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“Remember to look up at the stars and not down at your feet. Try to make sense of what
you see and wonder about what makes the universe exist. Be curious. And however
difficult life may seem, there is always something you can do and succeed at. It matters
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Abstract

Nitrogen containing bisphosphonates (N-BPs) such as Zoledronate are currently used to
treat osteoporosis and act by disrupting the actions of osteoclasts responsible for bone
resorbption by inhibiting prenylation. There is a growing body of evidence that these
drugs have broader benefits including a reduction of mortality in patients treated with
Zoledronate that exceeds the expected benefits conferred from reduced fracture risk
alone. Further observations support a role for Zoledronate in longevity. Levels of
cellular damage were reduced in a Hutchinson-Gilford progeroid mice model treated
with a combination of Zoledronate and Statins. Interestingly, recent evidence that
treatment of Zoledronate extends the lifespan of MSCs via inhibition of the mTOR

pathway similarly to calorie restriction.

We apply an integrative systems modelling approach informed with data generated
using Reverse Phase Protein Arrays to perform an in depth analysis of the response of
the mTOR network to three life extending treatments. The hypothesis we test concerns
the overlapping response we expect between Zoledronate and starvation-restimulation,
whereas we would expect both MRC5 cells and MSC’s to respond differently to
Rapamycin treatment.

We show that a single model topology is capable of reproducing the data produced by
RPPA for three separate life extending treatments in both MRCS5 fibroblasts and MSCs.
We identify that the activation of the AMPK-mTOR signalling axis is of primary
importance in response to both nutrient deprivation and Zoledronate treatment.
Furthermore we identify that the regulation of the mTOR network in response to these
treatments occurs through two distinct mechanisms. In addition we demonstrate that in
response to Rapamycin withdrawal it is the P70S6K negative feedback loop that is of

primary importance with regards to mTOR regulation.

This work demonstrates the power of an integrative modelling-experimental approach
and suggests that life extending treatments act through distinct mechanisms affecting
similar sections of the mTOR network.
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1. Introduction






1.1 The biology of ageing
Ageing is defined and characterised by the progressive decline of function of cells and

tissues within an organism over time [1]. More people are living to old age and elderly
people represent a greater proportion in our populations [2]. There is clearly a need to
enhance our understanding of the biology of ageing and apply this knowledge to address
the needs of the elderly and society as a whole. The field of ageing research is growing
rapidly and our understanding of how we age and what mechanisms contribute to age
related disease is increasing [3]. However there is a need to synthesis our fragmented
knowledge and most importantly to establish ways to utilize both the knowledge we
have already gathered and the knowledge we will gather in the future in order to ensure
that we age healthier. Although ageing research is a field of interest in its own right the
majority of applied research has focused on specific age-related diseases such as cancer
and Alzheimer’s [4, 5]. This research has focused on underlying mechanisms of these
diseases their treatment rather than the prevention of the disease themselves. It is only in
recent years with an increased understanding of ageing as a primary driver of these
diseases that the focus has begun to shift towards prevention. By investigating how we
age and how these various pathologies progress it is believed that we can identify
interventions for each disease that may prevent or delay their onset allowing us to live
healthier for longer [6, 7]. This chapter will present a summary of the main theories of
ageing, the hallmarks of ageing and how they apply to the musculoskeletal system. It
will also review the TOR network and its key role in the ageing process with a

particular focus on its relationship to the pathogenesis of osteoporosis.

1.2 Why do we age?
This is a question that has interested scientists for thousands of years, why do we age?

With the odd exception, organisms of all species show signs of ageing [8]. However
how they age varies hugely. To understand this variation we must address fundamental
questions such as why is it that a human has a lifespan of around 80 years whilst wild
mice have an average lifespan of 1 year [9, 10]? Why have such differences evolved and
why did they evolve in this way? A number of theories have been proposed to answer
these questions with the most prominent being the Disposable Soma theory[11].



1.2.1 Evolutionary theories of ageing
There have been a number of theories proposed to explain why we age. One of the first

theories proposed was that of ‘programmed’ ageing [3]. This theory is based on the
principle that through the process of natural selection a ‘biological clock’ was
developed in order to act as mechanism of death removing the elderly and infirm from
the population [12]. This theory implies that it is the genetic code of an organism that is
responsible for ageing, just as it is for development, and that our lifespan is therefore
already at least in part pre-defined by our DNA [13]. This theory is however flawed as it
relies upon the premise that natural selection is capable of exerting the same effect on
the evolution of a species regardless of an organism’s age. However as very few
individuals live long enough in the wild for ageing to occur, there is therefore no
opportunity for natural selection to act effectively and for genes to evolve that can
induce programmed ageing [14-16]. Further to this whilst there have many genes found
to have either a beneficial or deleterious effect on ageing, as in the nematode worm C.
elegans, there are as yet no known gene combinations that result in the ablation of the
ageing process [1, 7].

An early theory based on evolutionary principles was that of the mutation accumulation
theory put forward by Peter Medawar [17]. Medawar proposed that whilst natural
selection would be too weak to act on genes in aged individuals genetic mutations in an
individual’s germline could be inherited by future generations. If these mutations
adversely affected the lifespan of a species and brought about the ageing phenotype,
natural selection would not be able to act to eradicate these mutations. Huntington’s
disease is an age-related disease that fits the principles of mutation accumulation:
carriers of a mutant huntingtin gene live normally through their reproductive lives and
therefor the gene may be transmitted despite suffering serious neurological disease from
mid-life [18]. A further theory proposed by George Williams is based on the pleiotropic
activity of genes that have beneficial effects early in life but are harmful with age [19].
This is called the antagonistic pleiotropy theory. Williams proposed genes related to
enhancing calcium availability as an example: in early life strong bones lead to higher
vigour and evolutionary fitness but in later years can present problems with
osteoarthritis. More recently genes such as p53 have been associated with antagonistic
pleiotropy with benefits in early life to protect against unchecked growth but being pro-

ageing in late life by increasing levels of apoptosis.



The final and perhaps the most accepted evolutionary theory of ageing presented to date
is the Disposable Soma theory [20]. The basis of the disposable soma theory is that an
organism has a finite amount of metabolic resources available and in adult life must
partition how much energy is spent on repair and maintenance compared to the amount
of energy expended on reproduction. The organism is therefore faced with a ‘trade-off’
where an organism will sacrifice its ability to repair and maintain its genome in order to
reproduce. Mice provide a clear example: as stated above 90% of wild mice die in the
first year of their lives [21]. This is predominantly due to hyperthermia; it makes sense
therefore for mice to allocate the majority of their energy resources into thermogenesis
and reproduction instead of the energy demanding repair mechanisms in order to ensure
the best chance of survival [22] [10]. Without sufficient repair mechanisms in place,
damage will accumulate in the mouse leading to the onset of ageing [23]. Another
example wused to support the disposable soma theory is guppy fish
predation/reproduction rates [24]. When observed in an environment with high levels of
predation and subsequently a high extrinsic mortality rate guppy fish display faster
maturation rates and increased neuromuscular performance at a young age when
compared to low predation guppies [25]. A comparison of age related mortality between
high predation guppy fish introduced into a low predation environment and those
occurring naturally in a low predation environment revealed increased mortality at
younger ages for the high predation population [26]. This suggests that in a high
predation environment guppy fish have evolved to mature faster in order to ensure a
maximum reproductive lifespan however this results in increased mortality at a
decreased age compared to low predation guppy fish. This provides further support for
the disposable soma theory by highlighting a trade-off in resources in guppy fish

whereby high predation leads to increased reproduction at the expense of longevity.

1.2.2 Molecular theories of ageing
Evolutionary theories of ageing focus on the question of ‘why we age’. The associated

question of ‘how we age’ is addressed by theories which focus on the molecular
mechanisms of ageing. These theories can often be used in conjunction with
evolutionary theories (in particular the disposable soma theory). Many theories of
molecular mechanisms of ageing have been proposed with the most prominent being,

the somatic mutation theory, the telomere loss theory and the mitochondrial theory.



The somatic mutation theory is based on the idea that throughout an organism’s life,
cells are exposed to hazards that cause damage to constituent macromolecules such as
DNA which if unrepaired will accumulate and it is this damage that drives ageing. This
theory is in line with the disposable soma theory in that there is a direct link between the
DNA repair ability within an organism and its lifespan. Indeed the better the repair

mechanisms then the longer lived the organism [27].

The second of the molecular ageing mechanisms is the telomere loss theory. This theory
is based on the end replication problem which results in the loss of base pairs from the
telomeres following each cellular replication. The loss of telomeres leads to cellular
senescence and apoptosis and is thought to be a key driver of ageing [28]. The loss of
telomeres has been found to be exacerbated by levels of oxidative stress which cause
lesions within telomeres promoting faster loss on division [29] [30]. Telomere
shortening however is not so relevant in tissues where cells are largely post-mitotic and

do not divide.

The third molecular mechanism is the mitochondrial theory. Mitochondria often
described as the powerhouses of the cell as they provide the energy required for cellular
processes [31, 32]. As with genomic DNA the number of mutations present in
mitochondrial DNA increases with age resulting in dysfunction and a decrease in the
production of energy for the cell with age [33, 34].

Each of these evolutionary and molecular theories have their merits and their flaws and
it could be argued to some length which one is correct. For the purposes of what follows
it will be assumed that the disposable soma theory provides the most comprehensive
answer as to why we age. Whilst there is agreement and disagreement amongst ageing
researchers as to what causes ageing it should be noted that there are some factors that
are seen as being central to ageing biology theory. These have become known to ageing

researchers as the ‘Hallmarks of ageing’ [35].

1.2.3 The hallmarks of ageing
The ‘hallmarks of ageing’ a set of nine occurances which nearly always correlate with

ageing were first brought together by Lopez-Otin et al in 2013 in an important synthesis
of ageing research [35]. These are genomic instability, telomere attrition, epigenetic
alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction,

cellular senescence stem cell exhaustion and altered intra-cellular communication[36-
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39]. There is strong evidence linking each of these hallmarks with the ageing phenotype
however how they cause or result in the development of ageing remains the primary
focus of many ageing researchers. Many of the hallmarks have strong links to the
theories of ageing discussed above. Some are more obvious than others, for instance
mitochondrial dysfunction, and telomere attrition have both contributed their own
theories of ageing along with loss of proteostasis and genomic instability [34, 39, 40].
Deregulated nutrient signalling has strong links to the disposable soma theory whilst
stem cell exhaustion and cellular senescence have many links between various theories

of ageing.

Whilst it is prudent to keep in mind each of the hallmarks of ageing and how they link
to the various theories of ageing, when investigating the mechanisms involved in any
aspect of ageing it is not plausible to investigate all of them. It is therefore necessary to
focus on one or two of the hallmarks and investigate how they interact within a given
ageing phenotype. In the work presented in this thesis, the focus is on deregulated
nutrient signalling, how these affect different cell types and how various treatments alter
the response of the nutrient signalling network. The next section will look at this
network in detail and summarise the key findings to date with regards to the nutrient

sensing mTOR network and ageing.

1.3 The mTOR network
The target of Rapamycin (TOR) protein is a protein kinase which, in mammals, exists in

two distinct multi subunit complexes, mMTORC1 and mTORC2 (mammalian TOR
complex 1 and 2). These complexes are part of a network that sense and integrate
nutrient and amino acid availability, growth factor and hormonal signals [41, 42].
Depending upon the state of these inputs the TOR signalling pathway regulates cell

growth, autophagy, protein production as well as energy stores around the body [43].

Activation of mTOR is controlled upstream by growth factors and hormones such as
insulin. Binding of insulin to its receptor leads to autophosphorylation of the insulin
receptor and the recruitment and tyrosine phosphorylation of insulin receptor subunit 1
(IRS1) [44, 45]. Tyrosine phosphorylation of IRS1 blocks its degradation and leads to
increased interaction with proteins containing SH2 (src-homology-2) domains including
Phosphoinosital kinase 3 (PI3K) leading to phosphorylation of its p110 domain [46-48].
Activated PI3K catalyses the production of phosphatidylinositol-3-phosphates via



phosphorylation which in turn are responsible for the regulation of different protein
classes including the Rho family of GTPase proteins and the AGC protein kinases
which include phosphoinositide-dependent kinase 1 (PDK1) [49, 50]. PDK1 is one of a
number of proteins capable of phosphorylating the serine/threonine kinase AKT/PKB
and interaction between the two results in the phosphorylation of AKT on its threonine
308 residue[51]. Phosphorylation of T308 acts an activator for AKT which is able to
inhibit the action of the tuberous-sclerosis complex (TSC1/2) [52, 53]. Thus preventing
TSC1/2 acting as a GTPase activating protein (GAP) for the Ras homolog enriched in
the Brain (Rheb) protein and inhibiting the hydrolysis of Rheb bound GTP to GDP [54,
55]. In its GTP bound state Rheb is able to bind to FKBP38 resulting its disassociation
from mTORCL1 thus resulting in the activation of the mTORC1 complex [56]. The
mTORC1 complex consists of the proteins TOR, RAPTOR, PRAS40 and mLSTS8.
Phosphorylation of mMTORCL1 via the AKT pathway leads to the direct phosphorylation
of downstream proteins including the ribosomal kinases S6K1 and S6K2 and the elF4E
binding proteins [41, 57, 58]. Phosphorylation of S6K1/2 and 4EBP1/2 regulate
downstream mRNA translation as well as initiating cellular growth and proliferation
[45, 59]. In addition to its activation of cell growth, the phosphorylation of S6K also
acts to initiate a negative feedback loop which inhibits PI3K via direct phosphorylation
of IRS1 on serines270/307/636/1001 [60]. Phosphorylation on these sites leads to the
inability of IRS1 to associate correctly with the insulin receptor and the down regulation
of PIBK/AKT signalling.

In addition to sensing energy levels through growth factor and insulin signalling
mechanisms mTORCL1 is also regulated by amino acids although the mechanisms
behind this regulation are far from clear [41]. Whether all amino acids are required for
full mMTOR activation has yet be to be confirmed however it is known that leucine and
arginine are both essential for mMTORCL1 to become active [61, 62]. What is known is
that the Ras related GTPases (RAG A and RAG B) are involved directly in activating
MTORC1 in response to amino acid stimulation [63, 64]. The RAG proteins are unusual
amongst the Ras related proteins in that they don’t rely on post translational protein
modifications to achieve correct localisation within the cell [65]. In contrast they rely on
a protein complex known as the Ragulator which acts as a lysosomal tether to lipid rafts
on the lysosome [65, 66]. RAG A/B localisation to lysosome in turn acts to localise

mTORC1 to the lysosome were it can be activated by Rheb [63]. Furthermore it has



been shown that v-ATPase components on the lysosome activate the Ragulator in the
presence of amino acid although how amino acids are sensed and by what mechanism
remains elusive[67]. Under low amino acid conditions the GATOR1 complex acts as a
GAP protein for RAG proteins (RAG A/B) catalysing the conversion of GTP to GDP
and inhibiting the activity of the RAG A/B heterodimer. Under high amino acid
conditions the GATOR 2 complex acts to inhibit the GATOR 1 complex preventing its
GAP action on RAG A/B [68, 69]. This allows the v-ATPase components to positively
regulate the Ragulator and results in the binding of GTP to the RAG A/B heterodimer
[41, 42].

Far less is known regarding the activation of the second TOR complex mTORC2. In
addition to the TOR protein, mTORC2 consists of RICTOR, mSIN1, Proctor and
Deptor with Rictor and mSIN1 required for structural integrity of the complex [42, 70,
71]. Whilst it has been termed a rapamycin insensitive complex its activity is inhibited
by chronic exposure to rapamycin, likely brought about by decreased complex
formation [72]. Upon growth factor stimulation mTORC2 localises to the endoplasmic
reticulum where it becomes activated although the mechanisms behind this remain
unclear however it is known that a PI3K is required for this activation [73-75]. Upon
activation mTORC2 phosphorylates AKT on Ser473 either as a single phosphorylation
or in addition to the phosphorylation on Thr308 further enhancing AKT’s activation
[76, 77]. Downstream functions of mTORC2 are also poorly defined although it is
known to activate various PKC isoforms including protein Kinase C a and serum- and
glucocorticoid-induced protein kinase 1 (SGK1) [77, 78]. The activation of PKCa is
essential for cytoskeletal organisation whilst SGK1 is essential for cellular growth and
ion transport [42]. In addition mTORC2 is possibly subject to negative regulation via
mTORC1 activation [42]. It has been shown that active S6K1 phosphorylates mSIN1 on
various serine residues leading to its disassociation from mTOR and the disassembly of
the mTORC2 complex [79]. A representation of the mTOR network can be seen in

figure 1.1.
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Figure 1.1: Schema representing the mTOR network. Adapted from [80]
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1.4 Ageing and the musculoskeletal system
As previously described mTOR and its associated network plays an important role in

ageing. In addition to the C. elegans mutants already described inhibition of mTOR
leads to life extension in many other model organisms including Drosophila
melanogaster and Mice [81]. As described above one of the hallmarks of ageing is a
decline in stem cell number and function. There is increasing evidence that the
inhibition of mTOR is beneficial in maintaining both stem cell number and function.
Studies have shown that old mice treated with Rapamycin have better intestinal stem
cell function than their untreated counterparts whilst Rapamycin has also been
implicated in the rejuvenation of haematopoietic stem cells in old mice leading to
enhanced protection from the influenza virus. In addition, inhibition of the mTOR
network by Zoledronate (a nitrogen containing bisphosphonate) led to increased
protection from DNA damage in mesenchymal stem cells [82]. Mesenchymal stem cells
are precursor cells to the bone forming osteoblasts, with these findings suggesting a
possible beneficial effect of mTOR inhibition with regards to bone formation and

degradation.

Other ways in which mTOR inhibition is believed to extend lifespan include the
inhibition of mMRNA translation, increased activation of the stress response, increased

mitochondrial respiration and reduction of inflammation [83].

Whilst the links between the mTOR network and ageing are well established far less is
known regarding the links between stem cells and the ageing process. Stem cell ageing
is of particular interest when investigating age related changes to the musculoskeletal
system. Indeed there is now a significant focus on stem cells in both bone biology
looking at mesenchymal stem cells (MSCs) with age and in muscle looking satellite
cells with age. The following section will summarise what is known about the
relationship between the musculoskeletal system and ageing with a focus on bone
biology and MSCs.

1.4.2 Mesenchymal stem cells and bone ageing
As discussed above one theory of ageing suggests that with age our stem cell pool

decreases and loses its ability to function correctly (figure 1.2 (A-B) [84-87]. Indeed
there are multiple studies that show different stem cell groups each displaying a

reduction in their ability to proliferate and differentiate correctly [88-91]. But it is of
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interest whether this is a cause or a consequence of the ageing process and whether it
would be altered so that various different tissues remain fully functional with increased
age. Due to their regenerative potential both the importance and potential of stem cells
in relation to ageing research is beginning to be understood and there is increased focus
and attention being paid to this area of ageing research. One tissue at the centre of stem
cell ageing biology is bone. It is well established that with increased age, bone
remodelling homeostasis is affected with increased bone resorption and decreased bone
formation (Figure 1.2 (C-D) [92-94]. Whilst we understand the biology behind both
bone formation and bone resorption it is still poorly understood what drives the age
related imbalance between the two processes. Is it a decrease in osteogenesis or an
increase in bone resorption? Recent research in this area has focused on mesenchymal
stem cell ageing and osteogenesis. Mesenchymal stem cells are capable of
differentiating into three main types of cells: osteoblasts, chondrocytes and adipocytes
[95]. With age there is a general decrease in the amount of differentiation coupled with
a shift towards adipogenic differentiation (a process termed adipocyte switch) [96, 97].
The decrease in osteogenic differentiation eventually leads to reduced osteoblast
numbers and may be responsible for the reduction in bone formation seen in old age
although other factors may be involved [98]. Eventually the reduction in bone formation
leads to age related diseases such as osteoporosis and increased risk of fractures and
falls as a result of instability [99, 100]. The increase in falls and fractures, in particular
hip fractures, often results in the development of other age related conditions brought
about by long term inactivity [101]. The combination of such factors leads to an

increased mortality rate amongst patients with hip fractures [102].

1.4.3 Bisphosphonates, the mevalonate pathway and osteoporosis
Currently osteoporosis is treated by targeting the bone resorption pathway as opposed to

osteogenesis [103]. It is hypothesised that by reducing the amount of bone resorption
that occurs the ratio of bone formation to bone resorption will be brought back into
balance [104]. A class of drugs called Bisphosphonates have been developed that
potently target bone resorption by inhibiting the formation and ability to function of
mature osteoclasts [105]. The most potent class of bisphosphonates (nitrogen containing
bisphosphonates) act by targeting the mevalonate pathway and inhibit prenylation [104,
106, 107]. The mevalonate pathway is a metabolic network that acts to synthesise

isoprenoids and is responsible for the addition of Geranyl and Farnesyl groups to

12



proteins such as Ras and Rheb. The enzyme farnesyl pyrophosphate (FPP) synthase acts
to catalyse the reaction of Geranyl pyrophosphate (GPP) to FPP which can then be
inserted into the CAAX domain of specific proteins [108]. Nitrogen containing
Bisphosphonates are a group of drugs used primarily in the treatment of osteoporosis
and they act to inhibit FPP synthase by directly binding to its active site [109]. This
disruption of the prenylation pathway leads to downstream disruption of osteoclastic
signalling as protein prenylation is essential for vesicular trafficking, membrane
ruffling, morphology and cytoskeletal arrangement [110, 111]. It has also been
suggested that down-regulation of geranyl-geranylpyrophosphate (GGPP) (Enzyme
responsible for the transference of a geranyl group to other proteins including small
GTPase’s) occurs during cell-cell contact induced during differentiation of the
osteoblastic cell line MC3T3-E1 [112-114].

Whilst these drugs are very effective with regards to inhibiting bone resorption they
often fail to bring the bone remodelling pathway back into balance as an increase in
bone formation often does not occur [104]. Indeed recently it has been revealed that the
prenylated proteins also play a role in osteogenesis [115, 116]. However even with the
failure to increase osteogenesis bisphosphonates are considered a very effective
treatment for osteoporosis and work is ongoing to attempt to unravel the mechanisms

behind how they affect osteogenesis.
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Figure 1.2: Stem cells and ageing. Schema representing how mesenchymal stem cell
differentiation alters with age (A) Differentiation in young MSCs —differentiation is dependent upon
tissue and cellular requirements, (B) Differentiation in old MSCs —adipogenesis becomes the primary
differentiation pathway, Balance between adipogenesis vs osteogenesis in young MSCS (C) and Old
MSCs (D).
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1.4.4 Bisphosphonates, cancer treatment and lifespan extension
Over the last couple of decades there has been increased focus on the use of

bisphosphonates as anti-cancer drugs [117]. Bone has long been the focus of cancer
studies due to the frequency of bone metastases found in many different cancers
including breast cancer and multiple myeloma [118, 119]. The treatment of these
cancers and various different cancer cell lines with bisphosphonates has been shown to
induce apoptosis and has been found to inhibit tumour growth in certain cases [117,
120]. The mechanisms behind these findings have never been fully elucidated. Recently
even more novel findings have been published regarding the use of bisphosphonates in
cancer and ageing studies. It was found, for example, that patients with hip fractures
being treated with the Bisphosphonate Zoledronate showed a 28% decreased mortality
rate compared to untreated controls[121]. There have been several other studies that
have observed increased lifespan, decreased mortality rates, decreased cardiovascular
events and decreased cancer incidence in osteoporotic patients undergoing
bisphosphonate treatment [122, 123]. Additionally, when treated with a combination of
statins and Zoledronate a mouse model of Hutchinsons-Gilford progeroid syndrome
displayed decreased cellular DNA damage, reduced progeroid symptoms and an
extended lifespan [124].

Following on from these results, work carried out at the University of Sheffield has
investigated how Zoledronate treatment affects MSCs and to identify the mechanisms
behind these actions. They have shown that treatment of MSCs in culture extends their
proliferative lifespan as well as decreasing the amount of cellular DNA damage within
cell cultures undergoing high numbers of passages compared to controls [82]. Upon
further examination they observed that there was inhibition of the mTOR network due
to the de-prenylation of the proteins Ras and Rheb. Following Zoledronate treatment a
decrease in phosphorylated mMTORC1, mTORC2 and S6K lead to increased nuclear
localisation of FOXO3A which in turn enhanced the DNA damage response following

irradiation.

1.4.5 Role of AMPK in stem cell differentiation and ageing
AMP activated protein kinase (AMPK) is a highly conserved regulator of cellular

energy status and tightly controls energy consuming process within a cell. AMPK acts
by inhibiting anabolic processes and activating catabolic processes [125]. It has recently

been implicated in mesenchymal stem cell differentiation by down-regulating adipocyte
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genes and inducing osteoblastic genes [96]. In a study from 2012, Kim et al showed that
the level of AMPK increased during osteoblastic differentiation of MSCs as well as
there being an increase in the phosphorylated state of AMPK [96]. However, this does
not align with other research carried out on MC3T3-E1 cells which showed that the
levels of AMPK decreased with osteoblastic differentiation [126]. This could be
explained by the fact that MSC are progenitor cells whereas MC3T3-E1 cells are
partially differentiated cells. In support of this suggestion another study showed that
AMPK signalling was a time co-ordinated process which was upregulated during the
early stages of osteoblastic differentiation and then down-regulated during the later
stages of osteogenesis [98]. Interestingly, the early increase in AMPK signalling leads
to a feedback mechanism activating the AKT-mTOR network. These studies were
carried out in adipose derived and dental pulp derived MSC and it is not known if the
results are entirely transferable to bone marrow derived MSC or if some of their
observations are tissue specific. For instance it has been observed that adipocyte derived
MSCs are more likely to differentiate in adipocytes than osteoblasts with the opposite
being true for bone marrow derived MSCs (bmMSCs).

1.4.6 Osteogenesis links to the mTOR network
There are several key pathways involved in osteogenesis each of which can be linked

back to the mTOR network; these include the Wnt signalling pathway and signalling
through C/EBP isoforms.

1.4.6.1 C/EBPf isoforms
C/EBP-B transcription is activated by eukaryotic translation initiation factor 4E (elF-4E)

which is repressed by eukaryotic translation initiation factor 4E binding protein 1
(4EBP) [57]. Upon activation of TOR signalling 4EBP is phosphorylated resulting in its
release from elF-4E and the transcription of C/EBP-f. There are three distinct C/EBPJ
isoforms, the full length LAP, short length LIP and the extended length LAP* isoforms
[127]. During osteogenesis the expression of all three isoforms increases however they
do not all act to induce osteogenesis [128]. LAP and LIP both act to enhance expression
of RUNX2 and increase its interaction with the osteocalcin promoter (both of RUNX2
and Osteocalcin are crucial for osteogenesis along with osterix)[129, 130] . The
extended isoform acts to inhibit osteogenesis by inhibiting transcription. Both the LAP
and LIP isoforms also directly interact with ATF4 which in addition to RUNX2 binds to

the promoter region of osteocalcin activating its transcription [129]. ATF4 also appears
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to facilitate amino acid transport within pre-osteoblasts another requirement in
osteogenesis [131]. Each of the C/EBP isoforms has a different role in osteogenesis as
already mentioned the extended form appears to inhibit osteoblast formation by
recruitment of the SWI/SNF chromatin remodelling complex which may help to keep
the osteoblasts in an immature state [132]. The standard length isoform enhances the
expression of osteogenic genes and the short isoform LIP enhances osteoblast
differentiation and maturation [95, 128, 133, 134]. It is interesting to note that in the
absence of the long isoforms overexpression of LIP has been shown to inhibit terminal
osteoblast differentiation [135]. This suggests that LIP may compensate for the lack of
long isoforms in the cell and act to recruit certain complexes which keep the cell in an
immature state. It seems therefore that C/EBPf isoforms act in a dual role. Initially
acting to keep the cells in an immature state when conditions are unfavourable and then
to activate osteogenic genes and terminal differentiation once the correct conditions are
present. Once osteogenic differentiation is initiated SMAD3 binds to C/EBPB and
abrogates its inhibitory function on RUNX2 driving further osteogenesis.

1.4.6.2 Wnt signalling
It is well known that Wnt signalling is required for correct bone development with

many studies establishing that ablation of Whnt signalling leads to bone deformities and
decreased bone formation [136]. The Wnt proteins Wnt3a and Wnt10b bind to the
Fizzled receptors and recruit the LRP5/6 co-receptors and lead to the inhibition of
Glycogen synthase 3 which is also inhibited by AKT and in turn when active can
activate the TSC1/2 complex [137]. Once GSK3 is inhibited B-catenin becomes
stabilised and translocates to the nucleus where it regulates the T-cell factor/lymphoid
enhancer factor (TCL/LEF). LRP5/6 binding to Frizzled receptors is inhibited by DKK1
which recruits Kremen to the LRP5/6 receptors inactivating them [97]. Overexpression
of either Wnt3a or Wnt10b or inhibition of DKK1 leads to increased osteogenesis with
a reduction in trabecular bone formation being seen upon Wnt inhibition [138, 139]. In
addition to these observations it has also been observed that the adipogenic protein
PPARYy is inhibited by Wnt10b [140]. PPARYy is one of the key proteins that drive
Adipogenesis as it inhibits RUNX2 activity Wnt10b prevents this inhibition from
occurring however active PPARy has also been shown to directly induce B-catenin
proteasomal degradation preventing osteogenesis. As Wnt signalling appears to be key

in regulating osteogenesis it may be interesting to investigate this pathway further in
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order to assess how the inhibition of the mTOR network by bisphosphonates affects [3-

catenin driven osteogenesis.

There are a number of other proteins and transcription factors involved in osteogenesis
and that are affected by both of these pathways, these include Smad2 and Smad5 which
interact with Runx2 following its activation and appear to be required in vivo to induce
osteogenesis. Osterix is another protein that is absolutely required for osteogenesis and
acts downstream of Runx2. It appears to act together with Satb2 to enhance bone
regeneration and formation. The exact roles of C/EBPJ in osteogenesis have yet to be
confirmed however the effect of bisphosphonate treatment (or indeed mTOR inhibition)
on these isoforms may well prove interesting to explore. In addition the effect of MTOR
inhibition on osteogenesis and how inhibition of mMTORC1 alone differs from dual
inhibition in terms of the downstream effects of osteogenesis could also prove

extremely interesting to study.

1.5 The DNA damage response
The DNA Damage response (DDR) is a set of pathways which are heavily implicated in

the ageing process. As the DDR is not the main focus of this work this section will
present a summary of the theoretic links between the DDR and ageing as well as

summarising the links between the mTOR network and the DDR.

1.5.1 The DNA damage response and ageing
The links between the DDR and various diseases such as cancer are well established.

However how the DDR relates to ageing is a far more complicated and involves the
interplay between numerous different factors both environmental and genetic. As all
molecules within an organism can essentially be replaced with the exception of DNA
any lasting damage to the DNA of an organism can result in many adverse effects
including early onset ageing [141]. It is therefore unsurprising early onset ageing
environmental factors include many practices that result in DNA damage with smoking
and alcohol consumption often cited as two possible environmental factors that result in
premature ageing [37, 142]. The most common form of DNA damage in humans is as a

result of ultra-violet radiation (UV) from the sun. It is believed that such stresses result
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in an increase in oxidative molecules which in turn cause DNA damage [143]. How
such damage in turn advances the ageing phenotype is as yet unknown. In order to
ascertain the links between the DDR and ageing a number of models have bene
employed, including progeroid models of ageing [141]. One of the characteristics of
these models is that they show decreased DNA damage repair ability resulting in the
early onset of age related diseases. Indeed mouse models lacking the ability to carry out
DNA damage repair display increased age related symptoms compared to wild-type
controls. Anti-ageing models such as rodents fed a calorie restricted diet results in the
preservation of the DDR over time compared with wild-type controls [144]. In addition
to preserving the DDR caloric restriction has also been shown to reduce the levels of
reactive oxygen species as well as reducing the rates that mutations occur within the
DNA [145].

1.5.2 Links between mTOR and the DNA damage response
Several studies have shown that FOXO3A activates the DNA damage response

although the exact mechanism by which is does so remains unknown (Figure 1.3)[146].
One recent report suggests that FOXO3A interacts with the ATM-Chk2-P53 complex
by phosphorylating ATM [147]. The same group has recently followed up this work by
revealing that ovarian and breast cancer cell lines can be reprogrammed to non-
cancerous cells by inducing the nuclear translocation of FOXO3A by metformin [148].
They again showed that ATM and p53 were both activated by FOXO3A during this
process providing support for their previous work. Some of the data that the UoS have
produced appears to support this hypothesis. They showed that silencing FOXO3A
using siRNA resulted in a complete lack of ATM phosphorylation in irradiated cells
compared to controls. Further to this they also showed that silencing of FOXO3A
results in an increase in the number of DNA damage foci in MSCs which have been
irradiated; this was true for both control cells and cells treated with Zol.
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Figure 1.3: Schema representing the DNA damage response pathways interacting
with FOXO3A._ Adapted from [149]




1.6 Systems biology
Each of the systems discussed above present a large degree of complexity and exploring

the interconnectivity of the networks would not be possible using a purely experimental
approach. A solution to this is to apply a systems biology approach whereby the
networks are modelled computationally informed by experimental data [150]. The field
of systems biology is extremely broad and as such it lacks a definitive definition [151].
However all definitions of systems biology essentially include computational analysis
of biological data at different scales whether that be at the organism or cellular level.
The interconnectedness of these scales and the individual components within them is
what interests systems biologists, with the aim of all systems biologists to assess and
gain a better understanding of how a system as a whole functions. Under the definitions
above systems biology encompasses not just ‘dry lab’ computational work but also ‘wet
lab’ experimental work which can work either independently or in cohesion with each

other.

1.6.1 Top down and bottom up
Classically there are two approaches that are used in computational modelling. These

are termed ‘top down’ and ‘bottom up’ (Figure 1.4) [152]. In the top down approach at
first there is no definition of sub systems or indeed mechanistic detail or a system [153].
In this case a particular question is not defined by a particular mechanistic observation
but from a large set of observations. Microarrays are the primary source of data for top
down modelling in computational biology [154]. Experiments will be performed testing
the action of particular perturbation and mRNA measured using microarrays allowing
for the analysis of thousands of genes. From this analysis the gene regulatory networks
that are affected by a particular perturbation can be identified leading to a more detailed
representation of the system. The bottom up approach is essentially the opposite of top
down. This is a reductionist approach whereby a reaction or a small sub system is
analysed and the remaining system built up around it in order to obtain the full system
to be analysed [152, 155]. Traditionally biology has focused on this type of approach
with the reaction of individual molecules measured and then a question posed from the
result as to what else may be happening to the system. Dynamic modelling is most
closely associated with a bottom up approach but in a full systems biology project the

focus will be informed from the outcome of a top down analysis.
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Figure 1.4: Schema representing Top down vs Bottom up in systems biology.
Adapted from [156].
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1.6.2 Dynamic computational modelling
Computational modelling is an important component of systems biology [157]. Models

are represented by a set of mathematical equations (normally ordinary differential
equations). The information contained within each equation governs how it interacts
with other equations within a model framework in addition defining the behaviour of
the specific biological event (for instance a phosphorylation event) which the equation
represents. This allows for the abstraction of an overall biological concept into a
mathematical framework governed by mathematical rules of the equations within the
model structure [158]. The advantage of this is that due to the ability to solve these
mathematical equations a model can be used to define, simulate and predict outcomes
based on inputted knowledge. Indeed slight variations to the mathematical model
structure (topology) of a model can allow a user to determine which topology provides
the closest match to a given prediction. Or indeed can provide an entirely new
prediction based on what was already previously known. The attribute that defines a
dynamic model from a non-dynamic model is that it can be said to have ‘memory’
[159]. In the case of most dynamic this ‘memory’ is commonly referred to as the ‘state’
in which the model exists. As most models are designed to have an ‘initial state’ or an
initial set of conditions from which the model acts to predict the outcome of a relevant
situation. As the simulation progresses the model goes through a number of different
‘states’ and may eventually establish a ‘steady state’. The behaviour of a model are
governed by the mathematics of the equations used in the building of a model (usually
ordinary differential equations). There is an established nomenclature used to represent
the model structure based on species, reactions and parameters [160]. A species within
the model represents a particular node within the network this could be a particular
mRNA, protein, cell or even organ or individual. A reaction is the connection between
each of the nodes within the model and these can be governed by numerous different
kinetic laws. In the work presented in this thesis the reaction type used is that of mass
action [161, 162]. Here, the rate of reaction is proportional to the product of the reacting
substrates. Parameters encompass both species and reactions within a model as they are
the values assigned to either a species or the rate at which a reaction occurs within the

model.
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1.6.3 Multiscale modelling
As previously stated systems biology involves the study of large networks over varying

scales. This poses various challenges that must be overcome in order to correctly model
a system. For instance the process of a transcription factor takes seconds whilst the
subsequent activation of that protein takes milliseconds. This can be followed up
through the cellular levels to macromolecules such as hormones that can take hours to
exert an effect. The question therefore is how these different scales can be measured
[163]. This is of particular importance in drug pharmacology where a drug may target a
genetic component which leads to macromolecular event [164]. This is what multi-scale
modelling attempts to solve. One way to solve this problem is to abstract the ‘lower
scale’ networks to a point where there is a loss of dynamic function (they cease to be
dynamic models and remain at a constant). This allows for the development of the
‘higher scale’ model with a singular input from the ‘lower scale’ [159]. Whilst the focus
of this work will not be on the multiscale nature of the signalling networks involved it is
important that this is kept in mind when the results are interpreted. For instance whilst
the focus of this work is on the microscopic scale the effect of the treatments tested will
each have an effect on the macroscopic level of cellular signalling in particular when

focusing on stem cell biology.

1.6.4 Model simulation - deterministic and stochastic modelling
Before discussing the basis of deterministic and stochastic modelling it is necessary to

first define both what an algorithm is and how an algorithm works to form a model
simulation [165]. An algorithm can be defined as a set of rules performed in steps to
achieve an output [166]. Using this definition it is therefore possible to define a model
simulation as the process of using an algorithm to reproduce the problem presented by
the model in question. There are primarily three types of algorithm: deterministic,
stochastic and hybrid (a combination of deterministic and stochastic) [167]. The
majority of dynamic models are presented in a deterministic form. This is to say that the
variables contained within their simulations are considered not to be random. This is not
always the case however as biological systems are inherently stochastic in nature [168].
It is therefore often necessary to model certain systems using stochastic modelling. This
means that whilst the overall network reactions and variables remain the same as in a
deterministic model they are not only governed by time but also by a probability

distribution [162, 167]. The primary focus of such a modelling process is usually
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governed by the abundance of a particular species within the model. A low species
value inherently lends itself to stochastic simulations whereas a large species value is
more likely to be deterministic in nature. Due to the random probability distributions
within stochastic models it is possible that they can give an entirely different outcome to
a modelling problem and it is therefore appropriate to correctly choose which type of
modelling is to be performed [169]. Whether or not deterministic or stochastic
modelling is used dynamic modelling is primarily data driven as discussed above with
data forming a hypothesis which ultimately drives the development of a model. How
data is collected and which variables within the model that are measured are dependent
upon both the ability to collect the data experimentally and the question that is being
addressed. These data are used to inform the model by optimising the parameters within
the model via a process termed parameter estimation [170]. This process involves the
identification of a parameter set which is approximates the ‘best fit’ of a model in the
context of experimental data. This is usually presented within a statistical format (in
many cases the residual sum of squares (RSS)) whereby a parameter value results in a
simulation within the confines the error (either standard deviation, standard error of the
mean or confidence intervals) of the experimental data. The parameter set with the

overall smallest deviation from this mean is considered the ‘best fit’.

1.6.5 Computational models of mMTOR
As previously discussed due to its complexity the ageing process naturally lends itself to

a systems biology approach. However the question remains with so many factors
involved how do you model a process as complicated as ageing? This has mainly been
tackled to date using abstract large scale network models without looking in-depth at the
molecular interactions of the molecules or else abstracting a particular network
connected with ageing such as the mTOR network, the DDR or reactive oxygen species
and their effect on cellular processes. This section will focus on the models of the
mTOR network that have previously been published. Over recent years our group and
others have had made substantial progress in dynamic modelling related to the mTOR
network. The following is a summary of the key work and dynamic models produced to
date: in 2012 Dalle Pezze et al developed a dynamic model of the mTOR network to
analyse the activation and regulation of mTORC2. By exploring different model
topologies with different regulatory options upstream of mMTORC2 they were able to

disseminate that mTORC2 activation occurs independently of the TSC1/2 complex and
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is dependent on a PI3K variant [80]. In 2012 Sonntag et al extended this model to
explore the relationship between AMPK and mTOR. In this study, they also used
different model topologies to represent different modes of regulation of AMPK by the
TOR network (a total of 6 models were explored). Upon calibrating these models to
AMPK and mTOR related timecourse data they were able to select a model that
correctly predicted the experimental outcomes. They showed that IRS1 is the most
likely activator of AMPK within the mTOR network and that this in turn can be
regulated by a negative feedback loop involving downstream factors [171]. More
recently in 2016 Dalle Pezze et al examined the effect that amino acids have directly on
the mTOR network. As discussed above it is known that amino acids act to activate the
mTORC1 complex however it is not known as to whether there are other kinases within
the pathway which are also activated by amino acids. By combining computational
modelling with text-mining advanced proteomics it proved possible to delineate that
amino acids act to activate PI3K, AMPK and mTORC2 in an mTORC1 independent
manner [172]. Whilst each of these studies have focused on the short term effects of
perturbations on the mTOR network work has also been carried out investigating the
long term effects of perturbations on the mTOR network. In 2013 Smith et al
investigated the long term relationship between reactive oxygen species, the mTOR
network and FOXO transcription factors. They showed that long term nutrient
deprivation led to the upregulation of anti-oxidant defence systems however this also
lead to the loss of IRS1 receptors and FOXO over time. In contrast under higher
oxidative stress conditions the protective effect could be lost [173]. In addition to work
carried out by our group in collaboration with others a number of researchers have also
utilised computational modelling to investigate the mTOR network. In 2009 Jain and
Bhalla investigated the role of the mTOR network in protein synthesis within dendritic
cells. They showed that brain derived neurotrophic factor gate activated mTOR and
protein synthesis with the model not demonstrating bi-stability [174]. Also in 2009
Borisov et al investigated the crosstalk between the insulin signalling and epidermal
growth factor signalling networks using a dynamic modelling approach. Using this
approach they were able to identify key nodes within the networks that could be used as
possible drug combination targets in future studies [175]. Other dynamic models of the
MTOR network include Araujo et al who investigated the dynamic states of the mTOR

network in cancer and non-cancer phenotypes in addition to Caron et al who used a
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large scale modelling approach to identify all of the networks and crosstalk linked to the
two mTOR complexes [176, 177].

1.7 Objectives

The aim of this project is to compare and contrast the response of the mTOR network to

three separate life extending treatments with the following hypothesis.

Zoledronate and caloric restriction act upon both mTOR complexes. Therefore both
Zoledronate and starvation-restimulation should affect the mTOR network in similar
ways and elicit a similar response to one another following withdrawal and
restimulation in both MRC5 and MSCs. As acute rapamycin treatment only affects
mTOR complex 1 the effect of treatment withdrawal should produce a separate
response. The response of the mTOR network following rapamycin withdrawal should

differ to that of the other treatments however it should not differ between cell types.

This will be achieved by focusing on the following objectives:

1. To identify potential new methodologies capable of producing timecourse data
required for the calibration of dynamic models

2. To design and build a dynamic model capable of representing the response of
the mTOR network following serum-starvation, Zoledronate withdrawal and
Rapamycin withdrawal

3. To produce timecourse data measuring key components of the mTOR network
in response to each treatment in both MRCS5 cells and Mesenchymal stem cells

4. To calibrate the dynamic model in objective 2 using the timecourse data
produced in objective 3

5. To compare the response of MRC5 cells and MSCs in response to each

treatment
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2. Materials and methods
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2.1 Experimental methodology

2.1.1 General MRCS5 cell culture
MRC-5 fibroblasts were grown in Dulbecco's Modified Eagle Medium (DMEM) high

Glucose (Sigma-Aldrich, Dorset, UK D5796) supplemented with 10% foetal bovine
serum (FBS; Biosera, Ringmer, UK), 1% of L-Glutamine (Sigma-Aldrich, Dorset, UK
G7515) and 1% of Penicillin-Streptomycin (Sigma-Aldrich, Dorset, UK P4333). Cells
were cultured in 75cm? cell culture flasks (Fisher Scientific, Corning, vented cap, NY,
USA, 430641U) and incubated (Binder Incubators) in a humidified atmosphere at a
constant temperature of 37°C, 20% oxygen and 5 % CO? Once cells reached 80%
confluence they were removed from incubation and counted and split as follows, media
was aspirated off (Integra Vacusafe) and cells washed with 10ml of phosphor buffered
saline solution (PBS)( Sigma-Aldrich, Dorset, UK D5773). The PBS was removed by
aspiration as before and 2ml of Trypsin-EDTA 1x (Sigma-Aldrich, Dorset, UK T3924)
was added and the cells placed back into the incubator for two minutes. Following two
minutes incubation the cells were removed and trypsin effectiveness checked using a
Nikon TMS Microscope (Nikon UK, Kingston Upon Thames, UK). 8ml of Pre-heated
(37°C) DMEM (made as described above) was added to the cells to end trypsinisation.
Cells were then removed from flasks and added to a 50ml Falcon tube using 10ml
pipettes  (Sarstedt AG&Co.Sarstedtstrale  1,51588 Nimbrecht , GERMANY,
86.1254.001). For the purposes of cell counting 15ul was taken from the cell suspension
and the remaining solution centrifuged at 850rpm for five minutes (Jouan CR3). The
supernatant was then removed using an aspirator and cells resuspended using DMEM as
above with 2ml of DMEM added per one million cells. Cells were then re-plated onto
75cm? cell culture flasks as above with 1 million cells per flask (2ml of cell solution)
and 18ml of DMEM added to each flask to make a total of 20ml of DMEM per flask.

2.1.2 Cell counting

Cells were counted as follows: the 15ul taken from the Falcon tube was placed on a
haemocytometer (Brand, Fuchs-Rosenthal, 97861 Werthiem, Germany, 719805) and the
number of cells per square of the haemocytometer was counted for a minimum of three
squares. A calculation to ascertain an estimate for the number of cells within the Falcon
tube was then carried out as follows: The dimensions of each square of the

haemocytometer are 0.1 x 0.1 x 0.02 mm equalling a volume of 0.0002ml. Therefore the
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number of cells present in each square of the haemocytometer is equal to the number of
cells per 0.0002ml of media. This number was then multiplied by 5000 in order to
ascertain the number of cells per ml and then by the dilution factor to ascertain the total
number of cells present in the Falcon tube. Cells were then centrifuged for 5 minutes at

2000 rpm and the supernatant removed via aspiration.

2.1.3 Thawing MRCS5 cells
Prior to culturing, MRC5 cells were removed from -200°C storage in liquid nitrogen

and allowed to thaw completely. Cells were then removed from cyrotubes (Sarstedt AG
& Co.
Sarsted, tstralle 1,51588 Niimbrecht, GERMANY, 86.1254.001) and placed into a 50ml
Falcon tube and 9ml of DMEM (pre-heated to 37°C and made as above) per vial of cells
added to the Falcon tube. Cells were then centrifuged at 850rpm for 5 minutes and the
supernatant aspirated. Cells were then resuspended in 10ml of DMEM per million cells
and then 10ml of cell suspension added to 75cm2 cell culture flasks as above. 10ml of
DMEM was the added to each flask to make a total volume of 20ml per flask. Cells

were then incubated for 24 hours following which DMEM was removed and replaced.

2.1.4 Freezing and storage of MRCS5 cells
MRCS cells were prepared for storage as follows: Following a cell count any cells to be

stored were resuspended in DMEM as above however following the re-plating of any
cells still being grown, Dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Dorset, UK
D5418) was added to make a 10% DMSO solution with 1 million cells per 1ml of
solution. 1ml of this freezing mixture was then added to Cyrotubes and stored at -80°C

for 24 hours before being transferred into liquid nitrogen storage at -200°C.

2.1.5 General mesenchymal stem cell culture
Primary MSC’s (kindly supplied by Juhi Misra, the University of Sheffield, UK) were

grown in Dulbecco's Modified Eagle Medium (DMEM) high glucose, GlutaMAX
supplement (Thermofisher, Atley Way, Cramlington NE23 1WA 61965-026)
containing 10% HyClone™ Foetal Bovine Serum (U.S.), Human Mesenchymal Stem
Cell Screened (Fisher Scientific, NY, USA SH-30070.03M). MSC’s were cultured in
25cm? Falcon tissue culture treated flasks (Fisher Scientific, Corning incorporated, N,
USA, 353109) for one passage at a density of ~500,000 cells per flask until cells
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reached 80 % confluency. For the duration of cell culture, cells were incubated in a
humidified atmosphere at a constant temperature of 37°C, 20% oxygen and 5 % CO?
Upon reaching 80% confluency, cells were counted and plated out into 150cm? Falcon
tissue culture treated flasks (Fisher Scientific, Corning incorporated, NY, USA, 355001)
at a density of ~ 500,000 cells per flask. The procedure for splitting MSC cell cultures
was carried out as follows: Flasks were removed from incubation, culture media was
removed by aspiration with (Integra Vacusafe) and washed with PBS at room
temperature. The PBS was then removed by aspiration and Trypsin-EDTA (0.05%),
Phenol red (Fisher scientific, Gibco, NY, USA, 25300-054) (pre-heated to 37°C) added
for a duration of two minutes - the cells were placed back into the incubator during this
time. Once two minutes had elapsed, cells were taken out of the incubator and checked
under a microscope to make sure that they had detached prior to the addition of culture
medium (pre-heated to 37°C) to the cells resulting in the inhibition of the trypsin. Cells
were then transferred using Starstedt pipettes (Sarstedt AG & Co, Sarstedt, strafe,
151588 Nimbrecht, GERMANY, 25ml 86.1885.001, 10ml 86.1254.001, and 5ml
861253.001) to 50ml Falcon tubes. A volume of 15ul was taken from the 50ml falcon
tubes and used to perform a cell count as described above for MRC5 cells. Cells were
then re-suspended in culture medium (at a dilution of 2ml per million cells) prior to
being re-plated into 150cm2 Falcon tissue culture flasks as previously described at ~
500,000 cells per flask and a further 18ml of culture medium added to each flask. To
ensure an even coating of cells over the surface of the flask, each flask was swirled in a
figure of eight shape and then incubated as previously described. All cell culture

medium was pre-heated to 37°C in a water bath prior to use)
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2.1.6 Defrosting mesenchymal stem cell samples

Prior to culturing, MSC samples were removed from storage in liquid nitrogen at -
200°C and allowed to thaw until the sample was in solution but still in a semi-solid
state. The MSC sample was then transferred into a 15ml Falcon tube and 4ml of culture
medium added per 1ml of sample. Cells were then plated as previously described onto
25cm? Falcon tissue culture flasks at a density of ~500,000 cells per flask and culture
medium added to each flask to create a total of 10ml of culture medium per flask. After
a duration of 24 hours the culture medium was removed from each flask and replaced
with fresh medium to remove any DMSO (Sigma-Aldrich, Dorset, UK, D5879) from

each flask.

2.1.7 Freezing and storage of mesenchymal stem cell samples

MSCs were frozen in cyrotubes (Sarstedt AG & Co.
Sarstedt, straBe 1,51588 Nimbrecht, GERMANY, 86.1254.001) containing ~500,000
cells in a volume of 1ml. Following the splitting of cells (as detailed above), any cells
that were to be frozen down and stored were resuspended in culture medium and
centrifuged again at 2000 rpm for 5 minutes and the supernatant then removed. Cells
were then resuspended in a freezing solution containing 10% DMSO (Sigma-Aldrich,
Dorset, UK D5879) in HyClone™ Foetal Bovine Serum (U.S.), Human Mesenchymal
Stem Cell Screened red (Fisher scientific, Gibco, NY, USA, SH-30070.03M). This was
made up prior to cell culture in batches of 50ml and stored at 4°C (freezing solution was
used at this temperature to aid freezing process). Cyrotubes were then stored at -80°C
for a minimum of 24 hours prior to storage in liquid nitrogen at -200°C.

2.1.8 Lifespan extending treatments
Following a period of cell culture (as above), cells were plated, split and counted prior

to being plated onto 10cm plates for flow cytometry and onto six well plates for Reverse
Phase Protein Arrays. The details for this can be found in each methodologies
respective section (sections 2.1.9 and 2.1.15). Following a period of 24 hours after
splitting, cells were treated in the following ways: For Starvation-Restimulation culture
medium was aspirated and for MRC5 cells (DMEM) high Glucose (Sigma-Aldrich
D5796) supplemented with 1% of Penicillin-Streptomycin (Sigma-Aldrich P4333) were
added. For MSCs DMEM high glucose, GlutaMAX supplement (Thermofisher, 61965-
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026) was added to the cells. Following a period of 24 hours this treatment was stopped
by aspirating all culture medium from the cells and adding DMEM high Glucose
(Sigma-Aldrich D5796) supplemented with 10% foetal bovine serum (Supplier), 1% of
L-Glutamine (Sigma-Aldrich G7515) and 1% of Penicillin-Streptomycin (Sigma-
Aldrich P4333) to the MRC5 cells and DMEM high glucose, GlutaMAX supplement
(Thermofisher, 61965-026) containing 10% HyClone™ Foetal Bovine Serum (U.S.),
Human Mesenchymal Stem Cell Screened (Fisher Scientific, SH-30070.03M) to the
MSCs. For Rapamycin treatment, both cell types had their cell culture medium removed
and were treated with 10nM of Rapamycin (Enzo Life Sciences, Exeter, U.K.) diluted
into either DMEM high Glucose (Sigma-Aldrich D5796) supplemented with 10% foetal
bovine serum (Supplier), 1% of L-Glutamine (Sigma-Aldrich G7515) and 1% of
Penicillin-Streptomycin (Sigma-Aldrich, P4333) (MRC5) or DMEM high glucose,
GlutaMAX supplement (Thermofisher, 61965-026) containing 10% HyClone™ Foetal
Bovine Serum (U.S.), Human Mesenchymal Stem Cell Screened (Fisher Scientific, SH-
30070.03M) (MSCs). Following a period of 24 hours the Rapamycin treated cell media
was aspirated and replaced with either DMEM high Glucose (Sigma-Aldrich D5796)
supplemented with 10% foetal bovine serum (Supplier), 1% of L-Glutamine (Sigma-
Aldrich G7515) and 1% of Penicillin-Streptomycin (Sigma-Aldrich P4333) (MRC5) or
DMEM high glucose, GlutaMAX supplement (Thermofisher, 61965-026) containing
10% HyClone™ Foetal Bovine Serum (U.S.), Human Mesenchymal Stem Cell
Screened (Fisher Scientific, SH-30070.03M) (MSCs). For Zoledronate cells were
treated with 1uM of Zoledronate (Kindly provided by Mellanby bone Research Group,
University of Sheffield). This was carried out as follows, after a period of 24 hours cell
culture medium was aspirated and replaced with either DMEM high Glucose (Sigma-
Aldrich D5796) supplemented with 10% foetal bovine serum (Supplier), 1% of L-
Glutamine (Sigma-Aldrich G7515) and 1% of Penicillin-Streptomycin (Sigma-Aldrich
P4333) (MRC5) or DMEM high glucose, GlutaMAX supplement (Thermofisher,
61965-026) containing 10% HyClone™ Foetal Bovine Serum (U.S.), Human
Mesenchymal Stem Cell Screened (Fisher Scientific, SH-30070.03M) (MSCs)
containing 1puM of Zoledronate. After a period of 72 hours this was aspirated and
replaced with either DMEM high Glucose (Sigma-Aldrich D5796) supplemented with
10% foetal bovine serum (Supplier), 1% of L-Glutamine (Sigma-Aldrich G7515) and
1% of Penicillin-Streptomycin (Sigma-Aldrich P4333) (MRC5) or DMEM high
glucose, GlutaMAX supplement (Thermofisher, 61965-026) containing 10%
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HyClone™ Foetal Bovine Serum (U.S.), Human Mesenchymal Stem Cell Screened
(Fisher Scientific, SH-30070.03M) (MSCs). Details for each treatment are shown in
Table 2.1.
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Table 2.1: Life extending treatment overview. An overview of how each lifespan

extending treatment was carried out for both MRC5 and MSC cells. Both the treatment

details and restimulation details are shown.

Treatment Treatment Methodology Restimulation Methodology

Starvation- MRC5 - DMEM high MRC5 - DMEM high Glucose,
Restimulation Glucose supplemented with supplemented with 10 % foetal
1% Penicillin-Streptomycin  bovine serum, 1% L-Glutamine and

MSC- DMEM high Glucose, 1% Penicillin-Streptomycin
GlutaMAX MSC - DMEM high glucose
supplemented with 10 % Hyclone

foetal bovine serum

Rapamycin MRC5 — 10nM Rapamycin MRC5 - DMEM high Glucose,
diluted in DMEM high supplemented with 10 % foetal
Glucose supplemented with bovine serum, 1% L-Glutamine and
1% Penicillin-Streptomycin 1% Penicillin-Streptomycin
MSC- 10nM Rapamycin MSC - DMEM high glucose
diluted in DMEM high supplemented with 10 % Hyclone

Glucose, GlutaMAX foetal bovine serum

Zoledronate  MRC5 — 1uM Zoledronate MRC5 - DMEM high Glucose,
diluted in DMEM high supplemented with 10 % foetal
Glucose supplemented with bovine serum, 1% L-Glutamine and
1% Penicillin-Streptomycin 1% Penicillin-Streptomycin
MSC- 1uM  Zoledronate MSC - DMEM high glucose
diluted in DMEM high supplemented with 10 % Hyclone

Glucose, GlutaMAX foetal bovine serum
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2.1.9 Flow cytometry methodology
Prior to the following protocol, cells were cultured as above until the required number

of cells was obtained for each experiment. The protocol below was used for both MSC
and MRCS5 cells except were specified. Following culturing, cells were removed from
incubation and split and counted as above. Following a cell count, cells were plated out
on 10cm (Fisher Scientific, Corning, vented cap, NY, USA, 430167) at a density of
500000 cells per plate, with a 6ml of DMEM culture media (see above) added to make a
total of 8ml per plate and incubated at 37°C, 5% CO? for 24 hours. Following this
incubation period the culture media was removed from each plate and replaced with
DMEM containing Zoledronate, Rapamycin or DMEM containing only 1% of
Penicillin-Streptomycin for starvation-Restimulation (Sigma-Aldrich P4333) made as in
2.1.8. Timecourse experiments were then carried out for each of the three treatments
(Table 2.2).

2.1.10 Cell fixation
Cells were fixed as follows: Replicates were removed from incubation and treatment

media removed. Each replicate was then washed using 5ml of ice cold PBS which was
then removed and 1ml of Trypsin added to each plate (Trypsin specific to each cell type
see above). Cells were then incubated for two minutes before 4ml of ice cold DMEM
was added to end trypsinisation and each replicate removed from their plates and added
to a 15ml Falcon tube. Cells were then centrifuged to remove the supernatant. This step
and all wash steps that follow were specific to each cell type. For MRC5 cells
centrifugation was carried out 850 rpm for 5 minutes whilst for MSC’s centrifugation
was carried out 2000 rpm for 5 minutes. Following centrifugation the supernatant for
each replicate was removed by tipping the supernatant into a waste tube (this process
was used following each wash step carried out) and cells resuspended in 1 ml of para-
formaldehyde (PFA)(Thermoscientific, Rockford, IL 61101, USA, 28908). Each
replicated was then incubated in a water bath at 37°C for 10 minutes after which cells
were centrifuged and the PFA removed as above. Following PFA removal cells were
the resuspended in PBS and centrifuged to wash off the PFA (henceforth this will
process will be referred to as a wash step). The PBS was then removed as above and the
wash process repeated before cells were suspended in 0.1% sodium Azide (Sigma-
Aldrich, Dorset, UK S8032) and stored until staining.
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Table 2.2: Timecourse data points for flow cytometry datasets. The time points for

the imagestream flow cytometry experiments are shown here for both during treatment

and post re-stimulation for each treatment.

Timecourse Treatment

During Starvation-Restimulation Rapamycin  Zoledronate
Treatment

0 Minutes X X X

30 Minutes X X

60 Minutes X X

24 Hours X X X

48 Hours X

72 Hours X
Following

Restimulation

0 Minutes X X X
5 Minutes X X X
15 Minutes X X X
30 Minutes X X X
60 Minutes X X X
2 Hours X X X
4 Hours X X X
8 Hours X X X
24 Hours X X X
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2.1.11 Cell permeabilisation
Cells were removed form storage in Sodium Azide by washing as above and then

resuspended in 2ml of PBS and a second wash step performed. Following the second
wash the PBS was removed by pouring it into a waste container and cells resuspended
in 2ml of blocking buffer (49ml PBS, 1ml FBS) for a period of 1 hour at room
temperature following which samples were centrifuged and the supernatant removed as
above. A further wash was then carried out using 2ml of PBS before cells were
resuspended in 2ml of 0.1% Triton-X 100 (Sigma-Aldrich, Dorset, UK T8787) for a
period of 15 minutes at room temperature following which the Triton-X 100 was

removed by centrifugation as above. Cells were then washed with 2ml of PBS.

2.1.12 Cell staining
Immediately following permeabilisation primary antibodies were added to each

replicate and incubated for 12 hours. For each step, antibodies were diluted to their
required concentration using PBS in a total volume 100ul. Following primary antibody
staining cells were washed as above and second wash with 2ml of PBS carried out.
Cells were then incubated with secondary antibodies in the same way as for primary
antibodies for a period of 1 hour in the dark. After this incubation cells were washed as
above with a second wash with 2ml of PBS carried out. Cells were then resuspended in
1ml of PBS and transferred to 2ml flow cytometry tubes. Samples were then fed
through a BD FACSKANTO?2 flow cytometer (BD Biosciences, San Jose, CA 95131)
and results analysed using Flowing Software 2 (Cell Imaging Core of the Turku Centre
for Biotechnology, Finland).

2.1.13 Cell permeabilisation imagestream
Cells were removed form storage in Sodium Azide by washing as above and then

resuspended in 200ul of PBS. Cells were then transferred to a 96 well plate for
permeabilisation and staining. Following transfer to the 96 well plate cells were
resuspended in 200ul of staining buffer (49ml PBS, Iml FBS) and washed by
centrifugation at 350G (this is the wash stage for all further imagestream work). The
supernatant was then flicked off and cells were resuspended in 100ul of
permeabilisation buffer (0.05ml Triton-X 100 Sigma-Aldrich T8787, 49ml PBS, 1ml
FBS) for a period of 5 minutes at room temperature following which another 100ul of
staining buffer was added to the cells before the Triton-X 100 was removed by

centrifugation as above. Cells were then washed with 200ul of staining buffer.
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2.1.14 Cell staining imagestream
Immediately following permeabilisation primary antibodies were added to each

replicate and incubated for 1 hour. For each step, antibodies were diluted to a 1:100
concentration using staining buffer. Following primary antibody staining 100ul of
staining buffer was added to each well and cells washed as above and second wash with
200ul of staining buffer carried out. Cells were then incubated with secondary
antibodies in the same way as for primary antibodies for a period of 30 minutes in the
dark. After this incubation 100ul of staining buffer was added to each well and cells
washed as above with a second wash with 200ul of staining buffer carried out. Cells
were then resuspended in 60ul of staining buffer and transferred to 1.5ml Eppendorf
tubes (Starlab, Milton Keynes, MK14 5BU, S1615-5550). Samples were then fed
through an Imagestream flow cytometer (Amnis Imagestream 2, Merck-Millipore,
Frankfurter, Strafe, 250 64293, Darmstadt, Germany) and results analysed using (Ideas
6.2 Merck-Millipore, Frankfurter, Strape, 250 64293, Darmstadt, Germany).

2.1.15 Reverse phase protein array preparation
Cells were cultured as above prior to reverse phase protein array (RPPA) being carried

out. Time courses were generated for each of the three treatments as shown in Table 2.3.
Prior to the following protocol, cells were cultured as above until the required number
of cells was obtained for each experiment. The protocol below was used for both MSC
and MRCS5 cells except where specified. Following culturing, cells were removed from
incubation and split and counted as above. Following a cell count, cells were plated out
on six well plates (Fisher Scientific, Corning, NY, USA, 07-200-80) at a density of
200000 cells per plate for MRC5 cells and 100000 cells per plate for MSCs, with a 3ml
of DMEM culture media (see above) added to make a total of 4ml per plate and
incubated at 37°C, 5% CO? for 24 hours. Following this incubation period the culture
media was removed from each plate and replaced with DMEM containing Zoledronate,
Rapamycin or DMEM containing only 1% of Penicillin-Streptomycin for starvation-
restimulation (Sigma-Aldrich P4333) made as in 2.1.8. Following treatment, cell
culture medium was aspirated and replaced with either DMEM high Glucose (Sigma-
Aldrich D5796) supplemented with 10% foetal bovine serum, 1% of L-Glutamine
(Sigma-Aldrich G7515) and 1% of Penicillin-Streptomycin (Sigma-Aldrich P4333)
(MRC5) and DMEM high glucose, GlutaMAX supplement (Thermofisher, 61965-026)

containing 10% HyClone™ Foetal Bovine Serum (U.S.), Human Mesenchymal Stem

41



Cell Screened (Fisher Scientific, SH-30070.03M) (MSCs) for the remainder of the time
course. For each time point cell culture medium was aspirated and 1ml of ice cold PBS
added to each well. This was then aspirated and a further 1ml of ice cold PBS added and
aspirated. Following the PBS washes 40ul of RPPA lysis buffer (Kindly supplied by
Nan Wang, Newcastle University) was added to each sample. Cells were then scraped
using a cell scrapper until all cells had been lifted from the plate surface and the cells
and lysis buffer transferred from each well into a 1.5ml Eppendorf tube. Samples were
then sonicated for a period of 15 mins. This was carried out as three sets of 5 minutes,
with 10 sonication cycles of 15 seconds of sonication followed by 15 seconds of no
sonication at a temperature 4°C. Samples were then stored at -20 °C until transfer to the

Newecastle University Proteins and proteomics unit (NUPPA) RPPA facility.

2.1.15 Reverse phase protein array procedure
Samples were centrifuged at 13000 rpm for 5 minutes and the supernatant collected into

1.5ml Eppendorf tubes and the pellet discarded. 10ul of supernatant was then
transferred to a 96 well plate and diluted with 15ul of RPPA lysis buffer (Kindly
supplied by Nan Wang, Newcastle University) and 100ul of spotting buffer (Zeptosens
Spotting Buffer CSBL1, Zeptosens Ltd). Serial dilutions of 100%, 75%, 50% and 25%
were then made using a Beckmans Coultier BioMEK liquid handler, a 1:5 solution of
lysis buffer and spotting buffer (Zeptosens Spotting Buffer CSBL1) and plated into a
384 well plate. Samples were then stored overnight at -20°C prior to plating. Samples
were plated on to Zeptosens Protein Micro-ArrayChips (Zeptosens Protein MicroArray-
Chips, Zeptosens Ltd) using a SIM Nano plater 2.1 (SIM) alongside a reference plate.
Following printing the micro-chips where placed inside a vaporiser loaded with BB1
Blocking buffer (Zeptosens blocking buffer BB1, Zeptosens Ltd) for a period of one
hour after which they were submerged in distilled water for 1 second six times. Micro-
chips were then centrifuged at 300 rpm to remove any excess water this wash step was
then repeated a further two times after which any remaining water was removed and the
micro-chips loaded onto a staining rack. Each individual sample set was then washed
three times by pipetting 100ul of CABI1 assay buffer (Zeptosens Assay buffer CABI,
Zeptosens Ltd) into each slot ensuring that no air bubbles remaining on the micro-
chips. 80ul of each primary antibody were added to their designated sample set and
staining for 16 hours. Figure 2.1 displays a representative staining rack set up. Primary

antibodies were removed and each individual sample set was then washed three times
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by pipetting 100ul of CABI1 assay buffer into each slot. 80ul of secondary antibody
were then added to every sample set and left to stain for a period of two hours after
which the antibody was removed and a further three washes with blocking buffer
carried out. Following the final wash the CAB1 assay buffer was not removed from the
sample sets. The staining rack was then placed inside a Zeptosens imager and each

sample set imaged and quantified for their respective antibody.
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Table 2.3: Time course data points for Reverse Phase Protein Array datasets. The

time points for the RPPA time courses are shown here for both during treatment and

post re-stimulation for each treatment.

Timecourse Treatment

During Starvation-Restimulation Rapamycin  Zoledronate
Treatment

0 Minutes X X X

30 Minutes X X

60 Minutes X X

24 Hours X X X

48 Hours X

72 Hours X
Following

Restimulation

0 Minutes X X X
1 Minutes X X X
3 Minutes X X X
5 Minutes X X X
10 Minutes X X X
20 Minutes X X X
30 Minutes X X X
60 Minutes X X X
2 Hours X X X
4 Hours X X X
8 Hours X X X
24 Hours X X X
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Sample set- Each sample set has one
primary antibody added to it >
Micro-Chip Rack — Each rack can

hold six Micro-chips

Micro-Chip holder- Each Micro-chip

has six sample sets printed onto it

Figure 2.1: Zeptosen Micro-Chip staining apparatus an overview of the staining

apparatus used during the RPPA process. Each micro-chip has six sample sets printed
onto it allowing for six different antibodies per micro-chip. Each rack has room for six
micro-chip holders which hold the microchips in place and form a seal around each

sample set preventing contamination.
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2.2 Systems biology dynamic modelling
Throughout this work a systems biology approach was used. A dynamic computational

model based on previous research was constructed and used to design, plan and carry
out experimental procedures aimed to inform the model. The dynamic modelling
approach carried out was as follows; firstly a computational model was defined using
previous literature knowledge and data. Secondly the model topology is simplified to
represent a network capable of answering the question of interest and ODE’s used to
define the reactions within the model. Thirdly the model was parameterised using
timecourse data. Once the model is calibrated it can then be used as a tool with which to
further investigate the network of interest. It is often the case that that a dynamic model
is produced to simulate the response of a network to a specific perturbation for example
the effect of Rapamycin on the mTOR network. Following calibration it is possible to
perturb the network further by increasing or decreasing the relative expression of a
particular species within the model. This, for example, is often carried out in models
investigating the effect of cancer on different biological networks where oncogenic
proteins become dysregulated. Further analysis of the dynamic model predictions can be
used to plan further experiments. If these experiments fail to support the model
predictions then a change in network topology is performed and the model recalibrated.
The general procedure for systems biology dynamic modelling is shown in figure 2.2.
The dynamic modelling approach was chosen for this work as it allowed a direct
comparison of a single model reacting to three separate perturbations and in addition the
MTOR network has already been proven to be an ideal target for this systems biology

approach.
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Experimental Define Network
Validation and mathematical
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model simulations

Fig 2.2: System Biology dynamic modelling workflow. An overview of the systems

biology dynamic modelling work flow is shown here. Following the integration of
existing knowledge and data a computational network is defined and time course
experiments carried out. Parameter estimation is carried out and predictions made which
are validated with experimental data and reviewed using previously published molecular
biology. Alternatively following model definition model predictions can be made and

experimentally validated.
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2.2.1 SBGN and SBML
In order to construct the original model topology the program CellDesigner 4.4 was

used [178]. This allowed for the creation of model in Systems Biology Graphical
Notation (SBGN) a language that represents networks visually [179]. The advantage of
using SBGN is that it was specifically designed for this purpose and provides an
industry standard for the production of dynamic models. Following the original
definition of the network topology the model was exported in Systems Biology Mark-up
Language (SBML) and imported into COPASI (4.15-4.20) [160]. As with SBGN,
SBML provides a standard computational language for dynamic modelling that is
compatible with a large number of different modelling platforms. Whilst in this work
COPASI was used to perform simulations and to refine the network structure the final
model was exported as SBML in order to allow for the submission to peer reviewed

journals.

2.2.2 Parameter estimation
Parameter estimation is the process of estimating a given parameter set based on

experimental data. Parameter estimation was performed using Copasi’s parameter
estimation function [162, 167]. Initial parameter estimations were carried out on a local
PC using the following settings, Randomised start values, lower limit 1E and upper
limit 1E®. The genetic algorithm was selected to perform the initial parameter
estimations as this method provided a global deterministic algorithm which was neither
computationally or processor time demanding. Initial parameter estimations were used
to inform and refine the model topology prior to full calibration. Once a final model
topology was in place, a full calibration was performed utilising a computational
cluster. The parameter estimation was set up as described using the genetic algorithm
(Number of generations = 300, Population size =150, Random number generator = 1,
Seed = 0), in addition the parameter scan function was utilised as follows, executable =
yes, Repeat number of iterations = 20, sub task = parameter estimation. This was then
submitted to a computer cluster and a Python script (Kindly provided by Ciaran Welsh)
used to perform 10000 estimation repeats.

Following successful completion of 10000 parameter estimations each repeat, the
python package PyCotools was used to rank each parameter fit by its chi-squared value.
The chi-squared statistical test is used to determine whether or not the observed

difference between two sets of data occurs due to chance. Using this measure it is
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possible to analyse which set of simulated parameter values provides the closest fit to
the measured data. For each model the parameter set with the lowest chi-squared value
inserted into the model and analysed using the parameter estimation task in Copasi. For
this estimation the current solution statistic algorithm was used and data collected for

each of the measured variables within the model.

Following successful parameter estimation using the genetic algorithm the updated
parameter set was transferred back to a computer cluster for further refinement using the
Hooke and Jeeves algorithm. As this algorithm is a local search algorithm it only
searches the parameter space around the previously defined parameters. This repeat was
carried out as above with the following changes, randomised start values = no, Hooke
and Jeeves (lteration limit = 50, Tolerance = 1E™, Rho = 0.2), and 2000 parameter

estimations carried out.
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2.2.3 Pycotools
Pycotools is python package developed at Newcastle University by Ciaran Welsh. It

allows a user to programmatically control the Copasi program to achieve their desired
objectives. Pycotools was used throughout this work in chapters 4 and 5 to run multiple
parameter estimations and then to extract the parameter estimation with the lowest
residual sum of square score in order to analyse the model fit achieved. In chapter 6 an
updated version of Pycotools was then used to carry out in depth analysis of the model

fits including time course ensembles and parameter variation analysis.

2.2.4 Statistics
Normalised experimental data are shown as the mean value with error bars of plus and

minus the standard error of the mean calculated in Microsoft Excel (2010). All graphs
were plotted using Sigmaplot 12.5 (Systat Software Inc; San Jose, CA, USA).
Quantification of protein expression for RPPA samples was carried out using Zeptoview
3 (Zeptosens Ltd). The Pearsons y* value was obtained and the residual sum of squares
value for all observables calculated using Copasi. A p-value was calculated for the
model analysed in chapter 4 using the RSS obtained by each model and the degrees of
freedom calculated from the data as follows (N columns -1)* (N Rows -1). In chapter 6
a t-test was performed using Microsoft excel (2010) and a P-value obtained with a value

of below 0.05 considered significant.
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3. A comparison of methodologies for the
production of dynamic model calibration
data
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3.1 Introduction
The production of quantitative time course data for calibration and validation of

computational models is a key aspect of dynamic modelling. A range of experimental
methodologies are available for generating such data at both the RNA and protein
levels. In the case of RNA, microarrays or RNA-seq are the two high-throughput
methodologies most commonly used to generate large data sets and qPCR for data sets
with a smaller scope. The choice depends on whether the data is to be used for
modelling gene regulatory networks or to calibrate a model where a particular RNA
plays a role. In the case of proteins, mass spectrometry methods are available for high-
throughput measurement but have not been commonly used for the calibration of
dynamic models. The majority of computational modelling studies do not require such
large datasets and low throughput methods such as western blotting are usually
sufficient. Western blotting is generally accepted as a reliable and repeatable method for
producing protein level measurements. It is however time consuming and potentially
error prone and therefore not ideally suited to the production of data sets required for
calibrating sets of dynamic models as in this work. Experience within our research
group has shown that it would take around one person year to develop a model for one
treatment using western blotting for data generation. This project requires the
development of six calibrated models so it was necessary to investigate alternative
methodologies that could replicate the quality of results produced by western blotting
but which would be more time efficient. A number of alternatives to western blotting
exist for protein level quantification. These include Reverse Phase Protein Arrays
(RPPA), Intracellular Flow cytometry, Simple Western, mass cytometry and mass
spectrometry. From these it was decided that RPPA and flow cytometry provided the
most likely alternatives to western blotting. In addition to the possibility of being more
time efficient than western blotting both methodologies were considered reliable and
robust and had both previously been successfully used in systems modelling studies
[180, 181].

53



3.2 Aims and objectives
e To provide an overview of two alternative methodologies to western blotting

1. To analyse two pilot studies investigating the quality of data produced by each
method
2. To analyse which technique should be taken forward to produce complete a data

set with  which a dynamic model of the mTOR network can be calibrated

3.3 Reverse phase protein arrays
Developed in 2001 by Paweletz et al the Reverse Phase Protein array technology is

based on gene expression microarrays widely used transcriptional research, its creation
followed previous attempts to create a protein microarray [182] [183]. Previous
iterations were designed using glass slides with recombinant proteins or antibodies
bound to them (in the same way that mRNA strands are bound to a microarray chip)
prior to the sample of interest being added to the chip allowing for the detection of
protein-protein interactions or protein-antibody interactions. RPPA differs to these early
protein microarrays in that it works in the opposite way to a microarray, hence the
‘reverse phase’ in its title [184]. In RPPA the samples of interest are printed directly
onto the slide prior to incubation with primary antibodies. A secondary antibody
conjugated to a fluorophore is then used as a read out for protein activity. Using this
method it is in principle possible to perform measurements of hundreds of proteins and
samples. RPPA is however dependent on highly specific antibodies and it is this
requirement that has thus far slowed the uptake of RPPA as a major analytical
methodology for protein analysis. There are currently several efforts underway to create
a library of validated antibodies for RPPA that can be accessed by researchers
worldwide [185].

To date RPPA has proved a useful tool in several areas such as profiling of
dysregulated protein networks in tumour samples from cancer patients and for
validation of biomarker discoveries [186]. A primary of example of its use to date has
been its use as one of the platforms used in a multi-omic molecular profile study
investigating personalised treatment in breast cancer progression [187]. This study

utilised RPPA to study the relative protein activation, phosphorylation and expression in
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metastatic breast cancer patients. From the data generated by RPPA in combination with
transcriptional methodologies the authors were able to suggest personalised therapeutic
targets for each of the 25 patients in the study. Whilst the use of RPPA in the calibration
of dynamic network models is not yet wide spread there are some notable examples. In
2012 Peng et al used RPPA to examine differences in protein levels in myelodysplastic
syndromes compared to control samples. The authors compared 179 different antibodies
across 10 samples and five time points. They used a subset of this extensive dataset to
parameterise a dynamic model of the p38 mitogen-activated protein kinase (MAPK)
pathway which enabled them to identify a shift in regulation for the degradation of key
proteins from JNK to p38 pathways [180]. In addition RPPA has also been utilised in
the development of a computational model of the HER-2 targeting receptor tyrosine
kinase (RTK) inhibitor Trastuzumab a common anti-cancer therapeutic. Following
calibration of a dynamic model with RPPA generated data the authors showed that
PTEN protein expression was the key factor in resistance to HER-2 targeting
therapeutics such as Trastuzumab [188]. Due to its previous use in the development of
dynamic models it was decided that RPPA could offer the medium-throughput

alternative to western blotting required for this project.

3.4 Reverse phase protein array produces consistent time course data

suitable for dynamic modelling
To test the suitability of RPPA for the production of time course data sets relevant to

this work a time course experiment was carried out using MRC5 cells. For this initial
study cells were treated using the starvation-restimulation protocol described in section
2.1.8. A timecourse of 60 minutes following restimulation was chosen consisting of six
time points (0, 5, 10, 20, 30 and 60 minutes post restimulation) (figure 3.1). As a first
examination of RPPA’s suitability to produce time course data for the mTOR network a
set of six antibodies relating to both mTORC1 and mTORC2 were selected. These
consisted of mMTORC1_pS2448, AKT_pS473, P70S6K_pT389, S6 pS235/236, 4E-
BP1 pT37/46 and 4E-BP1 pS65. The initial run of RPPA proved successful at
producing consistent time course data of a high standard for the antibodies tested (figure
3.1). Of particular note was the consistent data between mTORC1_pS2448 and its
downstream read out S6_pS235/236 (figure 3.1 A+D). In contrast measurement for the
two 4E-BP1 residues differ in their profile when compared to the upstream

MTORC1 _pS2448 output, but when compared against each other they display similar
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expression profiles (figure 3.1 E+F). Whilst five of the antibodies produced similar
outputs the P70S6K_pT389 profile differs significantly from each of the other profiles
(figure 3.1 C). In addition for the majority of data points tested displayed low standard
deviations with the exception of the sixty minute time point.. The exception to this was
the S6K_pT389 antibody which had a very low standard deviation for the sixty minute
time point (figure 3.1 C).

As mentioned in section 3.3 one of the main drawbacks of RPPA is its dependence on
specific antibodies. In order to address this it was necessary to carry out a series of
quality control experiments on the antibodies currently being examined. As part of the
initial time course a single repeat was treated with alkaline phosphatase as a means to
remove all phosphorylation events within each sample, this repeat was processed
alongside the experimental repeats. As the alkaline phosphatase acts to remove
phosphate groups bound to proteins it can be assumed that any fluorescence detected
during the imaging of these samples is either auto-fluorescence or non-specific binding
of the antibody in question. The alkaline phosphatase repeat can then be compared to
the experimental results to help reveal the specificity of a particular antibody (figure
3.2). In the case of four of the antibodies (INMTOR_pS2448, AKT_pS473, S6_pS235/236
and 4E-BP1 pS65) whilst there is some fluorescence detected in the alkaline
phosphatase repeat these values are significantly lower than those of the corresponding
experimental repeats (figure 3.2 A, B, D, F). This therefore suggests that these four
antibodies are suitable for use with RPPA especially in the case of S6_pS235/36.
However two of the antibodies display high fluorescence even when treated with
alkaline phosphatase (4E-BP1 pT37/46 and S6K_pT389) (figure 3.2 C+E). For both of
these antibodies their RFI is of a similar value whether or not they have been treated
with alkaline phosphatase suggesting that these particular antibodies have a high
amount of non-specific binding. Neither of these antibodies are therefore suitable for
further analysis with RPPA. This may also explain why the profile for S6K_pT389

differs from all of the other antibodies tested.
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Figure 3.1: RPPA is capable of producing calibration time course data for a

dynamic_model. Sixty minute time course following a 24 hour starvation period. Cells were

restimulated at O hours and relative fluorescent intensity measured at each time point (n=2) (Mean +/-
SEM). (A) mTORC1_pS2448, (B) AKT_pS473, (C) P70S6K_pT389, (D) S6_pS235/236, (E) 4E-
BP1 pT37/46 and (F) 4E-BP1_pS65.
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Figure 3.2: Alkaline phosphatase treatment reveals the level of non-specific

binding for each antibody. Level of relative fluorescent intensity for two experimental repeats

(R1-Green, R2- Red) compared to alkaline phosphatase treatment (Blue). Antibodies measured were as

follows (A) mTORC1 pS2448, (B) AKT pS473, (C) P70S6K_pT389,

BP1_pT37/46 and (F) 4E-BP1_pS65.
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In addition to performing alkaline phosphatase treatment it was thought prudent to
assess the reliability of RPPA not just between replicates but also between different
antibodies for the same phospho-site. An additional three antibodies for AKT_pS473,
S6_pS235/236 and 4E-BP1_pS65 from different sources were tested (Figure 3.3). The
second antibodies tested for both AKT_pS473 and S6_pS235/236 displayed lower RFI
values to the original antibodies whilst the second 4E-BP1_pS65 antibody displayed
increased RFI to the original (Figure 3.3 B, D, E). However whilst the RFI values
between antibodies differs the overall profile remains the same with similar standard
deviations for each time point being observed between related antibodies and as with
the original antibodies the sixty minute time point had the largest standard deviation in
all three of the new antibodies (Figure 3.3 A-F).

As with the original set of six antibodies it was necessary to investigate if the new
antibodies being tested showed non-specific binding when treated with alkaline
phosphatase. A comparison was therefore carried out against the respective antibodies
from the original six antibodies tested (Figure 3.4). In the case of AKT_pS473 both
antibodies displayed similar levels of RFI in the alkaline phosphatase treated repeat
when compared to the RFI of the experimental repeats (figure 4.4 A+B). Whilst the
second antibody for S6_pS235/236 showed lower variation between repeats it had a
much lower RFI than the first antibody tested (figure 3.4 C+D). This meant that
although the level of RFI was low in the alkaline phosphatase repeat for this antibody it
still represented a significant amount of the overall RFI in the experimental results
suggesting that for further RPPA the original antibody for S6 pS235/236 should
continue to be used (figure 3.4 C+D). In contrast the second 4E-BP1 pS65 antibody
tested showed lower RFI values in the alkaline phosphatase repeat when compared to
the original antibody (figure 3.4 E+F). Therefore in any subsequent RPPA analysis the
second antibody tested should be the antibody used to detect the levels of expression for
this protein. Following these experiments it can be concluded that RPPA is capable of
producing consistent and reliable time course data for the purpose of calibrating

dynamic models.
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Figure 3.3: RPPA output remains consistent between different antibodies for the

same protein.Sixty minute time course following a 24 hour starvation period. Cells were restimulated

at 0 hours and relative fluorescent intensity measured at each time point (n=2) (Mean +/- SEM). The

following outputs for two antibodies for the same protein but form separate sources are compared. (A-B)

AKT _pS473, (C-D) S6_pS235/236, (E-F) 4E-BP1_pS65.
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binding between separate antibodies for the same protein. Level of relative fluorescent

intensity for two experimental repeats (R1-Green, R2- Red) compared to alkaline phosphatase treatment

(Blue). The following outputs for two antibodies for the same protein but form separate sources are
compared. (A-B) AKT_pS473, (C-D) S6_pS235/236, (E-F) 4E-BP1_pS65.
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3.5 Intracellular flow cytometry
Classically the core focus of flow cytometry has been the measurement of extracellular

cell markers, however over the last decade there has been major advancements in the
development of flow cytometers, antibodies and staining procedures [189]. This has led
to the increased ability to measure the activation or inhibition of intracellular proteins
using flow cytometry [190, 191]. Intracellular flow cytometry involves the
permeablisation of fixed cells prior to detection of intracellular protein-epitopes using
antibodies. Antibodies are either conjugated directly to a fluorophore or a primary
antibody followed by a secondary antibody conjugated to a fluorophore is used. Cells
are then passed through a flow cytometer which excites the flourophores using lasers to
generate different wavelengths of light. This light emitted from the fluorphores then
passes through a series of opitcal filters optics which separate the light emission based
on wavelengths allowing for the detection of different flurophores in the same sample.
The number of different antibodies and fluorophores that can be detected is determined
by the flow cytometry system however as a standard it should be possible to analyse up
to eight serparate antibodies on a standard instrument. Whilst the ability of intracellular
flow cytometry to produce time course data capable of calibrating intracellular based
dyanmic models has yet to be explored the use of flow cytometry in systems modelling
is well documeted. Flow cytometry provided the principle technique for the analysis of
microbial cell population dynamics and is commonly used in cancer research to identify
cell population dynamics [181, 192]. It has also previously been shown to be capable of
producing intracellular time course data for protein networks including the mTOR
network [193, 194]. With the ability to analyse multiple proteins within each sample it
is possible that intracellar flow cytometry could provide a viable alternative to western
blotting for the produciton of calibration data for dynamic modelling. Here we present a
pilot experiment with the aim of testing intracellular flow cytometrys ability to produce

time course data for the mTOR network.
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3.6 Intracellular flow cytometry fails to provide consistent data

suitable for dynamic modelling
In order to test the ability of intracellular flow cytometry to produce time course data

suitable for calibrating dynamic models a pilot experiment was designed. An initial
study was carried out using MRC5 cells treated with 50uM of the mTOR inhibitor
Torinl for a period of 24 hours. For the purposes of this study only two time points
were examined with samples generated at time O hours prior to Torinl treatment and
following 24 hours Torinl treatment. As this was a preliminary study it was not felt
necessary to fully test the capabilities of the flow cytometry systems by testing a large
number of antibodies with varying conjugated fluorophores and so it was decided that
only two antibodies should be tested. The two antibodies being studied consisted of
AKT _pT308 conjugated to alexa-488 and mTORC1 pS2448 conjugated to PECY7,
with the antibodies chosen to minimise the requirement for compensation between the
conjugated fluorophores. Following treatment with Torinl for 24 hours there was a
slight decrease in mMTORC1_pS2448 fluorescence (figure 3.5 A-D) whilst control cells
showed no decrease in PECY7 fluorescence (figure 3.5 E-H). Due to limited
fluorescence from the AKT_pT308 antibody used it was not possible to determine if
there was any change in AKT_pT308 activity (Appendix A). Whilst there was an
indication from this study that flow cytometry could provide time course data suitable
for dynamic model calibration the results were inconclusive and therefore it was

necessary to carry out further experiments to fully explore its capabilities.

A time course was carried out using MRC5 cells following the starvation-restimulation
protocol described in section 2.1.8 and measurements were taken at 0, 5, 15 and 30
minutes post-stimulation. As this was to be a more rigorous test of intracellular flow
cytometry’s capabilities four separate antibodies were examined (mTORC pS448-
PECY7, AKT_pT308-Alexa 488, AKT_pS473-APC and S6_pS235/236-V450). As
with the previous experiment it was not possible to obtain a read-out for AKT_pT308
alexa-488 (data not shown) and as such this antibody was not tested again. Following
restimulation there was no change in the level of mMTORC_pS2448 activity over the first
three time points (0, 5, 15 minutes) and a decrease in activity after 30 minutes of
restimulation (Appendix A). AKT_pS473 showed an increase in activity at 5 minutes

following restimulation with a decrease at 15 minutes following restimulation.
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A further increase in activity was seen at 30 minutes (Appendix A). Of the antibodies
tested only the output for S6_pS235/236-V450 activity was consistent with the expected
behaviour of the S6_pS235/236 phosphorylation site following serum starvation-
restimulation. Following restimulation there was a significant increase in S6_pS235/236
activity between the 5 minutes and 15 minute time points with a slight decrease in

activity observed between the 15 minute and 30 minute time points (figure 3.6 A-G).

Due to the S6_2325/236-v450 antibody displaying behaviour consistent with that
expected following serum starvation-restimulation it was decided that a further study
should be carried out using insulin to increase the effect of restimulation. MRC5 cells
were treated as in section 2.1.8 with 100nM of insulin (Sigma-Aldrich, Dorset, UK) added
to DMEM high Glucose supplemented with 10% foetal bovine serum, 1% of L-
Glutamine and 1% of Penicillin-Streptomycin prior to restimulation. The addition of
insulin to the restimulation cell culture media had no effect on the overall behaviour
displayed by AKT_pS473-APC with increased activity at 5 minutes post restimulation
followed by decreased activity at 15 minutes post restimulation before a final increase
in activity at 30 minutes post restimulation (Appendix A). The overall output for
MTORC1_pS2448-PECY7 displayed at small increase in activity following insulin
restimulation. However as opposed to the other antibodies being examined it failed to
produce consistent results across repeats with each of three separate repeats displaying
different behaviour throughout the time course (Appendix A). As with the previous
experiment the S6_2325/236-v450 antibody displayed behaviour consistent with that
expected. Following insulin enhanced restimulation S6 2325/236-v450 activity
increased over the first 15 minutes of the time course with a decrease in activity
observed following 30 minutes post restimulation (figure 3.7 A-G). Following these
experiments it can be concluded that whilst intracellular flow cytometry can produce
time course data for particular proteins within the mTOR network it fails to do so in a
consistent manner for many of the required read-outs. It is therefore not be suitable for
further examination as an alternative to western blotting. A comparison of the three

possible protein analysis platforms is provided in table 3.1.
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to produce calibration time course data for a dynamic model for S6 pS235/236.
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Table 3.1: A comparison of possible protein analysis platforms

Analysis Platform

Advantages

Disadvantages

Western Blotting

Separates proteins based
on molecular weight
Analysis platform is
already commonly used
S0 comparisons with

previous work can be

Work intensive

High amount of lysate is
required per run

Only one antibody can
be analysed per gel per

run

carried out e Low-— medium
e No Specialist equipment throughput
required
Reverse Phase Protein e Medium — high e Requires specialist
throughput equipment

arrays

Multiple antibodies can
be tested for per run
Low volume of lysate

required

Requires highly specific
antibody for each protein

analysed

Intracellular Flow

Cytometry

Multiple antibodies can
be tested for per run
Medium throughput
Specialist facilities in

place

68

Can only analyse cell
sample once

Antibodies cannot be
reused

Requires careful
matching of primary
antibodies to secondary
antibodies

Compensation must be
applied for each antibody
making it impractical to
measure many antibodies

at once



3.7 Discussion
The purpose of this work was to determine whether reverse phase protein arrays or

intracellular flow cytometry could provide an alternative method to western blotting for
the purpose of producing time course data in order to calibrate a dynamic model. Whilst
both methodologies proved capable of producing time course data the quality of this
data differed greatly between each technique. Flow cytometry proved capable of
replicating the expected output for the mTOR network but only for one of the three
antibodies tested (S6_pS235/236-v450). This technology appears to be hampered by the
same problems encountered when performing western blots. It is possible to analyse up
to eight antibodies per sample with the technique which is a greater number than with
western blotting however samples cannot be retested once they have been stained.
Ultimately this means that many more replicates will be required for the same time
course to achieve the coverage required to fully calibrate a dynamic model and therefore
little time would be saved when compared to western blotting. As this was the principle
reasoning behind this study it can be said that flow cytometry failed to meet our criteria.
In addition the use of eight antibodies within the system being used would lead to
numerous compensatory issues with regards to the overlap of spectral output of
fluorophores being tested. Meaning that whilst this could be carried out in theory it is
unlikely that all eight antibodies could be used in practise. If these tests had proved to
be successful then it may have been possible to proceed using a higher throughput flow
cytometry machine or indeed to analyse samples utilising mass cytometry a technique
that combines the principles of both flow cytometry and mass spectrometry. This would
have allowed for the analysis of a much larger set of antibodies however it was decided
that when the output from the RPPA was taken into account that there was no
requirement to carry out further experiment utilising this type of flow cytometry. During
these experiments it was noted that flow cytometry may be of use for a more specific
application. Within the mTOR network both FOXO3A and Rheb are dependent on their
cellular localisation for correct activity. It was decided that the cellular localisation of
these proteins should be measured using imagestream flow cytometry a technique that
photographs cells as they pass through the flow cytometer allowing for analysis of co-
localisation properties between fluorophores. In the case of FOXO3A a comparison
with the nuclear stain DAPI could be used and for Rheb a comparison with the
lysosomal marker LAMP-1 could be used to analyse the localisation of these proteins

following each of the different treatments.
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RPPA proved capable of producing high quality time course data sets capable of
calibrating a dynamic model. It has also been possible to answer the question of whether
or not RPPA is more time effective than western blotting. As it takes the same amount
of time to produce the time course lysates for both methodologies this is a question of
how quickly each sample can be analysed. For this experiment a total of nine antibodies
were tested however it is noteworthy that this time course was carried out alongside
another experiment with the total number of antibodies measured numbering eighteen.
With the possibility of printing a total number of sixty-four samples onto a single RPPA
chip this allows for the measurement of a total of three replicates plus reference proteins
on one chip. As one RPPA slide contains six chips with the possibility to analyse 64
samples per chip it is possible to assay either 384 samples with one antibody per slide or
64 samples with 6 antibodies per slide. In addition as it is possible to print multiple
slides at once these figures can be multiplied by the number of slides required. As
mentioned earlier this has been carried out measuring 179 antibodies on only ten
samples [180]. The entire RPPA measurement process takes one week to complete
meaning that following the production of the cell lysates it is possible to analyse the
reaction of a huge number of proteins making this process far more time effective than
western blotting. Theoretically therefore RPPA appears to be an extremely effective
substitute for western blotting in the production of calibration data for dynamic models.
The main limitation to this process is the requirement for highly specific antibodies and
therefore it is possible that some proteins within the mTOR network such as
P70S6K_pT389 may not be measureable with RPPA it will therefore be necessary to
use alternative readouts of mMTORC1 activity such as the 4E-BP1 and ribosomal S6
antibodies assayed above (figure 3.2 C).

Since these experiments were performed there have been further examples of RPPA
being utilised in the field of dynamic modelling. Tan et al used RPPA to measure the
activation of osteoblastic protein markers during osteoblast differentiation. Combining
this data with a dynamic model the authors were able to test how different cytokines
combined to activate osteogenesis and provide a potential therapeutic tool for patients of
osteoporosis [195]. With the data available we can conclude that RPPA can provide an
effective and time efficient method for producing time course data for dynamic

modelling and therefore this methodology was taken forward in this work.
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3.8 Conclusions

Reverse Phase Protein arrays are capable of producing reliable time course data
suitable for the calibration of dynamic models

RPPA is both time efficient and high-throughput in comparison to western
blotting

Intracellular flow cytometry was capable of producing time course data for the
calibration of dynamic models

This method was however not as reliable as RPPA nor as time efficient

RPPA will used to produce the time course data required for this work
Imagestream flow cytometry will be investigated as a method for studying

intracellular localisation of FOXO3A and Rheb
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4. A dynamical model of the mTOR signalling
network reveals the kinetics of starvation and re-
stimulation in MRCS5 fibroblasts and human
bone marrow stem cells
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4.1 Introduction
A key role for a reduction in of nutrient signalling in ageing is well established. The

first systematic genetic screen to identify genes involved in ageing were conducted in C.
elegans which identified individuals with mutations directly linked to the mTOR
network [7, 196-198]. The Daf-2 and Daf-16 mutants (C. elegans homologues for
mammalian IGF-1R and FOXO) were found to live up twice as long as their wild type
counterparts [199]. Mutations in homologues in other model species such as Drosophila
and mice are also long-lived and provide evidence for evolutionary conservation. There
is now an extensive body of research on the connection between nutrient signalling and

the ageing process [197, 198].

The mTOR network is activated in a number of ways including nutrient signalling and
amino acid stimulation. Caloric restriction (also referred to as dietary restriction) was
one of the first interventions identified as being able to extend lifespan in a number of
model organisms and remains the ‘gold standard’ in lifespan extension interventions.
Caloric restriction is defined as a reduction in calorie intake without malnutrition. This
leads to a reduction in the activation of the insulin/IGF-1 signalling and a
downregulation of both mTORC1 and mTORC2 [200]. Although the exact mechanisms
of how caloric restriction works have yet to be fully established it is believed that the
down regulation of mMTORCL1 leading to an increase in autophagy plays a major role
[201]. One proposed explanation is that the shift in the balance between the anabolic
mTORC1 processes and catabolic autophagy processes results in increased longevity
[202]. Autophagy is responsible for the recycling of amino acids during periods of
caloric restriction. It also removes damaged organelles from cells. As we age the
autophagic response declines whilst mTOR signalling increases. It is believed that by
maintaining a higher autophagic response for longer that there will be increased
clearance of damaged components within cells. This in turn could possibly delay the

ageing process, however this has so far proved difficult to quantify[83].

As caloric restriction provides the most well characterised method for lifespan extension
it was an obvious choice for us to study in detail the mechanistic reaction of the mTOR
network following a period of starvation. Currently, there is no methodology for
performing caloric restriction in vitro therefore in order to examine the effect of caloric
restriction a method mimicking its effect was sought. Previous work carried out by our

own group utilising serum starvation has proved largely successful in the study of the
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MTOR network and caloric restriction. It was therefore decided that this method for

mimicking caloric restriction in vitro should be used for this study [171, 172].

The computational model described in this section provides the main framework for all
of the dynamic models that follow. Previous work in our group has used dynamic
modelling to study the wiring of the mTOR network and the various effects of insulin
and amino acid signalling [80, 171, 172, 203]. These models provide the building
blocks upon which the development of this model was based. It was decided that for our
control cell line we should use MRCS5 fibroblasts as again previous research by our
group has shown these cells to be a reliable model cell line with which to investigate the
MTOR network [203]. In addition having used these cells previously it allows for the
comparison with previous experiments carried out by our group and further validation
of the RPPA systems for production of time course data. Finally as we wish to compare
this output to that from bone marrow derived stem cells we will be able to do so with

confidence.

4.2 Aims
This study aims at examining the effect of re-stimulation following serum starvation on

the mTOR network. We aim to define using a computational dynamic model how the
mTOR network responds in MRC5 fibroblasts and how the mTOR network response

differs in human mesenchymal stem cells.
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4.3 Results

4.3.1 Development of starvation-restimulation dynamic network model
In order to investigate the response of the mTOR network to serum starvation-

restimulation (SSR) a static model was designed and built as described in section 3.2.
As a basis for the initial model a dynamic model previously described in the literature
produced by our group was used to inform the core structure of the model [171]. With
the core model structure in place additional reactions were added to the model based on
key literature findings. The focus when expanding the network was to add reactions
relevant to two particular areas, amino acid stimulation of the mTOR network and
proteins known to be affected by Zoledronate treatment. In addition to altering the
existing core structure to include further relevant proteins, proteins no longer relevant to
the current study were removed from the model structure. This resulted in an expanded
network incorporating proteins related to Zoledronate treatment and amino acid
stimulation that would be capable of simulating to the response of starvation-

restimulation.

The network used throughout this chapter is shown in Figure 4.1 and all reactions can
be found in appendix B. It includes both insulin/growth factor (GF) and amino acid
activation of mTORC1 in addition to insulin/GF activation of mTORC2. Insulin/GF
stimulates mTORC1 through activation of PI3K and subsequent activation of PDK1 and
AKT on threonine 308. This results in the phosphorylation of the TSC1/2 complex
inhibiting its GAP activity on Rheb. Rheb in its GTP bound active state is then able to
activate mMTORC1. For the purposes of this work amino acids are deemed to activate
mTORC1 directly and lead to its phosphorylation of serine 2448. Once activated
mTORC1 directly activates both P70-S6K and 4E-BP1 with P70-S6K feeding back
upstream to inhibit the phosphorylation and activation of IRS1 and PI3K.

As mentioned in section 1.3 very little is known regarding mTORC2 upstream
activation and therefore in this study mTORC?2 is activated by a PI3K species distinct
from the PI3K upstream of PDK1 and mTORC1 [80]. Once activated mTORC2 leads to
phosphorylation of AKT on serine 473. Within the model, phosphorylation on serine
473 can occur both before and after threonine 308 phosphorylation with the same being
true for threonine 308 phosphorylation. Once activated AKT_pS473 is then capable of
phosphorylating FOXO3A leading to its inhibition. The exact mechanism by which

77



AKT phosphorylates and inhibits FOXO3A is still disputed within the literature and it is
not fully understood if phosphorylation on either threonine 308 or serine 473 is required
or if phosphorylation on both sites is required [204]. Recent findings however have
suggested that mTORCL inhibition alone is not sufficient to lead to FOXO3A inhibition
[205]. Therefore in this study only AKT phosphorylated on serine 473 either on its own
or in addition to threonine 308 phosphorylation can phosphorylate FOXO3A.

4.3.2 Reverse phase protein array provides a high quality calibration

dataset
Once the topology of the network model had been decided a calibration dataset was

required. As discussed in the previous chapter the method chosen for the production of
this data set was reverse phase protein arrays (RPPA). It was decided that a 24 hour
time course should be carried out with increasing intervals between the time points as
described in section 2.1.15. This would allow us to capture the rapid response of the
mTOR network to re-stimulation in addition to allowing the study of the longer term
effects. A group of 7 proteins were initially assayed and their initial response to re-
stimulation analysed over a period of 60 minutes. Figure 4.2 shows the results of the
initial run of these samples with the expected response seen in all metabolites except
mTORC1_pS2448 which initially decreases following re-stimulation (Figure 4.2-B).
However for AKT _pS473, S6_235/236 and S6_240/244 (Figure 4.2-A, E, F) an overall
increase is observed over the 60 minutes. For 4EBP1_pS65 an initial increase up to 30
minutes is observed followed by a decrease between 30-60 minutes (Figure 4.2-C).
Whilst this behaviour is also observed in the P70S6K_pT389 antibody tested, the
alkaline phosphatase control for this antibody again displayed non-specific binding.
This output could not therefore be validated as P70S6K_pT389 phosphorylation (Figure
4.2-D).

With the initial time course proving to be successful the antibody coverage was
expanded to include a further 11 antibodies providing good cover across the mTOR
network for both total and phospho proteins (Figure 4.3). With a larger number of
proteins measured it was possible to examine why the output from the previously
measured MTORC1_pS2448 decreased following re-stimulation, indeed this behaviour
could be seen throughout the upstream PI3K network with PI3K p85 pY467 Y199,
PTEN_pS380_T382_T383 and PDK1_pS241 all displaying similar behaviour (Figure
4.3-B, C, D). Whilst it was not possible to measure AMPK _pT172 it was possible to
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assay acetyl-coA carboxylase - a downstream effector of AMPK (Figure 4.3-A).
Importantly this protein displayed the expected behaviour observed following amino
acid deprivation previously seen with western blotting [172]. This could explain the
decrease in PI3K and MTORCL1 signalling observed across the first 30 minutes of the

time course. A list of all Antibodies assayed can be found in Table 4.1.
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Table 4.1: Reverse Phase Protein Array Antibodies. A list of all antibodies assayed during

starvation-restimulation experiments

Antibody Antibody Source

ACC AKT_pS473 Cell Signalling Technology
ACC_pS79 mTOR Cell Signalling Technology
PIBK p85_pY467_Y199, mTOR_pS2448 Cell Signalling Technology
PTEN 4E-BP1 Cell Signalling Technology
PTEN_pS380_T382_T383 4E-BP1_pS65 Cell Signalling Technology
PDK S6_pS235/236 Cell Signalling Technology
PDK1 pS241 S6_pS240/244 Cell Signalling Technology
AKT FOXO3A Cell Signalling Technology
AKT_pT308 FOXO3A pS318 S321 Cell Signalling Technology
A-tubulin Cell Signalling Technology
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Figure 4.1: The mTOR network. A SBGN network model diagram displaying the effect of amino acids

on the mTOR network. Asterisks mark phospho proteins measured for starvation-restimulation RPPA

experiments whilst hashtags mark proteins assayed by imagestream flow cytometry.
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Figure 4.2: Measuring the Kinetics of the mTOR Network in MRC5 Cells. A sixty

minute time course following 24 hour serum starvation. Cells were re-stimulated at O hours and relative
fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A) AKT_pS473, (B)
mTORC1_pS2448, (C) 4E-BP1_pS65, (D) P70S6K_pT389, (E) S6_pS235/236, (F) S6_pS240/244.
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Figure 4.3: Expanded Measurements of mTOR Network Kinetics in MRC5 Cells.

A sixty minute time course following 24 hour serum starvation. Cells were re-stimulated at 0 hours and

relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A) ACC_pS79, (B)
PI3K_p85_pY467_pY199, (C) PTEN_pS380 pT382 pT383, (D) PDK1 _pS241, (E) AKT pT308 (F)
FOXO3A_pS318_pS321.
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4.3.3 Parameter estimation
In order to calibrate the model using the data generated by RPPA, parameter estimation

was carried out for the first 60 minutes of the time course. The data was first normalised
to the housekeeping protein a-tubulin and then the control time point O set to a value of
1 and all subsequent time points divided by this value. Whilst not crucial at this stage
this would allow for a later direct comparison between the MRC5 and MSC datasets. A
total number of 10000 runs were then performed using a computational cluster. The
time length for these runs was variable as they were dependent on how the cluster was
being used on a given day by multiple users. As the residual sum of squares (RSS)
outputted by Copasi is dependent on the scale of the data used it was not possible to test
a “goodness of fit” using a p-value (data with value between 10-100 will produce a
higher RSS than data with values between 0.1 and 1 however the same level of “fit” will
be achieved). Therefore whilst this test was performed for all model fits it was not taken

as a measurement of “goodness of fit”.

4.3.4 Constant AMPK activation prevents parameterisation of the

model
Parameter estimations using the genetic algorithm over 10000 runs were carried out.

The initial findings for the parameter estimations are shown in figure 4.4. Whilst it
proved possible to attain expected fits between the experimental data and model
simulations for ACC_pS79, AKT _pT308, PTEN_pS380 pT382 pT383, PDK1 pS241
and mTORC1 pS2448 it was not possible to attain reasonable fits to all other
observables. Given the clear flow of information through the network seen within the
experimental data it was unlikely that the data itself was at fault for the inability of the
model to achieve a reasonable fit for the majority of observables. It was therefore
reasonable to assume that a part of the module topology itself was at fault. As such it
was necessary to examine each section of the network in order to ascertain where the
network topology was incorrect. Two areas of particular note were immediately
identified as possible problem areas within the model. The first section of the model
topology to undergo testing was AMPK-ACC activation by nutrients. Whilst the
experimental output was as expected when compared to recent literature reports this
section of the model was also the least well defined in terms of how AMPK interacts
with the mTOR network. The second section of the network that was analysed was the

MTORC1_pS2448 output. Whilst the experimental output for this variable followed the
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experimental outputs for upstream mTORC1 effecters it differed significantly from its
downstream effector 4E-BP1_pS65. In addition it is disputed within the literature as to
whether mTORC1_pS2448 is an acceptable read-out for mTORCL1 activation [206]. In
order to test which of these outputs has the largest effect on model fitting the
experimental data for each variable was removed from the model and parameter
estimations carried out. For this round of estimations a total of 2500 parameter
estimations were performed and the resultant residual sum of squares (RSS) values
compared. With removal of the ACC_pS79 dataset the model was incapable of fitting
the remaining variables to the model (RSS = 2758.46) suggesting that this variable is
crucial to performing parameter estimations on this model (Figure 4.5). In contrast
whilst removal of the mTOR_pS2448 also decreased the ability of the model to fit the
remaining variables (RSS = 15.06 compared to original model RSS = 3.52) the effect of
removing this variable was far less dramatic. It was therefore decided that the AMPK-
ACC section of the network should be altered in order to achieve a closer fit between

the model simulation and experimental dataset.
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Figure 4.4: Time course simulations from the model compared to re-stimulation

data. The model displayed in figure 4.1 was calibrated using the RPPA data shown in figures 4.2 and

4.3. A parameter estimation consisting of 56 parameters in total was performed using the genetic

algorithm (10000 runs). The Residual sum of squares between the experimental data (Black +/- SEM) and

the simulated data (Blue) was calculated as 3.52 with a reasonable fit achieved (P-value = 0.99).
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Figure 4.5: Parameter time course simulations following the removal of ACC pS79

from the MRC5 dataset. The model displayed in figure 4.1 was calibrated using the RPPA data

shown in figures 4.2 and 4.3. A parameter estimation consisting of 56 parameters in total was performed
using the genetic algorithm with the experimental data for ACC_pS79 removed from the dataset (2500
runs). The Residual sum of squares between the experimental data (Black +/- SEM) and the simulated
data (Blue) was calculated as 2758.46 with no fit achieved (P-value = 0.0001).
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MTORC1 pS2448 from the MRC5 dataset. The model displayed in figure 4.1 was calibrated

using the RPPA data shown in figures 4.2 and 4.3. A parameter estimation consisting of 56 parameters in

total was performed using the genetic algorithm with the experimental data for mTORC1_pS2448

removed from the dataset (2500 runs). The Residual sum of squares between the experimental data (Black
+/- SEM) and the simulated data (Blue) was calculated as 15.06 with a poor achieved (P-value = 0.058).
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Following the finding that removing the ACC_pS79 experimental data dramatically
decreased the overall fit of the model it was decided that further investigation should be
carried out into how the AMPK-ACC section of the model impacted the model outputs.
Upon removal of the ACC_pS79 dataset from the parameter estimations the model
predicts a constant level of ACC_pS79 (figure 4.6 A). This is opposed to the transient
activation observed in the experimental data. The initial concentration for the
AMPK _pT172 and ACC_pS79 variables within the model is set to 1 representing a
baseline activation following serum starvation. As AMPK acts to inhibit PI3K and
mTORC1 it was hypothesized that this could occur whilst AMPK_pT172 was present at
only baseline concentrations leading to constant PI3K and mTORC1 inhibition. The
mechanism for activation of AMPK following amino acid restimulation is still being
investigated however as there has been reports that following stress induction (such as
the influx of nutrients following starvation) AMPK localises from the nucleus into the
cytoplasm. It is feasible therefore that this is what is being observed within our dataset
with phosphorylation and cytoplasmic localisation following re-stimulation followed by
localisation to the nucleus as the cell adapts to the nutrient rich environment. It was
therefore decided that AMPK should be set to decay following phosphorylation leading
to a transient expression of AMPK pT172 and ACC _pS79 representing an unknown
mechanism triggering nuclear localisation. The ACC_pS79 dataset was therefore
recalibrated with the initial concentration of AMPK_pT172 and ACC_pS79 set to 0. A
set of 10000 parameter estimations were then carried out with the new topology. As can
be observed in figure 4.7 with the new topology in place the model is capable of fitting
all of the dependent variables with the exception of 4E-BP1_pS65 (RSS = 0.15).
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Figure 4.7: Time course simulations from the model compared to re-stimulation

data with updated ACC starting concentration. The model displayed in figure 4.1 was

calibrated using the RPPA data shown in figures 4.2 and 4.3. A parameter estimation consisting of 56

parameters in total was performed using the genetic algorithm (10000 runs). The residual sum of squares

between the experimental data (Black +/- SEM) and the simulated data (Blue) was calculated as 0.23 with

a good fit achieved (P-value = 1).
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4.3.5 Parameterisation of the 4E-BP1_pS65 observable requires a more

in depth mMTORC1 modelling approach
In order to test whether the model was capable of fitting the 4E-BP1_pS65 data it was

proposed that a further set of parameter estimations should be carried out using just the
4E-BP1_pS65 data. For this experiment the model shown in figure 4.1 was used with a
total of 2500 parameter estimations were performed using the genetic algorithm. In
addition all initial reaction parameters were set to a randomized value as in previous
parameter estimations. As can be seen in figure 4.8 once the model is given only the 4E-
BP1 pS65 data it is possible to fit the experimental observations to the computational
simulations. As previously discussed it is possible that the output for nTORC1_pS2448
may not represent a true activation of the mTORC1 complex. Therefore without further
modelling of mMTORCL1 and its regulatory reactions it may not be possible to correctly
model this output. In addition whilst it is impossible to fully analyse the output form the
P70S6K_pT389 antibody used for the initial RPPA in this section due to non-specific
binding it should be noted that for both antibodies tested, the output for this protein is
very similar in behaviour to that of the 4E-BP1 antibody. This allows for the possibility
that both 4E-BP1 and P70S6K behave in a similar manner following re-stimulation. As
modelling the in depth regulation of both 4E-BP1 and P70S6K by mTORC1 would
represent a large scale modelling process it was decided that the output for 4E-
BP1 pS65 should be left as seen in figure 4.7.
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Figure 4.8: Individual parameter estimation for the 4E-BP1 pS65 observable. The

model displayed in figure 4.1 was calibrated using the re-simulated RPPA data shown in figure 4.2 for

4E-BP1_pS65 only. A parameter estimation consisting of 56 parameters in total was performed using the
genetic algorithm (2500 runs). The Residual sum of squares between the experimental data (Black +/-
SEM) and the simulated data (Blue) was calculated as 0.0047 with a very good fit achieved (P-value = 1).

Table 4.2: Residual sum of squares value for each model. The residual sum of squares for

each model fitted to the experimental data for both MRC5 and MSC datasets. The lower the RSS value,
the closer the fit between the model simulations and the corresponding dataset. Corresponding figure

number also shown.

Parameter Estimation Residual Sum of Figure No.
Squares
MRC5 Genetic Fit 1 3.52 4.4
MRC5 ACC 2758.46 4.5
MRC5 mTOR 15.06 4.6
MRC5 Genetic Fit 2 0.23 4.7
MRCS5 4E-BP1_pS65 0.0047 4.8
MRC5 Hooke and Jeeves 0.15 4.10
MSC Genetic Fit 0.16 411
MSC Hooke and Jeeves 0.20 411
MSC AKT_pT308 0.15 4.12
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4.3.6 Modelling the difference between MRC5 and MSC kinetics in

response to starvation-restimulation
Having calibrated the model to an MRCS5 dataset it was then necessary to produce a

second dataset representing the response of MSCs to serum starvation-restimulation.
This was carried out as previously described for the MRC5 cells. A comparison
between the MRC5 and MSC outputs are shown in figure 4.9. Having performed RPPA
experiments using MSCs and compared the outputs to the MRC5 dataset our next
question was how well our original model could fit the new dataset and to investigate
which sections of the model differed the most. There were two possible methods which
could be used to perform this comparison: firstly we could perform a full parameter
estimation as previously carried out for the MRC5 dataset and then compare the best
RSS values from each of the models or secondly we could program the calibrated model
with the MSC dataset and then perform parameter estimations using the already
calibrated values as the starting values (in the original parameter estimation these values
were randomised). Whilst the second option was favoured for these experiments as it
would be a more direct comparison between two parameter sets (as opposed to
examining at changes between two separate optimization problems) it was felt
necessary to also carry out the first option. The purpose of this was to obtain an RSS
value which would serve as a reference point for a ‘best fit” which could then be
compared to an RSS value obtained using the previously calibrated model. The
parameter estimation was carried out as previously described for the MRC5 dataset with
an RSS value of 0.15943 obtained (Table 4.2) (Figure 4.11).

Following the calibration shown in figure 4.7 the MRC5 dataset was removed and
replaced with the MSC dataset. A set of 100 parameter estimations using the Hooke and
Jeeves algorithm was then performed using the reaction parameter values obtained by
the best fit to the MRC5 dataset as the initial reaction parameter values. A set of 100

parameter estimations was also carried out in this way with the MRC5 dataset.
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Figure 4.9: A comparison of MRC5 vs MSC outputs for SS. A sixty minute time course

following 24 hour serum starvation for both MRC5 (Blue) and MSC (Red) cells. Cells were re-stimulated

at 0 hours and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A)

ACC_pS79, (B) PI3K_p85_pY467_pY199, (C) PTEN_pS380_pT382_pT383, (D) PDK1 pS241,

(E)

AKT pT308, (F) AKT pS473, (G) mTORCL_pS2448, (H) 4E-BP1_pS65, (I) S6_pS235/236 and (J)

FOXO3A pS318_pS321.
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Figure 4.10 Time course simulations from the model compared to re-stimulation

data utilizing the local Hooke and Jeeves algorithm MRCS5 cells. The model displayed in

figure 4.1 was calibrated using the re-simulated RPPA data shown in figures 4.2 and 4.3. A parameter
estimation consisting of 56 parameters in total was performed using the local algorithm Hooke and Jeeves
(100 runs). The Residual sum of squares between the experimental data (Black +/- SEM) and the

simulated data (Blue) was calculated as 0.15 with a very good fit achieved (P-value = 1).
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Figure 4.11 Genetic vs Hooke and Jeeves fit for MSC. The model displayed in figure 4.1

was calibrated using the RPPA data shown in figure 4.9. A parameter estimation consisting of 56

parameters in total was performed using the genetic algorithm (10000 runs) (Blue) randomising the initial

parameter values and the Hooke and Jeeves algorithm (100 runs) (Red) using previously obtained

parameter values form the MRC5 data fit. The Residual sum of squares between the experimental data
(Black +/- SEM) and the simulated data (Genetic-Blue, Hooke and Jeeves-Red) was calculated as 0.16
(genetic) and 0.20 (Hooke and Jeeves) with a good fit achieved for both (P-value = 1 (Both)).
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4.3.7 Fit results
As predicted subjecting the MRCS5 calibrated model to the local algorithm Hooke and

Jeeves enhanced the fit (0.153) (Figure 4.10). As described above parameter estimations
were carried out using both Hooke and Jeeves and the genetic algorithm for the MSC
dataset and the fits compared. The RSS value obtained from the genetic algorithm
randomised parameter estimation was 0.15943. Whilst the Hooke and Jeeves algorithm
parameter estimations failed to reach this value (RSS = 0.203398) as can be seen in
figure 4.11 this set of parameter estimations was capable of fitting certain datasets more
closely than the genetic algorithm parameter estimation. Interestingly the genetic
algorithm fit for ACC_pS79 attempted to fit a very transient peak upon restimulation in
the MSC similar to that in the MRC5 cells however this was not seen in the Hooke and
Jeeves parameter set (Figure 4.11). Whilst this may be an artefact of this particular
fitting estimation it is noteworthy that in the MSC dataset the ACC pS79 peak
following re-stimulation does not occur as it does in other cell types. For most of these
estimations there is very little difference between each of the two fitting methods with
the main exception being AKT_pS473. The genetic algorithm fit was capable of finding
a fit for both AKT phosphorylation sites however the Hooke and Jeeves algorithm
provided a different fit for AKT_pT308 which given the variation in the dataset can be
said to be a reasonable fit. As this part of the model is possibly the most complex it was
theorised that the model may struggle to fit data for both AKT_pT308 and AKT_pS473.
Therefore a further Hooke and Jeeves parameter estimation was performed with the
AKT _pT308 dataset removed. This resulted in the correct fitting of the AKT_pS473
parameter (figure 4.12).
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Figure 4.12 AK Parameter time course simulations following the removal of

AKT pT308 from the MSC dataset. The model displayed in figure 4.1 was calibrated

using the re-simulated RPPA data shown in figure 4.9. A parameter estimation

consisting of 56 parameters in total was performed using the Hooke and Jeeves
algorithm (100 runs) without the dataset for AKT_pT308. The residual sum of squares
between the experimental data (Black +/- SEM) and the simulated data (Blue) was

calculated as 0.15 with a very good fit achieved (P-value = 1).
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4.4 Image flow cytometry fails to show correlation between DAPI —

FOXO3A and Rheb-LAMP1
In addition to performing RPPA time course experiments to measure the response of

both MRC5 and MSC cells to starvation-restimulation it was decided that further
information could be gained using flow cytometry. In contrast to the results presented in
chapter 4 an alternative method of flow cytometry was used for these experiments in the
form of Imagestream flow cytometry. Imagestream flow cytometry differs from
standard flow cytometry in that in addition to measuring the intensity of fluorophores
excitation by lasers it also contains cameras which image the cells as they pass through
the machine. This allows for the analysis of various aspects of protein activation
including cellular localisation. In the case of the mTOR network there are two proteins
of particular interest in this study namely FOXO3A and Rheb. Whilst FOXO3A
phosphorylation was measured by RPPA it is known that the phosphorylation of
FOXO3a does not always correspond to its inhibition and that phosphorylated FOXO3A
can enter the nucleus and act as a transcription factor, therefore analysing its cellular
localisation is the only way of accurately measuring FOXO3A activity. Rheb is a small
GTPase that localises to the lysosome and acts upstream of mMTORC1 and is inhibited
by the TSC1/2 complex. It was not expected that starvation-restimulation should have
an effect on Rheb localisation however Zoledronate treatment as discussed in chapter 7
does affect its localisation and therefore it was felt necessary to measure the reaction of
Rheb to each treatment preformed. In order to carry out a localisation comparison two
separate antibodies were also used in this test with 4'6-diamidino-2-phenylindole
(DAPI) used as a nuclear stain and Lysosomal-associated membrane protein 1 (LAMP-
1) conjugated to Alexa-488 used as a lysosomal stain. In order to account for any
compensation required (false positive due to overlapping excitation spectrums) between
each of the fluorophores (Alexa-488, PE and Alexa-647) single repeats stained using
only one of the antibodies were performed allowing for a compensation matrix to be set
up. Time course experiments were then carried out following restimulation (Figure
4.13). For each time point the single cell population was selected and then the images
obtained for these cells selected in order to obtain only those images in focus (figure
4.13 A +B). Analysis was them carried out using the nuclear localisation wizard within
Ideas 6 and the co-localisation wizard in order to identify those cells positive for
FOXO3A and DAPI (nuclear localisation) and RHEB and LAMP1 (co-localisation)

(figure 4.13 C + D). Selecting these populations allowed for the analysis of co

99



localisation between the proteins of interest (Pearson’s correlation co-efficient) (figure
4.13 E). A representative image of untreated cells is shown in figure 4.13. It did not
prove possible in this analysis to obtain the number of cells required to analyse the
localisation of interest (Pearson’s correlation co-efficient) (figure 4.14). However it can
be inferred from the data obtained that there is no correlation between either FOXO3A
and DAPI or between Rheb and LAMP1 throughout the time course (Table 4.3).
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Figure 4.13: Image flow cytometry fails to show correlation between DAPI —

FOXO3A and Rheb-LAMPL. Representative image displaying image flow cytometry analysis of

untreated cells prior to serum starvation. (A) A single cell population was selected, (B) followed by the
removal of images that were not in focus. (C) Nuclear localisation correlation was analysed for FOXO3A
and DAPI, in addition to (D) correlation analysis of RHEB and LAMP1. (E) Population analysis
displaying correlation between DAPI-FOXO3A and Rheb-LAMPL. (F) Representative image of in focus

single cell population for 0 hour untreated cells.

Table 4.3: Image flow cytometry time course correlation. Correlation values for each time
point assayed for FOXO3A-DAPI (FD) and Rheb-LAMP1 (RL) (Pearson’s correlation co-efficient; all

values are non-significant P>0.05).

Time Point FOXO3A-DAPI Rheb-LAMP1 P-value

Pearson’s correlation Pearson’s correlation FD/RL

co-efficient co-efficient
0 hours -0.01483 0.6018 0.99/0.59
30 minutes starved 0.439 0.5776 0.67/0.61
60 minutes starved 0 0.05805 1/0.97
24 hours starved -0.1342 0.671 0.91/0.53
5 minutes restimulated -0.1014 0.6737 0.94/0.53
15 minutes restimulated  -0.08476 0.6458 0.95/0.55
30 minutes restimulated  -0.101 0.674 0.94/0.53
60 minutes restimulated 0 0.6302 1/0.57
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Figure 4.14: Image flow cytometry time course correlation. Population analysis

displaying correlation between DAPI-FOXO3A and Rheb-LAMP1, (Pearson’s correlation co-efficient)
(A) 0 hour untreated cells, (B) 30 minutes serum starved cells, (C) 60 minutes serum starved cells, (D) 24
hour serum starved cells, (E) 5 minutes re-stimulated cells, (F) 15 minutes re-stimulated cells, (G) 30

minutes re-stimulated cells, (H) 60 minutes re-stimulated cells.
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4.5 Discussion
The aims of the work presented here were to define a dynamic model capable of

representing the mTOR networks response to starvation-restimulation. To calibrate this
model in both MRC5 and MSCs using reverse phase protein arrays. To use imagestream
flow cytometry to analyse the cellular localisation of key proteins within the mTOR
network. And to identify how MRCS5 fibroblasts and MSCs differ in their response to
starvation-restimulation. Through the computational dynamic modelling approach
described above this has been achieved. The model presented above proved capable of
simulating the response of both MRC5 and MSCs in response to restimulation

following a period of serum starvation.

Reverse phase protein arrays were used throughout this work and proved to be an
excellent alternative to western blotting, producing high quality calibration datasets for
both MRC5 and MSCs. Upon expansion of the work carried out in the previous chapter
it proved possible to measure a total of eighteen proteins within the mTOR network and
upon inspection of the data it was possible to follow the flow of information through the
network with related proteins displaying similar kinetic profiles. As was discussed
previously one of the main problems with RPPA is the availability of specific antibodies
to proteins. However due to the amount of research carried out on the mTOR network
this was not a hindrance to this work as there are large number of extremely specific
antibodies available covering large sections of the mTOR network. There are a couple
of proteins within the network that could not be analysed, specifically the TSC proteins,
P70S6K and AMPK. Given their importance to the network in addition to validating the
results shown above using western blotting it would be beneficial to analyse these

proteins and include them in future parameter estimations.

Following starvation-restimulation there was an increase in the phosphorylation of
ACC_pS79 in MRCS5 cells that was not present in the corresponding MSC dataset. The
increase in phosphorylation in ACC_pS79 in MRC5 cells corresponds directly with
previous data investigating the response of AMPK activity following starvation-
restimulation [172]. Whilst the model presented above proved capable of fitting this
activation it was incapable of fitting the large section of the remaining observables. The
removal of the baseline activation of this observable led to the ability of the model to fit
all of the remaining observables bar the 4E-BP1 pS65 observable. This finding
suggests that there are mechanisms governing the activity of the AMPK-ACC axis that
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are absent from our model. It has been shown that the AMPK cellular localisation is
dependent upon a number of different factors including environmental stress [207, 208].
It is therefore feasible that the increase in phosphorylation observed in ACC_pS79 is
dependent upon the cellular localisation of active AMPK_pT172 to the cytoplasm upon
restimulation following serum starvation. To test this theory further studies would be
required investigating the following. Firstly confirmation western blots should be
carried out to ascertain if the kinetics observed using RPPA is representative of the
response of the mTOR network. As previously mentioned the kinetic profile of
ACC_pS79 follows the same profile previously observed for AMPK following
restimulation. In addition to this comparison of the kinetic profiles for both
AKT_pT308 and AKT_pS473 reveals similar activation profiles following
restimulation to previously published observations [172]. Secondly analysis of AMPK
cellular localisation should be performed, this could be done as above using

imagestream flow cytometry or other techniques such as nuclear fractionation.

A comparison of the responses of MRC5 fibroblasts to MSCs showed that there is a
significant difference between the response of ACC_pS79 to restimulation between the
cell types. Whilst the response observed in MRC5 cells is similar to the profile of
AMPK observed in previous observations this is not the case for the MSCs with no
overall change in signalling observed. An explanation for this is that AMPK is a key
protein in MSC differentiation and is therefore placed under more stringent control in
the MSCs compared to the differentiated MRC5 cells. Indeed recent research has shown
that AMPK can act to bypass the inhibition of mMTORC1 activity by caloric restriction in
intestinal stem cells thus protecting these stem cells from the effects of caloric
restriction [209]. As this study was carried out in mice caution needs to be used when
applying the results to the in vitro work shown here. However it would be of interest to
investigate if a similar mechanism exists in MSCs which could possibly explain why
there is no ACC_pS79 peak observed in the MSC dataset.

Whilst imagestream flow cytometry has shown itself to be an extremely powerful
analysis tool it did not prove possible in this experiment to obtain a time course that
could be used in the calibration of a dynamic model. In order to be confident of making
predictions regarding the localisation of a cellular population with this technology it is
necessary that the cellular population analysed following the removal of out of focus

images and the selection of single cell population number over 500 cells [191]. This was
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not the case here with population sizes varying between 300-500 cells. It was therefore
not possible to analyse the co-localisation of either FOXO3A and DAPI or Rheb and
LAMPL1.

Overall the aims of this work have been met with a dynamic model capable of
reproducing the response of both MRC5 cells and MSCs to serum starvation
restimulation. RPPA has proved to be a reliable and efficient methodology for the
production of calibration time courses required for this work however further work is
required to validate the outputs observed above. The dynamics of the mTOR network
observed could be simulated using the model with the assumption that AMPK baseline
activity does not affect mTOR signalling. In addition it proved possible to use a MRC5
calibrated model to reproduce kinetics observed in MSCs. However this analysis still
attempted to fit a transient peak to the ACC_PS79 observable suggesting that the
response of this observable differs between the two cell types examined and should be

investigated further.
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5. A dynamical model of the mTOR signalling
network reveals the kinetics of rapamycin and re-
stimulation in MRCS5 fibroblasts and human
bone marrow stem cells
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5.1 Introduction
Rapamycin is a macrocyclic antibiotic isolated from the bacteria Streptomyces

hygroscopicus and discovered in the soil on Easter Island in 1975 [210, 211]. Despite
initially being employed as an immunosuppressant Rapamycin also displayed anti-
growth properties and was therefore analysed as an anti-cancer compound [212, 213].
Following the discovery that Rapamycin inhibited growth in multiple cancer cell lines
further research subsequently discovered that Rapamycin inhibited cell growth across
multiple model organisms including Drosophila and C. elegans in addition to human
cell lines [213-215]. Rapamycin targets a complex of proteins which differs in its make
up across species however its core proteins are highly conserved. This complex became
known as the target of Rapamycin complex (TORC) with mTORC being the
mammalian set of target proteins. It is from these initial discoveries that the field of
mTOR research developed with the pathway now considered one of the key pathways in
molecular biology. As such since the discovery of Rapamycin and its target complex,

Rapamycin and its homologues have been of interest in the field of ageing research.

The precise mechanism of action for Rapamycin has remained elusive despite extensive
research utilizing the compound. Rapamycin is able to quickly penetrate the plasma
membrane of cells and bind to the FK506 binding protein (FKBP12) [216]. This leads
to a gain of function complex that is capable of binding the mTOR complex
1(mTORC1) leading to its inhibition. As previously discussed in section 1.3, mTOR is
present in two distinct complexes mTORC1 and mTORC2. Whilst mTORCL1 is
Rapamycin sensitive the second TOR complex mTORC?2 is classed as Rapamycin
insensitive. However, in certain cell types chronic Rapamycin inhibition leads to
MTORC?2 inhibition [72]. Again the mechanism for this inhibition has not been
established but it is believed to be due to the sequestering of unbound mTOR by the
Rapamycin FKBP12 complex preventing further formation of the mTORC2 complex.
The insolubility and poor pharmokinetics of Rapamycin has led to the development of
other Rapamycin derived compounds termed Rapalogs which include, Temsirolimus,

Deforolimus and Everolimus [217-219].

The ability of Rapamycin to increase lifespan in mammals was first reported in 2009
when Harrison et al showed that Rapamycin was capable of extending the lifespan of
mice regardless of sex [220-222]. They also showed that the lifespan extension did not

differ between early and late life treatment. Lifespan extension following treatment with
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Rapamycin has also been observed in Drosophila melanogaster [223]. Drosophila flies
treated with Rapamycin display a lifespan extension that is directly comparable to the

lifespan extension observed through caloric restriction and anti-ageing mutants.

Rapamycin is currently one of the best characterised drugs in the study of lifespan
extension and ageing and has also being implicated as having a positive impact in
osteoporosis. Rapamycin was therefore included in this study as a reference drug with
which to compare the response of both MRC5 and mesenchymal stem cells (MSC) cell
types. In addition, Rapamycin was found not to exhibit the same beneficial effect on
MSCs as Zoledronate [82].

The computational model described in this section builds on that described in chapter 5.
As described previously MRC5 cells are used as a control cell line with MSCs also used

to determine the kinetic effects that Rapamycin exerts on the mTOR network.

5.2 Aims
The aim was to examine the effect of re-stimulation following Rapamycin treatment on

the mTOR network. We aim to define using a computational dynamic model how the
mTOR network responds in MRC5 fibroblasts and how the mTOR network response

differs in human mesenchymal stem cells.
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5.3 Results

5.3.1 Development of a rapamycin dynamic network model
The model used throughout this section is described in section 4.3.1 and displayed in

figure 5.1 (all reactions can be found in appendix B). As described previously the amino
acid/nutrient activation of the model will remain as before with a constant level of
nutrients available to the cells. Nutrients activate the model in three separate points with
PI3K, mTORC1 and AMPK all being activated by nutrient inputs. As before PI3K
activation leads to the activation of PDK1 and subsequent activation of AKT on
threonine 308. This in turn phosphorylates and inhibits the TSC1/2 complex leading to
activation of Rheb(GTP). Rheb in its GTP bound form is then free to activate the
mMTORC1 complex leading to the activation of the downstream effectors
P70S6K_pT389, S6 pS235/236 and 4E-BP1_pS65 with a P70S6K_pT389 feedback
loop inhibiting further activation of PI3K by nutrient signalling. In addition, an
additional species was added to the model to represent the interaction of mMTOR with
Rapamycin which acts to destabilise the mTORC1 complex. This was represented by a
single mass action reaction in which unphosphorylated mTORCL1 is converted to mTOR
by Rapamycin. A reverse mass action reaction was also included with mTOR being
converted to mTORC1. The treatment time with Rapamycin in this section was 24
hours. As chronic Rapamycin inhibition is normally classed as 3 days is was decided
that the mTORC2 branch of the model should not be altered with regards to Rapamycin
inhibition and as such the mTORC2 section of the model is as described in section
4.3.1.
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experiments  whilst hashtags mark proteins assayed by imagestream flow cytometry.
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5.3.2 Collection of MRCS5 calibration dataset
As with the previous chapter once the topology of the model was established a

calibration dataset was collected using RPPA. In this case a 24 hour time course was
carried out as described in section 2.1.15. As with the starvation re-stimulation dataset
the time course was designed to allow for the capturing of the immediate dynamics of
the mTOR network following removal of Rapamycin. A total of 17 proteins were
analysed consisting of 9 phosphoproteins, 8 total proteins and the house keeping protein
a-tubulin (Table 5.1). As each of the proteins being measured had been analysed
previously it was decided to fully utilise RPPA’s ability to produce time course data on
a large scale with all of the antibodies analysed at the same time as opposed to the
smaller separate runs carried out for the starvation re-stimulation dataset. As can be seen
in figure 5.2 there was very clear response observed within the mTOR network. In
contrast to starvation re-stimulation there is no AMPK/ACC peak following
restimulation. This appears to support recent work showing that the AMPK activation
peak is directly related to amino acid availability. Following Rapamycin withdrawal
ACC_pS79 decreases rapidly over the first 5 minutes of the time course and remains
low throughout (Figure 5.2 A). The response of PI3K p85 pY467 pY199,
PTEN_pS380 pT382 pT383 and AKT pT308 all follow the same dynamics with an
initial decrease over the first 3 minutes followed by an increase in phosphorylation at 5
minutes (Figure 5.2 B, C, E). Phosphorylation levels then decrease back to initial levels
at 10 minutes followed by a second increase on 20 minutes post re-stimulation.
Phosphorylation decrease between 20 and 30 minutes with an increase in activity seen
between 30 and 60 minutes. Whilst PDK1 pS241, mTORC1 pS2448 and 4E-
BP1_pS65 follow the same dynamics as the three proteins mentioned above for 5
minutes onwards, they differ in their initial response with an increase in signalling
occurring immediately following re-stimulation followed by a decrease at the 3 minute
time point (Figure 5.2 D, G, H). The response of AKT_pS473 following Rapamycin
withdrawal is very similar to the response of AKT_pT308 with an initial decrease
followed by an increase in phosphorylation at the 5 minute time point. However it
differs in that this increase remains lower than the initial O time point and that there is
no increase in signalling seen at the 60 minute time point (Figure 5.2 F). Following
Rapamycin withdrawal there is a very clear dynamic displayed by the FOXO3a
phosphorylation site measured with an increase in phosphorylation occurring up to the 3

minute time point at which point phosphorylation remains consistent (Figure 5.2 1).
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Figure 5.2: Measuring the Kinetics of the mTOR Network in MRC5 Cells. A sixty

minute time course following 24 hour Rapamycin treatment (10nM). Cells were re-stimulated at 0 hours

and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A) ACC_pS79,
(B) PIBK_P85_pY467_Y199, (C) PTEN_pS380_T382_T383, (D) PDK1_pS241, (E) AKT_pT308, (F)
AKT_pS473, (G) mTORC1_pS2448, (H) 4E-BP1_pS65 and (1) FOXO3A _pS318_S321.
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Table 5.1: Reverse Phase Protein Array Antibodies. A list of all antibodies assayed during

starvation-restimulation experiments

Antibody Antibody Source

ACC AKT pS473 Cell Signalling Technology
ACC_pS79 mTOR Cell Signalling Technology
PI3BK p85_pY467 Y199, mTOR_pS2448 Cell Signalling Technology
PTEN 4E-BP1 Cell Signalling Technology
PTEN_pS380 T382 T383 4E-BP1 pS65 Cell Signalling Technology
PDK FOXO3A Cell Signalling Technology
PDK1 pS241 FOXO3A _pS318 S321 Cell Signalling Technology
AKT AKT pT308 Cell Signalling Technology
A-tubulin Cell Signalling Technology
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5.3.3 Parameter estimation
As with the starvation re-stimulation model, following generation of a calibration

dataset using RPPA, parameter estimations were carried out for the first 60 minutes of
the timecourse. The data was first normalised to the housekeeping protein a-tubulin and
then the control time point 0 set to a value of 1 and all subsequent time points divided
by this value. This would allow for a direct comparison between the MRC5 and MSC
datasets. As with the previous model, a total number of 10000 runs were then performed
using a computational cluster with the genetic algorithm used as described in
section2.2.2. The time length for these runs was variable as they were dependent on
how the cluster was being used on a given day by multiple users. As described in
section 4.3.3 the residual sum of squares (RSS) value was used to determine a

“goodness of fit” due to the scale of the data being used.

5.3.4 Restimulation following rapamycin treatment is dependent upon

P70S6K negative feedback
As in the previous chapter, 10000 parameter estimations were performed using the

Genetic algorithm and the results analysed (figure 5.3). As can be observed in figure 5.3
acceptable fits were achieved for the observables, ACC_pS79, AKT pS473 and
FOXO3A_pS318_pS321. For each of the other observable read outs the model failed to
fit the data. For this dataset there is no clear flow of information through the network as
was observed in the previous chapter. Instead there is a clear break between the
downstream and upstream read outs. This is likely due to the fact that Rapamycin
targets the mTORC1 complex only within the network as opposed to the network wide
effect observed in serum starvation. For the purposes of this model it can therefore be
assumed that the upstream regulators PI3K and PTEN may be in an active and inactive
state respectively at the O hour time point whereas the downstream effectors mTORC1
and 4E-BP1 can be said to be in a downregulated state. As such one possible
explanation for the lack of fit is the simplified S6K negative feedback loop within the
model topology. In the current iteration upon phosphorylation S6K acts to
dephosphorylate PI3K directly with IRS1 not included within the model. To address this
it was decided to alter the model topology to include IRS1 and its PI3K activation. The

new topology is summarised in Figure 5.4.
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Figure 5.3: Time course simulations from the model compared to re-stimulation

data. The model displayed in figure 5.1 was calibrated using the RPPA data shown in figures 5.2. A
parameter estimation consisting of 59 parameters in total was performed using the genetic algorithm
(10000 runs). The Residual sum of squares between the experimental data (Black +/- SEM) and the

simulated data (Blue) was calculated as 0.65.
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the new PI3K-IRS1 network topology. All other reactions remain as seen in figure 5.1.
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5.3.5 Restructured S6K feedback loop results in an improved fit
With the new topology established a further parameter estimation run was performed as

above. As can be seen in figure 5.5 although there is a decrease in the RSS value with
the IRS1-PI3K topology in place the decrease is not significant (0.642177 compared to
0.657493)(figure 5.5). Due to the increase in the number of reactions within the model
however it was decided that the Akaike information criterion (AIC) should be calculated
for both models. The AIC method takes into account model complexity and is a more
suitable comparison method between two different models to the same dataset. Upon
calculation of the AIC it was clear that whilst there is no difference between the old and
new topology when comparing RSS scores there is a clear difference between the two
topologies when the AIC scores are compared (figure 5.6). As the new topology
provided a lower AIC score it was decided that from this point this topology would be

used.
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Figure 5.5: Time course simulations from the model compared to re-stimulation

data using updated IRS1-PI3K topology. The model displayed in figure 5.1 was calibrated

using the RPPA data shown in figures 5.2. A parameter estimation consisting of 59 parameters in total

was performed using the genetic algorithm (10000 runs). The Residual sum of squares between the

experimental data (Black +/- SEM) and the simulated data (Blue) was calculated as 0.64.
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Figure 5.6: Akaike information criterion (AIC) score vs RSS. The AIC score (A) and

RSS values (B) were calculated for all 10000 parameter sets and plotted as both boxplots and histograms

for the original topology (Green) and the updated IRS1-PI3K topology (Blue).
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5.3.6 The removal of PDK1 dataset provides the closest fit between

experimental and theoretical outputs
Although the AIC score for the new topology is lower than the old network topology the

model fit obtained was still not acceptable. As such it was decided that as with the
previous chapter datasets should be removed and the subsequent model fit analysed to
assess which dependent variable has the most impact on model fitting. Following
analysis of the data it was decided that the following datasets should each be removed
from the model, ACC_pS79, PDK1 pS241 and mTORC1_pS2448. The reasoning
behind this decision was as follows: 1) For ACC_pS79 very little is known regarding
how AMPK is affected following Rapamycin withdrawal and whilst the model has been
designed based on the current understanding of the mTOR network the majority of that
knowledge is based upon serum starvation data. As such the impact and role of AMPK
and ACC within the model may very well differ between Rapamycin withdrawal and
serum starvation. Following withdrawal of the ACC_pS79 dataset no difference was
observed with regards to the RSS score of the models with and without ACC_pS79
(0.642177 and 0.632724). This suggests that following Rapamycin withdrawal the
AMPK-ACC axis has far less impact on the relevant kinetics of the mTOR network
(figure 5.7). 2) The second dependant variable to be removed from the parameter
estimation datasets was that of PDK1_pS241. As with ACC_pS79 there is very little
research into the impact of Rapamycin treatment on PDK1 activation. Indeed whilst it is
known that PDK1 activation and phosphorylation on serine 241 is dependent upon an
autophosphorylation loop, the mechanism for PDK1 activation and its relationship to
mMTOR activation remains elusive. Upon removal of the PDK1 dataset from the model
there is a clear decrease in the RSS value (0.326863 compared to 0.642177) (figure 5.8).
3) The third dependent variable that was removed from the dataset was
MTORC1_pS2448. As discussed in the previous chapter it is largely agreed that the
phosphorylation site on serine 2448 on the mTORC1 complex does not always
correspond to mTORCL1 activation. As such it was thought prudent to remove this
dataset in order to determine whether or not with an absence of this mTORC1 dataset
the model would be able to correctly predict the action of the S6K negative feedback
loop. As can be seen in figure 5.9 although the removal of mMTORC1_pS2448 from the
dataset decreased the RSS value to a similar degree as the removal of PDK1 (0.341805
and 0.326863), the model was unable to correctly predict the response of PI3K.

122



Whilst the best overall fit for this dataset is obtained by removing PDK1_pS241 there
was very little difference in terms of RSS values between this dataset and the removal
of mMTORC1_pS2448. Indeed both sets of experimental data display inconsistent
behaviour when compared to their upstream or downstream regulators and effectors. For
the purposes of this study however as the removal of PDK1 pS241 provided the best fit
between experimental and theoretical data it was decided that the model should be taken

forward with this dataset removed for subsequent parameter estimations.

5.3.7 Parameterisation of the PTEN 4E-BP1_activity requires a more

in depth mMTORC1 modelling approach
As in section 4.3.5 it was decided that further investigation should be carried out

regarding the models inability to fit both the PTEN_pS380 T382 T382 and 4E-
BP1 pS65 outputs. As in the previous chapter it was decided that parameter estimations
should be carried out using only the data of particular interest. In this case the model
was parameterised as above with 500 parameter estimations being carried out as these
were exploratory parameter estimations. As can be seen in figure 5.10 when the model
is presented with only the single datasets it is capable of finding a fit for both
observables. The issues surrounding 4E-BP1_pS65 fitting have been discussed
previously in section 4.3.5 and will not be covered here. PTEN activity however
provides a different problem to fitting 4E-BP1. Whereas the relationship between 4E-
BP1 and the mTOR network is well defined the relationship between PTEN and the
MTOR network is less clear. It is known that dephosphorylation of PTEN leads to the
inhibition of PI3K activation however what drives PTEN dephosphorylation and how
this relates to Rapamycin is very poorly understood. It would therefore be necessary to

investigate this mechanism in further detail in order to correctly model this output.

123



A 18 B 16 C35
PI3K p85_pY467_Y199 PTEN_pS380_T382_T383 PDK1_pS241
16 J 304
144
= 14 = =
) ) 3 254
< < <
= = 124 =
g 12 g J g
8 8 8 20 3
$ 1w 2 H
ks g 09 . 8
E $ E i 2 154 :
08
08
08 ﬂ } 107 $ ‘
04 T T T T T T T 06 T T T T T T T 05 T T T T T T T
0 10 20 30 4 50 60 70 0 10 20 30 4 50 60 70 0 10 20 30 Iy 50 60 70
Time (Minutes) Time (Minutes) Time (Minutes)
D 22 Eu F:
AKT_pT308 AKT_pS473 mTORC1_pS2448
20
104 164
18 }
) S 094 S 14
< 16 < <
° T T L]
> > (] >
8 14 SR E 8 12 ]
2 2 H
8 12 : 8 8 l
& & o074 $ 104 i
10
E 06 } 08 E
08
06 T 05 T T T T T T 06 T T T T T T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Time (Minutes) Time (Minutes) Time (Minutes)
G 16 H 24
4E-BP1_pS65 FoxO3a_pS318_S321
224
14
20
2 2
Z 12 > 189
¢ ¢
3 8 164
: : [
g & 14
o] o]
[i4 14
124
08
104
06 T T T T T T T 08 T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Time (Minutes)

Time (Minutes)

Figure 5.7: Parameter time course simulations following the removal of ACC pS79

from the MRC5 dataset. The model displayed in figure 5.1 was calibrated using the RPPA data

shown in figures 5.2. A parameter estimation consisting of 59 parameters in total was performed using the

genetic algorithm with the experimental data for ACC_pS79 removed from the dataset (1000 runs). The

Residual sum of squares between the experimental data (Black +/- SEM) and the simulated data (Blue)

was calculated as 0.63.
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Figure 5.8: Parameter time course simulations following the removal of

PDK1 pS241 from the MRC5 dataset. The model displayed in figure 5.1 was calibrated using

the RPPA data shown in figures 5.2. A parameter estimation consisting of 59 parameters in total was

performed using the genetic algorithm with the experimental data for PDK1_pS241 removed from the

dataset (1000 runs). The Residual sum of squares between the experimental data (Black +/- SEM) and the

simulated data (Blue) was calculated as 0.32.
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Figure 5.9: Parameter time course simulations following the removal

Time (Minutes)

70

of

MTORC1 pS2448 from the MRC5 dataset. The model displayed in figure 5.1 was calibrated

using the RPPA data shown in figures 5.2. A parameter estimation consisting of 59 parameters in total

was performed using the genetic algorithm with the experimental data for mTORC1_pS2448 removed

from the dataset (1000 runs). The Residual sum of squares between the experimental data (Black +/-

SEM) and the simulated data (Blue) was calculated as 0.34.
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Figure 5.10: Individual parameter estimations for the PTEN pS380 T382 T383

and 4E-BP1 pS65 observables. The model displayed in figure 5.1 was calibrated using the re-

simulated RPPA data shown in figure 5.2 for both PTEN_pS380_T382_T382 (A) and 4E-BP1_pS65 (B)
individually. A parameter estimation consisting of 59 parameters in total was performed using the genetic
algorithm (1000 runs). The Residual sum of squares between the experimental data (Black +/- SEM) and
the simulated data (Blue) was calculated as 0.06 (A) and 0.03 (B).

Table 5.2: Residual sum of squares value for each model. The residual sum of squares for

each model fitted to the experimental data for both MRC5 and MSC datasets. The lower the RSS value,
the closer the fit between the model simulations and the corresponding dataset. Corresponding figure

number also shown.

Parameter Estimation Residual Sum of Figure No.
Squares
MRCS5 Original Topology 0.65 53
MRC5 New Topology 0.64 55
MRC5 ACC 0.63 5.7
MRC5 mTOR 0.34 5.8
MRC5 PDK1 0.32 5.8
MRCS5 PTEN 0.06 5.10
MRCS5 4E-BP1 0.03 5.10
MRCS5 Hooke and Jeeves 0.30 5.13
MSC Genetic Fit 0.35 5.14
MSC Hooke and Jeeves 0.99 5.14
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5.3.8 Modelling the difference between MRC5 and MSC kinetics in

response to rapamycin-restimulation
Having calibrated the model to the MRC5 dataset a second time course dataset was

created for the MSCs. This time course was carried out using the same time points as in
the MRC5 dataset and is shown in figure 5.11 with a comparison between MRC5 and
MSC response to Rapamycin withdrawal shown in figure 5.12. In comparison to the
MRC5 dataset the MSC dataset is highly consistent with a clear flow of information
through the network. The exception to this was for PDK1_pS241, where the profile
shows an increase in activation following 10 minutes restimulation followed by a
decrease in signalling between 10-30 minutes prior to further increase in signalling at 60
minutes. The inconsistency of PDK1 behaviour in response to Rapamycin withdrawal
provides further evidence that there are mechanisms governing its activation that have
not currently included with regards to Rapamycin treatment. For the purposes of
calibration with the MSC dataset with the Genetic algorithm it was decided that the
PDK1 dataset should be included in the parameter estimation and the output analysed as

carried out above in the MRC5 dataset.

As in the previous chapter a comparison testing the ability of the calibrated MRC5
model to fit the MSC data was carried out. The MRC5 dataset was removed and
replaced with the MSC dataset. A set of 100 parameter estimations using the Hooke and
Jeeves algorithm was then performed using the reaction parameter values obtained by
the best fit to the MRC5 dataset as the initial reaction parameter values. In addition a set
of 100 parameter estimations was also carried out as above for the MRC5 dataset.
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Figure 5.11 : Measuring the Kinetics of the mTOR Network in MSC Cells. A sixty

minute time course following 24 hour Rapamycin treatment (10nM). Cells were re-stimulated at 0 hours

and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A) ACC_pS79,
(B) PI3K_P85 pY467 Y199, (C) PTEN_pS380_T382_T383, (D) PDK1_pS241, (E) AKT pT308, (F)

AKT pS473, (G) mTORC1_pS2448,

S6_pS235/236.

(H) 4E-BP1_pS65,
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Figure 5.12: A comparison of MRC5 vs MSC outputs following Rapamycin

withdrawal. A sixty minute time course following 24 hour Rapamycin treatment for both MRC5
(Blue) and MSC (Red) cells. Cells were re-stimulated at 0 hours and relative fluorescent intensity
measured at each time point (n=3) (Mean +/- SEM). (A) ACC_pS79, (B) PI3K_p85 pY467_pY199, (C)
PTEN_pS380_pT382 pT383, (D) PDK1 pS241,  (E) AKT_pT308, (F) AKT pS473, (G)
mTORC1_pS2448, (H) 4E-BP1_pS65 and (I) FOXO3A_pS318_pS321.
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5.3.9 Parameter estimation results MSC
Following calibration with the genetic algorithm the MRC5 model was subjected to 100

runs using the Hooke and Jeeves algorithm (figure 5.13). This resulted in a slight
improvement in the ability of the model to fit the data provided (RSS=0.30 compared to
0.32). This improvement of 0.02 was significantly less than that achieved in the
previous chapter using the starvation restimulation dataset (0.08). Upon comparison
between the MSC datasets parameterised using the Hooke and Jeeves and genetic
algorithm it became apparent that there was a large difference between the ability of the
models to fit the data (figure 5.14). The target RSS obtained using the genetic algorithm
for the MSC dataset was 0.35, whilst this value is larger than value of 0.32 obtained
using the MRC5 dataset, there was also a larger number of variables measured (9
compared to 8). As can be seen in figure 5.14 the genetic algorithm was capable of
fitting 7 out of 9 of the variables measured with PDK1 pS241 and
FOXO3A _pS318 pS321 failing to be fitted (figure 5.14 D + 1). The Hooke and Jeeves
algorithm using the previously calibrated MRC5 model was capable of fitting 4 out of
the 9 variables measured. As with the genetic algorithm fit it was unable to fit the PDK1
dataset. This provides further evidence that Rapamycin treatment and withdrawal results
in alterations to PDK1 regulation (figure 5.14 D). The Hooke and Jeeves model also

failed to provide a fit to either AKT phosphorylation sites (figure 5.14 E + F).
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Figure 5.13: Time course simulations from the model compared to re-stimulation data

utilizing the local Hooke and Jeeves algorithm. The model displayed in figure 5.1 was calibrated

using the re-simulated RPPA data shown in figures 5.2 A parameter estimation consisting of 59

parameters in total was performed using the local algorithm Hooke and Jeeves (100 runs). The Residual

sum of squares between the experimental data (Black +/- SEM) and the simulated data (Blue) was

calculated as 0.30.
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Figure 5.14: Genetic vs Hooke and Jeeves fit for MSC. The model displayed in figure 5.1

was calibrated using the RPPA data shown in figure 5.11. A parameter estimation consisting of 59
parameters in total was performed using the genetic algorithm (10000 runs) (Blue) randomising the initial
parameter values and the Hooke and Jeeves algorithm (100 runs) (Red) using previously obtained
parameter values form the MRC5 data fit. The Residual sum of squares between the experimental data
(Black +/- SEM) and the simulated data (Genetic-Blue, Hooke and Jeeves-Red) was calculated as 0.35

(genetic) and 0.99 (Hooke and Jeeves).
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5.3.10 Starvation-restimulation and rapamycin withdrawal lead to

similar responses in MSC but not MRCS5 cells
Following serum starvation-restimulation there is a clear kinetic response by the mTOR

network as can be seen in figure 5.15 for both MRC5 and MSC cells. However
following Rapamycin treatment and withdrawal MRC5 cells show no clear dynamic
response (figure 5.15 A-I). In comparison, MSCs display a very clear dynamic response
following Rapamycin withdrawal (figure 5.15 J-R). In terms of the response to the
MTOR network this difference also holds true with very little similarity observed
between the two treatment responses in MRC5 cells. The MSCs however display
similar behaviour to both treatments in a number of variables measured. Of note the
response of ACC_pS79 (figure 5.15 A) displays an almost identical profile. Across all
of the variables measured in can be concluded that 7 profiles display similar kinetic
profiles and only the two AKT phosphorylation sites display significantly different
kinetics. In both cases this appears to be due to a difference in the scale of the response
by the variable in question. Following Rapamycin withdrawal there is a more significant
increase in the level of AKT_pT308 phosphorylation compared to starvation-
restimulation (figure 5.15 N). The opposite can said for the AKT_pS473
phosphorylation site with a far greater increase observed in response to starvation-

restimulation (figure 5.15 O).
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Figure 5.15 A comparison of mTOR kinetics following Rapamycin withdrawal

and starvation-restimulation in MRC5 and MSC cells. A sixty minute time course

following 24 hour Zoledronate treatment (Blue) and starvation-restimulation (Red). Cells were re-
stimulated at 0 hours and relative fluorescent intensity measured at each time point (n=3) (Mean +/-
SEM) in MRCS5 cells (A) ACC_pS79, (B) PI3K _p85_pY467 pY199, (C) PTEN_pS380_pT382_pT383,
(D) PDK1 pS241, (E) AKT _pT308, (F) AKT_pS473, (G) mTORC1_pS2448, (H) 4E-BP1_pS65 and (1)
FOXO3A pS318 pS321. In MSCs (J) ACC pS79, (K) PI3K p85 pY467 pY199, (L)
PTEN_pS380_pT382_pT383, (M) PDK1 pS241, (N) AKT_pT308, (O) AKT_pS473, (P)
MTORC1_pS2448, (Q) 4E-BP1_pS65 and (R) FOXO3A pS318 pS321. (Previous page).
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5.4 Image flow cytometry fails to show correlation between DAPI —

FOXO3A and Rheb-LAMP1
As in the previous chapter imagestream flow cytometry was used to analyse the

response of FOXO3A and Rheb cellular localisation following Rapamycin treatment
and withdrawal. The timecourse used during the imagestream flow cytometry assays
differed from those obtained using the RPPA with time points taken at the following
times O hour (untreated), 30 minutes post treatment, 60 minutes post treatment, 24 hours
post treatment, 5 minutes post restimulation, 15 minutes post restimulation, 30 minutes
post restimulation, and 60 minutes post restimulation. LAMP1-Alexa-488 and DAPI
were also stained for in order to allow for lysosomal and nuclear localisation
comparison as in the previous chapter. One of the advantages of the Ideas software used
during this analysis is that once a template for an experiment has been created it is
possible to apply the same template along with the same compensation matrix to
multiple experiments. This allowed for the analysis of all Imagestream experiments
undertaken without changing any parameters within the analysis and removing
individual bias that can be inserted in confocal microscopy. A representative image of
cells following 24 hours Rapamycin treatment in shown in figure 5.16. As in the
previous chapter a single cell population was selected and out of focus cell images
removed from the analysis prior to analysi of co-localisation between FOXO3A- DAPI
and Rheb-LAMP1 (figure 5.16 A-D). Unfortunately whilst the Rapamycin samples
analysed contained more cells in the final analysis (post focus, single cell identification)
this total was still lower than required to perform analysis of sub-cellular localisation
(Pearson’s correlation co-efficient) (figure 5.17). In addition whilst DAPI was present in
both the starvation-restimulation and Rapamycin data it did not show up in the final
population (Pearson’s correlation co-efficient) (figure 5.16 E). Therefore whilst the data
shown in table 5.3 indicates a slight increase in both FOXO3A-DAPI and Rheb-LAMP1

correlation it is not possible to say with any certainty that this is the case.
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Figure 5.16: Image flow cytometry fails to show correlation between DAPI —

FOXO3A and Rheb-LAMPL. Representative image displaying image flow cytometry analysis of

untreated cells following 24 hour Rapamycin treatment (10nM)(A) A single cell population was selected,
(B) followed by the removal of images that were not in focus. (C) Nuclear localisation correlation was
analysed for FOXO3A and DAPI, in addition to (D) correlation analysis of RHEB and LAMPL1. (E)
Population analysis displaying correlation between DAPI-FOXO3A and Rheb-LAMPL. (F)

Representative image of in focus single cell population for 0 hour untreated cells.

Table 5.3: Image flow cytometry time course correlation. Correlation values for each time
point assayed for FOXO3A-DAPI (FD) and Rheb-LAMP1 (RL) (Pearson’s correlation co-efficient; all

values are non-significant P>0.05).

Time Point FOXO3A-DAPI Rheb-LAMP1 P-value

Pearson’s correlation Pearson’s correlation FD/RL

co-efficient co-efficient
0 hours -0.01483 0.6018 0.99/0.59
30 minutes treated -0.5771 0.6628 0.61/0.54
60 minutes treated -0.2335 0.6377 0.85/0.56
24 hours treated 0.277 0.7108 0.82/0.50
5 minutes restimulated 0.6233 0.7556 0.57/0.45
15 minutes restimulated  0.3694 0.7627 0.76/0.45
30 minutes restimulated  0.4967 0.7499 0.67/0.46
60 minutes restimulated  0.794 0.7519 0.42/0.46
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Figure 5.17: Image flow cytometry time course correlation. Population analysis

displaying correlation between DAPI-FOXO3A and Rheb-LAMP1, (Pearson’s correlation co-efficient)
(A) 0 hour untreated cells, (B) 30 minutes Rapamycin treated cells, (C) 60 minutes Rapamycin treated
cells, (D) 24 hour Rapamycin treated cells, (E) 5 minutes re-stimulated cells, (F) 15 minutes re-stimulated

cells, (G) 30 minutes re-stimulated cells, (H) 60 minutes re-stimulated cells.
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5.5 Discussion
The aims of the work presented here were: 1) to define a dynamic model capable of

representing the mTOR networks response to Rapamycin withdrawal; 2) to calibrate
this model in both MRC5 and MSCs using reverse phase protein arrays; 3) to use
imagestream flow cytometry to analyse the cellular localisation of key proteins within
the mTOR network and; 4) to identify how MRCS5 fibroblasts and MSCs differ in their
response to Rapamycin withdrawal. Through the computational dynamic modelling
approach described above this has been achieved. The model presented proved capable
of simulating the response of both MRC5 and MSCs in response to restimulation

following a period of Rapamycin treatment.

As with the previous chapter RPPA was used to produce calibration data with
measurements taken for a total of 16 proteins across the mTOR network. In contrast to
the data produced in the previous chapter the data presented here for MRC5 cells
produced a large amount of variation. In addition upon analysis of this data whilst parts
of the network displayed a clear flow of information as expected a number of
observables displayed behaviour not consistent with the rest of the time course. In
contrast the data produced for the MSCs displayed a clear flow of information
throughout the time course with the exception of PDK1_pS241.

One possible explanation for the variation observed in the MRC5 dataset is that
Rapamycin is considered a very messy drug with many off target effects [221].
However a key part of the network that was consistently affected by Rapamycin was
identified as the P70S6K negative feedback loop. A model topology alteration within
this section of the network led to a reduced AIC score and a similar RSS value despite
having a larger number of reactions within the model. Whilst it was not possible to
measure P70S6K activation or inhibition of IRS1 following Rapamycin withdrawal
using RPPA it is possible using western blotting. Further validation experiments should
therefore be performed focusing on the analysis of this section of the network. As
opposed to caloric restriction which feeds into numerous sections of the mTOR
network, Rapamycin is known to primarily feed into mTORC1. The identification of the
P70S6K negative feedback loop therefore makes biological sense. In the previous
chapter the removal of particular datasets allowed for the identification of ACC_pS79 as
the dataset whose removal lead to the largest decrease in fitting ability. Although a

similar methodology was followed above it was not possible to identify a single set of
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data whose removal either negatively or positively affected the models ability to achieve
a fit. The removal of PDK1 pS241 led to the largest reduction in RSS value amongst
the datasets analysed however little difference was observed upon removing either
PDK1_pS241 or mTORC1_pS2448 data from the parameter estimations. The failure to
fit PDK1_pS241 for either the MRC5 or MSC data however suggests that there are
mechanisms governing PDK1 activation not included within the model. As PDK1 is
phosphorylated on serine 241 through an autophosphorylation loop it is possible that
Rapamycin treatment interferes with this process. There are no studies to date however

investigating the effect of Rapamycin treatment on PDK1 activation.

Previously this work has shown that an MRC5 calibrated model was capable of fitting
data from MSCs following starvation-restimulation. This however was not achieved in
response to Rapamycin withdrawal with a number of observables failing to achieve an
acceptable fit to the MSC data within the MRC5 calibrated model. Given the large
differences observed between the two cell types responses to Rapamycin withdrawal
this is to be expected. As to why such differences exist in response to identical
treatments is more difficult to answer. However one explanation is that stem cells are
stringently regulated in order to prevent differentiation, self-renewal and cellular growth
under sub optimal conditions [36, 224]. A number of these mechanisms act as cancer
preventions therefore it is possible that regulation of the mTOR network is more rigid in

MSCs than in MRCS5 cells resulting in the differences observed.

A comparison of the reaction of MRC5 cells to starvation-restimulation and Rapamycin
withdrawal revealed very few similarities across the observables assayed. In contrast a
comparison of the reaction of MSCs to starvation-restimulation and Rapamycin
withdrawal revealed a number of similar kinetic responses. Given the importance of
AMPK in starvation-restimulation it is of particular interest that the readout used (ACC)
for this protein displays extremely similar behaviour in response to both treatments.
This is further evidence supporting tight regulation of AMPK in MSCs. The two
observables which display differential behaviour between the two treatments in MSCs
are the two AKT phosphosites. As Rapamycin acts to inhibit mMTORCL1 activity only in
MSCs the difference in their profiles is to be expected. Indeed following Rapamycin
withdrawal AKT_pT308 activity increases to a far larger extent than following
starvation-restimulation. Whilst the mTORC2 dependent AKT_pS473 displays a far
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greater increase in activity following starvation-restimulation compared to Rapamycin

withdrawal.

As in the previous chapter it did not prove possible to obtain time course data capable of
calibrating a dynamic model using imagestream flow cytometry. In addition in the final
analysis DAPI does not appear despite being present (cells not positive for DAPI would
be excluded from the final cell population being analysed following nuclear localisation
analysis). This is also the case for the starvation-restimulation dataset however as DAPI
is added immediately prior to analysis on the Imagestream flow cytometer and both the
starvation-restimulation and Rapamycin datasets were analysed at the same time this is
not unexpected. This is also the reason as to why both treatments appear to have a
limited number of cells appearing in the final analysis. A possible explanation for this is
that during the permeabilisation step cells were placed into 0.1% Triton-x 100 for
longer than the optimal time period leading to cell lysis.

The dynamic model presented here was able to reproduce the response of Rapamycin
withdrawal in both MRC5 and MSCs. Due to the variation observed in the MRC5
dataset a number of problems arose during the fitting process. These included the
requirement for a more detailed P70S6K feedback loop and the removal of the
PDK1 _pS241 data from the final parameter. Further work is therefore required
investigating the impact of Rapamycin treatment on PDK1 activation. A comparison
between the response of MSCs to starvation-restimulation and Rapamycin withdrawal
revealed similar kinetic profiles excluding the two AKT observables analysed. However
the reaction of each phosphorylation site on AKT makes biological sense when placed
in the context of the treatment being analysed.
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6. A dynamical model of the mTOR signalling
network reveals the kinetics of zoledronate and

re-stimulation in MRCS5 fibroblasts and human
bone marrow stem cells
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6.1 Introduction
Zoledronate is a nitrogen containing bisphosphonate (N-BP) used in the treatment of

osteoporosis primarily in post-menopausal women [115]. N-BPs were designed to
inhibit bone resorption by targeting the maturation process of the bone resorbing
osteoclasts.  Mechanistically N-BPs act by inhibiting the mevalonate network
responsible for the post-translational prenylation modification. They do so by inhibiting
the farnesyl diphosphate synthase (FPP) enzyme. Prenylation of a protein is a key post-
translational modification that primarily governs their appropriate localisation within
the cell. Prenylation involves the addition of either a farnesyl (c15) or a geranyl-geranyl
(c20) group being added to a protein at a CAAX motif at the c-terminus of the protein
[108, 225]. Due to its role in protein localisation and modulating function prenylation is
a key step in many signal transduction pathways [226]. The mechanistic effect of FPP
synthase inhibition is discussed in section 1.4.3. In recent years off target effects of N-
BPs have been observed, particularly in the case of Zoledronate and cancer treatment.
Due to the well-established links between the mTOR network and cancer a number of
studies have been undertaken to investigate the effect of Zoledronate on the mTOR
network. Two mTOR network linked proteins are affected by prenylation: firstly the G-
protein Ras is farnesylated leading to its activation and localisation at the plasma
membrane; and secondly the Ras homolog enriched in the brain (Rheb) is also
farnesylated which leads to its association with various membranes within a cell and its
ability to bind to GTP [227, 228]. In healthy cells, membrane localisation and activation
of Ras leads to its binding with GTP and allows it to interact with PI3K on its p110
subunit [118]. This interaction with RAS facilitates the activation of PI3K that occurs
via the binding of insulin to the insulin receptor. Activation of PI3K leads to a
downstream cascade resulting in the conversion of PIP2 to PIP3 and the activation of
AKT via its phosphorylation on tyrosine 308. Once phosphorylated AKT can interact
with the TSC1/2 complex resulting in its phosphorylation and inhibition [43]. The
TSC1/2 complex regulates the activity of Rheb by maintaining it in its GDP bound
state, phosphorylation of TSC1/2 results in Rheb associating with GTP to form its
active state which can then interact with FKBP38 resulting in its disassociation from
within the mTORCL1 [55, 58]. Rheb interaction with FKBP38 and its subsequent
disassociation from mTORCL1 activates the complex resulting in the phosphorylation of
S6K and the activation of several downstream transcription factors. Once activated S6K

also initiates a negative feedback loop inhibiting the insulin receptor [60].
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Far less is known regarding the second TOR complex mTORC2. However, it is known
that active mTORC2 phosphorylates AKT on serine 473 and that mTORC?2 is inhibited
by S6K activation [43]. Activation of mMTORC2 appears to be Rheb independent and it
is disputed whether or not the phosphorylation of S473 on AKT is required for its full

activation [52].

There are several parallels between the effects seen on the mTOR network when cells
are treated with Zoledronate and when they are subjected to caloric restriction.
Zoledronate treatment leads to an increased DNA damage response and the inhibition of
mTORC1[82].This also occurs in calorie restriction as there is a decrease in insulin
levels and therefore a decrease in signalling from the insulin receptor resulting in
decreased AKT activity [197]. In addition to this a decrease in glucose leads to a lower
level of ATP in the cell altering the ration of AMPK-ATP with the result being
increased AMPK activity and further mTORCL inhibition [229]. It has also been shown
that stem cell numbers can be preserved by calorie restriction and that this was due to
MTORC1 inhibition [230, 231]. Furthermore calorie restriction appears to protect the
proliferative and differentiation capacity of MSC in skeletal muscle, although the
mechanisms behind this are currently unknown. Recently it was shown that Rheb
inhibition extended lifespan in C.Elegans in a pattern that mimicked intermittent fasting
and highlights the possibility that inhibition of Rheb prenylation could extend lifespan
[232].

6.2 Modelling the effect of zoledronate on the mTOR network
To date there is no published work using dynamic modelling investigating the effect of

Zoledronate on the mTOR network. However previous work carried out prior to this
study in collaboration with Ilaria Bellantuono’s group at the University of Sheffield
attempted to explain the mechanisms observed in MSCs following Zoledronate
treatment [82]. The key findings of this work form the basis of the model produced
within this chapter and are summarised here. Initial predictions generated by the model
were unable to reproduce the observations reported in Misra et al 2016 as the removal
of prenylated species within the model occurred too rapidly. Whilst the inhibition of
FPP synthase occurs over a matter of minutes the effect of Zoledronate is not observed
until three days post treatment. Due to this, an alternative hypothesis was proposed
suggesting that the rate of inhibition of Zoledronate is not dependent upon the rate of

inhibition of FPP synthase but rather the turnover of prenylated proteins within the cell.
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This alteration resulted in a slow three day reduction in the number of prenylated
proteins within the model. In the initial simulations of this work Ras was not included
upstream of PI3K as previous models had proved successful in replicating mTOR
network dynamics without the inclusion of Ras e.g. Dalle Pezze et al 2012 and 2016
[172, 233]. Initial predictions by the dynamic model suggested that following
Zoledronate treatment there was an increase in the activity of AKT_pT308. This
increase in activity was due to the inhibition of mTORC1 activity and S6K activity
leading to the inhibition of the S6K negative feedback loop to PI3K and the subsequent
upregulation of AKT_pT308. More recent data however showed that both AKT_pT308
and AKT_pS473 activity levels decreasing following Zoledronate treatment (figure
6.1). Therefore it was necessary to include Ras upstream of PI13K in order to account for
this reduction in AKT_pT308 activity. The final finding of this work was the
assumption that a prenylation event must exist upstream of mTORC2. This was also
shown in Misra et al 2016 with the observation for a reduction in AKT_pS473 levels.
There are number of possible proteins responsible for the inhibition of mMTORC2 by
Zoledronate including Racl, RalA, Rab as well as Ras and Rheb [234].
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Figure 6.1: Immuno-blotting data examining AKT phosphorylation. Analysis of AKT
phosphorylation on Threonine 308 and serine 473 was carried out in MSCs following treatment with 1uM
Zoledronate for 72 hours. Signal intensities were quantified and statistics computed (n=3). Image
courtesy of Juhi Misra (University of Sheffield) [82].
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6.3 Aims
The study aim was to examine the effect of Zoledronate treatment on the dynamics of

re-stimulation of the mTOR network. We aim to define using a computational dynamic
model how the mTOR network responds in MRC5 fibroblasts and how the mTOR

network response differs in human mesenchymal stem cells.

6.4 Results

6.4.1 Development of a zoledronate dynamic network model
The model used throughout this section is described in section 4.3.1 and displayed in

figure 6.2 (all reactions can be found in appendix B). As described previously the amino
acid/nutrient activation of the model will remain as before with a constant level
available to the cells assumed. Nutrient signalling activates the model at three separate
inputs with PI3K, mTORC1 and AMPK all being activated by nutrient inputs. As before
PI3K activation leads to the activation of PDK1 and subsequent activation of AKT on
threonine 308. This in turn phosphorylates and inhibits the TSC1/2 complex leading to
activation of Rheb(GTP). Rheb in its GTP bound form is then free to activate the
mTORC1 complex leading to the activation of the downstream effectors
P70S6K_pT389, S6 pS235/236 and 4E-BP1_pS65 with a P70S6K_pT389 feedback
loop inhibiting further activation of PI3K by nutrient signalling. In addition to the above
a section of the mevalonate network was added to the model based on the assumptions
described in section 6.2. A network schematic displaying the mevalonate network and
its links to the mTOR network is shown in figure 6.3. As one of the proposed
assumptions described in section 6.2 was the need for a prenylation event upstream of
mTORC2 further research was carried out investigating which proteins could be
responsible. The proteins investigated include Racl, RalA, Rab as well as Ras and
Rheb [234]. With regards to mTORC2 activation there is very little evidence that Rheb
has any role in its activation however Ras has been implicated in mTORC2 activation
[235]. It has been shown that in invertebrate organisms Ras interacts directly with
components of mMTORC2 and is required for correct localisation of those components,
however this has yet to be shown in mammals [236, 237]. What is known however is
that Ras interacts with PI3K which possibly allows it to activate mTORC2 as well as
enhancing its activation of AKT phosphorylation and mTORC1 activation [235]. Racl
appears to act both upstream and downstream of both mTOR complexes surprisingly

however its role in mTORC2 regulation is far better understood than its role in
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mTORC1 regulation [73, 234]. The guanine exchange factor (GEF) for Racl is P-Rex1
which directly interacts with and is activated by mTORC2 leading to increased GTP
bound Racl [238]. Any decrease in mMTORC?2 therefore leads to a decrease of around
20-30% GTP bound Racl. However inhibition of Racl leads to a decrease in active
MTORC1 and mTORC2 showing that it must act upstream of both TOR complexes. It
is believed that Racl acts to correctly localise mTOR within the cell as inhibition of
Racl affects the subcellular localisation of mMTOR [239] [240]. In order to interact with
mTOR, Racl can be in either a GDP or GTP bound state however recent work has
shown that following bisphosphonate treatment the level of GTP bound Racl increases
[240]. It may be interesting to investigate if mTOR localisation is affected by
Zoledronate treatment of MSCs as this could provide an insight into how the drugs
affect the network. Very little is known about the role that RalA plays in mTORC2
activation. It is known that RalA enhances the interaction of ARF6 with phospholipase
D mediating the hydrolysis of phosphatidylcholine which produces phosphatidic acid
which is a known mediator if mMTORC1 and mTORC?2 activation [241-243]. It is not
currently known how RalA regulation contributes to mTORC2 activation however it
appears to be regulated by nutrient levels with increased GTP binding of RalA under
high nutrient conditions leading to increased mMTORC1 activation [244-246]. At present
there is no evidence in mammals to support the idea that members of the Rab GTPase
family can stimulate mTORC?2 activation. However work carried out in yeast has shown
that the Rab6 homologue Ryhl controls spTOR2 activation and when expressed in
yeast human Rab6 can also activate TORC2 suggesting that the link may be
evolutionary conserved [247, 248]. Due to its role in compartment specificity within
eukaryotic endomembrane it is possible that Rab6 could control mTOR localisation
within the cells however there is currently no evidence to support this idea [249, 250].
Due to the lack of a clear evidence for a prenylated protein that could act upstream of
MTORC2 it was decided that Ras should be selected from the G proteins investigated.
This was pragmatic decision as it prevented the need for the addition of an additional

species within the model whilst satisfying the above evidence.
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Figure 6.2: The mTOR network. A SBGN network model diagram displaying the mTOR

network. Asterisks mark phospho proteins measured for starvation-restimulation RPPA experiments

whilst hashtags mark proteins assayed by imagestream flow cytometry.
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Figure 6.3: The effect of Zoledronate on the mTOR network. A SBGN network model
diagram displaying the connections between the mevalonate and the mTOR networks. Proteins in Pink
and red denote mevalonate proteins; Green proteins represent mTOR related proteins.
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6.4.2 Utilising RPPA to produce a calibration dataset following

zoledronate treatment
As with the two previous chapters once the network topology had been determined a

timecourse dataset was collected using RPPA. As the removal of prenylated proteins
within a cell takes three days MRCS5 cells were treated with 1uM Zoledronate for this
period of time at which point the Zoledronate was removed and the cells restimulated
with standard DMEM as described in sections 2.1.15. As with the two previous datasets
the timecourse was designed to allow for the capturing of the immediate dynamics of
the mTOR network following removal of Zoledronate. In addition however time points
were taken every 24 hours during to Zoledronate treatment to observe the changes in the
mTOR network during Zoledronate treatment. Throughout this chapter a total of 17
proteins were analysed consisting of 10 phosphoproteins, 7 total proteins and the house
keeping protein a-tubulin (Table 6.1). However during the initial RPPA analysis of
Zoledronate treatment on MRC5 cells a total of 9 phospho-proteins and 8 total proteins
were analysed. Each of the antibodies used had previously been validated in previous

chapters or in the case of GSK3-f had been validated in a separate project.

6.4.3 Zoledronate treatment of MRCS5 cells results in cell death at 1pM
The Initial assay of MRC5 cells following Zoledronate treatment is shown in figure 6.4.

Following normalisation the expected relative fluorescent level a given protein
undergoing RPPA should be above 0.1 to be considered above the background
threshold. As can be observed in figure 6.4, whilst there appears to be a dynamic
reaction in response to re-stimulation following Zoledronate withdrawal of all proteins
with the exception of PDK1_pS241 fail to maintain an expression over the background
threshold. It is therefore not possible to assess the effect of Zoledronate withdrawal
using this dataset. To complement RPPA, an analysis of the response of both FOXO3A
and Rheb to Zoledronate treatment and was carried out using Imagestream flow
cytometry. As described above MRCS5 cells were treated with 1uM Zoledronate for a
period of 72 hours with time points analysed every 24 hours. As can be observed in
figure 6.5 following 72 hours Zoledronate all cells in the analysis display auto-
fluorescence characteristic of cell death. As the removal of prenylated proteins from the
cell requires 3 days following Zoledronate treatment it was decided that no further
analysis of these samples should be performed. Following these results it was decided

that a cell death assay should be performed in order to ascertain the level of cell death in
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MRC5 cells following Zoledronate treatment. For the purposes of this study three
separate concentrations were selected each decreasing 10 fold from the previous. As
1uM had proved to already lead to cell death in MRCS5 cells this concentration was
tested along with 0.1uM and 0.01puM Zoledronate. As with the previous timecourse
experiments MRC5 cells were treated with Zoledronate at the above concentrations for
a period of 72 hours and then a cell count performed with cells stained with Trypan blue
allowing for the identification of live and dead cells. The results of this study are shown
in figure 6.6. Following treatment with both 1uM and 0.1uM Zoledronate cell death was
determined to be 34 and 32 percentage respectively with no statistical significance
observed between the two different treatments (P=0.33; 2-way analysis of variance-
ANOVA). At the lowest concentration of 0.01uM Zoledronate cell death was
determined to be 20 percentage with a significant difference observed between this
treatment and both 1uM and 0.1pM Zoledronate respectively (P=0.0037 and P=0.015
respectively; 2-way ANOVA). As such it was decided that whilst cell death was still
relatively high in the 0.01uM Zoledronate treatment samples, that this concentration
should be carried forward for further tests using RPPA and Imagestream flow

cytometry.
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Table 6.1: Reverse Phase Protein Array Antibodies. A list of all antibodies assayed during

Zoledronate experiments.

Antibody Antibody Source

ACC GSK3B_pS9 pS21 Cell Signalling Technology
ACC_pS79 mTOR Cell Signalling Technology
PIBK p85_pY467_Y199, mTOR_pS2448 Cell Signalling Technology
PTEN_pS380_T382 T383 4E-BP1 Cell Signalling Technology
PDK 4E-BP1 _pS65 Cell Signalling Technology
PDK1_pS241 S6_pS235/236 Cell Signalling Technology
AKT FOXO3A Cell Signalling Technology
AKT_pT308 FOXO3A _pS318 S321 Cell Signalling Technology
AKT_pS473 A-tubulin Cell Signalling Technology

157



0.16 04 0.08
A_ ACC_pS79 B POK1_pS241 Q AKT_pT308
S o4 B) | S o007
5 3 oa il
i o [
& 012 3 & 006
> 2
i 0.10 2 %
E § 0.2 5 005
£ £ £
£ 008 € € 004
g 3 8
2 006 g o ¢ oo
g g 2 o
3 El S
[ o [
g o S s o
k=1 k<t £
g oo g 3 o
0.00 01 0.00 T T T T T T
0 10 20 30 40 50 60 70 o 10 20 30 40 50 60 I 0 10 20 30 40 50 60
Time (Minutes) Time (Minutes) Time (Minutes)
D -~ E~ F
AKT_pS473 TORC1_pS2448 4E-BP1_pS65
=) 2 oo 5 016
<(‘ <\ <(\
—I 0.08 o o 014
o T
4 € o0 <
> 2 2> 0.12
& 2 2
g oo 5] § 010
£ £ oos 2
= £ = 008
3 5 g
2 2 004 ]
g 0.04 ] 2 o006
E] E S
; g oos T 004
2 2 2
g o0 £ 2 002
3 2 002 K
o (4 3
© 000
0.00 0.01 -0.02
o 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60
Time (Minutes)
Time (Minutes) ( ) Time (Minutes)
G ™ H
| FoxO3a_pS318_S321 = GSK-3a-b_pS21_89
2‘ 2‘ 025
o 0.08- e
o
[ 3
> : 0.20
7 3
& 006 5
£ 2 015
€ =
8 g 010
o 0.04 4 g
g g
z El
° o 005
% 0.02 4 g
s k=t
3 000
© 4
0.00
0 10 20 30 40 50 60 70 005
o 10 20 30 40 50 60 70
Time (Minutes)

Time (Mintes)

Figure 6.4: Measuring the kinetics of the mTOR network in MRC5 cells. A sixty

minute time course following 72 hour Zoledronate treatment (1uM). Cells were re-stimulated at O hours
and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A) ACC_pS79,
(B) PDK1_pS24, (C) AKT_pT308, (D) AKT_pS473, (E) mTORC1 _pS2448, (F) 4E-BP1_pS65, (G)
FOXO3A pS318_S321, (H) GSK3-B pS9 pS21.
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B BrightField FOXO3A-PE DAPI LAMP1-ALEXA  Rheb-ALEXA 647
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Figure 6.5: Imagestream flow cytometry reveals cell death in MRC5 cells. (A)
Untreated MRC5 cells and MRC5 treated with 1uM Zoledronate for 72 hours (B) were stained for

FOXO3A, DAPI, LAMP1 and Rheb and analysed using an Amnis Imagestream flow cytometer. (Image
representative of 1000 cell events).
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Figure 6.6: Zoledronate cell death assay. MRC5 cells were treated with 1uM 0.1uM and

0.01uM Zoledronate. Percentage cell death was calculated (n=3) (Mean +/- SEM).
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6.4.4 Treatment of MRCS cells with 0.01pM zoledronate followed by

nutrient re-stimulation results in clear dynamic signalling profiles.
Following the results obtained by the cell death assay a second time course was

produced using MRCS5 cells treated with 0.01uM Zoledronate. This was carried out
exactly as described as above and is shown in figure 6.7. In contrast to the previous
dataset the raw RFI values obtained for this data all displayed values between 0.1 and
above with the exception of GSK3-B pS9 pS21 (figure 6.7 K) (the values shown in
figure 6.7 are the normalised values not raw RFi values). As can been seen in figure 6.7
there is a clear flow of information through the network with an initial increase
observed in all observables with the exceptions of AKT_pS473, FOXO3A pS318_S321
and S6_pS235/236 (figure 6.7 F, 1 and J). Following a decrease between the 3 and 10
minutes time points there is then an increase for all observables with AKT_pS473 and
S6_pS235/236 again proving to be the exceptions (figure 6.7 F and J). However in the
case of these two observables there is an earlier increase at the 10 minute time point

with a decrease in signalling observed by 20 minutes.
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Figure 6.7: Measuring the dynamics of the mTOR network in MRC5 cells. A sixty

minute time course following 72 hour Zoledronate treatment (0.01uM). Cells were re-stimulated at 0
hours and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A)
ACC_pS79, (B) PI3K_P85_pY467_Y199, (C) PTEN_pS380_T382_T383, (D) PDK1_pS241, (E)
AKT _pT308, (F) AKT_pS473, (G) mTORC1_pS2448, (H) 4E-BP1_pS65, (I) FOXO3A_pS318_S321,
(J) S6_pS235/236, (K) GSK3-B pS9 pS21.
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6.4.5 Parameter estimation
As with the starvation re-stimulation and Rapamycin models following generation of

the second calibration dataset using RPPA, parameter estimations were carried out for
the first 60 minutes of the timecourse. The data was normalised as previously described
with all proteins measured normalised to the housekeeping protein a-tubulin and then
the control time point 0 set to a value of 1 and all subsequent time points divided by this
value. This would allow for a direct comparison between not only the MRC5 and MSC
cells, but also between treatments, as it would provide a simplified kinetic profile from
an arbitrary initial value. As with the previous models a total number of 10000 runs
were then performed using a computational cluster with the genetic algorithm used as
described in section 2.2.2. The time length for these runs was variable as they were
dependent on how the cluster was being used on a given day by multiple users. In
addition to the set-up described above all prenylated species were set to have an initial
starting value of O to represent the effect of Zoledronate on the model. As described in
section 4.3.3 the residual sum of squares (RSS) value was used to determine a
“goodness of fit” due to the scale of the data being used. As in previous chapters the
python package Pycotools was used to ascertain the best fitting parameters from the
parameter estimations. An updated version of this package was available for this work
which allowed for a far more in depth analysis of the data it was decided that this should
be carried out for the work presented here.

6.4.6 Existing model is capable of fitting MRC5 dataset in response to

zoledronate withdrawal
As can be seen in figure 6.8 the model was able to achieve an acceptable fit to the data

for 7 out of the 10 observables measured (RSS=0.738134). The three observables that
could not be fitted were PTEN_pS380_T382 T383, PDK1 pS241 and 4E-BP1_pS65
(figure 6.8 C, D + H). This further confirms that the model was incapable of fitting both
PTEN_pS380 T382_T383 and 4E-BP_pS65 using the current topology and known
activation mechanisms. For PDK1 pS241 whilst it had proved possible to fit this
observable for the MRCS5 starvation-restimulation data it had not been possible to do so
for both the Rapamycin and Zoledronate data. This suggests that there are mechanisms
governing PDK1_pS241 activity not included in the model which are affected by
Rapamycin and Zoledronate treatment in MRC5 cells. In addition to investigating the

parameter estimation which provided the ‘best fit’ to the data it was also possible to
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view how the model fit differed across repeats by plotting a time course ensemble using
the Pycotools python package (figure 6.9). As can be seen in figure 6.9 there is very
little difference between the top ten ranked parameter estimations with each of the
parameter sets resulting in a model fit close to the overall mean model simulation (dark
blue line). This also holds true for the three observables which the model is unable to
fit, further supporting the need to further investigate the mechanisms governing the
activity of these proteins. Figure 6.9 K, displays the RSS value for each parameter
estimation ranked in order of ‘best fit’ and suggests that the parameter estimations have
not found a minimum RSS value. This is to be expected however as the purpose of the
second round of parameter estimations using the Hooke and Jeeves algorithm is to find
a local minima for the model parameters. In addition to allowing for the analysis of time
course ensembles it is also possible to analyse the overall spread of each parameter
fitted by the parameter estimations (figure 6.10). For each parameter within the
estimation there is a limited set of values that may be used, in the case of all parameter
estimations carried out in this work those limits were 1e® — 1e* with each parameter
able to be any value between those two values. The less variation a parameter displays
between the upper and lower limits the more confidence can be placed upon the models
ability to fit that parameter value. Across the full 10000 parameter estimations the
majority of parameters estimated display a large variation in values (figure 6.10 A).
However upon refinement to the top 100 parameter estimations there are few sections of
the model which continue to display a large variation. These parameters are primarily
involved in the mevalonate network section of the model suggesting that more data are

required to inform the model fit for this part of the model topology (figure 6.10 B).
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Figure 6.8: Time course simulations from the model compared to Zoledronate

withdrawal data in MRC5 cells. The model displayed in figure 6.2 was calibrated using the

RPPA data shown in figures 6.7. A parameter estimation consisting of 59 parameters in total was

performed using the genetic algorithm (10000 runs). The residual sum of squares between the

experimental data (Black +/- SEM) and the simulated data (Blue) was calculated as 0.738134 with a good

fit achieved.
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Figure 6.9: Time course ensemble for the top 10 genetic algorithm parameter

estimations in MRCS5 cells. (A-J) A time course ensemble was computed using the python package

Pycotools. The top ten ranked parameter estimations from 10000 were inserted into the model shown in

figure 6.2 and a time course simulation performed. The mean value for each time point in each of the 10

simulations was then plotted (dark blue line) and 95% confidence intervals calculated (light blue area).

(K) The RSS value for each of the 10000 parameter estimations was ranked.
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parameter estimated within the lower (1e-6) and upper limit (1000) bound of 10000 (A) and top 100 (B)

parameter estimations using the genetic algorithm in MRCS5 cells.
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6.4.7 Modelling difference in MRC5 and MSC
As carried out previously following the calibration of the model using the MRC5

dataset a second time course was performed using MSCs. As in previous chapters this
time course was carried out using the same points as for the MRCS5 dataset and is shown
in figure 6.11. A comparison between the MRC5 and MSC Kkinetic following re-
stimulation can be seen in figure 6.12. There is a clear dynamic behaviour observed
throughout the dataset with an initial decrease observed for all proteins excluding
ACC_pS79. Unfortunately the mTORC_pS2448 read out displayed background level
fluorescence and therefore could not be used in parameter estimations figure 6.11 G).
Following the initial decrease in signalling there is an increase in activity across the
time course up to the 10 minute time point with a decrease observed at either 10 or 20
minutes for all proteins. Following this there is an increase for all proteins except
PDK1 _pS241, 4E-BP1 _pS65, S6_pS235/236 and GSK3-B pS9 S21 at 30 minutes
(figure 6.11 D, H and K). All proteins display a decrease in signalling at the 60 minute
time point. Interestingly the ACC_pS79 time course follows a very similar Kinetic
profile to that observed in starvation-restimulation in MRC5 cells with an increase in
signalling occurring over the first 5-10 minutes and then decreasing to baseline

signalling after 30 minutes (figure 6.11 A).
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Figure 6.11: Measuring the Kinetics of the mTOR Network in MSC Cells. A sixty

minute time course following 72 hour Zoledronate treatment (1uM). Cells were re-stimulated at O hours

and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A) ACC_pS79,
(B) PIBK_P85_pY467_Y199, (C) PTEN_pS380_T382_T383, (D) PDK1_pS241, (E) AKT_pT308, (F)
AKT_pS473, (G) mTORC1_pS2448, (H) 4E-BP1_pS65, (1) FOXO3A _pS318_S321, (J) S6_pS235/236,
(K) GSK3-B_pS9 pS21.
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Figure 6.12: A comparison of MRC5 vs MSC outputs following Zoledronate

withdrawal. A sixty minute time course following 72 hour Zoledronate treatment for both MRC5
(Blue) and MSC (Red) cells. Cells were re-stimulated at 0 hours and relative fluorescent intensity
measured at each time point (n=3) (Mean +/- SEM). (A) ACC_pS79, (B) PI3K_p85 pY467_pY199, (C)
PTEN_pS380_pT382_pT383, (D) PDK1 pS241, (E) AKT_pT308, (F) AKT_pS473, (G)
mTORC1_pS2448, (H) 4E-BP1_pS65, (1) FOXO3A _pS318 pS321 and (J) S6_pS235/236.
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6.4.8 Pycotools analysis reveals similar parameter constraints for both

MRC5 and MSC parameter estimations
Prior to analysis using the Hooke and Jeeves algorithm, analysis using the Pycotools

python package was carried out for the MSC parameter estimations carried out using the
genetic algorithm. Time course ensembles were carried out as described above for
examining the variation between the top ten ranked parameter fits (figure 6.13). As was
observed for the MRC5 dataset the time course ensembles revealed very little variation
between these fits with extremely small confidence intervals (light blue area) surround
each mean value for the ten parameter estimations (dark blue line figure 6.13). As was
also true for the MRC5 genetic algorithm, using the genetic algorithm for the MSC
dataset failed to find the local minima (figure 6.13 J). However as discussed above as
the Hooke and Jeeves algorithm was subsequently applied to these values the fit
achieved using the genetic algorithm can be said to be acceptable (figure 6.13 A-I).
Upon analysing the variation for each parameter value it became clear that as for the
MRCS5 dataset, the top 100 fits led to a significant reduction in variation for a number of
parameters analysed (figure 6.14). Using this approach it was also possible to analyse
how each parameter value was varying in both the MRC5 and MSC parameter
estimations for the top 100 parameter estimations (figure 6.15). This revealed that two
sections of the topology displayed a large variation in values for both parameter
estimations. These were the reaction parameters for the Rheb and Ras prenylation
reactions and the reaction parameters for the TSC1/2 complex reactions. As there is
currently no data covering these parts of the topology this is to be expected. In addition
to these parameters a number of other parameters governing AKT activity displayed
differential fitting between the two parameter estimations. A reason for this is possibly
that this section of the network is extremely complex with a large number of reactions
existing to govern AKT activity across its four possible species within the model. A
number of parameters however displayed very similar behaviour in terms of constraint
across both parameter estimations. These reactions were largely involved in mTORC1
and mTORC2 activity in addition to those parameters governing PI3K activity. Despite
the large amount of data covering these reactions it is interesting that the model appears
to always converge upon a similar parameter value for these parameters for two separate

parameter optimisation problems.
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Figure 6.13: Time course ensemble for top 10 genetic algorithm parameter

estimations in MSC cells. (A-1) A time course ensemble was computed using the python package

Pycotools. The top ten ranked parameter estimations from 10000 were inserted into the model shown in
figure 6.2 and a time course simulation performed. The mean value for each time point in each of the 10
simulations was then plotted (dark blue line) and 95% confidence intervals calculated (light blue area). (J)

the RSS value for each of the 10000 parameter estimations was ranked
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parameter estimated within the lower (1e-6) and upper limit (1000) bound of 10000 (A) and top 100 (B)

parameter estimations using the genetic algorithm in MSCs.
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100 ranked parameter estimations in MRC5 cells (A) MSCs (B).
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6.4.9 Hooke and Jeeves
As in the previous chapters a comparison testing the ability of the calibrated MRC5

model to fit the MSC data was carried out. The MRC5 dataset was removed and
replaced with the MSC dataset. A set of 100 parameter estimations using the Hooke and
Jeeves algorithm was then performed using the reaction parameter values obtained by
the best fit to the MRC5 dataset as the initial reaction parameter values. In addition a set
of 100 parameter estimations was also carried out as above for the MRC5 dataset. This
resulted in an improved fit with an RSS value of 0.70 however as expected little
improvement was observed for the observables that could not be fitted using the genetic
algorithm (figure 6.16). Applying the Hooke and Jeeves algorithm to the MRC5
calibrated model using the MSC dataset resulted in an improved fit (RSS = 0.383181)
with the model capable of reproducing a similar fit to that observed using the genetic
algorithm (RSS = 0.272978) (figure 6.17). This was true for all observables fitted with
the exception of 4E-BP1 pS65 whose fit using the genetic algorithm could not be
replicated using the Hooke and Jeeves algorithm (figure 6.17 H).
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Figure 6.16: Time course simulations from the model compared to re-stimulation data

utilizing the local Hooke and Jeeves algorithm. The model displayed in figure 6.2 was calibrated

using the re-simulated RPPA data shown in figures 6.7. A parameter estimation consisting of 59

parameters in total was performed using the local algorithm Hooke and Jeeves (100 runs). The Residual

sum of squares between the experimental data (Black +/- SEM) and the simulated data (Blue) was
calculated as 0.701168.
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Figure 6.17: Genetic vs Hooke and Jeeves fit for MSC. The model displayed in figure 6.2

was calibrated using the RPPA data shown in figure 6.11. A parameter estimation consisting of 59

parameters in total was performed using the genetic algorithm (10000 runs) (Blue) randomising the initial

parameter values and the Hooke and Jeeves algorithm (100 runs) (Red) using previously obtained

parameter values form the MRC5 data fit. The Residual sum of squares between the experimental data

(Black +/- SEM) and the simulated data (Genetic-Blue, Hooke and Jeeves-Red) was calculated as 0.27

(genetic) and 0.38 (Hooke and Jeeves).
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Table 6.2: Residual sum of squares value for each model. The residual sum of squares for

each model fitted to the experimental data for both MRC5 and MSC datasets. The lower the RSS value,
the closer the fit between the model simulations and the corresponding dataset. Corresponding figure
number also shown.

Parameter Estimation Residual Sum of Figure No.
Squares

MRCS5 Genetic Fit 0.738134 6.8

MRC5 Hooke and Jeeves 0.701168 6.16

MSC Genetic Fit 0.272978 6.11

MSC Hooke and Jeeves 0.383181 6.17
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6.5 A comparison between zoledronate withdrawal and starvation-

restimulation and rapamycin withdrawal.
As in the previous chapter a comparison was carried out between the MRC5 and MSC

datasets for both Zoledronate withdrawal and starvation-restimulation and Zoledronate
withdrawal and Rapamycin withdrawal (figure 6.18 and 6.19). There are a number of
differences between the response to Zoledronate withdrawal and starvation-
restimulation in MRC5 cells (figure 6.18 A-J). In particular the responses of ACC_pS79
and AKT_pS473 are of interest (figure 6.18 A + F). Following starvation-restimulation
there is an increase in ACC_pS79 signalling over the first 10 minutes of the time course
before a decrease back to initial levels. This peak does not exist within the Zoledronate
data with a very slight increase observed in the first minute before a gradual decline.
The AKT_pS473 kinetic profiles are similar in both the starvation-restimulation and
Zoledronate datasets however the level of activity varies greatly with a far greater
response observed following starvation-restimulation (figure 6.18 F). Within the MSC
datasets there is far less variation between the observables (figure 6.18 K-T). However
the response of ACC_pS79 to each treatment varies greatly as it does for the MRC5
datasets. Interestingly there is a reversal in the difference between the treatments with a
similar peak in ACC _pS79 activity within the Zoledronate withdrawal MSC data
observed whereas there is no peak observed in the starvation-restimulation data (figure
6.18 K). Upon comparing Zoledronate withdrawal and Rapamycin withdrawal in MC5
cells there are few similarities (figure 6.19 A-I). The exception to this is the response of
the AKT_pT308 observable whose kinetic profile is very similar in response to both
treatments (figure 6.19 E). Within the MSC datasets there are a number of observables
which display similar behaviour in response to Zoledronate and Rapamycin Withdrawal
(figure 6.19 J-R). In particular the PI3K_P85 pY467_Y199,
PTEN_pS390 T382_T383, and 4E-BP1_pS65 all display similar kinetic profiles from
the 1 minute time point onwards (figure 6.19 K, L + Q). Interestingly the profiles for the
two AKT phosphosites measured display similar kinetic profiles between each
treatment however the relative response to each treatment differs greatly. In response to
Zoledronate withdrawal there is far greater activation of AKT_pS473 whilst in response
to Rapamycin treatment there is a far greater activation of AKT_pT308 (figure 6.19 N +
O). This supports the data shown in figure 6.1 that Zoledronate treatment leads to a
greater inhibition of AKT_pS473 than AKT_T308.

178



Relative Level (AU)

ACC_pS79

Relative Level (AU)

PI3K p85_pY467_Y199

Relative Level (AU)

PTEN_pS380_T382_T383

Time (Minutes)

Time (Minutes)

Relative Level (AU)

PDK1_pS241

Relative Level (AU)

AKT_pT308

Time (Minutes)

Tn

Relative Level (AU)

AKT_pS473

Time (Minutes)

Relative Level (AU)

mMTORC1_pS2448

Relative Level (AU)

40 50 60 70
Time (Minutes)

Time (Minutes)

4E-BP1_pS65

Relative Level (AU)

FoxO3a_pS318_S321

Time (Minutes)

a0 50 60 70

Time (Minutes)

Time (Minutes)

Relative Level (AU)

S6_S235/S236

Relative Level (AU)

Time (Minutes)

ACC_pS79

Relative Level (AU)

PI3K p85_pY467_Y199

40 50 60 70
Time (Minutes)

0 10 20 30 40 50 60 7

Time (Minutes)

® o

Relative Level (AU)
H

PTEN_pS380_T382.T383

.z

Relative Level (AU)

PDK1_pS241

Relative Level (AU)

AKT_pT308

0 10 20 30 40 50 60

Time (Minutes)

40 50 60 70

Time (Minutes)

0 10 20 30 a0 50 60 70

Time (Minutes)

Relative Level (AU)

AKT_pS473

Relative Level (AU)

0 10 20 30 40 50 60

Time (Minutes)

05

0.0

MTORC1_pS2448

Time (Minites)

40 50 60 70

Relative Level (AU)

FoxO3a_pS318_S321

—

Relative Level (AU)

Time (Minutes)

S6_S235/S236

Time (Minutes)

Relative Level (AU)

4E-BP1_pS65

o 10 20 30 40 50 60 70
Time (Minutes)




Figure 6.18: A comparison of mTOR kinetics following Zoledronate withdrawal an

d starvation-restimulation in MRC5 and MSC cells. A sixty minute time course following

72 hour Zoledronate treatment (Blue) and starvation-restimulation (Red). Cells were re-stimulated at 0
hours and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM) in MRC5 cells
(A) ACC_pST79, (B) PI3K_p85_pY467_pY199, (C) PTEN_pS380_pT382_pT383, (D) PDK1_pS241, (E)
AKT_pT308, (F) AKT_pS473, (G) mTORC1_pS2448, (H) 4E-BP1_pS65, (I) FOXO3A_pS318_pS321
and (J) S6_pS235/236. In MSCs (K) ACC_pS79, (L) PI3K p85 pY467_pY199, (M)
PTEN_pS380_pT382_pT383, (N) PDK1_pS241, (O) AKT_pT308, (P) AKT_pS473, (Q)
MTORC1_pS2448, (R) 4E-BP1_pS65, (S) FOXO3A pS318 pS321 and (T) S6_pS235/236. (previous

page).
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Figure 6.19: A comparison of mTOR Kkinetics following Zoledronate withdrawal

and Rapamycin withdrawak in MRC5 and MSC cells. A sixty minute time course

following 72 hour Zoledronate treatment (Blue) and Rapamycin (Red). Cells were re-stimulated at 0
hours and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM) in MRC5 cells
(A) ACC_pS79, (B) PI3K_p85_pY467_pY199, (C) PTEN_pS380_pT382_pT383, (D) PDK1_pS241, (E)
AKT _pT308, (F) AKT_pS473, (G) mTORC1_pS2448, (H) 4E-BP1 pS65 and mn
FOXO3A pS318 pS321.In MSCs (K) ACC_pS79, (K) PI3K_p85 _pY467_pY199, (L)
PTEN_pS380_pT382_pT383, (M) PDK1 pS241, (N) AKT_pT308, (O) AKT_pS473, (P)
MTORC1_pS2448, (Q) 4E-BP1_pS65 and (R) FOXO3A pS318 pS321. (Previous page).
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6.6 Image flow cytometry fails to show correlation between DAPI —

FOXO3A and Rheb-LAMP1
As in the previous chapters imagestream flow cytometry was used to analyse the

response of FOXO3A and Rheb cellular localisation following Zoledronate treatment
and withdrawal. The timecourse used during the imagestream flow cytometry assays
differed from those obtained using the RPPA and from the two previous treatments with
time points taken at the following times O hour (untreated), 24 hours post treatment, 48
hours post treatment, 72 hours post treatment, 5 minutes post restimulation, 15 minutes
post restimulation, 30 minutes post restimulation, and 60 minutes post restimulation. As
carried out previously LAMP1-Alexa-488 and DAPI were also stained for in order to
allow for lysosomal and nuclear localisation comparison as in the previous chapter. In
addition the template and correlation matrix previously created for the analysis of both
serum starvation-restimulation and Rapamycin treatment was used for the analysis of
Zoledronate treatment allowing for a standard set of analysis conditions across all three
treatments. A representative image of cells following 72 hours Zoledronate treatment in
shown in figure 6.20. As in the previous chapter a single cell population was selected
and out of focus cell images removed from the analysis prior to analysi of co-
localisation between FOXO3A- DAPI and Rheb-LAMP1 (figure 6.20 A-D). Whilst the
number of cell and the imaging of DAPI in the final analysis of the previous two
experiments had proved problematic this was not the case with ~1800 cells per time
point obtained following Zoledronate treatment. It was therefore possible to analyse the
data shown in table 6.3. Upon inspection however it was determined that nether
FOXO3A-DAPI or Rheb-LAMP1 display a positive correlation (Pearson’s’ correlation
co-efficient) (figure 6.21).
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Figure 6.20: Image flow cytometry fails to show correlation between DAPI —

FOXO3A and Rheb-LAMPL. Representative image displaying image flow cytometry analysis of

untreated cells following 72 hour Zoledronate treatment (0.01pM), (A) A single cell population was
selected, (B) followed by the removal of images that were not in focus. (C) Nuclear localisation
correlation was analysed for FOXO3A and DAPI, in addition to (D) correlation analysis of RHEB and
LAMP1. (E) Population analysis displaying correlation between DAPI-FOXO3A and Rheb-LAMP1
(Pearson’s correlation co-efficient). (F) Representative image of in focus single cell population for 72
hour Zoledronate (0.01uM) treated cells.

Table 6.3: Image flow cytometry time course correlation. Correlation values for each time
point assayed for FOXO3A-DAPI (FD) and Rheb-LAMP1 (RL) (Pearson’s correlation co-efficient; all

values are non-significant P>0.05)

Time Point FOXO3A-DAPI Rheb-LAMP1 P-value
Pearson’s correlation  Pearson’s correlation FD/RL
co-efficient co-efficient

0 hours -0.3104 0.7639 0.79/0.45

24 hours treated -0.3365 0.7557 0.78/0.46

48 hours treated -0.2176 0.856 0.87/0.34

72 hours treated -0.4275 0.7226 0.72/0.49

5 minutes restimulated -0.4246 0.7874 0.72/0.43

15 minutes restimulated -0.4228 0.8008 0.72/0.41

30 minutes restimulated -0.4196 0.7818 0.73/0.43

60 minutes restimulated -0.3574 0.8024 0.77/0.41
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Figure 6.21: Image flow cytometry time course correlation. Population analysis

displaying correlation between DAPI-FOXO3A and Rheb-LAMP1, (Pearson’s correlation co-efficient),
(A) 0 hour untreated cells, (B) 24 hours Zoledronate treated cells, (C) 48 hours Zoledronate treated cells,
(D) 72 hours Zoledronate treated cells, (E) 5 minutes re-stimulated cells, (F) 15 minutes re-stimulated

cells, (G) 30 minutes re-stimulated cells, (H) 60 minutes re-stimulated cells.
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6.7 Discussion
The aims of the work presented here were to define a dynamic model capable of

representing the mTOR networks response to Zoledronate Withdrawal. To calibrate this
model in both MRC5 and MSCs using reverse phase protein arrays. To use imagestream
flow cytometry to analyse the cellular localisation of key proteins within the mTOR
network. And to identify how MRCS5 fibroblasts and MSCs differ in their response to
Zoledronate Withdrawal. Through the computational dynamic modelling approach
described above this has been achieved. The model presented proved capable of
simulating the response of both MRC5 and MSCs in response to restimulation

following a period of Zoledronate treatment.

As with the two previous chapters RPPA was utilised to create a time course dataset
capable of calibrating a dynamic model of the mTOR network. Initial attempts to carry
this out in MRCS5 cells failed to produce a time course suitable for the calibration of the
model above. However subsequent analysis revealed that MRC5 cells are far more
sensitive to Zoledronate treatment than expected. In order to address this a 100 fold
reduction in Zoledronate concentration was required. This resulted in a significant
reduction is cell death and the ability to produce a high quality calibration dataset using
RPPA. In addition imagestream flow cytometry analysis of MRC5 cells treated using
this concentration displayed normal cell morphology. As it has previously been
observed that MSCs do not undergo cell death at 1uM Zoledronate it was not necessary
to perform a cell death assay on these cells [82]. Following Zoledronate withdrawal a
consistent kinetic profile was observed throughout the time course with a clear flow of
information through the mTOR network observed. It proved possible to assay a total of
17 proteins using RPPA for both MRC5 and MSCs although one antibody per RPPA
assay failed. This can however be appears to a consequence of antibody failure as
opposed to a failure of the RPPA methodology.

Following parameter estimation with the genetic algorithm it proved possible to fit
seven out of the ten observables assayed in the MRC5 dataset and eight out of the nine
observables assayed in the MSC dataset. As with the previous chapter it did not prove
possible to fit the PTEN_pS380_T382_T383 or PDK1 pS241 observables in the MRC5
dataset. Suggesting that the model at present does not sufficiently capture the regulatory
mechanisms which control the activation of these proteins. In addition it did not prove

possible to obtain a fit for 4E-BP1_pS65 in any of the three treatments analysed in
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MRCS5 cells suggesting that a more in depth analysis of mMTORCL1 regulation of 4E-BP1
activity is required. As this would likely require the construction of second dynamic
model to analyse possible regulatory frameworks for 4E-BP1 this was not attempted in
this work [251] [252].

A key factor throughout this work has been the reaction of the ACC_pS79 observable as
a read out of AMPK activity. Following Zoledronate withdrawal there is again an
interesting response observed for this protein. In MRC5 cells there is an initial increase
ACC_pS79 phosphorylation followed by a decrease over the remainder of the time
course. This size of this peak is extremely small when compared to the relative changes
observed for both starvation-restimulation and Rapamycin withdrawal. In contrast
however a transient peak is observed in the MSC dataset which follows the same pattern
as the peak observed in MRCS5 cells following starvation-restimulation. Given the
apparent regulatory constrictions placed on AMPK activity observed in MSCs in the
previous two treatments this is a very interesting observation and suggests that
Zoledronate in MSCs could have a similar effect to that observe with starvation-
restimulation in MRC5 cells. Upon comparison of the response of MRC5 cells to
Zoledronate withdrawal and starvation-restimulation it is apparent that a number of
differences exist. In particular as already described the reaction of ACC_pS79 differs
greatly between these treatments. In addition whilst the Kkinetic profile of the
AKT_pS473 observable is very similar between the treatments there is a far larger level
of activation observed following starvation-restimulation than in Zoledronate treatment.
The same can be said when comparing Zoledronate withdrawal to Rapamycin
withdrawal in MRC5 cells with very few similarities observed with the exception of the
AKT _pT308 observable whose kinetic profile is extremely similar in response to both

treatments.

As was the case in the previous chapter the response of MSCs to Zoledronate
withdrawal and starvation-restimulation is far less varied with a number of profiles
displaying similar behaviour. As previously described the ACC_pS79 observable is the
exception to this with large increase in phosphorylation observed in response to
Zoledronate withdrawal but not starvation-restimulation. Upon comparison of
Zoledronate withdrawal to Rapamycin withdrawal in MSCs this pattern repeats itself
with a large number of kinetic profiles displaying similar behaviour. There is a greater

level of activation in the Rapamycin withdrawal dataset among the observables
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upstream of mMTORC1 when compared to Zoledronate withdrawal with PDK1 pS241
again proving to be the exception to this. In contrast there is far greater level of
activation observed in the mTORC2 dependent AKT_pS473 variable in response to
Zoledronate withdrawal compared to Rapamycin withdrawal. This is not unexpected
however as the Rapamycin treatment protocol used above was designed not to elicit
chronic inhibition of the mTOR network and therefore mTORC2 should have remained
active over the length of the time course. The contrasting differences of the AKT
phosphosites in response to Zoledronate withdrawal and Rapamycin withdrawal
however provides further evidence of RPPAs ability to provide consistent data which

can be used to calibrate dynamic models.

Within this chapter it proved possible to perform in depth analysis of the data obtained
during the parameter estimations using the genetic algorithm by utilising the Pycotools
python package. Our analysis revealed that the top estimation profiles obtained during
the parameter estimations all followed the same kinetic profile with extremely tight
confidence intervals in both the MRC5 and MSC parameter estimations. In addition
whilst the analysis of the total number of runs for both estimations revealed a large
variation in parameter values per parameter. The top 100 estimations displayed far less
variation with a number of parameters being tightly constrained to a small set of values.
Interestingly a comparison of the level of parameter variation between the cell types
revealed that the same parameters for each cell type were being constrained by the
model and more significantly a number of these parameters were being constrained to
similar values. This analysis also identified two areas in which the model struggled to
constrain parameters. These were identified as reaction parameters relating to the
TSC1/2 complex and the parameters concerned with Ras and Rheb protein production
and degradation. In order to assist the model in fitting these parameters further
experimental data should be produced and added to the parameter estimations.

Whilst it did not prove possible to analyse the correlation between either FOXO3A-
DAPI or Rheb-LAMP1 using imagestream flow cytometry in this study the results
above indicate that this should be possible with experimental refinement. Whilst
FOXO3A phosphorylation does not always correspond to activity or indeed to nuclear
localisation it is possible that a different result would be obtained if total FOXO3A was
assayed in place of FOXO3A pS253. The lack of correlation between Rheb-LAMPL is

harder to explain. Whilst it was expected that Rheb localisation at the lysosome would
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be disrupted following Zoledronate treatment the lack of correlation in the untreated
samples suggests that there is no change in correlation across the time course. This
could possibly be due to non-specific binding of the antibody concerned resulting in an
inability of the analysis software to determine a correct correlation.

Overall the aims of this work have been met with a dynamic model capable of
reproducing the response of both MRC5 cells and MSCs to Zoledronate withdrawal.
Due to the level of cell death observed in MRCS5 cells the initial concentration of
Zoledronate used was required to be reduced resulting in the production of a consistent
kinetic profile using RPPA. As in previous chapters problems arose in the fitting of the
PTEN, PDK1 and 4E-BP1 observables assayed suggesting that further regulation of
these proteins is required within the model. A comparison between the three treatments
revealed that whilst large differences occur in MRCS5 cells a number of similarities exist
in MSCs. In addition whilst the observed output for ACC_pS79 in starvation-
restimulation and Rapamycin withdrawal led to similar profiles the ACC_pS79 Kinetic
profile for Zoledronate withdrawal displayed more similarity to that of the MRC5
starvation-restimulation. In depth analysis of the parameter estimations for both cell
types revealed very little variation between the top parameter ensembles with similar
parameter groups being constrained or unconstrained in both estimations. Imagestream
analysis was unable to capture the dynamics expected following Zoledronate treatment

however this may be obtained following further refinement of the experimental process.
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7.1 Summary
The study aims and objectives have been largely met. Our initial hypothesis was as

follows, that due to the fact that both starvation-restimulation and Zoledronate treatment
leads to the inhibition of both mTOR complexes, the response in both MRC5 cells and
MSCs should be similar between these two treatments. However as acute treatment of
Rapamycin leads only to the inhibition of mTORCL, this treatment would therefore lead
to a separate response to the other treatments analysed. This hypothesis has been largely
proven to be true with both the response of the mTOR network to restimulation
following starvation and Zoledronate withdrawal being dependent upon AMPK.
Following Rapamycin treatment however the response of the mTOR network was found
to be largely dependent upon the P70S6K negative feedback loop. However whilst
AMPK may be the key regulatory component following both starvation-restimulation

and Zoledronate withdrawal this appears to occur through two distinct mechanisms.

A total of three methodologies have been investigated and their suitability to provide
accurate time course data assessed. Whilst further investigation is warranted, RPPA
proved capable of producing accurate and reproducible time course data capable for
calibrating a dynamic model of the mTOR network. The second methodology assessed,
intracellular flow cytometry was capable of producing the time course data required
however the limitations associated with this technology made it unsuitable in
comparison to both western blots and RPPA. The final methodology assessed was
imagestream flow cytometry. Whilst this methodology suffers from the same drawbacks
as intracellular flow cytometry it provides a powerful analysis tool for cellular
localisation and further investigation is warranted into its ability to provide the data
required for network calibration. Upon restimulation following a period of serum
starvation the response of MRC5 cells is dependent upon AMPK signalling with an
increase in ACC_pS79 observed. This is not observed in MSCs raising the possibility
that AMPK signalling is placed under stringent regulation in MSCs compared to MRC5.
Whilst the kinetics of the mTOR network following starvation-restimulation depend
upon AMPK ACC signalling our model revealed this not to be the case following
Rapamycin withdrawal. The P70S6K feedback loop was identified as the key signalling
reaction in MRC5 cells following Rapamycin withdrawal with a change in network
topology required in order to achieve an acceptable model fit. As with the starvation-

restimulation data the data obtained following Rapamycin withdrawal data for MSCs
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displayed far less variation when compared to the MRC5 dataset. However PDK1 was
identified as differentially regulated in both MRC5 and MSCs following Rapamycin
withdrawal. As with the two previous MSC datasets the data obtained following
Zoledronate withdrawal displayed less variation compared to MRC5 cells. Following
parameter estimation with both MRC5 and MSC datasets for Zoledronate withdrawal a
number of parameters showed similar constraints in their values following fitting with
the genetic algorithm. Two areas of the network were also identified were the estimation
algorithms could not pin down a refined set of parameter values. This project again
demonstrated the significant power in using an integrative experimental and
computational approach to analyse biological signalling networks. Using the same
initial topology with minimal alterations, it was possible to analyse how the mTOR
network is affected during restimulation following three separate life extending
treatments. This would not have been possible using a purely experimental approach,
and indeed the unbiased model calibration performed served to highlight a number of

observables whose kinetic behaviour could not be explained by the model selected.

7.1.1 Summary of key findings
e Reverse Phase proteins arrays provide a high quality medium through-put

alternative to western blotting

e Following serum starvation, AMPK signalling is the pivotal section of the
mTOR networks response in MRCS5 cells but not in MSCs

e Following Rapamycin withdrawal, mTOR signalling is dependent upon the
P70S6K negative feedback loop

e Following Zoledronate withdrawal there is an activation of AMPK signalling in
MSCs but not in MRCS5 cells

e Imagestream flow cytometry did not prove capable in this study of providing co-

localisation timecourse data for either Rheb or FOX0O3a

7.2 Key study observations

7.2.1 Reverse phase protein arrays provide a high quality medium

through-put alternative to western blotting
The work carried out in chapter 3 cleary indicated the suitability of RPPA to produce

large scale datasets required for the calibration of dynamic models. Building upon this

the subsequent chapters in this work proved that this data could be used to achieve the
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calibration of a dynamic model of the mTOR network for two cell types across three
separate treatments. Comparison of the data obtained in MRC5 cells in chapter 4 to
previously published work examining the effect of amino acid deprivation on the
mTOR network revealed similar kinetic profiles for the AMPK read out ACC_pS79 and
for both AKT_pT308 and AKT_pS473 [172]. In addition to this, recent research has
utilised RPPA to calibrate a dynamic model of cytokine regulation of osteogenesis with
the aim of providing a therapeutic tool for future research [195]. Whilst this project has
achieved a large amount of success in using RPPA in dynamic modelling there are a
number of limitations associated with this methodology. As previously discussed
antibody availability is the primary limitation associated with RPPA, whilst this did not
prove particularly problematic in this project due to the extensive research previously
carried out on the mTOR network there were certain proteins that could not be assayed.
Amongst these AMPK_pT172, P70S56K_pT389, TSC2 pT1462 and PRAS40_pS183
would be of particular interest to assay. In addition although the previous work supports
our findings using RPPA for starvation-restimulation validation work is still required
using western blots to verify the findings presented in this work.

7.2.2 Dynamic modelling reveals the importance of AMPK signalling in
response to starvation-restimulation in MRCS5 fibroblasts but not

MSCs
Recent work has revealed the interplay between AMPK and mTOR signalling following

restimulation with amino acids [172]. The work presented in chapter 4 further supports
these findings with the ACC_pS79 data proving to have the largest effect on fitting the
MRC5 data to the model. This resulted in the requirement for the removal of baseline
AMPK and ACC phosphorylation from the model fitting. The reason for the inability of
the model to fit the data with a baseline activation of AMPK within the model is likely
due to the complex regulation of AMPK itself. As the primary focus of this work was
on the identification of differences between life extending treatments it was decided that
additional modelling of potential regulatory mechanisms should not be undertaken as
the identification of AMPKSs importance in starvation-restimulation satisfied the original
objectives. Interestingly in MSCs the transient peak observed in the literature for
AMPK _pT172 and in the MRC5 data for ACC_pS79 was not observed. This suggests
that this section of the network differs between the MSCs and differentiated MRC5

cells. It is possible that the stringent regulation placed on stem cells compared with
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differentiated cells could account for this difference. However recent research showing
that AMPK can act to bypass the inhibitory effect of caloric restriction in intestinal stem
cells taken from mice suggests that under periods of caloric restriction stem cells
possess protective mechanisms in order to prevent proliferation or differentiation under
sub-optimal conditions [209]. As AMPK regulation of mTOR was not the primary focus
of this work the AMPK-mTOR network connections presented here represent an
abstracted version of the work presented in Dalle Pezze et al 2016. As such further
analysis is required to elucidate the mechanisms governing AMPK activity during

starvation-restimulation and how this differs between stem cells and differentiated cells.

7.2.3 mTOR signalling following rapamycin withdrawal is dependent
upon the P70S6K negative feedback loop

Rapamycin was included in this study as it is considered to be the ‘gold standard’ in
terms of pharmalogically extending lifespan. In addition previous work produced by at
the University of Sheffield had used Rapamycin in comparison studies with Zoledronate
[82]. It is however not considered to be a particularly clean drug with many off target
effects [219]. This was also shown to be the case in this study with a large amount of
variation observed in the MRCS5 dataset. Interestingly this variation was not observed in
the MSC dataset further supporting the idea that a set of extremely stringent regulatory
mechanisms exist in stem cells which are absent in differentiated cells [253]. In
addition, in response to Rapamycin withdrawal the P70S6K negative feedback loop was
identified as the key section of the mTOR signalling network with a disconnect
observed between the responses of proteins upstream of mMTORC1 and downstream of
MTORCI. As it was not possible to assay the activity of P70S6K directly using RPPA
it will be necessary in future to assay this protein and to ascertain as to whether the
above assumption is correct. In addition to providing a standard drug treatment with
which to compare Zoledronate to, Rapamycin also served to act as a comparison
treatment between total and partial mMTOR inhibition. It would be of interest to take this
work further by investigating the response of both MRC5 and MSCs to chronic
Rapamycin treatment targeting the mTORC2 complex in addition to the mTORC1

complex.
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7.2.4 Zoledronate withdrawal leads to an activation of the AMPK

signalling pathway in MSCs but not MRCS5 cells
The recent finding that Zoledronate treatment leads to lifespan extension in MSCs

supports a growing body of evidence that Zoledronate and other N-BPs act to extend
lifespan and inhibit DNA damage [124]. In addition it has been found that the treatment
of MSCs with Zoledronate for a period of three days is sufficient to achieve lifespan
extension through the mTOR network [82]. The work presented here aimed at building
upon these findings and establishing the mechanistic reaction of the mTOR network to
Zoledronate withdrawal. Treatment of MRCS5 cells with Zoledronate at 1uM resulted in
cell death and with high levels of cell death not observed at 0.01uM. Indeed the
cytotoxicity of Zoledronate in fibroblasts is ill-defined with little to no data available for
MRCS fibroblasts [254]. This therefore meant that it was not possible to cross reference
this finding with other research. The model used in this work proved capable of fitting
the majority of the data produced by the RPPA following Zoledronate withdrawal on
the first attempt. However a number of observables could not be fitted with the current
model topology. These included PTEN, PDK1 and 4E-BP1, whilst it was possible to
obtain a fit for both PTEN and PDK1 for the starvation-restimulation MRC5 dataset this
was not possible for either the Rapamycin withdrawal or Zoledronate withdrawal
datasets. The regulation of PTEN has yet to be fully elucidated and therefore the
defining of extra regulatory reactions for this protein and its relationship with the
mTOR network would be better suited to an individual project. Whilst the reactions
governing PDK1 activation have previously been defined, how this regulation is
affected by Rapamycin and Zoledronate treatment has yet to be investigated [51].
Possibly the most interesting observation regarding the Kkinetics of Zoledronate
withdrawal occurs in MSCs with an increase in phosphorylation of ACC_pS79
observed. This occurs over the same time frame as the transient peak observed in
response to starvation-restimulation in MRC5 cells. Given the finding that the
phosphorylation of ACC_pS79 does not increase following starvation-restimulation or
Rapamycin withdrawal in MSCs and the relative importance of AMPK signalling in
MSC proliferation and differentiation this finding is very surprising. When the
remainder of the observables assayed were compared across treatments the reaction of
the mTOR network in MSCs was similar with the exception of ACC_pS79. This
suggests that whilst Zoledronate treatment and withdrawal exerts a similar response by

the mTOR network to all three treatments this is not the case with the AMPK network.
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Indeed recent research has suggested that prenylation of LKB1, a primary activator of
AMPK affects its localisation within the cell [255]. It is as yet unknown whether or not
the prenylation inhibition affects the activity of LKB1. Whilst research has been carried
out investigating the role of AMPK in bone metabolism this does not appear to include

the research into the effect of bisphosphonates on AMPK activation.

7.2.5 Imagestream
The ability of imagestream flow cytometry to analyse cellular localisation and to

produce data capable of calibrating a dynamic model has been explored throughout the
work presented here. The data collected showed that this methodology is an extremely
powerful tool capable of analysing in detail the cellular localisation of proteins within
the cell. Whilst the result obtained in this work did not show co-localisation for either of
the protein analysed this is likely due to the need to refine the experimental process.
Indeed FOXO3A localisation has previously been measured successfully using this
technology [256]. This suggests that it would be possible to refine and optimise the
protocols used throughout this work in order to successfully measure FOXO3A nuclear
localisation. Whilst Rheb was also assayed for each treatment it localisation was not
expected to be altered by either starvation-restimulation of Rapamycin treatment. The
lack of correlation with the lysosomal marker LAMP1 prior to Zoledronate treatment
suggests possible non-specific binding form the antibody used. Imagestream flow
cytometry whilst a very powerful analysis tool presents a number of difficulties which
need to be overcome in order for this technology to become a frequently utilised tool in
dynamic modelling. Aside from the problems discussed above there is also the difficulty
in producing small time points required to observe fast acting signalling events. This is
because cells a required to remain intact (as opposed to lysed for western blots or
RPPA) throughout flow cytometry protocols. This raises the question of how to inhibit
further signalling once a sample is removed for analysis. In this work cells were treated
with ice cold PBS and culture medium in order to overcome this problem however due
to this smaller time points were not attempted. Due to the reasons discussed above it has
not proved possible to validate imagestream flow cytometry as a methodology for
producing time course data required for the calibration of dynamic models although this

may prove possible with further analysis.
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7.3 Limitations and future study

7.3.1 Technical
Throughout this work a number of technical challenges arose particularly concerning

generation of time course calibration data. The RPPA has proved successful with
regards to generating the large amount of time course data required for this work. It is
however a relatively new and largely untested technology in field of systems biology
and dynamic modelling. As such in addition to performing assays of proteins which
currently cannot be measured using RPPA such as P70S6K and TSC2_ pT1462 it will
also be necessary to perform validation experiments confirming the findings present
above. Of particular interest is the response of ACC_pS79 to Zoledronate withdrawal.
As recent research has shown that the AMPK activator LKB1 possesses a post
translation farnesylation modification the activation of AMPK may not only be of
biological interest but also could serve as a read-out of protein prenylation in
Zoledronate treated cells. One of the key findings of this work was that the response of
ACC _pS79 to both serum starvation-restimulation in MRC5 cells and in response to
Zoledronate withdrawal is very similar. This however appears to be controlled through
two distinct mechanisms with amino acids acting activate AMPK in MRCS5 cells upon
restimulation and with the re-prenylation of LKB1 in MSCs following Zoledronate
withdrawal. Further investigation of these mechanisms and in particular how they affect
by bisphosphonate treatment will be of primary importance in further work. The lack of
this response in MRC5 cells following Zoledronate withdrawal is interesting. As it did
not prove possible to confirm de-prenylation using imagestream flow cytometry it will

be necessary to confirm this by western blots in MRCS5 cells.

In addition to RPPA the work presented here also attempted to utilise flow cytometry as
an alternative to western blotting. This proved only partially successful when using a
standard flow cytometer. In addition to this there were a number of technical limitations
associated with this technology which could not be overcome. When producing time
course data it is of utmost importance to prevent further cell signalling from taking
place after the designated time point. Whilst in Western blotting and RPPA this
achieved by the use of a lysis buffer in flow cytometry it is required that the cells
remain intact throughout the process. It was therefore necessary to attempt to inhibit cell
signalling by carrying out the flow cytometry procedure at ice cold temperatures. As the

flow cytometry procedure used here prior to cell fixation took between 10-15 minutes
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depending upon sample numbers an argument can be made that that cellular signalling
could still be occurring during this period. Therefore the data collected would not be

representative of the time points being analysed.

The primary focus of the Imagestream flow cytometry was to investigate the cellular
localisation of both FOXO3A and Rheb in response to each treatment. Whilst the
analysis of intracellular localisation proved possible further refinement is required in
order to analyse if time course data can be produced using this methodology. As such
further optimisation should be performed analysing the localisation of total FOXO3A
and investigating alternative antibodies for Rheb and possibly Ras.

7.3.2 Computational
The work presented above was ideally suited to an integrated computational modelling

study. Indeed without this approach it would not have proved possible to identify a
number of key sections within the mTOR network in response to each treatment. The
modelling approach above is one that has been used on a number of previous
investigations by our group [171, 172, 203, 233]. There were however two key changes
presented here compared to previous work, 1) the model topology could only undergo
minor changes between treatments and this therefore meant that, 2) data was removed
from datasets to identify key areas within the network topology. Due to time constraints
and the time required to produce data for each treatment, it was necessary to carry out
the computational modelling work for each treatment individually. This therefore meant
that once the network topology was in place it could only undergo minor changes with
these usually relating to initial concentrations representing the changes between each
treatment. An alternative methodology which could be used in future studies would be
to attempt to fit all the data presented here for each cell type in one model. This would
require presenting the model with all three datasets representing each treatment and
performing parameter estimations. It may therefore be possible to identify a single
parameter set capable of fitting the restimulation data for each treatment in both cell

types.

Throughout this work the python package Pycotools was used to analyse the data
obtained from the parameter estimations in Copasi. In chapter 6 an updated version of
this package was available and proved capable of providing in depth analysis of the

parameter estimations obtained in response to Zoledronate withdrawal. The work
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presented in this chapter displays only a small number of analysis tools available within
this package. It would be interesting to apply these analysis techniques to the data
obtained in chapters 4 and 5. In addition at present the Pycotools package is still in the
development phase and in future a number of other analysis tools are expected to be
available including sensitivity analysis and identifiability which could be used to

analyse the parameter estimations presented in chapters 4, 5 and 6.

7.3.3 Biological
The network used throughout this work represents an abstracted version of the mTOR

network and is by no means a complete representation of this network. Indeed there are
a number of signalling networks associated with the mTOR network not described here
of which three are of particular interest given the findings above. These include the
DNA damage response, MSC proliferation and differentiation and the process of
autophagy. Initial work on this project included the building and refining of both a
DNA damage response (DDR) network adapted from Procter et al 2008 and a model of
MSC differentiation (osteogenesis) [134, 257, 258].

The relationship between Zoledronate treatment and the DNA damage repair
mechanisms and how these relate to decreased mortality and lifespan extension have
only broadly been explored [82, 118, 124]. However this area is coming under increased
scrutiny as researchers investigate the repurposing of pharmaceuticals already available
to patients. Given the connections between the mTOR network and the DDR described
in section 1.5.2 and the findings that Zoledronate inhibits the mTOR network and its
withdrawal in MSCs elicits a similar response in AMPK signalling to that observed for
starvation-restimulation in MRC5 cells, this warrants future work into the connections
between Zoledronate treatment and the DDR. The work presented here would provide
the framework for this to be carried out. As already stated a DDR module has already
been defined using a previously published model and connected into the model used
throughout this work. It would be possible to simulate the predicted response to DNA
damage for each treatment and cell type using the calibrated model described above.
This could then be tested against experimental data produced using RPPA with
irradiation used to induce DNA damage following each treatment and time course
produced in the same manner as above. Model predictions could then be compared to
the experimental data allowing for the evaluation of the models ability to fit the DDR
data.
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Zoledronate treatment is only prescribed to patients that have already developed
osteoporosis with the aim of inhibiting bone resorption. This however only acts to bring
bone resorption and bone formation back into balance and one of the primary aims of
osteoporosis research is how to maintain bone formation whilst preventing bone
resorption with age. Whilst this was not a primary aim of this work it was something
which was discussed and a differentiation network was developed with this aim in
mind. The mTOR network has a number of functions one of which is cellular growth.
As Zoledronate inhibits mTOR signalling this also inhibits cellular growth, proliferation
and differentiation. Linking the mTOR model discussed throughout this work with a
model of proliferation/differentiation would allow for the analysis of how each
treatment in MSCs affects the differentiation process. As with the DDR experimental
data could then be collected using RPPA to examine if the model is capable of
reproducing the cellular response of MSCs during differentiation following each of the

treatments discussed above.

7.4 Research impact
The impact of this research on ageing lies primarily in its focus on the mTOR network.

How this network is regulated and how this regulation changes with age is one of the
primary focuses of ageing research. The aim of this work was to build upon previous
work exploring the interconnection of three separate life extending treatments with the
mTOR network and to explore how the response observed in the mTOR network differs
between each treatment. It has proved possible to show an increase in AMPK signalling
following serum-starvation which is consistent with previously published data. In
addition this reaction was observed in MSCs following Zoledronate treatment. This is
likely to be due the de-prenylation of LKB1 upstream of AMPK. This work has further
highlighted the importance of AMPK signalling in ageing research with further work
required to elucidate the important role that this protein plays in lifespan extension.
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Figure Al: AKT pT308 signalling. MRCS5 cells were treated with 50uM Torinl for 24
hours with samples taken at 0 hours and 24 hours. (A+E) unstained sample (B) 50uM Torinl 0

hours, (C) 50uM Torinl 24 hours, (D) Overlay histogram displaying a comparison for each time
point, (F) Untreated sample 0 hours, (G) Untreated sample 24 hours, (H) Overlay histogram

displaying a comparison for each time point.
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Figure A2: Intracellular flow cytometry is not capable of producing calibration
time course data for a dynamic model for mMTORC1 pS2448. Cells were serum
starved overnight and then re-stimulated with FBS and L-Glutamine containing media with time
points collected after (A) 0 minutes, (B) 5 minutes, (C) 15 minutes and (D) 30 minutes (n=3)
representative of 1 repeat shown. (F) Overlay histogram displaying a comparison for each time
point. (G) The average Geometric mean for each time point plotted against time.
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Figure A3: Intracellular flow cytometry is not capable of producing calibration
time course data for a dynamic model for AKT pS473. Cells were serum starved
overnight and then re-stimulated with FBS and L-Glutamine containing media with time points
collected after (A) 0 minutes, (B) 5 minutes, (C) 15 minutes and (D) 30 minutes (n=3)
representative of 1 repeat shown. (F) Overlay histogram displaying a comparison for each time
point. (G) The average Geometric mean for each time point plotted against time.
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Figure A4: Insulin treatment enhances the capable of Intracellular flow cytometry

to produce calibration time course data for a dynamic model for

MTORC1 pS2448. Cells were serum starved overnight and then re-stimulated with FBS and

L-Glutamine media supplemented with 100nM insulin with time points collected after (A) O
minutes, (B) 5 minutes, (C) 15 minutes and (D) 30 minutes (n=3) representative of 1 repeat
shown. (F) Overlay histogram displaying a comparison for each time point. (G) The average

Geometric mean for each time point plotted against time.
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Figure A5: Insulin treatment enhances the capable of Intracellular flow cytometry

to produce calibration time course data for a dynamic model for AKT pS473. Cells

were serum starved overnight and then re-stimulated with FBS and L-Glutamine media
supplemented with 100nM insulin with time points collected after (A) 0 minutes, (B) 5 minutes,
(C) 15 minutes and (D) 30 minutes (n=3) representative of 1 repeat shown. (F) Overlay
histogram displaying a comparison for each time point. (G) The average Geometric mean for

each time point plotted against time.
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9.2 Appendix B

Table B1: Initial Concentrations for starvation-restimulation model

compartment ml 1
AA mmol/ml 10
PI3K mmol/ml 10
PI3K_P mmol/ml

S6K_P mmol/ml 1
PDK1 mmol/ml 10
PDK1 P mmol/ml 1
AKT mmol/ml 20
AKT_pT308 mmol/ml 0.5
AKT_pS473 mmol/ml 0.5
mTORC2_P mmol/ml 1
AKT _pT308_pS473

mmol/ml 0.5
PI3K_V mmol/ml 10

PI3K_V_P mmol/ml

mTORC2 mmol/ml

TSC1/2 mmol/ml

TSC1/2_P mmol/ml

Rheb mmol/ml

Rheb(GTP) mmol/ml

mTORC1 mmol/ml

mTORC1_P mmol/ml

Rapamycin mmol/mi

S6K mmol/ml

FPPS mmol/ml

Ras(GTP) mmol/ml

Ras mmol/ml

FPPS_i mmol/ml

Zol mmol/ml

Ras(GDP) mmol/ml

Rheb(GDP) mmol/ml

Sink mmol/ml 0

FOXO3A mmol/mi

FOXO3A_P mmol/ml

AMPK mmol/ml

AMPK_P mmol/ml

ACC mmol/ml

ACC_P mmol/ml

mTOR mmol/ml

4EBP1 mmol/ml

4EBP1_pS65 mmol/ml
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PTEN mmol/ml
PTEN_P mmol/ml

S6 mmol/ml

S6_pS235 mmol/ml

AKT473

R =)

AKT308

Table B2 — Final parameter values Starvation-restimulation genetic algorithm MRCS5 cells

PI3K AA 7.32E-05
P13K dephos 1.95E-05
S6K feedback loop 3.47E-05
PDK1 act 0.04562
PDK1 dephos 0.624943
AKT -> 308 6.20E-06
AKT308 -> dual 7541.31
AKT -> 473 1.49E-06
AKTA473 -> dual 7681.41
Dual -> AKT 0.002034
Dual -> 308 1.01E-05
Dual -> 473 8.89E-06
308 -> AKT 0.00066
473 -> AKT 0.01001
PI3K_V act 384.059
PI3K_V dephos 1.94E-05
mTORC? act 1.75E-06
mTORC?2 dephos 0.000242
TSC1/2 de-act 308 6.02E-06
TSC1/2 de-act dual 63.8319
TSC1/2 act 0.159927
Rheb deact 0.024202
Rheb act 0.000949
mTORCI1 act 0.00039
mTORC1 dephos 1.31E-05
S6K act 0.022449
S6K dephos 2.50E-06
PI3K Ras 2.18E-05
Ras act 856.741
FPPS inact 10000
FPPS act 10000
Ras deact 117.929
Ras gdp-gtp 0.000147
Rheb GDP GTP 3.51E-06
Rheb deg 0.000797
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Rheb(GDP) deg 0.009059
Rheb(GTP) deg 56.2759
Ras deg 0.000365
Ras(GDP) deg 0.000672
Ras(GTP) deg 4.15865
Sink - Rheb 0.112345
Sink Ras 0.00349
AKT_pT308_pS473

FOXO 2.61E-05
FOXO3A 0.001366
AMPK dephos 0.659257
AMPK_P 7.38403
AMPK PI3K 0.031079
ACC_P 0.047271
ACC dephos 0.136097
PTEN act 0.01853
Rapamycin 0.062519
mTOR -> MTORC1 0.000488
4EBP1 Act 0.004473
4EBP1 inact 0.000765
PTEN inact 0.020089
S6 Act 0.012627
S6 inact 0.174259
mTOR AA 0.000126
mTOR AMPK 0.017255

Table B3 — Final parameter values Starvation-restimulation Hooke and Jeeves MRC5 cells

PI3K AA 0.000107
PI3K dephos 1.00E-06
S6K feedback loop 1.03E-06
PDK1 act 0.050029
PDK1 dephos 0.678169
AKT -> 308 7.00E-06
AKT308 -> dual 0.001318
AKT ->473 0.002157
AKTA473 -> dual 59.6159
Dual -> AKT 0.007048
Dual -> 308 1.20E-05
Dual -> 473 0.406246
308 -> AKT 2.98E-06
473 -> AKT 0.737759
PI3K_V act 0.018645
PI13K_V dephos 3.53299
mTORC?2 act 1.31272
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mTORC?2 dephos 0.034439
TSC1/2 de-act 308 10.153
TSC1/2 de-act dual 8.86E-05
TSC1/2 act 0.003557
Rheb deact 429.299
Rheb act 3.99E-05
mTORC1 act 1.06E-06
mTORC1 dephos 5.83E-06
S6K act 0.022104
S6K dephos 1.00E-06
PI3K Ras 5.57E-05
Ras act 815.83
FPPS inact 10000
FPPS act 10000
Ras deact 0.000226
Ras gdp-gtp 3.68E-05
Rheb GDP GTP 2.36E-05
Rheb deg 0.000371
Rheb(GDP) deg 6.16E-06
Rheb(GTP) deg 211.892
Ras deg 3.50E-05
Ras(GDP) deg 10.7584
Ras(GTP) deg 0.142144
Sink - Rheb 8.22E-05
Sink Ras 4.71E-05
AKT pT308 pS473

FOXO 1.44E-05
FOXO03A 0.002287
AMPK dephos 2.49068
AMPK P 0.01548
AMPK PI3K 0.034879
ACC P 2.05622
ACC dephos 1.22348
PTEN act 0.020961
Rapamycin 0.062519
mTOR -> MTORC1 0.000937
4EBP1 Act 0.003089
4EBP1 inact 0.000177
PTEN inact 0.039305
S6 Act 0.01669
S6 inact 0.234351
mTOR AA 0.00017
mTOR AMPK 0.018407
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Table B4 — Final parameter values Starvation-restimulation genetic algorithm MSCs

PI3K AA 4.78E-05
PI3K dephos 3.69E-05
S6K feedback loop 8.87E-06
PDK1 act 0.000201
PDK1 dephos 1.99E-05
AKT -> 308 0.000495
AKT308 -> dual 1.09E-06
AKT -> 473 0.077915
AKTA473 -> dual 0.000152
Dual -> AKT 5.10446
Dual -> 308 96.4466
Dual -> 473 42.443
308 -> AKT 5.16E-05
473 -> AKT 0.006095
PI3K_V act 0.021595
PI13K_V dephos 21.0726
mTORC? act 8.42E-06
mTORC2 dephos 0.036055
TSC1/2 de-act 308 3.30068
TSC1/2 de-act dual 0.002608
TSC1/2 act 0.010819
Rheb deact 0.061057
Rheb act 352733
mTORCI1 act 0.034379
mTORC1 dephos 2.19078
S6K act 2.13E-06
S6K dephos 8.79E-05
PI3K Ras 0.004699
Ras act 11.8046
FPPS inact 508201
FPPS act 10212.8
Ras deact 0.022624
Ras gdp-gtp 3.92797
Rheb GDP GTP 0.007522
Rheb deg 0.073574
Rheb(GDP) deg 1.21E-05
Rheb(GTP) deg 416.765
Ras deg 1.85E-06
Ras(GDP) deg 14.48
Ras(GTP) deg 5.57015
Sink - Rheb 301276
Sink Ras 6.14E-06
AKT_pT308 pS473 2.78979
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FOXO

FOXO03A 0.000516
AMPK dephos 0.072417
AMPK_P 0.007556
AMPK PI3K 0.000305
ACC_P 0.000885
ACC dephos 0.000338
PTEN act 1.06E-06
Rapamycin 0.062519
mTOR -> MTORC1 12236.1
4EBP1 Act 1.97E-06
4EBP1 inact 0.003185
PTEN inact 17.2284
S6 Act 0.155236
S6 inact 0.002656
mTOR AA 0.02246
mTOR AMPK 0.03304

Table B5 — Final parameter values Starvation-restimulation Hooke and Jeeves MSCs

PI3K AA 0.004624
P13K dephos 0.013564
S6K feedback loop 0.032947
PDK1 act 1.00E-06
PDK1 dephos 1.00E-06
AKT -> 308 0.000882
AKT308 -> dual 5118.06
AKT -> 473 0.002151
AKTA473 -> dual 1.00E-06
Dual -> AKT 1.00E-06
Dual -> 308 0.003408
Dual -> 473 0.007984
308 -> AKT 1.00E-06
473 -> AKT 0.003854
PI3K_V act 9596.25
PI3K_V dephos 0.000556
mTORC2 act 0.002781
mTORC?2 dephos 0.010132
TSC1/2 de-act 308 0.001008
TSC1/2 de-act dual 4510.86
TSC1/2 act 18.3166
Rheb deact 5.23133
Rheb act 0.208629
mTORCI act 4.29E-05
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mTORC1 dephos 0.0051
S6K act 0.053437
S6K dephos 3.76E-06
P13K Ras 0.006521
Ras act 1.00E-06
FPPS inact 10000
FPPS act 10000
Ras deact 1.00E-06
Ras gdp-gtp 0.006999
Rheb GDP GTP 0.000609
Rheb deg 0.325024
Rheb(GDP) deg 1.97464
Rheb(GTP) deg 7202.45
Ras deg 0.017321
Ras(GDP) deg 0.00148
Ras(GTP) deg 1.00E-06
Sink - Rheb 35.2241
Sink Ras 1.87393
AKT pT308 pS473

FOXO 0.00029
FOXO03A 1.00E-06
AMPK dephos 0.388339
AMPK_P 1.00E-06
AMPK PI3K 11.6022
ACC P 0.0107
ACC dephos 0.576476
PTEN act 13.0413
Rapamycin 0.062519
mTOR -> MTORC1 0.000488
4EBP1 Act 1.00E-06
4EBP1 inact 0.00087
PTEN inact 22.5255
S6 Act 0.165683
S6 inact 1.00E-06
mTOR AA 0.000235
mTOR AMPK 1.00E-06
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Table B6: Initial Concentrations for Rapamycin withdrawal model

compartment ml 1
AA mmol/ml 1
PI13K mmol/ml 1
S6K_P mmol/ml 1
PDK1 mmol/ml 10
PDK1 P mmol/ml 1
AKT mmol/ml 20
AKT_pT308 mmol/ml 0.5
AKT pS473 mmol/ml 0.5
mTORC2_P mmol/ml 1
AKT_pT308_pS473

mmol/ml 0.5
PI3K_V mmol/ml 10
PI3K_V_P mmol/ml 1
mTORC2 mmol/ml 5
TSC1/2 mmol/ml 5
TSC1/2_P mmol/ml 1
Rheb(GTP) mmol/ml 1
mTORC1 mmol/ml 0.5
mTORC1_P mmol/ml 0

[y
o

Rapamycin mmol/ml

S6K mmol/ml

FPPS mmol/ml

Ras(GTP) mmol/ml

Ras mmol/ml

FPPS i mmol/ml

Zol mmol/ml

Ras(GDP) mmol/ml

Rheb(GDP) mmol/ml

Sink mmol/ml 0.

FOXO3A mmol/ml

FOXO3A_P mmol/ml

AMPK mmol/ml

AMPK_P mmol/ml

ACC mmol/ml

ACC_P mmol/ml

MTOR mmol/mli 4

4EBP1 mmol/ml

4EBP1_pS65 mmol/ml

PTEN mmol/ml

PTEN_P mmol/ml

S6 mmol/ml

ROkl 0okl |lca|lke |k |viojolo |k oo

S6_pS235 mmol/ml
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PI3K_IRS1 mmol/ml
PI3K_P_IRS1 mmol/ml

IRS1 mmol/ml

AKT473

Il i I

AKT308

Table B7 — Final parameter values Rapamycin withdrawal genetic algorithm MRCS5 cells

PI3K AA 0.000579
P13K dephos 0.000136
S6K feedback loop 3.51E-06
PDK1 act 1.47E-05
PDK1 dephos 0.142666
AKT to 308 0.004035
AKT308 to dual 0.000168
AKT to 473 0.000672
AKT473 to dual 0.00139
Dual to AKT 0.000288
Dual to 308 8418.14
Dual to 473 4636.26
308 to AKT 9.22E-06
473 to AKT 0.000241
PI3K_V act 1.79E-06
PI13K_V dephos 2075.45
mTORC2 act 0.002991
MTORC?2 dephos 0.082018
TSC1/2 de-act 308 1.81E-06
TSC1/2 de-act dual 0.000202
TSC1/2 act 0.261072
Rheb deact 3.72E-05
mTORC1 act 5.19E-05
mTORC1 dephos 9.08019
S6K act 0.000958
S6K dephos 2681.39
PI3K Ras 3.70E-06
Ras act 0.060602
FPPS inact 1.65142
FPPS act 2.95E-05
Ras deact 713.229
Ras gdp-gtp 1.61E-06
Rheb GDP GTP 0.009122
Ras deg 1.35E-05
Ras(GDP) deg 0.209463
Ras(GTP) deg 1.28E-06
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Sink Ras 0.023571
AKT _pT308_pS473

FOXO 3764.42
FOXO03A 0.000305
AMPK dephos 5.39E-05
AMPK P 137.285
AMPK PI3K 0.000611
ACC P 0.004745
ACC dephos 0.62987
PTEN act 6.06E-05
Rapamycin 1.56E-05
mTOR to MTORC1 8.74E-06
4EBP1 Act 5.34E-06
4EBP1 inact 0.004426
PTEN inact 0.002513
S6 Act 7.39065
S6 inact 1.17E-05
mTOR AA 33.0747
mTOR AMPK 0.000224
IRS1 13.1569

Table B8 — Final parameter values Rapamycin withdrawal Hooke and Jeeves MRC5 cells

PIBK AA 0.132441
P13K dephos 0.010805
S6K feedback loop 70.5347
PDK1 act 1.40E-06
PDK1 dephos 0.276583
AKT to 308 0.009844
AKT308 to dual 0.000733
AKT to 473 4.11E-05
AKTA473 to dual 1.75E-06
Dual to AKT 2.04767
Dual to 308 31.784
Dual to 473 37.4038
308 to AKT 3.64E-05
473 to AKT 1.00E-06
PIBK_V act 9.84E-05
PI3K_V dephos 29.1312
mTORC? act 9.58E-06
mTORC?2 dephos 22.4142
TSC1/2 de-act 308 9181.55
TSC1/2 de-act dual 4.25398
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TSC1/2 act 5.38E-06
Rheb deact 5.86E-05
mTORCI1 act 4.42223
mTORC1 dephos 2.47222
S6K act 3.15E-06
S6K dephos 87.6397
PI3K Ras 0.002709
Ras act 9.81E-06
FPPS inact 29.1555
FPPS act 1.04E-06
Ras deact 0.000152
Ras gdp-gtp 0.234431
Rheb GDP GTP 71.292
Ras deg 177.692
Ras(GDP) deg 0.00109
Ras(GTP) deg 0.000204
Sink Ras 1.64268
AKT_pT308_pS473

FOXO 19.6364
FOXO03A 3.23E-06
AMPK dephos 1.28E-05
AMPK_P 1.00E-06
AMPK PI3K 1.00E-06
ACC_P 0.036404
ACC dephos 0.722306
PTEN act 3.59E-06
Rapamycin 3.31E-05
mTOR to MTORC1 1.00E-06
4EBP1 Act 1.00E-06
4EBP1 inact 0.005499
PTEN inact 0.003442
S6 Act 0.000144
S6 inact 0.000407
mTOR AA 7.61E-05
IRS1 0.000548
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Table B9 — Final parameter values Rapamycin withdrawal genetic algorithm MSCs

PI3K AA 0.332282
PI3K dephos 3.30E-06
S6K feedback loop 0.165603
PDK1 act 0.00063
PDK1 dephos 2.71E-05
AKT to 308 2.87E-06
AKT308 to dual 0.071091
AKT to 473 0.005981
AKT473 to dual 1.13763
Dual to AKT 0.004386
Dual to 308 0.00064
Dual to 473 2.54E-05
308 to AKT 7.49E-06
473 to AKT 8.70E-05
PIBK_V act 0.000327
PI3K_V dephos 1.96E-05
mTORC? act 1.82E-06
mTORC?2 dephos 0.218211
TSC1/2 de-act 308 2.00E-06
TSC1/2 de-act dual 0.105091
TSC1/2 act 29.7399
Rheb deact 3.19263
mTORC1 act 3.88E-06
mTORC1 dephos 0.002966
S6K act 0.009964
S6K dephos 2.69034
PI3K Ras 1.29E-06
Ras act 174.723
FPPS inact 25.2475
FPPS act 2.64E-06
Ras deact 0.099762
Ras gdp-gtp 0.001148
Rheb GDP GTP 1.49E-05
Ras deg 92.63
Ras(GDP) deg 0.002218
Ras(GTP) deg 0.000133
Sink Ras 4.86E-06
AKT_pT308_pS473

FOXO 0.001048
FOXO03A 0.00043
AMPK dephos 0.095855
AMPK_P 0.820254
AMPK PI3K 0.000257
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ACC P 0.0005
ACC dephos 0.000261
PTEN act 0.54544
Rapamycin 0.058941
mTOR to MTORC1 0.082049
4EBP1 Act 0.001096
4EBP1 inact 8.56E-06
PTEN inact 0.452548
S6 Act 0.002236
S6 inact 4.31E-06
mTOR AA 0.024123
mTOR AMPK 0.097957
IRS1 1.01E-06

Table B10 — Final parameter values Rapamycin withdrawal Hooke and Jeeves MSCs

PI3K AA 0.039248
P13K dephos 0.018773
S6K feedback loop 1.00E-06
PDK1 act 6.85E-05
PDK1 dephos 1.00E-06
AKT to 308 0.00207
AKT308 to dual 0.007322
AKT to 473 0.000266
AKT473 to dual 8.12E-05
Dual to AKT 1.00E-06
Dual to 308 6.18064
Dual to 473 124.531
308 to AKT 0.000103
473 to AKT 2.53E-05
PI3K_V act 1.06E-06
PI13K_V dephos 392.228
mTORC? act 5.24E-05
MTORC?2 dephos 0.011764
TSC1/2 de-act 308 0.117525
TSC1/2 de-act dual 35.5129
TSC1/2 act 4.70E-05
Rheb deact 0.000707
mTORC1 act 0.224946
mTORC1 dephos 0.363499
S6K act 6.56E-06
S6K dephos 134.328
PI3K Ras 0.114347
Ras act 0.00013
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FPPS inact 29.1555
FPPS act 1.04E-06
Ras deact 1.00E-06
Ras gdp-gtp 0.357557
Rheb GDP GTP 1223.29
Ras deg 2277.82
Ras(GDP) deg 1.00E-06
Ras(GTP) deg 1.00E-06
Sink Ras 10.4657
AKT _pT308_pS473

FOXO 9.24225
FOXO03A 1.00E-06
AMPK dephos 2.85E-05
AMPK_P 4.52E-05
AMPK PI3K 1.00E-06
ACC_P 0.015762
ACC dephos 0.067668
PTEN act 1.01E-06
Rapamycin 3.31E-05
mTOR to MTORC1 4.91E-05
4EBP1 Act 4.82E-05
4EBP1 inact 1.00E-06
PTEN inact 0.172623
S6 Act 0.000144
S6 inact 0.000407
mTOR AA 0.001098
IRS1 1.00E-06

Table B11: Initial Concentrations for Zoledronate withdrawal model

compartment ml 1
AA mmol/ml 10
PI13K mmol/ml 10
PI13K_P mmol/ml 1
S6K_P mmol/ml

PDK1 mmol/ml 10
PDK1_P mmol/ml 1
AKT mmol/ml 20
AKT_pT308 mmol/ml 0.5
AKT_pS473 mmol/ml 0.5
mTORC2_P mmol/ml 1
AKT_pT308_pS473

mmol/ml 0.5
PI3K_V mmol/ml 10
PI3K_V_P mmol/ml 1
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mTORC2 mmol/ml

TSC1/2 mmol/ml

TSCL1/2_P mmol/ml

Rheb mmol/ml

Rheb(GTP) mmol/ml

mTORC1 mmol/ml

mTORC1_P mmol/ml

Rapamycin mmol/ml

S6K mmol/ml

FPPS mmol/ml

Ras(GTP) mmol/ml

Ras mmol/ml

FPPS i mmol/ml

Zol mmol/ml

Ras(GDP) mmol/mi

Rheb(GDP) mmol/ml

Sink mmol/ml 0.

FOXO3A mmol/mi

FOXO3A P mmol/ml

AMPK mmol/ml

AMPK_P mmol/ml

ACC mmol/ml

ACC_P mmol/ml

mTOR mmol/ml

AEBP1 mmol/ml

4EBP1_pS65 mmol/ml

PTEN mmol/mi

PTEN_P mmol/ml

S6 mmol/ml

S6_pS235 mmol/ml

AKT473

| (PO (=0 (- 0 (01 |01 |O O |0 |0 |01 O |0 (01O O |- O |0 |k |o1 (ol

AKT308

Table B12 — Final parameter values Zoledronate withdrawal genetic algorithm MRCS5 cells

PI3K AA 10.4001
P13K dephos 1216.33
S6K feedback loop 4.90E-05
PDK1 act 3.57E-06
PDK1 dephos 0.003823
AKT to 308 0.010672
AKT308 to dual 3.16E-05
AKT to 473 0.000538
AKT473 to dual 296.786
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Dual to AKT 1.70E-06
Dual to 308 0.007599
Dual to 473 2.00E-06
308 to AKT 0.234654
473 to AKT 1.00E-06
PI3K_V act 4.92E-05
PI3K_V dephos 0.362583
mMTORC? act 1158.02
mTORC2 dephos 646.646
TSC1/2 de-act 308 9.20E-05
TSC1/2 de-act dual 1100.51
TSC1/2 act 0.084502
Rheb deact 43.8892
Rheb act 0.004139
mTORC1 act 0.001158
mTORC1 dephos 0.004717
S6K act 0.468937
S6K dephos 1.69E-06
PI3K Ras 3521.54
Ras act 0.000172
FPPS inact 2.08E-06
FPPS act 892.643
Ras deact 1.13178
Ras gdp-gtp 46.2456
Rheb GDP GTP 1.55E-05
Rheb deg 4700.51
Rheb(GDP) deg 1.00E-06
Rheb(GTP) deg 3208.74
Ras deg 0.248693
Ras(GDP) deg 0.457122
Ras(GTP) deg 0.001709
Sink - Rheb 8.43E-06
Sink Ras 0.001199
AKT pT308 pS473

FOXO 4.87E-05
FOXO03A 0.014741
AMPK dephos 8.33287
AMPK_P 3.07E-05
AMPK PI3K 1.40E-06
ACC P 0.269707
ACC dephos 0.01239
PTEN act 0.003468
Rapamycin 0.000878
MmTOR to MTORCL1 4.32E-06
4EBP1 Act 0.000979
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4EBP1 inact 3.60E-05
PTEN inact 7.33E-05
S6 Act 0.071001
S6 inact 0.93514
mTOR AA 9.85E-06
mTOR AMPK 0.00413

Table B13 — Final parameter values Zoledronate withdrawal Hooke and Jeeves MRCS5 cells

PI3K AA 10.4001
P13K dephos 1216.33
S6K feedback loop 4.90E-05
PDK1 act 3.57E-06
PDK1 dephos 0.003823
AKT to 308 0.010672
AKT308 to dual 3.16E-05
AKT to 473 0.000538
AKT473 to dual 296.786
Dual to AKT 1.70E-06
Dual to 308 0.007599
Dual to 473 2.00E-06
308 to AKT 0.234654
473 to AKT 1.00E-06
PI3K_V act 4.92E-05
P13K_V dephos 0.362583
mTORC? act 1158.02
mTORC2 dephos 646.646
TSC1/2 de-act 308 9.20E-05
TSC1/2 de-act dual 1100.51
TSC1/2 act 0.084502
Rheb deact 43.8892
Rheb act 0.004139
mTORC1 act 0.001158
MTORC1 dephos 0.004717
S6K act 0.468937
S6K dephos 1.69E-06
PI3K Ras 3521.54
Ras act 0.000172
FPPS inact 2.08E-06
FPPS act 892.643
Ras deact 1.13178
Ras gdp-gtp 46.2456
Rheb GDP GTP 1.55E-05
Rheb deg 4700.51
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Rheb(GDP) deg 1.00E-06
Rheb(GTP) deg 3208.74
Ras deg 0.248693
Ras(GDP) deg 0.457122
Ras(GTP) deg 0.001709
Sink - Rheb 8.43E-06
Sink Ras 0.001199
AKT_pT308_pS473

FOXO 4.87E-05
FOXO3A 0.014741
AMPK dephos 8.33287
AMPK_P 3.07E-05
AMPK PI3K 1.40E-06
ACC_P 0.269707
ACC dephos 0.01239
PTEN act 0.003468
Rapamycin 0.000878
mTOR to MTORC1 4.32E-06
4EBP1 Act 0.000979
4EBP1 inact 3.60E-05
PTEN inact 7.33E-05
S6 Act 0.071001
S6 inact 0.93514
mTOR AA 9.85E-06
mTOR AMPK 0.00413

Table B14 — Final parameter values Zoledronate withdrawal genetic algorithm MSCs

PI3K AA 5.84151
PI3K dephos 618.028
S6K feedback loop 348.027
PDK1 act 0.000386
PDK1 dephos 1.62E-05
AKT to 308 8.24E-05
AKT308 to dual 5.00E-05
AKT to 473 0.008321
AKT473 to dual 0.100706
Dual to AKT 0.211206
Dual to 308 0.000812
Dual to 473 1.62717
308 to AKT 0.004431
473 to AKT 0.098522
PI3K_V act 0.000839
PI3K_V dephos 18.8424
mTORC? act 845.079
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mTORC?2 dephos 0.034216
TSC1/2 de-act 308 0.562312
TSC1/2 de-act dual 0.000376
TSC1/2 act 6.07E-06
Rheb deact 0.054503
Rheb act 0.000133
mTORCI1 act 0.00152
mTORC1 dephos 0.001098
S6K act 0.000221
S6K dephos 0.315642
PI13K Ras 0.153496
Ras act 0.001214
FPPS inact 0.300568
FPPS act 1190.82
Ras deact 2.37E-06
Ras gdp-gtp 2.09E-06
Rheb GDP GTP 0.123998
Rheb deg 747.199
Rheb(GDP) deg 3.83E-06
Rheb(GTP) deg 1115.69
Ras deg 9.16E-06
Ras(GDP) deg 7756.62
Ras(GTP) deg 0.06171
Sink - Rheb 6.09E-06
Sink Ras 795.293
AKT pT308 pS473

FOXO 1.37E-06
FOXO03A 0.006307
AMPK dephos 0.40362
AMPK P 2.83346
AMPK PI3K 1.00E-06
ACC P 0.023975
ACC dephos 0.016203
PTEN act 1.17E-06
Rapamycin 1063.53
mTOR to MTORC1 6.81E-06
4EBP1 Act 1.15E-05
4EBP1 inact 0.007112
PTEN inact 0.001443
S6 Act 0.180538
S6 inact 0.005768
mTOR AA 4.97E-06
mTOR AMPK 8.52E-05
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Table B15 — Final parameter values Zoledronate withdrawal Hooke and Jeeves MSCs

PI3K AA 0.065762
PI3K dephos 8.18931
S6K feedback loop 1.00E-06
PDK1 act 2.56E-05
PDK1 dephos 1.00E-06
AKT to 308 0.020567
AKT308 to dual 0.000179
AKT to 473 0.003339
AKT473 to dual 1.00E-06
Dual to AKT 2.73E-06
Dual to 308 0.005259
Dual to 473 1.00E-06
308 to AKT 1.64447
473 to AKT 4.50E-06
PI3K_V act 1.01E-06
PI3K_V dephos 1.15903
mTORC? act 2795.12
mTORC2 dephos 1.46504
TSC1/2 de-act 308 6.52E-05
TSC1/2 de-act dual 870.35
TSC1/2 act 0.096328
Rheb deact 28.5273
Rheb act 0.005602
mTORC1 act 0.00119
mTORC1 dephos 0.001169
S6K act 0.317022
S6K dephos 3.47E-06
PI3K Ras 9979.49
Ras act 0.000934
FPPS inact 2.08E-06
FPPS act 364.313
Ras deact 0.085705
Ras gdp-gtp 1.00E-06
Rheb GDP GTP 2.60E-05
Rheb deg 2421.94
Rheb(GDP) deg 1.25E-06
Rheb(GTP) deg 414452
Ras deg 0.04414
Ras(GDP) deg 0.057875
Ras(GTP) deg 0.00108
Sink - Rheb 8.91E-06
Sink Ras 0.001327
AKT _pT308 pS473 0.000351
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FOXO

FOXO03A 0.008369
AMPK dephos 0.207029
AMPK_P 6.78E-05
AMPK PI3K 2.66E-06
ACC_P 0.090173
ACC dephos 0.02306
PTEN act 1.00E-06
Rapamycin 0.000878
mTOR to MTORC1 1.07E-06
4EBP1 Act 1.00E-06
4EBP1 inact 0.000296
PTEN inact 0.000617
S6 Act 0.043336
S6 inact 0.226229
mTOR AA 1.00E-06
mTOR AMPK 1.00E-06
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Table B16 — Reactions common to all models

Model Reactions

COPASI reaction

AKT phosphorylation pT308
AKT phosphorylation pS473
4E-BP1 phosphorylation pS65
4E-BP1 dephosphorylation
ACC phosphorylation pS79
ACC dephosphorylation

AKT dephosphorylation pT308
AKT dephosphorylation pS473

AKT pT308 phosphorylation to dual
AKT pS473 phosphorylation to dual

FOXO3A phosphorylation

AMPK phosphorylation pT172

AKMPK dephosphorylation pT172

PI3K dephosphorylation via ACC

AKT Dual dephosphorylation to pT308

AKT Dual dephosphorylation to pS473

AKT Dual dephosphorylation to AKT

FOXO3A dephosphorylation

mTORC1 phosphorylation pS2448 via Amino acids
mTORC1 dephosphorylation via AMPK
mTORC1 phosphorylation pS2448 via Rheb(GTP)
mTORC1 dephosphorylation

mTORC?2 phosphorylation via PI3K_Varient
mTORC?2 dephosphorylation

PDK1 phosphorylation via PI3K

PDK1 dephosphorylation

PI13K phosphorylation via Amino acids

P13K dephosphorylation

PI3K_Varient phosphorylation via Amino acids + Ras
PI3K_Varient dephosphorylation
PTEN dephosphorylation via ACC
PTEN phosphorylation

Ras prenylation via FPPS

Ras degradation

Ras GDP->GTP

Ras GDP degradation

Ras GTP degradation

Rheb prenylation via FPPS

Rheb GTP inhibition via TSC1/2
Rheb degradation

Rheb GDP->GTP

Rheb GDP degradation

Rheb GTP degradation

S6 phosphorylation via P70S6K
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PDK1_P + AKT -> PDK1_P + AKT_pT308
AKT + mTORC2_P -> AKT_pS473 + mTORC2_P
MTORCL_P + 4EBP1 -> mTORCL_P + 4EBP1_pS65
4EBP1_pS65 -> 4EBP1
AMPK_P + ACC -> AMPK_P + ACC_P
ACC_P -> ACC
AKT_pT308 -> AKT

AKT pS473 -> AKT
AKT_pT308 + mTORC2_P -> AKT_pT308_pS473 +
mTORC2_P
AKT _pS473 + PDK1_P -> AKT_pT308_pS473 +
PDK1_P
AKT_pT308_pS473 + FOXO3A ->
AKT _pT308_pS473 + FOXO3A P

AMPK + AA -> AMPK_P + AA
AMPK P + ACC_P -> Sink + ACC_P
PISBK_P + ACC_P ->PI3K + ACC_P
AKT pT308_pS473 -> AKT_pT308
AKT _pT308_pS473 -> AKT_pS473
AKT_pT308_pS473 -> AKT
FOXO3A_P -> FOXO3A
mMTORC1 + AA->mTORC1_P + AA
mTORC1_P + ACC_P ->mTORC1 + ACC_P
Rheb(GTP) + mTORCL1 -> Rheb(GTP) + mTORC1_P
MTORC1_P -> mTORC1
PI3K_V_P + mTORC2 -> PI3K_V_P + mTORC2_P
MTORC2_P -> mTORC2
PI3K_P + PDK1 -> PI3K_P + PDK1_P
PDK1_P -> PDK1
PI3BK + AA -> PI3K_P + AA
PI3K_P -> PI3K
PI3K_V + AA + Ras(GTP) -> PI3K_V P + AA +
Ras(GTP)
PI3K_V_P ->PI3K_V
PTEN_P + ACC_P ->PTEN + ACC_P
PTEN -> PTEN_P
Ras + FPPS -> Ras(GDP) + FPPS
Ras -> Sink
Ras(GDP) -> Ras(GTP)
Ras(GDP) -> Sink
Ras(GTP) -> Sink
Rheb + FPPS -> Rheb(GDP) + FPPS
TSC1/2 + Rheb(GTP) -> TSC1/2 + Rheb
Rheb -> Sink
Rheb(GDP) -> Rheb(GTP)
Rheb(GDP) -> Sink
Rheb(GTP) -> Sink
S6K_P + S6 -> S6_pS235 + S6K_P



S6 dephosphorylation

P70S6K phosphorylation via mTORC1
P70S6K dephosphorylation

PI3K dephosphorylation via P70S6K

Ras formation

Rheb Formation

TSC1/2 dephosphorylation

TSC1/2 phosphorylation via AKT_pT308

TSC1/2 phosphorylation via AKT_Dual

S6_pS235 -> S6
mTORC1_P + S6K -> mTORC1_P + S6K_P
SBK_P -> S6K
PI3K_P + S6K_P -> PI3K + S6K_P
Sink -> Ras
Sink -> Rheb
TSC1/2_P ->TSC1/2

AKT_pT308 + TSC1/2 -> AKT_pT308 + TSCL/2_P
AKT pT308_pS473 + TSC1/2 -> AKT_pT308_pS473
+TSC1/2 P

Table 17 — Reactions specific to Zoledronate and Rapamycin models

Zoledronate specific model reactions

COPASI reaction

FPPS activation

FPPS inhibition via Zoledronate

FPPS_i -> FPPS
Zol + FPPS -> Zol + FPPS_i

Rapamycin specific model reactions

COPASI reaction

mTOR complex formation

mTOR complex inhibition via Rapamycin

mTOR -> mTORC1
mTORCI1 + Rapamycin -> mTOR + Rapamycin
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Table B18 — Reaction function forms for starvation-restimulation models

d([FIJK]' v ot
dt

d([PI3K_P]'¥
de

compartmert)

ASHKPIV imee)

dt

A(POKI) Vs )
de
d([FDKl_P]' ¥ )
dt
T )
dt

d(IAKT_BT308) V., )
dr

d ([AKT_DS‘W}] v,
de

comparrmert)

d([mTORC2 PIV_ )

dt

d{[AKT_pT308_pS473] ¥,
dt

APV V)
dt

d([PISK_V_P] 'V, )
dt

d(mTORC2] Vo)
dt

d([TSCL/2]V,

compartment)
dt

d(USCl,‘Z_P] ¥, re)
dt

d([Rheb] ¥,

cmparers)

dt

d [['RhEh(GTP)"] . Vmpu‘mem)

dt

d([mT(JKCl]‘ Vmpnmem)

dt

coempariment)

= -V *(7.32e-005 *[PI3K] [AA])

congartent
W "(1.95e-005[PI3K_P])

Vs (347€-005 [PI3K_P]*[S6K_PT)

-V "(2.18e-005 [PI3K]-[AA] ["Ras(GTP)"))
W (0.0310793+[PI3K_P]*[ACC_P])

Ve (7:326-005[PI3K] [AAT)

-V "(1.95e-005 [PI3K_P])

-V . '(3.47e-005[PI3K_P]‘[S6K_P])
Vg (2-18¢-005[PI3K] [AA] ["Ras(GTP)'])
-V "(0.0310793-[PI3K_P]-[ACC_P])

+, (0.0224493 [mTORC1_P][S6K])

coms

-V ¢ '(2.5e-006 [S6K_P])
-V . '(0.0456201 - [PI3K_P]*[PDK1])

Ve (0624943 [PDK1_P])

- -(0.0456201 -[PI3K_P]-[PDK1])

-V . '(0.624943[PDK1_P])

+V gt (0000660378 [AKT_pT308])

comy
V. (0.0100104[AKT_pS473])

-V ,(6.26-006 ‘[PDK1_P]'[AKT])

-V *(1.49e-006 “[AKT) [mTORC2_P])
¥, (0.00203374[AKT_pT308_pS473])

Ve (1.016-005 [AKT_pT308_pS473])

-V, (0000660378 [AKT_pT308])

+¥ e (6:26-006 - [PDK1_PJ[AKT])

V mpmtmen: (754131 [AKT_pT308]-[mTORC2_P])
+V s (8896006 [AKT_pT308_pS473))
V(00100104 [AKT_pS473])

+V g rpimens (1:49€-006[AKT]-[MTORC2_P])
Yy armere (768141 [AKT_pS473] -{PDK1_P])
Vg mens (1.75¢-006 [PI3K_V_P] [MTORC2])

comy

Y raarmene (0000242127 [MTORC2_P])

=y ,"(1.01e-005 ‘[AKT_pT308_ps5473])

-V "(8.89e-006 [AKT_pT308_ps473))
¥, (7541.31°[AKT_pT308] [mTORCZ_P])
Vs (768141 [AKT_pS473] [PDK1_PT)

“V gy oarmare (000203374 [AKT_pT308_ps473])

Y compartmens (384.059°[PI3K_V]-[AA] ["Ras(GTP)'])

HV gt (1946005 [PI3K_V_P])

Vo (384,059 [PI3K_V] [AA] ["Ras(GTP)'])

-v (1942005 [PI3K_V_P])

-V (1756006 [PI3K_V_P]-[mTORC2])

o *(0.000242127 [mTORC2_P])

=V . '(6.02¢-006 ‘[AKT_pT308][TSCL/2])

“V campartmen: (638319 °[AKT_pT308_p5473][TSC1/2])

HV g ey (0159027 [T5C1/2_P)

V. mparmans (6:026-006°[AKT_pT308] [TSC1/2])

comy

+Vo *(63.8319-[AKT_pT308_p5473]-[TSC1/2])

-V . '(0.159927[TSC1/2_P])

R (0.0242015°[TSC1/2]["Rheb(GTP)"])

-V ,/(0.000949145- [Rheb] - [FPPS])
-V "(0.000796665 [Rheb])

- +(0.112345[Sink])

-V ,/(0.0242015[TSC1/2]-["Rheb(GTP)"])
- (3.51e-006["Rheb(GDP)"])

v *(56.2759["Rheb(GTP)"])

=V . '(0.000389836 ["Rheb(GTP)"] [MTORC1])

‘compartmen
Vo *(1.31e-005 [mTORC1_P])

-V ,/(0.0625194[mTORC1]-[Rapamycin])

Vs (0.000487867-[MTOR])

-V, . '(0.000126073 - [mTORC1][AA])

HV rpevtmens (00172548 [MTORC1_P] [ACC_P])

d(ImTORCL PV, )
dt

d(1S6K]"V,

compariment)

dr

A(PPPS]V o)

dt

d(CRSETPY]V 1y ment)
de

d([Ras] V. )

dt

APV crr)
dt

A(IRASGOPYTV oy )
dt

d(["Rheb(GDP)']- .
dt

camparmere)

4 (IFOKOBAI V)
dt

d([FOXO3AP) V., o )
dt

A(AMPKIV )
dt

A(IAMPK_PT* Vo mert)
dt

A(ACCTV i)

dt

d([ACC_P]"V,
dt

comparment)

A(IMTORTV oy mert)
dt

A([4EBPITV )

dt

I(AEBPL_PSS) Y corperne)
dt

A(PTENTV 1 ment)
dt

A(PTENPIV )
dt

dt

A((S65S235)V o)
at

AKT473

"

"

=+V,

+V,

comy

partment (0000389836 ‘["Rheb(GTP)") [mTORC1])

Y gmparmene'(1:31€-005 - [mTORCL_P])
(0.000126073-[mTORC1][AA])

& Vmplﬂﬂ'ﬁ
Y cporment (0-0172548-[MTORC1_P]-[ACC_P))

Y compsrment (00224493 [mTORC1_P]*[S6K])

+V

cparoment ' (2-5€-006°[S6K_P])

Y gmparmene'(10000°[Z01]-[FPPS])

+V,

‘compartment

*(10000[FPPS_i])

V parment (117:929 [RaS(GTPY'])

+V ceenpartment'(0-000146788 ["Ras(GDP)"])

“V comparment '(4-15865 ["Ras(GTP)'])

Y mparmens (856741 [Ras] [FPPS])

+V oment (17929 ["RaS(GTP)')

Y gparmane"(0-000364669 [Ras])
+V compurment (000348969 [Sink])

+V comparment (10000 (Z01] [FPPS])

V comparment (10000 [FPPS_i)

+V,

comy

sartment(856.741[Ras] [FPPS])
Y gmparmene'(0-000146788 ["Ras(GOP)"])
Y e (0-000672359"Ras(GDP)'])

* VMP!M

*(0.000949145 *[Rheb] *[FPPS])

“V compartment "(3-51€-006°["Rheb(GDP)"])

Y i *(0.00905857 *["Rheb(GDP)"])

“V comparment '(2:61-005°[AKT_pT308_pS473]*[FOXO3A])

+V,

e +"(0.00136611[FOXO3A_P])

+V

compartment " (2:61€-005 *[AKT_pT308_p5473]-[FOXO3A])

Y gmparmere'(0-00136611[FOXO3A_P])

Ve (7.38403-[AMPK] [AA])

“V comparment (0659257 [AMPK_P]*[ACC_P])

+V mparmene (738403 [AMPK] [AA])

Y mparmane'(0-047271 [AMPK_P][ACC])

* VMPIMI

+(0.136097 [ACC_P])

+V mprimant (0047271 TAMPK_P]-{ACC])

“V compariment '(0-136097-[ACC_P])

+V,

compartment

*(0.0625194 *[mTORC1]*[Rapamycin])

V rsarmes(0.000487867[mTOR])

“V comparment '(0-00447304[mTORC1_P]'[4EBP1])

+V, *(0.000765057 *[4EBP1_pS65])

‘compartment

* VmPIM

*(0.00447304 -[mTORC1_P][4EBP1])

Y mparmene'(0-000765057 ‘[4EBP1_pS65])

BY . '(0.0185298 [PTEN_P][ACC_P])

“V gparomens'(0-0200894-[PTEN])

“V comparment "(0-0185298 [PTEN_P]-[ACC_P])

+V,

compartment

*(0.0200894 [PTEN])
V nsarmens(0.0126269TS6K_P]'[S6])

+V cpmparment (0174259 (56_ps235)

*(0.0126269 *[S6K_P]*(S6])

‘compartment

V compartment (0:174259°(S6_pS235))

[AKT_pS473] + [AKT_pT308_pS473]

AKT308 = [AKT_pT308] + [AKT_pT308_pS473]
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Table B19 — Reaction function forms for Rapamycin withdrawal models

d ([PIEK]‘ ¥, )
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comparment)
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+V pmpatmers (K5 e [S6_952351])
+V mparmart (K ey [S6K_PT'[6)

V mpurment (KLss ety 56952350

=V, (K ey TPI3K_IRS1][AA])

e pariment
V moarment” (KL oy [PI3K_IRS1] [AA) [Ras(GTP)'"])
+V pmpacmert (K ey TPLK_P_IRSLIACC_P])

+V g (Klasyy (IRS1][PI3K])

+V,

(K gy any TPIIK_IRS1] AR

v “(Klpis ey [PI3K_P_IRS1] [PTEN])
Y smprmant (K15 fencnck gy [PIBK_P_IRS1]-[S6K_P])

+V mpanmert (Ko sy PBK_IRS1] (AR [Ras(GTP))
v, (Kl oy TPI3K_P_IRS1] [ACC_PY)

+V, (K1,

i [PI3K_P_IRS1] [PTEN])

Pk dephes’)
4V (K1 emdbock oy [PI3K_P_IRS1)[S6K_P])
-V l*(klmsu'[]RSl]'(PBK])
[AKT_pS473] + [AKT_pT308_pS473)

AKT308 = [AKT_pT308] + [AKT_pT308_pS473]
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Table B20 — Reaction function forms for Zoledronate withdrawal models

PRI )

dr

d([PI3K_P] ¥, )
dt

d{[SEK PV,
de

compurmene)
GPDRITV )
dt

A(POKL PV )
dar

ATV omparmere)
dr

o (TAKT_pT308]" ¥, )
de

o ([AKT_pS473]" V.

]
dar

d([mTORC2_P]-V,
dt

fr—

d([AKT_pT308_pS473]"V
dr

AT NIV, )
de

4{[PIKV_PI-V, )
de

9 (IMTORCZ] V)
dr

A(ITSCU2Y )
de

d{[1SC1/2_PI W, )
dr

L —|

de

d("Rheb{GTPY] ¥, )
dt

4(IVTOREL) V)
dr

)

Y camparment (KLsine sy TPLIK] TAAT)
EL/ (s F—1 )
HV ppartmmnt (F1sex tosdck ogy [PIIK_P[SEK_PT)
Voot (£l s s TPLIK] (48] [ Ras(GTRY'])

Ve (L T PTTACC P

+V rmgarment (KLppak asey [PIKT TAR])
¥ comparment (KL p13¢ vy [PI3K_PT)
Y camparmare (KL st testrt acery TPIIKP] TSGK_PI)

+V comgarimant (KL etk ey PI3K] [AA) [Ras(GTP)'])
“V comparmert ‘(KL sy [PIK_PTTACC_P)

+V,

e (s ITORCE_PL(56K0)

Y compartment ' (Kl 56 eprary [56KP)

-V, (Ko ey TPIIK_PI[PDK1])
*¥ camgarmans ($Lpocs sy [POKLP)

+V,

ermparmnt (K Lppos sy [PISK_P]*[PDK1])

Ry ey L |

* ¥ ancarman: (%308 ner

. TAKT_pT308])

¥ rnpurmmnt (Klpas o ey TAKT_PS473])

-V, *(Khsaser 15 300, [POKI_PI[AKTT)

¥, (KL gy g ey [AKT] [MTORC2_PY)

+V et (€L st ey TAKT_BT308_p5473])

4V et (L sy [AKT_BT308_pS473])

¥ comparmert (K308 10 iy [AKT_PT308])
*+Vemgaronen: (e o 0y [POKI_PT AKT])

V compurmrs (KL acrs00 10 sy TAKT_PT308]-(mTORC2_P)
L —
Y compsimert (KLea7s iy [AKT_SA73])

+V et (<L 47 TAKT] [MTORCZ.PT)

W ompmment (KLacrar o avury TAKT_PSA73] TPDKL_P)

a7y [AKT_PT308_55473])

+V,

cenparmant (K mroacs acey [PI3K_V_P]-[MTORC2])

Y comparmere (¥l rmoncs gesmery [MTORCZF])

=¥ (KLt ey TAKT_BT308_p5473])

-V, (KL iy TAKT_PT308_pSa73))
Vo orment (€L a0 o ey TAKT_DT308] [mTORC2_PT)
*V amgarment (<Lpacrars o sy [AKT_0SA73] [POKL_PI)

Y parmert (Klipuat 1o o [AKT_RT308_pS473])

-v, (K sy TP VI TAA) [Ras(GTP)Y)
+ ¥ crngarment (Klptsie v deshory TPISKV_P)

+V,

gt

(KL ey TPIK V] TR T'RAS(GTR)])

“Veamasrmere (Kri v gy TP

K_V_PT)
- (KL ronca gy (PIK_V_P] - [MTORC2])

*V cormparomnt (KL pmsrcnce sephesty

“[mTORC2_P])
Veomoseamere (Kl rsc2 s ey [AKT_PT308] [TSCL/2])
-V (K 156172 e vy [AKT_PT308_pS473] [TSC1/2])

Rl — T LS|

+V compartment (K rscus deact 2o

W omportment (LpTsc1i2 de-act duary TAKT_PT308_pS473][TSCL/2])

-V (K1, ) [TSCL/2_P])

'[AKT_pT308]TSC1/2])

1sci e
s sy TTSCE2) CRIGSIGTRY)
¥ (Kl ey TRIEB] TFPPS])

Voot (Kl dogy”[RNEE])

+V crmparment (Ko ety TSHK])

-V, (kL mgien descery [T5C1/2] ["Rheb(GTP)"])

HV et (¥ e cop ey [ RNED(GDP)'])
“Veamparneer (Klpnanare; gy [RIEHGTPY])

- (KL roncs sy ["ROED(GTPY] [mTORCL)
Vet (L mroacs daprer TMTORCLPY)

-V, (K apareyery [MTORCL] [Rapamycind)
R S— )
-¥ (Kl o ey [MTORCA] [44])
Ve (KL sy TMTORCL PTIACC )

d(MTORCLPY) V.
dt

d((S6K]"V, )

d¢

d([FWS]'V )

de
RSOV )

de

I(RSTV comprnen)

dt

A(FPPS_IV i mer)
de

d(["Ras(GOP)') )
de

d(["Rheb(GOPY'] V.,
; o

d([FOXOiA]j ¥ e )
dr

A(IFOXO3APTV o ere)
dt

A(AMPKI V)
de
A(AMPKPYV (o)
e

(T )
de

A(ACC_PYV ymrre)

de

A(INTORTV )
de

A(EBPLYV men]

ae

d((4E8P1_pS65) V. )

dt

A(PTENIV )

de

d([PTEN_P]-V,
de

conpmtes)

o

d¢

(5555295 V )
de

AKT473

"

#V s (s oy TRIGBGTPYT mTORCL)

v, (Kl roncs sy TMTORCL_PY)
v, (Kl on sy TMTORC] AR])
v (KL ros sy [MTORC1_PTTACC PY)
-, (KLt ey TMTORCE_PY'[S6K])

+, (KL gy [SK_P)

-, “(KLpgops oy [200] [FPPS])

+V, (K1 ypps oy [FPPS_)

= “Veamparmere (Kl dese) [(RAS(GTPY'))

=V, (K1,

=-V, (kY

"

1

+, (K gy [RAS(GDP)'])
Vempsnen ' (Kaaae) dogy TRESCTPY'])

v (K,

‘comparta - '[Ras] [FPPS])

("Ras act’
+V cempartment (KL has ceacry ['RES(GTP)'"])
Y conpurtmart (V1 cnms dey TREST)
+V pmpatnent (Lo nary 1SNK)

+V carnparment '(KLpepps inscry 12011 [FPPS])
Y amportmene” (KL s acey FPPS.1])

+V cmparment” (<L mas ey RS [FPPS])

Y canpurtmert (¥1tas gty ("RES(GOP))

“V carvpsctrant '(kl(‘n-&w} dog) ‘["Ras(GOP)")

+V gnpurmnt (<Lsnas sy [RDED] TFPPST)

V mpurmere (KL apes o0 617y ['RNED(GDPY])
“V campurtmert (K anetcom) degy [ "RNEDIGOP)'])
comprtrnent souory [AKT_PT308_p5473]-(FOXO3A])
+V mparment ' (<Lonons) [FOXO3A_P])

+V ypmiment ' (Aeact 500 5547 rowcr) [AKT_PT308_pS473] [FOXO3A))

AT _pTa00 58473

-V, (K goxossy [FOXO3A_P])

V esmpumare (Kiaex ) TAMPKT [AA])

v (Ko dugrery TAMPK_PTACC_PY)
+V, (KL ey gy TAMPK][AR])

V caemparment ' (Kliace g TAMPK_P]'[ACC])

+, “(Klace dgpeny TACC_P))

+Vm'(kl”«7,)'[AMPK_P]'[ICC])

Vet (i vy P

Y e (e TMTORCH) Rapamycn)
Y compurmart (K mmonto roncrr TMTORI)

ot (4 ey TTORCL_PL4E8P1)

*+V ccmparmene (KL seses ) TAEBP1_pS6S])
+V ympuriment' (<L sgaps ey IMTORCL_PT [4EBP1])
-, (KL aggp1 ey [4EBP1_PSE5])

+, (KL ppren oy [PTEN_P][ACC_P])

Y compurmart (K1coen natr [PTEN])

-, (K pren sy [PTEN_P) [ACC_P])
+V, (KL pren e [PTEN])

-V, ‘(kl

SO “[S6K_P][56])

(56 Act’)
+V ampurent (e racey 156.95235)
+V pmpuiment ' (<Lss sy TSOK_P)[561)
Vot (s ey 196_95235)
[AKT_pS473] + [AKT_pT308_pS473)

AKT308 = [AKT_pT308] + [AKT_pT308_pS473]
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