 12-13 months 

after first being recorded and water temperature measurements are similar. However, pH 

Location 

code
Sample number

Oct/Nov 2015 

pH *

Mar/Apr 2015 

pH *

Feb/Mar 2014 

pH

Oct/Nov 2015 

EC (μS)

Mar/Apr 2015 

EC (μS)

Feb/Mar 2014 

EC (μS)

Oct/Nov2015 

Temp. (oC)

Mar/Apr 2015 

Temp. (oC)

Feb/Mar 2014 

Temp. (oC)

DW73 SI/A/C 5 & 2SI/A/C 12 5.3 5.83 6.22 110.9 130.7 132.6 20.9 20.3 21.5

DW77 2SI 15 5.24 5.28 6.04 146.6 90.74 104 22.3 22.2 26.4

DW43 SI/A/C 1 & 2SI/A/C 8 4.77 5.19 5.82 46.26 50.62 56.8 20.9 20.9 18.9

DW56 SI/A/C 4  & 2SI/A/C 1 5.61 5.53 6.04 167.7 171.9 182.2 22.9 22.9 25.4

DW61 5.95 6.33 216.6 217 22.1 22.5

DW79 SI/A/C 7 8 9 & 2SI/A/C 28 6.59 6.88 7.35 231.3 334.9 320 24.7 25.2 26.7

DW18 SI/A/C 11 6.66 7.2 481.9 502 25.9 24.2

DW2 SI/A/C 12 5.76 6.32 200.4 203 21.9 23.3

DW21 SI/A/C 14 & 2SI/A/C 11 5.19 6.17 6.54 167.1 174 142 22.1 24.7 21.7

DW22 SI/A/C 15 & 2SI/A/C 10 5.46 6.31 6.69 264.4 264.4 200 24 24 26.4

dw6 2SI/A/C 13 5.41 5.57 133.8 144.2 22.2 22.3

CS42 SI/A/C 3 & 2SI/A/C 9 4.77 5.31 6 58.44 48.67 49.7 22.2 22.1 23.5

cs6 2SI/A/C 3 6 6.09 188.7 189.6 22.9 22.2

CS12 2SI/A/C 18 19 5.98 5.98 225.3 217.6 220 22.8 22.0 22.9

cs1 5.36 5.22 66.35 61.93 20.3 22.8
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results from the second field visit are similar to that of the first suggesting the anomalous 

readings may be those taken by GSE in 2014. 

In-situ testing indicates that shallow groundwater in the area generally has pH around 6 

and EC 50-300 µS. These values are typical of young groundwater in igneous terrain. The 

field tests gave remarkably similar EC measurements on both field visits, and to the 

previous period of testing 12-13 months earlier. The consistency of results indicates that 

the groundwater has consistent properties and, therefore, the samples are representative 

of shallow groundwater from this location.  

B-8 In-situ radon-222 testing  

B-8-1 Methodology    

Radon-222 is one of the radioactive decay products of uranium-238, a radioactive element 

that naturally occurs in the minerals of most rocks. As an inert gas, 222Rn readily migrates, 

through advection and diffusion, into and with groundwater. Groundwater 222Rn 

concentration reaches steady state and declines rapidly upon discharge due to the short 

half-life of 3.8 days. Analysis of the spatial distribution of 222Rn concentrations in surface 

and groundwater was used to assess infiltration from surface water to aquifers by Hoehn 

and Von Gunten (1989) in Switzerland and by Bertin and Bourg (1994) in southern 

France, to measure rates of groundwater discharge into a river in the Northern Territory 

of Australia by Cook et al. (2003) and into small lakes in Florida, USA, by (Dimova et 

al., 2013), and in Central Chile by Oyarzún et al. (2014) to assess groundwater-surface 

water connectivity. No previous studies were identified from Africa. 

A DURRIDGE RAD7 with the “Big Bottle System” was used for in-situ measurement of 

radon-222 concentration in water. The equipment was borrowed from Dr Seifu Kebede 

at the University of Addis Ababa. Radon-222 testing was conducted in accordance with 

the Durridge Company Inc. manuals, comprising: 

1. Equipment set up. 

2. Purging of the equipment for at least 10 minutes and until a maximum internal 

relative humidity of 10% was achieved. 

3. Careful sampling of water directly into the “big bottle” avoiding turbulent flow 

and degassing. 

4. Running the test for at least 45 minutes with monitoring of radon-222 

concentration, internal relative humidity and water temperature. 
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5. Removal of sample and minimum of 8-minute post-test purge before equipment 

disassembly. 

The initial test was unsuccessful; purging took several hours to reduce the relative 

humidity to the correct level and following over an hour of testing the radon-222 

concentrations were approaching zero. Considering the sample came from one of Dangila 

town’s deep supply boreholes a concentration of several thousand Bq/m3 would be 

expected. Later investigation revealed that a one-way valve, in place to prevent water 

from entering the RAD7 instrument, had been installed the wrong way round. Once the 

valve had been reinstalled correctly, the equipment operated satisfactorily.  

Sites for testing were selected along surface and groundwater flow reaches to attempt to 

identify areas that were losing to groundwater and areas where groundwater discharged 

to surface water. Photographs of the equipment set up and testing in progress are shown 

in Figure B-5. 

 

Figure B-5. Photographs showing radon-222 testing. The in-situ EC, pH, and temperature meter is also 

visible. 

B-8-2 Results 

The first phase of testing concentrated on Dangesheta kebele and took place over three 

days; the locations and results of the testing can be seen in Figure B-6. The highest radon-

222 concentrations were obtained high on the elevated floodplain close to monitoring 

well MW2. The samples were very recently discharged groundwater and the high values 

are as expected. The radon-222 concentrations decrease along the surface water flow path 

through the wetland towards the Brante River. This decrease is caused by dilution of 

spring-fed surface waters (high 222Rn) with rain-fed runoff (zero to very low 222Rn) 

through the wetland. The main Brante River always shows lower concentrations than the 
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wetlands due to dilution of recent groundwater input. The pattern shown by the testing 

along the Brante River is higher radon-222 concentrations along reaches through 

floodplains with alluvium beds and lower concentrations in narrow valleys with basalt 

bedrock riverbeds. Radon-222 concentrations increase along the length of floodplains. 

The results indicate that groundwater discharge occurs in the floodplains from the regolith 

aquifer and not from basalt bedrock along narrow valley reaches. However, it should be 

noted that the faster, more turbulent flow through rocky reaches would have a degassing 

effect on the river water thus reducing radon-222 concentrations (Cook et al., 2003). 

 

Figure B-6. Map of radon-222 testing results in Dangesheta within the Brante catchment. 

The second phase of testing took place to the northwest of Dangila town; the locations 

and results of the testing can be seen in Figure B-7. Quick water balance estimates had 

suggested that there might be groundwater loss from the shallow to the deep aquifer. In 

addition, an official at the Dangila town water supply office spoke of farmers complaining 

that wells close to the town’s deep abstracting boreholes were suffering declining water 

levels. If the deep boreholes were drawing water from the shallow aquifer this should 

show up in radon-222 concentrations in the vicinity of the boreholes. The three deep 

boreholes were drilled in 2009 to depths of 150-192 m in Berayta kebele and provide 

Dangila town’s water supply. The boreholes are open hole with electric submersible 

pumps at 60 m depth. The deep abstracting boreholes aim to tap groundwater in fractures 

and scoriaceous layers. At the time of the second visit, only two boreholes were 

abstracting, at 20 l/s and 32 l/s respectively, for 10 h/d. Testing was conducted on samples 
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from the Amen and Kilti rivers close to the abstraction boreholes and also at a distance 

beyond their influence. The testing results were inconclusive concerning the impact of 

the deep boreholes. The highest radon-222 concentration measured was actually at the 

closest point to the northernmost borehole and though the value for a sample from beside 

the centre borehole was much lower, a sample from upstream away from the borehole’s 

influence was lower still. The results do match the findings from the Dangesheta testing 

programme in that radon-222 concentrations increase as a river progresses through a 

floodplain, again indicating that groundwater is discharging into the rivers predominantly 

at floodplains. 

 

Figure B-7. Map of radon-222 testing results near deep boreholes at Kilti and Amen confluence. Note the 

southernmost borehole was not abstracting at the time of the second field visit. 

B-9 Summary 

The shallow groundwater is consistent in chemistry both spatially and temporally. 

Residence time is low, indicated by low EC and ionic concentrations, suggesting that the 

resource could be vulnerable to drought.  

There is no hydrochemistry evidence to suggest mixing between the shallow and deep 

groundwaters though there is evidence to suggest mixing between shallow groundwater 

and surface water. Furthermore, radon-222 measurements showed the opposite of what 

would be expected if surface water and shallow groundwater were being drawndown by 

abstraction from the deep boreholes. However, the investigation was not exhaustive and 
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groundwater levels in shallow wells near the deep abstracting boreholes should be 

monitored in order to observe any long-term changes in groundwater level.  

Large floodplains in river valleys are areas of groundwater discharge, as shown by 

radon-222 testing. 

Other interesting findings resulted from comparing individual samples collected during 

the same visit. Wells reported by the community to have a good year-round supply often 

showed greater stable isotope enrichment and higher ionic concentrations than would be 

expected from their topographic position close to a flow divide (see samples SI/A/C 4 

and 5 in Table B-1). Often, across the flow divide, there was a dambo. The higher 

enrichment (through evaporation when inundated) and higher concentrations (due to the 

longer residence time) may indicate the sampled water originated in the dambo, which 

provides continuous groundwater supply through the dry season with groundwater flow 

paths contradicting surface water flow paths.  
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Appendix C. Filling the observational void: scientific value and 

quantitative validation of hydrometeorological data from a 

community-based monitoring programme – Supplementary 

material 

   

C-1 AMGRAF research project 

As stated on www.upgro.org: “Unlocking the Potential of Groundwater for the Poor 

(UPGro), is a seven-year international research programme (2013-2020) which is jointly 

funded by UK’s Department for International Development (DFID), Natural 

Environment Research Council (NERC) and the Economic and Social Research Council 

(ESRC). Over 130 of the world’s best researchers from 43 organisations across Africa 

and Europe are focused on improving the evidence base around groundwater availability 

and management in Sub-Saharan Africa. The goal is to ensure that the hidden wealth of 

Africa’s aquifers benefit all citizens and the poorest in particular. UPGro projects are 

interdisciplinary, linking the social and natural sciences to address this challenge.” 

AMGRAF was one of 15 UPGro catalyst projects.  

Dangesheta kebele was selected as a focus community within Dangila woreda to assess 

the potential of the shallow groundwater resource to support increased irrigation use.  A 

kebele is the smallest administrative unit in Ethiopia; equivalent to a parish or ward.  

Dangesheta is one of 27 rural kebeles within Dangila woreda, a woreda being similar to 

a district.  The selection of Dangesheta kebele for hydrogeological study followed 

collaboration with IWMI, GSE and a field visit in September/October 2013:  The rural 

kebeles of the woreda were ranked for intervention, according to: (i) access to market, i.e. 

proximity to an all-weather road and distance to market: necessary for the adoption of 

groundwater irrigation, (ii) experience in small-scale irrigation, and (iii) potential of 

shallow groundwater, i.e. evidence of existing shallow groundwater use.  Shallow 

groundwater is here defined as <25 m; that which is accessible to the poor rural 

communities using manual excavation methods. 

Further information on the background of the AMGRAF project and the work completed 

to date can be found in (Gowing et al., 2016). A key aspect of the research, which is being 

conducted as part of a PhD project, is to evaluate the vulnerability of the shallow 

groundwater resource.  A greater understanding of the shallow groundwater system is 

being achieved through fieldwork, water chemistry, stable-isotope and radon-222 
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analysis, recharge assessments and physically-based modelling.  The latter two elements 

rely on hydrometeorological data though formal rainfall and river flow data is sparse and 

groundwater data is non-existent.  Recharge must be quantified in order to assess the 

sustainability of irrigative agriculture and such quantification can be conducted 

(alongside other less direct techniques) with water-table fluctuation and cumulative 

rainfall departure (CRD) methods (Xu and van Tonder, 2001) only with time series of 

rainfall and groundwater level.  Physically-based modelling of the shallow groundwater 

system will allow the simulation of potential changes and variations in climate, land use 

and abstraction to assess the impacts on the groundwater resource, on surface water and 

on downstream users.  Time series of river flows and groundwater levels at various 

locations within the catchments allow thorough calibration and construction of 

representative transient models.  The limited available formal data mean it has been 

necessary to implement a new hydrometeorological monitoring scheme. 

C-2 Dangesheta community-based monitoring network 

A workshop was held with the local community in February 2014 and the monitoring 

equipment was presented prior to installation.  The community were encouraged to handle 

and use the equipment, including measuring water level in a nearby well.  Following 

installation of the equipment (rain and river gauges) the community were shown the 

equipment in-situ and took part in surveying the rivers at the gauge locations, measuring 

flow velocity with an electrical current-meter, and were tested in their ability to take 

measurements. 

The community member selected to monitor the wells and host the rain gauge is a known 

and respected member of the community due to his occupation in the Dangesheta Service 

Cooperative where the local population deliver agricultural produce to be weighed and 

transported to market in Dangila.  Having such a person involved in the community-

monitoring programme was deemed to be crucial to gaining the acceptance and 

continuing support of the local community.  The community members who would 

monitor the river gauges were chosen because they lived very close to the river gauges 

and again were known in the local community.  The Irrigation and Water Manager of the 

Dangila woreda, who was instrumental in organising community workshops and site 

selection, provides support and receives measurement data from the monitors then types 

up the data onto an Excel spreadsheet before forwarding it on to IWMI in Addis Ababa.   

The rating curve for converting river stage to flow was developed from flow gauging 

measurements. Flow gauging was conducted by IWMI and Newcastle University staff 
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during the AMGRAF catalyst project (prior to commencement of the PhD), by David 

Walker during each field visit, and by Bahir Dar PhD and master’s students at other times 

following training by David Walker. The flow gauging always involved local community 

assistance. A current velocity meter was utilised and the velocity-area method was applied 

to calculate discharge. Flow gauging was conducted at various seasons to incorporate 

variations in river stage. The rating curves for the Brante and Kilti Rivers are presented 

in Figure C-1. 

  

Figure C-1. Rating curves for the Brante (left) and Kilti Rivers at the locations of the community-

monitored river gauges. Note that the kinks in the rating curves relate to when flow becomes out of bank. 

The community-monitoring programme was explicitly designed to be low cost.  Previous 

such programmes by IWMI, detailed in Zemadim et al. (2014), confirmed that low cost 

community monitoring programmes are the most sustainable.  The number of wells, rivers 

and rain gauges to be monitored was considered the minimum possible in order to obtain 

sufficient initial data from this pilot study to allow planning of a longer-term community-

monitoring programme. In addition to utilising minimal low cost equipment, payment of 

members of the community involved in the monitoring was designed to be a small 

financial incentive rather than a wage. The decision to provide remuneration for 

observational duties was made in order to get the project up and running with a longer-

term aim of continuing the monitoring with no payment once the benefit to the community 

was seen. 

C-3 Formal ground observations – rainfall 

The NMA rain gauges in the region of Dangila woreda vary from tipping bucket type 

housed within professionally manned meteorological stations, to electronic weather 

stations within small fenced compounds, to traditional graduated cylinder rain gauges 
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monitored by local part-time observers.  Data quality checks were conducted and, as may 

be expected, higher quality data was identified from the professionally manned 

meteorological stations of which Dangila is one: 

Double mass checks were conducted for the nine NMA rain gauges in the vicinity of 

Dangila woreda.  The checks indicate that the Dangila rainfall record is the most reliable.  

Several of the NMA rainfall records showed breaks of slope when the double mass checks 

were conducted.  These rain gauges were visited, the person responsible for taking 

measurements was interviewed and the regional NMA office in Bahir Dar was visited and 

consulted in an attempt to determine the causes of the breaks of slope.  The precise reasons 

could not always be ascertained though suggestions were proffered, for example; the 

breaks of slope seen in the Meshenti rainfall record (Figure C-2) occur approximately 

when the data collector changed from father to daughter to sister each of whom perhaps 

had a slightly different measurement routine. 

 

 

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

D
a

n
g

ila
 c

u
m

u
la

ti
v
e

 r
a

in
fa

ll 
(m

m
)

Merawi cumulative rainfall (mm)

0

2000

4000

6000

8000

0 2000 4000 6000 8000

M
e

s
h

e
n

ti
 c

u
m

u
la

ti
v
e

 r
a

in
fa

ll 
(m

m
)

Dangila cumulative rainfall (mm)

a. 

b. 



315 

 

Figure C-2. Double mass checks of rainfall for Dangila and Merawi NMA (a) showing good linear 

relationships indicating reliable records.  Compare to graph (b) of Dangila and Meshenti NMA rainfall 

records showing breaks of slope in early 2008, early 2009 and early 2010. 

C-4 Gridded datasets – rainfall 

The gridded remote sensing and reanalysis rainfall datasets that have been considered are 

TRMM, ERA-Interim, NASA MERRA, JRA-55 and NCEP: 

TRMM (Tropical Rainfall Measuring Mission) was a joint research mission between 

NASA and JAXA measuring rainfall in the tropics.  The satellite was launched in 1997 

and re-entered Earth’s atmosphere in 2015 providing a 17-year rainfall dataset at a grid 

resolution of 0.25o x 0.25o.  The instruments on board the TRMM satellite included a 

precipitation radar, a microwave imager, a visible and infrared scanner, a cloud and Earth 

radiant energy sensor, and a lightning imaging sensor (Adler et al., 2007). 

ERA-Interim is the third generation ECMWF data assimilation reanalysis product 

produced using a four-dimensional variational analysis.  The rainfall dataset is available 

from 1979 to present on a 0.75o x 0.75o grid.  Details of the data assimilation method, the 

forecast model and the input datasets can be found in Dee et al. (2011). 

NASA-MERRA (Modern-Era Retrospective analysis for Research and Applications) was 

generated with version 5.2.0 of the Goddard Earth Observing System (GEOS) 

atmospheric model and data assimilation system (DAS).  The rainfall dataset is available 

from 1979 to present at a grid resolution of 0.666667o x 0.5o.  Details of the DAS and the 

processing strategy can be found in Rienecker et al. (2011). 

JRA-55 is a third generation reanalysis product and was the first to apply four-dimensional 

variational analysis.  The rainfall dataset is available from 1958 to present on a 1.25o x 

1.25o grid.  Details of the observational datasets and data assimilation can be found in 

Kobayashi et al. (2014). 

NCEP (the NCEP/DOE AMEP-II Reanalysis) is a first generation reanalysis product.  

The rainfall dataset is available from 1979 to present at a grid resolution of 0.5o x 0.5o.  

For more details on this product see Kanamitsu et al. (2002). 

The spatial resolution of these gridded datasets can be seen in Figure C-3 relative to the 

study area.  Each grid square evidently comprises quite an altitudinal range and where 

multiple NMA rain gauges are present within a grid square the observed variations in 

rainfall totals can be very high. 
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TRMM grid size: 0.25o x 0.25o 

 

ERA-Interim grid size: 0.75o x 0.75o 

 

NASA-MERRA grid size: 0.666667o x 0.5o 

 

JRA-55 grid size: 1.25o x 1.25o 

 

NCEP grid size: 0.5o x 0.5o 

 

 

 

 

Figure C-3. Remote sensing and reanalysis dataset grids overlain on area around Dangila woreda. 

C-5 River flow 

A double mass check of monthly flow totals from the formal gauges; “Kilti Nr Durbete” 

and “Amen @ Dangila” shows two significant breaks of slope; in August 2001 and April 

2014 (Figure C-4a).  It has been proposed by MoWIE that the more recent break of slope 

could be due to the rating-curve becoming unreliable and efforts are ongoing to remedy 

this (S. Mamo, personal communication, 10 December 2015). 

A double mass check was conducted for the two community monitored rivers (Figure 

C-4b) and a significant step in the data can be seen beginning in January 2015.  The 

explanation for this feature is because the Brante River almost dries up from January to 

March 2015 (as it usually does during the dry season) whereas the larger Kilti River has 

perennial flow. 
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Figure C-4. Double mass checks of river flow 

C-6 Formal observations – groundwater 

According to the Amhara Regional State Bureau of Water Resources Development, there 

are fifteen known boreholes within Dangila woreda of which three are 25-75 m in depth 

and twelve are 100-200 m deep.  Only four are abstracting for domestic supply, the rest 

having been abandoned, typically due to decreased yield.  Borehole yield data are 

available for some of the boreholes at the time of drilling and sporadically since.  Data on 

the shallow aquifer is limited to the quantity of hand-dug wells within the woreda; 

estimated at 2281 in September 2013 (Gebregziabher and Haile, 2013), though the lack 

of regulation on hand-dug wells means this figure is difficult to keep updated. 
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Appendix D. Insights from a multi-method recharge estimation 

comparison study – Supporting Information 

 

D-1 Non-selection of certain recharge estimation methods 

Recharge estimation methods can be subdivided to the three hydrological zones, namely 

surface water, the unsaturated zone and the saturated zone (Scanlon et al. 2002) with a 

further category for methods that consider all zones (Table D-1).  

Table D-1. Methods of recharge estimation grouped by hydrological zone. Methods applied in this study 

are marked with *. 

All zones Surface water Unsaturated zone Saturated zone 

*Basin water balance 

*Numerical modelling 

*Empirical methods, 

e.g. rainfall-recharge 

relationship 

Remote sensing, e.g. 

GRACE, InSAR 

*Large-scale mapping 

 

Channel water budget 

*Streamflow 

hydrograph methods 

Seepage meters 

Heat tracers 

Isotopic tracers 

a Numerical modelling 

 

*Soil moisture balance (SMB) 

Lysimeters  

Zero flux plane 

Infiltration models 

Applied tracers, e.g. bromide or 

coloured dye 

Historical tracers, e.g. tritium or 

36Cl 

Environmental tracers, e.g. 

chloride 

a Numerical modelling 

Empirical methods, e.g. 

infiltration coefficients  

*Water table 

fluctuation (WTF) 

*Rainfall infiltration 

breakthrough 

model (RIB) 

Darcy’s law 

Groundwater dating, 

e.g. tritium or 

CFCs 

*Environmental 

tracers, e.g. 

chloride mass 

balance (CMB) 

a Numerical 

modelling 

a SHETRAN modelling used in this study couples surface and subsurface (both unsaturated and saturated zones) 

flows. 

All the techniques presented in Table D-1 were explored and several were rejected for 

this study for the following reasons:  

 Insufficient stream gauge locations were available for the channel water budget 

method. 

 There are no surface water bodies available for seepage meter and thermocouple 

(for the heat tracer method) installation with the exception of highly seasonal 
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rivers in which installed equipment would not be secure during wet season 

floods. 

 Stable isotopes are very useful for providing information on recharge sources 

but not for quantitative recharge estimation (Healy, 2010). 

 Lysimeters and zero flux plane equipment were excluded due to their high cost 

and maintenance requirements. 

 Insufficient soil properties data were collected for use in infiltration models or to 

estimate infiltration coefficients. 

 Applied tracers were not used due to the potential cultural conflicts that could 

arise from application of (albeit, harmless) chemicals into groundwater that is 

used domestically. 

 The high rainfall and shallow thin aquifer leads to low groundwater residence 

times, therefore bomb-pulse tritium and 36Cl are unlikely to still be present. 

 There is insufficient spatial groundwater level and hydraulic conductivity data to 

determine hydraulic gradient for application of Darcy’s law. 

 Sampling groundwater for CFCs requires zero atmospheric contact (Gooddy et 

al., 2012), which is impossible to achieve from open wells.  

 Satellite based remote sensing is increasingly used to evaluate changes in 

groundwater storage, in particular with the Gravity Recovery and Climate 

Experiment (GRACE) satellite mission (Tapley et al., 2004), and Interferometric 

Synthetic Aperture Radar (InSAR) (Galloway et al., 1998). InSAR was not 

considered for this study, as its application is most suited to arid and semi-arid 

areas (Galloway and Hoffmann, 2007). GRACE measures temporal variations in 

the Earth’s gravity field, which are used to estimate changes in terrestrial water 

storage. It has a spatial resolution of ~300 km and a monthly temporal resolution 

(NASA, 2016), both of which were considered too coarse for this study. 

It can be seen in Table D-3 that none of the methods rejected by this study was used in 

other Ethiopia recharge studies, with the exception of tritium analysis, though this was 

used for source assessments and timing rather than quantification (e.g. Demlie et al. 

(2007); Girmay et al. (2015)). However, there may be some bias as many of the studies 

share authors, or supervisors in the case of university theses.   
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D-2 Recharge estimates for the study site from large-scale mapping and 

modelling 

There have been several attempts to produce global scale groundwater recharge maps 

beginning with Lʹvovich (1979), whose map was based on the estimation of the baseflow 

component of observed river discharge. More recently, Döll and Flörke (2005) introduced 

recharge into their WaterGAP Global Hydrological Model (WGHM). The authors state a 

shortfall of the model in that it is calibrated against measured river discharge only, due to 

the unavailability of direct recharge measurements. The scarcity of independent recharge 

estimates meant the model was tuned in arid and semi-arid areas against just twenty-five 

recharge assessments (nine of which were in sub-Saharan Africa) using chloride and 

isotope profiles. The WGHM was updated by Döll and Fiedler (2007) and incorporated 

into the World-wide Hydrogeological Mapping and Assessment Programme (WHYMAP, 

2016) by BGR (the German Federal Institute for Geosciences and Natural Resources) and 

UNESCO. MacDonald et al. (2012a) used WHYMAP to produce the recharge map in 

their “Quantitative maps of groundwater resources in Africa”. The recharge estimates for 

the study site from WHYMAP and the other large-scale studies are shown in Table D-2. 

The Africa-wide recharge map presented by Altchenko and Villholth (2015) utilised data 

from the PCR-GLOBWB global hydrological model (van Beek et al., 2011), which is 

calibrated against river discharge and reanalysis evapotranspiration data. At national 

scale, Ayenew et al. (2008b) produced a hydrogeological framework of Ethiopia based 

on analysis of pertinent information from governmental and non-governmental 

organisations and academic institutions, as well as over a decade of field study comprising 

conventional hydrogeological mapping, well drilling, geophysics, hydrochemical and 

environmental isotope analysis and remote sensing techniques.  

Table D-2. Comparison of recharge estimates from large-scale mapping/modelling studies. 

Source Scale Resolution Recharge 

WHYMAP (2016) Global 0.5o 20-100 mm/a 

Altchenko and Villholth (2015) Africa 0.5o 100-300 mm/a 

Ayenew et al. (2008) Ethiopia ~40 km* 250-400 mm/a 

* Estimated from the map zonation. 

The large-scale mapping and modelling methods share two characteristics that lessen 

confidence in those recharge results: 1) a necessarily low spatial resolution, and 2) the 

scarcity of recharge studies in the sub-Saharan Africa region that would aid calibration. 

Concerning the first point, at the resolution of 0.5o for WHYMAP and the continental 
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recharge map, it is unsurprising that the recharge estimates are dissimilar to those utilising 

catchment and local-scale methods. This region of Ethiopia has high variation in 

elevation, topography and climate, from 1100 m and hot dry plains immediately to west 

of Dangila, to cold wet mountains over 3000 m to the east (Figure 6-1 of Chapter 6). 

These environments often appear in the same grid square at these scales. The particular 

usefulness of the maps in data scarce regions coincides with a higher uncertainty in those 

regions as products frequently cannot be validated. This point is valid not just for recharge 

but remote sensing and reanalysis weather data products (Walker et al. 2016). The global-

scale WHYMAP clearly underestimates recharge and was rejected from this study. 

D-3 Field data not described in the main text [of Chapter 6] that was used to 

develop the conceptual model and to parameterise models 

Geological surveys, water point surveys and workshops with the local community 

The soils and aquifer properties for input into SHETRAN relied on field investigations as 

soil and geological mapping of the area is not available at sufficiently high resolution. 

The observed variation in well depths, differences in monitored well responses, variation 

in well pumping/recovery test results, geological and soil observations, and discussions 

with local communities led to the definition of hydrogeological zones. 

Outcrops are visible in riverbeds, occasionally on steeper slopes and in a few man-made 

excavations. The basalts are variously massive, fractured and vesicular with variations 

occurring in short distances. Above the solid geology lies weathered basalt regolith, itself 

overlain by red clayey loam soils. Local communities report that there are rarely problems 

with well sidewall collapse. Often the solid geology is reached abruptly and well 

excavation is halted. Depth to the top of the solid geology is variable. Wells are typically 

excavated until further excavation becomes impossible, therefore, the location of 

rockhead can be inferred from well depth. Over the three field visits, 80 wells were 

measured for estimation of regolith thickness; more wells were visited but access for 

measurement, such as in the case of wells fitted with handpumps, was not always possible. 

Rockhead was generally found to be deeper in more steeply sloping areas and shallower 

in floodplains. Rivers have often incised to the level of the rockhead where solid basalt 

forms the riverbed with banks of only 1 to 3 m in height. 

In addition to season, topography appears to govern shallow groundwater availability. 

The variations in geology are sufficiently subtle, particularly concerning the regolith, 

which forms the shallow groundwater aquifer, to be less of a control on the hydrogeology 
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than geomorphology. Near the end of the dry season in March/April within the 

floodplains where the solid geology is at a depth of around 4 m, the water table lies at 2-

4 mbgl. The water table can often be seen as a seepage face at this depth within riverbank 

sections in floodplain sediments. However, on the larger and steeper slopes where 

rockhead is around 15 m deep the water table is at a depth of 12-15 m. Thus, the shallow 

aquifer is thicker on slopes giving deeper water tables and generally greater saturated 

aquifer thickness. 

It is noted that farmers often talk of a well excavation striking rock at a shallow depth and 

being dry, then when the well is relocated a short distance away (~10 m) rock is struck at 

greater depth and the well fills with water. Such a situation is commonly ascribed to 

heterogeneous rockhead, however, the unsuccessful wells are perhaps more likely to be 

due to the presence of large and massive basalt boulders lying higher in the weathered 

profile as are often visible in riverbank sections.  

Over 200 hand-dug wells were surveyed during field visits; the surveys included GPS 

location, depth and water level measurements, description of geology, topography, land 

use, pump/lifting device and cover, in-situ measurement of water temperature, pH and 

electrical conductivity, and discussions with local community over the well’s use, 

seasonality and history. Water point surveys also included assessment of springs, many 

of which are used by the local community, whether developed or not, to collect water for 

domestic and potable use. Where springs and seepages emerge from gullies they 

commonly occur at contacts between regolith and bedrock or gravelly regolith and more 

solid regolith. Springs and seepages are also very common around the edges of 

floodplains where the water table from the surrounding slopes intercepts the ground 

surface. 

Hydrochemistry and stable isotope sampling, radon-222 measurements 

The conceptual model was developed with the aid of hydrochemistry investigations. 

Samples of shallow and deep groundwater, surface water and rainwater were analysed in 

the laboratory for major ions, some trace elements, and stable isotopes oxygen-18 and 

deuterium (δ18O and δ2H). In-situ testing involved measurement of pH, electrical 

conductivity (EC), total dissolved solids (TDS), temperature, and radon-222 

concentration.  

The shallow groundwater is consistent in chemistry both spatially and temporally. 

Residence time is low, indicated by low EC and ionic concentrations, suggesting that the 
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resource could be vulnerable to drought. Surface water and shallow groundwater belong 

to the “bicarbonate calcium” type typical of recent recharge. The deep groundwater is of 

“bicarbonate sodium” type indicative of higher mineralisation due to longer residence 

time and greater distance of flow. The shallow groundwater samples from the wet season 

are very similar in chemistry to surface water samples indicating a high degree of and 

rapid interconnectivity. This was expected in the wet season from the observed very 

shallow water table. There is no hydrochemical evidence to suggest mixing between the 

shallow and deep groundwaters; they belong to clearly different water types. What’s 

more, Radon-222 measurements showed the opposite of what would be expected if 

surface water and shallow groundwater were being drawndown by abstraction from the 

deep boreholes: 222Rn concentrations would be lower in the vicinity of the abstracting 

boreholes as groundwater discharge would be prevented but the reverse was measured. 

Radon-222 measurements did suggest that the large floodplains in river valleys are areas 

of groundwater discharge from the shallow regolith aquifer, whereas the narrower valleys 

with basalt riverbeds are not discharge areas. 

Vegetation properties 

Categorisation of vegetation was required for the SHETRAN models. The three 

categories were:  

 Grassland – floodplains that are almost always and entirely utilised as pasture. 

 Arable – where the majority of land is devoted to rainfed agriculture. The crops 

planted are 87% cereals (39% maize, 35% teff and 13% millet), with the rest being 

pulses, oilseeds, sugarcane, potatoes, vegetables, fruits, onions, garlic, and 

tomatoes (Belay and Bewket, 2013), the latter few generally occupying backyard 

plots.  

 Shrub – areas of higher gradients with characteristic scrub-like vegetation. 

How SHETRAN converts the potential evapotranspiration time series into actual 

evapotranspiration is specific for each of these categories. Each category within 

SHETRAN differs in rooting depth and root density at different depths, ground coverage 

at maximum seasonal extent, canopy storage capacity, leaf area index, and AET/PET at 

particular soil moisture tensions. These parameter values were estimated from ground 

observations in order to generalise vegetation and crop types followed by consultation of 

the key instructional texts for calculating water demand; FAO24 (Doorenbos and Pruitt, 

1975) and FAO56 (Allen et al., 1998), and other published studies providing detail of 
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particular vegetation types, particularly, Canadell et al. (1996); Dardanelli et al. (1997); 

Cain (1998) and; Fan et al. (2016). 

D-4 Empirical method 

There are numerous published examples of the development of a rainfall-recharge 

relationship, often utilising secondary literature sources e.g. Bonsor and MacDonald 

(2010), Crosbie et al. (2010), Zhang et al. (1999). A series of Boolean searches were 

undertaken in February 2017 on Google Scholar and repeated on Web of Science in order 

to identify quantitative recharge studies from Ethiopia. The common Google search 

engine was also utilised to identify reports and other documents that may be outside of 

the usual scientific literature. The initial search terms were “groundwater AND recharge 

AND Ethiopia”, which produced 1000s of documents. Despite including the search term 

“Ethiopia”, many of the “hits” were from other countries and could be discarded 

immediately. Many other studies that did take place in Ethiopia had mention of recharge 

but had no recharge estimate and were also discarded. The first 150 hits were reviewed 

for inclusion in the analysis before the searches became more specific by adding a 

recharge estimation method in an attempt to exclude the non-quantitative recharge 

studies. Specific searches involved adding a fourth term to the search described above. 

The added search terms were (independently):  “baseflow”, “chloride”, “balance”, 

“fluctuation”, “wtf”, “tritium”, “lysimeter”, “zero flux plane”, “channel water budget”, 

“seepage meter”, “heat tracer”, “Darcy’s law”, “infiltration model”, “bromide”, “applied 

tracer”, “isotropic tracer”, “infiltration coefficient” and “CFC”. The first 100 documents 

were reviewed for each search, or all the documents if there were fewer than 100 hits. In 

an attempt to fill in the gaps when the study site locations were plotted on a map of 

Ethiopia (Figure D-1), further searches were conducted with a geographic location 

replacing the third search term (the first two still being “groundwater AND recharge”). 

The geographic search terms used were the regions of Ethiopia that were under or not 

represented on the map of study sites, namely:  “Gambella”, “Benishangul Gumuz”, 

“Afar”, “Somali AND Ethiopia” and “SNNPR”. The first 50 documents were reviewed, 

seeing as, by this stage of the search, the majority of hits had been reviewed previously. 

Table D-3 presents information on all of the studies identified in addition to the reference. 

Several studies are included that were found during other literature searches undertaken 

for other aspects of the wider AMGRAF (Adaptive Management of shallow 

GRoundwater for small-scale irrigation and poverty alleviation in sub-Saharan AFrica) 

project. Where a study was cited within another study, an attempt was made to locate the 

cited study for review. Occasionally, a cited study could not be found though sufficient 
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detail was provided for its inclusion in this project (listed in Table D-3 as “… cited in…”). 

Several times a cited study with or without sufficient detail was not listed in the citing 

study’s reference list and as such, after a failed attempt at location, it was not included in 

this project. Attempts were made within Ethiopia to access often-cited but seldom seen 

reports via university and other organisations’ libraries with limited success. Forty-nine 

quantitative studies were located comprising 22 peer-reviewed articles, the rest being grey 

literature (predominantly MSc theses). Where a study used multiple methods or multiple 

catchments, recharge results were considered independently. Therefore, 102 annual 

recharge estimates could be plotted against annual rainfall. Various trendlines were fitted 

through the data, excluding points with rainfall below certain thresholds (in an Africa-

wide study, Bonsor and MacDonald (2010) recognised a linear relationship between 

recharge and rainfall above 500 mm/a). A quadratic trendline, reflecting an increase in 

recharge disproportionate to increasing precipitation, achieved the best R2 and standard 

error. 

Table D-3. Details of the recharge estimation studies used to develop a new empirical recharge method 

for Ethiopia based on the rainfall-recharge relationship. Note that multiple recharge results from the same 

study relate to different recharge estimation methods applied and/or to different catchments or areas of the 

study site. CMB = chloride mass balance method, SMB = soil moisture balance method, SNNPR = 

Southern Nations, Nationalities and Peoples’ Region, WTF = water table fluctuation method. 

Location Area 

(km2) 

Recharge 

estimation 

method 

Annual 

rainfall 

(mm) a 

Annual 

recharge 

(mm) a 

Publication Reference 

 

Raya Valley 

Basin 

Kobo 

Valley 

Basin, 

Tigray 

 

2579 

 

1351 

Water balance 

CMB 

Water balance 

CMB 

813 

 

813 

50 

52 

63 

53 

Addis Ababa 

University 

master’s thesis 

Abdella (2011) 

Gilgel Abay 

Catchment 

Gumera 

Catchment 

Ribb 

Catchment 

Megech 

Catchment, 

Lake Tana 

Basin, NW 

Ethiopia 

 

4178 

 

1418 

 

2132 

 

661 

SWAT model 2141 

 

1424 

 

1407 

 

1251 

753 

 

438 

 

453 

 

407 

Landscape 

Dynamics, 

Soils and 

Hydrological 

Processes in 

Varied 

Climates 

Abiy et al. 

(2016) 

Lower 

Awash Sub-

Basin  

Aysha 

Basin, 

Afar 

41887 

 

4092 

CMB 

 

 

 

553 

 

553 

29 

 

58 

Addis Ababa 

University 

master’s thesis 

Addisu (2012) 
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Geba Basin, 

Tigray 

5150 WetSpass model 550 22 KU Leuven 

(Belgium), 

master’s thesis  

Alene (2006) 

cited in 

Tesfagiorgis et 

al. (2011) 

 

Negelle 

Borena, 

south 

Ethiopia 

? ? 647 31 GSA 

(Geological 

Society of 

America) 

Annual 

Meeting 

presentation 

 

Ali Jr (2006) 

Teji 

Catchment, 

central 

Ethiopia 

700 Streamflow 

hydrograph 

Water balance 

incorporating 

SMB and 

streamflow 

hydrograph 

 

1104 109 

 

325 

Addis Ababa 

University 

master’s thesis 

Andualem 

(2008) 

Gilgel 

Abay, Koga 

and Kilti 

Catchments 

Megech 

Catchment 

Lake Tana 

Basin, NW 

Ethiopia 

 

1664 

 

 

 

514 

 

6316 

Streamflow 

hydrograph 

 

 

BASF rainfall-

runoff model 

CMB 

1376 

 

 

 

959-

1212 

1094-

1730 

70 

 

 

 

50-77 

 

45-155 

ITC 

(Netherlands), 

master’s thesis 

Asmerom 

(2008) 

Weybo 

Catchment, 

SNNPR 

574 Water balance 

incorporating 

SMB 

Streamflow 

hydrograph 

(baseflow 

separation) 

Streamflow 

hydrograph 

(Meyboom 

method) 

CMB 

1341 88 

 

 

63 

 

 

 

75 

 

 

 

124 

 

Addis Ababa 

University 

master’s thesis 

Aychluhim 

(2006) 

Lake Tana 

Basin, NW 

Ethiopia 

 

15339 “CMB, baseflow 

separation, etc.” 
b 

1094-

1730 

70-120 Addis Ababa 

University 

master’s thesis 

Ayalew (2010) 

Meki Basin, 

central 

Ethiopia 

3051 Streamflow 

hydrograph 

WATBAL water 

balance model 

 

762-

1138 

80 

 

63 

SINET: 

Ethiopian 

Journal of 

Science 

Ayenew 

(2008) 

Lake 

Awassa 

Basin, 

central 

Ethiopia 

 

1455 MODFLOW 

model 

1030 47 Lakes and 

Reservoirs: 

Research and 

Management 

Ayenew and 

Tilahun (2008) 
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Raya Valley 

Basin, 

Tigray 

 

2480 WATBAL water 

balance model 

 

813 86 Water 

International 

Ayenew et al. 

(2013) 

Guder Sub-

Basin 

Muger Sub-

Basin 

Jema Sub-

Basin 

Upper 

Awash Sub-

Basin, 

central 

Ethiopia 

 

7088 

 

8263 

 

6760 

 

16000 

SMB 

CMB 

SMB 

CMB 

SMB 

CMB 

SMB 

CMB 

1424 

 

1201 

 

992 

 

1112 

 

 

258 

210 

150 

163 

164 

120 

232 

133 

Journal of 

African Earth 

Sciences 

Azagegn et al. 

(2015) 

Southern 

Lake Tana 

Basin, NW 

Ethiopia 

1664 c Streamflow 

hydrograph  

1541 c 308 Technical 

report for the 

Ministry of 

Water 

Resources 

(MoWR) 

 

BCEOM 

(1998) cited in 

Ayalew (2010) 

Kulubi area, 

Dire Dawa 

Dengego 

area, Dire 

Dawa 

Between 

Melko 

Jebdu and 

Hurso, Dire 

Dawa, NE 

Ethiopia 

 

? 

 

? 

 

 

260 

Water balance 

using assumed 

runoff 

coefficients 

 

Spring-area 

relationship 

626 c 

 

626 c 

 

 

721 

150 

 

50 

 

 

43 

Technical 

report for the 

Ministry of 

Water 

Resources 

(MoWR) 

BCEOM 

(2005) cited in 

Tilahun and 

Merkel (2009) 

Lake 

Beseka 

Basin, 

central 

Ethiopia 

 

505 WTF 

EARTH modelling 

CMB 

534 42 

47 

1.2 

University of 

Bonn 

(Germany) 

PhD thesis 

Belay (2009) 

Upper 

Awash Sub-

Basin 

 

Muger Sub-

Basin 

 

 

 

Jema Sub-

Basin, 

central 

Ethiopia 

6735 

 

 

 

1770 

 

 

 

 

304 

 

Water balance 

CMB 

Streamflow 

hydrograph 

Infiltration model 

Water balance 

CMB 

Streamflow 

hydrograph 

Infiltration model 

Water balance 

CMB 

Streamflow 

hydrograph 

Infiltration model 

1077 

 

 

 

1077 

 

 

 

 

1077 

 

131 

135 

91 

 

157 

125 

148 

158 

 

239 

130 

122 

86 

 

239 

 

Journal of 

Geoscience 

and 

Environmental 

Protection 

Berehanu et al. 

(2017) 

Akaki 

Catchment, 

central 

Ethiopia 

 

1500 CMB 1254 265 d Hydrological 

processes 

Demlie et al. 

(2007) 



328 

 

Akaki 

Catchment, 

central 

Ethiopia 

 

1464 SMB 

CMB 

1254 105 

273 

Environmental 

Earth Sciences 

Demlie (2015) 

Fogera 

Plain, 

Lake Tana 

Basin, NW 

Ethiopia 

 

500 Soil moisture 

profiles and 

groundwater 

level/evaporation 

relationship 

1360 850-  

1000 e 
Land 

Degradation & 

Development 

Enku et al. 

(2017b) 

Adama-

Wonji 

Basin, 

central 

Ethiopia 

 

1760 MODFLOW 

model 

860 123 Environmental 

Earth Sciences 

Furi et al. 

(2011) 

Werii, 

Tekeze 

Basin, 

Tigray 

 

1797 WetSpa 

WetSpass 

717 30 b Haramaya 

University 

(Ethiopia) 

master’s thesis 

Gebremeskel 

(2015) 

Geba Basin, 

Tigray 

 

5260 WetSpass model 400-950 41 Journal of 

Hydrology 

Gebreyohannes 

et al. (2013) 

Dire Jara 

and Hurso, 

Dire Dawa, 

NE Ethiopia 

85-90 ? 626 c 31 Technical 

report for the 

Ministry of 

Water 

Resources 

(MoWR) 

 

Gibb and 

Seureca (1996) 

cited in 

Tilahun and 

Merkel (2009) 

Dire Dawa, 

NE Ethiopia 

? ? 626 c 40 Hebrew 

University, 

Jerusalem, 

PhD thesis 

 

Greitzer (1970) 

cited in 

Tilahun and 

Merkel (2009) 

Upper 

Wabe Sub-

Basin, 

central 

Ethiopia 

 

4489 SMB 

Water balance 

Streamflow 

hydrograph 

924 21 

23 

155 

Addis Ababa 

University 

master’s thesis 

Habtamu 

(2009) 

Raya Valley 

Basin, 

Tigray 

 

1085 CMB 

MODFLOW 

model 

 

724 116 

114 

ITC 

(Netherlands), 

master’s thesis 

Hagos (2010) 

Berga 

Catchment, 

central 

Ethiopia 

303 Water balance 

incorporating 

SMB and 

streamflow 

hydrograph 

 

1119 83 Addis Ababa 

University 

master’s thesis 

Hussen (2006) 

Aynalem 

Wellfield, 

Mekelle, 

Tigray 

 

104 CMB 

MODFLOW 

model 

 

670 30-40 

42 

ITC 

(Netherlands), 

master’s thesis 

Kahsay (2008) 

Gedeb 

Catchment, 

central 

Ethiopia 

290 SWAT model 1392 467 Proceedings of 

2012 

international 

congress on 

Koch et al. 

(2012) 



329 

 

environmental 

modeling and 

software 

managing 

resources of a 

limited planet, 

sixth biennial 

meeting, 

Leipzig, 

Germany 

 

Gidabo 

Basin, south 

Ethiopia 

3302 SWAT model 800 

1600 

25 

410 

Journal of 

Hydrology: 

Regional 

Studies 

 

Mechal et al. 

(2015) 

Koraro 

Area, 

Tigray 

59 Water balance 

incorporating 

SMB 

549 57 Momona 

Ethiopian 

Journal of 

Science 

 

Nedaw (2010) 

Meki Basin, 

central 

Ethiopia 

1669 Water balance 

incorporating 

SMB 

992 117 Addis Ababa 

University 

master’s thesis 

 

Netsanet 

(2007) 

Becho 

 

 

 

 

Koka, 

Upper 

Awash, 

central 

Ethiopia 

1552 

 

 

 

 

1461 

Water balance 

incorporating 

SMB 

Streamflow 

hydrograph 

Water balance 

incorporating 

SMB 

Streamflow 

hydrograph 

 

1131 

 

 

 

 

879 

320 

 

 

81 

 

50 

 

 

104 

Addis Ababa 

University 

master’s thesis 

Nuramo (2016) 

Koka 

Becho, 

Upper 

Awash, 

central 

Ethiopia 

 

1461 

1552 

Water balance 

incorporating 

SMB and 

streamflow 

hydrograph 

900 

1026 

27 

227 

Addis Ababa 

University 

master’s thesis 

Reys (2016) 

Shaya 

Watershed, 

SE Ethiopia 

 

504 SWAT model 1071 174 HESS Shawul et al. 

(2013) 

Bulbul 

Basin, SW 

Ethiopia 

508 Water balance 

incorporating 

SMB and 

streamflow 

hydrograph 

Streamflow 

hydrograph 

 

1520 350 

 

 

 

 

395 

Asian Journal 

of Applied 

Science and 

Engineering 

Shimelis et al. 

(2014) 

Upper 

Bilate 

Catchment, 

SNNPR 

2075 Streamflow 

hydrograph 

Water balance 

incorporating 

SMB and 

streamflow 

hydrograph 

1232 129 

 

96 

Addis Ababa 

University 

master’s thesis 

Sintayehu 

(2009) 
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May Nugus 

Catchment, 

Tigray 

15 Water balance 

incorporating 

SMB 

 

738 19 International 

Journal of 

Earth Sciences 

and 

Engineering 

 

Tadesse et al. 

(2010b) 

Illala 

Catchment, 

Tigray 

340 WetSpass model 550 66 Momona 

Ethiopian 

Journal of 

Science 

 

Teklebirhan et 

al. (2012) 

Bilate 

Catchment, 

SNNPR 

5625 Water balance 

incorporating 

SMB and 

streamflow 

hydrograph 

Streamflow 

hydrograph 

 

1146 116 

 

 

 

 

201 

 

Addis Ababa 

University 

master’s thesis 

Tesfaye (2010) 

Dire Dawa, 

NE Ethiopia 

 

920 WetSpass model 626 28 Hydrogeology 

Journal 

Tilahun and 

Merkel (2009) 

Zenako-

Argaka 

Catchment, 

Tigray 

 

4 MODFLOW 

model 

724 167 Hydrogeology 

Journal 

Vandecasteele 

et al. (2011) 

Zenako-

Argaka 

Catchment, 

Tigray 

 

2 Runoff model 

SMB model 

MODFLOW 

model 

“525-

900 

(average 

= 687)” 

110-  

334 b 

Hydrological 

Sciences 

Walraevens et 

al. (2009) 

Mendae 

Plain, 

Tigray 

 

5 CMB 

SMB model 

512 18 b Land 

Degradation 

and 

Development 

Walraevens et 

al. (2015) 

Aba’ala 

woreda, 

Afar 

254 Hydrochemistry 340-480 43 Research and 

development 

experience on 

dryland 

husbandry in 

Ethiopia 

 

Woldearegay 

(2004) 

Aynalem 

and Illala 

Catchments, 

Tigray 

 

? ? 576 53 Addis Ababa 

University 

master’s thesis 

Yihdego 

(2003) cited in 

Teklebirhan et 

al. (2012) 

Aynalem 

Catchment, 

Tigray 

? MODFLOW 

model 

550 c 61 Mekelle 

University 

master’s thesis 

Zeru (2008) 

cited in 

Teklebirhan et 

al. (2012) 

 

Gilgel Abay 

Catchment 

Gumera 

Catchment  

Megech 

Catchment 

Ribb 

Catchment 

1640 

 

1394 

 

492 

 

1592 

 

Streamflow 

hydrograph 

 

1614 

 

1292 

 

1081 

 

1263 

 

379 

 

158 

 

62 

 

77 

 

Addis Ababa 

University 

master’s thesis 

Zewdie (2010) 
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Koga 

Catchment 

Kilti 

Catchment, 

Lake Tana 

Basin, NW 

Ethiopia 

 

302 

 

698 

1410 

 

1322 

 

234 

 

57 

a Where a range is given, the mean rainfall or recharge was used for the plot.  

b It is uncertain which technique gave which result.  

c Unclear from the study; therefore, the value is taken from a study in the same area. 

d For uncertain reasons, this value is stated to be an overestimate. 

e Not included in the analysis as the study-specific conceptual model renders the recharge value 

inapplicable. 

 

Figure D-1. Location map of the study area with other recharge study sites identified in the literature 

review shown on the right (image source: Google.Earth; Imagery ©2017 DigitalGlobe). 

D-5 Streamflow hydrograph methods 

Recharge estimation using streamflow hydrograph methods typically involves separating 

the baseflow component (Figure D-2) and approximating this to groundwater recharge. 

In humid regions, according to Döll and Fiedler (2007), who required recharge 

assessments for the entire globe for calibration of their WaterGap Global Hydrology 

Model, streamflow hydrograph methods are the most commonly applied recharge 

estimation method and numerous examples are available in the literature. The methods 

are idealised in assuming that groundwater storage remains constant interannually, or is 

in balance over longer time periods, and that precipitation entering the aquifer as recharge 

must be balanced by groundwater discharge into rivers that forms baseflow.  

Recharge 

study sites

Dangila 

study site  

0             300 km
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Figure D-2. The components of a streamflow hydrograph. Total flow is the sum of the three components, 

or the entire area below the Overland flow curve. The plot is a snapshot of the WETSPRO analysis of 

Kilti river flow. 

Three streamflow hydrograph methods were used in this study, the baseflow recession 

method presented by Meyboom (1961), and two digital recursive filter tools, the Web 

GIS based Hydrograph Analysis Tool (WHAT) (Lim et al., 2005) and WETSPRO 

(Willems, 2009). For both Meyboom and WHAT, the interflow is part of the quick flow 

component whereas for WETSPRO the interflow is separated in a two-step digital filter 

method after baseflow filtering. There are many very similar digital filter programs 

available for baseflow separation and two were chosen to assess whether they would give 

significant differences in recharge result. More in-depth comparison studies of baseflow 

separation methods are available, e.g. Chapman (1999), Eckhardt (2008).  

The Meyboom method uses analysis of baseflow recession from at least two consecutive 

years to estimate recharge. The stream hydrograph is plotted on semi-logarithmic paper 

creating a straight-line recession curve. The start and end times of the recession “curve” 

are noted manually. According to Meyboom (1961), the total potential groundwater 

discharge can be estimated from  

𝑽𝒕𝒑 =  
𝑸𝟎𝒕𝟏

𝟐. 𝟑
 

(D-1) 

where Vtp is the total potential groundwater discharge, Q0 is the baseflow at the start of 

the recession, and t1 is the time that it takes the baseflow to drop from Q0 to 0.1 Q0. The 
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amount of potential baseflow, Vt, remaining at some time, t, after the initiation of baseflow 

may be estimated by:  

𝑽𝒕 =  
𝑽𝒕𝒑

𝟏𝟎
(𝒕

𝒕𝟏
⁄ )

 
(D-2) 

The difference between the remaining potential groundwater discharge at the end of a 

given baseflow recession and the total potential groundwater discharge at the beginning 

of the next recession represents the recharge that takes place between these two 

recessions, i.e. 

𝑽𝒕𝒑 − 𝑽𝒕 = 𝑹 (D-3) 

where R is the total quantity of recharge which is divided by the basin area to give a value 

in mm/a. 

The Meyboom method is well-used, e.g. Mau and Winter (1997), Kumai and Mitamura 

(2004), Berhail et al. (2015), though seems inappropriate for this study site. The recharge 

quantities calculated using the Meyboom method are the lowest of all methods. 

Uncertainty of manually choosing start times of baseflow recessions could lead to 

recharge underestimation when early times of interflow recession have been incorrectly 

identified as baseflow recession (Figure D-3). Furthermore, when plotted on semi-log 

graph paper, baseflow recessions of the three rivers did not always form a straight-line 

meaning the Meyboom method is rejected for this study site. 

 

Figure D-3. Snapshot of the Brante and Kilti hydrographs showing uncertainties encountered with the 

Meyboom method. 
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The WHAT method requires a filter parameter a (the recession constant) and a BFImax, 

which is the maximum value of long-term ratio of baseflow to total streamflow. The 

developers of WHAT recommend using representative BFImax values proposed by 

Eckhardt (2005): 0.80 for perennial streams with porous aquifers, 0.50 for ephemeral 

streams with porous aquifers, and 0.25 for perennial streams with hard rock aquifers. The 

local hydrological system meant a BFImax of 0.50 was most appropriate for this study, 

which was confirmed by a calculated BFImax 0.57 (average of the three catchments). The 

WETSPRO method uses two main parameters to filter out the baseflow and interflow 

respectively. For each of the two components a recession constant k, which relates to the 

WHAT filter parameter as a = exp(-1/k), and the portion contributing directly to runoff w 

are defined. Both parameters are dependent on catchment size and characteristics. 

D-6 Soil moisture balance (SMB)  

The SMB method has the advantage over other unsaturated zone methods that it is not 

point based, rather it is at the scale that the precipitation, potential evapotranspiration 

(PET) and soil property inputs remain applicable. Rainfall totals were utilised in addition 

to the required meteorological time series to enable PET computation using the Penman-

Monteith FAO-56 method (Allen et al., 1998). The Thornthwaite-Mather (1955, 1957) 

(T-M) method additionally requires a value for soil moisture retention (MC), which is 

dependent upon vegetation and soil type. MC, or ‘root zone storage’, equals field capacity 

multiplied by depth of root zone. MC values were assigned to each LULC class and 

recharge was calculated individually for each class (Tables D-4 and D-5). The SMB 

method calculates total monthly actual evapotranspiration (AET) and soil moisture 

surplus with this surplus contributing to recharge. The direct runoff component is dealt 

with in two ways:  

(a) It can be subtracted from the precipitation input by applying a runoff factor that could 

be taken from literature (e.g. Bakundukize et al. (2011)), derived from streamflow 

hydrograph analysis (e.g. Demlie (2015)), or modelled (e.g. Walraevens et al. (2009)).  

(b) A portion of the soil moisture surplus is subtracted; Thornthwaite and Mather (1957) 

recommend subtracting 50% (e.g. Chishugi and Alemaw (2009), Azagegn et al. (2015).  

Both methods were applied in this study; the runoff factor based on a simple flow 

separation (IOH, 1980) conducted on the longer time series river flow records (Kilti and 

Amen). 
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Calculation of groundwater recharge using a SMB involved the application of the 

Thornthwaite and Mather (1955, 1957) method and equating soil moisture surplus to 

recharge. The SMB calculations are shown in Table D-4 with a description of the 

parameters below.   

Table D-4a. Calculation of actual evapotranspiration (AET), soil moisture deficit and soil moisture surplus 

(from which 50% forms recharge) using the Thornthwaite-Mather (1955, 1957) method. The year 2000 

has been selected and grassland LULC category (MC = 200 mm) as an example. All values are in mm. 

 J F M A M J J A S O N D Annual 

total 

P 0 7.1 7.5 77.0 135.3 344.1 313.0 436.1 237.8 265.3 70.0 2.5 1895.7 

PET 98.7 105.1 117.4 119.1 114.5 86.3 81.3 84.6 90.1 93.4 92.4 90.0 1172.7 

P-PET -98.7 -98.0 -109.9 -42.1 20.8 257.8 231.7 351.5 147.7 172.0 -22.4 -87.5  

APWL -208.6 -306.6 -416.5 -458.5 0 0 0 0 0 0 -22.4 -109.9  

SM 70.5 43.2 24.9 20.2 41.0 200.0 200.0 200.0 200.0 200.0 178.8 115.5  

∆SM -45.0 -27.3 -18.3 -4.7 20.8 159.0 0 0 0 0 -21.2 -63.4  

AET 45.0 34.4 25.8 81.7 114.5 86.3 81.3 84.6 90.1 93.4 91.2 65.9 894.0 

SMD 53.7 70.7 91.6 37.3 0 0 0 0 0 0 1.2 24.1  

SUR 0 0 0 0 0 98.8 231.7 351.5 147.7 172.0 0 0 1001.7 

Rech. 0 0 0 0 0 49.4 115.9 175.8 73.9 86.0 0 0 500.9 

 

Table D-4b. Calculation of actual evapotranspiration (AET) with the application of a runoff factor, soil 

moisture deficit and soil moisture surplus (which is equated to recharge) using the Thornthwaite-Mather 

(1955, 1957) method. The year 2000 has been selected and grassland LULC category (MC = 200 mm) as 

an example. All values are in mm. 

 J F M A M J J A S O N D Annual 

total 

Peff 0 0.2 10.5 26.9 131.3 230.8 290.4 316.5 208.4 83.4 17.1 1.3 1316.7 

PET 98.7 105.1 117.4 119.1 114.5 86.3 81.3 84.6 90.1 93.4 92.4 90.0 1172.7 

P-PET -98.7 -104.9 -106.9 -92.2 16.7 144.5 209.1 231.9 118.3 -9.9 -75.3 -88.7  

APWL -262.7 -367.6 -474.5 -566.7 0 0 0 0 0 0 -75.3 -164.0  

SM 53.8 31.8 18.6 11.8 28.5 173.0 200.0 200.0 200.0 200.0 137.3 88.1  

∆SM -34.3 -21.9 -13.2 -6.9 16.7 144.5 27.0 0 0 0 -62.7 -49.2  

AET 34.3 22.1 23.7 33.8 114.5 86.3 81.3 84.6 90.1 93.4 79.8 50.5 794.3 

SMD 64.4 83.0 93.7 85.3 0 0 0 0 0 0 12.5 39.5  

SUR 0 0 0 0 0 0 182.1 231.9 118.3 0 0 0 532.3 

Rech. 0 0 0 0 0 0 182.1 231.9 118.3 0 0 0 532.3 

 

 



336 

 

Where 

P = monthly rainfall total as measured by the NMA (National Meteorological Agency of 

Ethiopia) at the meteorological station in Dangila town, in the above examples for the 

year 2000.  

Peff = monthly effective rainfall, which is the monthly rainfall total minus the direct runoff 

computed by a simple flow separation (IOH, 1980) applied to river flow data; Peff = P.(1-

RF) where RF is the runoff factor calculated to be 0.145. 

PET = potential evapotranspiration calculated using the Penman-Monteith FAO-56 

method (Allen et al., 1998) with input parameters measured by the NMA at Dangila, in 

the above examples for the year 2000. 

APWL = accumulated potential water loss; the summation begins with November, the 

first month of the dry season, until end April. 

MC = moisture capacity; also known as soil moisture retention and equals field capacity 

multiplied by depth of root zone. It is dependent upon vegetation and soil type and, in the 

above examples, is specified as 200 mm for the grassland land use/land cover (LULC) 

category (see further explanation below). 

SM = soil moisture; the soil moisture during dry months is obtained using accumulated 

potential water loss by the following formula:  SM = MC.exp(APWL/MC). For the wet 

months, the soil moisture is calculated by adding the excess rainfall of the current month 

to the soil moisture of the previous month; where this exceeds the moisture capacity, the 

excess is booked as moisture surplus. 

∆SM = change in soil moisture from the previous month. 

AET = actual evapotranspiration; for the wet months AET = PET as it is assumed that all 

rainfall is available for plants. During dry months, AET = P + moisture loss from the soil 

(i.e. negative ∆SM). 

SMD = soil moisture deficit; the difference between PET and AET. 

SUR = surplus moisture available for infiltration. According to Thornthwaite and Mather 

(1955, 1957) and shown in Table D-4a, 50% of SUR = recharge (Rech). Alternatively, 

where a runoff factor is applied, shown in Table D-4b, 100% of surplus moisture forms 

recharge (SUR = Rech). 
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Rech. = recharge 

MC values were assigned to each LULC class and the recharge was calculated for each. 

The recharge values were then multiplied by the proportional area of each LULC class 

and summed to give the recharge for Dangila district. The LULC information was taken 

from ADSWE (2015) and the MC values were based on field identification of soil and 

vegetation types then assigned according to published values (see FAO-UNESCO world 

soils database and mapping; Batjes (1997) and Nachtergaele et al. (2010)) (Table D-5).  

Table D-5. Representative MC values and proportional coverage of LULC classes for Dangila woreda. 

LULC class Coverage (%) MC (mm) 

Built up 8.72  10 a 

Cultivated 71.7 150 

Forest 11.0 300 

Grassland 7.9 200 

Shrub and bush 0.5 250 

a The built up areas have some patches of vegetation; therefore, a nominal MC was applied. 

D-7 Basin water balance 

The water balance, or water budget, was the most commonly used method identified 

during the literature review of Ethiopian recharge studies (see Table D-3 for examples). 

AET is not straightforward to estimate and was calculated with three methods for 

comparison: (1) The T-M method mentioned in the previous section (Table D-4); (2) 

Application of Turc’s formula (Turc 1954), see below for a full description, and; (3) A 

value estimated by Allam et al. (2016) for this region of the Tana Basin by combining 

remote sensing and river flow records. The average AET values were 789, 831 and 931 

mm/a, respectively. Annual average runoff values were obtained using a simple and 

standard flow separation method (IOH 1980); the separated baseflow was subtracted from 

total flow to give the direct runoff component. The basin water balance can be increased 

in complexity by computing at a daily time step and utilising high-resolution soil and 

vegetation mapping with which to calculate AET; such data were not available for this 

study. Accurate quantification of all the fluxes is always troublesome though is required 

in order to leave an accurate residual that is equated to actual recharge (Scanlon et al. 

2002). There persists the potential for unaccounted groundwater depletion as described 

in the streamflow hydrograph section. 

Turc’s formula requires only annual precipitation and temperature and was established 

empirically based on 254 watersheds, globally distributed (including 10 in Ethiopia) in 
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different climatic zones (Turc, 1954). Actual evaporation from a catchment, AET, is 

defined as    

𝑨𝑬𝑻 =  𝑷/((𝟎. 𝟗 + (𝑷𝟐 𝑳𝟐⁄ ))−𝟎.𝟓) (D-4) 

Where P is average annual precipitation in mm and 

𝑳 =  𝟑𝟎𝟎 + 𝟐𝟓𝑻 + 𝟎. 𝟎𝟓𝑻𝟑 (D-5) 

Where T is average annual air temperature in oC.  

D-8 Chloride mass balance (CMB) 

The CMB method requires: Peff – the average annual effective precipitation (rainfall 

minus direct runoff), Clwap – the weight-average chloride concentration in precipitation 

including dry deposition, and Clgw – the average chloride concentration in groundwater. 

Direct runoff was calculated using a simple flow separation (IOH 1980) for the two longer 

time series streamflow records, the Kilti and Amen. Dry deposition at this distance from 

the coast is considered negligible (Keywood et al., 1997) and is typically neglected. Clgw 

from the 31 shallow groundwater samples was 2.10 mg/l with a standard deviation of 1.33 

mg/l. Clwap was 0.68 mg/l (standard deviation = 0.32 mg/l); this is the most uncertain 

parameter of Eqn. 6-3 in Chapter 6 given the limited amount of samples as, ideally, 

samples from throughout the wet season should be obtained. However, the Clwap value 

compares well with other studies (Table D-6) giving confidence that the value used is 

representative of rainfall chloride concentrations in this region. The use of few rainfall 

samples and corroboration with other studies is not uncommon, e.g. Bazuhair and Wood 

(1996), Subyani (2004), and in South Africa Clwap is often unmeasured and simply 

approximated to 1 mg/l (Dennis, 2017), e.g. Butler and Verhagen (2001), and many theses 

available online. 
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Table D-6. Comparison of rainfall chloride concentrations with other studies. 

Clwap 

(mg/l) 

Source Region Altitude 

(m asl) 

Distance to 

coast (km) 

Rainfall 

(mm/a) 

0.68 This study Dangila, NW 

Ethiopia 

~2000  ~600  1541  

0.50 Kebede et al. (2005) Tana Basin, NW 

Ethiopia 

~2000  ~600 ~1500 

0.86 Asmerom (2008) Tana Basin, NW 

Ethiopia 

~2000  ~600 ~1500 

0.70 Demlie et al. (2007) Addis Ababa, 

Central Ethiopia 

~2300 ~550 1254 

0.71±0.18 Vallet-Coulomb et 

al. (2001) 

Lake Ziway, 

Central Ethiopia 

~1650 ~600 ~900 

 

D-9 Water table fluctuation (WTF) and rainfall infiltration breakthrough 

(RIB) 

The locations of the hand-dug wells used in the water table fluctuation (WTF) and rainfall 

infiltration breakthrough (RIB) analyses are presented in Figure D-4. Details of the five 

monitoring wells initially set up as part of the AMGRAF project and the community-

based monitoring programme can be found in Walker et al. (2016). The depth to 

groundwater was measured every two days by a community-nominated observer using a 

dip meter at 6am (prior to well use). The ILSSI project (Innovation Lab for Small-Scale 

Irrigation funded by USAID) community-based monitoring programme operated in a 

similar fashion. Two local community members using dip-meters at 6am monitored 

groundwater level in twenty-five hand-dug wells. Measurements were made weekly in 

the dry season and daily through the wet season.  
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Figure D-4. Location map of the AMGRAF and ILSSI monitoring wells.    

The WTF method has the key assumption that, because recharge rates vary substantially 

within a catchment due to differences in elevation, geology, slope, vegetation, and other 

factors, monitoring wells should be sited so the water levels are representative of the 

entire catchment (Healy and Cook 2002). Identifying a “representative” location is 

problematic, therefore, the possibility of recording groundwater level change due to 

lateral groundwater flow is considerable. 

 

Figure D-5. Groundwater hydrograph through the wet season and determination of water table rise for the 

WTF method. MW1 refers to the groundwater level in monitoring well 1 from where this snapshot is 

taken. (mbgl = metres below ground level). 
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Two RIB method parameters, “lag days” and “length days”, were calibrated within the 

model. “Lag days” indicates the time it takes percolating rainwater to reach the water 

table. It was assigned as 1 day (pre and post-calibration) because the shallow water table 

leads to a short time lag between rainfall and groundwater level peak. “Length days” 

refers to the length of related rainfall events and is adjusted to gain the best fit between 

simulated and observed groundwater levels (Figure D-6). Lateral groundwater inflows 

and outflows can be specified in the model though the difficulty in quantifying these 

means they are typically set at zero under the assumption that they are in balance. As with 

the WTF method, this generates the possibility of accounting for groundwater level rise 

from lateral flows in recharge estimation. 

 

Figure D-6. Graphical output of the RIB model showing observed rainfall, observed groundwater level 

fluctuation (WLF), simulated groundwater level fluctuation (dh (rib)) and computed recharge. This plot 

shows the simulation of monitoring well MW3. 

D-10 SHETRAN modelling 

The main advantages of SHETRAN over alternative physically based spatially distributed 

river basin modelling systems are its comprehensive nature and capabilities for modelling 

subsurface flow and transport. The subsurface is treated as a variably saturated 

heterogeneous porous medium, and fully three-dimensional flow and transport can be 

simulated for combinations of confined, unconfined, and perched systems. The 

‘‘unsaturated zone’’ is modelled as an integral part of the subsurface, and subsurface flow 

and transport are coupled directly to surface flow and transport (Ewen et al., 2000). 

SHETRAN is well established in the literature, having been applied to a variety of 

situations such as predicting climate and land use change impacts on a Mediterranean 
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catchment (Parkin et al., 1996), modelling landslide sediment yield in Scotland (Burton 

and Bathurst, 1998), coupling flow and nitrogen transport in Sweden (Birkinshaw and 

Ewen, 2000b), and modelling forest impact on floods caused by extreme rainfall and 

snowmelt in Latin America (Bathurst et al., 2011a). 

Both saturated and unsaturated zones of the subsurface are represented by a single 

equation: 


   


















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
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
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x
[K k

x
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y
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y
] +  

z
[K k

z
] +  

(k K )

z
 -  qx r y r z r

r z
 

 

(D-6) 

where 






d

d
 + 

n

S
 = s

 

 

(D-7) 

and  

kr = relative hydraulic conductivity (-) 

(Kx,Ky,Kz) = principal components of saturated hydraulic conductivity (m/s)  

n = porosity (-) 

q = specific volumetric flow rate out of the porous medium (general source/sink term) 

(1/s) 

Ss = specific storage (1/m) 

t = time (s) 

(x,y,z) = ordinates of the position vector (m) 

 = volumetric soil water content (-) 

 = storage coefficient (1/m) 

 = pressure potential (m) 

As this equation is continuous across saturated-unsaturated boundaries, fluxes across the 

boundary are implicit in the solution, unlike groundwater models such as MODFLOW 

where the control volume is the saturated zone defined by the time-varying water table as 

its upper boundary, and recharge is defined separately as a boundary input. In SHETRAN, 

therefore, recharge is a derived variable, which includes both the flux (vertical flow per 
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unit area) through the moving water table, and the rate of capture (or loss) of water in the 

saturated zone as the water table position moves. There is also no explicit use of a variable 

equivalent to specific yield, so an approximation of this concept is defined here as the 

amount of water available due to drainage of pore water space above the water table, 

derived from the shape of the unsaturated zone characteristic functions. Recharge is 

therefore calculated as: 

𝑸𝒓𝒄𝒉 =  −𝑸𝒗 + 𝑺𝒚
𝒅𝑯

𝒅𝒕⁄   (D-8) 

where 

H = phreatic surface (i.e. water table) level (m) 

Qrch = recharge rate (m/s) 

Qv = vertical velocity (m/s), +ve upwards 

dH = change in phreatic surface level (m), approximated as change in pressure 

potential (Δover the timestep in the highest saturated cell at the end of the timestep 

Sy = specific yield (-), approximated as change in water content (Δ in the cell above 

the water table over the timestep, implemented as  Δ 

dt = timestep (s)   

SHETRAN was manually calibrated using an iterative approach with the adjustment of 

geological layer thicknesses, aquifer properties, channel characteristics, Strickler 

overland flow roughness coefficient, and evapotranspiration characteristics. The range of 

values used for the input parameters was determined from field investigations and 

literature review of models set up for similar climates. Calibration aimed to minimise the 

error between observed and simulated time series. Calibration and validation periods were 

selected to give “typical” ranges of hydrological conditions and ran from the end of a wet 

season recession to the same point one, two or three years later. In addition to visual 

comparison of plotted observed and simulated data, the following performance indicators 

were utilised: Nash-Sutcliffe Efficiency (NSE) coefficient (Nash and Sutcliffe, 1970), 

where a value greater than 0.5 is considered acceptable (Moriasi et al., 2007), and root 

mean square error (RMSE), with units matching the compared data thus the value should 

be as low as possible. NSE is very sensitive to peak flows (Krause et al., 2005), therefore, 

given the flashy nature of the rivers with short-lived and relatively extremely high peaks, 

NSE (and RMSE) was calculated on low flows following hydrograph separation. For the 
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Brante model, NSE and RMSE were calculated on groundwater levels in the five 

monitoring wells selected at the onset of the AMGRAF project. The Brante model was 

principally calibrated against monitored groundwater levels (with consideration of river 

flow) combined with a semi-quantitative calibration to other areas of the catchment where 

simulations were compared against occasional observations and anecdotal evidence of 

frequent flooding or wells prone to drying up. The Amen and Kilti models were chiefly 

calibrated against river flow, though again with consideration of groundwater level 

information from around the catchments. A validation period was run to confirm that the 

calibrated parameters still produced a satisfactory simulation for independent input 

datasets. Table D-7 shows that the calibration statistics are acceptable for both the 

calibration and validation periods for all catchment models. 

Table D-7. Details and statistics of the calibration and validation periods for the SHETRAN catchment 

models. 

Catchment Calibration period No. of days NSE RMSE 

Amen 5 Apr 1999 to 4 Apr 2001 (years 2-3) 731 0.79 0.19 m3/s 

Kilti 16 Apr 1998 to 15 Apr 2000 (years 2-3) 731 0.78 1.47 m3/s 

Brante 12 Mar 2014 to 11 Mar 2015 (year 1) 365 0.69 2.01 m 

Catchment Validation period No. of days NSE RMSE 

Amen 12 Mar 2010 to 11 Mar 2013 (years 13-

15) 

1096 0.75 0.13 m3/s 

Kilti 2 Apr 2004 to 2 Apr 2007 (years 8-10) 1096 0.67 2.30 m3/s 

Brante 12 Mar 2015 to 11 Mar 2016 (year 2) 365 0.53 2.08 m  

 

D-11 Comparison of recharge results from the three nested catchments 

In this case, catchment scale means 37-632 km2 for the three catchments in this study. 

Despite being nested, the catchments have slightly different characteristics, in terms of 

proportional land cover and topography, therefore, differences in recharge result would 

be expected. Additionally, it is useful to evaluate if the different spatial and temporal 

scales contribute to the discrepancies in recharge results between catchments. The Amen 

and Kilti analyses utilise 17+ years of input data, the Brante only three, with little overlap. 

What’s more, those three years include 2014; the wettest year on record with annual 

rainfall of 2005 mm, and 2015 with annual rainfall only in the 20th percentile (1390 mm). 

Figure D-7 shows the recharge results plotted for each catchment. While no spatial scale 
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dependence can be seen, temporally, the shorter and alternative data periods of the Brante 

catchment are contributing to the reduced recharge estimate of the streamflow hydrograph 

methods. For each year from 2014-2017, the streamflow hydrograph methods give much 

lower recharge estimates than for the longer period analyses of the Amen and Kilti. 

However, the Brante catchment is flatter with the greatest proportion of floodplain 

wetlands and shallow water tables; therefore, direct groundwater evaporation would be 

elevated causing the low minimum recharge computations. 

 

 

Figure D-7. Graphical comparison of annual recharge estimates from the catchment-scale techniques 

separated into catchments. T-M = Thornthwaite-Mather method of AET estimation.  

D-12 Insights gained on the conceptual model in other recharge studies 

Other studies exist where fewer methods were applied and useful insights were gained. 

These insights are specific to the conceptual model of the study site. King et al. (2017) 

applied four recharge estimation methods to an alluvial aquifer in Queensland, Australia. 

Low CMB recharge results indicated that inherent assumptions were invalidated and 

channel leakage and overland flow were significant at the site. The WTF method gave 

the highest recharge results, especially in proximity to a river, which was considered, 

since the timing coincided with high stream levels, to be due to temporary influxes of 

water (bank storage). While a water balance gave a useful approximation of recharge for 

the catchment, only by applying and comparing the additional methods could the 

conceptual model be updated and understood. Takounjou et al. (2011) compared a hybrid 
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WTF/water balance method with the CMB method for a humid region of Cameroon. The 

discrepancy in results led the authors to suggest the CMB method was overestimating due 

to preferential shallow groundwater flow paths; ultimately, they considered the CMB 

method to be unsuitable for a humid forested environment). Huang et al. (2017), by 

comparing results from a CMB method with groundwater aging and stable isotope 

analysis, were able to update the conceptual model for a site in northwest China revealing 

that no recharge had occurred for >2,500 years, and, as such, potential abstraction of the 

paleaowater would be unsustainable. Misstear et al. (2009) compared SMB, WTF, 

numerical groundwater modelling and water balance recharge estimation methods for an 

aquifer in Ireland. The variations in WTF recharge estimates at particular locations, in 

comparison with more consistent results from other methods, indicated Sy variations 

within the aquifer.  

D-13 Annual recharge time series 

The interannual variation between recharge estimates and between methods is shown in 

Table D-8. 
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Table D-8. Annual recharge time series calculated by the methods that do not apply temporally averaged 

input data. Meyboom results not shown as they were rejected from the study. All results in mm. 

YEAR WHAT WETSPRO SHETRAN WTF RIB 

Brante Kilti Amen Brante Kilti Amen Brante Kilti Amen Graph. Simp. 

1988   321   288       

1989   235   224       

1990   202   186       

1991   237   219       

1992   159   170       

1993             

1994             

1995   440   483       

1996   321   350       

1997  180   146        

1998  171 297  145 259  280 289    

1999  225 347  176 325  300 297    

2000  243 346  201 318  288 280    

2001  148 259  116 298  289 266    

2002  169 129  131 111  294 274    

2003  162 131  142 119  287 265    

2004  184 163  144 144  288 276    

2005  153 155  127 133  267 252    

2006  303 230  225 203  302 297    

2007  277 172  207 145  301 279    

2008  306 188  267 201  276 271    

2009  190 138  169 121  313 286    

2010  191 181  194 162  282 267    

2011  213 228  184 219  290 277    

2012  257 188  224 165  327 306    

2013  182 315  280 286  296 292    

2014 135   139   256 314 310 1077 893 288 

2015 70   65   293   915 806 620 

2016 93   94   270   871 763 636 
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Appendix E. Bahir Dar drought analysis and rainfall comparison  

 

E-1 Bahir Dar drought analysis 

A drought analysis was conducted for Bahir Dar with assessment of SPI and SPEI for 

both spring and summer, growing season length using both Segele and Lamb (2005) and 

Stern et al. (2006) criteria, annual rainfall totals from NMA ground observations, remote 

sensing (TRMM) and reanalysis products (NCEP, JRA-55, ERA-Interim and NASA-

MERRA), and comparison with other studies using SPI and SRA. SPI indicates extreme 

droughts were spring 2003 and summer 1982 (Figure E-1), likewise SPEI indicates 

extreme drought in summer 1982 (Figure E-2), and both indicate very wet conditions in 

the early-70s. Assessment of growing season length and SRA from other studies support 

the findings from the SPI and SPEI. Table E-1 shows the results from all analysis methods 

for all years. 

 

Figure E-1. SPI calculated for Bahir Dar for spring (3-month, March-May) and summer (5-month, 

June-October). Note the non-continuous year sequence, which is different to that of Dangila. 

 

Figure E-2. SPEI calculated for Bahir Dar for spring (3-month, March-May) and summer (5-month, 

June-October). Note the non-continuous year sequence, which is different to SPI and that of Dangila. 
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Table E-1. Identification of drought/wet years and comparison of drought analysis methods for Bahir Dar. 

X = insufficient data for analysis. v = very. For SPI, SPEI and SPI/SRA from other studies: v dry and v 

wet are <-2 and >2 respectively, dry and wet are <-1.5 and >1.5 respectively. For growing season length: 

v long and v short are >±20% difference from mean length in days, long and short are >±10% difference 

from mean length in days. Annual rainfall: dry is rainfall total <10%ile, wet is >90%ile. 

Year SPI SPEI Growing season 

length 

Annual rainfall  Viste et al. 

(2013) NW 

Highlands* 

Bewket 

and 

Conway 

(2007) 

Bahir 

Dar 

SRA 

Ayalew et 

al. (2012) 
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1962        X X X X X X X  X 

1963     v short   X X X X X X X  X 

1964     long  wet X X X X X X X wet X 

1965       dry X X X X X X X dry X 

1966     v long long  X X X X X X X  X 

1967     v short long  X X X X X X X  X 

1968        X X X X X X X  X 

1969      v short  X X X X X X X  X 

1970        X X X X X X X  X 

1971  wet  wet long  wet X X X X X X X wet X 

1972     long   X X X X X dry   X 

1973  v wet  wet v long  wet X X X X X   v wet X 

1974 v wet  v wet    wet X X X X X   v wet X 

1975 dry    long long wet X X X X X dry   X 

1976     short   X X X X X    X 

1977     long   X X X X X    X 

1978     short   X X X X X    X 

1979      long  X wet wet  wet     

1980     short short dry X   wet    dry dry 

1981      short  X wet   wet     

1982  v dry  v dry short short dry X   wet wet  v dry v dry v dry 

1983    dry    X wet wet wet wet     

1984      v short  X  wet    dry  dry 

1985        X  wet wet wet  dry   

1986        X wet wet   v dry    

1987  dry  dry long   X  wet    v dry dry  

1988   dry  long   X  wet       

1989 X X X X X X  X  wet      wet 

1990 X X X X X X  X dry    dry    

1991 X X X X X X X X    dry dry    

1992 X X X X X X  X      v dry   

1993 X X X X X X  X   dry     wet 

1994 X X X X X X dry X   dry    dry dry 

1995 X X X X X X dry X  dry dry   dry dry dry 

1996 X X X X X X  X wet        

1997 X X X X X X  X      v dry dry  

1998 X X X X X X X wet wet  wet      

1999 X X X X X X     wet      

2000 X X X X X X X          

2001 X X X X X X X wet   wet dry     

2002 X X X X X X X  dry   dry dry    

2003 v dry  X X X X X      v dry   v wet 

2004   X X X X X        X  

2005   X X X X         X  

2006   X X X X wet  wet   wet   X v wet 

2007   X X long          X  

2008   X X   X dry dry   wet   X  

2009  dry X X   X dry X dry   v dry  X X 

2010   X X   X  X dry     X X 

2011   X X X X X  X   wet X X X X 

2012   X X X X X  X    X X X X 

2013   X X   X  X    X X X X 

2014 wet  X X short  wet  X X   X X X X 
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E-2 Comparison between Dangila and Bahir Dar rainfall 

It was necessary to test whether the Bahir Dar rainfall data could be used to inform the 

longer period climate at Dangila, i.e. are the coincident portions of the datasets 

sufficiently similar. The correlation testing results shown in Table E-2 indicate a high 

correlation between monthly rainfall totals. The poorer daily rainfall correlation is simply 

due to timing as weather systems proceed slowly with the generally low winds (Kebede 

et al., 2006; Setegn et al., 2010). Annual rainfall totals correlate well though with lower 

significance due to few matching complete years.  

Table E-2. Comparison between NMA Dangila and Bahir Dar rainfall for all coincident periods. 

Period compared Resolution Missing data Pearson P-value Spearman P-value 

1 Jan 2007 - 31 Oct 

2015 

Daily 915 out of 3226 

days (28%) 

0.403 0.000 0.703 0.000 

Jan 1922 - Apr 1924, 

Feb 1961 - Jun 1969,       

and Jan 1987 - Oct 2015  

Monthly 101 out of 475 

months (21%) 

0.890 0.000 0.915 0.000 

1922-1923, 1962-1967,  

and 1989-2014 

Annual 16 out of 34 

years   (47%) 

0.592 0.010 0.610 0.007 

 

The histogram in Figure E-3 shows that the distribution of the daily rainfall data is very 

similar for both sites with an almost identical standard deviation and an offset in the Bahir 

Dar data of approximately 1 mm/day less than Dangila. 

 

Figure E-3. Histogram of daily rainfall from Dangila and Bahir Dar for 1 Jan 2007 to 31 Oct 2015 

(excluding non-matching days). 
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A further correlation was conducted between the wet days per month, here defined as 

days with greater than 5 mm of rainfall (i.e. productive rainfall), for the overlapping 

period of the daily datasets (Jan 2007 to Oct 2015). Bahir Dar and Dangila correlate very 

well with a Pearson correlation coefficient of 0.938 (P-value = 0.000) and Spearman Rho 

of 0.929 (P-value = 0.000). This justifies the use of Bahir Dar rainfall years in the Dangila 

time series to be used for the climate variability future scenario SHETRAN simulations.  

Tables E-3 and E-4 show that the percentile range is greater for the Bahir Dar dataset, 

indicating that climatic extremes, both wet and dry, were not captured within the 22-year 

Dangila rainfall dataset used in the SHETRAN modelling; confirming what was 

discovered during the drought analysis. This can be seen in the histogram in Figure E-4 

where Bahir Dar, allowing for its lower annual total offset, has a greater spread. Notably, 

the Bahir Dar dataset includes the infamous Ethiopian droughts of the early-80s and the 

very wet early-70s. The actual range of annual rainfall totals for Bahir Dar is 890 mm 

(1982) to 2035 mm (1973) – two particular years that are not present in the Dangila record 

– compared to the Dangila range of 1118 mm (1930) to 2005 mm (2014).  

Table E-3. Long-term averages of NMA Dangila rainfall (Jan 1922 – Feb 1934, Aug 1955 – Jun 1969, 

and Jan 1987 – Oct 2015). Note that the Total column relates to annual totals rather than the presented 

monthly values. 

 J F M A M J J A S O N D Total 

Mean 3.3 3.6 24.6 43.4 126.4 245.6 346.6 348.2 230.6 104.2 40.0 7.4 1533.2 

StDev 7.6 5.0 28.6 38.6 74.6 55.8 68.6 71.9 63.5 64.5 38.8 12.3 218.9 

Min 0.0 0.0 0.0 0.0 0.0 140.6 220.8 165.0 102.0 12.0 0.0 0.0 1118.0 

c10 0.0 0.0 0.0 2.0 45.3 169.2 274.0 262.2 151.6 37.6 3.5 0.0 1245.1 

c25 0.0 0.0 2.4 10.9 61.8 197.0 305.5 299.0 184.0 58.0 7.5 0.0 1389.2 

Median 0.0 1.0 12.1 33.9 125.4 251.0 339.0 351.7 229.0 80.0 28.8 1.9 1517.8 

c75 3.0 6.0 35.3 66.1 169.1 283.0 369.2 384.4 268.1 133.1 58.8 9.4 1652.5 

c90 7.0 9.8 69.8 92.8 242.2 320.8 440.2 435.5 320.4 194.4 97.2 23.5 1858.7 

Max 40.1 21.0 97.4 153.0 302.9 354.4 570.2 531.0 391.7 270.1 163.0 62.0 2004.7 
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Table E-4. Long-term averages of NMA Bahir Dar rainfall (Aug 1920 – Apr 1924, Jun 1938 – Aug 1939, 

and Feb 1961 – Oct 2015). Note that the Total column relates to annual totals rather than the presented 

monthly values. 

 J F M A M J J A S O N D Total 

Mean 2.6 1.4 11.8 23.4 84.9 178.0 427.4 372.1 204.0 94.1 19.3 2.8 1429.4 

StDev 4.7 4.4 21.8 27.4 70.0 70.7 100.4 105.6 55.7 52.5 25.8 6.1 233.5 

Min 0.0 0.0 0.0 0.0 1.6 60.0 208.0 150.8 106.2 0.0 0.0 0.0 894.8 

c10 0.0 0.0 0.0 0.0 11.3 86.1 305.6 243.2 138.9 23.2 0.0 0.0 1186.5 

c25 0.0 0.0 0.0 1.3 34.3 124.2 350.4 293.4 163.3 55.6 2.1 0.0 1258.5 

Median 0.0 0.0 4.0 11.0 76.0 178.2 417.9 368.1 200.9 100.5 8.9 0.0 1422.1 

c75 3.1 0.3 13.6 33.5 112.3 216.3 481.9 447.7 240.6 123.2 24.6 2.6 1558.2 

c90 9.1 4.1 27.4 66.3 153.7 261.5 557.2 504.1 262.9 168.2 52.4 9.8 1703.6 

Max 20.3 26.9 118.5 111.0 363.0 404.9 643.9 648.2 378.5 206.6 107.2 34.8 2035.3 

 

 

Figure E-4. Histogram of annual rainfall from Dangila and Bahir Dar for all complete years.
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Appendix F. Water point surveys 

 

The information in Tables F-1, F-2, F-3 and F-4 is from surveys conducted by Demis 

Alamirew of GSE as part of the AMGRAF catalyst project in February and March 2014. 

Longitude and latitude are in the UTM37N coordinate system, taken from a handheld 

GPS along with elevation. SWL = static water level.
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Table F-1. Hand-dug wells. 

 

ID Woreda Kebele Site name Longitude Latitude Elevation m asl Geology Date of visit Field pH EC μS/cm Temp oC Depth m SWL mbgl Water strike mbgl Pump/cover

DW1 Guangu/Chagni Tigiri Metekel ber 243236 1226624 1887 Weathered basalt + soil 03/02/2014 5.79 59.8 22.8 19 16? hand pump

DW2 Dangila Washa Kulkul (lay Medhanialem) 254911 1245762 2205 soil and weathered basalt 04/02/2014 6.32 203 23.3 6 4 hand pump

DW3 Dangila Washa and Kabilita Washa & Kabilita school well/Robit 252972 1246806 2163 basalt with hematite and laterite stains 04/02/2014 7.34 344 26.5 32 27 hand pump

DW4 Dangila Wondayita Woranti gote) 259028 1244564 2119 weathered basalt and red soil 04/02/2014 6.14 86.5 25.3 13.5 about 4m hand pump

DW5 Dangila Dimsa Emadadi/lay Dimsa 256321 1243793 2225 weathered andesitic basalt/red soil 05/02/2014 0 hand pump

DW6 Dangila Washa Medhanialem Tach Yihun gote 254887 1244238 2199 weathered basalt 05/02/2014 12.5 4m, 5m hand pump

DW7 Dangila Warkit kebele Dekit 265130 1254942 2038 soil and fractured/weathered basalt 06/02/2014 10 7.5 hand pump

DW8 Dangila Warkit kebele Dekit/ Ato Yeshalem Zegey 265323 1255195 2043 weathered basalt and grey soil 06/02/2014 6.78 318 24.4 7 6.7 Metal sheet 

DW9 Dangila Dengela Georgis Addis Alem 263753 1255546 2055 weathered basalt with varigated colours 06/02/2014 12.5 8 hand pump

DW10 Dangila Dengela Georgis addis Alem(Masresha Atalele's well 263940 1255494 2053 Soil and andesitic basalt 06/02/2014 6.84 301 24.8 4.5 3.6 3 pot cover

DW11 Dangila Warkit kebele Ato Hayimanot Wonde's well (Deki gote) 264930 1254845 2046 soil and weathered basalt 06/02/2014 6.37 197.6 21.8 11 7.2 9 Metal sheet 

DW12 Dangila Warkit kebele Ato Fekadie Berku's well(Dekit gote) 265044 1254813 2045 soil and varigated colour weathered basalt 06/02/2014 7.11 307 24.8 10 8.2 Metal sheet

DW13 Dangila Warkit kebele Mokel 265561 1253511 2057 soil and weathered basalt 06/02/2014 6.27 151.3 27.1 11 6.89 hand pump

DW14 Dangila Warkit kebele Legasta 266550 1254196 2044 soil and weathered basalt 06/02/2014 6.29 124.5 26.4 5 hand pump

DW15 Dangila Warkit kebele Nana Minch/Legasta gote 266344 1253350 2047 soil and weathered basalt 06/02/2014 166.3 27 8 6 hand pump

DW16 Dangila Warkit kebele Nana minch(Ato Wubante Eyasu's well) 266327 1253334 2054 red soil (2m) and weathered basalt 06/02/2014 5.5 4.53 4.5 pot cover

DW17 Dangila Manguda Jabi gote 266925 1253133 2048 weathered basalt 07/02/2014 6.68 339 27.7 8.5 hand pump

DW18 Dangila Badani Delelti 249874 1239907 1922 boulder type basalt and black soil 07/02/2014 7.2 502 24.2 4 2 hand pump

DW19 Dangila Badani Akuacha 250264 1241521 1921 alluvium and weathered basalt 07/02/2014 6.52 680 27.9 7.5 6 hand pump

DW20 Dangila Badani Ambo/Guji 250363 1241161 1917 black loamy clay soil 07/02/2014 10 hand pump

DW21A Dangila Kuandisha Gezewetie 264708 1238299 2190 soil and fractured/weathered basalt 08/02/2014 6.79 162 19.8 9.5 6 hand pump

DW21 Dangila Kuandisha Gezewetie 264965 1237972 2203 loamy-silty soil and weathered basalt 08/02/2014 6.54 142 21.7 11 6 hand pump

DW22 Dangila Abla Mariam Mariam Wuha/Addis Alem gote 264115 1236875 2230 red clay top, silty loam dark soil bottom 08/02/2014 6.69 200 26.4 11 4.5 hand pump

Dw23 Dangila Abla Mariam Abla Mariam school well 264676 1237084 2229 fractured vesicular basalt and soil 08/02/2014 6.28 129.3 24.9 6 hand pump

DW23B Dangila Gayita Tach Gayita 270288 1237497 2159 red soil and regolith 08/02/2014 0 hand pump

DW24 Fagita Lekuma Ashewa Fera Cambo 267140 1231866 2362 silty clay soil and basalt from bottom 10/02/2014 6.89 93.2 23.7 6 hand pump

DW25 Fagita Lekuma Makia Teklehaymanot Makia 268237 1232047 2332 weathered basalt 10/02/2014 0 hand pump

DW26 Fagita Lekuma Abla Mariam Meskelti 265301 1231556 2401 silty loamy clay soil above vesicular basalt 10/02/2014 6.39 126.1 25.1 10 hand pump

DW27 Fagita Lekuma Meskelti Wondie Yenesew's well 265278 1231230 2388 weathered basalt 10/02/2014 6.18 113.3 22.3 6 4.8 5 pot cover

DW28 Fagita Lekuma Shangani Kesisi 263863 1230061 2394 red soil and boulder type basalt 10/02/2014 6.32 123 25.1 14 hand pump

DW29 Fagita Lekuma Gula Azmach Tankuari 269703 1228230 2411 red soil and basalt 11/02/2014 6.52 116.8 18.4 0 hand pump

DW30 Fagita Lekuma Tafoch Damburi Akuta 270339 1231449 2339 weathered basalt with pink tint 11/02/2014 7.73 150.2 19.8 24.5 hand pump

DW31 Fagita Lekuma Tafoch Damburi Dambul Elementry school compound 270147 1232224 2313 Deeply weathered basalt 11/02/2014 20 hand pump

DW32 Fagita Lekuma Tafoch Damburi Wonjela/Adurja 270441 1232461 2296 weathered basalt 11/02/2014 6.68 156.9 23.2 21 9 hand pump

DW33 Fagita Lekuma Giraita and Zembel Mariam Wuha gote 273870 1228651 2358 fractured and weathered basalt 11/02/2014 6.61 119.9 25.5 0 hand pump

DW34 Fagita Lekuma Segila Bambildawna Besena 280373 1224286 2476 weathered basalt 11/02/2014 7.11 131.8 22.4 27 12 hand pump

DW35 Fagita Lekuma Awsa Fenzit Fenzit school 276697 1228065 2347 weathered basalt 11/02/2014 9 hand pump

DW36 Dangila Afessa/Segino Gebeya Segino Gebeya 278706 1237135 2129 aquifer is boulder type basalt 12/02/2014 6.14 107.5 18.5 26 23.5 hand pump

DW37 Dangila Afessa Kes Adugna Fantahun/Arbit Gebreal 277399 1234214 2181 weathered vesicular basalt 12/02/2014 5.89 60.7 23.7 10 8.55 Metal sheet 

DW38 Dangila Afessa Arbit Gebreal new 277384 1234070 2182 weathered basalt 12/02/2014 6.56 117 23.3 9.5 7.55 hand pump

DW39 Dangila Ligaba Setto 278169 1242126 2054 weathered basalt above massive basalt 12/02/2014 5.92 46.7 28.2? 16 9 hand pump

DW40 Dangila Ligaba Ligaba 277205 1243337 2034 soil + basalt? 12/02/2014 11 hand pump
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ID Topography Land use Use Perennial Remark

DW1 flat land near small town domestic/town supply good supply A lot of users/Jericans in line 

DW2 sloping area farm land domestic/rural supply good supply saturated water depth in the stream cut below well is 2m

DW3 top land near school compound school water supply good supply andesitic basalt at middle, and sandy material aquifer (oral information)

DW4 foot of gently falling area farm land domestic/rural supply water scarcity may/April Water strike depth is interpolated from spring levele downstream

DW5 gentle slope farm land domestic/rural supply high water scarcity not sampled because of poor storage

DW6 sloping area farm land domestic/rural supply good supply Pump broken on same day morning

DW7 flat land grazing land domestic/rural supply not functional/pump uninstalled the pump is uninstalled for fear of teaft

DW8 flat land house compound domestic,cattle well dries in April-May well couldn't be sunk below due to massive rock, water emerges at contact of weathered and fresh basalt

DW9 flat land near house domestic/rural supply supply was good but well not working due to pump stolen

DW10 gentle slope very near house and cattle shelter good supply andesitic basalt 

DW11 flat land very near house domestic, cattle good supply Dug in 1997 E.C. and with 85cm diameter

DW12 flat land house compound domestic, cattle, and irrigation good supply Well EC is relatively higher than near by wells

DW13 flat land near farm land domestic supply good supply but not actively used Full of suspended material

DW14 flat land grazing land domestic good supply The swampy area near this well was wet throught the year till 1989E.C according to local people b/c of climate change

DW15 gentle slope near grziing land domestic supply good supply 6m soil, 2m weathered basalt, surrounding area was wet until 1986 E.C. (equaliptus coverage highly increased and climate changed, local people)

DW16 gentle slope near house domestic/cattle good supply

DW17 flat land 3.5m from house/cattle shelter domestic good supply only about 10m away from swamppy area; dug in may 2013

DW18 about 500m from ridge/gentle slope grazing land domestic supply good supply fresh boulder type jointed basalt is the main aquifer

DW19 flat land near farm land domestic supply well is located few hundred meters away from ridge foot

DW20 foot of hill grazing land domestic supply good supply

DW21A flat land farm land domestic supply The well couldn't be lowered below this depth due to massive basalt; 6m soil 

DW21 flat land farm land domestic supply good supply

DW22 flat land grazing land domestic supply good supply main wateris in the black soil and and night storage during digging was 1.5m

Dw23 flat land school compound domestic good supply water storage was about 1.5m in a night and flow from fractured basalt mainly (oral information)

DW23B flat land near farm land Pump not functional. The well is located in higly /actively irrigated area

DW24 flat land grazing land domestic supply good supply The basalt has some regolith on top of it which stores water

DW25 gentle slope farm land not functional/pump uninstalled

DW26 flat land farm land domestic supply good supply

DW27 flat land farm land cattle good supply

DW28 gentle slope farm land domestic supply good supply

DW29 depression grazing land domestic supply good supply A spring located some 800m away at down stream emerges at the contact of weathered basalt and trachyte

DW30 plateau farm land domestic supply good supply weathered basalt with red tint aquifer, a lot of commercial plants for charcol production

DW31 plateau school compound school water supply good supply not sampled

DW32 plateau grazing land domestic and for seedling good supply located in depression

DW33 flat land near farm land domestic supply

DW34 flat land school compound domestic and school supply good supply

DW35 flat land school compound domestic supply good supply while working pump not functional

DW36 gentle slope rural town supply domestic supply scarcity in March soil is dry (local people, but the contact between soil and massive basalt is wet

DW37 flat land individual well cattle good supply

DW38 flat land Rural village supply under construction Under construction, aquifer is weathered basalt under relatively thick red soil

DW39 plateau Rural village supply domestic supply good supply

DW40 flat land Rural village supply domestic good supply



356 

 

 

ID Woreda Kebele Site name Longitude Latitude Elevation m asl Geology Date of visit Field pH EC μS/cm Temp oC Depth m SWL mbgl Water strike mbgl Pump/cover

DW41 Dangila Ligaba Gilgel Badma 276292 1242522 2030 massive basalt on top and weathered basalt 12/02/2014 6.41 141.7 29.1 15 hand pump

DW42 Dangila Ligaba Asterio 275223 1243555 2011 soil with bottom massive basalt 12/02/2014 6.57 240 25.6 6 5.4 hand pump

DW43 Dangila Zelesa Kilage 268713 1244603 2132 red and black loamy soil intercalation 13/02/2014 5.82 56.8 18.9 11 2 hand pump

DW44 Dangila Enku Densi Fasiledes Kambo gote 273025 1241891 2022 Andesitic basalt 13/02/2014 16 hand pump

DW45 Dangila Misrak Zelesa Sale Egziabhaire 271951 1244264 2055 alluvium and weathered basalt 13/02/2014 0 hand pump

DW46 Dangila Misrak Zelesa Dagnaw Tarekegn's well 271864 1244048 2064 highly weathered red basalt top, yellow bottom 13/02/2014 6.11 197.6 22.5 13 6.6 11.5 Metal sheet 

DW47 Dangila Zelesa Wale Tilahun's well 271912 1244201 2057 red soil 13/02/2014 6.54 133.3 21.9 12.5 6.53 pot cover

DW48 Dangila Zeguda Lay Shewaye 270430 1246366 2084 red soil and regolith 14/02/2014 6.22 98.9 23.7 5 hand pump

DW49 Dangila Zeguda Weldehana 271170 1247335 2066 soil and thin regolith 14/02/2014 5.94 88.4 25.2 9 8 hand pump

DW50 Dangila Zeguda Abera Negash's well in Woldehana 271060 1247222 2072 weathered basalt 14/02/2014 697.6 23.1 8.5 7.25 8 Metal sheet 

DW51 Dangila Zeguda Kuaja 269811 1248608 2064 regolith 14/02/2014 6.06 114.5 26.2 17 4.5 hand pump

DW52 Dangila Degeshta Kuakurti 269677 1250776 2047 weathered vesicular basalt or regolith? 14/02/2014 6.76 231 25.1 10.5 9 hand pump

DW53 Achefer Weldafecha Mamo Denaenqubar 269062 1251933 2046 red soil, black soil/loamy clay, weathered basalt 14/02/2014 6.86 234 22.1 10 9 hand pump

DW54 Achefer Weldafecha Denaenqubar 269382 1251545 2041 red soil, black soil/loamy clay, weathered basalt 14/02/2014 7.31 322 24.6 6 3 hand pump

DW55 Dangila Zugda Tach Kuaja/Degu Negussie 270226 1249552 2047 Loamy clay soil 14/02/2014 6.13 40.8 21.7 6 1.75 open well

DW56 Dangila Dengesheta Girmaw Malede/Cheba gote 265228 1252431 2057 red soil and weathered basalt 20/02/2014 6.04 182.2 25.4 10 9.5 rope and washer pump

DW57 Dangila Dengesheta Girmaw Malede/Cheba gote red soil and weathered basalt 20/02/2014 6.12 212 23.6 11 10.1 10 open well

DW58 Dangila Dengesheta Ato Arega Wolie/Cheba gote 264608 1252655 2070 regolith, weathered trachy basalt, massive basalt 20/02/2014 6.28 172.5 23.4 5 4.75 under construction

DW59 Dangila Dengesheta Ato Arega Wolie/Cheba gote 264594 1252659 2069 red soil, regolith and weathered trachy basalt 20/02/2014 6.8 37.9 25.2 6.5 5.89 open well

DW60 Dangila Dengesheta Ato Nebretie Abebayehu/Cheba gote 264321 1252387 2067 red soil, regolith and weathered trachy basalt 20/02/2014 6.11 105.6 23.3 6 3.65 4 open well

DW61 Dangila Dengesheta Ato Semahagn Below/Cheba gote 264333 1252397 2075 red and weathered basalt 20/02/2014 6.33 217 22.5 5 3.2 4 open well

DW62 Dangila Dengesheta Ato Semahagn Below/Cheba gote red and weathered basalt 20/02/2014 5.5 2.7 open well

DW63 Dangila Tarra Gebreal/Dengesheta Ato Kassa Wudu (chorka village) 263709 1252406 2075 soil and regolith 20/02/2014 6.44 169.5 26.5 4.5 3 pot cover

DW64 Dangila Tarra Gebreal/Dengesheta W/ro Yayesh Ayinalem 263782 1252437 2074 weathered basalt 20/02/2014 6.36 181 23.1 4.5 3.2 4 pot cover

DW65 Dangila Tarra Gebreal/Dengesheta Ato Abayineh Shawel (Chorka gote) 263541 1252719 2078 weathered basalt 20/02/2014 6.47 107 23.9 5 3.89 open well

DW66 Dangila Tarra Gebreal/Dengesheta Ato Beyene Fekadie(Chorka) 263526 1252707 2080 soil and regolith 20/02/2014 6.46 111.7 22.2 11 4.1 4 Metal sheet 

DW67 Dangila Tarra Gebreal/Dengesheta Chorka 263565 1252721 2080 soil and weathered basalt 20/02/2014 6.48 140.4 26 7.5 hand pump

DW68 Dangila Tarra Gebreal/Dengesheta Ato Shibabaw Workneh (Chorka gote) 263577 1252555 2073 weathered trachy basalt 20/02/2014 6.56 124.6 21.6 7.5 3..45 7 open well

DW69 Dangila Tarra Gebreal/Dengesheta Ato Gedefaw Ayalew (Chorka gote) 263358 1252573 2075 regolith and weathered basalt 20/02/2014 6.61 144 23.1 5 3.25 4 pot cover

DW70 Dangila Tarra Gebreal/Dengesheta Ato Kasahun Worku(Abdra gote) 262992 1251801 2092 soil/regolith 20/02/2014 6.78 254 22.7 14 6 pot cover

DW71 Dangila Tarra Gebreal/Dengesheta Ato Necho Anagie (Abadra gote) 262987 1251752 2085 fractured basalt 20/02/2014 6.7 307 23 6.5 4.6 pot cover

DW72 Dangila Tarra Gebreal/Dengesheta Ato Atinkut mulu (Abadra gote) 262338 1252023 2074 weathered basalt 20/02/2014 6.11 177.1 22.7 12.5 8.18 9.5 Metal sheet 

DW73 Dangila Dengesheta Ato Melese Worku (Mender 1-Bunteta gote, M-1) 265440 1249776 2091 regolith and weathered trachy basalt 21/02/2014 6.22 132.6 21.5 8 5.75 Metal sheet 

DW74 Dangila Dengesheta Mender 1(Bunteta village) 265269 1249847 2087 wethered basalt, with some regolith contribution 21/02/2014 6.08 120.8 23.1 7 5 hand pump

DW75 Dangila Dengesheta Ato Birhanu Shibabaw, Mender 1, M-2) 265056 1250118 2082 fractured basalt with some regolith 21/02/2014 6.84 338 21.7 4.5 3.29 Metal sheet 

DW76 Dangila Dengesheta Ato Bazezew Worku(Monitoring well 3) 265588 1250141 2093 contact of weathered basalt and massive basalt 21/02/2014 6.8 280 23.1 9.5 8 Metal sheet 

DW76B Dangila Dengesheta Ato Bazezew Worku weathered vesicular basalt 21/02/2014 6.59 192.7 22.1 9.5 8 Metal sheet 

DW77 Dangila Dengesheta Ato Getaneh Ayichew (Demekta gote, M-4) 265457 1250733 2075 red soil and weathered basalt 21/02/2014 6.04 104 26.4 11 4.56 Metal sheet 

DW78 Dangila Dengesheta Mender 1(Demekta gote) 265360 1250728 2075 Loamy clay soil and basalt 21/02/2014 7.3 381 26.9 0 hand pump

DW79 Dangila Dengesheta Tara Gebreal Primary school 263346 1252081 2088 weathered basalt 21/02/2014 7.35 320 26.7 9 hand pump

DW80 Dangila Dengesheta Ato Tarekegn Tamiru (Abadra gote) 262754 1252201 2084 soil and regolith 21/02/2014 6.34 307 26 9 7.4 7 Metal sheet 

DW81 Dangila Dengesheta Ato Degu Ejigu/ Abadra goote 262804 1252184 2093 soil and regolith 21/02/2014 6.21 153.3 23.2 9 7.7 Metal sheet 

DW82 Dangila Dengesheta Ato Dessie Sewnet 262802 1252235 2090 red soil, regolith and weathered basalt 21/02/2014 0 7.5 Metal sheet 

DW83 Dangila Dengesheta Ato Alehegn Guadie (Abadra gote) 262874 1252330 2091 red soil, weathered andesitic basalt 21/02/2014 6.46 220 24 8.5 7.63 Metal sheet 

DW84 Dangila Dengesheta Ato Fenta Guadie 262815 1252071 2090 soil and weathered basalt 21/02/2014 7.5 7.47 Metal sheet 

DW85 Dangila Gerargie Ato Alelgn Gebeyehu (Girarge T/Haimanot red soil, regolith and weathered vesicular basalt 21/02/2014 6.77 277 26.5 12.5 6.65 Metal sheet 

DW86 Dangila Gerargie Ato Atalay Gebeyehu (Gerargie) 2623306 1250311 2080 weathered vesicular basalt 21/02/2014 6.65 281 23.9 9.5 5 Metal sheet 

DW87 Dangila Abadra Tach Mender Abadra Tach Mender 259912 1250977 2075 red soil and regolith 21/02/2014 6.32 110.4 26 7 hand pump

DW88 Dangila Abadra/Hamusit Abadra town 258070 1251989 2096 loamy clay soil, regolith and weathered basalt 21/02/2014 6.52 174.3 25 10 6 hand pump

DW89 Achefer Sebte Guchbigie 272919 1250764 2047 red soil and regolith 03/03/2014 6.05 94.6 23.3 7 5 hand pump

DW90 Achefer Sebte Kes Ajaw 272529 1251633 2041 weathered basalt 03/03/2014 5.92 73.5 22 12.5 6.55 10 pot cover

DW90B Achefer Sebte Kes Ajaw 272550 1251627 2044 weathered basalt 03/03/2014 5.65 52.4 21.3 15 8.5 7 pot cover

DW91 Achefer Gedema Fechito Gedema Fechito 272840 1254285 2035 red soil, regolith and weathered basalt 03/03/2014 6.19 132.8 23.1 16 14 hand pump

DW92 Achefer Gedema Fechito Gedema Fechito 272173 1254395 2016 Loamy clay soil and regolith 03/03/2014 6.17 168.5 22.9 6 2 hand pump

DW93 Achefer Gedema Fechito Gedema Fechito 271664 1254517 2010 red soil and regolith 03/03/2014 5.65 85.4 23.6 7.5 4 hand pump

DW94 Achefer Gedema Dengirsi (Cheba Dure gote) 271406 1254772 2014 weathered basalt 03/03/2014 6.32 222 26.5 14 10 hand pump

DW95 Achefer Gedema Emahoy Zertihun Redie"s well 271539 1254776 2020 regolith and weathered basalt 03/03/2014 6.12 59.4 23.3 16.5 13.75 14 Metal sheet 

DW96 Achefer Gedema Mariam Tajorka gote 271046 1255390 2009 regolith and weathered basalt 03/03/2014 0

DW97 Achefer Gedema Tazewarka 271276 1255852 2008 weathered basalt 03/03/2014 6.93 322 25.2 10 5 hand pump

DW98 Achefer Gedema Ato Bazezew 271256 1256196 2021 weathered basalt 03/03/2014 6.39 165.6 23.8 0 11.45 9 pot cover

DW99 Achefer Guta Yetubie Senshaw (Shumbab gote) 269189 1257635 2012 red soil little regolith 03/03/2014 6.23 199.7 24.1 12 6.6 9 pot cover

DW100 Achefer Guta Shumbra gote near DW99 269208 1257630 2011 red soil, regolith and some weathered basalt 03/03/2014 10 8 hand pump

DW101 Achefer Gedema Alemneh Fentie (Tach worka gote) 272387 1256232 2015 soil and regolith 03/03/2014 0

DW102 Achefer Gedema Taje Worka 272847 1256473 2012 red soil and regolith 03/03/2014 6.72 219 27 13 11.5 hand pump

DW103 Achefer Atite Abo Mehal Abo 272921 1266530 1942 black clay loam, regolith mainly weathered basalt 04/03/2014 6.65 232 22.2 5 4 hand pump

DW104 Achefer Atite Abo Ato Azene Guadie/Abalikab gote 272005 1266380 1985 soil for this well but the surrounding is basalt 04/03/2014 5.75 148 20.5 12.5 6.6 12 Metal sheet 
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ID Topography Land use Use Perennial Remark

DW41 flat land Rural village supply domestic supply good supply

DW42 flat land Rural village supply good supply; not used: pollution good supply The well has been opened for measuring water level and polluted and not currently in use

DW43 flat land near grziing land Rural village supply good supply Over 5000 pots are featched every day with no scarcity

DW44 gentle slope grazing land Rural village supply not functional/pump uninstalled not functional currrently due to pump problem

DW45 sloping area grazing land Rural village supply well not functional due to pump problem

DW46 sloping area near house cattle moderate supply Two dug wells close by and varying in two meters depth show some EC variation

DW47 sloping area near house domestic, cattle moderate supply located near house/mule shelter

DW48 flat land domestic moderate supply Scarcity of water during dry period

DW49 flat land near foot of gentle slope domestic supply good supply throughout the year water stored in soil mainly

DW50 flat land near house domestic supply moderate supply

DW51 flat land domestic good supply throught dug in 1991 E.C.

DW52 flat land farm land, 50m from grazing land domestic supply good supply throught Dug in 2000 E.C and sustainable supply all day long throught the year

DW53 gentle slope near swamy area in farm land domestic supply good supply about 3.5m red soil, about 1m black soil/loamy clay and about 5.5m weathered basalt is reported(oral info), dug in 2003 E.C.

DW54 flat land grazing land domestic supply good supply good supply but has bad smell in the rainy period due to the swampy area

DW55 flat land grazing land domestic, cattle good supply Near grazing land and sloping area before well

DW56 gentle slope farm land domestic and chat plantation drops in May-April Depth of weathering around this well is relatively deeper and some of the wells supply good water throught the year

DW57 gentle slope irrigation land/Chat tree irrigation only dries in April 10m soil and one meter weathered basalt

DW58 flat land near house domestic under construction The toilet is 12.5m from the new well and old well is 133m away from new well and toilet is almost at same depth to the new well

DW59 flat land near house domestic and cattle scarcity in May-April The toilet is 12.5m from the new well and old well is 133m away from new well and toilet is almost at same depth to the new well

DW60 flat land near house domestic and cattle Dug before 7 years

DW61 flat land near house irrigation only scarcity in May-April well separation is only 8m and used for irrigating chat plant

DW62 gentle slope irrigation land/Chat tree groundwater flow is towards east

DW63 flat land farm land/grazing land irrigation only good supply top soil is 3m thick and below this is regolith

DW64 domestic Relatively massive basalt at bottom, (dug before 6 years)

DW65 near house domestic Dug in 2003 February and functional 

DW66 almost flat land near house cloth washing and cattle water level highly drops in May Aquifer is regolith and water storage recovers though it falls significantly in dry period

DW67 almost flat land grazing land domestic supply good supply Main storage is in the regolith than in basalt or top soil

DW68 almost flat land near house cattle dug in April 2013; top soil is 2m then 1m regolith and 3.5m trachy basalt

DW69 flat land near house domestic and cattle good supply throught Main storage is in weathered basalt

DW70 flat land near house domestic supply high water scarcity As the bottom layer is massive basalt people have difficulty to sunk wells below this depth

DW71 gentle slope near house domestic, cattle supplies better than surrounding wells The aquifer is fractured boulder type basalt and has better yield compared to other wells (1.5m soil, 1.5m regolith and weathered basalt 2.5m

DW72 sloping side near house domestic, cattle good supply good supply though water level significantly drrops (dug in 2004 E.C March)

DW73 flat land near house domestic and cattle good supply dug in May 2004E.C.(red soil 2.65m, then 2m regolith and then 2.35m trachybasalt)

DW74 flat land grazing land domestic supply good but turbid in peak dry period Black soil then regolith and then trachy basalt 

DW75 flat land 4m from house domestic, cattle good supply Massive basalt at a depth of 4.5m and wells can't be sunk below(loamy clay soil, regolith, weathered basalt, massive basalt layering)

DW76 flat land near house cooking, cattle better supply Main flow is under varigated colored weathered vesicular basalt at the contact with massive basalt

DW76B flat land near toilet irrigation only better supply

DW77 flat land near house domestic and cattle good potential red soil and weathered basalt at bottom

DW78 flat land grazing land not used because of bad smell good storage, but not fully functional weathered basalt with grey weathering (aquifer), and dug in 2002EC and pump fitted in 2003 E.C., near dry creek

DW79 flat land school compound school water supply better supply The bottom layer is massive basalt and digging was stoped because of massive basalt

DW80 plateau near house domestic supply high water scarcity water well couldn't be sunk below this depth due to massive basalt

DW81 plateau near house domestic, cattle and irrigation high water scarcity well dries in may april, 1m soil 6m regolith and two meter basalt (well log, oral information)

DW82 plateau near house domestic, cattle high water scarcity water scarcity due to limited depth because of massive basalt

DW83 plateau near house domestic, cattle better supply new well (Feb. 2014) and the depth was fairly deep enough, and the aquifer is weathered andesitic basalt

DW84 flat land inside farm land domestic better supply

DW85 flat land near house domestic, cattle better supply the well has better supply and especially wells close to the swampy area

DW86 flat land farm land domestic supply very good supply throught the year the well is over 20 years old but still has great supply

DW87 gentle slope farm land domestic supply better supply

DW88 gentle slope inside small town domestic supply better supply A lot of users/Jericans in line 

DW89 flat land near swamy area domestic supply better supply Located near N20W depression

DW90 gentle slope inside irrigation farm irrigation only decreases in May-April water table fluctuation is about 4.55m 

DW90B gentle slope inside irrigation farm irrigation only decreases in May-April well separation is 21m

DW91 gentle slope grazing land domestic supply better supply

DW92 flat land near swampy area domestic good supply, but turbid in May The water has bad smell during the wet period ; No massive rock at bottom

DW93 flat land grazing land domestic supply good supply very good supply since digging and good recovery during digining (2002E.C.

DW94 gentle slope grazing land domestic supply very good supply throught the year top 4m is red soil and the rest is weathered basalt since it was dug (May 2003 E.C.)

DW95 gentle slope near house domestic supply very thin weathered basalt seen

DW96 abandoned due to pump problem

DW97 flat land grazing land domestic supply good supply No regolith but loamy clay soil

DW98 gentle slope farm land irrigation only good supply couldn't grow vegetable due to termites which cut the plants at any stage of growth of the plants

DW99 flat land near house domestic and Irrigation good supply Many people in the surrounding area tried to dig but couldn't sunk wells due to massive basalt at shallow depth

DW100 flat land grazing land domestic supply good supply Many people in the surrounding area tried to dig but couldn't sunk wells due to massive basalt at shallow depth

DW101

DW102 flat land grazing land domestic supply good supply Dug in June 2003E.C

DW103 flat land Intermountain depression domestic supply very good supply there is 2msoil, thin layer of gravel and regolith at the creek cut near by

DW104 plateau near house domestic and cattle Shallow water is mainly stored in weathered basalt around this place but in this well the storage is mainly in soil
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ID Woreda Kebele Site name Longitude Latitude Elevation m asl Geology Date of visit Field pH EC μS/cm Temp oC Depth m SWL mbgl Water strike mbgl Pump/cover

DW105 Achefer Atite Abo Abalikab 272252 1266509 1970 fractured and weathered basalt 04/03/2014 6.67 285 20.7 7 6 hand pump

DW106 Achefer Atite Abo Engedaw Bezie (Abalikab gote) 272333 1266658 1968 weathered basalt 04/03/2014 6.21 125.3 21.5 7 4.8 4 Metal sheet 

DW106B Achefer Atite Abo Engedaw Bezie (Abalikab gote) 272303 1266670 1974 weathered basalt 04/03/2014 7.5 6.2 6 Metal sheet 

DW107 Achefer Wulsi Tesfu Minch 274219 1265438 1936 Loamy clay soil and fractured basalt 04/03/2014 6.85 330 24.6 10 8.7 hand pump

DW108 Achefer Wulsi Ato Demeke Atnaw(Tesfu Minch gote) 274228 1265401 1941 loamy clay soil 04/03/2014 5.72 123 23.2 5 2.7 hand pump

DW109 Achefer Nefasa Ashuda Amestya Micheal 272691 1272100 1939 Trachyte 04/03/2014 6.72 259 27 8 5 hand pump

DW110 Achefer Nefasa Ashuda Ato Gerum Atalele (Amestya locality) 272724 1272050 1940 Trachyte 04/03/2014 6 4.05 Metal sheet 

DW111 Achefer Nefasa Ashuda Ato Kassa Atalele 272735 1272042 1940 loamy clay soil 04/03/2014 6.2 88.5 23.3 5 3.6 pot cover

DW112 Achefer Nefasa Ashuda Wondi Debelo community well 269749 1270836 2044 weathered basalt 04/03/2014 0 hand pump

DW113 Achefer Nefasa Ashuda Wondi Debelo School supply well 269800 1270485 2063 weathered basalt 04/03/2014 6.43 174.5 22.6 9 almost 9m hand pump

Dw114 Achefer Lalibela Medhanialem Eheri 273098 1272318 1941 loamy silty clay soil and regolith 04/03/2014 6.4 151.1 19.2 9 4.5 hand pump

DW115 Achefer Azena Amede Guma gote 276218 1269822 1900 weathered basalt 04/03/2014 7.49 350 20.3 7.5 6 hand pump

DW116 Achefer Gergista Micheal Gergista 276806 1249357 1986 weathered basalt 04/03/2014 6.45 244 22.4 9 7.5 hand pump

DW117 Achefer Gergista Micheal Kembro 276978 1249136 1991 soil and weathered basalt 04/03/2014 6.4 264 20.5 15 11 hand pump

DW118 Achefer Gergista Micheal Sheferaw Shiti (Kembro Gote) 276621 1249409 1987 red soil 04/03/2014 6.28 102.5 19.7 6 4.12 Metal sheet 

DW119 Achefer Sebte Dandie mesk gote 274509 1250559 2003 weathered basalt 05/03/2014 6.7 275 24.2 13 10 hand pump

DW120 Achefer Sebte Ato Semachew Genetie (Tach Sebt) 274604 1250594 2003 weathered basalt 05/03/2014 6.16 132.4 22.2 13 8.85 10 Metal sheet 

DW121 Achefer Sebte Ato Mekuanent Amare(Tach Sebt) 274659 1250615 2007 weathered basalt 05/03/2014 6 331 24 12.5 8.3 9.5 Metal sheet 

DW122 Achefer Sebte Ato Andualem Worku(Tach Sebt) 274739 1250537 2002 weathered basalt 05/03/2014 6.18 131 23.8 10.5 6.55 Metal sheet 

DW123 Achefer Sebte Tach Sebt 274685 1251183 2001 weathered basalt 05/03/2014 6.56 266 26 12.5 10 hand pump

DW124 Achefer Debikan Medhanialem Ato Degu Tayachew (Denka) 281229 1254917 1931 2m black soil +3m regolith 05/03/2014 7.19 227 25 5 4.5 Metal sheet 

DW125 Achefer Debikan Medhanialem Bitayita 281359 1255724 1929 loamy clay and regolith 05/03/2014 12.5 11 hand pump

DW126 Achefer Debikan Medhanialem Ato Bekele Degarege(Bitayita gote) 281384 1255775 1932 soil and regolith 05/03/2014 7.24 189 22.3 12.5 5.8 10 Metal sheet 

DW127 Dangila Afafe Eyesus Wawi 256420 1256428 2190 red soil and weathered basalt 06/03/2014 0 open well

DW128 Dangila Afafe Eyesus Tach Afafe Eyesus 256313 1255993 2135 fractured basalt 06/03/2014 6.73 273 21.5 7 open well

DW129 Dangila Tach Wawi Ajuri 257967 1256697 2101 alluvium and weathered basalt 06/03/2014 6.46 226 24.2 10 5 hand pump

DW130 Dangila Afafe Eyesus Lay Afafe eyesus 255125 1254862 2249 thin soil and weathered basalt 06/03/2014 6.57 141.8 26 12.5 10.5 hand pump

DW131 Mecha Abro Menore Asana 308402 1244023 2166 weathered basalt 07/03/2014 7.18 553 22.1 14 10 hand pump

DW132 Mecha Abro Menore Asana 308653 1243664 2184 weathered basalt 07/03/2014 7.97 302 25.8 8.5 hand pump

DW133 Mecha Abro Menore Abromenore school 307496 1241242 2373 weathered basalt 07/03/2014 13 12 hand pump

DW134 Mecha Fellegehiwot Debre Mender 306107 1248295 2143 alluvium and weathered basalt 07/03/2014 6.86 209 24 6.5 2.5 hand pump

DW135 Mecha Fellegehiwot Chew Duba 305262 1248163 2155 red soil 07/03/2014 6.82 266 24.5 7 5 hand pump

DW136 Mecha Hulum Selam Ato Yaregal Sheferaw(Gerchech town) 300494 1244287 2060 weathered basalt 07/03/2014 5.95 31.3 23 16 12.6 Metal sheet 

DW137 Mecha Hulum Selam Ato Yenework Yayeh(Gerchech) 300492 1244320 2060 weathered basalt 07/03/2014 6.29 61 23.8 16 11.15 13.5 Metal sheet 

DW138 Mecha Hulum Selam Ato Yaze Achenefe (Gerchech) 300476 1244381 2060 weathered basalt 07/03/2014 6.15 38 24 19 12.45 Metal sheet 
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ID Topography Land use Use Perennial Remark

DW105 flat land near creek domestic supply reduces in supply during May-April Dug in 1998E.C. The local people complain water table drop due to ecualiptus tree growth 

DW106 flat land near house currently for vegetation only

DW106B flat land near house currently for vegetation only Top is slightly-loamy clay then fresh basalt(2.5m) and then deeply weathered basalt

DW107 flat land about 800m away from Kilti river domestic supply good supply flow at soil and rock contact but mainly through fractured basalt

DW108 flat land near hand pump fitted well good supply

DW109 gentle slope domestic supply very low supply There is loam clay soil, little gravel and trachyte in the area. Completely dries in May

DW110 gentle slope domestic supply

DW111 gentle slope domestic supply

DW112 gentle slope/foot of hill grazing land domestic supply very low supply The well was shallow due to massive basalt layer. There is high scarcity of water or many wells failed due to this

DW113 foot of hill/sloping area grazing land school supply very low supply Soil is upto 6m, then thin regolith and then weathered basalt, and fresh rock at a depth of 9m

Dw114 flat land near grazing land domestic supply good supply Black silty loamy clay soil seen in this flat land

DW115 depression near farm land near farm land domestic supply low supply, thin saturated thickness As the well was dug the saturated thickness was 1m and there is high scarcity of water in it

DW116 flat land grazing land domestic supply good supply there is 3.5m thick soil, then regolith and then weathered basalt

DW117 flat land grazing land domestic supply there is massive fresh basalt at the depth of 15m, soil is 3m, 60cm regolith and 2.5m weathered basalt at river sections

DW118 flat land near house domestic supply good supply

DW119 flat land grazing land domestic supply good supply the flow was good at the contact of the weathered and massive basalts, (dug in 2002E.C. January to April)

DW120 flat land near house irrigation only good supply

DW121 flat land near house

DW122 flat land near house irrigation only good supply The basalt is deeply weathered and with brown tint

DW123 gentle slope near stream domestic supply good supply the main flow was along EW direction and along fractures (parallel to EW depression)

DW124 flat land near house domestic supply Almost everyone tried to dig three to four wells but failed because of massive basalt (5 to 6m), and water fluctuation is 4m (oral information of users)

DW125 flat land grazing land domestic supply good supply not functional currrently due to pump problem

DW126 flat land near house domestic and for seedling good supply There are three wells used for seedling of plants for sale

DW127 gentle slope farm land not used yet Under construction, seems to be abandoned

DW128 gentle slope grazing land domestic supply under construction; good storage by night The flow is through fractured of slightly weathered fractured basalt from 6m depth

DW129 foot of hill/sloping area grazing land domestic supply good supply Good storage throught the year, near Ajuri River

DW130 gentle slope near farm land domestic supply low storage in May-April The sloping area has highvariation of water storage depending on slope angle and depth of weathering

DW131 foot of hill/sloping area grazing land domestic supply water in open well stayed for >year before pump installation, used to have bad smell, seepage at soil rock contact; main storage is in weathered basalt

DW132 sloping side near farm land domestic supply good supply There is little contribution of alluvial deposits but main storage is in weathered basalt, dug in 2005E.C.

DW133 small depression in sloping area grazing land domestic supply well is not functional due to pump problem

DW134 foot of hill/sloping area protected area domestic supply Scarcity in May The buffer area for this well is the first kind in the area

DW135 depression, fault related? protected area domestic supply good supply The EC is different from shallow water hosted in soil in the surrounding area

DW136 flat land very near to house(60cm) domestic supply good supply The EC in the area is generally low but very low to this well

DW137 flat land inside the house(kitchen) domestic supply good supply

DW138 flat land very near to house(60cm) domestic supply very good supply Many people in the surrounding area fetch water from this well but the supply is good(good recovery and storage)
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ID Woreda Kebele Site name Longitude Latitude Elevation masl Geology Date of visit Field pH EC μS/cm Temp oC

BH1 Guangu/Chagni Tigiri Tigiri Health Center 243381 1226373 1891 Soil and weathered basalt 03/02/2014 7.42 205 25.3

BH2 Dangila Gundri-Ablakena Kuanchinta 265412 1237233 2206 weathered basalt 08/02/2014

BH3 Dangila Gundrie Abo Achirta health center 266847 1237440 2213 basalt and red soil 08/02/2014

BH4 Dangila Gundrie Lay Gundrie 267710 1237463 2213 vesicular basalt 08/02/2014 7.63 322 25.4

BH5 Dangila Ligaba Gilgel badma 277151 1243848 2021 12/02/2014 6.48 156.1 27.5

BH6 Dangila Zeguda Aboyita 268346 1246247 2110 alluvial soil, weathered and fractured basalt 14/02/2014 6.92 238 20.1

BH7 Debub Achefer Sebt Lay Sebt 272432 1251717 2038 weathered basalt 03/03/2014 6.55 254 23.5

BH8 Debub Achefer Debre Tsion Kechinie near Kurbani 278612 1265261 1957 04/03/2014

BH9 Debub Achefer Sebt Tach Sebt 274241 1251221 2017 basalt? 05/03/2014 6.4 165 27

BH10 Debub Achefer Debikan Mariam Chincha 282400 1255478 1926 basalt 05/03/2014 6.91 283

Bh11 Dangila Abadra Medhanialem Godguadit gote 259769 1252085 2069 alluvium and may be basalt 06/03/2014 6.28 332 26

BH12 Mecha Rime town Dima Gote 304790 1250896 2065 red soil and weathered basalt 07/03/2014 6.91 268 25

BH13 Mecha Hulum Selam Gerchech 300559 1244392 2065 basalt and weathered basalt 07/03/2014 6.71 136.8 24.1

ID Depth m Pump Position Pump Topography Land use Use Perennial Remark

BH1 40 hand pump flat land Health center domestic good discharge No protection area

BH2 60 27 hand pump flat land near grazing land domestic new well, not functioning yet

BH3 70 35 hand pump flat land near health center/grazing land new well, not functioning yet

BH4 hand pump flat land near stream bank domestic good discharge Millitery camp and community well

BH5 51? hand pump flat land near stream bank domestic good discharge People are not using it due to bad smell

BH6 hand pump flat land near stream and probably reason not known domestic good discharge Bad smell and bad test reported so people not using

BH7 78 hand pump near Kuchbiye river near stream and probably reason not known domestic

BH8 hand pump flat land near river domestic New well under construction

BH9 100? hand pump gentle slope grazing land domestic good discharge Data to be collected later if possible

BH10 70 hand pump flat land near swampy area close to Gilgel Abay

Bh11 132? moterized flat land near river and swampy area domestic artesian well Not functioning due to running cost problem(fuel)

BH12 hand pump flat land farm land domestic good discharge well data not fully found

BH13 95 16? hand pump flat land center of town town supply good discharge pump tested for 72hrs?(oral info), drilled in 2002EC



361 

 

Table F-3. Springs. 

 

ID Woreda Kebele Site name Longitude Latitude Elevation masl Geology Date of visit Field pH EC μS/cm Temp oC Flow/yield l/s Measuring method Topography

CS1 Dangila Alefa-Kacha Barbash 238051 1230275 1793 boulder type olivine basalt and silty clay soil 03/02/2014 5.56 91.2 22.2 about 0.05 Estimation flat land

CS2 Guangu/Chagni Seragam Micheal Sholal gote 240465 1228133 1821 Highly fractured and jointed basalt + red soil 03/02/2014 5.28 40 21.9 about 0.03 Estimation flat land

CS3 Dangila Kabita Sihai/Deber gote 254945 1246434 2207 weathered amygdaloidal basalt 04/02/2014 6.69 300 18.9 about 0.01 Estimation sloping area, in riverbank

CS4 Dangila Washa Kulkul 254940 1245733 2198 red soil (aquifer), weathered basalt in the surrounding 04/02/2014 8.16 74.5 27 about 0.01 Estimation sloping area, in streambank

CS4 Dangila Washa and Kabilta Agashti 252908 1247159 2103 >4m soil thickness and moderately weathered andesitic basalt 04/02/2014 7.73 224 23.3 0.84 floating method sloping area sliding soil mass

CS5 Dangila Dimsa Emadadi 256241 1243768 2213 andesitic basalt under 4m soil 05/02/2014 6.42 119.8 21.9 about 0.01 Estimation sloping area

CS6 Dangila Washa Medhanialem Tach Yihun gote 254712 1244066 2214 andesitic basalt with minor iron rich basalt 05/02/2014 7.42 242 17.6 about 0.01 Estimation sloping area

CS7 Dangila Dimsa Kanabari/Lamami 257249 1245757 2183 Weathered basalt, amygdaloidal basalt and soil 05/02/2014 7.83 310 18.2 0.5 floating method sloping area

CS8 Dangila Badani Saguma 249425 1241057 1900 alluvial soil 07/02/2014 905 25.6 very low flat land

CS9 Dangila Badani Akuacha 250368 1241676 1924 alluvial material 07/02/2014 524 23.3 about 0.01 Estimation gentle slope

CS10 Dangila Badani Warkit 250903 1236661 1928 red soil (aquifer), basalt in the surrounding 07/02/2014 206 26.6 0.090909091 volumetric flat land

CS11 Dangila Senguri Zerihun Minch 250799 1236196 1923 fractured basalt 07/02/2014 155.6 23.3 about 1  Estimation riverbank

CS12 Dangila Sehara lunk/Astuta gote 248488 1237421 1886 fractured basalt and regolith? 07/02/2014 220 22.9 total flow is over 30  floating method Topographic depression

CS13 Dangila Senguri Dengel 247412 1237304 1868 red soil 07/02/2014 206 23.8 about 3  Estimation Topographic depression

CS14 Dangila Badani Embura/Gizani gote 249831 1236850 1917 Soil and Vesicular basalt 07/02/2014 206 23.4 about 1  Estimation flat land

CS15 Dangila Kuandisha Gezewtie 264708 1238299 2190 Soil and Vesicular basalt

CS16 Dangila Kuandisha Bogalech Mersha/Gezewetie 265238 1237676 2207 Soil and Vesicular basalt 08/02/2014 6.35 106.2 23.2 seepage flat land

CS17 Dangila Gundri-Ablakena Yaba Tegegn Minch (Guachinta) 265342 1237359 2211 weathered basalt and soil 08/02/2014 6.2 152.1 21.6 below 0.1 Estimation flat land

CS18 Dangila Abla Mariam Buna Wuha 263399 1236148 2281 weathered basalt,weathered thickness is over 5m 08/02/2014 6.76 210 21.7 0.071428571 volumetric sloping side

CS19 Dangila Abla Mariam Mariam Wuha 263299 1236779 2283 weathered trachybasalt 08/02/2014 7.61 164.6 18 0.75 floating method sloping side

CS20 Dangila Gayita Georgis Workit Georgis Tsebel 270520 1237079 2163 boulder type vesicular basalt and top soil 08/02/2014 6.54 190.4 20.4 about 1.2  Estimation sloping side

CS21 Dangila Gayita Georgis Workit Domestic spring 270541 1237061 2162 boulder type vesicular basalt and top soil 08/02/2014 6.79 200 19.7 4.3 floating method sloping side

CS22 Dangila Gayita Georgis Minchit/Bambuit 271038 1237805 2149 basaltic regolith and soil 08/02/2014 6.1 113 18.1 about 2  Estimation Topographic depression

CS23 Dangila Lay Gayita Dokmit 269972 1237517 2157 Soil and Vesicular basalt 08/02/2014 6.13 108 23 1 volumetric Topographic depression

CS24 Dangila Gayita Georgis Yashina Micheal holy Water 270082 1236750 2172 vesicular basalt 08/02/2014 6.57 198.3 20.3 about 1.5  Estimation Topographic depression

CS25 Dangila Gayita Georgis Warda Gebit/Ashola Micheal gote 268826 1235330 2253 Basaltic regolith 10/02/2014 6.33 121.8 20.1 about 0.5  Estimation Topographic depression

CS26 Fageta Lekuma Tafoch Dambul Azarama(Macha) 268113 1234334 2281 silty loamy-clay soil with little regolith 10/02/2014 6.59 189.2 20.5 about 3  floating method depression

CS27 Fageta Lekuma Makia Teklehaymanot Godguadit Agegnehush 268221 1232018 2336 thin regolith and weathered vesicular basalt 10/02/2014 6.13 99.7 20.8 about 0.3  Estimation streambank depression

CS28 Fageta Lekuma Shangani Kechisi(Birzana Spring) 263806 1230039 2390 soil and basalt 10/02/2014

CS29 Fageta Lekuma Shangani Dabula spring 263575 1230141 2393 soil and basalt 10/02/2014

CS30 Fageta Lekuma Gula Azmach Kimkima 269450 1228190 2393 contact of weathered basalt and trachyte and along EW fracture 11/02/2014 5.94 60.4 17.2 0.2 Estimation Topographic depression

CS31 Fageta Lekuma Girayita Mariam Wuha 274209 1228955 2336 soil 11/02/2014 6.4 105.4 20.4 below 0.1 Estimation Topographic depression

CS32 Fageta Lekuma Sigla Yohanes Aba Drey. Ashebrite gote 279957 1227054 2375 boulder type basalt under soil 11/02/2014 6.92 85.6 19.7 0.25 volumetric sloping side

CS33 Fageta Lekuma Kuri Jegola Besena 279941 1224254 2452 weathered basalt 11/02/2014 6.65 43.3 25 seepage Topographic depression

CS34 Dangila Wumbre Yesesayitu Minch 278930 1237040 2118 thin regolith and weathered basalt 11/02/2014 6.26 104.6 19.9 about 0.7  Estimation riverbank

CS35 Dangila Wumbre Yaba Semeneh Minch 279090 1236724 2121 fractured and jointed basalt 12/02/2014 6.01 81 22.6 0.21 volumetric riverbank

CS36 Dangila Muksi Selamargi Mariam 277787 1239116 2085 soil and weathered basalt 12/02/2014 5.79 55 28? 2.83 volumetric Topographic depression

CS37 Dangila Zelesa Kes Mender 270117 1243849 2123 regolith? Weathered basalt 13/02/2014 6.77 380 18.1 2 volumetric Topographic depression

CS38 Dangila Zunga Yabagashe Minch 272876 1241213 2023 regolith? Weathered basalt 13/02/2014 6.73 194.1 21.6 0.125 volumetric sloping side

CS39 Dangila Zunga Gedema 272624 1240367 2024 andesitic basalt and aphanitic olivine basalt undifferentiated 13/02/2014 6.51 183 23.7 0.31 volumetric sloping side

CS40 Dangila Misrak Zelesa Sale Egziabhair 272096 1244283 2050 Scoraceous basalt under about 2m soil thickness 13/02/2014 7.51 280 27.9 about 0.01  Estimation sloping side

CS41 Dangila Zelesa Karmarie 272136 1244621 2058 black cotton soil + scoraceous basalt under the soil 13/02/2014 7.44 367 25.5 0.058823529 volumetric sloping side

CS42 Dangila Zeguda Thankisti/Aboyta gote 268522 1246029 2111 emerges from regolith 14/02/2014 6 49.7 23.5 0.333333333 volumetric flat land

CS43 Dangila Zeguda Lay Shewaye 270493 1246381 2088 emerges from soil at riverbank 14/02/2014 5.99 110.6 24.7 about 0.1  Estimation riverbank

CS44 Dangila Dengesheta Ceba gote near new metre.station 265035 1252291 2051 fractured vesicular basalt 20/02/2014 6.16 188.8 24.5 almost seepage Estimation riverbank

CS45 Dangila Chereka minch/Abadra gote 262483 1252024 2063 fractured and jointed basalt 20/02/2014 6.33 128.3 21.6 seepage depression

CS46 Achefer Atite Abo Aba Lika 272149 1266394 1984 loamy clay soil 04/03/2014 6.1 106.3 19 very low Estimation sloping side

CS47 Achefer Sebte Woynwuha (lay Sebte) 274071 1250601 2020 emerges from regolith and weathered basalt 05/03/2014 7.63 133 27 low flow (below 0.01 ) Estimation depression

CS48 Achefer Abchikili Zuria Jirfit 273763 1257658 2029 regolith 05/03/2014 low flow  depression

CS49 Dangila Tach Afafe Eyesus Senabo 256914 1255568 2110 foliated basalt 06/03/2014 6.29 101.6 23 low flow/about 0.001  Estimation riverbank

CS50 Dangila Tach Afafe Eyesus Minchitie 257004 1256037 2132 emerges from soil rock contact 06/03/2014 6.95 139.8 22.6 about 0.2  Estimation sloping side

CS51 Dangila Lay Afafe Eyesus Senabo 256112 1256369 2169 emerges from regolith but there is soil and boulder basalt around 06/03/2014 6.15 93 22.7 about 0.3  Estimation sloping side

CS52 Mecha Abromenore Sosna Georgis holy water 308683 1243630 2186 alluvial material 07/03/2014 7.22 400 22.2 no flow sloping side

CS53 Mecha Abromenore Ment(Genbo sub-kebele) 307420 1242491 2307 weathered and fractured trachy basalt 07/03/2014 6.52 174.2 22.4 low low fracture spring
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ID Fractures Land use Mode of Emergence Use Perennial Remark

CS1 EW grazing land and vegetation Fracture and depression/flat land Domestic and cattle Seasonal since the last 3y The spring starts drying in the dry period due to deforestation and plantation of Ecualiptus tree

CS2 Ew and NS Vegetation and grazing land Fracture and depression/streambed irrigation at downstream perennial vegetation density is good and emerges at junction of EW and NS fractures

CS3 emerges along NS fault vegetation along streambed, farms by riverbank Fracture and depression/streambed cattle perennial dense vegetation along streambank

CS4 farm land, grazing land topographic depression cattle perennial soil thickness is over 3m and spring not developed, not protected

CS4 farm land, grazing land topographic depression cattle and drinking, not protected perennial Emerges at the contact of soil and rock, multiple eye, causes landslide

CS5 N30W and EW near farm land along fractures cattle and some times domestic perennial emerges from fractured rock mainly along N30W and some along EW

CS6 N30W seepage and N20E fractures seen fracture and topogrphic break cattle, minor irrigation and domestic perennial

CS7 EW fracture seen grazing land and vegetation contact Domestic and cattle perennial

CS8 grazing land and vegetation topographic depression Domestic and cattle perennial The yield reduced, or dries in April due to deforestation / population density (local ealderly people)

CS9 farm land, grazing land contact Domestic and cattle perennial The spring emergence depth has been lowered by about 30 to 40 cm away from its orgional level some years back

CS10 grazing land and near swampy area topographic depression Domestic and cattle perennial Yield increases downstream from spring eye

CS11 near farm land contact of soil and fractured basalt domestic supply perennial the water in the river is used for irrigation

CS12 N50W (main flow and N50E minor flow) grazing land ang vegetation fractured and contact town supply, irrigation and cattle perennial It almost forms small stream

CS13 grazing land and vegetation topographic depression Domestic and cattle perennial

CS14 grazing land topographic depression domestic, cattle, irrigation perennial

CS15

CS16 grazing land topographic depression domestic, cattle perennial possibly polluted by No3 from anaimal dung

CS17 grazing land topographic depression Domestic and cattle perennial It was dried in 2013 or 2005 E.C. Dry period

CS18 grazing land and vegetation topographic depression domostic, cattle perennial Depth of weathering is over 5 meter 

CS19 N50E church land and vegetation/forest topographic break irrigation, drinking, preying water perennial

CS20 forest topographic break holy water, domestic and irrigation downstream perennial The flow at downstream is high 

CS21 forest topographic break domestic and irrigation perennial The flow at downstream is high 

CS22 grazing land just at margion of irrigation land topographic break demestic, irrigation, cattle perennial Yield highly increases during rainy period

CS23 grazing land and some vegetation topographic break Domestic and cattle perennial Poor development and pipes are closed and leaks under asunery work

CS24 grazing land and vegetation topographic break holy water, domestic and irrigation downstream perennial Spring eye divided for domestic and holy water

CS25 grazing land and vegetation topographic break domestic and irrigation perennial soil thickness is 1.5m on top of regolith

CS26 grazing land topographic break irrigation, domostic and cattle perennial Yield highly increases during rainy period

CS27 streambank near farm land topographic break domestic, cattle perennial Dries around mid of March, emerges from the contact of regolith and Weathered basalt

CS28 Not measured because of its high turbidity

CS29

CS30 EW grazing land topographic break seedling and for domestic and cattle perennial The spring flow is along bedding joints of weathered basalt and along EW fractures at the contact 

CS31 near farm land topographic break Domestic and cattle perennial reddish loamy soil with over 1.5m visible soil thickness

CS32 foot of plateau topographic break domestic and irrigation perennial Local people constructed temporary storage for irrigation

CS33 foot of plateau topographic break cattle perennial Debuki spring which was developed in 1990EC is totally dry due to water table drop/and/or development

CS34 streambank near grazing land contact domestic perennial there is seepage between soil and massive basalt but locally limmited regolith and joints have higher flow

CS35 grazing land fracture domestic perennial flow is along the vertical joint but the horizontal thinner joints are also connected with it

CS36 near river bed topographic break domestic, cattle and irrigation perennial

CS37 topographic break domestic, cattle and irrigation perennial

CS38 grazing land sloping side/topographic break domestic, cattle perennial development of spring just finshed on this date

CS39 grazing land sloping side/topographic break domestic perennial development of spring just finshed on this date

CS40 grazing land contact/ depression domestic perennial yield is low as soil thickness is thin

CS41 grazing land topographic break domestic perennial development was in 2005 E.C. but with very low discharge

CS42 grazing land topographic break domestic, cattle perennial Developed and local people report emergence point shrink by about 30m and emerges from regolith. 

CS43 grazing land topographic break

CS44 grazing land topographic break domestic supply perennial emeerges just above the relatively massive vesicular basalt

CS45 N20E, N70W, EW junction (emergence point) and N50W grazing land topographic break domestic supply and cattle perennial emerges at junction point of fractures

CS46 near farm land sloping side/topographic break domestic and irrigation perennial turbid water and used mainly for coffee plantation

CS47 grazing land topographic break doemstic, cattle perennial flow increases downstream of the creek after small seepages along the creek

CS48 forest Along EW depression not used except cattle perennial Not measured because of its high turbidity

CS49 NS foliation,EW and NS fractures, NS is younger riverbank along NS foliation domestic perennial The top red soil is 2.5m thick, Near Senabo stream

CS50 near farm land topographic break domestic perennial Not developed, not fenced. Multiple eye and emerges fromcontact of soil and moderately weathered basalt

CS51 near farm land topographic break domesic supply and little irrigation perennial Not developed, not fenced. Multiple eye and emerges from regolith below soil horizon

CS52 protected land, near creek topographic break holy water perennial it is kind of water hole and no low this time

CS53 EW and NS fractures, NS younger and low is along NS farm land, sloping area sloping side/topographic break not intensively used perennial microfractures controll low and storage but yield little
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Table F-4. Rivers. 

 

 

ID Woreda Kebele Site name Longitude Latitude Elevation masl Geology Date of visit Field pH EC μS/cm Temp oC Flow/yield l/s Measuring method

RW1 Dangila Alefa-Kacha Awsi River near Tiski fall 237656 1229863 1779 Olivine basalt slightly weathered from top 03/02/2014 8.16 234 18.3 about 130  Estimation

RW2 Gizani Alefa-Kacha Gizani River (Barbash gote,near Tiski fall) 237734 1229844 1778 Olivine basalt slightly weathered from top 03/02/2014 8.19 117.7 20.1 1.73m3/s floating

RW3 Dangila Washa and Kabilita Fench wuha 252903 1246494 2139 weathered basalt, chonchoidal weathering 04/02/2014 8.21 290 20.3 1.3 Estimation

RW4 Dangila Dimsa Awsa Arka 256547 1245547 2134 amygdaloidal basalt 04/02/2014 7.75 255 23.1 about 1.5  Estimation

RW5 Dangila Dimsa Yaba Yenew shete(stream) 254751 1244691 2205 moderately weathered basalt 05/02/2014 7.15 265 22.3 about 1  Estimation

RW6 Dangila Warkit Kilti at Deki gote 264591 1255464 2029 fresh slightly fractured basalt and soil 06/02/2014 7.98 218 22.4 about 1.5 m3/s floating

RW7 Fageta Lekuma Girayita Muger River 272957 1228851 2332 massive basalt with some joints and minor faults 11/02/2014 7.58 121.2 18.2 about 35  Estimation

RW8 Fageta Lekuma Aswa Fenzit Zuma 276908 1227475 2339 weathered trachybasalt at margin and basalt at River 11/02/2014 7.33 93 23 about 25  Estimation

RW9 Dangila Zelesa-Ligaba Ashare 274212 1244121 2003 basalt 13/02/2014 7.65 169.1 26.9 over 1.8m3/s Estimation

RW10 Dangila Diversion Quasheni 272664 1240223 2024 Andesitic basalt 13/02/2014 8.02 195.4 21.9 about 100  Estimation

RW10 B Dangila Enku Densi Fasiledes Kamo gote 273290 1242819 2007 alluvial soil 13/02/2014 7.44 300 25.1 about 40  Estimation

RW11 Dangila Dengesheta Branti river at New Gauge site 265107 1252291 2050 vesicular basalt 20/02/2014 8.25 256 21.5 about 5  Estimation

RW12 Debub Achefer Dekuli Kilty River 268938 1258318 2006 fresh fine grained massive basalt 03/03/2014 7.61 253 22.3 over 1.5m3/s Estimation

RW13 Debub Achefer Atibara 277039 1249117 1985 massive basalt with some joints 04/03/2014 7.54 154.6 17.6 about 4  Estimation

RW14 Debub Achefer Sebte Ashare river at sebte 275739 1250594 1974 massive basalt with some joints 04/03/2014 7.9 180 21.3 Estimation

RW15 Dangila Tach Wawi Ajuri River 257928 1256840 2099 2.5msoil,0.5m regolith, weathered basalt bottom unexposed 06/03/2014 7.21 131.6 21.9 about 35  Estimation

RW15B Dangila Abadra Ajuri River 259730 1252090 2065 alluvial soil 06/03/2014 7.84 168.4 30 about 60  Estimation

RW16 Mecha Abromenore Koga River 309328 1243278 2171 weathered basalt, stratiied and deeply weathered 07/03/2014 8.02 205 19.3 about 180  Estimation

RW17 Mecha Abromenore Asanat 308004 1240354 2451 deeply weathered basalt at top, bottom is massive basalt 07/03/2014 7.48 178 20.3 about 1.5  Estimation

ID Topography Fractures Land use Bank width Status Use Remark

RW1 flat land near ridge escarp N40E and shallow joints grazing land and vegetation about 30m perennial, turbid Cattle Depth of weathering is between 0.5 to 1.2m

RW2 flat land near ridge escarp N40E  grazing land and vegetation about 30m perennial cattle at this site Depth of weathering varies between 2 to 12.5m

RW3 sloppy area N60E and EW fractures  farm land 4m perennial cattle and rarely irrigation depth of weathering is between 0.5 to 1m and 

RW4 depression N30W and Ew minor fractures  vegetation 15m perennial cattle N60E, N30W and NS fractures seen at down stream

RW5 sloppy area EW & NS fractures farm land 3m perennial cattle, irrigation, rarely domestic exposed weathered section is 2.3m at this spot

RW6 flat land grazing land, farm land, vegetation 13m perennial cattle, irrigation, rarely domestic few farmers are irrigating their land using motor pumps

RW7 gentle slope EW, N50E, N30E grazing land about 50m perennial irrigation, cattle

RW8 gentle slope near farm land about 30m perennial irrigation, cattle

RW9 flat land grazing land about 35m perennial irrigation, cattle it is beeing diverted by local people

RW10 flat land grazing land abut 35m perennial irrigation, cattle The river is also diverted by local people from down stream

RW10 B flat land irrigation area 12m perennial irrigation, cattle & domestic Local diversions are made in many places

RW11 flat land near gentle slope grazing land 9.04m perennial irrigation, cattle Slightly jointed vesicular basalt under 1.5m soil cover

RW12 flat land grazing land 50m perennial irrigation, cattle, mill riverbank is 1.4m; surrounding people complain that massive rock hinders well diging

RW13 20m perennial irrigation, cattle, mill

RW14 flat land grazing land 25m perennial irrigation, cattle

RW15 depression grazing land 8m perennial irrigation, cattle exposed section depth is 3.5m

RW15B flat land, deep erosion and landslide grazing land 25m perennial irrigation, cattle The loamy clay soil thickness is obout 4m at river bank

RW16 depression N30W and Ew minor fractures  river valley, farm land on sides 31m perennial irrigation, domestic, cattle The river is damed at down stream

RW17 sloppy area N30W and Ew minor fractures  7m perennial irrigation,domestic, sanitation Part of the river segiment is controlled by N30W vertical fracture pattern
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The information in Tables F-5, F-6 and F-7 is from surveys conducted by David Walker in 

February and March 2014. All locations are within Dangila woreda unless stated. Coordinates 

are in the WGS84 coordinate system, taken from a handheld GPS along with elevation. 

Measurements in italics were received word of mouth. Note that an uppercase ID, e.g. DW73, 

denotes a location originally surveyed by Demis Alamirew whereas lower case, e.g. dw6, 

indicates a location surveyed only by David Walker.
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Table F-5. Hand-dug wells and boreholes. 

 

ID (DW = Demis ID) Kebele Site name N E Elevation masl Geology (italics = Demis survey ) Date of visit Pumping test Sample 222Rn test Field pH EC μS/cm Temp oC Depth m SWL mbgl

DW76 Dangesheta Ato Bazezew Worku (MW 5) 11o18.184' 036o51.195' 2090 weathered basalt 19/03/2015 8.44 5.98

dw1 Dangesheta 11o17.985' 036o51.200' 2091 quite friable fractured vesicular basalt below gravelly soil 19/03/2015 7 5.5

dw2 Dangesheta 11o17.986' 036o51.176' 2091 quite friable fractured vesicular basalt below gravelly soil 19/03/2015 7 5.5

DW73 Dangesheta Ato Melese Worku (MW 2) 11o17.984' 036o51.120' 2091 regolith and weathered trachyte basalt 19/03/2015 Yes (both visits) SI5 C5 A5 5.83 130.7 20.3 7.03 5.77

DW75 Dangesheta Ato Birhanu Shibabaw (MW 3) 11o18.168' 036o50.907' 2086 fractured basalt with some regolith 19/03/2015 4.16 3.94

DW77 Dangesheta Ato Getaneh Ayichew (MW 4) 11o18.504' 036o51.125' 2075 red soil and weathered basalt 19/03/2015 Yes (both visits) 5.28 90.74 22.2 9.19 5.34

dw3 Dangesheta Ato Assaye Molla (MW 1) 11o18.051' 036o51.268' 2094 19/03/2015 6 5.95

DW43 Zelesa Kilaje 11o15.191' 036o52.936' 2137 red and black loamy soil intercalation 21/03/2015 SI1 C1 A1 5.19 50.62 20.9 17 2

dw4 Zelesa Kilaje 11o15.246' 036o52.350' 2136 21/03/2015 SI2 C2 A2 5.84 99.7 20.8 18

dw5 Zeguda Tankishti 11o16.085' 036o52.734' 2119 gravelly alluvium regolith 22/03/2015 dry

DW57 Dangesheta Girmaw Malede/Cheba gote 11o19.435' 036o50.999' 2061 red soil and weathered basalt 23/03/2015 11 8.41

DW56 Dangesheta Girmaw Malede/Cheba gote 11o19.424' 036o50.992' 2052 red soil and weathered basalt 23/03/2015 SI4 C4 A4 5.53 171.9 22.9 10 9.5

dw6 Dangesheta Ato Birhanu Shibabaw 11o18.169' 036o50.899' 2082 regolith 24/03/2015 Yes (both visits) SI6 C6 A6 5.57 144.2 22.3 3.55 2.71

DW61 Tara Gabriel Ato Semahagn Abebayehu 11o19.398' 036o50.504' 2070 regolith 25/03/2015 Yes (first visit) 5.95 216.6 22.1 4.12 3.58

DW62 Tara Gabriel Ato Semahagn Abebayehu 11o19.406' 036o50.504' 2070 regolith 25/03/2015 4.17 3.75

dw7 Tara Gabriel Ato Getenet Birehanu 11o19.429' 036o49.755' 2089 regolith 25/03/2015 Yes (first visit) 5.97 149.9 23.6 8.75 7.91

DW79 Tara Gabriel Tara Gabriel School 11o19.227' 036o49.959' 2081 weathered basalt 25/03/2015 SI7-I8 C7-9 A7-9 6.88 334.9 25.2 10

dw8 Sahara Gisa agricultural office 11o12.039' 036o40.067' 1894 black alluvium 26/03/2015 1.3 1

DW18 Badani Delelti 11o12.568' 036o42.610' 1930 massive basalt boulders in black clayey alluvium 26/03/2015 SI11 C11 A11 6.66 481.9 25.9 4 2

dw9 Kwakurta Chara restaurant 11o11.551' 036o45.558' 1975 regolith 26/03/2015 7.7

DW2 Washa Amognita 11o15.763' 036o45.351' 2216 red regolith 26/03/2015 SI12 C12 A12 5.76 200.4 21.9 6 4

dw10 Wondayita Worranty 11o15.103' 036o47.937' 2111 26/03/2015 SI13 C13 A13 5.69 44.29 22.1 8.39

DW21 Kuandisha Gezewetie 11o11.761' 036o50.766' 2200 loamy-silty soil and weathered basalt 27/03/2015 SI14 C14 A14 6.17 174 24.7 11 6

dw11 Kuandisha 11o11.500' 036o50.269' 2218 27/03/2015 6.91

DW22 Abla Mariam Avila 11o10.990' 036o50.442' 2233 red regolith 27/03/2015 SI15 C15 A15 6.31 264.4 24 11 4.5

DW130 Afafe Eyesus Lay Afafe eyesus 11o20.705' 036o45.429' 2251 thin soil and weathered basalt 28/03/2015 12.5 10.5

dw12 Afafe Eyesus Ayesheshem Chakul 11o20.595' 036o45.317' 2267 massive basalt boulders in regolith 28/03/2015 5.64 87.06 19.8 17 12

dw13 Afafe Eyesus Desalign Abyu 11o20.628' 036o45.372' 2255 massive basalt boulders in regolith 28/03/2015 16 14

dw14 Afafe Eyesus Asmara Sonet 11o20.437' 036o45.878' 2195 28/03/2015 5.51 136.7 20.5 14 11.8

DW88 Abadra Abadra town 11o19.154' 036o47.062' 2091 loamy clay soil, regolith and weathered basalt 28/03/2015 10 6

dw15 Abadra Mangudit 11o19.680' 036o46.827' 2107 28/03/2015 SI16 C16 A16 5.69 196.8 23.4 8.5

dw16 Dangesheta Girma 11o19.518' 036o51.343' 2055 regolith 30/03/2015 10.2 9.77

dw17 Dangesheta Girma 11o19.528' 036o51.335' 2055 regolith 30/03/2015 5.59 145.5 21.9 10.39

dw18 Dangesheta Girma 11o19.535' 036o51.342' 2055 regolith 30/03/2015 5.46 133.1 21.3

dw19 Dangesheta Prest Getay 11o19.424' 036o51.543' 2047 30/03/2015 5.45 166.5 22.2

dw20 Dangesheta Ebenew 11o19.297' 036o51.710' 2045 red regolith over friable weathered basalt 30/03/2015 5.74 215.5 21.2 3.5 2.4

dw21 Dangesheta Asheshum 11o19.289' 036o51.721' 2043 red regolith over friable weathered basalt 30/03/2015 5 3

dw22 Dangesheta Mobit Mulu 11o18.638' 036o51.993' 2063 alluvium and clayey regolith 30/03/2015 4.29 3.35

dw23 Dangesheta Mobit Mulu 11o18.631' 036o51.991' 2063 alluvium and clayey regolith 30/03/2015

dw24 Dangesheta Wondifro Taye 11o18.638' 036o51.922' 2077 alluvium and regolith 30/03/2015 4.53 3.33

dw25 Dangesheta Wondifro Taye 11o18.633' 036o51.921' 2077 alluvium and regolith 30/03/2015

dw26 Dangesheta Kindu Asmano 11o18.678' 036o51.903' 2059 regolith 30/03/2015 4.47 3.73

dw27 Dangesheta 11o18.688' 036o51.913' 2059 regolith 30/03/2015

dw28 Dangila 11o17.074' 036o49.536' 2082 31/03/2015 6.56 231.4 21.6

dw29 Abadra 11o16.542' 036o47.886' 2103 31/03/2015 6.49

dw30 Abadra Berayta 11o16.174' 036o48.068' 2099 31/03/2015 SI18 C18 A18 5.99 309.4 21.9
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ID (DW = Demis ID) Pump/Cover Topography Land use Use Perennial Remark

DW76 pot cover flat land on edge of floodplain near house between crops, floodplain/pasture and eucalyptus domestic and  cattle perennial

dw1 open well flat land on floodplain floodplain pasture will not be used dug in March 2015, 1.5 m diameter, will not be used due to unstable sides, "easy to dig"

dw2 open well flat land on floodplain floodplain pasture will be for potable supply dug in March 2015, 1.5 m diameter, will be used for potable supply, "easy to dig", dug 10 m from previous after that one abandoned

DW73 oil drum cover flat land on edge of floodplain near house between crops and floodplain/pasture domestic and cattle perennial

DW75 oil drum (no cover) flat land on edge of floodplain near house between crops and floodplain/pasture domestic and cattle perennial

DW77 oil drum cover fairly flat land on edge of floodplain near house between crops and floodplain/pasture domestic and cattle perennial

dw3 wood and branches flat land on edge of floodplain near house between pasture and eucalyptus plantations "rarely used because dirty water" seasonal beside house of man who monitors wells - raingauge is also beside his house.  Well almost dry but higher level in rainy season.

DW43 hand pump flat land on floodplain floodplain pasture village potable supply perennial dug 19 years ago, always good supply

dw4 hand pump flat land on floodplain floodplain pasture village potable supply inconsistent water very turbid (took about 6 filters to take samples), "sometimes no supply - it was once dry for over a year", only ~400 m from previous well in similar position

dw5 hand pump flat land on floodplain floodplain pasture "contaminated so just used for irrigation" seasonal currently dry so locals use spring ~100 m upstream

DW57 pot cover gentle slope above floodplain chat and coffee irrigation seasonal

DW56 rope and washer pump gentle slope above floodplain chat and coffee potable and irrigation perennial very good supply all year.  Water very clear - took no effort to push samples through filter.

dw6 pot cover flat land on edge of floodplain near house between crops and floodplain/pasture irrigation perennial other side of house to MW3.  Pump tested this one as too little water in MW3.

DW61 pot cover flat land on edge of floodplain in chat plantation between house and floodplain/pasture irrigation perennial 8 m south from next well in same plot.  Adjacent to "hanging" floodplain above quite steep Brante valley.  Close to catchment boundary.

DW62 wood and branches flat land on edge of floodplain in chat plantation between house and floodplain/pasture irrigation perennial there is another well 10 m west and many more in nighbouring plots.  Some become dry in April/May.

dw7 pot cover slope on hillside near house within crops and eucalyptus plantations domestic and cattle perennial part way down long sloping valley side of Kilti river - not near any floodplain/pasture

DW79 hand pump flat land on edge of floodplain in school grounds between floodplain/pasture and crops school domestic use perennial high, near to catchment boundary.  Sampled in triplicate to send 1x to Addis lab, 1x blind to Addis lab, and 1x to UK.

dw8 open well fairly flat land on edge of floodplain floodplain pasture cattle perennial very shallow water table, 5 m diameter open well for farmers to water cattle

DW18 hand pump sloping floodplain at base of large steep hill boulder-strewn floodplain pasture village potable supply perennial locals don't have their own wells as sides collapse

dw9 oil drum cover flat land in town beside restaurant restaurant domestic supply perennial

DW2 hand pump slope on hillside between crops and floodplain/pasture village potable supply perennial high in hills, ~20 m from trickling stream

dw10 rope and washer pump slope on hillside crops irrigation perennial cover has gaps for contamination, visibly only slightly turbid but took many filters to sample

DW21 hand pump flat land on edge of floodplain floodplain pasture domestic perennial compound locked but locals told us it is well used.  Filter discoloured red but easy to sample and not turbid.

dw11 pot cover slight slope at base of hill near house within crops  domestic perennial

DW22 hand pump flat floodplain at base of steep hill small pasture between nearby river and houses/crops domestic perennial

DW130 broken hand pump slope on hillside crops pump broken

dw12 oil drum cover slope on hillside near house within crops  domestic perennial "very good supply" but quite near catchment boundary (crest of big cliff)

dw13 pot cover slope on hillside near house within crops  domestic perennial ~100 m downslope from previous well

dw14 pot cover slope on hillside near house within crops  domestic perennial

DW88 broken hand pump fairly flat land on edge of floodplain near houses in small town pump broken well W of town near schools broken handpump, handpump in town N of river contaminated, most of town supply now from motorised pump in deep borehole E of town

dw15 hand pump gentle slope on hillside small pasture within crops on edge of Abadra town domestic perennial pump locked with hours restricted to a few in the morning and again at end of day; "to prevent kids breaking pump"

dw16 pot cover and pulley gentle slope coffee, chat, mango, banana, orange, onion irrigation perennial these three wells are all in same plot within 10 m of each other.  Solid rock was not struck during excavation.

dw17 pot cover and pulley gentle slope coffee, chat, mango, banana, orange, onion irrigation perennial

dw18 rope and washer pump gentle slope beside house and coffee, chat, mango, banana, orange, onion irrigation and domestic perennial IWMI installed pump in 2014

dw19 rope and washer pump flat land on edge of floodplain in house plot between crops and floodplain/pasture irrigation and domestic perennial IWMI installed pump in 2014

dw20 pot cover and pulley flat land on edge of floodplain beside house between crops and floodplain/pasture irrigation and domestic perennial

dw21 open well flat land on edge of floodplain between crops and floodplain/pasture under construction ~15 m from previous well at other side of house.  Spoil still visible - had to chisel through basalt layer - and intend to dig a bit deeper.  1.5 m diameter.

dw22 wood and branches flat land on edge of floodplain between crops and floodplain/pasture irrigation and domestic perennial dug two weeks ago.  In same plot as next well.

dw23 rope and washer pump flat land on edge of floodplain between crops and floodplain/pasture irrigation and domestic perennial IWMI installed pump in 2014

dw24 wood and branches, treadle pump flat land on edge of floodplain between crops and floodplain/pasture irrigation perennial on opposite side of floodplain to previous well

dw25 rope and washer pump flat land on edge of floodplain beside house within crops irrigation and domestic perennial IWMI installed pump in 2014.  ~7 m from previous well in same plot.

dw26 open well with pulley flat land on edge of floodplain crops irrigation perennial ~20 m from next well in plot of adjacent house

dw27 rope and washer pump flat land on edge of floodplain beside house within crops irrigation and domestic perennial IWMI installed pump in 2014

dw28 hand pump flat land on floodplain pasture domestic perennial

dw29 hand pump half installed gentle slope on edge of large floodplain crops under construction concrete lined, all infrastructure installed except pump headworks

dw30 hand pump gentle slope at base of large hill crops domestic perennial heavy use, bolt broken in pump so not working well, filter turned deep red but easy to sample
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ID (DW = Demis ID) Kebele Site name N E Elevation masl Geology (italics = Demis survey ) Date of visit Pumping test Sample 222Rn test Field pH EC μS/cm Temp oC Depth m SWL mbgl

dw3 Dangesheta Ato Assaye Molla (MW 1) 11o18.051' 036o51.268' 2094 19/03/2015 6 3.81

DW76 Dangesheta Ato Bazezew Worku (MW 5) 11o18.184' 036o51.195' 2090 weathered basalt 19/03/2015 8.44 4.91

DW56 Dangesheta Girmaw Malede/Cheba gote 11o19.424' 036o50.992' 2052 red soil and weathered basalt 10/10/2015 2SI1 2C1 2A1 5.61 167.7 22.9 9 5.5

dw21 Dangesheta Asheshum 11o19.289' 036o51.721' 2043 red regolith over friable weathered basalt 10/10/2015 2SI2 2C2 2A2 6.71 403.5 30.9 6 1

DTW3 Agaga DTW3 deep BH 11o16.905' 036o48.558' 2076 alluvium 12/10/2015 2SI4 2C4 2A4 8.77 315.0 22.0 150

DTW1 Berayta DTW1 deep BH 11o16.762' 036o48.561' 2074 alluvium 12/10/2015 192

DTW4 Berayta DTW4 deep BH 11o16.491' 036o48.551' 2073 alluvium 12/10/2015 150

dw30 Berayta Berayta 11o16.174' 036o48.068' 2099 12/10/2015

dw31 Agaga Agaga 11o16.961' 036o48.115' 2082 alluvium 12/10/2015 2SI5 2C5 2A5 5.55 136.4 21.8 ? ?

D3 Dangila D3 deep BH 11o15.889' 036o50.917' 2107 12/10/2015 2SI6 2C6 2A6 Yes 8.81 335.0 21.8 130

DW43 Zelesa Kilaje 11o15.191' 036o52.936' 2137 red and black loamy soil intercalation 13/10/2015 2SI8 2C8 2A8 4.77 46.26 20.5 18 ?

DW22 Abra Mariam Avila 11o10.990' 036o50.442' 2233 red regolith 14/10/2015 2SI10 2C10 2A10 5.46 133.3 21.7 18 ?

DW21 Kuandisha Gezewetie 11o11.761' 036o50.766' 2200 loamy-silty soil and weathered basalt 14/10/2015 2SI11 2C11 2A11 5.19 167.1 22.1 ? ?

dw18 Dangesheta Girma 11o19.535' 036o51.342' 2055 regolith 15/10/2015 2SI14

DW73 Dangesheta Ato Melese Worku (MW 2) 11o17.984' 036o51.120' 2091 regolith and weathered trachyte basalt 16/10/2015 Yes (both visits) 2SI12 2C12 2A12 5.30 110.9 20.9 6.89 4.27

DW75 Dangesheta Ato Birhanu Shibabaw (MW 3) 11o18.168' 036o50.907' 2086 fractured basalt with some regolith 16/10/2015 4.18 1.52

dw6 Dangesheta Ato Birhanu Shibabaw 11o18.169' 036o50.899' 2082 regolith 16/10/2015 Yes (both visits) 2SI13 2C13 2A13 5.41 133.8 22.2 3.41 1.42

DW77 Dangesheta Ato Getaneh Ayichew (MW 4) 11o18.504' 036o51.125' 2075 red soil and weathered basalt 16/10/2015 Yes (both visits) 2SI15 5.24 146.6 22.3 9.17 2.83

dw2 Dangesheta Nr Asaye New 11o17.986' 036o51.176' 2091 friable fractured vesicular basalt below gravelly soil 17/10/2015 2SI16 Yes 6.43 289.0 22.5 7 5.5

dw32 Sehara Little Asaye 11o11.117' 036o41.831' 1842 regolith 18/10/2015 Yes (second visit) 5.42 207.4 23.6 10.09 7.4

dw33 Kwakurta Selam 11o11.430' 036o44.952' 1990 regolith 18/10/2015 Yes (second visit) 5.82 196.5 23.0 5.91 2.78

DW79 Dangesheta Tara Gabriel School 11o19.227' 036o49.959' 2081 weathered basalt 21/10/2015 2SI28 2A28 2C28 6.59 231.3 24.7 10

ID (DW = Demis ID) Pump/Cover Topography Land use Use Perennial Remark

dw3 wood and branches flat land on edge of floodplain near house between pasture and eucalyptus plantations "rarely used because dirty water" seasonal

DW76 pot cover flat land on edge of floodplain near house between crops, floodplain/pasture and eucalyptus plantationsdomestic and  cattle perennial

DW56 rope and washer pump gentle slope above floodplain chat and coffee potable and irrigation perennial very good supply all year.  Water very clear - took more effort to filter than March/April.

dw21 hand pump flat land on edge of floodplain between crops and floodplain/pasture potable and domestic perennial was under construction when I was last here, now complete.  Very shallow water table (half a pump and water flowed)

DTW3 electric submersible very large flat floodplain pasture (near Kilti/Amen junction) Dangila town supply perennial Drilled in 2009, 150 m deep, open hole, pump at 60 m, Q = 20 l/s, operates 10h/d

DTW1 electric submersible very large flat floodplain pasture (near Kilti) Dangila town supply perennial Drilled in 2009, 192 m deep, open hole, pump at 60 m, Q = 32 l/s, operates 10h/d

DTW4 electric submersible very large flat floodplain pasture (near Kilti) Dangila town supply (not operational) - Drilled in 2009, 150 m deep, open hole, pump at 60 m, Q = 0 l/s, electrical problem so not operational

dw30 hand pump broken gentle slope at base of large hill crops not operational - pump broken; could not re-sample, locals using Kilti river.  Apparently school nearby also has HDW but pump is also broken

dw31 hand pump flat land on edge of floodplain between crops and floodplain/pasture potable and domestic perennial Sampled here because it is the closest to broken Berayta HDW for re-sample (though far away), also closest to deep BHs.

D3 electric submersible fairly flat land on edge of town near small river (Fincha) in trees Dangila town supply perennial Drilled 1985, 130 m deep, open hole, pump at 100 m, Q = 3.5 l/s, operates 10h/d.  D1 and D2 close but yield decreased till they non-functional

DW43 hand pump flat land on floodplain floodplain pasture village potable supply perennial dug 1992, always good supply

DW22 hand pump flat floodplain at base of steep hill small pasture between nearby river and houses/crops domestic perennial "sometimes bad smell".  Was very difficult to filter though not turbid - 3x filters per 125ml bottle.

DW21 hand pump flat land on edge of floodplain floodplain pasture domestic perennial compound no longer locked

dw18 rope and washer pump gentle slope beside house and coffee, chat, mango, banana, orange, onion irrigation and domestic perennial IWMI installed pump in 2014

DW73 oil drum cover flat land on edge of floodplain near house between crops and floodplain/pasture domestic and cattle perennial Repeat well test now greater saturated thickness

DW75 oil drum (no cover) flat land on edge of floodplain near house between crops and floodplain/pasture domestic and cattle perennial

dw6 pot cover flat land on edge of floodplain near house between crops and floodplain/pasture irrigation perennial Repeat well test now greater saturated thickness

DW77 oil drum cover fairly flat land on edge of floodplain near house between crops and floodplain/pasture domestic and cattle perennial Repeat well test now greater saturated thickness

dw2 hand pump flat land on floodplain floodplain pasture potable and domestic perennial had just been dug in March 2015, 1.5 m diameter

dw32 plastic drum cover flat land beside house surrounded by crops rarely used (cattle) perennial house is closest to Lunk spring which has very good water so they use that

dw33 oil drum cover flat land beside house surrounded by crops domestic perennial near to town (Chara)

DW79 hand pump flat land on edge of floodplain in school grounds between floodplain/pasture and crops school domestic use perennial not locked as it was during last visit
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Table F-6. Springs. 

 

 

 

 

ID (CS = Demis ID) Kebele Site name N E Elevation masl Geology Date of visit Sample Field pH EC μS/cm Temp oC Flow/yield Topography

cs1 Minchinat joins Brante 11o18.174' 036o51.599' 2076 regolith 22/03/2015 5.22 61.93 22.8 0.1 l/s slightly sloping floodplain

cs2 11o17.742' 036o51.656' 2085 gravelly alluvium regolith above massive basalt 22/03/2015 steeper sloping narrower valley with narrow floodplain

cs3 11o17.692' 036o51.681' 2084 gravelly alluvium regolith above massive basalt 22/03/2015 steeper sloping narrower valley with deep dry gullies

cs4 11o17.350' 036o52.189' 2110 regolith 22/03/2015 deep gully in floodplain high above main channel

CS42 Zeguda Tankishti/Aboyta gote 11o15.967' 036o52.829' 2118 gravelly alluvium regolith 22/03/2015 SI3 C3 A3 5.31 48.67 22.1 1 l/s flat floodplain

CS45 Chereka minch/Abadra gote 11o19.191' 036o49.485' 2071 fractured and jointed basalt 23/03/2015 shallow valley sloping towards Kilti gauge

CS12 Sehara Lunk/Astuta gote 11o11.217' 036o41.861' 1896 vesicular basalt boulders in regolith 26/03/2015 SI10 C10 A10 5.98 217.6 22 gullies forming at topographic break in flat land

CS4 Washa Kulkul 11o15.748' 036o45.283' 2222 red regolith 26/03/2015 gully in narrow sloping floodplain

CS19 Abla Mariam Mariam Wuha 11o10.879' 036o49.925' 2275 very deep weathered basalt 27/03/2015 deep gully in hillside

cs5 Dangesheta 11o19.020' 036o51.978' 2048 alluvium 30/03/2015 flat floodplain

cs6 Dangesheta Kote Labeles 11o18.711' 036o51.960' 2068 clayey alluvium 30/03/2015 SI17 C17 A17 6.09 189.6 22.2 0.25 l/s flat floodplain

cs7 Dangesheta 11o18.995' 036o50.505' 2075 alluvium 02/04/2015 edge of flat floodplain

cs8 Dangesheta 11o19.432' 036o51.721' 2043 alluvium 10/10/2015 5.22 195 22.1 1 l/s halfway down floodplain

cs6 Dangesheta Kote Labeles 11o18.711' 036o51.960' 2068 clayey alluvium 10/10/2015 2SI3 2C3 2A3 6.0 188.7 22.9 4 l/s flat floodplain

CS42 Zeguda Tankishti/Aboyta gote 11o15.967' 036o52.829' 2118 gravelly alluvium regolith 13/10/2015 2SI9 2C9 2A9 4.77 58.44 22.2 high flat floodplain

CS12 Sehara Lunk/Astuta gote 11o11.217' 036o41.861' 1896 vesicular basalt boulders in regolith 18/10/2015 2SI18-19 2C18-19 2A18-19 5.98 225.3 22.8 very high gullies forming at topographic break in flat land

cs1 Minchinat 11o18.174' 036o51.599' 2076 regolith 20/10/2015 5.36 66.35 20.3 0.5 l/s slightly sloping floodplain

cs9 Workit Workit 11o19.407' 036o51.573' 2036 alluvium above massive basalt 22/10/2015 2SI29 5.75 124.8 23.2 0.5 l/s downstream end of large floodplain

cs10 Dangesheta Brante SB 11o19.331' 036o50.993' 2054 alluvium over fractured basalt 22/10/2015 2SI30 6.11 171.7 23.5 0.5 l/s small floodplain

ID (CS = Demis ID) Land use Mode of Emergence Use Perennial Remark

cs1 pasture with cropland within 30 m of river contact of gravelly alluvium - more solid regolith minor use but potable perennial

cs2 pasture, forest on steeper sloping E bank contact of gravelly alluvium regolith - massive basalt none perennial many springs and seepages in west bank as basalt outcrops in river bed

cs3 pasture, forest on steeper sloping E bank contact of gravelly alluvium regolith - massive basalt none perennial spring ~15 m up floodplain side, between this spring and previous are many springs and seepages in W bank as basalt outcrops in river bed

cs4 cropland topographic break none perennial spring ~30 m up floodplain side where main channel cuts >10 m

CS42 pasture water table in floodplain centre domestic and cattle perennial developed with 2 of 4 pipes flowing and open concrete tank

CS45 pasture water table at bottom of valley and fractures seasonal spring and gully dry and in a visibly drier area

CS12 pasture and forest topographic break Gisa and Chara towns' supply perennial several springs with high flow form quite large stream. Spring developed and piped to tanks.

CS4 pasture water table at bottom of valley cattle perennial "more flow and additional springs in wet season"

CS19 forested church land water table at bottom of gully domestic, cattle and irrigation perennial many seepages emerging from undergrowth forming trickling stream, currently low flow but higher in wet season

cs5 pasture water table in floodplain centre cattle perennial many seepages form stream that flows to Brante

cs6 pasture water table in floodplain centre domestic perennial developed with 2 of 4 pipes flowing from enclosed tank and open concrete tank. More springs and seepages ~30 m away form stream that flows to Brante

cs7 pasture topographic break domestic and cattle perennial many seepages form stream that dries up on floodplain

cs8 pasture water table intercepts floodplain none seasonal many such springs and seepages on most Dangesheta floodplains

cs6 pasture water table in floodplain centre domestic perennial developed with 2 pipes flowing from enclosed tank and open concrete tank.  Many more springs and seepages all over small floodplain with high flow

CS42 pasture water table in floodplain centre domestic and cattle perennial pipes and open concrete tank submerged due to spring and stream flow

CS12 pasture and forest topographic break Gisa and Chara towns' supply perennial Very easy to filter. Several springs with very high flow form large stream. Developed; piped to tanks (overflowing into stream) then piped to elevated tanks for town supply

cs1 pasture with cropland within 30 m of river contact of gravelly alluvium - more solid regolith minor use but potable perennial numerous "eyes" all with low flow and very clear water

cs9 pasture contact of alluvium and massive basalt cattle perennial numerous seepages across fairly large area - just minor seepages in dry season

cs10 pasture contact of alluvium and fractured basalt cattle seasonal numerous seepages 
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Table F-7. Rivers and other features. 

 

ID Woreda Kebele Site name N E Elevation masl Geology Date of visit Sample 222Rn pH EC Temp Topography

RFL1 Dangila Dangesheta Bridge over dry stream 11o18.466' 036o50.993' 2075 dry, cracked, gravelly alluvium 19/03/2015 flat floodplain

RFL2 Dangila Dangesheta BDU weather station at Dangesheta Agricultural Development Office 11o18.561' 036o51.068' 2080 19/03/2015 on shallow slope up from floodplain

RFL3 Dangila Dangesheta Ato Assaye Molla - Community monitored rain gauge 11o18.041' 036o51.251' 2094 19/03/2015 flat land on edge of floodplain

RFL4 Dangila Dangesheta Dangeshta Service Cooperative 11o18.237' 036o51.142' 2111 19/03/2015 higher land between two floodplains

RFL5 Merawi Kolga Dam 11o20.758' 037o08.530' 2028 19/03/2015 shallow valley

RFL6 Dangila Dangesheta East of Dangeshta Service Cooperative 11o18.403' 036o51.023' 2076 22/03/2015 bottom of slope at floodplain

RFL7 Dangila Dangesheta Minchinat Stream joins Brante River 11o18.174' 036o51.599' 2076 regolith 22/03/2015 sloping floodplain

RFL8 Dangila Dangesheta Point where Minchinat currently emerges 11o18.174' 036o51.629' 2072 regolith 22/03/2015 sloping floodplain

RFL9 Dangila 11o17.692' 036o51.681' 2084 gravelly alluvium regolith above massive basalt 22/03/2015 steep sloping narrower valley, deep dry gullies

RFL10 Dangila Source of Brante tributary 11o17.279' 036o52.255' 2112 regolith 22/03/2015 deep gully

RFL11 Dangila 11o17.310' 036o51.955' 2118 22/03/2015 sloping valley sides

RFL12 Dangila Brante River road bridge 11o16.572' 036o51.847' 2111 gravelly alluvium and massive basalt boulders 22/03/2015 flat floodplain

RFL13 Dangila 11o16.538' 036o52.059' 2114 fractured vesicular basalt boulder field 22/03/2015 flat floodplain

RFL14 Dangila Zeguda Tankishti 11o16.085' 036o52.734' 2119 gravelly alluvium regolith 22/03/2015 flat floodplain

RFL15 Dangila Dangesheta Brante gauge 11o19.350' 036o50.924' 2050 massive, fractured and vesicular basalt boulders 23/03/2015 gently sloping floodplain

RFL16 Dangila Dangesheta Kilti gauge 11o19.290' 036o49.417' 2045 massive and fractured basalt boulders 23/03/2015 quite steep valley sides

RFL17 Dangila Dangila Amen gauge 11o15.774' 036o50.647' 2106 clayey alluvium 23/03/2015 flat floodplain

RFL18 Dangila Dangila Dangila weather station 11o15.050' 036o50.749' 2105 24/03/2015 flat open field

RFL19 Dangila Sehara Gizani River 11o10.779' 036o41.895' 1903 massive basalt boulders 26/03/2015 flat floodplain

RFL20 Dangila Sehara Gisa agricultural office 11o12.039' 036o40.067' 1894 black alluvium 26/03/2015 flat wetland floodplain

RFL21 Dangila Awsi weir 11o12.072' 036o39.998' 1858 black alluvium, massive basalt boulders in red regolith 26/03/2015 flat wetland floodplain

RFL22 Dangila Awsi River 11o12.309' 036o42.843' 1937 massive basalt boulders in black alluvium 26/03/2015 dry flat floodplain

RFL23 Dangila Amen River? 11o11.668' 036o50.420' 2200 regolith 27/03/2015 flat floodplain

RFL24 Dangila Abadra Gagie River road bridge 11o19.472' 036o46.894' 2080 black alluvium above red regolith 28/03/2015 small floodplain, quite steep valley sides in town

RFL25 Dangila Dangesheta Brante River  11o19.395' 036o51.574' 2047 black clayey alluvium, red regolith, vesicular jointed basalt 30/03/2015 flat floodplain

RFL26 Dangila Dangesheta Tributary enters Brante (currently dry) 11o19.216' 036o51.915' 2044 red regolith and massive basalt boulders 30/03/2015 flat floodplain

RFL27 Durbete Durbete weather station 11o21.545' 036o57.376' 1990 30/03/2015 flat, on slight rise

RFL28 Dangila Amen River road bridge 11o16.245' 036o50.100' 2084 clayey alluvium above red regolith 31/03/2015 flat floodplain

RFL29 Dangila Tributary enters Amen (currently dry) 11o16.915' 036o48.863' 2072 alluvium 31/03/2015 very large flat floodplain

RFL30 Dangila Tributary enters Amen (currently dry) 11o16.881' 036o48.655' 2074 alluvium 31/03/2015 very large flat floodplain

RFL31 Dangila Amen joins Kilti River 11o16.858' 036o48.480' 2070 gravelly sandy alluvium 31/03/2015 very large flat floodplain

RFL32 Dangila Tributary of Kilti 11o16.435' 036o47.969' 2095 clayey alluvium above red regolith, basalt cobbles in bed 31/03/2015 deep gully in slope above floodplain

RFL33 Dangila Tributary of Kilti 11o16.346' 036o47.972' 2096 clayey alluvium 31/03/2015 deep gully in slope above floodplain

RFL34 Dangila Kilti River 11o16.194' 036o48.447' 2083 sandy gravelly pebbly alluvium 31/03/2015 very large flat floodplain

RFL35 Dangila Tributary of Kilti meets large floodplain 11o16.059' 036o49.024' 2091 clayey alluvium and massive basalt boulders 31/03/2015 small floodplain meets large flat floodplain

RFL36 Bahir Dar Bahir Dar National Meteorology Office and weather station 11o35.985' 037o21.602' 1801 06/04/2015 fenced compound within flat field

RFL37 Meshenti Meshenti rain gauge 11o28.263' 037o17.152' 1963 06/04/2015 very small fenced compound within flat field
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ID Land use Depth m Bank width m Incision m Remark

RFL1 pasture dry 3 1 bridge over dry stream, "wetland in rainy season"

RFL2 next to cropland weather station installed by Abdu and Debebe on 18-3-15

RFL3 between pasture and eucalyptus plantation small tree (3-4 m high) 4 m to NW

RFL4 where crops are weighed and sold; within eucalyptus this where Assaye Molla works

RFL5 large resevoir behind dam and irrigation canals Koga Dam Irrigation Project on Abay River. Finished in 2011/2012, paid for by MoA and Africa Bank. 1750ha resevoir, 1730x21m dam, 9.1m3/s release for irrigation: 7000ha for 14000 people, >1m3/s released: Abay River

RFL6 limit of eucalyptus plantations before pasture all high ground around coop office is eucalyptus

RFL7 pasture with cropland within 30 m of river 0.2 5 2 note there is a spring 10 m upstream of channel intersection (see springs tab)

RFL8 cropland and seedling nurseries immediately adjacent dry 3 3 upstream (dry) the river is highly sinuous and cuts ~4.5 m deep

RFL9 pasture, forest on steeper sloping east bank 0.3 10 2 upstream the channel incision is 5-10 m and much deep gullying (dry) in adjacent sloping floodplain from where springs emerge in wet season

RFL10 cropland and forest 0.1 8 8 source of Brante tributary (I thought this was Brante source because most of downstream Brante flow comes from this tributary)

RFL11 cropland and eucalyptus plantations crossroads of eucalyptus plantations on high ground to SE and cropland between here and river to west

RFL12 pasture and forest dry 6 1.5 small pool under bridge but otherwise Brante is dry.  Occasional stagnant pools upstream.

RFL13 pasture 0.05 5 1 extensive boulder field within very large floodplain.  Occasional flowing sections within Brante as well as dry sections and stagnant pools.

RFL14 pasture 0.2 2 0.5 Tankishti river fed by spring (see spring tab) but doesn't reach Brante at the moment.  In rainy season the whole Brante/Tankishti floodplain floods and locals must use asphalt road to reach Dangila.

RFL15 pasture then houses and cropland ~30 m from river 0.15 5 1 Brante gauge in position as originally placed and still sturdy.  Measure twice daily (6am and 6pm).  Wet season floods just overtop bank.

RFL16 pasture on north bank, acacia forest on south bank 0.3 15 1.5 Kilti gauge broken after being hit by a floating tree in wet season.  Metal supports and upper board snapped.  River stage measured twice daily (6am and 6pm) by dipping measuring stick in river.

RFL17 pasture/football pitch/builders yard 0.2 7 2 Lower part of gauge a bit bent.  Upstream through town the river is very dirty and full of litter - here it's quite clear.

RFL18 fenced open field weather station actually ~25 m NW of the coordinates.  Tall eucalyptus trees ~30 m to north.  Visited at 18:30 so nobody present to let me into compound or answer questions.

RFL19 pasture 0.25 20 2 Quite high flow over boulders in bed

RFL20 pasture perennial wetland (one of several) between town of Gisa and Awsi river

RFL21 pasture 1 12 1.5 very turbid upstream of weir - probably raising water table forming wetlands.  Downstream is shallower (0.25 m).  Weir built in 2014.  Two canals (left bank = 50 l/s) irrigate 100 ha.

RFL22 none dry 18 2 however, further upstream east of Chara there is water in the Awsi where it is much smaller

RFL23 pasture and crops 0.05 4 2.5 I would have expected river here to be flowing south but this goes north.  Where to??  Small aqueduct (currently dry) irrigates small plot.  (Looking at Google Maps later:  I think this is the Amen River)

RFL24 pasture, crops and forest 0.25 10 3 quite fast so substantial flow even though it’s shallow.  Some abstraction below bridge.

RFL25 pasture 0.2 8 1.5 cattle watered here

RFL26 pasture dry 8 2 several tributaries such as this enter through large floodplain - most currently dry

RFL27 fenced compound within school field weather station within Durbete Primary School, large tree ~15 m north and another tall tree ~ 15 m east

RFL28 pasture 0.1 7 2.5 almost no flow in river

RFL29 pasture 0.1 6 1.5 between here and previous location there are reaches of almost zero flow and reaches of basalt bed.  In large floodplain; water table visible in bank at ~1.3 mbgl. 

RFL30 pasture 0.25 3.5 1.5 between here and previous location there are dry reaches and reaches of stagnant water

RFL31 pasture 0.1 8 1 fast flow in Kilti, no flow in Amen

RFL32 pasture and crops 0.1 18 8 some flow that dries up as the channel reaches the flat floodplain

RFL33 pasture and eucalyptus 0.05 18 8 some flow (less than previous) that dries up as the channel reaches the flat floodplain

RFL34 pasture 0.2 8 2.5 flowing

RFL35 pasture and crops 0.05 3 1.5 some flow that dries up as the channel reaches the flat floodplain and dries up ~ 100 m upstream

RFL36 weather station and car park nearby pylon and many overhead cables.  Small hill ~150 m to the south.

RFL37 unused land around Kebele office and clinic no nearby trees or other obstructions
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ID Woreda Kebele Site name N E Elevation masl Geology Date of visit Sample 222Rn test field pH EC μS/cm Temp oC

RFL3 Dangila Dangesheta Ato Assaye Molla - Community monitored rain gauge 11o18.041' 036o51.251' 2094 10/10/2015

RFL15 Dangila Dangesheta Brante gauge 11o19.350' 036o50.924' 2050 massive fractured vesicular basalt boulders 10/10/2015

RFL38 Dangila Dangesheta Abdu/Debebe Brante gauge 11o19.260' 036o51.876' 2038 alluvium 10/10/2015

RFL39 Dangila Dangila Hahu Hotel Roof 11o15.476' 036o50.832' 2048 12/10/2015 2SI7 2A7 2A23

RFL40 Dangila Dangila Dangila Water Supply Service Office 11o15.918' 036o51.067' 2109 12/10/2015

RFL41 Wetet Abay Wetet Abay electronic met. station 11o22.026' 036o02.264' 1896 13/10/2015

RFL42 Dangila Dangesheta Brante River road bridge and Debebe river gauge 11o16.572' 036o51.847' 2111 gravelly alluvium, massive basalt boulders 15/10/2015

RFL43 Dangila Dangesheta Flow gauging location (Brante) 11o16.591' 036o51.818' 2108 gravelly alluvium, massive basalt boulders 15/10/2015

RFL44 Dangila Dangesheta Flow gauging location (Brante) 11o19.338' 036o50.926' 2053 massive fractured vesicular basalt boulders 15/10/2015

RFL45 Dangila Dangesheta Flow gauging location (Brante) 11o19.253' 036o51.891' 2040 sandy alluvium 15/10/2015

RFL46 Dangila Dangesheta Nr Malese (Dangesheta floodplain stream) 11o18.055' 036o51.043' 2053 alluvium 17/10/2015 2SI17 Yes 6.83 99.35 21.8

RFL47 Dangila Sehara Gisa and Chara collection tank at Lunk 11o11.239' 036o41.813' 1893 vesicular basalt boulders in regolith 18/10/2015

RFL48 Dangila Sehara Gizani River 11o10.799' 036o41.874' 1901 massive basalt boulders 18/10/2015 2SI20 6.39 106.6 23.1

RFL49 Dangila Sehara Dinkeresh (wetland on Gizani floodplain) 11o10.782' 036o41.910' 1906 alluvium 18/10/2015 2SI21 6.71 256.1 30.9

RFL50 Dangila Sehara Gisa 11o11.164' 036o40.262' 1879 18/10/2015 2SI22 2A22

RFL51 Dangila Dangesheta Nr Brahanu (stream at Dangesheta floodplains' neck) 11o18.348' 036o50.895' 2063? alluvium 20/10/2015 2SI24 Yes 6.84 83.26 20.3

RFL52 Dangila Dangesheta Nr Getaneh (Dangesheta floodplain stream) 11o18.478' 036o51.113' 2076? alluvium 20/10/2015 2SI25 2A25 2C25 Yes 6.04 70.28 26.6

RFL53 Dangila Dangesheta Bunteta (Brante river) 11o18.613' 036o51.250' 2079? alluvium 20/10/2015 2SI26 Yes 6.18 91.1 23.1

RFL54 Dangila Dangesheta Brante 11o18.468' 036o51.348' 2075? alluvium 20/10/2015 Yes 6.22 93 23.4

RFL55 Dangila Dangesheta Mandar 2 (Brante river) 11o18.184' 036o51.554' 2076? alluvium, basalt boulders 20/10/2015 2SI27 Yes 6.27 93.45 22.3

RFL16 Dangila Dangesheta Kilti gauge 11o19.290' 036o49.417' 2045 massive and fractured basalt boulders 21/10/2015

RFL56 Dangila Dangesheta Flow gauging location (Kilti) 11o19.292' 036o49.410' 2042? massive and fractured basalt boulders 21/10/2015

RFL57 Dangila Dangesheta Bridge over large wetland stream 11o17.095' 036o51.210' 2102 alluvium 21/10/2015

RFL58 Dangila Workit Workit (bridge over Brante) 11o19.390' 036o51.611' 2018? alluvium over massive basalt 22/10/2015 Yes 6.26 109.6 21.3

RFL59 Dangila Dangesheta 11o19.191' 036o51.413' 2045 alluvium 22/10/2015 Yes 6.25 108.8 22.7

RFL60 Dangila Dangesheta Brante SB 11o19.331' 036o50.993' 2054 alluvium over fractured basalt 22/10/2015 Yes 6.25 105.9 23.7

RFL61 Dangila Dangesheta Brante Gorge 11o19.158' 036o50.681' 2061 regolith over fractured basalt 22/10/2015 2SI31 2A31 2C31 Yes 6.29 104.8 22.9

RFL62 Dangila Dangesheta 11o18.991' 036o50.639' 2064 alluvium and basalt boulders 22/10/2015 Yes 6.16 103.4 22.4

RFL63 Dangila Agaga Amen Floodplain 11o17.042' 036o48.984' 2015? alluvium 24/10/2015 Yes 6.13 127.5 18.9

RFL64 Dangila Agaga Kilti Bridge 11o17.130' 036o48.620' 2067 gravelly alluvium 24/10/2015 Yes 7.03 134 19.8

RFL65 Dangila Agaga Amen by DTW3 11o16.889' 036o48.568' 2068 alluvium 24/10/2015 Yes 7.12 122.5 21.2

RFL66 Dangila Berayta Kilti by DTW1 11o16.741' 036o48.548' 2074 gravelly alluvium 24/10/2015 Yes 7.37 166.8 23.9

RFL67 Dangila Berayta Kilti Floodplain 11o16.307' 036o48.565' 2081 alluvium 24/10/2015 Yes 7.43 168.7 27.2
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ID Topography Land use Depth m Bank width m Incision m Remark

RFL3 flat land on edge of floodplain between pasture and eucalyptus plantation No issues to report regarding rain gauge.  Protective fence has gone.  Small tree still 3-4 m high 4 m to NW.

RFL15 gently sloping floodplain pasture. Houses and cropland ~30 m from river 0.3 7 1.5 No issues regarding Brante gauge. Gauge in deepest part of flow, 1m from bank, 2m from bank top and 5m from other side bank top.

RFL38 quite narrow floodplain unused, crops 15-25 m back from bank top 0.4 8 2 Also a stage board on top of bank for floods (didn't flood in 2015)

RFL39 flat town centre town Rain from Hahu Hotel roof during big storm from ~midnight to ~5am morning of 12-10-15

RFL40 flat edge of town town Very helpful chaps at water supply office

RFL41 beside road bridge at base of quite steep slope trees, road, river Some trees quite close to gauge and also at base of a fairly steep bank sloping to river and road

RFL42 flat floodplain pasture and forest 0.7 6 1.5 Debebe's gauge (monitored by a farmer) is on the parapet on the upstream left bank

RFL43 flat floodplain pasture 0.3 12 1.5 Flow gauging location 30 m downstream of road bridge

RFL44 gently sloping floodplain pasture. Houses and cropland ~30 m from river 0.36 5.5 1 Flow gauging location 30 m downstream of NCL/IWMI Brante gauge

RFL45 quite narrow floodplain unused, crops 15-25 m back from bank top 0.49 6 1.5 Flow gauging location 30 m downstream of Debebe/Abdu Brante gauge

RFL46 centre of flat floodplain pasture 0.1 2 0.4 222Rn sample/test location.  Sampled surface water but very close to numerous springs/seepages.

RFL47 gullies forming at topographic break in flat land pasture and forest Collection tank ~80 m d/s of Lunk springs overflowing to stream. Water piped to elevated tanks closer to Gisa and Chara for towns' supply

RFL48 flat floodplain pasture 0.5 20 1.5 High flow.  Steep gradient - pool and drop.

RFL49 flat floodplain pasture 0.04 ~50 0 Wetland/floodplain sample location.  Forms small stream into Gizani but no obvious springs into wetland.

RFL50 flat town centre town Rain from Gisa cafe roof during heavy shower at 13:30 18-10-15

RFL51 flat neck at floodplain outlet into other floodplain trees surrounded by crops 0.2 3 3 222Rn sample/test location.  Sampled surface water.

RFL52 centre flat floodplain before large Brante floodplain pasture 0.3 1.5 1 222Rn sample/test location.  Sampled surface water.

RFL53 centre of d/stream end of large Brante floodplain pasture 0.5 4 2 222Rn sample/test location.  Sampled surface water.

RFL54 centre of large Brante floodplain pasture 0.5 5 1.25 222Rn sample/test location.  Sampled surface water.

RFL55 extreme upstream end of large floodplain pasture and crops 0.5 8 2 222Rn sample/test location.  Sampled surface water.

RFL16 quite steep valley sides crops on N bank, acacia forest on S bank 1 15 1.5 gauge broken (again) after hit by floating tree in wet season (again). Metal supports and upper board snapped. Stage measured by dipping measuring

RFL56 quite steep valley sides crops on N bank, acacia forest on S bank 0.7 11 1.5 Flow gauging location 20 m upstream of Kilti gauge

RFL57 very very large flat floodplain/wetland pasture/swamp 0.2 ~500 0 Wetland, no flow observed, locals say no outlet, large marsh in the middle

RFL58 neck between two floodplains crops and pasture 0.6 5 1.5 222Rn sample/test location.  Sampled surface water.

RFL59 large floodplain pasture 0.7 7 1.8 222Rn sample/test location.  Sampled surface water.

RFL60 small floodplain pasture 0.4 8 1.5 222Rn sample/test location.  Sampled surface water.

RFL61 narrow valley, steep fast flow over basalt trees, pasture, crops 0.3 9 1 222Rn sample/test location.  Sampled surface water.

RFL62 floodplain u/s of where large side floodplain joins pasture 0.4 8 1.2 222Rn sample/test location.  Sampled surface water.

RFL63 huge flat floodplain pasture 0.7 6 1.2 222Rn sample/test location.  Sampled surface water.

RFL64 huge flat floodplain with braided river (3x channels) pasture and wetland 0.5 20 0.5 222Rn sample/test location.  Sampled surface water.

RFL65 huge flat floodplain pasture 0.8 6 0.4 222Rn sample/test location.  Sampled surface water.

RFL66 huge flat floodplain pasture 0.2 4 1.2 222Rn sample/test location.  Sampled surface water.  There was a bridge here but it has washed away.

RFL67 huge flat floodplain pasture and wetland 0.2 4 2.5 222Rn sample/test location.  Sampled surface water.


