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“Remember to look up at the stars and not down at your feet. Try to make sense of what 

you see and wonder about what makes the universe exist. Be curious. And however 

difficult life may seem, there is always something you can do and succeed at. It matters 

that you don’t just give up.” – Professor Stephen Hawking 

 

 

 

 

 

 

Your future has not been written yet. No one’s has. Your future is whatever you make it. 

So make it a good one –Doc Brown 

 

 

 

 

 

 

Pick your battles and accept yourself for who you are – Chrissie Wellington 
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Abstract 

Nitrogen containing bisphosphonates (N-BPs) such as Zoledronate are currently used to 

treat osteoporosis and act by disrupting the actions of osteoclasts responsible for bone 

resorbption by inhibiting prenylation. There is a growing body of evidence that these 

drugs have broader benefits including a reduction of mortality in patients treated with 

Zoledronate that exceeds the expected benefits conferred from reduced fracture risk 

alone. Further observations support a role for Zoledronate in longevity. Levels of 

cellular damage were reduced in a Hutchinson-Gilford progeroid mice model treated 

with a combination of Zoledronate and Statins. Interestingly, recent evidence that 

treatment of Zoledronate extends the lifespan of MSCs via inhibition of the mTOR 

pathway similarly to calorie restriction.  

We apply an integrative systems modelling approach informed with data generated 

using Reverse Phase Protein Arrays to perform an in depth analysis of the response of 

the mTOR network to three life extending treatments. The hypothesis we test concerns 

the overlapping response we expect between Zoledronate and starvation-restimulation, 

whereas we would expect both MRC5 cells and MSC’s to respond differently to 

Rapamycin treatment. 

We show that a single model topology is capable of reproducing the data produced by 

RPPA for three separate life extending treatments in both MRC5 fibroblasts and MSCs. 

We identify that the activation of the AMPK-mTOR signalling axis is of primary 

importance in response to both nutrient deprivation and Zoledronate treatment. 

Furthermore we identify that the regulation of the mTOR network in response to these 

treatments occurs through two distinct mechanisms. In addition we demonstrate that in 

response to Rapamycin withdrawal it is the P70S6K negative feedback loop that is of 

primary importance with regards to mTOR regulation. 

This work demonstrates the power of an integrative modelling-experimental approach 

and suggests that life extending treatments act through distinct mechanisms affecting 

similar sections of the mTOR network. 
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1.1 The biology of ageing 

Ageing is defined and characterised by the progressive decline of function of cells and 

tissues within an organism over time [1]. More people are living to old age and elderly 

people represent a greater proportion in our populations [2]. There is clearly a need to 

enhance our understanding of the biology of ageing and apply this knowledge to address 

the needs of the elderly and society as a whole. The field of ageing research is growing 

rapidly and our understanding of how we age and what mechanisms contribute to age 

related disease is increasing [3]. However there is a need to synthesis our fragmented 

knowledge and most importantly to establish ways to utilize both the knowledge we 

have already gathered and the knowledge we will gather in the future in order to ensure 

that we age healthier. Although ageing research is a field of interest in its own right the 

majority of applied research has focused on specific age-related diseases such as cancer 

and Alzheimer’s [4, 5]. This research has focused on underlying mechanisms of these 

diseases their treatment rather than the prevention of the disease themselves. It is only in 

recent years with an increased understanding of ageing as a primary driver of these 

diseases that the focus has begun to shift towards prevention. By investigating how we 

age and how these various pathologies progress it is believed that we can identify 

interventions for each disease that may prevent or delay their onset allowing us to live 

healthier for longer [6, 7]. This chapter will present a summary of the main theories of 

ageing, the hallmarks of ageing and how they apply to the musculoskeletal system. It 

will also review the TOR network and its key role in the ageing process with a 

particular focus on its relationship to the pathogenesis of osteoporosis. 

1.2 Why do we age? 

This is a question that has interested scientists for thousands of years, why do we age? 

With the odd exception, organisms of all species show signs of ageing [8]. However 

how they age varies hugely. To understand this variation we must address fundamental 

questions such as why is it that a human has a lifespan of around 80 years whilst wild 

mice have an average lifespan of 1 year [9, 10]? Why have such differences evolved and 

why did they evolve in this way? A number of theories have been proposed to answer 

these questions with the most prominent being the Disposable Soma theory[11].  
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1.2.1 Evolutionary theories of ageing  

There have been a number of theories proposed to explain why we age. One of the first 

theories proposed was that of ‘programmed’ ageing [3]. This theory is based on the 

principle that through the process of natural selection a ‘biological clock’ was 

developed in order to act as mechanism of death removing the elderly and infirm from 

the population [12]. This theory implies that it is the genetic code of an organism that is 

responsible for ageing, just as it is for development, and that our lifespan is therefore 

already at least in part pre-defined by our DNA [13]. This theory is however flawed as it 

relies upon the premise that natural selection is capable of exerting the same effect on 

the evolution of a species regardless of an organism’s age. However as very few 

individuals live long enough in the wild for ageing to occur, there is therefore no 

opportunity for natural selection to act effectively and for genes to evolve that can 

induce programmed ageing [14-16]. Further to this whilst there have many genes found 

to have either a beneficial or deleterious effect on ageing, as in the nematode worm C. 

elegans, there are as yet no known gene combinations that result in the ablation of the 

ageing process [1, 7].  

An early theory based on evolutionary principles was that of the mutation accumulation 

theory put forward by Peter Medawar [17]. Medawar proposed that whilst natural 

selection would be too weak to act on genes in aged individuals genetic mutations in an 

individual’s germline could be inherited by future generations. If these mutations 

adversely affected the lifespan of a species and brought about the ageing phenotype, 

natural selection would not be able to act to eradicate these mutations. Huntington’s 

disease is an age-related disease that fits the principles of mutation accumulation: 

carriers of a mutant huntingtin gene live normally through their reproductive lives and 

therefor the gene may be transmitted despite suffering serious neurological disease from 

mid-life  [18]. A further theory proposed by George Williams is based on the pleiotropic 

activity of genes that have beneficial effects early in life but are harmful with age [19]. 

This is called the antagonistic pleiotropy theory. Williams proposed genes related to 

enhancing calcium availability as an example: in early life strong bones lead to higher 

vigour and evolutionary fitness but in later years can present problems with 

osteoarthritis. More recently genes such as p53 have been associated with antagonistic 

pleiotropy with benefits in early life to protect against unchecked growth but being pro-

ageing in late life by increasing levels of apoptosis. 
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The final and perhaps the most accepted evolutionary theory of ageing presented to date 

is the Disposable Soma theory [20]. The basis of the disposable soma theory is that an 

organism has a finite amount of metabolic resources available and in adult life must 

partition how much energy is spent on repair and maintenance compared to the amount 

of energy expended on reproduction. The organism is therefore faced with a ‘trade-off’ 

where an organism will sacrifice its ability to repair and maintain its genome in order to 

reproduce. Mice provide a clear example: as stated above 90% of wild mice die in the 

first year of their lives [21]. This is predominantly due to hyperthermia; it makes sense 

therefore for mice to allocate the majority of their energy resources into thermogenesis 

and reproduction instead of the energy demanding repair mechanisms in order to ensure 

the best chance of survival [22] [10]. Without sufficient repair mechanisms in place, 

damage will accumulate in the mouse leading to the onset of ageing [23]. Another 

example used to support the disposable soma theory is guppy fish 

predation/reproduction rates [24]. When observed in an environment with high levels of 

predation and subsequently a high extrinsic mortality rate guppy fish display faster 

maturation rates and increased neuromuscular performance at a young age when 

compared to low predation guppies [25]. A comparison of age related mortality between 

high predation guppy fish introduced into a low predation environment and those 

occurring naturally in a low predation environment revealed increased mortality at 

younger ages for the high predation population [26]. This suggests that in a high 

predation environment guppy fish have evolved to mature faster in order to ensure a 

maximum reproductive lifespan however this results in increased mortality at a 

decreased age compared to low predation guppy fish. This provides further support for 

the disposable soma theory by highlighting a trade-off in resources in guppy fish 

whereby high predation leads to increased reproduction at the expense of longevity.  

1.2.2 Molecular theories of ageing 

 Evolutionary theories of ageing focus on the question of ‘why we age’. The associated 

question of ‘how we age’ is addressed by theories which focus on the molecular 

mechanisms of ageing. These theories can often be used in conjunction with 

evolutionary theories (in particular the disposable soma theory).  Many theories of 

molecular mechanisms of ageing have been proposed with the most prominent being, 

the somatic mutation theory, the telomere loss theory and the mitochondrial theory.  
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The somatic mutation theory is based on the idea that throughout an organism’s life, 

cells are exposed to hazards that cause damage to constituent macromolecules such as 

DNA which if unrepaired will accumulate and it is this damage that drives ageing. This 

theory is in line with the disposable soma theory in that there is a direct link between the 

DNA repair ability within an organism and its lifespan.  Indeed the better the repair 

mechanisms then the longer lived the organism [27].   

The second of the molecular ageing mechanisms is the telomere loss theory. This theory 

is based on the end replication problem which results in the loss of base pairs from the 

telomeres following each cellular replication. The loss of telomeres leads to cellular 

senescence and apoptosis and is thought to be a key driver of ageing [28]. The loss of 

telomeres has been found to be exacerbated by levels of oxidative stress which cause 

lesions within telomeres promoting faster loss on division [29] [30]. Telomere 

shortening however is not so relevant in tissues where cells are largely post-mitotic and 

do not divide. 

The third molecular mechanism is the mitochondrial theory. Mitochondria often 

described as the powerhouses of the cell as they provide the energy required for cellular 

processes [31, 32]. As with genomic DNA the number of mutations present in 

mitochondrial DNA increases with age resulting in dysfunction and a decrease in the 

production of energy for the cell with age [33, 34]. 

Each of these evolutionary and molecular theories have their merits and their flaws and 

it could be argued to some length which one is correct. For the purposes of what follows 

it will be assumed that the disposable soma theory provides the most comprehensive 

answer as to why we age. Whilst there is agreement and disagreement amongst ageing 

researchers as to what causes ageing it should be noted that there are some factors that 

are seen as being central to ageing biology theory. These have become known to ageing 

researchers as the ‘Hallmarks of ageing’ [35]. 

1.2.3 The hallmarks of ageing 

The ‘hallmarks of ageing’ a set of nine occurances which nearly always correlate with 

ageing were first brought together by Lopez-Otin et al in 2013 in an important synthesis 

of ageing research [35]. These are genomic instability, telomere attrition, epigenetic 

alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, 

cellular senescence stem cell exhaustion and altered intra-cellular communication[36-
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39]. There is strong evidence linking each of these hallmarks with the ageing phenotype 

however how they cause or result in the development of ageing remains the primary 

focus of many ageing researchers.  Many of the hallmarks have strong links to the 

theories of ageing discussed above. Some are more obvious than others, for instance 

mitochondrial dysfunction, and telomere attrition have both contributed their own 

theories of ageing along with loss of proteostasis and genomic instability [34, 39, 40]. 

Deregulated nutrient signalling has strong links to the disposable soma theory whilst 

stem cell exhaustion and cellular senescence have many links between various theories 

of ageing.  

Whilst it is prudent to keep in mind each of the hallmarks of ageing and how they link 

to the various theories of ageing, when investigating the mechanisms involved in any 

aspect of ageing it is not plausible to investigate all of them. It is therefore necessary to 

focus on one or two of the hallmarks and investigate how they interact within a given 

ageing phenotype. In the work presented in this thesis, the focus is on deregulated 

nutrient signalling, how these affect different cell types and how various treatments alter 

the response of the nutrient signalling network. The next section will look at this 

network in detail and summarise the key findings to date with regards to the nutrient 

sensing mTOR network and ageing. 

1.3 The mTOR network 

The target of Rapamycin (TOR) protein is a protein kinase which, in mammals, exists in 

two distinct multi subunit complexes, mTORC1 and mTORC2 (mammalian TOR 

complex 1 and 2). These complexes are part of a network that sense and integrate 

nutrient and amino acid availability, growth factor and hormonal signals [41, 42]. 

Depending upon the state of these inputs the TOR signalling pathway regulates cell 

growth, autophagy, protein production as well as energy stores around the body [43].  

Activation of mTOR is controlled upstream by growth factors and hormones such as 

insulin. Binding of insulin to its receptor leads to autophosphorylation of the insulin 

receptor and the recruitment and tyrosine phosphorylation of insulin receptor subunit 1 

(IRS1) [44, 45]. Tyrosine phosphorylation of IRS1 blocks its degradation and leads to 

increased interaction with proteins containing SH2 (src-homology-2) domains including 

Phosphoinosital kinase 3 (PI3K) leading to phosphorylation of its p110 domain [46-48]. 

Activated PI3K catalyses the production of phosphatidylinositol-3-phosphates via 
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phosphorylation which in turn are responsible for the regulation of different protein 

classes including the Rho family of GTPase proteins and the AGC protein kinases 

which include phosphoinositide-dependent kinase 1 (PDK1) [49, 50]. PDK1 is one of a 

number of proteins capable of phosphorylating the serine/threonine kinase AKT/PKB 

and interaction between the two results in the phosphorylation of AKT on its threonine 

308 residue[51]. Phosphorylation of T308 acts an activator for AKT which is able to 

inhibit the action of the tuberous-sclerosis complex (TSC1/2) [52, 53]. Thus preventing 

TSC1/2 acting as a GTPase activating protein (GAP) for the Ras homolog enriched in 

the Brain (Rheb) protein and inhibiting the hydrolysis of Rheb bound GTP to GDP [54, 

55]. In its GTP bound state Rheb is able to bind to FKBP38 resulting its disassociation 

from mTORC1 thus resulting in the activation of the mTORC1 complex [56]. The 

mTORC1 complex consists of the proteins TOR, RAPTOR, PRAS40 and mLST8. 

Phosphorylation of mTORC1 via the AKT pathway leads to the direct phosphorylation 

of downstream proteins including the ribosomal kinases S6K1 and S6K2 and the eIF4E 

binding proteins [41, 57, 58]. Phosphorylation of S6K1/2 and 4EBP1/2 regulate 

downstream mRNA translation as well as initiating cellular growth and proliferation 

[45, 59]. In addition to its activation of cell growth, the phosphorylation of S6K   also 

acts to initiate a negative feedback loop which inhibits PI3K via direct phosphorylation 

of IRS1 on serines270/307/636/1001 [60]. Phosphorylation on these sites leads to the 

inability of IRS1 to associate correctly with the insulin receptor and the down regulation 

of PI3K/AKT signalling. 

In addition to sensing energy levels through growth factor and insulin signalling 

mechanisms mTORC1 is also regulated by amino acids although the mechanisms 

behind this regulation are far from clear [41]. Whether all amino acids are required for 

full mTOR activation has yet be to be confirmed however it is known that leucine and 

arginine are both essential for mTORC1 to become active [61, 62].  What is known is 

that the Ras related GTPases (RAG A and RAG B) are involved directly in activating 

mTORC1 in response to amino acid stimulation [63, 64]. The RAG proteins are unusual 

amongst the Ras related proteins in that they don’t rely on post translational protein 

modifications to achieve correct localisation within the cell [65]. In contrast they rely on 

a protein complex known as the Ragulator which acts as a lysosomal tether to lipid rafts 

on the lysosome [65, 66]. RAG A/B localisation to lysosome in turn acts to localise 

mTORC1 to the lysosome were it can be activated by Rheb [63]. Furthermore it has 
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been shown that v-ATPase components on the lysosome activate the Ragulator in the 

presence of amino acid although how amino acids are sensed and by what mechanism 

remains elusive[67]. Under low amino acid conditions the GATOR1 complex acts as a 

GAP protein for RAG proteins (RAG A/B) catalysing  the conversion of GTP to GDP 

and inhibiting the activity of the RAG A/B heterodimer. Under high amino acid 

conditions the GATOR 2 complex acts to inhibit the GATOR 1 complex preventing its 

GAP action on RAG A/B [68, 69]. This allows the v-ATPase components to positively 

regulate the Ragulator and results in the binding of GTP to the RAG A/B heterodimer 

[41, 42]. 

Far less is known regarding the activation of the second TOR complex mTORC2. In 

addition to the TOR protein, mTORC2 consists of RICTOR, mSIN1, Proctor and 

Deptor with Rictor and mSIN1 required for structural integrity of the complex [42, 70, 

71]. Whilst it has been termed a rapamycin insensitive complex its activity is inhibited 

by chronic exposure to rapamycin, likely brought about by decreased complex 

formation [72]. Upon growth factor stimulation mTORC2 localises to the endoplasmic 

reticulum where it becomes activated although the mechanisms behind this remain 

unclear however it is known that a PI3K is required for this activation [73-75]. Upon 

activation mTORC2 phosphorylates AKT on Ser473 either as a single phosphorylation 

or in addition to the phosphorylation on Thr308 further enhancing AKT’s activation 

[76, 77]. Downstream functions of mTORC2 are also poorly defined although it is 

known to activate various PKC isoforms including protein Kinase C α and serum- and 

glucocorticoid-induced protein kinase 1 (SGK1) [77, 78]. The activation of PKCα is 

essential for cytoskeletal organisation whilst SGK1 is essential for cellular growth and 

ion transport [42]. In addition mTORC2 is possibly subject to negative regulation via 

mTORC1 activation [42]. It has been shown that active S6K1 phosphorylates mSIN1 on 

various serine residues leading to its disassociation from mTOR and the disassembly of 

the mTORC2 complex [79]. A representation of the mTOR network can be seen in 

figure 1.1. 
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Figure 1.1: Schema representing the mTOR network. Adapted from [80] 
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1.4 Ageing and the musculoskeletal system 

As previously described mTOR and its associated network plays an important role in 

ageing. In addition to the C. elegans mutants already described inhibition of mTOR 

leads to life extension in many other model organisms including Drosophila 

melanogaster and Mice [81]. As described above one of the hallmarks of ageing is a 

decline in stem cell number and function. There is increasing evidence that the 

inhibition of mTOR is beneficial in maintaining both stem cell number and function. 

Studies have shown that old mice treated with Rapamycin have better intestinal stem 

cell function than their untreated counterparts whilst Rapamycin has also been 

implicated in the rejuvenation of haematopoietic stem cells in old mice leading to 

enhanced protection from the influenza virus. In addition, inhibition of the mTOR 

network by Zoledronate (a nitrogen containing bisphosphonate) led to increased 

protection from DNA damage in mesenchymal stem cells [82]. Mesenchymal stem cells 

are precursor cells to the bone forming osteoblasts, with these findings suggesting a 

possible beneficial effect of mTOR inhibition with regards to bone formation and 

degradation. 

Other ways in which mTOR inhibition is believed to extend lifespan include the 

inhibition of mRNA translation, increased activation of the stress response, increased 

mitochondrial respiration and reduction of inflammation [83].  

Whilst the links between the mTOR network and ageing are well established far less is 

known regarding the links between stem cells and the ageing process. Stem cell ageing 

is of particular interest when investigating age related changes to the musculoskeletal 

system. Indeed there is now a significant focus on stem cells in both bone biology 

looking at mesenchymal stem cells (MSCs) with age and in muscle looking satellite 

cells with age. The following section will summarise what is known about the 

relationship between the musculoskeletal system and ageing with a focus on bone 

biology and MSCs. 

1.4.2 Mesenchymal stem cells and bone ageing 

As discussed above one theory of ageing suggests that with age our stem cell pool 

decreases and loses its ability to function correctly (figure 1.2 (A-B) [84-87]. Indeed 

there are multiple studies that show different stem cell groups each displaying a 

reduction in their ability to proliferate and differentiate correctly [88-91]. But it is of 
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interest whether this is a cause or a consequence of the ageing process and whether it 

would be altered so that various different tissues remain fully functional with increased 

age. Due to their regenerative potential both the importance and potential of stem cells 

in relation to ageing research is beginning to be understood and there is increased focus 

and attention being paid to this area of ageing research. One tissue at the centre of stem 

cell ageing biology is bone. It is well established that with increased age, bone 

remodelling homeostasis is affected with increased bone resorption and decreased bone 

formation (Figure 1.2 (C-D) [92-94]. Whilst we understand the biology behind both 

bone formation and bone resorption it is still poorly understood what drives the age 

related imbalance between the two processes. Is it a decrease in osteogenesis or an 

increase in bone resorption? Recent research in this area has focused on mesenchymal 

stem cell ageing and osteogenesis. Mesenchymal stem cells are capable of 

differentiating into three main types of cells: osteoblasts, chondrocytes and adipocytes 

[95]. With age there is a general decrease in the amount of differentiation coupled with 

a shift towards adipogenic differentiation (a process termed adipocyte switch) [96, 97]. 

The decrease in osteogenic differentiation eventually leads to reduced osteoblast 

numbers and may be responsible for the reduction in bone formation seen in old age 

although other factors may be involved [98]. Eventually the reduction in bone formation 

leads to age related diseases such as osteoporosis and increased risk of fractures and 

falls as a result of instability [99, 100]. The increase in falls and fractures, in particular 

hip fractures, often results in the development of other age related conditions brought 

about by long term inactivity [101]. The combination of such factors leads to an 

increased mortality rate amongst patients with hip fractures [102].  

1.4.3 Bisphosphonates, the mevalonate pathway and osteoporosis 

Currently osteoporosis is treated by targeting the bone resorption pathway as opposed to 

osteogenesis [103]. It is hypothesised that by reducing the amount of bone resorption 

that occurs the ratio of bone formation to bone resorption will be brought back into 

balance [104]. A class of drugs called Bisphosphonates have been developed that 

potently target bone resorption by inhibiting the formation and ability to function of 

mature osteoclasts [105]. The most potent class of bisphosphonates (nitrogen containing 

bisphosphonates) act by targeting the mevalonate pathway and inhibit prenylation [104, 

106, 107]. The mevalonate pathway is a metabolic network that acts to synthesise 

isoprenoids and is responsible for the addition of Geranyl and Farnesyl groups to 
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proteins such as Ras and Rheb. The enzyme farnesyl pyrophosphate (FPP) synthase acts 

to catalyse the reaction of Geranyl pyrophosphate (GPP) to FPP which can then be 

inserted into the CAAX domain of specific proteins [108]. Nitrogen containing 

Bisphosphonates are a group of drugs used primarily in the treatment of osteoporosis 

and they act to inhibit FPP synthase by directly binding to its active site [109]. This 

disruption of the prenylation pathway leads to downstream disruption of osteoclastic 

signalling as protein prenylation is essential for vesicular trafficking, membrane 

ruffling, morphology and cytoskeletal arrangement [110, 111]. It has also been 

suggested that down-regulation of geranyl-geranylpyrophosphate (GGPP) (Enzyme 

responsible for the transference of a geranyl group to other proteins including small 

GTPase’s) occurs during cell-cell contact induced during differentiation of the 

osteoblastic cell line MC3T3-E1 [112-114]. 

Whilst these drugs are very effective with regards to inhibiting bone resorption they 

often fail to bring the bone remodelling pathway back into balance as an increase in 

bone formation often does not occur [104]. Indeed recently it has been revealed that the 

prenylated proteins also play a role in osteogenesis [115, 116]. However even with the 

failure to increase osteogenesis bisphosphonates are considered a very effective 

treatment for osteoporosis and work is ongoing to attempt to unravel the mechanisms 

behind how they affect osteogenesis.  
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Figure 1.2: Stem cells and ageing. Schema representing how mesenchymal stem cell 

differentiation alters with age (A) Differentiation in young MSCs –differentiation is dependent upon 

tissue and cellular requirements, (B) Differentiation in old MSCs –adipogenesis becomes the primary 

differentiation pathway, Balance between adipogenesis vs osteogenesis in young MSCS (C) and Old 

MSCs (D).     
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1.4.4 Bisphosphonates, cancer treatment and lifespan extension 

Over the last couple of decades there has been increased focus on the use of 

bisphosphonates as anti-cancer drugs [117]. Bone has long been the focus of cancer 

studies due to the frequency of bone metastases found in many different cancers 

including breast cancer and multiple myeloma [118, 119]. The treatment of these 

cancers and various different cancer cell lines with bisphosphonates has been shown to 

induce apoptosis and has been found to inhibit tumour growth in certain cases [117, 

120]. The mechanisms behind these findings have never been fully elucidated. Recently 

even more novel findings have been published regarding the use of bisphosphonates in 

cancer and ageing studies. It was found, for example, that patients with hip fractures 

being treated with the Bisphosphonate Zoledronate showed a 28% decreased mortality 

rate compared to untreated controls[121]. There have been several other studies that 

have observed increased lifespan, decreased mortality rates, decreased cardiovascular 

events and decreased cancer incidence in osteoporotic patients undergoing 

bisphosphonate treatment [122, 123]. Additionally, when treated with a combination of 

statins and Zoledronate a mouse model of Hutchinsons-Gilford progeroid syndrome 

displayed decreased cellular DNA damage, reduced progeroid symptoms and an 

extended lifespan [124].  

Following on from these results, work carried out at the University of Sheffield has 

investigated how Zoledronate treatment affects MSCs and to identify the mechanisms 

behind these actions. They have shown that treatment of MSCs in culture extends their 

proliferative lifespan as well as decreasing the amount of cellular DNA damage within 

cell cultures undergoing high numbers of passages compared to controls [82]. Upon 

further examination they observed that there was inhibition of the mTOR network due 

to the de-prenylation of the proteins Ras and Rheb. Following Zoledronate treatment a 

decrease in phosphorylated mTORC1, mTORC2 and S6K lead to increased nuclear 

localisation of FOXO3A which in turn enhanced the DNA damage response following 

irradiation.  

1.4.5 Role of AMPK in stem cell differentiation and ageing 

AMP activated protein kinase (AMPK) is a highly conserved regulator of cellular 

energy status and tightly controls energy consuming process within a cell. AMPK acts 

by inhibiting anabolic processes and activating catabolic processes [125]. It has recently 

been implicated in mesenchymal stem cell differentiation by down-regulating adipocyte 
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genes and inducing osteoblastic genes [96]. In a study from 2012, Kim et al showed that 

the level of AMPK increased during osteoblastic differentiation of MSCs as well as 

there being an increase in the phosphorylated state of AMPK [96]. However, this does 

not align with other research carried out on MC3T3-E1 cells which showed that the 

levels of AMPK decreased with osteoblastic differentiation [126]. This could be 

explained by the fact that MSC are progenitor cells whereas MC3T3-E1 cells are 

partially differentiated cells. In support of this suggestion another study showed that 

AMPK signalling was a time co-ordinated process which was upregulated during the 

early stages of osteoblastic differentiation and then down-regulated during the later 

stages of osteogenesis [98]. Interestingly, the early increase in AMPK signalling leads 

to a feedback mechanism activating the AKT-mTOR network. These studies were 

carried out in adipose derived and dental pulp derived MSC and it is not known if the 

results are entirely transferable to bone marrow derived MSC or if some of their 

observations are tissue specific. For instance it has been observed that adipocyte derived 

MSCs are more likely to differentiate in adipocytes than osteoblasts with the opposite 

being true for bone marrow derived MSCs (bmMSCs).  

1.4.6 Osteogenesis links to the mTOR network 

There are several key pathways involved in osteogenesis each of which can be linked 

back to the mTOR network; these include the Wnt signalling pathway and signalling 

through C/EBP isoforms.  

1.4.6.1 C/EBPβ isoforms 

C/EBP-β transcription is activated by eukaryotic translation initiation factor 4E (eIF-4E) 

which is repressed by eukaryotic translation initiation factor 4E binding protein 1 

(4EBP) [57]. Upon activation of TOR signalling 4EBP is phosphorylated resulting in its 

release from eIF-4E and the transcription of C/EBP-β. There are three distinct C/EBPβ 

isoforms, the full length LAP, short length LIP and the extended length LAP* isoforms 

[127]. During osteogenesis the expression of all three isoforms increases however they 

do not all act to induce osteogenesis [128]. LAP and LIP both act to enhance expression 

of RUNX2 and increase its interaction with the osteocalcin promoter (both of RUNX2 

and Osteocalcin are crucial for osteogenesis along with osterix)[129, 130] . The 

extended isoform acts to inhibit osteogenesis by inhibiting transcription. Both the LAP 

and LIP isoforms also directly interact with ATF4 which in addition to RUNX2 binds to 

the promoter region of osteocalcin activating its transcription [129]. ATF4 also appears 
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to facilitate amino acid transport within pre-osteoblasts another requirement in 

osteogenesis [131]. Each of the C/EBPβ isoforms has a different role in osteogenesis as 

already mentioned the extended form appears to inhibit osteoblast formation by 

recruitment of the SWI/SNF chromatin remodelling complex which may help to keep 

the osteoblasts in an immature state [132]. The standard length isoform enhances the 

expression of osteogenic genes and the short isoform LIP enhances osteoblast 

differentiation and maturation [95, 128, 133, 134]. It is interesting to note that in the 

absence of the long isoforms overexpression of LIP has been shown to inhibit terminal 

osteoblast differentiation [135]. This suggests that LIP may compensate for the lack of 

long isoforms in the cell and act to recruit certain complexes which keep the cell in an 

immature state. It seems therefore that C/EBPβ isoforms act in a dual role. Initially 

acting to keep the cells in an immature state when conditions are unfavourable and then 

to activate osteogenic genes and terminal differentiation once the correct conditions are 

present. Once osteogenic differentiation is initiated SMAD3 binds to C/EBPβ and 

abrogates its inhibitory function on RUNX2 driving further osteogenesis. 

1.4.6.2 Wnt signalling 

It is well known that Wnt signalling is required for correct bone development with 

many studies establishing that ablation of Wnt signalling leads to bone deformities and 

decreased bone formation [136]. The Wnt proteins Wnt3a and Wnt10b bind to the 

Fizzled receptors and recruit the LRP5/6 co-receptors and lead to the inhibition of 

Glycogen synthase 3 which is also inhibited by AKT and in turn when active can 

activate the TSC1/2 complex [137]. Once GSK3 is inhibited β-catenin becomes 

stabilised and translocates to the nucleus where it regulates the T-cell factor/lymphoid 

enhancer factor (TCL/LEF). LRP5/6 binding to Frizzled receptors is inhibited by DKK1 

which recruits Kremen to the LRP5/6 receptors inactivating them [97]. Overexpression 

of either Wnt3a or Wnt10b or inhibition of DKK1 leads to increased osteogenesis with 

a reduction in trabecular bone formation being seen upon Wnt inhibition [138, 139].  In 

addition to these observations it has also been observed that the adipogenic protein 

PPARγ is inhibited by Wnt10b [140]. PPARγ is one of the key proteins that drive 

Adipogenesis as it inhibits RUNX2 activity Wnt10b prevents this inhibition from 

occurring however active PPARγ has also been shown to directly induce β-catenin 

proteasomal degradation preventing osteogenesis. As Wnt signalling appears to be key 

in regulating osteogenesis it may be interesting to investigate this pathway further in 
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order to assess how the inhibition of the mTOR network by bisphosphonates affects β-

catenin driven osteogenesis.  

There are a number of other proteins and transcription factors involved in osteogenesis 

and that are affected by both of these pathways, these include Smad2 and Smad5 which 

interact with Runx2 following its activation and appear to be required in vivo to induce 

osteogenesis. Osterix is another protein that is absolutely required for osteogenesis and 

acts downstream of Runx2. It appears to act together with Satb2 to enhance bone 

regeneration and formation. The exact roles of C/EBPβ in osteogenesis have yet to be 

confirmed however the effect of bisphosphonate treatment (or indeed mTOR inhibition) 

on these isoforms may well prove interesting to explore. In addition the effect of mTOR 

inhibition on osteogenesis and how inhibition of mTORC1 alone differs from dual 

inhibition in terms of the downstream effects of osteogenesis could also prove 

extremely interesting to study. 

 

1.5 The DNA damage response 

The DNA Damage response (DDR) is a set of pathways which are heavily implicated in 

the ageing process. As the DDR is not the main focus of this work this section will 

present a summary of the theoretic links between the DDR and ageing as well as 

summarising the links between the mTOR network and the DDR. 

 

1.5.1 The DNA damage response and ageing 

The links between the DDR and various diseases such as cancer are well established. 

However how the DDR relates to ageing is a far more complicated and involves the 

interplay between numerous different factors both environmental and genetic. As all 

molecules within an organism can essentially be replaced with the exception of DNA 

any lasting damage to the DNA of an organism can result in many adverse effects 

including early onset ageing [141]. It is therefore unsurprising early onset ageing 

environmental factors include many practices that result in DNA damage with smoking 

and alcohol consumption often cited as two possible environmental factors that result in 

premature ageing [37, 142]. The most common form of DNA damage in humans is as a 

result of ultra-violet radiation (UV) from the sun. It is believed that such stresses result 
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in an increase in oxidative molecules which in turn cause DNA damage [143]. How 

such damage in turn advances the ageing phenotype is as yet unknown. In order to 

ascertain the links between the DDR and ageing a number of models have bene 

employed, including progeroid models of ageing [141]. One of the characteristics of 

these models is that they show decreased DNA damage repair ability resulting in the 

early onset of age related diseases. Indeed mouse models lacking the ability to carry out 

DNA damage repair display increased age related symptoms compared to wild-type 

controls. Anti-ageing models such as rodents fed a calorie restricted diet results in the 

preservation of the DDR over time compared with wild-type controls [144]. In addition 

to preserving the DDR caloric restriction has also been shown to reduce the levels of 

reactive oxygen species as well as reducing the rates that mutations occur within the 

DNA [145].  

1.5.2 Links between mTOR and the DNA damage response 

Several studies have shown that FOXO3A activates the DNA damage response 

although the exact mechanism by which is does so remains unknown (Figure 1.3)[146]. 

One recent report suggests that FOXO3A interacts with the ATM-Chk2-P53 complex 

by phosphorylating ATM [147]. The same group has recently followed up this work by 

revealing that ovarian and breast cancer cell lines can be reprogrammed to non-

cancerous cells by inducing the nuclear translocation of FOXO3A by metformin [148]. 

They again showed that ATM and p53 were both activated by FOXO3A during this 

process providing support for their previous work. Some of the data that the UoS have 

produced appears to support this hypothesis. They showed that silencing FOXO3A 

using siRNA resulted in a complete lack of ATM phosphorylation in irradiated cells 

compared to controls. Further to this they also showed that silencing of FOXO3A 

results in an increase in the number of DNA damage foci in MSCs which have been 

irradiated; this was true for both control cells and cells treated with Zol.  
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Figure 1.3: Schema representing the DNA damage response pathways interacting 

with FOXO3A. Adapted from [149] 
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1.6 Systems biology 

Each of the systems discussed above present a large degree of complexity and exploring 

the interconnectivity of the networks would not be possible using a purely experimental 

approach. A solution to this is to apply a systems biology approach whereby the 

networks are modelled computationally informed by experimental data [150]. The field 

of systems biology is extremely broad and as such it lacks a definitive definition [151]. 

However all definitions of systems biology essentially include computational analysis 

of biological data at different scales whether that be at the organism or cellular level. 

The interconnectedness of these scales and the individual components within them is 

what interests systems biologists, with the aim of all systems biologists to assess and 

gain a better understanding of how a system as a whole functions. Under the definitions 

above systems biology encompasses not just ‘dry lab’ computational work but also ‘wet 

lab’ experimental work which can work either independently or in cohesion with each 

other.  

1.6.1 Top down and bottom up 

Classically there are two approaches that are used in computational modelling. These 

are termed ‘top down’ and ‘bottom up’ (Figure 1.4) [152]. In the top down approach at 

first there is no definition of sub systems or indeed mechanistic detail or a system [153]. 

In this case a particular question is not defined by a particular mechanistic observation 

but from a large set of observations. Microarrays are the primary source of data for top 

down modelling in computational biology [154]. Experiments will be performed testing 

the action of particular perturbation and mRNA measured using microarrays allowing 

for the analysis of thousands of genes. From this analysis the gene regulatory networks 

that are affected by a particular perturbation can be identified leading to a more detailed 

representation of the system. The bottom up approach is essentially the opposite of top 

down. This is a reductionist approach whereby a reaction or a small sub system is 

analysed and the remaining system built up around it in order to obtain the full system 

to be analysed [152, 155]. Traditionally biology has focused on this type of approach 

with the reaction of individual molecules measured and then a question posed from the 

result as to what else may be happening to the system. Dynamic modelling is most 

closely associated with a bottom up approach but in a full systems biology project the 

focus will be informed from the outcome of a top down analysis. 
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Figure 1.4: Schema representing Top down vs Bottom up in systems biology. 

Adapted from [156]. 
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1.6.2 Dynamic computational modelling 

Computational modelling is an important component of systems biology [157]. Models 

are represented by a set of mathematical equations (normally ordinary differential 

equations). The information contained within each equation governs how it interacts 

with other equations within a model framework in addition defining the behaviour of 

the specific biological event (for instance a phosphorylation event) which the equation 

represents. This allows for the abstraction of an overall biological concept into a 

mathematical framework governed by mathematical rules of the equations within the 

model structure [158]. The advantage of this is that due to the ability to solve these 

mathematical equations a model can be used to define, simulate and predict outcomes 

based on inputted knowledge. Indeed slight variations to the mathematical model 

structure (topology) of a model can allow a user to determine which topology provides 

the closest match to a given prediction. Or indeed can provide an entirely new 

prediction based on what was already previously known. The attribute that defines a 

dynamic model from a non-dynamic model is that it can be said to have ‘memory’ 

[159]. In the case of most dynamic this ‘memory’ is commonly referred to as the ‘state’ 

in which the model exists. As most models are designed to have an ‘initial state’ or an 

initial set of conditions from which the model acts to predict the outcome of a relevant 

situation. As the simulation progresses the model goes through a number of different 

‘states’ and may eventually establish a ‘steady state’.  The behaviour of a model are 

governed by the mathematics of the equations used in the building of a model (usually 

ordinary differential equations). There is an established nomenclature used to represent 

the model structure based on species, reactions and parameters [160]. A species within 

the model represents a particular node within the network this could be a particular 

mRNA, protein, cell or even organ or individual. A reaction is the connection between 

each of the nodes within the model and these can be governed by numerous different 

kinetic laws. In the work presented in this thesis the reaction type used is that of mass 

action [161, 162]. Here, the rate of reaction is proportional to the product of the reacting 

substrates. Parameters encompass both species and reactions within a model as they are 

the values assigned to either a species or the rate at which a reaction occurs within the 

model. 
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1.6.3 Multiscale modelling 

As previously stated systems biology involves the study of large networks over varying 

scales. This poses various challenges that must be overcome in order to correctly model 

a system. For instance the process of a transcription factor takes seconds whilst the 

subsequent activation of that protein takes milliseconds. This can be followed up 

through the cellular levels to macromolecules such as hormones that can take hours to 

exert an effect. The question therefore is how these different scales can be measured 

[163]. This is of particular importance in drug pharmacology where a drug may target a 

genetic component which leads to macromolecular event [164]. This is what multi-scale 

modelling attempts to solve. One way to solve this problem is to abstract the ‘lower 

scale’ networks to a point where there is a loss of dynamic function (they cease to be 

dynamic models and remain at a constant). This allows for the development of the 

‘higher scale’ model with a singular input from the ‘lower scale’ [159]. Whilst the focus 

of this work will not be on the multiscale nature of the signalling networks involved it is 

important that this is kept in mind when the results are interpreted. For instance whilst 

the focus of this work is on the microscopic scale the effect of the treatments tested will 

each have an effect on the macroscopic level of cellular signalling in particular when 

focusing on stem cell biology. 

1.6.4 Model simulation - deterministic and stochastic modelling 

Before discussing the basis of deterministic and stochastic modelling it is necessary to 

first define both what an algorithm is and how an algorithm works to form a model 

simulation [165]. An algorithm can be defined as a set of rules performed in steps to 

achieve an output [166]. Using this definition it is therefore possible to define a model 

simulation as the process of using an algorithm to reproduce the problem presented by 

the model in question. There are primarily three types of algorithm: deterministic, 

stochastic and hybrid (a combination of deterministic and stochastic) [167]. The 

majority of dynamic models are presented in a deterministic form. This is to say that the 

variables contained within their simulations are considered not to be random. This is not 

always the case however as biological systems are inherently stochastic in nature [168]. 

It is therefore often necessary to model certain systems using stochastic modelling. This 

means that whilst the overall network reactions and variables remain the same as in a 

deterministic model they are not only governed by time but also by a probability 

distribution [162, 167]. The primary focus of such a modelling process is usually 
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governed by the abundance of a particular species within the model. A low species 

value inherently lends itself to stochastic simulations whereas a large species value is 

more likely to be deterministic in nature. Due to the random probability distributions 

within stochastic models it is possible that they can give an entirely different outcome to 

a modelling problem and it is therefore appropriate to correctly choose which type of 

modelling is to be performed [169]. Whether or not deterministic or stochastic 

modelling is used dynamic modelling is primarily data driven as discussed above with 

data forming a hypothesis which ultimately drives the development of a model. How 

data is collected and which variables within the model that are measured are dependent 

upon both the ability to collect the data experimentally and the question that is being 

addressed. These data are used to inform the model by optimising the parameters within 

the model via a process termed parameter estimation [170]. This process involves the 

identification of a parameter set which is approximates the ‘best fit’ of a model in the 

context of experimental data. This is usually presented within a statistical format (in 

many cases the residual sum of squares (RSS)) whereby a parameter value results in a 

simulation within the confines the error (either standard deviation, standard error of the 

mean or confidence intervals) of the experimental data. The parameter set with the 

overall smallest deviation from this mean is considered the ‘best fit’. 

1.6.5 Computational models of mTOR 

As previously discussed due to its complexity the ageing process naturally lends itself to 

a systems biology approach. However the question remains with so many factors 

involved how do you model a process as complicated as ageing? This has mainly been 

tackled to date using abstract large scale network models without looking in-depth at the 

molecular interactions of the molecules or else abstracting a particular network 

connected with ageing such as the mTOR network, the DDR or reactive oxygen species 

and their effect on cellular processes. This section will focus on the models of the 

mTOR network that have previously been published. Over recent years our group and 

others have had made substantial progress in dynamic modelling related to the mTOR 

network. The following is a summary of the key work and dynamic models produced to 

date: in 2012 Dalle Pezze et al developed a dynamic model of the mTOR network to 

analyse the activation and regulation of mTORC2. By exploring different model 

topologies with different regulatory options upstream of mTORC2 they were able to 

disseminate that mTORC2 activation occurs independently of the TSC1/2 complex and 
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is dependent on a PI3K variant [80]. In 2012 Sonntag et al extended this model to 

explore the relationship between AMPK and mTOR. In this study, they also used 

different model topologies to represent different modes of regulation of AMPK by the 

TOR network (a total of 6 models were explored). Upon calibrating these models to 

AMPK and mTOR related timecourse data they were able to select a model that 

correctly predicted the experimental outcomes. They showed that IRS1 is the most 

likely activator of AMPK within the mTOR network and that this in turn can be 

regulated by a negative feedback loop involving downstream factors [171]. More 

recently in 2016 Dalle Pezze et al examined the effect that amino acids have directly on 

the mTOR network. As discussed above it is known that amino acids act to activate the 

mTORC1 complex however it is not known as to whether there are other kinases within 

the pathway which are also activated by amino acids. By combining computational 

modelling with text-mining advanced proteomics it proved possible to delineate that 

amino acids act to activate PI3K, AMPK and mTORC2 in an mTORC1 independent 

manner [172]. Whilst each of these studies have focused on the short term effects of 

perturbations on the mTOR network work has also been carried out investigating the 

long term effects of perturbations on the mTOR network. In 2013 Smith et al 

investigated the long term relationship between reactive oxygen species, the mTOR 

network and FOXO transcription factors. They showed that long term nutrient 

deprivation led to the upregulation of anti-oxidant defence systems however this also 

lead to the loss of IRS1 receptors and FOXO over time. In contrast under higher 

oxidative stress conditions the protective effect could be lost [173]. In addition to work 

carried out by our group in collaboration with others a number of researchers have also 

utilised computational modelling to investigate the mTOR network. In 2009 Jain and 

Bhalla investigated the role of the mTOR network in protein synthesis within dendritic 

cells. They showed that brain derived neurotrophic factor gate activated mTOR and 

protein synthesis with the model not demonstrating bi-stability [174]. Also in 2009 

Borisov et al investigated the crosstalk between the insulin signalling and epidermal 

growth factor signalling networks using a dynamic modelling approach. Using this 

approach they were able to identify key nodes within the networks that could be used as 

possible drug combination targets in future studies [175]. Other dynamic models of the 

mTOR network include Araujo et al who investigated the dynamic states of the mTOR 

network in cancer and non-cancer phenotypes in addition to Caron et al who used a 
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large scale modelling approach to identify all of the networks and crosstalk linked to the 

two mTOR complexes [176, 177]. 

1.7 Objectives 

The aim of this project is to compare and contrast the response of the mTOR network to 

three separate life extending treatments with the following hypothesis. 

 

Zoledronate and caloric restriction act upon both mTOR complexes. Therefore both 

Zoledronate and starvation-restimulation should affect the mTOR network in similar 

ways and elicit a similar response to one another following withdrawal and 

restimulation in both MRC5 and MSCs. As acute rapamycin treatment only affects 

mTOR complex 1 the effect of treatment withdrawal should produce a separate 

response. The response of the mTOR network following rapamycin withdrawal should 

differ to that of the other treatments however it should not differ between cell types. 

 

This will be achieved by focusing on the following objectives: 

1. To identify potential new methodologies capable of producing timecourse data 

required for the calibration of dynamic models 

2. To design and build a dynamic model capable of representing the response of 

the mTOR network following  serum-starvation, Zoledronate withdrawal and 

Rapamycin withdrawal 

3. To produce timecourse data measuring key components of the mTOR network 

in response to each treatment in both MRC5 cells and Mesenchymal stem cells 

4. To calibrate the dynamic model  in objective 2 using the timecourse data 

produced in objective 3 

5. To  compare the response of MRC5 cells and MSCs in response to each 

treatment 
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2.1 Experimental methodology 

2.1.1 General MRC5 cell culture 

MRC-5 fibroblasts were grown in Dulbecco's Modified Eagle Medium (DMEM) high 

Glucose (Sigma-Aldrich, Dorset, UK D5796) supplemented with 10% foetal bovine 

serum (FBS; Biosera, Ringmer, UK), 1% of L-Glutamine (Sigma-Aldrich, Dorset, UK 

G7515) and 1% of Penicillin-Streptomycin (Sigma-Aldrich, Dorset, UK P4333). Cells 

were cultured in 75cm
2
 cell culture flasks (Fisher Scientific, Corning, vented cap, NY, 

USA, 430641U) and incubated (Binder Incubators) in a humidified atmosphere at a 

constant temperature of 37
o
C, 20% oxygen and 5 % CO

2
. Once cells reached 80% 

confluence they were removed from incubation and counted and split as follows, media 

was aspirated off (Integra Vacusafe) and cells washed with 10ml of phosphor buffered 

saline solution (PBS)( Sigma-Aldrich, Dorset, UK D5773). The PBS was removed by 

aspiration as before and 2ml of Trypsin-EDTA 1x (Sigma-Aldrich, Dorset, UK T3924) 

was added and the cells placed back into the incubator for two minutes. Following two 

minutes incubation the cells were removed and trypsin effectiveness checked using a 

Nikon TMS Microscope (Nikon UK, Kingston Upon Thames, UK). 8ml of Pre-heated 

(37
o
C) DMEM (made as described above) was added to the cells to end trypsinisation. 

Cells were then removed from flasks and added to a 50ml Falcon tube using 10ml 

pipettes (Sarstedt AG&Co.Sarstedtstraße 1,51588 Nümbrecht , GERMANY, 

86.1254.001). For the purposes of cell counting 15μl was taken from the cell suspension 

and the remaining solution centrifuged at 850rpm for five minutes (Jouan CR3). The 

supernatant was then removed using an aspirator and cells resuspended using DMEM as 

above with 2ml of DMEM added per one million cells. Cells were then re-plated onto 

75cm
2
 cell culture flasks as above with 1 million cells per flask (2ml of cell solution) 

and 18ml of DMEM added to each flask to make a total of 20ml of DMEM per flask. 

 

2.1.2 Cell counting 

Cells were counted as follows: the 15μl taken from the Falcon tube was placed on a 

haemocytometer (Brand, Fuchs-Rosenthal, 97861 Werthiem, Germany, 719805) and the 

number of cells per square of the haemocytometer was counted for a minimum of three 

squares. A calculation to ascertain an estimate for the number of cells within the Falcon 

tube was then carried out as follows: The dimensions of each square of the 

haemocytometer are 0.1 x 0.1 x 0.02 mm equalling a volume of 0.0002ml. Therefore the 
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number of cells present in each square of the haemocytometer is equal to the number of 

cells per 0.0002ml of media. This number was then multiplied by 5000 in order to 

ascertain the number of cells per ml and then by the dilution factor to ascertain the total 

number of cells present in the Falcon tube. Cells were then centrifuged for 5 minutes at 

2000 rpm and the supernatant removed via aspiration. 

2.1.3 Thawing MRC5 cells  

Prior to culturing, MRC5 cells were removed from -200
o
C storage in liquid nitrogen 

and allowed to thaw completely. Cells were then removed from cyrotubes (Sarstedt AG 

& Co. 

Sarsted, tstraße 1,51588 Nümbrecht, GERMANY, 86.1254.001) and placed into a 50ml 

Falcon tube and 9ml of DMEM (pre-heated to 37
o
C and made as above) per vial of cells 

added to the Falcon tube. Cells were then centrifuged at 850rpm for 5 minutes and the 

supernatant aspirated. Cells were then resuspended in 10ml of DMEM per million cells 

and then 10ml of cell suspension added to 75cm2 cell culture flasks as above. 10ml of 

DMEM was the added to each flask to make a total volume of 20ml per flask. Cells 

were then incubated for 24 hours following which DMEM was removed and replaced. 

2.1.4 Freezing and storage of MRC5 cells 

MRC5 cells were prepared for storage as follows: Following a cell count any cells to be 

stored were resuspended in DMEM as above however following the re-plating of any 

cells still being grown, Dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Dorset, UK 

D5418) was added to make a 10% DMSO solution with 1 million cells per 1ml of 

solution. 1ml of this freezing mixture was then added to Cyrotubes and stored at -80
o
C 

for 24 hours before being transferred into liquid nitrogen storage at -200
o
C. 

 

2.1.5 General mesenchymal stem cell culture 

Primary MSC’s (kindly supplied by Juhi Misra, the University of Sheffield, UK) were 

grown in Dulbecco's Modified Eagle Medium (DMEM) high glucose, GlutaMAX 

supplement (Thermofisher, Atley Way, Cramlington NE23 1WA 61965-026) 

containing 10% HyClone™ Foetal Bovine Serum (U.S.), Human Mesenchymal Stem 

Cell Screened (Fisher Scientific, NY, USA SH-30070.03M). MSC’s were cultured in 

25cm
2
 
 
Falcon tissue culture treated flasks (Fisher Scientific, Corning incorporated, NY, 

USA, 353109) for one passage at a density of ~500,000 cells per flask until cells 
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reached 80 % confluency.  For the duration of cell culture, cells were incubated in a 

humidified atmosphere at a constant temperature of 37
o
C, 20% oxygen and 5 % CO

2
. 

Upon reaching 80% confluency, cells were counted and plated out into 150cm
2 

Falcon 

tissue culture treated flasks (Fisher Scientific, Corning incorporated, NY, USA, 355001) 

at a density of ~ 500,000 cells per flask. The procedure for splitting MSC cell cultures 

was carried out as follows: Flasks were removed from incubation, culture media was 

removed by aspiration with (Integra Vacusafe) and washed with PBS at room 

temperature. The PBS was then removed by aspiration and Trypsin-EDTA (0.05%), 

Phenol red (Fisher scientific, Gibco, NY, USA, 25300-054) (pre-heated to 37
o
C) added 

for a duration of two minutes - the cells were placed back into the incubator during this 

time. Once two minutes had elapsed, cells were taken out of the incubator and checked 

under a microscope to make sure that they had detached prior to the addition of culture 

medium (pre-heated to 37
o
C) to the cells resulting in the inhibition of the trypsin. Cells 

were then transferred using Starstedt pipettes (Sarstedt AG & Co, Sarstedt, straße, 

151588 Nümbrecht, GERMANY, 25ml 86.1885.001, 10ml 86.1254.001, and 5ml 

861253.001) to 50ml Falcon tubes. A volume of 15μl was taken from the 50ml falcon 

tubes and used to perform a cell count as described above for MRC5 cells. Cells were 

then re-suspended in culture medium (at a dilution of 2ml per million cells) prior to 

being re-plated into 150cm2 Falcon tissue culture flasks as previously described at ~ 

500,000 cells per flask and a further 18ml of culture medium added to each flask. To 

ensure an even coating of cells over the surface of the flask, each flask was swirled in a 

figure of eight shape and then incubated as previously described. All cell culture 

medium was pre-heated to 37
o
C in a water bath prior to use) 
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2.1.6 Defrosting mesenchymal stem cell samples 

Prior to culturing, MSC samples were removed from storage in liquid nitrogen at -

200
o
C and allowed to thaw until the sample was in solution but still in a semi-solid 

state. The MSC sample was then transferred into a 15ml Falcon tube and 4ml of culture 

medium added per 1ml of sample. Cells were then plated as previously described onto 

25cm
2 

Falcon tissue culture flasks at a density of ~500,000 cells per flask and culture 

medium added to each flask to create a total of 10ml of culture medium per flask. After 

a duration of 24 hours the culture medium was removed from each flask and replaced 

with fresh medium to remove any DMSO (Sigma-Aldrich, Dorset, UK, D5879) from 

each flask. 

2.1.7 Freezing and storage of mesenchymal stem cell samples 

MSCs were frozen in cyrotubes (Sarstedt AG & Co. 

Sarstedt, straße 1,51588 Nümbrecht, GERMANY, 86.1254.001) containing ~500,000 

cells in a volume of 1ml. Following the splitting of cells (as detailed above), any cells 

that were to be frozen down and stored were resuspended in culture medium and 

centrifuged again at 2000 rpm for 5 minutes and the supernatant then removed. Cells 

were then resuspended in a freezing solution containing 10% DMSO (Sigma-Aldrich, 

Dorset, UK D5879)  in HyClone™ Foetal Bovine Serum (U.S.), Human Mesenchymal 

Stem Cell Screened red (Fisher scientific, Gibco, NY, USA, SH-30070.03M). This was 

made up prior to cell culture in batches of 50ml and stored at 4
o
C (freezing solution was 

used at this temperature to aid freezing process). Cyrotubes were then stored at -80
o
C 

for a minimum of 24 hours prior to storage in liquid nitrogen at -200
o
C. 

2.1.8 Lifespan extending treatments 

Following a period of cell culture (as above), cells were plated, split and counted prior 

to being plated onto 10cm plates for flow cytometry and onto six well plates for Reverse 

Phase Protein Arrays. The details for this can be found in each methodologies 

respective section (sections 2.1.9 and 2.1.15). Following a period of 24 hours after 

splitting, cells were treated in the following ways: For Starvation-Restimulation culture 

medium was aspirated and for MRC5 cells (DMEM) high Glucose (Sigma-Aldrich 

D5796) supplemented with 1% of Penicillin-Streptomycin (Sigma-Aldrich P4333) were 

added. For MSCs DMEM high glucose, GlutaMAX supplement (Thermofisher, 61965-
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026) was added to the cells. Following a period of 24 hours this treatment was stopped 

by aspirating all culture medium from the cells and adding DMEM high Glucose 

(Sigma-Aldrich D5796) supplemented with 10% foetal bovine serum (Supplier), 1% of 

L-Glutamine (Sigma-Aldrich G7515) and 1% of Penicillin-Streptomycin (Sigma-

Aldrich P4333) to the MRC5 cells and DMEM high glucose, GlutaMAX supplement 

(Thermofisher, 61965-026) containing 10% HyClone™ Foetal Bovine Serum (U.S.), 

Human Mesenchymal Stem Cell Screened (Fisher Scientific, SH-30070.03M) to the 

MSCs. For Rapamycin treatment, both cell types had their cell culture medium removed 

and were treated with 10nM of Rapamycin (Enzo Life Sciences, Exeter, U.K.)  diluted 

into either DMEM high Glucose (Sigma-Aldrich D5796) supplemented with 10% foetal 

bovine serum (Supplier), 1% of L-Glutamine (Sigma-Aldrich G7515) and 1% of 

Penicillin-Streptomycin (Sigma-Aldrich, P4333) (MRC5) or DMEM high glucose, 

GlutaMAX supplement (Thermofisher, 61965-026) containing 10% HyClone™ Foetal 

Bovine Serum (U.S.), Human Mesenchymal Stem Cell Screened (Fisher Scientific, SH-

30070.03M) (MSCs). Following a period of 24 hours the Rapamycin treated cell media 

was aspirated and replaced with either DMEM high Glucose (Sigma-Aldrich D5796) 

supplemented with 10% foetal bovine serum (Supplier), 1% of L-Glutamine (Sigma-

Aldrich G7515) and 1% of Penicillin-Streptomycin (Sigma-Aldrich P4333) (MRC5) or 

DMEM high glucose, GlutaMAX supplement (Thermofisher, 61965-026) containing 

10% HyClone™ Foetal Bovine Serum (U.S.), Human Mesenchymal Stem Cell 

Screened (Fisher Scientific, SH-30070.03M) (MSCs). For Zoledronate cells were 

treated with 1μM of Zoledronate (Kindly provided by Mellanby bone Research Group, 

University of Sheffield). This was carried out as follows, after a period of 24 hours cell 

culture medium was aspirated and replaced with either DMEM high Glucose (Sigma-

Aldrich D5796) supplemented with 10% foetal bovine serum (Supplier), 1% of L-

Glutamine (Sigma-Aldrich G7515) and 1% of Penicillin-Streptomycin (Sigma-Aldrich 

P4333) (MRC5) or DMEM high glucose, GlutaMAX supplement (Thermofisher, 

61965-026) containing 10% HyClone™ Foetal Bovine Serum (U.S.), Human 

Mesenchymal Stem Cell Screened (Fisher Scientific, SH-30070.03M) (MSCs) 

containing 1μM of Zoledronate. After a period of 72 hours this was aspirated and 

replaced with either DMEM high Glucose (Sigma-Aldrich D5796) supplemented with 

10% foetal bovine serum (Supplier), 1% of L-Glutamine (Sigma-Aldrich G7515) and 

1% of Penicillin-Streptomycin (Sigma-Aldrich P4333) (MRC5) or DMEM high 

glucose, GlutaMAX supplement (Thermofisher, 61965-026) containing 10% 
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HyClone™ Foetal Bovine Serum (U.S.), Human Mesenchymal Stem Cell Screened 

(Fisher Scientific, SH-30070.03M) (MSCs). Details for each treatment are shown in 

Table 2.1.  
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Table 2.1: Life extending treatment overview. An overview of how each lifespan 

extending treatment was carried out for both MRC5 and MSC cells. Both the treatment 

details and restimulation details are shown.  

 

 

 

Treatment Treatment Methodology Restimulation Methodology 

Starvation-

Restimulation 

MRC5 – DMEM high 

Glucose supplemented with 

1% Penicillin-Streptomycin 

MSC- DMEM high Glucose, 

GlutaMAX 

 

MRC5 – DMEM high Glucose, 

supplemented with 10 % foetal 

bovine serum, 1% L-Glutamine and 

1% Penicillin-Streptomycin 

MSC – DMEM high glucose 

supplemented with 10 % Hyclone 

foetal bovine serum  

 

Rapamycin MRC5 – 10nM Rapamycin 

diluted in DMEM high 

Glucose supplemented with 

1% Penicillin-Streptomycin 

MSC- 10nM Rapamycin 

diluted in DMEM high 

Glucose, GlutaMAX 

MRC5 – DMEM high Glucose, 

supplemented with 10 % foetal 

bovine serum, 1% L-Glutamine and 

1% Penicillin-Streptomycin 

MSC – DMEM high glucose 

supplemented with 10 % Hyclone 

foetal bovine serum  

 

Zoledronate MRC5 – 1μM Zoledronate 

diluted in DMEM high 

Glucose supplemented with 

1% Penicillin-Streptomycin 

MSC- 1μM Zoledronate 

diluted in DMEM high 

Glucose, GlutaMAX 

MRC5 – DMEM high Glucose, 

supplemented with 10 % foetal 

bovine serum, 1% L-Glutamine and 

1% Penicillin-Streptomycin 

MSC – DMEM high glucose 

supplemented with 10 % Hyclone 

foetal bovine serum  
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2.1.9 Flow cytometry methodology  

Prior to the following protocol, cells were cultured as above until the required number 

of cells was obtained for each experiment. The protocol below was used for both MSC 

and MRC5 cells except were specified. Following culturing, cells were removed from 

incubation and split and counted as above. Following a cell count, cells were plated out 

on 10cm (Fisher Scientific, Corning, vented cap, NY, USA, 430167)  at a density of  

500000 cells per plate, with a 6ml of DMEM culture media (see above) added to make a 

total of 8ml per plate and incubated at 37
o
C, 5% CO

2
 for 24 hours. Following this 

incubation period the culture media was removed from each plate and replaced with 

DMEM containing Zoledronate, Rapamycin or DMEM containing only 1% of 

Penicillin-Streptomycin for starvation-Restimulation (Sigma-Aldrich P4333) made as in 

2.1.8.  Timecourse experiments were then carried out for each of the three treatments 

(Table 2.2). 

2.1.10 Cell fixation  

Cells were fixed as follows: Replicates were removed from incubation and treatment 

media removed. Each replicate was then washed using 5ml of ice cold PBS which was 

then removed and 1ml of Trypsin added to each plate (Trypsin specific to each cell type 

see above). Cells were then incubated for two minutes before 4ml of ice cold DMEM 

was added to end trypsinisation and each replicate removed from their plates and added 

to a 15ml Falcon tube. Cells were then centrifuged to remove the supernatant. This step 

and all wash steps that follow were specific to each cell type. For MRC5 cells 

centrifugation was carried out 850 rpm for 5 minutes whilst for MSC’s centrifugation 

was carried out 2000 rpm for 5 minutes. Following centrifugation the supernatant for 

each replicate was removed by tipping the supernatant into a waste tube (this process 

was used following each wash step carried out) and cells resuspended in 1 ml of para-

formaldehyde (PFA)(Thermoscientific, Rockford, IL 61101, USA, 28908). Each 

replicated was then incubated in a water bath at 37
o
C for 10 minutes after which cells 

were centrifuged and the PFA removed as above. Following PFA removal cells were 

the resuspended in PBS and centrifuged to wash off the PFA (henceforth this will 

process will be referred to as a wash step). The PBS was then removed as above and the 

wash process repeated before cells were suspended in 0.1% sodium Azide (Sigma-

Aldrich, Dorset, UK S8032) and stored until staining. 
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Table 2.2: Timecourse data points for flow cytometry datasets. The time points for 

the imagestream flow cytometry experiments are shown here for both during treatment 

and post re-stimulation for each treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timecourse Treatment   

During 

Treatment 

Starvation-Restimulation Rapamycin Zoledronate 

0 Minutes x x x 

30 Minutes x x  

60 Minutes x x  

24 Hours x x x 

48 Hours   x 

72 Hours   x 

Following 

Restimulation 

  

0 Minutes x x x 

5 Minutes x x x 

15 Minutes x x x 

30 Minutes x x x 

60 Minutes x x x 

2 Hours x x x 

4 Hours x x x 

8 Hours x x x 

24 Hours x x x 
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2.1.11 Cell permeabilisation  

Cells were removed form storage in Sodium Azide by washing as above and then 

resuspended in 2ml of PBS and a second wash step performed. Following the second 

wash the PBS was removed by pouring it into a waste container and cells resuspended 

in 2ml of blocking buffer (49ml PBS, 1ml FBS) for a period of 1 hour at room 

temperature following which samples were centrifuged and the supernatant removed as 

above. A further wash was then carried out using 2ml of PBS before cells were 

resuspended in 2ml of 0.1% Triton-X 100 (Sigma-Aldrich, Dorset, UK T8787) for a 

period of 15 minutes at room temperature following which the Triton-X 100 was 

removed by centrifugation as above. Cells were then washed with 2ml of PBS.  

2.1.12 Cell staining 

Immediately following permeabilisation primary antibodies were added to each 

replicate and incubated for 12 hours. For each step, antibodies were diluted to their 

required concentration using PBS in a total volume 100μl. Following primary antibody 

staining cells were washed as above and second wash with 2ml of PBS carried out. 

Cells were then incubated with secondary antibodies in the same way as for primary 

antibodies for a period of 1 hour in the dark. After this incubation cells were washed as 

above with a second wash with 2ml of PBS carried out. Cells were then resuspended in 

1ml of PBS and transferred to 2ml flow cytometry tubes. Samples were then fed 

through a BD FACSKANTO2 flow cytometer (BD Biosciences, San Jose, CA 95131) 

and results analysed using Flowing Software 2 (Cell Imaging Core of the Turku Centre 

for Biotechnology, Finland). 

2.1.13 Cell permeabilisation imagestream 

Cells were removed form storage in Sodium Azide by washing as above and then 

resuspended in 200μl of PBS. Cells were then transferred to a 96 well plate for 

permeabilisation and staining. Following transfer to the 96 well plate cells were 

resuspended in 200μl of staining buffer (49ml PBS, 1ml FBS) and washed by 

centrifugation at 350G (this is the wash stage for all further imagestream work). The 

supernatant was then flicked off and  cells were resuspended in 100μl of 

permeabilisation buffer (0.05ml Triton-X 100 Sigma-Aldrich T8787, 49ml PBS, 1ml 

FBS) for a period of 5 minutes at room temperature following which another 100μl of 

staining buffer was added to the cells before the Triton-X 100 was removed by 

centrifugation as above. Cells were then washed with 200μl of staining buffer. 



41 
 

2.1.14 Cell staining imagestream 

Immediately following permeabilisation primary antibodies were added to each 

replicate and incubated for 1 hour. For each step, antibodies were diluted to a 1:100 

concentration using staining buffer. Following primary antibody staining 100μl of 

staining buffer was added to each well and cells washed as above and second wash with 

200μl of staining buffer carried out. Cells were then incubated with secondary 

antibodies in the same way as for primary antibodies for a period of 30 minutes in the 

dark. After this incubation 100μl of staining buffer was added to each well and cells 

washed as above with a second wash with 200μl of staining buffer carried out. Cells 

were then resuspended in 60μl of staining buffer and transferred to 1.5ml Eppendorf 

tubes (Starlab, Milton Keynes, MK14 5BU, S1615-5550). Samples were then fed 

through an Imagestream flow cytometer (Amnis Imagestream 2, Merck-Millipore, 

Frankfurter, Straβe, 250 64293, Darmstadt, Germany) and results analysed using (Ideas 

6.2 Merck-Millipore, Frankfurter, Straβe, 250 64293, Darmstadt, Germany). 

2.1.15 Reverse phase protein array preparation 

Cells were cultured as above prior to reverse phase protein array (RPPA) being carried 

out. Time courses were generated for each of the three treatments as shown in Table 2.3. 

Prior to the following protocol, cells were cultured as above until the required number 

of cells was obtained for each experiment. The protocol below was used for both MSC 

and MRC5 cells except where specified. Following culturing, cells were removed from 

incubation and split and counted as above. Following a cell count, cells were plated out 

on six well plates (Fisher Scientific, Corning, NY, USA, 07-200-80) at a density of 

200000 cells per plate for MRC5 cells and 100000 cells per plate for MSCs, with a 3ml 

of DMEM culture media (see above) added to make a total of 4ml per plate and 

incubated at 37
o
C, 5% CO

2
 for 24 hours. Following this incubation period the culture 

media was removed from each plate and replaced with DMEM containing Zoledronate, 

Rapamycin or DMEM containing only 1% of Penicillin-Streptomycin for starvation-

restimulation (Sigma-Aldrich P4333) made as in 2.1.8.  Following treatment, cell 

culture medium was aspirated and replaced with either DMEM high Glucose (Sigma-

Aldrich D5796) supplemented with 10% foetal bovine serum, 1% of L-Glutamine 

(Sigma-Aldrich G7515) and 1% of Penicillin-Streptomycin (Sigma-Aldrich P4333) 

(MRC5) and DMEM high glucose, GlutaMAX supplement (Thermofisher, 61965-026) 

containing 10% HyClone™ Foetal Bovine Serum (U.S.), Human Mesenchymal Stem 
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Cell Screened (Fisher Scientific, SH-30070.03M) (MSCs) for the remainder of the time 

course. For each time point cell culture medium was aspirated and 1ml of ice cold PBS 

added to each well. This was then aspirated and a further 1ml of ice cold PBS added and 

aspirated. Following the PBS washes 40μl of RPPA lysis buffer (Kindly supplied by 

Nan Wang, Newcastle University) was added to each sample. Cells were then scraped 

using a cell scrapper until all cells had been lifted from the plate surface and the cells 

and lysis buffer transferred from each well into a 1.5ml Eppendorf tube. Samples were 

then sonicated for a period of 15 mins. This was carried out as three sets of 5 minutes, 

with 10 sonication cycles of 15 seconds of sonication followed by 15 seconds of no 

sonication at a temperature 4
o
C. Samples were then stored at -20

 o
C until transfer to the 

Newcastle University Proteins and proteomics unit (NUPPA) RPPA facility. 

2.1.15 Reverse phase protein array procedure 

Samples were centrifuged at 13000 rpm for 5 minutes and the supernatant collected into 

1.5ml Eppendorf tubes and the pellet discarded. 10μl of supernatant was then 

transferred to a 96 well plate and diluted with 15μl of RPPA lysis buffer (Kindly 

supplied by Nan Wang, Newcastle University) and 100μl of spotting buffer (Zeptosens 

Spotting Buffer CSBL1, Zeptosens Ltd). Serial dilutions of 100%, 75%, 50% and 25% 

were then made using a Beckmans Coultier BioMEK liquid handler, a 1:5 solution of 

lysis buffer and spotting buffer (Zeptosens Spotting Buffer CSBL1) and plated into a 

384 well plate. Samples were then stored overnight at -20
o
C prior to plating. Samples 

were plated on to Zeptosens Protein Micro-ArrayChips (Zeptosens Protein MicroArray-

Chips, Zeptosens Ltd) using a SIM Nano plater 2.1 (SIM) alongside a reference plate. 

Following printing the micro-chips where placed inside a vaporiser loaded with BB1 

Blocking buffer (Zeptosens blocking buffer BB1, Zeptosens Ltd)  for a period of one 

hour after which they were submerged in distilled water for 1 second six times. Micro-

chips were then centrifuged at 300 rpm to remove any excess water this wash step was 

then repeated a further two times after which any remaining water was removed and the 

micro-chips loaded onto a staining rack. Each individual sample set was then washed 

three times by pipetting 100μl of CAB1 assay buffer (Zeptosens Assay buffer CAB1, 

Zeptosens Ltd)  into each slot ensuring that no air bubbles remaining on the micro-

chips. 80μl of each primary antibody were added to their designated sample set and 

staining for 16 hours. Figure 2.1 displays a representative staining rack set up. Primary 

antibodies were removed and each individual sample set was then washed three times 
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by pipetting 100μl of CAB1 assay buffer into each slot. 80μl of secondary antibody 

were then added to every sample set and left to stain for a period of two hours after 

which the antibody was removed and a further three washes with blocking buffer 

carried out. Following the final wash the CAB1 assay buffer was not removed from the 

sample sets. The staining rack was then placed inside a Zeptosens imager and each 

sample set imaged and quantified for their respective antibody. 
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Table 2.3: Time course data points for Reverse Phase Protein Array datasets. The 

time points for the RPPA time courses are shown here for both during treatment and 

post re-stimulation for each treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timecourse Treatment   

During 

Treatment 

Starvation-Restimulation Rapamycin Zoledronate 

0 Minutes x x x 

30 Minutes x x  

60 Minutes x x  

24 Hours x x x 

48 Hours   x 

72 Hours   x 

Following 

Restimulation 

  

0 Minutes x x x 

1 Minutes x x x 

3 Minutes x x x 

5 Minutes x x x 

10 Minutes x x x 

20 Minutes x x x 

30 Minutes x x x 

60 Minutes x x x 

2 Hours x x x 

4 Hours x x x 

8 Hours x x x 

24 Hours x x x 
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Figure 2.1: Zeptosen Micro-Chip staining apparatus an overview of the staining 

apparatus used during the RPPA process. Each micro-chip has six sample sets printed 

onto it allowing for six different antibodies per micro-chip. Each rack has room for six 

micro-chip holders which hold the microchips in place and form a seal around each 

sample set preventing contamination. 

 

 

 

 

 

 

 

 

 

 

Sample set- Each sample set has one 

primary antibody added  to it 

Micro-Chip holder- Each Micro-chip 

has six sample sets printed onto it 

Micro-Chip Rack – Each rack can 

hold six Micro-chips 
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2.2 Systems biology dynamic modelling 

Throughout this work a systems biology approach was used. A dynamic computational 

model based on previous research was constructed and used to design, plan and carry 

out experimental procedures aimed to inform the model. The dynamic modelling 

approach carried out was as follows; firstly a computational model was defined using 

previous literature knowledge and data. Secondly the model topology is simplified to 

represent a network capable of answering the question of interest and ODE’s used to 

define the reactions within the model. Thirdly the model was parameterised using 

timecourse data. Once the model is calibrated it can then be used as a tool with which to 

further investigate the network of interest. It is often the case that that a dynamic model 

is produced to simulate the response of a network to a specific perturbation for example 

the effect of Rapamycin on the mTOR network. Following calibration it is possible to 

perturb the network further by increasing or decreasing the relative expression of a 

particular species within the model. This, for example, is often carried out in models 

investigating the effect of cancer on different biological networks where oncogenic 

proteins become dysregulated. Further analysis of the dynamic model predictions can be 

used to plan further experiments. If these experiments fail to support the model 

predictions then a change in network topology is performed and the model recalibrated. 

The general procedure for systems biology dynamic modelling is shown in figure 2.2. 

The dynamic modelling approach was chosen for this work as it allowed a direct 

comparison of a single model reacting to three separate perturbations and in addition the 

mTOR network has already been proven to be an ideal target for this systems biology 

approach.  
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Fig 2.2: System Biology dynamic modelling workflow. An overview of the systems 

biology dynamic modelling work flow is shown here. Following the integration of 

existing knowledge and data a computational network is defined and time course 

experiments carried out. Parameter estimation is carried out and predictions made which 

are validated with experimental data and reviewed using previously published molecular 

biology. Alternatively following model definition model predictions can be made and 

experimentally validated. 
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2.2.1 SBGN and SBML 

In order to construct the original model topology the program CellDesigner 4.4 was 

used [178]. This allowed for the creation of model in Systems Biology Graphical 

Notation (SBGN) a language that represents networks visually [179]. The advantage of 

using SBGN is that it was specifically designed for this purpose and provides an 

industry standard for the production of dynamic models. Following the original 

definition of the network topology the model was exported in Systems Biology Mark-up 

Language (SBML) and imported into COPASI (4.15-4.20) [160].  As with SBGN, 

SBML provides a standard computational language for dynamic modelling that is 

compatible with a large number of different modelling platforms. Whilst in this work 

COPASI was used to perform simulations and to refine the network structure the final 

model was exported as SBML in order to allow for the submission to peer reviewed 

journals.  

2.2.2 Parameter estimation 

 Parameter estimation is the process of estimating a given parameter set based on 

experimental data.  Parameter estimation was performed using Copasi’s parameter 

estimation function [162, 167]. Initial parameter estimations were carried out on a local 

PC using the following settings, Randomised start values, lower limit 1E
-6 

and upper 

limit 1E
-4

. The genetic algorithm was selected to perform the initial parameter 

estimations as this method provided a global deterministic algorithm which was neither 

computationally or processor time demanding. Initial parameter estimations were used 

to inform and refine the model topology prior to full calibration. Once a final model 

topology was in place, a full calibration was performed utilising a computational 

cluster. The parameter estimation was set up as described using the genetic algorithm 

(Number of generations = 300, Population size =150, Random number generator = 1, 

Seed = 0), in addition the parameter scan function was utilised as follows, executable = 

yes, Repeat number of iterations = 20, sub task = parameter estimation. This was then 

submitted to a computer cluster and a Python script (Kindly provided by Ciaran Welsh) 

used to perform 10000 estimation repeats.  

Following successful completion of 10000 parameter estimations each repeat, the 

python package PyCotools was used to rank each parameter fit by its chi-squared value. 

The chi-squared statistical test is used to determine whether or not the observed 

difference between two sets of data occurs due to chance. Using this measure it is 
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possible to analyse which set of simulated parameter values provides the closest fit to 

the measured data. For each model the parameter set with the lowest chi-squared value 

inserted into the model and analysed using the parameter estimation task in Copasi. For 

this estimation the current solution statistic algorithm was used and data collected for 

each of the measured variables within the model.  

Following successful parameter estimation using the genetic algorithm the updated 

parameter set was transferred back to a computer cluster for further refinement using the 

Hooke and Jeeves algorithm. As this algorithm is a local search algorithm it only 

searches the parameter space around the previously defined parameters. This repeat was 

carried out as above with the following changes, randomised start values = no, Hooke 

and Jeeves (Iteration limit = 50, Tolerance = 1E
-5

, Rho = 0.2), and 2000 parameter 

estimations carried out. 
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2.2.3 Pycotools  

Pycotools is python package developed at Newcastle University by Ciaran Welsh. It 

allows a user to programmatically control the Copasi program to achieve their desired 

objectives. Pycotools was used throughout this work in chapters 4 and 5 to run multiple 

parameter estimations and then to extract the parameter estimation with the lowest 

residual sum of square score in order to analyse the model fit achieved. In chapter 6 an 

updated version of Pycotools was then used to carry out in depth analysis of the model 

fits including time course ensembles and parameter variation analysis. 

2.2.4 Statistics 

Normalised experimental data are shown as the mean value with error bars of plus and 

minus the standard error of the mean calculated in Microsoft Excel (2010). All graphs 

were plotted using Sigmaplot 12.5 (Systat Software Inc; San Jose, CA, USA). 

Quantification of protein expression for RPPA samples was carried out using Zeptoview 

3 (Zeptosens Ltd). The Pearsons χ
2
 value was obtained and the residual sum of squares 

value for all observables calculated using Copasi. A p-value was calculated for the 

model analysed in chapter 4 using the RSS obtained by each model and the degrees of 

freedom calculated from the data as follows (N columns -1)* (N Rows -1). In chapter 6 

a t-test was performed using Microsoft excel (2010) and a P-value obtained with a value 

of below 0.05 considered significant. 
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3. A comparison of methodologies for the 

production of dynamic model calibration 

data  
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3.1 Introduction 

The production of quantitative time course data for calibration and validation of 

computational models is a key aspect of dynamic modelling. A range of experimental 

methodologies are available for generating such data at both the RNA and protein 

levels. In the case of RNA, microarrays or RNA-seq are the two high-throughput 

methodologies most commonly used to generate large data sets and qPCR for data sets 

with a smaller scope.  The choice depends on whether the data is to be used for 

modelling gene regulatory networks or to calibrate a model where a particular RNA 

plays a role. In the case of proteins, mass spectrometry methods are available for high-

throughput measurement but have not been commonly used for the calibration of 

dynamic models. The majority of computational modelling studies do not require such 

large datasets and low throughput methods such as western blotting are usually 

sufficient. Western blotting is generally accepted as a reliable and repeatable method for 

producing protein level measurements. It is however time consuming and potentially 

error prone and therefore not ideally suited to the production of data sets required for 

calibrating sets of dynamic models as in this work. Experience within our research 

group has shown that it would take around one person year to develop a model for one 

treatment using western blotting for data generation. This project requires the 

development of six calibrated models so it was necessary to investigate alternative 

methodologies that could replicate the quality of results produced by western blotting 

but which would be more time efficient. A number of alternatives to western blotting 

exist for protein level quantification. These include Reverse Phase Protein Arrays 

(RPPA), Intracellular Flow cytometry, Simple Western, mass cytometry and mass 

spectrometry. From these it was decided that RPPA and flow cytometry provided the 

most likely alternatives to western blotting. In addition to the possibility of being more 

time efficient than western blotting both methodologies were considered reliable and 

robust and had both previously been successfully used in systems modelling studies 

[180, 181]. 

 

 

 



54 
 

 3.2 Aims and objectives 

 To provide an overview of two alternative methodologies to western blotting 

 

1. To analyse two pilot studies investigating the quality of data produced by each 

method 

2. To analyse which technique should be taken forward to produce complete a data 

set with   which a dynamic model of the mTOR network can be calibrated 

 

3.3 Reverse phase protein arrays 

Developed in 2001 by Paweletz et al the Reverse Phase Protein array technology is 

based on gene expression microarrays widely used transcriptional research, its creation 

followed previous attempts to create a protein microarray  [182] [183]. Previous 

iterations were designed using glass slides with recombinant proteins or antibodies 

bound to them (in the same way that mRNA strands are bound to a microarray chip) 

prior to the sample of interest being added to the chip allowing for the detection of 

protein-protein interactions or protein-antibody interactions. RPPA differs to these early 

protein microarrays in that it works in the opposite way to a microarray, hence the 

‘reverse phase’ in its title [184]. In RPPA the samples of interest are printed directly 

onto the slide prior to incubation with primary antibodies. A secondary antibody 

conjugated to a fluorophore is then used as a read out for protein activity. Using this 

method it is in principle possible to perform measurements of hundreds of proteins and 

samples. RPPA is however dependent on highly specific antibodies and it is this 

requirement that has thus far slowed the uptake of RPPA as a major analytical 

methodology for protein analysis. There are currently several efforts underway to create 

a library of validated antibodies for RPPA that can be accessed by researchers 

worldwide [185]. 

To date RPPA has proved a useful tool in several areas such as  profiling of 

dysregulated protein networks in tumour samples from cancer patients and for 

validation of biomarker discoveries [186]. A primary of example of its use to date has 

been its use as one of the platforms used in a multi-omic molecular profile study 

investigating personalised treatment in breast cancer progression [187]. This study 

utilised RPPA to study the relative protein activation, phosphorylation and expression in 
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metastatic breast cancer patients. From the data generated by RPPA in combination with 

transcriptional methodologies the authors were able to suggest personalised therapeutic 

targets for each of the 25 patients in the study. Whilst the use of RPPA in the calibration 

of dynamic network models is not yet wide spread there are some notable examples. In 

2012 Peng et al used RPPA to examine differences in protein levels in myelodysplastic 

syndromes compared to control samples. The authors compared 179 different antibodies 

across 10 samples and five time points. They used a subset of this extensive dataset to 

parameterise a dynamic model of the p38 mitogen-activated protein kinase (MAPK) 

pathway which enabled them to identify a shift in regulation for the degradation of key 

proteins from JNK to p38 pathways [180]. In addition RPPA has also been utilised in 

the development of a computational model of the HER-2 targeting receptor tyrosine 

kinase (RTK) inhibitor Trastuzumab a common anti-cancer therapeutic. Following 

calibration of a dynamic model with RPPA generated data the authors showed that 

PTEN protein expression was the key factor in resistance to HER-2 targeting 

therapeutics such as Trastuzumab [188]. Due to its previous use in the development of 

dynamic models it was decided that RPPA could offer the medium-throughput 

alternative to western blotting required for this project. 

3.4 Reverse phase protein array produces consistent time course data 

suitable for dynamic modelling 

To test the suitability of RPPA for the production of time course data sets relevant to 

this work a time course experiment was carried out using MRC5 cells. For this initial 

study cells were treated using the starvation-restimulation protocol described in section 

2.1.8. A timecourse of 60 minutes following restimulation was chosen consisting of six 

time points (0, 5, 10, 20, 30 and 60 minutes post restimulation) (figure 3.1). As a first 

examination of RPPA’s suitability to produce time course data for the mTOR network a 

set of six antibodies relating to both mTORC1 and mTORC2 were selected. These 

consisted of mTORC1_pS2448, AKT_pS473, P70S6K_pT389, S6_pS235/236, 4E-

BP1_pT37/46 and 4E-BP1_pS65. The initial run of RPPA proved successful at 

producing consistent time course data of a high standard for the antibodies tested (figure 

3.1). Of particular note was the consistent data between mTORC1_pS2448 and its 

downstream read out S6_pS235/236 (figure 3.1 A+D). In contrast measurement for the 

two 4E-BP1 residues differ in their profile when compared to the upstream 

mTORC1_pS2448 output, but when compared against each other they display similar 
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expression profiles (figure 3.1 E+F). Whilst five of the antibodies produced similar 

outputs the P70S6K_pT389 profile differs significantly from each of the other profiles 

(figure 3.1 C). In addition for the majority of data points tested displayed low standard 

deviations with the exception of the sixty minute time point.. The exception to this was 

the S6K_pT389 antibody which had a very low standard deviation for the sixty minute 

time point (figure 3.1 C). 

As mentioned in section 3.3 one of the main drawbacks of RPPA is its dependence on 

specific antibodies. In order to address this it was necessary to carry out a series of 

quality control experiments on the antibodies currently being examined. As part of the 

initial time course a single repeat was treated with alkaline phosphatase as a means to 

remove all phosphorylation events within each sample, this repeat was processed 

alongside the experimental repeats. As the alkaline phosphatase acts to remove 

phosphate groups bound to proteins it can be assumed that any fluorescence detected 

during the imaging of these samples is either auto-fluorescence or non-specific binding 

of the antibody in question. The alkaline phosphatase repeat can then be compared to 

the experimental results to help reveal the specificity of a particular antibody (figure 

3.2). In the case of four of the antibodies (mTOR_pS2448, AKT_pS473, S6_pS235/236 

and 4E-BP1_pS65) whilst there is some fluorescence detected in the alkaline 

phosphatase repeat these values are significantly lower than those of the corresponding 

experimental repeats (figure 3.2 A, B, D, F). This therefore suggests that these four 

antibodies are suitable for use with RPPA especially in the case of S6_pS235/36. 

However two of the antibodies display high fluorescence even when treated with 

alkaline phosphatase (4E-BP1_pT37/46 and S6K_pT389) (figure 3.2 C+E). For both of 

these antibodies their RFI is of a similar value whether or not they have been treated 

with alkaline phosphatase suggesting that these particular antibodies have a high 

amount of non-specific binding. Neither of these antibodies are therefore suitable for 

further analysis with RPPA. This may also explain why the profile for S6K_pT389 

differs from all of the other antibodies tested. 
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Figure 3.1: RPPA is capable of producing calibration time course data for a 

dynamic model. Sixty minute time course following a 24 hour starvation period. Cells were 

restimulated at 0 hours and relative fluorescent intensity measured at each time point (n=2) (Mean +/- 

SEM). (A) mTORC1_pS2448, (B) AKT_pS473, (C) P70S6K_pT389,  (D) S6_pS235/236, (E) 4E-

BP1_pT37/46 and  (F) 4E-BP1_pS65. 
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Figure 3.2: Alkaline phosphatase treatment reveals the level of non-specific 

binding for each antibody. Level of relative fluorescent intensity for two experimental repeats 

(R1-Green, R2- Red) compared to alkaline phosphatase treatment (Blue). Antibodies measured were as 

follows (A) mTORC1_pS2448, (B) AKT_pS473, (C) P70S6K_pT389,  (D) S6_pS235/236, (E) 4E-

BP1_pT37/46 and  (F) 4E-BP1_pS65. 
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In addition to performing alkaline phosphatase treatment it was thought prudent to 

assess the reliability of RPPA not just between replicates but also between different 

antibodies for the same phospho-site. An additional three antibodies for AKT_pS473, 

S6_pS235/236 and 4E-BP1_pS65 from different sources were tested (Figure 3.3). The 

second antibodies tested for both AKT_pS473 and S6_pS235/236 displayed lower RFI 

values to the original antibodies whilst the second 4E-BP1_pS65 antibody displayed 

increased RFI to the original (Figure 3.3 B, D, E). However whilst the RFI values 

between antibodies differs the overall profile remains the same with similar standard 

deviations for each time point being observed between related antibodies and as with 

the original antibodies the sixty minute time point had the largest standard deviation in 

all three of the new antibodies (Figure 3.3 A-F). 

As with the original set of six antibodies it was necessary to investigate if the new 

antibodies being tested showed non-specific binding when treated with alkaline 

phosphatase. A comparison was therefore carried out against the respective antibodies 

from the original six antibodies tested (Figure 3.4). In the case of AKT_pS473 both 

antibodies displayed similar levels of RFI in the alkaline phosphatase treated repeat 

when compared to the RFI of the experimental repeats (figure 4.4 A+B). Whilst the 

second antibody for S6_pS235/236 showed lower variation between repeats it had a 

much lower RFI than the first antibody tested (figure 3.4 C+D). This meant that 

although the  level of RFI was low in the alkaline phosphatase repeat for this antibody it 

still represented a significant amount of the overall RFI in the experimental results 

suggesting that for further RPPA the original antibody for S6_pS235/236 should 

continue to be used (figure 3.4 C+D). In contrast the second 4E-BP1_pS65 antibody 

tested showed lower RFI values in the alkaline phosphatase repeat when compared to 

the original antibody (figure 3.4 E+F). Therefore in any subsequent RPPA analysis the 

second antibody tested should be the antibody used to detect the levels of expression for 

this protein. Following these experiments it can be concluded that RPPA is capable of 

producing consistent and reliable time course data for the purpose of calibrating 

dynamic models. 
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Figure 3.3: RPPA output remains consistent between different antibodies for the 

same protein.Sixty minute time course following a 24 hour starvation period. Cells were restimulated 

at 0 hours and relative fluorescent intensity measured at each time point (n=2) (Mean +/- SEM). The 

following outputs for two antibodies for the same protein but form separate sources are compared. (A-B) 

AKT_pS473, (C-D) S6_pS235/236, (E-F) 4E-BP1_pS65.
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Figure 3.4: Alkaline phosphatase treatment can determine the level of non-specific 

binding between separate antibodies for the same protein. Level of relative fluorescent 

intensity for two experimental repeats (R1-Green, R2- Red) compared to alkaline phosphatase treatment 

(Blue). The following outputs for two antibodies for the same protein but form separate sources are 

compared. (A-B) AKT_pS473, (C-D) S6_pS235/236, (E-F) 4E-BP1_pS65. 
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 3.5 Intracellular flow cytometry 

Classically the core focus of flow cytometry has been the measurement of extracellular 

cell markers, however over the last decade there has been  major advancements in the 

development of flow cytometers, antibodies and staining procedures [189]. This has led 

to the increased ability to measure the activation or inhibition of intracellular proteins 

using flow cytometry [190, 191]. Intracellular flow cytometry involves the 

permeablisation of fixed cells prior to detection of intracellular protein-epitopes using 

antibodies. Antibodies are either conjugated directly to a fluorophore or a primary 

antibody followed by a secondary antibody conjugated to a fluorophore is used. Cells 

are then passed through a flow cytometer which excites the flourophores using lasers to 

generate different wavelengths of light. This light emitted from the fluorphores then 

passes through a series of opitcal filters optics which separate the light emission based 

on wavelengths allowing for the detection of different flurophores in the same sample. 

The number of different antibodies and fluorophores that can be detected is determined 

by the flow cytometry system however as a standard it should be possible to analyse up 

to eight serparate antibodies on a standard instrument. Whilst the ability of intracellular 

flow cytometry to produce time course data capable of calibrating intracellular based 

dyanmic models has yet to be explored the use of flow cytometry in systems modelling 

is well documeted. Flow cytometry provided the principle technique for the analysis of 

microbial cell population dynamics and is commonly used in cancer research to identify 

cell population dynamics [181, 192]. It has also previously been shown to be capable of 

producing intracellular time course data for protein networks including the mTOR 

network [193, 194]. With the ability to analyse multiple proteins within each sample it 

is possible that intracellar flow cytometry could provide a viable alternative to western 

blotting for the produciton of calibration data for dynamic modelling. Here we present a 

pilot experiment with the aim of testing intracellular flow cytometrys ability to produce 

time course data for the mTOR network.   
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3.6 Intracellular flow cytometry fails to provide consistent data 

suitable for dynamic modelling 

In order to test the ability of intracellular flow cytometry to produce time course data 

suitable for calibrating dynamic models a pilot experiment was designed. An initial 

study was carried out using MRC5 cells treated with 50μM of the mTOR inhibitor 

Torin1 for a period of 24 hours. For the purposes of this study only two time points 

were examined with samples generated at time 0 hours prior to Torin1 treatment and 

following 24 hours Torin1 treatment. As this was a preliminary study it was not felt 

necessary to fully test the capabilities of the flow cytometry systems by testing a large 

number of antibodies with varying conjugated fluorophores and so it was decided that 

only two antibodies should be tested. The two antibodies being studied consisted of 

AKT_pT308 conjugated to alexa-488 and mTORC1_pS2448 conjugated to PECY7, 

with the antibodies chosen to minimise the requirement for compensation between the 

conjugated fluorophores. Following treatment with Torin1 for 24 hours there was a 

slight decrease in mTORC1_pS2448 fluorescence (figure 3.5 A-D) whilst control cells 

showed no decrease in PECY7 fluorescence (figure 3.5 E-H). Due to limited 

fluorescence from the AKT_pT308 antibody used it was not possible to determine if 

there was any change in AKT_pT308 activity (Appendix A). Whilst there was an 

indication from this study that flow cytometry could provide time course data suitable 

for dynamic model calibration the results were inconclusive and therefore it was 

necessary to carry out further experiments to fully explore its capabilities.  

A time course was carried out using MRC5 cells following the starvation-restimulation 

protocol described in section 2.1.8 and measurements were taken at 0, 5, 15 and 30 

minutes post-stimulation. As this was to be a more rigorous test of intracellular flow 

cytometry’s capabilities four separate antibodies were examined (mTORC_pS448-

PECY7, AKT_pT308-Alexa 488, AKT_pS473-APC and S6_pS235/236-V450). As 

with the previous experiment it was not possible to obtain a read-out for AKT_pT308 

alexa-488 (data not shown) and as such this antibody was not tested again. Following 

restimulation there was no change in the level of mTORC_pS2448 activity over the first 

three time points (0, 5, 15 minutes) and a decrease in activity after 30 minutes of 

restimulation (Appendix A). AKT_pS473 showed an increase in activity at 5 minutes 

following restimulation with a decrease at 15 minutes following restimulation.  
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Figure 3.5: Treatment with 50μM of Torin1 leads to a reduction in 

mTORC1_pS2448 signalling. MRC5 cells were treated with 50μM Torin1 for 24 hours 

with samples taken at 0 hours and 24 hours. (A+E) unstained sample (B) 50μM Torin1 0 hours, 

(C) 50μM Torin1 24 hours, (D) Overlay histogram displaying a comparison for each time point, 

(F) Untreated sample 0 hours, (G) Untreated sample 24 hours, (H) Overlay histogram displaying 

a comparison for each time point.  ffsssssssssssssssssssssssssssssssssssssssssssssssssssssssss                                                                                                   
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A further increase in activity was seen at 30 minutes (Appendix A). Of the antibodies 

tested only the output for S6_pS235/236-V450 activity was consistent with the expected 

behaviour of the S6_pS235/236 phosphorylation site following serum starvation-

restimulation. Following restimulation there was a significant increase in S6_pS235/236 

activity between the 5 minutes and 15 minute time points with a slight decrease in 

activity observed between the 15 minute and 30 minute time points (figure 3.6 A-G).  

Due to the S6_2325/236-v450 antibody displaying behaviour consistent with that 

expected following serum starvation-restimulation it was decided that a further study 

should be carried out using insulin to increase the effect of restimulation. MRC5 cells 

were treated as in section 2.1.8 with 100nM of insulin (Sigma-Aldrich, Dorset, UK) added 

to DMEM high Glucose supplemented with 10% foetal bovine serum, 1% of L-

Glutamine and 1% of Penicillin-Streptomycin prior to restimulation. The addition of 

insulin to the restimulation cell culture media had no effect on the overall behaviour 

displayed by AKT_pS473-APC with increased activity at 5 minutes post restimulation 

followed by decreased activity at 15 minutes post restimulation before a final increase 

in activity at 30 minutes post restimulation (Appendix A). The overall output for 

mTORC1_pS2448-PECY7 displayed at small increase in activity following insulin 

restimulation. However as opposed to the other antibodies being examined it failed to 

produce consistent results across repeats with each of three separate repeats displaying 

different behaviour throughout the time course (Appendix A). As with the previous 

experiment the S6_2325/236-v450 antibody displayed behaviour consistent with that 

expected. Following insulin enhanced restimulation S6_2325/236-v450 activity 

increased over the first 15 minutes of the time course with a decrease in activity 

observed following 30 minutes post restimulation (figure 3.7 A-G). Following these 

experiments it can be concluded that whilst intracellular flow cytometry can produce 

time course data for particular proteins within the mTOR network it fails to do so in a 

consistent manner for many of the required read-outs. It is therefore not be suitable for 

further examination as an alternative to western blotting. A comparison of the three 

possible protein analysis platforms is provided in table 3.1. 
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Figure 3.6: Intracellular flow cytometry is capable of producing calibration time 

course data for a dynamic model for S6_pS235/236. Cells were serum starved overnight 

and then re-stimulated with FBS and L-Glutamine containing media with time points collected 

after (A) 0 minutes, (B) 5 minutes, (C) 15 minutes  and (D) 30 minutes (n=3) representative of 1 

repeat shown. (F) Overlay histogram displaying a comparison for each time point. (G) The 

average Geometric mean for each time point plotted against time (Mean +/- SEM).  
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Figure 3.7: Insulin treatment enhances the capable of Intracellular flow cytometry 

to produce calibration time course data for a dynamic model for S6_pS235/236. 

Cells were serum starved overnight and then re-stimulated with FBS and L-Glutamine media 

supplemented with 100nM insulin with time points collected after (A) 0 minutes, (B) 5 minutes, 

(C) 15 minutes  and (D) 30 minutes (n=3) representative of 1 repeat shown. (F) Overlay 

histogram displaying a comparison for each time point. (G) The average Geometric mean for 

each time point plotted against time (Mean +/- SEM). 
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Table 3.1: A comparison of possible protein analysis platforms 

 

Analysis Platform Advantages Disadvantages 

Western Blotting  Separates proteins based 

on molecular weight  

 Analysis platform is 

already commonly used 

so comparisons with 

previous work can be 

carried out 

 No Specialist equipment 

required  

 Work intensive 

 High amount of lysate is 

required per run 

 Only one antibody can 

be analysed per gel per 

run 

 Low – medium 

throughput 

Reverse Phase Protein 

arrays 

 Medium – high 

throughput 

 Multiple antibodies can 

be tested for per run 

 Low volume of lysate 

required  

 

 Requires specialist 

equipment 

 Requires highly specific 

antibody for each protein 

analysed 

Intracellular Flow 

Cytometry 

 Multiple antibodies can 

be tested for per run 

 Medium throughput 

 Specialist facilities in  

place 

 Can only analyse cell 

sample once 

 Antibodies cannot be 

reused  

 Requires careful 

matching of primary 

antibodies to secondary 

antibodies 

 Compensation must be 

applied for each antibody  

making it impractical to 

measure many antibodies 

at once 
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3.7 Discussion 

The purpose of this work was to determine whether reverse phase protein arrays or 

intracellular flow cytometry could provide an alternative method to western blotting for 

the purpose of producing time course data in order to calibrate a dynamic model. Whilst 

both methodologies proved capable of producing time course data the quality of this 

data differed greatly between each technique. Flow cytometry proved capable of 

replicating the expected output for the mTOR network but only for one of the three 

antibodies tested (S6_pS235/236-v450). This technology appears to be hampered by the 

same problems encountered when performing western blots. It is possible to analyse up 

to eight antibodies per sample with the technique which is a greater number than with 

western blotting however samples cannot be retested once they have been stained. 

Ultimately this means that many more replicates will be required for the same time 

course to achieve the coverage required to fully calibrate a dynamic model and therefore 

little time would be saved when compared to western blotting. As this was the principle 

reasoning behind this study it can be said that flow cytometry failed to meet our criteria. 

In addition the use of eight antibodies within the system being used would lead to 

numerous compensatory issues with regards to the overlap of spectral output of 

fluorophores being tested. Meaning that whilst this could be carried out in theory it is 

unlikely that all eight antibodies could be used in practise. If these tests had proved to 

be successful then it may have been possible to proceed using a higher throughput flow 

cytometry machine or indeed to analyse samples utilising mass cytometry a technique 

that combines the principles of both flow cytometry and mass spectrometry. This would 

have allowed for the analysis of a much larger set of antibodies however it was decided 

that when the output from the RPPA was taken into account that there was no 

requirement to carry out further experiment utilising this type of flow cytometry. During 

these experiments it was noted that flow cytometry may be of use for a more specific 

application. Within the mTOR network both FOXO3A and Rheb are dependent on their 

cellular localisation for correct activity. It was decided that the cellular localisation of 

these proteins should be measured using imagestream flow cytometry a technique that 

photographs cells as they pass through the flow cytometer allowing for analysis of co-

localisation properties between fluorophores. In the case of FOXO3A a comparison 

with the nuclear stain DAPI could be used and for Rheb a comparison with the 

lysosomal marker LAMP-1 could be used to analyse the localisation of these proteins 

following each of the different treatments. 
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RPPA proved capable of producing high quality time course data sets capable of 

calibrating a dynamic model. It has also been possible to answer the question of whether 

or not RPPA is more time effective than western blotting. As it takes the same amount 

of time to produce the time course lysates for both methodologies this is a question of 

how quickly each sample can be analysed. For this experiment a total of nine antibodies 

were tested however it is noteworthy that this time course was carried out alongside 

another experiment with the total number of antibodies measured numbering eighteen. 

With the possibility of printing a total number of sixty-four samples onto a single RPPA 

chip this allows for the measurement of a total of three replicates plus reference proteins 

on one chip. As one RPPA slide contains six chips with the possibility to analyse 64 

samples per chip it is possible to assay either 384 samples with one antibody per slide or 

64 samples with 6 antibodies per slide. In addition as it is possible to print multiple 

slides at once these figures can be multiplied by the number of slides required. As 

mentioned earlier this has been carried out measuring 179 antibodies on only ten 

samples [180]. The entire RPPA measurement process takes one week to complete 

meaning that following the production of the cell lysates it is possible to analyse the 

reaction of a huge number of proteins making this process far more time effective than 

western blotting. Theoretically therefore RPPA appears to be an extremely effective 

substitute for western blotting in the production of calibration data for dynamic models. 

The main limitation to this process is the requirement for highly specific antibodies and 

therefore it is possible that some proteins within the mTOR network such as 

P70S6K_pT389 may not be measureable with RPPA it will therefore be necessary to 

use alternative readouts of mTORC1 activity such as the 4E-BP1 and ribosomal S6 

antibodies assayed above (figure 3.2 C).  

 Since these experiments were performed there have been further examples of RPPA 

being utilised in the field of dynamic modelling. Tan et al used RPPA to measure the 

activation of osteoblastic protein markers during osteoblast differentiation. Combining 

this data with a dynamic model the authors were able to test how different cytokines 

combined to activate osteogenesis and provide a potential therapeutic tool for patients of 

osteoporosis [195]. With the data available we can conclude that RPPA can provide an 

effective and time efficient method for producing time course data for dynamic 

modelling and therefore this methodology was taken forward in this work. 
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3.8 Conclusions 

 Reverse Phase Protein arrays are capable of producing reliable time course data 

suitable for the calibration of dynamic models 

 RPPA is both time efficient and high-throughput in comparison to western 

blotting 

 Intracellular flow cytometry was capable of producing time course data for the 

calibration of dynamic models 

 This method was however not as reliable as RPPA nor as time efficient 

 RPPA will used to produce the time course data required for this work 

 Imagestream flow cytometry will be investigated as a method for studying 

intracellular localisation of FOXO3A and Rheb 
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4. A dynamical model of the mTOR signalling 

network reveals the kinetics of starvation and re-

stimulation in MRC5 fibroblasts and human 

bone marrow stem cells 
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4.1 Introduction 

A key role for a reduction in of nutrient signalling in ageing is well established. The 

first systematic genetic screen to identify genes involved in ageing were conducted in C. 

elegans which identified individuals with mutations directly linked to the mTOR 

network [7, 196-198]. The Daf-2 and Daf-16 mutants (C. elegans homologues for 

mammalian IGF-1R and FOXO) were found to live up twice as long as their wild type 

counterparts [199]. Mutations in homologues in other model species such as Drosophila 

and mice are also long-lived and provide evidence for evolutionary conservation. There 

is now an extensive body of research on the connection between nutrient signalling and 

the ageing process [197, 198].  

The mTOR network is activated in a number of ways including nutrient signalling and 

amino acid stimulation. Caloric restriction (also referred to as dietary restriction) was 

one of the first interventions identified as being able to extend lifespan in a number of 

model organisms and remains the ‘gold standard’ in lifespan extension interventions. 

Caloric restriction is defined as a reduction in calorie intake without malnutrition. This 

leads to a reduction in the activation of the insulin/IGF-1 signalling and a 

downregulation of both mTORC1 and mTORC2 [200]. Although the exact mechanisms 

of how caloric restriction works have yet to be fully established it is believed that the 

down regulation of mTORC1 leading to an increase in autophagy plays a major role 

[201]. One proposed explanation is that the shift in the balance between the anabolic 

mTORC1 processes and catabolic autophagy processes results in increased longevity 

[202]. Autophagy is responsible for the recycling of amino acids during periods of 

caloric restriction. It also removes damaged organelles from cells. As we age the 

autophagic response declines whilst mTOR signalling increases. It is believed that by 

maintaining a higher autophagic response for longer that there will be increased 

clearance of damaged components within cells. This in turn could possibly delay the 

ageing process, however this has so far proved difficult to quantify[83].  

As caloric restriction provides the most well characterised method for lifespan extension 

it was an obvious choice for us to study in detail the mechanistic reaction of the mTOR 

network following a period of starvation. Currently, there is no methodology for 

performing caloric restriction in vitro therefore in order to examine the effect of caloric 

restriction a method mimicking its effect was sought. Previous work carried out by our 

own group utilising serum starvation has proved largely successful in the study of the 
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mTOR network and caloric restriction. It was therefore decided that this method for 

mimicking caloric restriction in vitro should be used for this study [171, 172].  

The computational model described in this section provides the main framework for all 

of the dynamic models that follow. Previous work in our group has used dynamic 

modelling to study the wiring of the mTOR network and the various effects of insulin 

and amino acid signalling [80, 171, 172, 203]. These models provide the building 

blocks upon which the development of this model was based. It was decided that for our 

control cell line we should use MRC5 fibroblasts as again previous research by our 

group has shown these cells to be a reliable model cell line with which to investigate the 

mTOR network [203]. In addition having used these cells previously it allows for the 

comparison with previous experiments carried out by our group and further validation 

of the RPPA systems for production of time course data. Finally as we wish to compare 

this output to that from bone marrow derived stem cells we will be able to do so with 

confidence.  

4.2 Aims 

This study aims at examining the effect of re-stimulation following serum starvation on 

the mTOR network. We aim to define using a computational dynamic model how the 

mTOR network responds in MRC5 fibroblasts and how the mTOR network response 

differs in human mesenchymal stem cells.  
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4.3 Results 

4.3.1 Development of starvation-restimulation dynamic network model 

In order to investigate the response of the mTOR network to serum starvation-

restimulation (SSR) a static model was designed and built as described in section 3.2. 

As a basis for the initial model a dynamic model previously described in the literature 

produced by our group was used to inform the core structure of the model [171]. With 

the core model structure in place additional reactions were added to the model based on 

key literature findings. The focus when expanding the network was to add reactions 

relevant to two particular areas, amino acid stimulation of the mTOR network and 

proteins known to be affected by Zoledronate treatment. In addition to altering the 

existing core structure to include further relevant proteins, proteins no longer relevant to 

the current study were removed from the model structure.  This resulted in an expanded 

network incorporating proteins related to Zoledronate treatment and amino acid 

stimulation that would be capable of simulating to the response of starvation-

restimulation.  

The network used throughout this chapter is shown in Figure 4.1 and all reactions can 

be found in appendix B. It includes both insulin/growth factor (GF) and amino acid 

activation of mTORC1 in addition to insulin/GF activation of mTORC2. Insulin/GF 

stimulates mTORC1 through activation of PI3K and subsequent activation of PDK1 and 

AKT on threonine 308. This results in the phosphorylation of the TSC1/2 complex 

inhibiting its GAP activity on Rheb. Rheb in its GTP bound active state is then able to 

activate mTORC1. For the purposes of this work amino acids are deemed to activate 

mTORC1 directly and lead to its phosphorylation of serine 2448. Once activated 

mTORC1 directly activates both P70-S6K and 4E-BP1 with P70-S6K feeding back 

upstream to inhibit the phosphorylation and activation of IRS1 and PI3K.  

As mentioned in section 1.3 very little is known regarding mTORC2 upstream 

activation and therefore in this study mTORC2 is activated by a PI3K species distinct 

from the PI3K upstream of PDK1 and mTORC1 [80]. Once activated mTORC2 leads to 

phosphorylation of AKT on serine 473. Within the model, phosphorylation on serine 

473 can occur both before and after threonine 308 phosphorylation with the same being 

true for threonine 308 phosphorylation. Once activated AKT_pS473 is then capable of 

phosphorylating FOXO3A leading to its inhibition. The exact mechanism by which 
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AKT phosphorylates and inhibits FOXO3A is still disputed within the literature and it is 

not fully understood if phosphorylation on either threonine 308 or serine 473 is required 

or if phosphorylation on both sites is required [204]. Recent findings however have 

suggested that mTORC1 inhibition alone is not sufficient to lead to FOXO3A inhibition 

[205]. Therefore in this study only AKT phosphorylated on serine 473 either on its own 

or in addition to threonine 308 phosphorylation can phosphorylate FOXO3A. 

4.3.2 Reverse phase protein array provides a high quality calibration 

dataset 

Once the topology of the network model had been decided a calibration dataset was 

required. As discussed in the previous chapter the method chosen for the production of 

this data set was reverse phase protein arrays (RPPA). It was decided that a 24 hour 

time course should be carried out with increasing intervals between the time points as 

described in section 2.1.15. This would allow us to capture the rapid response of the 

mTOR network to re-stimulation in addition to allowing the study of the longer term 

effects. A group of 7 proteins were initially assayed and their initial response to re-

stimulation analysed over a period of 60 minutes. Figure 4.2 shows the results of the 

initial run of these samples with the expected response seen in all metabolites except 

mTORC1_pS2448 which initially decreases following re-stimulation (Figure 4.2-B). 

However for AKT_pS473, S6_235/236 and S6_240/244 (Figure 4.2-A, E, F) an overall 

increase is observed over the 60 minutes. For 4EBP1_pS65 an initial increase up to 30 

minutes is observed followed by a decrease between 30-60 minutes (Figure 4.2-C). 

Whilst this behaviour is also observed in the P70S6K_pT389 antibody tested, the 

alkaline phosphatase control for this antibody again displayed non-specific binding. 

This output could not therefore be validated as P70S6K_pT389 phosphorylation (Figure 

4.2-D). 

With the initial time course proving to be successful the antibody coverage was 

expanded to include a further 11 antibodies providing good cover across the mTOR 

network for both total and phospho proteins (Figure 4.3). With a larger number of 

proteins measured it was possible to examine why the output from the previously 

measured mTORC1_pS2448 decreased following re-stimulation, indeed this behaviour 

could be seen throughout the upstream PI3K network with PI3K p85_pY467_Y199, 

PTEN_pS380_T382_T383 and PDK1_pS241 all displaying similar behaviour (Figure 

4.3-B, C, D). Whilst it was not possible to measure AMPK_pT172 it was possible to 
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assay acetyl-coA carboxylase - a downstream effector of AMPK (Figure 4.3-A). 

Importantly this protein displayed the expected behaviour observed following amino 

acid deprivation previously seen with western blotting [172]. This could explain the 

decrease in PI3K and MTORC1 signalling observed across the first 30 minutes of the 

time course. A list of all Antibodies assayed can be found in Table 4.1.  
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Table 4.1: Reverse Phase Protein Array Antibodies. A list of all antibodies assayed during 

starvation-restimulation experiments 

 

Antibody Antibody Source 

ACC AKT_pS473 Cell Signalling Technology 

ACC_pS79 mTOR Cell Signalling Technology 

PI3K p85_pY467_Y199,  mTOR_pS2448 Cell Signalling Technology 

PTEN 4E-BP1 Cell Signalling Technology 

PTEN_pS380_T382_T383  4E-BP1_pS65 Cell Signalling Technology 

PDK S6_pS235/236 Cell Signalling Technology 

PDK1_pS241 S6_pS240/244 Cell Signalling Technology 

AKT FOXO3A Cell Signalling Technology 

AKT_pT308 FOXO3A_pS318_S321 Cell Signalling Technology 

Α-tubulin  Cell Signalling Technology 
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Figure 4.1: The mTOR network. A SBGN network model diagram displaying the effect of amino acids 

on the mTOR network. Asterisks mark phospho proteins measured for starvation-restimulation RPPA 

experiments whilst hashtags mark proteins assayed by imagestream flow cytometry. 
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Figure 4.2: Measuring the Kinetics of the mTOR Network in MRC5 Cells. A sixty 

minute time course following 24 hour serum starvation. Cells were re-stimulated at 0 hours and relative 

fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A) AKT_pS473, (B) 

mTORC1_pS2448, (C) 4E-BP1_pS65, (D) P70S6K_pT389,  (E) S6_pS235/236, (F) S6_pS240/244. 
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Figure 4.3: Expanded Measurements of mTOR Network Kinetics in MRC5 Cells. 

A sixty minute time course following 24 hour serum starvation. Cells were re-stimulated at 0 hours and 

relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A) ACC_pS79, (B) 

PI3K_p85_pY467_pY199, (C) PTEN_pS380_pT382_pT383, (D) PDK1_pS241,  (E) AKT_pT308 (F) 

FOXO3A_pS318_pS321. 
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4.3.3 Parameter estimation 

In order to calibrate the model using the data generated by RPPA, parameter estimation 

was carried out for the first 60 minutes of the time course. The data was first normalised 

to the housekeeping protein α-tubulin and then the control time point 0 set to a value of 

1 and all subsequent time points divided by this value. Whilst not crucial at this stage 

this would allow for a later direct comparison between the MRC5 and MSC datasets. A 

total number of 10000 runs were then performed using a computational cluster. The 

time length for these runs was variable as they were dependent on how the cluster was 

being used on a given day by multiple users. As the residual sum of squares (RSS) 

outputted by Copasi is dependent on the scale of the data used it was not possible to test 

a “goodness of fit” using a p-value (data with value between 10-100 will produce a 

higher RSS than data with values between 0.1 and 1 however the same level of “fit” will  

be achieved). Therefore whilst this test was performed for all model fits it was not taken 

as a measurement of “goodness of fit”. 

4.3.4 Constant AMPK activation prevents parameterisation of the 

model  

Parameter estimations using the genetic algorithm over 10000 runs were carried out. 

The initial findings for the parameter estimations are shown in figure 4.4. Whilst it 

proved possible to attain expected fits between the experimental data and model 

simulations for ACC_pS79, AKT_pT308, PTEN_pS380_pT382_pT383, PDK1_pS241 

and mTORC1_pS2448 it was not possible to attain reasonable fits to all other 

observables. Given the clear flow of information through the network seen within the 

experimental data it was unlikely that the data itself was at fault for the inability of the 

model to achieve a reasonable fit for the majority of observables. It was therefore 

reasonable to assume that a part of the module topology itself was at fault. As such it 

was necessary to examine each section of the network in order to ascertain where the 

network topology was incorrect. Two areas of particular note were immediately 

identified as possible problem areas within the model. The first section of the model 

topology to undergo testing was AMPK-ACC activation by nutrients. Whilst the 

experimental output was as expected when compared to recent literature reports this 

section of the model was also the least well defined in terms of how AMPK interacts 

with the mTOR network. The second section of the network that was analysed was the 

mTORC1_pS2448 output. Whilst the experimental output for this variable followed the 
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experimental outputs for upstream mTORC1 effecters it differed significantly from its 

downstream effector 4E-BP1_pS65. In addition it is disputed within the literature as to 

whether mTORC1_pS2448 is an acceptable read-out for mTORC1 activation [206]. In 

order to test which of these outputs has the largest effect on model fitting the 

experimental data for each variable was removed from the model and parameter 

estimations carried out. For this round of estimations a total of 2500 parameter 

estimations were performed and the resultant residual sum of squares (RSS) values 

compared. With removal of the ACC_pS79 dataset the model was incapable of fitting 

the remaining variables to the model (RSS = 2758.46) suggesting that this variable is 

crucial to performing parameter estimations on this model (Figure 4.5). In contrast 

whilst removal of the mTOR_pS2448 also decreased the ability of the model to fit the 

remaining variables (RSS = 15.06 compared to original model RSS = 3.52) the effect of 

removing this variable was far less dramatic. It was therefore decided that the AMPK-

ACC section of the network should be altered in order to achieve a closer fit between 

the model simulation and experimental dataset. 
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Figure 4.4: Time course simulations from the model compared to re-stimulation 

data. The model displayed in figure 4.1 was calibrated using the RPPA data shown in figures 4.2 and 

4.3. A parameter estimation consisting of 56 parameters in total was performed using the genetic 

algorithm (10000 runs). The Residual sum of squares between the experimental data (Black +/- SEM) and 

the simulated data (Blue) was calculated as 3.52 with a reasonable fit achieved (P-value = 0.99). 
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Figure 4.5: Parameter time course simulations following the removal of ACC_pS79 

from the MRC5 dataset. The model displayed in figure 4.1 was calibrated using the RPPA data 

shown in figures 4.2 and 4.3. A parameter estimation consisting of 56 parameters in total was performed 

using the genetic algorithm with the experimental data for ACC_pS79 removed from the dataset (2500 

runs). The Residual sum of squares between the experimental data (Black +/- SEM) and the simulated 

data (Blue) was calculated as 2758.46 with no fit achieved (P-value = 0.0001). 

ACC_pS79

Time (Minutes)

0 10 20 30 40 50 60 70

R
e

la
ti
v
e

 L
e

v
e

ls
 (

A
U

)

0

1

2

3

4

5

PI3K_p85_pY467_Y199

Time (Minutes)

0 10 20 30 40 50 60 70

R
e

la
ti
v
e

 L
e

v
e

ls
 (

A
U

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

PTEN_pS380_T382_T383

Time (Minutes)

0 10 20 30 40 50 60 70

R
e

la
ti
v
e

 L
e

v
e

ls
 (

A
U

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

PDK1_pS241

Time (Minutes)

0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 L

e
v
e
ls

 (
A

U
)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

AKT_pT308

Time (Minutes)

0 10 20 30 40 50 60 70

R
e

la
ti
v
e

 L
e

v
e

ls
 (

A
U

)

0

5

10

15

20

25

AKT_pS473

Time (Minutes)

0 10 20 30 40 50 60 70

R
e

la
ti
v
e

 L
e

v
e

ls
 (

A
U

)

0

2

4

6

8

10

12

14

16

18

20

mTORC1_pS2448

Time (Minutes)

0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 L

e
v
e
ls

 (
A

U
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4E-BP1_pS65

Time (Minutes)

0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 L

e
v
e
ls

 (
A

U
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S6_pS235/236

Time (Minutes)

0 10 20 30 40 50 60 70

R
e

la
ti
v
e

 L
e

v
e

ls
 (

A
U

)

0

1

2

3

4

5

6

7

FoxO3a_pS318_S321

Time (Minutes)

0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 L

e
v
e
ls

 (
A

U
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A B 

E D 

C 

G 

F 

I H 

J 



 

88 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Parameter time course simulations following the removal of 

mTORC1_pS2448 from the MRC5 dataset. The model displayed in figure 4.1 was calibrated 

using the RPPA data shown in figures 4.2 and 4.3. A parameter estimation consisting of 56 parameters in 

total was performed using the genetic algorithm with the experimental data for mTORC1_pS2448 

removed from the dataset (2500 runs). The Residual sum of squares between the experimental data (Black 

+/- SEM) and the simulated data (Blue) was calculated as 15.06 with a poor achieved (P-value = 0.058). 
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Following the finding that removing the ACC_pS79 experimental data dramatically 

decreased the overall fit of the model it was decided that further investigation should be 

carried out into how the AMPK-ACC section of the model impacted the model outputs. 

Upon removal of the ACC_pS79 dataset from the parameter estimations the model 

predicts a constant level of ACC_pS79 (figure 4.6 A). This is opposed to the transient 

activation observed in the experimental data. The initial concentration for the 

AMPK_pT172 and ACC_pS79 variables within the model is set to 1 representing a 

baseline activation following serum starvation. As AMPK acts to inhibit PI3K and 

mTORC1 it was hypothesized that this could occur whilst AMPK_pT172 was present at 

only baseline concentrations leading to constant PI3K and mTORC1 inhibition. The 

mechanism for activation of AMPK following amino acid restimulation is still being 

investigated however as there has been reports that following stress induction (such as 

the influx of nutrients following starvation) AMPK localises from the nucleus into the 

cytoplasm. It is feasible therefore that this is what is being observed within our dataset 

with phosphorylation and cytoplasmic localisation following re-stimulation followed by 

localisation to the nucleus as the cell adapts to the nutrient rich environment. It was 

therefore decided that AMPK should be set to decay following phosphorylation leading 

to a transient expression of AMPK_pT172 and ACC_pS79 representing an unknown 

mechanism triggering nuclear localisation. The ACC_pS79 dataset was therefore 

recalibrated with the initial concentration of AMPK_pT172 and ACC_pS79 set to 0. A 

set of 10000 parameter estimations were then carried out with the new topology. As can 

be observed in figure 4.7 with the new topology in place the model is capable of fitting 

all of the dependent variables with the exception of 4E-BP1_pS65 (RSS = 0.15). 
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Figure 4.7: Time course simulations from the model compared to re-stimulation 

data with updated ACC starting concentration. The model displayed in figure 4.1 was 

calibrated using the RPPA data shown in figures 4.2 and 4.3. A parameter estimation consisting of 56 

parameters in total was performed using the genetic algorithm (10000 runs). The residual sum of squares 

between the experimental data (Black +/- SEM) and the simulated data (Blue) was calculated as 0.23 with 

a good fit achieved (P-value = 1). 
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4.3.5 Parameterisation of the 4E-BP1_pS65 observable requires a more 

in depth mTORC1 modelling approach 

In order to test whether the model was capable of fitting the 4E-BP1_pS65 data it was 

proposed that a further set of parameter estimations should be carried out using just the 

4E-BP1_pS65 data. For this experiment the model shown in figure 4.1 was used with a 

total of 2500 parameter estimations were performed using the genetic algorithm. In 

addition all initial reaction parameters were set to a randomized value as in previous 

parameter estimations. As can be seen in figure 4.8 once the model is given only the 4E-

BP1_pS65 data it is possible to fit the experimental observations to the computational 

simulations. As previously discussed it is possible that the output for mTORC1_pS2448 

may not represent a true activation of the mTORC1 complex. Therefore without further 

modelling of mTORC1 and its regulatory reactions it may not be possible to correctly 

model this output. In addition whilst it is impossible to fully analyse the output form the 

P70S6K_pT389 antibody used for the initial RPPA in this section due to non-specific 

binding it should be noted that for both antibodies tested, the output for this protein is 

very similar in behaviour to that of the 4E-BP1 antibody. This allows for the possibility 

that both 4E-BP1 and P70S6K behave in a similar manner following re-stimulation. As 

modelling the in depth regulation of both 4E-BP1 and P70S6K by mTORC1 would 

represent a large scale modelling process it was decided that the output for 4E-

BP1_pS65 should be left as seen in figure 4.7. 
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Figure 4.8: Individual parameter estimation for the 4E-BP1_pS65 observable. The 

model displayed in figure 4.1 was calibrated using the re-simulated RPPA data shown in figure 4.2 for 

4E-BP1_pS65 only. A parameter estimation consisting of 56 parameters in total was performed using the 

genetic algorithm (2500 runs). The Residual sum of squares between the experimental data (Black +/- 

SEM) and the simulated data (Blue) was calculated as 0.0047 with a very good fit achieved (P-value = 1). 

 

Table 4.2: Residual sum of squares value for each model. The residual sum of squares for 

each model fitted to the experimental data for both MRC5 and MSC datasets. The lower the RSS value, 

the closer the fit between the model simulations and the corresponding dataset. Corresponding figure 

number also shown. 

Parameter Estimation Residual Sum of 

Squares 

Figure No. 

MRC5 Genetic Fit 1  3.52 4.4 

MRC5 ACC 2758.46 4.5 

MRC5 mTOR 15.06 4.6 

MRC5 Genetic Fit 2 0.23 4.7 

MRC5 4E-BP1_pS65 0.0047 4.8 

MRC5 Hooke and Jeeves 0.15 4.10 

MSC Genetic Fit  0.16 4.11 

MSC Hooke and Jeeves 0.20 4.11 

MSC AKT_pT308 0.15 4.12 
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4.3.6 Modelling the difference between MRC5 and MSC kinetics in 

response to starvation-restimulation  

Having calibrated the model to an MRC5 dataset it was then necessary to produce a 

second dataset representing the response of MSCs to serum starvation-restimulation.  

This was carried out as previously described for the MRC5 cells. A comparison 

between the MRC5 and MSC outputs are shown in figure 4.9. Having performed RPPA 

experiments using MSCs and compared the outputs to the MRC5 dataset our next 

question was how well our original model could fit the new dataset and to investigate 

which sections of the model differed the most. There were two possible methods which 

could be used to perform this comparison: firstly we could perform a full parameter 

estimation as previously carried out for the MRC5 dataset and then compare the best 

RSS values from each of the models or secondly we could program the calibrated model 

with the MSC dataset and then perform parameter estimations using the already 

calibrated values as the starting values (in the original parameter estimation these values 

were randomised). Whilst the second option was favoured for these experiments as it 

would be a more direct comparison between two parameter sets (as opposed to 

examining at changes between two separate optimization problems) it was felt 

necessary to also carry out the first option. The purpose of this was to obtain an RSS 

value which would serve as a reference point for a ‘best fit’ which could then be 

compared to an RSS value obtained using the previously calibrated model. The 

parameter estimation was carried out as previously described for the MRC5 dataset with 

an RSS value of 0.15943 obtained (Table 4.2) (Figure 4.11).  

Following the calibration shown in figure 4.7 the MRC5 dataset was removed and 

replaced with the MSC dataset. A set of 100 parameter estimations using the Hooke and 

Jeeves algorithm was then performed using the reaction parameter values obtained by 

the best fit to the MRC5 dataset as the initial reaction parameter values. A set of 100 

parameter estimations was also carried out in this way with the MRC5 dataset. 
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Figure 4.9: A comparison of MRC5 vs MSC outputs for SS. A sixty minute time course 

following 24 hour serum starvation for both MRC5 (Blue) and MSC (Red) cells. Cells were re-stimulated 

at 0 hours and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A) 

ACC_pS79, (B) PI3K_p85_pY467_pY199, (C) PTEN_pS380_pT382_pT383, (D) PDK1_pS241,  (E) 

AKT_pT308, (F) AKT_pS473, (G) mTORC1_pS2448, (H) 4E-BP1_pS65, (I) S6_pS235/236 and (J) 

FOXO3A_pS318_pS321. 
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Figure 4.10 Time course simulations from the model compared to re-stimulation 

data utilizing the local Hooke and Jeeves algorithm MRC5 cells. The model displayed in 

figure 4.1 was calibrated using the re-simulated RPPA data shown in figures 4.2 and 4.3. A parameter 

estimation consisting of 56 parameters in total was performed using the local algorithm Hooke and Jeeves 

(100 runs). The Residual sum of squares between the experimental data (Black +/- SEM) and the 

simulated data (Blue) was calculated as 0.15 with a very good fit achieved (P-value = 1). 
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Figure 4.11 Genetic vs Hooke and Jeeves fit for MSC. The model displayed in figure 4.1 

was calibrated using the RPPA data shown in figure 4.9. A parameter estimation consisting of 56 

parameters in total was performed using the genetic algorithm (10000 runs) (Blue) randomising the initial 

parameter values and the Hooke and Jeeves algorithm (100 runs) (Red) using previously obtained 

parameter values form the MRC5 data fit. The Residual sum of squares between the experimental data 

(Black +/- SEM) and the simulated data (Genetic-Blue, Hooke and Jeeves-Red) was calculated as 0.16 

(genetic) and 0.20 (Hooke and Jeeves) with a good fit achieved for both (P-value = 1 (Both)). 
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4.3.7 Fit results 

As predicted subjecting the MRC5 calibrated model to the local algorithm Hooke and 

Jeeves enhanced the fit (0.153) (Figure 4.10). As described above parameter estimations 

were carried out using both Hooke and Jeeves and the genetic algorithm for the MSC 

dataset and the fits compared. The RSS value obtained from the genetic algorithm 

randomised parameter estimation was 0.15943. Whilst the Hooke and Jeeves algorithm 

parameter estimations failed to reach this value (RSS = 0.203398) as can be seen in 

figure 4.11 this set of parameter estimations was capable of fitting certain datasets more 

closely than the genetic algorithm parameter estimation. Interestingly the genetic 

algorithm fit for ACC_pS79 attempted to fit a very transient peak upon restimulation in 

the MSC similar to that in the MRC5 cells however this was not seen in the Hooke and 

Jeeves parameter set (Figure 4.11). Whilst this may be an artefact of this particular 

fitting estimation it is noteworthy that in the MSC dataset the ACC_pS79 peak 

following re-stimulation does not occur as it does in other cell types. For most of these 

estimations there is very little difference between each of the two fitting methods with 

the main exception being AKT_pS473. The genetic algorithm fit was capable of finding 

a fit for both AKT phosphorylation sites however the Hooke and Jeeves algorithm 

provided a different fit for AKT_pT308 which given the variation in the dataset can be 

said to be a reasonable fit. As this part of the model is possibly the most complex it was 

theorised that the model may struggle to fit data for both AKT_pT308 and AKT_pS473. 

Therefore a further Hooke and Jeeves parameter estimation was performed with the 

AKT_pT308 dataset removed. This resulted in the correct fitting of the AKT_pS473 

parameter (figure 4.12).   
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Figure 4.12 AK Parameter time course simulations following the removal of 

AKT_pT308 from the MSC dataset. The model displayed in figure 4.1 was calibrated 

using the re-simulated RPPA data shown in figure 4.9. A parameter estimation 

consisting of 56 parameters in total was performed using the Hooke and Jeeves 

algorithm (100 runs) without the dataset for AKT_pT308. The residual sum of squares 

between the experimental data (Black +/- SEM) and the simulated data (Blue) was 

calculated as 0.15 with a very good fit achieved (P-value = 1). 

 

 

 

 

 

 

 

 

 

 

AKT_pS473

Time (Minutes)

0 10 20 30 40 50 60 70

R
e

la
ti
v
e

 L
e

v
e

l 
(A

U
)

0

2

4

6

8

10

12



 

99 
 

4.4 Image flow cytometry fails to show correlation between DAPI –

FOXO3A and Rheb-LAMP1 

In addition to performing RPPA time course experiments to measure the response of 

both MRC5 and MSC cells to starvation-restimulation it was decided that further 

information could be gained using flow cytometry. In contrast to the results presented in 

chapter 4 an alternative method of flow cytometry was used for these experiments in the 

form of Imagestream flow cytometry. Imagestream flow cytometry differs from 

standard flow cytometry in that in addition to measuring the intensity of fluorophores 

excitation by lasers it also contains cameras which image the cells as they pass through 

the machine. This allows for the analysis of various aspects of protein activation 

including cellular localisation. In the case of the mTOR network there are two proteins 

of particular interest in this study namely FOXO3A and Rheb. Whilst FOXO3A 

phosphorylation was measured by RPPA it is known that the phosphorylation of 

FOXO3a does not always correspond to its inhibition and that phosphorylated FOXO3A 

can enter the nucleus and act as a transcription factor, therefore analysing its cellular 

localisation is the only way of accurately measuring FOXO3A activity. Rheb is a small 

GTPase that localises to the lysosome and acts upstream of mTORC1 and is inhibited 

by the TSC1/2 complex. It was not expected that starvation-restimulation should have 

an effect on Rheb localisation however Zoledronate treatment as discussed in chapter 7 

does affect its localisation and therefore it was felt necessary to measure the reaction of 

Rheb to each treatment preformed. In order to carry out a localisation comparison two 

separate antibodies were also used in this test with 4',6-diamidino-2-phenylindole 

(DAPI) used as a nuclear stain and Lysosomal-associated membrane protein 1 (LAMP-

1) conjugated to Alexa-488 used as a lysosomal stain. In order to account for any 

compensation required (false positive due to overlapping excitation spectrums) between 

each of the fluorophores (Alexa-488, PE and Alexa-647) single repeats stained using 

only one of the antibodies were performed allowing for a compensation matrix to be set 

up. Time course experiments were then carried out following restimulation (Figure 

4.13). For each time point the single cell population was selected and then the images 

obtained for these cells selected in order to obtain only those images in focus (figure 

4.13 A +B). Analysis was them carried out using the nuclear localisation wizard within 

Ideas 6 and the co-localisation wizard in order to identify those cells positive for 

FOXO3A and DAPI (nuclear localisation) and RHEB and LAMP1 (co-localisation) 

(figure 4.13 C + D). Selecting these populations allowed for the analysis of co 
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localisation between the proteins of interest (Pearson’s correlation co-efficient) (figure 

4.13 E). A representative image of untreated cells is shown in figure 4.13. It did not 

prove possible in this analysis to obtain the number of cells required to analyse the 

localisation of interest (Pearson’s correlation co-efficient) (figure 4.14). However it can 

be inferred from the data obtained that there is no correlation between either FOXO3A 

and DAPI or between Rheb and LAMP1 throughout the time course (Table 4.3). 
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Figure 4.13: Image flow cytometry fails to show correlation between DAPI –

FOXO3A and Rheb-LAMP1. Representative image displaying image flow cytometry analysis of 

untreated cells prior to serum starvation. (A) A single cell population was selected, (B) followed by the 

removal of images that were not in focus. (C) Nuclear localisation correlation was analysed for FOXO3A 

and DAPI,  in addition to (D) correlation analysis of RHEB and LAMP1. (E) Population analysis 

displaying correlation between DAPI-FOXO3A and Rheb-LAMP1. (F) Representative image of in focus 

single cell population for 0 hour untreated cells. 

Table 4.3: Image flow cytometry time course correlation. Correlation values for each time 

point assayed for FOXO3A-DAPI (FD) and Rheb-LAMP1 (RL) (Pearson’s correlation co-efficient; all 

values are non-significant P>0.05). 

 

 

 

 

 

Time Point FOXO3A-DAPI 

Pearson’s correlation 

co-efficient  

Rheb-LAMP1  

Pearson’s correlation 

co-efficient  

P-value 

FD/RL 

0 hours -0.01483 0.6018 0.99/0.59 

30 minutes starved 0.439 0.5776 0.67/0.61 

60 minutes starved 0 0.05805 1/0.97 

24 hours starved -0.1342 0.671 0.91/0.53 

5 minutes restimulated -0.1014 0.6737 0.94/0.53 

15 minutes restimulated -0.08476 0.6458 0.95/0.55 

30 minutes restimulated -0.101 0.674 0.94/0.53 

60 minutes restimulated 0 0.6302 1/0.57 
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Figure 4.14: Image flow cytometry time course correlation. Population analysis 

displaying correlation between DAPI-FOXO3A and Rheb-LAMP1, (Pearson’s correlation co-efficient) 

(A) 0 hour untreated cells, (B) 30 minutes serum starved cells, (C) 60 minutes serum starved cells, (D) 24 

hour serum starved cells, (E) 5 minutes re-stimulated cells, (F) 15 minutes re-stimulated cells, (G) 30 

minutes re-stimulated cells, (H) 60 minutes re-stimulated cells. 

 

 

 

 

 

G 

H 

A 

B 

E 

D 

C 

F 



 

104 
 

4.5 Discussion 

The aims of the work presented here were to define a dynamic model capable of 

representing the mTOR networks response to starvation-restimulation. To calibrate this 

model in both MRC5 and MSCs using reverse phase protein arrays. To use imagestream 

flow cytometry to analyse the cellular localisation of key proteins within the mTOR 

network. And to identify how MRC5 fibroblasts and MSCs differ in their response to 

starvation-restimulation. Through the computational dynamic modelling approach 

described above this has been achieved. The model presented above proved capable of 

simulating the response of both MRC5 and MSCs in response to restimulation 

following a period of serum starvation.  

Reverse phase protein arrays were used throughout this work and proved to be an 

excellent alternative to western blotting, producing high quality calibration datasets for 

both MRC5 and MSCs. Upon expansion of the work carried out in the previous chapter 

it proved possible to measure a total of eighteen proteins within the mTOR network and 

upon inspection of the data it was possible to follow the flow of information through the 

network with related proteins displaying similar kinetic profiles. As was discussed 

previously one of the main problems with RPPA is the availability of specific antibodies 

to proteins. However due to the amount of research carried out on the mTOR network 

this was not a hindrance to this work as there are large number of extremely specific 

antibodies available covering large sections of the mTOR network. There are a couple 

of proteins within the network that could not be analysed, specifically the TSC proteins, 

P70S6K and AMPK. Given their importance to the network in addition to validating the 

results shown above using western blotting it would be beneficial to analyse these 

proteins and include them in future parameter estimations. 

Following starvation-restimulation there was an increase in the phosphorylation of 

ACC_pS79 in MRC5 cells that was not present in the corresponding MSC dataset. The 

increase in phosphorylation in ACC_pS79 in MRC5 cells corresponds directly with 

previous data investigating the response of AMPK activity following starvation-

restimulation [172]. Whilst the model presented above proved capable of fitting this 

activation it was incapable of fitting the large section of the remaining observables. The 

removal of the baseline activation of this observable led to the ability of the model to fit 

all of the remaining observables bar the 4E-BP1_pS65 observable. This finding 

suggests that there are mechanisms governing the activity of the AMPK-ACC axis that 



 

105 
 

are absent from our model. It has been shown that the AMPK cellular localisation is 

dependent upon a number of different factors including environmental stress [207, 208]. 

It is therefore feasible that the increase in phosphorylation observed in ACC_pS79 is 

dependent upon the cellular localisation of active AMPK_pT172 to the cytoplasm upon 

restimulation following serum starvation. To test this theory further studies would be 

required investigating the following. Firstly confirmation western blots should be 

carried out to ascertain if the kinetics observed using RPPA is representative of the 

response of the mTOR network. As previously mentioned the kinetic profile of 

ACC_pS79 follows the same profile previously observed for AMPK following 

restimulation. In addition to this comparison of the kinetic profiles for both 

AKT_pT308 and AKT_pS473 reveals similar activation profiles following 

restimulation to previously published observations [172]. Secondly analysis of AMPK 

cellular localisation should be performed, this could be done as above using 

imagestream flow cytometry or other techniques such as nuclear fractionation.  

A comparison of the responses of MRC5 fibroblasts to MSCs showed that there is a 

significant difference between the response of ACC_pS79 to restimulation between the 

cell types. Whilst the response observed in MRC5 cells is similar to the profile of 

AMPK observed in previous observations this is not the case for the MSCs with no 

overall change in signalling observed. An explanation for this is that AMPK is a key 

protein in MSC differentiation and is therefore placed under more stringent control in 

the MSCs compared to the differentiated MRC5 cells. Indeed recent research has shown 

that AMPK can act to bypass the inhibition of mTORC1 activity by caloric restriction in 

intestinal stem cells thus protecting these stem cells from the effects of caloric 

restriction [209]. As this study was carried out in mice caution needs to be used when 

applying the results to the in vitro work shown here. However it would be of interest to 

investigate if a similar mechanism exists in MSCs which could possibly explain why 

there is no ACC_pS79 peak observed in the MSC dataset. 

Whilst imagestream flow cytometry has shown itself to be an extremely powerful 

analysis tool it did not prove possible in this experiment to obtain a time course that 

could be used in the calibration of a dynamic model. In order to be confident of making 

predictions regarding the localisation of a cellular population with this technology it is 

necessary that the cellular population analysed following the removal of out of focus 

images and the selection of single cell population number over 500 cells [191]. This was 
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not the case here with population sizes varying between 300-500 cells. It was therefore 

not possible to analyse the co-localisation of either FOXO3A and DAPI or Rheb and 

LAMP1. 

Overall the aims of this work have been met with a dynamic model capable of 

reproducing the response of both MRC5 cells and MSCs to serum starvation 

restimulation. RPPA has proved to be a reliable and efficient methodology for the 

production of calibration time courses required for this work however further work is 

required to validate the outputs observed above. The dynamics of the mTOR network 

observed could be simulated using the model with the assumption that AMPK baseline 

activity does not affect mTOR signalling. In addition it proved possible to use a MRC5 

calibrated model to reproduce kinetics observed in MSCs. However this analysis still 

attempted to fit a transient peak to the ACC_PS79 observable suggesting that the 

response of this observable differs between the two cell types examined and should be 

investigated further. 
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5. A dynamical model of the mTOR signalling 

network reveals the kinetics of rapamycin and re-

stimulation in MRC5 fibroblasts and human 

bone marrow stem cells 
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5.1 Introduction 

Rapamycin is a macrocyclic antibiotic isolated from the bacteria Streptomyces 

hygroscopicus and discovered in the soil on Easter Island in 1975 [210, 211]. Despite 

initially being employed as an immunosuppressant Rapamycin also displayed anti-

growth properties and was therefore analysed as an anti-cancer compound [212, 213]. 

Following the discovery that Rapamycin inhibited growth in multiple cancer cell lines 

further research subsequently discovered that Rapamycin inhibited cell growth across 

multiple model organisms including Drosophila and C. elegans in addition to human 

cell lines [213-215]. Rapamycin targets a complex of proteins which differs in its make 

up across species however its core proteins are highly conserved. This complex became 

known as the target of Rapamycin complex (TORC) with mTORC being the 

mammalian set of target proteins. It is from these initial discoveries that the field of 

mTOR research developed with the pathway now considered one of the key pathways in 

molecular biology. As such since the discovery of Rapamycin and its target complex, 

Rapamycin and its homologues have been of interest in the field of ageing research.  

The precise mechanism of action for Rapamycin has remained elusive despite extensive 

research utilizing the compound. Rapamycin is able to quickly penetrate the plasma 

membrane of cells and bind to the FK506 binding protein (FKBP12) [216]. This leads 

to a gain of function complex that is capable of binding the mTOR complex 

1(mTORC1) leading to its inhibition. As previously discussed in section 1.3, mTOR is 

present in two distinct complexes mTORC1 and mTORC2. Whilst mTORC1 is 

Rapamycin sensitive the second TOR complex mTORC2 is classed as Rapamycin 

insensitive. However, in certain cell types chronic Rapamycin inhibition leads to 

mTORC2 inhibition [72]. Again the mechanism for this inhibition has not been 

established but it is believed to be due to the sequestering of unbound mTOR by the 

Rapamycin FKBP12 complex preventing further formation of the mTORC2 complex. 

The insolubility and poor pharmokinetics of Rapamycin has led to the development of 

other Rapamycin derived compounds termed Rapalogs which include, Temsirolimus, 

Deforolimus and Everolimus [217-219].  

The ability of Rapamycin to increase lifespan in mammals was first reported in 2009 

when Harrison et al showed that Rapamycin was capable of extending the lifespan of 

mice regardless of sex [220-222]. They also showed that the lifespan extension did not 

differ between early and late life treatment. Lifespan extension following treatment with 
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Rapamycin has also been observed in Drosophila melanogaster [223]. Drosophila flies 

treated with Rapamycin display a lifespan extension that is directly comparable to the 

lifespan extension observed through caloric restriction and anti-ageing mutants.  

Rapamycin is currently one of the best characterised drugs in the study of lifespan 

extension and ageing and has also being implicated as having a positive impact in 

osteoporosis. Rapamycin was therefore included in this study as a reference drug with 

which to compare the response of both MRC5 and mesenchymal stem cells (MSC) cell 

types. In addition, Rapamycin was found not to exhibit the same beneficial effect on 

MSCs as Zoledronate [82]. 

The computational model described in this section builds on that described in chapter 5. 

As described previously MRC5 cells are used as a control cell line with MSCs also used 

to determine the kinetic effects that Rapamycin exerts on the mTOR network. 

 

5.2 Aims 

The aim was to examine the effect of re-stimulation following Rapamycin treatment on 

the mTOR network. We aim to define using a computational dynamic model how the 

mTOR network responds in MRC5 fibroblasts and how the mTOR network response 

differs in human mesenchymal stem cells.  
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5.3 Results 

5.3.1 Development of a rapamycin dynamic network model 

The model used throughout this section is described in section 4.3.1 and displayed in 

figure 5.1 (all reactions can be found in appendix B). As described previously the amino 

acid/nutrient activation of the model will remain as before with a constant level of 

nutrients available to the cells. Nutrients activate the model in three separate points with 

PI3K, mTORC1 and AMPK all being activated by nutrient inputs. As before PI3K 

activation leads to the activation of PDK1 and subsequent activation of AKT on 

threonine 308. This in turn phosphorylates and inhibits the TSC1/2 complex leading to 

activation of Rheb(GTP). Rheb in its GTP bound form is then free to activate the 

mTORC1 complex leading to the activation of the downstream effectors 

P70S6K_pT389, S6_pS235/236 and 4E-BP1_pS65 with a P70S6K_pT389 feedback 

loop inhibiting further activation of PI3K by nutrient signalling. In addition, an 

additional species was added to the model to represent the interaction of mTOR with 

Rapamycin which acts to destabilise the mTORC1 complex. This was represented by a 

single mass action reaction in which unphosphorylated mTORC1 is converted to mTOR 

by Rapamycin. A reverse mass action reaction was also included with mTOR being 

converted to mTORC1. The treatment time with Rapamycin in this section was 24 

hours. As chronic Rapamycin inhibition is normally classed as 3 days is was decided 

that the mTORC2 branch of the model should not be altered with regards to Rapamycin 

inhibition and as such the mTORC2 section of the model is as described in section 

4.3.1. 
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Figure 5.1: The mTOR network. A SBGN network diagram displaying the effect of amino acids 

on the mTOR network. Asterisks mark phospho proteins measured for starvation-restimulation RPPA 

experiments whilst hashtags mark proteins assayed by imagestream flow cytometry.
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5.3.2 Collection of MRC5 calibration dataset 

As with the previous chapter once the topology of the model was established a 

calibration dataset was collected using RPPA. In this case a 24 hour time course was 

carried out as described in section 2.1.15. As with the starvation re-stimulation dataset 

the time course was designed to allow for the capturing of the immediate dynamics of 

the mTOR network following removal of Rapamycin. A total of 17 proteins were 

analysed consisting of 9 phosphoproteins, 8 total proteins and the house keeping protein 

α-tubulin (Table 5.1). As each of the proteins being measured had been analysed 

previously it was decided to fully utilise RPPA’s ability to produce time course data on 

a large scale with all of the antibodies analysed at the same time as opposed to the 

smaller separate runs carried out for the starvation re-stimulation dataset. As can be seen 

in figure 5.2 there was very clear response observed within the mTOR network. In 

contrast to starvation re-stimulation there is no AMPK/ACC peak following 

restimulation. This appears to support recent work showing that the AMPK activation 

peak is directly related to amino acid availability. Following Rapamycin withdrawal 

ACC_pS79 decreases rapidly over the first 5 minutes of the time course and remains 

low throughout (Figure 5.2 A). The response of PI3K p85_pY467_pY199, 

PTEN_pS380_pT382_pT383 and AKT_pT308 all follow the same dynamics with an 

initial decrease over the first 3 minutes followed by an increase in phosphorylation at 5 

minutes (Figure 5.2 B, C, E). Phosphorylation levels then decrease back to initial levels 

at 10 minutes followed by a second increase on 20 minutes post re-stimulation. 

Phosphorylation decrease between 20 and 30 minutes with an increase in activity seen 

between 30 and 60 minutes. Whilst PDK1_pS241, mTORC1_pS2448 and 4E-

BP1_pS65 follow the same dynamics as the three proteins mentioned above for 5 

minutes onwards, they differ in their initial response with an increase in signalling 

occurring immediately following re-stimulation followed by a decrease at the 3 minute 

time point (Figure 5.2 D, G, H). The response of AKT_pS473 following Rapamycin 

withdrawal is very similar to the response of AKT_pT308 with an initial decrease 

followed by an increase in phosphorylation at the 5 minute time point. However it 

differs in that this increase remains lower than the initial 0 time point and that there is 

no increase in signalling seen at the 60 minute time point (Figure 5.2 F). Following 

Rapamycin withdrawal there is a very clear dynamic displayed by the FOXO3a 

phosphorylation site measured with an increase in phosphorylation occurring up to the 3 

minute time point at which point phosphorylation remains consistent (Figure 5.2 I). 
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Figure 5.2: Measuring the Kinetics of the mTOR Network in MRC5 Cells. A sixty 

minute time course following 24 hour Rapamycin treatment (10nM). Cells were re-stimulated at 0 hours 

and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A) ACC_pS79, 

(B) PI3K_P85_pY467_Y199, (C) PTEN_pS380_T382_T383, (D) PDK1_pS241, (E) AKT_pT308,  (F) 

AKT_pS473, (G) mTORC1_pS2448, (H) 4E-BP1_pS65 and (I) FOXO3A_pS318_S321. 
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Table 5.1: Reverse Phase Protein Array Antibodies. A list of all antibodies assayed during 

starvation-restimulation experiments 

 

 

 

 

 

 

 

 

 

 

 

Antibody Antibody Source 

ACC AKT_pS473 Cell Signalling Technology 

ACC_pS79 mTOR Cell Signalling Technology 

PI3K p85_pY467_Y199,  mTOR_pS2448 Cell Signalling Technology 

PTEN 4E-BP1 Cell Signalling Technology 

PTEN_pS380_T382_T383  4E-BP1_pS65 Cell Signalling Technology 

PDK FOXO3A Cell Signalling Technology 

PDK1_pS241 FOXO3A_pS318_S321 Cell Signalling Technology 

AKT AKT_pT308 Cell Signalling Technology 

Α-tubulin   Cell Signalling Technology 
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5.3.3 Parameter estimation 

As with the starvation re-stimulation model, following generation of a calibration 

dataset using RPPA, parameter estimations were carried out for the first 60 minutes of 

the timecourse. The data was first normalised to the housekeeping protein α-tubulin and 

then the control time point 0 set to a value of 1 and all subsequent time points divided 

by this value. This would allow for a direct comparison between the MRC5 and MSC 

datasets. As with the previous model, a total number of 10000 runs were then performed 

using a computational cluster with the genetic algorithm used as described in 

section2.2.2. The time length for these runs was variable as they were dependent on 

how the cluster was being used on a given day by multiple users. As described in 

section 4.3.3 the residual sum of squares (RSS) value was used to determine a 

“goodness of fit” due to the scale of the data being used. 

5.3.4 Restimulation following rapamycin treatment is dependent upon 

P70S6K negative feedback 

As in the previous chapter, 10000 parameter estimations were performed using the 

Genetic algorithm and the results analysed (figure 5.3). As can be observed in figure 5.3 

acceptable fits were achieved for the observables, ACC_pS79, AKT_pS473 and 

FOXO3A_pS318_pS321. For each of the other observable read outs the model failed to 

fit the data. For this dataset there is no clear flow of information through the network as 

was observed in the previous chapter. Instead there is a clear break between the 

downstream and upstream read outs. This is likely due to the fact that Rapamycin 

targets the mTORC1 complex only within the network as opposed to the network wide 

effect observed in serum starvation. For the purposes of this model it can therefore be 

assumed that the upstream regulators PI3K and PTEN may be in an active and inactive 

state respectively at the 0 hour time point whereas the downstream effectors mTORC1 

and 4E-BP1 can be said to be in a downregulated state. As such one possible 

explanation for the lack of fit is the simplified S6K negative feedback loop within the 

model topology. In the current iteration upon phosphorylation S6K acts to 

dephosphorylate PI3K directly with IRS1 not included within the model. To address this 

it was decided to alter the model topology to include IRS1 and its PI3K activation. The 

new topology is summarised in Figure 5.4. 
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Figure 5.3: Time course simulations from the model compared to re-stimulation 

data. The model displayed in figure 5.1 was calibrated using the RPPA data shown in figures 5.2. A 

parameter estimation consisting of 59 parameters in total was performed using the genetic algorithm 

(10000 runs). The Residual sum of squares between the experimental data (Black +/- SEM) and the 

simulated data (Blue) was calculated as 0.65. 
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Figure 5.4: Restructured PI3K-IRS1 topology. A SBGN dynamic model diagram displaying 

the new PI3K-IRS1 network topology. All other reactions remain as seen in figure 5.1. 
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5.3.5 Restructured S6K feedback loop results in an improved fit  

With the new topology established a further parameter estimation run was performed as 

above. As can be seen in figure 5.5 although there is a decrease in the RSS value with 

the IRS1-PI3K topology in place the decrease is not significant (0.642177 compared to 

0.657493)(figure 5.5). Due to the increase in the number of reactions within the model 

however it was decided that the Akaike information criterion (AIC) should be calculated 

for both models. The AIC method takes into account model complexity and is a more 

suitable comparison method between two different models to the same dataset. Upon 

calculation of the AIC it was clear that whilst there is no difference between the old and 

new topology when comparing RSS scores there is a clear difference between the two 

topologies when the AIC scores are compared (figure 5.6). As the new topology 

provided a lower AIC score it was decided that from this point this topology would be 

used.  
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Figure 5.5: Time course simulations from the model compared to re-stimulation 

data using updated IRS1-PI3K topology. The model displayed in figure 5.1 was calibrated 

using the RPPA data shown in figures 5.2. A parameter estimation consisting of 59 parameters in total 

was performed using the genetic algorithm (10000 runs). The Residual sum of squares between the 

experimental data (Black +/- SEM) and the simulated data (Blue) was calculated as 0.64. 
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Figure 5.6: Akaike information criterion (AIC) score vs RSS. The AIC score (A) and 

RSS values (B) were calculated for all 10000 parameter sets and plotted as both boxplots and histograms 

for the original topology (Green) and the updated IRS1-PI3K topology (Blue).  
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5.3.6 The removal of PDK1 dataset provides the closest fit between 

experimental and theoretical outputs 

Although the AIC score for the new topology is lower than the old network topology the 

model fit obtained was still not acceptable. As such it was decided that as with the 

previous chapter datasets should be removed and the subsequent model fit analysed to 

assess which dependent variable has the most impact on model fitting. Following 

analysis of the data it was decided that the following datasets should each be removed 

from the model, ACC_pS79, PDK1_pS241 and mTORC1_pS2448. The reasoning 

behind this decision was as follows: 1) For ACC_pS79 very little is known regarding 

how AMPK is affected following Rapamycin withdrawal and whilst the model has been 

designed based on the current understanding of the mTOR network the majority of that 

knowledge is based upon serum starvation data. As such the impact and role of AMPK 

and ACC within the model may very well differ between Rapamycin withdrawal and 

serum starvation. Following withdrawal of the ACC_pS79 dataset no difference was 

observed with regards to the RSS score of the models with and without ACC_pS79 

(0.642177 and 0.632724). This suggests that following Rapamycin withdrawal the 

AMPK-ACC axis has far less impact on the relevant kinetics of the mTOR network 

(figure 5.7).  2) The second dependant variable to be removed from the parameter 

estimation datasets was that of PDK1_pS241. As with ACC_pS79 there is very little 

research into the impact of Rapamycin treatment on PDK1 activation. Indeed whilst it is 

known that PDK1 activation and phosphorylation on serine 241 is dependent upon an 

autophosphorylation loop, the mechanism for PDK1 activation and its relationship to 

mTOR activation remains elusive. Upon removal of the PDK1 dataset from the model 

there is a clear decrease in the RSS value (0.326863 compared to 0.642177) (figure 5.8). 

3) The third dependent variable that was removed from the dataset was 

mTORC1_pS2448. As discussed in the previous chapter it is largely agreed that the 

phosphorylation site on serine 2448 on the mTORC1 complex does not always 

correspond to mTORC1 activation. As such it was thought prudent to remove this 

dataset in order to determine whether or not with an absence of this mTORC1 dataset 

the model would be able to correctly predict the action of the S6K negative feedback 

loop. As can be seen in figure 5.9 although the removal of mTORC1_pS2448 from the 

dataset decreased the RSS value to a similar degree as the removal of PDK1 (0.341805 

and 0.326863), the model was unable to correctly predict the response of PI3K. 
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Whilst the best overall fit for this dataset is obtained by removing PDK1_pS241 there 

was very little difference in terms of RSS values between this dataset and the removal 

of mTORC1_pS2448. Indeed both sets of experimental data display inconsistent 

behaviour when compared to their upstream or downstream regulators and effectors. For 

the purposes of this study however as the removal of PDK1_pS241 provided the best fit 

between experimental and theoretical data it was decided that the model should be taken 

forward with this dataset removed for subsequent parameter estimations. 

 

5.3.7 Parameterisation of the PTEN 4E-BP1_activity requires a more 

in depth mTORC1 modelling approach 

As in section 4.3.5 it was decided that further investigation should be carried out 

regarding the models inability to fit both the PTEN_pS380_T382_T382 and 4E-

BP1_pS65 outputs. As in the previous chapter it was decided that parameter estimations 

should be carried out using only the data of particular interest. In this case the model 

was parameterised as above with 500 parameter estimations being carried out as these 

were exploratory parameter estimations. As can be seen in figure 5.10 when the model 

is presented with only the single datasets it is capable of finding a fit for both 

observables. The issues surrounding 4E-BP1_pS65 fitting have been discussed 

previously in section 4.3.5 and will not be covered here. PTEN activity however 

provides a different problem to fitting 4E-BP1. Whereas the relationship between 4E-

BP1 and the mTOR network is well defined the relationship between PTEN and the 

mTOR network is less clear. It is known that dephosphorylation of PTEN leads to the 

inhibition of PI3K activation however what drives PTEN dephosphorylation and how 

this relates to Rapamycin is very poorly understood. It would therefore be necessary to 

investigate this mechanism in further detail in order to correctly model this output. 
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Figure 5.7: Parameter time course simulations following the removal of ACC_pS79 

from the MRC5 dataset. The model displayed in figure 5.1 was calibrated using the RPPA data 

shown in figures 5.2. A parameter estimation consisting of 59 parameters in total was performed using the 

genetic algorithm with the experimental data for ACC_pS79 removed from the dataset (1000 runs). The 

Residual sum of squares between the experimental data (Black +/- SEM) and the simulated data (Blue) 

was calculated as 0.63. 

 

 

 

 

PI3K p85_pY467_Y199

Time (Minutes)

0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 L

e
v
e
l 
(A

U
)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

PTEN_pS380_T382_T383

Time (Minutes)

0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 L

e
v
e
l 
(A

U
)

0.6

0.8

1.0

1.2

1.4

1.6

PDK1_pS241

Time (Minutes)

0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 L

e
v
e
l 
(A

U
)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

AKT_pT308

Time (Minutes)

0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 L

e
v
e
l 
(A

U
)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

AKT_pS473

Time (Minutes)

0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 L

e
v
e
l 
(A

U
)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

mTORC1_pS2448

Time (Minutes)

0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 L

e
v
e
l 
(A

U
)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

4E-BP1_pS65

Time (Minutes)

0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 L

e
v
e
l 
(A

U
)

0.6

0.8

1.0

1.2

1.4

1.6

FoxO3a_pS318_S321

Time (Minutes)

0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 L

e
v
e
l 
(A

U
)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

A B 

E D 

C 

G 

F 

H 



 

125 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Parameter time course simulations following the removal of 

PDK1_pS241 from the MRC5 dataset. The model displayed in figure 5.1 was calibrated using 

the RPPA data shown in figures 5.2. A parameter estimation consisting of 59 parameters in total was 

performed using the genetic algorithm with the experimental data for PDK1_pS241 removed from the 

dataset (1000 runs). The Residual sum of squares between the experimental data (Black +/- SEM) and the 

simulated data (Blue) was calculated as 0.32.  

. 
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Figure 5.9: Parameter time course simulations following the removal of 

mTORC1_pS2448 from the MRC5 dataset. The model displayed in figure 5.1 was calibrated 

using the RPPA data shown in figures 5.2. A parameter estimation consisting of 59 parameters in total 

was performed using the genetic algorithm with the experimental data for mTORC1_pS2448 removed 

from the dataset (1000 runs). The Residual sum of squares between the experimental data (Black +/- 

SEM) and the simulated data (Blue) was calculated as 0.34. 
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Figure 5.10: Individual parameter estimations for the PTEN_pS380_T382_T383 

and 4E-BP1_pS65 observables. The model displayed in figure 5.1 was calibrated using the re-

simulated RPPA data shown in figure 5.2 for both PTEN_pS380_T382_T382 (A) and 4E-BP1_pS65 (B)  

individually. A parameter estimation consisting of 59 parameters in total was performed using the genetic 

algorithm (1000 runs). The Residual sum of squares between the experimental data (Black +/- SEM) and 

the simulated data (Blue) was calculated as 0.06 (A) and 0.03 (B). 

Table 5.2: Residual sum of squares value for each model. The residual sum of squares for 

each model fitted to the experimental data for both MRC5 and MSC datasets. The lower the RSS value, 

the closer the fit between the model simulations and the corresponding dataset. Corresponding figure 

number also shown. 

Parameter Estimation Residual Sum of 

Squares 

Figure No. 

MRC5 Original Topology  0.65 5.3 

MRC5 New Topology 0.64 5.5 

MRC5 ACC 0.63 5.7 

MRC5 mTOR 0.34 5.8 

MRC5 PDK1 

MRC5 PTEN  

MRC5 4E-BP1 

0.32  

0.06 

0.03 

5.8 

5.10 

5.10 

MRC5 Hooke and Jeeves 0.30 5.13 

MSC Genetic Fit  0.35 5.14 

MSC Hooke and Jeeves 0.99 5.14 
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5.3.8 Modelling the difference between MRC5 and MSC kinetics in 

response to rapamycin-restimulation 

Having calibrated the model to the MRC5 dataset a second time course dataset was 

created for the MSCs. This time course was carried out using the same time points as in 

the MRC5 dataset and is shown in figure 5.11 with a comparison between MRC5 and 

MSC response to Rapamycin withdrawal shown in figure 5.12. In comparison to the 

MRC5 dataset the MSC dataset is highly consistent with a clear flow of information 

through the network. The exception to this was for PDK1_pS241, where the profile 

shows an increase in activation following 10 minutes restimulation followed by a 

decrease in signalling between 10-30 minutes prior to further increase in signalling at 60 

minutes. The inconsistency of PDK1 behaviour in response to Rapamycin withdrawal 

provides further evidence that there are mechanisms governing its activation that have 

not currently included with regards to Rapamycin treatment. For the purposes of 

calibration with the MSC dataset with the Genetic algorithm it was decided that the 

PDK1 dataset should be included in the parameter estimation and the output analysed as 

carried out above in the MRC5 dataset.  

As in the previous chapter a comparison testing the ability of the calibrated MRC5 

model to fit the MSC data was carried out. The MRC5 dataset was removed and 

replaced with the MSC dataset. A set of 100 parameter estimations using the Hooke and 

Jeeves algorithm was then performed using the reaction parameter values obtained by 

the best fit to the MRC5 dataset as the initial reaction parameter values. In addition a set 

of 100 parameter estimations was also carried out as above for the MRC5 dataset. 
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Figure 5.11 : Measuring the Kinetics of the mTOR Network in MSC Cells. A sixty 

minute time course following 24 hour Rapamycin treatment (10nM). Cells were re-stimulated at 0 hours 

and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A) ACC_pS79, 

(B) PI3K_P85_pY467_Y199, (C) PTEN_pS380_T382_T383, (D) PDK1_pS241, (E) AKT_pT308,  (F) 

AKT_pS473, (G) mTORC1_pS2448, (H) 4E-BP1_pS65, (I) FOXO3A_pS318_S321 and (J) 

S6_pS235/236. 
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Figure 5.12: A comparison of MRC5 vs MSC outputs following Rapamycin 

withdrawal. A sixty minute time course following 24 hour Rapamycin treatment for both MRC5 

(Blue) and MSC (Red) cells. Cells were re-stimulated at 0 hours and relative fluorescent intensity 

measured at each time point (n=3) (Mean +/- SEM). (A) ACC_pS79, (B) PI3K_p85_pY467_pY199, (C) 

PTEN_pS380_pT382_pT383, (D) PDK1_pS241,  (E) AKT_pT308, (F) AKT_pS473, (G) 

mTORC1_pS2448, (H) 4E-BP1_pS65 and  (I) FOXO3A_pS318_pS321.  
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5.3.9 Parameter estimation results MSC 

Following calibration with the genetic algorithm the MRC5 model was subjected to 100 

runs using the Hooke and Jeeves algorithm (figure 5.13). This resulted in a slight 

improvement in the ability of the model to fit the data provided (RSS=0.30 compared to 

0.32). This improvement of 0.02 was significantly less than that achieved in the 

previous chapter using the starvation restimulation dataset (0.08). Upon comparison 

between the MSC datasets parameterised using the Hooke and Jeeves and genetic 

algorithm it became apparent that there was a large difference between the ability of the 

models to fit the data (figure 5.14). The target RSS obtained using the genetic algorithm 

for the MSC dataset was 0.35, whilst this value is larger than value of 0.32 obtained 

using the MRC5 dataset, there was also a larger number of variables measured (9 

compared to 8). As can be seen in figure 5.14 the genetic algorithm was capable of 

fitting 7 out of 9 of the variables measured with PDK1_pS241 and 

FOXO3A_pS318_pS321 failing to be fitted (figure 5.14 D + I). The Hooke and Jeeves 

algorithm using the previously calibrated MRC5 model was capable of fitting 4 out of 

the 9 variables measured. As with the genetic algorithm fit it was unable to fit the PDK1 

dataset. This provides further evidence that Rapamycin treatment and withdrawal results 

in alterations to PDK1 regulation (figure 5.14 D). The Hooke and Jeeves model also 

failed to provide a fit to either AKT phosphorylation sites (figure 5.14 E + F). 
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Figure 5.13: Time course simulations from the model compared to re-stimulation data 

utilizing the local Hooke and Jeeves algorithm. The model displayed in figure 5.1 was calibrated 

using the re-simulated RPPA data shown in figures 5.2 A parameter estimation consisting of 59 

parameters in total was performed using the local algorithm Hooke and Jeeves (100 runs). The Residual 

sum of squares between the experimental data (Black +/- SEM) and the simulated data (Blue) was 

calculated as 0.30. 
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Figure 5.14: Genetic vs Hooke and Jeeves fit for MSC. The model displayed in figure 5.1 

was calibrated using the RPPA data shown in figure 5.11. A parameter estimation consisting of 59 

parameters in total was performed using the genetic algorithm (10000 runs) (Blue) randomising the initial 

parameter values and the Hooke and Jeeves algorithm (100 runs) (Red) using previously obtained 

parameter values form the MRC5 data fit. The Residual sum of squares between the experimental data 

(Black +/- SEM) and the simulated data (Genetic-Blue, Hooke and Jeeves-Red) was calculated as 0.35 

(genetic) and 0.99 (Hooke and Jeeves). 
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5.3.10 Starvation-restimulation and rapamycin withdrawal lead to 

similar responses in MSC but not MRC5 cells 

Following serum starvation-restimulation there is a clear kinetic response by the mTOR 

network as can be seen in figure 5.15 for both MRC5 and MSC cells. However 

following Rapamycin treatment and withdrawal MRC5 cells show no clear dynamic 

response (figure 5.15 A-I). In comparison, MSCs display a very clear dynamic response 

following Rapamycin withdrawal (figure 5.15 J-R). In terms of the response to the 

mTOR network this difference also holds true with very little similarity observed 

between the two treatment responses in MRC5 cells. The MSCs however display 

similar behaviour to both treatments in a number of variables measured. Of note the 

response of ACC_pS79 (figure 5.15 A) displays an almost identical profile. Across all 

of the variables measured in can be concluded that 7 profiles display similar kinetic 

profiles and only the two AKT phosphorylation sites display significantly different 

kinetics. In both cases this appears to be due to a difference in the scale of the response 

by the variable in question. Following Rapamycin withdrawal there is a more significant 

increase in the level of AKT_pT308 phosphorylation compared to starvation-

restimulation (figure 5.15 N). The opposite can said for the AKT_pS473 

phosphorylation site with a far greater increase observed in response to starvation-

restimulation (figure 5.15 O).  
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Figure 5.15  A comparison of mTOR kinetics following Rapamycin withdrawal 

and starvation-restimulation in MRC5 and MSC cells. A sixty minute time course 

following 24 hour Zoledronate treatment (Blue) and starvation-restimulation (Red). Cells were re-

stimulated at 0 hours and relative fluorescent intensity measured at each time point (n=3) (Mean +/- 

SEM) in MRC5 cells (A) ACC_pS79, (B) PI3K_p85_pY467_pY199, (C) PTEN_pS380_pT382_pT383, 

(D) PDK1_pS241,  (E) AKT_pT308, (F) AKT_pS473, (G) mTORC1_pS2448, (H) 4E-BP1_pS65 and (I) 

FOXO3A_pS318_pS321. In MSCs (J) ACC_pS79, (K) PI3K_p85_pY467_pY199, (L) 

PTEN_pS380_pT382_pT383, (M) PDK1_pS241,  (N) AKT_pT308, (O) AKT_pS473, (P) 

mTORC1_pS2448, (Q) 4E-BP1_pS65 and  (R) FOXO3A_pS318_pS321. (Previous page). 
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5.4 Image flow cytometry fails to show correlation between DAPI –

FOXO3A and Rheb-LAMP1 

As in the previous chapter imagestream flow cytometry was used to analyse the 

response of FOXO3A and Rheb cellular localisation following Rapamycin treatment 

and withdrawal. The timecourse used during the imagestream flow cytometry assays 

differed from those obtained using the RPPA with time points taken at the following 

times 0 hour (untreated), 30 minutes post treatment, 60 minutes post treatment, 24 hours 

post treatment, 5 minutes post restimulation, 15 minutes post restimulation, 30 minutes 

post restimulation, and 60 minutes post restimulation. LAMP1-Alexa-488 and DAPI 

were also stained for in order to allow for lysosomal and nuclear localisation 

comparison as in the previous chapter. One of the advantages of the Ideas software used 

during this analysis is that once a template for an experiment has been created it is 

possible to apply the same template along with the same compensation matrix to 

multiple experiments. This allowed for the analysis of all Imagestream experiments 

undertaken without changing any parameters within the analysis and removing 

individual bias that can be inserted in confocal microscopy. A representative image of 

cells following 24 hours Rapamycin treatment in shown in figure 5.16. As in the 

previous chapter a single cell population was selected and out of focus cell images 

removed from the analysis prior to analysi of co-localisation between FOXO3A- DAPI 

and Rheb-LAMP1 (figure 5.16 A-D). Unfortunately whilst the Rapamycin samples 

analysed contained more cells in the final analysis (post focus, single cell identification) 

this total was still lower than required to perform analysis of sub-cellular localisation 

(Pearson’s correlation co-efficient) (figure 5.17). In addition whilst DAPI was present in 

both the starvation-restimulation and Rapamycin data it did not show up in the final 

population (Pearson’s correlation co-efficient) (figure 5.16 E). Therefore whilst the data 

shown in table 5.3 indicates a slight increase in both FOXO3A-DAPI and Rheb-LAMP1 

correlation it is not possible to say with any certainty that this is the case. 
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Figure 5.16: Image flow cytometry fails to show correlation between DAPI –

FOXO3A and Rheb-LAMP1. Representative image displaying image flow cytometry analysis of 

untreated cells following 24 hour Rapamycin treatment (10nM)(A) A single cell population was selected, 

(B) followed by the removal of images that were not in focus. (C) Nuclear localisation correlation was 

analysed for FOXO3A and DAPI, in addition to (D) correlation analysis of RHEB and LAMP1. (E) 

Population analysis displaying correlation between DAPI-FOXO3A and Rheb-LAMP1. (F) 

Representative image of in focus single cell population for 0 hour untreated cells. 

 

Table 5.3: Image flow cytometry time course correlation. Correlation values for each time 

point assayed for FOXO3A-DAPI (FD) and Rheb-LAMP1 (RL) (Pearson’s correlation co-efficient; all 

values are non-significant P>0.05). 

 

 

 

 

Time Point FOXO3A-DAPI 

Pearson’s correlation 

co-efficient  

Rheb-LAMP1  

Pearson’s correlation 

co-efficient  

P-value 

FD/RL 

0 hours -0.01483 0.6018 0.99/0.59 

30 minutes treated -0.5771 0.6628 0.61/0.54 

60 minutes treated -0.2335 0.6377 0.85/0.56 

24 hours treated 0.277 0.7108 0.82/0.50 

5 minutes restimulated 0.6233 0.7556 0.57/0.45 

15 minutes restimulated 0.3694 0.7627 0.76/0.45 

30 minutes restimulated 0.4967 0.7499 0.67/0.46 

60 minutes restimulated 0.794 0.7519 0.42/0.46 
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Figure 5.17: Image flow cytometry time course correlation. Population analysis 

displaying correlation between DAPI-FOXO3A and Rheb-LAMP1, (Pearson’s correlation co-efficient) 

(A) 0 hour untreated cells, (B) 30 minutes Rapamycin treated cells, (C) 60 minutes Rapamycin treated 

cells, (D) 24 hour Rapamycin treated cells, (E) 5 minutes re-stimulated cells, (F) 15 minutes re-stimulated 

cells, (G) 30 minutes re-stimulated cells, (H) 60 minutes re-stimulated cells.  
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5.5 Discussion 

The aims of the work presented here were: 1) to define a dynamic model capable of 

representing the mTOR networks response to Rapamycin withdrawal; 2) to calibrate 

this model in both MRC5 and MSCs using reverse phase protein arrays; 3) to use 

imagestream flow cytometry to analyse the cellular localisation of key proteins within 

the mTOR network and; 4) to identify how MRC5 fibroblasts and MSCs differ in their 

response to Rapamycin withdrawal. Through the computational dynamic modelling 

approach described above this has been achieved. The model presented proved capable 

of simulating the response of both MRC5 and MSCs in response to restimulation 

following a period of Rapamycin treatment. 

As with the previous chapter RPPA was used to produce calibration data with 

measurements taken for a total of 16 proteins across the mTOR network. In contrast to 

the data produced in the previous chapter the data presented here for MRC5 cells 

produced a large amount of variation. In addition upon analysis of this data whilst parts 

of the network displayed a clear flow of information as expected a number of 

observables displayed behaviour not consistent with the rest of the time course. In 

contrast the data produced for the MSCs displayed a clear flow of information 

throughout the time course with the exception of PDK1_pS241.  

One possible explanation for the variation observed in the MRC5 dataset is that 

Rapamycin is considered a very messy drug with many off target effects [221]. 

However a key part of the network that was consistently affected by Rapamycin was 

identified as the P70S6K negative feedback loop. A model topology alteration within 

this section of the network led to a reduced AIC score and a similar RSS value despite 

having a larger number of reactions within the model. Whilst it was not possible to 

measure P70S6K activation or inhibition of IRS1 following Rapamycin withdrawal 

using RPPA it is possible using western blotting. Further validation experiments should 

therefore be performed focusing on the analysis of this section of the network. As 

opposed to caloric restriction which feeds into numerous sections of the mTOR 

network, Rapamycin is known to primarily feed into mTORC1. The identification of the 

P70S6K negative feedback loop therefore makes biological sense. In the previous 

chapter the removal of particular datasets allowed for the identification of ACC_pS79 as 

the dataset whose removal lead to the largest decrease in fitting ability. Although a 

similar methodology was followed above it was not possible to identify a single set of 
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data whose removal either negatively or positively affected the models ability to achieve 

a fit. The removal of PDK1_pS241 led to the largest reduction in RSS value amongst 

the datasets analysed however little difference was observed upon removing either 

PDK1_pS241 or mTORC1_pS2448 data from the parameter estimations. The failure to 

fit PDK1_pS241 for either the MRC5 or MSC data however suggests that there are 

mechanisms governing PDK1 activation not included within the model. As PDK1 is 

phosphorylated on serine 241 through an autophosphorylation loop it is possible that 

Rapamycin treatment interferes with this process. There are no studies to date however 

investigating the effect of Rapamycin treatment on PDK1 activation.   

Previously this work has shown that an MRC5 calibrated model was capable of fitting 

data from MSCs following starvation-restimulation. This however was not achieved in 

response to Rapamycin withdrawal with a number of observables failing to achieve an 

acceptable fit to the MSC data within the MRC5 calibrated model. Given the large 

differences observed between the two cell types responses to Rapamycin withdrawal 

this is to be expected. As to why such differences exist in response to identical 

treatments is more difficult to answer. However one explanation is that stem cells are 

stringently regulated in order to prevent differentiation, self-renewal and cellular growth 

under sub optimal conditions [36, 224]. A number of these mechanisms act as cancer 

preventions therefore it is possible that regulation of the mTOR network is more rigid in 

MSCs than in MRC5 cells resulting in the differences observed. 

A comparison of the reaction of MRC5 cells to starvation-restimulation and Rapamycin 

withdrawal revealed very few similarities across the observables assayed. In contrast a 

comparison of the reaction of MSCs to starvation-restimulation and Rapamycin 

withdrawal revealed a number of similar kinetic responses. Given the importance of 

AMPK in starvation-restimulation it is of particular interest that the readout used (ACC) 

for this protein displays extremely similar behaviour in response to both treatments. 

This is further evidence supporting tight regulation of AMPK in MSCs. The two 

observables which display differential behaviour between the two treatments in MSCs 

are the two AKT phosphosites. As Rapamycin acts to inhibit mTORC1 activity only in 

MSCs the difference in their profiles is to be expected. Indeed following Rapamycin 

withdrawal AKT_pT308 activity increases to a far larger extent than following 

starvation-restimulation. Whilst the mTORC2 dependent AKT_pS473 displays a far 
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greater increase in activity following starvation-restimulation compared to Rapamycin 

withdrawal. 

As in the previous chapter it did not prove possible to obtain time course data capable of 

calibrating a dynamic model using imagestream flow cytometry. In addition in the final 

analysis DAPI does not appear despite being present (cells not positive for DAPI would 

be excluded from the final cell population being analysed following nuclear localisation 

analysis). This is also the case for the starvation-restimulation dataset however as DAPI 

is added immediately prior to analysis on the Imagestream flow cytometer and both the 

starvation-restimulation and Rapamycin datasets were analysed at the same time this is 

not unexpected. This is also the reason as to why both treatments appear to have a 

limited number of cells appearing in the final analysis. A possible explanation for this is 

that during the permeabilisation step cells were placed into 0.1% Triton-x 100 for 

longer than the optimal time period leading to cell lysis.  

The dynamic model presented here was able to reproduce the response of Rapamycin 

withdrawal in both MRC5 and MSCs. Due to the variation observed in the MRC5 

dataset a number of problems arose during the fitting process. These included the 

requirement for a more detailed P70S6K feedback loop and the removal of the 

PDK1_pS241 data from the final parameter. Further work is therefore required 

investigating the impact of Rapamycin treatment on PDK1 activation. A comparison 

between the response of MSCs to starvation-restimulation and Rapamycin withdrawal 

revealed similar kinetic profiles excluding the two AKT observables analysed. However 

the reaction of each phosphorylation site on AKT makes biological sense when placed 

in the context of the treatment being analysed. 
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6. A dynamical model of the mTOR signalling 

network reveals the kinetics of zoledronate and 

re-stimulation in MRC5 fibroblasts and human 

bone marrow stem cells 
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6.1 Introduction 

Zoledronate is a nitrogen containing bisphosphonate (N-BP) used in the treatment of 

osteoporosis primarily in post-menopausal women [115]. N-BPs were designed to 

inhibit bone resorption by targeting the maturation process of the bone resorbing 

osteoclasts.  Mechanistically N-BPs act by inhibiting the mevalonate network 

responsible for the post-translational prenylation modification. They do so by inhibiting 

the farnesyl diphosphate synthase (FPP) enzyme. Prenylation of a protein is a key post-

translational modification that primarily governs their appropriate localisation within 

the cell. Prenylation involves the addition of either a farnesyl (c15) or a geranyl-geranyl 

(c20) group being added to a protein at a CAAX motif at the c-terminus of the protein 

[108, 225]. Due to its role in protein localisation and modulating function prenylation is 

a key step in many signal transduction pathways [226]. The mechanistic effect of FPP 

synthase inhibition is discussed in section 1.4.3. In recent years off target effects of N-

BPs have been observed, particularly in the case of Zoledronate and cancer treatment. 

Due to the well-established links between the mTOR network and cancer a number of 

studies have been undertaken to investigate the effect of Zoledronate on the mTOR 

network. Two mTOR network linked proteins are affected by prenylation: firstly the G-

protein Ras is farnesylated leading to its activation and localisation at the plasma 

membrane; and secondly the Ras homolog enriched in the brain (Rheb) is also 

farnesylated which leads to its association with various membranes within a cell and its 

ability to bind to GTP [227, 228]. In healthy cells, membrane localisation and activation 

of Ras leads to its binding with GTP and allows it to interact with PI3K on its p110 

subunit [118]. This interaction with RAS facilitates the activation of PI3K that occurs 

via the binding of insulin to the insulin receptor. Activation of PI3K leads to a 

downstream cascade resulting in the conversion of PIP2 to PIP3 and the activation of 

AKT via its phosphorylation on tyrosine 308. Once phosphorylated AKT can interact 

with the TSC1/2 complex resulting in its phosphorylation and inhibition [43]. The 

TSC1/2 complex regulates the activity of Rheb by maintaining it in its GDP bound 

state, phosphorylation of TSC1/2 results in Rheb associating with GTP to form its 

active state which can then interact with FKBP38 resulting in its disassociation from 

within the mTORC1 [55, 58]. Rheb interaction with FKBP38 and its subsequent 

disassociation from mTORC1 activates the complex resulting in the phosphorylation of 

S6K and the activation of several downstream transcription factors. Once activated S6K 

also initiates a negative feedback loop inhibiting the insulin receptor [60].  
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Far less is known regarding the second TOR complex mTORC2. However, it is known 

that active mTORC2 phosphorylates AKT on serine 473 and that mTORC2 is inhibited 

by S6K activation [43]. Activation of mTORC2 appears to be Rheb independent and it 

is disputed whether or not the phosphorylation of S473 on AKT is required for its full 

activation [52]. 

There are several parallels between the effects seen on the mTOR network when cells 

are treated with Zoledronate and when they are subjected to caloric restriction. 

Zoledronate treatment leads to an increased DNA damage response and the inhibition of 

mTORC1[82].This also occurs in calorie restriction as there is a decrease in insulin 

levels and therefore a decrease in signalling from the insulin receptor resulting in 

decreased AKT activity [197]. In addition to this a decrease in glucose leads to a lower 

level of ATP in the cell altering the ration of AMPK-ATP with the result being 

increased AMPK activity and further mTORC1 inhibition [229]. It has also been shown 

that stem cell numbers can be preserved by calorie restriction and that this was due to 

mTORC1 inhibition [230, 231]. Furthermore calorie restriction appears to protect the 

proliferative and differentiation capacity of MSC in skeletal muscle, although the 

mechanisms behind this are currently unknown. Recently it was shown that Rheb 

inhibition extended lifespan in C.Elegans in a pattern that mimicked intermittent fasting 

and highlights the possibility that inhibition of Rheb prenylation could extend lifespan 

[232].  

6.2 Modelling the effect of zoledronate on the mTOR network 

To date there is no published work using dynamic modelling investigating the effect of 

Zoledronate on the mTOR network. However previous work carried out prior to this 

study in collaboration with Ilaria Bellantuono’s group at the University of Sheffield 

attempted to explain the mechanisms observed in MSCs following Zoledronate 

treatment [82]. The key findings of this work form the basis of the model produced 

within this chapter and are summarised here. Initial predictions generated by the model 

were unable to reproduce the observations reported in Misra et al 2016 as the removal 

of prenylated species within the model occurred too rapidly. Whilst the inhibition of 

FPP synthase occurs over a matter of minutes the effect of Zoledronate is not observed 

until three days post treatment. Due to this, an alternative hypothesis was proposed 

suggesting that the rate of inhibition of Zoledronate is not dependent upon the rate of 

inhibition of FPP synthase but rather the turnover of prenylated proteins within the cell. 
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This alteration resulted in a slow three day reduction in the number of prenylated 

proteins within the model. In the initial simulations of this work Ras was not included 

upstream of PI3K as previous models had proved successful in replicating mTOR 

network dynamics without the inclusion of Ras e.g. Dalle Pezze et al 2012 and 2016 

[172, 233]. Initial predictions by the dynamic model suggested that following 

Zoledronate treatment there was an increase in the activity of AKT_pT308. This 

increase in activity was due to the inhibition of mTORC1 activity and S6K activity 

leading to the inhibition of the S6K negative feedback loop to PI3K and the subsequent 

upregulation of AKT_pT308. More recent data  however showed that both AKT_pT308 

and AKT_pS473 activity levels decreasing following Zoledronate treatment (figure 

6.1). Therefore it was necessary to include Ras upstream of PI3K in order to account for 

this reduction in AKT_pT308 activity. The final finding of this work was the 

assumption that a prenylation event must exist upstream of mTORC2. This was also 

shown in Misra et al 2016 with the observation for a reduction in AKT_pS473 levels.  

There are number of possible proteins responsible for the inhibition of mTORC2 by 

Zoledronate including Rac1, RalA, Rab as well as Ras and Rheb [234].  
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Figure 6.1: Immuno-blotting data examining AKT phosphorylation. Analysis of AKT 

phosphorylation on Threonine 308 and serine 473 was carried out in MSCs following treatment with 1μM 

Zoledronate for 72 hours. Signal intensities were quantified and statistics computed (n=3). Image 

courtesy of Juhi Misra (University of Sheffield) [82]. 
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6.3 Aims 

The study aim was to examine the effect of Zoledronate treatment on the dynamics of 

re-stimulation of the mTOR network. We aim to define using a computational dynamic 

model how the mTOR network responds in MRC5 fibroblasts and how the mTOR 

network response differs in human mesenchymal stem cells.  

6.4 Results 

6.4.1 Development of a zoledronate dynamic network model 

The model used throughout this section is described in section 4.3.1 and displayed in 

figure 6.2 (all reactions can be found in appendix B). As described previously the amino 

acid/nutrient activation of the model will remain as before with a constant level 

available to the cells assumed. Nutrient signalling activates the model at three separate 

inputs with PI3K, mTORC1 and AMPK all being activated by nutrient inputs. As before 

PI3K activation leads to the activation of PDK1 and subsequent activation of AKT on 

threonine 308. This in turn phosphorylates and inhibits the TSC1/2 complex leading to 

activation of Rheb(GTP). Rheb in its GTP bound form is then free to activate the 

mTORC1 complex leading to the activation of the downstream effectors 

P70S6K_pT389, S6_pS235/236 and 4E-BP1_pS65 with a P70S6K_pT389 feedback 

loop inhibiting further activation of PI3K by nutrient signalling. In addition to the above 

a section of the mevalonate network was added to the model based on the assumptions 

described in section 6.2. A network schematic displaying the mevalonate network and 

its links to the mTOR network is shown in figure 6.3. As one of the proposed 

assumptions described in section 6.2 was the need for a prenylation event upstream of 

mTORC2 further research was carried out investigating which proteins could be 

responsible. The proteins investigated  include Rac1, RalA, Rab as well as Ras and 

Rheb [234]. With regards to mTORC2 activation there is very little evidence that Rheb 

has any role in its activation however Ras has been implicated in mTORC2 activation 

[235]. It has been shown that in invertebrate organisms Ras interacts directly with 

components of mTORC2 and is required for correct localisation of those components, 

however this has yet to be shown in mammals [236, 237]. What is known however is 

that Ras interacts with PI3K which possibly allows it to activate mTORC2 as well as 

enhancing its activation of AKT phosphorylation and mTORC1 activation [235]. Rac1 

appears to act both upstream and downstream of both mTOR complexes surprisingly 

however its role in mTORC2 regulation is far better understood than its role in 
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mTORC1 regulation [73, 234]. The guanine exchange factor (GEF) for Rac1 is P-Rex1 

which directly interacts with and is activated by mTORC2 leading to increased GTP 

bound Rac1 [238]. Any decrease in mTORC2 therefore leads to a decrease of around 

20-30% GTP bound Rac1. However inhibition of Rac1 leads to a decrease in active 

mTORC1 and mTORC2 showing that it must act upstream of both TOR complexes. It 

is believed that Rac1 acts to correctly localise mTOR within the cell as inhibition of 

Rac1 affects the subcellular localisation of mTOR [239] [240]. In order to interact with 

mTOR, Rac1 can be in either a GDP or GTP bound state however recent work has 

shown that following bisphosphonate treatment the level of GTP bound Rac1 increases 

[240]. It may be interesting to investigate if mTOR localisation is affected by 

Zoledronate treatment of MSCs as this could provide an insight into how the drugs 

affect the network. Very little is known about the role that RalA plays in mTORC2 

activation. It is known that RalA enhances the interaction of ARF6 with phospholipase 

D mediating the hydrolysis of phosphatidylcholine which produces phosphatidic acid 

which is a known mediator if mTORC1 and mTORC2 activation [241-243]. It is not 

currently known how RalA regulation contributes to mTORC2 activation however it 

appears to be regulated by nutrient levels with increased GTP binding of RalA under 

high nutrient conditions leading to increased mTORC1 activation [244-246]. At present 

there is no evidence in mammals to support the idea that members of the Rab GTPase 

family can stimulate mTORC2 activation. However work carried out in yeast has shown 

that the Rab6 homologue Ryh1 controls spTOR2 activation and when expressed in 

yeast human Rab6 can also activate TORC2 suggesting that the link may be 

evolutionary conserved [247, 248]. Due to its role in compartment specificity within 

eukaryotic endomembrane it is possible that Rab6 could control mTOR localisation 

within the cells however there is currently no evidence to support this idea [249, 250]. 

Due to the lack of a clear evidence for a prenylated protein that could act upstream of 

mTORC2 it was decided that Ras should be selected from the G proteins investigated. 

This was pragmatic decision as it prevented the need for the addition of an additional 

species within the model whilst satisfying the above evidence. 



 

153 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: The mTOR network. A SBGN network model diagram displaying the mTOR 

network. Asterisks mark phospho proteins measured for starvation-restimulation RPPA experiments 

whilst hashtags mark proteins assayed by imagestream flow cytometry. 
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Figure 6.3: The effect of Zoledronate on the mTOR network. A SBGN network model 

diagram displaying the connections between the mevalonate and the mTOR networks. Proteins in Pink 

and red denote mevalonate proteins; Green proteins represent mTOR related proteins. 
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6.4.2 Utilising RPPA to produce a calibration dataset following 

zoledronate treatment 

As with the two previous chapters once the network topology had been determined a 

timecourse dataset was collected using RPPA. As the removal of prenylated proteins 

within a cell takes three days MRC5 cells were treated with 1μM Zoledronate for this 

period of time at which point the Zoledronate was removed and the cells restimulated 

with standard DMEM as described in sections 2.1.15. As with the two previous datasets 

the timecourse was designed to allow for the capturing of the immediate dynamics of 

the mTOR network following removal of Zoledronate. In addition however time points 

were taken every 24 hours during to Zoledronate treatment to observe the changes in the 

mTOR network during Zoledronate treatment. Throughout this chapter a total of 17 

proteins were analysed consisting of 10 phosphoproteins, 7 total proteins and the house 

keeping protein α-tubulin (Table 6.1). However during the initial RPPA analysis of 

Zoledronate treatment on MRC5 cells a total of 9 phospho-proteins and 8 total proteins 

were analysed. Each of the antibodies used had previously been validated in previous 

chapters or in the case of GSK3-β had been validated in a separate project. 

6.4.3 Zoledronate treatment of MRC5 cells results in cell death at 1μM 

The Initial assay of MRC5 cells following Zoledronate treatment is shown in figure 6.4. 

Following normalisation the expected relative fluorescent level a given protein 

undergoing RPPA should be above 0.1 to be considered above the background 

threshold. As can be observed in figure 6.4, whilst there appears to be a dynamic 

reaction in response to re-stimulation following Zoledronate withdrawal of all proteins 

with the exception of PDK1_pS241 fail to maintain an expression over the background 

threshold. It is therefore not possible to assess the effect of Zoledronate withdrawal 

using this dataset. To complement RPPA, an analysis of the response of both FOXO3A 

and Rheb to Zoledronate treatment and was carried out using Imagestream flow 

cytometry. As described above MRC5 cells were treated with 1μM Zoledronate for a 

period of 72 hours with time points analysed every 24 hours. As can be observed in 

figure 6.5 following 72 hours Zoledronate all cells in the analysis display auto-

fluorescence characteristic of cell death. As the removal of prenylated proteins from the 

cell requires 3 days following Zoledronate treatment it was decided that no further 

analysis of these samples should be performed. Following these results it was decided 

that a cell death assay should be performed in order to ascertain the level of cell death in 
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MRC5 cells following Zoledronate treatment. For the purposes of this study three 

separate concentrations were selected each decreasing 10 fold from the previous. As 

1μM had proved to already lead to cell death in MRC5 cells this concentration was 

tested along with 0.1μM and 0.01μM Zoledronate. As with the previous timecourse 

experiments MRC5 cells were treated with Zoledronate at the above concentrations for 

a period of 72 hours and then a cell count performed with cells stained with Trypan blue 

allowing for the identification of live and dead cells. The results of this study are shown 

in figure 6.6. Following treatment with both 1μM and 0.1μM Zoledronate cell death was 

determined to be 34 and 32 percentage respectively with no statistical significance 

observed between the two different treatments (P=0.33; 2-way analysis of variance-

ANOVA). At the lowest concentration of 0.01μM Zoledronate cell death was 

determined to be 20 percentage with a significant difference observed between this 

treatment and both 1μM and 0.1μM Zoledronate respectively (P=0.0037 and P=0.015 

respectively; 2-way ANOVA). As such it was decided that whilst cell death was still 

relatively high in the 0.01μM Zoledronate treatment samples, that this concentration 

should be carried forward for further tests using RPPA and Imagestream flow 

cytometry. 
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Table 6.1: Reverse Phase Protein Array Antibodies. A list of all antibodies assayed during 

Zoledronate experiments. 

 

 

 

 

 

 

 

 

 

 

 

Antibody Antibody Source 

ACC GSK3B_pS9_pS21 Cell Signalling Technology 

ACC_pS79 mTOR Cell Signalling Technology 

PI3K p85_pY467_Y199,  mTOR_pS2448 Cell Signalling Technology 

PTEN_pS380_T382_T383  4E-BP1 Cell Signalling Technology 

PDK 4E-BP1_pS65 Cell Signalling Technology 

PDK1_pS241 S6_pS235/236 Cell Signalling Technology 

AKT FOXO3A Cell Signalling Technology 

AKT_pT308 FOXO3A_pS318_S321 Cell Signalling Technology 

AKT_pS473 Α-tubulin Cell Signalling Technology 
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Figure 6.4: Measuring the kinetics of the mTOR network in MRC5 cells. A sixty 

minute time course following 72 hour Zoledronate treatment (1μM). Cells were re-stimulated at 0 hours 

and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A) ACC_pS79, 

(B) PDK1_pS24, (C) AKT_pT308,  (D) AKT_pS473, (E) mTORC1_pS2448, (F) 4E-BP1_pS65, (G) 

FOXO3A_pS318_S321,  (H) GSK3-β_pS9_pS21. 
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Figure 6.5: Imagestream flow cytometry reveals cell death in MRC5 cells. (A) 

Untreated MRC5 cells and MRC5 treated with 1μM Zoledronate for 72 hours (B) were stained for 

FOXO3A, DAPI, LAMP1 and Rheb and analysed using an Amnis Imagestream flow cytometer. (Image 

representative of 1000 cell events). 

 

 

 

 

 

 

 

 

 

Figure 6.6: Zoledronate cell death assay. MRC5 cells were treated with 1μM 0.1μM and 

0.01μM Zoledronate. Percentage cell death was calculated (n=3) (Mean +/- SEM). 
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6.4.4 Treatment of MRC5 cells with 0.01μM zoledronate followed by 

nutrient re-stimulation results in clear dynamic signalling profiles. 

Following the results obtained by the cell death assay a second time course was 

produced using MRC5 cells treated with 0.01μM Zoledronate. This was carried out 

exactly as described as above and is shown in figure 6.7. In contrast to the previous 

dataset the raw RFI values obtained for this data all displayed values between 0.1 and 

above with the exception of GSK3-β_pS9_pS21 (figure 6.7 K) (the values shown in 

figure 6.7 are the normalised values not raw RFi values). As can been seen in figure 6.7 

there is a clear flow of information through the network with an initial increase 

observed in all observables with the exceptions of AKT_pS473, FOXO3A_pS318_S321 

and S6_pS235/236 (figure 6.7 F, I and J). Following a decrease between the 3 and 10 

minutes time points there is then an increase for all observables with AKT_pS473 and 

S6_pS235/236 again proving to be the exceptions (figure 6.7 F and J). However in the 

case of these two observables there is an earlier increase at the 10 minute time point 

with a decrease in signalling observed by 20 minutes. 
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Figure 6.7: Measuring the dynamics of the mTOR network in MRC5 cells. A sixty 

minute time course following 72 hour Zoledronate treatment (0.01μM). Cells were re-stimulated at 0 

hours and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A) 

ACC_pS79, (B) PI3K_P85_pY467_Y199, (C) PTEN_pS380_T382_T383, (D) PDK1_pS241, (E) 

AKT_pT308,  (F) AKT_pS473, (G) mTORC1_pS2448, (H) 4E-BP1_pS65, (I) FOXO3A_pS318_S321, 

(J) S6_pS235/236,  (K) GSK3-β_pS9_pS21. 
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6.4.5 Parameter estimation 

As with the starvation re-stimulation and Rapamycin models following generation of 

the second calibration dataset using RPPA, parameter estimations were carried out for 

the first 60 minutes of the timecourse. The data was normalised as previously described 

with all proteins measured normalised to the housekeeping protein α-tubulin and then 

the control time point 0 set to a value of 1 and all subsequent time points divided by this 

value. This would allow for a direct comparison between not only the MRC5 and MSC 

cells, but also between treatments, as it would provide a simplified kinetic profile from 

an arbitrary initial value. As with the previous models a total number of 10000 runs 

were then performed using a computational cluster with the genetic algorithm used as 

described in section 2.2.2. The time length for these runs was variable as they were 

dependent on how the cluster was being used on a given day by multiple users. In 

addition to the set-up described above all prenylated species were set to have an initial 

starting value of 0 to represent the effect of Zoledronate on the model. As described in 

section 4.3.3 the residual sum of squares (RSS) value was used to determine a 

“goodness of fit” due to the scale of the data being used. As in previous chapters the 

python package Pycotools was used to ascertain the best fitting parameters from the 

parameter estimations. An updated version of this package was available for this work 

which allowed for a far more in depth analysis of the data it was decided that this should 

be carried out for the work presented here.  

6.4.6 Existing model is capable of fitting MRC5 dataset in response to 

zoledronate withdrawal 

As can be seen in figure 6.8 the model was able to achieve an acceptable fit to the data 

for 7 out of the 10 observables measured (RSS=0.738134). The three observables that 

could not be fitted were PTEN_pS380_T382_T383, PDK1_pS241 and 4E-BP1_pS65 

(figure 6.8 C, D + H). This further confirms that the model was incapable of fitting both 

PTEN_pS380_T382_T383 and 4E-BP_pS65 using the current topology and known 

activation mechanisms. For PDK1_pS241 whilst it had proved possible to fit this 

observable for the MRC5 starvation-restimulation data it had not been possible to do so 

for both the Rapamycin and Zoledronate data. This suggests that there are mechanisms 

governing PDK1_pS241 activity not included in the model which are affected by 

Rapamycin and Zoledronate treatment in MRC5 cells. In addition to investigating the 

parameter estimation which provided the ‘best fit’ to the data it was also possible to 
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view how the model fit differed across repeats by plotting a time course ensemble using 

the Pycotools python package (figure 6.9). As can be seen in figure 6.9 there is very 

little difference between the top ten ranked parameter estimations with each of the 

parameter sets resulting in a model fit close to the overall mean model simulation (dark 

blue line). This also holds true for the three observables which the model is unable to 

fit, further supporting the need to further investigate the mechanisms governing the 

activity of these proteins. Figure 6.9 K, displays the RSS value for each parameter 

estimation ranked in order of ‘best fit’ and suggests that the parameter estimations have 

not found a minimum RSS value. This is to be expected however as the purpose of the 

second round of parameter estimations using the Hooke and Jeeves algorithm is to find 

a local minima for the model parameters. In addition to allowing for the analysis of time 

course ensembles it is also possible to analyse the overall spread of each parameter 

fitted by the parameter estimations (figure 6.10). For each parameter within the 

estimation there is a limited set of values that may be used, in the case of all parameter 

estimations carried out in this work those limits were 1e
-6

 – 1e
4
 with each parameter 

able to be any value between those two values. The less variation a parameter displays 

between the upper and lower limits the more confidence can be placed upon the models 

ability to fit that parameter value. Across the full 10000 parameter estimations the 

majority of parameters estimated display a large variation in values (figure 6.10 A). 

However upon refinement to the top 100 parameter estimations there are few sections of 

the model which continue to display a large variation. These parameters are primarily 

involved in the mevalonate network section of the model suggesting that more data are 

required to inform the model fit for this part of the model topology (figure 6.10 B). 
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Figure 6.8: Time course simulations from the model compared to Zoledronate 

withdrawal data in MRC5 cells. The model displayed in figure 6.2 was calibrated using the 

RPPA data shown in figures 6.7. A parameter estimation consisting of 59 parameters in total was 

performed using the genetic algorithm (10000 runs). The residual sum of squares between the 

experimental data (Black +/- SEM) and the simulated data (Blue) was calculated as 0.738134 with a good 

fit achieved. 
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Figure 6.9: Time course ensemble for the top 10 genetic algorithm parameter 

estimations in MRC5 cells. (A-J) A time course ensemble was computed using the python package 

Pycotools. The top ten ranked parameter estimations from 10000 were inserted into the model shown in 

figure 6.2 and a time course simulation performed. The mean value for each time point in each of the 10 

simulations was then plotted (dark blue line) and 95% confidence intervals calculated (light blue area). 

(K) The RSS value for each of the 10000 parameter estimations was ranked. 
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Figure 6.10: Parameter Variation in MRC5 Cells. Boxplots displaying the variation of each 

parameter estimated within the lower (1e-6) and upper limit (1000) bound of 10000 (A) and top 100 (B) 

parameter estimations using the genetic algorithm in MRC5 cells. 
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6.4.7 Modelling difference in MRC5 and MSC 

As carried out previously following the calibration of the model using the MRC5 

dataset a second time course was performed using MSCs. As in previous chapters this 

time course was carried out using the same points as for the MRC5 dataset and is shown 

in figure 6.11. A comparison between the MRC5 and MSC kinetic following re-

stimulation can be seen in figure 6.12. There is a clear dynamic behaviour observed 

throughout the dataset with an initial decrease observed for all proteins excluding 

ACC_pS79. Unfortunately the mTORC_pS2448 read out displayed background level 

fluorescence and therefore could not be used in parameter estimations figure 6.11 G). 

Following the initial decrease in signalling there is an increase in activity across the 

time course up to the 10 minute time point with a decrease observed at either 10 or 20 

minutes for all proteins. Following this there is an increase for all proteins except 

PDK1_pS241, 4E-BP1_pS65, S6_pS235/236 and GSK3-β_pS9_S21 at 30 minutes 

(figure 6.11 D, H and K). All proteins display a decrease in signalling at the 60 minute 

time point. Interestingly  the ACC_pS79 time course follows a very similar kinetic 

profile to that observed in starvation-restimulation in MRC5 cells with an increase in 

signalling occurring over the first 5-10 minutes and then decreasing to baseline 

signalling after 30 minutes (figure 6.11 A). 
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Figure 6.11: Measuring the Kinetics of the mTOR Network in MSC Cells. A sixty 

minute time course following 72 hour Zoledronate treatment (1μM). Cells were re-stimulated at 0 hours 

and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM). (A) ACC_pS79, 

(B) PI3K_P85_pY467_Y199, (C) PTEN_pS380_T382_T383, (D) PDK1_pS241, (E) AKT_pT308,  (F) 

AKT_pS473, (G) mTORC1_pS2448, (H) 4E-BP1_pS65, (I) FOXO3A_pS318_S321, (J) S6_pS235/236,  

(K) GSK3-β_pS9_pS21. 
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Figure 6.12: A comparison of MRC5 vs MSC outputs following Zoledronate 

withdrawal. A sixty minute time course following 72 hour Zoledronate treatment for both MRC5 

(Blue) and MSC (Red) cells. Cells were re-stimulated at 0 hours and relative fluorescent intensity 

measured at each time point (n=3) (Mean +/- SEM). (A) ACC_pS79, (B) PI3K_p85_pY467_pY199, (C) 

PTEN_pS380_pT382_pT383, (D) PDK1_pS241,  (E) AKT_pT308, (F) AKT_pS473, (G) 

mTORC1_pS2448, (H) 4E-BP1_pS65, (I) FOXO3A_pS318_pS321 and (J) S6_pS235/236. 
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6.4.8 Pycotools analysis reveals similar parameter constraints for both 

MRC5 and MSC parameter estimations 

Prior to analysis using the Hooke and Jeeves algorithm, analysis using the Pycotools 

python package was carried out for the MSC parameter estimations carried out using the 

genetic algorithm. Time course ensembles were carried out as described above for 

examining the variation between the top ten ranked parameter fits (figure 6.13). As was 

observed for the MRC5 dataset the time course ensembles revealed very little variation 

between these fits with extremely small confidence intervals (light blue area) surround 

each mean value for the ten parameter estimations (dark blue line figure 6.13). As was 

also true for the MRC5 genetic algorithm, using the genetic algorithm for the MSC 

dataset failed to find the local minima (figure 6.13 J). However as discussed above as 

the Hooke and Jeeves algorithm was subsequently applied to these values the fit 

achieved using the genetic algorithm can be said to be acceptable (figure 6.13 A-I). 

Upon analysing the variation for each parameter value it became clear that as for the 

MRC5 dataset, the top 100 fits led to a significant reduction in variation for a number of 

parameters analysed (figure 6.14). Using this approach it was also possible to analyse 

how each parameter value was varying in both the MRC5 and MSC parameter 

estimations for the top 100 parameter estimations (figure 6.15). This revealed that two 

sections of the topology displayed a large variation in values for both parameter 

estimations. These were the reaction parameters for the Rheb and Ras prenylation 

reactions and the reaction parameters for the TSC1/2 complex reactions. As there is 

currently no data covering these parts of the topology this is to be expected. In addition 

to these parameters a number of other parameters governing AKT activity displayed 

differential fitting between the two parameter estimations. A reason for this is possibly 

that this section of the network is extremely complex with a large number of reactions 

existing to govern AKT activity across its four possible species within the model. A 

number of parameters however displayed very similar behaviour in terms of constraint 

across both parameter estimations. These reactions were largely involved in mTORC1 

and mTORC2 activity in addition to those parameters governing PI3K activity. Despite 

the large amount of data covering these reactions it is interesting that the model appears 

to always converge upon a similar parameter value for these parameters for two separate 

parameter optimisation problems.  
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Figure 6.13: Time course ensemble for top 10 genetic algorithm parameter 

estimations in MSC cells. (A-I) A time course ensemble was computed using the python package 

Pycotools. The top ten ranked parameter estimations from 10000 were inserted into the model shown in 

figure 6.2 and a time course simulation performed. The mean value for each time point in each of the 10 

simulations was then plotted (dark blue line) and 95% confidence intervals calculated (light blue area). (J) 

the RSS value for each of the 10000 parameter estimations was ranked 
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Figure 6.14: Parameter Variation in MSCs. Boxplots displaying the variation of each 

parameter estimated within the lower (1e-6) and upper limit (1000) bound of 10000 (A) and top 100 (B) 

parameter estimations using the genetic algorithm in MSCs. 
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Figure 6.15: Parameter variation between MRC5 and MSC cells. Boxplots displaying 

the variation of each parameter estimated within the lower (1e-6) and upper limit (1000) bound in the top 

100 ranked parameter estimations in MRC5 cells (A) MSCs (B). 
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6.4.9 Hooke and Jeeves 

As in the previous chapters a comparison testing the ability of the calibrated MRC5 

model to fit the MSC data was carried out. The MRC5 dataset was removed and 

replaced with the MSC dataset. A set of 100 parameter estimations using the Hooke and 

Jeeves algorithm was then performed using the reaction parameter values obtained by 

the best fit to the MRC5 dataset as the initial reaction parameter values. In addition a set 

of 100 parameter estimations was also carried out as above for the MRC5 dataset. This 

resulted in an improved fit with an RSS value of 0.70 however as expected little 

improvement was observed for the observables that could not be fitted using the genetic 

algorithm (figure 6.16). Applying the Hooke and Jeeves algorithm to the MRC5 

calibrated model using the MSC dataset resulted in an improved fit (RSS = 0.383181) 

with the model capable of reproducing a similar fit to that observed using the genetic 

algorithm (RSS = 0.272978) (figure 6.17). This was true for all observables fitted with 

the exception of 4E-BP1_pS65 whose fit using the genetic algorithm could not be 

replicated using the Hooke and Jeeves algorithm (figure 6.17 H).  
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Figure 6.16: Time course simulations from the model compared to re-stimulation data 

utilizing the local Hooke and Jeeves algorithm. The model displayed in figure 6.2 was calibrated 

using the re-simulated RPPA data shown in figures 6.7. A parameter estimation consisting of 59 

parameters in total was performed using the local algorithm Hooke and Jeeves (100 runs). The Residual 

sum of squares between the experimental data (Black +/- SEM) and the simulated data (Blue) was 

calculated as 0.701168. 
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Figure 6.17: Genetic vs Hooke and Jeeves fit for MSC. The model displayed in figure 6.2 

was calibrated using the RPPA data shown in figure 6.11. A parameter estimation consisting of 59 

parameters in total was performed using the genetic algorithm (10000 runs) (Blue) randomising the initial 

parameter values and the Hooke and Jeeves algorithm (100 runs) (Red) using previously obtained 

parameter values form the MRC5 data fit. The Residual sum of squares between the experimental data 

(Black +/- SEM) and the simulated data (Genetic-Blue, Hooke and Jeeves-Red) was calculated as 0.27 

(genetic) and 0.38 (Hooke and Jeeves). 
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Table 6.2: Residual sum of squares value for each model. The residual sum of squares for 

each model fitted to the experimental data for both MRC5 and MSC datasets. The lower the RSS value, 

the closer the fit between the model simulations and the corresponding dataset. Corresponding figure 

number also shown. 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Estimation Residual Sum of 

Squares 

Figure No. 

MRC5 Genetic Fit  0.738134 6.8 

MRC5 Hooke and Jeeves 0.701168 6.16 

MSC Genetic Fit  0.272978 6.11 

MSC Hooke and Jeeves 0.383181 6.17 
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6.5 A comparison between zoledronate withdrawal and starvation-

restimulation and rapamycin withdrawal. 

As in the previous chapter a comparison was carried out between the MRC5 and MSC 

datasets for both Zoledronate withdrawal and starvation-restimulation and Zoledronate 

withdrawal and Rapamycin withdrawal (figure 6.18 and 6.19). There are a number of 

differences between the response to Zoledronate withdrawal and starvation-

restimulation in MRC5 cells (figure 6.18 A-J). In particular the responses of ACC_pS79 

and AKT_pS473 are of interest (figure 6.18 A + F). Following starvation-restimulation 

there is an increase in ACC_pS79 signalling over the first 10 minutes of the time course 

before a decrease back to initial levels. This peak does not exist within the Zoledronate 

data with a very slight increase observed in the first minute before a gradual decline. 

The AKT_pS473 kinetic profiles are similar in both the starvation-restimulation and 

Zoledronate datasets however the level of activity varies greatly with a far greater 

response observed following starvation-restimulation (figure 6.18 F). Within the MSC 

datasets there is far less variation between the observables (figure 6.18 K-T). However 

the response of ACC_pS79 to each treatment varies greatly as it does for the MRC5 

datasets. Interestingly there is a reversal in the difference between the treatments with a 

similar peak in ACC_pS79 activity within the Zoledronate withdrawal MSC data 

observed whereas there is no peak observed in the starvation-restimulation data (figure 

6.18 K). Upon comparing Zoledronate withdrawal and Rapamycin withdrawal in MC5 

cells there are few similarities (figure 6.19 A-I). The exception to this is the response of 

the AKT_pT308 observable whose kinetic profile is very similar in response to both 

treatments (figure 6.19 E). Within the MSC datasets there are a number of observables 

which display similar behaviour in response to Zoledronate and Rapamycin Withdrawal 

(figure 6.19 J-R). In particular the PI3K_P85_pY467_Y199, 

PTEN_pS390_T382_T383, and 4E-BP1_pS65 all display similar kinetic profiles from 

the 1 minute time point onwards (figure 6.19 K, L + Q). Interestingly the profiles for the 

two AKT phosphosites measured display similar kinetic profiles between each 

treatment however the relative response to each treatment differs greatly. In response to 

Zoledronate withdrawal there is far greater activation of AKT_pS473 whilst in response 

to Rapamycin treatment there is a far greater activation of AKT_pT308 (figure 6.19 N + 

O). This supports the data shown in figure 6.1 that Zoledronate treatment leads to a 

greater inhibition of AKT_pS473 than AKT_T308. 
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Figure 6.18: A comparison of mTOR kinetics following Zoledronate withdrawal an 

d starvation-restimulation in MRC5 and MSC cells. A sixty minute time course following 

72 hour Zoledronate treatment (Blue) and starvation-restimulation (Red). Cells were re-stimulated at 0 

hours and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM) in MRC5 cells 

(A) ACC_pS79, (B) PI3K_p85_pY467_pY199, (C) PTEN_pS380_pT382_pT383, (D) PDK1_pS241,  (E) 

AKT_pT308, (F) AKT_pS473, (G) mTORC1_pS2448, (H) 4E-BP1_pS65, (I) FOXO3A_pS318_pS321 

and (J) S6_pS235/236. In MSCs (K) ACC_pS79, (L) PI3K_p85_pY467_pY199, (M) 

PTEN_pS380_pT382_pT383, (N) PDK1_pS241,  (O) AKT_pT308, (P) AKT_pS473, (Q) 

mTORC1_pS2448, (R) 4E-BP1_pS65, (S) FOXO3A_pS318_pS321 and (T) S6_pS235/236. (previous 

page). 
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Figure 6.19: A comparison of mTOR kinetics following Zoledronate withdrawal 

and Rapamycin withdrawak in MRC5 and MSC cells. A sixty minute time course 

following 72 hour Zoledronate treatment (Blue) and Rapamycin (Red). Cells were re-stimulated at 0 

hours and relative fluorescent intensity measured at each time point (n=3) (Mean +/- SEM) in MRC5 cells 

(A) ACC_pS79, (B) PI3K_p85_pY467_pY199, (C) PTEN_pS380_pT382_pT383, (D) PDK1_pS241,  (E) 

AKT_pT308, (F) AKT_pS473, (G) mTORC1_pS2448, (H) 4E-BP1_pS65 and  (I) 

FOXO3A_pS318_pS321.In MSCs (K) ACC_pS79, (K) PI3K_p85_pY467_pY199, (L) 

PTEN_pS380_pT382_pT383, (M) PDK1_pS241,  (N) AKT_pT308, (O) AKT_pS473, (P) 

mTORC1_pS2448, (Q) 4E-BP1_pS65 and (R) FOXO3A_pS318_pS321. (Previous page). 
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6.6 Image flow cytometry fails to show correlation between DAPI –

FOXO3A and Rheb-LAMP1 

As in the previous chapters imagestream flow cytometry was used to analyse the 

response of FOXO3A and Rheb cellular localisation following Zoledronate treatment 

and withdrawal. The timecourse used during the imagestream flow cytometry assays 

differed from those obtained using the RPPA and from the two previous treatments with 

time points taken at the following times 0 hour (untreated), 24 hours post treatment, 48 

hours post treatment, 72 hours post treatment, 5 minutes post restimulation, 15 minutes 

post restimulation, 30 minutes post restimulation, and 60 minutes post restimulation. As 

carried out previously LAMP1-Alexa-488 and DAPI were also stained for in order to 

allow for lysosomal and nuclear localisation comparison as in the previous chapter. In 

addition the template and correlation matrix previously created for the analysis of both 

serum starvation-restimulation and Rapamycin treatment was used for the analysis of 

Zoledronate treatment allowing for a standard set of analysis conditions across all three 

treatments. A representative image of cells following 72 hours Zoledronate treatment in 

shown in figure 6.20. As in the previous chapter a single cell population was selected 

and out of focus cell images removed from the analysis prior to analysi of co-

localisation between FOXO3A- DAPI and Rheb-LAMP1 (figure 6.20 A-D). Whilst the 

number of cell and the imaging of DAPI in the final analysis of the previous two 

experiments had proved problematic this was not the case with ~1800 cells per time 

point obtained following Zoledronate treatment. It was therefore possible to analyse the 

data shown in table 6.3. Upon inspection however it was determined that nether 

FOXO3A-DAPI or Rheb-LAMP1 display a positive correlation (Pearson’s’ correlation 

co-efficient) (figure 6.21). 
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Figure 6.20: Image flow cytometry fails to show correlation between DAPI –

FOXO3A and Rheb-LAMP1. Representative image displaying image flow cytometry analysis of 

untreated cells following 72 hour Zoledronate treatment (0.01μM), (A) A single cell population was 

selected, (B) followed by the removal of images that were not in focus. (C) Nuclear localisation 

correlation was analysed for FOXO3A and DAPI, in addition to (D) correlation analysis of RHEB and 

LAMP1. (E) Population analysis displaying correlation between DAPI-FOXO3A and Rheb-LAMP1 

(Pearson’s correlation co-efficient). (F) Representative image of in focus single cell population for 72 

hour Zoledronate (0.01μM) treated cells. 

 

Table 6.3: Image flow cytometry time course correlation. Correlation values for each time 

point assayed for FOXO3A-DAPI (FD) and Rheb-LAMP1 (RL) (Pearson’s correlation co-efficient; all 

values are non-significant P>0.05) 

 

 

 

 

Time Point FOXO3A-DAPI 

Pearson’s correlation  

co-efficient  

Rheb-LAMP1  

Pearson’s correlation  

co-efficient  

P-value 

FD/RL 

0 hours -0.3104 0.7639 0.79/0.45 

24 hours treated -0.3365 0.7557 0.78/0.46 

48 hours treated -0.2176 0.856 0.87/0.34 

72 hours treated -0.4275 0.7226 0.72/0.49 

5 minutes restimulated -0.4246 0.7874 0.72/0.43 

15 minutes restimulated -0.4228 0.8008 0.72/0.41 

30 minutes restimulated -0.4196 0.7818 0.73/0.43 

60 minutes restimulated -0.3574 0.8024 0.77/0.41 
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Figure 6.21: Image flow cytometry time course correlation. Population analysis 

displaying correlation between DAPI-FOXO3A and Rheb-LAMP1, (Pearson’s correlation co-efficient), 

(A) 0 hour untreated cells, (B) 24 hours Zoledronate treated cells, (C) 48 hours Zoledronate treated cells, 

(D) 72 hours Zoledronate treated cells, (E) 5 minutes re-stimulated cells, (F) 15 minutes re-stimulated 

cells, (G) 30 minutes re-stimulated cells, (H) 60 minutes re-stimulated cells.  
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6.7 Discussion 

The aims of the work presented here were to define a dynamic model capable of 

representing the mTOR networks response to Zoledronate Withdrawal. To calibrate this 

model in both MRC5 and MSCs using reverse phase protein arrays. To use imagestream 

flow cytometry to analyse the cellular localisation of key proteins within the mTOR 

network. And to identify how MRC5 fibroblasts and MSCs differ in their response to 

Zoledronate Withdrawal. Through the computational dynamic modelling approach 

described above this has been achieved. The model presented proved capable of 

simulating the response of both MRC5 and MSCs in response to restimulation 

following a period of Zoledronate treatment.  

As with the two previous chapters RPPA was utilised to create a time course dataset 

capable of calibrating a dynamic model of the mTOR network. Initial attempts to carry 

this out in MRC5 cells failed to produce a time course suitable for the calibration of the 

model above. However subsequent analysis revealed that MRC5 cells are far more 

sensitive to Zoledronate treatment than expected. In order to address this a 100 fold 

reduction in Zoledronate concentration was required. This resulted in a significant 

reduction is cell death and the ability to produce a high quality calibration dataset using 

RPPA. In addition imagestream flow cytometry analysis of MRC5 cells treated using 

this concentration displayed normal cell morphology. As it has previously been 

observed that MSCs do not undergo cell death at 1μM Zoledronate it was not necessary 

to perform a cell death assay on these cells [82]. Following Zoledronate withdrawal a 

consistent kinetic profile was observed throughout the time course with a clear flow of 

information through the mTOR network observed. It proved possible to assay a total of 

17 proteins using RPPA for both MRC5 and MSCs although one antibody per RPPA 

assay failed. This can however be appears to a consequence of antibody failure as 

opposed to a failure of the RPPA methodology.  

Following parameter estimation with the genetic algorithm it proved possible to fit 

seven out of the ten observables assayed in the MRC5 dataset and eight out of the nine 

observables assayed in the MSC dataset. As with the previous chapter it did not prove 

possible to fit the PTEN_pS380_T382_T383 or PDK1_pS241 observables in the MRC5 

dataset. Suggesting that the model at present does not sufficiently capture the regulatory 

mechanisms which control the activation of these proteins. In addition it did not prove 

possible to obtain a fit for 4E-BP1_pS65 in any of the three treatments analysed in 



 

188 
 

MRC5 cells suggesting that a more in depth analysis of mTORC1 regulation of 4E-BP1 

activity is required. As this would likely require the construction of second dynamic 

model to analyse possible regulatory frameworks for 4E-BP1 this was not attempted in 

this work [251] [252].  

A key factor throughout this work has been the reaction of the ACC_pS79 observable as 

a read out of AMPK activity. Following Zoledronate withdrawal there is again an 

interesting response observed for this protein. In MRC5 cells there is an initial increase 

ACC_pS79 phosphorylation followed by a decrease over the remainder of the time 

course. This size of this peak is extremely small when compared to the relative changes 

observed for both starvation-restimulation and Rapamycin withdrawal. In contrast 

however a transient peak is observed in the MSC dataset which follows the same pattern 

as the peak observed in MRC5 cells following starvation-restimulation. Given the 

apparent regulatory constrictions placed on AMPK activity observed in MSCs in the 

previous two treatments this is a very interesting observation and suggests that 

Zoledronate in MSCs could have a similar effect to that observe with starvation-

restimulation in MRC5 cells. Upon comparison of the response of MRC5 cells to 

Zoledronate withdrawal and starvation-restimulation it is apparent that a number of 

differences exist. In particular as already described the reaction of ACC_pS79 differs 

greatly between these treatments. In addition whilst the kinetic profile of the 

AKT_pS473 observable is very similar between the treatments there is a far larger level 

of activation observed following starvation-restimulation than in Zoledronate treatment. 

The same can be said when comparing Zoledronate withdrawal to Rapamycin 

withdrawal in MRC5 cells with very few similarities observed with the exception of the 

AKT_pT308 observable whose kinetic profile is extremely similar in response to both 

treatments. 

As was the case in the previous chapter the response of MSCs to Zoledronate 

withdrawal and starvation-restimulation is far less varied with a number of profiles 

displaying similar behaviour. As previously described the ACC_pS79 observable is the 

exception to this with large increase in phosphorylation observed in response to 

Zoledronate withdrawal but not starvation-restimulation. Upon comparison of 

Zoledronate withdrawal to Rapamycin withdrawal in MSCs this pattern repeats itself 

with a large number of kinetic profiles displaying similar behaviour.  There is a greater 

level of activation in the Rapamycin withdrawal dataset among the observables 
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upstream of mTORC1 when compared to Zoledronate withdrawal with PDK1_pS241 

again proving to be the exception to this. In contrast there is far greater level of 

activation observed in the mTORC2 dependent AKT_pS473 variable in response to 

Zoledronate withdrawal compared to Rapamycin withdrawal. This is not unexpected 

however as the Rapamycin treatment protocol used above was designed not to elicit 

chronic inhibition of the mTOR network and therefore mTORC2 should have remained 

active over the length of the time course. The contrasting differences of the AKT 

phosphosites in response to Zoledronate withdrawal and Rapamycin withdrawal 

however provides further evidence of RPPAs ability to provide consistent data which 

can be used to calibrate dynamic models. 

Within this chapter it proved possible to perform in depth analysis of the data obtained 

during the parameter estimations using the genetic algorithm by utilising the Pycotools 

python package. Our analysis revealed that the top estimation profiles obtained during 

the parameter estimations all followed the same kinetic profile with extremely tight 

confidence intervals in both the MRC5 and MSC parameter estimations. In addition 

whilst the analysis of the total number of runs for both estimations revealed a large 

variation in parameter values per parameter. The top 100 estimations displayed far less 

variation with a number of parameters being tightly constrained to a small set of values. 

Interestingly a comparison of the level of parameter variation between the cell types 

revealed that the same parameters for each cell type were being constrained by the 

model and more significantly a number of these parameters were being constrained to 

similar values. This analysis also identified two areas in which the model struggled to 

constrain parameters. These were identified as reaction parameters relating to the 

TSC1/2 complex and the parameters concerned with Ras and Rheb protein production 

and degradation. In order to assist the model in fitting these parameters further 

experimental data should be produced and added to the parameter estimations.  

Whilst it did not prove possible to analyse the correlation between either FOXO3A-

DAPI or Rheb-LAMP1 using imagestream flow cytometry in this study the results 

above indicate that this should be possible with experimental refinement. Whilst 

FOXO3A phosphorylation does not always correspond to activity or indeed to nuclear 

localisation it is possible that a different result would be obtained if total FOXO3A was 

assayed in place of FOXO3A_pS253. The lack of correlation between Rheb-LAMP1 is 

harder to explain. Whilst it was expected that Rheb localisation at the lysosome would 



 

190 
 

be disrupted following Zoledronate treatment the lack of correlation in the untreated 

samples suggests that there is no change in correlation across the time course. This 

could possibly be due to non-specific binding of the antibody concerned resulting in an 

inability of the analysis software to determine a correct correlation.  

Overall the aims of this work have been met with a dynamic model capable of 

reproducing the response of both MRC5 cells and MSCs to Zoledronate withdrawal. 

Due to the level of cell death observed in MRC5 cells the initial concentration of 

Zoledronate used was required to be reduced resulting in the production of a consistent 

kinetic profile using RPPA. As in previous chapters problems arose in the fitting of the 

PTEN, PDK1 and 4E-BP1 observables assayed suggesting that further regulation of 

these proteins is required within the model. A comparison between the three treatments 

revealed that whilst large differences occur in MRC5 cells a number of similarities exist 

in MSCs. In addition whilst the observed output for ACC_pS79 in starvation-

restimulation and Rapamycin withdrawal led to similar profiles the ACC_pS79 kinetic 

profile for Zoledronate withdrawal displayed more similarity to that of the MRC5 

starvation-restimulation. In depth analysis of the parameter estimations for both cell 

types revealed very little variation between the top parameter ensembles with similar 

parameter groups being constrained or unconstrained in both estimations. Imagestream 

analysis was unable to capture the dynamics expected following Zoledronate treatment 

however this may be obtained following further refinement of the experimental process. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



 

191 
 

 

 

 

 

 

 

 

 

 

7. Discussion 
 

 

 

 

 

 

 

 

 

 



 

192 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

193 
 

7.1 Summary 

The study aims and objectives have been largely met. Our initial hypothesis was as 

follows, that due to the fact that both starvation-restimulation and Zoledronate treatment 

leads to the inhibition of both mTOR complexes, the response in both MRC5 cells and 

MSCs should be similar between these two treatments. However as acute treatment of 

Rapamycin leads only to the inhibition of mTORC1, this treatment would therefore lead 

to a separate response to the other treatments analysed. This hypothesis has been largely 

proven to be true with both the response of the mTOR network to restimulation 

following starvation and Zoledronate withdrawal being dependent upon AMPK. 

Following Rapamycin treatment however the response of the mTOR network was found 

to be largely dependent upon the P70S6K negative feedback loop. However whilst 

AMPK may be the key regulatory component following both starvation-restimulation 

and Zoledronate withdrawal this appears to occur through two distinct mechanisms. 

 A total of three methodologies have been investigated and their suitability to provide 

accurate time course data assessed. Whilst further investigation is warranted, RPPA 

proved capable of producing accurate and reproducible time course data capable for 

calibrating a dynamic model of the mTOR network. The second methodology assessed, 

intracellular flow cytometry was capable of producing the time course data required 

however the limitations associated with this technology made it unsuitable in 

comparison to both western blots and RPPA. The final methodology assessed was 

imagestream flow cytometry. Whilst this methodology suffers from the same drawbacks 

as intracellular flow cytometry it provides a powerful analysis tool for cellular 

localisation and further investigation is warranted into its ability to provide the data 

required for network calibration.  Upon restimulation following a period of serum 

starvation the response of MRC5 cells is dependent upon AMPK signalling with an 

increase in ACC_pS79 observed. This is not observed in MSCs raising the possibility 

that AMPK signalling is placed under stringent regulation in MSCs compared to MRC5. 

Whilst the kinetics of the mTOR network following starvation-restimulation depend 

upon AMPK ACC signalling our model revealed this not to be the case following 

Rapamycin withdrawal. The P70S6K feedback loop was identified as the key signalling 

reaction in MRC5 cells following Rapamycin withdrawal with a change in network 

topology required in order to achieve an acceptable model fit. As with the starvation-

restimulation data the data obtained following Rapamycin withdrawal data for MSCs 
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displayed far less variation when compared to the MRC5 dataset. However PDK1 was 

identified as differentially regulated in both MRC5 and MSCs following Rapamycin 

withdrawal. As with the two previous MSC datasets the data obtained following 

Zoledronate withdrawal displayed less variation compared to MRC5 cells. Following 

parameter estimation with both MRC5 and MSC datasets for Zoledronate withdrawal a 

number of parameters showed similar constraints in their values following fitting with 

the genetic algorithm. Two areas of the network were also identified were the estimation 

algorithms could not pin down a refined set of parameter values. This project again 

demonstrated the significant power in using an integrative experimental and 

computational approach to analyse biological signalling networks. Using the same 

initial topology with minimal alterations, it was possible to analyse how the mTOR 

network is affected during restimulation following three separate life extending 

treatments. This would not have been possible using a purely experimental approach, 

and indeed the unbiased model calibration performed served to highlight a number of 

observables whose kinetic behaviour could not be explained by the model selected. 

7.1.1 Summary of key findings 

 Reverse Phase proteins arrays provide a high quality medium through-put 

alternative to western blotting 

 Following serum starvation, AMPK signalling is the pivotal section of the 

mTOR networks response in MRC5 cells but not in MSCs 

 Following Rapamycin withdrawal, mTOR signalling is dependent upon the 

P70S6K negative feedback loop 

 Following Zoledronate withdrawal there is an activation of AMPK signalling in 

MSCs but not in MRC5 cells 

 Imagestream flow cytometry did not prove capable in this study of providing co-

localisation timecourse data for either Rheb or FOXO3a 

7.2 Key study observations 

7.2.1 Reverse phase protein arrays provide a high quality medium 

through-put alternative to western blotting 

The work carried out in chapter 3 cleary indicated the suitability of RPPA to produce 

large scale datasets required for the calibration of dynamic models. Building upon this 

the subsequent chapters in this work proved that this data could be used to achieve the 
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calibration of a dynamic model of the mTOR network for two cell types across three 

separate treatments.  Comparison of the data obtained in MRC5 cells in chapter 4 to 

previously published work examining the effect of amino acid deprivation on the 

mTOR network revealed similar kinetic profiles for the AMPK read out ACC_pS79 and 

for both AKT_pT308 and AKT_pS473 [172]. In addition to this, recent research has 

utilised RPPA to calibrate a dynamic model of cytokine regulation of osteogenesis with 

the aim of providing a therapeutic tool for future research [195]. Whilst this project has 

achieved a large amount of success in using RPPA in dynamic modelling there are a 

number of limitations associated with this methodology. As previously discussed 

antibody availability is the primary limitation associated with RPPA, whilst this did not 

prove particularly problematic in this project due to the extensive research previously 

carried out on the mTOR network there were certain proteins that could not be assayed. 

Amongst these AMPK_pT172, P70S56K_pT389, TSC2_pT1462 and PRAS40_pS183 

would be of particular interest to assay. In addition although the previous work supports 

our findings using RPPA for starvation-restimulation validation work is still required 

using western blots to verify the findings presented in this work. 

7.2.2 Dynamic modelling reveals the importance of AMPK signalling in 

response to starvation-restimulation in MRC5 fibroblasts but not 

MSCs 

Recent work has revealed the interplay between AMPK and mTOR signalling following 

restimulation with amino acids [172]. The work presented in chapter 4 further supports 

these findings with the ACC_pS79 data proving to have the largest effect on fitting the 

MRC5 data to the model. This resulted in the requirement for the removal of baseline 

AMPK and ACC phosphorylation from the model fitting. The reason for the inability of 

the model to fit the data with a baseline activation of AMPK within the model is likely 

due to the complex regulation of AMPK itself. As the primary focus of this work was 

on the identification of differences between life extending treatments it was decided that 

additional modelling of potential regulatory mechanisms should not be undertaken as 

the identification of AMPKs importance in starvation-restimulation satisfied the original 

objectives. Interestingly in MSCs the transient peak observed in the literature for 

AMPK_pT172 and in the MRC5 data for ACC_pS79 was not observed. This suggests 

that this section of the network differs between the MSCs and differentiated MRC5 

cells. It is possible that the stringent regulation placed on stem cells compared with 
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differentiated cells could account for this difference. However recent research showing 

that AMPK can act to bypass the inhibitory effect of caloric restriction in intestinal stem 

cells taken from mice suggests that under periods of caloric restriction stem cells 

possess protective mechanisms in order to prevent proliferation or differentiation under 

sub-optimal conditions [209]. As AMPK regulation of mTOR was not the primary focus 

of this work the AMPK-mTOR network connections presented here represent an 

abstracted version of the work presented in Dalle Pezze et al 2016. As such further 

analysis is required to elucidate the mechanisms governing AMPK activity during 

starvation-restimulation and how this differs between stem cells and differentiated cells. 

7.2.3 mTOR signalling following rapamycin withdrawal is dependent 

upon the P70S6K negative feedback loop 

Rapamycin was included in this study as it is considered to be the ‘gold standard’ in 

terms of pharmalogically extending lifespan. In addition previous work produced by at 

the University of Sheffield had used Rapamycin in comparison studies with Zoledronate 

[82]. It is however  not considered to be a particularly clean drug with many off target 

effects [219]. This was also shown to be the case in this study with a large amount of 

variation observed in the MRC5 dataset. Interestingly this variation was not observed in 

the MSC dataset further supporting the idea that a set of extremely stringent regulatory 

mechanisms exist in stem cells which are absent in differentiated cells [253]. In 

addition, in response to Rapamycin withdrawal the P70S6K negative feedback loop was 

identified as the key section of the mTOR signalling network with a disconnect 

observed between the responses of proteins upstream of mTORC1 and downstream of 

MTORC1. As it was not possible to assay the activity of P70S6K directly using RPPA 

it will be necessary in future to assay this protein and to ascertain as to whether the 

above assumption is correct. In addition to providing a standard drug treatment with 

which to compare Zoledronate to, Rapamycin also served to act as a comparison 

treatment between total and partial mTOR inhibition. It would be of interest to take this 

work further by investigating the response of both MRC5 and MSCs to chronic 

Rapamycin treatment targeting the mTORC2 complex in addition to the mTORC1 

complex.  
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7.2.4 Zoledronate withdrawal leads to an activation of the AMPK 

signalling pathway in MSCs but not MRC5 cells 

The recent finding that Zoledronate treatment leads to lifespan extension in MSCs 

supports a growing body of evidence that Zoledronate and other N-BPs act to extend 

lifespan and inhibit DNA damage [124]. In addition it has been found that the treatment 

of MSCs with Zoledronate for a period of three days is sufficient to achieve lifespan 

extension through the mTOR network [82]. The work presented here aimed at building 

upon these findings and establishing the mechanistic reaction of the mTOR network to 

Zoledronate withdrawal. Treatment of MRC5 cells with Zoledronate at 1μM resulted in 

cell death and with high levels of cell death not observed at 0.01μM. Indeed the 

cytotoxicity of Zoledronate in fibroblasts is ill-defined with little to no data available for 

MRC5 fibroblasts [254]. This therefore meant that it was not possible to cross reference 

this finding with other research. The model used in this work proved capable of fitting 

the majority of the data produced by the RPPA following Zoledronate withdrawal on 

the first attempt. However a number of observables could not be fitted with the current 

model topology. These included PTEN, PDK1 and 4E-BP1, whilst it was possible to 

obtain a fit for both PTEN and PDK1 for the starvation-restimulation MRC5 dataset this 

was not possible for either the Rapamycin withdrawal or Zoledronate withdrawal 

datasets. The regulation of PTEN has yet to be fully elucidated and therefore the 

defining of extra regulatory reactions for this protein and its relationship with the 

mTOR network would be better suited to an individual project. Whilst the reactions 

governing PDK1 activation have previously been defined, how this regulation is 

affected by Rapamycin and Zoledronate treatment has yet to be investigated [51]. 

Possibly the most interesting observation regarding the kinetics of Zoledronate 

withdrawal occurs in MSCs with an increase in phosphorylation of ACC_pS79 

observed. This occurs over the same time frame as the transient peak observed in 

response to starvation-restimulation in MRC5 cells. Given the finding that the 

phosphorylation of ACC_pS79 does not increase following starvation-restimulation or 

Rapamycin withdrawal in MSCs and the relative importance of AMPK signalling in 

MSC proliferation and differentiation this finding is very surprising. When the 

remainder of the observables assayed were compared across treatments the reaction of 

the mTOR network in MSCs was similar with the exception of ACC_pS79. This 

suggests that whilst Zoledronate treatment and withdrawal exerts a similar response by 

the mTOR network to all three treatments this is not the case with the AMPK network. 
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Indeed recent research has suggested that prenylation of LKB1, a primary activator of 

AMPK affects its localisation within the cell [255]. It is as yet unknown whether or not 

the prenylation inhibition affects the activity of LKB1. Whilst research has been carried 

out investigating the role of AMPK in bone metabolism this does not appear to include 

the research into the effect of bisphosphonates on AMPK activation. 

7.2.5 Imagestream 

The ability of imagestream flow cytometry to analyse cellular localisation and to 

produce data capable of calibrating a dynamic model has been explored throughout the 

work presented here. The data collected showed that this methodology is an extremely 

powerful tool capable of analysing in detail the cellular localisation of proteins within 

the cell. Whilst the result obtained in this work did not show co-localisation for either of 

the protein analysed this is likely due to the need to refine the experimental process. 

Indeed FOXO3A localisation has previously been measured successfully using this 

technology [256]. This suggests that it would be possible to refine and optimise the 

protocols used throughout this work in order to successfully measure FOXO3A nuclear 

localisation. Whilst Rheb was also assayed for each treatment it localisation was not 

expected to be altered by either starvation-restimulation of Rapamycin treatment. The 

lack of correlation with the lysosomal marker LAMP1 prior to Zoledronate treatment 

suggests possible non-specific binding form the antibody used. Imagestream flow 

cytometry whilst a very powerful analysis tool presents a number of difficulties which 

need to be overcome in order for this technology to become a frequently utilised tool in 

dynamic modelling. Aside from the problems discussed above there is also the difficulty 

in producing small time points required to observe fast acting signalling events. This is 

because cells a required to remain intact (as opposed to lysed for western blots or 

RPPA) throughout flow cytometry protocols. This raises the question of how to inhibit 

further signalling once a sample is removed for analysis. In this work cells were treated 

with ice cold PBS and culture medium in order to overcome this problem however due 

to this smaller time points were not attempted. Due to the reasons discussed above it has 

not proved possible to validate imagestream flow cytometry as a methodology for 

producing time course data required for the calibration of dynamic models although this 

may prove possible with further analysis. 
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7.3 Limitations and future study 

7.3.1 Technical 

Throughout this work a number of technical challenges arose particularly concerning 

generation of time course calibration data. The RPPA has proved successful with 

regards to generating the large amount of time course data required for this work. It is 

however a relatively new and largely untested technology in field of systems biology 

and dynamic modelling. As such in addition to performing assays of proteins which 

currently cannot be measured using RPPA such as P70S6K and TSC2_ pT1462 it will 

also be necessary to perform validation experiments confirming the findings present 

above. Of particular interest is the response of ACC_pS79 to Zoledronate withdrawal. 

As recent research has shown that the AMPK activator LKB1 possesses a post 

translation farnesylation modification the activation of AMPK may not only be of 

biological interest but also could serve as a read-out of protein prenylation in 

Zoledronate treated cells. One of the key findings of this work was that the response of 

ACC_pS79 to both serum starvation-restimulation in MRC5 cells and in response to 

Zoledronate withdrawal is very similar. This however appears to be controlled through 

two distinct mechanisms with amino acids acting activate AMPK in MRC5 cells upon 

restimulation and with the re-prenylation of LKB1 in MSCs following Zoledronate 

withdrawal. Further investigation of these mechanisms and in particular how they affect 

by bisphosphonate treatment will be of primary importance in further work. The lack of 

this response in MRC5 cells following Zoledronate withdrawal is interesting. As it did 

not prove possible to confirm de-prenylation using imagestream flow cytometry it will 

be necessary to confirm this by western blots in MRC5 cells.  

In addition to RPPA the work presented here also attempted to utilise flow cytometry as 

an alternative to western blotting. This proved only partially successful when using a 

standard flow cytometer. In addition to this there were a number of technical limitations 

associated with this technology which could not be overcome. When producing time 

course data it is of utmost importance to prevent further cell signalling from taking 

place after the designated time point. Whilst in Western blotting and RPPA this 

achieved by the use of a lysis buffer in flow cytometry it is required that the cells 

remain intact throughout the process. It was therefore necessary to attempt to inhibit cell 

signalling by carrying out the flow cytometry procedure at ice cold temperatures. As the 

flow cytometry procedure used here prior to cell fixation took between 10-15 minutes 
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depending upon sample numbers an argument can be made that that cellular signalling 

could still be occurring during this period. Therefore the data collected would not be 

representative of the time points being analysed.  

The primary focus of the Imagestream flow cytometry was to investigate the cellular 

localisation of both FOXO3A and Rheb in response to each treatment. Whilst the 

analysis of intracellular localisation proved possible further refinement is required in 

order to analyse if time course data can be produced using this methodology. As such 

further optimisation should be performed analysing the localisation of total FOXO3A 

and investigating alternative antibodies for Rheb and possibly Ras. 

7.3.2 Computational 

 The work presented above was ideally suited to an integrated computational modelling 

study. Indeed without this approach it would not have proved possible to identify a 

number of key sections within the mTOR network in response to each treatment. The 

modelling approach above is one that has been used on a number of previous 

investigations by our group [171, 172, 203, 233]. There were however two key changes 

presented here compared to previous work, 1) the model topology could only undergo 

minor changes between treatments and this therefore meant that, 2) data was removed 

from datasets to identify key areas within the network topology. Due to time constraints 

and the time required to produce data for each treatment, it was necessary to carry out 

the computational modelling work for each treatment individually. This therefore meant 

that once the network topology was in place it could only undergo minor changes with 

these usually relating to initial concentrations representing the changes between each 

treatment. An alternative methodology which could be used in future studies would be 

to attempt to fit all the data presented here for each cell type in one model. This would 

require presenting the model with all three datasets representing each treatment and 

performing parameter estimations. It may therefore be possible to identify a single 

parameter set capable of fitting the restimulation data for each treatment in both cell 

types.  

Throughout this work the python package Pycotools was used to analyse the data 

obtained from the parameter estimations in Copasi. In chapter 6 an updated version of 

this package was available and proved capable of providing in depth analysis of the 

parameter estimations obtained in response to Zoledronate withdrawal. The work 
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presented in this chapter displays only a small number of analysis tools available within 

this package. It would be interesting to apply these analysis techniques to the data 

obtained in chapters 4 and 5. In addition at present the Pycotools package is still in the 

development phase and in future a number of other analysis tools are expected to be 

available including sensitivity analysis and identifiability which could be used to 

analyse the parameter estimations presented in chapters 4, 5 and 6. 

7.3.3 Biological 

The network used throughout this work represents an abstracted version of the mTOR 

network and is by no means a complete representation of this network. Indeed there are 

a number of signalling networks associated with the mTOR network not described here 

of which three are of particular interest given the findings above. These include the 

DNA damage response, MSC proliferation and differentiation and the process of 

autophagy.  Initial work on this project included the building and refining of both a 

DNA damage response (DDR) network adapted from Procter et al 2008 and a model of 

MSC differentiation (osteogenesis) [134, 257, 258].  

The relationship between Zoledronate treatment and the DNA damage repair 

mechanisms and how these relate to decreased mortality and lifespan extension have 

only broadly been explored [82, 118, 124]. However this area is coming under increased 

scrutiny as researchers investigate the repurposing of pharmaceuticals already available 

to patients. Given the connections between the mTOR network and the DDR described 

in section 1.5.2 and the findings that Zoledronate inhibits the mTOR network and its 

withdrawal in MSCs elicits a similar response in AMPK signalling to that observed for 

starvation-restimulation in MRC5 cells, this warrants future work into the connections 

between Zoledronate treatment and the DDR. The work presented here would provide 

the framework for this to be carried out. As already stated a DDR module has already 

been defined using a previously published model and connected into the model used 

throughout this work. It would be possible to simulate the predicted response to DNA 

damage for each treatment and cell type using the calibrated model described above. 

This could then be tested against experimental data produced using RPPA with 

irradiation used to induce DNA damage following each treatment and time course 

produced in the same manner as above. Model predictions could then be compared to 

the experimental data allowing for the evaluation of the models ability to fit the DDR 

data.  
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Zoledronate treatment is only prescribed to patients that have already developed 

osteoporosis with the aim of inhibiting bone resorption. This however only acts to bring 

bone resorption and bone formation back into balance and one of the primary aims of 

osteoporosis research is how to maintain bone formation whilst preventing bone 

resorption with age. Whilst this was not a primary aim of this work it was something 

which was discussed and a differentiation network was developed with this aim in 

mind. The mTOR network has a number of functions one of which is cellular growth. 

As Zoledronate inhibits mTOR signalling this also inhibits cellular growth, proliferation 

and differentiation. Linking the mTOR model discussed throughout this work with a 

model of proliferation/differentiation would allow for the analysis of how each 

treatment in MSCs affects the differentiation process. As with the DDR experimental 

data could then be collected using RPPA to examine if the model is capable of 

reproducing the cellular response of MSCs during differentiation following each of the 

treatments discussed above. 

7.4 Research impact 

The impact of this research on ageing lies primarily in its focus on the mTOR network. 

How this network is regulated and how this regulation changes with age is one of the 

primary focuses of ageing research. The aim of this work was to build upon previous 

work exploring the interconnection of three separate life extending treatments with the 

mTOR network and to explore how the response observed in the mTOR network differs 

between each treatment. It has proved possible to show an increase in AMPK signalling 

following serum-starvation which is consistent with previously published data. In 

addition this reaction was observed in MSCs following Zoledronate treatment. This is 

likely to be due the de-prenylation of LKB1 upstream of AMPK. This work has further 

highlighted the importance of AMPK signalling in ageing research with further work 

required to elucidate the important role that this protein plays in lifespan extension. 
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9.1 Appendix A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1: AKT_pT308 signalling. MRC5 cells were treated with 50μM Torin1 for 24 

hours with samples taken at 0 hours and 24 hours. (A+E) unstained sample (B) 50μM Torin1 0 

hours, (C) 50μM Torin1 24 hours, (D) Overlay histogram displaying a comparison for each time 

point, (F) Untreated sample 0 hours, (G) Untreated sample 24 hours, (H) Overlay histogram 

displaying a comparison for each time point.   
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Figure A2: Intracellular flow cytometry is not capable of producing calibration 

time course data for a dynamic model for mTORC1_pS2448. Cells were serum 

starved overnight and then re-stimulated with FBS and L-Glutamine containing media with time 

points collected after (A) 0 minutes, (B) 5 minutes, (C) 15 minutes  and (D) 30 minutes (n=3) 

representative of 1 repeat shown. (F) Overlay histogram displaying a comparison for each time 

point. (G) The average Geometric mean for each time point plotted against time.  
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Figure A3: Intracellular flow cytometry is not capable of producing calibration 

time course data for a dynamic model for AKT_pS473. Cells were serum starved 

overnight and then re-stimulated with FBS and L-Glutamine containing media with time points 

collected after (A) 0 minutes, (B) 5 minutes, (C) 15 minutes  and (D) 30 minutes (n=3) 

representative of 1 repeat shown. (F) Overlay histogram displaying a comparison for each time 

point. (G) The average Geometric mean for each time point plotted against time.  
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Figure A4: Insulin treatment enhances the capable of Intracellular flow cytometry 

to produce calibration time course data for a dynamic model for 

mTORC1_pS2448. Cells were serum starved overnight and then re-stimulated with FBS and 

L-Glutamine media supplemented with 100nM insulin with time points collected after (A) 0 

minutes, (B) 5 minutes, (C) 15 minutes  and (D) 30 minutes (n=3) representative of 1 repeat 

shown. (F) Overlay histogram displaying a comparison for each time point. (G) The average 

Geometric mean for each time point plotted against time. 
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Figure A5: Insulin treatment enhances the capable of Intracellular flow cytometry 

to produce calibration time course data for a dynamic model for AKT_pS473. Cells 

were serum starved overnight and then re-stimulated with FBS and L-Glutamine media 

supplemented with 100nM insulin with time points collected after (A) 0 minutes, (B) 5 minutes, 

(C) 15 minutes  and (D) 30 minutes (n=3) representative of 1 repeat shown. (F) Overlay 

histogram displaying a comparison for each time point. (G) The average Geometric mean for 

each time point plotted against time. 
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9.2 Appendix B 

Table B1: Initial Concentrations for starvation-restimulation model 

compartment ml 1 

AA mmol/ml 10 

PI3K mmol/ml 10 

PI3K_P mmol/ml 1 

S6K_P mmol/ml 1 

PDK1 mmol/ml 10 

PDK1_P mmol/ml 1 

AKT mmol/ml 20 

AKT_pT308 mmol/ml 0.5 

AKT_pS473 mmol/ml 0.5 

mTORC2_P mmol/ml 1 

AKT_pT308_pS473 

mmol/ml 0.5 

PI3K_V mmol/ml 10 

PI3K_V_P mmol/ml 1 

mTORC2 mmol/ml 5 

TSC1/2 mmol/ml 5 

TSC1/2_P mmol/ml 1 

Rheb mmol/ml 5 

Rheb(GTP) mmol/ml 1 

mTORC1 mmol/ml 5 

mTORC1_P mmol/ml 1 

Rapamycin mmol/ml 0 

S6K mmol/ml 5 

FPPS mmol/ml 5 

Ras(GTP) mmol/ml 1 

Ras mmol/ml 5 

FPPS_i mmol/ml 0 

Zol mmol/ml 0 

Ras(GDP) mmol/ml 2 

Rheb(GDP) mmol/ml 2 

Sink mmol/ml 0.1 

FOXO3A mmol/ml 5 

FOXO3A_P mmol/ml 1 

AMPK mmol/ml 5 

AMPK_P mmol/ml 1 

ACC mmol/ml 5 

ACC_P mmol/ml 0 

mTOR mmol/ml 0 

4EBP1 mmol/ml 5 

4EBP1_pS65 mmol/ml 1 
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PTEN mmol/ml 0 

PTEN_P mmol/ml 1 

S6 mmol/ml 5 

S6_pS235 mmol/ml 1 

AKT473  1 

AKT308  1 

 

Table B2 – Final parameter values Starvation-restimulation genetic algorithm MRC5 cells 

PI3K AA  7.32E-05 

PI3K dephos  1.95E-05 

S6K feedback loop  3.47E-05 

PDK1 act  0.04562 

PDK1 dephos  0.624943 

AKT -> 308  6.20E-06 

AKT308 -> dual  7541.31 

AKT -> 473  1.49E-06 

AKT473 -> dual  7681.41 

Dual -> AKT  0.002034 

Dual -> 308  1.01E-05 

Dual -> 473  8.89E-06 

308 -> AKT  0.00066 

473 -> AKT  0.01001 

PI3K_V act  384.059 

PI3K_V dephos  1.94E-05 

mTORC2 act  1.75E-06 

mTORC2 dephos  0.000242 

TSC1/2 de-act 308  6.02E-06 

TSC1/2 de-act dual  63.8319 

TSC1/2 act  0.159927 

Rheb deact  0.024202 

Rheb act  0.000949 

mTORC1 act  0.00039 

mTORC1 dephos  1.31E-05 

S6K act  0.022449 

S6K dephos  2.50E-06 

PI3K Ras  2.18E-05 

Ras act  856.741 

FPPS inact  10000 

FPPS act  10000 

Ras deact  117.929 

Ras gdp-gtp  0.000147 

Rheb GDP GTP  3.51E-06 

Rheb deg  0.000797 
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Rheb(GDP) deg  0.009059 

Rheb(GTP) deg  56.2759 

Ras deg  0.000365 

Ras(GDP) deg  0.000672 

Ras(GTP) deg  4.15865 

Sink - Rheb  0.112345 

Sink Ras  0.00349 

AKT_pT308_pS473 

FOXO  2.61E-05 

FOXO3A  0.001366 

AMPK dephos  0.659257 

AMPK_P  7.38403 

AMPK PI3K  0.031079 

ACC_P  0.047271 

ACC dephos  0.136097 

PTEN act  0.01853 

Rapamycin  0.062519 

mTOR -> MTORC1  0.000488 

4EBP1 Act  0.004473 

4EBP1 inact  0.000765 

PTEN inact  0.020089 

S6 Act  0.012627 

S6 inact  0.174259 

mTOR AA  0.000126 

mTOR AMPK  0.017255 

 

Table B3 – Final parameter values Starvation-restimulation Hooke and Jeeves MRC5 cells 

PI3K AA  0.000107 

PI3K dephos  1.00E-06 

S6K feedback loop  1.03E-06 

PDK1 act  0.050029 

PDK1 dephos  0.678169 

AKT -> 308  7.00E-06 

AKT308 -> dual  0.001318 

AKT -> 473  0.002157 

AKT473 -> dual  59.6159 

Dual -> AKT  0.007048 

Dual -> 308  1.20E-05 

Dual -> 473  0.406246 

308 -> AKT  2.98E-06 

473 -> AKT  0.737759 

PI3K_V act  0.018645 

PI3K_V dephos  3.53299 

mTORC2 act  1.31272 
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mTORC2 dephos  0.034439 

TSC1/2 de-act 308  10.153 

TSC1/2 de-act dual  8.86E-05 

TSC1/2 act  0.003557 

Rheb deact  429.299 

Rheb act  3.99E-05 

mTORC1 act  1.06E-06 

mTORC1 dephos  5.83E-06 

S6K act  0.022104 

S6K dephos  1.00E-06 

PI3K Ras  5.57E-05 

Ras act  815.83 

FPPS inact  10000 

FPPS act  10000 

Ras deact  0.000226 

Ras gdp-gtp  3.68E-05 

Rheb GDP GTP  2.36E-05 

Rheb deg  0.000371 

Rheb(GDP) deg  6.16E-06 

Rheb(GTP) deg  211.892 

Ras deg  3.50E-05 

Ras(GDP) deg  10.7584 

Ras(GTP) deg  0.142144 

Sink - Rheb  8.22E-05 

Sink Ras  4.71E-05 

AKT_pT308_pS473 

FOXO  1.44E-05 

FOXO3A  0.002287 

AMPK dephos  2.49068 

AMPK_P  0.01548 

AMPK PI3K  0.034879 

ACC_P  2.05622 

ACC dephos  1.22348 

PTEN act  0.020961 

Rapamycin  0.062519 

mTOR -> MTORC1  0.000937 

4EBP1 Act  0.003089 

4EBP1 inact  0.000177 

PTEN inact  0.039305 

S6 Act  0.01669 

S6 inact  0.234351 

mTOR AA  0.00017 

mTOR AMPK  0.018407 
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Table B4 – Final parameter values Starvation-restimulation genetic algorithm MSCs 

PI3K AA  4.78E-05 

PI3K dephos  3.69E-05 

S6K feedback loop  8.87E-06 

PDK1 act  0.000201 

PDK1 dephos  1.99E-05 

AKT -> 308  0.000495 

AKT308 -> dual  1.09E-06 

AKT -> 473  0.077915 

AKT473 -> dual  0.000152 

Dual -> AKT  5.10446 

Dual -> 308  96.4466 

Dual -> 473  42.443 

308 -> AKT  5.16E-05 

473 -> AKT  0.006095 

PI3K_V act  0.021595 

PI3K_V dephos  21.0726 

mTORC2 act  8.42E-06 

mTORC2 dephos  0.036055 

TSC1/2 de-act 308  3.30068 

TSC1/2 de-act dual  0.002608 

TSC1/2 act  0.010819 

Rheb deact  0.061057 

Rheb act  352733 

mTORC1 act  0.034379 

mTORC1 dephos  2.19078 

S6K act  2.13E-06 

S6K dephos  8.79E-05 

PI3K Ras  0.004699 

Ras act  11.8046 

FPPS inact  508201 

FPPS act  10212.8 

Ras deact  0.022624 

Ras gdp-gtp  3.92797 

Rheb GDP GTP  0.007522 

Rheb deg  0.073574 

Rheb(GDP) deg  1.21E-05 

Rheb(GTP) deg  416.765 

Ras deg  1.85E-06 

Ras(GDP) deg  14.48 

Ras(GTP) deg  5.57015 

Sink - Rheb  301276 

Sink Ras  6.14E-06 

AKT_pT308_pS473 2.78979 



 

229 
 

FOXO  

FOXO3A  0.000516 

AMPK dephos  0.072417 

AMPK_P  0.007556 

AMPK PI3K  0.000305 

ACC_P  0.000885 

ACC dephos  0.000338 

PTEN act  1.06E-06 

Rapamycin  0.062519 

mTOR -> MTORC1  12236.1 

4EBP1 Act  1.97E-06 

4EBP1 inact  0.003185 

PTEN inact  17.2284 

S6 Act  0.155236 

S6 inact  0.002656 

mTOR AA  0.02246 

mTOR AMPK  0.03304 

 

Table B5 – Final parameter values Starvation-restimulation Hooke and Jeeves MSCs 

PI3K AA  0.004624 

PI3K dephos  0.013564 

S6K feedback loop  0.032947 

PDK1 act  1.00E-06 

PDK1 dephos  1.00E-06 

AKT -> 308  0.000882 

AKT308 -> dual  5118.06 

AKT -> 473  0.002151 

AKT473 -> dual  1.00E-06 

Dual -> AKT  1.00E-06 

Dual -> 308  0.003408 

Dual -> 473  0.007984 

308 -> AKT  1.00E-06 

473 -> AKT  0.003854 

PI3K_V act  9596.25 

PI3K_V dephos  0.000556 

mTORC2 act  0.002781 

mTORC2 dephos  0.010132 

TSC1/2 de-act 308  0.001008 

TSC1/2 de-act dual  4510.86 

TSC1/2 act  18.3166 

Rheb deact  5.23133 

Rheb act  0.208629 

mTORC1 act  4.29E-05 
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mTORC1 dephos  0.0051 

S6K act  0.053437 

S6K dephos  3.76E-06 

PI3K Ras  0.006521 

Ras act  1.00E-06 

FPPS inact  10000 

FPPS act  10000 

Ras deact  1.00E-06 

Ras gdp-gtp  0.006999 

Rheb GDP GTP  0.000609 

Rheb deg  0.325024 

Rheb(GDP) deg  1.97464 

Rheb(GTP) deg  7202.45 

Ras deg  0.017321 

Ras(GDP) deg  0.00148 

Ras(GTP) deg  1.00E-06 

Sink - Rheb  35.2241 

Sink Ras  1.87393 

AKT_pT308_pS473 

FOXO  0.00029 

FOXO3A  1.00E-06 

AMPK dephos  0.388339 

AMPK_P  1.00E-06 

AMPK PI3K  11.6022 

ACC_P  0.0107 

ACC dephos  0.576476 

PTEN act  13.0413 

Rapamycin  0.062519 

mTOR -> MTORC1  0.000488 

4EBP1 Act  1.00E-06 

4EBP1 inact  0.00087 

PTEN inact  22.5255 

S6 Act  0.165683 

S6 inact  1.00E-06 

mTOR AA  0.000235 

mTOR AMPK  1.00E-06 
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Table B6: Initial Concentrations for Rapamycin withdrawal model 

compartment ml 1 

AA mmol/ml 1 

PI3K mmol/ml 1 

S6K_P mmol/ml 1 

PDK1 mmol/ml 10 

PDK1_P mmol/ml 1 

AKT mmol/ml 20 

AKT_pT308 mmol/ml 0.5 

AKT_pS473 mmol/ml 0.5 

mTORC2_P mmol/ml 1 

AKT_pT308_pS473 

mmol/ml 0.5 

PI3K_V mmol/ml 10 

PI3K_V_P mmol/ml 1 

mTORC2 mmol/ml 5 

TSC1/2 mmol/ml 5 

TSC1/2_P mmol/ml 1 

Rheb(GTP) mmol/ml 1 

mTORC1 mmol/ml 0.5 

mTORC1_P mmol/ml 0 

Rapamycin mmol/ml 10 

S6K mmol/ml 5 

FPPS mmol/ml 5 

Ras(GTP) mmol/ml 1 

Ras mmol/ml 5 

FPPS_i mmol/ml 0 

Zol mmol/ml 0 

Ras(GDP) mmol/ml 2 

Rheb(GDP) mmol/ml 1 

Sink mmol/ml 0.1 

FOXO3A mmol/ml 5 

FOXO3A_P mmol/ml 1 

AMPK mmol/ml 5 

AMPK_P mmol/ml 1 

ACC mmol/ml 5 

ACC_P mmol/ml 1 

mTOR mmol/ml 4.5 

4EBP1 mmol/ml 5 

4EBP1_pS65 mmol/ml 1 

PTEN mmol/ml 1 

PTEN_P mmol/ml 1 

S6 mmol/ml 5 

S6_pS235 mmol/ml 1 
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PI3K_IRS1 mmol/ml 1 

PI3K_P_IRS1 mmol/ml 1 

IRS1 mmol/ml 1 

AKT473  1 

AKT308  1 

 

Table B7 – Final parameter values Rapamycin withdrawal genetic algorithm MRC5 cells 

PI3K AA  0.000579 

PI3K dephos  0.000136 

S6K feedback loop  3.51E-06 

PDK1 act  1.47E-05 

PDK1 dephos  0.142666 

AKT to 308  0.004035 

AKT308 to dual  0.000168 

AKT to 473  0.000672 

AKT473 to dual  0.00139 

Dual to AKT  0.000288 

Dual to 308  8418.14 

Dual to 473  4636.26 

308 to AKT  9.22E-06 

473 to AKT  0.000241 

PI3K_V act  1.79E-06 

PI3K_V dephos  2075.45 

mTORC2 act  0.002991 

mTORC2 dephos  0.082018 

TSC1/2 de-act 308  1.81E-06 

TSC1/2 de-act dual  0.000202 

TSC1/2 act  0.261072 

Rheb deact  3.72E-05 

mTORC1 act  5.19E-05 

mTORC1 dephos  9.08019 

S6K act  0.000958 

S6K dephos  2681.39 

PI3K Ras  3.70E-06 

Ras act  0.060602 

FPPS inact  1.65142 

FPPS act  2.95E-05 

Ras deact  713.229 

Ras gdp-gtp  1.61E-06 

Rheb GDP GTP  0.009122 

Ras deg  1.35E-05 

Ras(GDP) deg  0.209463 

Ras(GTP) deg  1.28E-06 
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Sink Ras  0.023571 

AKT_pT308_pS473 

FOXO  3764.42 

FOXO3A  0.000305 

AMPK dephos  5.39E-05 

AMPK_P  137.285 

AMPK PI3K  0.000611 

ACC_P  0.004745 

ACC dephos  0.62987 

PTEN act  6.06E-05 

Rapamycin  1.56E-05 

mTOR to MTORC1  8.74E-06 

4EBP1 Act  5.34E-06 

4EBP1 inact  0.004426 

PTEN inact  0.002513 

S6 Act  7.39065 

S6 inact  1.17E-05 

mTOR AA  33.0747 

mTOR AMPK  0.000224 

IRS1  13.1569 

 

Table B8 – Final parameter values Rapamycin withdrawal Hooke and Jeeves MRC5 cells 

 

PI3K AA  0.132441 

PI3K dephos  0.010805 

S6K feedback loop  70.5347 

PDK1 act  1.40E-06 

PDK1 dephos  0.276583 

AKT to 308  0.009844 

AKT308 to dual  0.000733 

AKT to 473  4.11E-05 

AKT473 to dual  1.75E-06 

Dual to AKT  2.04767 

Dual to 308  31.784 

Dual to 473  37.4038 

308 to AKT  3.64E-05 

473 to AKT  1.00E-06 

PI3K_V act  9.84E-05 

PI3K_V dephos  29.1312 

mTORC2 act  9.58E-06 

mTORC2 dephos  22.4142 

TSC1/2 de-act 308  9181.55 

TSC1/2 de-act dual  4.25398 
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TSC1/2 act  5.38E-06 

Rheb deact  5.86E-05 

mTORC1 act  4.42223 

mTORC1 dephos  2.47222 

S6K act  3.15E-06 

S6K dephos  87.6397 

PI3K Ras  0.002709 

Ras act  9.81E-06 

FPPS inact  29.1555 

FPPS act  1.04E-06 

Ras deact  0.000152 

Ras gdp-gtp  0.234431 

Rheb GDP GTP  71.292 

Ras deg  177.692 

Ras(GDP) deg  0.00109 

Ras(GTP) deg  0.000204 

Sink Ras  1.64268 

AKT_pT308_pS473 

FOXO  19.6364 

FOXO3A  3.23E-06 

AMPK dephos  1.28E-05 

AMPK_P  1.00E-06 

AMPK PI3K  1.00E-06 

ACC_P  0.036404 

ACC dephos  0.722306 

PTEN act  3.59E-06 

Rapamycin  3.31E-05 

mTOR to MTORC1  1.00E-06 

4EBP1 Act  1.00E-06 

4EBP1 inact  0.005499 

PTEN inact  0.003442 

S6 Act  0.000144 

S6 inact  0.000407 

mTOR AA  7.61E-05 

IRS1  0.000548 
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Table B9 – Final parameter values Rapamycin withdrawal genetic algorithm MSCs 

PI3K AA  0.332282 

PI3K dephos  3.30E-06 

S6K feedback loop  0.165603 

PDK1 act  0.00063 

PDK1 dephos  2.71E-05 

AKT to 308  2.87E-06 

AKT308 to dual  0.071091 

AKT to 473  0.005981 

AKT473 to dual  1.13763 

Dual to AKT  0.004386 

Dual to 308  0.00064 

Dual to 473  2.54E-05 

308 to AKT  7.49E-06 

473 to AKT  8.70E-05 

PI3K_V act  0.000327 

PI3K_V dephos  1.96E-05 

mTORC2 act  1.82E-06 

mTORC2 dephos  0.218211 

TSC1/2 de-act 308  2.00E-06 

TSC1/2 de-act dual  0.105091 

TSC1/2 act  29.7399 

Rheb deact  3.19263 

mTORC1 act  3.88E-06 

mTORC1 dephos  0.002966 

S6K act  0.009964 

S6K dephos  2.69034 

PI3K Ras  1.29E-06 

Ras act  174.723 

FPPS inact  25.2475 

FPPS act  2.64E-06 

Ras deact  0.099762 

Ras gdp-gtp  0.001148 

Rheb GDP GTP  1.49E-05 

Ras deg  92.63 

Ras(GDP) deg  0.002218 

Ras(GTP) deg  0.000133 

Sink Ras  4.86E-06 

AKT_pT308_pS473 

FOXO  0.001048 

FOXO3A  0.00043 

AMPK dephos  0.095855 

AMPK_P  0.820254 

AMPK PI3K  0.000257 
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ACC_P  0.0005 

ACC dephos  0.000261 

PTEN act  0.54544 

Rapamycin  0.058941 

mTOR to MTORC1  0.082049 

4EBP1 Act  0.001096 

4EBP1 inact  8.56E-06 

PTEN inact  0.452548 

S6 Act  0.002236 

S6 inact  4.31E-06 

mTOR AA  0.024123 

mTOR AMPK  0.097957 

IRS1  1.01E-06 

 

Table B10 – Final parameter values Rapamycin withdrawal Hooke and Jeeves MSCs 

PI3K AA  0.039248 

PI3K dephos  0.018773 

S6K feedback loop  1.00E-06 

PDK1 act  6.85E-05 

PDK1 dephos  1.00E-06 

AKT to 308  0.00207 

AKT308 to dual  0.007322 

AKT to 473  0.000266 

AKT473 to dual  8.12E-05 

Dual to AKT  1.00E-06 

Dual to 308  6.18064 

Dual to 473  124.531 

308 to AKT  0.000103 

473 to AKT  2.53E-05 

PI3K_V act  1.06E-06 

PI3K_V dephos  392.228 

mTORC2 act  5.24E-05 

mTORC2 dephos  0.011764 

TSC1/2 de-act 308  0.117525 

TSC1/2 de-act dual  35.5129 

TSC1/2 act  4.70E-05 

Rheb deact  0.000707 

mTORC1 act  0.224946 

mTORC1 dephos  0.363499 

S6K act  6.56E-06 

S6K dephos  134.328 

PI3K Ras  0.114347 

Ras act  0.00013 



 

237 
 

FPPS inact  29.1555 

FPPS act  1.04E-06 

Ras deact  1.00E-06 

Ras gdp-gtp  0.357557 

Rheb GDP GTP  1223.29 

Ras deg  2277.82 

Ras(GDP) deg  1.00E-06 

Ras(GTP) deg  1.00E-06 

Sink Ras  10.4657 

AKT_pT308_pS473 

FOXO  9.24225 

FOXO3A  1.00E-06 

AMPK dephos  2.85E-05 

AMPK_P  4.52E-05 

AMPK PI3K  1.00E-06 

ACC_P  0.015762 

ACC dephos  0.067668 

PTEN act  1.01E-06 

Rapamycin  3.31E-05 

mTOR to MTORC1  4.91E-05 

4EBP1 Act  4.82E-05 

4EBP1 inact  1.00E-06 

PTEN inact  0.172623 

S6 Act  0.000144 

S6 inact  0.000407 

mTOR AA  0.001098 

IRS1  1.00E-06 

 

Table B11: Initial Concentrations for Zoledronate withdrawal model 

compartment ml 1 

AA mmol/ml 10 

PI3K mmol/ml 10 

PI3K_P mmol/ml 1 

S6K_P mmol/ml 1 

PDK1 mmol/ml 10 

PDK1_P mmol/ml 1 

AKT mmol/ml 20 

AKT_pT308 mmol/ml 0.5 

AKT_pS473 mmol/ml 0.5 

mTORC2_P mmol/ml 1 

AKT_pT308_pS473 

mmol/ml 0.5 

PI3K_V mmol/ml 10 

PI3K_V_P mmol/ml 1 
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mTORC2 mmol/ml 5 

TSC1/2 mmol/ml 5 

TSC1/2_P mmol/ml 1 

Rheb mmol/ml 5 

Rheb(GTP) mmol/ml 0 

mTORC1 mmol/ml 1 

mTORC1_P mmol/ml 0 

Rapamycin mmol/ml 0 

S6K mmol/ml 5 

FPPS mmol/ml 0 

Ras(GTP) mmol/ml 0 

Ras mmol/ml 5 

FPPS_i mmol/ml 5 

Zol mmol/ml 0 

Ras(GDP) mmol/ml 0 

Rheb(GDP) mmol/ml 0 

Sink mmol/ml 0.1 

FOXO3A mmol/ml 5 

FOXO3A_P mmol/ml 1 

AMPK mmol/ml 5 

AMPK_P mmol/ml 1 

ACC mmol/ml 5 

ACC_P mmol/ml 1 

mTOR mmol/ml 4 

4EBP1 mmol/ml 5 

4EBP1_pS65 mmol/ml 1 

PTEN mmol/ml 1 

PTEN_P mmol/ml 1 

S6 mmol/ml 5 

S6_pS235 mmol/ml 1 

AKT473  1 

AKT308  1 

 

Table B12 – Final parameter values Zoledronate withdrawal genetic algorithm MRC5 cells 

PI3K AA  10.4001 

PI3K dephos  1216.33 

S6K feedback loop  4.90E-05 

PDK1 act  3.57E-06 

PDK1 dephos  0.003823 

AKT to 308  0.010672 

AKT308 to dual  3.16E-05 

AKT to 473  0.000538 

AKT473 to dual  296.786 
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Dual to AKT  1.70E-06 

Dual to 308  0.007599 

Dual to 473  2.00E-06 

308 to AKT  0.234654 

473 to AKT  1.00E-06 

PI3K_V act  4.92E-05 

PI3K_V dephos  0.362583 

mTORC2 act  1158.02 

mTORC2 dephos  646.646 

TSC1/2 de-act 308  9.20E-05 

TSC1/2 de-act dual  1100.51 

TSC1/2 act  0.084502 

Rheb deact  43.8892 

Rheb act  0.004139 

mTORC1 act  0.001158 

mTORC1 dephos  0.004717 

S6K act  0.468937 

S6K dephos  1.69E-06 

PI3K Ras  3521.54 

Ras act  0.000172 

FPPS inact  2.08E-06 

FPPS act  892.643 

Ras deact  1.13178 

Ras gdp-gtp  46.2456 

Rheb GDP GTP  1.55E-05 

Rheb deg  4700.51 

Rheb(GDP) deg  1.00E-06 

Rheb(GTP) deg  3208.74 

Ras deg  0.248693 

Ras(GDP) deg  0.457122 

Ras(GTP) deg  0.001709 

Sink - Rheb  8.43E-06 

Sink Ras  0.001199 

AKT_pT308_pS473 

FOXO  4.87E-05 

FOXO3A  0.014741 

AMPK dephos  8.33287 

AMPK_P  3.07E-05 

AMPK PI3K  1.40E-06 

ACC_P  0.269707 

ACC dephos  0.01239 

PTEN act  0.003468 

Rapamycin  0.000878 

mTOR to  MTORC1  4.32E-06 

4EBP1 Act  0.000979 
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4EBP1 inact  3.60E-05 

PTEN inact  7.33E-05 

S6 Act  0.071001 

S6 inact  0.93514 

mTOR AA  9.85E-06 

mTOR AMPK  0.00413 

 

Table B13 – Final parameter values Zoledronate withdrawal Hooke and Jeeves MRC5 cells 

PI3K AA  10.4001 

PI3K dephos  1216.33 

S6K feedback loop  4.90E-05 

PDK1 act  3.57E-06 

PDK1 dephos  0.003823 

AKT to 308  0.010672 

AKT308 to dual  3.16E-05 

AKT to 473  0.000538 

AKT473 to dual  296.786 

Dual to AKT  1.70E-06 

Dual to 308  0.007599 

Dual to 473  2.00E-06 

308 to AKT  0.234654 

473 to AKT  1.00E-06 

PI3K_V act  4.92E-05 

PI3K_V dephos  0.362583 

mTORC2 act  1158.02 

mTORC2 dephos  646.646 

TSC1/2 de-act 308  9.20E-05 

TSC1/2 de-act dual  1100.51 

TSC1/2 act  0.084502 

Rheb deact  43.8892 

Rheb act  0.004139 

mTORC1 act  0.001158 

mTORC1 dephos  0.004717 

S6K act  0.468937 

S6K dephos  1.69E-06 

PI3K Ras  3521.54 

Ras act  0.000172 

FPPS inact  2.08E-06 

FPPS act  892.643 

Ras deact  1.13178 

Ras gdp-gtp  46.2456 

Rheb GDP GTP  1.55E-05 

Rheb deg  4700.51 
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Rheb(GDP) deg  1.00E-06 

Rheb(GTP) deg  3208.74 

Ras deg  0.248693 

Ras(GDP) deg  0.457122 

Ras(GTP) deg  0.001709 

Sink - Rheb  8.43E-06 

Sink Ras  0.001199 

AKT_pT308_pS473 

FOXO  4.87E-05 

FOXO3A  0.014741 

AMPK dephos  8.33287 

AMPK_P  3.07E-05 

AMPK PI3K  1.40E-06 

ACC_P  0.269707 

ACC dephos  0.01239 

PTEN act  0.003468 

Rapamycin  0.000878 

mTOR to  MTORC1  4.32E-06 

4EBP1 Act  0.000979 

4EBP1 inact  3.60E-05 

PTEN inact  7.33E-05 

S6 Act  0.071001 

S6 inact  0.93514 

mTOR AA  9.85E-06 

mTOR AMPK  0.00413 

 

Table B14 – Final parameter values Zoledronate withdrawal genetic algorithm MSCs 

PI3K AA  5.84151 

PI3K dephos  618.028 

S6K feedback loop  348.027 

PDK1 act  0.000386 

PDK1 dephos  1.62E-05 

AKT to 308  8.24E-05 

AKT308 to dual  5.00E-05 

AKT to 473  0.008321 

AKT473 to dual  0.100706 

Dual to AKT  0.211206 

Dual to 308  0.000812 

Dual to 473  1.62717 

308 to AKT  0.004431 

473 to AKT  0.098522 

PI3K_V act  0.000839 

PI3K_V dephos  18.8424 

mTORC2 act  845.079 
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mTORC2 dephos  0.034216 

TSC1/2 de-act 308  0.562312 

TSC1/2 de-act dual  0.000376 

TSC1/2 act  6.07E-06 

Rheb deact  0.054503 

Rheb act  0.000133 

mTORC1 act  0.00152 

mTORC1 dephos  0.001098 

S6K act  0.000221 

S6K dephos  0.315642 

PI3K Ras  0.153496 

Ras act  0.001214 

FPPS inact  0.300568 

FPPS act  1190.82 

Ras deact  2.37E-06 

Ras gdp-gtp  2.09E-06 

Rheb GDP GTP  0.123998 

Rheb deg  747.199 

Rheb(GDP) deg  3.83E-06 

Rheb(GTP) deg  1115.69 

Ras deg  9.16E-06 

Ras(GDP) deg  7756.62 

Ras(GTP) deg  0.06171 

Sink - Rheb  6.09E-06 

Sink Ras  795.293 

AKT_pT308_pS473 

FOXO  1.37E-06 

FOXO3A  0.006307 

AMPK dephos  0.40362 

AMPK_P  2.83346 

AMPK PI3K  1.00E-06 

ACC_P  0.023975 

ACC dephos  0.016203 

PTEN act  1.17E-06 

Rapamycin  1063.53 

mTOR to  MTORC1  6.81E-06 

4EBP1 Act  1.15E-05 

4EBP1 inact  0.007112 

PTEN inact  0.001443 

S6 Act  0.180538 

S6 inact  0.005768 

mTOR AA  4.97E-06 

mTOR AMPK  8.52E-05 
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Table B15 – Final parameter values Zoledronate withdrawal Hooke and Jeeves MSCs 

PI3K AA  0.065762 

PI3K dephos  8.18931 

S6K feedback loop  1.00E-06 

PDK1 act  2.56E-05 

PDK1 dephos  1.00E-06 

AKT to 308  0.020567 

AKT308 to dual  0.000179 

AKT to 473  0.003339 

AKT473 to dual  1.00E-06 

Dual to AKT  2.73E-06 

Dual to 308  0.005259 

Dual to 473  1.00E-06 

308 to AKT  1.64447 

473 to AKT  4.50E-06 

PI3K_V act  1.01E-06 

PI3K_V dephos  1.15903 

mTORC2 act  2795.12 

mTORC2 dephos  1.46504 

TSC1/2 de-act 308  6.52E-05 

TSC1/2 de-act dual  870.35 

TSC1/2 act  0.096328 

Rheb deact  28.5273 

Rheb act  0.005602 

mTORC1 act  0.00119 

mTORC1 dephos  0.001169 

S6K act  0.317022 

S6K dephos  3.47E-06 

PI3K Ras  9979.49 

Ras act  0.000934 

FPPS inact  2.08E-06 

FPPS act  364.313 

Ras deact  0.085705 

Ras gdp-gtp  1.00E-06 

Rheb GDP GTP  2.60E-05 

Rheb deg  2421.94 

Rheb(GDP) deg  1.25E-06 

Rheb(GTP) deg  4144.52 

Ras deg  0.04414 

Ras(GDP) deg  0.057875 

Ras(GTP) deg  0.00108 

Sink - Rheb  8.91E-06 

Sink Ras  0.001327 

AKT_pT308_pS473 0.000351 
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FOXO  

FOXO3A  0.008369 

AMPK dephos  0.207029 

AMPK_P  6.78E-05 

AMPK PI3K  2.66E-06 

ACC_P  0.090173 

ACC dephos  0.02306 

PTEN act  1.00E-06 

Rapamycin  0.000878 

mTOR to  MTORC1  1.07E-06 

4EBP1 Act  1.00E-06 

4EBP1 inact  0.000296 

PTEN inact  0.000617 

S6 Act  0.043336 

S6 inact  0.226229 

mTOR AA  1.00E-06 

mTOR AMPK  1.00E-06 
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Table B16 – Reactions common to all models  

Model Reactions COPASI reaction 

AKT phosphorylation pT308 PDK1_P + AKT -> PDK1_P + AKT_pT308 

AKT phosphorylation pS473 AKT + mTORC2_P -> AKT_pS473 + mTORC2_P 

4E-BP1 phosphorylation pS65 mTORC1_P + 4EBP1 -> mTORC1_P + 4EBP1_pS65 

4E-BP1 dephosphorylation  4EBP1_pS65 -> 4EBP1 

ACC phosphorylation pS79 AMPK_P + ACC -> AMPK_P + ACC_P 

ACC dephosphorylation ACC_P -> ACC 

AKT dephosphorylation pT308 AKT_pT308 -> AKT 

AKT dephosphorylation pS473 AKT_pS473 -> AKT 

AKT pT308 phosphorylation to dual 
AKT_pT308 + mTORC2_P -> AKT_pT308_pS473 + 

mTORC2_P 

AKT pS473 phosphorylation to dual 

AKT_pS473 + PDK1_P -> AKT_pT308_pS473 + 

PDK1_P 

FOXO3A phosphorylation 

AKT_pT308_pS473 + FOXO3A -> 

AKT_pT308_pS473 +  FOXO3A_P 

AMPK phosphorylation pT172 AMPK + AA -> AMPK_P + AA 

AKMPK dephosphorylation pT172 AMPK_P + ACC_P -> Sink + ACC_P 

PI3K dephosphorylation via ACC PI3K_P + ACC_P -> PI3K + ACC_P 

AKT Dual dephosphorylation to pT308 AKT_pT308_pS473 -> AKT_pT308 

AKT Dual dephosphorylation to pS473 AKT_pT308_pS473 -> AKT_pS473 

AKT Dual dephosphorylation to AKT AKT_pT308_pS473 -> AKT 

FOXO3A dephosphorylation FOXO3A_P -> FOXO3A 

mTORC1 phosphorylation pS2448 via Amino acids mTORC1 + AA -> mTORC1_P + AA 

mTORC1 dephosphorylation via AMPK mTORC1_P + ACC_P -> mTORC1 + ACC_P 

mTORC1 phosphorylation pS2448 via Rheb(GTP) Rheb(GTP) + mTORC1 -> Rheb(GTP) + mTORC1_P 

mTORC1 dephosphorylation  mTORC1_P -> mTORC1 

mTORC2 phosphorylation via PI3K_Varient PI3K_V_P + mTORC2 -> PI3K_V_P + mTORC2_P 

mTORC2 dephosphorylation mTORC2_P -> mTORC2 

PDK1 phosphorylation via PI3K PI3K_P + PDK1 -> PI3K_P + PDK1_P 

PDK1 dephosphorylation PDK1_P -> PDK1 

PI3K phosphorylation via Amino acids PI3K + AA -> PI3K_P + AA 

PI3K dephosphorylation  
PI3K_P -> PI3K 

 

PI3K_Varient phosphorylation via Amino acids + Ras 

PI3K_V + AA + Ras(GTP) -> PI3K_V_P + AA + 

Ras(GTP) 

PI3K_Varient dephosphorylation  PI3K_V_P -> PI3K_V 

PTEN dephosphorylation via ACC PTEN_P + ACC_P -> PTEN + ACC_P 

PTEN phosphorylation PTEN -> PTEN_P 

Ras prenylation via FPPS Ras + FPPS -> Ras(GDP) + FPPS 

Ras degradation Ras -> Sink 

Ras GDP->GTP Ras(GDP) -> Ras(GTP) 

Ras GDP degradation Ras(GDP) -> Sink 

Ras GTP degradation Ras(GTP) -> Sink 

Rheb prenylation via FPPS Rheb + FPPS -> Rheb(GDP) + FPPS 

Rheb GTP inhibition via TSC1/2 TSC1/2 + Rheb(GTP) -> TSC1/2 + Rheb 

Rheb degradation Rheb -> Sink 

Rheb GDP->GTP Rheb(GDP) -> Rheb(GTP) 

Rheb GDP degradation Rheb(GDP) -> Sink 

Rheb GTP degradation Rheb(GTP) -> Sink 

S6 phosphorylation via P70S6K S6K_P + S6 -> S6_pS235 + S6K_P 
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S6 dephosphorylation S6_pS235 -> S6 

P70S6K phosphorylation via mTORC1 mTORC1_P + S6K -> mTORC1_P + S6K_P 

P70S6K dephosphorylation S6K_P -> S6K 

PI3K dephosphorylation via P70S6K PI3K_P + S6K_P -> PI3K + S6K_P 

Ras formation Sink -> Ras 

Rheb Formation Sink -> Rheb 

TSC1/2 dephosphorylation TSC1/2_P -> TSC1/2 

TSC1/2 phosphorylation via AKT_pT308 AKT_pT308 + TSC1/2 -> AKT_pT308 + TSC1/2_P 

TSC1/2 phosphorylation via AKT_Dual 

AKT_pT308_pS473 + TSC1/2 -> AKT_pT308_pS473 

+ TSC1/2_P 

 

Table 17 – Reactions specific to Zoledronate and Rapamycin models 

Zoledronate specific model reactions COPASI reaction 

FPPS activation FPPS_i -> FPPS 

FPPS inhibition via Zoledronate Zol + FPPS -> Zol + FPPS_i 

  
Rapamycin specific model reactions COPASI reaction 

mTOR complex formation mTOR -> mTORC1 

mTOR complex inhibition via Rapamycin mTORC1 + Rapamycin -> mTOR + Rapamycin 
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Table B18 – Reaction function forms for starvation-restimulation models 
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Table B19 – Reaction function forms for Rapamycin withdrawal models 
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Table B20 – Reaction function forms for Zoledronate withdrawal models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


