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Abstract 

Dendritic cells (DCs) are rare immune cell populations that play a significant role in 

phagocytosis, antigen presentation and pathogen response.  While extensive research 

has produced robust models of murine DC biology and development, the human 

dendritic cell system remains relatively unexplored due to the inherent difficulty in 

obtaining the required cell numbers for analysis. Furthermore, with the widespread 

expansion of gene expression technologies now available to researchers, much of the 

historical knowledge of human DC biology has begun to be revised and revisited with a 

fresh approach. In this thesis, flow cytometry, multiplexed hybridisation-based 

expression analysis and microarray experiments have been used in combination with 

cutting-edge single-cell transcriptomics to reveal the nature of mature dendritic cells 

subsets, their relation to monocytes and their developmental heterogeneity.  

Initially, a previously published microarray dataset (GEO:GSE35457) was interrogated 

to identify robust mononuclear cell signatures applicable across experimental platforms 

and tissue origin to address the fickle nature of currently known surface markers of DC 

subtypes. This dataset was then used as a surrogate in a feasibility study to determine 

the efficacy of the immune-focused nCounter platform with validation of the in-silico 

results confirmed using the NanoString platform. 

NanoString technology was implemented to investigate the correlation of ex-vivo and in-

vitro generated DC populations, culminating in the discovery of a ‘universal culture 

effect’ influencing global expression in cultured cells. Removal of this signature revealed 

the underlying equivalence of the cells.  

Finally, single-cell transcriptomics was employed to expose heterogeneity in pre-DCs, 

utilising the Illumina and NanoString-derived cell signatures to highlight the early lineage 

commitment of pre-DC cells.  

By utilising multiple high-dimensional analysis platforms and covering ex-vivo blood and 

skin, as well as DCs generated from CD34+ bone marrow progenitor cells, novel 

insights into the functional roles, expression patterns and molecular signatures of DC 

subsets have been revealed. 
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RESEARCH QUESTIONS AND RATIONALE 

 

Each research chapter (chapters 3-5) contained in this thesis aimed to 
address a fundamental research question driving the project. Each of these 
encompassed three smaller topics that were to be addressed in the chapter. 
Below is a breakdown of each chapter’s research questions and a summary 
of the scientific rationale behind posing the questions. 

 

CHAPTER 3: CODESET DESIGN AND DIMENSIONALITY REDUCTION FOR 
DENDRITIC CELL SUBSET ANALYSIS 

 

Primary research question:  
Can RNA expression analysis be used to distinguish and identify human DC 
and monocyte subsets? 

Sub-topic questions: 
1. Can human blood dendritic cells and monocytes be classified by their RNA 

signatures? 

2. Can a focused panel of immune genes be used to identify common blood 

dendritic cell and monocyte subsets? 

3. How many genes are required to maintain dendritic cell and monocyte subset 

classification? 
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Rationale:  

Dendritic cells are extremely potent, but exceedingly rare cell subsets. They are 

particularly difficult to isolate ex-vivo due to the fickle nature of surface markers 

and their susceptibility to environmental and mechanical stresses. Unfortunately, 

relatively few surface marker proteins can typically be used to identify these rare 

DC populations and expression of these markers can be perturbed under 

inflammatory conditions. Moving from surface protein expression to RNA 

transcriptome analysis provides a much wider spectrum of parameters for testing, 

including the investigation of intracellular markers such as transcription factors, 

detailed functional pathway analysis and cell cycle progression.  

This chapter aimed to determine if RNA transcriptome profiling could uncover 

greater distinguishing features between closely related DC and monocyte 

populations from the blood and skin, whilst also providing a robust pipeline of 

analysis to take forwards into the later stages of the project, incorporating novel 

gene reduction methods and deconvolution of tissue-specific cell signatures. This 

analysis would reveal robust, biologically relevant DC and monocyte markers, 

capable of distinguishing these subsets from one another, whilst simultaneously 

allowing for cross-tissue comparisons of equivalent mononuclear cell subsets with 

the removal of an over-arching tissue-specific gene signature from the dataset, 

with minimal loss of data.  

Machine learning techniques were implemented to produce and interrogate a 

novel gene signature capable of distinguishing DC and monocyte subsets, both 

within the dataset used for analysis, as well as in an independently generated 

dataset of similar mononuclear cell subsets. Generation of such a verified 

signature provided a backbone for confirmation of cell types in later chapters of the 

thesis, but could also be applied to external projects for identification of 

mononuclear cells by methods other than RNA profiling, particularly in cases 

where traditional markers may not be expressed or available for assessment for 

example, on cells grown in culture conditions, through cross-tissue comparisons or 

under inflammation.  
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Minimisation of the resulting gene signature was performed to determine the 

fundamental genes involved in DC and monocyte differentiation. While this 

process revealed potent discriminators of mononuclear cells, the process had a 

wider applicability within DC research by providing gene combinations that could 

be used in FACS or flow cytometry to distinguish there cells using far fewer 

antibodies than currently required, opening up spare channels for other antibodies 

to be used and reducing the costs of the technique. Along with analyzing the RNA 

transcriptome of DC and monocyte subsets by Illumina BeadArray technology to 

uncover potential subset markers, the similarity of these subsets was assessed on 

a focused immunocentric panel of RNA probes using NanoString technology.  

Robust data acquisition is an integral part of modern transcriptome profiling and 

thus, minimizing potential sources of bias should be a major consideration in 

research methodology. Through this change in RNA analysis platform, the 

potential for widespread alterations in cell numbers, expression of markers and 

mechanical and environmental stresses related to the long purification, isolation, 

pre-processing and amplification stages necessary for microarray analysis would 

be drastically diminished. NanoString technology required no amplification and 

very few preparation steps, could be performed directly from crude cell lysates 

after FACS and performed in one day without the introduction of freeze-thaw 

cycles that can drastically degrade the available RNA, thereby mitigating the 

altering effects of sample preparation and analysis on the cells prior to data 

capture that would otherwise skew the results.  
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CHAPTER 4: IN-VITRO DENDRITIC CELL SUBSET CLASSIFICATION 

 

Primary research question:  
Can transcriptomic signatures aid in the identification and validation of cells 
generated in-vitro? 

Sub-topic questions: 
1. Can phenotypically equivalent human dendritic cells be generated in-vitro? 

2. Are there any culture-specific expression patterns identifiable in-vitro? 

3. Do in-vitro derived DCs share a similar transcriptome profile with primary human 

DCs? 

Rationale: 

Culture models are frequently incorporated into dendritic cell research due to 

analytical limitations associated primarily by the relative scarcity of DCs and their 

environmentally sensitive and potentially inconsistent expression patterns. These 

issues are of particular concern to researchers studying early DC development, 

where precursor populations and intermediary populations can be near impossible 

to obtain at quantities effective to research. This can profoundly restrict the assays 

and techniques that can be applied in the investigation of primary dendritic cell 

subsets. Furthermore, looking beyond basic research and into translational 

medicine, DCs generated in-vitro already offer potential therapeutic options in the 

treatment of cancers, but greater applicability of in-vitro DCs may be possible with 

improvements to the yield, consistency and correlation of these cells to their 

primary counterparts. For either application, the in-vitro derived DCs must be 

functionally identical to those taken directly from the blood, well beyond the basic 

appearance and surface marker expression patterns associated with each subset. 

This chapter addresses the issue of comparability between blood and cultured 

dendritic cell and monocyte subsets through comparative RNA transcriptome 

analysis, uncovering the distinct and insightful transcriptional changes affecting in-

vitro generated cell populations and providing a novel basis to identify and isolate 

these obscuring transcriptional changes to reveal the underlying conservation of 

each unique dendritic cell subset’s phenotypic and functional features. 
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By flow cytometry and FACS, our culture system is capable of producing 

phenotypically similar DCs and monocytes from CD34+ bone marrow. In order to 

determine if the similarity runs more than ‘skin-deep’, NanoString RNA analysis 

was performed on the samples to reveal any potential transcriptional changes 

affected by the culture conditions. By unraveling the gene specific and functional 

or pathway-level alterations to expression in culture conditions, it may be possible 

to identify potential changes to the methodology and conditions to better 

recapitulate bona-fide DCs. Once any potential differences were identified, they 

would likely overshadow the unique DC subset signatures capable of matching the 

subsets across conditions. The final section of this chapter addressed the issue of 

extracting a backbone cell signature from a dataset with a dominating conditional 

signature through a novel process similar to that used to deconvolute skin and 

blood DC subsets in chapter 3. This approach could be applicable to a range of 

projects where conservation of expression is to be assessed across a range of 

conditions, particularly in instances where those conditions are likely to strongly 

influence global expression. 
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CHAPTER 5: A SINGLE-CELL APPROACH TO DENDRITIC CELL 
DIFFERENTIATION 

 

Primary research question:  
Can transcriptomic analysis identify DC lineage priming in progenitor cells 
and precursors? 

Sub-topic questions: 
1. Can single-cell RNA-sequencing be used to investigate dendritic cell 

precursors? 

2. Are DC-precursors skewed towards mature DC signature expression at the 

single cell level? 

3. Does the in-vitro development assay on pre-DC populations correlate with 

transcriptome-level expression patterns? 

Rationale: 

Chapter 5 incorporated cutting-edge single cell transcriptomic analysis to gain 

insight into DC development and lineage priming of progenitor cells. Recent 

publications have highlighted a shift in haematopoietic development research, with 

a focus on ‘early priming’ of haematopoietic stem cells, such that most early 

progenitor populations, including the granulocyte macrophage dendritic cell 

precursor (GMDP), macrophage DC progenitor (MDP), and common DC 

progenitor (CDP) populations are composed of heterogeneous, uni-primed, 

phenotypically similar cells with restricted mature cell potential, compared to the 

earlier linear bifurcation model of haematopoietic development, where progenitor 

cells types represented a single population of multi-potent cells. Determining if 

progenitor cells are early primed or multi-potent is a critical aspect of 

developmental research. Technological advances in single-cell sequencing have 

recently opened up this avenue of research. One of the major draws of single cell 

transcriptomics is its ability to reveal the diversity and heterogeneity of cells that 

would be obscured using bulk-level techniques such as qPCR, NanoString 

Technology, microarray analysis or conventional bulk-RNA sequencing.  
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Single cell transcriptomics is a continuously growing field and at the time of writing, 

was so novel that the extent of what could be explored using this technique was 

relatively unknown. The single cell analysis contained in this thesis represents one 

of the first uses of the technology at Newcastle University and was one of the first 

examples of its applicability to DC progenitor development. With this in mind, one 

of the first sub-questions to be addressed was whether adequate, good quality, 

viable cells could be captured by FACS and processed through a SmartSeq2 

plate-based single cell pipeline to provide enough data for analysis.  

By investigating the cell populations found within a conventional progenitor cell 

FACS gate, their heterogeneity could be revealed and attributed to familiar mature 

cell populations to determine if there was any intra-population variance suggestive 

of early cell priming, or if the cells shared a single un-primed, multi-potent 

phenotype.  

Identifying potentially primed progenitor cells by transcriptome comparison to 

mature cell populations would not prove that these cells were destined to become 

their mature cell counterparts, and thus an in-vitro development assay was 

developed to isolate and grow transcriptionally primed progenitors to determine if 

their culture output recapitulated the transcriptional priming upon development and 

maturation. If primed progenitors could be isolated and grown in culture, they 

could be used to generate bona-fide DCs for research and medical applications in 

the future. 
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Chapter 1:  INTRODUCTION 

 

1.1 STEADY-STATE AND INFLAMMATORY MONONUCLEAR CELL SUBSETS 

 

1.1.1 Peripheral Blood Dendritic Cells (DCs) 

Dendritic cells (DCs) are irregularly shaped haematopoietic cells with branched 

dendrites. First identified by Ralph Steinman in 1973 as a previously unknown form 

of ‘accessory cell’, their unusual appearance and movements distinguished them 

from typical macrophages and their tree-like processes led Steinman to coin the 

term ‘dendritic cell’ (Rockefeller Institute, 2014). 

While initially identified in spleen tissue, an expansion of dendritic cell research has 

led to their identification in all lymphoid and most non-lymphoid tissues, as well as 

the discovery of many immature DC subsets in the blood (Nairn, 2002). It has been 

established that peripheral blood mononuclear cells comprise of approximately 1% 

DCs and DC precursors (Nairn, 2002; Shurin and Salter, 2009). 

Dendritic cells, described as ‘sentinels’ or professional ‘antigen presenting cells’ 

(APCs), have a number of characteristic functions [Figure 1.1]. These motile cells 

are particularly significant in T-cell mediated immunity and are active in both 

adaptive and innate immune responses, their prototypic function being to activate 

and prime naïve T-cells (Mak and Saunders, 2005; Mellman and Steinman, 2001; 

R N Germain and Margulies, 1993). 

Dendritic cells are defined by both their typical locale and the presence or absence 

of phenotypic cell surface markers, distinguishable from other blood cell types by 

flow cytometry due to their lack of lineage-specific surface markers; CD3 on T-

cells, CD14 on monocytes, CD19 and CD20 on B-cells, and CD56 on natural killer 

(NK) cells (Timmerman and Levy, 1999).  
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Surface marker expression on DCs can be highly variable, although this does not 

necessarily represent distinct subtypes, but may imply that DCs can undergo 

numerous developmental stages involving maturation and migration. DCs do 

express a number of molecules known to be involved in T-cell interactions 

including MHC class I and class II, adhesion molecules including CD11a, CD11b, 

CD11c and CD54, as well as co-stimulatory molecules such as CD40. While there 

is no known global, robust DC surface marker, CD80 and CD86 are classical co-

stimulatory molecules expressed on the surface of DCs that are conventionally 

used as markers of these cell types. CD86 is used as a marker of early DC 

maturation and CD80 is expressed highly on mature DCs, but it is not exclusive to 

this lineage (Timmerman and Levy, 1999; Weider, 2003). CD83 is also mostly 

restricted to DC subsets, but is present on activated B-cells as well. 

Experiments investigating the development pathways of DC subsets have indicated 

that four main groups exist; Langerhans cells (LC), myeloid DCs, monocyte-derived 

DCs and lymphoid DCs (Austyn, 1998). It is widely accepted that all well 

documented DC populations, with the exception of Langerhans cells and microglia 

are developed from bone-marrow derived, blood-borne precursors (Bigley et al., 

2011; Collin et al., 2013). In the revised model of haematopoiesis entities such as 

the common dendritic cell progenitor (CDP) are transient, existing of phenotypically 

related cells with single potential. In this instance, lymphoid-primed multipotent 

progenitors are at the apex of all lymphoid and myeloid cell lineages (Collin and 

Bigley, 2018). Where dendritic cells are derived from different regions of the 

CD34+ progenitor compartment, by splitting on CD38 and CD45RA expression, 

they appear as transcriptionally homogeneous cells once developed. 

Myeloid DCs are considered ‘classical’ or ‘conventional’ DCs (cDCs), originating 

from more myeloid-primed CD34+ progenitor cells and driven to become DCs in 

the presence of GM-CSF and TNF-α ± IL-4. These DCs, once matured, are known 

as interstitial DCs (iDCs). They have the functional capability of activating and 

priming naïve CD4+ and CD8+ T-cells and can induce naïve B-cell differentiation to 

plasma cells and activate naïve CD4+ and CD8+ T-cells.  
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Lymphoid lineage DCs originate from more lymphoid-primed CD34+ precursors 

and mature via IL-3 exposure into plasmacytoid DCs (pDCs). Such pDCs can 

produce IFN-α and are found in close proximity to T-cells in lymphoid tissue T-cell 

compartments (Weider, 2003). 

Human myeloid DCs (mDCs) express CD11c, in contrast with lymphoid DCs, which 

are CD11c- (although murine pDCs are CD11c+). Human peripheral blood 

contains two ‘classical’ myeloid DC subtypes. These both express typical myeloid 

surface markers, including CD11b, CD11c, CD13 and CD33, but differ in their 

expression of CD1c and CD141 amongst other surface markers, with cDC1 cells 

having lower average expression of CD11b and CD11c than cDC2. The CD1c+ 

myeloid DC subset is also known as cDC2 and contributes to 0.6% of healthy 

peripheral blood mononuclear cells (PBMC), while the CD141+, cDC1 subset 

makes up <0.05% of the PBMC population (Sato and Fujita, 2007). Flow cytometry 

experiments conducted by the Human Dendritic Cell Laboratory typically show 

approximately 1,000 CD141+ cDC1s, 4,000 CD11c+ cDC2s and 5,000 CD123+ 

pDCs per milliliter of blood, equating to 1% of the typical 1x106 total cells per ml of 

blood. 

 

1.1.1.1 Circulating Pre-DCs 

Advances in single cell sequencing and in-vitro culture of dendritic cells has 

uncovered potential heterogenic populations of early DC-restricted precursor cells 

with a phenotype comprised of CD34+ progenitor-like signals and a partial, or lowly 

expressed mature DC profile. Multiple research groups have reported pre-DC like 

cell types, although their exact relation to each other is not clearly understood.  
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One approach to unravel the pre-DC concept was undertaken by Breton et al and 

transcriptionally compared potential pre-cDCs as defined by a lack of DC 

expression markers, namely CD123 and CD303 for the exclusion of conventional 

mature pDCs, CD141 for the exclusion of cDC1s and CD1c for the exclusion of 

mature cDC2 cells (Breton et al., 2016). Although this population was observed to 

have expression patterns indicative of either a pre-cDC1 or pre-cDC2-like 

phenotype, collected cell numbers were low. Similar experiments using single-cell 

transcriptomics and subsequent bulk-profiling performed on all HLA-DR+, lineage-

negative cells without the exclusion of cells with mature dendritic cell surface 

markers have since revealed multiple potential pre-DC populations including 

CD123+ subsets located within the conventional pDC flow cytometry gate, which 

were excluded in Breton et al (See et al., 2017; Villani et al., 2017).  

This recent finding may have a drastic impact on the conclusions drawn on pDCs 

from previous studies and may explain prior observations of apparent cDC 

differentiation from pDCs in-vitro. Further discussion of recently published pre-DC 

subsets is given in Chapter 5. 

 

1.1.1.2 Plasmacytoid Dendritic Cells (pDCs) 

Plasmacytoid DCs are conventionally understood to be a unique lymphoid-lineage 

DC subset (Shortman and Liu, 2002), although certainty over their myeloid or 

lymphoid origin is still debated, with mixed culture results in murine plasmacytoid 

DCs (Sathe et al., 2013). These cells are defined by expression of surface markers 

including CD123, CD303 and CD304 (Collin et al., 2013). Preliminary 

computational experiments for this thesis using Illumina expression data (Haniffa et 

al., 2012) have uncovered a number of additional gene markers for pDCs including 

PTGDS, PACSIN1, and COBLL1 in relation to other PBMCs from healthy skin and 

blood.  
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Functional studies of pDCs have highlighted their ability to prime naïve CD4+ T-

cells, including both Th1 and Th2 responses as well as inducing tolerance in-vivo 

(Ito et al., 2004), although this may be linked to the presence of a cDC precursor 

within typical pDC flow cytometry and FACS gating strategies (Villani et al., 2017). 

Plasmacytoid DCs are specialised to their role as sentinels under viral infection due 

to their specific TLR expression patterns, including TLR7 and TLR9, and high 

secretion of type-1 interferons compared to conventional DCs [Figure 1.2]. They do 

not express MHC class II to the same extent as cDCs and do no process antigens 

as efficiently as cDCs. In mice, they have been noted to provide a supporting role 

in antigen presentation by conventional DCs through their expression of CD40 

ligand after activation via TLR9. CD40 ligand binds CD40 on cDCs and promotes 

IL-12 production, in turn inducing greater IFN-γ production in T-cells (Murphy and 

Weaver, 2016). 

 

1.1.1.3 cDC1 Dendritic Cells (CD141+) 

Conventional myeloid CD141+ dendritic cells, also described as classical DC1 

(cDC1) are defined by their expression of surface thrombomodulin (CD141) and 

lower expression of CD11b and CD11c than CD1c+ DCs (Haniffa et al., 2012). 

Human cDC1s have a typical expression profile of CD141+, CLEC9A+, XCR1+, 

TLR3+, FLT3+, CD11b-low, and CD11c-low (Collin et al., 2011).  Historically, 

CD141 positivity alone was used to differentiate cDC1 from cDC2 cells, particularly 

in flow cytometry experiments, however gene expression analysis of cDC and 

monocyte subsets have indicated RNA-level expression of CD141 is induced 

across multiple cell types and thus a selection of robust cDC1 markers should be 

used in combination to define the subset.  They comprise of approximately 10% of 

human blood myeloid DCs and share homology with CD8+ lymph node DCs and 

CD103+ tissue DCs in mice (Bachem et al., 2010; Jongbloed et al., 2010). 

CD141+ DCs have a greater capacity for cross-presentation than CD1c+ DCs in 

mouse, particularly cross-presentation of necrotic antigens, related to this cell 

types’ expression of CLEC9A (Boltjes and van Wijk, 2014). Cross-presentation is 

discussed further in section 1.2.3. 
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1.1.1.4 cDC2 Dendritic Cells (CD1c+) 

CD1c+ myeloid DCs contribute less than 1% of mononuclear cells (Dzionek et al., 

2000). These cells are defined by expressing CD11c to a greater degree than 

CD141+ DCs as well as expressing CD11b, CD1c and SIRPA (Merad et al., 2013). 

Blood CD1c+ DCs are CD1a negative, while their tissue and lymph node 

equivalents are CD1a positive (Collin et al., 2011). Functional roles of CD1c+ DCs 

include Th2 induction with allergen response and Th17 induction in response to 

fungal infection and immune regulation (O’Keeffe et al., 2015). 

 

1.1.1.5 Inflammatory DCs 

Inflammatory DCs (infDCs) are a specialised subset of DCs that are primarily 

observed in the inflamed state and are believed to develop in situ from monocytes 

recruited under inflammation. Human inflammatory DCs express HLA-DR, FCER1, 

CD1a, CD11b, CD11c, CD14, CD172a and CD206, reflecting their hybrid 

monocyte-dendritic cell expression pattern (Segura et al., 2013; Segura and 

Amigorena, 2013). 

Studies on human infDCs have largely been based on cells present in synovial fluid 

of rheumatoid arthritis patients or inflammatory ascites of cancer patients (Segura 

et al., 2013). Under these conditions, a population of myeloid CD16-CD1c+ cells 

with dendritic morphology and T-cell stimulatory capabilities has been observed, 

distinct from the more macrophage-like CD16+CD1c- population. Subsequent 

comparative transcriptomics have revealed distinction between infDCs and steady-

state DCs and have instead linked infDCs to monocytes-derived DCs generated in-

vitro based on their global gene expression patterns (Robbins et al., 2008). 

Functional studies of infDCs have highlighted a potent TH17 response when 

cultured with naïve CD4+ T-cells, which is not shared by inflammatory 

macrophages (Segura and Amigorena, 2013). TH17 responses are critical in the 

pathogenesis of numerous autoimmune and inflammatory diseases and thus study 

of infDCs may provide insight into the management and development of these 

diseases, however their similarity to in-vitro generated moDCs may imply that for 

in-vitro experiments, moDCs are not an appropriate surrogate for the study of 

steady-state DCs.  
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1.1.2 Peripheral Blood Monocytes 

Along with DCs and macrophages, monocytes are a major component of the 

mononuclear phagocyte system and were historically considered precursors of 

macrophages and DCs. Succeeding research initiated during the 21st century has 

indicated that both monocytes and macrophages are phenotypically, functionally 

and developmentally distinct from steady-state dendritic cells (Collin et al., 2013; 

Naik et al., 2013; Schraml et al., 2013). 

Monocytes are highly heterogeneous. There are three well-established monocyte 

subsets in the blood that differ significantly in both phenotype and function (Auffray 

et al., 2009). 

The major peripheral blood monocyte subset, accounting for 80-90% of all blood 

monocytes is a large CD14+,CD24+,CD16- group of highly phagocytic cells with 

low cytokine production. These cells can be distinguished by low CX3CR1 

expression and high CCR2 expression and are deemed ‘classical monocytes’ 

A smaller CD16+ monocyte subset conversely expresses high CX3CR1, low CCR2 

and have been shown, in the presence of lipopolysaccharide (LPS) stimulation, to 

produce TNF-α, IL-1β and IL-12 (Ziegler-Heitbrock, 2000). With Major 

histocompatibility complex (MHC) class II expression and presence of co-

stimulatory antigens, CD16+ cells, termed ‘non-classical’, have been associated 

with acute inflammation and inflammatory response to infections (Belge et al., 

2002), however it is now understood that CD16+ monocytes comprise of two 

groups, distinguishable by CD14 expression. 

Multiple research groups (Collin et al., 2013; Grage-Griebenow et al., 2001) have 

suggested that it is in fact the CD14+CD16+ subset that exhibits inflammatory 

activity and cytokine secretion, aided in part by their expression of Fc receptors 

CD32 and CD64, while the function of the CD14lowCD16+ subset is relatively 

unknown, but suspected to perform a role similar to murine ‘patrolling’ monocytes. 
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1.1.3 Peripheral Blood Neutrophils 

Neutrophils are generated from myeloid precursors in the bone marrow 

compartment under the control of granulocyte colony stimulating factor (G-CSF) 

(Borregaard, 2010). Neutrophils are the major component of circulating leukocytes 

and appear as large, granular cells with multi-lobed nucleus under microscopy 

(Kolaczkowska and Kubes, 2013). By flow cytometry, neutrophils can be 

distinguished by size, CD15, CD16 and CD68 positivity. 

Neutrophils are capable of both intracellular and extracellular immune functions via 

phagocytosis, release of antibacterial proteins such as defensins or extracellular 

DNA-based traps (Häger et al., 2010). 

 

1.1.4 Dermal Mononuclear Cells 

Skin is the most readily accessible tissue available in relatively large amounts from 

patients and healthy volunteers from routine non-invasive surgical procedures, 

making it one of the main sources for human dendritic cell research after peripheral 

blood. 

The dermis contains two major dendritic cell populations and a number of smaller, 

specialized subsets. The monocyte-macrophage-derived CD14+ population was 

initially described as a DC based on their MHC Class II expression and migratory 

capacity, but have subsequently been associated with a human and mouse blood 

monocyte-like signature by microarray analysis (McGovern et al., 2014). These 

cells function as helper follicular T-cell and regulatory T-cell inducers, but being 

monocyte-derived, have a poor ability to induce allogeneic T-cell proliferation 

(Klechevsky et al., 2008).  

The largest population of dendritic cells in the skin is the CD1c+ DCs, believed to 

be a tissue equivalent to peripheral blood cDC2s (Haniffa et al., 2012). CD1c+ 

dermal DCs express CD40, CD80, CD83, and CD86, similar to their blood 

counterparts, but to a greater extent, as well as TLRs, lectins and other antigen 

processing proteins (Collin et al., 2013).  



	 9	

A small population of CD141+ DCs have also been identified in the dermis, 

believed to be functionally homologous to cross-presenting CD141+ DCs in the 

blood. Expressing XCR1, TLR3, CLEC9A and CADM1, CD141+ DCs exhibited 

typical cross-presentation markers above the levels of CD1c+ and CD14+ dermal 

populations (Haniffa et al., 2012). 

Macrophages are large phagocytic cells capable of ingesting and degrading 

microorganisms though the innate immune response, but also play a role in 

adaptive immunity. MHC-II molecules and B7 are usually lowly expressed on 

steady-state macrophages, but are induced upon ingestion and recognition of 

microorganisms. These can be employed to present antigens after phagosome 

ingestion and degradation within the cell. Unlike DCs, dermal macrophages have a 

slow turnover rate and do not migrate out of tissue in cultures as DCs do. Similarly, 

they do not migrate when activated in the tissue, in contrast to DCs, which typically 

migrate to lymphoid tissue T-cell zones when activated. Instead, macrophages 

induce already primed T-cell responses locally, supporting effector functions and 

memory T-cells that get recruited to the site. Macrophages do not activate naïve T-

cells in the same manner as dendritic cells, but instead present antigens to already 

primed T-cells to promote T-cell helper functions. Their inability to activate naïve T-

cells is particularly important as macrophages continuously scavenge dead and 

apoptotic cells, and thus may present copious amounts of self-antigens, but are 

unlikely to induce an immune response related to this (Murphy and Weaver, 2016). 

In mouse, macrophages appear to have two developmental routes, a prenatally 

established population and a second population derived from blood LY6C+ 

monocytes that develops after birth (Malissen et al., 2014). They are specialised for 

wound healing and phagocytosis and can maintain their numbers through self-

renewal (Ginhoux and Jung, 2014). Despite also being CD14+, distinguishing 

between CD14+ ‘DC’ cells and CD14+ macrophages in human can be achieved 

based on the their inherent autofluorescent properties related to melanin ingestion 

observed in the FITC channel and a high side-scatter profile by flow cytometry 

(Haniffa et al., 2009, 2015). Further comparisons between dendritic cells and 

macrophages are described in Figure 1.3. 
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1.2   DENDRITIC CELLS IN IMMUNITY AND TOLERANCE 

Although they are rare in the steady-state, dendritic cells play a fundamental dual-

role in their immune-mediated T-cell interactions, capable of inducing an immune 

response or tolerogenic capability depending on the activation state of an 

interacting DC and type of peptide presented (Heath and Carbone, 2001). 

In immunity, cDCs act as sentinels to link the innate and adaptive immune systems 

though pathogen sensing and detection of peptides through antigen processing via 

MHC and subsequent activation of naïve T-lymphocytes (Mildner and Jung, 2014). 

Dendritic cells are capable of receptor-mediated endocytosis, phagocytosis and 

pinocytosis enabling them to process and present antigens and particulates 

efficiently (Mak and Saunders, 2005; Steinman, 1991). Their functional repertoire 

extends from antigen presentation to encompass aspects of innate immunity, T-cell 

activation, differentiation and regulation of immunotolerance (Akira et al., 2006).  

Immature DCs, primarily located at sites with exposure to an external environment, 

act to capture, transport and present antigens to T-cells with a specific 

complementary surface complex (TCRs). Once activated in the presence of a 

pathogen and under the influence of cytokines, DCs mature to function as potent T-

cell activators (Bluestone and Abbas, 2003; François Bach, 2003) [Figure 1.4]. 

Conventional DCs are most common in the skin, lungs and intestines, but also 

present in other major organs where they can serve as a first-line defense, 

primarily through the uptake of antigens by phagocytosis and presentation via MHC 

class II molecules. Dendritic cells can uptake and process antigens in a number of 

ways depending on the pathogen, route of presentation and intended response 

[Figure 1.5]. Extracellular bacteria, soluble antigens and viral particles can be 

engulfed through receptor-mediated phagocytosis or macropinocytosis for 

processing and presentation via MHC class II to CD4 T-cells.  

Antigen production in the cytosol, typically as a result of viral infection, is 

understood to be the major route for delivering peptides to MHC class I molecules 

for CD8 T-cells. Cross-presentation of exogenous antigens can also occur through 

the endocytic pathway after phagocytic uptake for delivery to MHC class I and 

eventual presentation to CD8 T-cells [Figure 1.5] (Murphy and Weaver, 2016). 
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1.2.1  Pathogen Recognition 

As major, potent stimulators of T-cells, dendritic cells orchestrate the immune 

response by both presenting antigens and releasing cytokine molecules to induce 

immune activation (Banchereau and Steinman, 1998; Lotze and Thomson, 2001). 

Antigens presented on specific surface-bound major histocompatibility complexes 

(MHCs) are recognised by specific subsets of T-lymphocytes (Ni and O’Neill, 

1997). Cytosol-derived antigens, typically generated by intracellular viral or 

bacterial replication, bind to MHC class I surface molecules for presentation to 

CD8+ cytotoxic T-cells. Conversely, extracellular or vesicle-derived antigens are 

presented by MHC class II molecules to the other major T-lymphocyte subset, the 

CD4+ helper T-cells (Gargani, 2012; Mak and Saunders, 2005). 

Presentation of an antigen by MHC class I or class II molecules is determined 

solely by the path that the antigen takes through the cell (Nairn, 2002; Rockefeller 

Institute, 2014). Between dendritic cells and these major T-cell subsets, both the 

intra-cellular and inter-cellular compartments can be monitored for pathogenic 

insults.  

Of the pathogen recognition receptors, the Toll-like receptor (TLR) family has been 

the most extensively studied in mouse and human dendritic cells and differences in 

TLR expression may reflect specific subtype functions. Of the 10 known TLRs in 

humans, pDCs have been shown to express TLR1, TLR6, TLR7, TLR9 and TLR10, 

while cDC1s express TLR1, TLR3, TLR6, TLR8 and TLR10 and cDC2s express 

TLR1, TLR2, TLR4, TLR5, TLR6 and TLR8 (Hémont et al., 2013; Jin et al., 2014; 

Jongbloed et al., 2010). High expression of TLR3 and lack of TLR7 on cDC1 cells 

reflects TLR expression in the equivalent mouse CD8α+ DC (Edwards et al., 2003), 

although significant differences remain with mouse CD8α+ DCs expressing TLR4 

and TLR9, while human cDC1s expresses TLR10, not present in mice and for 

which there are no known ligands. 

C-type lectin receptors have also been linked to functional specialization of DC 

subsets in response to pathogens and vaccines. Of particular interest, CLEC9A on 

cDC1s, CLEC10A on cDC2s and BRCA2 on pDCs are now frequently used as 

classifiers of DC subsets in flow cytometry and FACS (Durand and Segura, 2015). 
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1.2.2  Cytokine Secretion 

Cytokine secretion by DCs drives effector T-cell lineage via STAT activation 

pathways. The specific cocktail of cytokines is in turn determined through 

recognition of pathogen-associated molecular patterns by Toll-like Receptors, 

NOD-like receptors and other pattern recognition receptors on the surface of DCs. 

This process also drives activation of the DC and induces MHC and co-stimulatory 

expression. 

Blood pDCs have long been noted to produce a strong type I interferon response, 

although more recently cDC1 cells have also been shown to be potent type I and 

type III interferon producers after TLR3 activation or Hepatitis-C interaction 

(Jongbloed et al., 2010). cDC2 cells are capable of cytokine production after 

stimulation with an array of TLR ligands, suggesting a less restrictive pattern of 

stimulation in cDC2 compared to cDC1 and a specialization for IL-12p70 secretion. 

Activated cDC1s produce primarily pro-inflammatory signals and may play a role in 

the recruitment of NK cells, monocytes and leukocytes, acting on the innate 

immune system (Hémont et al., 2013).  

 

1.2.3 Cross-Presentation 

In addition to MHC class II presentation for CD4+ T-cell activation, all blood and 

lymphoid DC subsets are able to engulf, process and present antigens to antigen 

specific CD8+ cytotoxic T-cells via MHC class I surface molecules along a cross-

presentation pathway. This is one of the major functional methods to distinguish 

DCs from monocytes. 

While lymph, spleen and tonsil cDCs are capable of cross-presenting antigen 

without TLR activation, blood cDCs under TLR-ligand stimulation also exhibit 

similar efficiency for cross presenting antigen, although as discussed in section 

1.2.1, blood cDCs express differing TLRs and will therefore react differently 

depending on the specific stimuli detected (MacDonald et al., 2002; Mittag et al., 

2011).  
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Examples of subset specific cross-presentation have been noted with cDC2s 

capable of inducing CD103 expression in CD8+ T cells for adherence to epithelial 

cells (Yu et al., 2013), while the association between mouse CD8α+ DC and cDC1 

has promoted interest in cDC1 cross-presentation due to its expression of 

CLEC9A, which specifically recognises actin-binding cytoskeletal proteins bound to 

actin, which are exposed when a cell membrane is significantly damaged. Indeed 

increased cross-presentation of necrotic cell-derived antigen by cDC1 was noted in 

Crozat et al (Crozat et al., 2010). 

Human pDCs cross-present soluble, viral, cell-associated antigens and antigen 

specific to pDC surface markers including CD40, CD205 and BDCA2 (Bachem et 

al., 2010; Heath and Carbone, 2001). 

DC cross-presentation in the inflammatory setting and in tissue, with the exception 

of skin DCs, has not yet been conclusively addressed. 

 

1.2.4 DC-Mediated Tolerance 

Immune tolerance prevents auto-reactive immune components from inducing an 

immune response, leading to the development and progression of autoimmune 

disease. 

A recent review highlighting the importance of dendritic cells in prevention of 

widespread auto-reactivity (Audiger et al., 2017) focused on transgenic mouse 

models with induced specific DC subset depletions (Birnberg et al., 2008) and 

relating them to clinical observations of autoimmune disease states including IRF8 

mutations which frequently present as defects in dendritic cell development and 

reduced numbers of DCs in the blood and tissue, resulting in high infection rates 

and an increase in anergic, non-reactive T-cells (Bigley et al., 2017; Hambleton et 

al., 2011; Salem et al., 2014). 
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Far from being just naïve T-cell activators, DCs play an important role in T-cell 

thymic selection and have been implicated in T-cell peripheral toleration. DC 

involvement in thymic selection allows for the conservation of cellular materials by 

inducing apoptosis in non-functional and hyperfunctional CD4+/CD8+ phase T-cells 

(Hawiger et al., 2001; Steinman et al., 2003). These defunct cells can be stripped 

from the cellular population though a series of positive and negative selection 

processes that involve DC presentation of peptides to developing T-cells 

(Cannarile et al., 2004). 

T-cells that cannot develop functional MHC-recognising surface receptors would be 

useless in their peripheral immune role and are thus destroyed in the thymus rather 

than being released into the circulating population. Various studies have indicated 

that T-cells failing positive selection in this manner can account for up to 80% of all 

generated T-cells (Hogquist et al., 2005; Shurin and Salter, 2009).  

Negative T-cell selection filters out T-cells which display activation activity against 

self-peptides and MHC molecules (Brocker et al., 1997). In this selection step, DCs 

and other APCs will present self-peptides in an effort to root out overly sensitive 

thymocytes. These potentially auto-immunogenic T-cells may, if released from the 

thymus, cause extensive cell damage to the host. For this reason, it is imperative 

that such autoreactive cells are induced to undergo apoptosis before they can 

cause any cell damage in the periphery. Approximately 20% of the developing T-

cells are destroyed for failing this selection step.  

The thymocytes that pass the selection process are expected to respond most 

specifically to non-self peptides presented on self-MHCs. This is the exact 

combination that is most likely to warrant an immune response and may indicate 

the presence of viral, bacterial or antigen infection (Delves et al., 2011).  
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Those T-cells that ‘fall through the net’ of thymic selection can be neutralised in the 

periphery by dendritic cells and other APCs via a process known as T-cell 

tolerisation. This process affects cells that bind and respond to any peptide that is 

presented in the absence of a ‘danger signals’ including INFα, TNF, double-

stranded or single-stranded (viral) RNA and a number of ‘heat shock proteins’ 

(Gallo and Gallucci, 2013). Without the induction of an innate response by such 

signals, DCs will not produce activating co-stimulatory molecules and an immune 

response to the self-peptide will not be initiated. In this manner, healthy tissue can 

induce tolerance to the self (Xing and Hogquist, 2012). In the steady-state, DCs 

express low levels of activation markers and are capable of presenting self-

antigens to T-cells, resulting in T-cell anergy or deletion of the cell. This process is 

likely to occur frequently due to migration of tissue DCs to lymph organs and 

provides a mechanism of tolerance outside of the thymus selection process. This 

process is compounded by secretion of inhibitory cytokines including TGFβ by 

tolerogenic DCs expressing low levels of activation markers. TGFβ induces 

expression of T-cell Foxp3 and production of regulatory T-cells, which in turn 

maintain DCs in their inactivated state (Chen et al., 2003). 

 

1.3   HAEMATOPOIESIS AND DC DEVELOPMENT 

Haematopoiesis is the process through which blood cells (leukocytes, red cells and 

platelets) develop. In the adult, self-renewing, multipotent haematopoietic stem 

cells (HSCs) give rise to all cells of lymphoid and myeloid lineages. Modern studies 

of the haematopoietic process suggest that these pathways exhibit a degree of 

plasticity, rather than representing hierarchical differentiation through a series of 

bifurcations with successive loss of potential. Early progenitor cells exhibiting a 

capacity for both lymphoid and myeloid potential are termed multipotent, while 

successive downstream cell types are typically more lineage-restricted (Ceredig et 

al., 2009).  
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Due to the role of mature blood cells in immune response, circulation and 

inflammation, most HSC-derived cells are short-lived with a rapid cell turnover. This 

facilitates immediate, specialised defense to stimulus, but requires precise 

regulatory mechanisms to maintain appropriate populations.  Haematopoietic 

cancers (ie leukaemia) are an accumulation of immature cells (blasts) due to 

genetic mutations and failure to properly differentiate, which result in a deficient, 

incapable immune system. 

 

1.3.1 Early In-Vitro Models of Haematopoietic Development 

Discovering how haematopoietic stem cells differentiate into their diverse mature 

cell types is fundamental to understanding the functional role that each cell type 

plays. By understanding the haematopoietic developmental pathway, manipulation 

of the process may offer therapeutic treatment potential in haematological 

disorders (Kawamoto et al., 2010). 

The classical model of haematopoiesis, derived from early morphological studies 

suggested a model of rapid restriction of cell plasticity and lineage which fits well 

with the classical model of DC development (Kondo et al., 1997). 

Plasmacytoid DCs (pDCs), with a characteristic appearance, surface receptor 

profile and interferon production capacity have long been recognised as lymphoid 

lineage cells. Such interferon producing cells were not found in in vitro culture 

experiments on CD34+ progenitor cells, supporting the concept of early lineage 

commitment. Further studies in the murine system have since identified myeloid 

precursor-derived pDCs, calling into question the accuracy of this classical model 

(Lai and Kondo, 2006). It is now generally accepted that the haematopoiesis model 

does not take into account the capacity of myeloid potential in lymphoid lineage cell 

precursors, specifically multi-lymphoid progenitors (MLPs), nor the capacity of CDP 

to produce both pDCs and conventional myeloid DCs (Doulatov et al., 2010). 

Most research into human dendritic cell development and maturation has been 

conducted on cultured iDCs, moDCs or precursor DCs. Older in-vitro studies have 

led to a theory of multiple DC lineage pathways, although these are believed to 

exhibit some plasticity [Figure 1.6]. Whether DC maturation occurs in the same 

manner in-vitro as in-vivo is still debated (Shortman and Liu, 2002). 
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1.3.2 Recent Models of Haematopoietic Development 

With the expansion of bulk sequencing, single-cell sequencing, culture techniques 

and cytometry, the working model of dendritic cell development is progressing 

rapidly. 

The linear bifurcation model [Figure 1.7], in which there is a step-wise progression 

through multi-potent progenitor cell types with a dichotomous fate decision at each 

step was likely reinforced by the bulk-level analysis techniques frequently used in 

combination with fluorescent activated cell sorting. Isolation of previously defined 

multi-potent progenitor cell types by FACS, followed by population-level analysis 

would provide an overall expression profile for the cell type, leading researchers to 

conclude that multipotent progenitors exist in the periphery as a homogenous 

population of distinct cells with multi-potential. This notion has since been 

overhauled with the advent of single-cell technologies. Single-cell level analysis of 

previously described multi-potent progenitor cells types has revealed the true 

heterogenic nature of these cells, providing an alternative model in the form of 

early lineage priming [Figure 1.8].  In this model, CDP, MDP and other multi-potent 

cell populations represent a transection of multiple distinct, primed, uni-potent cells 

that share a largely related, transitionary phenotype (Notta et al., 2016; Paul et al., 

2015). This feature extends back to the haematopoietic stem cell and progenitor 

compartment described as a cloud of early low-primed, undifferentiated, uni-potent 

cells with plasticity (Hamey and Göttgens, 2017). A major implication in this model 

posits no distinction between lymphoid and myeloid lineages in the origins of DCs, 

since all DCs are the product of a core lymphoid-myeloid pathway (Karamitros et 

al., 2017). The typical dichotomy of lymphoid and myeloid developmental pathways 

can instead be considered a spectrum, ranging from most myeloid-like monocytes, 

through cDC2, cDC1s and into lymphoid-like pDCs. 
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1.3.3 Transcription Factors Affecting DC Development 

A number of transcription factors have been recognised for their involvement in DC 

progenitor commitment, specification and survival. These transcription factors 

generally either influence all DC subsets at the early progenitor stage, having a 

profound effect on multiple DC lineages, or regulate later-stage committed DCs 

(Satpathy et al., 2011) [Figure 1.9]. 

Transcription factor PU.1 has been identified as an essential factor for DC 

development. It is a nuclear ETS-domain containing protein that binds to a PU-box 

located near the promoter region of target genes, regulating their expression or 

influencing alternative splicing of target genes. This factor controls and regulates 

expression of multiple essential DC development genes, including Flt3, GM-CSFR 

and M-CSFR (Zhang et al., 1994). In mouse models with conditional deletion of 

PU.1, no DC subsets develop although defects in other myeloid cells were also 

noted, implicating PU.1 as an essential factor not only in DC development, but the 

wider haematopoietic compartment (Carotta et al., 2010). In human disease states, 

defects in the SPI1 gene controlling PU.1 protein formation have been linked to 

neutrophil-specific granule deficiency, as well as affecting type II interferon 

signaling and IL-4 signaling pathways. 

Further mouse and human studies have described the importance of nuclear zinc-

finger proteins in early DC development (Ng et al., 2009; Rathinam et al., 2005; 

Yoshida et al., 2010). Growth factor independent 1 transcriptional repressor (GFI1), 

is one such zinc-finger protein that works in combination with other cofactors to 

silence the promoters of target genes through induction of histone modification. 

The UniProt entry for GFI1 highlights its broad influence over blood cell 

development, affecting neutrophil differentiation, lymphoid proliferation and 

granulocyte development as well as TLR regulation, cell-cycle progression and T-

cell receptor signaling.  
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IKAROS, another fundamental zinc-finger transcription factor, plays a profound role 

in the development of pDCs and to a lesser extent, other early progenitor cell types 

through its control over a range of receptors and transcription factors including 

FLT3, IL-7R and NOTCH1 (Ng et al., 2009). Interestingly, a lack of IKAROS in 

humans results in selective reduction of pDCs, but expansion of cDC1 (Bigley et 

al., 2017), although whether this observation is a direct result of IKAROS, or a 

compensatory mechanism spurred on by the lack of pDCs is yet to be established. 

Along with broad-ranging transcription factors, other factors are fundamental to the 

development of specific cell-types and lineages. In pDC development, E2-2 is the 

major lineage-determining factor that is negatively regulated by ID2 (Spits et al., 

2000, p. 3). Modulation of these factors can up-regulate or down-regulate pDC 

production, favouring pDC or cDC lineages (Satpathy et al., 2011). A competing 

mechanism between related interferon regulatory factor family members IRF4 and 

IRF8 determines lineage commitment along the cDC2 or cDC1 pathways, 

respectively. The competing and complimentary mechanisms of these factors 

influence the lineage potential in early DC development, priming progenitor cells 

towards a uni-potent potential and reinforcing maturation through transcriptional 

control of other factors. 

 

1.4 CONSIDERATIONS IN DC RESEARCH 

The field of dendritic cell research has been substantially expanded following 

extensive development of analytical techniques, however the fundamental qualities 

of dendritic cells and complexity of their development and activation still prove to 

be significant obstacles to the progress of human dendritic cell research.  
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1.4.1 Considerations in DC Transcriptome Profiling 

As noted in section 1.1, dendritic cells are a rare cell type and even though they 

are readily available in two of the most non-invasive tissues, the skin and 

peripheral blood, their scarcity in these tissues makes their collection, isolation and 

pre-processing an arduous process. Cell attrition from collection to subsequent flow 

cytometry analysis or FAC sorting can result in very few viable cells reaching the 

end of the pre-processing stages. Furthermore, each of these pre-processing steps 

affects the fragile regulatory processes and survivability of the DCs that remain. 

The practice of tissue dissociation and disruption can rapidly alter the expression 

and protein profile of dendritic cell subsets. Separating biological features from 

technically induced artifacts may prove an impossible task.  

Additionally, discrepancies between human and mouse DC development and 

immunobiology resulting in poor efficacy of otherwise promising targeted 

immunotherapies in humans, reveal issues with reliance upon extrapolation of data 

from mouse disease state and knock-out models into the human system (Haley, 

2003; Mestas and Hughes, 2004; Monaco, 2003; Oehler and Bicknell, 2000; 

Sykes, 2001). Continued use of mouse models is unavoidable at this time as 

although multiple human DC deficiency states have been identified, providing 

possible avenues for in-depth analysis of fundamental in-vivo development, 

collecting adequate sample material with enough replicates for research is 

problematic. 

To circumvent this problem, in-vitro models of human DC development are 

frequently relied upon to infer in-vivo biology, yet further intrinsic issues accompany 

this, namely the dependence on monocyte-derived dendritic cells or CD34-derived 

DCs to produce adequate cell numbers for transcriptomic or metabolic analysis. 

Neither of these cells’ surrogates accurately recapitulates bona-fide DCs, typically 

expressing hangover-signatures from their myeloid-monocyte origins and 

inflammatory signals resulting from their forced activation. A method for the 

production of true DC equivalents in-vitro is an ongoing enigma as further 

highlighted in Chapter 4.  
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Whether experimenting on primary DCs or in-vitro populations, analysis pipelines 

typically begin with the sorting or flow cytometric analysis of cell subsets according 

to established cell surface markers, yet surface marker expression is fickle across 

tissues, populations, and within individuals. The historical lack of robust, positive 

cell type markers in human DCs is beginning to be addressed through single-cell 

and bulk level transcriptomics, but these techniques have also revealed flaws in the 

use of traditional DC markers such as CD123, CD141 and CD1c, which have been 

shown to have greater variance across cell types than previously believed and 

have since been combined with other markers identified by single cell 

transcriptomics for greater purity during isolation (Villani et al., 2017).  

Transcriptional profiling of dendritic cells may be more reliable, provide a much 

wider coverage of global gene expression than flow cytometry or qPCR and 

provide information on transcription factor expression patterns.  

 

1.4.2 Cytometric, Gene Expression and Sequencing Technologies 

While dendritic cell research has been studied extensively over the past 30 years 

by traditional means, the advent of high-throughput expression analysis has 

opened a new avenue of cell research using large-scale arrays on small cell 

numbers, including single cell gene expression analysis.  

 

1.4.2.1 Flow Cytometry 

As dendritic cell subsets may differ by expression of surface antigens and markers, 

techniques involving the detection of these subset markers can be used to identify 

and separate out DC subsets from a heterogeneous mix. 

Flow cytometry is a well-established and widely implemented technique for cellular 

analysis. The principle of flow cytometry involves the use of fluorescent dye-labeled 

antibodies or molecules that specifically bind to cellular components of interest. 

These dyes are designed to respond to certain wavelengths of light by emitting 

photons of a different wavelength that can, after passing through a variety of filters, 

be detected and measured (Watson, 2004). 
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Subpopulations of a heterogenous collection of cells can be easily identified and 

analysed by flow cytometry. Multi-parameter data is collected for thousands of cells 

per second, with each parameter providing an intensity score for each interrogated 

cell. This can be particularly important if two cell populations share similar surface 

markers, but with a varied density, for example expression of CD14 on CD14+ 

classical monocytes and CD14+16+ monocytes. 

For flow cytometry experiments, a suspension of cells is directed into a narrow, 

single-cell stream that is interrogated by a laser light source [Figure 1.10]. Flow 

cytometers can rapidly detect and analyse hundreds of thousands of cells per 

minute. The scattered and emitted light from the fluorescently labeled cells is 

measured using a number of detectors, producing a potentially highly multi- 

dimensional dataset of the physical and fluorescent properties of each cell (Abcam, 

2014; Rahman, 2009). 

The development of flow cytometry technology has resulted in considerable 

increases in its complexity. The main benefit of this has been an increase in the 

number of parameters that can be interrogated at once. Simple flow cytometers 

may be have the capacity to measure three different fluorescent wavelengths, 

while the latest models offer over 20 parameters, allowing for wide and varied 

multi-parameter data acquisition and identification of rare cell subsets. 

Two parameters commonly tested in flow cytometry are forward scatter (FSc) and 

side scatter (SSc). Forward scatter is the term for the light collected from the 

opposite side of the particle stream to the light source. Light scatter in the forward 

direction (up to 20° from the light source axis) provides an estimation of particle 

size. This parameter is particularly useful for filtering out living cells from small 

particles and debris. Side scatter (light detected 90° from the light source axis) 

indicates the level of granularity of a cell or particle. These two parameters can be 

used to distinguish neutrophils, monocytes and lymphocytes to a certain degree 

[Figure 1.11] (Rowley, 2015). 
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1.4.2.2 FACS-Based Cell Sorting 

The first step in DC subset analysis generally involves an initial separation of the 

major subsets based on established and well-defined parameters. Fluorescence-

activated cell sorting (FACS) is a cytometry-derived method for identification and 

isolation of cell subsets based on their physical attributes and presence of cell 

surface markers. Using the same, or similar parameters to regular flow cytometry, 

FACS allows the separation of subsets by their physical and fluorescent properties. 

For FACS, a thin, flowing, unicellular stream of suspended cells is vibrated in such 

a manner that small droplets of fluid are produced. These droplets are expected to 

contain a maximum of just one cell, meaning that cells can be interrogated 

individually. After passing through the fluorescence measuring apparatus, and prior 

to breaking into individual drops, an electrically charged ring places a charge on 

the partially formed droplet, which is then passed through electrostatic deflection 

plates, skewing the droplet’s movement towards one of a number of collection 

vessels based on its charge (Wersto, 2014). [Figure 1.12]. 

When investigating homogeneous populations, FACS can quickly detect and 

display any non-uniformity through two-dimensional flow plots. Gating strategies to 

filter out dead cells, cell debris and cells expressing unusual or unexpected cell 

surface markers allow for the separation of ‘purified’, uniform cells (Rahman, 2009). 

Despite the high speed of cell interrogation, sorting small populations of cells from 

a heterogeneous mix can still be highly time-consuming. For many experiments 

relating to gene expression, a relatively large quantity of cells is required. For major 

cell types the number of required cells can be obtained within a few minutes of 

FACS sorting, however for small, rare subsets (eg. CD141+ DCs), even high speed 

sorters may require many hours of sorting to collect a sufficient number of cells. 

Use of the machine for this period of time can be expensive and may also pose 

quality issues as the cells may die or degrade in the time taken to collect sufficient 

cell numbers. This time issue is further compounded if sterile cells are required for 

an experiment, where throughput can be even lower (Watson, 2004). 
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1.4.2.3 Illumina Microarray Assays 

Illumina BeadArray Technology such as the HumanHT-12 v4 Expression BeadChip 

used in this project, provides researchers with the ability to perform extremely high-

throughput RNA or DNA based gene expression analysis of over 47,000 probes 

derived from the National Center for Biotechnology Information (NCBI) Human 

RefSeq 38 database. This level of transcriptome coverage includes a number of 

splice variant genes, possible gene candidates and many well-characterised gene 

targets for a diverse range of applications and experiments. 

Illumina BeadArray chips are composed of self-assembled 3µm silica beads 

randomly arranged in microwells with a spacing of ~5.7µm [Figure 1.13]. Each of 

these beads has attached to its surface hundreds of thousands of 79 nucleotides-

long oligonucleotide sequences representing a particular Illumina probe that 

exhibits complementarity to mRNA sequences of interest. 

Due to the random nature of Illumina BeadArray construction each array is unique 

and must be decoded during the quality control phase to determine adequate 

coverage of probes. To do this, each illumina probe sequence has a 27-nucleotide 

sequence that is used to map the location of each bead type on the array. 

Typically, each of the 47,000 bead types is present on an array around 30 times. 

The main benefit of random bead assignment is the elimination of spatially 

localised artifacts. Such issues can result in major expression flaws in other array-

based gene expression technologies. 

Reading of the Illumina BeadArray cartridge is performed by a confocal laser-

scanning microscope, the BeadArray Reader (Illumina, 2011).  
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1.4.2.4 Affymetrix GeneChip Technology 

Affymetrix GeneChips are an older and more established technology than Illumina 

BeadArray. This technology utilizes photolithography to generate an array on a 

quartz chip in a process similar to computer microchip construction. Manufacturing 

costs are high with this process but the resulting GeneChips attain comparable 

coverage to Illumina arrays (47,000 transcripts). Each GeneChip contains two sets 

of probes. One set, designated ‘perfect match’, is designed against the 3’ end of a 

gene of interest. The second set of probes have a number of single nucleotide 

substitutions at the 13th base. This ‘mismatch probeset’ acts to measure 

background hybridisation, data from which can be used as a background or 

negative quality control [Figure 1.14].  

As the Affymetrix arrays are mapped out during creation, all probes of a particular 

type are localised to a designated region of the chip. This can become a major 

issue if the chip is damaged or soiled in any way, including presence of dust 

particles on the chip surface that may obscure intensity readings from a region of 

the chip. While region specific drop-outs are not a major problem with randomly 

generated Illumina arrays, region-specific drop-outs in Affymetrix experiments may 

potentially obstruct all probes for a specific gene present on the chip [Figure 1.15].  

 

 

1.4.2.5 NanoString nCounter Assays 

NanoString nCounter technology utilises an alternative approach to fluorescence-

based expression compared to the intensity-based methods of Affymetrix and 

Illumina, as well as traditional methods such as Real Time Polymerase Chain 

Reactions (RT-PCR).  
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Rather than calculating an intensity score to determine relative expression levels, 

NanoString directly profiles individual molecules in a highly multiplexed reaction by 

assigning fluorescently labeled probes to genes of interest. In this manner, probes 

that have bound to a molecule of interest can be counted by a computerised optical 

lens. A chain of 7 fluorescent tags are bound to a biotin-containing oligo 

complementary to a 100bp region of the 3’ end of a gene of interest. The order of 

these coloured tags act as a ‘barcode’ to indicate which gene the complementary 

oligo refers to [Figure 1.16]. Restrictions on the sequence of the four available 

fluorophore colours limits the number of genes that can be assessed in one 

reaction to approximately 800. This scope puts NanoString nCounter technology 

between RT-PCR and whole genome microarrays with respect to gene coverage. 

Unlike other gene expression methods, NanoString does not require any pre-

amplification or polymerisation of sample input material. As a result, issues with 

amplification bias (where even small deviations in molecule amplification in a 

heterogenous mix are amplified over a number of cycles, resulting in comparative 

over- or under-amplification of certain sequences and therefore a skewing of any 

true underlying expression differences) are non-existent. The random nature of 

probe binding to the detection surface of the nCounter cartridges eliminates region 

specific gene drop-outs, while the non-reliance on fluorophore signal intensity 

negates compensation based errors. Fully automated loading of the cartridge, pre-

processing, digital detection and analysis minimizes user error, making NanoString 

assays reproducible, highly sensitive and extremely robust. 

NanoString arrays are single tube reactions, which can be designed to 

simultaneously detect specific mRNA, miRNA and more recently, proteins of 

interest. This level of complexity can allow a researcher to amass a vast quantity of 

data relating to all stages of the gene expression process in a single experiment 

using a range of sample types including fresh, frozen, lysed, extracted or formalin-

fixed, paraffin-embedded (FFPE) samples from a number of organisms. 
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1.4.2.6 Bulk-RNA Sequencing 

RNA sequencing provides a complete, precise measuring of transcripts and 

isoforms far above the level of microarray-base platforms. By determining the 

complete population-level transcriptome, functional gene elements, transcriptional 

structure of gene, splicing patterns and post-transcriptional modifications can be 

interrogated and inferred (Wang et al., 2009). Rather than the probe-based 

approach of microarray technologies, Sequence-based methods of RNA-Seq are 

capable of determining the definite cDNA sequence, although the process is 

typically low-throughput. Tag-based methods are of higher throughput, but usually 

based on expensive Sanger sequencing technology.  

As there are multiple competing technologies available to RNA-seq, associated 

costs have been reduced and methods can be tailored to suit a users needs. Some 

of the major variables are read depth, read length and single or paired-end reading. 

Read depth determines the number of reads per sample. Global gene expression 

comparison experiments may require lower read depth than those for the 

identification of low-expressing genes or novel transcripts. Read length is typically 

set between 30 base-pairs and 400 base-pairs, with 75bp being typical in many 

applications. Longer reads may be required to the investigation of novel isoforms, 

gene fusion events or identification of unknown transcripts. Single-end reads can 

be adequate for population comparison studies, although paired-end data can be 

used to detection of alternative splicing patterns and gene fusions. 

A normal workflow for RNA-Seq involves library preparation, sequencing and 

analysis with most of the time allocation given to the subsequent analysis of the 

data. 

 

1.4.2.7 Single-Cell Sequencing  

Interest in ‘single cell’ sequencing (scRNAseq) has expanded rapidly since the start 

of this project. Initially prohibitively expensive, protocol development, competition 

and multiplexing techniques have made such experiments more accessible. A 

fundamental switch in the field from basic science over to large-scale 

bioinformatics and ‘big data’ has fuelled this progress. 
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 In contrast to traditional ‘bulk’ RNASeq, scRNAseq allows for the detection and 

quantitation of mRNA from individual cells, opening avenues for in-depth 

heterogeneity studies, cellular development and population genomics. While 

variations in protocol are now commonplace, most single cell experiments follow a 

similar pipeline beginning with the isolation of live, viable single cells. This can be 

performed through flow cytometric sorting, droplet-based methods or micro-

dissection (Haque et al., 2017). Once individual cells are captured, they can be 

lysed to release the mRNA required for capture using poly(T) sequence primers 

before priming and conversion to cDNA with a reverse transcriptase. cDNA can 

then be amplified and prepped with a library of nucleotide ‘barcodes’ and 

sequenced. 

Different protocols deliver different outputs, which need to be considered when 

selecting a single cell platform and protocol. Microfluidics based protocols such as 

the Fluidigm ‘C1’ can offer full length transcripts for 1,000 to 10,000 cells with a 

read depth of 106 per cell, but require nanolitre volumes to perform with high 

sensitivity (Pollen et al., 2014). The plate-based Smart-seq2 protocol employed in 

chapter 5 of this thesis with some modifications can also produce full-length 

transcripts with equivalent throughput to C1, but work on a microlitre scale to allow 

for direct FAC sorting of cells into plates (Picelli et al., 2013). More recently, 

droplet-based protocols have emerged which allow for very high throughput using 

dedicated hardware to perform thousands of individual single-cell reactions with 

throughput up to 100,000 cells at a cost of decreased read-depth per cell (Macosko 

et al., 2015; Zilionis et al., 2017). These drop-seq protocols are typically cheaper 

than other methods but lack sensitivity as a result of lower read depth. 

Whichever method is used for pre-processing, extensive bioinformatics are 

required for cleaning, processing and analyzing the resulting read counts. No ‘gold 

standards’ have yet emerged to govern quality control, data filtering and differential 

expression, but common features of scRNAseq publications include filtering on 

mitochondrial reads, non-binding spike-in External RNA Controls Consortium 

(ERCC) controls and total reads per cell (Lun et al., 2016). 
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1.5 BIOINFORMATICS AND STATISTICAL ANALYSIS 

Bioinformatics has become a major part of scientific research in the last decade 

with wider accessibility to high-throughput, multi-parameter and highly multiplexed 

experimental techniques. With this, the demand for computationally and 

mathematically savvy scientists has also increased. Where previously data 

analysis could be performed by hand on paper or using common low-power 

desktop computers for qPCR, flow cytometry and imaging, the sheer bulk of data 

and computational demands of microarray, next-generation and single-cell 

sequencing data requires the use of dedicated high-powered computing clusters, 

development of intricate pre-processing and analysis pipelines and vast stores of 

digital memory storage. 

 

1.5.1 Data Collection and Storage 

Data are collected in various formats depending on platform and experiment types.  

Typical output for flow cytometry and FACS experiments include an index for each 

cell, experimental meta-data, time, light scatter values for determination of a cells 

area, height and width, voltages, colour compensations and fluorescence intensity 

for each measured parameter. Containing data on over 15 parameters for 105-107 

cells, single flow cytometry output files can be up to hundreds of megabytes in size. 

In contrast, NanoString data output is rarely above 30 kilobytes in size for a single 

sample, with count files and metadata for a 12-sample, single cartridge experiment 

totaling less than half a megabyte. While the number of parameters in a nanostring 

experiment can be up to 800 gene targets, even the largest published experiments 

uploaded to NCBI contain around 2,000 samples (Ye et al., 2014), limiting the total 

experimental data to a manageable size. 
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While flow cytometry and NanoString data can typically be handled and stored on a 

desktop computer or shared storage space and transferred by email or USB-

storage devices, output from NGS and single-cell experiments are far more difficult 

to handle. With millions of transcripts per sample and experiments commonly 

involving the analysis of 104 to 105 cells (Villani et al., 2017) up to 106 samples from 

10x genomics (“10x Genomics,” n.d.), bulk-sequencing data can amount to 

gigabytes, and single-cell RNA-sequencing can reach terabytes worth of storage, 

requiring the purchase and upkeep of dedicated high-memory, high-storage 

computer clusters and servers. Because of this, data storage and use of HPC 

facilities and expertise are an increasing expense for researchers. 

 

1.5.2 Data Normalisation 

The purpose of normalisation is to improve the reliability of experimental data by 

adjusting for sample variance, user error and technical variability. To separate 

biological variance from technical variance many technologies incorporate a known 

molecules or signals into the reaction chemistry to provide a stable background for 

comparison. 

For flow cytometry, this could come in the form of freeze-dried fluorescent pellets of 

a known number added to each sample to provide a comparator for determining 

absolute counts of mononuclear cells in blood. 

NanoString Technology uses positive spike-in control sequences of known 

concentrations, which are spiked into every codeset to adjust for variation 

attributable to minor differences in the amount of codeset added to each well of the 

cartridge. In sequencing experiments, ERCC-controls are commonly used to a 

similar effect. Expected to produce the same number of reads in for each sample, 

any variation in these counts can be attributable to technical variance and thus 

adjusted for (Arzalluz-Luque et al., 2017). In the absence of, or parallel to the use 

of, positive controls, ‘housekeeping genes’ – those genes believed to have equal 

expression across all samples can be used to develop a normalisation ratio 

applicable to the data. 
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Library size normalisation is frequently used in multiplexed RNAseq experiments to 

account for inherent variation of reads from each sample. Counts Per Million (CMP) 

is a common method of single cell library size normalisation that normalises data 

based on the number of reads for an individual gene and sample, divided by the 

total counts multiplied by 1,000,000. A variation on this is FPKM (Fragments per 

kilobase of exon per million reads mapped). This is usually a staple normalisation 

method of bulk RNA-seq experiments and integrated into many ‘R’-based 

sequencing analysis packages, although it is steadily being replaced in favour of 

transcripts per million (TMP). 

 

1.5.3 Statistical Analysis 

Statistical analysis is performed at the gene level, sample population level and 

functional enrichment level for the robust distinction of cell types, developmental 

stages or disease states. The purpose of statistical testing is to back up 

conclusions with mathematical confidence that such a result would be repeatable, 

true and was not likely just the outcome of random chance or variation. Statistical 

analysis may also provide insights into cell development, signature genes and 

functional enrichment. Identification of ‘statistically significant genes’ does not 

necessarily equate to biological relevance and thus in gene expression studies, 

shared gene functions, pathway mapping and enrichment analyses are usually 

implemented to provide a biological interpretation of differential expression. 

 

1.5.3.1   Significance Testing and Differential Expression 

Significance testing aims to support or reject an assumption made about a 

population based on a sample taken from this population. Typically significance 

testing is broken down into one or more hypotheses. A null hypothesis (H0) 

indicates that there are no differences between the test groups, while an alternative 

hypothesis (Ha) usually represents a statement that the experiment was developed 

to assess; that one group is distinct, on average, from another, beyond that 

expected by chance. If this verdict is reached, a researcher would reject the null 

hypothesis in favour of the alternative.  
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One of the most common analysis techniques in transcriptomics is the identification 

of differentially expressed genes. Genes related to specific disease states, risk 

factors and genotypes may offer molecular and biological insights into disease risk 

and expression variance (Sun et al., 2017). 

For gene expression technologies, methods of differential expression differ widely 

based on the format and distribution of output data and the research question to be 

answered. 

NanoString Technology, using a digital, multiplexed, PCR-like chemistry produces 

integer counts, which when normalised become non-integers. NanoString 

recommended use of a two-tailed student’s t-test for analysis of differentially 

expressed genes, with the inclusion of Benjamini-Hochberg false discovery rate 

adjustment to account for multiple testing.  Very recently, NanoString have shifted 

recommendations for some panels over to multivariate linear regression with 

Benjamini-Yekutieli false discovery rate adjustment, in a closer approximation of 

microarray-based analysis techniques, although most publications using 

NanoString refer to t-tests for differential expression. 

Illumina BeadArray differential expression analysis is most commonly performed 

using the ‘limma’ package of ‘R’. Very high probe numbers, combined with very few 

biological replicates poses a statistical problem shared by many microarray and 

sequencing techniques. Limma addresses this with the use of gene-wise linear 

models to estimate log-expression ratios between sample types, incorporating an 

empirical Bayes framework to estimate variances. The high dynamic range of 

microarray data typically results in very small p-values for differentially expressed 

genes, but the very high degree of multiple testing must be accounted for using 

false discovery rate adjustment, otherwise false positives in the data will be 

significant (Ritchie et al., 2015). 

Bulk-RNAseq analysis for differential expression is frequently performed using 

‘DESeq2’ package of ‘R’. This relies on a generalized linear model and negative 

binomial distribution. Such algorithms have been shown to work quite well and 

have been validated using RT-PCR (Rapaport et al., 2013). 
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scRNAseq is still fluid in its accepted analysis methods although the consensus is 

that bulk-RNAseq methods are generally not appropriate for single cell work. 

Rather than defined groups, single cell experiments usually rely on unsupervised 

clustering to produce groups of similar cells, which can then be compared for 

variance. Sample numbers are higher than in bulk RNAseq, although drop-out 

rates are much higher. ‘SCDE’ package is one of the first single-cell differential 

expression packages utilizing a zero-inflated negative binomial model with 

Bayesian statistics to specifically account for these differences between single-cell 

and bulk-RNA sequencing (Kharchenko et al., 2014). 

 

1.5.3.2 Functional Analysis and Geneset Enrichment 

Functional analysis is generally performed after differential expression analysis to 

better understand and deconvolute the individual gene-level expression patterns 

that have been identified. By investigating the effect and functions of differentially 

expressed genes as a group, the nature and mechanism of a disease state or 

population may be revealed. In this method, the Gene Ontology initiative functional 

annotations are used for each gene and statistical analysis for over-representation 

of genes with particular functions is performed to determine the functions shared by 

more genes than statistically expected in the dataset (Ashburner et al., 2000).  

The same over-representation tests can be applied to curated databases of genes 

associated with specific disease states, cancer types, cell types or other bin types. 

MsigDB (Liberzon et al., 2011) is one such resource for this, incorporating hallmark 

datasets, cell type genesets and other published genesets from thousands of 

studies.  
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1.5.3.3 Pathway Mapping 

Similar in purpose to functional enrichment, pathway mapping uses over-

representation of genes along curated genesets related to biological pathways. The 

expression patterns of genes along these pathways are usually mapped onto a 

diagrammatic representation of the pathway to identify potential target genes or 

‘choke points’ in the pathway that may be targeted for follow up experiments, this 

may be particularly valuable for drug discovery experiments, but it rarely employed 

in other research areas. Pathway mapping may be used in disease progression 

studies to identify therapeutic targets to correct altered expression along a disease 

pathway, or in the case of cell type analysis, may be used to infer cell maturity or 

development. 

 

1.5.3.4 Machine Learning, Hierarchical Clustering and Gene Reduction 

Machine learning is an expanding field of bioinformatics and computer science. 

Within the sphere of data analysis, machine learning is used to predict patterns in 

the data using various algorithms, that would otherwise be too time consuming or 

convoluted to process manually.  Dimensionality reduction is distinct from machine 

learning, but is usually incorporated into it. Dimension reduction aims to remove 

much of the collinearity within a dataset, shed unnecessary variables and 

streamlines the data for easier data interpretation, visualisation and better fitting of 

machine learning models. 

Principal Component Analysis (PCA) is a common linear method of dimension 

reduction. This method aims to maximise variance in low dimensional space by 

mapping the data to eigen vectors (principal components) based on a correlation 

matrix of the data. The first principal components equate to the most data variance 

and thus, may be used to reconstruct most of the variance in the data, but with far 

fewer dimensions. The first two or three components are typically plotted in a 

scatterplot format to identify groups of closely related samples and interpret the 

variance between sample groups. 
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Linear discriminant analysis (LDA) is based on Fisher’s linear discriminant and is 

used in machine learning to identify a linear combination of genes capable of 

separating multiple populations (Venables, 2002). When building a LDA model, a 

training dataset is used to extract the differences between populations. This same 

model can then be applied to ‘unknown’ samples to categorise them by similarity to 

known populations, outputting a confidence score for each assignment. 

Hierarchical clustering is a frequently used method of clustering to produce a 

dendrogram display of the relationship of samples in a dataset. Hierarchical 

clustering differs from k-means clustering by its method of clustering, but also 

provides information on how closely each of the clusters are related to one another. 

In this thesis, ‘agglomerative’ clustering was performed, by which small clusters are 

merged into larger ones (essentially working from the bottom up on a dendrogram). 

This in in contrast to ‘divisive’ clustering methods, which splits larger clusters into 

smaller ones (working from the top down on a dendrogram).  

The specific method of agglomerative hierarchical clustering used in this project 

was ‘Ward’s method’. This method aims to minimise the ‘merging cost’ of 

combining clusters by combining clusters with the smallest distance or sum of 

squares first.  As with all hierarchical clustering, the sum of squares begins at zero 

as every point is assigned to its own cluster. Under Ward’s method agglomeration, 

the ‘closest’ of these clusters are merged, with the centre of this new cluster used 

as the reference point for the next round of agglomeration. This continues until all 

clusters have been merged. 
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To read a hierarchical clustering dendrogram, such as that displayed in Figure 3.3, 

one should compare where and how samples are merged into clusters, and how 

resulting clusters are further merged together. The metric for assessing the 

difference between clusters is given along the Y-axis. 0 is the point at which every 

sample is contained within its own cluster. As these clusters are merged, the 

‘height’ on the Y-axis increases in proportion to the difference between the clusters. 

In Figure 3.3, the individual samples cluster into their respective cell-specific 

clusters at a height between 50 and 100. This close relationship reflects the 

similarity of these samples. Agglomeration of the cell type clusters then occurs at a 

much greater height, reflecting greater differences between the cell type clusters. 

In Figure 3.3, the cDC1 and cDC2 subsets are merged at a height of approximately 

170. These are therefore the two most closely related cell types in this dataset, 

closely followed by CD14 monocytes and CD16 monocytes. The monocyte 

populations and DC populations are merged last, at a height of 300, suggesting 

that these two populations are the most different clusters from one another. 
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Chapter 1 Figures & Tables 

 

 

Figure 1.1: The functional roles of the dendritic cell 

Adapted from Mak and Saunders (Mak and Saunders, 2005). This diagram 

highlights the broad spectrum of known functions associated with dendritic 

cells in-vivo. These essential immune cells process antigen, produce 

cytokines, activate lymphocytes and contribute to immune tolerance. 
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Figure 1.2: cDCs and pDCs have specific roles in immune response 

Plasmacytoid DCs (pDCs) are primarily viral sentinels and secrete large 

amounts of class I interferons, particularly interferon-α. They do not have the 

same capacity for naïve T-cell priming, but do express TLR7 and TLR9 for 

sensing viral infections. Typical surface markers for the isolation of pDCs 

include CD123, CD303 and CD304. 

Conventional DCs process antigens efficiently and once matured, express 

MHC molecules and co-stimulatory molecules to prime naïve T-cells. Mature 

cDCs can be identified by their expression of surface marker receptors, 

particularly CD141, CLEC9A and XCR1 on cDC1s and CD1c, CD11b and 

SIRPα on cDC2 cells. Immature dendritic cells lack many of these markers, 

but recognise pathogens through multiple Toll-like receptors. cDC1 cells 

express IFN-λ and IL12 and are particularly efficient as cross-presenting to 

CD8+ T-cells, particularly necrotic antigens, specialising in anti-tumour and 

anti-viral responses. cDC2 DCs are TNF-α, IL10 and IL12 producing cells and 

specialise in Th17 induction in response to fungal infection. 
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Figure 1.3: Properties of dendritic cells and macrophages 

Figure based on Murphy and Weaver, 2016. DCs and macrophages are two of 

the main cells involved in presentation of antigens to T-cells, along with B-cells 

(not shown). Dendritic cells are focused towards expansion and differentiation 

of naïve T-cells though the activation of naïve T-cells. Macrophages do not 

activate naïve T-cells, but instead present antigens to already primed T-cells 

specifically for the recruitment of effector T-cells that can release cytokines 

and enhance their own effector functions. 
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Figure 1.4: T-cell proliferation and antigen presentation under 
inflammatory conditions  

Based on Bluestone and Abbas, Nat Rev Immunology, 2003. Effector T-cells 

(red) presented with foreign peptide by a professional antigen presenting cell 

(purple) in the presence of cytokine stimulation will undergo proliferation and 

induce an immune response.  
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Figure 1.5: Routes of antigen presentation and processing by dendritic 
cells 

The major routes for delivering peptides to MHCII molecules for presentation 

to CD4 T-cells are via the uptake of antigens through receptor-mediated 

phagocytosis or by macropinocytosis. Antigen production in the cytosol, 

typically as a result of viral infection, is understood to be the major route for 

delivering peptides to MHC class I molecules for CD8 T-cells. Cross-

presentation of exogenous antigens can also occur through the endocytic 

pathway after phagocytic uptake for delivery to MHC class I and eventual 

presentation to CD8 T-cells. Finally, research has shown that antigens can be 

transmitted directly from one dendritic cell to another, particularly for 

presentation to CD8 T-cells although the exact process for this is largely still 

not understood. (Murphy and Weaver, 2017.) 
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Figure 1.6: Dendritic cell lineage determined from in vitro 
experimentation (2002) 

Based on the work of Shortman and Liu, Nat Rev Immunology, 2002 

and others. Culture studies identified pDCs as lymphoid precursors, 

while monocytes were myeloid in origin. Some DC lineages were 

shown to develop into mature cells in the presence of cytokines, 

however, the terminal, activated stages of other lineages was 

reached only under the influence of antigen or foreign stimuli. 
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Figure 1.7: Linear bifurcation model of haematopoietic development  

The linear bifurcation model postulates a step-wise progression through stable 

multi-potent progenitor cell types. Starting at the Haematopoietic stem cell 

(HSC), a myeloid or lymphoid fate decision pushes a cell towards a common 

lymphoid progenitor (CLP) type or a common myeloid progenitor (CMP). The 

CLP will develop into lymphoid cells through further bifurcation steps. The CMP 

branches into either megakaryocytes and erythrocyte (Mg / Ery) cell types, or 

into a more restricted granulocyte macrophage dendritic cell precursor (GMDP), 

which in turn produces a macrophage DC progenitor (MDP), followed by a 

common DC progenitor (CDP) and into a pre-DC stage with cDC1 or cDC2 

potential. In this model, each stage has homogeneous potential. 
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Figure 1.8: Early priming model of haematopoietic development  

Adapted from Collin and Bigley, Immunology, 2017 (in press). Experimental data 

supports early lineage priming of cells at the early progenitor stage such that most 

populations contain cells with phenotypically related but uni-potential capacity. In 

this model, the lymphoid and myeloid pathways run in parallel from a mixed 

lymphoid primed multi-potent progenitor (LMPP), separated from megakaryocyte 

and erythroid potential (MkE). Subsequently, the granulocyte macrophage 

dendritic cell precursor (GMDP), macrophage DC progenitor (MDP), and common 

DC progenitor (CDP) populations are also composed of heterogenous, uni-

primed, phenotypically similar cells comprising increasingly restricted mature cell 

potential. 
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Figure 1.9: Major transcription factor requirements in dendritic cell 
development 

Displayed are the major transcription factor requirements for DC lineage 

development. Acquisition or loss of one or more transcription factors can drive, 

reinforce or redirect lineage. E2-2 and ID2 act in opposing roles to push 

progenitors towards pDC or cDC potential. 
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Figure 1.10: The Flow Cytometer 

Flow cytometry induces hydrodynamic focusing of a cell suspension by 

using fast flowing sheath fluid to create a drag effect on the central 

chamber. This effect pulls the sample suspension into a narrow channel, 

forcing cells into a single file. Using a number of laser light sources of 

varying wavelengths individual cell characteristics can be identified, 

including cell size, granularity and the presence of pre- strained surface 

markers. These multi-dimensional parameters allow a user to identify 

groups of cells as well as any potential outliers at a rate of tens of 

thousands of cells per second. 
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Figure 1.11: Classification of major blood cell types by flow cytometry 
using forward and side scatter 

Adapted from Rowley, Materials and Methods, 2015. This flow cytometry plot 

of side scatter against forward scatter produces three distinct clusters 

identified as blood cells of three lineage types: large, highly granular 

neutrophils (blue); smaller, less granular monocytes (red) and very small 

lymphocytes (green). As flow cytometry interrogates cells individually, each 

cell can be displayed as its own point on the plot.  
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Figure 1.12: The Fluorescence-Activated Cell Sorter (FACS) 

Using the same hydrodynamic principles as regular flow cytometry, FACS 

sorters use laser light and fluorescence to characterise individual cells in 

up to twenty dimensions. Once a cell has been analysed, an electrically 

charged ring induces polarisation of the cell, either positively or 

negatively. Using the principles of electrostatic attraction, deflection 

plates pull the cell and a small amount of its surrounding fluid towards 

one of a number of collection vessels based on the induced charge of the 

cell. By this mechanism, cells with a similar phenotype can be separated 

out and purified from a heterogeneous mix. 
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Figure 1.13: Schematic representation of Illumina BeadArray Technology 

Illumina bead array technology uses silica beads arranged in a random 

fashion and loaded with hundreds of thousands of duplicate probes to analyse 

up to twelve samples at once. Complementary binding of gene targets to the 

probes induces a fluorescence response, which is detected and scored. More 

probe binding will induce a greater fluorescent response and thus relative 

gene expression levels can be determined. With over 47,000 bead types, 

Illumina BeadArray technology can identify and infer the relative expression of 

over 30,000 genes per sample.  
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Figure 1.14: Schematic representation of Affymetrix GeneChip 
Technology 

Affymetrix arrays use single-sample chips divided into over 400,000 squares. 

Each of these squares contains a unique DNA strand probe with over 1 million 

individual copies. Manufacturing of these plates using photolithography and 

hundreds of specific UV masking plates allows millions of probes to be 

synthesized at once, one base at a time. This process also means that each 

type of probe will be created only in one specific region. 
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Figure 1.15: Affymetrix array CEL file analysis from publically available 
data, indicating region-specific anomaly (GSM524665) 

This CEL file image taken from mouse Affymetrix data (GSM524665) 

highlights one of the major drawbacks of Affymetrix array design. A CEL file is 

essentially a false-colour map of an Affymetrix GeneChip based on the 

fluorescence intensity of each region. As shown in green on the figure, the 

lower section of this chip is showing an anomaly with extremely low or no 

probe detection. Such an issue might be the result of machine error or 

damage to the sensitive array plate. While other expression technologies 

could suffer a similar issue of region specific anomalies, with Affymetrix, region 

specific design of probe coverage will mean all probes for a given gene can be 

lost at once.  
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Figure 1.16: Schematic representation of NanoString nCounter Array 

Fluorescence-based NanoString expression technology uses a chain of 

fluorescent tags as ‘barcodes’ for a specific mRNA transcript of interest. Over 

800 genes can be assessed per sample in this manner for up to 12 samples 

per cartridge. As NanoString Technology does not rely on signal intensity or 

fluorescence scores, there is very little bias introduced. Instead, NanoString 

uses biotin molecules to bind captured mRNA hybridised-reporter probe 

strands to the streptavadin-coated surface of the cartridge. Once linearised by 

induction of an electrical gradient, the ‘barcodes’ can be optically detected by 

a computerised camera and microscope. From this, individual mRNA strands 

can be detected and identified as representing a specific gene. Each captured 

probe is counted to give the actual number of mRNA strands that were 

captured in each sample. This highly specific direct profiling and digital 

detection process produces large quantities of robust data in a short period of 

time.  
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Chapter 2: MATERIALS AND METHODS 

 

2.1 ETHICAL STATEMENT AND APPROVALS 

All healthy donor samples used in this thesis were obtained following 
written, informed consent with the approval of NRES Committee North East – 
Newcastle and North Tyneside (14/NE/1136 and 14/NE/1212). Plastic surgery 
skin was obtained from the Newcastle Biobank under 08/H0906/95+5. 
Illumina expression data was extracted from GEO repository with the 
accession number GSE35457. Research ethics for this published study were 
obtained from Singapore Singhealth and National Heath Care Group 
Research Ethics Committees and are discussed further in the original 
publication (Haniffa et al., 2012).  
 

2.2 BUFFERS AND REAGENTS 
 

2.2.1 Lymphoprep™ Solution 

Lymphoprep™ solution (Axis-Shield Diagnostics Ltd.) is a density gradient 

medium used for the isolation of mononuclear cells from peripheral blood or bone 

marrow. It contains sodium diatrizoate (9.1% w/v) and polysaccharide (5.7% w/v) 

in water, resulting in a density of 1.077g/ml. Due to their greater density, 

erythrocytes and granulocytes pass through the medium and settle below it, while 

lower density mononuclear cells float on top.  

 

2.2.2 Dulbecco’s Phosphate-Buffered Saline (PBS) 

PBS (ThermoFisher Scientific Inc.) is an isotonic salt solution usually containing 

sodium and potassium compounds. These buffers are non-toxic to most cells and 

are therefore commonly used for dilutions and cell-washing protocols 
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2.2.3 Flow Buffer 

Flow buffer is used as a dilutant during flow cytometry protocols. The main 

component of flow buffer is D-PBS. The addition of 2% by volume fetal calf serum 

(FCS) introduces proteins necessary for the reduction of heterophilic (non-specific) 

antibody interference and maintains cell viability, while 0.004% by volume EDTA 

reduces cell clumping during the cytometric process. 

	

2.2.4 Sort Buffer 

Sort buffer is used as a dilutant during fluorescence-activated cell sorting (FACS) 

protocols. The main component of sort buffer is also D-PBS. 0.5% by volume fetal 

calf serum (FCS) introduces proteins necessary for the reduction of heterophilic 

(non-specific) antibody interference and maintains cell viability. The addition of 

0.004% by volume EDTA reduces cell clumping during the sorting process. 

	

2.2.5 Culture Mediums 

RPMI-1640 is a liquid cell culture medium containing L-glutamine and sodium 

bicarbonate and commonly used to support lymphoblastoid cells or anchorage 

dependent cells. 

RF-10 was used to collect cells from FACS for NanoString analysis in Chapter 3 

and Chapter 4. It is composed of RPMI 1640 media with the addition of 10% FCS, 

1% penicillin-streptomycin and 1% glutamine.  

aMEM (Gibco™) is a culture medium solution based on Minimum Essential 

Medium with the inclusion of non-essential amino acids; sodium pyruvate, lipoic 

acid, ascorbic acid, biotin and vitamin B12 to support a wider range of cell types. 

aMEM was used in the culture of DCs from CD34+ bone marrow cells used in 

Chapter 4 and further supplemented with 1% penicillin/streptomycin (Sigma), 10% 

Fetal Calf Serum (Gibco), 20ng/ml GM-CSF (R&D systems), 100ng/ml Flt3-ligand 

(Immunotools) and 20ng/ml SCF (Immunotools). 
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2.2.6 NanoString nCounter™ Hybridisation Buffer 

nCounter hybridisation buffer is a sodium chloride containing buffer medium used 

to stabilise NanoString nCounter codesets and target material during hybridisation. 

	

2.2.7 NanoString nCounter Codesets 

NanoString nCounter codesets consist of a probe pair designed against a target of 

interest. The reporter probe carries a string of fluorophores at its 5’ end, the 

sequence of which determines the target gene. The reporter signal complexity 

carries four colours in six positions. Up to 900 individual reporter probes can be 

multiplexed and hybridised at once. 

The capture probe is bound to a biotin molecule at its 3’ end. During the 

hybridisation step, the capture and reporter probes bind to a 100bp target region of 

RNA, DNA or protein. The capture probe’s biotin molecule binds it to the reading 

surface of a NanoString cartridge while the reporter probe’s fluorophore sequence 

allows the hybridised material to be individually resolved and identified. 

	

2.2.8 RNA Lysis Buffer (RLT) 

RNA lysis buffer is a guanidium ISO thiocyanate-containing buffer used in the 

preservation and stabilization of RNA. It readily denatures protein and RNAses 

that would otherwise degrade RNA. RLT with the addition of 1% β-

mercaptoethanol was used in the NanoString hybridisation protocol for Chapter 3 

and Chapter 4. RNA lysis buffer consisting of RNAse free water, 0.2% triton X 

(Sigma) and 2U/µl RNAse inhibitor (Sigma) was used in the single cell 

hybridization protocol in Chapter 5. 
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2.3 PROTOCOLS FOR SAMPLE PROCESSING AND STORAGE 
 

2.3.1 Bone Marrow Cell Isolation 

Bone marrow was obtained from donations after hip replacement operations. The 

core of the bone was washed with RPMI though a cell filter and into a falcon tube. 

The bone marrow was then scraped from the bone using bone clippers before a 

second washing step. Unfiltered tissue was pulped in the cell filter and washed 

with RPMI. 

Wash-through was diluted with PBS at a 1:4 ratio and layered over lymphoprep 

solution at a ratio of two-parts diluted sample to one-part lymphoprep. This was 

then centrifuged for 15 minutes at 800g to separate the blood constituents along a 

density gradient. 

The cell layer was aspirated into a sterile falcon tube and topped up with PBS prior 

to two centrifugation-washing steps for 5 minutes at 500g. 

Excess PBS was poured off the cell pellet, which was then resuspended in 1mL of 

PBS. 10µl of this suspension was used to count viable cells using a 

haemocytometer. The remaining cells were centrifuged for 5 minutes at 500g. The 

PBS was poured off and the cells were resuspended in sorting buffer for 

downstream staining and FACS as noted in sections 2.3.1 and 2.4.1. 
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2.3.2 Peripheral Blood Cell Isolation 

Peripheral blood was obtained from consenting patients or healthy volunteers. The 

blood was diluted with PBS at a 1:2 ratio and layered over lymphoprep solution 

(STEMCELL™) at a ratio of two-parts diluted sample to one-part lymphoprep. This 

was then centrifuged for 15 minutes at 800g to separate the blood constituents 

along a density gradient. 

The cell layer was aspirated into a sterile 50ml falcon tube and topped up with 

PBS prior to two centrifugation-washing steps for 5 minutes at 500g. Excess PBS 

was poured off the cell pellet, which was then resuspended in 1mL of PBS. 10µl of 

this suspension combined with 10µl of trypan blue (ThermoFisher) was used to 

count viable cells in a haemocytometer. The remaining cells were used in 

downstream steps including FACS sorting as detailed in 2.4.  Cells surplus to 

requirement were resuspended in freezing solution, transferred into a cryovial and 

stored at -80°C. 

	

2.3.3 Dermal Cell Isolation 

Dermis was obtained from plastic surgery operations with written informed 

consent. The sample was first placed into a large petri dish with 5ml of PBS. 

Forceps and a scalpel were used to cut the skin into equal strips. Each strip was 

then pinned to a Teflon-coated corkboard and split-thickness sections taken with a 

sterile Webster skin knife with a size 8 guard. The split strips were floated on 10ml 

RPMI with 100µL dispase (1:100 ratio) and incubated at 37°C for 1 hour, after 

which the epidermal layer was peeled from the dermis using forceps. Both parts 

were washed in fresh RPMI to remove remaining dispase. 

For digestion, dermis strips were placed in XVivo10 with the addition of 

Worthington’s collagenase at a ratio of 1:150. Epidermal strips were placed in 

XVivo10 with the addition of Worthington’s collagenase at a ratio of 1:200. Both 

were then incubated at 37°C overnight to digest. The final solutions were flushed 

through a 100 micron cell strainer and washed twice with PBS before use in FACS 

sorting experiments. 
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2.4 CELL CULTURE 

	

2.4.1 Culture Conditions and Sorting 

CD34+ bone marrow progenitor cells were sorted by FACs to  >98% purity and 

seeded at 3,000 cells per well onto a pre-seeded (>/=4hrs prior) feeder layer of 

OP9 stromal cells at 5,000 per well in 96 well U-bottomed plates. Cells were 

cultured in 200mL aMEM (Gibco™) with 1% penicillin/streptomycin (Sigma), 10% 

Fetal Calf Serum (Gibco), 20ng/ml GM-CSF (R&D systems), 100ng/ml Flt3-ligand 

(Immunotools) and 20ng/ml SCF (Immunotools). Half the volume of media 

(including cytokines) was replaced every seven days. At Day 21 cells were 

harvested on ice, passed through a 50mm filter, washed and stained for flow 

cytometric analysis or FACS. 

	

2.5 FLOW CYTOMETRY AND SORTING 

	

2.5.1 Cell Staining and Sorting  

Cells were stained in aliquots of up to 1x107 cells in 100µl of DPBS with 2% fetal 

calf serum and 0.4% EDTA.  Dead cells were excluded by DAPI (Partec). Cells 

were sorted with a FACSAria III (BD Biosciences) running BD FACSDIVA™ 8.0 

software, into eppendorfs with appropriate media as detailed in Chapter 4, section 

4.2.2. 

	

2.5.2 Sorting Strategy 

Major DC and monocyte subsets were sorted according to the parameters 

displayed in and Table 2.1.  Further chapter specific sorting strategies are 

displayed in the relevant chapters. 
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2.6 ILLUMINA BEAD ARRAY 

Generation of the Illumina expression data used in this thesis was conducted 

previously in the lab and published in Haniffa et al, 2012 ‘Human Tissues contain 

CD141hi cross-presenting dendritic cells with functional homology to mouse 

CD103+ nonlymphoid dendritic cells’. The full dataset can be obtained from the 

NCBI GEO repository at www.ncbi.nlm.nih.gov/geo/ under the accession number 

GSE35457. 

 

2.6.1 Machine Specifications and Protocols 

Illumina BeadArray readers were used for all Illumina BeadChip experiments, 

utilizing Illumina Human HT-12 v.4-0 Whole Genome gene expression arrays. Cell 

subsets used for transcriptomics analysis were purified and collected using FACS 

sorting. The cells were processed using Qiagen RNeasy Mini kits to extract RNA 

according to manufacturer guidelines. The extracted RNA was checked for quality 

and quantified using an Agilent Bioanalyzer. Total RNA samples were then 

amplified and subsequently biotinylated using Illumina TotalPrep RNA Ampification 

kits and finally processed according to standard BeadChip array protocols. A full 

methodology for this data is available in Haniffa et al, 2012. 

 

2.6.2 Data Normalisation Protocol 

Illumina BeadArray data were pre-processed using Illumina Genome Studio and 

were normalized via the lumi and limma packages in R, using the Loess method or 

variance stabilizing transformation (VST) and robust spline normalisation. This 

normalisation was re-performed for this thesis prior to further downstream 

analysis. Genes failing detection threshold QC (p-value <= 0.05) were removed 

from further analysis at the normalisation stage. 
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2.7 NANOSTRING NCOUNTER ANALYSIS PLATFORM 

 

2.7.1 Machine Specifications 

All NanoString experiments were performed on a 2nd Generation ‘Flex’ system, 

utilising a ‘prep station’ running software version 4.0.11.2 and ‘high sensitivity’ 

settings. The ‘digital analyser’ was set at 555 fields of view, running software 

version 3.0.1.4. 

 

2.7.2 NanoString Codesets 

NanoString experiments were performed using pre-built, focused nCounter gene 

expression panels created by NanoString. 

NanoString Human Immunology_V2 mRNA codesets were used for most 

experiments with or without the addition of a 30 gene ‘Panel+’ custom codeset. 

 

2.7.3 Gene Expression Hybridisation Protocol 

Cell subsets used for NanoString analysis of Chapter 3 and Chapter 4 were 

purified and collected using FAC sorting, pelleted and stored in RNA lysis buffer 

(described in 2.1.8) at a concentration of 2,000 cells/µl. Cell lysates were directly 

hybridised to the NanoString CodeSets according to manufacturer guidelines for 

cell lysate protocol. 
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For the initial comparison to extracted RNA described in Chapter 3, figure 3.10, an 

equal number of cells were processed using Qiagen RNeasy Mini Kits or Micro 

Kits to extract RNA according to manufacturer guidelines. RNA content was 

quantified using an Agilent Bioanalyzer and normalised to a consistent 

concentration with the addition of nuclease-free water. Extracted RNA was 

hybridised to the NanoString Codeset according to manufacturer protocols.  

For both the extracted and lysate protocol, the process involved involved the 

addition of 20µl of diluted NanoString reporter codeset to each well of a 12-well 

strip tube, followed by 5µl of RNA-content normalised sample material. Finally, 5µl 

of NanoString capture codeset was added to each well before the samples were 

hybridised for 18 hours at 65°C and moved into the NanoString Prep-Station for 

automated processing, followed by the NanoString Digital Analyser for counting. 

 

2.7.4 Data Normalisation Protocol 

Normalisation of NanoString data was performed using NanoString’s freeware 

‘nSolver’ version 2.6 with manufacturer standard normalisation procedures. Each 

pre-built human NanoString CodeSet includes eight ‘negative control’ probes that 

do not bind to any human RNA region. The geometric mean of the counts of these 

probes is removed from the count number of all endogenous probes to account for 

random background binding. Six scaled ‘positive controls’ were spiked into the 

codeset at known concentrations to control for any differences in the amount of 

codeset added to each well. Again, the geometric means of these counts were 

used to provide a normalisation factor. The POS_F control was also used for 

quality control proposes to determine if the lowest concentration of the positive 

controls can be seen above the level of background binding. 

A final round of normalisation was performed against a number of well-known 

‘housekeeping’ gene targets, including GAPDH, RPL19 and EEF1G. The 

geometric mean counts of these housekeeping genes were used to compute a 

normalisation factor that was then applied to all endogenous gene probe counts to 

account for inter-sample variation. After each normalisation factor was applied, the 

final count data was considered ‘normalised’. Log2 transformation of the data was 

applied after normalisation to normalise the distribution of gene intensity values. 
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2.8 DATA ANALYSIS 

 

2.8.1 Combining Batches (ComBat)  

The issue of batch effects in the Illumina expression data was addressed through 

the implementation of the ‘R’ package ‘SVA’ with the ‘ComBat’ function.  Firstly, a 

tab-delimited text file of normalised expression values was loaded into the ‘R’ 

statistical programme. A second file was loaded in, containing information on the 

dataset, including which samples were from each batch. The ComBat function 

adjusted the data to counter the effects of any variation linked to sample batches 

using an empirical Bayesian framework and returned a corrected copy of the 

dataset (Johnson et al., 2007). 

Frequently, microarray experiments run across multiple array chips, the datasets 

from which then require combining for analysis. Combining datasets without 

adjusting for batch effects between cartridges would result in unaccounted for bias 

during analysis (Leek et al., 2012).  

 

2.8.2 Statistical Testing 

A number of context-dependent methods of statistical analysis techniques were 

performed in this thesis. In all cases, a p-value cut-off of 0.05 was used in 

combination with False Discovery Rate (FDR) adjustment of the p-values where 

necessary. 
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The novel approach to culture and tissue signature removal from a dataset applied 

in chapter 3 and chapter 4 was based on a standard t-test applied across two 

populations grouped by condition. In chapter 3, samples were grouped into skin-

derived or blood-derived samples before a t-test was applied across these two 

groups. The novelty lay with the purpose of the test. Rather than identifying and 

focusing on the differential expressed genes, as would be typical in differential 

expression analysis, the genes identified as differentially expressed between skin 

and blood samples were removed from the dataset, it leave only those genes 

conversed across both tissues. This revealed the underlying cell type associations 

that were previously obscured by the stronger tissue-specific differences between 

the populations. In chapter 4, the same approach was implemented to remove 

culture-specific genes and effects from the dataset, again, revealing the similarity 

between the mononuclear cell subsets that was previously hidden behind a strong 

culture-specific signature. These approaches both opened up the project to a 

much deeper interrogation of the dataset than would otherwise be possible and 

exposed the underlying patterns within the data, through the condition-associated 

effects. 

 
2.8.3 Principal Component Analysis (PCA) 

PCA was performed using the ‘stats’ package of ‘R’ (“R Core Team,” 2012) and 

incorporating ‘ggbiplot’ (“V.Q. Vu,” 2011), ‘ggplot2’ (Wickham, 2009a) and 

‘RColorBrewer’ (“E. Neuwirth,” 2014) for visualisation and grouping. 

 

2.8.4 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

t-SNE was performed in ‘R’ using the ‘Rtsne’ package (Maaten and Hinton, 2008). 

A sample seed was set to ensure reproducible results over multiple iterations and 

perplexity was selected based on expected grouping of samples. 

 

 

 



	64	

2.8.5 Gene Set Enrichment Analysis (GSEA) and BubbleGUM 

Gene Set Enrichment Analysis was performed using the GSEA functions 

developed by the Broad Institute of MIT (Subramanian et al., 2005) incorporated 

into the BubbleGUM GUI interface developed at the Centre d'Immunologie de 

Marseille-Luminy (Spinelli et al., 2015). Gene signatures used in Chapter 3, 4 and 

5 were developed according to this strategy with a False Discovery Rate (FDR) 

adjustment cut-off p-value of 0.05 and log2 fold change of 1.5. 

 

2.8.6 Minimal Gene Reduction and Dimensionality Reduction 

A number of different dimensionality reduction techniques were employed in this 

thesis, depending on the required output. These are discussed in greater details in 

the Chapter-specific introduction and method sections, but overviewed here. 

T-SNE analysis was performed using ‘Rtsne’ implementation of Barnes-Hut t-

Distributed Stochastic Neighbor Embedding (Maaten and Hinton, 2008) with 50 

initial PCA dimensions and variable perplexity based on the dataset, commonly in 

the range of 3 to 10 with a maximum number of iterations set at 1,000. 

K-means clustering is one of the simplest unsupervised learning algorithms 

available for dividing data into a pre-determined number of clusters and was 

performed with 1,000 iterations and a k value of 4, representing the 4 expected 

cell populations in the data. In this k-means clustering, 4 initial centroids are 

mapped onto the space represented by the samples being clustered. Each sample 

is then assigned to the nearest centroid to it. Where total within-cluster variation is 

minimized. Once all samples have been assigned to centroids, new centroids are 

calculated at the average position of each of the samples in that cluster, thereby 

separating the samples. This process is repeated until the centroid clusters no 

longer move through the iterations and thus all points in a cluster are homed in to 

one point. 
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The novel custom gene reduction method produced in this thesis was based on 

repeated k-means testing with random gene removal as displayed in Figure 3.24. 

The novelty of this approach stems form the combination of events in the pipeline.  

Utilising repeated k-means testing in this way has not been described in literature 

before. K-means testing was performed on all genes and the between-group sum-

of-squares were recorded for each group. This provided an indication of the 

‘distance’ or separation between cluster. One gene was randomly removed and 

the process was repeated. If the new (smaller) geneset provided greater between-

cluster sum-of-squares, another random genes would be removed and re-

checked. This would mean that the reduced dataset separated the clusters to a 

greater extent then the full dataset. If the new geneset did not provide a greater 

sum-of-squares, the gene would be replaced and another gene randomly removed 

and re-analysed as the removed gene was likely driving the cluster separations 

and may therefore be a cluster-specific marker gene. This process was repeated 

for 10,000 iterations or until no more genes could be removed without disrupting 

the cell type clustering provided by k-means testing. Final gene lists were 

produced at this stage and displayed using heatmaps and clustering functions in 

‘R’. The entire process was repeated 2,000 times to produce 2,000 final minimised 

gene lists that were capable of separating the cell subsets. 

 

2.8.7 Functional and Pathway Mapping 

Functional analysis was performed using the ‘GOstats’ package (Falcon and 

Gentleman, 2007) hypergeometric testing functions with an FDR adjusted p-value 

of 0.05 deemed to be significant and a requirement of over five genes to share a 

function for it to be considered. 

 

 

 

 

 



	66	

2.8.8 Single Cell RNA-Seq Analysis Pipeline 

Plate-based single cell analysis involved a specialised pipeline of pre-processing 

as outlined in Figure 5.1. Freshly isolated PBMC were index-sorted as single cells 

using a FACSAria III with a 100um nozzle into a 96 well V bottomed plate, each 

well containing 2µl RNA lysis buffer consisting of RNAse free water, 0.2% triton X 

(Sigma) and 2U/µl RNAse inhibitor (Sigma). The cell identification and sorting 

strategy used is shown in Chapter 5, Figure 5.2. Plates were spun at 500g and 

4°C for 1 minute, then frozen on dry ice and stored at -80°C until processing at the 

Oxford Genomics Centre. 

Reverse transcription, library prep and sequencing steps were all performed at 

Oxford. To adjust for technical variability inherent to the reverse transcription 

process, ERCC spike-in control sequences were incorporated into each sample 

well prior to reverse transcription according to a non-UMI adapted SMARTseq2 

protocol (Picelli et al., 2013). A Nextera XT DNA Library Prep kits was used for 

library prep with reads generated on an Illumina HiSeq 4000. 2.5 million reads 

were produced in total. 

Alignment of the read count data was performed against the Genome Reference 

Consortium’s GRCh38.p5 assembly with additional ERCC92 control sequences 

added in from Thermofisher. Trimmomatic (Bolger et al., 2014) was used to trim 

poor-quality sequences using a threshold quality trailing of 20 or if the read was 

below 60 bases.  

After trimming low-quality bases from the reads the remaining sequences were 

mapped to the GRCh38.p5 genome build using the STAR tool version 2.4.0j 

(Dobin et al., 2013). Samtools version 1.3 (Li et al., 2009) was implemented for 

conversion of the aligned reads from SAM to BAM format before Python-based 

‘HTSEQ’ version 0.6.1 (Anders et al., 2015) was used for generating output 

reports and feature count tables based on unambiguous read alignment to a single 

gene’s exons. Once count tables were produced for each sample, they were 

collated into a single matrix and imported into ‘R’ for further processing. 
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‘SCATER’ (McCarthy et al., 2017) was implemented for gene and cell filtering by 

total reads, gene expression and percentage of control reads as well as the 

visualisations of these filters. SCATER was further used for data normalisation and 

conversion to Counts per Millions as well as to investigate PCA and t-SNE 

grouping and sources of variance in the data. ‘RUVseq’ (Risso et al., 2014) was 

used for ERCC content normalisation, SC3 (Kiselev et al., 2016) for consensus 

clustering, M3Drop (Andrews and Hemberg, 2017) for identification of potential 

signature genes within pre-DC sub-populations and novel code to compare pre-

DC sub-population expression patterns to mature peripheral blood dendritic cell 

and monocyte gene signatures, displayed using ‘ggplot2’ (Wickham, 2009a). 
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Chapter 2 Figures & Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1: Sorting Strategy for GSE35457 Illumina Expression Data  

Human skin and blood samples were sorted according to these gating 

strategies and phenotypes for Illumina BeadArray analysis. 
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Chapter 3: CODESET DESIGN AND DIMENSIONALITY REDUCTION 
FOR DENDRITIC CELL SUBSET ANALYSIS 

 

Primary research question:  
Can RNA expression analysis be used to distinguish and identify human DC 
and monocyte subsets? 

Sub-topic questions: 
1. Can human blood dendritic cells and monocytes be classified by their RNA 

signatures? 

2. Can a focused panel of immune genes be used to identify common blood 

dendritic cell and monocyte subsets? 

3. How many genes are required to maintain dendritic cell and monocyte subset 

classification? 

 

3.1 INTRODUCTION 

 

3.1.1 Dendritic Cell and Monocyte Subsets 

Dendritic cells and monocytes are heterogenous cell types with specialised 

subpopulations that play a significant role in phagocytosis, antigen presentation 

and pathogen response. The cell types of focus for this thesis are the three major 

DC populations and two main monocyte populations. The DCs are composed of 

two conventional DC subpopulations cDC1 and cDC2, as well as a specialised 

plasmacytoid DC subpopulation, pDCs.  
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Plasmacytoid DCs are an intriguing cell type lacking many conventional lineage 

markers by flow cytometry and a distinct cell gene expression profile. pDCs have 

been defined by CD123, CD303 and CD304 expression (Collin et al., 2013), 

although their unusual properties and phenotype suggests many more molecular 

identifiers of this population could distinguish it from other mononuclear cells.  

Historical functional studies have assigned T-cell priming, Th1 and Th2 responses 

and roles in tolerance to pDCs (Ito et al., 2004), although very recent papers and 

on-going single cell studies suggest that this population may be composed of its 

own unique subpopulations to which its observed diverse functionality may be 

attributable (Villani et al., 2017). 

cDC2 DCs are broadly referred to as CD1c+ myeloid DCs. They are the most 

abundant myeloid DC in peripheral blood. Making up approximately 0.3-0.8% of all 

mononuclear cells, multiple studies on cDC2 cells over the past decade have 

highlighted the role of this subset as potent T-cell stimulators and chemokine 

producers (Collin et al., 2013; Dzionek et al., 2000; O’Keeffe et al., 2015). Surface 

expression markers of cDC2s include CD11c, CD1c and SIRPA. In the blood 

cDC2 cells are CD1a negative, but their tissue equivalents are not (Collin et al., 

2011; Merad et al., 2013). 

cDC1 DCs are  a CD141+ myeloid cell found very infrequently in the peripheral 

blood, for this reason they are problematic to study or develop in-vitro cultures 

from. New techniques such as NanoString nCounter analysis, CyTOF and single 

cell sequencing are proving invaluable tools for the study of these rare cell types 

where FACS sorting provides only a few hundred or a few thousand cells per 

sample. They are known to be phenotypically similar to conventional CD1c+ 

myeloid DCs, but in the peripheral blood, do have some known surface marker 

differences including a lack of CD1c expression, lower CD11c expression and 

intermediate to high expression of CD141 by flow cytometry (Haniffa et al., 2012; 

MacDonald et al., 2002). Observations within the HuDC research group have also 

noted CD1c expression in cultured CD141+ cDC1s, mirroring that of their tissue-

derived counterparts. 

From the monocyte population, CD14+ classical monocytes and CD16+ non-

classical monocytes are of interest in this thesis. 
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Classical CD14+ monocytes are by far the most abundant circulating monocyte in 

peripheral blood. This highly phagocytic, low cytokine producing cell type is 

characterised by surface markers including CD24, CD14, and CCR2. Non-

classical CD16+ monocytes have some phenotypic differences to classical 

monocytes, being smaller in size with migratory capabilities, but are broadly similar 

by gene expression analysis (Bigley et al., 2011; Robbins et al., 2008). Converse 

to CD14+ monocytes, the CD16+ subtype expresses CX3CR1 to a high level and 

CCR2 lowly (Ziegler-Heitbrock, 2000). 

 

3.1.2 Dimension Reduction 

Dimensionality reduction is in essence any applicable method that can be 

implemented to reduce the number of variables in an experiment, whilst 

maintaining most of the data variability. The issue of data saturation and the need 

for dimensionality reduction techniques spans many disciplines and multiple 

methods have therefore been implemented to address these problems.  

Principal component analysis (PCA) is one of the most common techniques that 

can be used to reduce the number of dimensions. PCA defines a linear subspace 

dimension that accounts for most of the variability in a dataset, using a linear 

combination of all of the variables. Each of these new dimensions are called 

‘principal components’ (Hotelling, 1933). Components are ordered from the 

highest variability to the lowest with the first two components being displayed on a 

2D plot. This methodology retains much of the high dimensional data structure, but 

loses the influence of the lower dimensions.  The process itself does not reduce 

the number of variables, but the most variable resulting principal components can 

be interrogated with the exclusion of low variability or collinear variables to find 

genes that account for the most variance in the data. By extracting the genes 

weighted highly in the high variability principal components, PCA can be used as a 

feature selection technique. One drawback of this however, is that in some 

datasets, the subtle sources of data variance that are lost by this method may be 

biologically relevant. 
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t-Distributed Stochastic Neighbour Embedding (t-SNE) is a relatively new 

technique for dimension reduction developed by Laurens van der Maaten (Maaten 

and Hinton, 2008). This technique can be very well suited to large datasets such 

as gene expression and single cell RNAseq data as its non-linear dimensionality 

reduction method preserves the higher-order grouping of the dataset while 

reducing the dimensions through a probability distribution mapped to the high 

dimensional data and low dimensional data. The divergence between these maps 

is minimised so that the final 2D map reflects the arrangement and similarity 

between the samples in the higher dimensions (Maaten, 2014). Both PCA and t-

SNE are primarily methods of visualisation, reliant upon unsupervised grouping of 

similar features to reveal patterns or variance within the data. 

A novel method of dimension reduction was produced by the author with the aim 

of maintaining each individual genes expression data. This method incorporated 

unsupervised grouping methods and supervised classification. Based on repeated 

k-means testing and random gene removal, multiple loops of the code iteratively 

removed single genes from the dataset and re-analysed the remaining genes by k-

means clustering. This procedure reduced the number of genes down to the 

minimum needed to provide adequate grouping of cell subsets.  

 

3.2 MATERIALS AND METHODS 

As this Chapter is concerned with the development and testing of new 

methodology, further details are provided in section 3.3 and 3.4 along with the 

general overview of common methods provided in Chapter 2. 
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3.2.1 Illumina Datasets 

Following ethical approval by Newcastle and Singapore Ethics Committees, 

normal skin samples were taken from mammoplasty or reconstructive surgery 

patients and peripheral blood was obtained from healthy volunteers. Peripheral 

blood mononuclear cells were isolated by Ficoll density centrifugation and 

separated using FACS with a FACSAriaII [BD] to a purity of >91% according to the 

gating strategy displayed in Haniffa et al, 2012 and Figure 3.1. The number of 

replicates used for each subset is displayed in Table 3.1. 

Qiagen RNeasy mini kits were used to isolate the sorted cell subsets and checked 

for RNA quality using a QIAxcel analyser. Three hundred nanograms of total RNA 

was amplified using Illumina TotalPrep RNA amplification kits and processed on 

an Illumina-HT12 V.4 [GEO platform: GPL10558] gene expression platform. 

Output data was normalised using Loess method without background subtraction 

and uploaded to the NCBI data repository [GEO number: GSE35457]. 

 

3.2.2 GSE35457 Gating Strategy 

Cells were gated by forward- and side-scatter area, with DAPI staining used to 

exclude dead cells. Forward scatter height and area were used to exclude 

doublets after which leukocytes were gated on CD45. 

HLA-DR positivity identified antigen presenting cells within a lineage negative 

fraction (gated on CD3, CD19, CD20 and CD56 in FITC channel). CD14+, CD16- 

cells were labeled as CD14+ classical monocytes, with the corresponding CD14lo, 

CD16+ fraction was labeled as CD16+ monocytes. 

From the CD14, CD16 double negative fraction, CD123+ pDCs were gated, with 

the CD123- fraction containing both cDC1s and cDC2s. CD11c+, CD1c+, CD141- 

cells were identified as cDC2s, while CD11clo, CD1clo/- CD141+ cells were 

classified as cDC1s. This strategy is displayed in figure 3.1 and table 3.2. 
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3.2.3 NanoString Analysis Protocol 

All NanoString experiments used in this chapter followed the protocol outlined in 

Chapter 2, section 2.6. All samples were collected as lysates in RNA lysis buffer 

after FACS at a concentration of 2,000 cells/µl. 5µl of lysate was used in the 

hybridisation process, resulting in 10,000 cells of RNA present in each sample with 

the exception of specific correlation testing. The additional correlation testing 

presented in figure 3.9, sections of healthy donor skin were stored in formalin-

fixed, paraffin-embedded sections or frozen directly after excision. RNA was 

extracted using RNeasy extraction kits (Qiagen) and normalised to 150ng of 

material based on Bioanalyzer 2100 (Agilent) before hybridisation to the 

NanoString codeset. 

For the correlation testing of lysed and extracted material displayed in figure 3.10, 

pre-processing of the cell populations included using an RNeasy extraction kits 

(Qiagen) to extract RNA from 10,000 cells and direct lysis of 10,000 cells. The two 

samples were then processed on the NanoString nCounter Analysis System and 

tested for correlation. 
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3.3 RESULTS 

For ease of reading and identification, the use of specific ‘R’-based functions 
within this chapter have been denoted with ‘()’ after the name of the function.  
Eg. lmFit() denotes the use of the ‘lmFit’ function from the ‘Limma’ package. 
In this case, lmFit() fits a linear model for each gene in a series of arrays. 
This mirrors the way in which these functions are applied in the ‘R’ 
environment. 

Due to the largely technical nature of this chapter, details outlining the preparation, 

pre-processing, normalisation and analysis have been included in the results 

section below. The goal of these experiments were to test if common dendritic cell 

subsets could be analysed and distinguished from each other on a restricted gene 

panel of 730 genes. Once this was established, further analysis of the genes 

defining each subset was performed with the aim of reducing the number of genes 

required for DC identification to the minimum necessary, while also highlighting 

potential marker genes of each cell type that could be used in follow up 

experiments. 

 

3.3.1 Illumina Expression Analysis for the Separation of Human Blood 
Dendritic Cells and Monocytes 

The initial step in the analysis pipeline was to extract the human subsets from the 

GSE35457 dataset and process the data for subsequent analysis.  

Using the ‘Biobase’ and ‘GEOquery’ (Davis and Meltzer, 2007) packages of ‘R’, 

the GPL10558 HT-12 Illumina dataset for GSE35457 was imported along with the 

associated metadata and subset names. Each sample was assigned to a group 

representing the subset from which the sample was derived. Initially this step was 

performed using which(). This resulted in 27 samples assigned to one of five 

different subset groups, numbered in a grouping vector, with the remaining 

samples excluded from analysis. 
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Once grouped, an expression was designed to log2 transform the data and 

interrogate it for any anomalies that may have been caused by incorrect data 

extraction such as negative expression values or missing points. Log2 transformed 

data is required for ‘limma’-based analysis. Any false values were reassigned a 

value of ‘NaN’, which was then used as a filter for the data. 

Using the previously described grouping vector as a factor, a contrast table was 

generated using lmFit(), and a contrast matrix using makeContrasts() from the 

‘stats’ (“R Core Team,” 2012) and ‘limma’ (Smyth, 2005) packages. This analysis 

involved sequential pair-wise comparisons between the subsets and made use of 

the eBayes() function of ‘Limma’ to apply an empirical Bayes statistical model to 

the contrast tables, from which a moderated t-statistic could be derived for each 

probe on the array [Figure 3.2]. 

‘annotate’ (Gentleman et al., 2004), annotation() and getGEO() functions were 

used to annotate the dataset using NCBI platform annotations. Merge() was 

employed to bind gene ontology (GO) functional data to each respective gene to 

allow for downstream gene set enrichment analysis (GSEA), pathway analysis and 

functional analysis of the dataset. 

For p-value generation, the topTable() function of ‘Limma’ was implemented to 

extract the top-ranked genes from the eBayes linear model. This function 

incorporated a Benjamini-Hochberg method false-discovery-rate (FDR) adjustment 

for multiple comparisons using p.adjust(). 

Custom-designed volcano plots were generated to display the significantly 

differentially expressed genes between each subset [external file 2] and a table 

was produced for each [external file 1]. 

The number of differentially expressed genes (meeting the criteria of log2 fold 

change of >1.5 and p<0.05 after FDR adjustment) between subsets ranged from 

1,468 differentially expressed genes between CD1c+ cDC2 and CD141+ cDC1 

and 4,313 differentially expressed genes between CD16+ Blood monocytes vs 

pDCs. 
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Legacy knowledge cell markers feature highly in these gene lists including CD14, 

C19orf59 and S100A9 in CD14+ classical monocytes, CX3CR1 in CD16+ non-

classical monocytes, CLEC9A and BATF3 in cDC1s, CD1c, CD2 and FCER1A in 

cDC2s and PACSIN1 and ASIP in pDCs. 

By hierarchical clustering using ward.D2 agglomeration and euclidean distance 

matrices [Figure 3.3], the full Illumina array was capable of grouping the human 

blood dendritic cells and monocyte populations by cell type exactly. Furthermore, 

upper branches of the clustering also follow expected trends with monocytes 

grouping separately to DCs and pDC cells branching from cDC2 and cDC1 cells. 

As it was clear that the Illumina platform could separate and define common 

human mononuclear cells, revealing known cell surface markers as well as 

hundreds of other subtype-specific markers, NanoString Technologies nCounter 

platform was considered as an alternative multiplexing gene expression platform, 

providing faster throughput, cheaper material costs and an ability to use other 

material types such as FFPE or lysates, with enough probes to define human 

mononuclear blood cells. 

 

3.3.2 In-Silico Testing of NanoString Panel Using Surrogate Illumina 
Expression Data 

Once it was determined that differential expression could be detected between 

human dendritic cells and monocytes by Illumina beadarray technology, the 

dataset was interrogated further with an aim to transition the gene signatures over 

to a digital multiplexing system: NanoString Technologies nCounter Analysis 

Platform. This platform offered curated panels of 600+ directed gene targets, 

including an immune cell-focussed Immunology_V2 panel that appeared to have 

the greatest relevance to this work. 
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To estimate the capacity of the NanoString Immunology_V2 panel at separating 

human mature cell types before funds were committed to the project, human blood 

subsets from the GSE35457 dataset were imported into the ‘R’ environment using 

‘Biobase’ (Gentleman et al., 2004) and ‘GEOquery’ (Davis and Meltzer, 2007) 

packages of ‘R’ along with associated metadata and subset data. Each sample 

was then assigned to a group representing the cell subset from which the sample 

was derived. 

Once grouped, these data were log2 transformed in preparation for down-stream 

analysis and interrogated for anomalies such as negative expression values or 

missing data points. Any false values were reassigned a value of ‘NA’, and 

subsequently filtered from the dataset. 

From this dataset, Illumina IDs were mapped to their respective Ensembl Gene 

IDs, whilst NanoString’s Ref-Seq gene IDs were also converted to Ensembl gene 

IDs. At this point, merge() was implemented to combine the two platform libraries 

with shared common probes, resulting in a list of Illumina gene IDs that directly 

corresponded to the NanoString Immunology_V2 gene array panel. 543 of 579 

Nanosting gene probes were correctly identified and annotated between the 

Illumina and NanoString platforms. The remaining probes did not have an 

equivalent corresponding Illumina gene probe and were omitted from the 

experiment ad a technical discrepancy between the two technologies. 

 

3.3.2.1 Pilot testing of the NanoString array genes 

From the 543-gene dataset, hierarchical clustering was performed from a 

Euclidean distance matrix calculation followed by ‘ward’ method agglomeration 

using ‘gplots’ (“R Core Team,” 2012) [Figure 3.4] .The cluster diagram indicates 

that the 500+ immune-related genes may be capable of distinguishing blood DC 

and monocyte subsets, correctly grouping each sample to its respective cell type, 

however the higher-order clustering is somewhat unexpected with cDC2 cells 

grouping most closely with CD14+ classical monocytes rather than with pDCs or 

cDC1s.  
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The absence of CD1c amongst other major surface receptors on the Immunology 

panel may have exacerbated this problem. The conservation of gene expression 

DC and monocyte populations is relatively conserved, leaving only a handful of 

marker genes for reliable subset separation. Without markers such as CD1c (for 

the identification of cDC2 cells), gene-level subset separation may be difficult. 

By principal component analysis (PCA) in Figure 3.5, the cell types appear well 

grouped. As PCA weights the genes with the highest variance above those that 

show lower variance, samples unlike each other are forced apart, while like-

samples are drawn together. This suggests that pDCs are much more distinct in 

their expression than the other subtypes. Dendritic cells generally occupy the 

positive region of PC1, with monocytes located in the negative region, split by 

PC2. pDCs are also separated from the classical DCs by PC2. 

From this clustering it was decided that the addition of a number of curated genes 

might result in greater separation of DC subsets from monocytes and provide 

additional expression information on genes of interest and more accurately 

represent the results found by NanoString. Table 3.3 displays 30 genes that were 

added to the Immunology_V2 gene list, taken from the initial Illimina expression 

data signatures, published papers and gene targets that would be useful for other 

experiments in the research group. These genes and their relationale for inclusion 

have been noted in the table legend. 

The addition of these 30 genes had relatively little effect on the overall clustering 

patterns by hierarchical clustering and PCA. By hierarchical clustering displayed in 

Figure 3.6, cDC1 and pDC populations form one branch, with the cDC2 cluster 

falling closest to CD14+ monocytes. CD16+ monocytes form an off-shoot from this 

CD14+monocyte-cDC2 branch. 
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Although the layout is mirrored, by PCA [Figure 3.7] the addition of the 30 genes to 

the Immunology_V2 panel did not affect the arrangement of the cell type clusters. 

Variance explained by PC1 rose from 19.6% to 20.4% with the addition of the 

panel+ genes, while PC2 accounted for 11.5% from 11.2% of variability. The 

addition of these extra genes do therefore have a modest impact on amount of 

variability between blood subsets, but the overall structure remained the same with 

pDC occupying one region of the PCA plot alone, monocytes separated from 

dendritic cells by PC1 and classical and non-classical monocytes splitting by PC2. 

t-SNE, t-distributed stochastic neighbour embedding was used as another form of 

data visualisation with the aim of better representing the multi-dimensional 

relationships of the samples in two dimensional space. Unlike PCA, which gives 

weighting to the genes based on their variance, this visualisation method is 

designed to maintain the higher-order variance of the data. The t-SNE plot [Figure 

3.8] depicts each population as a relatively tight cluster, well distinguished from the 

other populations. 

 

3.3.3 NanoString nCounter Analysis of Human Blood Mononuclear Subsets 

Once it was determined that a restricted dataset could be used to define the 

human blood mononuclear subsets, the experiment was moved over to the 

NanoString platform.  

Initial correlation tests were performed to determine which NanoString nCounter 

pre-processing protocols were to be used for the main experiment. In this initial 

pre-testing phase, FFPE and Fresh-Frozen (FF) material was taken from a single 

donor sample and analysed on the NanoString nCounter analysis platform using 

the Human PanCancer profiling panel, representing a pioneering use of this 

technology at Newcastle University for gene expression analysis.  A correlation 

coefficient was produced across the data from the two samples and indicated an 

extremely high conservation of data despite the expected degradation of RNA 

under FFPE conditions with an R-value of 0.975 [Figure 3.9]. 
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A second pre-test was performed on RNA extracted from 10,000 PMBCs and an 

equivalent number of cells placed directly into RNA lysis buffer at a concentration 

of 2,000 cells/µl displayed in figure 3.10. This provided the basis for the main 

experiments performed in chapter 3 and chapter 4 and indicated that lysed whole 

cells would be used in place of extracted RNA, with a correlation coefficient of 

0.997. 

For comparison of Illumina and NanoString platforms, five blood subsets relating 

to the five subsets used in the illumina expression study were sorted from the 

PMBCs of healthy donor individuals and ran on the NanoString nCounter Analysis 

platform. 

 

3.3.3.1 NanoString nCounter analysis of human blood subsets 

Figure 3.11 shows a hierarchical clustering diagram based on the NanoString 

dataset. Each subset has three replicates in this experiment, forming distinct 

clusters based on their subset. The initial branching on this diagram is between 

monocytes and dendritic cells, similar to the initial full Illumina data plot [Figure 

3.3], rather than the minimised Illumina dataset based on the NanoString gene list 

[Figure 3.4]. Branching from the dendritic cell side of the plot is cDC2, suggesting 

a closer gene expression relationship to the monocyte subsets compared to the 

other dendritic cell subsets. 

Although the in silico testing of the Nanostring gene list suggested that the cDC2 

subset may cluster with the monocyte subsets, this was not the case when using 

the NanoString platform. As the two technologies operate using different methods 

and chemistry, with the output and dynamic range differing vastly, it was expected 

that some disparities such as this would be seen between the two experiments 

Additional panel+ genes aimed at distinguishing cDC2 cells may also have 

contributed to this positioning by hierarchical clustering. 
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By principal component analysis [Figure 3.12], similar grouping of the blood 

subsets was determined. Compared to the in silico experiment [Figure 3.7], PC1 

accounted for 36.5% of total variance, while PC2 accounted for 19% explained 

variance. pDC and cDC1 subsets grouped closely and split from cDC2 and the 

monocyte populations by PC2. Along PC1, CD14+ monocytes appeared at the 

lower extreme of the plot, followed by CD16+ monocytes, with cDC2s showing 

high gene expression amongst PC1 genes. 

By t-SNE [Figure 3.13], each subset is well defined and separated in t-SNE space. 

By the t-SNE1 variable, the three dendritic cell subsets were distant from the two 

monocyte subsets, while t-SNE2 separated the two monocyte subsets as well as 

separating pDCs from cDC1 and cDC2s. pDC samples occupied the lower 

quadrant alone with negative TSNE values. cDC1 and cDC2 groups were 

separated in t-SNE space with cDC2 samples displaying a greater positive value 

by t-SNE1 and a more negative value by t-SNE2 than cDC1 samples. 

 

3.3.3.2 Correlation of gene signatures between Illumina and NanoString 
platforms 

By producing curated lists of differentially expressed genes that are highly 

expressed on a single cell subset in comparison to the others, commonly 

described as ‘gene signatures’, for both the full Illumina microarray dataset and the 

NanoString nCounter dataset, correlation between the two platforms could be 

assessed. 

For this, BubbleGUM and GeneSign were used to generate phenotype signatures 

for each dendritic cell and monocyte subset in a pairwise minimal mean ratio 

method. This robust, permutation based algorithm is able to calculate a p-value 

and FDR-adjusted p-value for each cell subset by comparing a reference sample 

type to each other sample type for every gene. This is computationally intensive, 

but provides the most robust and accepted differential expression testing method. 
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CD14+ classical monocytes on both NanoString and Illumina shared 13 gene 

expression signatures of the subset. CD14 is a well-cited typical surface marker 

protein used to classify CD14+ monocytes and S100A8 and S100A9 have been 

defined previously as highly-expressed on this subset (He et al., 2016). 

For CD16+ non-classical monocytes, 6/15 of the NanoString signatures were also 

seen on the Illumina dataset, including CX3CR1, a marker frequently used to 

distinguish the subset by flow cytometry (Ancuta et al., 2009). 

cDC1 subsets shared 12 signatures across both platforms. Of note, BTLA, 

CLEC9A, IDO1 and BATF3 were all signature genes for this subset that have 

been published on before (Breton et al., 2016). 

The cDC2 subset only displayed three signature genes on the NanoString platform 

compared to the 20 genes by Illumina, however, given the restricted geneset of 

the NanoString platform and the presence of both CD1C and FCER1A as 

signature genes on both platforms for cDC2s, it appears to be a correctly assigned 

gene set (Minoda et al., 2017). 

Finally, pDC subsets on NanoString shared the greatest number of signature 

genes with their Illumina equivalents at 20.  These included PACSIN1, GZMB, and 

ASIP, which are all strong, unique markers for bulk pDC populations. 

As there is consensus between both technologies for every subset, with many of 

the major published cell-defining gene expression signatures present on both 

arrays and assigned to the expected subset, NanoString Technology’s multiplexed 

qPCR-hybridisation based platform provided a robust, yet cheaper and faster 

alternative to array-based gene expression experiments for this project. 
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3.3.4 Gene Reduction and Feature Extraction 

In this thesis, gene reduction and feature extraction were investigated in various 

ways to achieve different goals. The first of these was the removal of genes 

indicated as tissue-specific in order to group cell subtypes together from both the 

skin and blood of healthy individuals. This tissue-specific gene reduction was 

performed in order to correlate skin and blood mononuclear cells that are believed 

to be related to each other. Without removal of tissue-specific genes, it would be 

expected that the major source of variation between samples would be related to 

their location in the body. 

Feature extraction (the identification of genes enriched at p=<0.05 and 1.5 fold 

increased in a single subset after pair-wise comparison to each other subset) 

using BubbleGUM was implemented alongside a machine-learning algorithm 

‘Linear Discriminant Analysis’ (LDA) to provide a robust gene signature for each 

human blood mononuclear cell investigated. An initial signature was designed 

through the integration of multiple Illumina expression array datasets and validated 

on an external dataset that made use of the same or similar gene subsets. 

Gene reduction was also used to generate a minimised gene signature capable of 

defining each human blood subset with the fewest number of marker genes. The 

purpose of this was to allow for the study of other cell surface markers by flow 

cytometry, whilst maintaining information on the major blood mononuclear cells. 

As flow cytometry has an upper variable limit of approximately 20 targets, using as 

few of these as possible to initially identify dendritic cell and monocyte populations 

would provide more space on a flow cytometry panel for alternative markers such 

as cell cycle, markers, inflammatory markers or other surface proteins. 

 

3.3.4.1 Tissue removal effect on gene expression data 

The Illumina dataset GSE35457 contained a number of sorted skin subsets, which 

were anticipated to be skin equivalents of the blood mononuclear subsets as noted 

by shared major subset markers.  

The addition of the skin samples to the analysis pipeline resulted in an initial split 

by hierarchical clustering of skin-derived samples and blood-derived components. 



	 85	

Figure 3.14 shows this split. Although each sample grouped depending on its 

subset, blood and skin equivalent cells do not group together.  This observation 

was suspected to be the result of a tissue-specific signature so a t-test based 

method of feature reduction was used to remove genes associated with a 

combined, general ‘tissue-specific signature’. 

Figure 3.15 is the result of hierarchical clustering after the removal of genes 

deemed significantly differentially expressed (p=<0.05) between the grouped blood 

and culture samples. Specifically, blood-derived subsets with skin-derived 

equivalents were compared by a two-tailed t-test, incorporating CD14+ cells along 

with cDC1 and cDC2 cells. pDCs and CD16+monocytes were not included in the t-

test, but were used in the hierarchical clustering to ensure that there were enough 

probes remaining in the dataset to correctly distinguish all mononuclear cell types. 

From Figure 3.15 the first branch of the dendrogram separates the classical blood 

and skin-derived dendritic cell and pDCs from the CD14+ cells and CD16+ 

monocytes. 

Further along the hierarchy, pDCs are separated from the classical dendritic cells, 

which are themselves split into cDC1 cells and cDC2 cells. Along the monocyte 

and CD14+ cell arm of the dendrogram, CD16+ cells branch off from the CD14+ 

blood monocytes and CD14+ skin cells. This pattern of similarity is conserved in 

Figure 3.16 through the visualisation of the data by t-SNE. By t-SNE plotting, each 

subset can be defined, with a cDC1 group, cDC2 group and CD14+ group 

consisting of both skin and blood equivalent cells. CD16+ monocytes and pDCs 

occupy distinct regions of the t-SNE space and do not share as much similarity to 

any of the other subsets. 

From these results, it appeared that the ‘tissue-effect’ could be overcome by a 

general two-tailed t-test. This tissue effect may be generalised as removing a 

single signature differentially expressed between the combined skin subsets 

against their blood equivalents was enough to group all of the mononuclear cells 

by cell type, regardless of tissue type. Despite phenotypic differences related to 

the microenvironmental tissue niche, the cell type backbone remained across the 

tissues. 
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3.3.4.2 Collation multiple datasets and validation of normalisation 

Two datasets from separate published illumina expression papers were combined 

using ‘ComBat’ from the ‘SVA’ package of R (Leek et al., 2012), with pDCs 

selected for normalization and validation of the batch effect adjustment due to their 

presence on both datasets and their distinctive cell signature [Table 3.5]. The 

observation of pDC distinction was derived from the initial data generated for this 

thesis in Figures 3.3 – 3.13. 

In total, 41 samples (from 14 healthy individuals) were taken from the two datasets 

providing between 8 and 14 replicates for each mononuclear cell type to be 

studied. This larger dataset would provide greater statistical power for a cell type 

signature and encompass a broader variation of expression within each cell type. 

After normalising and collating the two datasets into a single dataframe, initial 

hierarchical clustering of the entire data was performed to determine the accuracy 

of the ComBat function in combining the data. Figure 3.17 shows four distinct 

groups relating to the four DC and monocyte subsets. Initially all of the pDCs from 

both datasets branch off, followed by the CD14+ monocytes and then a split of the 

two cDC populations. There was no evidence by hierarchical clustering of any 

batch effects related to the use of two different datasets after ComBat correction. 

By t-SNE, strong clustering of the subsets is observed. t-SNE1 and t-SNE2 

variables separate each subset into a single quadrant and each group is very 

compact suggesting high correlation of gene expression within each subset 

[Figure 3.18]. 
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3.3.4.3 Robust signature generation for cell type signatures 

For the generation of a robust cell type signature with a good overall power and 

significance, the combined illumina expression dataset was interrogated using 

GeneSign (Spinelli et al., 2015) gene signature generation software. The 

mechanism for this signature generation involves extensive pairwise testing of 

every gene for each subset against each other subset as demonstrated in Figure 

3.19. For each gene, minimal pairwise testing was performed with Benjamini-

Hochberg false discovery adjustment (Benjamini and Hochberg, 1995) and a 

threshold cut-off of P-value <0.05 and log2 fold change of 1.5 (equating to a linear 

fold change of 3). Figure 3.19 highlights an excerpt from the GeneSign output for 

pDC signature genes, displaying PACSIN1, PTGDS and ASIP as some of the top 

differentially expressed genes, in-line with the initial illumina expression analysis 

and confirming their usefulness as marker genes. Table 3.6 further details the top 

12 differentially expressed genes for each cell subset as well as the total number 

of signatures that GeneSign produced. Overall, 3,439 genes were identified as 

subset markers across the four cell subsets, meaning the expression of each gene 

was at least 1.5 log fold higher in one subset compared to any other subset after 

pair-wise comparison.  

Within the pDC populations, GZMB, PACSIN1 and ASIP were amongst the most 

differentially expressed of the 1,425 genes identified by GeneSIgn as subset 

markers of pDCs. This was the largest of the cell signatures and reflects the 

distinctive features of pDC gene expression compared to the other mononuclear 

cells. These gene differences of pDCs compared to cDCs might be related to the 

lymphoid nature of pDC development compared to the myeloid-derived cDCs. 

The CD14+ monocyte signature was 964 genes in length and included a number 

of common monocyte identifiers. S100A8, CD14 and C19orf59 were all in the top 

12 monocyte markers, supporting their choice in the custom panel+ NanoString 

panel produced for section 3.3.2. As with the pDCs, the large number of signature 

genes for monocytes might be a reflection of their phenotypic differences to the 

cDCs and pDCs and earlier divergence from DC-like cells at the MDP stage of 

haematopoietic development. 
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The cDC subsets are more closely related to each other than the other subsets, 

producing smaller, but still distinct, gene signatures. cDC1 signatures included 

IRAK2 and MAPK13 amongst 481 other signatures, cDC2 signatures included a 

number of CD genes such as CD1c, CD1e and CD2 as well as previously 

identified cDC2 cell markers, FCER1A and CLEC10A. Some of the markers 

featured in the Panel+ custom codeset genelist for the purpose of distinguishing 

cDC2 cells from other cell types were identified by GeneSign, confirming their 

exclusive high expression pattern in cDC2 cells. In total, 567 cDC2 marker genes 

were identified using the GeneSign process. 

 

3.3.4.4 Visualisation and machine-learning validation of cell type signatures 

To visualise the capability of the 3,439 gene signature to group and identify each 

of the four mononuclear cell subsets, an integrated heatmap and hierarchical 

clustering diagram was developed using Euclidean distance and Ward method 

agglomeration and the Heatmap.2 function of ‘gplots’. Figure 3.20 displays the 

gene signature as applied to the combined mononuclear cell subset data. Each of 

the cell types were well grouped and the robust GeneSign method of signature 

generation was observed as blocks of high expression for each of the subsets. 

From left to right on the heatmap there is a distinct block of genes enriched in the 

monocyte cluster, followed by a large block of genes expressed highly on pDCs. A 

small block of cDC1 genes was next, ending with the cDC2 signature genes on the 

right side of the heatmap. Reduction of the 47,000 illumina probes to the 3,439 

gene signature still provided a strong distinction between the cell types. While 

visually, the gene list appeared robust enough for cell type clustering, machine 

learning was implemented as a non-biased validation method for the gene list. 

A form of machine learning called ‘linear discriminant analysis’ (LDA) was used 

from the ‘MASS’ package on R (Venables, 2002). This form of pattern recognition 

was designed to find a combination of features within the dataset that maximise 

the separability of the sample classes. For this thesis, the technique was able to 

create new feature space, which then be used to infer or classify ‘unknown’ 

samples to a subset group based on similarity of gene expression. 
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The 41-sample dataset was split into randomly assigned groups of almost equal 

size (10-11 samples each). Linear discriminant analysis was used on all but one of 

these groups to ‘train’ the machine-learning algorithm. Once this was complete, 

the sample identifiers were removed from the final ‘test’ group, which had 

remained unseen by the machine. Based only on the expression profile, the 

machine would assign each test sample to a subset group, providing a confidence 

score for the assignment. The classification was then checked by comparing the 

assigned group to the sample identifier. The process was repeated so that each 

10-11 sample group became the ‘test’ group and the other groups were used as a 

training set. 

Figure 3.21 highlights the output from the LDA analysis. The machine learning 

algorithm assigned each cell subset sample with a cell type based on the training 

data provided. For each test group, the number of correctly assigned and 

incorrectly assigned samples were displayed, where ‘correctly assigned’ refers to 

instances where the LDA assigned the same cell type to the sample as expected 

and any ‘incorrectly assigned’ samples would be counted, if the LDA assignment 

did not match the cell type identifier. From the run shown in Figure 3.21, 10/10 

samples were correctly predicted and none of the samples were incorrectly 

defined by the algorithm. After four iterations, all samples had been subject to 

testing, and the algorithm was found to be 100% accurate with its assignment. The 

table included in Figure 3.21 provides an accuracy score for each of the test 

samples in the first iteration of the experiment. Three CD14 monocyte samples 

(red) were correctly assigned as having a CD14+ monocyte signature with a 

confidence score ranging from 85.6% to 98.4%. The single cDC1 sample (blue) 

was assigned to the cDC1 group with 99.7% confidence. There were four cDC2 

samples (light blue) in the first iteration test group, which were all correctly defined 

as cDC2s with three samples having a confidence score of over 99.3% and one 

with a lower score of 74.0%. This lower confidence may be a result of different 

gating strategies between the two illumina expression sets used in this analysis 

providing a slightly different cDC2 bulk signature in these samples. Finally, the two 

test pDC samples (black) were very confidently assigned as having a pDC 

signature by LDA with confidence scores of 99.5% and 100%. 
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The high prediction scores and 100% correct assignment of the full dataset was a 

strong indicator that the gene signature created by the author was strong enough 

to define the four mononuclear cell subsets used in this analysis in an un-biased 

manner. To further test the signature, a separate publicly available mononuclear 

cell Illumina dataset was downloaded from Lee et al, 2015 published paper 

‘Restricted dendritic cell and monocyte progenitors in human cord blood and bone 

marrow’ under the repository code GSE65128. This dataset was restricted to 

subsets used in this section of the thesis and totaled 36 samples split into 9x 

cDC2, 7x CD14+monocytes, 10x pDCs and 10x cDC1 samples. The dataset and 

publication were both created without any involvement or collaboration from the 

HuDC group or Newcastle University, providing a distinct, independent dataset for 

cell signature testing. Once the data was downloaded, the 3,439 gene signature 

was applied to the dataset and the results of clustering and heatmap generation 

were displayed in Figure 3.22. In clear correlation with Figure 3.20, each subset 

was well defined and broad blocks of high gene expression could be observed 

mirroring the training dataset. The ability of this signature to function on previously 

unseen and unanalysed data was an indication of the robustness of the signature 

itself. A further display of the clustering of the GSE65128 dataset was included in 

Figure 3.23 as a t-SNE plot. Each cluster was relatively well grouped and defined, 

positioned in a separate region of t-SNE space. 

 

3.3.4.5 Creation and testing of a novel gene reduction technique for subset 
classification 

The success of the GeneSign gene signature experiment and subsequent 

validation highlighted the potential for an extremely minimal set of potent signature 

genes that could separate the mononuclear cell subsets effectively.  
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Starting from the GeneSign signature set, as each signature gene was highly 

expressed in only one cell type, it was concluded that a smaller geneset could 

probably be created whilst still maintaining the distinct gene clustering, this led to 

the development of a novel gene reduction method created by the author to 

sequentially narrow a geneset down to the minimal number of individual genes 

required for successful clustering. The major aim of this experiment was to retain 

sample information and expression values of each individual gene after gene 

reduction, unlike feature reduction by other reduction methods such as PCA or t-

SNE that produce artificial new features to display a larger dimension dataset in 

smaller dimensions. 

Figure 3.24 shows a basic schematic of the novel gene reduction function 

generated by the author for this thesis on the R programming platform. The basis 

of the technique was iterative pruning of a gene set, re-tested after every reduction 

to maintain the clustering of the original dataset but with fewer genes involved. 

The randomised gene reduction method was based on k-means testing. From the 

3,439 gene signature displayed in Figure 3.20, the samples were clustered based 

on the between-group sum-of-squares variable of k-means clustering. This value 

is a measure of the difference between each group. A greater value equated to a 

greater separation of the subtype groups. 

A random number generator was implemented to select and remove a single gene 

from the geneset and a new k-means analysis was performed on the remaining 

genes. A string of nested loops and functions tested the between-group sum-of-

squares and if the new geneset maintained the correct grouping of the samples 

and provided a greater separation of the cell subset groups, the new genelist 

would replace the original genelist and the process would be repeated with 

another random gene removed. If at any point in the process a new genelist was 

not capable of maintaining cell type clustering or provided less separation of the 

clusters than its parent geneset, the randomly removed gene would be replaced 

and another random gene selected instead.  



	92	

After fine-tuning, 20,000 attempts of gene removal were settled on as a limiter and 

2,000 iterations of the entire process were implemented from 3,439 genes to the 

minimal number found to correctly assign cell subsets to individual clusters. In 

many instances the results of this minimisation produced minimised gene lists of 

two or three genes that could be used to accurately assign each mononuclear cell 

subset to its correct cell type cluster. Frequently the same genes were identified in 

these final gene lists despite the random nature of the minimisation method. The 

output of this analysis is displayed in PDF format [external file 3]. 

As a final refinement, this finding paved the way for an implementation of the 

technique for the purpose of identifying potential cell surface proteins that could be 

exploited as flow cytometry or FACS based antibody bound florophore marker 

targets. The GeneSign dataset was screened for genes with high confidence of 

cell-surface expressed proteins using data stripped and curated from the 

‘COMPARTMENTS’ subcellular localisation index database. 612 genes remained 

and these were used as the parent dataset for a further round of gene 

minimisation.  

From this analysis, a number of iterations produced two-gene signatures capable 

of correctly grouping the subset sample data by mononuclear cell type. One 

example of this is shown in Figure 3.25, the combination of FCER1A and SLC2A3. 

FCER1A an IgE receptor is associated with initiation of the allergic response. 

FCER1A was highly expressed on pDCs and cDC2 cells, but lowly expressed on 

CD14+ monocytes and cDC1 cells. SLC2A3 was expressed highly on cDC2 cells 

and CD14+ monocytes, but lowly expressed on both pDCs and cDC1 cells. This 

gene encodes a glucose transporter that can also mediate the uptake of various 

other monosaccharides across the cell membrane and may be expressed highly 

on CD14+ monocytes due to the high metabolism of these cells. Such minimized 

signature combinations could be a basis for FACS sorting of DC and monocyte 

populations, potentially reducing the need for multiple cell type marker genes in 

flow cytometry experiments and freeing up channels for new flow antibodies to be 

used to assess other cell qualities. Both FCER1A and SLC2A3 may warrant 

further testing as potential novel FACS DC and monocyte subset markers. 
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3.4 DISCUSSION 

Gene expression profiling of common DC and monocyte cell types is integral to 

immunology research. With the development of microarray and multiplexed gene 

expression technologies offering full coverage or analysis of hundreds of gene 

targets at once, new avenues for DC and monocyte biology have been uncovered. 

This chapter focused on comparing and defining pDC cells, cDC1, cDC2 and 

CD14+ classical monocytes using gene expression and microarray technologies 

combined with a multitude of analysis software and programmes. Other subsets 

and tissue types were investigated for comparative purposes and gene signatures 

were developed to accurately and consistently group these common DC and 

monocyte cell types using a combination of well-established clustering and 

visualisation techniques with custom-designed novel methods of gene set 

reduction analysis. 

 

3.4.1 Initial Gene Expression Profiling of Dendritic Cells and Monocytes 

The GSE35437 Haniffa et al dataset (Haniffa et al., 2012) proved a strong basis 

for dendritic cell and monocyte gene expression analysis, composed of five cell 

types split into three main populations; monocytes, cDCs and pDCs. The samples 

and sorting were performed by the HuDC group in collaboration with SIgN, the 

intention being to define and contrast human and mouse skin and peripheral blood 

cells. 

The initial differential expression analysis for GSE35457 samples provided an 

overview for potential gene signatures, whilst highlighting the individual 

differentially expressed genes between each cell subset. This analysis provided 

insights into cell type diversity and closeness as cell types that are more closely 

related in haematopoietic development would be likely to have fewer distinguishing 

features between them than cells that diverge early in haematopoietic 

development. This aspect was particularly important for cDC1 vs cDC2 subsets 

and CD16+ vs CD14+ monocytes, which were expected to be the mostly closely 

related subsets to each other.  
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Between cDC1 and cDC2 subsets, 1,468 Illumina probes were identified as 

differentially expressed in external file 1. A few of the most significant of these 

included cell surface markers CD1c, CLEC10A and CLEC9A which are used as 

flow cytometry markers for cell isolation. Identifying such markers is a validation of 

the Illumina gene expression analysis as these genes and their surface proteins 

have been identified as cell type markers in multiple publications (Breton et al., 

2016; Jongbloed et al., 2010).  

CD16+ monocytes and CD14+ monocytes had a total of 1,635 differentially 

expressed Illumina probes between them through the ‘Limma’/’Lumi’ analysis 

pipeline. The most differentially expressed of these targets included CCR2 (highly 

expressed on CD14+ monocytes), CX3CR1 (highly expressed on CD16+ 

monocytes), and CKB (also highly expressed on CD16+ monocytes). These 

targets were also supported in the literature as unique defining genes for the 

identification of CD14+ or CD16+ monocytes (Williams et al., 2014; Wong et al., 

2011).   

pDCs were expected to be the most distinct of the mononuclear cell subsets 

investigated and this conclusion appeared to be reflected in the number of 

differentially expressed genes between this subset and each of the other subsets. 

About 3,000 probes were indicated as differentially expressed between the pDC 

subset and each of the cDC subsets, with around 4,000 probes implicated 

between pDCs and the monocyte subsets. Common to each of these comparisons 

was PACSIN1. PACSIN1 is a potent regulator of TLR7 and TLR9, which in the 

case of pDC cells acts as an adaptor molecule enabling type I interferon 

production through TLR7 and TLR9 activation after microbial stimulation (Esashi et 

al., 2012, p. 1).  Within the DC lineage, TLR7 and TLR9 are specific to pDCs, 

although other TLRs are expressed by the cDC subsets or displayed across the 

DC lineage cells (Jin et al., 2014; Jongbloed et al., 2010). TLR expression in DCs 

is investigated further in chapter 4 and figure 4.11. KCNA5 and MZB1 also 

featured highly as upregulated pDC genes in this analysis, mirroring observations 

in very recent publications (Loughland et al., 2017; Villani et al., 2017). 
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As well as individual comparisons between subsets, hierarchical clustering 

techniques were employed to visualise the entire dataset. Figure 3.3, a 

hierarchical clustering diagram based on Euclidean distance and Ward method 

agglomeration, visualises the relationships between the different cell subsets. This 

figure supported the conclusion that the two cDC subsets were developmentally 

closest as noted by the distance measure at the side of the diagram. The CD16+ 

and CD14+ monocytes are also closely related as reflected by the fewer 

differentially expressed genes between these subsets in the ‘1 vs 1’ comparisons. 

The position and grouping of cell types in Figure 3.3 recapitulates traditional 

monocyte and DC development pathways in humans (Geissmann et al., 2010; 

Ginhoux and Jung, 2014). From the macrophage and dendritic cell precursor 

stage, cells develop through the common dendritic cell precursor, or common 

monocyte precursor. At this point, pre-DCs split from pre-monocyte cells, as in the 

first split in the dendrogram. Monocytes split from here into CD14+ populations or 

CD16+ populations, while along the DC lineage, pDCs are distinguishable from the 

cDC populations after the CDP stage. Later on in development, clear cDC1 and 

cDC2-like cells form (Schlitzer et al., 2015). In Figure 3.3, the DC populations and 

monocyte populations are the furthest distance apart, indicating least similarity. 

pDC cells next split from the population of cDCs, followed by a split of the 

remaining subsets at almost equal distances; the monocytes into CD14+ and 

CD16+ subsets and the DCs into cDC1 and cDC2 subsets. 
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3.4.2 The Basis for Changing Technology Platforms  

At the time of writing, single cell RNAseq experiments were not yet available and 

technologies including Illumina BeadArray and Affymetrix GeneChip were 

particularly expensive for repeated experiments and testing over a longer period of 

time. Data analysis of such techniques was not as widespread and few analysis 

packages were in use. NanoString nCounter was a new alternative to microarrays 

providing multiplexed RNA expression assays incorporating focused panels of 

curated gene targets in the region of 200-800 probes. While cheaper pricing was 

of some benefit, the major draw of NanoString technology over microarrays was a 

minimal requirement of around 100ng of material, or 8,000-12,000 sorted, lysed 

cells. Given that DC populations represent less than 1% of total cells in the blood 

and cDC1 cells are <0.05% of the PBMC population, low cellular input was a major 

concern in this project. The NanoString nCounter could accommodate whole RNA 

directly from lysed sorted cells without need for amplification or library prep. In 

comparison, Illumina BeadArray required 300ng of material that would need to be 

amplified further, possibly introducing a degree of amplification bias and putting 

very rare cell types and subpopulations out of reach. Outside the scope of this 

thesis, but relevant to the change in technology, the nCounter platform was at the 

time of writing the only platform capable of reliable RNA analysis from FFPE 

material. The nCounter platform used 100bp regions for barcoding, meaning it 

would work effectively with extremely degraded RNA. RIN values of less than 2 

were frequently found from FFPE extracted RNA, but the data output from the 

machine was relatively unaffected by this extent of degradation. This provided the 

research group and other internal users with a method of analysing historical 

clinical sections easily and simply. 

With the nCounter platform, samples could be collected, isolated, sorted, counted 

and processed for NanoString analysis within a single day and could be done in-

house by a single operator. The turn-around time from sample collection to data-

collection was reduced from three weeks with Illumina GeneChip to three days 

with NanoString nCounter once the platform was set up in the HuDC laboratory. 
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Analysis and normalisation of NanoString data was expected to be simpler in 

comparison to Illumina, especially for a research group with no dedicated data 

analysis personnel, thanks to the nSolver analysis package. Ultimately this proved 

too basic for the applications in this thesis and so custom R code was developed 

for analysis purposes by the author. Over the last few years there has been huge 

investment into analysis techniques and more general use of Python and R has 

resulted in the development of multiple analysis and visualisation packages for 

microarrays and multiplexed digital RNA-PCR alternatives such as NanoString. 

Some such as Lumi and Limma have become common standards. 

 

 

3.4.3 In-Silico Testing on Illumina and Comparison to NanoString Analysis 

NanoString Technology utilised focused panels of probe targets specific to 

individual research interests. Unlike microarray platforms that typically cover the 

entire transcriptome and therefore every known human gene, NanoString panels 

used probes designed against only a portion of these. It was therefore imperative 

that initial in-silico experiments were conducted to determine if panels of 700+ 

immune related genes were capable of separating out dendritic cell and monocyte 

populations of interest in a manner similar to the Illumina expression analysis data 

GSE35457.  

The in-silico analysis of the NanoString Immunology_V2 panel using surrogate 

Illumina expression data provided swift insight into the capability of NanoString 

nCounter for this research.  
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By stripping out only the genes found on the NanoString panel from the Illumina 

expression dataset and displaying the data, the research group could get an 

estimated representation of how the NanoString machine would perform with 

common mononuclear cell subsets. Inherent differences in the two platforms were 

to be expected, as the technologies behind them are quite different, however the 

in-silico experiment indicated that the combination of gene probes in the smaller 

NanoString panel could define cell subsets. Figure 3.4 indicated that such a 

restricted genelist was capable of distinguishing each cell subset, although cell 

type relationships were not maintained as they were in Figure 3.3.  As the focus of 

this thesis was in defining cell subsets and profiling in-vivo and in-vitro cells, 

maintaining this higher-order grouping was unnecessary. 

Hierarchical clustering of the restricted NanoString geneset panel of 543 genes 

correctly assigned all samples into subset groups that were distinct enough from 

one another by Euclidean distance to be a convincing success. This was 

promising for future gene reduction methods as it appeared that from 47,000 

Illumina probes and 23,000 gene targets, each cell subset could be well defined 

and replicated even when reduced down to just 543 gene on the NanoString 

platform. The positioning of the cDC2 subset amongst the monocytes was the 

major difference between the Illumina clustering and the NanoString gene in-silico 

Illumina data clustering, although given that the NanoString dataset is a 

comparatively small dataset curated around immune-related genes, changes such 

as this were anticipated. From an immune basis and functional standpoint cDC2 

and cDC1 cells have their own individual roles to play in immunity so while they 

may be developmentally close overall by Illumina expression analysis, they are 

functionally different when observed using an immune-biased dataset. cDC1 cells 

exhibit potent Th1 responses and are known to be superior MHC class 1 cross-

presenting cells for viral proteins including HIV-1 and Hepatitis-B as a result of 

their unique surface phenotype including particularly high expression of CLEC9A 

as noted in external file 1 (Castell-Rodríguez et al., 2017; Jongbloed et al., 2010; 

McGovern et al., 2015). 
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cDC2 cells express higher levels of CCR7 and a range of activation markers. They 

are more plastic than cDC1s in this respect and in tissues, respond to a range of 

TLR agonists with a variety of cytokines. Initiation of T-cell response and antigen 

detection have been noted in cDC2 publications (McGovern et al., 2015; McLellan 

et al., 1998; Yu et al., 2013). 

By principal component analysis in Figure 3.5, the five cell subsets have relatively 

low internal variation despite being derived from different healthy donors. The 

groups are well positioned away from each other with the monocytes in the 

negative space of PC1 and the cDC1 and pDC subsets in the positive region of 

PC1. Interestingly, cDC2 is around the mid-point of PC1, located between the 

cDC1 cluster and CD14+ monocyte cluster. From Figure 3.3, cDC2 cells branched 

from cDC1 cells, while in Figure 3.4 displayed cDC2 cells branching from CD14+ 

monocytes. The PCA in Figure 3.4 partially recapitulates both aspects, pDC cells 

in all diagrams for this section were positioned far from other clusters, echoing 

their unique physiology and developmental pathways (Collin et al., 2013; Ito et al., 

2004). 

The addition of 30 genes to the NanoString Immunology_V2 panel was deemed 

necessary to provide additional gene expression information not covered by the 

original panel genelist. Many of the gene signatures identified in this chapter and 

discussed already in section 3.4 were discussed in publications arising around the 

time of this study. The full rationale for the 30 gene Panel+ selection is included in 

appendix B. 
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Future work was expected to include further analysis of cDC1 and cDC2 

distinctions and thus it was felt that the addition of cDC distinguishing genes was 

necessary.  CLEC10A and CLEC9A and in particular CD1c were important for this. 

Observing a relation between flow cytometry output and gene expression for such 

cell sorting target genes may have been investigated. It was thought that these 

additional genes might have also provided a stronger separation of cDC2s from 

the monocyte populations, thereby reproducing the full illumina expression 

analysis clustering pattern seen in Figure 3.6, this was not the case with the in-

silico analysis by hierarchical clustering in Figure 3.7 and by PCA in Figure 3.7, 

this extended dataset still mirrored the original PCA in Figure 3.5, with only 

marginal increases in PC1 and PC2 explained variance, suggesting that the 

additional genes were not adding a significant push to the clustering, although 

their addition was still beneficial at the individual gene expression level for 

providing gene counts for CD1c amongst other research focus targets. 

The first of the analysis figures presenting NanoString data on the NanoString 

platform began from Figure 3.9. Correlation testing of the NanoString platform 

proved highly successful with R-values of over 0.975 for both FFPE vs fresh 

frozen samples and extracted RNA vs cell lysates. The reason for such high 

correlation is likely due to the chemistry of the NanoString assay. As each capture 

and reporter probe is 50bp in length, the RNA integrity can be extremely low (in 

the region of 2.0 RIN as recorded by the Agilent Bioanalyzer 2100) and still be 

long enough to provide adequate binding area for the capture and reporter probe 

complexes to bind. The comparison of FFPE and fresh frozen material did exhibit 

less correlation for lowly expressed genes, but correlation was improved above a 

log2 expression value of 5 with an extremely correlative R-value of 0.975 overall. 

Correlation between lysed cells and extracted RNA was also extremely high, 

although it was measured on a smaller NanoString panel composed of 

‘housekeeping genes’. This may have mitigated any correlation differences 

attributed to lowly expressed genes as the lowest log2 expression value was noted 

at 5, but displayed strong associations between the samples despite the different 

storage and pre-processing methods applied. The ease of sorting cells via FACS 

directly into lysates for immediate use on the NanoString platform saved a 

significant amount of processing time and consumables and was selected as the 

method of choice for the experiments detailed in chapter 3 and 4.  
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The first experimental data for the comparison of human blood mononuclear cells 

is shown in figure 3.11, with hierarchical clustering of the resulting dataset. 

Although in-silico testing of the geneset suggested cDC2 cells might have grouped 

with the monocyte subsets they did not. The basis of the two technologies is the 

most likely explanation for this observation. Illumina expression arrays use coated 

beads containing hundreds of thousands of labelled 79 nucleotide-long oligo-

sequences for binding RNA targets. Fluorescence intensity is measured from 

these beads to determine the relatively level of expression by intensity. In contrast, 

NanoString uses individual molecular barcodes of 100 nucleotides in length for 

each RNA target that are subsequently read and recorded for a direct digital count 

of expression. Correlation between the two technologies is limited due to scaling, 

dynamic ranges and underlying differences in data distribution. 

cDC2 samples in Figure 3.11 cluster with the remaining DC subsets, although they 

appear to branch off first, unlike in Figure 3.3, where pDC cells were first to branch 

off. The reasoning for this might be related to the Panel+ enrichment of cDC2 

positive marker genes. These additional genes did not appear to provide much 

difference during the illumina in-silico testing phase, but may have had a greater 

influence upon transference to the NanoString system.  
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By PCA, the position of the cDC2 cells was again altered. The pDC and cDC1 

subsets were grouped relatively close on the negative region of PC2, with the 

monocyte subsets on the positive region of PC2, however although distinguishable 

from the other subsets by PC1, the cDC2 cluster was also found on the monocyte 

side of PC2 suggesting that PC2 weighted genes were strongly separating cDC2 

cells from the other DC subsets.  Another feature of note in Figure 3.12 was the 

stretched, linear grouping of the cell type clusters, most notably observed in the 

CD16+ monocyte and CD14+ monocyte clusters. This was likely a technical issue 

relating to the normalisation process for NanoString data. Unlike normalised 

Illumina expression data that typically ranges from an intensity index of six to 

fifteen, NanoString data is based on counts and thus ranges from one to 

approximately 400,000 counts, with the upper limit determined by probe density on 

the streptavidin reading surface of the NanoString cartridge and depending on the 

amount of input RNA. As a result of a normalisation factor derived from the 

geometric mean of 20 housekeeping gene targets applied to each sample during 

the QC stages of analysis, a baseline count value is altered so that a sample with 

a normalisation factor of 2 will have all counts multiplied by that value. The linear 

orientation of the samples was likely a visual manifestation of this normalisation 

factor applied to the lower expressed genes in these samples and thereby altering 

the data in a constant manner. This is not a major issue for differential expression 

analysis, but as the genes driving PC1 appeared to separate out DC subsets from 

one another, these genes may have had relatively low counts in the monocyte 

subsets, making this baseline alteration apparent along PC1. Figure 3.13 

reinforced this conclusion where the t-SNE algorithm did not weigh the genes as in 

a PCA analysis resulting in less of this bias. The t-SNE plot, appears to show 

strong separation of the cell subsets, most closely resembling the Illumina 

expression analysis visualisations. As a visual representation of the high 

dimensional expression patterns of the data, the t-SNE plot appears to recapitulate 

traditional expectations of gene expression. pDC samples occupy a very distinct 

region of the t-SNE plot, the monocytes occupy the positive region of t-SNE2 and 

the cDC subsets occupy the lower, positive region of t-SNE1, thereby splitting the 

data by major cell type; monocytes or DCs, then splitting the pDCs from the cDC 

subsets and finally separating the cDC subsets into cDC1 and cDC2 cells in a 

similar pattern to Figure 3.3 and Figure 3.5 from this thesis and approximated in 
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the Illumina expression analysis of Figure 3 in McGovern et al (McGovern et al., 

2014). 

 

3.4.4 Effect of Additional DC Skin Samples and Tissue Signature Removal 

The GSE35457 dataset contained a number of skin-derived dendritic cell subsets 

believed to be equivalent to the blood DC subsets. Table 3.4 highlighted the 

similarity of surface markers between these cell types, which were subsequently 

used for flow cytometry and cell sorting of the populations for later Illumina 

GeneArray analysis. For the skin samples, autofluorescence was used as a 

measure to ensure any macrophages were removed from the end sort gates. Very 

granular cells such as macrophages typically display a degree of 

autofluorescence, which is exacerbated under macrophage activation.  Apart from 

this, the majority of the gating strategy was maintained between the skin and blood 

equivalent cell types. CD11c and CD141 were considered fundamental to cDC 

identity with CD11c-/lo, CD141+ cells considered CD141+ cDC1 cells and 

CD11c+, CD141- cells qualifying as CD1c+ cDC2 cells in both skin and blood 

subsets. 

Addition of the skin equivalent subsets was a simple process, but resulted in a 

strong defining split in the dataset by hierarchical clustering, as displayed in Figure 

3.14. Blood subset clustering was maintained, identical to the earlier iteration in 

Figure 3.3 as expected, however all of the skin-derived subsets clustered along 

their own branch of the dendrogram, which was interpreted as a tissue-specific 

signature present in all cell types regardless of their DC or monocyte subtype. It 

was concluded that cells entering the tissue or peripheral blood must have 

conserved or partially conserved transcriptional changes related to their entry and 

exit across tissues. Within the skin branch of the dendrogram cell type 

relationships were maintained similar to the blood derived subsets with the CD14+ 

skin cells branching off first from the skin-derived cDC subset cluster. The cDC 

cluster subsequently grouping into cDC1 and cDC2 cells. 
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In an effort to address and overcome the issue of tissue type signatures 

overwhelming the subset clustering and obscuring any conclusions regarding the 

closeness of tissue derived equivalent cells, a simple yet effective method of gene 

reduction was devised. A twist on typical differential expression analysis, a two-

tailed t-test was performed on grouped CD14+ cells, cDC1 and cDC2 subsets 

based on their tissue type producing a list of genes that were significantly 

differentially expressed between the blood samples and skin samples. These were 

expected to consist primarily of tissue-specific genes, and indeed, upon removal of 

these genes from the dataset, a second round of hierarchical clustering produced 

a dendrogram separating samples by their cell types rather than tissue type. This 

effect was confirmed by both hierarchical clustering using Ward agglomeration as 

well as t-SNE in Figures 3.15 and 3.16.  Both plots resulted in a clear separation of 

monocytes, cDCs and pDCs. By removing the same signature from every sample 

irrespective of their cell type, both blood and skin equivalent cells were grouped 

together in a format reflecting the initial blood-only dendrogram from Figure 3.3. 

Importantly, blood cell types that did not have a skin equivalent and took no part in 

the differential expression testing for tissue signatures were still clustered an a 

biologically correct manner. CD16+ monocytes were branched off of the monocyte 

portion of the dendrogram above the combined blood and skin CD14+ cell cluster. 

Likewise, pDC samples branched from the DC clusters before the combined blood 

and skin cDC samples branched into cDC1 and cDC2 clusters appropriately. 

Through this novel process of reversed-differential expression analysis, a constant 

tissue specific gene signature was identified as shared by all cell subsets and was 

subsequently isolated and removed from a large multi-dimensional dataset 

resulting in a recreation of the clustering and visualisations resulting from a single 

tissue type dataset.  
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The idea of a single ‘tissue’ signature is extremely valuable as it may infer that 

cells are transcriptionally and epigenomically altered in their gene expression 

based on their location. Outside of the scope of this thesis, but of major interest to 

DC and monocyte biology and development, such tissue type imprinting may act 

as an interrogable ‘road-map’ of cell movement and development stages, opening 

avenues in single cell sequencing, flow cytometry and in-vivo imagery for DC 

biology and haematopoietic cell differentiation networks. Similar processes have 

already been studied in the form of global regulatory elements in macrophages, 

monocytes and neutrophils (Lavin et al., 2014), yet with the advent of single cell 

sequencing and in-vivo cell tracking, this could be applied to individual cells to 

produce true developmental cell-tracking across tissues. 

 

3.4.5 Producing a Dataset for Signature Generation 

A major aim for this chapter was the generation of robust cell-specific gene 

signatures. To develop this, a large dataset of well-defined cell subsets was 

required. Using two separately generated Illumina expression sets as the basis for 

a signature provided a much greater statistical power for differential expression 

testing and expanded the repertoire of samples to include approximately twice the 

initial number of healthy individuals used in section 3.4.1, thereby incorporating 

and accounting for greater individual variation in each cell type population. Later 

analysis in Chapter 4 of primary blood and cultured cells highlighted the difference 

in expression of cells from different individuals deemed ‘identical’ by FACS gating 

and builds on the concept of environmental transcriptional imprinting that a cell 

population develops based on it’s environment, interactions with other cell types 

and contact with foreign materials, analogous to the transcriptional changes 

associated with a cell transition into tissues highlighted in section 3.4.4. 
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Combining the datasets required the implementation of a specialist normalisation 

technique ‘ComBat’. pDC samples were selected as the normalisation group as 

previous experimentation suggested that pDCs were the most distinct cell type 

and contained the least variation between individuals as a result of this. The 

normalisation was successful as displayed in Figure 3.17 with all samples 

grouping by subtype. The overall branching of the dendrogram differed from that 

shown in Figure 3.3, yet given the doubling of samples in the analysis, differences 

in the hierarchical clustering were expected. Importantly, t-SNE analysis 

suggested a very strong grouping of the samples by subtype and very low internal 

variation within each subtype, which was of most concern when initially combining 

the two Illumina datasets.  

 

3.4.6 GeneSign Signature Generation and Visualisation 

Once the outcome of normalisation was deemed complete, signature generation 

was performed. The fundamental difference between the initial testing performed 

prior to NanoString panel analysis and GeneSign implementation was that 

GeneSign tested each gene against every other subset at once, represented in 

Figure 3.19. This produced much smaller gene lists than the ‘1 vs 1’ individual 

testing, but resulted in far more robust signatures as every subset was 

interrogated at once, resulting in gene signatures that were only highly expressed 

in one subset. This procedure aimed to minimise the inclusion of genes that were 

equally highly expressed in more than one subset and thus would not be able to 

define a single cell type. 
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The number of differentially expressed genes for each subset reflected 

developmental relationships between the subsets similar to the initial differential 

expression testing outlined in Figure 3.2 and external file 1. The two cDC subsets 

are the most closely related developmentally and transcriptionally (McGovern et 

al., 2015) and this strongly correlate with the number of genes identified as 

signature genes for each subset. cDC subsets had the fewest signature genes, 

likely as a result of the transcriptional similarity between cDC1s and cDC2s. 

CD14+ monocytes had the second greatest number of signature genes assigned 

to them. As 16+ monocytes were not included in this analysis due to their absence 

from the 2015 Illumina GeneArray, shared monocyte signatures were likely also 

assigned to the CD14+ monocyte subset. Had CD16+ monocytes also been 

included in the analysis, the number of signature genes for CD14+ monocytes will 

have been reduced as a result of shared or similar expression of monocyte related 

genes between classical and non-classical monocytes resulting in such genes 

failing to meet the criteria of 1.5 fold expression in a single subset and p-value of 

less than 0.05 after false discovery rate adjustment. The pDC subset had the 

greatest number of assigned signature genes as this subset is developmentally 

and phenotypically distinct from other DCs and monocytes to a much greater 

extent than the other subsets analysed here (Castell-Rodríguez et al., 2017). 

Overall, expression patterns for signature genes were supported by literature and 

included a number of strongly defining gene targets frequently used for flow 

cytometric analysis including CD14, CD1c, CLEC10A and PACSIN1 as highlighted 

in Table 3.6. The signature gene pattern further reflects the dendrogram pattern 

shown in Figure 3.17, improving confidence in the resulting gene signature. Figure 

3.20 was the result of initial visualisation of this analysis section, recapitulating the 

dendrogram from Figure 3.17, but emphasising the strong blocks of gene 

expression relating to each subset signature. This diagram was the inspiration 

behind further gene refinement discussed in section 3.4.8 as it suggested an 

aspect of redundancy was present in the signature list even upon reduction from 

full Illumina probe counts to 3,439 genes. Being highly expressed only in a single 

subset meant fewer genes would still be able to reproduce the same or similar cell 

type grouping but allow potential for further translation of future experiments into 

smaller and cheaper technologies or more refined NanoString Panels. 
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3.4.7 GeneSign Validation and Machine Learning 

Promising results from initial visualisation of the DC/monocyte cell type signature 

list prompted further investigation. In order to remove the user-bias from 

interpretation of the robustness of the gene signature, a Linear Discriminant 

Analysis (LDA) supervised machine-learning algorithm was applied to the dataset. 

The requirement for such analysis was to ensure that the results produced were 

not artificial or incidental and therefore specific only to the exact dataset and 

samples used in the initial signature generation. Such a signature would have 

been inapplicable to any other samples or cell types and therefore inadequate as a 

DC and monocyte subtype signature list. 

LDA from the ‘MASS’ package was employed in a cyclic fashion across 5 

iterations so that every sample was used as part of both a ‘training set’ – used to 

define each population, and a ‘testing set’ – a subset of the samples from which 

the subset information was hidden from the machine, which was then tasked with 

assigning a cell type to the ‘unknown’ samples. 

The results of this analysis were 41/41 correct assignments, proving in an 

unbiased fashion that the cell type gene signature developed in this chapter could 

accurately predict a sample’s subset of origin based on the expression of the 

3,439 signature genes with 100% accuracy.  
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As a final validation procedure, the gene list was applied to an external validation 

dataset GSE65128 from Lee et al 2015. This dataset was not worked on or 

previously seen by the Human Dendritic Cell Lab or other research group at 

Newcastle University and therefore was subject to differing methodology for cell 

sorting, sample preparation and subset isolation, however the samples were taken 

from comparable healthy donors and so while there may be technical variance, 

biological variance was not expected to be an issue. This dataset was selected as 

it contained Illumina expression data on the four major DC and monocyte subsets 

investigated in this thesis, although the underlying sorting strategy was not 

identical to that used in GSE35457. This final validation was the major 

authentication hurdle to overcome. Applying the signature to a previously unseen 

dataset challenged its applicability to other datasets, samples and technology. The 

combined heatmap and dendrogram produced in Figure 3.22 and accompanying t-

SNE visualisation in Figure 3.23 were testament to the successful generation of a 

robust and reproducible GeneSign signature for the assignment and grouping of 

the major DC and monocyte populations. The heatmap, was almost identical to the 

heatmap produced from the GSE35457 dataset in Figure 3.20 despite GSE65128 

data not being used in any step of the signature generation experiment. 

 

3.4.8 Analysis of and Uses for Gene Minimisation Experiments 

The robust DC and monocyte gene signature contained hundreds of genes for 

each cell subset. This provided the greatest base for testing reproducibility during 

the machine learning analysis and subsequent use on external datasets. This 

3,439 gene signature was capable of distinguishing the cell subsets in a manner 

comparable to the full Illumina expression array, proving a smaller geneset could 

be used in future experiments, however visual assessment of Figure 3.20 and 3.22 

and strong between sum-of-squares for each of the dendrogram branches 

suggested a high degree of redundancy in the genelist. In an effort to minimise the 

gene list to the fewest genes required to maintain the grouping of cell types 

produced by the full Illumina array and the GeneSign signature geneset, a novel 

method of gene reduction was developed for this thesis.  
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Many methods of dimensionality reduction such as PCA and t-SNE produce 

pseudo-variables across a plane in the data to account for variability or reconstruct 

the dataset in low-dimensional space, yet these pseudo-variables are a 

combination of true variables and thus do not have a biological relevance. A t-SNE 

variable or PCA weighting can’t be interrogated directly after minimisation in a 

research setting or wet-lab experiment. To overcome this, a randomised gene-

removal script was written in ‘R’ to repeatedly reduce a gene signature down to the 

minimial number of variables required to maintain the cell subset groupings 

produced from the initial parent dataset. The essential goal to this experiment was 

to produce a minimised gene list to remove redundancy from the signature gene 

list, but still retain the individual gene information for each of the remaining genes. 

Unlike a PCA variable, this script would not produce pseudo-variables to account 

for the variance in the data, but remove unnecessary genes that were not 

powering the cell type distinction. By writing this script, new cell markers could be 

investigated for potential as sorting or flow cytometry targets resulting in easier 

distinction of cell types from a mixed cell population. By reducing the number of 

markers required to define a cell and thereby freeing up spare channels in the 

cytometer, a researcher could additionally investigate other cell properties or 

marker genes in a single experiment. 

The technique behind the gene reduction experiment was relatively simple. The 

full genelist and expression data to be reduced was uploaded and K-means testing 

was performed to determine the groups that the samples clustered into. This 

grouping was then used as a framework for all subsequent iterations of the 

reduction programme to ensure that final genelists would be able to define and 

group all of the same populations as the initial dataset. The between-group sum-

of-squares (the ‘distance’ between each subset cluster) was recorded too. 
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Once the baseline grouping was established, a gene was selected through a 

random number generator to be removed from the dataset at which point the k-

means grouping was re-tested against the initial dataset, if the same grouping was 

maintained, the new between-group sum-of-squares was tested for the new gene 

list and if the distances between the groups was increased, the new dataset 

replaced the full dataset and the process was repeated. If the new dataset failed 

any of the testing steps the removed gene was replaced and another selected at 

random. For such a randomised process to be successful, a larger number of 

iterations was required. After some testing, 10,000 iterations of the reduction 

process was deemed adequate to reach the gene number end-point. The entire 

process from full gene list to minimal gene list was produced 2,000 times with the 

output recorded for every iteration.  

The random nature of the technique produced resulted in a number of different 

gene combinations that could successfully recreate the full dataset dendrogram 

and k-means clusters. These final gene lists ranged from 2 genes to approximately 

15 genes in length with many of the same gene combinations reoccurring in the 

final gene lists. One of the most common combinations was FCER1A and SLC2A3 

displayed in Figure 3.25, both markers exhibited plasma membrane bound protein 

expression and had antibodies available from major companies. Such gene 

combinations found by the gene reduction script may prove useful for flow 

cytometry experiments as four subsets could be reliably distinguished by just two 

markers. A combination of IRF8 and IRF4 markers could also perform this feat and 

has been noted in published articles as markers of terminal differentiation in 

CD11c+ cells (Bajaña et al., 2016, p. 4; Vander Lugt et al., 2014). This marker 

combination has been utilised for flow cytometry by the Human Dendritic Cell 

Laboratory. 
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A drawback of randomised gene minimisation appeared to stand out during 

analysis. The random nature of the process when combined with the high number 

of possible successful gene combinations resulted in many different gene 

combinations being produced. Only relatively rarely did the exact same gene 

combination appear as a final gene list, although some genes appeared 

frequently, suggesting they exhibited a strong distinguishing pattern of expression. 

This was interesting from a research standpoint and highlighted how simply DC 

and monocyte subsets could be defined, but did not provide much reproducibility. 

Further refinements to the code could have improved reproducibility if desired, 

including subsetting the data to cell surface markers if a user wished to find new 

flow cytomertry marker genes or cell cycle genes if the aim was to investigate cell 

cycle processes. Weighting the genes first by PCA and then taking only the most 

variable genes on to the minimisation step may also be an option, particularly if the 

initial dataset was very large or was not first pruned down to cell type signatures. 

Another consideration when applying the information gained from this work into 

further experiments would be the differences in the data dynamic range. While not 

considered in the example used in this thesis, it is possible to find genes with 

variable expression across the cell subsets, allowing a single gene to group 

samples by cell type. This would be simple for Illumina expression data, which 

ranges from around a log2 value of six to sixteen, or NanoString counts which are 

direct counts typically ranging from zero to around 500,000, however less dynamic 

range is available in older techniques such as flow cytometry where a cell is 

labeled as ‘negative’ for expression from an intensity value of 103, but strongly 

‘positive’ in expression upwards of 105. Such ‘golden’ genes with variable 

expression patterns across each cell subset by Illumina GeneArray would likely 

appear as a blur or smear by flow cytometry. For flow cytometry applications, 

targets with only very high or very low expression should be considered, such as 

FCER1A expression which was found to be high on pDC and cDC2 cells, but low 

on cDC1 and CD14+ monocytes in this thesis.   
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3.5 RESEARCH SUMMARY AND KEY POINTS FOR PROJECT PROGRESSION 

Dendritic cells are extremely rare cells, despite their prominent location in 

peripheral blood and skin as well as ubiquitous expression throughout the body. 

They play a fundamental role in directing the immune response under viral, 

bacterial, fungal and malignant insults, making them extremely valuable in 

immunological research. Multiple DC subsets have been identified and shown to 

be extremely specialised to their role in immunity, from unique plasmacytoid DCs, 

specialised to release interferon-α in response to viral infection, to cDC1 DCs, 

capable of secreting interferon-λ and IL12 and highly capable of cross-

presentation of necrotic antigens to CD8+ T-cells, and the more abundant cDC2 

DCs which specialise in anti-fungal and anti-microbial response. However, their 

major identifying surface markers are extremely fickle in nature, making DC 

research by cell isolation a tedious and complicated process.  

In this chapter, a pipeline for DC analysis via NanoString Technology was 

established and a novel method of deconvoluting cell signatures across tissues 

and culture conditions was developed for use in the subsequent chapters. RNA 

transcriptome profiling was implemented here to reveal further possible DC and 

monocyte specific genes that may aid researchers in distinguishing and isolating 

dendritic cells from peripheral blood, culture conditions (where currently used 

surface markers have shown to be unpredictable) and across tissues through the 

generation of a robust transcriptome-based mRNA gene signature. This signature 

resulted in the identification of known and novel DC subset marker gene targets, 

including S100A8 and C19orf59 on monocytes, PACSIN1 and GZMB on pDCs 

and FCER1A cDC2s. All of these genes encode surface membrane-bound 

proteins and are thus ripe for use in immunohistochemistry, flow cytometry and 

FACS analysis, indeed many of the 3,439 genes identified as markers of individual 

DC or monocytes subsets encoded surface proteins, reflecting their high capacity 

for cell signaling and antigen presentation and the importance of cell-to-cell 

communication in orchestrating the immune response. 
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In order to ensure that the signature produced from the illumina expression 

analysis was robust and diverse enough to be applicable to later chapters of this 

project, the signature was applied to an external dataset and firmly recapitulated 

the layout and hierarchy produced in the initial dataset. This validating experiment 

may indicate that this gene signature can be applied to any other DC 

transcriptome datasets, and may be of use to the wider immunology field, 

providing a template for cell identification. Such a signature would be extremely 

valuable in the field of single cell RNA-sequencing, where one of the major 

problems facing researchers is the annotation of the cells collected and processed 

by the sequencing platforms. The signature was used for a similar purpose in 

chapter 5, for the identification of mature DC signatures in precursor populations. 

Individual cells could be correlated to mature cell populations by their shared 

expression patterns. 

In order to address the question of scope for the identification of monocytes and 

dendritic cells, an immune-based panel of markers were applied to cells from the 

same gating as the illumina expression dataset, but using the quicker, cheaper 

and more accurate NanoString nCounter platform. Using this platform would open 

up a greater array of samples for analysis, particularly due to the much lower RNA 

requirements for the nCounter platform compared to the Illumina BeadArray. This 

was an important consideration to this project as the cDC1 populations of interest 

was particularly rare, even amongst other DC sub-populations. 
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Analysis of the NanoString dataset revealed a strong correlation between the 

illumina and NanoString platforms, solidifying the research groups’ switch over of 

platforms. Furthermore, this platform and analysis pipeline was then tested and 

applicable to the comparison of culture and blood-derived DCs and monocytes in 

chapter 4. After the highly correlative results from the NanoString platform were 

noted, it was evident that relatively few, strong markers of DCs and monocytes 

could potentially be used to distinguish the subsets efficiently. To investigate this, 

a novel method of geneset minimization was developed by the author and applied 

to the Illumina expression dataset, exposing 2-5 genes that could reliably identify 

the three DC subsets and monocyte subset of interest. One of these combinations, 

FCER1A and SLC2A3 were displayed in this thesis as en example, but others 

including a combination of IRF8 and IRF4 were also identified. By highlighting that 

four rare, developmentally related and phenotypically similar could be 

distinguished by the expression of just two markers was quite revealing and may 

prove useful in future work as a way to isolate these subsets by FACS with fewer 

antibodies, for the purpose of cost reductions over the 6-10 antibodies currently 

used to define these populations, or to open up fluorescent channels for the 

inclusion of other antibodies in the reaction mix to provide other important 

information about the cells or further distinguish sub-populations of interest. 
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Chapter 3 Figures & Tables 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1: Human blood samples extracted from GSE35457 for 
identification of human mononuclear cell signature genes 

Samples sorted from human blood for Haniffa et al, 2012 were used as 

well-defined monocyte and dendritic cell subsets for the generation of initial 

gene signatures and in-silico testing of NanoString Technology’s 

Immunology_v2 human nCounter gene expression array panels. 
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Figure 3.1: Gating strategy for GSE35457 human blood samples for 
Illumina expression data 

Full gating strategy to identify human DC and monocyte subsets in the blood. 

Lineage makers were CD3, CD19, CD20 and CD56 all in FITC channel. 

Panels were arranged from upper-left to bottom-right with the following 

rationale: 

1. Large cells (FSC+), 2. Live cells (DAPI-), 3. HSC-derived (CD45+),  

4. Singlets (FSC-A x FSC-H), 5. MHCII-expressing (HLA-DR+), Lineage-, 

6. CD14+ monocytes (CD14+,CD16-), CD16+ monocytes (CD14-, CD16+), 

7. cDC1 (CD141+), cDC2 (CD11c+), 8. pDC (CD123+,CD34-) 
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Table 3.2: Gating strategy for GSE35457 human blood samples for 
Illumina expression data 

Full gating strategy to identify human DC and monocyte subsets in the 

blood. All subsets were classed as ‘live’ by DAPI staining, CD45+, single-

cells, negative for lineage markers (CD3, CD19, CD20 and CD56 all in 

FITC) and HLA-DR+. Monocytes were split into classical and non-classical 

by CD16 and CD14, while cDC1 and cDC2 were split by CD14, CD11c, 

CD1c and CD141.  
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Figure 3.2: Schematic representation of the ‘1 vs 1’ differential 
expression technique  

This network schematic shows the comparison table layout for all 

iterations of the ‘1 vs 1’ approach to subset analysis. In this case, each 

subset was compared against each individual subset in a pairwise 

manner before the next subset is compared against the remaining 

subsets for a total of 10 comparisons. 
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Figure 3.3: Hierarchical clustering of human blood mononuclear cells 
using Illumina expression data 

Hierarchical clustering of the full Illumina array data for human blood subsets 

was capable of distinguishing each population and group them into their 

developmental cell types. Here, sample labels were assigned based on the 

FACS gating used to isolate the cells as displayed in Figure 3.1 and Table 3.2. 

The Y-axis in this figure represents ‘height’ (a measure of increasing 

dissimilarity), increasing ‘height’ suggests clusters are less similar to one 

another. The first branch of the dendrogram splits monocytes from dendritic 

cells. Further along the hierarchy, monocytes are split into their conventional 

(CD14+) and non-conventional (CD16+) major monocyte subsets, while the 

dendritic cell branch splits into plasmacytoid DCs (pDC) and classical DC 

types. In turn, the classical DC branch is split into CD1c+ cDC2 samples and 

CD141+ cDC1 samples.  
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Figure 3.4: Hierarchical clustering of NanoString Immunology_V2 mapped 
human blood Illumina expression data 

The 543 gene dataset of NanoString Immunology_V2 genes translated into the 

Illumina platform produced an in-silico representation of how the NanoString 

machine would likely perform at clustering the common monocyte and dendritic 

cell subsets. The Y-axis in this figure represents ‘height’ (a measure of 

increasing dissimilarity), increasing ‘height’ suggests clusters are less similar to 

one another. Here, sample labels were assigned based on the FACS gating 

used to isolate the cells as displayed in Figure 3.1 and Table 3.2. While each 

subset was grouped correctly, with all populations appearing grouped together, 

cDC2 samples were grouped between the CD16 monocyte cluster and CD14 

monocyte cluster, rather than with the pDC and cDC1 clusters. This could be the 

result of the clustering method used, the restricted dataset not providing enough 

power, a lack of common cDC2 markers on the panel (such as CD1c) or could 

suggest some similarities between cDC2s and conventional blood monocytes. 
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Figure 3.5: Principal component analysis of NanoString Immunology_V2 
mapped human blood Illumina expression data 

PCA analysis of the surrogate Illumina expression data resulted in five defined 

subset populations. PC1 accounts for 20% of sample variance and appears to 

split the DC populations from the monocyte populations. pDCs and cDC1 

appear on the positive axis of PC1, with the monocyte populations on the 

negative region of PC1. cDC2 subset samples are found at the zero point. 

PC2 accounts for 11.2% variability and splits the two monocyte subsets, as 

well as splitting cDC1 from pDC samples. 

Distance relationships appear as expected with pDC samples far from all other 

subsets and the cDC populations relatively close to each other. 
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Table 3.3: Gene list for NanoString Panel+ custom codeset 

This table lists the 30 genes that were selected as additional NanoString 

gene probes to add to the Immunology_V2 gene expression panel. 

These genes contained a number of known subset marker genes, the full 

rationale for each gene can be found in Appendix B. Briefly, these 

additional genes included CD1c, ASIP, PACSIN1 and CLEC9A that were 

not present on the standard NanoString panel. Also included were genes 

related to cell state such as Ki67 and LYVE1. Furthermore, as the panel 

was designed to be applicable to projects outside the scope of this thesis, 

genes relevant to other work were also added including FLT3, CD207 and 

F13A1. A full rationale for the selection of these 30 genes and their 

functions are given in appendix B. 

 

 

ASIP	 DAXX	 MERTK	

C19orf59	 DBN1	 Ki67	

CCL17	 F13A1	 NDRG2	

CD1c	 FGD6	 PACSIN1	

CD207	 FLT3	 PPM1N	

CLEC10A	 GCSAM	 PRAM1	

CLEC9A	 GGT5	 S100A12	

CLNK	 LPAR2	 TMEM14A	

COBLL1	 LYVE1	 UPK3A	

CXCL5	 MAFF	 ZBTB46	
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Figure 3.6: Hierarchical clustering of NanoString Immunology_V2 with 
Panel+ genes mapped Illumina expression data of human blood 
mononuclear subsets 

The NanoString Immunology_V2 genes with additional Panel+ custom codeset 

included were translated into the Illumina platform IDs, which produced an in-

silico representation of how the NanoString machine would likely perform at 

clustering the common monocyte and dendritic cell subsets with the addition of 

custom probes. The Y-axis in this figure represents ‘height’ (a measure of 

increasing dissimilarity), increasing ‘height’ suggests clusters are less similar 

to one another. While each subset was grouped correctly, with all populations 

appearing grouped together, cDC2 samples were still grouped between the 

CD16 monocyte cluster and CD14 monocyte cluster, rather than with the pDC 

and cDC1 clusters as seen in Figure 3.4. While this was an unexpected result 

given the inclusion of a number of cDC-specific gene targets, 30 additional 

genes might not have contributed significantly to the overall hierarchical 

clustering. At the individual gene level, expression values for these subset 

marker genes were as expected. 
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Figure 3.7: Principal component analysis of NanoString Immunology_V2 
with Panel+ genes mapped human blood Illumina expression data 

PCA analysis of the surrogate Illumina expression data with additional Panel+ 

genes resulted in five defined subset populations. PC1 accounts for 20.4% of 

sample variance and appears as Figure 3.5 to split the DC populations from the 

monocyte populations. pDCs and cDC1 appear on the negative region of PC1, 

with the monocyte populations on the positive region of PC1. cDC2 subset 

samples are found at the zero point as they were without the Panel+ genes. 

PC2 accounts for 11.5% variability and splits the two monocyte subsets, as well 

as splitting cDC1 from pDC samples. 

Distance relationships appear as expected with pDC samples far from all other 

subsets and the cDC populations relatively close to each other. Very minor 

increases in PC1 and PC2 explained variance could be attributed to the 

inclusion of the additional panel+ gene probe although the overall look of the 

PCA is similar to the non-Panel+ PCA. 
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Figure 3.8: t-SNE analysis of NanoString Immunology_V2 with Panel+ 
genes mapped human blood Illumina expression data 

T-SNE analysis of the surrogate Illumina expression data with additional 

Panel+ genes resulted in sufficient clustering of the five defined subset 

populations. In comparison to PCA, this t-SNE plot has a similar overall 

appearance although cDC2 samples are located close to the zero value along 

both the x- and y-axis. T-SNE variable 1 (x-axis) splits the DC populations 

from the monocyte populations. pDCs and cDC1 appear on the far right-hand 

side, cDC2 subset samples are found at the zero point with CD14+monocytes 

averaging a value of -50 and CD16+ monocytes found at -200. t-SNE 2 splits 

pDCs and cDC1 samples at around 200 and -100 respectively. CD16+ 

monocytes and cDC2 samples occupy the same region of t-SNE space on this 

axis, while CD14+ monocyte samples are at the extreme negative region of 

the plot. 

Distance relationships are not proportionate in this type of analysis so 

although the subset appears at different regions in 2D t-SNE space, their 

‘closeness’ to other subsets cannot be determined by this method. 
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Figure 3.9: Correlation testing of Qiagen extracted mRNA from fresh 
frozen material and from FFPE material on the NanoString nCounter 
Analysis System 

Correlation is highly conserved between fresh-frozen and Formalin-Fixed, 

Paraffin-Embedded material, despite the highly degraded nature of FFPE-

based RNA. 
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Figure 3.10: Correlation testing of Qiagen extracted mRNA against whole 
cell lysates on the NanoString nCounter Analysis System 

Almost perfect correlation was noted between extracted and lysed, matched 

donor samples when using the NanoString Analysis system. This test provided 

the basis for the protocol used in chapter 3 and chapter 4 as lysing cells directly 

after FACS provided comparable data to those undergoing RNA extraction via 

RNeasy Kits (Qiagen). 
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Figure 3.11: Hierarchical clustering of human blood mononuclear cells 
using NanoString Immunology_V2 with Panel+ genes and the NanoString 
nCounter platform 

This hierarchical clustering dendrogram uses data generated on the 

NanoString nCounter Analysis platform with the Immunology_V2 codeset and 

the Panel+ additional probes from Table 3.3. The Y-axis in this figure 

represents ‘height’ (a measure of increasing dissimilarity), increasing ‘height’ 

suggests clusters are less similar to one another. The NanoString system was 

capable of providing robust data with enough genes present to separate each 

of the 5 mononuclear cell subsets. Unlike the in-silico experiment using 

surrogate Illumina expression data (Figure 3.6), the first branch of this 

dendrogram clearly separates the monocyte subsets from dendritic cell 

subsets. Each CD14+ monocyte sample grouped together, as did the CD16+ 

monocyte samples. Along the dendritic cell branch of the dendrogram, cDC2 

cells branched off from the other DCs first, followed by a separation of pDC 

samples from cDC1 samples further down the tree. Differences in dendrogram 

layout between the Illumina-based experiment and this NanoString based 

work cause be the result of the individual probe targets and underlying 

differences in the sample preparation protocols for each technology being 

fundamentally different. 
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Figure 3.12: Principal component analysis of human blood 
mononuclear cell subsets on the NanoString nCounter Analysis 
platform using Immunology_V2 and Panel+ probesets 

PCA analysis of the human mononuclear cell subsets resulted in grouping 

of each of the five defined subset populations. PC1 accounts for 36.5% of 

sample variance and defines separation of the three DC populations. cDC2 

samples appear high on PC1 with a value of approximately 23, with cDC1 

samples appearing around a value of 5. pDC samples are on the negative 

portion of the PC1 axis. While two of the CD16+ samples appear positive 

on PC1, the other sample is found near the CD14+ monocyte cluster in the 

negative region of PC1. PC2 accounts for 19% variance and splits cDC1 

and pDC samples from the monocyte and cDC2 samples. Although 

grouped with the other DC samples by hierarchical clustering in Figure 3.9, 

cDC2 appears separate from cDC1 and pDC clusters by PCA. 
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Figure 3.13: t-SNE analysis of human blood mononuclear cell subsets on 
the NanoString nCounter Analysis platform using Immunology_V2 and 
Panel+ probesets 

t-SNE blood mononuclear cells by NanoString produced sufficient clustering of 

the five defined subset populations. In comparison to PCA, this t-SNE 

produced clear and distinct grouping of each subset. T-SNE variable 1 (x-axis) 

splits the two monocyte populations as well as splitting the pDC samples from 

the other DCs. cDC2 samples are found at the extreme positive end of the t-

SNE1 range, cDC1s and CD16+ monocytes at the mid-range positive end and 

CD14+ monocytes and pDCs in the negative region. t-SNE2 splits the DC 

populations from the monocyte populations. 

Distance relationships are not proportionate in this type of analysis so 

although the subset appears at different regions in 2D t-SNE space, their 

‘closeness’ to other subsets cannot be determined by this method. 
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Human	Mononuclear	Subset	 Gating	Strategy	

Blood	CD14+	Monocytes	 Live	CD45+	singlets	HLA-DR+	Lin-	CD14+	
CD16-	

Blood	CD16+	Monocytes	 Live	CD45+	singlets	HLA-DR+	Lin-	CD14lo	
CD16+	

Blood	141+	DCs	(cDC1)	 Live	CD45+	singlets	HLA-DR+	Lin-	CD14-	CD16-	
CD123-	CD11clo	CD1c-/lo	CD141+	

Blood	1c+	DCs	(cDC2)	 Live	CD45+	singlets	HLA-DR+	Lin-	CD14+	
CD16-	CD123-	CD11c+	CD1c+	CD141-	

Blood	pDCs	 Live	CD45+	singlets	HLA-DR+	Lin-	CD14+	
CD16-	CD123+	

Skin	CD14+	DC	 Live	CD45+	singlets	HLA-DR+	CD14+	
Autoflorescence-		

Skin	141+	DCs	(cDC1)	 Live	CD45+	singlets	HLA-DR+	CD14-	
Autoflorescence-	CD11c	lo	CD141+	

Skin	1c+	DCs	(cDC2)	 Live	CD45+	singlets	HLA-DR+	CD14-	
Autoflorescence-	CD11c+	CD141-	

	
Table 3.4: Sample list and gating strategy for blood and skin derived 
mononuclear cells for Illumina gene expression 

Full gating strategy to identify human DC and monocyte subsets in the blood 

and their skin equivalents. All subsets were classed as ‘live’ by DAPI staining, 

CD45+, single-cells and HLA-DR+. Blood subsets were negative for lineage 

markers (CD3, CD19, CD20 and CD56 all in FITC). For the blood subsets, 

monocytes were split into classical and non-classical by CD16 and CD14, 

while cDC1 and cDC2 were split by CD14, CD11c, CD1c and CD141. For the 

skin samples, all subsets were negative by autoflorescence. Skin CD14+ DCs 

were CD14+, while skin cDC1 cells were CD14-, CD11c lo and CD141+. cDC2 

skin cells were CD14-, CD11c+ and CD141-. 
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Figure 3.14: Hierarchical clustering of human blood mononuclear cells 
using Illumina expression data 

Hierarchical clustering of the full Illumina array data for human blood and skin 

subsets was capable of distinguishing each population and group them into 

their developmental cell and tissue types. The Y-axis in this figure represents 

‘height’ (a measure of increasing dissimilarity), increasing ‘height’ suggests 

clusters are less similar to one another. The first branch of the dendrogram 

splits blood-derived samples from skin-derived samples, possibly suggestive 

of a conserved tissue-specific signature. Further along the hierarchy on the 

skin-side, CD14 DCs branch from the cDCs first, followed by a split of the 

cDCs into cDC1s and cDC2s. On the blood-side of the dendrogram, 

monocytes are split into their conventional (CD14+) and non-conventional 

(CD16+) major monocyte subsets, while the blood dendritic cell branch splits 

into plasmacytoid DCs (pDC) and classical DC types. In turn, the classical DC 

branch is split into CD1c+ cDC2 samples and CD141+ cDC1 samples, 

mirroring the skin-equivalent section. 
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Figure 3.15: Hierarchical clustering of human blood and skin subset data 
Illumina BeadArray data with a conserved skin signature removed 
(P>0.05) 

After performing a t-test to remove genes distinguishing the grouped skin 

samples from grouped blood samples, the hierarchical clustering diagram 

produced a tree splitting all of the five subsets regardless of their tissue of 

origin. The Y-axis in this figure represents ‘height’ (a measure of increasing 

dissimilarity), increasing ‘height’ suggests clusters are less similar to one 

another. The first branch of the dendrogram split the monocytes and CD14+ 

DC samples from the cDC and pDC samples. Along the monocyte and CD14+ 

cell branch, CD16+ non-classical monocytes were separated from the CD14+ 

monocytes and skin CD14 DCs. On the cDC and pDC branch, the pDCs 

branched from the skin and blood cDCs, which themselves further split into 

cDC1-like and cDC2-like groups. Each of the matched blood and skin 

subtypes would still be distinguished at the lowest branches of the 

dendrogram, but the major branching reflects cell types rather than tissue 

types. 
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Figure 3.16: t-SNE analysis of human blood and skin subset data 
Illumina BeadArray data with a conserved skin signature removed 
(P>0.05) 

After performing a t-test to remove genes distinguishing the grouped skin 

samples from grouped blood samples, this t-SNE diagram produced a plot 

splitting all of the five subsets regardless of their tissue of origin. T-SNE1 (x-

axis) split pDCs at the extreme negative region from CD14+ cells at the zero-

point and CD16+ monocytes at the positive region. cDC2 skin and blood cells 

were present at approximately t-SNE1 of -50, with skin cDC1s at 50 and blood 

cDC1 at 100. T-SNE2 (y-axis) split the blood and skin cDCs from the CD14+ 

cells, monocytes and pDCs. 

CD14+ cells and cDC2 cells appeared to be more transcriptionally similar in 

the skin and blood than cDC1 cells. No skin-derived samples appeared near 

pDC samples or CD16+ monocyte samples, as they did not have skin 

equivalents. 
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Table 3.5: Sample list for combining Illumina expression data 

This table lists the 41 samples from two different microarray experiments that 

were combined into one data frame for the purpose of generating robust cell 

signatures, using as many individual samples as possible, that could then be 

trimmed down using gene reduction techniques. The larger replicate numbers 

would also allow for the testing of machine learning algorithms. The two 

experiments were combined using the ‘ComBat’ function, part of the ‘sva’ 

package on R (Leek et al, 2007). ComBat adjusts for known batch effects using 

emperical Bayesian frameworks. For this analysis, pDCs were chosen as the 

subset to base the normalisation and validation on for data adjustment due to 

their strong signature that appears distinct from the other DC and monocyte 

subsets (Figures 3.3 - 3.11) 
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Figure 3.17: Hierarchical clustering of combined human blood 
mononuclear cell subsets from two independent Illumina microarray 
assays after normalisation using ComBat 

This hierarchical clustering dendrogram uses the combined and normalised 

samples from two independent Illumina expression datasets (Figure 3.4). The 

Y-axis in this figure represents ‘height’ (a measure of increasing dissimilarity), 

increasing ‘height’ suggests clusters are less similar to one another. The 

diagram highlights the successful merging of the datasets as no batch effects 

appear to be present. pDCs are the first subset group to branch from the 

dendrogram typically showing a unique gene expression signature unlike the 

other cell types. Next to split off are the CD14+ monocytes, followed by a 

branching of the cDC subsets into cDC1 and cDC2 groups. 
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Figure 3.18: t-SNE analysis combined human blood mononuclear cell 
subsets from two independent Illumina microarray assays after 
normalisation using ComBat 

t-SNE analysis of the combined Illumina expression data produced 4 distinct 

subset population clusers. Each subset occupies a single region of the plot. T-

SNE variable 1 (x-axis) CD14+ monocytes and cDC2 cells from pDCs and 

cDC1 cells. t-SNE2 (y-axis) splits the cDC populations from the monocyte 

population and pDCs. Distance relationships are not proportionate in this type 

of analysis so although the subset appears at different regions in 2D t-SNE 

space, their ‘closeness’ to other subsets cannot be determined by this method. 
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Figure 3.19: Schematic of GeneSign signature generation using 
combined Illumina expression datasets 

GeneSign was used to generate cell type signatures using data from 41 blood 

mononuclear cell samples. To do this, relative expression levels were 

compared between each subset group for every Illumina probe in a pair-wise 

manner. Minimal pairwise testing with Benjamini-Hochberg false discovery 

rate adjustment was employed with cut-off values of P=<0.05 and a minimal 

ratio of 1.5 fold. In the representative example, genes that had 1.5 fold greater 

expression in pDCs and a p-value of <0.05 compared to all other individual 

subset groups was considered a pDC signature gene. 
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Table 3.6: Total gene signatures and top signature genes from GeneSign 
pair-wise analysis 

GeneSign analysis produced 3,439 gene signatures across the four 

mononuclear cell subsets. All signature genes are ‘positive’ and therefore 

expressed most highly in their signature subset. The most signature genes 

(n=1,425) were attributed to pDCs, which are more distinct In phenotype and 

lineage than the other analysed subsets. 964 gene signatures were attributed to 

CD14+ monocytes, 483 to cDC1s and 567 to cDC2s. As pDCs appear the most 

distinct according to hierarchical clustering, PCA and t-SNE analysis this subset 

also has the highest number of signature genes. Similarly, as cDC1 and cDC2 

are more closely related, they will have fewer signatory genes by comparison. 

Differences in underlying gating strategies for cDC1 and cDC2 subsets between 

the two Illumina array experiments may also be a cause for reduced signature 

gene numbers. 

In bold text, major cell surface marker genes and genes encoding for well-

established internal marker proteins are highlighted, including some of the 

genes involved in CD14 and CD1c expression. 
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Figure 3.20: Heatmap of combined blood mononuclear subset data using 
GeneSign signatures 

The 3,439 gene signature generated by GeneSign was plotted as a heatmap for 

all samples. Each row of the heatmap represents an individual sample, with the 

colour bars linked to the sample type. The colour bars and accompanying 

dendrogram show a clear grouping of the samples into their four subsets. cDC2 

cells appear at the top of the heatmap, followed by cDC1 samples. These are 

the closest related by hierarchical clustering too. Monocytes feature below the 

cDC subsets with pDCs at the bottom of the diagram. 

From the heatmap clear blocks of high gene expression levels can be seen, 

which correspond to each of the subset gene signatures. 

Reducing the dataset from the full human transcriptome to 3,439 genes still 

provided enough distinction between the mononuclear cell subsets to correctly 

and robustly group them by subset. 
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Figure 3.21: Linear Discriminant Analysis (LDA) machine learning output 
for sample subset classification based on GeneSign gene signatures 

Linear discriminant analysis was performed on the 41 sample dataset to confirm 

if the GeneSign signatures were robust enough to define ‘unknown’ 

mononuclear cell subsets. For this analysis, The 41 sample dataset was split 

into randomly assigned groups. Linear discriminant analysis (LDA) was used on 

all but one of these groups to ‘train’ the machine. All sample subtype identifiers 

were removed from the final ‘test’ group. Based only on the expression profile, 

the machine would assign each test sample to a subset group, providing a 

confidence score for the assignment. Multiple iterations of this analysis was 

performed so that every sample was part of a training group and test group. 

Four iterations were performed with 100% total prediction accuracy. All 

unlabeled samples were correctly assigned to their subset of origin by the LDA 

predictor. 
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Figure 3.22: heatmap for sample subset classification based on GeneSign 
gene signatures using an external validation dataset GSE65128 

Data from Lee et al 2015 paper ‘Restricted dendritic cell and monocyte 

progenitor in human cord blood and bone marrow’ (GSE65128) was used to 

validate the GeneSign signatures. By taking the 36 sample dataset and 

restricting the data to the 3,439 gene signatures, a clear correlation between this 

independent dataset and the one used for signature generation can be seen. As 

in figure 3.18, each subset is well defined, despite differences in the initial gating 

strategy for each dataset. cDC2 samples group at the top of the heatmap, with 

cDC1 cells below this in a separate group. From the cDC groups CD14+ 

monocytes branch, followed finally by the pDC group. The capability of the gene 

signatures to correctly group and define each sample into their subset groups is 

maintained even when applied to data that was not used in the initial signature 

generation experiment. 
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Figure 3.23: t-SNE output for sample subset classification based on 
GeneSign gene signatures using an external validation dataset GSE65128 

Data from Lee et al 2015 paper ‘Restricted dendritic cell and monocyte 

progenitor in human cord blood and bone marrow’ (GSE65128) was used to 

validate the GeneSign signatures. By taking the 36 sample dataset and 

restricting the data to the 3,439 gene signatures, t-SNE analysis pulled the 

samples out into clusters based on their mononuclear cell type. cDC2 samples 

group at the top-centre of the t-SNE plot, with cDC1 cells forming a distinct 

group at the top-left of the plot. CD14+ monocytes branch are at the top-right of 

the t-SNE plot, with pDCs at the lower region. Each cluster is relatively tightly 

grouped and located apart from any other sample cluster, suggesting good 

separation and definition of each of the subsets. 
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Figure 3.24: Gene reduction technique for minimal gene list subset 
classification 

Signature genes were expressed highly in a single subset as seen in figure 

3.18. As each signature gene is specific to a subset, multiple genes were 

unlikely to be necessary for accurate subset assignment. In order to test the 

minimum number of genes required to accurately group the four mononuclear 

cell subsets, a randomised gene reduction method was designed based on K-

means testing to reduce the geneset to the minimum genes required for 

successful classification and grouping. K-means testing was performed on all 

genes and the between-group sum-of-squares were recorded for each group. 

One gene was randomly removed and the process repeated. If the new geneset 

provided grater between-cluster sum-of-squares, another random genes would 

be removed and re-checked. If the new geneset did not provide a greater sum-

of-squares, the gene would be replaced and another gene randomly removed 

and re-analysed. This process was repeated until after 10,000 iterations, the 

final gene list was recorded and used to produce a heatmap and hierarchical 

clustering. 
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Figure 3.25: Example of surface marker gene expression after gene 
minimisation 

From the 3,439 signature gene list, 612 genes were noted to have cell surface 

protein expression. This 612 gene list was used as the starting point for a new 

round of gene minimisation using the randomised K-means reduction technique 

created for this thesis. From this analysis, a number of iterations produced two-

gene signatures capable of correctly grouping the subset sample data by 

mononuclear cell type. One example of this was the combination of FCER1A 

and SLC2A3. FCER1A was highly expressed on pDCs and cDC2 cells, but 

lowly expressed on CD14+ monocytes and cDC1 cells. SLC2A3 was expressed 

highly on cDC2 cells and CD14+ monocytes, but lowly expressed on both pDCs 

and cDC1 cells. This combination of marker genes could split these four subsets 

in a ++,+-,-+,-- expression pattern, potentially reducing the need for multiple cell 

type marker genes in flow cytometry experiments and freeing up channels for 

new flow antibodies to be used. 
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Chapter 4: IN-VITRO DENDRITIC CELL SUBSET CLASSIFICATION 

 

Primary research question:  
Can transcriptomic signatures aid in the identification and validation of cells 
generated in-vitro? 

Sub-topic questions: 
1. Can phenotypically equivalent human dendritic cells be generated in-vitro? 

2. Are there any culture-specific expression patterns identifiable in-vitro? 

3. Do in-vitro derived DCs share a similar transcriptome profile with primary human 

DCs? 

 

4.1 INTRODUCTION 

The multiple roles of dendritic cells in the innate and adaptive immune system, 

their ability to influence CD4+ and CD8+ T-cells and importance in antigen 

presenting, immunotherapy and autoimmune disease have led to significant 

scientific research interest in the production of high numbers of bona-fide DCs 

(Morse and Lyerly, 2002). 

As described in previous chapters, dendritic cells and DC pre-cursors make up just 

1% of peripheral blood mononuclear cells (Nairn, 2002). The myeloid component 

of this 1% is mostly comprised of cDC2 cells, with cDC1 cells approximately 10x 

less abundant. The scarcity of such cells makes research on primary DCs a 

challenging hurdle to overcome. Growing DCs, monocyte-derived DCs and 

monocytes in culture conditions provides researchers with the cell numbers 

required for RNA-seq, NanoString and other RNA, DNA or protein based 

techniques. Such in-vivo generated cells or ex-vivo monocyte-derived DCs can be 

generated in vast numbers after appropriate cytokine and growth factor stimulation 

and are phenotypically similar to primary DCs by flow cytometric analysis (Nair et 

al., 2012).  
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Generation of in-vitro cells provides the scalability required for effective functional 

and molecular studies examining response to stimulants, cytokine interactions and 

inflammatory processes. The development process can also be tailored through 

the use of transcription factors and cytokines to enrich the cellular output for 

specific cell subsets, offering potential avenues for cellular therapy. 

Many publications rely on induced monocyte-derived DCs or cultured cells for 

analysis, typically drawing phenotypic or functional conclusions for primary cells 

based on these experiments. While similar by flow cytometry and sorting 

protocols, some surface marker expression changes are noted, including CD14+ 

expression on monocytes, or low MHC class II on CD11c+ DCs (Aldo et al., 2013; 

Mayuzumi et al., 2009). This may be due to the fickle nature of ex-vivo surface 

marker expression when applied for the identification of in-vitro populations in 

combination with the underlying differences between moDCs and ex-vivo DCs. 

MoDCs are closely related to inflammatory DCs and monocytes, which may 

impact the effectiveness of monocyte-derived DCs in dendritic cell-based 

therapies.  

Because of these discrepancies, this chapter focuses on the relationship and 

correlation between primary DC and monocyte subsets isolated from blood and 

those generated under culture conditions from CD34+ bone marrow or peripheral 

blood progenitor cells using gene expression data generated on the NanoString 

platform. This platform provides over 500 immune-related gene targets, 

incorporating chemokines, cytokines, transcription factors and other functional 

molecules to generate a directed, but wide-scoping dataset for cell identification 

between ex-vivo and in-vitro generated cells. 

 

4.1.1 Dendritic Cell and Monocyte Culture Research 
In contrast to dendritic cells, monocytes are abundant white blood cells, easily 

identified and isolated by FACS and flow cytometry as Lin-HLA-

DR+CD14+CD16+/- cells. In-vitro, such monocytes can be converted into 

monocyte-derived dendritic cells (moDCs) in the presence of GM-CSF and IL-4 

(Autenrieth et al., 2015) providing adequate numbers for further research in 

cellular therapy, vaccination and immunotolerance. 
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While in-vitro-derived DCs can also be generated from bone marrow, cord blood 

and peripheral blood mononuclear cells (Zou and Tam, 2002) using a variety of 

stimulus, many studies make use of the standard GM-CSF and IL-4 protocol to 

derive monocyte-induced dendritic cells. The addition of IL-4 to GM-CSF 

containing monocyte cultures induces a much more DC-like phenotype over GM-

CSF alone. This feature was identified over two decades ago, where under GM-

CSF alone, resulting cells took on a macrophage-like phenotype, yet in 

combination with IL-4, CD14 expression was decreased and non-adherent DC-like 

cells developed, (Kiertscher and Roth, 1996). Despite some phenotypic 

differences, these generated DCs expressed the activation markers CD80, CD83 

and CD86 Mature MoDCs exhibited a Th1 response, while CD34+ progenitor cell-

derived DCs leant towards Th2 polarisation and IFNα and IFNβ production (Zou 

and Tam, 2002). Subsequent research has shown an earlier divergence between 

the DC and monocyte lineages that may infer that moDCs are phenotypically 

distant from bona-fide DCs outside of the standard cell activation and identification 

markers (Geissmann et al., 2008). 

The work in this chapter explores the relationship between ex-vivo   peripheral 

blood dendritic cell subsets and those derived in-vitro from CD34+ bone marrow 

cells under culture conditions developed by Dr Urszula Cytlak-Chaudhuri of the 

Human Dendritic Cell Lab, capable of generating DC subsets with phenotypic 

similarities to ex-vivo DCs, yet distinct from monocytes. 
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4.2 MATERIALS AND METHODS  

 

4.2.1 Sample Collection and Isolation 

All samples were taken from healthy volunteers after written consent under ethics 

contained in Chapter 2, section 2.1. PBMCs were isolated according to the 

protocol listed in Chapter 2, section 2.3.2. Bone marrow was obtained from 

patients undergoing hip replacement surgery and the cells isolated according to 

the protocol outlined in section 2.3.1. 

 

4.2.2 Flow Cytometry and Sample Sorting 

Bone marrow and peripheral blood mononuclear cells, or cells harvested from 

culture, were stained in aliquots of up to 6x106cells/100µl. CD34+ bone marrow 

progenitors for culture and mononuclear cells from peripheral blood or generated 

in culture for gene expression analysis were enriched to >98% purity by FACS, 

using a FACSAria III (BD Biosciences) running BD FACSDIVA 8.0 software. DAPI 

was used for dead cell exclusion. CD34+ cells for culture were collected into 

culture medium (section 4.2.3) and cells for gene expression analysis were 

collected into RPMI before cell pelleting and resuspension in RNA lysis buffer 

(RLT buffer + 1% bME). Replicate DC/monocyte FACS purification experiments 

were performed by various members of the human DC lab.  

Cells were stained with DAPI for dead cell exclusion, a lineage cocktail (CD3, 

CD19, CD20, CD56), CD45, HLA-DR, CD14, CD11c, CD141, CLEC9A, CD1c, 

CD123 and CD303/4.  
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4.2.3 Culture Conditions 

FACS purified CD34+ bone marrow cells were seeded at 3,000 cells per well in 96 

well U-bottomed plates containing pre-seeded 5,000 OP9 stromal cells per well. 

These were cultured for 21 days in 200mL 1% penicillin/streptomycin 

supplemented αMEM (Gibco™) with 10% Fetal Calf Serum (Gibco), 20ng/ml GM-

CSF (R&D systems), 100ng/ml Flt3-ligand (immunotools) and 20ng/ml SCF 

(Immunotools). 50% of the media volume was removed and replaced weekly along 

with the cytokines. After 21 days, the culture products were harvested on ice and 

filtered through a 50mm filter, after which they were washed and stained for flow 

cytometry and FACS. Cell culture and subsequent FACS purification was 

performed by Urszula Cytlak-Chaudhuri. FACS gating on surface parameter 

expression was consistent between blood and cultured cells. 

 

4.2.4 NanoString Panel+ Codeset 

NanoString data was generated on the Immunology_V2 panel with Panel+ genes 

added as described in section 3.3.2.1. This panel contained immunologically 

relevant gene targets encompassing major classes of cytokines and their 

receptors, as well as chemokines and receptors, interferons and TNF-receptor 

superfamily targets. This panel was specifically designed to address allergy, 

immune response, autoimmunity and infectious disease response. Allowing 

sample input between 10-100ng of FFPE-derived RNA, total RNA or cell lysates 

provided an opportunity to study low frequency cell types including CD141+ cDC1s 

without the need for amplification. 

The NanoString nCounter cell lysate protocol was selected following the 

preliminary experiments described in Chapter 3, section 3.3.3. This ensured 

10,000 cells of each population, sorted by FACS, would be used in each 

NanoString assay for comparability without any disruption in expected gene counts 

compared to extracted RNA. 
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4.2.5 Significance Testing and Analysis 

Significance testing for culture effect removal was performed by two-tailed t-test 

with p-values of ≤0.05 after Benjamini-Hochberg FDR adjustment deemed 

significant. Dendrograms were drawn based on Euclidean distance and Ward 

method agglomeration. PCA was performed using the ‘stats’ package of ‘R’ and 

visualised using ‘ggplot2’ and ‘ggbiplot’.  

t-SNE was performed using ‘Rtsne’ package with a fixed set seed for 

reproducibility. A perplexity of 3 was set for visualisation purposes. 

GSEA was performed with FDR-adjusted p-value of ≤0.05 deemed significant after 

hypergeometric testing for functional Gene Ontology enrichment. 
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4.3 RESULTS  

 

4.3.1 Surface phenotype of cells generated in culture  

The four mononuclear cell subsets used in Chapter 3 were studied for this chapter, 

consisting of CD14+ monocytes, CD141+ cDC1s, CD1c+ cDC2s and CD123+ 

pDCs taken from healthy peripheral blood. These were compared to 

phenotypically similar cells (Figure 4.1) generated in culture for 21 days from 

CD34+ bone marrow. A minimum of two positive surface markers of each subset 

were used to identify cells by FACS.  

The proportions of cells falling into each sort gate varied between the blood and 

their cultured counterparts when equivalent gates were applied.  

From the CD14+ monocyte gate, 91% of blood cells fell into the CD14+ CD11c+ 

category, while the cultured output had 38% of the cells in the CD14+ category. 

For the cDC1s, blood cDC1s (Clec9A+ and CD141+) comprised of 1% of the cells 

from the CD14- gate, while the cultured equivalent gate contained just 0.1% of 

cells. The percentage of cells found in the pDC gate were also lower in the 

cultured subsets, down from 67% with CD123+, CD303/304+ expression, to 3.4%, 

with the majority of the cells falling lower in CD123 expression than the blood 

equivalents. Interestingly, cDC2 cells in the blood and culture were roughly 

comparable in terms of the percentage of cells falling into the CD1c+ CD11c+ 

gate, although increased CD1c expression appears commonplace under in-vitro 

conditions. 
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Of note, cells appearing in the cDC2 population plot from Figure 4.1 had a differing 

characteristic in CD1c and CD11c expression. Blood cells were generally low in 

CD1c and medium by CD11c, in contrast, cultured cells in the equivalent plot 

ranged from low to very high expression of CD1c and variable CD11c expression 

reflecting both the fickle nature of commonly used cell markers when applied to in-

vitro generated cell populations, as well as the fact that cells captured in culture 

represent a developmental continuum ranging from the CD1c+CD11c- cells, 

believed to be in the early stages of development and the CD1c+CD11c+ later 

stage cells. Further technical and biological reasons for these observations are 

discussed in section 4.4. 

 

4.3.2 Generation of gene expression dataset for peripheral blood and cultured 
cells 

Three replicate samples of each selected mononuclear cell subset from blood and 

culture were analysed using the NanoString nCounter platform utilising the human 

Immunology_V2 panel and custom Panel+ add-on. As correlation between the 

samples was to be assessed and global differential expression was likely needed 

to address any culture-specific effects, an equal number of replicates were 

produced for each subset so that none were over-represented, which would 

ultimately skew the differential expression analysis downstream. 

 

4.3.3 Comparison of primary and in vitro derived DCs and Monocytes  

Figure 4.2 shows the dendrogram clustering of the dataset using Ward method 

agglomeration and Euclidean distance. There was no cross over between subsets 

at the level of the first two nodes; all eight cell subsets were distinct enough to 

form individual groups composed of their three replicate samples. The upper 

nodes of the dendrogram split the monocyte subsets from the DCs, followed by a 

split of the pDC cells from the bulk cDCs. The cell subsets grouped according to 

their phenotypic identity with the exception of the cDCs (cDC1 and cDC2), which 

clustered according to their origin.  
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By principal component analysis (Figure 4.3), distinction between cell types was 

more apparent. Again, each of the eight cell subsets were separable, but by PCA 

there was no cross-over between sample types as observed by hierarchical 

clustering. PC1 explained 24.4% variance and split cDC1, cDC2 and monocyte 

subsets, both from blood and from culture. PC2 split pDC subsets from the others 

and explained 19% of variance. Grouping by cell type was not obvious, however 

matched cultured and blood samples appeared to exhibit a similar expression 

pattern by PCA. Each in-vitro derived subset was located at a euclidean distance 

of -10 to -15 less thans its blood counterpart along PC1 and PC2. This was true for 

all four cell types and gave rise to the idea of a conserved ‘culture signature’ that 

was shared by all inivitro derived cells. This effect mirrored earlier observations 

regarding the ‘tissue effect’, initially identified in chapter 3, whereby heterogeous 

cells derived from tissue showed conserved expression of a unique tissue-specific 

gene set compared to peripheral blood counterparts. 

As the PCA process applies a weighting to genes based on expression variance, it 

was anticipated that large changes in expression of certain conserved genes must 

occur as a result of differences in the blood and culture environment. 

t-SNE analysis of the blood and cultured samples was performed in Figure 4.4, 

which recapitulated the observations noted for the hierarchical clustering in Figure 

4.2. pDCs and their culture counterparts grouped closely together and occupied a 

distinct region of the t-SNE plot, separated from the other cell types along t-SNE1. 

The two monocyte groups clustered closely together at the zero-mark of t-SNE1 

and t-SNE2, with the blood cDCs grouped at the positive region of t-SNE2 and the 

cultured cDCs in the negative region of t-SNE2.  

 

4.3.4 Removal of Culture Effect 

To determine if there was a conserved ‘culture effect’ on gene expression between 

the samples, a similar gene removal approach to that used in section 3.3.4 for skin 

and blood cells was employed. As displayed in Figure 4.1, phenotypically similar 

cells could be identified in blood and culture, however their transcriptome profile by 

NanoString analysis was altered, largely based on whether the sample was from 

primary blood or culture conditions.  
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The two-tailed t-test based method of feature reduction was used to remove genes 

differentially expressed between the culture-derived samples and the blood-

derived samples, with p=<0.05 acting as a cut-off for significance. 

230 genes were deemed significant. The result of their influence on sample 

groupings is displayed in Figure 4.5 in the form of a dendrogram. This 

demonstrates division of the samples into blood-derived or culture-derived groups. 

The in-vivo branch exhibited sample groupings discordant with previous results, 

with monocytes and cDC2 cells branching from pDCs and cDC1s. Along the in-

vitro branch, monocytes split initially from the DCs, with pDCs then branching off 

from the cDC subsets, as observed previously in Figure 3.13. Importantly, the two-

tailed t-test method of ‘culture signature’ generation proved capable of separating 

the two sample groups effectively.  

 

4.3.5 Comparability and Functional Changes 

Figure 4.6 shows PCA of the resulting ‘culture effect’ gene list as applied to the 

dataset. Again, strong dissimilarity was observed between the blood and cultured 

samples, as expected, with PC1 explained variance at 41.3%. One additional point 

of note is the tightness of the sample clusters. The PCA reveals greater variation 

in expression of ‘culture signature’ genes within blood-derived cells compared to 

in-vitro derived cells, consistent with the uniform in-vitro conditions.  

To further investigate the transcriptomic differences associated with culture 

conditions, functional gene-set enrichment analysis was performed on the 

differentially expressed genes. Using a hypergeometric test for functional Gene 

Ontology enrichment with FDR-adjusted p-value of ≤0.05 deemed significant, the 

functional differences associated with blood or culture subsets was apparent., 

Gene expression in primary cells was enriched for immune-related genes, antigen 

response genes and genes involved in mixed cell type interactions. Functional 

enrichment in the cultured subsets included genes involved in cellular stress, 

proliferation, apoptosis and response to stimulants. The full list of functions and p-

values are displayed in Figure 4.7. Ki67 was noted as one of the most differentially 

expressed genes between blood and cultured samples, reflecting the forced 

replicative conditions in culture. 
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The culture signature was enriched for chemokine ligands, with 10/17 chemokines 

present on the NanoString panel found to be differentially expressed between 

pooled blood and pooled culture subsets. 

Although 24/50 CD antigens from the NanoString Immunology_V2 panel were 

differentially expressed including CD1a, CD40 and CD86 encompassing DC 

differentiation, activation and cellular response pathways, none of the CD surface 

markers used for FAC-sorting the cell subsets were differentially expressed at the 

transcriptomic level, suggesting correlation between protein expression at the 

surface and intercellular mRNA expression for these marker proteins.  

Interleukins and their receptors probed by NanoString were differentially 

expressed as well as both ITGB1 and ITGB2. CD11a (ITGAL) expressed on all DC 

and monocytes and CD103 (ITGAE), which defines mouse DCs and is also 

present on human DCs were differentially expressed.  

 

4.3.6 Grouping of Samples After Removal of the ‘Culture Effect’ Genes 

Comparison of samples following the removal of the 230 genes comprising the 

‘culture signature’ was undertaken (figures 4.8 to 4.10). 

Hierarchical clustering of the remaining dataset grouped cells as identified by their 

phenotype, irrespective of origin (Figure 4.8). The first branch of the dendrogram 

split the two monocyte populations from the dendritic cell subsets, as observed in 

chapter 3, representing a greater developmental ‘distance’ between monocytes 

and the DC subsets. This was followed by a split of the pDC subsets from the cDC 

subsets and finally the cDC subsets split into cDC1 and cDC2 populations. 

Compared to Figure 4.2, where convoluting genes were still present in the dataset, 

the ‘Culture Signature’ adjusted dataset grouped the cultured cDC2 and primary 

cDC2 samples together, distinct from the blood and cultured cDC1s.  
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By PCA in Figure 4.9, samples were associated by their cell type, comparable to 

the relationships identified by illumina microarray gene expression analysis (figure 

3.5). PC1 accounted for 27% variance, with PC2 accounting for 20%, representing 

extensive deconvolution of the geneset upon removal of the culture signature. 

pDCs separated out by PC2, forming close groups of cultured and primary cells. 

The positive region of PC2 contained the cDC populations, with cDC1 and cDC2 

populations distinct by PC1. In the far-positive region of PC1 both monocyte 

populations were found. The monocyte populations overlapped, suggesting an 

almost identical transcriptome profile when displayed by PCA. In all cases, there 

was greater variance within the blood-derived cell groupings as observed 

previously in figure 4.3.  

Figure 4.10 showed the t-SNE output of the data based on the first 50 principal 

components. The inclusion of these additional components had no effect on the 

overall distance mapping of the samples, indicating that PC1 and PC2 displayed in 

figure 4.9 were weighted towards variables contributing most genes defining 

cellular identity. The diagram displayed the higher order relationships of the 

samples, highlighting the underlying similarities of the blood and culture-derived 

subsets with the removal of a global ‘culture signature’ geneset.  

t-SNE1 separated out the DC subsets, with both pDC populations at the negative 

region of t-SNE1, the cDC1 populations around the zero-point and the cDC2 

populations in the positive region. T-SNE2 separated the monocyte populations 

from the DCs, but also split the cDC2 populations (found at +20 on t-SNE2) from 

the cDC1 and pDC populations (at -20 to -60 by t-SNE2). No populations grouped 

by their in-vitro or in-vivo status, suggesting that the culture-specific gene removal 

procedure was effective. 
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4.3.7 Conservation of DC signature genes in cultured cells  

Upon removal of the culture-specific gene signature, the remaining genes were 

investigated to determine if key factors and critical developmental genes were 

present and conserved between the blood and cultures subsets. As described in 

Chapter 1, section 1.2, Toll-like receptor (TLR) molecules are integral to dendritic 

cell biology, reflecting the functional roles of each DC subset. Expression of TLRs 

and other functional molecules present in the NanoString panel are displayed in 

Figure 4.11. Expression of TLRs between the blood and culture equivalents are 

conserved with pDCs expressing TLR1, TLR7 and TLR9; cDC1s expressing 

TLR1, TLR3 and TLR8 and cDC2s expressing TLR1, TLR2, TLR8 and higher 

expression of TLR5 than cDC1 or pDC subsets. Both blood and cultured cDC1s 

express IRF8, CLEC9A and XCR1. Both cDC2 populations expressed CLEC10A, 

IRF4 and CX3CR1 and both pDC subsets expressed TCF4. Both the blood and 

their cultured equivalent populations expressed comparable HLA-DR at protein 

and mRNA-levels along with 10 other HLA molecules. 
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4.4 DISCUSSION 

Bona fide dendritic cells and monocytes generated under culture conditions may 

provide new avenues for immune-based therapy. Furthermore, generating 

significant numbers of cells usually found infrequently in peripheral blood opens up 

greater research potential for microarray and RNA-sequencing, which typically 

require over 300ng of RNA material. To be effective as surrogates or viable 

treatment options, such in-vitro generated cells must be both functionally and 

transcriptionally comparable to their in-vivo counterparts. 

In this section, the transcriptional effect of culture conditions on developing 

dendritic cells and their independence from monocytes was assessed to determine 

what differences, if any, would be present.  

Phenotypically similar cells identified in culture and blood using FACS were 

processed using the NanoString nCounter platform with the resulting data 

highlighting the extent of this similarity beyond the surface markers used for cell 

sorting. Clustering of the data displayed cellular association, particularly between 

cDC subsets and revealed a ‘universal’ culture-related gene set present in all in-

vitro derived cells, the removal of which allowed de-convolution of the primary and 

cultured cell subsets into comparable DC and monocyte subsets. Individual gene-

level analysis revealed the cultured cDCs had an expression profile matching ex-

vivo cDCs, rather than a monocyte-like profile typically observed in monocyte-

derived dendritic cells. 

 

4.4.1 DCs and Monocytes Exhibit Some Altered Gene Expression in Culture 

The production of the cultured cells from bone-marrow derived CD34+ progenitors 

under the influence of GM-CSF, FLT-3 ligand and SCF was intended to generate 

cells analogous to primary blood DCs, independent of monocyte origin. Phenotypic 

and transcriptomic analysis was performed to determine if the resulting mature cell 

subsets were comparable to their blood-derived mature counterparts. DCs and 

monocytes phenotypically similar to primary cells, contained within equivalent 

FACS gates, were identified in culture. These cells were purified by FACs for 

further transcriptomic analysis using the NanoString platform.  



	 161	

Despite equivalent gating strategies, the pattern of cell expression was altered at 

the FACS level. The composition and counts of cells falling into each subset gate 

differs drastically in some subsets and appears globally altered in others.  

CD14+ monocytes from the blood formed a strong cluster of cells with CD11c and 

CD14 expression, yet the cultured CD14+ monocytes comprised of a loose 

population of CD11c med/CD11c+ cells with greater variability in CD14 

expression, likely the result of differing exposure to cytokines under culture 

conditions. 

CD1c expression in CD14-, CD141-/CLEC9A- cells appeared to indicate a 

different developmental process in culture than in the blood. While blood cells in 

the cDC2 population plot produced two major populations; double-negative cells, 

or CD1c+, CD11c+ cDC2 cells, the cultured equivalents exhibited a greater 

variability in CD1c and CD11c expression, producing a smear from double-

negative cells to CD11c-, CD1c+ cells and through to the CD11c+, CD1c+ cDC2 

population. The cultured cDC2 population gate contained cells with a much greater 

expression of CD1c than their blood counterparts along with variable expression of 

CD11c, a common feature in cultured cells and reminiscent of primary cells in the 

skin. 

Considering their origins however, the end-gate populations used for NanoString 

analysis were largely comparable in their surface marker gene expression, 

providing a positive baseline for comparability by NanoString analysis.  

Global expression differences between blood and cultured cells appeared to differ 

between individual subsets, illustrated most clearly by hierarchical clustering and 

tSNE analysis. Using the NanoString immunology V2 panel, the unique identity of 

monocytes and pDC was distinguishable, regardless of origin. This effect may be 

a technical consequence of the restricted panel of genes used on the NanoString 

geneset, curated to cover major immune pathways and functions, although the 

geneset was designed for equal coverage of immune processes indicating the 

observation is a biological result attributable to the exclusive gene expression 

profile and functional specialisation of the monocyte and plasmacytoid lineages.  
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Classical monocytes, being CD14+, equipped with chemokine receptors and 

largely blood-borne are highly distinguishable in the steady-state from dendritic 

cells. Their development processes are understood to split them early in 

haematopoiesis from DCs at the GMP stage, after which their transcriptome and 

associated functions become divergent from CDP-derived pDC and cDC 

populations (Collin and Bigley, 2016), this feature is reflected in the NanoString 

data with monocytes separating from the other cell types throughout the analysis. 

pDCs, as observed in chapter 3, expressed highly a number of genes including 

PACSIN1, ASIP, PTGSD and GZMB relating to their specific immune functions. 

Lacking typical myeloid antigens but retaining some lymphoid features, their 

distinction from the conventional cDCs is apparent by NanoString analysis (Collin 

et al., 2013).  

 

4.4.2 Reviewing the Culture Effect Genes and Functional Disparity 

Removal from the analysis of a gene-set consisting of 230 differentially expressed 

genes between pooled blood and culture cells, the ‘culture signature’, revealed 

equivalence between phenotypically similar primary and in vitro derived cells at the 

transcriptomic level. 

Analysis of the culture signature composition by PCA showed the greatest 

variance was accounted for by cell origin. However, significant variance remained 

to distinguish subsets, particularly among in-vitro derived cells.  

Here, PC1 accounted for sample origin, while PC2 appeared to distinguish the 

cultured, and to a lesser extent, the blood-derived cell subsets.  
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This observation suggests that genes capable of distinguishing the cell subsets 

were likely also removed during the process. The geneset could have been further 

tailored from the ‘culture signature’ plots to return any genes associated with 

variance between cell subsets, however this would have undermined the 

unsupervised, and statistically robust two-tailed t-test method through direct 

manipulation of the geneset.  As the remaining genes had ample capacity for cell 

subset distinction, additional supervised curating of the ‘culture-signature’ was 

unnecessary. The variance that appeared to distinguish cell types could also have 

been driving the distinction between the culture and blood separation, for example 

in the case of KI67, high expression in the cultured cells compared to blood 

ensured it’s removal during the two-tailed t-test, but direct inspection of KI67 

expression also revealed subset-level differences in expression amongst the 

cultured subsets, reflecting differential cellular turnover rates across the cell 

subsets. 
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Interestingly, the cultured clusters displayed on the PCA were tight and easily 

distinguishable, reflecting the rigorously controlled culture conditions producing 

cell populations with very homogeneous expression profiles. Conversely, the ex-

vivo samples, with the exception of the cDC1 population displayed more disparate 

associations. This variability across the blood subsets may be explained as donor 

variability of both genetic and environmental origin. As human donors are 

‘outbred’, they exhibit high genetic variance, much greater than that typically found 

in mouse studies or in-vitro assays. The genetic impact on gene expression can 

be extensive, even amongst healthy populations of similar ages and gender, which 

is why GWAS studies typically require thousands of donors to reach statistical 

significance. Environmental factors may have also influenced the global gene 

expression variance amongst ex-vivo samples as history, age, diet, ethnicity, 

gender and exercise were not controlled for, but can all influence the immune 

system and expression of target genes. This would not have been a factor in the 

cultured populations which were subjected to the same proliferation and 

stimulating signals at all stages of their development, producing populations of 

equally developed mature cells. Similarly, peripheral blood populations will have 

had varied interactions with other cells in the blood and tissues, influenced other 

cell types and been transcriptionally altered by these interactions resulting in more 

heterogeneous populations with regards to gene expression linked to cell-to-cell 

interactions, exposure to infections and allergens as well as cell cycle functions, 

while cultured subsets were enriched for a single cell type and were not exposed 

to intra-cellular interactions. 

Functional analysis and gene enrichment highlighted genes defining the blood 

subsets shared functions in immunity, interactions with other cell types and 

exposure to foreign antigens which are expected to be a result of their role and 

interactions in circulating peripheral blood with other populations, tissues and 

foreign antigens. Those genes upregulated in the cultured samples shared 

functions related to proliferation, apoptosis, cellular stress and response to 

stimulants, reflecting the forced cellular expansion and division under sterile and 

controlled culture conditions. It is therefore likely that the most significant functions 

enriched for in each population may also account for the heterogeneity identified 

by PCA analysis of the culture signature.  
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Subsequent interrogation of gene groups found to be differentially expressed 

exposed some expected immune-related components and some unexpected 

probes that may warrant further investigation in future experiments. 

One of the most significantly differentially expressed genes identified was Ki67, a 

typical proliferation marker gene. This was more highly expressed in cultured cells 

(linear 5-fold difference) and underpins the proliferative capacity of cultured 

populations. Similarly, epidermal growth receptor genes were widely up-regulated 

under the forced proliferation of culture. 

The large impact on chemokine expression in culture may be explained by the 

difference between in-vivo and in-vitro cytokine levels. Cytokine stimulation in 

culture results in highly concentrated, continuous exposure to certain cytokines 

throughout the culture process, while completely excluding other cytokines 

typically found in circulating peripheral blood. Of the cytokines differentially 

expressed, 8/10 were up-regulated in culture conditions, further reinforcing this 

conclusion. 

 Further to this, as reflected in the initial FACS gate proportions, the cellular 

composition of the culture wells were not equal to those of the peripheral blood. 

This would mean exposure of cultured cells to other typical blood cell types would 

have been altered, particularly T-cells and NK cells that are frequently induced by 

antigen-presenting cells in-vivo. Interleukin and interleukin-receptor expression 

was widely up-regulated in blood compared to culture along with LILRA1, LILRA5 

and LILRB2. These genes are generally associated with induction and interaction 

with T-cells and thus very low expression of interleukins in cultured cells may be 

explainable by the lack of T-cell interactions in these cells. 
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Although they encompass multiple functional groups and immune-mediated 

pathways, differences in CD antigens were an important consideration to the 

research group as these are typically the targets of fluorescent probes for flow 

cytometry and FACS experiments. Changes here would result in incorrectly gated 

cells and may lead to misinterpretation of results if these surface markers are used 

to define a population. CD34 featured in the list of differentially expressed genes. 

DC activation markers including CD1a, CD40, CD80 and CD86 were up-regulated 

in cultured cells. Again, this is likely to be developmentally induced activation for 

the purpose of producing matured cultured cells. CD1a expression is typically 

linked to dermal DCs, but in the presence of an adherent-cell feeder layer, it is 

possible that CD1a expression in the cultured blood DCs was influenced by the 

‘dermal-like’ presence of this feeder cell layer, although increased CD1c 

expression is common amongst many in-vitro derived cells, reflecting a potential 

inflammatory DC-like potential. 

While differences in gene expression were evident between the cultured and 

blood-derived cell samples, the genes driving these differences appeared to 

respond in an expected manner, with culture cells expressing proliferative and 

cytokine-like response signals, while blood subsets were largely expressing more 

interleukins and killer cell lectin receptor (KLR) genes suggesting interactions with 

other cell types in the peripheral blood environment. 
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4.4.3 Removal of the Culture Effect Highlights Underlying Cell Type Similarity 

Removal of the ‘culture signature’ genes from the dataset had resolved the issue 

of samples grouping by their origin rather than their subset and suggests that the 

underlying transcriptome of blood and culture derived samples of the same subset 

were conversed through culture conditions. The major cell type markers, 

developmental and functional targets were similarly conserved. With the removal 

of the cell-cycle, proliferation and interaction genes found to be differentially 

expressed between pooled in-vitro and pooled ex-vivo samples, the remaining 

genes were capable of separating cell subsets into monocytes, pDCs, cDC1s and 

cDC2s, regardless of their growth conditions, furthermore, the grouping of the 

samples by hierarchical clustering reflects biological development and 

haematopoiesis with the monocyte and DC populations developmentally 

distinguishable. By PCA and t-SNE close grouping of the blood and culture 

equivalent populations were observed after the removal of the global ‘culture 

effect’ genes. This observation suggested that the transcriptomic difference 

between the blood and cultured samples was largely shared amongst each subset 

despite the differences in developmental pathways of each subset in the blood. 

The PCA showed increased variance amongst the blood-derived samples 

compared to the culture equivalents, as noted during the gene removal step in 

4.4.2. Again, this reinforces the conclusions drawn in section 4.2.2, that cultured 

cells were less heterogeneous than the genetically and environmentally distinct 

blood-derived equivalents taken from different healthy donors, however despite 

this variability, the overall expression pattern was conserved and cell types were 

clearly identifiable by their gene expression patterns after the ‘culture signature’ 

genes were omitted. 

t-SNE visualisation of the high-dimensional data displayed each DC and monocyte 

subset in a separate quadrant of the plot, The blood and cultured pDCs formed the 

closest clusters although all four subsets still had some minor distinctions between 

their ex-vivo and in-vitro samples. These were typically global, minor expression 

differences, resulting in broadly similar cell types from the peripheral blood and 

culture. 
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Correlation of the developmentally important marker gene expression levels 

between blood and culture equivalent subtypes were conducive to the 

development of bona-fide DCs with cultured cDC subsets expressing major cDC 

development markers, rather than monocyte-associated markers typical of 

moDCs. This level of phenotypic and transcriptomic equivalence is a particularly 

important distinction if such cultured population are to be used for scalability in 

further cellular development assays, functional assays or in future clinical cellular 

therapy as a surrogate for in-vivo cDCs.  

Although the NanoString panel lacked probes for some fundamental genes such 

as ID2, CD141 and TLR6, which are typical DC marker genes, enough were 

present to reinforce the verdict of genuine DC generation. CLEC9A is now used as 

a flow cytometry and FACS cell marker for cDC1 as it is more stable in expression 

than CD141 (Guilliams et al., 2016). Conservation of expression of CLEC9A, along 

with XCR1, IRF8, TLR1, TLR3 and TLR8 in both cultured and blood cDC1s was a 

positive indicator that both surface phenotype and transcriptomic profile of in-vivo 

cDC1s was recapitulated in-vitro. The same recapitulation was noted for 

CLEC10A, CX3CR1, IRF4, TLR1, TLR2, TLR4, TLR5, TLR8 with cDC2 cells and 

IRF7, IRF8, TCF4, TLR1, TLR7 and TLR9 on both pDC subsets. The combination 

of surface markers, phenotype markers, development genes and specialised 

functional components provides evidence that the culture system produced bona-

fide DCs, distinct from the monocyte lineage. The ability to produce these cells in 

culture will open further avenues for research by providing the scalability required 

for functional assessment, developmental studies or for further clinical therapeutic 

use. 
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4.5 RESEARCH SUMMARY AND KEY POINTS FOR PROJECT PROGRESSION 

Chapter 4 was focused on the comparison and correlation of DCs isolated from 

peripheral blood and their culture derived equivalents. As culture models are 

commonly implemented by DC biologists, immunologists and clinical scientists for 

investigating DC response to stimulants, DC development and for use in clinical 

immunotherapy, comparing the immune-transcriptome of cultured cells to bona-

fide peripheral blood DCs was of paramount concern. It was clear from FACS and 

flow cytometric analysis of blood DCs and cultured cells that phenotypically 

equivalent cells could be developed in-vitro, but similarity by a dozen surface 

markers does not necessarily equate to the wider functional and developmental 

conservation of these cells through culture. 

This chapter addressed the issue of comparability between blood and cultured 

dendritic cell and monocyte subsets through comparative RNA transcriptome 

analysis, uncovering a number of transcriptional changes affecting in-vitro 

generated cell populations and providing a novel basis to identify and remove 

these obscuring transcriptional changes to reveal the underlying conservation of 

each unique dendritic cell subset’s phenotypic and functional features between the 

cells generated through the Human Dendritic Cell Lab culture system and primary 

peripheral blood DCs. The deconvolution of the culture signature from the dataset 

employed the same novel technique developed, tested and explored in chapter 3, 

but rather than comparing skin and blood equivalent cells, it compared blood cells 

to their cultured equivalents.  
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By exposing the fundamental cell subset specific signature from the dataset 

despite the dominating conditional signature, the transcriptional conservation of 

the generated cells was revealed to be significant. Cells grown in culture aligned 

well with their blood-borne equivalents. This was an extremely important finding as 

it suggests that the culture model employed in this thesis could recapitulate bona-

fide DCs, well beyond cell-surface marker equivalence. This finding had a major 

impact on the research performed in the Human Dendritic Cell Lab, as it meant 

large quantities of DCs could be produced that would likely react under 

investigation in a comparable way to primary DCs. This would also have a wider 

research impact for projects where obtaining sufficient cell numbers for analysis is 

not feasible from human blood, or in the case of immunotherapy, would allow for 

the generation of vast quantities of immune-specific DC cells that are 

phenotypically, developmentally and functionally as capable as true blood DCs, in 

an easily reproducible manner. 
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Chapter 4 Figures & Tables 

 

 

Figure 4.1: FACS Gating Strategy for Blood and Cultured Mononuclear 
Subsets 
Gating was matched as closely as possible between peripheral blood subsets 

and their cultured equivalents. Classical monocytes were classed as HLA-DR+ 

CD14+ cells, while cDC1 cells were both CD141+ and CLEC9A+. cDC2 cells 

were defined by CD1c and CD11c positivity, while pDCs were defined by their 

CD123 and CD303/CD304 expression. The gating strategy relied on multiple 

defining surface markers to increase sample purity. 

Panels were arranged from left to right with the following rationale (note: all cells 

used were also gated for: Live cells (DAPI-), HSC-derived (CD45+), singlets 

(FSC-A x FSC-H): 

1. MHCII-expressing (HLA-DR+), Lineage- (CD3, CD19, CD20, CD56),  

2. CD14+ monocytes (CD14+),  

3. cDC1 (CD141+, Clec9A+), 

4. cDC2 (CD11c+,CD1C+),  

5. pDC (CD303/4+, CD123+)  
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Figure 4.2: Dendrogram of blood and cultured samples using all 
NanoString Immunology_V2 and Panel+ genes   

This hierarchical clustering dendrogram uses data generated on the 

NanoString nCounter Analysis platform with the Immunology_V2 codeset and 

the Panel+ additional probes for blood-derived and culture-derived 

mononuclear cell subsets. The Y-axis in this figure represents ‘height’ (a 

measure of increasing dissimilarity), increasing ‘height’ suggests clusters are 

less similar to one another. The first branch of this dendrogram splits both the 

cultured monocytes and blood derived monocytes from the other subsets. 

Along the dendritic cell branch of the dendrogram, pDC subsets branched off 

from the other DCs next. Both blood and cultuted pDCs appear here. The final 

cDC branches appear problematic as instead of grouping by cell subset, the 

cDCs are grouped by sample type. Both cultured cDC1 and cDC2 samples 

were grouped together, as were the blood equivalent subsets. It was 

suggested that this could be the result of a specific ‘culture signature’. 
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Figure 4.3: PCA of blood and cultured samples using all NanoString 
Immunology_V2 and Panel+ genes   

Principal component analysis of the data generated on the NanoString 

nCounter Analysis platform with the Immunology_V2 codeset and the Panel+ 

additional probes for blood-derived and culture-derived mononuclear cell 

subsets show a similar shift in PCA rotation for cultured cells compared to their 

blood equivalents. PC1 accounts for 24.4% of sample variance and appears to 

loosely split monocytes from cDCs and pDC subsets. PC2 accounts for 19% 

variance and separates pDCs from the other subsets. Distance relationships 

of the blood subsets are similar to those of the in-silico experiment PCA 

(Figure 3.7) and the NanoString experiment PCA (Figure 3.10). The pattern of 

cultured cell subsets mirrors that of the blood-derived samples with cultured 

equivalents found in a position approximately 10-15 values less by PC1 and 

10-15 values greater by PC2 than the blood samples. This pattern gave rise to 

an idea of a conserved ‘culture cell signature’. 
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Figure 4.4: t-SNE plot of blood and cultured samples using all NanoString 
Immunology_V2 and Panel+ genes   

t-SNE analysis of the blood and cultured samples using all NanoString 

Immunology_V2 and Panel+ genes produced a number of distinct subset 

population clusters. pDCs and cultured pDCs occupy the negative region of t-

SNE1 and t-SNE2 space. Monocytes and cultured monocytes occupy the zero 

region of the same t-SNE space. As with the dendrogram (Figure 4.1), cDCs 

form a group separately from their cultured equivalents. cDC1 and cDC2 cells 

are positive on t-SNE2, while cultured cDC1 and cDC2 samples were negative 

along t-SNE2. 

Cultured pDCs and cultured monocytes appeared to be closer to their in-vivo 

counterparts than the cDCs. 
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Figure 4.5: Dendrogram of blood and cultured samples using only the 
‘culture signature’ geneset 

This dendrogram was built based on a 230 gene signature produced as a result 

of a two-tailed t-test of all cultured samples against all blood samples. The Y-

axis in this figure represents ‘height’ (a measure of increasing dissimilarity), 

increasing ‘height’ suggests clusters are less similar to one another.  The 

resulting signature very strongly divided in-vitro from in-vivo samples. Within this 

gene signature, the genes were capable of separating each individual subset, 

although the higher-order branching is not typical of gene expression analysis 

patterns. In the in-vivo branch of the dendrogram monocytes and cDC2 samples 

split initially from pDCs and cDC1s, while the in-vitro branch sees monocytes 

splitting away from the DCs, followed by pDC splitting from the cDC branch. 
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Figure 4.6: PCA of blood and cultured samples using only the ‘culture 
signature’ geneset 

Principal component analysis of the 230 gene signature produced as a result 

of a two-tailed t-test of all cultured samples against all blood samples 

produced a plot separating cultured cells from their blood equivalents. PC1 

accounts for 41.3% of sample variance and appears to strongly define in-vitro 

subsets from their in-vivo counterparts. PC2 accounts for 14.8% variance and 

separate the individual cultured cell types well. This 230 gene signature 

highlights the high degree of variation found in normal human samples 

compared to rigorously controlled culture conditions. The in-vitro subsets form 

tight, distinguished clusters, while the primary blood cells appear far more 

varied by PCA, resulting in loose, overlapping groups. 
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Figure 4.7: Functional enrichment diagram for the ‘culture signature’ 
geneset 

Functional enrichment of the blood and culture differentially expressed genes 

produced a significant number of contributory functions specific to in-vitro or 

in-vivo derived cell types. For the blood subsets, many of these functions 

shared a theme of immunity, evidence of interactions and exposure to foreign 

antigens and other haematopoietic cell types as a result of their position and 

role in circulating peripheral blood. As for the cultured cell types, functions 

shared a theme of proliferation, apoptosis, cellular stress, cellular migration 

and response to interleukins and stimulants, reflecting their forced division and 

boosted cell cycle under culture conditions. 
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Figure 4.8: Dendrogram of blood and cultured samples after removal of a 
conserved ‘culture signature’ geneset 

This hierarchical clustering dendrogram uses data generated on the 

NanoString nCounter Analysis platform with the Immunology_V2 codeset and 

the Panel+ additional probes for blood-derived and culture-derived 

mononuclear cell subsets. The Y-axis in this figure represents ‘height’ (a 

measure of increasing dissimilarity), increasing ‘height’ suggests clusters are 

less similar to one another. The first branch of this dendrogram splits both the 

cultured monocytes and blood-derived monocytes from the other subsets. 

Along the dendritic cell branch of the dendrogram, pDC subsets branched off 

from the other DCs next. Both blood and cultured pDCs appear here. In this 

figure, the final cDC branches are now resolved, with both cDC1 groups 

clustering together and both cDC2 subsets grouped together. Removal of 

‘culture signature’ genes has aided the grouping of the cells by subset, rather 

than origin. 
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Figure 4.9: PCA of blood and cultured samples after removal of a 
conserved ‘culture signature’ geneset 

Principal component analysis of the data generated on the NanoString 

nCounter Analysis platform with the Immunology_V2 codeset and the Panel+ 

additional probes for blood-derived and culture-derived mononuclear cell 

subsets produce four cell subset clusters after removal of a culture signature. 

PC1 accounts for 27% of sample variance and splits blood and cultured 

monocytes from cDCs and pDC subsets as well as pulling cDC1s from cDC2s. 

PC2 accounts for 20.5% variance and separates pDCs from the other subsets. 

Distance relationships of the blood cell subsets and their in-vitro counterparts 

highlights the beneficial effect of removing a general culture signature from the 

dataset. Each of the four major clusters is composed of both in-vitro and in-

vivo generated cells. Monocyte subsets are overlapped, with the other culture 

subsets falling much closer to their blood equivalents. 
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Figure 4.10: t-SNE analysis of blood and cultured samples after removal of 
a conserved ‘culture signature’ geneset 

T-SNE analysis plot of the data generated on the NanoString nCounter Analysis 

platform with the Immunology_V2 codeset and the Panel+ additional probes for 

blood-derived and culture-derived mononuclear cell subsets produced four cell 

subset clusters after removal of a culture signature. t-SNE1 splits blood and 

cultured pDCs from cDC1s and cDC2 subsets, while t-SNE2 splits pDCs and 

cDC1s from cDC2 as well as monocytes. This pattern results in each subset 

being located in a single quadrant of the t-SNE space.  

In contrast to Figure 4.3, the cDC1 and cDC2 subsets are clustered by cell type 

rather than their generation in-vitro or ex-vivo. 
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Figure 4.11: Heat-map of marker genes relevant to DC development for 
blood and cultured cells 

TLRs, CCRs and IRF genes are displayed along with other important markers 

of mononuclear cell development for the blood and cultured subsets show 

conservation of these major signatures. Red signifies high expression for that 

marker, blue signifies low expression. High conversation of expression 

between the blood and cultured equivalent populations reflects a strong 

similarity between cell subsets under each condition. 
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Chapter 5: A SINGLE-CELL APPROACH TO DENDRITIC CELL 
DIFFERENTIATION 

 

Primary research question:  
Can transcriptomic analysis identify DC lineage priming in progenitor cells 
and precursors? 

Sub-topic questions: 
1. Can single-cell RNA-sequencing be used to investigate dendritic cell precursors? 

2. Are DC-precursors skewed towards mature DC signature expression at the 

single cell level? 

3. Does the in-vitro development assay on pre-DC populations correlate with 

transcriptome-level expression patterns? 

 

5.1 INTRODUCTION 

Transcriptome profiling of dendritic cells has largely been performed using bulk 

material, either for standard RNA-sequencing or microarray-based analysis, to 

provide a population level expression profile for major mononuclear cell 

populations. These technologies provide average gene expression values across a 

large cell population, useful for identifying global or population level gene 

expression differences between distinct cellular lineages or disease states. With the 

growth and increasing affordability of single cell transcriptomics in recent years, the 

true heterogeneity of dendritic cell biology has begun to be revealed. Using single 

cell technologies with dendritic cell populations has revealed much greater 

heterogeneity between cell types, culminating in the identification and isolation of 

multiple potential new DC and monocyte populations in human blood (Villani et al., 

2017). 
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While culture studies have enabled researchers to speculate on maturation and 

development of dendritic cells from their pre-cursors, cell culture has inherent 

complications when compared directly to primary DCs. Murine work also share 

many of these same difficulties with debate is still ongoing in relation to the 

correlation between the human and mouse immune system and deconvolution of 

in-vitro derived conclusions that apply in-vivo. 

In mouse, pre-DCs are traditionally considered to originate from a common 

monocyte and dendritic cell progenitor and in turn develop into pre-pDCs and pre-

cDCs in the bone marrow (Lee et al., 2015). The work in this chapter, which 

represents one of the first single cell experiments at Newcastle University, explores 

the transcriptomic diversity at the single cell level within the peripheral blood pre-

DC population, as identified by surface phenotype. Analysis focuses on single cell 

data manipulation, interpretation, visualisation and analysis techniques to generate 

a specially adapted pipeline.  This is followed up with cell culture of pre-DCs to 

investigate their developmental heterogeneity in-vitro, supporting the early lineage-

priming model of haematopoiesis described in chapter 1, section 1.3.2. 
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5.1.1 Advances in single-cell RNA sequencing 

With some of the first publications arising around 2009, including expression of a 

single mouse blastomere (Tang et al., 2009), single cell sequencing is a very new 

technique in biological research. Initially prohibitively expensive, early publications 

featured relatively few cells, however, commercial competition, streamlining, 

multiplexing and protocol refinements have since driven the costs down to 

approximately $10 per cell (Han, 2015). With this accessibility, the number of 

single-cell sequencing publications has risen dramatically over the past three years. 

Broadly speaking, single cell protocols have evolved into two main strands. Plate-

based protocols were first to be developed, offering low-throughput, high read-

depth transcriptome sequencing, usually incorporating flow cytometry-based index-

sorting of individual cells into wells of a 96-well plate. While this process is time-

consuming and expensive for larger numbers of cells, users can refer back to the 

immunophenotype data produced during cytometry sorting to infer phenotypic 

properties of their collected cells and correlate surface-marker expression to 

transcriptome level counts. The greater read depth of plate-based techniques 

typically provides transcripts for up to 5,000 unique genes per cell. Such processes 

are suited for deconvolution of closely-related populations or investigation of 

heterogeneity in previously described ‘homogeneous’ populations (Papalexi and 

Satija, 2017). Alternatively, droplet-based microfluidic platforms provide multiplexing 

capability for high-throughput sequencing at the expense of number of transcripts 

per cell, producing around 1,000 mapped genes per cell. Cell multiplexing allows for 

hundreds of cells to share the same sequencing lane, yet remain distinguishable by 

unique molecular identifiers introduced to each cell. Such high-throughput 

processes are much cheaper on a per-cell basis than plate-based sequencing and 

are typically preferred for discovering rare cell types or investigating heterogeneous 

cell types where the lower sensitivity is not an issue.  



	 185	

Current large-scale single cell projects such as ‘The Human Cell Atlas’ have 

combined both approaches in a complementary manner, using droplet-based 

approaches to gain unbiased overall population insights and identify cell clusters of 

interest. Gene markers for these subsets will then be used to isolate and enrich for 

populations of interest before plate-based methods are employed for in-depth 

transcriptome analysis (Rozenblatt-Rosen et al., 2017). While this approach is 

expensive and data-intensive, it may yield great insights into the immune cell 

compartment across multiple human tissues. 

The capacity to identify novel cell types and marker genes that can be used to 

isolate these same cell populations may be combined with culture techniques to 

generate large cell numbers required for functional and developmental investigation 

of extremely rare cell types where ex-vivo collection may not be viable and care 

must be taken when aligning populations identified by transcriptomics with 

previously defined cells. 
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5.1.2 The pre-DC concept 

Dendritic cells are believed to originate from two distinct lineages in the classical 

model of haematopoiesis, arising from myeloid and lymphoid progenitor cells 

(Doulatov et al., 2010), although their observed mature phenotype and functions 

were conserved in mouse xenotransplantation models (Ishikawa et al., 2007) and 

more recent alternative human models of haematopoiesis largely undermine the 

significance of the myeloid and lymphoid pathways in DC biology (Hamey and 

Göttgens, 2017; Notta et al., 2016; Paul et al., 2015). The traditional interpretation 

of DC development from both common lymphoid and common myeloid progenitors 

is typically based on flow cytometry gating strategies and thus may be reliant upon 

relatively few marker genes and arbitrary gating points for cell sorting. With this 

basis, it is possible that early DC-primed progenitor cells may already be present 

across multiple sorting gates in the traditional model, therefore affecting the 

interpretation of lineage contribution assays associated with ‘later stage’ progenitor 

populations (Velten et al., 2017). Because of these shortfalls, the alternative 

approach to haematopoiesis has been adopted by multiple groups working in the 

field of single cell transcriptomics, revolving around transitional early lineage 

priming from HSCs in the absence of stable, discrete progenitor cell types (Lee et 

al., 2017; Schlitzer et al., 2015; Velten et al., 2017).  
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5.2 MATERIALS AND METHODS 

 

5.2.1 Sample Collection and Isolation 

All material was collected with written, informed consent for research purposes 

under ethical approval. Whole blood was diluted with PBS and layered over 

lymphoprep (Stemcell) density solution before centrifugation. The resulting 

peripheral blood mononuclear cell layer was aspirated off and washed before 

counting with a haemocytometer. Resulting cells were then stained for FACS. Cell 

isolation protocols for both peripheral blood and bone marrow are discussed in 

chapter 2, section 2.2. 

 

5.2.2 FACS Sample Sorting 

 Single cells were isolated by FACS into 96-well plates containing 2uL of lysis 

buffer (RNAse-free water, 2uM RNAse inhibitor and 0.1% TritonX). Six wells 

contained mini-bulk (10 pooled cells) mature sample subsets, composed of CD14+ 

monocytes, pDCs (CD123+ CD303/4+ CD2-), cDC1s, BTLA+ cDC2s, BTLA- 

cDC2s, and CD34+ progenitor cells. Into each of the remaining wells HLA-DR+, 

Lineage- (CD3, CD19, CD20 and CD56), CD14-, CD123med/+ cells were sorted, 

omitting any CD303/4+.CD2- cells defining mature pDCs. A pre-processing 

overview is described in Figure 5.1 and sort gating is displayed in Figure.5.2. 

CD303/4+,CD2+ cells were collected as a single population with downstream gating 

was used to separate potential sub-populations of the sort gate, including early-pre-

cDC2 (CD11c- CD5+), pre-cDC2 (CD11c+), CD123medium cells, pre-pDCs 

(CD303/4+ CD2+) and a mixed population of CD303/4- CD2+ cells termed ‘Tri-

lineage’ cells.  
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5.2.3 Plate and Library Preparation 

 Reverse transcription, library preparation and sequencing were performed by 

the Oxford Genomics Centre. ERCC spike-ins were added to each well to adjust for 

technical variability. No blank wells were used for background subtraction. A 

modified SMARTseq2, full-length reverse transcription protocol was used in the 

absence of unique molecular identifier (UMI) sequences. The library prep utilized a 

Nextera XT DNA Library Prep Kit and paired-end reads were developed at 75base-

pair length at 2.5 million read depth using the Illumina HiSeq 4000 platform. 

SMARTseq2 was identified by the Enard group as having the greatest sensitivity, 

detecting the most number of genes compared to other RNA-Seq methods 

including CEL-seq, Drop-seq, SCRB-seq and Smart-seq (Ziegenhain et al., 2017). 

 

5.2.4 Platform Selection 

The Illumina HiSeq4000 was utliised as one of the newest HiSeq platforms 

available. It is capable of sequencing many standard libraries at a more efficient 

rate than the previous generation HiSeq2500. The HiSeq4000 flow cell contains 

billions of nanowells resulting in narrower feature variability. 

 

5.2.5 Data Preparation and Matrix Building 

From the Illumina HiSeq4000 machine, sample data was screened for read quality 

using Trimmomatic, a flexible trimming tool capable of handling paired-end data. 

Any technical errors were visualized based on the .BAM output. Low quality bases 

were trimmed from the reads prior to mapping of the reads to a reference genome 

using STAR aligner. In this instance GRCh38 with Gencode gene set volume 24 

and additional ERCC library maps included. Once mapped and screened for 

mapping quality, reads for each gene and each cell were quantified using HTSEQ. 

From the HTSEQ report, gene count tables for each cell were collated into a single 

count matrix for further refinement and analysis in R. 
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5.2.6 Normalisation and Analysis 

The ‘SCATER’ package (McCarthy et al., 2017) was used for expression QC, 

filtering out genes with very few counts, samples with few total reads and low 

features, as well as removal of cells with a high percentage of mitochondrial counts. 

Data visualisation was also performed using SCATER alongside variability analysis 

to determine the overall expression patterns and sources of sample variability. To 

reduce unwanted variability in the data, particularly in ERCC control counts, the 

RUVg function of the ‘RUVseq’ package (Risso et al., 2014) was implemented to 

adjust the data. 

Initial differential expression analysis was performed on ‘R’ using ‘M3Drop’ 

(Andrews and Hemberg, 2017) and followed-up with ‘SC3’ (Kiselev et al., 2016) 

cluster analysis to identify cells with similar gene expression profiles. 

Final correlations of pre-DCs to mature cell type signatures was performed using 

the signatures generated in Chapter 3 and visualized using ‘ggplot2’ (Wickham, 

2009b). The final comparison to CD100+, CD34med cells incorporated data 

presented by Villani et al (Villani et al., 2017). 
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5.2.7 Culture Conditions and Staining 

Cell culture and follow up was performed by Dr Urszula Cytlak-Chaudhuri from the 

Human Dendritic Cell Lab. Cells collected from the pre-DC gates displayed in figure 

5.2 were seeded onto a pre-prepared (>/=4hrs prior) feeder layer of5,000  OP9 

stromal cells per well in 96 well U-bottomed plates. Cells were cultured in 

200mL aMEM (Gibco™) with 1% penicillin/streptomycin (Sigma), 10% Fetal Calf 

Serum (Gibco), 20ng/ml GM-CSF (R&D systems), 100ng/ml Flt3-ligand 

(Immunotools) and 20ng/ml SCF (Immunotools). Half the volume of media 

(including cytokines) was replaced every seven days. At Day 14 cells were 

harvested on ice, passed through a 50micron filter, washed and stained for flow 

cytometric analysis. Cells were stained in aliquots of up to 1x107 cells in 100µl of 

DPBS with 2% fetal calf serum and 0.4% EDTA.  Dead cells were excluded by 

DAPI (Partec). Cell numbers and barplots were produced using GraphPad Prism 

version 6. 
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5.3 RESULTS 

 

5.3.1 Data Acquisition and Pre-Processing 

Pre-processing of the scRNA-Seq data was performed in three stages. From the 

initial text-based FASTQ files produced by the sequencer, ‘Trimmomatic-0.33’ 

(Bolger et al., 2014) was used to remove up to 20 bases from the end of a read if 

the read was below the threshold quality (Q10 – indicating an error rate less than 

0.1) and drop any read completely if the length of the read was below 60 bases in 

length. The remaining reads were then mapped to the reference genome GRCh38 

version 25, augmented with ERCC control sequences. In total, 2.5 million reads 

were obtained for the Pre-DC plates. The aligner tool of choice for this analysis was 

the ‘STAR’ package (version 2.4.0j) (Dobin et al., 2013) implemented in Java. A low 

proportion of mapped reads in a cell indicated some contamination or other issue 

and resulted in the removal of the cell from analysis. Data for the number of 

uniquely mapped reads, unmapped reads and multi-mapped reads (aligning to 

more than one location on the genome) were recorded, however only uniquely 

mapped reads were used in the analysis. SAMtools-1.3 was used (Li et al., 2009) to 

convert the output ‘.sam’ files into the compressed ‘.bam’ file type before the Python 

implementation of HT-seq version 0.6.1 (Anders et al., 2015) was finally used in the 

pre-processing step for gene-level expression quantification. The output gene-level 

counts were collated into a single count matrix for data normalisation and analysis 

in the ‘R’ environment. This process is outlined in figure 5.1. From here they were 

annotated accorded to the ‘Single Cell Analysis gates’ they fell into in Figure 5.2. 

These cells equated to pre-DC populations displayed in Figure 5.3 as displayed 

over the ‘early-priming’ model of the haematopoietic lineage tree. 
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5.3.2 Quality Control of Pre-DC Single Cell RNA-Seq Data 

Quality control steps are fundamental to accurate interpretation of single cell RNA-

sequencing experiment data. After the count matrix was produced and incorporated 

into ‘R’, ERCC and mitochondrial genes were marked for later interrogation before 

the ‘SCATER’ package was implemented for initial quality control. Figure 5.4 and 

Figure 5.5 display the cut-off values (displayed as a red line) for total counts and 

total features, respectively. Samples with less than 25,000 total counts (reads) or 

2,000 total features (genes) were considered ‘failed’ and removed from subsequent 

analysis. Such samples were likely damaged, burst during sorting, or did not 

correctly undergo library-prep. In these failed samples, ERCC control spike-in reads 

and mitochondrial genes are usually highly proportionally represented in the total 

counts. None of the samples failed the total counts QC, suggesting good read 

numbers per cell, however 18 of the 92 samples failed the total features QC.    

A non-normally distributed data profile can be observed in Figure 5.4, with cells 

ranging up to 1.4 million total counts. Most samples exhibited between 200,000 and 

800,000 total counts. 

In Figure 5.5, after exclusion of the low feature cells from the dataset, a near 

normally distributed profile remained with most cells expressing between 3,000 and 

5,000 total features. The six samples with the greatest number of features (between 

5,000 and 10,000) were the mini-bulk cell samples. As these contained a pool of 10 

cells, increased feature detection was expected here. 

Percentage of mitochondrial genes detected for each cell sample were displayed in 

Figure 5.6. Mitochondrial gene percentages are frequently used as a quality score 

in single cell analysis. High percentages of mitochondrial genes are usually the 

result of cell degradation. As single cell analysis is a relatively new topic in 

research, no consensus has yet been reached in the single cell community for a 

definitive cut-off value for mitochondrial reads, but recent papers confirm that lower 

percentages of mitochondrial reads are an indication of greater quality (Bacher and 

Kendziorski, 2016; Ilicic et al., 2016). Commonly, cut-offs are placed between 10% 

and 25% depending on the experiment and focus. For this analysis, <15% was 

used as a cut-off resulting in the exclusion of two cells, one of which was undefined 

at the flow cytometry level, and the other of which was labeled as a CD5- 

‘Trilineage’ cell by flow gating.  
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Figure 5.7 displays the ERCC spike-in read percentages for each cell. In similarity 

to mitochondrial read percentages, high ERCC percentage reads indicate the cell 

was damaged, degraded or underwent incomplete library prep. For this analysis, a 

25% cut-off was used to filter the data, resulting in 15 of the 92 cells failing this QC 

step. 

The final quality control results are displayed in table 5.1 as a summary of cell 

(5.1a) and gene (5.1b) filters. In summary, 21 cells were removed by the quality 

control filters for high mitochondrial gene or ERCC control reads, less than 2,000 

mapped features or less than 25,000 total reads. The gene-level filters reduced the 

dataset from 60,675 possible features to 22,951 features with at least one count. 

This was further refined to remove any genes that were expressed in less than two 

cells, reducing the gene list to 14,412 genes. 

 

5.3.3 QC Visualisation and Pre-Normalised Data Variance 

Before determining the extent of normalisation, data quality and sample variance 

were visualised. Figure 5.8 highlights the correlation between the percentage of 

feature controls and the total number of features. Good quality cells are expected to 

have high total features and low percentage of feature controls. As indicated, the 

unknown/unclassified samples displayed in pink exhibited the worst correlation, with 

high feature controls and low total features; these were thus excluded from the 

normalisation and expression analysis stages. Conversely, the mature/mini-bulk 

samples displayed above 4,000 total features and less than 20% feature controls. 

The samples passing QC were those with the least correlation between feature 

controls and total features. 
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By displaying the top 50 most expressed features in the dataset, the main 

contributors to sample variance can be uncovered. Narrow distribution of the 50 top 

expressed genes, is suggestive of good transcriptome coverage. If the top 50 

features accounted for most of the total counts and included many ERCC or 

mitochondrial genes, the experiment may have failed. Figure 5.9 displays the top 50 

most expressed genes in the dataset, accounting for 27.6% of all counts; of these 

six appeared to be ERCC controls. This result suggests that future experiments 

would benefit from greater dilution of the ERCC spike-ins so they do not occupy as 

much sequencing real-estate. interestingly,  the ERCC controls in the top 50 genes 

were highly variable between cells. This may have been an artifact from failed cells 

(where control reads are a typically high percentage of total counts) but may have 

indicated variance within the ERCC control counts. For this reason, ‘RUVseq’ 

normalisation was implemented based on ERCC counts to normalize the data in 

section 5.3.3. 

Figure 5.10 and Figure 5.11 exemplify typical single-cell experiment features, 

principally, grouping of cells by total features. These figures highlight the need for 

content normalisation in these datasets. Figure 5.10 was produced as a ‘first-

glance’ at the expression variability by cell type. Principal Component 1 accounted 

for 31% of the variance and appeared to correlate very strongly with the total 

number of features in the cells. The unknown samples in pink all expressed less 

than 2,000 total features and appeared as a tight cluster on the positive region of 

Component 1. The main bulk of pre-DC cells clustered loosely around the zero-

point of Component 2 and spread along Component 1. Principal Component 2 

accounted for 7% of the variance and clearly separated the mini-bulk samples from 

the pre-DC population, most strongly defining the CD34+ sample, along with the 

mature BTLA+ and BTLA- cDC2s and mature cDC1. Log2 transformation of the 

data in Figure 5.11 provided greater separation of the cells, but still indicated total 

features were a major source of pre-normalised variance. This was further 

displayed by t-SNE in Figure 5.12. Evidently, without proper normalisation the data 

would not be interpretable. The defining feature of the pre-normalised dataset was 

the number of total features, rather than biological variance. 
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The final QC-step in the single cell pipeline incorporated the ‘plotQC’ function of 

‘SCATER’ and displayed in Figure 5.13. The relative impact on explained variance 

in the dataset was revealed with a linear regression model plotted against each 

variable. Variables with a greater shift and higher density exhibit the greatest 

variance. Flow gating cell type designations are a major source of sample variance 

in this diagram, due in part to the difference in expression profile of the mature mini-

bulk samples and the undefined low expressing ‘QC failure’ samples. ERCC contols 

(displayed in green) exhibited higher variance than total counts (in red) and thus 

‘RUVg’ normalisation was implemented from the ‘RUVseq’ package to adjust for 

ERCC variance. 

 

5.3.4 Normalisation and Variance Reduction 

Normalisation of the data was performed in two stages. Initially, normalisation for 

library size was performed by converting the data into ‘counts per million’ using the 

‘SCATER’ package. This adjusts the data to account for the differing reads detected 

in each cell. Without this normalisation, cells with higher features would likely also 

have the highest expression counts for many genes. ‘RUVg’ was used to further 

normalise the data by removing variation attributable to differences in the ERCC-

control counts (Risso et al., 2014) using a factor-analysis based method developed 

on the ERCC controls and subsequently applied to each cell sample. Figure 5.14 

highlights the correlation between PCA and total features, particularly for the mini-

bulk samples and poor quality cells. With the principal components principally 

separating by feature counts, downstream analysis of the dataset would have been 

convoluted. After normalisation and conversion to counts per millions, variance 

attributable to ERCC spike-ins were modestly reduced as shown in Figure 5.15. 

Cell type annotations remained highly associated with variance suggesting cell type 

differential expression may have been detectable. 
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5.3.5 Global Expression Patterns of pre-DCs 

Initial expression analysis of the normalised data required the use of principal 

component analysis and t-SNE techniques. The analysis depicted in figure 5.16, 

while not producing strong clusters due to the similarity of the cells analysed (all 

pre-DCs were taken from a single pre=DC sort gate) exhibits some detectable 

groupings. Both BTLA+ (red) and BTLA- (light green) mature cDC2 samples were 

grouped closely along the -10 region of PC1, with the majority of the pre-cDC2-like 

pre-DCs (brown) in the same region. Early pre-cDC2 cells (green) were also 

located along the lower region of the pre-cDC2 cells suggesting some correlation 

and progression from early-pre-cDC2, to pre-cDC2 to mature cDC2 cells.  

Equally, the mature pDC sample (light purple) was located in the negative region of 

PC2 with the CD5- pre-pDC cells (in orange) again, suggesting some 

developmental relationship between these cell types. 

Further visualisation using t-SNE in Figure 5.17 showed both BTLA+ (red) and 

BTLA- (light green) mature cDC2 cells were located in the same region of t-SNE 

space, surrounded by the majority of the pre-cDC2 cells (brown) and interspersed 

with early pre-cDC2 cells (green). A small cluster of cells in the positive region of 

tSNE1 and tSNE2 was formed around the CD34+ sample (pink) composed of pre-

cDC2 and early-pre-cDC2 cells along with CD123med CD11c- and CD123med 

CD5 low cells, which may be the most immature of the pre-DC subsets. 

The lower portion of the t-SNE diagram contained CD5- pre-pDCs and the pDC 

mini-bulk sample suggesting some degree of pDC-like features in a subset of pre-

DCs. 
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5.3.6 Differential Expression Testing and Clustering 

‘M3Drop’ was used for initial differential expression testing but proved unsuccessful 

due to the similarity of the pre-DC cells (Figure 5.18). This ‘R’ package was 

designed to overcome the issue of dropouts in single cell data with the assumption 

that the majority of dropouts occurred as a result of failure of reverse transcription.  

Traditional differential expression packages used in bulk-RNAseq deal poorly with 

high-zero data. M3Drop’s Michaelis-Menton-based modeling was designed to 

overcome this by modeling the pattern of dropouts in single cell sequencing. This 

dataset was composed of very similar, non-mature cells and had many dropouts 

and relatively low coverage, resulting in no genes being identified by M3Drop as 

highly variable. This was to be expected, as the isolated pre-DC cells were from the 

same FACS gate and expected to differ by only a small number of genes. To 

determine if these pre-DCs were skewed towards a particular mature-cell 

phenotype and de-convolute the dataset, the mature cell signature designed in 

Chapter 3 was applied across the 14,412 expressed features to produce a 647 

DC/Monocyte gene sub-dataset. 

 SC3 (single cell consensus clustering) method was used to cluster the pre-DC and 

mini-bulk mature cells into 7 mini-clusters of similar expression shown in Figure 

5.19. Most of the resulting clusters contained pre-cDC2 and early pre-cDC2-like 

cells, but a few clusters contained primarily other cell types. The most mature-like 

pre-cDC2s were found in cluster 1 with the mature cDC2 samples. Cluster 6 

contained the CD34+ mini-bulk sample along with the majority of the CD123med 

cells. Cluster 5 contained the mature pDC mini-bulk sample and the majority of the 

pre-pDC samples, suggesting a pDC-like cluster was present In the pre-DC 

population. The remaining clusters 2-4 and cluster 7 were composed of pre-cDC2 

and early pre-cDC2 cells along with naïve tri-lineage cells, suggestive of varying 

degrees of pre-cDC maturity across these clusters, some of which were more 

cDC2-like, such as cluster 2 and 3 and other more mixed clusters. 
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5.3.7 Comparison of Pre-DCs and Mature Cell Marker Expression 

Further to the SC3 clustering using the mature cell markers defined in Chapter 3, 

boxplots were drawn to investigate expression differences for each cell type 

signature for all of the pre-DC cells. The number of genes expressed across each 

of the mature DC signatures were displayed in figures 5.20 – 5.22. In each case, a 

cell had to have at least 5 reads in each marker gene to be classed as a ‘positive’ 

marker. 

Figure 5.20 displayed the expression of cDC1 signature genes across the pre-DC 

single cell dataset. Overall, no pre-DC subset was enriched for these mature cDC1 

genes. The CD123medium cells (which were most enriched for cDC1 potential in 

culture) did not show enrichment of typical cDC1 markers, although the low range 

of markers was higher in the CD123medium population than any of the other pre-

DC populations.  

Figure 5.21 displays the enrichment for the cDC2 signature genes amongst the 

pre=DC subsets. Here, pre-cDC2 and early pre-cDC2 subsets expressed the most 

mature cDC2 signature genes, with median expression in the pre-cDC2 population 

at 46 and the early pre-cDC2 population at 44, with a number of high-expressing 

‘outliers’ that were likely more mature pre-cDC2 cells. The CD123med cells 

expressed the lowest median number of cDC2 marker genes, followed by the pre-

pDC subpopulation. 

Figure 5.22 shows a strong positive pDC signature amongst the pre-pDC sub-

population with 90 positive marker genes expressed. This was markedly higher 

than the medium expression of the other sub-populations for pDC signature genes. 

The pre-cDC2, early pre-cDC2 and tri-lineage cells, which were high expressers of 

cDC2 signature genes, expressed the fewest pDC signature genes, suggesting an 

inherent bias of these subsets towards maturation into cDC2-like cells, while the 

pre-pDC sub-population appeared to indicate a pDC developmental bias. 
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Although they are enriched for cDC1 potential in culture and the highest expressors 

of transcription factors known to be critical for cDC1 development in mouse, the 

CD123med, CD11c- cells did not express a mature cDC1-like signature at the 

single cell level. A subset of pre-DCs identified by Villani et al via single cell 

RNAseq identified a CD100hi, CD34med cell type that appeared to share similar 

expression patterns to the CD123med subpopulation (Villani et al., 2017). Of the 11 

features identified as signature genes for the Villani subset, nine were expressed in 

the pre-DC dataset generated for this thesis and applied across the pre-DC 

subsets, displaying enrichment in the CD123med cells in Figure 5.23 with a median 

of 5.4 genes per cell compared to the median of 2 genes per cell in the other cell 

sub-populations.  

 

5.3.8 In-vitro Development Assay for pre-DC Populations 

To further support the discovery of ‘primed’ cells in the pre-DC gate, cells sorted 

according to the same cytometry gates were cultured on OP9 feeder cells with 

SCF, FLT3 and GM-CSF as described in section 5.2.7 by Dr Urszula Cytlak-

Chaudhuri. After 14 days in culture, cell output was analysed by flow cytometry, 

with the lineage-, HLA-DR+ cells assigned to mature monocyte and DC 

populations. The proportion of mature monocyte and DC populations generated 

from pre-DC populations are displayed in Figure 5.24 and overlaid onto the early-

priming model of haematopoiesis as pie-charts in Figure 5.25. 

CD34+ progenitor cell culture resulted in a mixed population of cDCs, pDCs and 

monocyte cells, as would be expected from an early progenitor cell type. 

Tri-lineage cells developed into an equal distribution of CD14+1c+ cells, cDC2 cells 

and pDCs, suggestive of a heterogeneous population of mixed-lineage cells in this 

gate.  

The pDC population produced a majority of pDC cells after 14 days with 70% of the 

culture output falling into the pDC gate. Minor populations of CD1c+ cDC2 and 

CD14+1c+ cells were also present, although no CD14+1c- monocytes or CD141+ 

cDC1 cells were produced.  
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Early pre-cDC2 (collected from bone marrow) culture output was over 80% CD1c+ 

DCs, with a minor (2-3%) population of pDC and CD141+ DC cells, while peripheral 

blood pre-cDC2 cell output was a mix of cDC2 and CD14+CD1c+ cell types with a 

median output at 20% of each. Again, no monocytes were found.  

The in-vitro production of cDC2 cells in tri-lineage, early pre-cDC2 and pre-cDC2 

populations was reflected in the mixed cell clusters of SC3, which may have 

represented earlier, lowly primed pre-cDC2 cells. 

CD123med culture output demonstrated that these cells were CD141+ cDC1 

primed, with a median of 40% of the culture output from CD123med cells falling into 

the cDC1 gate. 
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5.4 DISCUSSION 

Single cell analysis of dendritic cell populations has already uncovered greater 

heterogeneity than observed under bulk-RNA sequencing and flow cytometry alone 

(Villani et al., 2017).  Single cell resolution of the whole transcriptome has allowed 

researchers to investigate new populations and sub-populations of immune cells 

with enough capacity and coverage to subsequently identify protein markers unique 

to those subsets, which can in turn be used to isolate, propagate and functionally 

analyse potentially novel immune cell types. Care must be taken to integrate 

populations identified through transcriptomics with those identified through previous 

phenotypic and functional analysis in order to validate any conclusions drawn. 

By taking cells from a single pre-DC sort gate and sequencing their transcriptome, 

true heterogeneity within the gate could be assessed, which after quality control, 

normalisation and expression analysis, indicated sub-populations within the pre-DC 

sort gate had gene expression profiles skewed towards specific mature cell types 

including cDCs and pDCs. This skewing was confirmed during culture output 

analysis of the same pre-DC populations highlighting the heterogeneity of pre-DCs 

and committed nature of pre-DC sub-populations. 

This single-cell approach to pre-DC transcriptomics was useful in demonstrating 

that lineage-specific enrichment in pre-DC subsets identified through in-vitro culture 

analysis were also identifiable at the transcriptomic level in individual cells. 

Furthermore, this methodology identified heterogeneity within the ‘trilineage gate’ 

that would not have been identifiable through bulk RNA-sequencing analysis of this 

gate. By scRNAseq, the ‘trilineage gate’ may represent a phenotypic artifact as 

lineage bias was identified by transcriptomics within individual cells. 
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5.4.1 Pre-Processing and Quality Control in Single-Cell RNA Sequencing is 
Dependent on the Research Question 

In contrast to bulk RNA-Sequencing, ‘gold standard’ pre-processing and quality 

control pipelines have not yet been established within the single cell research 

community, due to it being a novel technique with a diverse range of applications. 

For this experiment, the Smart-Seq2 protocol was chosen for the initial sample 

processing as it provided high sensitivity and has recently been shown to result in 

detection of twice as many genes as the Drop-Seq method after controlling for cell 

number and sequencing depth (Ziegenhain et al., 2017). The Smart-Seq2 plate-

based method was the most suited to the experimental question as the cells of 

interest could be isolated based on their cell surface markers and indexed so that 

paired information from FACS and single cell sequencing could be investigated in 

unison. 

Initial QC of the cDNA reads included a read trimming step to ensure only high-

quality reads were included in the mapping stage. A quality score of Q10 was 

selected as the cut off for the FASTQ files, which equates to an error probability of 

0.1. This was combined with a minimum read length filter of 60 base-pairs. Over-

trimming and inclusion of short read-length sequences has been shown to 

dramatically alter the RNA-Seq expression estimates, particularly in genes with a 

high GC content or low exon number (Williams et al., 2016). Read quality 

decreases towards the 3’ end of a read and are more frequently trimmed, however 

smaller reads map to more regions of the genome, thus modest trimming at Q10 

combined with a minimum length filter provided the optimum compromise between 

quality and read length (Conesa et al., 2016). 

The STAR alignment tool was selected for alignment due to its performance speed 

when mapping to annotated genomes (Dobin et al., 2013). As discovery of novel 

transcripts and intron mapping were outside of the scope of this research, multi-

mapped and short-sequence reads were not retained for the feature counting step 

performed using HTSeq (Anders et al., 2015). The main aim of the chapter, Pre-DC 

cell type identification, was reliant upon accurate gene-level annotation and so the 

most recent release of the human genome assembly available at the time of writing 

was used as the reference. 
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5.4.2 Normalisation of the Single-Cell Data Revealed Cellular Diversity Within 
the Pre-DC Gate 

High levels of both technical and biological noise are inherent to single cell RNA-

Sequencing. Combined with a reduced number of expressed features per sample 

compared to bulk sequencing, distinguishing technical noise from biological 

observations is challenging (Ramsköld et al., 2012).  

The earliest stages of QC were designed to remove noise in the form of poor quality 

cells. Without removing these cells, clustering and visualisations of the data were 

overwhelmed by the number of features detected, rather than any biological gene-

level differences. By removing these cells from further analysis biological 

information may be lost as some specialised cell types may have an overall low 

expression of genes, more frequently however, low expression is attributed to 

technical errors in sample preparation and sequencing. As the unfiltered data were 

observed to cluster based on total features, obscuring potential biological 

differences, removal of these cells was necessary. 

Normalisation of data is another fundamental process in RNA-Seq analysis, but is 

often overlooked. With single-cell sequencing projects increasing in complexity, 

robust normalisation methods must account for many sources of variation that can 

otherwise impact read counts. The normalisation process itself has been shown to 

have a significant impact on the calling of differentially expressed genes (Bullard et 

al., 2010). With this in mind, RUV normalisation was selected as the most 

appropriate form of normalisation for this experiment, designed for single cell and 

bulk RNA-Seq analysis and tested against qRT-PCR, producing the closest 

correlation compared to other common normalisation methods including upper-

quartile normalisation in two different external datasets (Risso et al., 2014). 

The high variability within the ERCC spike-in controls and percentage of ERCC 

reads per cell was also noticed in other datasets by Risso et al. RUVg normalisation 

to reduce the ERCC variance, combined with log transformation of the data 

revealed the biological traits of each cell, and although the clustering was subtle 

across PCA and t-SNE space, in part due to the similarity of all cells within the pre-

DC gate, some cell-type associations could be discerned according to the single 

cell flow gates downstream of the pre-DC gate.  
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5.4.3 Global Expression in Pre-DCs is Largely Conserved, But Deeper 
Analysis Suggests Early Skewing of Expression Patterns Towards Distinct 
Mature Dendritic Cell Populations  

The combination of single cell RNA-sequencing, FACS and cell culture provided 

evidence of early priming of pre-DCs towards major pDC and cDC cell subsets from 

within the HLA-DR+, Lineage- (CD3, CD19, CD20, CD56), CD14-, CD123+, 

CD303/CD304 variable gate. 

The analyses of the normalised pre-DC data were not overshadowed by the effect 

of differing ‘total features’ as the non-normalised dataset was. Initial visualisation of 

the normalised Pre-DC gate single cell data revealed subtle population 

heterogeneity, despite low overall variance within the samples. This low variance is 

common in single-cell experiments due to the high number of features, typically in 

the range of 10,000-20,000 genes, combined with a high degree of dropouts (zero-

values) in each cell producing a consistent majority background signal and small 

number of variable genes. The same observation was noted upon analysis by 

M3Drop, the Michaelis-Menten-based single-cell feature selection module. No 

features were observed to have high variance after FDR adjustment by this method, 

although SC3 consensus clustering, utilizing variable PCA loadings and k-means 

clustering was able to group the cells into populations skewed towards cDC and 

pDC expression patterns. The mapping of cells by PCA and t-SNE methods 

highlighted that the majority of the pre-DC cells were pre-cDC2 and early pre-cDC2 

cells signifying that most of the pre-DC samples were cDC2-like with cDC2 priming. 

In support of this, the pre-cDC2s and early pre-cDC2s clustered around the mature 

cDC2 mini-bulk populations. 

By SC3 analysis, the distinction of pre-pDCs from cDC2s was made apparent. The 

majority of the pre-pDC cells clustered with the mature pDC bulk sample, 

suggesting a high degree of correlation between these cells. The genes defining 

this pDC-like cluster included SCAMP5, TMP2 and MZB1 all of which were 

assigned as pDC markers from the Illumina expression analysis in chapter 3.  

NCF2, SLC2A3 and CASP4 were identified amongst gene markers of cluster 1, 

which were noted as cDC2 markers in chapter 3, implying pre-DC priming towards 

individual cDC and pDC populations. 
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The lack of pre-cDC1 like cells with mature cDC1 marker expression may be 

attributable to their scarcity in peripheral blood populations as only 96 cells were 

sorted in total. It is possible that no late stage pre-cDC1 cells were collected 

because of this low cell number, alternatively the cell markers may not have been 

extensive enough to allow for the detection of low cDC1 signature expressing cells. 

Another possibility is that the pre-cDC1 populations do not fall into the pre-DC gate 

defined by the FACS gating strategy employed, although later analysis of in-vitro 

development suggests that pre-cDC1s were collected in the form of the immature 

(CD34med) CD123med, CD5- cells.  

The mixed cell clusters defined by SC3 represented cells of various stages of 

development, mostly pre-cDC2 and early pre-cDC2 cells with greater or lesser 

expression of mature cDC2 signatures. 

SC3 clustering of cells and individual analysis of the cluster markers provided 

evidence of pre-DC priming. This was further supported upon comparison of the 

pre-DC single cells to the full mature DC signatures generated in chapter 3. The 

observation of no cDC1-like cells by SC3 was recapitulated in the signature 

boxplots as each pre-DC subset expressed a largely similar number of mature 

cDC1 genes. This analysis provided a deeper interrogation of the gene expression 

of pre-DC populations as it avoided the possibility of heterogeneous cells captured 

in some of the SC3 clusters that would otherwise obscure marker gene selection in 

the mixed cell clusters. 
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cDC1 marker gene expression analysis did not indicate a particular pre-DC subset 

was enriched for the mature cDC1 signature as noted by the lack of cDC1 markers 

found by SC3 clustering. The inclusion of CD100+,CD34med signatures revealed 

the potential of CD123med cells to be early pre-cDC1s as defined by Villani et al 

(Villani et al., 2017). The Villani CD100hi population was shown to produce some 

CD1c+ cDCs along with CLEC9A+ cDCs through in-vitro differentiation assays and 

thus, both CD100hi, CD34med cells and the CD123med, CD11c- cells could have 

potential as very early pre-cDC1 precursors. Genes for this signature included ID2 

and KIT, which are known to drive cDC1 development and maturation as displayed 

in figure 1.9, as well as CCR7, a migration signal found to be expressed highly on 

mature cDC1. The cDC2 signature was enriched for in the cDC2 and pre-cDC2 

subsets as well as in the tri-lineage populations, suggesting cDC2 priming of cells 

may occur in all of these populations. This was also noted in SC3 analysis in the 

mixed cell clusters, which were composed mostly of these cell subsets. As in 

previous analyses in this thesis, the pDC signature appeared to be extremely strong 

in pre-pDC cells. By SC3, the pDC and pre-pDC cluster had a high stability index 

and expressed pDC genes that were not expressed in any of the other clusters. 

This strong bias may be explained by the exclusive interactions of transcription 

factors during lineage priming, driving cells towards a pDC or cDC cell type. IRF8 

and E2.2 act to enforce and reinforce pDC lineage bias.  

With the inclusion of in-vitro development data supplied by Dr Urszula Cytlak-

Chaudhuri, conclusions drawn from the single cell analysis were supported with 

further substantial evidence. The data suggests that pre-DCs are a heterogeneous 

mix of committed progenitor cells, distinct from CD34+ progenitors and potentially, 

missing monocyte potential, although culture conditions were designed to 

discourage monocyte differentiation, and thus true monocyte potential could not be 

tested in this model. The pre-DC populations exhibited a varied capacity to produce 

DCs and were enriched towards one or more mature cell types. While pDC and 

cDC2 cells can be collected simply from peripheral blood in sufficient numbers to be 

used in subsequent research or potential clinical therapeutics, cDC1 cells are 

frequently noted to be too difficult to obtain in numbers conducive to research. 
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A median of 40% of the culture output from CD123med cells were cDC1s providing 

a possible basis for the generation of great numbers of cDC1s for research or cell 

therapy. This work has produced viable evidence for a source of in-vitro generated, 

bona-fide cDC1s from CD5-, CD123medium pre-DC cells, and shown that the DC 

lineage at the pre-DC stage is exclusive from monocyte development. In turn, work 

supports the production of steady-state DCs from sources other than monocytes as 

monocyte-derived DCs exhibit an expression pattern closer to inflammatory DCs 

rather than steady-state DCs and such moDCs may not be functionally and 

developmentally comparable. Despite low cell numbers and the inherent difficulty in 

analyzing such large-scale datasets, this single cell analysis has revealed the 

heterogeneity within the pre-DC sort gate that would not have been possible 

through bulk transcriptomics or narrower-scope analysis techniques. The 

combination of novel single-cell analysis, backed by traditional techniques in cell 

culture and flow cytometry produce a solid research pipeline that has become a 

common feature in the field of single-cell immunology and provided new insights in 

haematopoiesis, DC development and lineage commitment, as well as supporting 

the ‘early-priming’ model of haematopoiesis.  
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5.5 RESEARCH SUMMARY AND KEY POINTS FOR PROJECT PROGRESSION 

Chapter 5 combined single-cell transcriptomics with knowledge gained from the 

previous two chapters to investigate the development and priming of early DC 

precursors. ‘Early priming’ models of haematopoiesis, infer that most early 

progenitor populations, including the granulocyte macrophage dendritic cell 

precursor (GMDP), macrophage DC progenitor (MDP), and common DC progenitor 

(CDP) populations are composed of heterogeneous, uni-primed, phenotypically 

similar cells with restricted mature cell potential. Determining if these progenitor 

cells were early primed or multi-potent was a critical aspect of the chapter and 

haematopoietic development research as a whole. 

Utilizing plate-based single-cell sequencing revealed the diversity and 

heterogeneity within populations of precursor cells that would have been otherwise 

obscured using bulk population techniques such as qPCR, NanoString Technology, 

microarray analysis or conventional bulk-RNA sequencing, where ‘average’ 

expression of the population is observed, whether or not this average expression 

pattern is a true reflection of the population, or merely a chimeric expression pattern 

formed by the averaging of multiple, distinct cell types.  

Initially, a FACS and SmartSeq2 based pipeline was developed to address whether 

adequate, good quality, viable cells could be captured by FACS and processed 

through a SmartSeq2 plate-based single cell pipeline to provide enough quality data 

for analysis. 71 samples passed initial analysis QC in total from the 96 cells sorted 

from the pre-DC FACS gate, expressing between 2,000 and 10,000 genes per cell.  

By investigating the cell populations found within conventional progenitor cell FACS 

gates, their heterogeneity was revealed and expression was compared to mature 

cell populations to determine if there was any intra-population variance suggestive 

of early cell priming. Interestingly, some cells did express strong mature signatures 

based on the gene signature produced and refined in chapter 3, suggestive of early 

priming of precursor cells. This was an important initial step in uncovering the 

nature of early immunopoiesis and aligns well with the current priming model of 

haematopoiesis.  
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To confirm the initial findings, an in-vitro development assay was incorporated to 

isolate and grow transcriptionally primed progenitors to determine if their culture 

output recapitulated the transcriptional priming upon development and maturation. If 

primed progenitors could be isolated and grown in culture, they could be used to 

generate bona-fide DCs for research and medical applications in the future. This 

experiment provided supporting evidence for the early priming model, with pre-pDC 

populations forming pDCs, pre-cDC2 and early pre-cDC2 forming a majority 

population of cDC2s and the suspected pre-cDC1, CD123medium population 

producing cDC1s.  

The ability to collect pre-DC populations and culture them into mature bona-fide 

DCs has great implications in research. Increasing the number of cells that can be 

collected and produced from blood is an important consideration. Scarcity of DCs in 

peripheral blood can make their study arduous, however from the comparison of 

blood and cultured cells in chapter 4, and the development of DCs from pre-DCs in 

chapter 5, the capacity for cDC collection and culture has been revealed for this 

culture model. Further impacts on the wider research community may be gleamed 

from the possibility that primed progenitors of various DC subsets could be isolated 

and grown in culture and used to generate bona-fide DCs for research and medical 

applications in the future. 
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Chapter 5 Figures & Tables 

 

 

Figure 5.1: Outline for pre-DC single-cell RNA-sequencing and pre-
processing 

Peripheral blood mononuclear cells were sorted into 96-well plates. Cells were 

isolated from a Lineage-DR+ gate, predicted to cover the Common Dendritic 

Cell Progenitor (CDP) and pre-DC populations displayed in the figure. The 

cells were negative for conventional mature myeloid DC markers, CD1C and 

CD141, but expressed CD123 and CD2 by FACS. The full gating strategy for 

these cells is displayed in figure 5.2. After collection, reverse-transcription was 

performed according to a modified SMARTseq2 protocol and library prep was 

performed with Nextera XT DNA library prep kit. Sequencing was performed at 

Oxford Genomics on an Illumina HiSeq4000.  

Trimmomatic-0.33 was used to trim poor-quality bases from reads before the 

reads were mapped to GRCh38.v25 genome construct with External RNA 

Control Consortium (ERCC) reads spiked-in. Pre-processing was finalised via 

gene-level quantification using HT-seq v.0.6.1. 
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Figure 5.2: Sorting strategy for pre-DC single-cell RNA-sequencing 

Single cells were collected by FACS for plate-based single-cell RNA-

sequencing according to this strategy. Additionally, 6 mini-bulk (10 cells) 

samples were collected according to the gating strategy in Figure 2.1 for 

CD14+ monocytes, pDCs, cDC1, BTLA split cDC2 cells and CD34+ 

progenitors. For the pre-DC cells, DAPI staining was used to screen out dead 

or damaged cells before HLA-DR+, Lineage- (CD3, CD19, CD20 and CD56), 

CD14-, CD123+, CD303/304 variable cells were isolated for analysis by 

single-cell RNA-sequencing. 

From the sort gate (indicated in red), further gates were defined as follows: 

Pre-cDC2 (CD11c+), 

CD123med (CD123 med), 

Early pre-cDC2 (CD123+, CD5+), 

Pre-pDC (CD123+, CD2+, CD5-, CD303/4+), 

Trilineage (CD123+, CD2+, CD5-, CD303/4-) 
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Figure 5.3: The single cell sorting gates equate to expected pre-DC 
populations 

Pre-DC populations isolated by FACS were predicted to equate to populations 

falling into the highlighted regions of the haematopoietic lineage tree. The 

‘Trilineage’ gate (green) overlaps closely with the conventional Common 

Dendritic Cell Progenitor (CDP) population, with the other sort gates 

containing suspected ‘primed’ pre-DC populations.  

The pre-cDC2 population (grey-blue) was CD11c+, early pre-cDC2 (light-blue) 

was CD5+, CD2+, CD123med (predicted to be pre-cDC1) (dark-blue) was 

CD11c-, CD123med and the pre-pDC population was CD303/304+, CD123+, 

CD5low. 
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Figure 5.4: Histogram of total counts for pre-DC single cell analysis  

As part of the single-cell quality control steps, any samples with less than 

25,000 total reads were considered ‘failed’ and would be removed from further 

analysis. These cells were likely damaged, burst or did not undergo full library-

prep during sample preparation. None of the samples failed this QC step. 

Those samples with the highest total counts were the six mature mini-bulk 

samples, which contained 10 cells in each well. Most of the single cells had 

between 200,000 and 800,000 total reads. 
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Figure 5.5: Histogram of total features (genes) for pre-DC single cell 
analysis  

As part of the single-cell quality control steps, any cells expressing less than 

2,000 total features were considered ‘failed’ and were removed from further 

analysis. These cells were likely damaged, burst or did not undergo full library-

prep during sample preparation. Typically most of the samples with very few 

total features are composed mostly of mitochondrial or ERCC spike-in reads. 

18 of the 92 samples failed this QC step. The samples with the greatest 

number of features were the mature mini-bulk cell samples, ranging from 

4,000-10,000 unique genes expressed. For the single cells, approximately 

4,000 was the average number of expressed features per cell. 
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Figure 5.6: Mitochondrial gene percentage quality control analysis 

Percentage of mitochondrial gene reads are used as a quality score in single 

cell analysis. High percentages of mitochondrial genes in the data is usually 

the result of cell degradation. No consensus has been reached in the single 

cell community with regards to a definitive cut-off value for mitochondrial 

reads, but lower percentages of mitochondrial reads are an indication of better 

data quality. For this analysis, a percentage of mitochondrial genes above 

15% was used as a cell quality filter. 2 of the 92 cells failed this QC and were 

removed from analysis. 
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Figure 5.7: ERCC spike-in read percentage - quality control analysis 

Percentage of ERCC reads are used as a quality score in single cell analysis. 

ERCC reads are spiked-in non-genomic targets that act as technical 

normalisation reads. High percentages of ERCC reads in the data is usually the 

result of cell degradation, missing cells or incomplete library prep. Lower 

percentages of ERCC reads are an indication of better data quality. For this 

analysis, a percentage of ERCC reads above 25% was used as a cell quality 

filter. 15 of the 92 cells failed this QC and were removed from analysis.  

 



	 217	

 

 

 

 

 

 

 

Table 5.1: Quality control filters for pre-DC single cell analysis  

Quality control filters for this study involved sample filters and gene filters. 

Sample filters, summarised in Table 5.1a involved removing any cells with less 

than 25,000 total reads, less than 2,000 total mapped gene feature, more than 

25% ERCC reads and greater than 15% mitochondrial gene reads. In total, 21 

samples failed to pass this quality control, leaving 71 samples for analysis. 

Feature filters were performed in two stages. Initially, all features with no counts 

in any cells were removed. This reduced the dataset from 60,675 features to 

22,951. After normalisation, features were filtered again to remove any genes 

that were expressed in less than two cells, reducing 22,951 genes to 14,412 

genes. 
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Figure 5.8: Correlation feature control plot for pre-DC dataset  

For good quality cells relatively high total features are expected along with a 

low percentage of feature controls. In this dataset, many of the mini-bulk 

mature subsets have above 4,000 total features and less than 20% feature 

controls. Relatively horizontal lines indicate subsets with a low expression of 

feature controls independent of total features. The unknown/unclassified 

samples in this dataset have a very high expression of feature controls and 

relatively low expression of total features, which is the reason for their removal 

during QC. High percentage expression from feature controls and low total 

features is an indication that the sample was blank or failed during pre-

processing. 
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Figure 5.9: Top 50 most expressed features from pre-DC dataset reveals 
high expression of some feature controls 

Distribution of the top 50 most expressed features is relatively narrow, indicating 

good coverage of the full transcriptome, however a number of ERCC controls 

appeared in the top 50 expressed features suggesting that future experiments 

may benefit from a greater dilution of the ERCC spike-ins. The ERCC features 

on this figure also display wider variation between samples than many 

endogenous genes, thus ‘ RUVseq’ normalisation based on ERCCs was used to 

normalise counts based on ERCC controls. 
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Figure 5.10: PCA of pre-log transformed single cell pre-DC data 

This principal component plot was produced as a first-line look at the single cell 

expression data. Pre-normalisation and based on raw counts, this plot indicates 

total features as a major source of variance within the dataset. This is a 

common feature of single cell expression data. 
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Figure 5.11: PCA of log2 transformed single cell pre-DC data 

Log transformation of the single cell expression data indicated total features 

were a major source of pre-normalised variation. Those samples that were 

later removed from the analysis at the end of the QC stages (seen here in pink 

as the ‘unknown’ group) all share the same region of PCA space and a small 

number of total features. 

The mature/mini-bulk subsets appear on the opposite side of the plot by PC1 

from the QC failure samples. These cells had the greatest number of total 

features and from figure 5.6, the lowest percent of ERCC controls. 
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Figure 5.12: t-SNE analysis of pre-normalised pre-DC single cell data 

Pre-normalised t-SNE produces two clear clusters. The main division between 

these clusters is the number of total features. Many of the cells that failed QC 

were located in the negative region of t-SNE space. From this plot, it is evident 

that without suitable normalisation the data would not be interpretable. The main 

defining feature of the dataset is the number of total features rather than 

biological variance. 
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Figure 5.13: SCATER package variance plot for identification of sources 
of data variance 

For quality scoring the experimental and technical variables in the dataset, 

‘SCATER’ function ‘plotQC()’ was used. The relative importance to sample 

variance was plotted with a linear regression model plotted against each 

variable. Total features and total counts are known to cause issues with single 

cell data analysis. This was mitigated to some extent by converting the count 

data to counts per million. The SCATER package variance plot is read as 

higher peaks shifted to the right of the plot are variables that explain more of 

the data variance. The cell type designation from the flow sorting data clearly 

defines the most sample variance; due in part to the high expressed and 

feature counts of the mature mini-bulk samples. Even without these, the 

sample labels from the sort data that did not pass QC were left as 

‘unassigned’, thereby grouping poor quality samples together. Of note, the 

percentage of ERCC controls (green line) accounts for the third greatest 

variance. As ERCC controls should be a control measure, ‘RUVseq’ function 

‘RUVg’ was implemented to reduce ERCC variance and normalise the data to 

ERCC controls.  
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Figure 5.14: PCA breakdown analysis correlates PC1 with total features 

Principal component 1 exhibits correlation with total features in each cell. This is 

partially due to the inclusion of the mini-bulk mature subsets containing 1,000 to 

6,000 more features than the pre-DC cells. These samples are on the positive 

scale of PC1. Equally, cells with relatively low feature counts are located on the 

far negative scale by PC1. The majority of samples with approximately 4,000 

features are found at the zero-point of PC1. Variance attributed to feature 

counts is a known artifact of single cell RNA sequencing. 
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Figure 5.15: SCATER package variance plot for identification of sources 
of data variance after RUV normalisation for control probes 

After RUVq ERCC normalisation and conversion to counts per million, 

variance attributable to ERCC controls has been modestly reduced to a level 

below that of total counts. There is still residual variance associated with both 

mitochondrial gene expression and ERCC spike-in variation after 

normalisation, but this level is acceptable and could not be further adjusted for. 

Cell type remains the major variable accounting for sample variance with total 

features being the next greatest source of variance. 
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Figure 5.16: Principal component analysis of normalised pre-DC single 
cell data 

After normalisation of the data, total features has less of an overarching effect 

on the PCA. While it does not appear to show strong cell type clusters due to 

similarity between all of the cell types analysed and feature counts in the 

region of 4,000 for most cells, some observations can be made. Both BTLA+ 

and BTLA- mature cDC2 cells are grouped together on the far-left of the plot 

with a loose cluster of pre-cDC2 cells in the same quadrant of the PCA. Early 

pre-cDC2 cells are generally located along the edge of the pre-cDC2 cluster. 

The mature pDC cell is located in the negative region of PC2, with many of the 

CD5- pre-pDC cells nearby in the lower third of the plot. Trilineage cells are 

located loosely around the zero-point of PC1 and PC2, tailing towards pre-

pDC cells. In the upper-right quarter of the plot in the positive region of PC1 

and PC2 are the CD123med cells and the CD34+ mini-bulk sample.  

 



	 227	

 

 

 

 

 

Figure 5.17: t-SNE analysis of normalised pre-DC single cell data 

After normalisation of the data, some slight features can be observed in the 

data. As in figure 5.16, both BTLA+ and BTLA- mature cDC2 cells are located 

in the same region of t-SNE space, surrounded by the majority of the pre-

cDC2 cells and interspersed with early pre-cDC2. In the positive region of t-

SNE1 are the majority of pre-pDC cells and the mature mini-bulk pDC sample. 

The CD123-med cells appear to cluster around the CD34+ mini-bulk sample. 

The loose clustering of pre-DCs around the mini-bulk samples suggests a 

degree of similarity between immature pre-DC cells and one or more of the 

mature samples, although variation of individual genes for each pre-DC cell 

type may be high.  
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Figure 5.18: Differential gene expression based M3Drop package 

M3Drop is a method of single cell RNAseq differential expression analysis that 

takes into account the inherent high number of dropouts in single cell 

expression data. Differential expression tools for bulk RNAseq are 

inappropriate in this instance as the zero expression values violate 

assumptions made in bulk RNAseq statistical models such as negative 

binomials. M3Drop is Michaelis-Menten based modeling of dropouts. Most 

dropouts occur as a result of failure to be reverse transcribed. In this figure, 

features shifted to the right of the Michaelis-Menton curve are identified as 

expressed at different levels in a subpopulation of the cells. This model was 

not able to provide any differential expression markers in the dataset, likely 

due to the samples being very similar. 
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Figure 5.19: SC3 clustering of single cell data based on mature subset 
signatures 

[Figure legend displayed on following page] 
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Figure 5.19: SC3 clustering of single cell data based on mature subset 
signatures 

SC3 utilises PCA, dimensionality reduction and k-means clustering to identify 

patterns of similarity between cells. Additionally, the package performs 

consensus clustering to determine a confidence score for each defined cluster. 

In this figure, the 14,412 features remaining after QC were screened against 

the mature cell markers generated in chapter 3. 647 features were present in 

this dataset and were used to filter the genes for SC3. A k-value of seven was 

selected, producing seven clusters, three of which are of significant interest. 

Cluster 1, the left most cluster of the plot contains both the mature BTLA+ and 

BTLA- cDC2 cells as well as the most strongly cDC2-like pre-cDC2 cells. The 

stability index for this cluster was high at 0.78 indicating that the same cells 

repeatedly fell into the same cluster at 1,000 iterations. The second most 

stable cluster at stability index 0.60 was cluster 6, composed of the mini-bulk 

CD34+ sample and the majority of the CD123med cells. These all appear to 

have a relatively early-stage naïve expression signature. Cluster 5 is 

significant as it contains a majority of the pre-pDC cells as well as the mature 

mini-bulk pDC sample. This cluster was the third most stable cluster, with a 

stability index of 0.58. The presence of a single early pre-cDC2 sample in 

cluster 9 may have impacted this stability. 

Clusters 2 to 4 and 7 were highly variable and composed of pre-cDC2 and 

early pre-cDC2 cells along with the trilineage cells and mature cDC1 sample. 

The stability index of these clusters were in the region of 0.20 to 0.40, 

indicating variability in cluster contents over iterations of the SC3 analysis. 
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Figure 5.20: Expression of mature cDC1 signatures on single cell pre-DC 
data arranged by flow parameter grouping 

By subsetting the genes to the cDC1 mature cell signatures derived from 

illumina expression analysis in chapter 3, each population of the pre-DCs were 

plotted alongside each other to determine if any of the expected 

subpopulations of pre-DCs were enriched for this mature cell type signature. 

This plot did not indicate a particular pre-DC subset was enriched for the 

mature cDC1 signature. CD123-med cells were subtly lower than the other cell 

populations in terms of cDC1 mature cell signature expression. 
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Figure 5.21: Expression of mature cDC2 signatures on single cell pre-DC 
data arranged by flow parameter grouping 

By subsetting the genes to the cDC2 mature cell signatures derived from 

illumina expression analysis in chapter 3, each population of the pre-DCs were 

plotted alongside each other to determine if any of the expected 

subpopulations of pre-DCs were enriched for this mature cell type signature. 

The flow gating of the pre-DC populations uncovered a cluster of potential pre-

cDC2 cells (green) that appear to express higher cDC2 signature markers 

than the other cell subpopulations. Median expression of cDC2 markers in the 

pre-cDC2 population was 46, with the early pre-cDC2 population (beige) at 44. 

The CD123-medium cells expressed the lowest median number of cDC2 

signature genes at 15, closely followed by the pre-pDC population at 28. A 

number of the early pre-cDC2 cells expressed particularly high number of 

cDC2 marker features, between 50 and 70 each. This figure suggests that pre-

cDC2 cells may be enriched for cDC2 mature cell signatures at the pre-DC 

stage. 
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Figure 5.22: Expression of mature pDC signatures on single cell pre-DC 
data arranged by flow parameter grouping 

By subsetting the genes to the pDC mature cell signatures derived from 

illumina expression analysis in chapter 3, each population of the pre-DCs were 

plotted alongside each other to determine if any of the expected 

subpopulations of pre-DCs were enriched for this mature cell type signature. In 

this figure, a strong bias towards expression of pDC markers in the pre-pDC 

(blue) population was observed. Median expression of around 90 pDC 

markers in the pre-pDC population was markedly higher than the other pre-DC 

populations. The lowest median expressers of pDC markers was noted in the 

pre-cDC2, early pre-cDC2 and trilineage cell populations. From this plot, it is 

evident that a pre-pDC subpopulation of pre-DCs are significantly enriched for 

mature pDC marker genes, skewing this subpopulation towards a pDC-like 

expression signature bias. 
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Figure 5.23: Expression of CD100+ CD34med signatures from Villani et al 
applied to single cell pre-DC data arranged by flow parameter grouping 

Upon further investigation of the CD123medium expressing cells, it was 

suggested that although they leaned towards cDC1-like patterns by flow 

cytometry, they did not appear to express cDC1 mature markers at the single 

cell transcriptomic level. A subset of pre-DCs identified by Villani et al through 

single cell RNAseq implicated a CD100hi CD34med cell type that appeared 

similar to the CD123med subpopulation identified in this thesis. Of the 11 cell 

signatures for the CD100+ CD34med Villani population, nine of them were 

present in the 14,412 QC-passed feature list in this dataset. The expression of 

these genes were plotted for each of the pre-DC populations. The suspected 

equivalent CD123med subpopulation expressed the highest number of these 

markers with a median count of 5/9. The medians for the other subpopulations 

were approximately 2/9. Although the CD123med subpopulation was not 

enriched for cDC1 marker signatures in figure 5.20, they appeared to be 

enriched for markers highlighted by Villani et al in their identified CD100+ 

CD34med pre-DC population and may be an early cDC1 progenitor cell. 
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Figure 5.24: In-vitro Development Assay output from pre-DC subset 
populations and CD34+ progenitors shows cell type enrichment and early 
lineage commitment bias  

Peripheral blood cells (and bone marrow cells for the early pre-cDC2) from each 

pre-DC sort gate were collected and cultured for 14 days with OP9 feeder cells 

with SCF, FLT3 and GM-CSF with the output sorted to determine if the pre-DC 

sort gate contained a heterogeneous mix of pre-committed cell types. Cells from 

the pre-pDC gate (CD123+,11c-,2+,303/304+) were enriched for pDC potential, 

pre-cDC2 and early pre-cDC2 cultures were highly enriched for cDC2 cells, 

while CD123med culture produced a majority cDC1 cells. The Tri-lineage culture 

appeared to be composed of a mixed, equal population of pDCs, cDC2s and 

CD14+1c+ cells. This data suggests that pre-DCs are a heterogeneous mix of 

committed progenitor cells, distinct from CD34+ progenitors and without 

monocyte potential. They exhibited a varied capacity to produce DCs and were 

enriched towards one or more mature cell types as noted during the single cell 

analysis of the populations. 
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Figure 5.25: In-vitro development assay output from pre-DC subset gates 
and CD34+ progenitors show lineage-specific enrichment 

This graphic plot highlights the findings from Figure 5.24 as pie-charts based on 

the percentages of cDC2, cDC1 and pDC cells from the in-vitro development 

assay output, correlated with where the population was expected to be along 

the haematopoietic lineage tree from Figure 5.1 and Figure 5.3. 

The ‘Trilineage’ population, closely resembling the Common Dendritic Cell 

Precursor population was found to develop into all three DC lineages. The pre-

cDC2 and early-pre-cDC2 populations were highly enriched for cDC2 cells 

through this assay. Similarly the pre-cDC1 population exhibited a strong mature 

cDC1-enriched output and the pre-pDC population produced a majority of pDC 

cells. The development assay successfully recapitulated the expected 

populations based on the ‘priming’ of the early pre-DC progenitors as displayed 

though single-cell analysis. 
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Chapter 6: OVERVIEW, DISCUSSION AND CONCLUSIONS 

 

6.1 OVERVIEW OF TECHNIQUES USED 

This thesis encompassed a range of novel and established expression techniques 

and bioinformatic analyses. Initial work was performed using publically available 

Illumina BeadArray expression data (GSE35457) to produce gene expression 

signatures for each mononuclear cell type of interest. Array-based techniques are 

useful for bulk-level analysis of the transcriptome and were used extensively prior to 

the advancement of RNA-Sequencing. In order to analyse the array data, an 

empirical Bayes statistic model was used to determine differential expression. The 

output correlated well with legacy knowledge of immune cell markers including 

CD14, C19orf59 and S100A9 in CD14+ classical monocytes, CX3CR1 in CD16+ 

non-classical monocytes, CLEC9A and BATF3 in cDC1s, CD1c, CD2 and FCER1A 

in cDC2s and PACSIN1 and ASIP in pDCs.  

Once the initial analysis was complete, further mononuclear cell subsets extracted 

from skin were incorporated into the dataset and used to test a novel method of 

cross-tissue analysis designed by the author to deconvolute tissue-specific cellular 

expression differences between equivalent cell types. The basis of this analysis 

involved a two-tailed t-test between the pooled skin cell subsets and their peripheral 

blood equivalents in a process reversal of standard differential expression analysis. 

Here, rather than focusing on the differentially expressed genes, the differentially 

expressed genes were removed to reveal the extent of cellular equivalence in the 

absence of tissue-specific signatures that otherwise overshadowed the 

unsupervised clustering of the data. The successful clustering of blood and skin 

equivalent cells after applying the technique was used again in the comparison of 

blood and culture cell equivalents during Chapter 4. 
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Making use of the extensive 48,000 probe coverage offered by the Illumina 

microarray data and incorporating GeneSign (Spinelli et al., 2015) for signature 

generation, a list of positive gene signatures was produced to define peripheral 

blood monocytes, pDCs, cDC1 and cDC2 cell types. This signature was then 

validated in two ways, by machine learning using Linear Discriminant Analysis 

(LDA) to assign unknown samples a cell type in a blinded manner based on the 

samples gene expression profile and through the analysis of a comparable 

publically available dataset from another research group. Both processes confirmed 

the legitimacy of the cell type signatures, which were used as a basis for another 

novel analysis method created by the author for feature reduction based on 

repeated k-means testing and unsupervised clustering to determine a minimal gene 

list for monocycle and dendritic cell classification. 

Using the full Illumina expression data as a surrogate, Illumina probe data related to 

the genes encoded for by the NanoString Immunology_V2 geneset were isolated 

and re-analysed as a new experiment. This provided a validated and robust dataset 

from an established technology with which to interrogate the efficacy of the newly 

developed NanoString nCounter analysis system available at Newcastle University. 

Results from hierarchical clustering and unsupervised analysis during the in-silico 

experimental stage, combined with initial correlation testing of RNA under diverse 

conditions including FFPE and fresh isolated RNA as well as whole cell lysate 

highlighted the benefits of the NanoString system for its ease of use, reproducibility, 

cost and directed profiling of major immune-related genes and pathways. Although 

competition within the field of RNA-sequencing has since driven costs down, at the 

time of writing, both transcriptome sequencing and microarray analysis was 

prohibitively expensive and thus the NanoString system proved a capable in-house 

alternative combining a high-throughput, probe-based array with capability for direct 

hybridisation to RNA from lysed cells without amplification.   

Cells equivalent to those used in the surrogate dataset were collected, isolated and 

analysed using the nCounter platform and similarly visualised using hierarchical 

clustering, PCA and t-SNE. Consistency between the Illumina array, in-silico 

analysis and NanoString dataset reinforced the use of the NanoString system in 

later sections in order to build upon the blood mononuclear cell dataset with culture 

cell output. 
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DC and monocyte cells cultured from CD34+ bone marrow by Dr Urszula Cytlak-

Chaudhuri were compared to the blood equivalent subsets on the NanoString 

platform using unsupervised clustering methods before the same novel method of 

cross-tissue analysis used in the comparison of blood and skin subsets was applied 

to deconvolute the blood and cultured subsets. Interrogation of the culture-specific 

genes was performed by functional enrichment analysis before the non-culture-

specific genes were analysed, displaying a high degree of correlation between the 

in-vitro generated DC subsets and peripheral blood equivalents, extending beyond 

the cell surface markers used in initial FAC sorting and including known TLRs, 

interferon and cytokine receptors linked to developmental pathways inherent to 

each cell subset. 

The final chapter of this thesis focused on the normalisation, analysis and 

comparison of pre-DC subsets, incorporating another gene expression technique in 

the form of advanced single-cell RNA-sequencing and further novel analysis 

techniques. Initial data handling and pre-processing required intricate command-

line level pipelines combining Trimmomatic, STAR, SAMtools and HTSEQ 

packages (Anders et al., 2015; Bolger et al., 2014; Dobin et al., 2013; Li et al., 

2009), prior to normalisation and analysis of the data in the ‘R’ environment using 

SCATER, RUVseq, M3Drop and SC3 (Andrews and Hemberg, 2017; Kiselev et al., 

2016; McCarthy et al., 2017; Risso et al., 2014). Incorporating gene signature 

output generated from Chapter 3 as well as external datasets from Villani et al 

(Villani et al., 2017), pre-DC expression of mature cell signatures was explored, 

highlighting the heterogenic cell type bias as the pre-DC developmental stage. 

Culture developmental output of the heterogeneous pre-DC populations confirmed 

the developmental bias of pre-DCs towards a pDC, cDC1 or cDC2 lineage, 

exclusive of monocyte potential. 
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6.2 RESEARCH OUTPUT 

The research output of this thesis has included the generation of cultured 

mononuclear cell subsets with the support of Dr Urszula Cytlak Chaudhuri from 

CD34+ bone marrow cells as well as the generation of bona-fide, non-inflammatory, 

non-monocyte-derived mature DC subsets from pre-DC populations in peripheral 

blood and bone marrow. Both flow cytometry and FACS of blood and cultured DCs 

and monocytes was produced with support from members of the Human Dendritic 

Cell Lab. 

Microarray data was extracted from an online GEO repository and used to produce 

a validated gene signature of 3,439 genes relating to the four mononuclear cell 

subsets. Code relating to the normalisation and analysis of Illumina expression data 

was developed along with ComBat-based normalisation to incorporate multiple 

datasets into a single experiment. This pipeline has since been used for the 

generation of data and visualisations in Immunity publication, McGovern et al, 2014. 

Following this, a novel method of deconvoluting mixed-tissue datasets was 

developed and tested on two platforms, Illumina BeadArray and NanoString 

nCounter.  

A further novel method of analysis was developed and implemented to reduce the 

developed signature to the minimal number of genes required to maintain clear 

distinction of the DC and monocyte subsets, proving successful and separating the 

four populations by their expression of only two genes. 

A dataset of equivalent blood and cultured monocytes and DCs was developed 

using the NanoString platform alongside code for the normalisation, analysis and 

visualisation of NanoString data. This pipeline of analysis has since been used in 

multiple publications as highlighted in the Appendix. 

A pipeline for pre-processing of Smart-Seq2 single-cell RNA-Sequencing data was 

incorporated with the support of Dr Rachel Queen and code for the normalisation, 

visualisation and analysis of single cell expression data was produced for this 

thesis. This work is on-going in the Human Dendritic Cell Lab and thus has not 

been incorporated into publication at this time. 
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The scope of this thesis has resulted in the production of analysis pipelines and 

data across NanoString, microarray and RNA-sequencing platforms, incorporating 

all of the major high-dimensional transcriptome profiling techniques currently 

available in research. The analytical skills derived from this work are applicable to 

current and future gene expression research and have been used in multiple first 

author and contributing author papers outside the scope of this thesis. 

 

6.3 RESEARCH IMPACT 

This research project covered a range of key questions in dendritic cell research 

and its applications though transcriptomics technology and bioinformatics has 

uncovered novel findings in the field as well as supporting currently accepted 

research. 

The initial key research questions for this project focused on the identification and 

distinctions between dendritic cells and monocytes from peripheral blood. As 

discussed previously, while closely related and developmentally similar, each 

dendritic cell subset has a specialised function and role to play in immunity. 

Because of this, they also express a few specific cell surface receptors, CD 

antigens and co-stimulatory molecules to support these functions. Output from the 

Illumina expression dataset provided an interrogable resource of 47,000 probes for 

the identification of greater distinguishing features between these cell types. The full 

illumina expression dataset, including skin DC and monocyte equivalents as well as 

mouse counterpart data (unused in this thesis) is available at the NCBI Gene 

Expression Omnibus under GSE35457 and so can be used freely by other 

researchers wishing to investigate DC biology and transcriptomics in human and 

mouse.  
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As well as the whole resource being available for external use, the specific markers 

identified in this thesis may also aid in the future isolation and identification of DC 

subsets for analysis. Differential expression testing revealed a 3,439 gene signature 

of DC and monocyte subsets, which could be applied to multiple datasets, including 

other Illumina expression data (as observed with GSE65128, Chapter 3), applicable 

across tissues (Chapter 3), culture conditions (Chapter 4) and even applicable to 

single-cell sequencing (Chapter 5). This transcriptome-derived signature resulted in 

the identification of known and novel DC subset marker gene targets, including 

S100A8 and C19orf59 on monocytes, PACSIN1 and GZMB on pDCs and CD1c 

cDC2s. All of these genes encode surface membrane-bound proteins and are thus 

easily applicable for use in immunohistochemistry, flow cytometry and FACS 

analysis. Through the use of ‘COMPARTMENTS’ web resource developed by the 

Jensen Lab and Novo Nordisk Foundation Centre for Protein Research, many of 

the 3,439 genes identified in this thesis as markers of individual DC or monocytes 

subsets have been shown through curated literature, high-throughput screening 

and sequencing-based prediction to encode surface proteins, but also included 

some nuclear proteins and cytosolic proteins, which may be useful for DC 

identification in other techniques or conditions where expression of cell surface 

proteins may be perturbed or disrupted. 

Not only has the data contained in this thesis expanded on current knowledge of 

DC and monocyte development and biology, but the analysis pipelines designed 

and produced by the author for this thesis have since been used in other projects 

and by other research groups for analysis of transcriptome data and microarrays. At 

the time of writing, NanoString Technology in particular, had no user-friendly 

analysis tools or established pipelines for analysis and so those contained in this 

thesis became the backbone pipeline for all NanoString assays performed by the 

Human Dendritic Cell Lab and their collaborators. Furthermore the tSNE app 

developed by the author and displayed in Appendix C, was also part of the analysis 

pipeline established by the author and is still used frequently by members of the 

HuDC Lab for quickly visualising high-dimensional flow cytometry data in a user-

friendly environment. 
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The analysis code first used to deconvolute the skin and blood in Chapter 3, and 

used again in Chapter 4 to correlate blood and cultured DC subsets, can be applied 

to any other project where biological insights are overshadowed by a conditional 

expression pattern. Indeed, a similar approach was employed in McGovern et al, 

Nature, 2017 based on the same GSE35457 Illumina expression data and is in 

consideration for use in the Fetal Cell Atlas project to deconvolute DC and 

progenitor cell equivalents across fetal tissues. 

Comparisons between the cultured subsets and blood equivalents have indicated 

that under culture conditions and with OP9 stromal feeder cells, phenotypically 

equivalent cells to DCs and monocytes found in peripheral blood were obtained 

after 21 days. Not only were the cells phenotypically equivalent, but their 

transcriptional conservation was also revealed to be significant after removal of 

condition-specific genes. The genes and functional pathways affected by culture 

conditions and those that were conserved are both important factors for research 

impact. In determining culture methods or the applicability of research findings 

collected using in-vitro generated cells to primary cells, knowledge of the genes and 

pathways likely to be deregulated is an important consideration. The typical 

plasticity of DCs combined with their ease of disruption when removed from their 

native environment may result in dramatic alterations in the predicted properties 

and functions of DCs. The pathways determined in this thesis as being altered 

under culture conditions were proliferative, stressed and apoptotic signals as well 

as response to stimulants, which is to be expected under culture conditions, but 

also involved cellular migration and exposure to foreign antigens which may need to 

be considered when studying cell motility or immune response signals in cultured 

DCs and monocytes. 
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The conservation of subset specific signatures between cultured and peripheral 

blood DCs and monocytes does suggests that the culture model employed in this 

thesis could recapitulate bona-fide DCs, well beyond cell-surface marker 

equivalence. This finding has already had a major impact on the research 

performed in the Human Dendritic Cell Lab, as it meant large quantities of DCs 

could be produced that would likely react under investigation in a comparable way 

to primary DCs. This may also have a wider research impact for projects where 

obtaining sufficient cell numbers for analysis is not feasible from human blood, or in 

the case of immunotherapy, would allow for the generation of vast quantities of 

immune-specific DC cells that are phenotypically, developmentally and functionally 

as capable as true blood DCs, but expanded in an easily reproducible manner. 

The pre-DC priming experiment described in Chapter 5 supports the ‘early lineage 

priming’ model of haematopoiesis by revealing heterogeneity within precursor 

populations and a skewing of the precursor cells towards a specific mature cell 

profile. In confirmation of initial single-cell transcriptomics analysis, the in-vitro 

development assay was incorporated into the project and determined that the 

primed progenitor cells could be isolated and grown in culture to generate bona-fide 

DCs enriched for particular DC subsets base don the expression profile of the pre-

DC precursor cells. The ability to collect pre-DC populations and culture them into 

mature bona-fide DCs enriched for particular subsets of interest has great 

implications in research. Scarcity of DCs, particularly CD141+ cDC1s in peripheral 

blood can make their study arduous, however from the comparison of blood and 

cultured cells in chapter 4, and the development of DCs from pre-DCs in chapter 5, 

the capacity and consistency of cDC collection and culture has been uncovered. 

Further impacts on the wider research community may be gleamed from the 

possibility that primed progenitors of various DC subsets could be isolated and 

grown in culture and used to generate bona-fide DCs for research and medical 

applications in the future. 
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6.4 LIMITATIONS OF THE PROJECT 

This project incorporated multiple cell sequencing and staining technologies 

including flow cytometry, multiplexed hybridisation-based expression analysis and 

microarray experiments, alongside single-cell transcriptomics, culture systems and 

development assays to reveal the nature of mature dendritic cells subsets, their 

relation to monocytes and their developmental heterogeneity. Each of these 

techniques and methods had their own inherent limitations, some of which could be 

mitigated through experimental design, and some of which can only be accounted 

for afterwards. 

One major technical constraint in this project, common to all of these applications, 

is their initial reliance upon flow cytometry and FACS for initial cell sorting and 

isolation. While FACS is well-established in dendritic cell research, its capacity 

stretches only to a small number of fluorophores marking only cell surface 

receptors. With the difficulty in collecting and isolating DCs and limited number of 

commonly used cell surface markers, the process of isolation is confounded. 

Adding additional fluorophores increases the spillover of signals, which can only be 

partially mitigated through compensation, which requires some advanced skill and 

knowledge of the fluorphores to balance effectively. Dual staining (where multiple 

markers are added to the same channel) was used to increase the number of 

markers that could be used, however this is still hindered by the software limitations 

of the sorter, limiting sorting to 8 sub-gates. Further gating of populations can’t then 

be sorted. Furthermore, FACS relies on cell suspensions and thus samples isolated 

by FACS no longer retain their tissue architecture or cell-to-cell interactions. More 

technical limitations of flow technology is that the fluorescent intensity data has a 

typical dynamic data range from 10-1-105, which is far below the range of 

NanoString or RNA-sequencing, making comparisons between the two difficult, 

further exacerbated by potential differences between protein and RNA expression 

in cells which are frequently quoted to correlate up to 60-80%.  

While the costs of sorting are relatively low compared to microarray and sequencing 

costs, to collect cDC cell numbers sufficient for analysis took over 5 hours per 

sample and included a cocktail of 14 fluorescent markers, seriously increasing the 

associated costs.  
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As described in Chapter 1 and Chapter 3, NanoString Technology proved to be a 

reasonable, cheaper and faster alternative to microarray assays for this project’s 

specific research requirements, however, when the experiments were initially 

performed, the novelty of the technology meant that there was very little published 

data available, and published methods for experimental procedures and analysis 

were not consistent. NanoString recommended analysis by two-tailed T-test, 

although published papers at the time did not always perform statistical tests on the 

data, relying solely on fold change estimates (Baugh et al., 2011). Others 

performed a T-test, but did not adjust for multiple testing (Waisberg et al., 2014). 

Such methods are not stringent enough for such high throughput assays and so a 

pipeline for analysis of NanoString data had to be developed for this project, 

incorporating a more robust differential expression analysis with correction for 

multiple testing, as no established analysis pipeline was available. 

Preliminary NanoString experiments also highlighted the need for a modified 

standard operating procedure (SOP) from that published by NanoString, as the 

exact reagent quantities supplied by NanoString did not include additional volume 

to account for loss through pipette use or error and were not sufficient to supply all 

12 wells of a cartridge with the required volumes. As part of this project, and to 

ensure such issues did not arise during the main stages of this investigation, a 

modified SOP was designed and tested that involved the addition of excess buffer 

to the reagents prior to the hybridisation step. To compensate for any potential 

dilution, the prep-station was set to a ‘high sensitivity’ setting which extended the 

cartridge washing steps to improve binding of captured molecules to the 

streptavidin surface of the cartridge and increase probe counts.  
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While analysis limitations were met sufficiently through design and protocol 

modification, the limited number of probes available on the NanoString panels did 

prove to be an issue. The 579 probe Immunology_v2 panel used in the NanoString 

analysis sections of Chapter 3 and Chapter 4 lacked some of the major defining 

genes for DC subsets including, most critically, CD1c. To address this limitation, an 

additional 30 gene probes were spiked in to the assay to provide count data on 

omitted probes, but even still, many genes associated with DC functions and 

development were not included in the panel. Additionally, the Immunology_V2 

panel was a commercially available pre-constructed probe panel and so included 

many probes that were not relevant or of interest to this project, but could not be 

replaced or exchanged. 

The SmartSeq2 single cell transcriptomics protocol excels in producing high quality, 

full-length transcriptome data, with the trade-off being the very low throughput due 

to the 96-well plate-based processing. The pre-DC experiment in Chapter 5 

resulted in 71 viable cells after QC, which when compared to modern sequencing, 

is relatively few. However, the cells did express 4,000 to 10,000 unique genes 

each, which is far higher than comparative protocols such as the 10X chromium, 

which typically generates between 200 and 3,000 genes per cell. While cell 

numbers, and thus power, were relatively low, the high gene counts per cell were 

necessary for determining subtle differences in pre-DC populations with reduced 

risk of gene drop-outs affecting the output. Total reads per cell were projected to 

reach 1,000,000, but fell short of this, with a range of 200,000 to 900,000 total 

reads per cell. This may have caused some issues as for example, in the mature 

pDC spike-in, CD123 (the conventional surface marker for pDC identification) was 

missing. It is likely that other gene drop-outs may have affected the overall 

clustering of the data too, exacerbated by the fact that the mature samples were 

pooled samples of 10 cells each, thereby vastly increasing their average gene 

counts and total reads. This had an impact on the initial cell clustering, as ‘total 

number of genes’ proved to be a high source of data variance as indicated in Figure 

5.13 and may have been driving some of the clustering algorithms to separate cells 

by total gene count. 
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Two of the major limitations affecting this project stemmed from the scarcity of 

samples available for research. Healthy volunteers largely provided the peripheral 

blood samples required for this project, typically up to a volume of 50-80ml. As 

CD141+ cDC1s are present at 0.1% of peripheral blood mononuclear cells 

(approximately 1,000 cells per ml of blood), after pre-processing, and enrichment 

via FACS (from which internal optimization experiments have indicated a 60-80% 

return on cells based on the cell counts given by the FlowJo software), successfully 

obtaining the required number of cells for analysis proved to be a difficult task.   

After RNA extraction and quantification, the typical yield would not reach the 

required number for analysis. This issue was partially addressed through the use of 

the NanoString nCounter protocol, which at the time of processing, prior to a 

change in the reaction chemistry of the NanoString assay, allowed for the use of 

direct cell lysates in the protocol. Using this method, cell lysates approximated at 

2,000 cells per µL were collected directly from the FACS machine for NanoString 

analysis, reducing RNA loss through the extraction process. Unfortunately, after 

completion of this project, the lysate protocol was altered through a change in the 

chemistry of reagents provided by NanoString for the assay, limiting the volume of 

lysates to 1µL, which is not sufficient to adequately lyse the 10,000 cells used in the 

assay.  

The difficultly in obtaining enough viable cDC1 cell samples resulted in a down 

sampling of other more abundant cell samples during the analysis stages. In order 

to ensure bias was not introduced into the comparative analysis of the NanoString 

dataset by the inclusion of more of some populations than others, only 3 samples of 

each cell type were used in the analysis for Chapter 3 and 4. This meant that some 

more abundant samples such as CD123+ pDCs and CD14+ monocytes were 

omitted from analysis. These samples have since been included in other research 

projects, but for direct comparison between the subsets, equal sample numbers 

were required, otherwise generated signatures and clustering would be highly 

skewed towards subsets with the greater number of samples. 
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The issue of sample collection was also a concern during the development assay 

and culture models, both of which relied on CD34+ bone marrow progenitor cells. 

Bone marrow was extracted from the femoral head of donors following hip 

replacement surgery and were relatively infrequent and in high demand. Because of 

this, a lot of time had to spent waiting for samples to arrive. A further implication of 

this method of bone marrow collection was that the majority of donors were 

between 60-80 years of age and thus, twice as old as the majority of the healthy 

blood donors. As the immune system changes with age and older patients are more 

frequently taking prescriptions for long-term health issues that may affect the 

immune system, growing cells from the marrow of elderly patients may introduce 

unforeseen changes in the development and proportions of DC populations and 

introduce errors when comparing the bone marrow of an older individual with blood 

from younger donors. For this reason, bone marrow from younger donors were 

used when possible. 

Finally, while the use of previously generated llumina expression data was 

extremely useful in this project, the reliance of this dataset restricted the 

possibilities for comparison as no additional samples could be added as the work 

progressed. The ComBat algorithm was used to merge already developed datasets 

in this case, but this relied on a conserved population between each dataset and 

fundamentally, the fact that both datasets were analysed on the same version of the 

microarray using the same reagents and protocol. Even so, it is unlikely that all 

batch effects were removed through this regression technique. Adding additional 

samples iteratively, as can be done relatively simply using NanoString, flow 

cytometry or 10X, is not easily performed using microarrays or SmartSeq2 

protocols without major batch effects being introduced. 
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6.5 FUTURE RESEARCH VISION 

As this project involved the generation of novel analysis techniques and pipelines, 

the development and testing of which took a vast amount of time, there remains a 

number of possible follow-up experiments that could be performed to further 

support the finding in this thesis or develop them further. At the time of writing, 

some of these experiments are already being performed by the Human Dendritic 

Cell Lab for publication or as part of other separate projects. 

One of the major outcomes of this project was the production of analysis pipelines 

for NanoString, Illumina BeadArray and single cell sequencing experiments. These 

pipelines have great scope beyond this work and have already been implemented 

in part or in full for other projects and publications. To date, the NanoString analysis 

code created for this thesis has been implemented in a number of publications. 

Analysis of high-risk primary biliary cholangitis (PBC), where patients do not 

respond adequately to Ursodeoxycholic acid (UDCA) treatment after 1 year, was 

performed using the analysis pipeline in this thesis. This analysis revealed a distinct 

‘high-risk’ gene signature with a strong senescence signal that could accurately 

stratify patients at initial disease presentation into potential responders and non-

responders to UDCA, with a clear clinical utility in patient prognosis and indicator for 

second-line therapeutic intervention in these cases. Further follow up of this work is 

continuing with further refinement and validation of potential gene targets or 

proteins for clinical use. A similar project in the related condition, autoimmune 

hepatitis (AIH), also used this analysis code for investigating the possibility of 

patient stratification based on treatment responders and non responders using 

follow-up data from the UK-AIH consortium. Similarly, this project has moved into 

the validation stages for potential early-state patient stratification. 
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The same approach is currently in use for the stratification of cSCC patients to 

determine if there are tumour related signatures associated with risk of developing 

metastatic disease upon presentation of cSCC, some data from which has already 

been incorporated into Nature Immunology paper ‘Epithelial damage and tissue gd 

T cells promote a unique tumour-protective IgE response’ currently in print. The 

ability for NanoString Technology to use low-quality mRNA from FFPE material 

opens up a vast resource for clinical biology and patient stratification with 

thousands of biopsies from hundreds of disease states stored across Newcastle 

University Medical School ripe for mRNA analysis with years of patient follow-up 

data available to interested researchers. 

Besides the analysis code and methodology produced in this thesis, the direct data 

output from this project can be utlised and further interrogated for more potential 

information. The DC and monocyte geneset and generated signatures can be used 

in future experiments comparing cell type specific perturbations linked to genetic 

diseases.  Congenital and acquired cellular deficiencies such as dendritic cell, 

monocyte, B and NK lymphoid deficiency (DCML) presents as an almost complete 

depletion of HLA-DR+ Lineage- cells by flow cytometry, including loss of pDCs, cDCs and 

monocytes. Very few of these cell populations remain. By comparing these cells to 

healthy populations and the signatures generated in this project, we can determine the 

extent of purtubation and reveal important insight into the biology of DC and monocyte 

development through phenotypic and transcriptional studies of the remaining cells.  

Insights into monocytes and DCs have already been gleamed from the investigation of 

cell population perturbations in patients with IRF8 mutations, demonstrating the critical 

requirement of IRF8 in immunopoietic development and anti-mycobacterial immunity. 
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The generated genesets can also be used to determine the correlation between 

inflammatory DCs and steady state DC and monocyte subsets. For example, post 

transplant Graft versus Host Disease (GvHD) is a potentially fatal inflammatory 

immune complication of haematopoietic stem cell transplantation. On going projects 

in the Human Dendritic Cell Lab have already demonstrated that by 40 days post-

transplant, dermal DCs are mainly donor derived and, in the absence of GvHD, 

phenotypically resemble steady state dermal DCs. Preliminary data suggest that 

there are significant phenotypic differences that occur in GvHD, such as a 

predominance of CD14+ dermal DCs. DC subsets from GvHD affected skin 

biopsies could therefore be FACS sorted and their gene expression profiles 

analysed by NanoString nCounter assay technology to assess their relationship to 

steady state and in-vitro derived DCs under the hypothesis that inflammatory DCs 

are more closely related to monocytes than steady-state DCs. A similar analysis 

could then be performed on DCs from other inflammatory skin disorders including 

psoriasis, eczema or drug eruptions to determine if a ‘core’ inflammatory gene 

expression signal can be distinguished, or if the underlying mechanisms of such 

conditions arise from different functional gene expression changes in affected 

tissue. 

Such an investigation may be extended to include other major tissue types 

commonly affected by high-grade (III-IV) GvHD such as the lung and gut. GvHD of 

these tissues is associated with higher risk of mortality and long-term morbidity and 

thus uncovering the gene expression ‘phenotype’ of such diseases may promote or 

facilitate further translational research into high-grade GvHD clinical therapies.  

The pre-DC single cell analysis to determine lineage bias and early priming of cells 

may be expanded upon by the incorporation of earlier and later cell populations. For 

this project, the cells of focus were mainly extracted from the traditional CDP gate 

and displayed early priming of both pDCs and cDCs. Using later, more developed 

cells in the analysis may provide a more defined indication of mature cell 

transcriptome. Combining this with earlier cell populations, tracing back to 

haematopoietic stem cells, will provide a complete dataset for lineage tracing 

through comparative expression or pseudotime analysis and reveal the exact 

stages of DC development and lineage priming. This work could then be moved into 

culture experiments with an aim to return a greater yield of mature cell types of 

interest through the development and expansion of primed pre-DC cells. 
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While the culture work contained in this thesis provided a strong basis for the 

generation of bona-fide DCs, beyond surface marker expression and phenotype, it 

also revealed a culture-specific gene signature that altered the expression patterns 

of the cell subsets to an extent. Further experiments aimed at determining the effect 

of different feeder layers; soluble mediators and stimulants on DC potential and 

correlation to steady-state peripheral blood DCs would be a further step towards 

creating true transcriptionally identical bona-fide DCs from culture or increasing the 

output of particular cell subsets. Work in the Human Dendritic Cell Lab has already 

begun to generate cDC1s from pre-DC subsets, with a future vision to take the 

knowledge into the clinic, where precursor cDC1 cells from patients could be 

expanded in culture and implanted for use in DC-based immunotherapy. 
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Appendix 

 

A: EXTERNAL FILES  

Large files related to the work discussed in this thesis are available with the 

electronic version of this thesis as: 

External file 1 

External file 2 

External file 3 

 

B: PANEL+ GENE SELECTION RATIONALE 

The full list of Panel+ markers selection for inclusion in the NanoString analysis of 

Chapter 3 and 4 is listed below, including the gene function, rationale for selection 

and referenced journal article where applicable. 

 

Gene	
name	 Function	 Rationale	 Reference	

ASIP	

Novel	marker.	Involved	
hair	pigmentation.	May	
have	some	role	in	lipid	
metabolism	

pDC	marker	
identified	from	
Chapter	3	Illumina	
expression	analysis	

Novel	target.	

C19orf59	

Novel	marker.	Speculated	
to	be	involved	in	immune	
responses	and	mast	cell	
differentiation.	

Monocyte	marker	
identified	from	
Chapter	3	Illumina	
expression	analysis	

Novel	target.	

CCL17	

Antimicrobial	cytokine	
displaying	chemotactic	
activity	for	T-cells.	Binds	to	
CCR4	and	CCR8.	

Expressed	by	
stimulated	DCs.	 Stutte	et	al,	PNAS,	2010	

CD1C	

Mediates	presentation	of	
lipid	and	glycolipid	
antigens	from	self	or	
microbial	origin	to	T-cells		

Well	publicised	
marker	of	cDC2	DCs	

Robbins	et	al,	Genome	
Biology,	2008	
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CD207	

Internalisation	of	antigen	
into	Langerhans-specific	
organelle,	Birbeck	
granules.	This	provides	a	
route	for	non-classical	
antigen-processing	
pathways.	

For	external	project.	
Encodes	Langerin.	
Expressed	only	in	
Langerhans	cells.	

Crozat	et	al,	
Immunological	Reviews,	
2010	

CLEC10A	

Diverse	functions	including	
cell	adhesion,	signalling,	
glycoprotein	turnover	and	
roles	in	inflammation	and	
immunity.	

Well-publicised	
marker	of	cDC2.	

McGovern	et	al,	Immunity,	
2014	

CLEC9A	

Endocytic	receptor	for	
uptake	and	processing	of	
material	from	dead	cells.	
Mediates	cross-
presentation	of	dead-cell	
antigens	

Well-publicised	
marker	of	cDC1.	

McGovern	et	al,	Immunity,	
2014	

CLNK	

Plays	a	role	in	regulation	of	
immunoreceptor	
signalling,	including	BCR	
and	FCER1A	signalling.	

Found	on	mCD8	
mouse	DCs,	expected	
to	be	equivalent	to	
CD141+	BDCA3+	
cDC1	DCs	in	humans	

Robbins	et	al,	Genome	
Biology,	2008	

COLBLL1	

Encodes	actin	regulator	
protein,	important	I	
reorganisation	of	the	actin	
cytoskeleton.	

Murine	pDC	specific	
marker.	

Robbins	et	al,	Genome	
Biology,	2008	

CXCL5	

Chemokine	for	the	
activation	and	recruitment	
of	neutrophils.	CXCL5	is	
proposed	to	bind	CXCR2	to	
recruit	neutrophils	and	
promote	angiogenesis.	

Well-characterised	
marker	of	
inflammation.		

Koltsova	et	al,	Immunity,	
2010	

DAXX	

Regulates	apoptosis	and	
cell	differentiation,	as	well	
as	immune	system	
response	

cDC1	marker	
identified	from	
Chapter	3	Illumina	
expression	analysis	

Torri	et	al,	PLOSone,	2010	

DBN1	

Involved	in	cell	migration,	
neuronal	processes	and	
plasticity	of	dendrites.	
Required	for	actin	
polymerisation	and	CXCR4	
recruitment	to	
immunological	synapses.	

Found	on	mCD8	
mouse	DCs,	which	
are	expected	to	be	
equivalent	to	CD141+	
BDCA3+	cDC1	DCs	in	
humans	

Robbins	et	al,	Genome	
Biology,	2008	
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F13A1	

Activated	by	thrombin,	in	
DCs	and	macrophages	it	
plays	a	role	in	the	
regulation	of	cell	motility.	

Noted	expression	on	
alternatively	
activated	
macrophages.	Also	
included	for	external	
project.	

Haniffa	et	al,	J	Exp	Med,	
2009	

FGD6	

May	activate	CDC42	and	
plays	a	role	in	regulating	
the	actin	cytoskeleton	and	
cell	shape.	

Found	on	mCD8	
mouse	DCs,	which	
are	expected	to	be	
equivalent	to	CD141+	
BDCA3+	cDC1	DCs	in	
humans	

Robbins	et	al,	Genome	
Biology,	2008	

FLT3	

Class	three-receptor	
tyrosine	kinase	that	
regulate	haematopoiesis.	
Pathways	include	
apoptosis,	proliferation	
and	differentiation	of	
haematopoietic	cells.	

Found	highly	
expressed	on	DC	
subsets.	Also	
included	for	external	
project.	

Robbins	et	al,	Genome	
Biology,	2008	

GCSAM	

Novel	marker.	Involved	in	
signal	transduction	and	
negatively	regulates	
lymphocyte	motility.	Also	a	
regulator	of	B-cell	receptor	
signalling.		

cDC1	marker	
identified	from	
Chapter	3	Illumina	
expression	analysis	

Novel	target.	

GGT5	

Encodes	an	enzyme	
capable	of	converting	
leukotriene	C4	to	
leukotriene	D4.	Pro-
inflammatory	
macrophages	may	
upregulate	this	to	
modulate	inflammatory	
processes.	

Identified	in	dermal	
CD14+	cells,	but	not	
blood	DCs	or	
monocytes	

Haniffa	et	al,	J	Exp	Med,	
2009	

LPAR2	

Functions	as	a	
lysophosphatidic	acid	
receptor	and	induces	Ca2+	
mobilisation	in	response	to	
LPA	in	cells.	

Negatively	regulates	
dendritic	cell	
activation	and	
inflammation	

Emo	et	al,	J	Immunol,	2012	

LYVE1	

Has	a	role	in	autocrine	
regulation	of	cell	growth.	
Mediates	uptake	of	
hyaluronan	for	catabolism	
within	lymphatic	cells	or	
transport	to	lymph	nodes	
for	degradation.	

Shown	to	identify	
dermal	macrophages	
in	situ.	

Haniffa	et	al,	J	Exp	Med,	
2009	



	 257	

MAFF	

May	be	involved	in	the	
cellular	stress	response.	
Encodes	a	transcription	
factor	to	enhance	
expression	of	oxytocin	
receptor	gene.	

Mouse	cDC	marker	
published	in	Robbins	
et	al.	

Robbins	et	al,	Genome	
Biology,	2008	

MERTK	

Regulates	cell	survival,	
migration,	differentiation	
and	in	the	case	of	
macrophages,	in	the	
phagocytosis	of	apoptotic	
cells.	

Monocyte	and	
macrophage	marker	
in	humans	and	mice.	

McGovern	et	al,	Immunity,	
2014	

KI67	

The	expression	of	Ki67	is	
strictly	associated	with	cell	
proliferation.	It	is	present	
in	all	active	phases	of	the	
cell	cycle,	but	absent	in	
resting	cells.	

Well-publicised	
marker	of	cell	
proliferation.	

Scholzen	et	al,	J	Cell	
Physiol,	2000	

NDRG2	

May	be	involved	in	
dendritic	cell	and	neuron	
differentiation.	
Contributes	to	the	
regulation	of	Wnt	
signalling	pathway.	

Expressed	on	pDCs	
and	cDC2s,	identified	
from	Chapter	3	
Illumina	expression	
analysis	

Novel	target.	

PACSIN1	 May	play	an	important	role	
in	pDC	IFN-I	production	

Found	on	murine	
pDCs.	Also	identified	
from	Chapter	3	
Illumina	expression	
analysis.	

Robbins	et	al,	Genome	
Biology,	2008	

PPM1N	

Novel	marker.	Unknown	
functions,	but	it	encode	a	
protein	phosphatase.	May	
be	involved	in	magnesium	
ion	binding.	Paralog	of	
PPM1A,	which	is	a	
negative	regulator	of	cell	
stress	response.	

CD16+	monocyte	
marker	identified	
from	Chapter	3	
Illumina	expression	
analysis	

Novel	target.	

PRAM1	

Novel	marker.	Expressed	
and	regulated	during	
normal	myelopoiesis.	May	
be	involved	in	integrin	
signalling	in	neutrophils.	

Monocyte	marker	
identified	from	
Chapter	3	Illumina	
expression	analysis	

Novel	target.	
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S100A12	

Plays	a	role	in	regulation	of	
inflammatory	processes	
and	immune	response.	
Stimulates	innate	immune	
cells,	recruits	leukocytes,	
promotes	cytokine	and	
chemokine	production	and	
regulates	cell	adhesion	and	
migration.	

CD14+	monocyte	
marker.	Also	
identified	from	
Chapter	3	Illumina	
expression	analysis	

Schmidl	et	al,	Blood,	2014	

TMEM14A	

Novel	marker.	Regulates	
apoptosis	signalling	
pathways	via	negative	
regulation	of	
mitochondrial	outer	
membrane	
permeabilisation.	

cDC1	marker	
identified	from	
Chapter	3	Illumina	
expression	analysis	

Novel	target.	

UPK3A	

Novel	marker.	May	play	an	
important	role	in	
preventing	bacterial	
adherence.	

cDC	marker	identified	
from	Chapter	3	
Illumina	expression	
analysis	

Novel	target.	

ZBTB46	
Zinc	finger	and	BTB	
domain	containing	protein.	
DC	transcription	factor.	

DC	transcription	
factor	and	marker	of	
pDC	and	cDC.		

Haniffa	et	al,	J	Exp	Med,	
2009	
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C: T-SNE ANALYSIS APP 

t-SNE visualisation provides high dimensional reconstruction of a dataset in a two-

dimensional plot, aiding researchers in identifying patterns within the data. This 

technique is implemented in the ‘R’ environment and thus is not easily accessible to 

non-bioinformatically trained researchers. To enable members of the Human 

Dendritic Cell Lab to visualise their data, particularly flow cytometry, the author 

created an ‘R’-based companion App for t-SNE analysis. The app processed .csv or 

.fcs files, performed t-SNE analysis on the data and presented the output 

with options for altering the axis, colours and display in a drop-down format. 

A smaller working example of this app is included as an electronic 

supplemental to this thesis with example output displayed on the following 

page. 
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D: PUBLICATIONS AND ABSTRACTS 

 

Publications for Submission or Review 

 

Green K, Hardie C. 

‘High-Risk Primary Biliary Cholangitis (PBC) has a Distinct Liver RNA Signature’ 

 

 

Green K, Barron E 

‘Self-perception in healthy aging’ 

 

 

Current Publications 

 

McGovern N, Schlitzer A, Gunawan M, Jardine L, Shin A, Poyner E, Green K, 

Dickinson R, Wang XN, Low D, Best K, Covins S, Milne P, Pagan S, Aljefri K, 

Windebank M, Miranda-Saavedra D, Larbi A, Wasan PS, Duan K, Poidinger M, 

Bigley V, Ginhoux F, Collin M, Haniffa M. 

‘Human dermal CD14+ cells are a transient population of monocyte-derived 

macrophages.’ Immunity, 2014. 

 

 

Hardie C, Green K, Jopson L, Millar B, Innes B, Pagan S, Tiniakos D, Dyson J, 

Haniffa M, Bigley V, Jones DE, Brain J, Walker LJ. 
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‘Early Molecular Stratification of High-risk Primary Biliary Cholangitis.’ 

EBioMedicine, 2016. 

 

 

Millar B, Wong LL, Green K, Resteu A, Kendrick S, Jones DE, Dyson J. 

‘Autoimmune hepatitis patients with poor treatment response have a distinct liver 

transcriptome: implications for personalized therapy.’ EASL LiverTree, 2017 

 

 

Green K, Pearce K, Sellar RS, Jardine L, Nicolson PL, Nagra S, Bigley V, Jackson 

G, Dickinson AM, Thomson K, Mackinnon S, Craddock C, Peggs KS, Collin M. 

 ‘Impact of Alemtuzumab Scheduling on Graft-versus-Host Disease after Unrelated 

Donor Fludarabine and Melphalan Allografts.’ Biology of Blood and Marrow 

Transplantation, 2017. 

 

 

Crossland RE, Norden J, Juric MK, Green K, Pearce KF, Lendrem C, Greinix HT, 

Dickinson AM. 

‘Expression of Serum microRNAs is Altered During Acute Graft-versus-Host 

Disease’ Frontiers in Immunology, 2017 

 

 

Bigley V, Maisuria S, Cytlak U, Jardine L, Care MA, Green K, Gunawan M, Milne P, 

Dickinson R, Wiscombe S, Parry D, Doffinger R, Laurence A, Fonseca C, 

Stoevesandt O, Gennery A, Cant A, Tooze R, Collin M. 
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‘Biallelic interferon regulatory factor 8 mutation: A complex immunodeficiency 

syndrome with dendritic cell deficiency, monocytopenia, and immune dysregulation’ 

Journal of Allergy and Clinical Immunology, 2017 

 

 

Abstracts 

 

Green K, Sellar R, Jardine L, Ward J, Ferguson P, Nicolson P, Pearce K, Bigley V, 

Jackson G, Nagra S, Dickinson AM, Thomson K, Mackinnon S, Craddock C, Collin 

MP, Peggs KS 

‘Defining the Optimal Dose of Alemtuzumab in Unrelated Donor Reduced Intensity 

Allografts: A UK Retrospective Study.’ In: 55th annual American Society of 

Hematology meeting. 2013, New Orleans, USA. 

 

 

Laverick O, Publicover A, Jardine L, Green K, Potter A, Jackson GH, Collin M. 

‘Synergy of Unrelated Donor and Full Intensity Conditioning Breaks the Control of 

Graft Versus Host Disease By Alemtuzumab’ in: 56th ASH Annual Meeting and 

Exposition. 2014, San Francisco, California: American Society of Hematology. 

 

 

McGovern N, Schlitzer A, Gunawan M, Jardine L, Shin A, Poyner E, Green K, 

Dickinson R, Wang XN, Low D, Best K, Covins S, Milne P, Pagan S, Aljefri K, 

Windebank M, Miranda-Saavedra D, Wasan P, Kaibo D, Poidinger M, Bigley V, 

Ginhoux F, Collin M, Haniffa M. 

‘Human tissue mononuclear phagocyte system revisited’ In: British Society for 

Immunology Annual Congress. 2014, Brighton, UK: Wiley-Blackwell Publishing Ltd. 
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Crossland RE, Green K, Bacon C, Rand V.  

‘Direct digital profiling of multiplexed mRNA expression from degraded formalin 

fixed paraffin embedded aggressive paediatric B-cell lymphoma tumour tissue’. In: 

Fifth International Symposium on Childhood, Adolescent and Young Adult Non-

Hodgkin Lymphoma. 2015, Varese, Italy: Wiley. 

 

 

Presentations 

 

‘Current usages of high-throughput screening techniques’ Faculty of Medical 

Sciences, Newcastle University, 2013 

 

 

’Optimising the dose of Alemtuzumab in matched unrelated donor reduced intensity 

haematopoietic stem cell transplants: a three centre UK study’. American Society of 
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