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Abstract 

Ventilator-associated pneumonia (VAP) is a common complicating condition amongst 

patients mechanically ventilated in the Intensive Care Unit (ICU). It is a common 

reason for antibiotics to be administered. The diagnosis of VAP is challenging and 

amongst patients in whom VAP is suspected, approximately a third will have infection 

confirmed. Therefore many patients receive antibiotics for VAP despite the condition 

not being present. Antimicrobial resistance (AMR) is a growing global concern and the 

overuse of antibiotics is an important factor in increasing AMR. The ICU is an 

environment with high antibiotic use and improving antibiotic stewardship is a priority. 

Rapid biomarker-based diagnostics could achieve this by expediting the diagnostic 

process. 

In this thesis I present the findings of a multi-centre validation study of a novel 

bronchoalveolar lavage-based biomarker test. The diagnostic value of the measured 

biomarkers is discussed and the optimum biomarker-based diagnostic test for use in 

VAP is presented. I subsequently present a multi-centre randomised controlled trial in 

which the biomarker-based test is assessed in the clinical environment to determine 

whether it does indeed result in improved antibiotic stewardship. Trial outcomes are 

reported and implications are discussed. 
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Chapter 1. Introduction 

1.1 Definition of ventilator-associated pneumonia (VAP) 

Ventilator-associated pneumonia is hospital-acquired pneumonia (HAP) occurring in 

patients who are undergoing intubation and mechanical ventilation. Conceptually this is 

inflammation of the gas exchange areas of the lung, the parenchyma, caused by an 

infectious agent. Definitions of VAP are difficult since obtaining histological evidence 

of alveolar inflammation (pneumonia) is impractical in critical care patients and there is 

little consensus on histological and clinical definitions. It is for these reasons that 

working definitions and surrogate ‘gold standards’ of VAP diagnosis have been 

surrounded by considerable controversy for decades. 

The histological features of VAP, although considered to be the true ‘gold standard’ of 

diagnosis, lack consensus. Histological evidence demonstrates that VAP has a 

predominance for dependent regions of the lung, is patchy and can be distributed within 

large areas of non-specific alveolar damage resulting in histological evidence of 

pneumonia only being apparent on one or two slices of lung segment, which could 

easily be missed(Rouby et al., 1992).  

In a prospective study of 39 patients who died while receiving mechanical ventilation, 

lung histology was evaluated by four pathologists(Corley et al., 1997). The pathologist 

assessed specimens for pneumonia based on consensus of pathologist opinion and 

according to previously described criteria by Johanson et al(Johanson et al., 1988). 

There was consensus between all four pathologists on diagnosis for 77% of patients (7 

patients with pneumonia and 23 without pneumonia). Six patients judged not to have 

pneumonia by consensus pathologist opinion were reclassified as having mild to 

moderate pneumonia based on the predefined criteria. Interestingly one patient judged 

to have pneumonia due to invasive fungi by consensus of opinion, was not classed as 

pneumonia by criteria due to an absence of inflammation. Fungi are generally 

considered to not be pathogenic organisms in VAP(American Thoracic Society, 2005), 

yet in this study a total of four patients had invasive fungi, one with typical neutrophilic 

infiltration of bronchopneumonia and another with lymphocyte and plasma cell 

inflammation.  

The consensus reached in this study describes the earliest stages of pneumonia as 

beginning in small bronchi with accumulation of neutrophils. Adjacent alveoli become 
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oedematous before complete infiltration and obliteration by neutrophils. This advances 

to macroscopic consolidation or formation of abscess in some cases. In the later stages, 

the infiltrate can be replaced by a myxomatous connective tissue resulting in an 

organising pneumonitis. Macrophages can be identified in the alveolar space scavenging 

debris, with neutrophils remaining in fibroinflammatory tissue. 

Since histological evidence is not routinely available, clinical definitions based on 

collections of signs and clinical investigations make up working definitions of VAP. 

There are numerous criteria, which vary greatly in their complexity and can be divided 

into clinical definitions (have diagnostic utility at the bedside) and surveillance 

definitions (used on a population scale to monitor VAP epidemiology). All definitions 

require the onset of symptoms to be 48 hours after the initiation of mechanical 

ventilation. VAP is often divided into early- and late-onset VAP, although the cut-off 

varies in the literature between 4-7 days(Trouillet et al., 1998; Chastre and Fagon, 2002; 

American Thoracic Society, 2005; Forel et al., 2012) 

The predominant clinical definitions used are those put forward by the American 

Thoracic Society and Infectious Diseases Society of America(American Thoracic 

Society, 2005),the British Society of Antimicrobial Chemotherapy (BSAC) 

criteria(Masterton et al., 2008) and the Association of Medical Microbiology and 

Infectious Diseases Canada(Rotstein et al., 2008). These criteria are based in clinical 

signs and chest x-ray (CXR) findings and are summarised in Table 1. 
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Definition Radiological Clinical Clinical Use of CPIS 

American 

Thoracic 

Society & 

Infectious 

Diseases 

Society of 

America 

New or 

progressive 

CXR 

infiltrate 

And at least 2 

of: 

Temperature 

>38
o
C 

Leucocytosis 

or 

leucopaenia 

Purulent 

tracheal 

secretions 

 Recommend: 

If CPIS ≤6 for 3 

days, early 

discontinuation 

antibiotics 

British Society 

of 

Antimicrobial 

Chemotherapy 

New or 

persistent 

CXR 

infiltrate 

And: 

Purulent 

tracheal 

secretions 

And: 

Increased 

oxygen 

requirement 

Core 

temperature 

>38.3
o
C 

Leucocytosis 

(>10,000/mm
3
) 

or leucopaenia 

(<4000/mm
3
) 

Recommend: 

CPIS to guide 

short-course 

therapy 

Association of 

Medical 

Microbiology 

and Infectious 

Disease 

Canada 

New 

infiltrates, 

progressive 

changes or air 

bronchogram 

on CXR 

And at least 2 

of: 

Temperature 

>38
o
C or 

<36
o
C 

Leucocytosis 

or 

leucopaenia 

Purulent 

tracheal 

secretions 

Decrease 

PaO2 

 Recommended: 

Calculate CPIS. 

If  <6 then 

infection 

unlikely and 

decision for 

antibiotics 

should be 

carefully 

considered 

Table 1: Clinical definitions of VAP. CPIS, clinical pulmonary infection score(Pugin et al., 1991; Singh et 
al., 2000) 
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All three of the above guidelines recommend the use of the clinical pulmonary infection 

score (CPIS) to guide antibiotic use. The CPIS was proposed by Pugin et al as an early 

clinical scoring system for VAP(Pugin et al., 1991). The CPIS was derived in a small 

cohort of 28 patients of whom 13 had VAP. The CPIS criteria are presented in Table 2. 

In the original derivation study, a CPIS >6 identified patients with VAP. The diagnostic 

accuracy of this score will be discussed in a later section. It should be noted that the 

CPIS includes the results of semi-quantitative culture from endotracheal aspirate (ETA). 

Therefore the full score can only be calculated 2-3 days after the day of suspicion. The 

greatest value of a clinical infection score would be to correctly identify patients at the 

moment of suspicion. At this point the results of semi-quantitative cultures would not be 

known and so a modified CPIS is used which excludes the final microbiology criteria.  

Diagnostic feature Score = 0 1 2 

Tracheal secretions Rare  Abundant Abundant and 

purulent 

CXR infiltrate None Diffuse  Localised 

Temperature (
o
C) ≥36.5 and ≤38.4 ≥38.5 and ≤38.9 ≥39 or ≤36 

White blood cell 

count (x10
9
/L) 

≥4.0 and ≤11.0 <4.0 or >11.0 <4.0 or >11.0 plus 

band forms ≥50% 

PaO2/FiO2 (mmHg) >240 or ARDS  ≤240 and no ARDS 

Culture of tracheal 

aspirate (semi-

quantitative 0-+++)  

No growth or ≤+ Growth >+ Culture >+ plus 

same bacteria seen 

on Gram stain 

 

 

The clinical criteria described above are relatively simple criteria that aim to guide 

clinical decision-making on an individual patient basis. In contrast, case-definitions for 

surveillance purposes are more cumbersome. These are generally used for retrospective 

Table 2: The Clinical Pulmonary Infection Score (CPIS)(Pugin et al., 1991). 
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analysis of population level data. The two main definitions used are the Hospitals in 

Europe Link for Infection Control through Surveillance (HELICS) criteria which is now 

coordinated by the European Centre for Disease Prevention and Control 

(ECDC)(European Centre for Disease Control, 2010) and the American Centers for 

Disease Control and Prevention (CDC) definition(Horan, Andrus and Dudeck, 2008) 

(Table 3). The CDC criteria have in recent years been superseded by a new diagnostic 

paradigm which will be discussed in a later section. The new criteria no longer define 

VAP, rather a collection of ventilator-associated complications. 

  



    

  6  

HELICS Radiological 

Two or more serial CXR or computerised tomography (CT) scans 

suggestive of pneumonia in patients with underlying cardiac or 

pulmonary disease. In patients without pulmonary or cardiac disease one 

definitive CXR or CT is sufficient. 

Clinical 

And at least one of: 

Fever >38
o
C 

Leucopaenia (<4000 WBC/mm
3
) or leucocytosis (≥12,000 WBC/mm

3
) 

Clinical 

And at least one of the following (or at least two if clinical pneumonia 

only (PN4 and PN5 below)). 

New onset of purulent sputum or change in character of sputum. 

Cough, dyspnoea or tachypnoea. 

Suggestive auscultation (rales, bronchical breathing, ronchi or wheeze). 

Worsening gas exchange (eg. O2 desaturation, increased O2 requirements 

or increased ventilation demand). 

Microbiological 

PN1: Positive quantitative culture for minimally contaminated lower 

respiratory tract specimen (eg. bronchoalveolar lavage (BAL) or 

protected specimen brush (PSB)). 

PN2: Positive quantitative culture for possibly contaminated lower 

respiratory tract specimen (eg. endotracheal aspirate (ETA)). 

PN3: Alternative microbiology methods including blood culture, pleural 

fluid culture, needle aspiration from pulmonary or pleural abscess, 

histological examination or positive examination for viruses or particular 

pathogens (eg. Legionella, Mycoplasma). 

PN4:Others including sputum culture or non-quantitative lower 

respiratory tract culture. 

PN5: No positive microbiology. 
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CDC Radiological 

X-ray findings must have at least one of: new or progressive and 

persistent infiltrate; consolidation; cavitation or pneumatocoeles in 

infants ≤1 year. These findings need to be present in two serial x-rays in 

patients with underlying disease or in one x-ray in patients without 

underlying disease. 

Clinical 

At least one of: 

Fever >38
o
C. 

Leucopaenia (<4000 WBC/mm
3
) or leucocytosis (≥12,000 WBC/mm

3
). 

Altered mental status with no other cause in ≥70 years old. 

Clinical 

And at least one of (two if clinical diagnosis only PNU1 (below)): 

New onset of purulent sputum, change in sputum character, increased 

respiratory secretions or increased suction requirements. 

New onset or worsening cough, dyspnoea or tachypnoea. 

Rales or bronchial breathing. 

Worsening gas exchange. 

Microbiology 

PNU1: ‘Clinically defined pneumonia’ in the absence of microbiology 

data. 

PNU2: ‘Pneumonia with common bacterial or filamentous fungal 

pathogens and specific lab findings’. These specific lab findings include 

blood culture; pleural fluid culture; positive quantitative culture from 

minimally contaminated lower respiratory tract sample (BAL or PSB); 

≥5% BAL-obtained cells containing intracellular bacteria on direct 

examination; or histological examination. 

PNU2: ‘Pneumonia with viral, Legionella, Chlamydia, Mycoplasma, and 

other uncommon pathogens and specific lab findings’.  

PNU3: ‘Pneumonia in immunocompromised patients’. Criteria for 

immunocompromised patients are less stringent than for immune 

competent patients. 

 

  

Table 3: VAP criteria used for surveillance. 
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1.2 Epidemiology 

1.2.1 VAP in the context of healthcare-associated infections 

Healthcare-associated infections (HCAI) are a priority for the National Health Service 

(NHS). It is estimated that 300,000 HCAI occur annually and result in at least 5000 

deaths a year(National Institute for Health and Care Excellence, 2014). The estimated 

cost of HCAI is £1 billion per year(National Audit Office and Office, 2000; National 

Audit Office (NAO), 2009) and it has been estimated that a high proportion of HCAI 

could be preventable (up to 70% catheter-related blood stream infections)(Umscheid et 

al., 2011), allowing for a significant resource reallocation. 

The overall prevalence of HCAI from UK and European point prevalence surveys has 

been very similar. The estimated prevalence of all HCAI in England is 6.4%(Health 

Protection Agency, 2011) and in Europe 5.7%(European Centre for Disease Prevention 

and Control, 2012b). In both of these surveys ICU wards have represented a minority of 

patients (2.6% in UK and 5% in Europe) yet have had the highest prevalence of HCAI 

compared to other specialties, with 23% in the UK and 19.5% in Europe. Recent data 

from the USA reports 9% of critical care patients surveyed have a HCAI(Magill et al., 

2014). A point prevalence survey by Health Protection Scotland specifically with 

regards to ICU HCAI reports a prevalence of 5.6% in Scottish ICUs(Health Protection 

Scotland, 2011). 

Respiratory infection accounts for a significant proportion of all HCAI. HAP accounts 

for 23% of HCAI in the UK and 26% of HCAI across Europe. Pneumonia represents 

approximately 50% of HCAI on the ICU(Health Protection Agency, 2011; Health 

Protection Scotland, 2011). 80% of HAP in Scottish ICUs were classed as VAP(Health 

Protection Scotland, 2011). 

1.2.2 Epidemiology of VAP 

The accuracy of defining the epidemiology of VAP is determined by the surveillance 

definition used. As previously described, surveillance case-definitions vary 

considerably to clinical definitions. This has led to a discrepancy between clinically 

observed rates of VAP and those that are reported by national or international 

surveillance systems(Michetti et al., 2012).  

The reported incidence of VAP in clinical studies generally ranges from 9-28%(Chastre 

and Fagon, 2002). Randomised controlled trial (RCT) data from 1998, which measured 

VAP as an outcome measure, reported VAP occurring in 18% of patients undergoing 
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mechanical ventilation(D. J. Cook et al., 1998). Two contemporary epidemiological 

studies, one a global study of 1,873 patients found that VAP occurred in 15.6% of 

mechanically ventilated patients(Kollef et al., 2014) and a European study of 1,735 

patients found that VAP occurred in 14-19% of mechanically ventilated patients 

(depending on age grouping)(Blot et al., 2014).  

Different methods of respiratory sampling can significantly alter the observed VAP rate. 

In a single-centre before-and-after study, diagnosis based on clinical criteria and 

endotracheal aspirate (ETA) was changed to VAP diagnosis based on culture of 

bronchoalveolar lavage (BAL) above a threshold of >10
4
 colony forming units per ml 

(cfu/ml)(Conway Morris et al., 2009). The reported incidence of VAP fell from 18 per 

1000 ventilator days in the ETA period to 9 per 1000 ventilator days in the BAL period. 

The incidence of VAP varies amongst patient groups. VAP is more common in trauma 

patients than other patient groups. In a retrospective analysis using the CDC/National 

Healthcare Safety Network (NHSN) criteria for VAP the incidence in trauma patients 

was 18% and 3% for non-trauma patients(Cook, Norwood and Berne, 2010). This study 

also found that the mortality amongst patients with VAP in the trauma and non-trauma 

groups was 11% and 34% respectively, from which the authors conclude that although 

VAP is more common in trauma patients it may well be of less consequence in this 

patient group. Patients with acute respiratory distress syndrome (ARDS) are a 

particularly challenging group in which to diagnose VAP. In a prospective study to 

determine the incidence of VAP in patients with ARDS, patients meeting inclusion 

criteria for ARDS underwent bronchoscopically guided respiratory 

sampling(Markowicz et al., 2000). VAP was diagnosed on the basis of culture growth at 

specific thresholds for the sampling methods used. VAP occurred in 36.5% of patients 

with ARDS in comparison to 23% of non-ARDS patients. In a further trial evaluating 

neuromuscular blockade in ARDS, VAP occurred in 28.9% of patients but the 

occurrence of VAP was not associated with an increase in mortality(Forel et al., 2012). 

1.2.3 VAP surveillance 

The surveillance of VAP and its relevance to the epidemiology of VAP requires specific 

discussion. A considerable number of interventions have been studied for the prevention 

of VAP and these have shown that VAP rates could be reduced(Lorente, Blot and Rello, 

2007; O’Grady, Murray and Ames, 2012). This has led to a perception that VAP is 

entirely preventable and that VAP rates can be used as an indicator of quality of 

care(Klompas, 2010; Walsh, Morris and Simpson, 2013). However, as described in the 



    

  10  

previous section, the case definitions used can greatly influence the number of cases. It 

should be noted that infection control teams that are separate to the ICU teams, using 

case definitions that differ from the clinical diagnosis, commonly perform surveillance. 

In the main, case definitions used are the HELICS criteria in Europe and the CDC 

criteria in the USA.  

The CDC/NHSN have reported a steady decline in VAP rates. For comparison, the 

incidence of VAP in trauma patients (expressed as number of VAP cases per 1000 

ventilator-days) was 15.2 in 2004(Center for Disease Control, 2004); 10.2 in 

2007(Edwards et al., 2007); 9.3 in 2008(Edwards et al., 2008); 8.1 in 2009(Edwards et 

al., 2009) and 6.0 in 2010(Dudeck et al., 2011). These observations are in contrast to 

clinically observed VAP rates which in the trauma patient population remains close to 

20%(Michetti et al., 2012). These falling rates raise concerns about the objectivity of 

reporting and the vulnerability of case definitions to pressure to reduce VAP 

rates(Halpern et al., 2012). Surveillance criteria results in a much lower incidence of 

VAP in comparison to clinical case definitions(Skrupky et al., 2012). 

In an effort to improve consistency of surveillance reporting of VAP in the USA, the 

CDC have developed entirely new case definitions, the ventilator-associated condition 

(VAC) which encompassed the new terms of infection-related ventilator-associated 

complication (IVAC), possible pneumonia and probable pneumonia(Klompas, 2013). A 

recent study comparing these criteria to prospective surveillance (with CPIS as 

reference standard), found that VAC identified 33% of prospectively identified VAP, 

IVAC 18% and ‘possible’ or ‘probable VAP’ 17%(Klein Klouwenberg et al., 2014). 

The most common conditions contributing to VAC were pneumonia (including pre-

existing and new onset pneumonia) (28%); volume overload (28%); atelectasis/sputum 

plug (15%); pleural effusion (12%); acute neurological event (12%); new onset 

systemic inflammatory response syndrome (SIRS)/sepsis (extra-pulmonary) (11%); and 

abdominal distension (11%). This study highlights that the new CDC surveillance 

paradigm does not represent surveillance of VAP and is a collection of respiratory 

complications in the ICU. This paradigm shift brings together multiple pathologies, not 

to aid diagnosis or treatment but to improve objectivity of surveillance within a single 

healthcare system (USA). Furthermore there is limited evidence as to whether VAP 

prevention strategies (that led to the idea of using VAP as a quality indicator), can have 

an impact on VAC. A recent study of spontaneous breathing trials (SBT) and daily 

sedation interruption (DSI) found that VAC were reduced per mechanical ventilation 



    

  11  

episode (not ventilator-days) but pneumonias were not reduced(Klompas et al., 2015). 

This study demonstrated that reducing time on mechanical ventilation reduced the time 

at risk of its complications rather than the prevention of VAP. 

1.3 Microbiology of VAP 

The pathogens implicated in VAP characteristically depend on the time until onset 

(early vs late VAP), the patient group and previous antibiotic exposure. The method of 

respiratory sampling influences the anatomical region tested and confidence that the 

microbiology represents the pulmonary infection rather than respiratory tract 

colonisation (this will be discussed further in Diagnosis). A recent global study of 1,873 

patients enrolled from the USA, Europe, Latin America and Asia Pacific identified 

Pseudomonas aeruginosa as the most common pathogen causing VAP followed by 

Staphylococcus aureus, Acinetobacter species, Klebsiella species, Enterobacter and 

Escherichia coli(Kollef et al., 2014). The predominance of Gram-negative bacilli in 

VAP has been recognised for many years. In a prominent review, the microbiology of 

24 studies demonstrated that Gram negative bacilli comprised approximately 60% of 

pathogens and the predominant Gram-positive pathogen being S. aureus accounting for 

20% of cases(Chastre and Fagon, 2002). P. aeruginosa accounted for 24% of cases, S. 

aureus 20%, Acinetobacter spp. 8%, Enterobacteriacease 14%, Haemophilus spp. 10% 

and Streptococcus spp. 8%. The German Nosocomial Infection Surveillance System 

reported on the 5811 cases of VAP between 2005-2007(Kohlenberg et al., 2010). Gram-

negative bacteria accounted for 59%, Gram-positive 26% and Fungi 12%. The most 

common pathgens were S. aureus (18%), P. aeruginosa (15.7%), Klebsiella spp. 

(10.2%), E. coli (9.8%) and Candida spp. (9.3%). VAP is often polymicrobial occurring 

in 25% of cases in a large scale surveillance study in Asian countries(Chung et al., 

2011), although the rate of polymicrobial positivity has been shown to vary 

considerably between patients who underwent BAL (12.3%) and those who had ETA 

(45.5%)(Fagon et al., 2000). VAP that occurs within 7 days of mechanical ventilation is 

more likely to be due to Enterobacteriaceae, Haemophilus spp, S. aureus and 

Streptococcus spp.(Trouillet et al., 1998). Beyond 7 days of mechanical ventilation P. 

aeruginosa, Acinetobacter baumannii and Stenotrophomonas maltophilia become 

prominent. Furthermore previous exposure to antibiotics and greater level of 

comorbidities are associated with antibiotic-resistance(Trouillet et al., 1998; Depuydt et 

al., 2008).  
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Aetiological patterns may vary between patient populations too. In a comparison of 

trauma and non-trauma patients, there were significantly more VAP cases caused by 

Haemophilus influenzae, Enterobacter spp. and Acinetoacter baumannii in trauma 

patients(Cook, Norwood and Berne, 2010). In the context of ARDS, Gram-negative 

bacilli are more common(Markowicz et al., 2000). 

Newer microbial detection methods are shedding new light on the aetiology of VAP and 

the pattern of transcolonisation to the lungs. Bacterial DNA polymerase chain reaction 

(PCR) detection of bacteria from BAL samples in patients with suspected VAP revealed 

bacteria not previously detected in BAL including Haemophilus spp., Terrahaemophilus 

aromaticivorans, Shigella spp., Pseudomonas fluorescens, Janthinobacterium lividum, 

Streptococcus spp., Gemella spp., Dialister spp., Megasphaera spp., Firmincutes spp., 

Lachnospiraceae spp., Porphyromonas spp. and Prevotella spp.(Bahrani-Mougeot et 

al., 2007). Interestingly for some individuals in that study, known VAP-associated 

pathogens were detected only by PCR and not standard culture, including H. influenzae, 

S. pneumonia and E. coli. 

The role of Candida spp. in the respiratory tract is uncertain. As noted above, it is 

frequently isolated from cultures and expert opinion and clinical guidelines advise that 

it is a colonising pathogen and not implicated in infection unless the patient is 

immunosuppressed(Chastre and Fagon, 2002; American Thoracic Society, 2005). In a 

retrospective analysis of patients with Candida spp. in the respiratory tract from a large 

RCT(Delisle et al., 2008), the presence of Candida spp. on respiratory culture was 

independently associated with hospital-mortality. Furthermore limited evidence does 

suggest that the presence of Candida spp. in comparison to control patients (no 

suspicion of VAP), is associated with increase inflammatory markers including pro-

calcitonin, C-reactive protein and Interleukin-6(Williamson et al., 2011). However this 

issue remains unresolved and as to whether patients should undergo treatment for 

Candida spp. is uncertain(Albert et al., 2014). 

1.4 Pathogenesis 

The critically ill patient on a mechanical ventilator is vulnerable to acquiring 

nosocomial infections. In health the upper airway provides protection to the lower 

airway predominantly by the epiglottis and cough reflex. These barriers are bypassed by 

endotracheal intubation. Furthermore inspired gases are humidified by the upper airway, 

and this process is also circumvented by mechanical ventilation. If gases were not 

humidified, normal respiratory tract function would be severely impaired(Fonkalsrud et 
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al., 1975). It is not only these mechanical changes but also the state of immunity that 

renders the patient vulnerable. Critically ill patients have been shown to have immune 

impairment with dysfunctions in regulatory T cells and neutrophils associated with 2.4 

and 6.9 fold increased risk of nosocomial infection respectively. When these two 

dysfunctions where present in conjunction with monocyte dysfunction, 75% of these 

patients acquired a nosocomial infection (Conway Morris et al., 2013). Patients who 

have suffered a traumatic brain injury are recognised to have a high prevalence of VAP 

and an immune paralysis has been described in association with this type of 

injury(Dziedzic, Slowik and Szczudlik, 2004)  

The predominant mechanism of infection of the lung is by micro-aspiration although 

haematological spread or local infiltrations (from the pleural space) are also relevant 

routes of infection(Estes and Meduri, 1995). In health micro-aspiration can occur while 

sleeping(Gleeson, Maxwell and Eggli, 1997) yet the balance between inoculation and 

host defence is such that pneumonia does not develop. There are changes in the 

critically ill patient in terms of organisms/pathogens and also alterations in host 

immunity.  

Central to this mechanism are the organisms that colonise sites of potential trans-

colonisation, the upper gastrointestinal tract and the oropharynx. Culture-independent 

methods of bacterial detection, using detection of bacterial 16s rRNA by microarray, 

has shown that in healthy subjects the characteristic family of bacteria colonising the 

oropharynx are Streptococcaceae, Lachnospiraceae and Clostridia(Lemon, 

2010).Gastric contents, thought previously to be inhospitable to bacteria, shows a 

diverse range of normal flora, when detected by bacterial 16s rDNA, with 5 

predominant genera of Streptococcus, Prevotella, Rothia, Fusobacterium and 

Veillonella(Bik et al., 2006; Nardone and Compare, 2015). In comparison to healthy 

subjects, hospitalised patients have a predominance of aerobic Gram-negative bacilli 

(AGNB) colonising the oropharynx(Filius et al., 2005). Bacteria demonstrate tissue 

tropism, where tissues support growth of specific bacteria, which is dependent on 

adhesion molecules and tissue factors. For example fibronectin is a factor present in 

salivary fluid that favours Streptococcus spp. binding in the oropharynx(Avila, Ojcius 

and Yilmaz, 2009) and P. aeruginosa favours binding on tracheal epithelium and may 

well be able to colonise the trachea without prior oropharyngeal colonisation(de Latorre 

et al., 1995). A clear relationship between bacteria identified by molecular analysis in 

the oral cavity and the BAL of VAP patients supports the oropharyngeal route of 
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translocation(Bahrani-Mougeot et al., 2007). In relation to colonisation of the stomach 

contents, bacterial growth is influenced by stomach pH. Acid suppression therapy is 

common in critically ill patients as a means of prophylaxis against stress ulceration. 

Raising the stomach pH promotes bacterial growth and allows growth of potentially 

pathogenic AGNB(Bonten et al., 1995). Although clinical studies have demonstrated an 

association between the use of acid suppression and VAP(Messori et al., 2000), other 

studies have not demonstrated a clear gastro-pulmonary route of infection for 

VAP(Bonten et al., 1995). In addition to the physiological changes that promote 

colonisation of these sites by AGNB, the endotracheal tube (ETT) becomes an 

important source of bacteria. Staphylococcus aureus has a particular tendency to adhere 

to the surfaces of invasive devices(Jones et al., 1997). It therefore follows, as previously 

described, that the predominant pathogens implicated in VAP are P. aeruginosa, S. 

aureus, Acinetotbacter species, Klebsiella species, Enterobacter species and 

Escherichia coli(Kollef et al., 2014). 

Infectious inoculate accesses the lower respiratory tract past the endotracheal tube. This 

is possible because the endotracheal tube does not represent a complete barrier between 

the upper and lower respiratory tract. The endotracheal tube balloon that forms the 

tracheal seal is high-volume, low-pressure, designed to reduce the risk of tracheal 

ischaemia and stenosis. When the cuff is inflated multiple folds occur in the cuff that 

allows supraglottic secretions to pass around the cuff(Seegobin and van Hasselt, 1986).  

Once the pathogen has gained access to the respiratory tract, the innate immune 

response to pulmonary parenchymal infection is characterised by a neutrophilic 

infiltration of the alveolar spaces. Lung macrophages, including alveolar and interstitial 

macrophages, are the first line of defence with phagocytic, cytotoxic and cytokine 

release functions(Franke-Ullmann et al., 1996). Mouse studies demonstrate that alveolar 

macrophages (AM) play a central role in the initiation of the early pro-inflammatory 

response releasing cytokines such as interleukin (IL)–1, IL-1, tumour necrosis factor 

(TNF)-, macrophage inflammatory protein (MIP)–2 (mouse analogue of IL-8) and 

chemokine CXCL1(Pittet et al., 2011). AM therefore are implicated in neutrophil 

recruitment and AM depletion is associated with reduced neutrophil 

recruitment(Kooguchi et al., 1998; Pittet et al., 2011). In addition alveolar epithelial 

cells are involved in neutrophil recruitment through the release of potent chemo-

attractants such as IL-8(Harada et al., 1994; Thorley et al., 2007; Craig et al., 2009).  
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IL-1β belongs to the IL-1 cytokine family, which includes 11 different cytokines. IL-1β 

is a highly inflammatory cytokine and the margin for benefit and toxicity in humans is 

narrow(Dinarello, 1996, 2011). Binding of IL-1 to its receptor initiates recruitment of 

the adaptor protein MyD88 to the Toll-IL-1 receptor domain, causes phosphorylation of 

kinases, and NK-κB translocates to the nucleus, resulting in the expression of a range of 

inflammatory cytokines(Dinarello, 2011). IL-1β is therefore tightly regulated by two 

mechanisms. Firstly its action is antagonised by interleukin-1 receptor antagonist (IL-

1Ra), which binds avidly to interleukin-receptor-1 (IL-R1) to block the binding of IL-

1β. There is a second IL-1 receptor, IL-1R2. This does not transduce any action and 

therefore acts as a ‘sink’ for IL-1β and the second mechanism for its 

regulation(Boraschi and Tagliabue, 2013). IL-1 is produced by a wide range of cells 

including dendritic cells, monocytes, macrophages, mast cells, neutrophils, B and T 

cells, endothelial cells, epithelial cells and dying cells(Sims and Smith, 2010). It has 

actions on: dendritic cells, increasing cytokine production; macrophages, increasing 

cytokine production and phagocytosis; and on neutrophils, increasing survival, adhesion 

(and therefore migration), oxidative burst and protease release(Borregaard, 2010; Sims 

and Smith, 2010). IL-1β is produced in an inactive form and requires cleavage by 

caspase-1, which itself is activated by protein complexes termed the 

‘inflammasome’(Netea et al., 2010). Several inflammasomes have been described all of 

which include members of the NOD-like receptor (NLR) family of proteins. Stimuli that 

activate the NLRP3 inflammsome include bacterial RNA, muramyl dipeptide (bacterial 

origin) and danger-associated molecular patterns (eg. uric acid crystals and amyloid-

β)(Jo et al., 2016). The NLRC4 inflammasome complex is activated by intracellular 

flagellin that is independent of toll-like receptor (TLR)-5 binding allowing direct 

activation of the inflammasome by bacteria(Miao et al., 2006). The classical model of 

IL-1β production is that two triggers are needed for its production, the first to trigger 

transcription and the second to induce inflammasome activation(Netea et al., 2010). In 

addition to the importance of inflammasome production of IL-1β, pro-IL-1β can be 

cleaved in a caspase-1-independent manner by neutrophil- and macrophage-derived 

serine proteases including proteinase-3, human neutrophil elastase (HNE) and 

cathepsin-G(Netea et al., 2010; Karmakar et al., 2012). This could be an important 

mechanism of IL-1β production in environments where the neutrophil is the 

predominant cell population. 

Considering the central role that IL-1 has in inflammation, blocking its action using a 

recombinant IL-1Ra (Anakinra), has been used to treat a wide range of inflammatory 
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diseases(Dinarello, Simon and van der Meer, 2012). One of the earliest uses of 

Anakinra was in trials as a treatment for sepsis, but no mortality benefit was 

demonstrated(Fisher et al., 1994; Opal et al., 1997). Interestingly, a recent retrospective 

analysis of previous trial data(Opal et al., 1997), examined patients with sepsis and 

features of macrophage activation syndrome(Shakoory et al., 2016). Macrophage 

activation syndrome (MAS) presents with a cytokine storm, with clinical features 

similar to severe sepsis. MAS can lead to multi-organ dysfunction and has been treated 

with anakinra(Dinarello, Simon and van der Meer, 2012). In this retrospective analysis, 

the presence of MAS was defined as the presence of hepatic and coagulation 

dysfunction. Patients with sepsis and these features of MAS did appear to have a 

survival benefit with Anakinra, with a 28-day mortality of 34.6% in Anakinra group 

versus 64.7% in placebo group(Shakoory et al., 2016). This interesting re-analysis calls 

for the reappraisal of the role of IL-1 blockade in sepsis. 

The ability of the neutrophil to arrive at a site of infection is central to the host defence. 

Neutrophils respond to chemotactic cytokines, chemokines, and IL-8 (or CXCL8) is a 

potent neutrophil chemokine(Mukaida, 2003; Nathan, 2006; de Oliveira et al., 2013). 

IL-8 is produced by a range of cells including monocytes, T cells, neutrophils, natural 

killer cells, endothelial cells, fibroblasts and epithelial cells(Mukaida, 2003). IL-8 binds 

to two seven trans-membrane G-protein coupled (GPCR) receptors, CXCR1 and 

CXCR2, and in addition IL-8 can bind to glycosaminoglycans(Jin, Xu and Hereld, 

2008; Kufareva, Salanga and Handel, 2015). Binding to the GPCR primarily results in 

chemotaxis through the dynamic formation of the cellular actin cytoskeleton resulting in 

cell polarity and cell motility in response to chemotactic gradients. Neutrophils express 

both CXCR1 and 2, and IL-8 is one of only three known chemokines that bind to both 

receptors in the neutrophil (these are IL-8, CXCL-6 and N-acetyl PGP). Many ligands 

bind to CXCR2 but none bind solely to CXCR1(Stillie et al., 2009). CXCR1 and 2 

result in different actions in the neutrophil, which may be concentration dependent. 

CXCR2 activation causes the release of matrix metalloproteinase (MMP)-9 and HNE 

and at low chemokine concentration, is purely chemotactic. At high chemokine 

concentration, CXCR1 activation results in respiratory burst. Both receptors mediate 

chemotaxis, intracellular calcium influx and phagocytosis. IL-8 is released in response 

to a range of insults causing inflammation. IL-8 is released in response to several 

P.aeruginosa derived factors including flagellin, procyanin and nucleoside diphosphate 

kinase(DiMango et al., 1995; Chai et al., 2014; Kim et al., 2014); bacterial products 

such as lipopolysaccharide(Maniar-Hew et al., 2013); environmental factors including 
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hypoxia(Keglowich et al., 2014) and over-stretch of the lung, relevant in the 

mechanically ventilated patient(Kotani et al., 2004). High levels of IL-8 have been 

detected in various pulmonary pathological states including pneumonia(Boutten et al., 

1996; Abul et al., 2001), asthma(Ordonez et al., 2000), ARDS(Aggarwal et al., 2000; 

Mukaida, 2003; Agrawal et al., 2012) and VAP(Conway Morris et al., 2010). 

Interestingly, the IL-8 response to inflammation appears to vary with age(Dalboni et al., 

2013; Maniar-Hew et al., 2013), which is of significance given that this questions the 

relevance of experimental models of inflammation to an increasingly elderly critical 

care population. 

Neutrophils that migrate to the alveolar space are the predominant cell involved in the 

killing of bacteria. They are phagocytes with a armamentarium of bactericidal factors 

which are housed within granules(Faurschou and Borregaard, 2003; Segal, 2005; 

Nathan, 2006). There are five groups of granule: the specific, gelatinase, azurophilic, 

lysosomes and secretory granules(Segal, 2005; Nathan, 2006). Granule contents is 

determined by the stage of cell and granule development and so granules have 

overlapping contents(Faurschou and Borregaard, 2003). The specific and gelatinase 

granules contain lactoferrin, lipocalin, lysozyme, MMP-8, MMP-9 and MMP-

25(Nathan, 2006). The azurophilic granule contains myeloperoxidase (MPO) which 

converts hydrogen peroxide to hypochlorous acid, defensins and the serine proteases 

cathepsin G, HNE and protease 3(Nathan, 2006). Lysosomes contain acid hydrolases 

and secretory granules act as a reservoir of membrane components that may serve to 

replenish the membrane used during phagocytosis(Segal, 2005). The components of 

these granules are used to kill bacteria but also serve other functions. Killing of bacteria 

is primarily within the phagosome, a vacuole within the cell containing the 

phagocytosed particle (eg. bacterium)(Reeves et al., 2002; Segal, 2005). Activation of 

the neutrophil, by IL-8 for example, triggers degranulation whereby the granule 

contents are released into either phagosome or extracellularly(Lacy, 2006; Khokha, 

Murthy and Weiss, 2013). Animal models have demonstrated that mice deficient in 

cathepsin G are susceptible to infection by S. aureus, mice deficient in elastase were 

susceptible to C. albicans(Reeves et al., 2002) and both proteases are necessary for 

resistance against A. fumigatus(Tkalcevic et al., 2000). Reeves et al demonstrated that 

despite the acidic contents of the granules being deposited into the vacuole, the pH 

ranged from 6 to 8(Reeves et al., 2002). This rise in pH is partly due to the movement 

of potassium into the vacuole via the NADPH oxidase, a membrane-bound enzyme 

complex. The hypertonic potassium within the vacuole causes the solubilisation of 
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cathepsin G and elastase previously bound (and inactive) to a sulphated proteoglycan 

matrix(Reeves et al., 2002). This mechanism has called into question the previously 

held paradigm that reactive oxygen species produced by NADPH oxidase are the 

predominant mechanism of bacterial killing(Segal, 2005). 

Granule contents are released into the extracellular matrix (ECM) of which many 

components of the ECM are substrates for the granule contents, in particular the 

proteases(Lacy, 2006). Although breakdown of the ECM is necessary to allow cell 

motility to the infected site, proteases are responsible for wider tissue damage and 

inflammation and so an array of antiproteases are released to neutralise the 

proteases(Williams et al., 2006). However extracellular proteases serve other purposes 

such as cleavage and activation of cytokines(Karmakar et al., 2012). Neutrophils may 

also be able to kill bacteria by production of neutrophil extracellular traps 

(NETS)(Brinkmann et al., 2004). Brinkmann et al demonstrated that activated 

neutrophils produced fragile NETS, which contained HNE, cathepsin G, MPO, 

lactoferrin, MMP-9 and DNA. Neutrophils in which phagocytosis was blocked but 

NETS were still present were able to killing 30% of S. flexneri  and S. aureus. NET 

production or “NETosis” is a form of programmed cell death with this particular 

bactericidal purpose(Brinkmann and Zychlinsky, 2012)..  

Considering this neutrophilic infiltration it is unsurprising that nosocomial pneumonia 

has been shown to be associated with high levels of neutrophilic proteases including 

HNE, MMP-8 and MMP-9 (Hartog et al., 2003; Wilkinson et al., 2012). 

1.4.1 Measurement of cytokines 

There are a number of methods with which to quantify soluble cytokines in fluids. 

These methods are generally divided into enzyme-linked immunosorbent assay (ELISA) 

and multiplex assays. ELISA is based on a double antibody sandwich in which the base 

of a well is coated with an analyte-specific capture antibody that binds the cytokine of 

interest when incubated. Another analyte specific antibody complexed with an enzyme 

then binds to the cytokine and the colour change caused by the enzyme when a suitable 

substrate is added allows detection of the cytokine. ELISA allows quantifiable 

measurement and is highly reproducible and considering the experience that has built up 

since its introduction in the 1970s, it is considered the standard for measuring 

cytokines(Leng et al., 2008). There are, however, a number of limitations to ELISA that 

have driven development of alternative assays. The main limitation is that only one 

cytokine can be measured per assay. Since the inflammatory process involves a large 
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number of mediators, measuring many cytokines is desirable but the repeated aliquots 

required for multiple ELISA can be prohibitive with some low volume clinical samples. 

Furthermore there are cost and time considerations when using multiple ELISA kits. 

To overcome the limitations of ELISA, assays have been developed that allow 

measurement of multiple cytokines in a single assay, by multiplex array. These assays 

use flow cytometry, chemiluminescence or electrochemiluminescence(Zhou et al., 

2010). Chemiluminescence is used in multiplex ELISA assays in which multiple 

specific antibiodies are coated at specific locations on a 96 well plate. A similar set up is 

used in electrochemiluminescent assays where the antibodies are coated on an electric 

wired microplate. The use of flow cytometry is the most common format for multiplex 

arrays and these use proprietary antibody-coated beads that are detected by flow 

cytometry. Cytometric Bead Array (CBA) (BD Biosciences) is one such method. 

Flow cytometry is a laser-based technology that measures (‘-metry’) cells (‘cyto’) in a 

stream of fluid (‘flow’). The basic elements of flow cytometry are the fluidics, optics 

and electronics. The fluidics system is the flow of fluid that transports the sample core 

to interact with lasers. The optics system comprises lasers, lenses and prisms that focus 

the laser on the sample core and detectors that capture emitted and scattered light. The 

electronics systems convert the light signals into an electronic output. The principle of 

flow cytometry is that when a cell or particle interacts with the laser beam in the sample 

core it deflects the laser from its path. Therefore measurement of light in line with the 

laser source (forward scatter) reflects the particle size. Measurement of light at right 

angles to the laser source (side scatter) represents the internal complexity of the cell or 

particle. Markers of interest that are to be measured within or on the cell/particle surface 

can be conjugated, via monoclonal antibodies, with fluorescent dyes, 

flourochromes(Morgan et al., 2004). Flourochromes are molecules that when excited by 

lasers, are raised to a higher energy state. When they return to their resting state they 

emit a characteristic wavelength of electromagnetic energy. These are also detected in 

the side scatter optics elements. 

CBA uses these principles of flow cytometry to measure soluble factors. The 

proprietary CBA beads are 7.5µm in diameter and therefore appear as a single group on 

the forward scatter(Morgan et al., 2004). Beads are dyed and so fluoresce at a specific 

intensity at 650nm when excited by an argon laser and detected in the FL3 channel. 

This allows different beads (eg. beads detecting IL-1 and IL-8) to be distinguished 

despite being the same size. The analyte of interest binds to the antibody-coated bead 
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and is then further complexed with another antibody that is bound to the detector 

reagent. This detector is a flourochrome such as phycoerythrin (PE) (which emits a 

fluorescent signal that is detected in the FL2 channel). The intensity of the FL2 signal is 

therefore proportional to the amount of analyte bound to the bead and so the 

concentration of analyte in solution. 

The main benefit of CBA is the ability to detect a range of analytes in a single assay 

with less biological sample. This has benefits in terms of time and efficiency. 

Furthermore the detection range for the fluorescent signal is wide. There are however 

some limitations of CBA that must be considered. Firstly, unlike ELISA, which 

immobilises the analyte being measured, the reactions in CBA occur in suspension and 

cross-reactivity is a concern. Not only is there potential interaction with different 

reagents but also factors that can cause antibody-antigen interactions causing false 

negative or false positive measurements(Bartels and Ribel-Madsen, 2013). Secondly, 

the limit of detection for IL-1 and IL-8 (as with other flex sets) is reported by the 

manufacturer to be 1.2pg/ml. This is estimated from the median fluorescent intensity of 

the negative control plus 2 standard deviations. Caution should be taken when 

interpreting any values that fall below the lowest point on a standard curve which is 

generally 5-10pg/ml for flex sets. Lastly, good correlations of CBA with ELISA have 

been demonstrated but there is poor concurrence of quantitative values(Elshal and 

McCoy, 2006).  

1.4.2 Sampling epithelial lining fluid by BAL 

The cytokines described above are largely present in the milieu surrounding the cells. In 

the context of VAP, the cytokines are present in the epithelial lining fluid (ELF), which 

is sampled by BAL. 

Performing a BAL will invariably sample both the bronchial area, bronchiolar area and 

the alveolar area. Using digital subtraction imaging techniques, it has been 

demonstrated that the first aliquot of saline remains close to the bronchoscope and 

subsequent aliquots were required to fill the alveolar space(Kelly et al., 1987). For this 

reason it has been advocated that the aspirate of the first aliquot is discarded(Meduri and 

Chastre, 1992). Squamous epithelial cells are used as a marker of bronchial 

contamination and considerably more squamous epithelial cells have been demonstrated 

in the first 20ml BAL aliquot (45.0%) in comparison to the second 50ml BAL aliquot 

(7.6%)(Marquette et al., 1995). Uncertainty over exact anatomical position of BAL 

sampling is inherent in BAL and previous expert opinion has stated that discarding the 
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bronchial wash is unreliable and that ensuring a sufficient BAL volume is used to dilute 

the effects of bronchial sampling and lowering the airways:alveolar material ratio is 

required(Haslam and Baughman, 1999). In fact current national guidelines for 

bronchoalveolar lavage in clinical practice, do not recommend discarding a bronchial 

sample(Meyer et al., 2012; Du Rand et al., 2013).  

A minimum volume of 120mls has been recommended(Kelly et al., 1987) and there is 

variation in recommendations in national guidelines with the British Thoracic Society 

recommending 60-180mls(Du Rand et al., 2013) and the American Thoracic Society 

recommending 100-300mls(Meyer et al., 2012). It should be noted that these volumes 

are not specific to BAL in the ICU (ATS recommendations are in relation to 

investigation of interstitial lung disease).  

In cases of bilateral CXR changes, there is inevitably some uncertainty as to whether the 

BAL has been performed in the correct area. The main concern is the risk of a false 

negative result if the infected area is not sampled. VAP has been shown to be widely 

distributed histologically(Rouby et al., 1992) which may account for the finding that the 

bacterial index of directed BAL and non-directed BAL, even if the non-directed BAL 

was in a different lobe or even the contralateral lung, were not significantly 

different(Pugin et al., 1991). In current UK practice, generally more than one lobe is 

lavaged, volumes >100mls are also only used by approximately 10% of clinicians and 

the median volume being 20mls(Browne et al., 2014). This would lead to the 

conclusion that most ‘BAL’ performed in the UK are in fact bronchial ‘washes’. If an 

adequate BAL is being performed with the necessary volumes (at least 120mls), there 

are safety considerations for performing BAL in more than one lobe in ICU patients. 

Anecdotally the volume of 120mls used in these studies was considered to be high 

volume by many clinicians working within the study sites. 

The ELF sampled by BAL is diluted by the instilled saline during the BAL. One of the 

main uncertainties with BAL is the degree to which the ELF is diluted by the saline and 

therefore to what degree the measured biomarker level truly reflects the biomarker level 

in the ELF(Haslam and Baughman, 1999). Urea is a small molecule (60 Daltons) that 

can freely diffuse across biological membranes. Measurement of BAL and serum urea, 

has been previously used to determine a correction factor for the amount of ELF 

dilution that has occurred and ELF has been shown to be diluted approximately 100 fold 

by BAL using the urea correction method(Rennard et al., 1986). Since urea moves 

freely across membranes, down its concentration gradient, the amount of urea in BAL 
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does increase the longer the saline is allowed to remain in the lungs prior to aspiration 

(“dwell time”)(Rennard et al., 1986). The movement of urea during BAL is complex 

and the rationale for the use of urea may be too simplistic(Ward et al., 1992). In a study 

of healthy volunteers BAL urea concentrations were lower in smokers than non-

smokers, urea increased in BAL fluid between 3 sequential 60ml aliquots of instilled 

saline and significant amounts of intravenously injected radiotracer were found in BAL 

fluid demonstrating the dynamic movements of water and urea during BAL(Ward et al., 

2000). 

1.5 Mortality and morbidity  

1.5.1 Mortality 

Estimating the mortality associated with VAP has proven to be complex. VAP 

complicates the condition that mandated the patient’s admission to ICU. Therefore the 

admission condition and subsequent HCAI may both contribute to the risk of death. 

Separating the respective contributions has proven difficult. Furthermore the adequacy 

of treatment for VAP is inherent in its contribution to the risk of dying and in the 

context of estimating ICU mortality, an increased length of ICU stay results in a time-

at-risk bias as these patients will have a prolonged observation period on 

ICU(Muscedere, Day and Heyland, 2010). Mortality rates are either reported as crude 

mortality rates or as attributable mortality. Attributable mortality is calculated by 

subtracting the baseline mortality for the cohort from the mortality in the VAP group to 

determine the contribution of VAP to the risk of death. Attributable mortality is 

generally expressed as relative risk (RR) or as an odds ratio (OR). Difficulties in 

determining attributable mortality in VAP have led to widely ranging estimates. 

Crude mortality rates have been reported to be between 24-76%(Chastre and Fagon, 

2002). This wide range of crude mortality rates is derived from relatively small studies. 

In a retrospective case-controlled study, 48 patients with VAP confirmed by semi-

quantitative culture, the crude mortality was 54.2% and amongst controls 27.1%.(Fagon 

et al., 1993). Similarly in a prospective cohort study in a community hospital VAP was 

associated with a 45.5% mortality compared to 32.2% amongst patients who did not 

acquire VAP, although this was not case-matched(Ibrahim et al., 2001). High crude 

mortality rates have been reported in association with Pseudomonas spp. and 

Acinetobacter spp. with mortality rates of 73%(Fagon et al., 1993, 1996). In contrast to 

these findings, a case-controlled study in a mixed medical and surgical ICU of 97 

patients and did not find a significant difference in mortality between the VAP and case-
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control group(Papazian et al., 1996). Furthermore there was no significant increase in 

mortality when Pseudomonas spp. were the causative pathogens. Trauma patients are a 

group of patients in which VAP is a common complication but there does not appear to 

be an associated increase in mortality(Baker, Meredith and Haponik, 1996; Cook, 

Norwood and Berne, 2010).  

Estimates of attributable mortality also vary widely. High attributable mortality rates 

were reported in a prospective, matched, risk-adjusted cohort(Bercault and Boulain, 

2001). Crude mortality rates were 41% and 14% for the VAP and control groups 

respectively, which equates to an attributable mortality OR of 2.7 (95% confidence 

interval (CI) 1.8-3.1). Interestingly when sub-analysis was performed on VAP caused 

by antibiotic resistant or sensitive pathogens the OR was only significant for the 

resistant group (2.6, 95%CI 1.1-5.8 versus 1.8, 95% CI 0.9-3.9 for the sensitive group). 

In contrast to these high attributable mortality rates, a match controlled analysis 

performed on patients enrolled in a stress ulcer prophylaxis RCT did not find an 

increase in RR in patients with VAP (32.2% (95% CI -20.6-85.1))(Heyland et al., 

1999). 

Pooling RR of mortality for VAP from observational studies in a meta-analysis revealed 

a RR of 1.27 (95% CI 1.15-1.39)(Melsen, Rovers and Bonten, 2009). This analysis did 

however include matched and non-matched observational studies and there was 

considerable heterogeneity between studies (I
2
 69%). Interestingly there was very little 

heterogeneity in the sub-groups of trauma (I
2
 1.3%) and ARDS (I

2
 0%) and in these 

groups no additional attributable mortality was associated with VAP. 

In an alternative approach, a meta-analysis of RCTs of VAP prevention interventions 

was performed(Melsen et al., 2011), the rationale being that if there is an associated 

mortality with VAP then any reduction in VAP rates will result in a reduction in 

mortality. A ratio of relative risk reduction (RRR) of mortality to the RRR of acquiring 

VAP, was used to estimate the attributable mortality. The pooled RRR in mortality was 

0.03 (95% CI -0.03-0.08) (no RCT reported a significant decrease in mortality) and the 

RRR in VAP was 0.33 (95% CI 0.23-0.41). The estimated attributable mortality was 

9%. 

Although the previously described reports attempted to control for confounding 

variables through matching, none of them considered the fluctuating risk of VAP over 

time. In an analysis by Bekaert et al, the authors attempted to overcome the following 

confounding factors: patients need to survive long enough to acquire VAP; patients with 
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VAP are more severely unwell throughout ICU admission, not only on admission; the 

interplay between disease severity and adequacy of treatment over time; and that 

discharge from ICU is a competing risk for ICU mortality(Bekaert et al., 2011). This 

analysis was performed using data from a high quality database in which VAP was 

diagnosed not only by clinical criteria but also respiratory sampling by bronchoscopic 

methods and quantitative culture. This approach estimated a 2.3% increase in hazard of 

ICU death for each day following onset of VAP. The estimated attributable mortality 

fraction at 30 days was 4.4% (95% CI 1.6-7.0) and at 60 days was 5.9% (95% CI 2.5-

9.1). Considering the crude mortality rates at 30 and 60 days were 23.3% and 25.6% 

respectively, this results in an attributable mortality at 30 days of 1% and 1.5% at 60 

days. Although this is a detailed investigation, it alone should not lead the reader to 

conclude that there is no significant associated mortality with VAP. It highlights the 

complexity of elucidating the attributable mortality in complex patients in whom many 

factors influence the risk of death. 

1.5.2 Length of stay 

Unlike the attributable mortality of VAP there is much more consistent signal in regard 

to an associated increased length of ICU and hospital stay. The increased length of ICU 

stay amongst patients with VAP ranges from 4.7-8 days(Papazian et al., 1996; Heyland 

et al., 1999; Ibrahim et al., 2001; Rello et al., 2002; Safdar et al., 2005)The increased 

length of hospital stay ranges from 11.5-23.4 days(Ibrahim et al., 2001; Rello et al., 

2002; Cook, Norwood and Berne, 2010). The highest length of stay was reported in a 

prospective study of trauma patients in which the increased length of ICU stay was 17.8 

days and hospital length of stay was 16.8 days although this was not a case-controlled 

study(Cook, Norwood and Berne, 2010). The prevention of VAP using subglottic 

secretion drainage (SSD) has not only prevented VAP but also reduced length of ICU 

stay(Muscedere et al., 2011). 

1.5.3 Healthcare resource utilistation 

Estimating the cost attributable to VAP suffers the same difficulties of estimating 

mortality in patients with complex disease and the potential for multiple complicating 

diseases. The wide range of differences in healthcare systems further limits estimated 

costs. No detailed reports of the cost of VAP in the UK have been previously published. 

Data from the USA (as in studies described below) estimates cost from a patient, 

provider or insurance perspective. Case definitions of VAP can influence the estimated 

prevalence of VAP, which will also influence estimates of cost. In a retrospective, case-
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controlled study in which patients with VAP were identified if ventilated for ≥2 days 

and met the criteria of the International Classification of Disease, Ninth Revision (ICD-

9) code for VAP (997.31)(Kollef, Hamilton and Ernst, 2012), the estimated cost from a 

hospital perspective (indirect and direct costs) was $99,598 for patients with VAP and 

$59,770 for control patients. These costs are very similar to a previously reported 

provider perspective estimate(Rello et al., 2002).  

In a prospective analysis, Anderson et al estimated the cost of HCAIs from a systematic 

review of the literature from 1985-2005 and then applied these costs to the prospective 

HCAI rates for 32 participating community hospitals(Anderson et al., 2007). With an 

estimated cost of $25,072 per VAP case and median of 2 (IQR 0-4) VAP cases per year 

per hospital, the median cost of VAP per year to the hospital was $50,144. 

Another strategy was to estimated attributable cost in a meta-analysis based on the 

estimated attributable increased length of ICU stay and estimated specific treatment cost 

for VAP. The estimated cost was an additional $13,647 per VAP episode(Safdar et al., 

2005). Similar attributable costs were determined in two retrospective analyses with 

costs of $11,897(Warren et al., 2003) and $15,986(Hugonnet et al., 2004).  

In contrast to these a further analysis from a hospital perspective did not find a 

significant cost associated with VAP(Restrepo et al., 2010). The median costs were 

$76,730 for VAP cases and $41,250 for control cases. Following Medicare 

reimbursements to hospitals the median losses to hospitals were $32,140 for VAP cases 

and $19,360 for control cases, although this difference was not statistically significant.  

1.6 Diagnostic test metrics 

Diagnostic tests aim to correctly detect disease but tests rarely do this with 100% 

accuracy. There are two sides to diagnostic testing; the ability to correctly detect the 

disease in those that have the disease and the ability to correctly detect the absence of 

disease in those that do not have it. The ability of a test to correctly identify disease can 

be illustrated by the following 2x2 table: 

 

 Disease present Disease absent 

Test positive A (true positives) B (false positives) 

Test negative C (false negatives) D (true negatives) 
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The sensitivity is the proportion of true positives that are correctly identified by the test 

and is given by the equation: Sensitivity =  A / (A+C) (Douglas G Altman and Bland, 

1994). 

The specificity is the proportion of true negatives that are correctly identified by the test 

and is given by the equation: Specificity =  D / (B+D). 

Sensitivity and specificity approach the diagnostic accuracy from the direction of the 

whether the disease is present or not. In clinical practice, however we generally 

approach from the position of the test result asking: what proportion of positive tests (or 

negative tests), correctly identify patients with the disease (or without the disease)? This 

is given by the predictive values (D G Altman and Bland, 1994).  

The positive predictive value (PPV) is the proportion of patients with a positive result 

who are correctly diagnosed and is given by the equation: PPV = A / (A+B). 

The negative predictive value (NPV) is the proportion of patients with a negative result 

who are correctly diagnosed and is given by the equation: NPV = D / (C+D). 

1.7 Diagnosis of VAP 

The lack of a gold standard and the need for surrogate definitions is a major limitation 

in clinical practice and in research. The clinical features that indicate suspicion of VAP 

are all limited in terms of specificity and none of the sampling techniques used to obtain 

respiratory samples are 100% accurate. The implication of this at the bedside is that 

antibiotics may well be used unnecessarily. In fact amongst patients with suspected 

VAP, pneumonia is confirmed in approximately 40%(Meduri et al., 1994; Hellyer et al., 

2015), although diagnosis based on culture is heavily dependent on sampling technique 

used(Conway Morris et al., 2009).  

Diagnostic strategies are generally divided into two approaches. The first is a “clinical” 

strategy based on clinical findings and generally in conjunction with culture of ETA. 

The benefit of this approach is the ease of obtaining an ETA, which is not a skilled task. 

The main issue is the lack of specificity and therefore the risk of over diagnosis of VAP 

and the potential for overuse of antibiotics. An alternative is an “invasive” sampling 

approach. Respiratory samples for culture are obtained by bronchoscopic methods and 

the diagnosis of VAP is determined by quantitative cultures. The benefit of these 

methods is that the distal site of infection is sampled and so is less vulnerable to 

contamination from upper airway colonisation. The problems with this strategy is that 

bronchoscopy is a skilled task that is not necessarily available, sampling in one region 
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of the lung could miss infection in another region and there is some risk associated with 

performing the procedures. 

In this section we will consider the evidence base for the clinical diagnosis and then the 

accuracy of respiratory sampling. 

1.7.1 Clinical diagnosis 

The most widely recognised features of suspected VAP are fever; leucocytosis or 

leucopenia; purulent tracheal secretions and new or worsening CXR infiltrates. These 

form the basis of the clinical and surveillance definitions outlined previously. Several 

studies have examined the accuracy of these clinical features against proven VAP at 

autopsy. A consideration from autopsy studies, particularly in relation to clinical data, is 

that there is a temporal dissociation between the clinical data recorded, the histological 

findings and the episode of suspected VAP. For example clinical data collected just 

before death may not represent the onset of clinical suspicion of VAP and alternatively, 

histological findings at death may not represent the histological findings at the moment 

of suspicion of VAP.  

Torres et al carried out a prospective study of 30 patients who died while receiving 

mechanical ventilation(Torres et al., 1994). Following death, patients underwent a 

protocol of several standardised respiratory sampling techniques followed by lung 

biopsies from the same area that BAL and PSB were performed in, guided by the light 

of the bronchoscope. The protocol was performed in the area that corresponded with the 

maximum CXR infiltrate and on the contralateral side. Histological pneumonia was 

defined as a focus of polymorphonuclear cell accumulation in the bronchioles and 

adjacent alveoli. Using histological evidence of pneumonia as evidence for VAP, fever 

had a sensitivity of 55% and a specificity of 58%; purulent tracheal secretions had a 

sensitivity of 83% and specificity of 33% and CXR infiltrates had a sensitivity of 78% 

and specificity of 42%. Alternative diagnoses for pulmonary infiltrates included 

alveolar haemorrhage, alveolar damage, atelectasis and pulmonary fibrosis. There were 

no significant differences in WCC between the VAP and non-VAP groups. 

A further prospective study of 40 patients who died while on mechanical ventilation 

found poor agreement between clinical features and pneumonia on histology(Kirtland et 

al., 1997). Kappa values describe the level of agreement ranging from 0.00-0.20 as 

slight, 0.21-0.40 as fair, 0.41-0.60 as moderate, 0.61-0.80 as substantial and 0.81-1.0 as 

almost perfect(Landis and Koch, 1977) Temperature had a kappa of 0.15, worsening 
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CXR 0.04, a reduction in PaO2:FiO2 ratio 0.11 and raised white cell count 0.03. A 

limitation of this study is that clinical data were obtained 48-72hrs before death. 

Since case definitions of VAP are a composite of clinical observations and 

investigations, Tejerina et al determined the diagnostic utility of case definitions against 

histologically proven VAP(Tejerina et al., 2010). In a retrospective analysis of patients 

who had undergone autopsy following death on mechanical ventilation, 253 patients 

were included of which 142 had histological evidence of pneumonia. The clinical 

definitions evaluated were: 

1. ‘Loose definition’ of VAP: a new of worsening CXR infiltrate in the context of at 

least 2 of the following 3 findings: temperature >38
o
C or <35.5

o
C; WCC >10,000/μl 

or <4000/μl; or purulent tracheal secretions.  

2. ‘Rigorous definition’ of VAP: the above criteria but all 3 findings required in the 

context of a new or worsening CXR infiltrate. 

3. CPIS >6. 

Of patients who had proven pneumonia, 64% met the loose definitions, only 13% met 

the rigorous definition and 43% had a CPIS >6.The sensitivity and specificity for the 

loose definition was 65% and 36% respectively; for the rigorous definition, 15.5% and 

91% respectively; and for a CPIS > 6, 46% and 60% respectively. 

A further study defined ‘microbiologically active pneumonia’ in the presence of 

positive lung tissue culture and positive histology(Fabregas et al., 1999). Twenty-five 

patients who died while mechanically ventilated were included. A high proportion of 

patients, 92%, had histological evidence of pneumonia in at least 1 lung biopsy but 52% 

of patients had ‘microbiologically active pneumonia’. The sensitivity and specificity for 

a CXR infiltrate was 92% and 33% respectively; for leucocytosis the sensitivity was 

77% and specificity was 58%; for purulent secretions the sensitivity was 69% and 

specificity was 42%. The ATS/IDSA criteria (see Table 1) had a sensitivity of 69% and 

specificity of 75% and a CPIS > 6 a sensitivity of 77% and specificity of 42%. In this 

study 68% of patients received antibiotics in the 48 hours before death. It is possible 

that a proportion of patients without ‘microbiologically active’ VAP could have had 

VAP but were culture negative due to the high levels of antibiotics used in these 

patients. 

These studies demonstrated a low sensitivity and specificity of the CPIS. In the 

derivation study a CPIS > 6 correctly identified VAP with a sensitivity of 93% and a 
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specificity of 100%(Pugin et al., 1991). This has failed to be validated in further studies. 

The CPIS correlates poorly with the bacterial index of pathogens cultured from 

BAL(Schurink et al., 2004) and a score >6 detected significant pathogen growth from 

BAL with a sensitivity of 60% and a specificity of 59%(Fartoukh et al., 2003). In a 

prospective study the diagnostic performance of the CPIS to identify VAP was poor 

with an area under the receiver operator characteristic curve (AUROC) of 0.47 (95% CI 

0.42-0.53)(Lauzier et al., 2008). 

Chest x-ray forms part of all clinical definitions of VAP. In a retrospective analysis the 

last CXR before death was examined against histology proven pneumonia(Wunderink 

et al., 1992). Alveolar infiltrates were present in 80% of patients and air bronchograms 

in 57%. Of patients with ARDS, 53% had asymmetric infiltrates. The presence of either 

a single or multiple air bronchograms identified pneumonia with a sensitivity of 83% 

and a specificity of 58%. A single air bronchogram had the highest specificity at 96% 

but a sensitivity of only 17%. Alveolar infiltrates identified pneumonia with a 

sensitivity of 88% and a specificity of 26%. In the regression analysis a single air 

bronchogram was the strongest predictor of VAP with a RR of 3.19 but this model 

predicted only 64% of VAP. 

Sensitivities and specificities for these clinical parameters are summarised in Table 4
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Reference ↑WC

C 

Fever Purulent 

secretion

s 

CXR 

changes 

CPIS 

>6 

CXR 

change 

AND 2 of: 

Fever  

↑WCC 

Purulent 

secretions 

CXR 

change 

AND 

ALL of: 

Fever  

↑WCC 

Purulent 

secretion

s 

Torres 1994 NS Sn 55%  

Sp 58% 

Sn 83%  

Sp 33% 

Sn 78% 

Sp 42% 

   

Tejerina 

2010 

    Sn 46% 

Sp 60% 

Sn 65%  

Sp 36% 

Sn 15%  

Sp 91% 

Fabregas 

1999 

Sn 

77%  

Sp 

58% 

Sn 46% 

Sp 42% 

Sn 69% 

Sp 75% 

Sn 92%  

Sp 33% 

Sn 77% 

Sp 42% 

Sn 69% 

Sp 75% 

Sn 23% 

Sp 92% 

Pugin 1991     Sn 93% 

Sp 

100% 

  

Fartoukh 

2003 

    Sn 60% 

Sp 59% 

  

Wunderink 

1992* 

   Sn 88% 

Sp 26% 

   

Table 4: Summary of sensitivity (Sn) and specificity (Sp) of clinical parameters used in the diagnosis of 
VAP. *sensitivity and specificity for a range of radiological signs reported in reference, ‘alveolar 
infiltrates’ presented in this table. NS, no significant difference between VAP and non-VAP 
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1.7.2 Respiratory sampling 

Samples from the respiratory tract can be obtained by bronchoscopic or non-

bronchoscopic techniques. Bronchoscopic techniques include BAL and PSB. Although 

a standardised approach to BAL has been reported(Meduri and Chastre, 1992), there is 

considerable variation in practice in the UK(Browne et al., 2014). The use of 

quantitative culture is used to distinguish between culture growth from colonising 

bacteria and from pneumonia. To consider the diagnostic accuracy of these techniques, 

data from human autopsy studies will be considered. 

In a prospective study, 26 patients who died while receiving mechanical ventilation 

underwent PSB immediately post-mortem in the left lower lobe followed by 

thoracotomy and collection of peripheral lung specimens(Chastre et al., 1984). Six 

patients had histological evidence of pneumonia and all of these patients had growth of 

a pathogen at >10
4 

colony forming units per gram (cfu/g) of tissue. The 20 patients 

without pneumonia either had a sterile culture or growth <4x10
3
 cfu/g. The correlation 

of PSB cfu/ml to tissue cfu/g was r=0.57. For patients on antibiotics this was lower 

(r=0.55) and for the 6 patients with pneumonia the correlation was higher (r=0.77). 

Operating characteristics of PSB fluid culture (cfu/ml) were determined to identify 

cases with a tissue culture of >10
4
 cfu/g or histological pneumonia. Using a cut-off of 

>10
3
 cfu/ml for PSB, the sensitivity to detect pneumonia (by histology) was 100% but 

specificity was 60% and to detect tissue culture of >10
4
 cfu/g, the sensitivity was 100% 

and specificity was 61%. Excluding patients receiving antibiotics increased the 

specificity for detecting pneumonia to 87% and detecting lung tissue culture to 76%. 

In a seminal paper, Chastre et al aimed to give a comprehensive description on the 

relationship of histological pneumonia to its microbiology(Chastre et al., 1995). Twenty 

patients who died while undergoing mechanical ventilation underwent immediate BAL 

and PSB before thoracotomy and tissue specimens from corresponding segments were 

collected. In order to reduce confounding factors, patients were excluded if antibiotics 

had been commenced within 3 days of death or if the patient had previously developed 

bacterial pneumonia. Therefore patients only had pneumonia if it was acquired in the 

terminal phase of the patients’ condition. The correlation between tissue cfu/g and 

histology was r=0.79. All patients with moderate to severe pneumonia had a tissue cfu > 

10
4
/g. Segments with mild pneumonia had tissue culture that ranged from sterile to >10

4
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cfu/g. There were strong correlations between PSB and BAL culture and tissue culture 

(r=0.67 and r=0.75 respectively). Operating characteristics were determined for BAL or 

PSB (cfu/ml) to detect significant tissue microbiology (>10
4
 cfu/g). For BAL at a 

threshold of >10
4 

cfu/ml the sensitivity was 91% and specificity was 78%; for PSB at a 

threshold of >10
3
 cfu/ml the sensitivity was 82% and specificity was 77%. 

These papers represent the strongest evidence for the accuracy of invasive sampling and 

the relationship between the BAL/PSB sample and tissue culture and histology. 

However some important limitations must be considered. Firstly these studies have not 

studied a population of suspected VAP. Although pneumonia was evidenced on 

histology, how this corresponds to clinical suspicion is uncertain. By definition these 

were groups of severely ill and terminal patients. Secondly the BAL and PSB thresholds 

proposed by Chastre(Chastre et al., 1995) have been widely accepted but it must be 

acknowledged that these were derived against a tissue culture threshold that does not 

encompass all pneumonia, failing to include mild pneumonia. How clinical features of 

pneumonia differ between patients with mild, moderate or severe pneumonia on 

histology is not known nor is it known whether all patients with some evidence of 

pneumonia at histology receive antibiotic treatment. Clinical outcomes have been 

shown to be different in patients above and below these thresholds(Fagon et al., 1996) 

suggesting this is a clinically relevant distinction. Furthermore managing patients as 

non-VAP if culture growth is below these thresholds and discontinuing antibiotics early 

is not associated with worse outcome and may have benefits in terms of reducing 

antibiotic resistance and reducing antibiotic prescribing(Fagon et al., 1988, 2000; 

Raman et al., 2013). 

Further cadaveric studies that aimed to validate the findings of Chastre et al have failed 

to report the same correlations of tissue culture to histology and the same diagnostic 

accuracy with BAL and PSB(Torres et al., 1994; Marquette et al., 1995; Kirtland et al., 

1997; Fabregas et al., 1999). These studies have generally not controlled for antibiotic 

use or the presence of pre-existing pneumonia but are arguably a more clinically 

relevant population. The tissue culture threshold of >10
4
 cfu/g was found to have a 

sensitivity of 27% and specificity of 66% in one study(Torres et al., 1994) and a 

sensitivity of 11% and specificity of 93% in another (Kirtland et al., 1997) against 

histological pneumonia. In a study by Rouby et al, 35% of patients with histological 

pneumonia were culture negative and 49% of culture positive patients had no 

histological evidence of pneumonia(Rouby et al., 1992). However the use of antibiotics 
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in these studies could have resulted in falsely low or negative cultures(Fabregas et al., 

1996). The sensitivity and specificity of BAL ranged from 11-50% and 45-100% 

respectively; for PSB the sensitivity and specificity ranged from 33-83% and 50-100% 

respectively(Torres et al., 1994; Marquette et al., 1995; Kirtland et al., 1997; Fabregas 

et al., 1999). For blind mini-BAL the operating characteristics were report at a 

sensitivity of 70% and specificity of 69%(Rouby et al., 1994). Endotracheal aspirate 

was evaluated in two studies which reported sensitivity from 69-87% and a specificity 

of 31-92%(Kirtland et al., 1997; Fabregas et al., 1999). 

Table 5 summarises the diagnostic performance of respiratory sampling methods 

reported. 

Reference BAL PSB ETA Blind-BAL/ 

Bronchial aspirate 

Blind PSB 

Fabregas 1999 Sn 39%* 

Sp 100% 

Sn 62% 

Sp 75% 

Sn 69% 

Sp 92% 

  

Kirtland 1997 Sn 11% 

Sp 80% 

Sn 33% 

Sp 63% 

  Sn 22% 

Sp 77% 

Chastre 1995 Sn 91% 

Sp 78% 

Sn 82% 

Sp 77% 

   

Chastre 1984  Sn 100% 

Sp 61% 

   

Marquette 1995 Sn 47% 

Sp 100% 

Sn 56% 

Sp 87% 

Sn 56% 

Sp 86% 

  

Torres 1994 Sn 50% 

Sp 45% 

Sn 36% 

Sp 50% 

 Sn 44% 

Sp 48% 

 

Rouby 1992    Sn 70% 

Sp 69% 

 

  

Table 5: Summary of diagnostic performance of difference respiratory sampling methods. Sensitivity 
(Sn) and Specificity (Sp). Reference criteria used by Chastre et al (1984, 1995) tissue culture of >10

4
 

cfu/g, Fabregas 1999, ‘microbiologically active pneumonia’. Remaining studies use histology proven 
pneumonia.* Sensitivity and specificity for ‘protected BAL’. 
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1.7.3 Clinical versus invasive diagnostic strategy: RCT evidence 

Professional bodies have previously recommend the use of invasive respiratory 

sampling as best practice(American Thoracic Society, 2005) due to the higher 

specificity to exclude false positive cultures from proximal airway colonisation. More 

recently this recommendation has been challenged by a meta-analysis that did not 

support the use of invasive sampling(Berton, Kalil and Teixeira, 2012) and updated 

guidelines no longer recommend invasive sampling(Kalil et al., 2016). It may not be 

surprising therefore, that there is considerable variation in practice around respiratory 

sampling(Koulenti et al., 2009; Browne et al., 2014). Clearly improvement in patient 

outcome is the predominant drive for adoption into clinical practice. There have been 5 

RCTs that have compared bronchoscopic methods to clinical/non-bronchoscopic 

methods. The use of an invasive approach was invariably combined with quantitative 

culture; however these trials differ in whether the control arm included non-invasive 

sampling with quantitative culture or qualitative culture.  

Of the 5 trials, two dominate the discussion, and have conflicting results(Fagon et al., 

2000; Canadian Critical Care Trials Group et, 2006). In a French multi-centre trial of 

413 patients conducted over 31 ICUs, patients were randomised to a treatment 

algorithm of antibiotic initiation or de-escalation based on invasive sampling (BAL or 

PSB) or to a clinical management approach (ETA)(Fagon et al., 2000). In both the 

invasive and the non-invasive groups the decision algorithm recommended antibiotics at 

two decision points, the immediate Gram stain result and later culture results. Cultures 

were positive from PSB in 37% of patients, for 34% of BAL and 86% of ETA. The 

mortality at 14 days was significantly lower in the invasive group over the non-invasive 

group (16.2% vs 25.8%, p=0.022). Furthermore there were significantly more 

antibiotic-free days (AFD) at 14 days in the invasive group over the non-invasive group 

with 5.0 +/- 5.1 and 2.2 +/- 3.5 respectively (p<0.001). Fourteen per cent of the invasive 

group did not receive any antibiotics up to 28 days in comparison to only 2 patients in 

the non-invasive group. There was no significant difference in ICU or hospital LOS or 

duration of mechanical ventilation. 

In this trial, considering only those with negative cultures, 85% in the invasive group 

and 60% of the clinical group did not receive antibiotics. This degree of antibiotic 

stewardship in light of negative cultures is not reflected in other trials(Ruiz et al., 2000; 

Solé Violán et al., 2000; Canadian Critical Care Trials Group et, 2006). The algorithm 

used in the trial reflects best practice of de-escalation or discontinuation of antibiotics 
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following culture results. Furthermore the mortality difference could be explained by 

the fact that the invasive group had fewer patients receiving inappropriate antibiotics 

that failed to treat the cultured pathogens (inadequate treatment in 24 patients (11%) in 

the non-invasive group versus 1 patient in the invasive group). 

The adequacy of treatment of VAP is inextricably linked to outcome and so any trial 

intervention must ensure that treatment adequacy is not a confounding factor. A large 

multi-centre trial conducted in Canada went some way to accommodate for this 

confounding factor ensuring that all patients got broad-spectrum empiric 

antibiotics(Canadian Critical Care Trials Group et, 2006). Seven hundred and forty 

patients from 28 ICUs were randomised in a 2 by 2 factorial design RCT. Factorial 

RCTs randomise on two levels to two interventions that are felt not to interact. In this 

trial the levels of randomisation were invasive sampling with BAL and quantitative 

culture versus clinical diagnosis and ETA; the second level was randomisation to 

monotherapy or combination therapy. This trial had important exclusions that limit its 

generalisation into routine practice. Patients were excluded if colonised with S. aureus 

or Pseudomonas spp., if allergic to the trial antibiotics (ciprofloxacin or meropenem) or 

if they had received the trial antibiotics prior to randomisation (within 24 hours for 

ciprofloxacin and within 7 days for meropenem). The protocolised antibiotics resulted 

in equally high degree of adequacy of treatment in both groups (89% in BAL group and 

89.5% in clinical group). 

In contrast to the French trial, which showed a considerable difference in positivity rate 

of microbiology culture, this trial found that BAL was positive in 60% of cases and 

ETA was positive in 52% of cases. There was no significant difference in mortality at 

28 days with a relative risk reduction of 1.01 (95% CI 0.75-1.37). There was no 

difference in duration of mechanical ventilation or length of ICU or hospital stay. 

Furthermore there was no significant difference in number of days alive and without 

antibiotics between the BAL group and ETA group (10.4 +/- 7.5 and 10.6 +/- 7.9 

respectively). However at day 6, 74.6% of the ETA group and 74.2% of the BAL group 

were receiving antibiotic therapy, which suggests that opportunities for discontinuation 

of antibiotics in the context of negative cultures were not taken. The authors do state 

that the decision to continue antibiotics in the context of a culture growth of <10
4
 cfu/ml 

was, pragmatically, left to the treating physician. In addition the diagnosis of VAP was 

adjudicated retrospectively and the authors do state that any potentially pathogenic 

organism regardless of the number of cfu/ml was considered as a positive culture. 



   

  36 

Three smaller single centre RCTs have also been carried out. Sanchez-Nieto et al 

reported a pilot study of 51 patients who were randomised to either invasive sampling 

by BAL and PSB with quantitative culture or ETA with quantitative culture(Sanchez-

Nieto et al., 1998). The use of quantitative culture in the control arm does not 

necessarily represent standard care. This study also reported high rates of positive 

culture, occurring in 67% of BAL, 58% of PSB and 67% of ETA. Although the trial 

was not powered at 51 patients to detect a mortality difference, there was no significant 

difference in mortality between the two groups. There was also no significant difference 

in LOS and duration of mechanical ventilation. The number of antibiotic days was not 

measured but there were more antibiotic modifications in the invasive group over the 

non-invasive group although whether this lead to fewer antibiotic days or more targeted 

therapy was not reported. 

The trial by Fagon et al highlights the potential value different diagnostic methods 

could have on antibiotic prescribing. In a trial by Ruiz et al, patients were randomised to 

either invasive or non-invasive management(Ruiz et al., 2000). In this trial antibiotics 

were continued if cultures were negative but clinical suspicion of VAP remained. The 

duration of antibiotic therapy was the same for both groups (12 +/- 4 days in the non-

invasive group and 13 +/- 4 days in the invasive group). There was no difference in 

mortality, ICU LOS or duration of mechanical ventilation. Again the rates of positive 

culture were similar in both groups with 51% in the non-invasive group and 60% in the 

invasive group. Surprisingly all PSB performed had a positive culture and 50% of BAL 

had a positive culture.  

In another single-centre RCT, 91 patients were randomised to either invasive or non-

invasive sampling(Solé Violán et al., 2000). The rate of culture positivity for the 

invasive group was 44% in comparison to 76% of the ETA group. There was no 

significant difference in mortality, ICU LOS or duration of mechanical ventilation. 

Although there were more antibiotic modifications in the invasive group over the non-

invasive group (33% vs 12%), the number of antibiotic days was not reported. In fact 

the authors state that antibiotics were not altered following negative cultures. 

The 5 RCTs are summarised in Table 6. 
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Reference Sample 

size 

Trial 

arms 

Primary 

outcome(s) 

Mortality Antibiotic 

management 

Fagon 

2000 

413 BAL/PSB 

vs clinical 

+ ETA 

Mortality at 14 

days 

AFD at 14 days 

 

Mortality 

difference -9.6 

(-17.4 - -1.8) 

P=0.022 

AFD difference  

2.8 (1.9-3.6) 

P<0.001 

CCCTG 

2006 

740 BAL vs 

clinical + 

ETA 

28-day 

mortality 

Relative risk of 

death in BAL 

vs ETA group:  

1.01 (0.75-

1.37) 

NS 

Days alive 

without 

antibiotics:  

BAL 10.4+/-7.5 

ETA 10.6+/-7.9 

Ruiz 2000 76 BAL/PSB 

vs ETA 

30-day 

mortality 

Mortality ETA 

46%, BAL 

38% NS 

Duration of 

antibiotics  

ETA 12+/-4 

BAL/PSB 13+/-

4 

Sanchez-

Nieto 

1998 

51 Quantitati

ve 

ETA/BA

L/PSB vs 

quantitati

ve ETA 

(QEA) 

Crude mortality BAL/PSB 

mortality 46%, 

QEA mortality 

26%  

NS 

Antibiotic 

modifications: 

BAL/PSB group 

42% 

QEA 16%. 

Solé 

Violán 

2000 

91 Quantitati

ve culture 

BAL or 

blind 

BAL vs 

clinical + 

ETA  

Mortality 

Antibiotic 

change 

Mortality: 

Quantitative 

22.2% 

Qualitative 

20.9%  

NS 

Narrower 

spectrum change 

in 10 patients in 

quantitative 

group vs 3 in 

qualitative 

group 

  

Table 6: Comparison of trials evaluating invasive sampling in comparison to non-invasive sampling. QEA, 
quantitative ETA 
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In a Cochrane review, the use of quantitative versus qualitative cultures was reviewed 

for clinical outcomes(Berton, Kalil and Teixeira, 2012). This review is as much a 

review of invasive versus non-invasive sampling. This meta-analysis concludes that 

there is insufficient evidence in terms of 28-day mortality (risk ratio 0.91, 95% CI 0.75-

1.11), length of ICU stay (risk ratio 0.58, 95% CI -0.51-1.68) or antibiotic changes (risk 

ratio 1.53, 95% CI 0.54-4.39) to suggest that an invasive strategy is superior over a non-

invasive strategy. However it is important to note that this review did not include the 

findings of Fagon et al(Fagon et al., 2000) regarding antibiotic reductions because no 

other study measured AFD. The authors highlight that to confirm the risk ratio 

reduction in mortality suggested in this meta-analysis of 9% would require a trial of 

7500 patients. It is therefore futile to make further attempts to demonstrate a mortality 

difference. There are however other relevant outcomes, and in the context of VAP 

antibiotic stewardship endpoints are important.  

The CPIS was used in a RCT as a strategy to improve antibiotic stewardship in patients 

with new CXR infiltrates on a surgical ICU(Singh et al., 2000). Patients with a CPIS > 

6 were excluded from the study and they received treatment for pneumonia (despite the 

same group previously showing that only 50% of patients with CPIS > 6 had 

pneumonia(Singh et al., 1998)). Patients with a CPIS ≤6 were randomised to receive 

either standard care (10-21 days of antibiotics) or ciprofloxacin for 3 days followed by a 

reassessment of CPIS at day 3 and discontinuation of antibiotics if the CPIS remained 

below 6. This study showed a reduction in antibiotic use in the CPIS-guided early 

discontinuation arm, a reduction in antibiotic-resistant pathogens, and a reduction in 

ICU length of stay, while maintaining equivalent outcomes in terms of mortality. There 

are several limitations to this study. Firstly only 58% of the patients were mechanically 

ventilated and it is important to highlight that the CPIS has not been derived or 

validated in a non-ventilated population. Secondly this study excluded patients with a 

CPIS of > 6 at screening and so does not really address the clinical problem of the 

overuse of antibiotics in patients with suspected VAP as it can be presumed that a 

significant proportion of those patients would not go on to have confirmed VAP. 

Although this study did result in a reduction in antibiotics, it highlights the extent of 

overuse of antibiotics for suspected VAP. A strategy of invasive BAL sampling and 

discontinuation of antibiotics following negative culture is likely to have a greater 

impact on reduction of antibiotics(Luyt, Chastre and Fagon, 2004). 

 



   

  39 

1.8 Prevention of VAP 

The pathogenesis of VAP has been previously discussed (section 1.4) in terms of the 

changes in bacterial colonisation of oropharynx, subglottic area, sinuses and 

gastrointestinal (GI) tract and then subsequent translocation to lower respiratory tract. 

Altering this process could prevent VAP. The ability to reduce VAP rates through 

preventative measures has had a significant effect on how this HCAI is perceived, with 

a growing sense that this is an entirely preventable disease(Klompas, 2010). Since VAP 

occurs in the context of critical illness which is associated with immune 

dysfunction(Conway Morris et al., 2013), the ability to completely prevent this 

condition seems unlikely. Strategies can be considered as general approaches, strategies 

to prevent aspiration, strategies to prevent contamination of respiratory equipment and 

strategies to reduce colonisation. 

1.8.1 General measures 

Strategies to prevent VAP must be embedded in an environment of good hygiene 

practices to reduce the spread of HCAI by healthcare workers. The importance of hand 

hygiene in the reduction of HCAI is widely accepted(Pittet et al., 2000). Similarly a 

general approach to minimise or avoid intubation and mechanical ventilation is 

important to avoid the specific intervention that is implicated in this HCAI. Patients are 

generally sedated while mechanically ventilated, for comfort. At a point when it is felt 

that the patient has recovered sufficiently to attempt to breathe on their own and 

ultimately be extubated, the sedation is either reduced or stopped and the patient 

undergoes a ‘spontaneous breathing trial’ (SBT). Protocolised daily sedation 

interruption (DSI) to the point that the patient wakes with an assessment made of 

whether sedation should be restarted, in comparison to clinician-guided management of 

sedation, resulted in significantly reduced duration of mechanical ventilation and ICU 

stay(Kress et al., 2000). In a further RCT, SBT were undertaken in conjunction with 

DSI(Girard et al., 2008). In the control group sedation practice was left to the discretion 

of the clinician, to maintain a level of arousal felt appropriate to the patient. An 

assessment was made on the safety of performing a SBT and if appropriate the SBT was 

undertaken. Decisions to extubate based on the success of the SBT were left to the 

discretion of the clinical team. In the intervention arm, sedation was stopped each day 

and if patients tolerated being awake, a SBT was undertaken. There were a greater 

number of ventilator-free days, shorter duration of ICU stay, shorter duration of hospital 

stay and reduced risk of death in the first year in the intervention arm.  
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In a meta-analysis of weaning protocol interventions, protocolised weaning was 

associated with a 25% (95% CI 9-39%) reduction in the mean duration of mechanical 

ventilation(Blackwood et al., 2011). In a recent non-randomised study, SBT and DSI 

were implemented to determine the impact on VAC(Klompas et al., 2015). The study 

found that VAC and IVAC were reduced per episode of mechanical ventilation (rather 

than in ventilator-days) with an OR 0.63 and 0.35 respectively. While this study did not 

prevent ‘VAP’, it does support the concept that time off the ventilator reduces the time 

at risk of the complications of mechanical ventilation. 

With a similar purpose of minimising time on mechanical ventilation, non-invasive 

ventilation (NIV) has been used to assist in extubation from mechanical ventilation. 

NIV provides bi-level positive airway pressure via a tightly fitting facemask or hood. 

Two meta-analyses of randomised trials and quasi-randomised trials of NIV in 

comparison to invasive weaning strategies(Burns, Adhikari and Meade, 2006; Burns et 

al., 2009) have demonstrated a benefit in patients who have undergone weaning via 

NIV with a reduction in mortality (RR 0.55, 95% CI 0.38-0.79), VAP (RR 0.29, 95% CI 

0.19-0.45), ICU LOS (mean difference 6.27 days, 95% CI 3.78-8.77), hospital LOS 

(mean difference 7.19 days, 95% CI 3.58-10.80) and invasive mechanical ventilation 

(mean difference 7.81 days, 95% CI 4.31-11.31)(Burns et al., 2009). The trials included 

in the meta-analyses were relatively small ranging from 21 to 90 participants and the 

majority of trials only included patients with chronic obstructive pulmonary disease 

(COPD). While it is unknown whether these findings can be generalised to a general 

ICU population, it does again support the concept that avoiding mechanical ventilation 

reduces its complications. 

1.8.2 Prevention of aspiration 

Aspiration of either oropharyngeal or gastric contents is implicated in the pathogenesis 

of VAP and strategies to prevent this are important(Estes and Meduri, 1995). In an 

observational study of patients nursed both in a supine position (0
o
) or at a 45-degree 

semi-recumbent position, a technetium (Tc)-99m sulphur colloid was instilled into the 

stomach via a nasogastric tube(Torres et al., 1992). Bronchial secretions were sampled 

at intervals between 0 and 300 minutes. Radioactivity was measured in counts per 

minute (cpm) and there were higher cpm in the supine group over the semi-recumbent 

group, which rose steeply between 240 and 300 minutes in the supine group. In a RCT, 

patients were randomly assigned to being nursed in a supine position (0
o
) or in a semi-

recumbent position (45
o
)(Drakulovic et al., 1999). The primary outcome measure was 
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clinically suspected VAP and the trial was powered to show a 50% risk reduction by the 

semi-recumbent position requiring 182 patients. A secondary endpoint was 

microbiologically confirmed VAP which could be confirmed by a pathogen in either an 

ETA or by a bronchoscopic method (PSB or BAL). The trial was stopped at its interim 

analysis after randomisation of 90 patients due to a significant risk reduction in the 

semi-recumbent position group in clinically suspected VAP of 76% and 

microbiologically confirmed VAP at 78%. A significant limitation of this trial was the 

potential for bias, in that the primary endpoint of clinically suspected VAP is highly 

subjective and the trial had no means of blinding. One key issue with the external 

validity of this trial is that patients are rarely nursed completely supine but generally 

with some degree of elevation. In a further RCT patients were randomised to nursing at 

10
o 
elevation (supine) or 45

o
 elevation (semi-recumbent) and the degree of bed elevation 

was monitored(van Nieuwenhoven et al., 2006). The primary endpoint was confirmed 

VAP by criteria based on culture from BAL fluid. In this trial of 221 patients, one of the 

key outcomes was the feasibility of nursing patients at a 45
o
 position. In the supine 

group bed elevation was 9.8
o 
± 3.9 on day 1 and at day 7 was 14.8

o 
± 7.1

o
. In the semi-

recumbent group the bed elevation was 29.2
o
 ± 10.3

o
 on day 1 and 26.5

o
 ± 8.2

o
 on day 

7. In this trial there was no significant difference in confirmed VAP between the two 

trial arms. Although the exact degree of bed elevation is unclear, patients are almost 

universally nursed with some degree of elevation and an elevation of 30
o
 is widely 

recommended(Lorente, Blot and Rello, 2007) with little controversy since this is a 

simple measure to implement. 

Secretions above the ETT cuff are able to leak past the cuff, reaching the lower 

respiratory tract(Seegobin and van Hasselt, 1986). The ETT cuff is the predominant 

barrier and the pressure of this has to be sufficient for it to function in this regard. In an 

observational study of 83 patients primarily investigating the value of subglottic 

suction(Rello et al., 1996), the investigators found that antibiotic use and subglottic 

suction was preventative against VAP. There was a trend towards patients with cuff 

pressures of <20cmH20 to be at greater risk of VAP (RR 2.57, 95% CI 0.78-8.03) and in 

a multivariate analysis of patients who were not on antibiotics, a cuff pressure of 

<20cmH2O was independently associated with VAP (RR4.23, 95% CI 1.12-15.92).  

Once the ETT cuff is inflated there is a space between the vocal cords and the top of the 

cuff and in this subglottic area secretions can accumulate and be aspirated into the 

airways. This area cannot be suctioned by conventional methods and so specialised ETT 
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are used that have a suction port to this space. The clinical benefits of subglottic 

secretion drainage (SSD) have now been evaluated in three meta-analyses(Dezfulian et 

al., 2005; Muscedere et al., 2011; Wang et al., 2012). The first meta-analysis of 5 RCTs 

incorporating a total of 896 patients showed that SSD was associated with a relative risk 

reduction of VAP of 0.51 (95% CI 0.37-0.71)(Dezfulian et al., 2005). In the sensitivity 

analysis, excluding a single trial that caused the heterogeneity in the group, SSD 

reduced duration of mechanical ventilation by 2 days (95% CI 1.7-2.3 days) and length 

of ICU stay by 3 days (95% CI 2.1-3.9). This meta-analysis was updated in two further 

meta-analyses. In the meta-analysis by Wang et al of 10 RCTs, SSD was associated 

with a RR reduction of 0.56 (95% CI 0.45-0.69), reduced duration of mechanical 

ventilation by 1.55 days (95% CI -2.40 - -0.71) and prolonged time until VAP by 3.9 

days (95% CI 2.56-5.24)(Wang et al., 2012). Similar to Dezfulian et al, the main effect 

appears to be on reducing early VAP rather than late VAP. In the meta-analysis by 

Muscadere et al, the risk ratio for VAP was similarly lower in the SSD group at 0.55 

(95% CI 0.46-0.66) in a meta-analysis of 13 RCTs with no heterogeneity (I
2
 

0%)(Muscedere et al., 2011). In this meta-analysis, not only was there an increased time 

until onset of VAP and shorter duration of mechanical ventilation, but also a reduced 

length of ICU stay (-1.52 days, 95% CI -2.94- -0.11). SSD represents a preventative 

strategy with one of the strongest evidence bases for its use. It is now recommended in 

VAP prevention guidelines(NICE, 2008; Institute for Healthcare Improvement, 2012) 

but despite this it is not widely used in UK ICUs(Baldwin, Gray and Chequers, 2014). 

1.8.3 Prevention of contamination of equipment 

Patients who are mechanically ventilated bypass the natural humidification process of 

the upper airways. Inspired gases must be humidified to allow normal respiratory tract 

function and prevent respiratory secretions becoming tenacious, which could have the 

potentially catastrophic consequence of ETT occlusion. Inspired gases can be 

humidified by two methods, the first of which is heat humidification (HH), which 

passes gases over a reservoir of heated water and in addition may have a heated coil in 

the inspiratory limb of the circuit to prevent condensation. The second method is a heat 

and moisture exchanger (HME). This is a filter placed at the ETT that has a hygroscopic 

salt (calcium or lithium chloride) that absorbs the patient’s water vapour during 

expiration and then releases it on inspiration, thereby conserving the patient’s own 

moisture and heat. While humidification is essential there is also concern that 

humidification can act as a source of contamination and result in VAP. In two early 
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trials of HME and HH, patients in the HME groups had occlusion or partial occlusion of 

the ETT, which led to the death of a patient in one trial(Martin et al., 1990; Roustan et 

al., 1992). A number of RCTs conducted since that have not found a signal for harm 

from HME use(Dreyfuss et al., 1995; Boots et al., 1997; Hurni et al., 1997; Kirton et 

al., 1997; Kollef et al., 1998; Memish et al., 2001; Thomachot et al., 2002; Hess et al., 

2003; Lacherade et al., 2005; Lorente et al., 2006). As with many VAP trials, a number 

of RCTs are limited by diagnostic definitions, and outcomes based on clinical 

definitions are inherently at risk of bias. In a single-centre RCT of 164 patients in which 

VAP was defined based on BAL and PSB culture, no difference in VAP rates or in 

pharyngeal colonisation was found between HH and HME groups(Dreyfuss et al., 

1995). Furthermore in a multi-centre RCT of 369 patients, with a similar rigorous 

definition of VAP, no difference in VAP rates was found between HH and 

HME(Lacherade et al., 2005). A meta-analysis of 8 RCTs found that VAP was lower in 

the HME group with an OR of 0.69 (0.51-0.94).  When sub analyses were performed 

this was only significant in patients ventilated for greater than 7 days and in patients 

with a clinical diagnosis of VAP but not a microbiological diagnosis of VAP(Kola, 

Eckmanns and Gastmeier, 2005). In a further large meta-analysis of 33 trials, of which 

27 were in adults, 25 were parallel design and 8 were a cross-over design, no difference 

was found in outcomes of pneumonia, airway occlusion or mortality between HH and 

HME(Kelly et al., 2010). In subgroup analyses there was no difference in just adults or 

paediatric cases or between hydrophobic or hygroscopic HME filters.  

Suctioning of respiratory secretions is critical in the care of ventilated patients. Open 

suction units require disconnecting the patient from the ventilator to introduce a single 

use suction catheter. This has a number of disadvantages including disruption to 

ventilation, loss of positive end expiratory pressure (PEEP) and exposure of healthcare 

workers to respiratory secretions. Closed suction units are placed in the circuit and 

allow suctioning without disconnection from the ventilator. Despite concerns that closed 

suction units could become contaminated and therefore be a risk factor for VAP, a 

meta-analysis did not find an increased risk of VAP between either method of 

suctioning(Subirana, Solà and Benito, 2007). 

Since inspired gases are humidified, the condensate in the ventilator circuit runs the risk 

of becoming contaminated. For this reason it was practice in the 1980’s for circuits to 

be changed every 24 hours to prevent contamination, however this frequency was found 

to be a risk factor for VAP in comparison to changes every 48 hours(Craven et al., 
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1986). This may be due to increased manipulation of the circuit and therefore the risk of 

contaminated secretions entering the bronchial tree via the lumen of the ETT. Several 

studies have investigated the interval that the circuits should be changed at. In an 

observational study that used circuit changes at 2-day intervals, 7-day intervals and 30-

day intervals, each for 1 year, the highest VAP rate was in the 2-day interval period at 

11.88 cases per 1000 ventilator days and 3.34 and 6.28 per 1000 ventilator days in the 

7- and 30-day interval periods respectively(Fink et al., 1998). In two RCTs one using 

HH(Kollef et al., 1995) and another using HME humidification(Lorente et al., 2004), 

routine 7 day changes were compared to no routine changes. Ventilator circuits were 

changed at the discretion of clinicians if faulty or visibly soiled. In both trials there were 

no significant differences in rates of VAP between the two trial arms, suggesting that 

routine changes are unnecessary and costly. In the trial by Kollef et al, patients 

receiving circuit changes every 7 days had 247 circuit changes at the cost of $7410 in 

comparison to the group with no routine changes, which had a total of 11 circuit 

changes costing $330(Kollef et al., 1995).  

1.8.4 Prevention of colonisation: oral intubation 

The preventative steps outlined so far aim to prevent aspiration of a pathogen. 

Preventative measures are also aimed at reducing colonisation with potential pathogens 

so as to reduce the bacteria at the sources of infections. The potential sites of 

colonisation are the sinuses, the oropharynx and the gastrointestinal tract. Patients can 

either be intubated via the nasal or oral routes. Nasal intubation has the advantage over 

oral intubation in that it is better tolerated in patients on less sedation and it removes the 

risk of patients biting the ETT. The main disadvantage however, is the risk of 

developing infective sinusitis, which could result in infective secretions bypassing the 

ETT. Reports are conflicting on the significance of nasal intubation as a risk factor for 

VAP. In a trial of 111 patients randomised to either nasal or oral intubation, sinusitis 

was diagnosed based on portable x-rays being performed of the head(Salord et al., 

1990). X-ray was performed before intubation, at day 3, day 7 and each week until 

extubation. Maxillary sinusitis occurred in 1.8% of the oral intubation group and in 43% 

of the nasal intubation group. This trial did not measure the influence on VAP. In a 

larger trial of 300 patients, patients were randomised to oral or nasal 

intubation(Holzapfel et al., 1993). Patients were followed up for clinical signs of 

sinusitis including purulent nasal discharge and pyrexia. CT scans were performed 

every 7 days or if there were clinical signs of sinusitis. If an air-fluid level was present 
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on CT, a transnasal puncture was taken for culture. VAP was diagnosed based on 

microbiology data from PSB sampling. This trial did not find a significant difference in 

the rates of sinusitis (which were 19% in the nasal group and 17% in the oral group) or 

in VAP (11% of the nasal group and 6% in the oral group). Despite the inconsistency in 

the evidence, oral intubation is widely recommended in guidelines(Lorente, Blot and 

Rello, 2007). 

1.8.5 Prevention of colonisation: oral antiseptics 

The use of oral biocides, such as chlorhexidine, to reduce oropharyngeal colonisation is 

another strategy that has been widely investigated. The use of chlorhexidine oral care 

has become almost ubiquitous and has been recommended in national guidelines(NICE, 

2008; Institute for Healthcare Improvement, 2012). Meta-analyses are conflicting and 

this requires a reassessment of these recommendations. In a meta-analysis by Chan et 

al, 11 RCT of oral decontamination were analysed(Chan et al., 2007). These included 4 

trials of oral antibiotics and 7 trials of oral antiseptics. There was no significant 

difference in incidence of VAP associated with oral antibiotics but there was with oral 

antiseptics with a RR of 0.56 (95% CI 0.39-0.81). In contrast to this, a meta-analysis of 

7 RCTs of chlorhexidine did not demonstrate a significant reduction in VAP (RR 0.70, 

95% CI 0.47-1.04)(Chlebicki and Safdar, 2007). The trials included in these meta-

analyses incorporated trials in cardiac surgery patients and general/mixed ICU patients. 

The distinction between these two groups of patients is crucial in the emerging 

controversy surrounding this area. Cardiac surgery patients are generally mechanically 

ventilated for 24-48 hours whereas general ICU patients are often ventilated for longer 

periods. In a further meta-analysis of trials of the oral antiseptics chlorhexidine or 

povidone-iodine, the total risk ratio was 0.67 (95% CI 0.50-0.88) in favour of oral 

antiseptic(Labeau et al., 2011). In the subanalysis, however, this was only significant in 

the cardiac surgery population with a risk ratio of 0.41 (95% CI 0.17-0.98). In the mixed 

ICU population the risk ratio was 0.77 (95% CI 0.58-1.02) and in the surgical/trauma 

population the risk ratio was 0.38 (95% CI 0.13-1.10). In this meta-analysis, two RCTs 

in cardiac surgery patients accounted for 37% of patients in the meta-analysis(DeRiso et 

al., 1996; Houston et al., 2002). Trials in this area are limited by inconsistent definitions 

of VAP and other methodological limitations. De Riso et al carried out a double-blinded 

placebo-controlled trial of 350 patients in a cardiac ICU(DeRiso et al., 1996). The 

diagnosis of VAP was based on clinical findings and radiological signs. The duration of 

mechanical ventilation was not reported but the duration of ICU stay was 7.9 and 8.5 
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days in the chlorhexidine and control groups respectively. They demonstrated a 

reduction in all respiratory infections by 69%, which included criteria for VAP and 

tracheobronchitis. When subdivided between upper and lower respiratory tract 

infection, there were no significant differences. The trial by Housten et al(Houston et 

al., 2002) also has a significant influence on the meta-analyses including 561 cardiac 

ICU patients. The authors report that few patients received more than two doses of 

chlorhexidine because of early extubation, however the average duration of mechanical 

ventilation is not reported, although clearly it was short. This trial did not find any 

difference in VAP rates between the two arms. Another large RCT in cardiac ICU, 

randomised 991 patients to chlorhexidine or placebo(Segers et al., 2006). The mean 

duration of ICU stay was only 1.2 days. The primary endpoint was all nosocomial 

infections, which were significantly lower in the chlorhexidine group than the control 

group (19.8% vs 26.2%, absolute risk reduction 6.4%, 95% CI 1.1-11.7%). Lower 

respiratory tract infections, based on CDC criteria, were reduced with an absolute risk 

reduction of 6.5% (95% CI 2.3-10.7%). 

Trials in a mixed ICU or surgical/trauma ICU setting have resulted in inconsistent 

results. In a trial of 385 patients from general ICUs from 5 hospitals in the Netherlands, 

patients were randomised to either chlorhexidine, chlorhexidine and colisitin, or 

placebo(Koeman et al., 2006). BAL was encouraged for diagnosis but not mandated and 

VAP definition was based on clinical and radiological criteria. The trial was stopped 

early due to meeting stopping criteria for superiority of chlorhexidine over placebo. The 

daily risk of VAP was reduced by chlorhexidine by 65% (hazard ratio (HR) 0.352, 95% 

CI 0.160-0.791) and by chlorhexidine and colistin by 55% (HR 0.454, 95% CI 0.223-

0.925). A number of other studies of lower methodological quality support this 

finding(Fourrier et al., 2000; Seguin et al., 2006; Özçaka et al., 2012). In contrast 

however, other trials did not find a significant benefit from oral chlorhexidine, although 

a number of them have methodological limitations(Grap et al., 2004; Fourrier et al., 

2005; Tantipong et al., 2008; Panchabhai et al., 2009; Scannapieco et al., 2009; Berry et 

al., 2011). 

Two recent meta-analyses of chlorhexidine in non-cardiac surgery patients have 

produced very different findings from the earlier meta-analysis. In a meta-analysis of 16 

trials, cardiac surgery patients accounted for 51% of patients in the population(Klompas 

et al., 2014). There was significantly less VAP in cardiac patients receiving 

chlorhexidine (RR 0.56, 95% CI 0.41-0.77). In the non-cardiac patients the reduction in 
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VAP was not significant (RR 0.78, 95% CI 0.60-1.02) and the point estimate was higher 

in blinded studies (RR 0.88, 95% CI 0.66-1.16). In terms of mortality there was a non-

significant trend towards increased mortality in non-cardiac patients receiving 

chlorhexidine with a RR 1.13 (95% CI 0.99-1.29). Price et al performed a meta-analysis 

to determine the role of selective decontamination of the digestive tract, selective 

oropharyngeal decontamination and topical chlorhexidine in the prevention of death on 

the general ICU population(Price, Maclennan and Glen, 2014). Although both SDD and 

SOD were associated with a reduction in mortality, chlorhexidine was associated with a 

significant increase in risk of death with an OR of 1.25 (95% CI 1.05-1.50). These two 

recent meta-analyses raise concerns over the widespread use of chlorhexidine outside of 

the cardiac surgical population. 

1.8.6 Prevention of colonisation: selective decontamination 

Selective decontamination of the digestive tract (SDD) and selective oropharyngeal 

decontamination (SOD) are two further approaches to reduce colonisation and thereby 

reduce the risk of VAP and HCAI more generally. This is the administration of topical, 

non-absorbable antibiotics, and in the case of SDD also a short (4 day) course of broad-

spectrum antibiotic (eg. cefuroxime) to eradicate aerobic bacteria which are potentially 

pathogenic and so leave the gut colonised with anaerobic bacteria. In early animal work 

Van der Waaij et al found that mice who had been given antibiotics to eliminate gut 

flora remained resistant to colonisation by orally ingested E. coli, P. aeruginosa and K. 

pneumoniae(Van der Waaij, Berghuis-de Vries and Lekkerkerk-van der Wees, 1971). 

Furthermore if the healthy mice were contaminated with the flora of SDD-treated mice, 

they too became resistant to colonisation. The GI tract of these mice were colonised 

with anaerobic bacteria and it was concluded that the resistance to colonisation stemmed 

from this. The concept of selective decontaminaton of Gram-negative aerobes was first 

tested in ICU in a group of trauma patients(Stoutenbeek et al., 1984). In this historical 

case control study, patients received systemic antibiotics until they were free of all 

potential pathogenic microorganisms. The mouth was decontaminated with 2% 

polymyxin E, 2% tobramycin and 2% amphotericin. The gut was decontaminated with 

polymyxin E, torbramycin and amphotericin. In the control group, 86% of patients had 

oropharyngeal colonisation by Gram-negative potentially pathogenic microorganisms 

(PPM) by day 15. In terms of intestinal colonisation, the pattern in the control group 

was that rates of E. coli colonisation remained constant but colonisation with other PPM 

aerobic Gram-negative bacteria increased, in particular P. aeruginosa, Proteus spp., and 
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Acinetobacter spp. In the SDD cohort, oropharyngeal colonisation decreased rapidly 

and was significantly lower by day 2. In the intestine, colonisation with E. coli 

decreased and colonisation with PPM aerobic Gram-negative bacteria was significantly 

reduced and occurred in only 14% of patients within 2 weeks. The authors found that 

the total infection rate decrease by 16%. 

Although the initial description of SDD involved the use of systemic antibiotics for a 

short period in addition to non-absorbable antibiotics, the systemic component is often 

not used. SOD refers to the use of non-absorbable oral antibiotics only. The full SDD 

regimen is aimed at reducing the pool of Gram-negative aerobes and therefore aims to 

reduce any HCAI. SOD on the other hand is predominantly focusing on reducing VAP 

There have been 8 meta-analyses evaluating the trial evidence of SDD and SOD in 

terms of reducing VAP, HCAI and mortality(Vandenbroucke-Grauls and 

Vandenbroucke, 1991; Selective Decontamination of the Digestive Tract Trialist’ 

Collaborative Group, 1993; Kollef, 1994; Chan et al., 2007; D’Amico et al., 2009; 

Silvestri et al., 2009; Pileggi et al., 2011; Price, Maclennan and Glen, 2014). These 

meta-analyses generally contain a range of definitions of respiratory tract infections 

including VAP and tracheobronchitis and therefore report reductions in respiratory tract 

infections (RTI) rather than VAP per se. Generally these meta-analyses have shown a 

consistent reduction in RTI(Selective Decontamination of the Digestive Tract Trialist’ 

Collaborative Group, 1993; Kollef, 1994; D’Amico et al., 2009; Silvestri et al., 2009; 

Pileggi et al., 2011; Price, Maclennan and Glen, 2014). A Cochrane review of 36 RCTs 

including 6914 patients found that there was a greater reduction in RTI with SDD that 

included systemic antibiotics, with OR 0.28 (95% CI 0.20-0.38), in comparison to 

topical antibiotics only with a OR of 0.44 (95% 0.31-0.63)(D’Amico et al., 2009). The 

meta-analysis by Chan et al is an outlier in that it did not find a reduction in VAP for 

SOD(Chan et al., 2007). The meta-analysis was of oral decontamination only and so 

included SOD and oral antiseptics. In the 4 trials of SOD included there was no 

reduction in VAP with a relative risk of 0.69 (95% 0.41-1.18). This meta-analysis was 

more robust in terms of ensuring that a definition of VAP was used rather than any RTI. 

In terms of antibiotic stewardship the distinction between VAP and RTI may be less 

important since patients are likely to receive antibiotics for either and so a reduction in 

RTI remains an important outcome. 

In addition to a greater reduction in RTI, the use of the full SDD regimen was also 

associated with a reduction in mortality with an OR of 0.75 (95% 0.65-0.87)(D’Amico 
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et al., 2009). The number needed to treat (NNT) for the mortality benefit was 18. 

Silvestri et al performed a meta-analysis of trials that used the full SDD (ie. including 

systemic antibiotics) and found that there was a mortality benefit with SDD (OR 0.71, 

95% CI 0.61-0.81)(Silvestri et al., 2009). The subgroup analysis suggested the 

reduction in mortality was in late deaths rather than early deaths (OR 0.58, 95% CI 

0.45-0.77), and also found a greater reduction when all patients in the ICU received 

both non-absorbable enteral and systemic antibiotics (OR 0.59, 95% CI 0.42-0.82). 

Furthermore, in the recent meta-analysis by Price et al, there was a significant mortality 

benefit for SDD with an OR 0.73 (95% 0.64-0.84) and a smaller benefit with SOD with 

an OR of 0.85 (95% CI 0.74-0.97)(Price, Maclennan and Glen, 2014). This mortality 

benefit has not been demonstrated in other meta-analyses(Vandenbroucke-Grauls and 

Vandenbroucke, 1991; Selective Decontamination of the Digestive Tract Trialist’ 

Collaborative Group, 1993; Kollef, 1994; Chan et al., 2007; Pileggi et al., 2011).  

A number of high quality trials of SOD and SDD have been included in the meta-

analyses. De Jonge et al conducted a trial in two ICUs, with identical patient 

populations, within a single institution with each ICU randomly assigned to SDD or 

placebo(de Jonge et al., 2003). The design was adopted to avoid cross contamination of 

flora between SDD and placebo patients. Their primary outcomes were colonisation by 

resistant strains of microorganisms, ICU- and hospital-mortality, and the trial included 

934 patients. Both ICU- and hospital-mortality were reduced in the SDD group (relative 

risk 0.65, 95% CI 0.49-0.85 and 0.78, 95% CI 0.63-0.96 respectively). There was no 

overall difference in resistance in colonising organisms between the two groups 

although there was increased resistance in Gram-negative organisms in the control 

group. It should be noted, however, that resistance in this population was generally low 

with vancomycin-resistant Enterococcus (VRE) in 1%,and no cases of methicillin-

resistant S. aureus (MRSA).  

In another large Dutch trial, 5939 patients were randomised in a cluster-randomised, 

three arm trial of SDD, SOD and placebo(de Smet et al., 2009). A cluster-randomised 

approach was used again to avoid cross contamination of flora between trial arms. In 

terms of the primary endpoint of 28-day mortality, there was a reduction in the risk of 

death in both the SOD and SDD arms with an OR of 0.86 (95% CI 0.74-0.99) and 0.83 

(95% CI 0.72-0.97) respectively. This corresponds to a NNT to save one life at 28 days 

of 34 for SOD and 29 for SDD. This trial also found that antimicrobial resistance was 

low generally with no increase in resistance in the SOD and SDD groups. In fact in a 
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subsequent analysis of the data, there were fewer ‘highly resistant organisms’ in the 

SDD group in comparison to the SOD and placebo group, which may appear counter 

intuitive(de Smet et al., 2011). Furthermore there was less colonisation of the 

respiratory tract with highly resistant organisms in both the SDD and the SOD groups in 

comparison to placebo (OR 0.58, 95% CI 0.43-0.78 and 0.65, 95% CI 0.49-0.87 

respectively). 

Despite the substantial evidence to support the use of SDD and SOD, it is not widely 

accepted(Walden, Bonten and Wise, 2012; Cuthbertson et al., 2013). One of the issues 

is that much of the evidence in support of SDD comes from the Netherlands(Bergmans 

et al., 2001; de Jonge et al., 2003; de Smet et al., 2009), which has low levels of 

endemic resistance. In contrast, trials from other countries have found inconsistent 

results. A reduction in respiratory tract infections was found in two Spanish 

trials(Sánchez García et al., 1998; de La Cal et al., 2005), a Belgian trial(Verwaest et 

al., 1997) and an international trial(Stoutenbeek et al., 2007). No benefit in reducing 

respiratory tract infections was found in other trials(Gastinne et al., 1992; Hammond, 

1992; Wiener et al., 1995). In many of these smaller RCTs no mortality benefit was 

detected although these would be underpowered to detect such an effect(Gastinne et al., 

1992; Hammond, 1992; Wiener et al., 1995; Verwaest et al., 1997; Sánchez García et 

al., 1998; de La Cal et al., 2005; Stoutenbeek et al., 2007).  

Concern regarding emergence of antibiotic resistance is a major barrier to the uptake of 

SDD and SOD. Although resistance has not been associated with SDD in large trials(de 

Jonge et al., 2003; de Smet et al., 2009), there are trials which have found notable 

increases in resistance(Sánchez García et al., 1998). In a meta-analysis of 35 trials with 

resistance outcomes, when comparing SDD or SOD to control, there was no significant 

increase in MRSA (OR 1.46, 95% CI 0.90-2.37) or VRE (OR 0.63, 95% CI 0.63-

1.02)(Daneman et al., 2013). Amongst Gram-negative bacilli there was no difference 

between SDD/SOD and control in aminoglycoside- or fluoroquinolone-resistance but 

there was a reduction in resistance to polymyxin-E or B (OR 0.58, 95% CI 0.46-0.72) 

and in third-generation cephalosporin resistance (OR 0.33, 95% CI 0.20-0.52). It should 

however be noted that this meta-analysis is heavily influenced by the large Dutch trials. 

In determining the effect of SDD/SOD over time, there was an increase in the 

prevalence of VRE for each month of trial duration in the SDD/SOD group with an OR 

1.2 per month (95% CI 1.1-1.3). In a 5 year observational study of a single German ICU 

that routinely performed SDD, 4,597 isolates were compared against 46,346 isolates 
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from reference ICUs that did not routinely perform SDD(Heininger et al., 2006). There 

was no difference in MRSA in the SDD ICU and aminoglycoside-resistant P. 

aeruginosa was lower compared to the reference ICU. There was, however, an increase 

in VRE, aminoglycoside-resistant E. coli and aminoglycoside-resistant K. pneumoniae. 

In a Spanish observational study in a single ICU over 5 years, the Enterobacteriaceae 

resistance to antimicobials in the SDD regimen was stable and Pseudomonas spp. 

resistance to the SDD regimen antibiotics reduced(Ochoa-Ardila et al., 2011). There 

was a significant increase in P. aeruginosa resistance to ceftazidime, which was not 

temporally related to the increase in cephalopsporin use in the SDD regimen. There was 

an increase in imipenem resistance amongst Pseudomonas spp. associated with an 

increase in imipenem use. Overall there was not a significant increase in antimicrobial 

resistance over the 5 year period. 

1.8.7 Prevention of colonisation: stress ulcer prophylaxis 

Gastrointestinal (GI) bleeding is a recognised complication of being critically ill and 

acid-suppressive therapy is used to raise the stomach pH, which renders pepsin inactive 

and inhibit finbrinolysis of clot(Fennerty, 2002). The consequence of raising pH, 

however is that there is increased colonisation of stomach contents, which could act as a 

source of pathogens that will cause VAP(Bonten et al., 1995). GI bleeding is generally 

reported as ‘overt bleeding’ when frank blood, melaena or ‘coffee grounds’ are reported 

or as ‘clinically significant bleeding’, when there is a fall in blood pressure, a drop in 

haemoglobin or the need for a blood transfusion. In a seminal multi-centre cohort study, 

Cook et al followed up 2252 patients in whom they encouraged physicians to withhold 

stress ulcer prophylaxis (SUP)(Cook et al., 1994). Of these, 100 patients had overt GI 

bleeding and 87 of these were receiving SUP. Only 33 patients, out of the whole cohort, 

had ‘clinically important GI bleeding’ (1.5%, 95% CI 1.0-2.1). Respiratory failure and 

coagulopathy were identified as risk factors for GI bleeding and mortality was 

considerably higher in those with GI bleeding. Within the group of patients who are at 

risk of GI bleeding and in whom SUP is appropriate, there is the need to weigh up the 

effectiveness of different drugs against the risk of promoting VAP. In a RCT of 1200 

patients in a blinded, placebo-controlled trial of sucralfate (a complex of aluminium 

hydroxide and sulfated sucrose that forms a physical barrier to protect gastric mucosa) 

versus ranitidine (a histamine H2-receptor antagonist that reduces gastric acid 

production) there were fewer clinically important GI bleeds in the ranitidine group with 

a RR of 0.44 (95% CI 0.21-0.92) although the event rate was still low (1.7% in the 
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ranitidine group and 3.8% in the sucralfate group)(D. Cook et al., 1998). There was no 

significant increase in mortality for VAP between the two groups. A number of meta-

analyses have been carried out in this area which support the finding that ranitidine 

provides superior SUP over sucralfate(Cook et al., 1996; Messori et al., 2000; Huang et 

al., 2010). The meta-analyses also demonstrated that ranitidine was associated with a 

higher incidence of VAP.  

ICU practices are likely to have changed considerably since the earlier trials of SUP. In 

particular the use of early enteral feeding and the use of proton pump inhibitors (PPI) 

are in far more widespread use now. To determine the role of enteral feeding in SUP, 

Marik et al performed a meta-analysis of RCTs of histamine H2-receptor blockers 

(H2RB) versus placebo and grouped patients into those with or without enteral 

feeding(Marik et al., 2010). In this analysis H2RB SUP was found to reduce the risk of 

GI bleeding with an OR of 0.47 (95% CI 0.29-0.76). This effect was only observed in 

patients who were not receiving enteral feeding and there was no benefit for those who 

were enterally fed (OR 1.26, 95% CI 0.42-3.7). Furthermore the risk of VAP was not 

significant when considering all patients (OR 1.53, 95% CI 0.89-2.61) but for the 

subgroup of patients who were fed enterally the OR was 2.81 (95% CI 1.20-6.56). In a 

historical observational study of two 15 month periods in which SUP was used for the 

first 15 months and no SUP was used for the second, no difference was found in 

incidence of GI bleeding, VAP or mortality(Faisy et al., 2003). 

Proton pump inhibitors (PPI) (a parietal cell gastric proton pump blocker that reduces 

gastric acid) are increasingly used as first line SUP despite little evidence to support 

their use(Daley et al., 2004). A meta-analysis of 7 RCTs including 936 patients found 

there was no difference between PPI and H2RB with a risk difference of -0.04 (95% CI 

-0.09-0.01)(Lin et al., 2010). This was associated with moderate to high heterogeneity 

(I
2
 66%). In the sensitivity analysis, removal of one trial reduced the heterogeneity (I

2 

26%), and the effect remained non-significant. There was no difference in risk of VAP 

between PPI and H2RB either (risk difference 0.00 (95% CI -0.04-0.05). Despite the 

limited evidence for the use of PPI, their use has increase not only within the ICU but 

also amongst non-ICU patients(Heidelbaugh and Inadomi, 2006). There is no evidence 

base for the use of SUP in non-ICU patients and PPI use is associated with increased 

rates of HAP(Herzig et al., 2009) and with community-acquired pneumonia(Sarkar, 

Hennessy and Yang, 2008). In a large scale pharmacoepidemiological study of 35,312 

patients mechanically ventilated for more than 24 hours and receiving either a PPI or a 
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H2RB, PPIs were associated with a greater risk of GI bleeding (OR 2.24, 95% CI 1.81-

2.76), pneumonia (OR 1.2, 95% CI 1.03-1.41) and Clostridium difficile infection (OR 

1.29, 95% CI 1.04-1.64)(MacLaren, Reynolds and Allen, 2014).  

Although these data do not provide conclusive evidence that enteral feeding is sufficient 

to protect against GI bleeding, it does suggest that it may be sufficient. These data also 

highlight that SUP is not without risk and it is used for the prevention of an infrequent 

complication of critical illness. The role of SUP needs to be reassessed in light of 

changing ICU practices. 

1.8.8 VAP prevention bundles 

Grouping the prevention strategies already discussed into ‘bundles’ of care has become 

widespread. VAP prevention bundles have not been tested in randomised trials and so 

are subject to the biases of non-randomised studies. When multiple interventions are 

delivered together as a bundle it is difficult to determine the contribution of individual 

components of the bundle. The Institute for Healthcare Improvement (IHI) has been a 

major driving force with its VAP prevention bundle(Institute for Healthcare 

Improvement, 2012). The bundle includes elevation of the head of the bed to between 

30 and 45 degrees; DSI and SBT; SUP; deep venous thrombosis (DVT) prophylaxis; 

and daily oral care with chlorhexidine. Notwithstanding recent data that suggest the use 

of chlorhexidine is inappropriate, one can appreciate that this bundle is not solely aimed 

at prevention of VAP and reflects more a ‘ventilator care bundle’ by including DVT 

prophylaxis, which is not used for VAP prevention. In an observational study to 

determine the association between the occurrence of VAP and the use of the IHI bundle, 

630 patients were followed up until the occurrence of VAP(Croce et al., 2013). Overall 

compliance with the bundle averaged 77% and compliance with individual components 

ranged from 70.5-92.5%. There was no difference in bundle compliance between 

patients who developed VAP versus those who did not and in regression analysis, 

bundle compliance was not associated with prevention of VAP. 

As part of the highly influential Michigan Keystone ICU project (see high profile paper 

on prevention of catheter-related blood stream infection(Pronovost et al., 2006)), an 

intervention to improve compliance with VAP prevention measures was implemented in 

127 ICUs, including 550,800 ventilator-days(Berenholtz et al., 2011). The VAP 

prevention bundle included: SUP; elevation of head of bed; DVT prophylaxis; DSI; and 

SBT. This study reported significant reductions in VAP from a median of 5.5 cases per 

1000 ventilator-days at baseline to zero at 16-18 months, which was maintained at 28-
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30 months after intervention. There are significant limitations of this study. Primarily 

the study was not randomised and so was vulnerable to bias. The case definition of VAP 

was based on the CDC surveillance criteria, which has subjective elements such as CXR 

changes and the characteristics of sputum. Furthermore, cases of VAP were identified 

by hospital “preventionists”, a group of specialists familiar with the CDC criteria and 

therefore felt to be less at risk of bias. However an alternative interpretation is that these 

individuals would be most vulnerable to bias in a non-randomised, non-blinded study. 

In a European observational study in which VAP was diagnosed based on clinical and 

microbiology data by an independent adjudicator, the reduction in VAP rates was much 

more modest, falling from 15.5% to 11.7% after the implementation of a bundle(Rello 

et al., 2013). The bundle comprised: oral care with chlorhexidine; handwashing; 

maintenance of ETT cuff pressure; sedation control measures; and not changing 

ventilator circuits regularly. Compliance with all 5 elements was only 20% and for 

individual elements compliance ranged from15-34%. While this result could be 

interpreted as suggesting that greater compliance could obtain an even greater reduction 

in VAP, it may well also suggest there is a significant effect from carrying out a non-

randomised intervention. 

1.9 Treatment of VAP 

1.9.1 General considerations 

Different diagnostic strategies, clinical versus invasive, result in different rates of 

VAP(Conway Morris et al., 2011). There is the potential that a clinical strategy over-

treats patients with suspected VAP with antibiotics or alternatively that the invasive 

strategy under-treats patients. In an invasive/microbiological strategy the assumption is 

that if the culture growth is below the threshold (10
4
 cfu/ml for BAL, for example), it 

represents colonisation. There have been a number of reports describing that patients 

with culture growth below the threshold for VAP have equivalent outcomes to the 

baseline ICU population and that there may even be some benefit in with-holding 

antibiotics in these circumstances, in terms of reducing antibiotic resistance(Fagon et 

al., 1996; Raman et al., 2013).  

Another possibility is that the patients have bronchitis rather than VAP. Ventilator-

associated tracheobronchitis (VAT) is an area of controversy. There are varying clinical 

definitions used without a gold standard diagnosis. It has been previously defined as 

patients with fever, raised inflammatory markers and purulent tracheal secretions 

without CXR changes(Nseir et al., 2014) or based on total sputum load from 
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endotracheal secretions(Palmer, 1995). Trials of antibiotic therapy for VAT are of low 

quality and firm conclusions are unable to be drawn from them(Nseir et al., 2008; 

Palmer et al., 2008). Recent observational data do suggest improved outcome and 

reduced progression to VAP with adequate antibiotic therapy(Martin-Loeches et al., 

2015). 

The adequacy of treatment for VAP is fundamental to the outcome. In a prospective 

study of 107 patients Iregui et al demonstrated that a delay in appropriate antibiotic 

therapy (defined as ≥ 24 hours) was associated with a greater hospital mortality at 

69.7% in comparison to the mortality rate in those with appropriate treatment at 28.4%, 

although the median time for initiation of antibiotics for appropriate therapy was 12 

hours(Iregui et al., 2002). Initial delay in appropriate antibiotic therapy was an 

independent risk factor for hospital mortality (OR 7.68, 95% 4.5-13.09). Luna et al 

demonstrated a similar outcome, in a prospective study of 508 patients(Luna et al., 

2006). The mortality rate with appropriate antibiotic therapy was 29.2%, with 

inappropriate therapy (antibiotics that did not provide sufficient coverage of pathogens) 

the mortality was 75% and for those with a delay in appropriate antibiotic therapy the 

mortality was 58.3%.  

The consequences of inappropriate therapy are considerable as are delays in treatment. 

Therefore guidelines advise initial antibiotic therapy should be started promptly and aim 

to provide coverage of likely pathogens. Since infection with a multi-drug resistant 

(MDR) pathogen could lead to inadequate coverage, initial therapy is based on the risk 

of MDR pathogens(American Thoracic Society, 2005). Risk factors for MDR pathogens 

include previous antibiotics, prolonged mechanical ventilation (> 7 days), higher 

number of comorbidities and admissions from another healthcare facility(Trouillet et 

al., 1998; Rello et al., 1999; Depuydt et al., 2008; Parker et al., 2008). 

The American Thoracic Society guidelines for the treatment of VAP(American 

Thoracic Society, 2005) recommend that patients with early-onset VAP and without 

risk factors for MDR pathogens should have coverage for Streptococcus pneumoniae, 

H. influenzae, methicillin-sensitive S. aureus and antibiotic-sensitive Gram-negative 

bacilli. The recommended antibiotics are: ceftriaxone; levofloxacin, moxifloxacin or 

ciprofloxacin; ampicillin/sulbactam; or ertapenem. 

Considering patients with late-onset disease or risk factors for MDR pathogens, 

antibiotic coverage should also include cover for P. aeruginosa, K. pneumoniae, 

Acinetobacter spp, MRSA, and Legionella pneumophila. Combination therapy is 
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advised with (a) an antipseudomonal cephalosporin (cefepime, ceftazidime) or 

antipseudomonal carbepenem (imipenem or meropenem) or -lactam/-lactamase 

inhibitors (piperacillin-tazobactam); (b) an antipseudomonal fluoroquinolone 

(ciprofloxacin or levofloxacin) or an aminoglycoside (amikacin, gentamicin or 

tobramycin); and (c) linezolid or vancomycin. 

In prospectively validating these guidelines, the guidelines accurately predicted the 

organisms for patients classed as having late-onset VAP or risk factors for MDR 

pathogen, correctly identifying 92% of pathogens(Ferrer et al., 2010). However its 

prediction of pathogens for patients classed as having early-onset VAP or no risk factors 

for MDR pathogens was only 50%, with 10 patients (26%) having a potentially resistant 

pathogen. In a prospective, multi-centre cohort study aimed at improving compliance 

with the ATS antibiotic recommendations for patients at risk of MDR pathogens, 303 

patients were included, of whom 129 received compliant treatment and 174 did not(Kett 

et al., 2011). They found that 34% of compliant patients died in comparison to 20% of 

non-compliant patients (p=0.004) and the survival benefit of non-compliant therapy did 

not vary with key potential confounding factors such as duration of mechanical 

ventilation, VAP (as opposed to HAP), age >60, severe sepsis or APACHE 2 score, 

although the compliant group did have significantly higher APACHE 2 scores and more 

met criteria for severe sepsis. It should also be noted that the coverage of identified 

pathogens was similar in both the compliant and non-compliant groups at 81% and 85% 

respectively. 

This study calls into question the previously accepted view that infections should be ‘hit 

hard and fast’. It suggests that there is a potential detrimental effect of multiple classes 

of antibiotics being used. In a quasi-experimental study, Hranjec et al challenged the 

traditional view of antibiotic prescribing(Hranjec et al., 2012). In this before-and-after 

study, an aggressive approach to antibiotics was used in a single surgical ICU for 1 year 

during which, when infection was suspected, appropriate cultures were taken and 

empirical antibiotics were started. Antibiotics were stopped if cultures were negative. In 

the following year the ICU adopted a conservative approach. If infection was suspected 

appropriate cultures were taken but antibiotics were not started until objective evidence 

of infection was found. Physicians could start antibiotics empirically at their discretion 

if the clinical situation required such an approach. The incidence of infection was 

similar between the two time periods with 26.0 infections per 1000 patient-days in the 

aggressive period and 27.2 infections per 1000 patient-days in the conservative period. 
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There was a significant difference in the time from onset of fever to initiation of 

antibiotics, with a median of 11 (IQR 3-14) and 24 (IQR 9-44) hours for the aggressive 

and conservative periods respectively. The duration of treatment was significantly 

shorter in the conservative group (12.5 days versus 17.7 days) and the appropriateness 

of initial antibiotic therapy was higher in the conservative group (74% vs 62%). The all-

cause mortality rate was 27% during the aggressive period versus 13% during the 

conservative period (p=0.015). A sub-group analysis was performed on patients with a 

mean arterial pressure (MAP) of <60mmHg and despite the time from blood culture to 

initiation of treatment being a median of 20 hours (IQR 8-39) in the conservative group 

in comparison to a median of 4 hours (IQR 3-12.5) in the aggressive group, the 

mortality was still lower in the conservative group at 26%, in comparison to the 

aggressive group (66%). 

1.9.2 Duration of treatment 

There are surprisingly few data on the appropriate duration of antibiotic therapy for 

VAP. Updated guidelines recommend 7 days of antibiotics(Kalil et al., 2016). Expert 

opinion has previously recommended that a longer duration of therapy, 14-21 days is 

used for patients with multi-lobar involvement, malnutrition, cavitation, Gram-negative 

necrotising pneumonia or isolation of P. aeruginosa or Acinetobacter spp(Chastre and 

Fagon, 2002). Duration of antibiotic therapy in trials varies from 9-15 days(Brun-

Buisson et al., 1998; Betrosian et al., 2008; Chastre et al., 2008).  

In a prospective study of 27 patients with VAP confirmed by semi-quantitative culture 

from BAL, Dennesen and colleagues monitored clinical signs and ETA cultures for 

resolution of disease(Dennesen et al., 2001). Resolution was by a return to ‘normal’ in 

temperature, leucocyte count, PaO2:FiO2 and no more than 1+ of bacterial growth from 

ETA cultures. There was a fall in mean log cfu/ml of 5.4 on day 0 to 1.4 on day 15. 

Patients colonised with P. aeruginosa did not achieve eradication with appropriate 

antibiotic therapy and so ETA culture is an unreliable metric of resolution for this 

pathogen. The mean time to resolution of all parameters was 9 days and the mean time 

for resolution of clinical parameters only (ie. excluding colonisation criteria) was 6 

days. The median duration of treatment was 13 days (range 7-14). 

Duration of therapy was tested in an RCT of 8 versus 15 days of therapy(Chastre et al., 

2003). One hundred and one patients with confirmed VAP following BAL and who 

received empiric therapy within 24 hours of BAL, were randomly assigned to receive 8 

or 15 days of therapy. The choice of antibiotics was left to the discretion of the clinical 
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team, although empiric treatment had to include an aminoglycoside or flouroquinolone 

and a broad-spectrum beta-lactam. The mean duration of mechanical ventilation before 

VAP was 13.4 days in the 8-day group and 13.8 days in the 15-day group, suggesting 

that this was predominantly a study of late-onset VAP patients. They demonstrated non-

inferiority for 8 days of treatment in comparison to 15 days in their primary outcome 

measures of mortality (18.8% for 8-day and 17.2% for 15-day) and pulmonary infection 

recurrence rate (28.9% for 8 day and 26% for 15 day). The 8-day therapy group had 

more AFD than the 15-day group, with a mean of 13.1 (SD 7.4) versus 8.7 (SD 5.2) 

respectively. In the sub-group analysis, patients with non-fermenting Gram-negative 

bacteria (GNB) had a recurrence rate of 40.6% in the 8-day group and 25.4% in the 15-

day group, with a between-group risk difference of 15.2% (95% CI 3.9%-26.6%). There 

was, however, no difference in mortality in this subgroup. A further trial of 8 versus 15 

days of treatment in patients with early on-set VAP similarly found non-inferiority with 

an 8-day course(Capellier et al., 2012). 

1.9.3 Monotherapy versus combination therapy 

Combination therapy is recommended in guidelines for patients with late-onset VAP 

and risk factors for MDR pathogens(American Thoracic Society, 2005; Kalil et al., 

2016). The predominant reason for this is to provide sufficiently broad empiric therapy 

to cover antibiotic-sensitive GNB, MDR GNB and MRSA. In addition, antibiotics have 

shown in vitro synergism when used in combination(Hallander et al., 1982). 

Furthermore, using antibiotics in combination may reduce resistance to individual 

antibiotics(Drago et al., 2005).  

A meta-analysis compared -lactam monotherapy with -lactam and aminoglycoside in 

combination in trials of patients with severe infections(Paul et al., 2004). There was no 

difference in mortality between the two groups with a RR of 0.90 (95% CI 0.77 – 1.06). 

A sub-analysis of patients with GNB infections (and specifically P. aeruginosa 

infection) also had no benefit from combination therapy. Furthermore there was an 

increase in nephrotoxicity in the combination therapy group.  

In a further meta-analysis of monotherapy or combination therapy for GNB 

bacteraemia, 17 studies were included in which only 2 were prospective RCTs(Safdar, 

Handelsman and Maki, 2004). Only 2 cohort studies found a mortality benefit with 

combination therapy and the overall summary OR was 0.96 (95% CI 0.70 – 1.32). In 

contrast to the previously described meta-analysis, there was a significant mortality 
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benefit in patients with P.aeruginosa infection with combination therapy (OR 0.50, 

95% CI 0.30 – 0.79). 

In the context of VAP, no difference in the resolution of clinical parameters was found 

between combination and monotherapy(Damas et al., 2006). In a 2x2 factorial design 

RCT, monotherapy and combination therapy(Heyland et al., 2008) as well as diagnostic 

strategies for VAP were compared(Canadian Critical Care Trials Group et, 2006). 

Patients were randomised to receive meropenem and ciprofloxacin or meropenem alone. 

As previously discussed, this trial excluded patients colonised with P. aeruginosa or 

MRSA, since clinicians may feel unable to give monotherapy to a patient colonised 

with P. aeruginosa and the antibiotic choice does not provided sufficient cover for 

MRSA. The overall 28-day mortality rate was 18.7% and the risk ratio of death at 28-

days was 1.05 (95% CI 0.78 – 1.42). There was no difference in secondary endpoints of 

duration of MV, ICU or hospital death. However there was a significantly higher rate of 

adequate therapy in the combination therapy groups over the monotherapy groups 

(93.1% and 85.1% respectively). In a subgroup analysis of patients with Pseudomonas 

spp, Acinetobacter spp and MDR GNB, the difference in adequacy of therapy was more 

pronounced (84.2% in combination group and 18.8% in monotherapy group). In this 

sub-group there was a trend towards improved outcome with combination therapy. 

In a retrospective analysis, 183 episodes of VAP caused by P. aeruginosa were 

examined based on monotherapy or combination therapy(Garnacho-Montero et al., 

2007). These authors similarly found that rates of adequate therapy were considerably 

higher when combination therapy was used (90.5% for combination therapy and 56.7% 

for monotherapy). Mortality was 72.5% amongst patients with inadequate therapy in 

comparison to 33.6% in those with adequate therapy. In multivariate analysis, adequacy 

of treatment was an independent risk factor for death, rather than monotherapy or 

combination therapy.  

1.10 Antibiotic resistance and the need for improved antibiotic 
stewardship 

1.10.1 The scale of the problem 

Antibiotics are arguably the greatest discovery of modern medicine. They have greatly 

reduced mortality from infectious disease and allowed medical advances such as 

transplantation and joint replacements. The rise in antimicrobial resistance (AMR) has 

reached a critical level and is a global concern. The World Health Organization (WHO) 

has described it as one of the top three threats to human health and warns of a return to a 
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pre-antibiotic era in which we do not have the means to treat infectious disease(World 

Health Organisation, 2014). 

Determining the scale of the problem of AMR globally is difficult. The WHO has 

attempted to give a description of the global burden using existing data from 

surveillance programmes, as well as national and institution-based data(World Health 

Organization 2014). Not all countries have formal surveillance programmes and so the 

WHO data are limited in this regard. Furthermore surveillance programmes do not 

necessarily capture all AMR. For example the European Antimicrobial Resistance 

Surveillance Network (EARS-Net)(European Centre for Disease Prevention and 

Control, 2012a, 2014) performs surveillance on 8 bacteria of importance: E. coli, K. 

pneumoniae, P. aeruginosa, Acinetobacter spp, S. pneumoniae, S. aureus, Enterococcus 

faecalis and Enterococcus faecium. Only data from invasive isolates (from blood and 

cerebrospinal fluid) are included. If we consider that the prevalence of bacteraemia in 

the intensive care unit is 15%(Vincent et al., 2009), then surveillance of these positive 

cultures reflects only a fraction of treated infections and antibiotics being prescribed. 

Notwithstanding the limitations of the data presented in the WHO report, it does 

demonstrate a worrying situation with resistance amongst common pathogens (E. coli, 

K. pneumoniae and S. aureus), being greater than 50% in many member states.  

In Europe, resistance to Gram-positive bacteria has been relatively stable(European 

Centre for Disease Prevention and Control, 2012a, 2014). In contrast to Gram-positive 

bacteria, Gram-negative are intrinsically more resistant and are often implicated in 

HCAI. The rise in resistance amongst these pathogens is alarming. E. coli is the 

commonest cause of bloodstream infection and in Europe the mean rate of full 

susceptibility to all antibiotics was only 39.5%(European Centre for Disease Prevention 

and Control, 2012a). The prevalence of resistance to aminopenicillin was 57.1% and to 

third generation cephalosporins was 12%(European Centre for Disease Prevention and 

Control, 2014). 71-100% of resistant isolates to 3
rd

 generation cephalosporins were 

attributable to extended-spectrum beta-lactamases (ESBLs). Although the mean 

prevalence of carbapenem resistance was <0.1%, the emergence of carbapenem 

resistance is a particular concern. 

K. pneumoniae is a pathogen of importance in HCAI as a frequent cause of bloodstream 

infection and pneumonia. Its rising AMR is a serious public health concern particularly 

due to the rise of carbapenem resistance. More than a third of isolates are resistant to 

one antibiotic under surveillance(European Centre for Disease Prevention and Control, 
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2014). Resistance to 3
rd

 generation cephalosporins was present in 28% (of which 85-

100% were ESBLs), with the corresponding figures for flouroquinolones 27.4%, 

aminoglycosides 23.1% and carbapenems 7.3%. Resistance to a combination of 3
rd

 

generation cephalosporins, fluoroquinolones and aminoglycosides was present in 

19.6%. Resistance to these antibiotics have all increased since the previous 2012 

report(European Centre for Disease Prevention and Control, 2012a). 

P. aeruginosa is an intrinsically resistant organism and is an opportunistic pathogen in 

hospitalised patients and a major pathogen in VAP. P. aeruginosa is intrinsically 

resistant due to the limited permeability of its outer membrane, efflux pump 

mechanisms and its ability to rapidly acquire resistance(Li, Zhang and Poole, 2000). 

63.9% of isolates in Europe were fully susceptible in EARS-Net 2012 report and 

resistance rates have largely fallen in the 2014 report(European Centre for Disease 

Prevention and Control, 2012a, 2014). Resistance to piperacillin was 16.9%, 

ceftazidime 13.1%, fluoroquinolones 19.4%, aminoglycosides 14.8% and carbapenems 

18.3%. Resistance to 3 or more classes of antibiotics occurred in 13.3% of 

isolates(European Centre for Disease Prevention and Control, 2014). 

With low numbers of virulence factors, Acinetobacter spp is implicated in HCAI 

infections in the immunocompromised patient. Resistance in Acinetobacter spp varies 

widely across Europe with high rates of resistance in countries in the east and south of 

Europe. Resistance to fluoroquinolones was 29% in Denmark and 95.3% in Greece. 

Carbapenem resistance was zero in the Netherlands and 93.2% in Greece(European 

Centre for Disease Prevention and Control, 2014).  

Gram-positive resistance shows a more stable picture in Europe. Resistance in S. 

pneumoniae has remained relatively stable with most countries reporting penicillin non-

susceptibility below 10%. Macrolide resistance is higher than penicillin resistance and 

ranged from zero in Cyprus to 48% in Romania(European Centre for Disease 

Prevention and Control, 2014). 

S. aureus has been a pathogen of intense political pressure in the UK since 2000. At its 

peak resistance was at 40% in 2000 and is now at 11.3% in the UK(Livermore, 2012; 

European Centre for Disease Prevention and Control, 2014). Preventative measures 

such as MRSA eradication therapy, hand hygiene measures and infection control 

measures have been credited with this decline. Average resistance across Europe is 

17.4% with trends decreasing in Belgium, France, Germany, Ireland, Italy, 
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Luxembourg, Portugal and the UK but increasing trends in Denmark and 

Slovenia(European Centre for Disease Prevention and Control, 2014). 

Enterococcus spp. are common gut colonisers of low virulence which have arisen as 

important pathogens in nosocomial infection(Health Protection Agency, 2011; 

European Centre for Disease Prevention and Control, 2012b). High-level 

aminoglycoside resistance in E. faecalis in Europe has seen a significant increase, 

occurring in 28.8% of isolates. Vancomycin resistance in E. faecium (VRE) is on 

average 7.9% which is considerably different to the USA where VRE is >80%(Arias 

and Murray, 2012). 

There is a geographical variation in antibiotic resistance across Europe with a north-

south and east-west gradient, with more resistance in southern and eastern countries. 

Countries such as Italy, Bulgaria, Romania and Poland have some of the highest rates of 

antibiotic resistance. Causes of this geographical variation are unclear but antibiotic 

consumption and infection control practices have been suggested as reasons(European 

Centre for Disease Prevention and Control, 2012a, 2014). The ECDC carries out the 

European Surveillance of Antimicrobial Consumption (ESAC) project(European Centre 

for Disease Prevention and Control, no date). There is considerable variation between 

European countries in antibiotic consumption. Antibiotic consumption is expressed as 

defined daily dose (DDD), which is an assumed average maintenance dose per day for a 

drug used in adults and expressed as DDD per 1000 inhabitants per day (DID). The 

lowest rate of consumption is found in the Netherlands at 11.8 DID and the highest in 

Greece at 34.0 DID. Data from non-EU eastern European countries show antibiotic 

consumption ranging from 15.3 DID in Armenia to 42.3 DID in Turkey(Versporten et 

al., 2014).  

These data give a European perspective but AMR is a global public health concern. In 

the USA surveillance of HCAI, predominantly in the ICU, is conducted through the 

National Healthcare Safety Network (NHSN), which monitors rates of HCAI and AMR. 

The pathogens of concern are similar to Europe with 82% of pathogens belonging to the 

following groups: S. aureus, Enterococcus spp., E. coli, coagulase-negative 

Staphylococci, Candida spp., Klebsiella spp., P. aeruginosa or Enterobacter 

spp(Sievert et al., 2012). Resistance amongst pathogens isolated from central line-

associated bloodstream infections (CLABSI) was high. Vancomycin resistance amongst 

E. faecium was 83.6%; carbapenem resistance amongst Klebsiella spp. and P. 

aeruginosa was 14.2% and 26.8% respectively; and carbapenem and multi-drug 
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resistance amongst A. baumannii was 64.6% and 69.7% respectively. Although the 

percentage resistance had been largely stable when compared with previous periods 

(2009-2010 vs 2007-2008), there was a 54.3% increase in E. coli extended-spectrum 

cephalosporin resistance and a 25.3% increase in A. baumannii resistance to 

carbapenems. 

Data from the Asia-Pacific region similarly demonstrate concerning levels of Gram-

negative resistance with Enterobacteriaceae susceptibility to ampicillin/sulbactam 

being only 41.4% overall for the region, cefotaxime only 68.0%, ceftriaxone 67.7%, 

ciprofloxacin 64.4% and levofloxacin 67.3%(Hsueh et al., 2010). Resistance was 

particularly high in India and China. Furthermore a high proportion of E. coli and K. 

pneumoniae were ESBL producers with rates as high as 59.1% in China and 61.2% in 

India. A prospective surveillance study of AMR in respiratory pathogens in HAP and 

VAP carried out in Asia is valuable considering this is a major reason for antibiotic use 

(and considering that the EARS-Net only reports blood and CSF cultures)(Chung et al., 

2011). MDR isolates occurred in 60.7% of S. aureus and in 44.7% of K. pneumoniae. 

Carbapenem resistance was 27.2% for P. aeruginosa and as high as 56.9% in China. 

MDR rate for P. aeruginosa was 42.8% and extensively drug resistance rate was 4.9%. 

Acinetobacter spp had a very high rate of imipenem resistance at 67.3%. These are 

alarming rates of resistance in pathogens that cause HCAI in the most vulnerable group 

of hospitalised patients. 

1.10.2 Antibiotic consumption and resistance 

The link between antibiotic consumption and antibiotic resistance is widely 

accepted(Davies, 2011; Centers for Disease Control and Prevention, 2013). Bacteria 

produce a massive array (millions) of small organic molecules of which a small 

proportion have been identified and used as antibiotics(Davies and Ryan, 2012). Many 

of these small molecules are resistance factors that are necessary for the survival of 

bacteria. Many bacteria have efflux pumps that are a common mechanism of antibiotic 

resistance. These mechanisms have been evolutionarily selected in bacteria since the 

industrial revolution with the increased heavy metal wastes that have been discarded in 

the environment, which bacteria handle using efflux pumps(Davies and Davies, 2010). 

The antibiotic era has applied an evolutionary selective pressure on bacteria to produce 

resistance factors at an accelerated rate. 

Mechanisms of resistance are complex and beyond the scope of this thesis but exposure 

of bacteria to antibiotics clearly results in increasing resistance(Drago et al., 2005). In a 
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clinical context, antibiotic exposure is linked to increased antibiotic resistance. In an 

outpatient setting, large-scale, Europe-wide, surveillance data have demonstrated 

significant variations in antibiotic prescriptions, with the lowest rate in the Netherlands 

at 10 DDD per 1000 inhabitants daily and the highest rate in France at 32 DDD per 

1000 inhabitants daily(Goossens et al., 2005). There was a strong correlation between 

antibiotic use and antibiotic resistance (Spearman correlation for pencillin use and 

pencillin resistance 0.84 (95% CI 0.62-0.94)). Data from US surveillance of ICUs 

between 1994 and 2000 examined susceptibility of Gram-negative bacilli(Neuhauser, 

2003). Overall there was a 10% chance of an infecting organism being resistant to a 

single antibiotic. There was a decrease in ciprofloxacin susceptibility by 10% over the 

period studied, which coincided with an increase in fluoroquinolone use. In fact the 

selective pressure of antibiotics can occur rapidly and one of the most alarming 

resistance patterns is the emergence of carbapenem resistance. In an observational study 

of 523 patients admitted to an ICU environment in which imipenem was widely used, 

imipenem-resistant Gram-negative bacilli resistance in intestinal flora, as measured by 

rectal swabs, increased from 5.6% in week 1 to 58.6% in week 2(Armand-Lefèvre et al., 

2013). Conversely studies in which antibiotic usage had been limited found a fall in 

antibiotic resistance(Rahal et al., 1998; Singh et al., 2000; Geissler et al., 2003; Cook et 

al., 2006). 

1.10.3 The need for antibiotic stewardship 

As antibiotic resistance increases, the discovery pipeline for new antibiotics is drying 

up. Most large pharmaceutical companies are no longer investing in their anti-infectives 

division(Boucher et al., 2013) Bringing a drug through research and development can 

cost $800 million, which is a major disincentive for companies(Infectious Diseases 

Society of America, 2004). For an antibiotic, once brought to market, it will have its use 

restricted for a small number of patients and is likely to obsolete itself with its increased 

use. Compare this to development of drugs for chronic conditions or disease prevention, 

which millions of people will take each day for the rest of their lives. In a report from 

2004, of all drug R&D programmes from the world’s largest pharmaceutical and 

biotechnology companies registered with the United States Food and Drug 

Administration (FDA) database, only 6 out of 506 drugs were antibiotics(Spellberg et 

al., 2004). None of these had novel mechanisms. A recent report suggests that there has 

been little improvement in this area, with two antibiotics developed since 2009 and at 



   

  65 

the time of the study 7 were in development but still a falling trend in R&D for 

antimicrobials(Boucher et al., 2013). 

In addition to the urgent need for antibiotic drug development, there is a need to 

conserve the effectiveness of antibiotics that are in current use. Antibiotic stewardship is 

the judicious use of antibiotics to preserve their future effectiveness and involves 

optimising therapy for individuals; prevention of overuse, misuse and abuse; and 

minimising development of resistance at an individual and community level(Davies, 

2011). An important limitation to improving antibiotic stewardship lies in diagnostics. 

Diagnosis of infection has in the main remained unchanged since the development of 

the Gram stain in the 19
th

 century. Since microbiology culture takes up to three days to 

provide results, many patients will receive antibiotics based on clinical suspicion. This 

has implications in the outpatient setting when decisions regarding antibiotic 

prescription must be made on clinical suspicion. In the hospital setting it is of great 

importance that antibiotics are de-escalated or discontinued in the face of microbiology 

evidence. The need to develop novel rapid diagnostics to improve antibiotic stewardship 

is one of the challenges put forward in the 2011 report by the UK Chief Medical Officer 

on antimicrobial resistance(Davies, 2011). 

1.11 Rapid diagnostics 

Novel methods to rapidly detect infections can be divided between culture-independent 

molecular techniques to detect the pathogens and biological markers, biomarkers, that 

act as surrogates for detecting pathogens. 

1.11.1 Molecular diagnostics 

The three main techniques of molecular detection are polymerase chain reaction (PCR), 

matrix-assisted laser desorption ionisation-time of flight spectrometry (MALDI-TOF 

MS) and peptide nuclei acid-based fluorescence in situ hydridisation (PNA FISH). 

MALDI TOF MS and FISH are able to detect pathogens in small numbers directly from 

the clinical specimen, eliminating the time taken for them to the cultured to visible 

colonies. MALDI TOF MS has been shown to have high concordance with traditional 

blood cultures (greater than 90%) and rapidly identifying pathogens in less than 3 

hours(Beal et al., 2013; Dodemont et al., 2014). Detection of pathogens in respiratory 

cultures by FISH has also been shown to be high with a sensitivity of 94% and 

specificity of 88%(Koncan et al., 2015). The FISH assay returned results in 

approximately 10 hours. Although MALDI TOF MS and FISH can detect pathogens 
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against large databases, they cannot detect resistance genes. PCR on the other hand has 

the ability to detect resistance genes but does have other limitations. Firstly PCR 

techniques detect a limited range of pathogens predetermined by the panels used and so 

can only detect pathogens in those panels(Ost et al., 2010; Rios-Licea et al., 2010; 

Lacroix et al., 2015). PCR is extremely sensitive to detecting bacterial DNA, which is 

both a strength and a weakness. Studies generally report high sensitivities for PCR 

when compared to traditional culture but often lower specificities, often due to detection 

of bacterial DNA when culture is negative(Dickson et al., 2014; Lacroix et al., 2015; 

Vincent et al., 2015). Since PCR detects bacterial DNA, it will amplify the signal for 

non-viable bacteria as it will for live bacteria. The limitation of this is that it could lead 

to the overuse of antibiotics. The advantage of this could be in circumstances when 

there is a high index of suspicion of infection but the culture is negative. This could be 

due to the use of antibiotics or that the bacteria are difficult to culture. This has lead to 

the idea of ‘salvage microbiology’(Farrell et al., 2013). The use of this ‘salvage 

microbiology’ approach is understandable if the suspected infection is in a usually 

sterile location. The role of PCR in the respiratory samples is much more challenging 

because this is not a sterile site and the challenge for PCR will be to distinguish between 

viable and non-viable and infection and colonisation. In a large multi-centre 

observational study samples of blood, respiratory secretions (ETA and BAL) and sterile 

site fluid were obtained to compare culture with a novel technique of PCR followed by 

electrospray ionisation-mass spectrometry (PCR/ESI-MS)(Vincent et al., 2015). The 

benefit of using ESI-MS after the PCR is that it allows detection of pathogens against a 

huge database of 800 pathogens. Again this study demonstrated an extremely sensitive 

assay that detected 228 positive pathogens in blood where only 68 were positive by 

culture. Amongst the respiratory tract samples, the discrepancy was not as large with 

117 positive PCR/ESI-MS and 68 positive cultures (sensitivity 84% and specificity 

53%). 

Another approach to molecular detection is the detection of volatile organic compounds 

(VOC) that bacteria produce. Bacteria produce a characteristic signal of VOC that can 

be detected by gas chromatography and mass spectrometry (GC-MS)(Bos, Sterk and 

Schultz, 2013). VOCs are detectable in the exhaled breath of patients on mechanical 

ventilation and so have the potential to distinguish those with high bacterial burdens 

associated with infection. So far studies have been small proof-of-concept studies(Bos 

et al., 2014; Chiu et al., 2014; Filipiak et al., 2015; Fowler et al., 2015). In a single ICU 

derivation study mechanically ventilated patients, who were predominantly acute brain 
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injury patients, exhaled breath condensate was analysed by thermal desorption/gas 

chromatography/time-of-flight mass spectrometry(Fowler et al., 2015). VAP was 

confirmed by semi-quantitative culture of blind-BAL samples. A clear separation in 

signal was observed between patients who were infected and those that were not. 

These molecular methods hold significant promise in particular exhaled breath 

condensate analysis, that would allow for a minimally invasive method of detecting 

infection. 

1.11.2 Biomarkers for bacterial infections 

Biomarkers have the potential to meet the need for rapid diagnostics if they can act as 

accurate surrogates of infection while being able to be measured faster than routine 

microbiology cultures. For bacterial infections the most widely investigated is 

procalcitonin (PCT). PCT is a precursor to calcitonin and has been recognised to be 

released in response to bacterial infections(Assicot et al., 1993; Dandona et al., 1994). It 

was hoped that this could therefore be a marker to distinguish infective SIRS (sepsis) 

from sterile SIRS. However it has been shown to be raised in situations of sterile SIRS 

too(Carsin et al., 1997).  

The accuracy of PCT to discriminate sepsis from sterile SIRS has been the subject of 

three meta-analyses. The first of these was to determine its value in surgical or trauma 

patients(Uzzan et al., 2006). Unfortunately this meta-analysis used any definition of 

sepsis and therefore is limited by the lack of a rigorous standard. Twenty-five studies 

were included, many of which were small and sample sizes ranged from 15-405 

patients. Among the studies included, the sensitivity of PCT to distinguish sepsis from 

SIRS ranged from 42-97% and the specificity was 48-100%. The summary diagnostic 

accuracy of PCT had an OR of 15.7 (95% CI 9.1-27.1). The Q* value is a single 

summary statistic of the receiver operating characteristic curve (ROC) and is the point 

where the sensitivity and specificity are equal. The Q* for the study described was 0.78 

(95% CI 0.71 – 0.84).  

A further meta-analysis used inclusion criteria for trials that incorporated a rigorous 

definition of sepsis, but excluded trials with too narrow case mix, such as studies of 

abdominal sepsis(Tang et al., 2007). This meta-analysis included 18 studies of which 14 

were phase 2 diagnostic studies (diagnostic studies in patients with or without the 

disorder) and 4 phase 3 studies (real-life performance in patients suspected of having 

the disorder). A total of 2097 patients were included. Considering the 14 phase 2 studies 

the diagnostic OR was 7.79 (95% CI 5.86-10.35) with a Q* value of 0.73. Adding in the 
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4 phase three studies introduced significant heterogeneity (I
2
 86.1%) and the overall 

result was similar with a Q* of 0.72. Furthermore, on inspection of the funnel plot the 

authors determined that there had been a publication bias and that missing studies were 

likely to fall to the left of the summary estimate, suggesting that the summary estimate 

was an overestimate of the effect.  

Although the ROC curves for PCT between these two meta-analyses were quite similar, 

the authors drew quite contrasting conclusions with Uzzan et al suggesting the 

diagnostic value was high and Tang et al concluding the diagnostic value was low. A 

more recent meta-analysis aimed to update this area and also to overcome the 

shortcomings of these meta-analyses with respect to the reference definition of sepsis 

and the heterogeneity of studies(Wacker et al., 2013). 30 studies with 3244 critical care 

patients were included. The authors reported pooled sensitivity and specificity. The 

pooled sensitivity was 77% (95% CI 72-81%), the pooled specificity was 79% (95% 74-

84%) and the AUROC was 0.85 (0.81-0.88). Since the authors had taken an inclusive 

approach to trials included, the heterogeneity was high (I
2
 96%). The authors report a 

positive PCT would give a post-test probability (PTP) of sepsis of 48%. On the other 

hand a negative PCT would give a PTP to exclude sepsis of 7%. The authors conclude 

that PCT is a helpful biomarker but cannot be used as a single biomarker of sepsis.  

Despite the differing methods and conclusion made by the authors of these three meta-

analyses, the diagnostic performance of PCT has been fairly consistent across the three 

meta-analyses. The PTP reported by Wacker et al(Wacker et al., 2013) serves as a 

useful summary of the limitations of PCT as a single biomarker of sepsis. Despite this it 

has been used in a number of RCTs to influence patient outcome. In the high profile 

PRORATA trial, patients with suspected bacterial infection either on admission or 

during their ICU stay were randomised to either a PCT-guided antibiotic initiation and 

discontinuation algorithm or to standard care(Bouadma et al., 2010). The primary 

outcomes were death from any cause 28 and 60 days and number of days without 

antibiotics at 28 days. 630 patients were randomised and of the 311 patients in the PCT 

group, antibiotic recommendations were not followed in 219 episodes, including 

episodes when antibiotics were started despite low PCT or not discontinued in light of 

low PCT. Despite this non-adherence, there were significantly fewer antibiotics used in 

the PCT group with an absolute difference of 2.7 days (95% CI 1.4-4.1). There was a 

non-inferior mortality difference between the two groups (0.8%, 90% CI -4.6-6.2). 

Another trial used PCT to reduce antibiotic exposure in patients with suspected 
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VAP(Stolz et al., 2009). Patients with suspected VAP were randomised to daily PCT 

with recommendations to discontinue antibiotics with low levels of PCT, or to standard 

care. The primary outcome measure was the number of AFD alive at 28 days. One 

hundred and one patients were randomised and those in the PCT group had significantly 

more AFD than the control group with a median of 13 (IQR 2-21) in the PCT group and 

9.5 (IQR 1.5-17) in the control group. The protocol of using PCT to rule out VAP is 

questionable since serum PCT has not been shown to have any diagnostic utility in 

VAP(Luyt et al., 2005, 2008; Zielińska-Borkowska et al., 2012). 

In contrast to these trials, another group of investigators used PCT to escalate care when 

raised rather than to use it as a tool for de-escalation(Jensen et al., 2011). Patients 

randomised to the PCT group had daily measurement of serum PCT and if ≥1 ng/ml the 

clinician received an alert triggering further investigation of potential infection and 

broadening of antibiotic spectrum. 1200 patients were randomised and as might be 

expected there were more broad-spectrum antibiotics used in the PCT group. The 

median duration of antibiotics was 6 days (IQR 3-11) in comparison to 4 days (IQR 3-

10) in the control group. There was no significant difference in death at 28 days but the 

length of ICU stay was extended by 1 day in the PCT group and the relative risk of days 

with estimated glomerular filtration rate of <60mL/min/1.73m
2
 was 1.21 (95% CI 1.15-

1.27). 

1.11.3 Biomarkers for VAP 

The most widely investigated biomarkers in the context of VAP have been PCT and 

soluble triggering receptor expressed on myeloid cells (sTREM-1). Although PCT has 

had some acceptance for bacterial infections in general, in the specific context of VAP 

its value is much more questionable. All the studies assessing PCT utility for diagnosing 

VAP used semi-quantitative or quantitative culture to base the VAP definition on, 

although the sampling methods varied. In a study of 96 patients with suspected VAP in 

which BAL was performed using a blind method, there was no significant difference in 

alveolar PCT between VAP and non-VAP patients(Duflo et al., 2002). However this 

study did find a diagnostic utility from serum PCT, with an AUROC of 0.79 and (at a 

cut-off of 3.9ng/ml) a sensitivity of 41% and a specificity of 100%, giving this a very 

strong ‘rule-in’ value. In a rigorous study in which BAL was performed to a clear 

standard operating procedure and samples excluded based on pre-defined quality 

definitions, no significant differences were found in serum or BAL fluid PCT or C-

reactive protein (CRP) between VAP patients (n=50) and non-VAP patients 
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(n=66)(Linssen et al., 2008). In two further studies no difference in serum or BAL PCT 

could be found between those who had VAP confirmed and those who did not(Luyt et 

al., 2008; Jung et al., 2010). PCT has also been evaluated for prognostic applications 

and falling levels over the course of the disease has been prognostic for survival from 

VAP(Luyt et al., 2005; Seligman et al., 2006), although in the context of biomarkers to 

improve antibiotic stewardship this has limited relevance. 

The evidence for sTREM-1 has been limited by methodological inadequacies and 

inconsistencies. In a study of 148 mechanically ventilated patients in whom pulmonary 

infection was suspected, blind BAL was performed and pneumonia diagnosed based on 

semi-quantitative culture(Gibot et al., 2004). 38 patients were diagnosed with 

community-acquired pneumonia, 46 patients with VAP and 64 as having no pneumonia. 

BAL fluid sTREM-1, TNF-α and IL-1β were raised in both pneumonias in comparison 

to those without pneumonia. On constructing ROC curves, the AUROC for sTREM-1 

was 0.93 (95% CI 0.92-0.95) and a cut-off of 5 pg/ml had a sensitivity of 98% and a 

specificity of 90%. The AUROC for IL-1β and TNF-α were 0.69 (95% 0.67-0.72) and 

0.64 (95% CI 0.62-0.69) respectively.  

Significant diagnostic performance for sTREM-1 was derived from a small study of 28 

patients, only 9 of whom had confirmed VAP(Determann et al., 2005). Similarly in this 

study, a blind BAL technique was used and performed on alternate days while patients 

were mechanically ventilated. BAL sTREM-1 increased on the day of clinical suspicion 

of VAP and the AUROC to discriminate VAP from non-VAP was 0.83 (95% CI 0.65-

1.00). A level of 200 pg/ml had a sensitivity of 75% and a specificity of 84%. The 

AUROC for TNF-α was 0.64 (95% CI 0.40-0.87), for IL-1β 0.66 (95% CI 0.42-0.89) 

and for IL-6 0.74 (95% CI 0.54-0.95). IL-1β, at cut-off of 1000 pg/ml had a sensitivity 

of 67% and a specificity of 69%. Furthermore, in a group of patients with bilateral 

infiltrates (rather than suspected VAP), sTREM-1 had sensitivity and specificity of 86% 

and 90% respectively for the presence of bacterial infection(Huh et al., 2008) 

In contrast, two studies in which BAL fluid was more rigorously obtained via 

bronchoscopy, no useful diagnostic value was found for sTREM-1. In one study there 

was no significant difference in sTREM-1 between the VAP and non-VAP 

groups(Horonenko et al., 2007) and in the other, although there was a significant 

difference between the groups, when a ROC was constructed the AUROC was poor 

(0.58, 95% CI 0.50-0.65)(Oudhuis et al., 2009). 
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In terms of prognostic value of sTREM-1, in a small study of 35 patients with suspected 

VAP, BAL was performed at enrolment and a further 2 BAL performed in the course of 

the illness(Wu et al., 2011). In this study the rate of confirmed VAP was unusually high 

at 70%. sTREM-1 was significantly raised in culture positive patients in contrast to non-

VAP patients at baseline and day 4-5. ROC curves were constructed for sTREM-1 at 

baseline, day 4-5 and day 7-9 to identify survivors versus non-survivors. At baseline the 

AUROC was 0.54 (NS), at day 4-5 the AUROC was 0.77 (95% CI 0.57-0.97) and at 7-9 

days the AUROC was 0.89 (95% CI 0.72-1.07). A fall in sTREM-1 of 10 pg/ml at day 

7-9 predicted survival with a sensitivity of 90% (non-survivors) and specificity of 

87.5% (survivors). 

Other biomarkers that have been investigated for VAP include elastin fibres (ETA)(el-

Ebiary et al., 1995), copeptin (serum)(Seligman et al., 2008a), nitrated proteins 

(BAL)(Mathy-Hartert et al., 2000), beta-d-glucan (serum)(Heyland et al., 2011), 

pancreatic stone protein (serum)(Boeck et al., 2011), midregional pro-atrial naturetic 

peptide (serum)(Seligman et al., 2008b), pentraxin 3 (serum)(Lin et al., 2013), Clara 

cell protein (BAL)(Vanspauwen et al., 2011), leukocyte RNA profiles (blood)(Cobb et 

al., 2009), leptin (serum)(Parmentier-Decrucq et al., 2014) and gene expression 

(blood)(Textoris et al., 2011). These studies have either found no diagnostic value or 

have demonstrated some prognostic value. They have all fallen short of a biomarker that 

can provide the crucial clinical need, a rapid rule-in or rule-out test for VAP. 

1.11.4 Importance of innate immune response biomarkers in BAL 

In a single-centre study Conway Morris et al measured a range of biomarkers of the 

innate immune response in the lung in BAL fluid(Conway Morris et al., 2010). 

Seventy-two patients with suspected VAP were included in the analysis. Patients were 

included if VAP was suspected, and excluded based on criteria that predicted poor 

tolerance of BAL (eg. severe hypoxia, haemodynamic instability and unstable intra-

cranial hypertension). VAP was confirmed by quantitative culture of BAL fluid with a 

pathogen growth of >10
4
 cfu/ml. The biomarkers measured in BAL fluid were TNF-α, 

IL-1β, IL-6, IL-8, IL-10, granulocyte colony-stimulating factor (G-CSF), MIP-1α, 

sTREM-1 and monocyte chemo-attractant peptide (MCP)-1. Urea was measured in 

BAL and serum and used as a correction factor for dilution of ELF by BAL(Rennard et 

al., 1986). 17 patients had confirmed VAP and 55 patients had culture growth below the 

threshold or had sterile culture and formed the non-VAP group. It is notable that no 

VAP was caused by P. aeruginosa. Significant differences were found between VAP 
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and non-VAP patients in BAL fluid IL-1β, IL-8, G-CSF and MIP-1α. ROC curves were 

constructed for these and IL-1β and IL-8 had AUROC with 0.81 (95% CI 0.71-0.91) 

and 0.83 (95% CI 0.74-0.95) respectively. The AUROC for G-CSF and MIP-1α were 

lower with 0.73 (95% CI 0.58-0.86) and 0.77 (95% CI 0.66-0.90) respectively. For IL-

1β an optimal cut-point determined by the Youden index at 10 pg/ml had a sensitivity of 

94% and a specificity of 64%. This corresponds to a negative predictive value of 97% to 

rule-out VAP. 

In a further report from the same cohort of patients, BAL fluid was tested for a range of 

markers of neutrophil activity and neutrophil protease inhibitors(Wilkinson et al., 

2012). The neutrophil proteases measured were HNE, MMP-8 and MMP-9. 

Endogenous inhibitors of these proteases were also quantified, including alpha-1 

protease inhibitors (α1-PI), secretory leucocyte protease inhibitor (SLPI) and elafin (all 

of which inhibit HNE) and tissue inhibitors of metalloproteinases (TIMPs, which inhibit 

MMP-8 and MMP-9). In addition the fibinolytic enzymes tissue-type plasminogen 

activator (t-PA) and urinary-type plasminogen activator (u-PA) were measured. All 

markers were quantified by ELISA with the exception of plasminogen activators, which 

were measured by semi-quantitative zymography. There were significant differences 

between the VAP and non-VAP groups in concentrations of HNE, MMP-8 and MMP-9. 

ROC curves were constructed and optimal cut-points calculated. For HNE the AUROC 

was 0.87 (95% CI 0.78-0.96) and at 670 ng/ml, the sensitivity was 93% and specificity 

was 79%. For MMP-8 the AUROC was 0.81 (95% CI 0.69-0.93) and at a cut-point of 

13 ng/ml the sensitivity was 91% and the specificity 63%. MMP-9 had an AUROC of 

0.79 (95% CI 0.66-0.92) and a cut-point of 22 ng/ml had a sensitivity of 82% and 

specificity of 63%.  

The diagnostic performance for the 5 biomarkers with the greatest promise are outlined 

in Table 7. 
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1.12 Aim and Hypothesis 

The aim of this work is to take forward the findings in the derivation cohort described in 

section 1.10.4.. There are two elements to this work, the first of which is to establish 

whether the diagnostic utility of IL-1β, IL-8, MMP-8, MMP-9 and HNE could be 

validated in a multi-centre observational study. The hypothesis is that these will be 

successfully validated and that an optimum combination of biomarkers will be 

determined with sufficient value as a test of exclusion for VAP to be used in a 

clinical trial. 

The second element, dependent on the successful validation of the biomarkers, is to 

determine the clinical utility of these biomarkers in reducing antibiotic exposure in 

 AUROC Cut-point Sensitivity Specificity 

IL-1 0.81 (0.71-

0.91) 

10pg/ml 94% 64% 

IL-8 0.83 (0.73-

0.95) 

2000pg/ml 81% 83% 

HNE 0.87 (0.78-

0.96) 

670ng/ml 93% 79% 

MMP-8 0.81 (0.69-

0.93) 

13ng/ml 91% 63% 

MMP-9 0.79 (0.66-

0.92) 

22ng/ml 82% 63% 

Table 7: Cut-points and diagnostic performance of 5 top biomarkers from derivation cohort. 
AUROC, area under ROC curve (95% CI). 
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patients with suspected VAP by prompting early discontinuation of antibiotics in cases 

of biomarker-excluded VAP. This will be measured by number of antibiotic-free days 

(AFD) in the days following BAL. The hypothesis is that biomarker-guided 

decisions regarding antibiotic prescribing will reduce antibiotic use and thereby 

improve antibiotic stewardship. 

This work represents a significant part of the translational research process, bridging 

initial derivation to determining clinical utility. The two elements of this thesis are 

conducted in a highly complex and sensitive clinical setting and so the lessons learnt 

through this process are highly valuable. The potential clinical value is significant. I 

have highlighted the scale of impact that VAP, the scale of antibiotic use and need to 

reduce antibiotic use as part of a multi-faceted approach to tackling AMR. If this 

intervention demonstrates a reduction in antibiotic use, this would be a significant step 

in tackling this problem. 

1.13 Thesis overview 

Chapter 2 outlines the methods used in this work. Chapters 3 and 4 present the findings 

of a multi-centre validation study and a multi-centre RCT respectively. Final 

conclusions are presented in chapter 5. At the time of writing this thesis, the RCT was 

still in progress. To allow completion of this thesis, data from a subset of recruited 

patients were analysed to demonstrate the principles of the analysis. This subgroup 

analysis was performed at a time that it could not influence trial course and the chief 

investigator was unaware of the results until the close of the trial. The trial statistician 

provided assistance using blinded data, such that only I was aware of the unblinded 

results. This strategy was approved by the data monitoring and ethics committee 

(DMEC) and trial Sponsor.  

  



   

  75 

Chapter 2. Methods 

2.1 Introduction to chapter 

This chapter will outline the methods used in the two studies reported in this thesis, a 

multi-centre validation study and a multi-centre RCT. I shall outline the design of these 

studies, the clinical elements, laboratory protocols and statistical considerations. 

2.2 Design of studies 

2.2.1 Design of validation study 

The validation study was a prospective, multi-centre observational study conducted in 

the general ICUs of 9 NHS Trusts (12 ICUs in total). The participating sites were: 

Royal Victoria Infirmary (ward 18 and 32), Newcastle upon Tyne; Freeman Hospital, 

Newcastle upon Tyne; Sunderland Royal Hospital, Sunderland; Edinburgh Royal 

Infirmary, Edinburgh; Western General Hospital, Edinburgh; Heartlands Hospital, 

Birmingham; Preston Royal Hospital, Preston; Salford Royal Hospital, Manchester; 

Countess of Chester Hospital, Chester; Royal Victoria Hospital, Belfast; and Chelsea 

and Westminster Hospital, London. A flow diagram of patient recruitment is shown in 

Figure 1.  
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Figure 1: Flow diagram of validation study recruitment
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2.2.2 Design of RCT 

The RCT was a multi-centre, prospective, RCT in which patients with suspected VAP 

were randomised 1:1 to either a biomarker-based rule-out of VAP in addition to 

standard care (microbiological culture) or to standard care only. This trial adheres to the 

Consolidated Standards of Reporting Trials statement(Schulz, Altman and Moher, 

2010) (Figure 2). 

The RCT was conducted in 23 ICUs from 17 NHS trusts. In addition to the sites 

involved in the validation study, the RCT also included the following ICUs: North 

Tyneside General Hospital, North Shields; Wansbeck General Hospital, Ashington; 

University Hospital, Coventry; Queen Elizabeth Hospital, Gateshead; James Cook 

University Hospital, Middlesbrough; Royal Infirmary, Manchester; Sandwell Hospital, 

Birmingham; City Hospital, Birmingham; The Royal Liverpool University Hospital, 

Liverpool; City Hospital, Belfast; and Russell Hall Hospital, Dudley.  
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Figure 2: CONSORT diagram for RCT 
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2.3 Participants: inclusion and exclusion criteria 

2.3.1 Validation study participants 

Patients with suspected VAP were identified by the following inclusion criteria: 

Mechanically ventilated for ≥48 hours, ≥18 years of age (16 for Scotland) and new or 

worsening chest radiograph alveolar changes and at least 2 of the following criteria: 

 temperature <35
O
C or >38

O
C,  

 blood white cell count (WCC) <4x10
9
/L or >11x10

9
/L  

 purulent tracheal secretions 

Patients were excluded on the basis of criteria that predict poor tolerance of 

bronchoscopy and BAL(Meduri and Chastre, 1992). These criteria were: 

 PaO2<8kPa on FiO2>0·7,  

 Positive end-expiratory pressure >15cmH2O, 

 Peak airway pressure >35 cmH20  

 Heart rate > 140 beats per minute 

 Mean arterial pressure <65mmHg  

 Myocardial infarction in the last month 

 Bleeding diathesis (including platelet count <20x10
9
 per litre of blood or 

international normalised ratio (INR) >3) 

 Poorly controlled intracranial pressure (> 20mmHg) 

 ICU consultant assesses procedure not to be safe 

Other exclusion criteria included a previous BAL as part of this study and if consent 

was declined. The exclusion of myocardial infarction in the past month was later 

removed in an amendment 6 months into the study. 

2.3.2 RCT participants 

The inclusion criteria used in the validation study were also used in the RCT with a 

number of alterations. Firstly, all patients were 18 years of age or over, including 

Scottish patients. Secondly radiological changes could include worsening CT scan 

changes. Thirdly there was the addition of the criterion that patients had to be 
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considered potentially suitable for early discontinuation of antibiotics. Considering that 

the primary outcome measure was AFD in the 7 days following BAL (see section 

2.11.2) it was felt necessary to exclude patients who were receiving antibiotics for 

alternative (ie extra-pulmonary) sources of infection in whom the biomarker test could 

not influence the number of AFD. Patients who could not have antibiotics stopped due 

to a confirmed alternative source were excluded. Patients were not to be excluded based 

on clinician willingness to stop antibiotics due to the clinician’s pre-test probability of 

VAP, judgement of severity of illness or perceived risk of stopping antibiotics. This 

criterion required on-going education of trial sites to ensure correct interpretation. 

Patients were otherwise excluded on the same criteria as for the validation study. Co-

enrolment was allowed with other RCTs after consideration of biological and statistical 

interactions and consideration of burden to patients and to patients’ families. Once there 

was agreement between investigators to allow co-enrolment, an agreement was drawn 

up in keeping with the recommendations of the Intensive Care Society(Krige et al., 

2013). Co-enrolment was allowed with observational studies without prior agreement. 

2.4 Screening and consent/assent process 

All patients within the participating ICUs were screened on weekdays for eligibility. 

While weekday only screening was not mandated during the validation study, few ICUs 

had research support on weekends and only 1 patient was enrolled on a weekend. 

Weekday screening was only possible during the RCT as laboratories supporting the 

biomarker assay only provided weekday support. Potentially eligible patients were 

discussed with the ICU consultant to determine any safety concerns of performing a 

bronchoscopy and, for the RCT, to determine the appropriateness of potential early 

discontinuation of antibiotics. 

Consent and assent procedures were in keeping with the legal framework of either 

England, Northern Ireland (Mental Capacity Act, 2005) or Scotland (Adults with 

Incapacity (Scotland) Act, 2000) for consent/assent of adults without capacity. In 

England and Northern Ireland assent is obtained, where possible, following discussion 

with the patient’s next of kin (personal consultee). A nominated consultee provided 

assent for patients without a personal consultee. This was usually the ICU physician in 

charge of that patient, providing the individual was not also a member of the research 

team.  
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In Scotland the patient’s relative or welfare attorney provides consent for incapacitated 

patients. If the patient’s relative or welfare attorney were unavailable, consent was 

provided in a telephone conversation providing a second member of staff witnessed the 

discussion. 

Patients recovering capacity were approached to provide retrospective consent. The 

decision as to whether the patient had regained capacity resided with the treating team.  

2.5 Bronchoscopy (validation study, RCT) 

A standard operating procedure was used based on previously published 

recommendations on a standardised approach to BAL in critically ill patients(Meduri 

and Chastre, 1992). All bronchoscopy was performed under the supervision of an ICU 

doctor (registrar or consultant) who managed the patient’s anaesthesia and monitoring. 

Patients were ventilated with 100% oxygen prior to bronchoscopy. Frequently patients 

were also given a neuromuscular blocking agent in addition to sedation, although this 

was not mandated. Bronchoscopy for both studies was considered to be a clinical 

procedure (in addition to research purposes) and therefore was carried out by either the 

research team or the clinical team. The bronchoscope was passed through the ETT or 

tracheostomy tube to the lobe that corresponded to the area of new CXR change. If 

multiple areas were involved on CXR then the lobes were inspected at bronchoscopy 

and the area with the most prominent purulent secretions was lavaged. If the CXR 

demonstrated a ‘white out’ or no particular lobe had purulent secretions, the posterior 

segment of the right lower lobe was lavaged. Autopsy data have demonstrated that VAP 

has a predominance for the posterior segments of the lower lobes(Rouby et al., 1992). 

BAL was performed by wedging the bronchoscope in the relevant subsegment and 

instilling 20mls of sterile 0.9% saline, which was aspirated and discarded as the 

‘bronchial sample’. A further 120mls of sterile 0.9% saline was then instilled in 40ml 

aliquots with aspiration and collection of BAL fluid between each 40ml aliquot into 

collection traps. The BAL fluid aspirated from each aliquot was pooled. 

2.6 Biomarker assay 

2.6.1 Reagents and equipment 

All reagents and equipment for the project were supplied by BD Biosciences (with the 

exception of Spherotech Ultra rainbow beads (Spherotech, Lake Forest, Illinois). CBA 

assay diluent, CBA detection reagent diluent, CBA capture bead diluent, CBA wash 

buffer, human IL-8, IL-1, IL-6, IL-12p70 and TNF- flex set are commercially 
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available reagents (BD Biosciences, New Jersey, USA). Enhanced sensitivity IL-1 and 

IL-8 flex sets, and enhanced sensitivity master buffer kits, were also supplied by BD. 

MMP-8 CBA beads (6x10
6
 beads/ml), MMP-8 phycoerythrin (PE) CBA detection 

reagent (0.1mg/ml), MMP-9 CBA beads (6x10
6
 beads/ml), MMP-9 PE CBA detection 

reagent (0.1mg/ml), HNE CBA beads (6x10
6
 beads/ml) and HNE PE CBA detection 

reagent (0.1mg/ml) were custom made by BD Biosciences, San Diego. 

Human recombinant MMP-8 (100ug/ml) and human recombinant MMP-9 (100ug/ml) 

were purchased from R&D systems (Minneapolis, USA). Recombinant HNE was 

purchased from Merck Millipore (Massachusetts, USA). 50ug was reconstituted in 

500μl HNE buffer (sodium acetate 50mM-200mM NaCl pH5.5) to give a 100g/ml 

stock solution. 

Urea was measured using a QuantiChrom urea assay kit (Bioassays Systems, Hayward, 

USA). 

CBA assays were performed on Accuri C6 flow cytometers. These were supplied to 

Newcastle University by BD for the validation study and then one to each of the 6 

testing hubs for the RCT (Freeman Hospital, Newcastle; Royal Infirmary of Edinburgh, 

Edinburgh; Salford Royal Hospital, Salford; Heartlands Hospital, Birmingham; Royal 

Victoria Infirmary, Belfast; and Chelsea and Westminster Hospital, London). Accuri 

quality control (QC) procedures were carried out using BD cytometer setup and tracking 

beads (BD Biosciences, New Jersey, USA) and with Spherotech ultra rainbow beads 

(Spherotech, Lake Forest, Illinois) in keeping with Newcastle University’s Flow 

Cytometry Core Facility standard operating procedures (SOP). QC data were monitored 

by the flow cytometry core facility during the study. 

2.6.2 Processing BAL and blood (validation study and RCT) 

During both the validation study and the RCT, BAL aliquots collected from the three 

instillations of 40mls of saline were pooled. A 2ml sample was sent to the hospital 

microbiology laboratory for semi-quantitative culture. In the validation study the 

remaining BAL was centrifuged at 700g for 10mins at room temperature. The 

supernatant was aspirated and stored at -80
o
C where possible and otherwise stored at -

20
o
C. Samples were stored at the study sites and transported to Newcastle University at 

the end of the study period.  

During the RCT, fresh BAL samples were transported from recruiting sites to testing 

hubs at 4
o
C for processing. Samples were centrifuged as above but prior to freezing, a 
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500µl aliquot was taken for immediate biomarker analysis in patients randomised to the 

intervention arm. 

Serum tubes were centrifuged at 1500g for 30mins at 4
O
C. Serum was aspirated and 

stored as per the same SOP for BAL fluid. 

2.6.3 Measurement of BAL biomarkers (validation study) 

Concentrations of IL-1, IL-8, MMP-8, MMP-9 and HNE were measured in BAL by 

CBA in a 5-bead multi-plex assay. All buffers were brought to room temperature and 

samples were thawed at room temperature before being stored on ice. 

Preparation of CBA bead master mix 

Beads were supplied at 6x10
6
 beads/ml and used at 6000 beads per test, corresponding 

to 1l of each bead solution used per test. Bead stocks were vortexed for 30 seconds and 

a sufficient aliquot of each bead stock was pipetted into a 15ml falcon tube. 0.5ml of 

wash buffer was added to the bead mixture and then the beads were centrifuged for 5 

minutes at 200g at room temperature. The supernatant was aspirated and the beads re-

suspended in a volume of capture bead diluent (for serum) to give 50l capture bead 

solution per test. 50l of bead mixture was added to each labelled tube and incubated in 

the dark, at room temperature for 15 minutes to equilibrate. 

Reconstitution of lyophilised standard spheres (IL-1 and IL-8) 

Standards for BD flex sets are supplied as lyophilised spheres. These were reconstituted 

in 500l of assay diluent (20 ng/ml) and allowed to equilibrate for 15 minutes at room 

temperature. 

Preparation of dilution series of standard master mix 

Recombinant MMP-8, MMP-9 and HNE standards were pre-diluted 1:10 (10g/ml) in 

assay diluent. To make the master mix of standards, 62.5l of reconstituted lyophilized 

spheres, 20l of pre-dilution of MMP-8 and MMP-9 and 4l of HNE, was made up to 

500l with assay diluent. The final concentration of IL-1 and IL-8 was 2500pg/ml, 

MMP-8 and MMP-9 was 400ng/ml and HNE was 80ng/ml. 1:2 serial dilutions were 

performed to give 10 standard concentrations with the lowest concentration for IL-1 

and IL-8 being 5pg/ml, MMP-8 and MMP-9 being 0.78ng/ml and HNE being 

0.16ng/ml. 

Preparation of sample dilutions 
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Samples were centrifuged for 2 minutes at 10,000g at room temperature to spin down 

any aggregates prior to performing dilutions. Samples were prepared in dilutions of 1:5, 

1:50 and 1:500 in a 96 well plate using assay diluent. In repeat assays, any sample in 

which the IL-1 in the 1:5 dilution fell below the standard range, was repeated as a neat 

sample. 

Addition of standard or samples to beads 

50l of either standard or sample was added to the 50l of bead mixture in each tube. 

Each sample was mixed thoroughly by pipetting. Samples were incubated at room 

temperature in the dark for 1 hour. 

Preparation of PE detection reagent master mix 

A master mix of PE detection reagent was made as per the bead master mix. 1l per test 

of each detector was added to a 15ml falcon tube, with the exception of HNE PE, which 

was used at 2l per test. The mix was made up to a volume of 50l per test with 

detection reagent diluent. 

Addition of PE detection reagent to tests 

Once the beads had incubated with samples for 1 hour, 50l of PE detector reagent was 

added to test tubes. The tests were incubated for a further 2 hours in the dark at room 

temperature. 

Washing samples 

1ml of wash buffer was added to each tube and then centrifuged at 200g for 5 minutes at 

room temperature. The supernatant was decanted and 200l of wash buffer added. 

Analysis 

Samples were immediately analysed on an Accuri C6 flow cytometer. The cytometer 

laser configuration was FL1 530/30, FL2 585/40, FL3 780/60 and FL4 675/25 (2 blue, 2 

red). Results were analysed using FCAP array V3.0 software (Soft Flow, Pecs, 

Hungary). 

2.6.4 Measurement of urea and concentration correction (validation 
study) 

Urea was measured using the QuantiChrom urea assay kit (BioAssay Systems, 

Hayward, USA). This method uses a chromogenic reagent that binds to urea to form a 

coloured complex. The colour intensity is directly proportional to the urea 
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concentration. The assay has a linear detection range of 0.08mg/dL to 100mg/dL and is 

performed in a clear bottom 96-well plate.  

All reagents were brought to room temperature before use. Urea standard was supplied 

at 50mg/dL. Serum samples were assayed neat. 5µl of water (blank) and 5µl of standard 

(50mg/dL), in duplicate, were pipetted to wells as the assay control. 5µl of sample, in 

duplicate, were placed into the remaining wells on a 96 well plate. Working solution 

was added at 200µl and allowed to incubate for 20 minutes before reading the optical 

density (OD) at 520nm.  

For the low urea concentrations of BAL the assay was modified as per the 

manufacturer’s instructions by transferring 50µl of water, 50µl of standard (5µl of stock 

diluted into 50µl of water to give 5mg/dL) and 50µl of sample in duplicate. These were 

incubated for 50 minutes before reading OD at 430nm. 

Urea concentration (mg/dL) was calculated by the following formula: 

[Urea] = {(ODSAMPLE - ODBLANK) / (ODSTANDARD - ODBLANK)} x n x [STD] 

Where ODSAMPLE, ODBLANK and ODSTANDARD are the OD values for sample, water and 

standard respectively. n is the dilution factor (1 for serum, 50 for BAL) and [STD] is the 

urea standard concentration (50mg/dL for serum assays and 5mg/dL for BAL assays). 

ELF biomarker concentration was determined by correcting the BAL biomarker 

concentration by the following equation: 

VolumeELF = ([UreaBAL] x VolumeBAL) / [UreaPLASMA](Rennard et al., 1986) 

Dilution factor = VolumeBAL / VolumeELF 

Dilution factor = [UreaSERUM] / [UreaBAL] 

[BiomarkerELF] = [BiomarkerBAL] x ([UreaSERUM] / [UreaBAL]) 

2.6.5 Measurement of serum biomarkers (validation study) 

Biomarkers in serum that have diagnostic utility in patients with suspected VAP would 

be of great value, as it would avoid the need to perform a BAL. Serum biomarkers were 

measured in the original derivation cohort and no difference was found between the 

VAP and the non-VAP groups(Conway Morris et al., 2010). Considering the potential 

value of a serum biomarker, this was attempted in this study also. A pilot study of IL-

1, IL-8, IL-6, TNF-, IL-12p70, HNE, MMP-8 and MMP-9 was conducted in 20 

validation study serum samples to determine which of these 8 biomarkers should be 

tested on the full validation cohort and which dilutions should be used in the main 
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cohort. Samples were diluted using assay diluent in concentrations of 1:4, 1:20, 1:100 

and 1:500. 

From this, a multiplex of IL-8, MMP-8, MMP-9, HNE and IL-6 were tested on the full 

cohort of validation study samples in dilutions of 1:4, 1:20 and 1:100. The CBA 

procedure was the same as the assay outlined in the above section. The standard for IL-6 

was handled in the same way as IL-8 and the top standard was also 2500pg/ml. 

2.6.6 Enhanced sensitivity assay (validation study) 

IL-1 and IL-8 were also tested using an enhanced sensitivity assay. The standard range 

for the enhanced sensitivity flex set is 274-200,000 fg/ml and so has improved detection 

of low concentration biomarkers. 

All reagents were brought to room temperature and samples thawed at room 

temperature before being stored on ice prior to testing. The enhanced sensitivity assay is 

identical to the CBA for stages preparing the CBA bead master mix, preparation and 

dilution of standards. The samples were similarly centrifuged at 10,000g prior to 

diluting 1:3, 1:30 and 1:500. Beads were incubated with sample or standard for 2 hours 

in the dark at room temperature (as compared with 1 hour in the standard assay).  

During this time the detection reagents part A and part B were prepared. Reagent part A 

was prepared as per standard PE detector reagent with 1µl of each reagent (IL-1 and 

IL-8) per test being added to a volume of detector reagent diluent to give a final volume 

of 20µl per test. Reagent part B is provided as a lyophilised cake that is reconstituted in 

0.55ml of detection reagent. This is incubated in darkness at room temperature for 15 

minutes. 530µl of the reconstituted part B reagent was added to 4770µl of detection 

reagent diluent and mixed by vortexing. After the initital 2-hour incubation period, 20µl 

of detection reagent part A was added to the samples and further incubated for 2 hours. 

After this incubation period, the samples were washed by adding 1ml of wash buffer 

and centrifugation at 200g at room temperature. The supernatant was decanted off 

before 100µl of detection reagent part B was added and gently mixed. The samples were 

incubated for a further 1-hour period in the dark at room temperature. A final wash was 

performed (as previously described) before 200µl of wash buffer was added and then 

samples analysed on the Accuri C6. 

2.6.7 Biomarker assay protocol for RCT 

Collaborators at BD made a number of modifications to standard flex set CBA assay for 

the RCT in comparison to the validation study protocol. The intra-assay variation is 
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greatest at the extremes of the standard curve and so the 5pg/ml point was removed and 

9 points on the standard curve, with the lowest point being 10pg/ml, were used for IL-

1 and IL-8. 

There were two controls built into the assay to ensure robustness of the results. Since 

some patients will have low IL-1 levels or even no detectable IL-1, there are 

concerns about the robustness of detecting very low levels of an analyte. IL-8 acts as a 

control in this regard since IL-8 was present in all but 2 samples from the validation 

cohort.  The 2 samples with undetectable IL-8 had globally low or undetectable 

biomarkers, suggesting low quality BAL. Therefore the IL-8 acts as a control to ensure 

that there is measureable protein in the sample. In addition to the IL-8 control, an IL-1 

and IL-8 positive control was incorporated into the assay and this had to fall within 

predetermined limits for the result to be reliable. This controlled for assay quality 

including correct solubilising of lyophilised standard, correct reagent temperature and 

timing of incubation periods. Internal control limits were initially determined from 17 

independent experiments for IL-8 and 8 independent experiments for IL-1 (performed 

by myself and BD scientist). These were later expanded based on CBA assays from the 

RCT to include a total of 26 experiments for IL-1 and 35 experiments for IL-8. 

Samples were tested neat, 1:5, 1:50 and 1:500 dilutions. The positive control was 

diluted 1:40. As previously described, samples were measured on the Accuri C6 and 

results analysed using FCAP software. An analysis template (Excel file) was created to 

guide the technicians through the steps of checking the IL-8 and positive control quality 

control steps and then determining which sample dilutions should be included to 

calculate average IL-1 and IL-8 values. The template incorporated a locked cell that 

contained the logistic regression equation to calculate the final result and a logical 

formula to state if it was ‘VAP’ or ‘non-VAP’. This was to reduce the chance of error at 

this interpretation point.  

2.7 Microbiology (validation study and RCT) 

Culture of BAL fluid followed the same SOP in both the validation study and the RCT. 

VAP was defined as growth of a potentially pathogenic organism at >10
4
 cfu/ml during 

the validation study, in keeping with widely accepted thresholds(Chastre et al., 1995). 

For practical purposes the threshold was changed to ≥10
4
cfu/ml for the RCT. This 

change was made as it was felt, given the semi-quantitative nature of quantification, 
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laboratory reporting and clinical interpretation would not distinguish between >10
4
 and 

≥10
4
 cfu/ml in a practical sense. 

All microbiology samples were handled in a NHS or Health Protection England (HPE) 

(previously Public Health England) microbiology laboratory. BAL was handled 

following a SOP in accordance with the UK Standards for Microbiology 

Investigation(Health Protection Agency, 2012). BAL fluid samples did not undergo 

Gram staining unless specifically requested by the clinical team or if this was routine 

for the laboratory. Each specimen was mixed well by vortexing and then using a sterile 

10µl loop the following plates were inoculated with fluid (Table 8): 

Media Atmosphere Temp Duration Target organism 

Chocolate blood 

agar + Bacitracin 

5-10% CO2 35-37C 40-48 hrs H. influenza 

M. catarrhalis 

S. aureus 

S. pneumoniae 

BA+ Optochin disc 5-10% CO2 35-37C 40-48 hrs S. pneumoniae 

Fastidious anaerobic 

agar  
AnO2 35-37C 40-48 hrs Anaerobes 

CLED or 

MacConkey 
Air 35-37C 40-48 hrs Enterobacteriaceae 

Pseudomonads 

Sabouraud’s agar 

(x2) 
Air 30 & 35-

37C 
40-48 hrs Fungi 

Table 8: Culture conditions for semi-quantitative cultures. CLED, cysteine lactose electrolyte deficient. 
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The number of colonies were counted on the plate and interpreted as cfu/ml. Less than 

10 colonies was interpreted as <10
3
 cfu/ml, 10-100 colonies was interpreted as 10

3
-10

4 

cfu/ml and >100 colonies was interpreted as >10
4 

cfu/ml. 

During the validation study, all bacteria isolated at >10
4
 cfu/ml were identified to 

species level. This proved a barrier in the labs when moving to the RCT and so only 

potentially pathogenic organisms isolated at >10
4 

cfu/ml were identified to species level. 

All yeasts were identified to species level and filamentous fungi were sent to an 

appropriate mycology lab for speciation. Antimicrobial susceptibility testing was 

performed according to local practice. 

An important consideration for culture results is the previous administration of 

antibiotics. The derivation study excluded patients who had had a change in prescribed 

antibiotics in the previous 3 days(Conway Morris et al., 2010). Previous studies have 

shown that the development of suspected VAP while receiving antibiotics for another 

infection, does not influence the diagnosis of VAP since the emerging infection will be 

resistant to the current antibiotic treatment(Montravers et al., 1993; Timsit et al., 1995). 

The recent initiation of antibiotics for suspected VAP can, however, have a significant 

impact on the subsequent culture results and lead to false negative results(Fabregas et 

al., 1996; Souweine et al., 1998). In both the validation study and the RCT, the decision 

was made to allow recruitment of patients who had antibiotics started within 48 hours. 

Although this was not ideal, a pragmatic decision was made to ensure sufficient patient 

accrual. 

2.8 Hub set up and training methods/materials (RCT) 

The biomarker assay was carried out in 6 laboratories that acted as ‘hubs’ for the 

recruiting ICUs. All sites were within an approximate travel time of 1 ½ hour from the 

hub to avoid samples having excessive transit times. 

The set up of the hub was dependent on local arrangements and generally the biomarker 

test was hosted in microbiology labs, since these labs were already engaged in the 

project. Salford, Belfast and Heartlands incorporated the biomarker assay within a NHS 

microbiology lab. Newcastle (Freeman Hospital) and Edinburgh utilised the academic 

microbiology labs. Chelsea and Westminster performed the test in an academic 

immunology lab. All labs were within NHS hospitals. 
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With the exception of Chelsea & Westminster, which used scientists with flow 

cytometry experience, all other sites used scientists with a microbiology background 

and limited flow cytometry experience. Essential training in the Accuri C6 and CBA 

assay was provided. Training material was designed for a user with limited flow 

cytometry experience. The Accuri C6 is a flow cytometer that is designed for its ease of 

use. The fluorescence detectors are pre-optimised and so adjustment of detector voltage 

is not necessary. It has minimum set up time and when using software templates, it is 

close to a ‘plug-and-play’ flow cytometer. It also has a small bench footprint and is easy 

to move if necessary which proved valuable in laboratories with limited bench space.  

Training was provided to the technicians in two, 2-day sessions in London (Chelsea & 

Westminster) or Newcastle. Training material was developed in collaboration with BD 

Biosciences scientists and a manual was given to technicians. Training for the Accuri 

included an overview of the Accuri C6; templates; set-up and shut-down; maintenance; 

QC; and lasers and filters. Other topics related to the trial itself and included an 

overview of the trial; sample transport and handling; randomisation process; biomarker 

assay protocol; processing samples on Accuri C6; analysing Accuri data on FCAP 

software; final data sorting and interpretation; and reporting results to the clinical team. 

On site training was provided for Salford and Belfast in the same format as the 

centralised training.  

2.9 Randomisation and blinding (RCT) 

Randomisation was performed using a web-based randomisation service hosted by 

Newcastle Clinical Trials Unit (NCTU). Patients were randomised in a 1:1 ratio by 

variable size permuted blocks and stratified by site. Since randomisation determined by 

which means the BAL fluid was analysed and up to that point all patients undergo the 

same study procedures of bronchoscopy and BAL, the technicians performed the 

randomisation. To perform the randomisation the technician contacted NCTU and the 

patient’s details were entered into the online randomisation service. The automated 

message instructed that the patient was randomised to ‘biomarker-guided 

recommendation on antibiotics, analyse sample on arrival’ or to ‘routine use of 

antibiotics, do not analyse sample on arrival’. This instruction was emailed to the 

technician. 

The clinical team were blinded to allocation for the first 6 hours of trial involvement 

until the results were called back. The technicians reported the results to the clinical 

team according to standard scripts. To ensure consistent unblinding, the clinical team 
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were informed if the patient was randomised to standard care after a similar interval 

(approximately 6 hours). The instructions were: 

If the biomarker result was below threshold: 

“Biomarker result below cut-off. The negative predictive value is 1 and a diagnosis of 

VAP is very unlikely. Consider discontinuation of antibiotics.” 

If the biomarker result was above the threshold: 

“Biomarker result above the cut-off. VAP cannot be excluded, consider continuing 

antibiotics.” 

If the assay did not meet quality control standards the clinical team were advised to 

default to standard care. If the assay did not meet the internal control check-point the 

clinical team were advised: 

“Biomarker assay has not met internal control standard. Unable to return biomarker 

result. Await microbiology result and default to standard care”. 

If the assay did not meet the IL-8 check-point, the clinical team were advised: 

“IL-8 undetectable in BAL. The quality of BAL is uncertain. Unable to return 

biomarker result. Default to standard care.” 

2.10 Trial intervention (RCT) 

Since all included patients had suspected VAP, they all underwent the sample study 

procedures of bronchoscopy and BAL. It was anticipated that all patients would have 

antibiotics started at the point of suspicion, around the time of BAL, although this 

would not always be the case depending on the clinical index of suspicion. Those who 

underwent biomarker testing would have a result in approximately 6 hours and those 

who had VAP ruled out would be able to have antibiotics discontinued. In comparison, 

those in the ‘routine use of antibiotics group’ would ordinarily be first considered for 

discontinuation of antibiotics when microbiology results return, typically 48-72 hours 

after BAL. 

2.11 Outcome measures 

2.11.1 Validation study outcome measures 

The primary outcome measure of the validation study was the presence of confirmed 

VAP based on a potential pathogen at >10
4
 cfu/ml. This provided the standard against 

which the BAL fluid biomarkers were measured.  
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Secondary outcome measures were biological measures (ie. biomarkers), safety and 

clinical measures. Biological measures included IL-1, IL-8, MMP-8, MMP-9, HNE 

and urea in BAL fluid. In serum, the markers were IL-1, IL-8, IL-6, TNF-, IL-12p70, 

HNE, MMP-8, MMP-9 and urea. Safety measures included SaO2, heart rate, BP, 

PaO2:FiO2 ratio, before and after the procedure. Clinical measures included 

demographics, all-cause ICU mortality and hospital mortality. 

2.11.2 RCT outcome measures  

The primary outcome measure for the RCT was the frequency distribution of AFD in 

the 7 days following BAL. This time-course was felt most appropriate since this is the 

typical duration of a course of antibiotics for VAP in the UK(Browne et al., 2014). 

Days of antibiotic treatment were counted in whole numbers of days. Durations of 

antibiotic prescribing was counted from the date of the BAL procedure to date of 

treatment termination (or censoring from death or discharge), with the proviso that any 

courses started and stopped on the same day will be classed as one day of antibiotic use. 

Antibiotics that were not administered for active clearance of infection (e.g. those given 

as “prophylaxis” against infection or those used for an alternative indication such as a 

pro-motility function in the gastrointestinal tract) were not counted in the analysis.  

Secondary outcome measures included antibiotic days and AFD, expressed as 

continuous variables, at day 7, 14 and 28; ventilator-free days at 28 days; 28-day all-

cause mortality and critical care mortality; sequential organ failure assessment (SOFA) 

at days 3, 7 and 14 with modification for non-neurological assessment(Vincent et al., 

1996); duration of critical care, level 2-, level 3- and hospital-stay; the presence of 

Clostridium difficile and MRSA infections up to hospital discharge, death or 56 days; 

and number of antibiotic-resistant pathogens cultured up to hospital discharge, death or 

56 days 

VFD is defined as the number of days from enrolment up to 28 days that the patient 

breathes unassisted. A common situation in the ICU is that the patient will have a trial 

without assisted breathing and if the patient fails this trial, mechanical ventilation is 

restarted. For this reason the period of unassisted breathing begins when assisted 

breathing is discontinued for a period that is >48hrs. If the patient receives a further 

period of mechanical ventilation once unassisted breathing has been achieved, this is 

subtracted from the VFD. Death within the 28-day period will be assigned zero VFD. 

Mechanical ventilation for surgical procedures is not counted. Unassisted breathing is 

defined as:  
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 Extubated breathing on supplemental oxygen or room air. 

 Open T-tube breathing. 

 Tracheostomy mask breathing. 

 Continuous Positive Airway Pressure (CPAP) <5 cmH2O without pressure 

support. 

2.12 Clinical data collection (validation study and RCT) 

In the validation study clinical data were collected on age, sex, admission category 

(medical or surgical), Acute Physiology and Chronic Health Evaluation (APACHE) 2 

score, use of organ support (renal replacement, vasopressors), corticosteroid use, 

presence of ARDS, temperature on day of BAL, white cell count on day of BAL, 

PaO2/PaCO2/pH on day of BAL, ICU length of stay, hospital length of stay, ICU 

mortality, hospital mortality, antibiotic use on the day of BAL and in the 3 days 

preceding the BAL, and antibiotic use in the 7 days following BAL. Safety measures 

were collected in relation to the BAL including oxygen saturations, heart rate, blood 

pressure, and PaO2:FiO2 ratio. 

Clinical data collection for the RCT was similar to the validation study. Baseline data 

were collected on the day of enrolment (day 0). In addition to the above clinical data, 

reasons for ICU admission were collected, along with functional co-morbidities index 

score(Groll et al., 2005), neutrophil count, platelet count, CRP, positive end-expiratory 

pressure, peak airway pressure, tracheal secretion character, CXR findings, pulse, mean 

arterial pressure, intracranial pressure, and indications for antibiotic use at the time of 

BAL and in the preceding 3 days. Patients were followed up on days 3, 7, 14 and 28, 

and the final follow-up was at death, discharge from hospital or at 56 days. Clinical data 

to assess primary outcome and secondary outcomes were collected. 

2.13 Statistical methods 

2.13.1 Validation study statistical considerations 

The sample size for the validation study was based on validating the negative post-test 

probability (PTP) of VAP (ie. exclusion of VAP) using the IL-1 threshold determined 

in the derivation study(Conway Morris et al., 2010). The derivation study stated that 

BAL IL-1 below 10pg/ml excluded VAP with a PTP of 2.8% (95% CI 0.1-15.9). A 

95% confidence interval of 0-8% around a PTP of 3% was felt to be tight enough for 

clinical use. Estimating the prevalence of VAP to be 24% based on the derivation 
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cohort, 140 patients were required to achieve this and accounting for an approximately 

15% dropout rate, we planned to recruit 160 patients. 

Statistical analysis was performed using SPSS version 19 (Chicago, Illinois, USA), 

Prism 6 (La Jolla, California, USA) and R 3.0.0(Team, 2013). Comparisons of non-

parametric continuous data were performed using Mann-Whitney U test and parametric 

data using the Student’s T-test. Proportions were analysed by Chi-squared test. To 

determine diagnostic utility of the biomarkers the population was dichotomised into a 

VAP and non-VAP group based on the BAL culture thresholds (>10
4
 cfu/ml = VAP). 

ROC curves were constructed for individual biomarkers. Biomarkers were tested in 

combination by log10 transformation of biomarkers with the addition of a constant of 

one before being entered into a logistic regression model. ROC curves were constructed 

from the output of the logistic regression. The AUROC was calculated and optimum 

cut-points determined. The pre-specified method for this was to use the Youden 

index(Youden, 1950). This statistic takes the optimal balance of sensitivity and 

specificity from the ROC curve. In a post-hoc analysis, cut-points were determined by 

fixing a minimum NPV of 95% to ensure a high rule-out performance. The diagnostic 

rules, performance measures and 95% confidence intervals were derived using the 

OptimumCutpoints library in R3.0.0(Lopez-Ranton and Rodriguez-Alvarez, 2013). 

Post-hoc sub-groups analyses were performed to investigate the effect of antibiotic use 

on the biomarker performance, to investigate differences in medical versus surgical 

patients and to investigate differences in VAP, sub-VAP and sterile culture. 

2.13.2 RCT statistical considerations 

As stated earlier, at the time of writing this thesis the RCT was still on going. A sub 

analysis was performed of a group of recruited patients who had a considerable amount 

of follow up data collected. This was not a formal interim analysis, as it was not used to 

inform RCT direction. In fact the results of this analysis was not made available to the 

chief investigator until the trial had closed. This strategy was approved by the trial 

sponsor and by the DMEC. 

In relation to the RCT, the primary outcome measure of measuring a change in the 

frequency distribution of AFD in the 7 days following BAL was reached after a series 

of considerations. Firstly, although AFD is a continuous variable, it is bounded at its 

lower and upper values, 0 and 7 AFDs, and a non-trivial proportion of patients will have 

AFD values at the boundaries. This has implications for power calculations and for 

analysis based on location-shift models (ie. a change in mean, median or mode) since 
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these data are not normally distributed(Lesaffre et al., 1993). For this reason, this 

outcome cannot be handled as a simple continuous variable.  

The initial solution was to use a proportions model. Two groups were created, 0-2 AFD 

and 3-7 AFD and sample size estimated based on the number of patients required to 

detect an increase of 50% in those with 3-7 AFD. Initial estimations were based on 

derivation study data(Conway Morris et al., 2010). Baseline proportions based on those 

data were that 59% of patients had 0-2 AFD and 41% of patients had 3-7 AFDs. To 

detect a 50% increase in the proportion of patients with 3-7 AFD with 80% power and 

an alpha of 0.05, 93 patients were required per trial arm. Allowing for a 15% drop out 

rate, 214 patients were initially estimated. This estimation was, however, based on data 

from a single centre. The completion of the validation study mandated a review of the 

power calculation based on the validation cohort AFD data. In the validation cohort 

78.1% of patients had 0-2 AFD and 21.9% had 3-7 AFD. The difference between the 

AFD proportions had significant consequences for the sample size. A 50% increase 

from 22% to 33% would require 276 per arm of the trial. That would have been too 

large in terms of project budget and expected recruitment period.  

One approach to reducing sample size was to power to a larger effect size. An increase 

in the proportion in the 3-7 AFD group from 22% to 44% (a 100% increase) required a 

sample size of 80 patients per group. Although this was an attractive sample size in 

terms of patient accrual, it is a large effect size. The biomarker sensitivity and 

specificity profile also made this impractical. A specificity of 44% means that 44% of 

non-VAPs will have a biomarker result below the threshold, but that is 29% of the 

whole population of suspected VAP. It then becomes apparent that a small percentage 

of the patients must have a sufficient effect from the intervention to detect the change in 

the whole trial arm. In fact an increase in the proportion of 3-7 AFD from 22% to 44% 

would have required 100% compliance in antibiotic guidance, which was considered an 

unrealistic expectation. 

Using a binary outcome such as proportions in one of two groups misses much of the 

information around change in the primary outcome and large sample sizes are required. 

An alternative approach was to use a change in the frequency distribution of AFD. AFD 

were handled as ordinal values with patients being in 1 of 8 categories, 0-7 AFD. Using 

ordinal outcomes over dichotomous outcomes gives more statistical power, allowing a 

smaller sample size, and captures more of the information around the changes in the 

outcome measure(McHugh et al., 2010). The baseline distribution, established from the 
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validation study, was skewed to the left with the majority of patients having 0-2 AFD (0 

AFD = 57.6%, 1 AFD = 8.6%, 2 AFD = 11.9%). Models were created to demonstrate a 

shift in distribution towards the right representing a move towards more patients having 

more AFD. These models are demonstrated in Table 9. The effect sizes are the sum of 

the squared differences between the proportions for each AFD category. 
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Proportion of AFD (%)  

N per 

arm 

 

Effect 

Size 

0 1 2 3 4 5 6 7 

Standard Care (from validation 

study) 

55 10 10 5 5 5 5 5   

Model 1 40 20 15 5 5 5 5 5 215 0.033 

Model 2 35 20 15 10 5 5 5 5 138 0.052 

Model 3 30 20 15 10 10 5 5 5 96 0.075 

Model 4 25 20 20 10 10 5 5 5 68 0.106 

Table 9: Models of different frequency distributions of AFD. Standard care distribution is based on data 
obtained from validation cohort. The different models demonstrate increasing shifts in the frequency 
distribution towards more AFD in the sample. These distributions are illustrative and different 
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The changes in distribution in the models represent clinically significant changes in 

antibiotic use since any shift towards patients having more AFD is relevant in a clinical 

environment where antibiotic use is so high and antibiotic resistance is such a concern. 

A sample size of 90 patients per arm would have 80% power to be able to detect an 

effect size of 0.0797 (slightly higher than model 3). With approximately 15% predicted 

drop out rate, 210 patients were required. By way of illustration the change in 

distribution from baseline to model 4 is illustrated in Figure 3. 

 

 

Figure 3: Shift in distribution of AFD from baseline to model 4. 
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The analysis plan for the RCT aimed to present baseline clinical characteristics using 

summary statistics without formal tests of equality. The primary outcome, handled as an 

ordinal variable, was analysed by chi-squared test in a 2x8 contingency table. AFD were 

censored to death or hospital discharge. 

. 

Secondary outcomes measures were compared between the trial arms by Chi-squared, 

Mann-Whitney U or T-test depending on the nature of variable and its distribution. 

Data analysis was performed on an intention-to-treat basis. Exploratory per-protocol 

analyses were planned a priori , in particular accounting for patients randomised to the 

intervention arm but in whom the biomarker assay was not reported for technical 

reasons and so defaulted to standard care. 

2.14 Statement of significant contributions by others 

The acknowledgements section outlines the contributions of many individuals who 

assisted in the delivery of two complex studies. This section aims to layout with more 

detail elements of the work that was carried out either entirely by others or with a 

significant contribution by others. This is largely with respect to the statistical elements 

of the research. 

The power calculations for the validation study and the RCT were entirely performed by 

the trial statistician (Niall Anderson). For the validation study analysis, I carried out the 

analysis of demographics and constructed ROC curves for individual biomarkers. The 

statistician calculated optimum cut-points using R and performed the logistic regression 

analysis for the combination of biomarkers (including generation of graphs). I ensured 

that I was able to replicate this process with SPSS, to generate my own logistic 

regression output and graphs.  

The urea testing of serum and BAL fluid as well as the CBA testing of serum (not 

including the pilot testing), was entirely performed by Jonathan Scott, laboratory 

technician. 
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Chapter 3. Results: Validation study 

3.1 Introduction to chapter 

This chapter reports the results of a multi-centre validation study. The purpose of the 

validation study was to determine whether BAL fluid biomarkers could effectively 

exclude VAP when tested in a multi-centre setting. The validation study was a 

preparatory study for the RCT and so the results reported here and considerations 

discussed are framed in the context of their implications for the RCT. 

3.2 Screening and recruitment 

Patients were recruited from 12 ICUs from 9 NHS Trusts between February 2012 and 

February 2013. This was slower than the expected timeline of 6 months (Figure 4).  

 

 

 

Patients were recruited from a large number of general ICUs. Although admission 

diagnosis was not recorded, it would be expected that this is representative of the 

general UK ICU population. Although screening logs were kept on each site, these were 

not monitored through the NCTU since this was an observational study rather than a 

trial. Some sites recorded number of patients screened whereas other sites recorded 
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Figure 4: Validation study accrual. Actual versus predicted accrual rate. 
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screening episodes. Therefore the total number of patients screened is an approximation. 

It is estimated that 1385 patients were screened and of these 415 patients met the 

inclusion criteria. Of these patients 248 were excluded and reasons were recorded for 

220 patients. 87 (21%) patients were excluded due to exclusion criteria or due to safety 

concerns. These included 14 patients with high oxygen requirements, 18 patients with 

high intracranial pressure, 20 with recent MI (this was removed as an exclusion criterion 

during the validation study), 5 with abnormal coagulation and 2 with high airway 

pressure. In addition 28 patients were excluded based on consultant assessment that the 

patient was too unstable for BAL. Patients were also excluded when, despite meeting 

the inclusion criteria, the clinical team did not suspected VAP (ie. either hospital- or 

community-acquired pneumonia) (10 patients), lack of availability of BAL (6), 

suspension of recruitment (5), previous BAL outwith study recruitment (5), patient 

improving and weaning (10), consent declined (15), planned withdrawal of care (21), 

planned extubation (19), lack of availability of research staff (4), administration of new 

antibiotics for VAP episode for >72hrs (5), co-enrolment issues (3) and other 

miscellaneous reasons (8). A further 21 patients were excluded based on a consultant 

decision distinct from the group where patients were classed as ‘too unstable’. The 

screening logs were not detailed enough to establish the reason but included factors 

such as safety, diagnostic issues, clinical indication for BAL and acceptability of BAL. 

One hundred and sixty seven patients were consented and of these 17 patients dropped 

out. Five patients were withdrawn by clinicians or relatives prior to performing BAL, 4 

patients deteriorated following consent making BAL unsafe, 7 samples were 

mishandled in the laboratory (either semi-quantitative culture not performed or sample 

incorrectly stored) and 1 patient improved between consent being obtained and BAL 

being performed. 

One hundred and fifty patients with paired semi-quantitative microbiology results and 

biomarker results were entered into the analysis. VAP was confirmed in 53 patients 

(35%) with cultures >10
4
 cfu/ml. The remaining 97 (65%) with sterile culture (54) or 

culture growth 10
4
 cfu/ml (43) were classed as non-VAP. 

The Standards for Reporting of Diagnostic Accuracy (STARD) diagram is presented in 

Figure 10 (Section 3.8 Biomarker combinations) after rationale for biomarker selection. 
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3.3 Demographics and clinical data 

Demographics were similar between the VAP and non-VAP groups (Table 10). There 

was a predominance of surgical patients in the VAP group. There was no mortality 

difference between the VAP and non-VAP groups and the crude mortality rates were 

consistent with that expected for a sample of patients with suspected VAP(Chastre and 

Fagon, 2002; Bekaert et al., 2011). 

Characteristic VAP (N=53) 
Non-VAP 

(N=97) 
p value 

Age (years) – mean  SD 56.3  17.7 55.1  17.3 0.48 

Male – n (%) 42 (79.2) 69 (71.1) 0.28 

Time from ICU admission to 

consent (days) – median (IQR) 
5 (4-8) 7 (4-11) 0.43 

APACHE II score on admission
* 
- 

mean  SD 
17.3  6.0 19.1  7.8 0.15 

Surgical admission – n (%) 31 (58.5) 41 (42.3) 0.06 

Medical admission – n (%) 22 (41.5) 56 (57.7) 0.06 

Hospital mortality – n (%)† 19 (38.8) 31 (33) 0.49 

ICU mortality – n (%)‡
 13 (24.5) 23 (23.7) 0.68 

Hospital LOS (days) – median 

(IQR)‡ 
39 (25-65) 36 (20-51) 0.26 

ICU LOS (days) – median (IQR)§ 17 (14-34) 17 (11-31) 0.21 

Renal replacement therapy – n (%)
¶
 5 (9.4) 12 (12.5) 0.57 

Vasopressors – n (%)
§
 12 (23.1) 35 (36.5) 0.10 

ARDS criteria – n (%)
//
 8 (16) 19 (21.3) 0.44 

Receipt of corticosteroids – n (%)
*
 7 (13.2) 21 (22.8) 0.16 

Table 10: Demographics of VAP and non-VAP groups. IQR – Interquartile range; APACHE - Acute 
Physiology and Chronic Health Evaluation; ICU - Intensive Care Unit; LOS - length of stay; ARDS - Acute 
Respiratory Distress Syndrome. Data missing for: * 5 patients; † 7 patients; ‡ 21 patients; § 2 patients; ¶ 
1 patient; // 11 patients. 
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Table 11 outlines the clinical/laboratory data for the VAP and non-VAP groups. There 

was a significant difference in WCC between the two groups but with higher WCC in 

the non-VAP group. 

 

 

 

 

3.4 BAL and safety data 

The recruitment schedule identified patients during a morning screening round and 

patients generally underwent BAL in the afternoon. The most common time that BAL 

was sent to the laboratory was 15:30, with the earliest time 10:05 and latest 19:45. The 

frequency of pulmonary anatomical areas in which lavage was performed was: the right 

Parameter VAP (N=53) 
Non-VAP 

(N=97) 

p value 

Temperature – mean  SD (
o
C) 38.0  0.8 37.7  1.1 0.16 

White cell count – mean  SD 

(x10
9
/L) 

13.1  6.3 16.4  7.9 
0.01 

PaO2:FiO2 – median (IQR) 27.6 (20.6-33.9) 28.6 (22.3-39.0) 0.275 

Partial pressure CO2 – mean  SD 5.4  1.0 5.4  1.3 0.81 

pH – mean  SD 
7.44  0.06 

(n=42) 

7.32  0.82 

(n=83) 

0.33 

H
+
 - median (IQR) 

38.1 (33.6-45.4) 

(n=10) 

32.6 (30.6-37.4) 

(n=12) 

0.12 

Table 11: Laboratory data for VAP and non-VAP groups. Missing data: Temp = 0, WCC = 4, PaO2 = 2, 
PaCO2 = 2 
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lower lobe in 70 (47%) patients, the left lower lobe in 40 (27%) patients, the right 

middle lobe in 12 (8%) patients, the left upper lobe in 11 (7%) patients and right upper 

lobe in 6 (4%) patients. In addition 4 patients had bilateral BAL performed, 5 patients 

were recorded as having BAL performed on ‘right’ and 2 patients were recorded as 

having BAL performed on ‘left’. The volume of saline most commonly instilled was 

120mls, in keeping with the BAL SOP. The minimum volume used was 40mls and the 

maximum volume was 320mls. The mean volume retrieved from BAL was 32.0mls (SD 

21.5). 

18 patients had a drop in oxygen saturations of greater than 5% of the starting 

saturations during bronchoscopy and BAL. Amongst these 18 patients the mean that the 

saturations dropped to was 88% (range 79-94%). This fall in oxygen saturations, within 

5% of starting saturations, persisted for 3.7 minutes on average once the bronchoscope 

was removed (range 1-15 minutes). For 9 patients the saturations fell below 90% during 

the BAL, which persisted for 1-3 minutes. Two hours after bronchoscopy patients were 

followed up with regard to oxygen saturations and oxygen requirements. The mean 

oxygen saturation was 97% (range 90-100%) with the lowest recorded at 90%. The 

mean FiO2 was 0.52 (range 0.21-1.0). Comparisons were made of pre-BAL oxygen 

saturations and FiO2 and 2 hours post- BAL saturations and FiO2. Sixty-one patients 

had an increase in FiO2 of greater than 0.1. However not all of these patients had a fall 

in oxygen saturations (ie. some patients had an increase in saturations and therefore 

could have had FiO2 reduced). Nineteen patients had a FiO2 increase of greater than 0.1 

associated with any fall in percentage oxygen saturations and of these the drop in 

saturations was greater than 3% in 7 patients. In addition a total of 15 patients had a fall 

in oxygen saturations of greater than 3% but only 7 of these patients had their FiO2 

increased, suggesting a fall within an acceptable clinical range that did not necessarily 

prompt an increase in FiO2. 

3.5 Microbiology  

The microbiology results took on average 3.27 (SD 2.8) days to be reported to the 

clinical team. The most common time which results were reported was midday. The 

organisms that were cultured at >10
4
 cfu/ml are shown in Table 12. Gram negative 

bacteria accounted for 60% of identified organisms, Gram positive organisms 30%, and 

fungi 10%. The majority of VAP was caused by a single pathogen (39 patients (73%)). 

Polymicrobial VAP occurred in 14 (26%) patients with 12 patients having two micro-

organisms and two patients had three micro-organisms cultured at >10
4 

cfu/ml.
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Organism N 

Methicillin-sensitive Staphylococcus aureus 14 

Escherichia coli 8 

Pseudomonas aeruginosa 7 

Klebsiella pneumoniae 5 

Haemophilus spp 6 

Candida spp 5 

Enterobacter aerogenes 2 

Enterobacter cloacae 1 

Acinetobacter spp 2 

Coliform 2 

Moraxella catarrhalis 2 

Upper respiratory flora* 2 

Streptococcus pneumoniae 2 

Proteus mirabilis 2 

Serratia marcescens 1 

Citrobacter koseri 1 

Stenotrophomonas maltophilia 1 

Streptococcus pyogenes 1 

Methicillin-resistant Staphylococcus aureus 1 

Peptostreptococcus spp. 1 

Yeasts 2 

Streptococcus group C 1 

Table 12: Organisms cultured at >10
4 

cfu/ml.  
*in both cases normal flora growth was in addition to another organism at >10

4
 cfu/ml. N = the 

number of patients in whom the micro-organism in question was isolated from bronchoalveolar 
lavage fluid at >10

4
 cfu/ml. 
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3.6 Antibiotics and AFD 

Data were collected on antibiotics received in the 72 hours before BAL and antibiotics 

received in the 7 days following BAL. One hundred and ten patients were receiving 

antibiotics at the time of BAL with significantly more in the non-VAP than VAP groups 

(82.5% vs 56.6%, p=0.001). The proportion of patients with new antibiotics started in 

the 72 hours before BAL was not significantly different between the two groups (VAP 

15.1%, non-VAP 27.8%, p=0.08). 

The antibiotic days in the 7 days post-BAL was similar in the VAP and non-VAP 

groups with a median (inter-quartile range (IQR)) of 7 (5-7) for the VAP group and 6.5 

(5-7) for the non-VAP group. The median AFD for the VAP group was 0 (0-2) and for 

the non-VAP group was 0 (0-3). The distribution of AFD is illustrated in Figure 5. 

 

 

 

  

Figure 5: AFD expressed as integer value, n=145. Data missing for 5 patients 
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3.7 Biomarker results (standard flex sets) 

3.7.1 Uncorrected biomarker data 

IL-1, IL-8, MMP-8, MMP-8 and HNE were measured in BAL fluid of 150 patients. 

There were significant differences between the VAP and non-VAP groups across all 5 

biomarkers (p<0.001) (Table 13)

Biomarker VAP Non-VAP p value 

IL-1 pg/ml 712 (112-1999) 29 (3-184) <0·001 

IL-8 pg/ml 7546 (1987-23050) 1401 (369-4422) <0·001 

MMP-8 ng/ml 734 (113-2792) 66 (11-325) <0·001 

MMP-9 ng/ml 6840 (1721-22221) 491 (106-3146) <0·001 

HNE ng/ml 3882 (710-11183) 349 (96-1473) <0·001 

Table 13: Uncorrected BAL fluid biomarker concentrations for VAP and non-VAP groups. Data are 
expressed as median and IQR. 
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Since biomarker concentrations were significantly higher in the VAP group than the 

non-VAP group, diagnostic utility was determined by constructing ROC curves. The 

area under the curve reflects the overall ability of the test to discriminate between 

patients with the disease and those without. The ROC curves and AUROC is shown in 

Figure 6. 

 

 

Figure 6: ROC curves and AUC with 95% CI for uncorrected biomarker results. 
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A number of strategies were used to determine the optimum cut-point on the ROC for 

the diagnostic performance. The Youden index is the point that has the optimum 

balance of sensitivity and specificity. This diagnostic performance using the Youden 

index to derive a cut off value is shown in Table 14. 

Biomarker  

Sensitivity 

(95%CI), 

% 

Specificity 

(95% CI), 

%  

PPV 

(95% 

CI) 

NPV 

(95% 

CI) 

+LR 

(95% 

CI) 

-LR 

(95% 

CI) 

PTP 

(95% 

CI), % 

IL-1 

110 pg/ml 

77.4 

(65.0-87.2) 

71.1 

(61.6-79.5) 

0.59 

(0.48-

0.71) 

0.85 

(0.76-

0.92) 

2.68 

(1.90-

3.78) 

0.32 

(0.19-

0.53) 

14.8 

(7.1-22.6) 

IL-8 

6800 pg/ml 

54.7 

(41.3-67.7) 

82.5 

(74.1-89.1) 

0.63 

(0.49-

0.77) 

0.77 

(0.68-

0.84) 

3.12 

(1.90-

5.13) 

0.55 

(0.40-

0.75) 

23.1 

(15.0-

31.2) 

MMP-8 

619 ng/ml 

54.7 

(41.3-67.7) 

87.6 

(80.1-93.2) 

0.71 

(0.56-

0.83) 

0.78 

(0.70-

0.85) 

4.42 

(2.47-

7.93) 

0.52 

(0.38-

0.71) 

22.0 

(14.2-

29.8) 

MMP-9 

1675 ng/ml 

77.4 

(65.0-87.2) 

68.0 

(58.4-76.8) 

0.57 

(0.45-

0.68) 

0.85 

(0.76-

0.91) 

2.42 

(1.75-

3.35) 

0.33 

(0.20-

0.56) 

15.4 

(7.4-23.4) 

HNE 

2078 ng/ml 

64.2 

(50.8-76.2) 

81.4 

(72.9-88.3) 

0.65 

(0.52-

0.77) 

0.81 

(0.72-

0.88) 

3.46 

(2.18-

5.49) 

0.44 

(0.30-

0.64) 

19.4 

(11.6-

27.2) 

Table 14: Diagnostic performance at Youden index for uncorrected BAL fluid biomarkers. PPV, 
positive predictive value; NPV, negative predictive value; +LR, positive likelihood ratio; -LR, negative 
likelihood ratio; PTP, post-test probability. 
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The ideal diagnostic test would be able to effectively rule-in and rule-out a disease. 

Although the sensitivites and specificities are generally high, they are insufficient for 

any useful diagnostic purpose. Furthermore, since the purpose was to validate a rule-out 

test, the negative post-test probabilities (PTP) at the Youden index are not informative 

for this purpose. An alternative strategy was to set a minimum negative predictive value 

(NPV) at 95%. The cut-points at this level and the corresponding diagnostic 

performance are shown in Table 15. 

 

 

 

Biomarker Sensitivity 

(95% CI), 

% 

Specificity 

(95% CI), 

% 

PPV 

(95% 

CI) 

NPV 

(95% 

CI) 

+LR 

(95% 

CI) 

-LR 

(95% 

CI) 

PTP  

(95% 

CI), % 

IL-1 

17 pg/ml 96.2 

(87.2-99.0) 

43.3 

(33.9-53.2) 

0.48 

(0.39-

0.58) 

0.96 

(0.85-

0.99) 

1.70 

(1.41-

2.04) 

0.09 

(0.02-

0.35) 

4.5 

(3.1-5.1) 

IL-8 

382 pg/ml 98.1 

(90.1-99.7) 

24.7 

(17.2-34.2) 

0.42 

(0.33-

0.50) 

0.96 

(0.80-

0.99) 

1.30 

(1.16-

1.47) 

0.08 

(0.01-

0.55) 

4.0 

(0.7-

19.5) 

MMP-8 

160 pg/ml 100 

(93.3-100) 

5.2 

(1.7-11.6) 

0.37 

(0.29-

0.45) 

1.0 

(0.57-

1.0) 

1.05 

(1.01-

1.10) 

0.0 

(NE) 

0.0 

(0.0-

0.43) 

MMP-9 

296 ng/ml 96.2 

(87.0-99.5) 

43.4 

(33.3-53.7) 

0.48 

0.38-

0.58) 

0.96 

(0.85-

0.98) 

1.70 

(1.41-

2.04) 

0.09 

(0.02-

0.35) 

4.5 

(3.9-

15.3) 

HNE 

161 ng/ml 98.1 

(89.9-99.9) 

34.0 

(24.7-44.3) 

0.45 

(0.36-

0.54) 

0.97 

(0.85-

0.98) 

1.49 

(1.28-

1.72) 

0.06 

(0.01-

0.39) 

2.9 

(1.9-

15.0) 

Table 15: Diagnostic performance at cut-point with minimum NPV of 95% for uncorrected BAL fluid 
biomarkers. NE, Not evaluable. 
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Setting the minimum NPV at 95%, IL-1 and MMP-9 have the best profile of 

sensitivity and specificity. To further illustrate the rule-out performance of this cut-point 

for IL-1, Figure 7 plots VAP and non-VAP values on a logarithmic scale with the cut-

point marked. This plot highlights the proportion of the population of suspected VAP 

who could be correctly identified as not having VAP, these are the non-VAP patients 

who fall below the cut-point line (bottom right, ‘True negatives’). Patients with VAP 

who fall below the line are ‘false negatives’ (bottom left) and setting a minimum NPV 

of 95% aims to minimise this number. 

 

Figure 7: Scatterplot of IL-1 on a logarithmic scale in the VAP and the non-VAP groups. The horizontal 
dotted line represents 17pg/ml. 43.3% of non-VAP patients and 3.8% of VAP patients fall below this 
level. 
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3.7.2 Urea values and urea-corrected biomarkers 

Urea was measured in BAL and serum and used to calculate a dilution factor for 

correction of biomarker levels. The mean serum urea was 40.9mg/dL (SD 21.9) and the 

mean BAL urea was 4.1mg/dL (SD 4.8). The mean dilution factor was 39.0 (SD 81.5), 

but with a minimum value of 0.9 and a maximum value of 709.4 the range was very 

high. Five patients could not have a dilution factor calculated because the BAL urea was 

unrecordable, therefore this section analyses 145 patients (94 non-VAP and 51 VAP). 

A significant difference between the VAP and non-VAP groups remained after urea-

correction but levels are considerably higher than uncorrected values (Table 16). ROC 

curves were constructed (Figure 8) and cut-points determined using the same strategy 

as with the uncorrected values using the Youden index (Table 17) and using a 

minimum NPV threshold of 95% (Table 18).  

Biomarker urea-

corrected 
VAP Non-VAP p value 

IL-1 pg/ml 8100 (3056-21255) 521 (55-3731) <0·001 

IL-8 ng/ml 100.5 (56.4-222.1) 30.7 (7.9-8.5) <0·001 

MMP-8 ng/ml 8633(4119-31234) 1550 (286-7738) <0·001 

MMP-9 mg/ml 81.3 (34.2-261.7) 13.7 (2.6-65.1) <0·001 

HNE mg/ml 47.8 (21.0-116.5) 8.0 (2.0-28.0) <0·001 

 

 

 

Table 16: BAL fluid urea-corrected biomarker concentrations for VAP and non-VAP groups. Data 
are expressed as median and IQR. Note change in units from uncorrected biomarker 
concentrations. n=145. 
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Figure 8: ROC curves and AUC with 95% CI for urea-corrected biomarker results. 
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Biomarker 

(urea-

corrected)  

Sensitivity 

(95% CI), 

%  

Specificity 

(95% CI), 

% 

PPV 

(95% 

CI) 

NPV 

(95% 

CI) 

+LR 

(95% 

CI) 

-LR 

(95% 

CI) 

PTP  

(95% 

CI),% 

IL-1 

2566 pg/ml 

82.3 

(72.9-

93.1) 

71.3 

(62.1-

80.2) 

0.61 

(0.50-

0.72) 

0.88 

(0.81-

0.95) 

2.87 

(2.06-

4.02) 

0.25 

(0.13-

0.44) 

11.8 

(4.5-

18.6) 

IL-8 

67806 pg/ml 

72.5 

(59.6-

83.8) 

72.3 

(63.3-

81.1) 

0.59 

(0.46-

0.70) 

0.83 

(0.74-

0.90) 

2.62 

(1.79-

3.70) 

0.38 

(0.25-

0.61) 

17.1 

(9.5-

25.7) 

MMP-8 

2519 ng/ml 

86.3 

(77.7-

95.9) 

58.5 

(49.0-

68.6) 

0.53 

(0.43-

0.64) 

0.89 

(0.81-

0.97) 

2.08 

(1.62-

2.73) 

0.24 

(0.11-

0.46) 

11.3 

(3.3-

18.6) 

MMP-9 

25619 ng/ml 

84.3 

(75.3-

94.5) 

59.6 

(50.0-

69.6) 

0.53 

(0.43-

0.64) 

0.88 

(0.80-

0.96) 

2.09 

(1.62-

2.76) 

0.26 

(0.13-

0.49) 

12.5 

(4.8-

20.0) 

HNE 

16886 ng/ml 

84.3 

(75.2-

94.5) 

66.0 

(56.6-

75.4) 

0.57 

(0.47-

0.69) 

0.89 

(0.82-

0.96) 

2.48 

(1.85-

3.37) 

0.24 

(0.12-

0.44) 

11.4 

(3.9-

18.4) 

Table 17: Diagnostic performance at Youden index for urea-corrected biomarkers 
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The AUROC of urea-corrected values remains close to the uncorrected values. 

Furthermore the diagnostic performance at the cut-point of the Youden index is similar, 

if not better, than for the uncorrected values. However when setting a minimum NPV of 

95%, the specificities of the urea-corrected cut-points become unacceptably low.  

3.8 Biomarker combinations 

Biomarkers were tested in combination using uncorrected biomarker values. Urea-

corrected biomarker values did not offer greater discriminatory value and were 

associated with significant logistical challenges (see 3.12 Discussion). Therefore urea-

corrected values were not tested further in the biomarker combinations. Combinations 

of biomarkers were modelled after log10 transformation with the addition of a constant 

of 1 (to remove zeros). All biomarkers were highly correlated and IL-1β had the greatest 

prognostic value, as reflected by the p-value of the IL-1β covariant in the equations 

below. Therefore combinations of biomarkers were all tested in combination with IL-

1β.  

Biomarker (urea-

corrected)  

Sensitivity 

(95% 

CI), %  

Specificity 

(95% 

CI), %  

PPV 

(95% 

CI) 

NPV 

(95% 

CI) 

+LR 

(95% 

CI) 

-LR 

(95% 

CI) 

PTP 

(95% 

CI), % 

IL-1 

41 pg/ml 

100 

(100-100) 

24.5 

(16.1-

33.3) 

0.42 

(0.33-

0.51) 

1.0 

(1.0-

1.0) 

1.32 

(1.19-

1.49) 

0.0 

(NE) 

0 

(0-0) 

IL-8 

1161 pg/ml 

100 

(100-100) 

7.4 

(2.1-12.4) 

0.37 

(0.29-

0.45) 

1.0 

(1.0-

1.0) 

1.08 

(1.02-

1.14) 

0.0 

(NE) 

0 

(0-0) 

MMP-8 

400 pg/ml 

100 

(100-100) 

3.2 

(0-6.5) 

0.36 

(0.28-

0.44) 

1.0 

(1.0-

1.0) 

1.03 

(1.0-

1.07) 

0.0 

(NE) 

0 

(0.0-

0.0) 

MMP-9 

3376 ng/ml 

98.0 

(94.5-100) 

28.7 

(19.9-

37.9) 

0.43 

(0.34-

0.52) 

0.96 

(0.90-

1.0) 

1.38 

(1.21-

1.57) 

0.07 

(0.01-

0.47) 

3.6 

(0.0-

10.1) 

HNE 

581 ng/ml 

100 

(100-100) 

11.7 

(5.0-17.7) 

0.38 

(0.30-

0.46) 

1.0 

(1.0-

1.0) 

1.12 

(1.05-

1.21) 

0.0 

(NE) 

0 

(0-0) 

Table 18: Diagnostic performance of urea-corrected biomarkers setting minimum NPV at 95%. NE, 
Not evaluable 
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The equations for the logistic regressions tested are shown below (Table 19-22): 

 

IL-1β and IL-8: 

-2.738 + 1.463 x Log10(1+IL1β) – 0.272 x Log10(1+IL8) 

IL-1β/IL-8 B SE Wald p-value 

Log10 (1+IL-1β) 1.463 0.352 17.287 0.000 

Log10 (1+IL-8) -0.272 0.371 0.538 0.463 

Constant -2.738 0.915 8.953 0.003 

 

IL1β, IL-8 and MMP-9: 

-2.806 + 1.397 x Log10 (1+IL1β) – 0.314 x Log10 (1+IL8) + 0.109 x Log10 

(1+MMP9) 

IL-1β/IL-8/MMP-9 B SE Wald p-value 

Log10 (1+IL-1β) 1.397 0.457 9.352 0.002 

Log10 (1+IL-8) -0.314 0.417 0.569 0.451 

Log10 (1+MMP-9) 0.109 0.476 0.053 0.819 

Constant -2.806 0.972 8.327 0.004 

Table 19: Variables in logistic regression. IL-1β/IL-8. B = coefficient, SE = standard error, Wald = Wald 
chi-squared. 

Table 20: Variables in logistic regression. IL-1β/IL-8/MMP-9. B = coefficient, SE = standard error, Wald = 
Wald chi-squared. 
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IL-1β, IL-8, MMP-9 and MMP-8: 

-2.999 + 1.445 x Log10(1+IL1β) – 0.266 x Log10(1+IL8) + 0.274 x Log10(1+MMP9) 

– 0.266 x Log10(1+MMP8) 

IL-1β/IL-8/MMP-

9/MMP-8 

B SE Wald p-value 

Log10 (1+IL-1β) 1.445 0.478 9.147 0.002 

Log10 (1+IL-8) -0.266 0.435 0.375 0.540 

Log10 (1+MMP-9) 0.274 0.608 0.203 0.652 

Log10 (1+MMP-8) -0.266 0.615 0.187 0.666 

Constant -2.999 1.093 7.529 0.006 

Table 21: Variables in logistic regression. IL-1β/IL-8/MMP-9/MMP-8. B = coefficient, SE = standard 
error, Wald = Wald chi-squared. 
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IL-1β, IL-8, MMP-9, MMP-8 and HNE: 

-3.151 + 1.417 x Log10(1+IL1β) – 0.286 x Log10(1+IL8) + 0.206 x Log10(1+MMP9) 

– 0.392 x Log10(1+MMP8) + 0.263 x Log10(1+HNE) 

IL-1β/IL-8/MMP-

9/MMP-8/HNE 

B SE Wald p-value 

Log10 (1+IL-1β) 1.417 0.484 8.584 0.003 

Log10 (1+IL-8) -0.286 0.442 0.420 0.517 

Log10 (1+MMP-9) 0.206 0.643 0.103 0.748 

Log10 (1+MMP-8) -0.392 0.739 0.281 0.596 

Log10 (1+HNE) 0.263 0.710 0.137 0.711 

Constant 
-3.151 1.191 6.993 0.008 

 

From these predictive models ROC curves were constructed as with the single 

biomarkers and once again coordinates were selected to give a minimum NPV of 95%. 

The cut-points and the corresponding diagnostic parameters are shown in Table 23 

below. 

  

Table 22: Variables in logistic regression. IL-1β/IL-8/MMP-9/MMP-8/HNE. B = coefficient, SE = 
standard error, Wald = Wald chi-squared. 
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As can be seen from the combinations of markers, there is little improvement in 

diagnostic performance beyond IL-1β as this is the predominant component of all 

regression equations. 

The cut-points used in the single biomarkers correspond to a specific concentration. 

This is less clear in the combinations as the cut-point is derived from the linear 

predictive scale. The cut-point for IL-1 as a single biomarker is 17pg/ml, which is 

above the second point on the standard curve against which it is measured. It was 

necessary to determine the IL-1 level at the cut-point in the combinations to ensure it 

fell within the standard curve. 

To determine the IL-1 level at the cut-point, plots were constructed of the linear 

predictor against Log10 (1+IL1β) with the cut-point marked. The plot below for the 

combination of IL-1β and IL-8 shows that the cut-point corresponds to an IL-1β level 

that is approximately 15pg/ml (Figure 9). Cut-points of other combinations correspond 

with a similar level of IL-1β ranging between 16-19pg/ml. (A plot equivalent to Figure 

Biomarker 

combination  

Sensitivity 

(95% CI), 

%  

Specificity 

(95% CI),  

%  

PPV 

(95% 

CI) 

NPV 

(95% 

CI) 

+LR 

(95% 

CI) 

-LR 

(95% 

CI) 

PTP 

(95% 

CI),  

% 

IL-1/IL-8 

-1.7616 

100 

(93.2-100) 

44.3 

(34.2-

54.8) 

0.50 

(0.39-

0.59) 

1.0 

(0.92-

1.0) 

1.80 

(1.50-

2.15) 

0.0 

(NE) 

0.0 

(0.0-

9.2) 

IL-1/IL-8/ 

MMP-9 

-1.7172 

98.1 

(89.9-100) 

44.3 

(34.2-

54.8) 

0.49 

(0.39-

0.60) 

0.98 

(0.88-

0.98) 

1.76 

(1.47-

2.11) 

0.04 

(0.01-

0.30) 

2.3 

(1.5-

11.9) 

IL-1/IL-8/ 

MMP-8/MMP-

9 

-1.7015 

100 

(93.3-100) 

46.4 

(36.2-

56.8) 

0.51 

(0.41-

0.60) 

1.0 

(0.92-

1.0) 

1.87 

(1.55-

2.24) 

0.0 

(NE) 

0.0 

(0.0-

7.8) 

IL-1/ IL-8/ 

MMP-8/MMP-

9/ HNE 

-1.6464 

98.1 

(90.0-100) 

46.4 

(36.2-

56.8) 

0.50 

(0.40-

0.60) 

0.98 

(0.89-

0.99) 

1.83 

(1.52-

2.21) 

0.04 

(0.01-

0.29) 

2.2 

(1.4-

11.5) 

Table 23: Diagnostic performance for biomarker combinations at cut-points from predictive model. NE, Not 
evaluable 
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9 could also be constructed to display the contribution of IL-8 to the overall prediction; 

however, the range of IL-8 values observed was far above the limit of detection, 

therefore the same concern around prediction from values below the standard curve did 

not exist for this biomarker and this plot is not shown.) 

 

 

 

 

  

Figure 9: Plot of linear predictor of IL-1 and IL-8 against Log10(1+IL-1). Horizontal dotted line 
represents the cut-point and vertical line marks the point that this intersects with the diagonal line 

and therefore the IL-1 level at the cut-point. 
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The ‘best’ biomarker combination had to be identified to take forward into the RCT 

phase. All of these combinations of biomarkers make minor changes to diagnostic 

performance in comparison to IL-1 as a single biomarker. Although the four biomarker 

combination of IL-1β, IL-8, MMP-8 and MMP-9 has the highest specificity and 

sensitivity, limitations in terms of assay consistency and cost did not favour this 

combination (see 3.12 Discussion). Therefore the IL-1β and IL-8 combination was 

taken forward to the RCT and its diagnostic performance is demonstrated in the 

following STARD diagram (Figure 10) and 95% CI are provided below (Table 24). 

 

 

Table 24: Diagnostic performance for combination of IL-1b and IL-8 with 95% CI. NE, Not evaluable 

Biomarker 

combination  

Sensitivity  

(95% CI) 

Specificity  

(95% CI) 

PPV 

(95% CI) 

NPV 

(95% CI) 

+LR 

(95% CI) 

-LR 

(95% CI) 

PTP (%) 

(95% CI) 

IL-1/IL-8 

-1.7616 

100% 

(93.2-

100.0) 

44.3% 

(34.2-54.8) 

0.50 

(0.39-

0.59) 

1.0 

(0.92-

1.0) 

1.80 

(1.50-

2.15) 

0.0 

(NE) 

0.0 

(0.0-9.2) 
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Figure 10: STARD diagram for combination of IL-1 and IL-8 
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By way of additional ‘validation’ of this diagnostic rule, the regression equation was 

applied to the cohort of patients from the original derivation study(Conway Morris et 

al., 2010). Applying the same threshold -1.76 the sensitivity was 94% (95% CI 71-99%) 

and specificity was 58% (95% CI 44-71%). These results are reassuringly close to the 

main analysis. 

 

3.9 Biomarker results (enhanced sensitivity) 

The lowest point on the standard curve for IL-1 is 5pg/ml and since the cut-point for 

IL-1 was 17pg/ml, this falls between the second and third standard curve point. The 

area of the standard curve that has the lowest intra-assay variability is the linear segment 

of the curve. Therefore IL-1 and IL-8 were also measured using enhanced sensitivity 

CBA flex sets. The standard range for the enhanced sensitivity flex set is 274-200,000 

fg/ml. The cut-point of 17pg/ml would fall within the linear segment of this standard 

curve. 

A total of 143 samples (50 VAP, 93 non-VAP) were available to be tested by the ES 

assay. Biomarker concentrations using ES assay closely replicated the standard CBA 

(Table 25). 

Biomarker (ES assay) VAP Non-VAP 

IL-1 pg/ml 527.3 (79.6 – 1981.9) 25.0 (5.7 – 164.7) 

IL-8 pg/ml 6957 (1688-21551) 1347 (277 – 5858) 

 

 

ROC curves were constructed for ES IL-1 and ES IL-8 and these closely reflected the 

standard CBA kit results (Figure 11). For ES IL-1 a cut-point of 22.5 pg/ml had a 

sensitivity of 96.0% and a specificity of 47.3%. For ES IL-8 a cut-point of 313.2 pg/ml 

Table 25: Concentrations of IL-1 and IL-8 when measured with ES CBA assay for VAP and non-VAP 
group. Concentrations expressed as median and IQR. 
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had a sensitivity of 98.0% and a specificity of 26.9%. Again these results closely 

reflected the results of the standard CBA assay. 

 
 

 

 

A combination of ES IL-1β and ES IL-8 were modelled by logistic regression. The 

predictive model was given by the equation: 

-5.480 + 1.606 x Log10 (1+ES IL1β) – 0.507 x Log10 (1 + ES IL8) 

The AUROC curve was 0.81 (95% CI 0.74 - 0.88). Taking a cut-point that corresponds 

to the performance of the standard, uncorrected biomarkers, a cut-point of -1.7045 had a 

sensitivity of 100% and a specificity of 41.9%.  

The biomarker diagnostic profile from the ES assay, as single biomarkers and in 

combination, closely reflected the standard CBA assay but did not provide greater 

diagnostic performance. This offered reassurance of the initial results, in that they were 

so closely replicated in a different assay.  

  

Figure 11: ROC and AUROC for ES IL-1b and ES IL-8 
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3.10 Serum biomarkers 

A pilot group of 20 serum samples (RVI 1-22, RVI 2 and 10 not included in analysis) 

were analysed with the primary purpose of determining which biomarkers were 

detectable in serum. No comparisons were made at this stage between VAP and non-

VAP (Table 26). 

Biomarker (n=20) Median (IQR) 

IL-8 pg/ml 51.1 (34.5-137.6) 

IL-1β pg/ml 0.0 (0.0-0.0) 

MMP-8 ng/ml 71.0 (12.2-108.4) 

MMP-9 ng/ml 1616.4 (594.5-4384.2) 

HNE ng/ml 680.4 (329.2-907.5) 

IL-6 pg/ml 82.6 (57.1-200.7) 

TNFα pg/ml 12.1 (2.8-18.0) 

IL-12p70 pg/ml 0.0 (0.0-0.0) 

Table 26: Levels of 8 biomarkers measured in serum of a pilot of 20 patients 
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This pilot data suggested that IL-1β, IL-12p70 and TNFα would not be detectable in any 

meaningful concentrations in serum of patients with suspected VAP. Therefore IL-6, 

IL-8, MMP-8, MMP-9 and HNE were tested in the cohort of validation study patients 

(n=150).  

There were no significant differences between the VAP and non-VAP patients (Table 

27), and consequently the AUROC curves did not demonstrate any diagnostic utility.  

 

Biomarker VAP (n=52) Non-VAP (n=97) p value AUROC 

IL-6 pg/ml 103.4 (62.95-238.6) 101.5 (29.11-237.3) 0.299 0.552 

IL-8 pg/ml 75.32 (36.33-166.3) 71.12 (36.26-195.6) 0.669 0.479 

MMP-8 ng/ml 70.00 (29.18-129.2) 73.07 (23.29-120.6) 0.802 0.512 

MMP-9 ng/ml 1380 (720.6-2042) 1033 (485.6-1770) 0.069 0.591 

HNE ng/ml 797.3 (449.0-1146) 783.1 (353.8-1751) 0.892 0.507 

 

 

3.11 Sub-group analysis 

Post hoc sub-analyses were performed to determine the effect of antibiotic use on the 

BAL biomarker analysis, to explore differences between medical and surgical patients 

and the effect of sterile culture or sub-threshold pathogen growth in comparison to 

confirmed VAP. 

3.11.1 Effect of antibiotic on diagnostic performance 

There was high use of antibiotics at the time of BAL with a greater proportion of non-

VAP than VAP patients being on antibiotics at the time of BAL (82.5% vs 56.6%, 

p=0.001). The concern was that patients might be inappropriately assigned as ‘non-

Table 27: Serum biomarker concentrations in VAP and non-VAP patients.  
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VAP’ due to falsely negative culture due to the antibiotics. It was reassuring that the 

proportion of patients having new antibiotics started in the 72 hours prior to BAL was 

similar in both groups (VAP 15.1%, non-VAP 27.8%, p=0.08)  

It is conceivable that patients with VAP and therefore local pulmonary inflammation 

but who are falsely classed as non-VAP, could still have a local inflammatory profile 

that reflects VAP (ie. high biomarkers). If this was the case, the effect of antibiotics 

would be to reduce the diagnostic performance of the biomarkers. The biomarker 

analysis was performed with respect to IL-1β, initially including patients that were not 

in receipt of any antibiotics and then in those that did not have any new antibiotics 

started in the 72 hours before BAL. 

Patients who were not in receipt of any antibiotics were few and this therefore limits 

this analysis. 23 patients with VAP and 17 patients with non-VAP were included and 

significant differences were demonstrated in IL-1β concentration, with a median of 

796pg/ml in the VAP group and 40pg/ml in the non-VAP group (p=0.0012). A ROC 

curve was constructed and the AUROC was 0.80 (95% CI 0.65-0.94). The specific 

diagnostic performance is of limited value given the small numbers but at the threshold 

close to the main analysis of 17.9pg/ml, the sensitivity is 91% (95% CI 72-99%) and 

specificity is 29% (95% CI 10-56%). The wide CI highlights the limitations of these 

small numbers. 

The sub-group of patients who had no new antibiotics started in the 72 hours prior to 

BAL was larger with 46 VAP patients and 69 non-VAP patients included. Again there 

were significant differences in the concentration of IL-1β with a median in the VAP 

group of 590pg/ml and a median of 30pg/ml in the non-VAP group (p <0.0001). The 

AUROC was 0.78 (95% CI 0.70 – 0.87). At a cut-point of 17pg/ml the sensitivity was 

93% (95% CI 82-98%) and the specificity was 39% (95% CI 27-52%). 

The overall trend of this sub-group analysis was reassuring in that it closely reflected 

the results of the main analysis and in fact the diagnostic performance was actually 

worse in this sub-group analysis. Although it does not entirely determine whether 

antibiotics could have influenced individual patients’ biomarkers, it does suggest that 

there was not a significant effect in the overall analysis. 
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3.11.2  Sub-group analysis of medical and surgical patients 

It is of interest to determine whether the diagnostic rule has the same diagnostic 

performance in different patient groups and a sub-group analysis was performed on 

medical and surgical patients.  

72 surgical and 68 medical patients were analysed separately. Considering individual 

biomarkers, the AUROC were greater for surgical patients (Table 28). 

 

 

Biomarker AUROC Surgical AUROC Medical 

IL-8 0.80 (0.70-0.90) 0.66 (0.52-0.79) 

IL-1β 0.84 (0.75-0.93) 0.76 (0.65-0.87) 

MMP-8 0.80 (0.69-0.90) 0.71 (0.58-0.84) 

MMP-9 0.82 (0.72-0.92) 0.74 (0.62-0.87) 

HNE 0.84 (0.74-0.93) 0.71 (0.58-0.84) 

 

Applying the IL-1β and IL-8 predictive model and applying the cut-point of -1.7616, the 

sensitivity in surgical patients was 100% and specificity was 22%. Amongst medical 

patients the sensitivity was 100% and specificity was 41%. Importantly the sensitivity 

of the cut-point is high in both groups, which maintains its value to rule-out VAP but 

the specificities vary, which may result in different rates of false positives in different 

patient groups. 

3.11.3 Sub-group analysis of VAP, sub-VAP and sterile culture 

The threshold used to define VAP at >10
4
 cfu/ml, while derived from autopsy 

studies(Chastre et al., 1995) and although widely accepted, is contentious. Measurement 

of biomarkers of the local inflammatory response could add clarity in determining 

whether, in terms of the inflammatory response, this threshold is discriminatory. Since 

the cultures taken were semi-quantitative rather than fully quantitative cultures, it is not 

Table 28: AUROC for the 5 biomarkers for medical and surgical categories 
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possible to plot inflammatory response against culture growth, which potentially could 

allow for a biomarker-based threshold to be determined. 

Biomarkers were compared between those who had confirmed VAP, those who had 

sub-threshold culture, and those who had a sterile culture (Table 29). 

Comparisons across all groups were significant by Kruskal-Wallis test (Figure 12). 

Dunn’s multiple comparison post hoc tests were performed between all groups. There 

were significant differences between VAP and both the sterile and the sub-VAP groups 

across all 5 biomarkers. There were no significant differences between the sterile and 

sub-VAP groups for any biomarker. 

 

 

Biomarker Sterile (n=54) Sub-VAP (n=44) VAP (n=52) 

IL-1β pg/ml 12.4 (1.1-136.2) 62.0 (12.8-452.1) 685.9 (110.8-2065) 

IL-8 pg/ml 1061 (246.7-4283) 2241 (916.3-5710) 7634 (1956-23505) 

MMP-8 ng/ml 42.9 (5.29-209.7) 152.2 (28.3-477.4) 684.7 (113.4-2910) 

MMP-9 ng/ml 247.5 (82.5-1848) 1151 (243.7-4847) 6442 (1698-21011) 

HNE ng/ml 214.4 (64.5-1305) 596.4 (176.7-2006) 3836 (680.3-11210) 

Table 29: Biomarker levels between VAP, sub-VAP and sterile culture. Data reported as median and IQR. 
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Figure 12: Comparison of biomarker levels between VAP, sub-VAP and sterile culture. Significant 
differences across all 5 biomarkers by Kruskal-Wallis test (p<0.0001). Significant differences 
between VAP, sub-VAP and sterile groups across all biomarkers by Dunn’s multiple comparison 
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The significant difference between the VAP and the sub-VAP group does suggest that 

the diagnostic threshold of >10
4
 cfu/ml is associated with a difference in immunological 

signal that can be detected. This suggests that this culture threshold does represent 

different inflammatory states. 

3.12 Discussion  

This validation study has successfully demonstrated that BAL fluid biomarkers, in 

particular IL-1, can effectively rule-out VAP, when tested in a multi-centre setting. As 

one might expect in a validation study, the diagnostic performance using the same 

statistical method as the derivation study, the Youden index, did not deliver as high 

sensitivity and specificity. Using the Youden index, the cut-point of 110pg/ml for IL-1β 

had a sensitivity of 77% and a specificity of 71%. These values are nonetheless high 

and of themselves they do successfully validate the previous diagnostic utility of IL-1β. 

These values are however not sufficiently discriminatory to be used as a diagnostic rule 

for clinical application. Therefore a minimum NPV of 95% was set to ensure sufficient 

‘rule-out’ performance. The Youden index represents a point on the ROC curve with the 

optimum balance of sensitivity and specificity, taking alternative points on the ROC 

curve will change the balance of sensitivity and specificity. Opting to achieve a 

minimum NPV of 95% to achieve a rule-out profile, the increase in sensitivity comes 

with a compromise in the specificity.  

It is noticeable that the cut-points determined in the validation study are considerably 

higher than the derivation study, particularly considering that the derivation study 

reported urea-corrected biomarkers. One explanation could be that the volumes of saline 

instilled for the BAL was different with 120mls in this study and 200mls in the 

derivation study. 

The selection of biomarker combination to take forward from the validation study to the 

RCT involved a number of important considerations. The primary consideration was the 

statistical performance of the biomarker test and the balance of sensitivity and 

specificity. Of the combinations tested the combinations of IL-1/IL-8 (sensitivity 

100%, specificity 44.3%) and IL-1/IL-8/MMP-8/MMP-9 (sensitivity 100%, specificity 

46.4%), had the best profile. In fact with the high NPV of 1 both of these combinations 

represent the near perfect rule-out test profile 

A further consideration was that the biomarker assay used in the RCT would have to be 

robust enough to be consistent in a pragmatic trial. IL-1 and IL-8 were supplied as 
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commercial kits whereas MMP-8, MMP-9 and HNE were custom made for the 

validation study. In practical terms handling the IL-1 and IL-8 reagents is logistically 

easier. For example kits are supplied with a lyophilised standard. In contrast the custom 

made beads were supplied with aliquots of standard that were reconstituted and stored at 

-80
o
C. The commercial kits performed in a more consistent manner during the 

validation sample testing. There was concern regarding the complexity of reagent 

handling, storage and consistency for the custom made kits. In addition there were cost 

implication to increasing numbers of biomarkers when considering the difference 

between the IL-1/IL-8 combination and the IL-1/IL-8/MMP-8/MMP-9 combination 

had only marginal statistical differences. Based on these considerations, the 

combination that was taken forward to the RCT phase was IL-1/IL-8.  

Beyond the combination of biomarkers to be used in the RCT, these data also informed 

the RCT planning in terms of the biomarker assay to be used. Again, important 

considerations were the practicalities of utilising the assay in a large multi-centre RCT, 

aiming to minimise logistical barriers and ensure robustness of the assay in that setting. 

The first was regarding urea-correction of biomarker levels. The urea-corrected values 

did not deliver a biomarker performance of sufficient discriminatory value to be used in 

a RCT. In addition to this, some BAL had unrecordable urea, which made urea-

correction impossible in these patients. Since urea-correction is of doubtful value in this 

regard(Ward et al., 1992, 2000), it was felt to be a level of complexity that could be 

abandoned. 

The enhanced sensitivity assay was also considered. This was an attractive alternative 

since the IL-1 cut-point would fall on the linear section of the standard curve with 

expected lower intra-assay variability. Despite this potential benefit, there were practical 

barriers to using the enhanced sensitivity kit in the RCT. Bronchoscopy and BAL were 

often not performed until mid or late afternoon and since biomarkers were measured in 

real-time in the RCT, the assay would not commence until late afternoon. The standard 

flex set assay takes approximately 5 hours to complete and the enhanced sensitivity 

assay approximately 7 hours. This difference was important in relation to buy-in from 

the laboratories and willingness of technicians to work after hours. This also has 

implications for delivery of the trial intervention and future implementation into clinical 

service. Further to this, the enhanced sensitivity assay had not undergone the same 

derivation and validation process that the standard flex sets had undergone and so taking 
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it straight to RCT would have been questionable. Therefore the standard CBA assay 

was used in the RCT. 

The BAL method used reflects both a strength of this study and a weakness. To my 

knowledge, this is the first study to successfully validate BAL-based diagnostics for 

VAP in a multi-centre study. Previous studies have used a wide range of diagnostic 

methods including BAL (with different procedures), blind-BAL and ETA(el-Ebiary et 

al., 1995; Mathy-Hartert et al., 2000; Duflo et al., 2002; Gibot et al., 2004; Determann 

et al., 2005; Horonenko et al., 2007; Huh et al., 2008; Linssen et al., 2008; Luyt et al., 

2008; Oudhuis et al., 2009; Jung et al., 2010; Vanspauwen et al., 2011; Wu et al., 

2011). It has already been highlighted that the differences in BAL methods between the 

derivation study and the validation study could account for quite considerable 

differences in biomarker concentrations. However the differences in BAL and blind-

BAL or ETA, could be expected to be more considerable as these could reflect entirely 

different anatomical regions (lung parenchyma vs bronchial area). Notwithstanding the 

differences in BAL instillation volume used, both the derivation study and the 

validation study used a similar BAL SOP and this consistency could well contribute to 

the successful validation of these biomarkers. The limitation of this is that these 

findings are bounded by the methods used. The approach to VAP diagnosis in the UK is 

highly variable(Browne et al., 2014) and BAL is not used consistently in ICUs across 

the UK. For ICUs that are not routinely performing BAL for management of VAP, the 

use of these biomarkers would require a change in routine practice, although arguably 

for the better. 

Considering the invasive nature of BAL testing, identifying biomarkers in serum would 

be highly desirable. Interestingly some markers of inflammation (IL-1β, IL-12p70 and 

TNFα) were not identifiable in the pilot study of 20 samples. Furthermore no significant 

differences were found between VAP and non-VAP patients in any of the biomarkers 

tested in serum. It is also noteworthy that the concentrations measured in serum were 

considerably lower than in BAL. This is in keeping with the previously suggested 

paradigm of lung infection as a compartmentalised inflammatory response(Boutten et 

al., 1996; Millo et al., 2004). 

Of patients screened, 40% who met the inclusion criteria were included in the study. 

The level of detail obtained in the screening logs was insufficient to have a clear 

understanding as to why such as large proportion of patients were not eligible for the 

study. This limitation of data collection in the screening log is due to the fact that this 
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was an observational study and this was not mandated as it would be for a RCT. This 

raises concerns about the external validity of these results but some practical 

considerations mitigate against this risk. Understandably ICU clinicians had to give 

final approval for a patient to be enrolled in the study and therefore undergo BAL. The 

inclusion criteria were quite broad and anecdotally, a significant number of patients met 

these initial inclusion criteria based on temperature, white cell counts and purulent 

secretions (not necessarily CXR changes). Often if clinicians did not suspect VAP based 

on the wider clinical picture, no CXR was pursued but these patients may have been 

recorded as meeting inclusion criteria when they strictly did not without having a CXR. 

Furthermore clinicians could exclude patients if they felt that patients would not tolerate 

BAL outside of the exclusion criteria. This study has been performed in a large number 

of ICUs in which ICU clinicians have probably had a significant influence on including 

patients in whom they feel that this was a relevant clinical query for the patient (ie they 

suspected VAP) and therefore reflects a pragmatic strength of the study. 

Another potential limitation is the high level of antibiotics at the time of BAL and in 

particular the imbalance between the VAP and non-VAP groups. Our definition of VAP 

was based on microbiological strategy with a culture >10
4
 cfu/ml. The use of antibiotics 

could potentially result in a falsely low cfu/ml count in a patient with VAP that is 

partially treated and incorrectly classes as ‘non-VAP’. This could lead to two 

possibilities. The first is that the lung still has on going inflammation and so the 

biomarkers are high. This would undermine the analysis, as the microbiology and 

biomarker levels would be discordant. The second possibility is that the inflammation is 

also resolving with antibiotic treatment and so the culture growth and biomarker levels 

are lower due to partial treatment with antibiotics. 

In an effort to address this, sub-group analyses were performed for patients who had 

either no antibiotics and for patients who had no new antibiotics started in the 72 hours 

prior to BAL being performed. Reassuringly the AUROC curves were close to those 

generated by the main analysis, and in fact at the cut-point the specificity was lower 

than in the main analysis, where one might expect this to be higher if there were 

significant numbers of falsely negative non-VAP patients. Although this does not give 

confirmation on the effect that antibiotics have on culture growth or more importantly, 

on biomarker levels, it does suggest that antibiotic use has not had a large effect on 

determining the diagnostic utility of these biomarkers. 
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Another potential limitation is to class Candida spp. as VAP. Guidelines recommend 

that Candida should not be treated as a VAP(American Thoracic Society, 2005). The 

view was taken in this study that significant levels of Candida spp. may well be treated 

by physicians with anti-fungals and therefore should be classed as VAP. This is 

supported by a previous autopsy study that has demonstrated VAP caused by invasive 

Candida spp.(Corley et al., 1997). Furthermore, in addition to the reported sub-

analyses, biomarker levels were examined based on causative pathogens. This analysis 

is limited due to small numbers (5 patients with Candida spp.) and hypothesis testing is 

of limited value. Notwithstanding this limitation, it is interesting that there was a signal 

of higher biomarker levels in Candida spp. in particular for IL-8, MMP-9 and HNE in 

comparison to the non-VAP group (data not shown). 

Data on antibiotic use in the 7 days following BAL demonstrated a high level of 

antibiotic use across both patients with confirmed VAP and those in the non-VAP 

group, with 57.6% of patients having zero AFD. These data were collected in order to 

inform the power calculation for the RCT primary outcome. Therefore data were 

collected on number of AFD only and not the indication for antibiotic use. It is 

unknown if patients, particularly in the non-VAP group, were receiving antibiotics for 

suspected VAP or a non-pulmonary infection. It does however, go some way to 

highlight the burden of the potential overuse of antibiotics in patients with suspected 

VAP. The overuse of antibiotics has been framed in the context of the growing issue of 

AMR(Davies, 2011). However there is evidence to suggest a potential detrimental 

impact to the individual patient. Strategies to improve compliance with multi-antibiotic 

empiric treatment or PCT-triggered escalation of antibiotics, which resulted in increased 

antibiotic use, have been associated with an increase in mortality, increased length of 

ICU stay and organ-related harm(Jensen et al., 2011; Kett et al., 2011). In contrast to 

this a more conservative approach to antibiotics has resulted in a lower antibiotic 

burden, a lower all-cause mortality and reduced length of ICU stay(Hranjec et al., 

2012). A biomarker approach to antibiotic de-escalation of antibiotics, using PCT, has 

resulted in more AFD both in patients with suspected bacterial infections and in patients 

with suspected VAP(Stolz et al., 2009; Bouadma et al., 2010).  

The successful validation of these biomarkers in a large, multi-centre study represents a 

significant step forward in diagnostics for VAP. In terms of the potential impact that 

this test could have on antibiotic prescribing, consider that in this population with 

suspected VAP, VAP was confirmed in approximately 1/3 of patients with 2/3 of 
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patients making up the non-VAP group. With a NPV of 1, all VAP patients will be 

correctly identified as being above the threshold. With a PPV of 0.5, half of the non-

VAP group will fall below the threshold. Therefore in a population of suspected VAP, 

this biomarker test could allow for 1/3 of the population to have antibiotics discontinued 

on the day of suspicion of infection. This is in comparison with conventional 

microbiological antibiotic de-escalation, where antibiotics could be stopped after 3 days, 

once the culture results are finalised. However this assumes that antibiotics are de-

escalated in the face of negative cultures. Previous trials have reported or even insisted 

that antibiotics are not stopped if cultures are negative(Ruiz et al., 2000; Canadian 

Critical Care Trials Group et, 2006). A negative biomarker result on the day of 

suspicion of VAP could be a strong impetus to discontinue antibiotics early rather than 

mid-way through an antibiotic course. 

The high antibiotic use in this study does also set the scene for the scale of the antibiotic 

burden that the biomarker-test is aiming to alter. Since the reason for the antibiotic use 

is unknown from these data, we do not know whether these are antibiotics for suspected 

VAP, amongst which we could have an impact on or antibiotics for another reason that 

we cannot alter. 

In conclusion this study has demonstrated that BAL fluid IL-1 can effectively exclude 

VAP when tested in patients with suspected VAP, in a multi-centre study. In 

combination with IL-8, a test with confident rule-out performance has been identified. 

The next stage is to determine the clinical effectiveness of a biomarker-based diagnostic 

strategy to reduce antibiotic use in a clinical trial conducted in a highly complex and 

high antibiotic-use clinical environment. The interim results of this trial will be 

presented in Chapter 4. 
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Chapter 4. Results: Randomised controlled trial 

4.1 Introduction to chapter 

The RCT extends from the validation study and aims to determine whether the 

biomarker-based exclusion of VAP has clinical effectiveness to reduce antibiotic use 

amongst patients with suspected VAP. At the time of writing this thesis the RCT was in 

the later stages of patient recruitment. Therefore for the purposes of this thesis, a 

subgroup analysis was performed on 140 patients for whom there was close to complete 

data collection around the time of my submission deadline. This analysis presents 

preliminary results to demonstrate the principles of analysis and give insights into what 

the completed trial may demonstrate. 

4.2 Screening and recruitment 

The projected recruitment period for the trial underwent a number of revisions. The 

initial projected recruitment duration was to recruit 210 patients (see Chapter 2, 2.13.2) 

between July 2013 and the end of January 2015. The trial did not commence until 

November 2013 and the first patient was recruited on the 18
th

 December 2013. Revising 

the end date to the actual start date resulted in a target of May 2015. Due to logistical or 

regulatory reasons, not all study sites commenced screening and recruitment at the 

opening of the trial. The trial started with only two sites (Freeman Hospital and Royal 

Victoria Infirmary) in November and December 2013. A further 6 sites joined in 

January 2014 (Chelsea and Westminster, Salford Royal, Sunderland, Belfast, 

Heartlands, North Tyneside General). Coventry joined in Feb 2014, Chester and Preston 

in March 2014 and Wansbeck General, Edinburgh Royal Infirmary and Western 

General Hospital, Edinburgh in May 2014.  

At a research steering group (RSG) review of progress in July 2014, 60 patients had 

been randomised with recruitment considerably behind schedule. The two main reasons 

were the staggered start for the recruiting sites and the slower than expected rate of 

recruitment. At this stage, the combined sites were recruiting an average of 8.65 patients 

per month. It was estimated that at this recruitment rate, the trial would complete in 

January 2016 and this was set as the revised target. Additional sites were added at this 

stage including the Queen Elizabeth, Gateshead; James Cook, Middlesbrough; Sandwell 

and City Hospitals, Birmingham; Royal Liverpool Hospitals, Liverpool; Manchester 

Royal Infirmary, Manchester; City Hospital, Belfast; and Russells Hall Hospital, 
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Dudley (for summary of sites see Methods, 2.2). These sites were brought on between 

October 2014 and January 2015. 

A further RSG was held in December 2015, just prior to the planned completion date of 

the trial. At this stage, 175 patients had been randomised and the milestone was further 

extended to the end of September 2016. 

This analysis reports on the first 140 patients randomised between November 2013 and 

the end of July 2015. Recruitment up to July 2015 is shown on Figure 13 against the 

three different projected trial end dates. 
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Screening logs were maintained although precise details of all exclusions were not 

recorded. Between November 2013 and July 2015, 511 patients were screened. Of 

these, 296 patients met the inclusion criteria for suspected VAP (see Methods, 2.3). One 

hundred and twenty nine patients were not eligible including 90 patients who were not 

suitable for early discontinuation of antibiotics (inclusion criterion) and 39 patients who 

met exclusion criteria (Figure 14). A further 26 patients were eligible based on 

inclusion and exclusion criteria but not consented without a reason recorded. Of those 

eligible patients, 141 were consented and of these 140 were randomised (1 patient was 

consented but not randomised as there was no laboratory cover to process the sample). 

Of these, 4 patients were not included in this analysis for the following reasons: 

SUN001 was randomised but deteriorated and did not undergo BAL; MAN012 was 

randomised in error and did not undergo BAL; RLH003 was randomised but the sample 

was not processed as the lab had insufficient reagents; and CHS006 was randomised but 

the sample arrived too late in the lab to be processed and so was rejected. These patients 

were excluded because they had too many missing data points. For the purposes of this 

thesis, I set the threshold for intention to treat (ITT) analysis as having had a sample that 

had undergone its laboratory handling. 

Of the 136 patients included in the analysis 68 were randomised into each trial arm and 

included in the ITT analysis. Eleven patients in the biomarker-guided arm had a failure 

of the biomarker test and therefore for these patients, the clinical teams were given the 

instruction to default to ‘standard care’. These 11 patients were excluded in the per-

protocol analysis. The recruitment and follow up of patients is outlined a CONSORT 

diagram (Figure 14). The number of patients followed up reflects the patient having 

follow-up data recorded for that visit but does not reflect completeness of those data. 
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Screened: 511 

Consented: 141 

Randomised:140 

Biomarker: 68 Standard care: 68 

Day 7: 68 Day 7: 68 

Day 28: 66 Day 28: 67 

Final: 66 Final: 67 

Drop out: 4 

Entered into analysis:136 

Assay failure: 
11 
(Default to 
standard care) 
 

Inclusion criteria for 

suspected VAP: 296 

Eligible based on 
criteria but not included 
(reason not recorded): 
26 

Not eligible: 129 

 

Not suitable for early 

discontinuation of antibiotics: 

90 

PaO2<8kPa on FiO2>0·7: 6  

PEEP >15cmH2O: 1 

HR > 140 bpm: 1 

Bleeding diathesis: 3 

ICP > 20mmHg: 9 

Day 14: 67 Day 14: 66 

Figure 14: CONSORT diagram of patients enrolled by end of July 2015. 
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4.3 Process of trial conduct 

The trial intervention was complex and so examining the detailed delivery of the trial is 

relevant. The majority of patients were consented, randomised and had BAL performed 

on the same day. Consent was obtained on the day before BAL in 8 patients. For these 

patients, the BAL was performed in the morning in 6 patients. Overall the median time 

that BAL was performed was at 13:30 with the earliest time of 8:35 and latest time of 

17:00. The median time that BAL fluid was sent to the lab was 14:00, with the earliest 

time of 9:00 and latest of 17:06. The median time at which randomisation was 

performed was 13:25 (earliest 8:25 and latest 16:50).  

The median time that the samples arrived in the laboratory was 15:00 (earliest 10:10 

and latest 17:50). The technicians contacted the clinical teams once the biomarker 

results were available or, if the patient was in the standard care group, after 

approximately 6 hours to ensure approximate equality of the period in which clinicians 

were blinded to the test result. Overall the clinical teams were contact at a median time 

of 19:08, with the earliest at 6:24am and latest 1:30am. Whether results were 

communicated to the clinical team on the next working day, is not recorded. If the result 

was called back at 1:30am then that would be the next calendar day but a call at 6:24am 

was assumed to be the next working day too. A further 3 results were communicated to 

clinical teams before midday but these were in the standard care arm, and in this setting 

it appears that there was no period of blinding given to the clinical team (ie the result 

was presumably communicated as soon as the patient was randomised to standard care, 

without a 6 hour delay). Comparing the two groups, the teams were contacted at a 

similar median time, 20:44 for the biomarker group and 20:00 for the control group. As 

might be expected the latest times for communication of results were in the biomarker 

group with 9 results being called back after 23:00. In the standard care group the latest 

the teams were contacted was at 22:30. 

The validation study demonstrated that patients generally underwent BAL in the 

afternoon. This was a cause for concern for the RCT because the biomarker assay takes 

approximately 6 hours to complete, and this would make the logistics of delivering a 

result to clinical services on the same working day a challenge. This proved to be the 

case with clinical teams being contacted in the evening and in the case of some 

biomarker results, the night. 
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4.4 Demographics 

The demographics of the two trial arms are presented as summary statistics (Table 30). 

The two trial arms were overall similar in terms of age, sex, and severity of disease on 

admission (APACHE 2 and SOFA at baseline). The case mix of admission categories 

and degree of comorbidities as measured by the functional comorbidities index was also 

similar between the two groups. In terms of organ support, more than twice as many 

patients were receiving RRT in the biomarker group than in the standard care group. 

The rate of ARDS was slightly higher in the control group. The rate of VAP was also 

slightly greater in the biomarker group. A significant number of microbiology samples 

(17 patients) were handled incorrectly with the laboratory not reporting semi-

quantitative results. This occurred disproportionally more frequently in the biomarker 

group (12 of the 17 patients), which could be the cause of this imbalance. The 

proportion of patients receiving antibiotics at baseline was similarly high in both 

groups. 
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Characteristic 

Biomarker-guided 

recommendation  on 

antibiotics N=68 

Routine use of 

antibiotics N=68 

Age in years, median (IQR) 61.5 (50.0-70.5) 57.5 (43.5-68.5) 

Female, n (%) 24 (35.3) 26 (38.3) 

APACHE 2, median (IQR) 18.0 (12.5-24.0) 17.0 (12.0-22.0) 

SOFA Day 0, mean (SD)
1 

5.2 (2.5) 6.0 (2.8) 

Medical admission (n=81), n (%)
2 

39 (59.1) 42 (64.6) 

Surgical admission (n=50), n (%)
2 

27 (40.9) 23 (35.4) 

Admission category, n (%)
3 

Respiratory 

Gastrointestinal/Liver 

Cardiovascular 

Trauma 

Sepsis 

Obstetric/Gynaecology 

Neurology 

Other 

 

10 (15.2)
 

7 (10.6) 

7 (10.6) 

13 (19.7) 

2 (3.0) 

0 

16 (24.2) 

11 (16.7) 

 

16 (23.5) 

7 (10.3) 

6 (8.8) 

17 (25.0) 

0 

1 (1.5) 

11 (16.2) 

10 (14.7) 

Function comorbidities index 

score, median (IQR)
4 1.0 (0-2.0) 1.0 (0-2.0) 

Renal replacement therapy, n 

(%)
3 7 (10.6) 3 (4.4) 

Vasopressors, n (%)
3 

25 (37.3) 22 (32.8) 

ARDS, n (%) 10 (14.7) 16 (23.5) 

ALI, n (%) 8 (11.8) 3 (4.4) 

Corticosteriod use, n (%) 11 (16.2) 12 (17.6) 

Antibiotics at randomisation, n 

(%) 
53 (77.9) 57 (83.8) 

Days from ICU admission to 

BAL, median (IQR) 
7 (5-9.5) 8 (4-13) 

Confirmed VAP, n (%)
5 23 (41.1) 18 (28.6) 

Clinician pre-test suspicion of 

VAP, n (%)
6 

Low 

Medium 

High 

 

 

7 (10.4) 

19 (28.4) 

41 (61.2) 

 

 

4 (6.0) 

34 (50.7) 

29 (43.3) 

   

Table 30: Baseline demographics of trial population.  
Missing values, total (biomarker arm): 

1 
9(6), 

2 
5(2), 

3 
2(2), 

4 
3(2), 

5
17(12), 

6
2(1) 
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The clinical and laboratory characteristics of the two groups are presented in Table 31.  

Clinical/laboratory 

parameters 

Biomarker-guided 

recommendation on 

antibiotics N=68 

Routine use of 

antibiotics  N=68 

Temperature 
O
C, median (IQR) 37.4 (36.6-38.1) 37.7 (37.0-38.3) 

WCC x10
9
/L, median (IQR) 13.8 (10.7-16.4) 14.3 (11.8-16.7) 

Neutrophils x10
9
/L, median 

(IQR) 
10.8 (8.1-14.1) 11.0 (9.2-13.8) 

Platelets x10
9
/L, mean (SD) 251 (146) 282 (195) 

CRP mg/L, mean (SD)
1 

170 (87) 165 (112) 

PEEP cmH2O, median (IQR)
2 

8 (5-10) 7.5 (5-10) 

PAP cmH2O, median (IQR) 21 (13-23) 18 (12.5-25) 

Heart rate bpm, mean (SD)
3 

89 (22) 92 (21) 

MAP mmHg, median (IQR)
4 

75 (68-85) 78 (69-88) 

ICP mmHg, median (IQR) 

(monitored patients only, n=14, 

biomarker-guided=7)  

13 (9-15) 10 (0-11) 

pH, median (IQR)
5 

7.43 (7.40-7.46) 7.44 (7.39-7.47) 

PaCO2 kPa, median (IQR)
6 

5.48 (4.90-6.33) 5.60 (4.50-6.30) 

PaO2:FiO2 kPa, mean (SD)
6
  30.9 (12.2) 26.6 (12.7) 

Tracheal secretion, n (%)
7 

None 

Non-purulent 

Purulent  

 

1 (1.5) 

9 (13.2) 

58 (85.3) 

 

3 (4.5) 

9 (13.4) 

55 (82.1) 

CXR, n (%)
8 

Diffuse 

Localised 

Bilateral  

 

7 (10.8) 

37 (56.9) 

21 (32.3) 

 

9 (13.2) 

35 (51.5) 

24 (35.3) 

   

Table 31: Clinical and laboratory characteristics for trial population. Missing values, total 
(biomarker-guided arm): 

1
53(28), 

2
5(3), 

3
4(2), 

4
10(4), 

5
7(3), 

6
5(2), 

7
1(0), 

8
3(3) 
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4.5 BAL and safety data 

The majority of sampling occurred in the lower lobes with 64 (47%) being performed in 

the right lower lobe and 48 (36%) in the left lower lobe. Numbers performed in the right 

upper lobe, right middle lobe and left upper lobe were 10 (7%), 11 (8%) and 2 (2%), 

respectively. In keeping with the BAL SOP the median volume instilled was 120mls 

(IQR 120-120), and a minimum and maximum volume of 60mls and 160mls 

respectively. 

Prior to BAL the median oxygen saturation was 97% (IQR 96-99) with a median FiO2 

0.41 (IQR 0.35-0.50). Prior to BAL, on a FiO2 of 1.0, the lowest oxygen saturation was 

94%. During BAL oxygen saturation fell below 5% of starting saturations in 32 

patients. In these patients the saturation fell to a median of 88% (IQR 85-88) for a 

median time of 2 minutes (IQR 2-4). Amongst these, 23 patients had saturations that fell 

below 90% and this lasted for a median time of 2 minutes (IQR 0-3). One patient had 

saturations that fell to 59% for 60 seconds during BAL and saturations remained below 

90% for 45 minutes but at the two hour follow up point, this patient was saturating at 

pre-BAL level with only an increase in FiO2 of 0.05. Five patients met our predefined 

criteria to report an adverse event during BAL (drop of 5% or below 90% for greater 

than 5 minutes), although 4 were recorded as adverse events in the CRF (these did not 

require separate reporting to NCTU). 

Two hours after BAL the median saturation was 97% (IQR 96-99) and the median FiO2 

was 0.50 (IQR 0.40-0.60). Fifty-three patients had an increase in FiO2 of ≥0.1. Of these 

patients, 6 had ≥3% lower oxygen saturations than at baseline despite this increase in 

FiO2 (range -3 - -5%). A further 9 patients had a reduction in saturations of between -

1% and -2%. The remaining patients had either no change in baseline saturations (5 

patients) or an increase in oxygen saturations with the increase in FiO2. Nine further 

patients had falls in oxygen saturations at 2 hours post BAL of 3-9% without any 

increase in FiO2. A total of 43 adverse events were recorded in the CRF with our 

predefined criteria for adverse events during BAL (these did not require separate 

reporting to NCTU). 

Five serious adverse events (SAE) were recorded and all were judged to be in relation to 

the patient’s critical illness rather than trial involvement. Three SAE were in relation to 
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one patient who was admitted with gastrointestinal bleeding and had two further 

episodes of GI bleeding. This patient died and the death was recorded as SAE. In the 

other two patients, one suffered a tension pneumothorax and the other a ventricular 

fibrillation cardiac arrest. Both of these incidents happened around the time of the BAL 

but in both cases the PI judged that there was no causal relationship. In both cases the 

Sponsor reviewed the incident and was in agreement with the PIs. In the case of the 

cardiac arrest, the DMEC also reviewed the case and felt there was no causal link. 

4.6 Microbiology 

The median time taken from BAL to return of microbiology results was 2 days (IQR 2-

4). As described above, a total of 17 samples were not reported as a semi-quantitative 

result, and so these could not be defined as VAP or non-VAP. Therefore, based on our 

criteria for defining VAP as a culture growth of ≥10
4
 cfu/ml, VAP was confirmed in 41 

of 119 patients (34.5%). Of those below the threshold and classed as non-VAP, 32 

(26.9%) had a culture growth below the threshold and 46 (38.7%) had a sterile culture. 

Considering all organisms grown (VAP and sub-VAP), 18% were yeasts, 30% were 

Gram-positive and 52% were Gram-negative. Of organisms cultured above the 

threshold of ≥10
4
 cfu/ml, 5% were yeasts, 39% Gram-positive and 56% Gram-negative. 

Polymicrobial growth occurred in 37% of patients with VAP. The organisms cultured at 

≥10
4
 cfu/ml are presented in Table 32. 
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Organism Frequency Percent 

MSSA 16 27.6 

Haemophilus spp. 10 17.2 

Pseudomonas aeruginosa 5 8.6 

Proteus mirabilis 4 6.9 

Escherichia coli 3 5.2 

Klebsiella pneumoniae 3 5.2 

Candida spp. 2 3.4 

Serratia marcescens 2 3.4 

Staphylococcus spp. 2 3.4 

Stenotrophomonas maltophilia 2 3.4 

Acinetobacter baumannii 1 1.7 

Corynebacterium spp. 1 1.7 

Enterobacter spp. 1 1.7 

Moraxella catarrhalis 1 1.7 

Prevotella bivia 1 1.7 

Beta haemolytic Streptococcus 1 1.7 

Streptococcus pneumoniae 1 1.7 

Normal upper respiratory tract flora 1 1.7 

Yeasts 1 1.7 

Total 58 100.0 

Table 32: Organisms cultured above the threshold to define VAP. More than one pathogen could be 
cultured per BAL sample. 
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The proportion of patients already in receipt of antibiotics at the time of enrolment was 

high in both trial arms (Table 26). This was observed in the validation study too and in 

the validation study there was a greater proportion of non-VAP in patients who had 

received antibiotics (raising the theoretical possibility of false negative culture). Taking 

the trial population as a whole, there were more non-VAP patients who had received 

antibiotics (87.2%) in comparison to VAP patients (68.3%) (Chi-squared p=0.013).  

At the time of recruitment, before BAL was performed, clinicians were asked to give 

their pre-test level of suspicion of VAP (low, medium or high). There was no 

relationship between clinician pre-test and VAP diagnosis (Table 33). Interestingly, for 

the majority of patients, the clinician’s suspicion of VAP was rated as ‘medium’ (40%) 

or ‘high’ (51%), with only 9.1% of non-VAP and 7.5% of VAP rated as ‘low’. 

Considering that VAP was confirmed in 34.5% of this RCT cohort and in 35% of the 

validation study cohort, clinician expectation of confirming VAP is incongruous with 

the observed VAP rate. 

 

N (%) 
Pre BAL 

LOW 

Pre BAL 

MEDIUM 

Pre BAL 

HIGH 

Non-VAP 7 (9.1) 32 (41.6) 38 (49.4) 

VAP 3 (7.5) 15 (37.5) 22 (55.0) 

Table 33: Clinician pre-test suspicion of VAP compared to VAP status. Chi-squared: p=0.84. n=117, 
clinician pre-BAL suspicion of VAP not available for 2 patients. 
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4.7 Biomarker performance 

One area of concern in the design of this trial was whether the biomarker assay would 

demonstrate similar diagnostic parameters as it did in the validation study. In other 

words, would the assay accurately identify patients with non-VAP in whom early 

discontinuation of antibiotics would be most appropriate?  

Of the 68 patients who underwent the biomarker testing, there were 11 assay failures 

and 12 patients who did not have semi-quantitative culture (2 patients fell into both 

categories). A further 5 patients had missing data for biomarker results and so 42 

patients were included in this analysis. Overall there were 15 patients in whom the 

biomarker assay fell below the threshold. Amongst the 42 patients in this analysis, there 

were 11 assays that fell below the threshold to exclude VAP (26%). There was one false 

negative (SUN005), which was below the threshold on the biomarker test but had a 

positive culture (Enterococcus spp. ≥10
4
 cfu/ml). Of the 23 patients classed as ‘non-

VAP’, the biomarker correctly identified 10 as ‘non-VAP’ (43.5%) 

As a further ‘validation’ of the biomarker assay, ROC curves were constructed for IL-

1, IL-8 and the linear predictor of the IL-1/IL-8 combination. The median 

concentrations of IL-1 and IL-8 and the AUROC curves are presented in Table 34. 

 

 

 VAP n=19 Non-VAP n=23 p value AUROC 

IL-1 pg/ml 246 (191-1994) 36 (3-325) 0.0021 0.77 

IL-8 pg/ml 6382 (3175-18219) 1024 (350-6361) 0.0066 0.74 

Table 34: Biomarker concentrations between VAP and non-VAP groups. Concentrations presented as 
median (IQR). p value reported from Mann Whitney U test.  
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The smaller numbers in this analysis limits drawing comparisons to the validation study. 

The concentrations of IL-1 and IL-8 in the non-VAP groups are similar to the 

validation study, as is the level of IL-8 in the VAP group (see Results: Validation study, 

3.7). The IL-1 concentration in the VAP group is lower than in the validation study. 

However the IQR for these values closely reflect the validation study.   

The AUROC for IL-8 closely replicates the validation study value but the AUROC for 

IL-1 is lower. When the coordinates of the ROC are examined to determine cut-points 

that are close to the validation cut-points for single biomarkers (17pg/ml for IL-1 and 

382pg/ml for IL-8), a cut-point of 17.5pg/ml for IL-1 had a sensitivity of 95% and a 

specificity of 39% and a cut-point of 379pg/ml for IL-8 had a sensitivity of 100% and a 

specificity of 26%. The sensitivity and specificity at these cut-points are close to the 

validation study values (IL-1 sensitivity 96% and specificity 43%, IL-8 sensitivity 

98% and specificity 25%). 

The logistic regression output from the combination of IL-1 and IL-8 was also plotted 

on a ROC curve. The AUROC for the linear predictor was 0.76. At a coordinate close to 

the validation study cut-point (-1.7616) of -1.713, the sensitivity was 95% and the 

specificity was 43.5%. Again this is close to the validation study biomarker 

performance (IL-1/IL-8 sensitivity 100% and specificity 44%). 

This close replication of the validation study sensitivity and specificity is reflected by 

43.5% of the non-VAP patients being correctly identified as non-VAP by the biomarker 

test at this stage in the trial. 
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4.8 Primary outcome analysis in the ITT population 

The AFD in the 7 days following BAL was presented as an integer value ranging from 

0-7 AFD. The frequency distribution was compared in a 2x8 contingency table (Table 

35). 

 AFD 

0 1 2 3 4 5 6 7 

Biomarker 

arm 
33 9 6 5 4 0 2 6 

Control 28 10 6 10 6 0 4 3 

Table 35: Frequency of AFD in the 7 days following BAL. Figures represent the number of patients in 
each AFD category. Chi-squared p=0.65. Missing values, total (biomarker): 4(3). 
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There was no difference between to the two arms of the trial when compared by Chi-

squared test, p=0.65. The frequency distribution of AFD is illustrated in Figure 15. 

 

 

 

The distribution of AFD was similar to the observed distribution in the validation study 

with a skew to the left, reflecting the majority of patients having few AFD. The 

proportion of patients with 0 AFD was 50.8% in the biomarker arm and 41.8% in the 

control arm. The remaining categories have between 3.1% and 14.9% of patients. The 

distribution between the two groups is similar. 

One limitation of this analysis is that it does not account for deaths within the first 7 

days, ie a patient that dies on day 4 on antibiotics has the same number of AFD as the 

patient who has 7 days of antibiotics and does not die. To determine whether deaths 

Figure 15: Frequency distribution of AFD in ITT population. 
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within the first 7 days had a significant impact on the primary outcome, the number of 

days of antibiotics, number of days alive without antibiotics and the number of days 

dead in the first 7 days were calculated (Table 36).  

There is no imbalance between the two groups at day 7 with regards to number of 

antibiotic days, number of days alive without antibiotics and number of days dead, 

which suggests that deaths within the first 7 days has not had  a significant influence on 

the primary outcome. 

 

Outcome 

Biomarker-guided 

recommendation on 

antibiotics N=68 

Routine use of 

antibiotics N=68 

Day 7 antibiotic days (mean, 95% CI) 5.17 (4.57-5.77) 4.93 (4.38-5.47) 

Number of days alive without antibiotics 

at day 7 (mean, 95% CI) 
1.65 (1.08-2.21) 1.81 (1.29-2.32) 

Number of days dead at day 7 (mean, 95% 

CI) 
0.18 (0-0.38) 0.28 (0.04-0.52) 

4.9 Secondary outcome analysis in the ITT population 

Secondary outcome measures were compared between the two groups with no 

significant difference between the two groups in any of these (Table 37). The antibiotic 

use at days 7, 14 and 28 was high in both groups. The median AFD at day 7 was 0 (IQR 

0-3) in the biomarker arm and 1 (IQR 0-3) in the control arm. The AFD at day 14 and 

day 28 in the biomarker arm was 5.0 (SD 3.9) and 11.6 (SD 7.6) respectively and in the 

control arm was 5.2 (SD 3.8) and 12.5 (SD 8.2) respectively.  

There were no significant differences between the biomarker arm and the control arm in 

terms of ICU-mortality (19.1% and 23.5%, respectively; p=0.627); 28-day mortality 

(25% and 23.5%, respectively; p=0.844); VFD at 28 days (13.0 [IQR 0-21.0] and 12.0 

[IQR 0-19.0], respectively; p=0.723); duration of invasive ventilation (16.0 days [IQR 

11.5-26.5] and 19.0 days [IQR 12.5-29.0], respectively; p=0.433); length of hospital 

stay (33 days [IQR 25-57] and 43 days [25.5-77.0], respectively; p=0.242); and length 

Table 36: Days alive without antibiotics 
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of critical care stay (21.0 days [16.0-31.0] and 24.5 days [17.0-36.0], respectively; 

p=0.394). 

The presence of antibiotic-resistant pathogens or C. difficile could be influenced by 

antibiotic use and so the occurrence of these were monitored up to final follow up at 

hospital discharge, death or 56 days. There were a total of 8 MRSA positive cultures 

with no difference between the biomarker and control arms. There were 2 C. difficile 

infections and these occurred equally in both trial arms. Multi-resistant organisms 

(defined as resistance to 2 or more antibiotics) were detected in 29.4% of the patients in 

the biomarker arm and 20.6% of the patients in the control arm (p= 0.235). The median 

number of multi-resistant cultures was 2 (IQR 1-3) in both the biomarker and control 

arms. 
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Outcome 

Biomarker-guided 

recommendation on 

antibiotics N=68 

Routine use of 

antibiotics N=68 
p value 

28-day mortality n (%, 95%CI)†
1 

16 (25, 14.5-35.8) 16 (23.5, 14.3-33.3) 0.844 

ICU mortality n (%, 95% CI)†
2 

13 (19.1, 10.6-29.3) 14 (22.6, 11.4-33.3) 0.627 

Day 3 SOFA score*
3 

3.0 (2.0-5.5) 4.0 (2.0-6.0) 0.419 

Day 7 SOFA score*
4 

3.5 (2.0-4.5) 3.5 (2.0-5.0) 0.546 

Day 14 SOFA score*
5 

3.0 (0.5-4.0) 3.0 (2.0-4.0) 0.711 

Day 7 antibiotic days, IQR (95% CI)*
6 

6,4-7 (6-7) 6, 4-7 (4-7) 0.360 

Day 7 AFD, IQR (95% CI)*
6 

0, 0-3 (0-1) 1, 0-3 (0-2) 0.380 

Day 14 antibiotic days, SD (95% CI)**
7 

7.8, 4.0(6.8-8.8) 7.3, 3.9 (6.3-8.2) 0.464 

Day 14 AFD, SD (95% CI)**
7 

5.0, 3.9 (4.0-6.0) 5.3, 3.8 (4.4-6.2) 0.625 

Day 28 antibiotic days, SD (95% CI)**
8 

9.7, 6.0 (8.2-11.3) 9.3, 6.4 (7.7-10.9) 0.724 

Day 28 AFD, SD (95% CI)**
8 

11.6, 7.6(9.6-13.6) 
12.5, 8.2 (10.5-

14.5) 
0.552 

VFD at 28 days, IQR (95% CI)*
9 

13, 0.0-21(3.5-18.0) 12, 0-19 (2-16) 0.723 

Duration invasive ventilation, days, IQR 

(95% CI)*
10 

16.0, 11.5-26.5 (14-

21.5) 

19.0, 12.5-29.0 

(16.5-21) 
0.433 

Length of hospital stay, days, IQR (95% 

CI)*
11 

33.0, 25.0-57.0 (27.5-

41) 

43.0, 25.5-77.0 (32-

54) 
0.242 

Length of critical care stay, days, IQR 

(95% CI)*
12 21.0, 16.0-31.0 (18-26) 

24.5, 17.0-36.0 (20-

27) 
0.394 

Length of Level 3 stay, days*
13 

16.0 (12.0-26.0) 20.0 (13.0-26.0) 0.282 

Length of Level 2 stay, days*
14 

2.0 (0.0-6.0) 3.0 (0.0-6.0) 0.690 

MRSA n (%)***
15 

3 (4.5) 5 (7.6) 0.718 

Clostridium difficile n (%)***
15 

1 (1.5) 1 (1.5) 1.000 

Presence of multi-resistant organisms (56 

days) n (%)† 
20 (29.4) 14 (20.6) 0.235 

Number of multi-resistant cultures (56 

days)* 
2 (1-3) 2 (1-3) 1.000 

    

Table 37: Secondary outcome measures in the ITT population. †Chi-squared, **parametric mean (SD) 
& T-test, *non-parametric median (IQR) & Mann-Whitney U, ***Fisher’s exact. Missing values, total 
(biomarker-guided arm): 

1
4(4), 

2
6(0), 

3
12(5), 

4
42(20), 

5
83(40),

6
4(3),

7
6(5), 

8
11(9), 

9
11(7), 

10
 17(9), 

11
14 

(9), 
12

8(6), 
13

18(11), 
14

19(11), 
15

4(2). 
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4.10 Primary outcome analysis in the per-protocol population 

When BAL fluid from patients who were randomised to the biomarker arm resulted in a 

failed biomarker-assay, the clinical teams were advised to default to ‘standard care’. In 

the 11 instances where this occurred, all resulted from a failure of the assay to meet the 

internal control thresholds. This indicated that there was a problem in performing the 

assay. The other quality control used was the presence of IL-8. Given the usual 

abundance of IL-8 in BAL fluid, if no IL-8 was detectable in the sample, this called into 

question the quality of the BAL. No samples failed on this criterion. The 11 patients in 

whom the assay failed were excluded from the per-protocol analysis. All of the standard 

care group were included. 

There were no differences in the frequency distribution of AFD in the 7 days following 

BAL between the biomarker and control arms (p=0.42) (Table 38 and Figure 16). 

 AFD 

0 1 2 3 4 5 6 7 

Biomarker 29 5 6 5 3 0 1 6 

Control 28 10 6 10 6 0 4 3 

Table 38: Frequency of AFD in the 7 days following BAL in the per-protocol population. Number of 
patients in each AFD category. Chi-squared p=0.42. n=55, 1 patient with missing AFD data at 7 days 
amongst the 11 patients excluded in the per-protocol analysis. Missing values, total (biomarker): 3(2). 
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4.11 Secondary outcome analysis in the per-protocol population 

There were minimal differences observed in the biomarker arm with the removal of the 

11 patients in whom there was an assay failure. There remained no differences between 

the biomarker and control arms of the trial (Table 39).  

Figure 16: Frequency distribution of AFD in the 7 days following BAL for the per-protocol population. 
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Outcome 

Biomarker-guided 

recommendation on 

antibiotics N=57 

Routine use of 

antibiotics N=68 
p value 

28 day mortality (%, 95% CI)†
1 

12 (22.6, 11.5-35.2) 16 (23.5, 13.8-33.3) 0.909 

ICU mortality (%, 95% CI)†
2 

10 (17.5, 7.8-28.8) 14 (22.6, 12.3-33.9) 0.494 

Day 3 SOFA score*
3 

4.0 (2.5-6.0) 4.0 (2.0-6.0) 0.641 

Day 7 SOFA score*
4 

3.0 (2.0-4.0) 3.5 (2.0-5.0) 0.295 

Day 14 SOFA score*
5 

3.0 (0.5-4.0) 3.0 (2.0-4.0) 0.570 

Day 7 antibiotic days, IQR (95% 

CI)*
6 6.0, 4.0-7.0 (5-7) 6.0, 4.0-7.0 (4-7) 0.433 

Day 7 AFD, IQR (95% CI)*
6 

0.0, 0.0-3.0 (0-2) 1.0, 0.0-3.0 (0-2) 0.400 

Day 14 antibiotic days, SD (95% 

CI)**
7 7.7, 4.2 (6.6-8.9) 7.3, 3.9 (6.3-8.2) 0.530 

Day 14 AFD, SD (95% CI)**
7 

5.2, 4.1 (4.0-6.3) 5.3, 3.8 (4.4-6.2) 0.804 

Day 28 antibiotic days, SD (95% 

CI)**
8 9.5, 5.8 (7.8-11.2) 9.3, 6.4 (7.7-10.9) 0.883 

Day 28 AFD, SD (95% CI)**
8 

11.9, 7.5 (9.7-14.0) 12.5, 8.2 (10.5-14.5) 0.699 

VFD at 28 days, IQR (95% CI)*
9 

17.0, 0.0-21.0 (7-19) 12.0, 0.0-19.0 (2-16) 0.331 

Duration invasive ventilation, days, 

IQR (95% CI)*
10 16.0, 11.0-26.0 (14-22) 

19.0, 12.5-29.0 (16-

21) 
0.358 

Length of hospital stay, days, IQR 

(95% CI)*
11 32.5, 25.0-55.0 (28-41) 

43.0, 25.5-77.0 (29-

52) 
0.228 

Length of Critical care stay, days, 

IQR (95% CI)*
12 20.5, 15.5-28.5 (18-26) 

24.5, 17.0-36.0 (19-

25) 
0.318 

Length of Level 3 stay, days*
13 

16.5 (12.0-26.5) 20.0 (13.0-26.0) 0.341 

Length of Level 2 stay, days*
14 

2.0 (0.0-6.0) 3.0 (0.0-6.0) 0.694 

MRSA n (%)***
15 

3 (5.5) 5 (7.6) 0.727 

Clostridium difficile n (%)***
15 

1 (1.8) 1 (1.5) 1.000 

Multi-resistant organisms (56 days) 

n (%)† 
16 (28.1) 14 (20.6) 0.329 

Number of multi-resistant cultures 

(56 days)* 
2.0 (1.0-3.5) 2.0 (1.0-3.0) 0.552 

    

Table 39: Secondary outcome measures for the per-protocol population. †Chi-squared, **parametric 
mean (SD) & T-test, *non-parametric median (IQR) & Mann-Whitney U, ***Fishers exact. Missing 
values, total (biomarker-guided arm): 

1
4(4), 

2
6(0), 

3
12(5), 

4
40(18), 

5
76(33),

6
3(2), 

7
5(4), 

8
10(8), 

9
11(7), 

10
15(7), 

11
12(7), 

12
7(5), 

13
16(9), 

14
17(9), 

15
4(2). 
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4.12 Antibiotic use overall 

Since there were no differences between the trial arms in terms of antibiotic use, a 

description of antibiotic prescribing practices in the trial population as a whole was 

undertaken.  

The median (IQR) antibiotic days at 7, 14 and 28 days are 6 (4-7), 7.5 (4-10) and 8 (6-

13), respectively. The median AFD (IQR) at 7, 14 and 28 days are 1 (0-3), 5 (2-8) and 

12 (5-19), respectively. The distribution of AFD at day 7, 14 and 28 are shown in 

Figure 17, 18 and 19. 

 

Figure 17: Distribution of AFD at 7 days n=132. 
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Figure 18: Distribution of AFD at 14 days n=130. 

Figure 19: Distribution of AFD at 28 days n=125 
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Indications for antibiotic prescriptions were recorded for all antibiotics. Patients could 

have more than one indication for antibiotics recorded. At baseline the proportion of 

patients not receiving antibiotics was 18%. At baseline all indications for antibiotics 

were recorded, including antibiotics used for prophylaxis. Antibiotics for prophylaxis 

were subsequently not recorded at day 7, 14 or 28 as these did not contribute to AFD. 

At baseline the proportion of patients with 1, 2, 3 or 4 indications for antibiotics were 

60%, 13%, 8% and 1% respectively. The proportion of patients with 1, 2, 3 or 4 

antibiotics concurrently prescribed was 46%, 21%, 8% and 7% respectively. The 

indication for antibiotics at baseline is illustrated in Figure 20. 

 

 

 

 

 

CAP 
8% 

HAP 
12% 

VAP 
36% 

Intra-abdomen 
7% 

Urinary 
1% 

Skin 
5% 

Prophylaxis 
7% 

Other 
24% 

Baseline antibiotic indications 

Figure 20: Indications for antibiotics at baseline. The figure presents the indication for antibiotics as a 
proportion of all recorded indications (rather than patients). More than one indication can be stated 
per patient.  
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At day 7, 58% of patients had 1 indication for antibiotics. A further 16% had 2 

indications, 5% had 3 indications and 21% were not on antibiotics. The proportions of 

patients receiving 0, 1, 2, 3, 4, 5 and 6 antibiotics were 21%, 32%, 22%, 21%, 3% and 

1%, respectively. Indications for antibiotics prescribed at day 7 are illustrated in Figure 

21. VAP was an indication for antibiotics in 67 (49%) patients receiving antibiotics. 

VAP was the sole indication for antibiotics in 46 (34%) patients. Considering 

prescriptions classified as ‘Other’ but that were for positive respiratory cultures (either 

sputum or BAL), then VAP was a reason in addition to another indication in 29 (21%) 

patients. 32 (24%) patients had antibiotics for a non-VAP source.  

Of those patients with confirmed VAP by semi-quantitative culture (41), 15 (37%) 

patients were on antibiotics solely for VAP, 13 (32%) were on antibiotics for VAP and 

another indication and 11 (27%) were on antibiotics for a reason other than VAP. Of 

those patients who did not have VAP confirmed (78), 24 (31%) were on antibiotics 

solely for VAP, 11 (14%) for VAP and another indication and 18 (23%) were on 

antibiotics for a non-VAP indication.  

Considering the antibiotic indications at day 7 for 15 patients who had a BAL fluid 

biomarker assay result below the cut off for VAP (without making the exclusions made 

in section 4.7), 4 patients had treatment for VAP solely, 2 had treatment for VAP and 

another indication, 4 had treatment for a non-VAP indication and 5 had no antibiotics. 

The indications for antibiotics at day 14 and day 28 show that a significant proportion of 

recorded indications where for pulmonary infection, either HAP or VAP (Figure 22 and 

23). In addition to this 3 patients at day 14 and 5 at day 28 were recorded as ‘Other’ but 

were treated for ‘chest’, ‘lower respiratory tract infection’ or ‘positive sputum culture’. 
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Figure 21: Indications for antibiotics at day 7. Indications presented as a proportion of all recorded 
indications. 
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Figure 22: Indications for antibiotics at day 14. Indications presented as a proportion of all recorded 
indications. 

Figure 23: Indications for antibiotics at day 28. Indications presented as a proportion of all recorded 
indications. 
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4.13 Discussion 

In this chapter I have reported the findings of an analysis of the first 140 patients (136 

included in ITT) of an RCT that aims to recruit 210 patients. This strategy was pursed 

because the delays in trial set up and recruitment (Figure 13) meant that it was 

impractical to await the trial completion for inclusion in this thesis. This created a 

conflict between meeting the requirements of this thesis while not compromising the 

trial integrity. The trial was not blinded beyond the first 6 hours after randomisation and 

so the outcome measures were not blinded. Therefore accessing these outcomes before 

the close of the trial did not compromise the trial blinding. The time required to access 

the data, clean the dataset and analyse the data (approximately 7 months), was such that 

the analysis occurred after the last patient was randomised to the trial. The chief 

investigator was not aware of these results until after the trial had closed to recruitment 

and the trial statistician provided assistance with the analysis with only blinded data. 

Therefore this analysis could not bias the conduct and outcome of the trial as a whole. 

The trial sponsor and the DMEC approved this strategy. 

Although this analysis does not have the statistical power to make firm conclusions on 

the trial overall, it does provide some valuable insights into the intervention, the trial 

design and the clinical context in which the intervention was tested. 

This trial was designed to determine whether rapid, biomarker-based exclusion of VAP 

could improve antibiotic stewardship and reduce antibiotic use in patients with 

suspected VAP without compromising patient safety. VAP is a common reason for 

antibiotic prescriptions in ICU(Vincent et al., 2009) and since infection is confirmed in 

30-60% of patients with suspected VAP(Fagon et al., 2000; Canadian Critical Care 

Trials Group et, 2006), the assumption is that many patients receive unnecessary 

antibiotics. Since microbiology results typically take 2-3 days to become available, 

rapid diagnostics, and in the case of this intervention, a rule-out test, could allow for 

antibiotics to be discontinued early if VAP can be excluded with high probability.  

To determine whether this would be achieved, I conducted a multi-centre RCT in 23 

ICUs in the UK. I measured whether antibiotic exposure in the 7 days following BAL, 

as measured by AFD, would be different between patients randomised to an antibiotic 

management strategy based on a rapid biomarker-based rule out of VAP and patients 

randomised to an antibiotic strategy based solely on microbiology results. The 

biomarker result was returned generally on the same day as the BAL (as compared to 2 

days later for the microbiology results). There was no difference in the two trial arms in 
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the distribution of AFD in the 7 days following BAL. Furthermore there were no 

differences between the two groups in any secondary outcomes including antibiotic use 

at 14- or 28-days, duration of critical care stay, duration of hospital stay or mortality. 

These were general ICUs and the patients included in this study were admitted with a 

broad range of admission categories. The cohort of patients enrolled was similar in 

characteristics to the cohort of patients enrolled in the validation study as reflected by 

median age, APACHE 2 score, and length of critical care and hospital stay. This is a 

sicker group of patients with a longer length of ICU and hospital stay than the average 

UK critical care population (Intensive Care National Audit and Research Centre, 2015) 

but with similar characteristics to previous trials in patients with suspected VAP(Fagon 

et al., 2000; Canadian Critical Care Trials Group et, 2006). Overall VAP was confirmed 

in 34.5% of patients, consistent with the validation study. There was an imbalance in the 

VAP rate between the intervention and the control arm of the trial, although a greater 

proportion of microbiology specimens were not reported as semi-quantitative in the 

intervention arm, which could account for this difference. The median number of days 

between ICU admission and BAL was 7 (IQR 5-9.5) for the intervention group and 8 

(IQR 4-13) for the control group, suggesting this is predominantly a group of patients 

with late-onset VAP. In keeping with this, 56% of organisms cultured were Gram-

negative, although the single most common organism was methicillin-sensitive S. 

aureus, as it was in the validation study. Similar to the validation study there were more 

patients classed as non-VAP who had antibiotics at enrolment than VAP patients, 

raising the possibility of false negative cultures and misclassification as ‘non-VAP’. 

Previous studies have shown that antibiotics do reduce the chances of obtaining a 

positive result for microbiology samples(Fabregas et al., 1996), which is a limitation 

when using a microbiological definition for VAP. 

The trial aimed to influence antibiotic use and this trial demonstrated that this is an 

environment and patient group in whom the antibiotic exposure is high. At baseline 

77.9% of the intervention group and 83.8% of the control group were receiving 

antibiotics. Antibiotic use at 7 days was high in both arms of the trial, with a median of 

0 AFD (IQR 0-3) in the intervention arm and 1 AFD (IQR 0-3) in the standard care arm, 

with no difference in the frequency distribution of AFD between the two groups. Since 

there was no difference in antibiotic use between the two trial arms, antibiotic use was 

also described using the trial population as a whole. The median number of antibiotic 

days at day 7, 14 and 28 was 6 (IQR 4-7), 7.5 (IQR 4-10) and 8 (6-13), respectively. 
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This suggests that the bulk of antibiotic use was in the 7 days following BAL, at the 

moment of suspicion of VAP. The median number of AFD at 28-days of 12 (IQR 5-19) 

was similar to other clinical trials. In a trial comparing 8 versus 15 days of antibiotic 

treatment for VAP, the mean AFD at 28-days in the 8-day arm was 13.1 (SD 

7.4)(Chastre et al., 2003). Considering that a 7-day course of antibiotics is considered 

standard in UK practice(Browne et al., 2014), it seems reasonable that the number of 

AFD would match the 8-day arm of that trial. In an ICU population with suspected 

bacterial infections (in the context of a trial of PCT-guided antibiotic discontinuation), 

the 28-day AFD were 14.3 (SD 9.1) in the PCT group and 11.6 (8.2) in the control 

group(Bouadma et al., 2010). In contrast to this AFD at 30-days has been reported to be 

much lower in other studies. A trial of early versus late tracheostomy found that the 

median AFD at 30-days was only 5 days (IQR 1-10)(Young et al., 2013). 

Biomarker-based antibiotic stewardship interventions have mainly utilised PCT, with 

mixed results. A number of high quality trials have utilised serum PCT to guide 

antibiotic use in suspected infection in ICU (ie. not VAP specific) and have clearly 

shown that it can influence antibiotic use. The PRORATA trial showed a significant 

reduction in antibiotics at 28-days but a non-significant trend to increased mortality at 

60 days (30% vs 26%)(Bouadma et al., 2010). A recent pragmatic trial aimed to 

determine the utility of PCT to reduce antibiotics while also assessing mortality as a 

safety endpoint(de Jong et al., 2016). In this trial of 4507 patients, there was a reduction 

in antibiotic use in those randomised to PCT-guided antibiotic management, as 

measured by DDD, with a median of 7.5 DDD (IQR 4.0-12.7) in the PCT group and 9.3 

DDD (5.0-16.6) in the control group. In this trial there was in fact a reduction in 

mortality in the PCT group at 28-days (20% in PCT versus 25% in control group, 

p=0.0122). These two trials used a PCT threshold of 0.5ng/ml to rule out infection. In 

contrast to these trials, a trial using a lower threshold of 0.1ng/ml was unable to find a 

reduction in antibiotic use with PCT-guided antibiotic management compared to the 

control group(Shehabi et al., 2014). More specifically investigating the impact in 

respiratory infections, a trial conducted in the emergency department setting, using PCT 

to guide antibiotic use in community-acquired LRTI found that serum PCT use was 

both safe and reduced the median duration of antibiotic use (5.7 days versus 8.7 days for 

PCT and control groups respectively)(Schuetz et al., 2009). Furthermore in a trial of 

patients with VAP (using a clinical definition), the use of serum PCT resulted in more 

AFD at 28-days with 13 (IQR 2-21) and 9.5 (IQR 1.5-17) for the PCT and control 

groups respectively(Stolz et al., 2009). As a further demonstration of the ability to PCT 
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to influence antibiotic use, in a trial of a PCT intervention to increase early antibiotic 

use in suspected infections, an algorithm that encouraged antibiotic use, did in fact 

increase antibiotic use in the PCT group but there were also worse outcomes, with the 

length of ICU stay increasing by 1 day, an increased rate of mechanical ventilation and 

worsening renal function in the PCT group(Jensen et al., 2011). 

Studies of newer diagnostic technologies, such as PCR have generally included patients 

with confirmed blood culture and through rapid identification of the pathogen, have 

aimed to rapidly optimise treatment. In a non-randomised study of patients with S. 

aureus bacteraemia, the use of PCR allowed for more rapid de-escalation of empirical 

antibiotics (1.7 days earlier) and also resulted in a reduction in hospital costs(Bauer et 

al., 2010). In a randomised trial of patients with a positive blood culture the use of rapid 

multiplex PCR resulted in more rapid detection of microorganism (1.3 hours versus 

22.3 hours for PCR and control groups respectively) and less time on broad-spectrum 

antibiotics (44 hours versus 56 hours for PCR and control groups respectively)(Banerjee 

et al., 2015). There were no differences in mortality, length of stay or cost between the 

two groups. A recent randomised trial utilising PNA FISH diagnostics, including 

patients with confirmed blood culture, did not find a reduction in empirical antibiotic 

use in the absence of an antibiotic stewardship programme to drive the 

change(Cosgrove et al., 2016). These studies are valuable in terms of showing that these 

technologies can more rapidly refine antibiotic prescribing but fail to address the issue 

around avoiding antibiotic prescribing in the absence of infection. 

Considering the lack of difference between the two trial arms of this trial, it is worth 

considering the 15 patients in whom the biomarker was below the threshold and in 

whom the clinicians were advised to discontinue antibiotics. Considering the antibiotic 

use in these patients could give an indication into clinician compliance with the 

biomarker antibiotic-discontinuation recommendation. Conclusions drawn from this 

group of 15 patients must be considered with considerable caution. The median AFD at 

7 days amongst these 15 patients was 2.5 (IQR 0.0-6.0) in comparison to a median AFD 

in the control group of 1.0 (IQR 0.0-3.0). Four of these patients had antibiotics for VAP 

and so the recommendation on antibiotics was not followed. For another 6 patients there 

was an indication other than VAP for which antibiotics were given. Antibiotics were not 

given in 5 patients (33%). 

The suggestion from these 15 patients is that clinicians complied with the antibiotic-

discontinuation recommendation in some circumstances but not all. In fact in the 
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description of antibiotic prescribing in the whole trial population (at baseline and at 

days 7, 14 and 28), VAP was an indication for antibiotics in 19-48% of recorded 

indications. Therefore it is likely that alternative sources of infection were a barrier to 

biomarker-recommendation compliance.  

In the PRORATA trial, PCT thresholds were used for both starting and stopping 

antibiotics. Although there was significantly lower antibiotic use in the PCT group, 

clinician compliance with the recommendations was surprisingly low with the 

recommendation not followed in 72% of episodes(Bouadma et al., 2010). This included 

57% of episodes in which antibiotics were given despite recommendation to not give 

antibiotics and 14% of episodes in which antibiotics were stopped despite 

recommendations to give antibiotics. Overwhelmingly the trend was for clinicians to 

give antibiotics based on their own judgement of the likelihood of infection rather than 

based on the PCT level. Interpreting this is difficult because the diagnostic accuracy of 

PCT in meta-analyses has been far from perfect. The most recent meta-analysis of PCT 

for bacterial infections concluded a positive PCT had a PTP to rule in sepsis of 48% and 

a negative PTP to exclude sepsis of only 7%(Wacker et al., 2013)(see Introduction, 

1.10.2). Since PCT is not a gold standard for diagnosis of bacterial infections, not 

complying with the recommendation may be considered entirely reasonable.  

The BAL biomarker test used in this trial has a diagnostic threshold to achieve a clear 

diagnostic purpose, the exclusion of VAP. At the threshold, the validation study 

suggested that VAP could be excluded with a PTP of 0% and a 95% CI of 0.0-9.2%. 

The hope was that this very low PTP would give clinicians confidence that a rule-out 

biomarker would really mean a rule-out of VAP. Research teams were asked to 

complete a questionnaire providing information as to why antibiotic-discontinuation 

recommendations were not followed. Only two of these were completed by the time of 

my data collection and for both of those patients an alternative source of infection was 

being treated. Interestingly, if we consider the antibiotic prescribing for the non-VAP 

patients, 45% were receiving antibiotics for VAP, although 11% had an alternative 

indication. This suggests that the semi-quantitative culture was not used to guide 

antibiotic use either. 

The validation AFD data had demonstrated that this was a high antibiotic clinical 

environment and there was a concern that detection of a signal of reduced antibiotic use 

would be difficult. This was taken into consideration when designing the trial. In 

addition to the inclusion criteria used in the validation study, the criterion that the 
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patient must be considered suitable for early discontinuation of antibiotics was added. 

The exact description of this criterion was difficult to determine. Alternatives that were 

considered were to ‘exclude patients on any antibiotics’ or on ‘antibiotics for a non-

VAP source of infection’. These were considered inappropriate because they would 

have excluded so many patients that accrual would have been too difficult. The 

description of the criterion that was used was not as clearly defined as the alternatives, 

and depended on clinicians’ interpretation and judgement as to whether they thought the 

biomarker test would be appropriate for the patient and whether they would consider 

discontinuing antibiotics if VAP was ruled out. Changing the inclusion criteria risked 

recruiting a different trial population to the validation study. In fact the most common 

reason for a screen failure was the patient not being suitable for early antibiotic 

discontinuation. These were patients who may well have been suitable for inclusion in 

the validation study. If the population were different to that in the validation study, then 

a natural concern would be that the biomarker would not perform with the same profile 

of sensitivity and specificity. In fact the patient demographics and VAP rate were 

similar to those in the validation study. Furthermore, in analysing the limited number of 

biomarker results, the ROC coordinates at thresholds used in the validation study gave 

similar sensitivities and specificities. The specificity of the combination of IL-1/IL-8 at 

a threshold of -1.713 (close to the -1.7616 of the validation study), was 43.5% and this 

was reflected in the number of non-VAP patients correctly identified as ‘non-VAP'. We 

can therefore conclude that the biomarker performed as expected, and that any failure to 

detect a difference in the trial arms was not due to failure of the biomarker performance. 

Deciding on the primary outcome measure for a trial is of paramount importance. It 

must be clinically relevant and the intervention should be expected to produce a signal 

in this measure. Mortality is a commonly used outcome for many trials in the ICU (and 

other clinical environments) and is clearly an important patient-centred outcome, 

particularly in a clinical setting where mortality is high. Many ICU RCTs fail to show a 

significant difference in the primary outcome measure and this is particularly true of 

trials with mortality endpoints, with just 10% having a positive result(Harhay et al., 

2014).  

A mortality endpoint has a number of benefits in that preventing death in critically ill 

patients is an important clinical goal, it is a clear endpoint with no confusion over 

definition and if ICU- or hospital-mortality is used, completed follow up is easy to 

attain. Mortality endpoints are limited by the fact that arbitrary time intervals are 
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selected for measurement. Although ICU- and hospital-mortality are easy to measure, 

they are of limited use if patients die shortly after discharge from hospital. In fact there 

is an increased risk of death post-hospital discharge for ICU patients that is highest at 3 

months and continues for 3 years(Brinkman et al., 2013). Other arbitrary time points to 

measure mortality (eg. 14-, 28-, 60- or 90-day mortality) are similarly limited by 

making assumptions that the intervention will have its effect within this timescale.  

Amongst a patient group with high baseline mortality, the influence of a particular 

complication on overall mortality can be hard to define. This is highly relevant in VAP 

where the attributable mortality has been reported to range from 1.5-9%(Bekaert et al., 

2011; Melsen et al., 2011). With such low attributable mortality rates, detecting a 

mortality benefit in a VAP trial would require an impractically large sample size. 

Measurement of antibiotic therapy in terms of antibiotic-days or antibiotic-free days can 

be considered a ‘process outcome’ and measures healthcare delivery(McGregor & 

Furuno, 2014). Process outcomes are intermediate outcomes that should be associated 

with other favourable outcomes, eg clinical outcomes. This raises interesting questions 

when using antibiotic therapy as an outcome, as it has been in previous trials(Fagon et 

al., 2000; Chastre et al., 2003). The association between antibiotic use and antibiotic 

resistance is established and reducing antibiotic selective pressure reduces antibiotic 

resistance(Geissler et al., 2003; Goossens et al., 2005). This represents a benefit to 

society but whether there is a benefit to an individual patient is not established. There 

are data from quasi-experimental studies that challenge perceptions that antibiotics are a 

benign treatment and suggest firstly that over-treatment with antibiotics could be 

harmful and secondly that a more restrictive approach to antibiotics could result in 

better clinical outcomes(Kett et al., 2011; Hranjec et al., 2012). 

The primary outcome measure used was the change in the frequency distribution of 

AFD in the 7 days following BAL. There were a number of statistical considerations 

with respect to the analysis of AFD at 7 days (outlined in Methods, 2.13.2). Due to the 

high baseline use of antibiotics, detecting a change in antibiotic use in terms of location-

shift or change in proportions, may not have been sensitive enough to detect subtle 

reductions in antibiotic use. Analysing a change in frequency distribution of AFD at 7 

days was expected to be able to detect more subtle changes. Despite this, at this stage of 

the trial, no difference was detected.  

As outlined, both the primary outcome measure and inclusion criteria were influenced 

by the high baseline antibiotic use and this gave the trial elements of an efficacy trial 
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and an effectiveness trial(Singal, Higgins and Waljee, 2014). Selecting patients in 

whom antibiotic discontinuation was felt to be appropriate (a highly selected group of 

patients) is in keeping with an efficacy trial. This population does not represent all 

patients receiving antibiotics for suspected VAP, rather a subgroup thought likely to 

benefit from the biomarker assay. The complexity of the timing of the trial processes of 

enrolment, randomisation and BAL meant that the process of VAP investigation for 

these patients might not reflect real-world practice. In fact, the control arm was termed 

‘routine use of antibiotics’ because the term ‘standard care’ was felt inappropriate, since 

many ICUs do not use BAL and semi-quantitative culture as standard(Browne et al., 

2014). On the other hand, there were elements of the trial that were more representative 

of a ‘pragmatic’ or ‘effectiveness’ trial. The trial was conducted in a large number of 

general ICUs and the intervention had to be worked into the usual workflow of the ICU. 

Clinicians in the ICUs, rather than a centralised group of researchers, performed BALs. 

How the biomarker results were utilised in clinical practice was not dictated in the trial 

protocol. The decision to give antibiotics was entirely left to the clinical team. An 

element of blinding was included in the trial, a feature of an efficacy trial, but in fact 

beyond the first 6 hours, once the results were made known to the clinical team, the trial 

arm was unblinded. An argument could have been made not to perform the blinding 

element of the trial, and instead to take a more pragmatic approach of allowing 

clinicians the opportunity to know that the biomarker assay was going to be performed, 

so that it could be incorporated into their decision-making process. 

The trial intervention should be considered a ‘complex intervention’ for a number of 

reasons(Craig et al., 2008). There were a number of behavioural components to the 

intervention, including: identification of suspected VAP based on pre-determined 

criteria versus pure clinician judgement; decisions regarding suitability for early 

antibiotic discontinuation; clinician judgement to discontinue antibiotics on the basis of 

biomarker assay results in the context of other clinical information such as previous 

positive microbiology; clinician pre-test level of suspicion of VAP; acceptability of 

BAL; and confidence in the biomarker test. There were logistical complexities to the 

intervention including the time in which the biomarker result was returned to clinicians 

(which was often late in the evening or even in the night). It is possible that the clinical 

teams may not have got these results until the next day, or that they were received at a 

time when they were unlikely to be incorporated into main decision points of the 

working day (ie. the ward rounds). The intervention involved a large number of 

individuals including research, clinical and laboratory teams, and of course the patients 
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and their representatives. This required communication between all of these individuals, 

often in different sites, to ensure delivery of the intervention. The complexity and 

difficulty of delivering the intervention could have been a barrier to patient accrual. To 

help explain the results of trials of complex interventions, it is advised that these trials 

are carried out in conjunction with a ‘process evaluation’(Craig et al., 2008). A process 

evaluation is a qualitative method of understanding the process of implementing the 

intervention, to shed light on why an intervention failed or, if there is a positive result, 

to guide further implementation of the intervention. A process evaluation has been 

nested in this trial although it does not form part of this thesis and is in fact part of 

another student’s PhD thesis. The findings of that process evaluation will be of great 

importance in understanding the findings of this trial, particularly if the completed trial 

fails to show a difference.  

There were a number of safety issues considered in the design of this study, but overall 

the trial has proven to be safe. Firstly, performing BAL in critically ill patients is not 

without risk. Patients had saturations monitored and recorded during BAL and 2 hours 

post-BAL. There were pre-defined criteria for AE to be recorded in relation to the BAL. 

These criteria were the same as those used in the validation study. A total of 43 AE 

based on these criteria were reported. Only 4 patients were recorded as having an AE 

during BAL (a drop in SaO2 of >5% or an absolute SaO2 level below 90% for >5mins). 

The remaining patients met the AE criteria for increased oxygen requirements 2 hours 

after BAL (an increase in FiO2 of ≥0.1 to maintain saturations within 3% of initial 

saturations). In retrospect these criteria may not have been fit for purpose in that it 

resulted in AE being recorded although they may not be considered important clinically. 

The main weakness is that this criterion is not one that is used clinically. It is not usual 

practice to ensure that saturations remain within 3% of starting saturations, with the 

FiO2 increased accordingly to achieve this. Similarly the FiO2 is not always titrated 

down after 2 hours to starting levels. This makes interpreting these values difficult but 

overall there was not clear evidence of harm from the BAL. Five SAEs were reported 

but these were felt not be related to the trial intervention and rather were a consequence 

of the critical illness the patients were suffering from. Furthermore a DMEC had 

oversight of the trial and did not raise any concerns over trial safety. 

There was also a concern during design in relation to asking clinicians to discontinue 

antibiotics early. There was a risk that if early antibiotic discontinuation were 

inappropriate, patients would come to harm from untreated infections. Measurements 
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that were taken to detect a signal of harm were the SOFA score at days 3, 7 and 14, in 

addition to mortality and length of stay end points. There was no difference in any of 

these outcomes between the trial arms, although since antibiotic use was the same, these 

findings are not unexpected. However previous trials suggest that encouraging earlier 

discontinuation of antibiotics is not only safe, it could also be beneficial(Fagon et al., 

2000; Singh et al., 2000; Hranjec et al., 2012; de Jong et al., 2016). An additional 

design concern in asking clinicians to discontinue antibiotics related to the risk of false 

negative biomarker results. The upper limit of the 95% CI for the PTP of the biomarker, 

based on the validation study, was 9.2%. Therefore some false negative patients were 

expected and 1 false negative occurred. Antibiotics were not discontinued in this 

patient, as antibiotics were given for an intra-abdominal source of infection and the 

patient had 0 AFD at 7 days. 

If the main trial analysis finds no difference between the trial arms, consideration will 

have to be given to why the trial was ‘negative’. An important distinction will have to 

be made between whether the intervention is not effective, whether there was a failure 

of implementation (the process evaluation will help with this), or whether the trial 

design was inadequate and not the correct design to answer the questions. It is possible 

that all of these reasons are factors. In terms of effectiveness, this study has shown that 

even when inclusion criteria aimed to select out a group of patients likely to benefit 

from the intervention, the number of antibiotic days at 7 days is still high and antibiotics 

were being given for a wide range of indications. Clearly a biomarker for VAP can only 

influence antibiotics for VAP and on the basis of these results we should not think of a 

clinical moment in which the suspicion of VAP is considered in isolation, but rather of a 

moment in which a complex decision must be made around suspected infection, where 

VAP is one possibility. It may be that the biomarker was not acceptable to the clinicians 

or that they did not have confidence in the test. Antibiotic prescribing in relation to 

confirmation of VAP by semi-quantitative culture would suggest that clinicians did not 

base antibiotic use on microbiology evidence, although we cannot be sure exactly what 

microbiology evidence the clinician was using in his/her decision making. If BAL is not 

routine in the ICU and the clinician is accustomed to using positive ETA culture results 

in the decision-making process, then he/she may be less trusting of BAL biomarker 

results. In this study clinicians’ pre-test suspicion of VAP had no relation to the 

microbiological diagnosis VAP. One possibility is that if the clinician’s pre-test 

probability is high, then clinical investigations (microbiology or biomarker results) may 

have little effect on the decision to prescribe antibiotics.  
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Antibiotic use was high at baseline and at day 7 and so to influence this is a significant 

challenge. If we consider other trials that have reported significant differences in 

antibiotic use, the PRORATA trial reported 3 days difference at 30 days(Bouadma et 

al., 2010). Similarly a trial of PCT-guided early discontinuations of antibiotics in VAP 

found a difference of 3 days at 28 days(Stolz et al., 2009). Using a 7-day time period 

and using days as the smallest unit of measurement required our trial to detect a greater 

proportional change. Although using frequency distribution of AFD in the 7 days aimed 

to make for a more sensitive analysis, it may have been more appropriate to measure 

individual antibiotic doses or DDD rather than days, as more sensitive instruments to 

detect change. 

One might ask whether this was the right trial to answer the question and how might the 

trial have been changed in retrospect? At the time of planning this trial, the design was 

approached in the framework of a simple intervention that would be tested by a RCT. In 

the final stages of the trial set up and during the recruitment period the complexity of 

the intervention became much more apparent. Greater consideration should have been 

given early in the planning stage to the complexity of the intervention and how the 

results would be interpreted. The process evaluation will go some way to answer some 

of these questions, but it is unlikely to give insights from a statistical and trial design 

standpoint. There would have been a strong case for carrying out a feasibility study 

and/or a pilot study. I used AFD data from the validation study to inform the power 

calculation for the RCT. A pilot study would have allowed for more detailed AFD data 

to be collected and would have given the opportunity to consider whether this was the 

most appropriate primary outcome measure. A feasibility study would have given an 

opportunity to test the inclusion and exclusion criteria. The high rate of antibiotics used 

for non-VAP indications would suggest that our criteria were not able to select the 

population we intended to include (ie. those most likely to benefit from the biomarker). 

A feasibility study could have also given an indication of accrual rate and how the 

intervention would fit in with clinical practice. It took 9 months to randomise 60 

patients, so pilot studies and/or feasibility studies would have required significant 

increases in time and resources.  

In summary, in this subgroup analysis, no benefit in terms of antibiotic use could be 

detected in a trial of a biomarker-based VAP exclusion. It must be stressed that this 

subgroup study is underpowered to detect a difference and the completed trial dataset 

must be awaited to make firm conclusions. This analysis does however highlight the 
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considerable challenge and complexity of conducting the trial, of the intervention itself 

and, most importantly, of the clinical environment that it the trial was conducted in. If 

the final results fail to show a difference in antibiotic use between the trial arms, it will 

highlight the challenge that remains in altering antibiotic use in ICU. Calls have been 

made for novel, rapid biomarker-based diagnostics for infections(Davies, 2011). 

Through the validation study, this was achieved, but whether the test will be accepted 

and implemented into clinical use remains a far more difficult question.  
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Chapter 5. Conclusions 

The importance of addressing AMR, and in particular through novel diagnostics, has 

been stressed in a number of government reports(Davies, 2011; O’Neill, 2016). It has 

been estimated that by 2050, 10 million people could die each year from the 

consequences of AMR as resistance continues to rise, with an estimated global cost of 

100 trillion US dollars(O’Neill, 2014). It is currently estimated that AMR costs 55 

billion US dollars to the USA, although this is thought to be a conservative 

estimate(Smith and Coast, 2013). 

Patients admitted to the ICU are at considerable risk of a poor outcome in terms of 

morbidity and mortality, as dictated by their critical illness. The role of clinician is to 

strive for their recovery and to protect them from (and treat the consequences of) 

hospital-acquired complications including infections. For all of these reasons, critically 

ill patients commonly receive a treatment that is a cornerstone of our armamentarium 

against disease, namely antibiotics. As AMR increases on a global scale, the clinician is 

faced with the challenge of treating presumed infections while avoiding unnecessary 

antibiotic use. 

Clinicians are justified to a significant degree in the rapid administration of antibiotics 

in the face of suspected infection. Data show that delay in the administration of 

antibiotics in patients with sepsis is associated with worse outcome(Kumar et al., 2006; 

Ferrer et al., 2014; Garnacho-Montero et al., 2015). In fact one study found that there 

was an associated increase in mortality if the recognition of sepsis and administration of 

antibiotics were delayed(Puskarich et al., 2011), providing further incentive to give 

antibiotics at the moment of suspected infection. Furthermore, outcomes for severe 

community-acquired pneumonia are shown to be better with early administration of 

antibiotics(Gattarello et al., 2014). The other side to this argument is that administering 

antibiotics at the point of suspicion may result in the overuse of antibiotics in patients 

who do not have a disease that would respond to antibiotics. Data on the use of 

antibiotics in the ambulatory setting shows that many patients receive broad-spectrum 

antibiotics for conditions that are unlikely to benefit from antibiotic treatment(Shapiro 

et al., 2014). Furthermore global antibiotic consumption is also increasing, including 

increasing use of antibiotics that should be reserved for the most serious and resistant 

infections(Van Boeckel et al., 2014). International and national guidelines for the 

management of sepsis recommend the early initiation of antibiotics for suspected sepsis 
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and in particular for severe sepsis(Dellinger et al., 2013; NICE, 2016). The unintended 

consequence of this could be the over-prescription of antibiotics and pressures to meet 

targets have already been associated with the overuse of antibiotics(Nicks, Manthey and 

Fitch, 2009). The challenge of balancing the need to treat infections versus the need to 

conserve antibiotic use is primarily a problem of diagnostics. We do not have tests that 

can confidently rule-in or rule-out infections rapidly. 

It has been outlined in this thesis that VAP is a common infection and reason for 

antibiotic use in ICUs. It also typifies the challenge of antibiotic stewardship. Many 

non-infectious and inflammatory conditions can mimic VAP in mechanically ventilated 

patients causing fever and changes on a CXR. The ability to rule out infection based on 

culture of pathogens is significantly limited by the time taken to culture organisms from 

respiratory samples. This work has aimed to address these limitations through the multi-

centre validation of a rapid biomarker-based diagnostic test and then through testing its 

clinical effectiveness to reduced antibiotic use in a RCT. 

It was outlined in the Introduction (section 1.10.3) that many biomarkers have been 

investigated for the diagnosis of VAP. Only one of these, to my knowledge, has been 

externally validated(Laupland, Church and Gregson, 2005). In this thesis I have 

described the results of a multi-centre validation study, which have shown that IL-1 

concentrations in BAL fluid in particular, if low, can exclude VAP with confidence. 

This diagnostic performance is made more robust with the addition of IL-8. As a further 

‘validation’ of these results, the biomarker performance appears to have been consistent 

in the RCT. This has answered the call for a rapid biomarker-based diagnostic test. It 

has a high sensitivity, which means it can exclude VAP confidently, and the expectation 

of the RCT was that it would allow antibiotics to be withheld.  

This biomarker test is based on BAL and a microbiology-based definition of VAP. The 

acceptability of this strategy is uncertain in routine clinical practice. Trials to determine 

whether an invasive or clinical diagnostic strategy is superior have given conflicting 

results (see Introduction, 1.6.3)(Fagon et al., 2000; Canadian Critical Care Trials Group 

et, 2006). Furthermore a meta-analysis did not support the use of an invasive strategy 

over a clinical strategy(Berton, Kalil and Teixeira, 2012). Updated guidelines for the 

management of VAP do not recommend invasive sampling methods(Kalil et al., 2016) 

and the use of BAL is not routine practice in UK ICUs(Browne et al., 2014). This 

biomarker assay moves away from the longstanding debate over invasive sampling 

versus clinical diagnosis, in that it is using invasive sampling to obtain biomarkers at the 
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site of pulmonary inflammation. However for it to be accepted clinically, BAL must be 

accepted as a strategy for VAP diagnosis. 

Following the successful validation of the biomarker test, I carried out a RCT to 

determine whether a biomarker-based exclusion of VAP would result in reduced 

antibiotic use in patients with suspected VAP. No reduction in antibiotic use could be 

detected in the analysis included in this thesis, although it does not include the complete 

RCT dataset. This raises interesting questions as to why no difference was found. The 

possibility of using a primary outcome measure that was not sensitive enough to detect 

a change has been discussed (Results: RCT, 4.14). However it is arguable that a 

clinically relevant change should be easily detectable. The RCT results would suggest 

that clinicians did not follow the recommendation to discontinue antibiotics but they 

also did not seem to discontinue antibiotics in the face of negative BAL microbiology.  

This intervention was tested alongside normal clinical practice but an alternative 

approach would have been to embed it in an antibiotic stewardship programme (ASP). 

Recommendations and guidelines for the implementation of ASP have been 

produced(CDC, 2014; NICE, 2015). ASP have multiple elements including educational 

tools; surveillance of antibiotic prescribing and AMR; organisational approaches such 

as creating the human resources to dedicate to ASP; and appointment of a single leader 

to take accountability of driving the ASP and to implement specific interventions(CDC, 

2014). Specific interventions include persuasive interventions such as audit and 

feedback, education and reminders; and restrictive interventions such as compulsory 

order forms, expert approval and antibiotic restriction(Davey et al., 2013). Embedding a 

novel diagnostic test in an ASP could have a significant impact on the size of the effect 

of the intervention. In a study using MALDI-TOF MS to rapidly identify Gram-negative 

blood cultures, the technology was able to identify the organism much quicker than 

conventional culture(Perez et al., 2014). Importantly, the results of the test were sent to 

infectious diseases-trained pharmacists as part of an antibiotic stewardship team. 

Changes to antibiotic prescriptions were then implemented via this individual, resulting 

in a more rapid optimal antibiotic therapy with improved clinical outcomes. In contrast, 

a trial using PNA FISH technology without embedding the intervention in an ASP did 

not find an improvement in time to optimal antibiotic treatment(Cosgrove et al., 2016). 

The biomarker assay used in my studies was based on CBA and was a manual assay 

that took the technician approximately 5 hours to complete. Most laboratory tests are 

automated and it is unusual for hospital biomedical scientists to perform such a hands-
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on assay. The application of this assay for clinical purposes in this trial was of course 

experimental. Considering the manual nature of the assay, it is not surprising that there 

were a number of assays in which the internal control did not fall into the required range 

and so had to be rejected. It was impractical for the technician to simply repeat the assay 

given the time taken to perform the assay. The clinical acceptability of a new 

technology is not just based on the clinician’s view. It would be hard to view the 

application of this assay, in its current form, in the context of the workflow of a busy 

hospital laboratory. Our industry partner, BD, will have to consider the further 

development of the assay. As a minimum it would need to be automated, but maybe its 

greatest impact would be to develop it into a point of care test. 

Understanding clinical behaviours and attitudes to antibiotic stewardship, infections in 

ICU, and management of VAP, would provide valuable insights into how antibiotic use 

can be reduced. Behavioural elements have been identified as factors affecting decisions 

to prescribe antibiotics, such as the time of day that the decision is made and ‘decision 

fatigue’(Linder, 2014). Exploring the clinical environment and context of decisions in 

the ICU through an ethnographic study has the potential to identify areas where 

antibiotic stewardship could be improved. It could also inform the design of future trials 

by ensuring that interventions are implemented in clinical practice in such a way as to 

have the greatest influence on behaviours.  

The consumption of antibiotics in the ICU is known to be amongst the highest in 

hospitals(Dumartin et al., 2010). However detailed information on antibiotic 

consumption in the ICU is limited. Empiric antibiotic prescription accounts for a 

considerable proportion of antibiotics used(Candeloro et al., 2012) and the duration of 

antibiotic courses varies (for example in bacteraemia)(Havey et al., 2013; Daneman et 

al., 2016). Antibiotic-free days at 28-days as an outcome measure in trials also 

varies(Bouadma et al., 2010; Young et al., 2013). Having a deeper understanding of 

prescribing practices in the ICU in a more general sense would allow areas for antibiotic 

stewardship to be identified. 

As I have alluded to above, embedding our biomarker test in an ASP may allow for a 

greater impact of the assay. A RCT may not necessarily be the best method to evaluate 

the impact of the intervention. A before-and-after study design may be more suitable for 

an intervention that aimed to have more wide reaching changes. This could include an 

educational programme on VAP management and antibiotic stewardship; reinforcement 

of the biomarker assay and encouragement to follow the recommendation; and 
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education and reinforcement of the use of semi-quantitative culture. An alternative 

outcome measure for antibiotic use could be the total antibiotic consumption over the 

time periods studied, rather than the duration of antibiotics for individual patients. 

In summary, this work has responded to calls to deliver rapid novel diagnostic tests for 

infections. To develop a novel biomarker assay for patients with suspected VAP 

represents a significant step forward for a group of the most vulnerable and critically 

unwell patients in the hospital. Despite the potential of our test to improve antibiotic 

stewardship in an environment in which it is urgently needed, we were unable to 

demonstrate a benefit for biomarker-based antibiotic use. However striving to meet the 

goal of better antibiotic stewardship remains a priority and this biomarker should play 

an important role in meeting that goal. 
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