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Abstract 

Neuromuscular disorders are a group of genetically and phenotypically heterogeneous 

disorders and pose a challenge for molecular diagnosis. Next generation sequencing is 

increasingly used in research and clinical settings for diagnosis and disease gene discovery. 

Inconsistencies in bioinformatics pipelines, research and validation results suggest that 

bioinformatics tools for next generation sequencing are yet problematic and that further 

research is needed. In addition, sequencing data, bioinformatics tools, clinical data and 

databases of current knowledge of the human genome need to be integrated in an effective 

workflow that facilitates diagnosis and novel gene discoveries. Furthermore, optimising and 

standardising analysis workflow for next generation sequencing allows data from different 

projects and research sites to be shared and validated.  

At the John Walton Muscular Dystrophy Research Centre, Newcastle University, three 

genomics platforms are used to analyse whole exome and whole genome sequencing data for 

patients with rare neuromuscular disease. These three platforms, namely: RD-Connect 

Genome-Phenome Analysis Platform (CNAG, Barcelona, academic), seqr (Broad Institute, 

Boston, academic) and the Clinical Sequence Analyser (CSA, WuXi NextCODE, 

commercial) use combinations of different bioinformatics tools and integrate different 

software applications and databases for variant annotation, filtering and prioritization. 

Here, the aim was to compare the yield of genome sequencing over exome sequencing for 

patients with rare neuromuscular disorders and to assess the degree of agreement between the 

three genomic platforms and their respective bioinformatics pipelines. I also aimed to evaluate 

the value of using an integrated genomics platform in diagnosis and novel gene discovery in 

patients with rare neuromuscular disorders.  

The analysis showed that whole genome sequencing offers more uniform coverage of coding 

regions in the genome and has the potential to detect additional coding variants in known 

neuromuscular disease genes that are missed by exome sequencing due to low coverage. Low 

coverage was associated with genomic features such as high GC-content and low sequence 

heterogeneity. The uniform coverage and sequencing methods used for whole genome 

sequencing may also lead to improved detection of InDels and copy number variants in this 

group of patients.  
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Analysis of the bioinformatics pipelines at the three sites using patient WES and WGS data 

revealed that the highest agreement was between the RD-Connect and the CSA platforms 

(75%). However, using high quality reference data revealed higher concordance rates (up to 

91%). 

As for variant output from the three genomics platforms, the mean variant concordance for all 

three platforms was 37%, and the highest pairwise concordance rate was 66% for seqr and 

RD-Connect. Looking at variant type, agreement in variant output was largely accounted for 

by single nucleotide variants and InDel agreement was significantly low. Comparing the 

variant output between the three platforms revealed very low agreement. This highlights 

variant annotation software and filtering algorithms as contributors to the discrepancy in 

variant output.  

Whole exome sequencing data from molecularly undiagnosed families with limb girdle 

muscle weakness were used on the seqr platform to assess the utility of an integrated 

genomics platform in diagnosis and disease gene discovery in patients with rare 

neuromuscular disorders. This analysis showed that for 65.6% of families, a genetic diagnosis 

was proposed. This included a number of proposed novel genetic associations in 

neuromuscular disorders, including the recently published MYMK gene and the FILIP1 gene, 

which is projected as a strong candidate for syndromic congenital myopathy.   

Once a genetic diagnosis for a rare disease is established, phenotype-genotype correlations 

can be established.  A group of patients with genetically confirmed GNE myopathy from 

Kuwait were studied. A description of clinical, genetic and epidemiological aspects of the 

disease in the Kuwaiti Bedouin population is given.   

In conclusion, next generation sequencing undoubtedly continues to offer new insights in rare 

neuromuscular disorders. However, advances in bioinformatics need to match advances in 

sequencing technologies. Whole genome sequencing offers additional value over whole 

exome sequencing. Nevertheless, it remains costly and data interpretation is still problematic. 

A targeted approach to the analysis of whole genome sequencing data may be a more 

appropriate intermediate approach. Analysis pipelines require a standardised approach for 

development and validation.  Moreover, bioinformatics algorithms remain an area for 

continued assessment and optimisation. This will maximise the benefit from research in next 

generation sequencing and enable data to be shared and compared. Lastly, integrated 

genomics platforms are an ideal interface between the researcher and all relevant genetic, 
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phenotypic, population and bioinformatics prediction data, for diagnosis and novel gene 

discoveries in patients with rare neuromuscular disorders.  
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“Although I cannot move and I have to speak through a computer , in my mind I 

am free.” 

Stephen Hawking (1942-2018) 

 

Dedicated to people living with disabilities and to all those who support and care for them. 

 

 

 

 

 

 

 

 

 



 

v 

 

Acknowledgements 

I would like to express my deepest appreciation to my supervisor and mentor professor Hanns 

Lochmüller. I would like to thank him for his expert supervision and guidance. I am grateful 

for his continued encouragement and advice in research and in professional development.  

I am extremely grateful to my supervisor and friend Dr Ana Töpf for her continued support 

and day-to-day approachability in giving advice and answering questions. In particular, I’m 

grateful for her prioritising my work despite her difficult workload.  

I thank Dr Phillip Lord for his input as an annual review panel member and for agreeing to 

supervise the final stages of my work. 

I am grateful to Rachel Thompson for her approachability to answer questions related to the 

RD-Connect platform and her continued input and advice in relation to my project. 

I am thankful to Professor Robert Lightowlers, Dr Mauro Santibanez-Koref, John Dawson, Dr 

Helen Griffin, Louise Pease, Dr Rita Baressi, Dr Teresinha Evangelista, Dr Chiara Marini-

Bettello, Dr Michela Guglieri, Dr Tuomo Polvikoski, Professor Rita Horvath and all my 

colleagues in the muscle group for their support and useful discussions. 

I would also like to acknowledge Isaac Walton and Rebecca Haigh's contribution in 

performing family segregation studies to support my work, which was done as part of their 

undergraduate training.  

I am grateful to the teams at RD-Connect (CNAG), deCODE Genetics and the Broad 

Institute, especially to Steve Laurie, Nanna Vioarsdottir, Olafur Magnusson, Monkol Lek and 

Michael Wilson for answering queries regarding the platforms and bioinformatics pipelines 

and for processing patient and reference data included in this thesis.  

I would also like to thank Dr Laila Bastaki, Dr Ali AlAjmi and the clinicians and laboratory 

staff at the Kuwait Medical Genetics Centre for their help in data collection that enabled me 

to put together a detailed description of GNE myopathy in Kuwait. 

I am most grateful to Dr Andoni Urtizberea, at the Neuromuscular Reference Centre in 

Hendaye Hospital in France, for initiating and supporting the GNE myopathy work and for 

his continued encouragement. And a special thanks to Oksana Pogoryelova for all her input 

and help with the GNE myopathy work. 



 

vi 

 

I am deeply thankful to my husband Ameer and to my children Mohammad and Sama for 

being there, for their love and support, and for putting up with our difficult living situation 

during the past few years away from home. I am also indebted to my family and friends in 

Kuwait for their love, support and their prayers.  

My deepest gratitude goes to my rock and my “survival buddy” Sumaya. Her existence in my 

life over the past few years has been invaluable.  

A special thanks goes to my dear friend Najwa for being there when I needed her and for her 

continued encouragement and support.  

Finally, I would like to thank my friends, Selma, Salome, Katy, Olla, Michelle, Liz, 

Persefoni, Anne and Kath for helping me through stressful times, for encouraging and 

motivating me and for adding some fun to the past three years.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 

 

Declaration 

I, Hadil Alrohaif, declare that the work presented in this thesis is a result of my own original 

research. I confirm that contributions from others are clearly acknowledged and that any 

published work is referenced. I certify that the thesis contains no material that has been 

submitted for any other academic award.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 

 

 

Table of contents 

Chapter 1. Introduction ______________________________________________________ 1 

1.1 Rare genetic diseases ____________________________________________________________ 1 

1.2 Approach for molecular diagnosis for rare genetic diseases ____________________________ 2 

1.2.1 Single gene testing _______________________________________________________________________ 4 

1.2.2 CGH-array _______________________________________________________________________________ 4 

1.2.3 Gene panel testing _______________________________________________________________________ 5 

1.2.4 Whole exome sequencing _________________________________________________________________ 5 

1.2.5 Whole genome sequencing ________________________________________________________________ 6 

1.2.6 Diagnostic algorithm ______________________________________________________________________ 6 

1.3 Next generation sequencing technologies ___________________________________________ 8 

1.4 NGS data flow and bioinformatics pipelines ________________________________________ 11 

1.4.1 Base calling _____________________________________________________________________________ 11 

1.4.2 Sequenc e read mapping__________________________________________________________________ 12 

1.4.3 Post mapping data processing ____________________________________________________________ 13 

1.4.4 Variant calling___________________________________________________________________________ 13 

1.4.5 Variant annotation ______________________________________________________________________ 14 

1.4.6 Variant prioritization_____________________________________________________________________ 16 

1.5 Benchmarking NGS bioinformatics pipelines ________________________________________ 17 

1.6 Advantages and drawbacks of NGS ________________________________________________ 21 

1.7 Data sharing ___________________________________________________________________ 24 

1.8 Ethical considerations ___________________________________________________________ 26 

1.9 NGS in rare neuromuscular disorders ______________________________________________ 27 

1.10 Thesis aims and objectives ______________________________________________________ 29 

Chapter 2. WES and WGS comparison _________________________________________ 30 

2.1 Introduction ___________________________________________________________________ 30 

2.2 Aims __________________________________________________________________________ 32 

2.3 Methods ______________________________________________________________________ 32 

2.3.1 Ethical approval _________________________________________________________________________ 32 

2.3.2 Genomic platforms ______________________________________________________________________ 32 

2.3.3 Patient samples _________________________________________________________________________ 34 



 

ix 

 

2.3.4 Analysis and filtering parameters  __________________________________________________________ 36 

2.3.5 Coverage assessment ____________________________________________________________________ 38 

2.3.6 Assessment of trinucleotide repeats calling _________________________________________________ 38 

2.3.7 Relationship between sequence specificity and read depth ___________________________________ 40 

2.3.8 Relationship between GC content and read depth.  __________________________________________ 40 

2.3.9 Statistics _______________________________________________________________________________ 42 

2.4 Results ________________________________________________________________________ 42 

2.4.1 WES and WGS comparison using CSA ______________________________________________________ 42 

2.4.2 WES and WGS comparison on the RD-Connect Genome-Phenome Analysis Platform.____________ 47 

2.5 Discussion _____________________________________________________________________ 50 

Chapter 3. Genomic Platform and bioinformatics pipeline comparison  _______________ 54 

3.1 Introduction ___________________________________________________________________ 54 

3.2 Aims __________________________________________________________________________ 60 

3.3 Methods ______________________________________________________________________ 60 

3.3.1 Ethical approval _________________________________________________________________________ 60 

3.3.2 WES and WGS samples___________________________________________________________________ 60 

3.3.3 Standardised filters for platform output assessment  _________________________________________ 64 

3.3.4 Assessment of platform agreement________________________________________________________ 64 

3.3.5 Bioinformatics pipeline assessment________________________________________________________ 65 

3.4 Results ________________________________________________________________________ 66 

3.4.1 Two platform comparisons for Cohorts A, B, C, and D ________________________________________ 66 

3.4.2 Three-platform WES comparison __________________________________________________________ 70 

3.4.3 Reference genome (GIAB) comparison on all  three platforms _________________________________ 77 

3.5 Discussion _____________________________________________________________________ 81 

Chapter 4. Genomics platform utility in WES analysis in patients with limb girdle weakness.

 ________________________________________________________________________ 86 

4.1 Introduction ___________________________________________________________________ 86 

4.2 Aims __________________________________________________________________________ 87 

4.3 Patients and methods ___________________________________________________________ 87 

4.3.1 Consent ________________________________________________________________________________ 87 

4.3.2 Patients ________________________________________________________________________________ 87 

4.3.3 Sequencing and bioinformatics pipeline ____________________________________________________ 87 

4.3.4 Platform analysis ________________________________________________________________________ 87 

4.3.5 Evidence for pathogenicity _______________________________________________________________ 88 



 

x 

 

4.3.6 Segregation studies ______________________________________________________________________ 89 

4.4 WES results ____________________________________________________________________ 90 

4.4.1 Patients ________________________________________________________________________________ 90 

4.4.2 Molecular diagnosis in patients presenting with l imb girdle weakness through analysis of WES data 

on the seqr platform. _________________________________________________________________________ 90 

4.4.3 Proposed genetic diagnosis as a result of this project ________________________________________ 96 

4.5 Discussion ____________________________________________________________________ 112 

Chapter 5. GNE myopathy in the Bedouin population of Kuwait____________________ 117 

5.1 Introduction __________________________________________________________________ 117 

5.2 Aim _________________________________________________________________________ 118 

5.3 Patients and methods __________________________________________________________ 118 

5.3.1 Ethical approval ________________________________________________________________________118 

5.3.2 Patients, clinical evaluation and mutation analysis__________________________________________118 

5.3.3 Prevalence estimate and carrier frequency ________________________________________________119 

5.4 Results _______________________________________________________________________ 120 

5.4.1 Demographic and genetic findings________________________________________________________120 

5.4.2 Clinical findings ________________________________________________________________________122 

5.4.3 Disease prevalence and p.M743T carrier frequency in the Kuwaiti population _________________130 

5.4.4 Patients with no GNE gene mutations in exon 12 ___________________________________________130 

5.5 Discussion ____________________________________________________________________ 130 

Chapter 6. Conclusions and future directions ___________________________________ 134 

Chapter 7. References _____________________________________________________ 139 

Chapter 8. Appendices _____________________________________________________ 158 

A. Muscle Gene Table ___________________________________________________________ 158 

B. PCR and Sequencing protocols _________________________________________________ 161 

i . Newcastle University ___________________________________________________________________161 

i i . Kuwait Medical Genetics Centre _________________________________________________________168 

 

 

 

 



 

xi 

 

List of tables  

Table 1: Molecular testing methods in rare inherited diseases. ................................................ 3 

Table 2: Recommendation from the Association for Molecular Pathology and the College of 
American Pathologists for validating NGS bioinformatics pipelines. ....................................... 19 

Table 3: RD-Connect variant annotation tools and databases ................................................. 34 

Table 5: Filtering parameters used for WES and WGS comparison on the CSA  ...................... 37 

Table 6: Positions affected by trinucleotide repeat expansions and implicated in 
neurogenetic disorders............................................................................................................. 39 

Table 7: WES variant position randomly selected from the N1-10 samples for assessment of 
the relation between GC content and coverage. ..................................................................... 41 

Table 8: Coverage data for exons identified as having a read depth of 10 or less in WES of the 
N1-10 samples.. ........................................................................................................................ 45 

Table 9: Variant positions identified as having low coverage in WES for the N1-10 samples 

showing, coverage in the ExAC population, GC content and number of matches in the 
genome using the BLAST tool. .................................................................................................. 49 

Table 10: Sequence ontology terms and identifiers assigned by tools using a quantitative 
annotation algorithm based on the Standard Sequence Ontology.......................................... 57 

Table 11: Genomic Platforms used for NGS data analysis. ...................................................... 59 

Table 12: Whole exome and Genome sequencing data used for the comparison of genomics 
platforms and bioinformatics pipelines.................................................................................... 63 

Table 13:  Standardized filters applied to compare the RD-Connect, seqr and CSA platforms.

 .................................................................................................................................................. 64 

Table 14: Online tools and databases used to gather evidence for variant pathogenicity and 

association with NMD............................................................................................................... 89 

Table 15: Proposed genetic diagnosis from WES for 33 families presenting with limb girdle 

weakness using the seqr genomic platform prior to the work presented in this thesis. ......... 91 

Table 16: Families with proposed candidate mutations in known NMD genes identified 

through analysis of WES data on the seqr platform as a result of the work presented in this 

thesis. ........................................................................................................................................ 96 

Table 17: Clinical features for patients with GNE myopathy homozygous for the p.M743T 

mutation. All patients are of Bedouin Arab origin. ................................................................ 124 

 

 



 

xii 

 

List of figures 

Figure1: Molecular genetics diagnostic algorithm for patients with a suspected genetic 
disorder. ...................................................................................................................................... 8 

Figure 2: Clinical next generation sequencing analysis pipeline. ............................................. 11 

Figure 3: Bioinformatics analysis pipeline used in the Cornish et al study comparing six 
alignment tools and five variant callers using Genome in a Bottle as the reference.  ............. 24 

Figure 4: The Matchmaker Exchange participants and collaborators...................................... 26 

Figure 5: RD-Connect bioinformatics pipeline.......................................................................... 33 

Figure 6: Mean number of coding variants for WES and WGS for 10 patient samples as 
outputted by the CSA. .............................................................................................................. 43 

Figure 7: Mean read depth in WES for exons with variants proposed by WGS but missed by 
WES for the same patient. Error bars represent the spread of read depth across the sample.
 .................................................................................................................................................. 44 

Figure 8: Number of coding TNRs at known neurogenetic disease loci* from analysis of WES 
and WGS samples for patients (N1-10) on CSA. ....................................................................... 46 

Figure 9: Mean number of coding variants for WES and WGS for 10 patient samples as 
outputted through the RD-Connect (n=10). A; all coding variants, B; coding variants in NMD 
genes. ........................................................................................................................................ 48 

Figure 10: Concordance for coding variants in NMD genes between WES and WGS on the RD-

Connect platform (n=10).  ......................................................................................................... 48 

Figure 11: Relationship between GC content and coverage in ExAC WES data at variant 
positions from the RD-Connect platform output report for sample N1-10. ............................ 50 

Figure 12: Mean number of variants in the output reports from RD-Connect and CSA for 

Cohort A (n=88) ........................................................................................................................ 67 

Figure 13: Mean number of variants in the output reports from RD-Connect and seqr for 
Cohort C (n=120)....................................................................................................................... 67 

Figure 14: Two-platform variant output agreement for variants in NMD genes..................... 68 

Figure 15: Discordant InDels for Cohort C samples in the RD-Connect and seqr output 

reports. ..................................................................................................................................... 68 

Figure 16: Mean number of variants for Cohort B WGS samples in the output report for CSA 

and RD-Connect platforms (n=30). ........................................................................................... 69 

Figure 17: Variant agreement rates (concordance) between CSA and RD-Connect for Cohort 
C WGS samples (n=30). ............................................................................................................. 70 



 

xiii 

 

Figure 18: Mean number of variants in VCF files for Cohort E from the Broad Institute, RD-
Connect and DeCODE Genetics bioinformatics analysis pipelines........................................... 72 

Figure 19: Mean pairwise variant concordance percentage in VCF files for Cohort E from the 
Broad Institute, RD-Connect and deCODE Genetics bioinformatics analysis pipelines. .......... 72 

Figure 20: Pairwise agreement of SeqNMD1-9 VCF samples shown in variant number for VCF 
files from deCODE Genetics and RD-Connect, deCODE Genetics and the Broad Institute, and 
RD-Connect and the Broad Institute ........................................................................................ 73 

Figure 21: Mean number of variants in the output reports for CSA, RD-Connect and seqr for 

Cohort E WES samples. Standardised filters were applied on all three platforms. ................. 75 

Figure 22: Pairwise agreement for variants in NMD genes in the output reports for Cohort E 
WES samples on the RD-Connect, CSA and seqr platforms. .................................................... 76 

Figure 23: Number of variants in VCF files for the NA12878 WGS sample processed by RD-

Connect, the Broad institute, deCODE Genetics and in the reference file. ............................. 77 

Figure 24: Variant agreement between the NA12878 VCF reference file and VCF files from 
RD-Connect, the Broad institute and deCODE Genetics. ......................................................... 78 

Figure 25: NA12878 variant agreement between VCF files from RD-Connect, the Broad 
institute and deCODE Genetics. ............................................................................................... 78 

Figure 26: Number of variants for the NA12878 reference sample on the RD-Connect, CSA 
and seqr platforms using standardised variant filters. ............................................................. 79 

Figure 27: NMD genes variant agreement for the NA12878 sample on the RD-Connect, CSA 
and seqr platforms using standardised variant filters.............................................................. 80 

Figure 28: Number of families per candidate genes for a cohort with limb girdle weakness 
and WES data analysed on seqr (n=93). ................................................................................... 95 

Figure 29: Clinical features and muscle MRI in MYMK-related CFZS.. ..................................... 99 

Figure 30: Muscle MRI and biopsy for a patient with MYMK gene mutations.. .................... 100 

Figure 31: Needle biopsy of the left vastus lateralis from a patient with MYMK mutations. 101 

Figure 32: Disease features in a female patient with homozygous p.Arg2905Ter FILIP1 
variants. .................................................................................................................................. 104 

Figure 33: Muscle histology and immunohistochemistry for a female patient with FILIP1 

variants. .................................................................................................................................. 106 

Figure 34: Protein interaction network for XIRP2. ................................................................. 109 

Figure 35: Screen shot of gene expression data provided on seqr for FILIP1, showing high 
expression in muscle (amongst other tissues). ...................................................................... 116 



 

xiv 

 

Figure 36: Screen shot from seqr variant output report for TENM2, the proposed novel 
candidate gene in family 21.................................................................................................... 116 

Figure 37: Patients screened for the p.M743T mutation at the Kuwait Medical Genetics 
Centre Between January 2013 and August 2017.  .................................................................. 119 

Figure 38: Pedigrees for families affected with GNE myopathy from Kuwait.  ...................... 121 

Figure 39: MRI T1 weighted images, axial (A-C, for KW-2/1) and coronal (D, for KW-1/1) 

views. ...................................................................................................................................... 126 

Figure 40: Histological and immunohistochemical findings from the hamstrings muscle for 
patient KW-1/1. ...................................................................................................................... 129 

Supplementary figure 1: A, Forward and reverse primers used for the segregation of the 

FILIP1 variant at position chr6:76124520 (output from Primer3, http://primer3.ut.ee/). B, 
chromatogram image for variant segregation in the family. The variant position is underlined 

in yellow. ................................................................................................................................. 162 

Supplementary figure 2: A, forward and reverse primers used for the segregation of the 
TENM2 variant at position chr5:167673823 (output from Primer3, http://primer3.ut.ee/). B, 

chromatogram image variant segregation in the father (top), affected individual (centre) and 
unaffected sibling (bottom). ................................................................................................... 165 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xv 

 

List of abbreviations  

ACMG American College for Medical Genetics and Genomics 

API Application Programming Interface 

BAM Binary alignment map 

BP Base pair 

BQSR Base quality score recalibration  

BWA Burrows-Wheeler Aligner  

BWT Burrows-Wheeler Transform 
CGH-

array Comparative Genomics Hybridization  

CK Creatine kinase 

CMS Congenital myasthenic syndrome 

CNAG  
Centro Nacional de Análisis Genómico (National Centre for Genomics 
Analysis, Barcelona)  

CNV Copy number variant 

CSA Clinical Sequence Analyzer 

DMRV Distal myopathy with rimmed vacuoles  

DNA Deoxyribonucleic acid 

EBI European Bioinformatics Institute 

ECG Electrocardiopgarphy  

EMG Electromyopgraphy  

ExAC Exome Aggregation Consortium  

GATK Genome Analysis Tool Kit  

GIAB Genome in a Bottle 

gnomAD Genome Aggregation Database  

GQ Genotype quality  

GTEx Genotype Tissue Expression (database)  

H&E Haematoxylin Eosin  

HDPS Hadoop distributed file system  

HGVS Human Genome Variation Society  

HIBM Hereditary inclusion body myopathy  

HPO Human Phenotype Ontology  

HSMN hereditary sensory motor neuropathy 

IGV Integrated Genomics Viewer  

InDels Insertions/deletions 

KB Kilobyte 

KMGC Kuwait Medical Genetics Centre 

LGMD Limb girdle muscular dystrophy  

MFM Myofibrillar myopathy  

MHC Myosin heavy chain 

MLPA Multiple ligase probe amplification  

MME Matchmaker Exchange (project) 

MRC Medical Research Council  

MRI Magnetic resonance imaging 

MSeqDR Mitochondrial Disease Sequence Data Resource  



 

xvi 

 

NADH Nicotinamide adenine dinucleotide 

NCAM Neural cell adhesion molecule  

NGS Next generation sequecning  

NIST National Intitute for Standards and Technology 

NMD Neuromuscular disorders 

OLC Overlap/Layout/Consensus (method) 

OMIM Online Mendelian Inheritance in Man (database) 

PCR Polymerase chain reaction  

QC Quality control  

RNA Ribonucleic acid  

SMRT Single molecule real time (system) 

SNP Single nucleotide polymorphism  

SNV Single nucleotide variant 

SO Sequence ontology 

VEP Variant Effect Predictor (tool) 

VQSR Variant quality score recalibration  

VUS Variants of unknown significance 

WCD Wheelchair dependant  

WES Whole exome sequencing 

WGS Whole genome sequencing 

WMS World Muscle Society 

 

 

 

 

 

 



 

1 

 

 

Chapter 1. Introduction 

1.1 Rare genetic diseases 

A rare or orphan disease is defined as one that affects less than 1 in 2000 individuals. In many 

cases, the aetiology of rare diseases is a genetic mutation or susceptibility. Between 6500 and 

7000 rare diseases are currently characterized and this number is continuously rising in the 

current genomics era (Eurordis, 2005; Daunert et al., 2017). These diseases are often chronic, 

progressive, degenerative and life threatening. They present a spectrum of disabilities that 

make patients and their families vulnerable and isolated. In addition, a considerable number of 

these diseases have no parent organization or investigator dedicated to research on their 

prevention, diagnosis or treatment. The National Institute of Health (NIH) Undiagnosed 

Disease Program, launched in 2008, reported that 33% of patients with a rare disease waited 

1-5 years for a diagnosis and 15% waited more than five years (Gahl and Tifft, 2011). 

EURORDIS (http://www.eurordis.org) also reports similar statistics, where 25% of patients 

with a rare disease in Europe waited between 5 and 30 years for a diagnosis. 40% were 

initially misdiagnosed which resulted in 33% of them receiving incorrect treatment and in 

some cases an unnecessary invasive surgical procedure (Eurordis). A thorough genetic 

evaluation and molecular diagnosis in rare genetic disorders is thus warranted to direct care 

and counselling. In addition, certain molecular forms of a genetic disorder are specifically 

treated with a particular agent. For example, neonatal diabetes associated with mutations in 

the KCNJ11 gene does not respond to insulin therapy and is best treated with sulfonylureas 

(Babiker et al., 2016). In the neurogenetics context, children with epilepsy and mutations in 

the SLC2A1 gene are managed through a ketogenic diet, a therapy that is less effective in 

other molecular forms of childhood epilepsy (Klepper, 2015). Furthermore, some rare genetic 

disorders are associated with medical conditions and complications and correct diagnosis will 

guide appropriate surveillance and intervention. It is also necessary for accurate genetic 

counselling and communication of recurrence risk. Lastly, molecular diagnosis for rare 

disorders provides insights into disease mechanisms directing medically relevant research and 

providing new candidate therapeutic targets (Gahl and Tifft, 2011; Efthymiou et al., 2016).  
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1.2 Approach for molecular diagnosis for rare genetic diseases 

A common traditional approach for diagnosis of genetic disorders is initiated with the 

clinicians’ medical evaluation based on the patient’s presenting symptoms, age of onset, 

disease progression, associated features, clinical examination findings and family history. 

This in most cases is followed by a tailored and tiered series of laboratory and imaging tests. 

At this stage, a clinician may put forward a suspected clinical diagnosis. This will then dictate 

the choice of genetic test, which may take the form of one of the following: targeted single 

gene sequencing (Sanger sequencing) or mutation analysis, methylation testing or 

chromosomal studies. In some instances, multiple single gene tests are considered and tiered 

based on availability and the patient’s clinical picture. If these initial tests are negative or if 

the initial clinical evaluation does not suggest a particular genetic condition, chromosomal 

micro-array (CGH-array) or next generation sequencing (NGS) in the form of a gene panel, 

whole exome sequencing (WES) or whole genome sequencing (WGS) is indicated. These 

options are further discussed below and summarised in table 1. A further scenario is when the 

clinical evaluation does not point towards a genetic disorder, in which case no further genetic 

testing is indicated (Shashi et al., 2014; Warman Chardon et al., 2015).   
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Table 1: Molecular testing methods in rare inherited diseases. 
 Single gene 

test 

CGH-array Gene panel test WES WGS 

Indication Phenotype 

commonly 

associated 

with one 

gene 

Genetically 

heterogeneous 

disorders where 

CNV and 

structural 

rearrangements are 

implicated 

mechanisms  

Genetically 

heterogeneous 

and 

phenotypically 

overlapping 

disorders 

Rare diseases, 

non-specific 

features or those 

with high 

phenotypic or 

genetic 

heterogeneity  

Rare diseases, 

non-specific 

features or those 

with high 

phenotypic or 

genetic 

heterogeneity 

Genes Single 

disease 

causing 

gene(s) 

Whole genome. 

Can be tailored to 

target regions  

10s-100 disease 

associated genes 

~22,000 genes Whole genome 

Coverage Excellent 

coverage 

- Deep coverage 

of protein-

coding regions 

Variable 

coverage of 

protein-coding 

regions 

Uniform 

coverage of 

whole genome 

Risk of VUS Minimal  High Variable but 

lower than WES 

and WGS 

High, in coding 

regions  

High, in coding 

and non-coding 

regions 

Incidental 

findings 

None Possible Variable number 

but less likely 

than WES and 

WGS 

Possible Possible  

Time to 

return of 

result 

2-4 weeks 2-6 weeks 6-8 weeks 9-12 weeks >12 weeks 

Cost per run Relatively 

expensive 

per base 

£100-500  £140 £280 £800 
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Sanger 

confirmation  

Sanger 

sequencing 

used and is 

gold 

standard 

Not required Requires 

confirmation 

with Sanger 

sequencing  

Requires 

confirmation 

with Sanger 

sequencing 

Requires 

confirmation 

with Sanger 

sequencing 

CGH; comparative genomics hybridisation, CNV; copy number variants, VUS; variants of unknown 

significance, WES; whole exome sequencing and WGS; whole genome sequencing.  

1.2.1 Single gene testing 

The choice of a single gene test is dictated by the patient’s medical evaluation. Sanger 

sequencing is the current gold standard for mutation detection. The single gene testing 

approach is relevant in cases where there is a strong phenotype-genotype correlation, for 

genetic disorders with distinct phenotypes and where certain gene mutations have a relative ly 

high frequency for a particular disorder in specific populations (Xue et al., 2015). Otherwise, 

this approach can be time and resource consuming especially for genetic diseases that are 

known to have genetic and phenotypic heterogeneity, when it may not be the most appropriate 

initial test. For example, Stargardt disease, a juvenile onset hereditary macular degeneration, 

is commonly caused by mutations in the ABCA4 gene and targeted sequencing of this gene 

has led to mutation detection in more than half of affected patients (Briggs et al., 2001; Xin et 

al., 2015). On the other hand, for the heterogeneous movement disorders only 5% are 

diagnosed by Sanger sequencing (Neveling et al., 2013). 

Furthermore, single gene testing can take the form of methylation analysis for disorders 

caused by epigenetic mechanisms (e.g. imprinting disorders), fragment analysis for 

trinucleotide repeat expansions and multiple ligase probe amplification (MLPA) for small 

copy number variants (CNV) such as exon-level deletions and duplications (Schouten et al., 

2002; Poole et al., 2013; Xue et al., 2015; Liu et al., 2017b). 

1.2.2 CGH-array 

CGH-array is now considered a first tier test for developmental disorders such as intellectual 

disability, autistic spectrum disorder and multiple congenital anomalies. The technique is 

designed to detect cytogenetic abnormalities such as aneuploidies and structural 

rearrangements. Variants identified through CGH-array often require scrutiny before they are 

associated with disease. Nevertheless, using this method has proposed many candidate disease 

genes in neurodevelopmental disorders. It is worth noting that although CGH-array 

interrogates the whole genome, it does not identify all types of mutations. Thus, a negative 
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test does not mean absence of genetic defects and should be followed by further testing of 

relevant loci by gene screening or NGS, for example (South et al., 2013; Cappuccio et al., 

2016). 

1.2.3 Gene panel testing  

Gene panel testing allows multiple genes, previously associated with a specific genetically 

heterogeneous disorder to be sequenced simultaneously. Although multiple genes (tens to 

hundreds) are sequenced, this translates to a single test for the patient and a comprehensive 

and effective diagnostic tool for the clinical service (Xue et al., 2015). NGS gene panels, 

although dependant on the patient’s initial diagnosis and thus the choice of disease panel, 

have shown high diagnostic yields for many genetic diseases. In a cohort of patients with limb 

girdle muscular dystrophy (LGMD), a genetically and phenotypically heterogeneous 

neuromuscular disorder, an NGS-based panel of 23 LGMD related genes and 15 genes 

associated with phenotypically overlapping disorders resulted in a diagnostic rate of 33%. 

This rate would have been difficult, if not impossible, to achieve using a single gene testing 

approach within the same time and resource frames (Kuhn et al., 2016). Similarly, in a group 

of 400 patients with non-specific early onset epilepsy and severe developmental delay, 18% 

of cases had a molecular diagnosis using a gene panel approach. This rate was higher at 39% 

for patients with very early onset epilepsy (< 2 months) (Trump et al., 2016).  

Furthermore, gene panel testing may provide further insights into the phenotype-genotype 

correlations and the phenotypic spectrum of the genetic disease under investigation. This was 

demonstrated for inherited peripheral neuropathies where a targeted gene panel revealed a 

high diagnostic yield (31%) and unexpected phenotype-genotype variability, where some 

patients were found to have mutations in genes not indicated by their phenotype (Antoniadi et 

al., 2015; Trump et al., 2016). 

1.2.4 Whole exome sequencing  

WES is increasingly being used in clinical diagnostics for rare genetic diseases. WES captures 

the majority of the coding sequence of the human genome. For genetically heterogeneous 

disorders and for those with diagnostic uncertainty WES has revealed high diagnostic yield 

when compared to single gene testing and NGS-panel approaches. A post-hoc study 

comparing WES with Sanger sequencing for a number of heterogeneous genetic diseases 

including: blindness, deafness, movement disorders, mitochondrial diseases and colorectal 

cancer found that when combined with targeted analysis of WES data, diagnostic yield was 
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considerably higher for all diseases, with the exception of colorectal cancer (Neveling et al., 

2013). In a preceding study, the authors also compared yield for retinitis pigmentosa using a 

targeted NGS-panel and WES and found that WES was still superior (36% and 52% 

diagnostic yield for targeted panel sequencing and WES, respectively) (Neveling et al., 2012). 

WES has also contributed to identification of de novo and novel mutations in rare genetic 

disorders. For autistic spectrum disorders (ASD), WES has played a major role in identifying 

de novo causative and risk variants in sporadic and familial forms of the disease (Iossifov et 

al., 2014; Lee et al., 2014b; Toma et al., 2014; Fukai et al., 2015; Hara et al., 2015). 

Likewise, de novo mutations play a major role in intellectual disability and WES has been 

found to be an effective diagnostic tool for their detection. In a series of 100 patients with 

intellectual disability, de novo mutations were detected in 53 patients and these mutations 

were in novel candidate genes in 22 patients in this series (de Ligt et al., 2012). Furthermore, 

WES identified likely causative mutations for patients with LGMD in genes previously 

associated with other myopathies rather than LGMD, thus expanding the clinical phenotype 

for those genes, increasing the number of genes associated with LGMD and providing 

insights into disease mechanism and aetiology (Ghaoui et al., 2015). 

1.2.5 Whole genome sequencing  

WGS is increasingly being used in research into rare genetic disease and is now entering 

clinical settings for molecular diagnosis of these disorders. For example, inherited retinal 

dystrophies are most commonly investigated using a targeted gene panel approach. However, 

a study comparing the yield of WGS compared to the targeted panel showed that WGS had 

the added benefit of detecting large deletions and non-coding deleterious variants and 

suggested that WGS can result in a 29% increase in diagnostic yield (Ellingford et al., 2016). 

WGS has also been successful not only in detecting novel variants in new candidate genes but 

has also contributed in defining previously unreported Mendelian disorders (Lupski et al., 

2010; Sobreira et al., 2010; Wang et al., 2013a; Gilissen et al., 2014). Although the majority 

of mutations identified through WGS are within the coding regions of the DNA, WGS 

potentially has the added benefit of detecting non-coding pathogenic mutations and is 

expected to be the preferred test for a comprehensive assessment for patients with a rare 

disease (Warman Chardon et al., 2015). 

1.2.6 Diagnostic algorithm  

Xue et al suggest an algorithm for molecular diagnosis of Mendelian disease as shown in 

figure 1 (Xue et al., 2015). A single gene test where indicated is associated with high 
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sensitivity and the chance of finding variants of unknown significance (VUS) is small, 

making interpretation of the results less challenging and making the overall test time and cost-

efficient. This approach, however, requires the clinicians to have clinical knowledge and 

expertise enabling them to select the correct gene or genes to sequence. NGS-gene panel 

testing simplifies the process of test selection for the clinician when faced with a 

heterogeneous disorder and again will have a higher diagnostic sensitivity when appropriately 

selected. However, as the number of genes sequenced increases, the number of VUS will also 

increases posing a challenge in data interpretation and determining the correct causal variant. 

In addition, the choice of genes to include in a panel test for a particular disorder varies 

amongst laboratories, where gene selection depends on many criteria including strength of 

gene-disease association, cost and availability of expertise for interpretation. In addition, 

some laboratories choose to include genes associated with overlapping phenotypes and 

diseases included in the differential diagnosis. For example, a gene panel test for LGMD may 

strictly include only genes known to cause a form of LGMD or may be expanded in another 

laboratory to include genes associated with myopathies and other neuromuscular disorders. It 

is also worth noting that with the ongoing identification of new genes that are associated with 

NMD, gene panels are quickly becoming outdated (Warman Chardon et al., 2015; Xue et al., 

2015).  

For clinical presentations that are non-specific, WES is the preferred and the most commonly 

used test. Studies have shown that WES can also be cost-effective when compared to 

sequential sequencing of multiple single genes. In addition, WES has the advantage of being 

“hypothesis-free”. Nevertheless, WES still requires a skilful clinical evaluation by 

experienced clinicians. In addition, this clinical information should be made available to the 

laboratory geneticist to enable interpretation of the vast number of variants produced by WES. 

A further point to consider is the fact that WES does not cover the entire exome, including 

some exons of known disease-associated genes. It has been reported that up to 10% of exons 

do not have adequate coverage at a 20-fold-depth. In addition, due to technical limitations for 

WES, large deletions, expansion and structural rearrangement maybe be missed. These along 

with the fact that a disease may not be genetic in origin, contribute to the WES average 

diagnostic yield of approximately 30% (Need et al., 2012; Ankala et al., 2015; Warman 

Chardon et al., 2015; Xue et al., 2015). WGS offers a more comprehensive method for 

diagnosis and disease gene discovery. It offers a more uniform coverage of coding and non-

coding regions with their regulatory elements such as promoters, enhancers and extended 

splice sites. Cost and bioinformatics analysis as well as VUS interpretation all remain a 

challenge. However, decreasing costs and increasing development in informatics are 
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sufficient to brand WGS a comprehensive test for diagnostics in rare Mendelian diseases 

(Xuan et al., 2013; Warman Chardon et al., 2015; Xue et al., 2015; Shiao, 2016). 

Despite this thorough and comprehensive approach to testing, up to 50% of patients with a 

suspected genetic disorder remain without a confirmatory molecular diagnosis (Shashi et al., 

2014). For some specific presentations, for example, intellectual disability, the percentage of 

molecularly undiagnosed children is up to 80% (van Karnebeek et al., 2005; Rauch et al., 

2006; Shashi et al., 2014). The low diagnostic yield of this current approach can, in part, be 

accounted for by limitations in NGS technologies and analysis pipelines discussed in further 

detail in the following sections. 

 

Figure1: Molecular genetics diagnostic algorithm for patients with a suspected genetic 

disorder (Xue et al., 2015). 

 

1.3 Next generation sequencing technologies 

The Sanger method is considered the first generation in DNA sequencing and is still gold 

standard in diagnostics. NGS, initially introduced in 2005, refers to the range of newer 

technologies that have massively improved the throughput of DNA sequencing (Metzker, 

2010). Technical aspects and system performance for the various NGS technologies since 

2005 are discussed below (Xuan et al., 2013; Pant et al., 2014). 

 



 

9 

 

454 (Roche) 

454 was the first NGS technology to be introduced. It is based on emulsion polymerase chain 

reactions (PCR), where beads carrying single stranded templates are confined to individual 

emulsion droplets and subjected to PCR amplification. These beads are then placed in wells 

where pyrosequencing takes place. In this latter process, sequencing by synthesis occurs 

where incorporation of a nucleotide leads to release of pyrophosphate causing a luminescence 

emission that is monitored in real time.  This technology has the ability to produce the longest 

of read with the latest update claiming up to one kilobyte (kb). However, due to the lack of a 

terminating moiety, multiple incorporations of identical nucleotides can occur. This leads to 

problems when sequencing homopolymers; stretches of the same nucleotide. If three or more 

consecutive nucleotides are incorporated, the signal intensity does not necessarily correlate 

with the length of the homopolymer, leading to a high error rate in calling insertions and 

deletions. A further drawback of this system is its high cost when compared to other NGS 

technologies. The system is currently no longer supported by the developers.  

 

Illumina (Solexa) 

The Illumina sequencing system is the most widely used due to its high throughput and its 

cost effectiveness compared to other technologies. It uses an array-based DNA sequencing by 

synthesis method. Here a florescence is generated as nucleotides are incorporated, reversibly 

terminating the sequence reaction. This overcomes the issue of homopolymer sequencing. Its 

drawback however is that it generates short read lengths, 300 base pairs (bp), as the quality of 

the reads degrades after a relatively small number of sequencing. In addition, uneven 

coverage has been seen in AT-rich and GC-rich regions.  

 

SoLiD (Applied Biosystems)  

The SOLiD technology uses emulsion PCR as previously described. This is followed by 

ligation-based sequencing, where fluorescent octamer probes are ligated based on binding on 

complementary di-bases of the probe to those of the template. This di-base technology results 

in high accuracy in sequence calling. On the other hand, due to this unique technology, 

SOLiD is not as frequently used as many other technologies as the machine is not compatible 

with the most commonly used software for data analysis.  In addition, SOLiD generates very 

short reads (up to 75bp).  
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Helicos (Biosciences)  

Helicos was the first single-molecule sequencing system to be commercially introduced. 

Single-molecule sequencing technology meant that a single DNA or RNA molecule could be 

sequenced without prior amplification. This newer technology has the advantages of 

minimising sample handling and reducing amplification errors, making it potentially ideal for 

molecular diagnosis. The Helicos technology uses a base-by-base incorporation method and a 

florescence- labelled inhibitory moiety. It therefore overcomes the homopolymer problem, 

however, it is associated with a high error rate of ~3-5% mainly of deletions. This system did 

not receive much interest and was shut down in 2012.  

Pacific Biosciences (PacBio) 

The PacBio technology uses a “single molecule real time” (SMRT) system, where template-

directed incorporation of fluorescence- labelled nucleotides is recorded in real time. PacBio 

also produces large read lengths (~8.5 kb). Despite its relatively high cost, it is becoming 

increasingly popular for applications that benefit from long reads.    

 

Ion Torrent (Life Technologies) 

Ion Torrent was invented by Jonathan Rothberg who also developed the earlier 454 system. 

Ion Torrent uses a similar system to 454 with the exception of the detection technology that 

relies on pH measurement, making it different from all other NGS technologies. It does not 

require optical sensor systems thus the costs are reduced. However, it can only reliably 

produce short reads making it more suitable for smaller targeted sequencing projects.    

 

Oxford Nanopore Technologies 

The nanopore sequencing technology is also a single molecule sequencing technology. The 

single-stranded molecule is passed through a nanometer-sized pore and sequence detection is 

by recording ionic current change or optical signal. This technology is currently being 

selectively tested using the MinION, a small USB attached sequencer that requires minimal 

sample preparation. However, it requires a disposable flow cell costing nearly $1000. The 

system still has a current high error rate. Nonetheless, the potential for long reads is 

promising.  
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1.4 NGS data flow and bioinformatics pipelines  

Recent advances in NGS technology and the rapid drop in sequence time and cost has led to 

generation of vast amounts of data requiring interpretation through clinically targeted 

bioinformatics algorithms. In the context of clinical NGS, these algorithms can be divided 

into stages (figure 2) including: initial data processing, variant calling, variant annotation and 

variant prioritization (Bao et al., 2014). 

 

Figure 2: Clinical next generation sequencing analysis pipeline. BAM; binary alignment 
map, VCF; variant call format. 

 

1.4.1 Base calling  

The initial challenge in NGS is optimal base calling by the NGS platform. As previously 

discussed, NGS technologies vary in detection methods and operating algorithms and thus 

sensitivity and specificity. For example, InDels are more frequently erroneously called by the 

454 platform, while substitution errors prevail at a rate of 1% in Illumina system and are 

dependent on read length. Platform-dependent base calling algorithms are constantly being 

developed to reduce error rates. Many use quality scores to estimate error probabilities for 

each base call. This can be expressed as a Phred score, where a Phred score of 20 indicates a 

10-2 or 1% probability of an error in base calling. Base calling accuracy continues to be 

Base calling

•Raw reads
•(Fastq)

Quality Control

•Raw reads QC
•(FASTQ)

Data pre-processing

•eg. adaptor 
trimming 
• Processed reads

•(FASTQ)

Read alignment 

•BAM

Post alignemnt 
processing

•remove duplicates
•recalibrate 

•BAM

Variant calling

•VCF

Variant annotation
Variant 

prioritization 
•Candidate disease-
causng variants



 

12 

 

challenging and requires further development in computational algorithms (Xuan et al., 

2013). Recent publications assessing accuracy of variant calling with multiple sequencing 

technologies have demonstrated inconsistencies and varying sources of error (Boland et al., 

2013; Zhang et al., 2015; Laurie et al., 2016). 

Most NGS platforms will generate a Fastq file containing the raw data. This text file contains 

the sequence reads along with quality scores. Further quality control (QC) processing 

involves trimming low quality reads and contaminating bases, (e.g adaptor sequences) using 

software programs such as FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc).  

1.4.2 Sequence read mapping  

The next step is to map the reads in the Fastq file. This refers to the assembly of the reads to 

reconstruct the parent genome as accurately as possible. This can either be done via 1) 

alignment to a reference genome or 2) de novo assembly which uses no scaffold sequence to 

map reads. In de novo assembly, the reads group into contigs and contigs into scaffolds based 

on read overlap. The contigs give multiple sequence alignment of reads and the scaffold 

defines their order and orientation as well as gaps in the contigs. For de novo assembly 

software tools use either the “Overlap/Layout/Consensus” (OLC), “Greedy” or Bruijn graph 

algorithms all of which align reads based on pairwise overlapping sequences to reconstruct 

the parent genome (Miller et al., 2010).  

When aligning to a reference genome, the computational algorithm attempt to find the 

location of each short read in the NGS experiment in the reference genome. The most 

commonly used aligner, the Burrows-Wheeler Aligner (BWA), uses the Burrows Wheeler 

Transform (BWT). This rearranges and indexes repetitive reads together while still allowing 

the original reads to be searched. The final index can then be aligned to the reference genome 

(Huang et al., 2013). Currently, there are three different BWA algorithms: BWA-ALN 

(BWA-backtrack), BWA-SW (Smith Waterman Alignment) and BWA-MEM (maximum 

exact matches). Each of these algorithms has its own strengths and weaknesses in terms of 

speed of performance, handling read length, ability to account for sequencing errors and 

ability to facilitate insertion and deletion (InDel) detection (Robinson et al., 2017).   

The aligned reads are then commonly stored as a binary alignment map (BAM) file format. 

Read mapping is a crucial step in the bioinformatics analysis pipeline as the subsequent 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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variant calling relies on the accuracy of mapping and mistakes in read mapping may lead to 

erroneously called variants.  

The alignment based-approach is limited by incompleteness of genome assembly, interference 

from single nucleotide polymorphisms and base calling errors and structural variations in 

otherwise balanced genomes. In addition, alignment to a reference genome is difficult in 

regions of high diversity. All this makes variant calling on alignment-based reads more prone 

to false positives. In general, this may be overcome through use of longer paired-end reads 

(Nielsen et al., 2011; Wu et al., 2017). 

De novo assembly methods allow for a comprehensive assembly of the sequenced genome 

irrespective of the reference genome. It may also offer a solution for mapping of known 

highly diverse regions. However, although de novo assembly has shown a small additional 

value in single nucleotide variant (SNV) discovery, the method is associated with a high rate 

of false positives for novel mutations and still requires further development (Nielsen et al., 

2011; Cao et al., 2015; Wu et al., 2017). 

1.4.3 Post mapping data processing  

Prior to variant calling, the sequenced and mapped reads require further quality control and 

filtering. This step varies between researchers and projects. However, for the majority of 

sequencing experiments, duplicate fragments are marked and removed. The most commonly 

used software application is Picard (https://broadinstitute.github.io/picard/) developed by the 

Broad Institute of Harvard and MIT. The tool also assesses mapping quality, allows for 

elimination of low quality reads and performs a local realignment. In addition to these steps, 

many projects perform a base quality score recalibration (BQSR) prior to variant calling. This 

step is aimed at detecting systematic error by the sequencing platform in assigning the initial 

base quality score (Pirooznia et al., 2014).  

1.4.4 Variant calling  

Once reads are assembled and aligned to the reference, variant calling can then take place 

looking for SNV or short InDels that do not match the reference and thus may be disease 

causing. Commonly used variant calling software are SAMtools, the Genome Analysis Tool 

Kit (GATK) and the Short Oligonucleotide Alignment Program (SOAP) (Wang et al., 2013b; 

Pirooznia et al., 2014). These tools use different calling algorithms that can fall into one of 

three categories depending on how base calls are deducted from the high throughput 

sequencing data. The first algorithm, individual-based single marker caller (IBC), assigns 

https://broadinstitute.github.io/picard/
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genotypes for a single individual at a single position. This is usually used for high-depth 

exome sequencing data. The second algorithm, population-based single marker callers (PBC), 

utilizes reads at a particular position from the whole sample to determine allele frequencies 

and polymorphisms. Genotypes are then called for each call for an individual based on the 

calculated allele frequencies. The third group of callers use linkage disequilibrium-aware 

calling algorithms (LDC). Here, the algorithm uses linkage disequilibrium data flanking each 

variant identified by IBC or PBC by several hundred kilobases, then phases variant calls into 

haplotypes. This information is then used in the algorithm to update genotypes. This latter 

method, although computationally demanding, has been used in combination with PBC in the 

1000 Genomes Project (https://www.genomicsengland.co.uk/the-100000-genomes-project/) 

to interpret low coverage, genome-wide data. These algorithms then produce a variant call 

format (VCF) file (Abecasis et al., 2010; Nielsen et al., 2011; Lo et al., 2015). 

1.4.5 Variant annotation  

The increasing use of NGS in research and in clinical setting means that a large amount of 

genetic variants are recognized and need to be assigned as disease causing or polymorphism. 

Initially, the variant type needs to be attributed and its location in the genome defined, 

depending on the version of the Human Genome Assembly (currently GRCh37 or GRCh38). 

RefGene (http://varianttools.sourceforge.net/Annotation/RefGene/) and (Ensembl 

http://www.ensembl.org) are the current gold standards for locating and categorizing variants.  

This is a crucial step in determining whether the variant has a potential to disrupt the protein 

sequence and thus alter its function. 

NGS data analyses also require integration from other genomic projects. For example, The 

Encyclopedia of DNA Elements (ENCODE) project and the Roadmap Epigenomics Project 

(http://www.roadmapepigenomics.org/) provide additional genome-wide functional and 

regulatory element data. Also, RNA sequencing projects such as the one included in the 

RefSeq repository (https://www.ncbi.nlm.nih.gov/refseq/about/) are continuously adding to 

the list of new splice events and novel transcripts (McCarthy et al., 2014; Li and Wang, 2015; 

Salgado et al., 2016). This data can all be used to annotate variants. 

It is important to note here that the choice of transcript set is an important step to consider for 

the variant annotation process. Currently, for human NGS annotation, the transcript sets 

offered by RefSeq and Ensembl are most commonly used (McCarthy et al., 2014; Laurie et 

al., 2016). 

https://www.genomicsengland.co.uk/the-100000-genomes-project/
http://varianttools.sourceforge.net/Annotation/RefGene/
http://www.ensembl.org/
http://www.roadmapepigenomics.org/
https://www.ncbi.nlm.nih.gov/refseq/about/
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A further annotation element that is particularly relevant in the context of rare Mendelian 

diseases is the frequency of the variant in the general population. For this purpose, data from 

large-scale population-based projects such as the 1000 Genomes Project 

(http://www.internationalgenome.org/), the Exome Aggregation Consortium (Lek et al., 

2016) (ExAC) database (http://exac.broadinstitute.org/) and the Genome Aggregation 

Database (gnomAD) (http://gnomad.broadinstitute.org/) are utilised.  

The next level of annotation is for variant predicted pathogenicity. This involves a prediction 

software tool such as SIFT, Polyphen2, Mutation Taster, CADD, UMD-Predictor and 

FATHMM. Many bioinformatics pipelines use a combination of these predictors. Variants are 

also annotated for association with disease. This information is usually extracted from 

databases such as ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), UNIPROT 

(http://www.uniprot.org/) and the Human Gene Mutation Database (HGMD, 

http://www.hgmd.cf.ac.uk/ac/index.php) (Li and Wang, 2015; Salgado et al., 2016).  

At the gene level, variants can be annotated for functional gene attributes, by using the Gene 

Ontology Consortium database (Ashburner et al., 2000) for example. Genes can also be 

annotated for tissue expression levels through integrating projects and databases such as the 

Genotype Tissue Expression (GTEx) resource (https://gtexportal.org/home/) and the European 

Bioinformatics Institute's (EBI)  Expression Atlas (https://www.ebi.ac.uk/gxa/home), which 

enables queries across numerous participating gene expression experiments. Databases for 

biological pathways, protein interactions and protein sequence features, such as KEGG 

Pathways (http://www.genome.jp/kegg/pathway.html), EBI IntAct 

(https://www.ebi.ac.uk/intact/), and EBI InterPro (https://www.ebi.ac.uk/interpro/), 

respectively, can also be used to annotate at the gene level. However, currently these are not 

integrated in annotation tools and are provided through external links (Li and Wang, 2015; 

Salgado et al., 2016).  

Variant annotation requires a complex algorithm and integration of a comprehensive 

combination of the above-mentioned resources. The most commonly used variant annotation 

tool is ANNOVAR (http://annovar.openbioinformatics.org/en/latest/) which integrates over 

4000 public databases (Wang et al., 2010; Bao et al., 2014). Other commonly used annotation 

software are the Ensembl Variant Effect Predictor (VEP) (McLaren et al., 2016), and SnpEff 

(Cingolani et al., 2012).  

http://www.internationalgenome.org/
http://exac.broadinstitute.org/
http://gnomad.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/clinvar/
http://www.uniprot.org/
http://www.hgmd.cf.ac.uk/ac/index.php
https://gtexportal.org/home/
https://www.ebi.ac.uk/gxa/home
http://www.genome.jp/kegg/pathway.html
https://www.ebi.ac.uk/intact/
https://www.ebi.ac.uk/interpro/
http://annovar.openbioinformatics.org/en/latest/
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1.4.6 Variant prioritization  

For a WES experiment, an individual sample will have more than 30,000 variants that are 

different to the reference sequence and more than 10,000 of those are predicted to be non-

synonymous SNVs, to cause a splice site alteration or to be small insertions or deletions 

(Gilissen et al., 2012). For a WGS experiment the number of variants called is approximately 

3 million (Wang and Xing, 2013). Following annotation, these variants need to be filtered to 

enable an effective search for disease-causing mutations. This step is required to prioritize and 

shortlist a smaller number of the most relevant variants. For this purpose, a number of variant 

prioritization platforms and interfaces have been developed. These tools allow filtration of 

variants based on the annotations attached to them in the previous step of the analysis 

pipeline.  In the context of rare disease, variants are filtered for their population frequency, 

effect on protein, pathogenicity predictions, and inheritance model. Furthermore, variants 

from a WES and WGS experiment can be filtered and restricted to those falling within 

particular regions in the genome identified through linkage studies or in a candidate gene list 

known to be associated with a particular disease spectrum. More recently developed software 

allow for filtering variants based on protein interaction networks, cross-species phenotype 

comparisons and clinical relevance, where the relevance of the gene harbouring the variant is 

added to the filtering criteria of the variant prioritization algorithm (Franke et al., 2006; 

Zemojtel et al., 2014; Smedley et al., 2015; Muller et al., 2017). To enable this, data needs to 

be added in a standardized language using ontologies such as the Human Phenotype Ontology 

(Kohler et al., 2014) (HPO) and the Online Mendelian Inheritance in Man (OMIM) database 

(https://omim.org/). Taking this a step further, variant prioritization can also incorporate 

genetic and phenotypic data shared across projects in the process of matchmaking. This is of 

particular importance in rare disease and for novel discoveries, where data sharing allows 

researchers to confirm their suspicion of a novel gene association by finding a phenotypically 

similar case with variants in the same gene of interest at another research site (Kirkpatrick et 

al., 2015; Philippakis et al., 2015).  

Variant prioritization requires a standalone, user-friendly, interactive and flexible platform, 

which facilitates application of custom filters. Commercially and academically available web 

applications are continuously being developed and released and all share common features but 

also have specific strengths (Jalali Sefid Dashti and Gamieldien, 2017). For example, as well 

as filtering for functional variants, allele frequency and pathogenicity predictions, Exomiser 

allows variant prioritization by integrating cross species phenotype comparisons (Smedley et 

al., 2015). The RD-Connect Genome-Phenome Analysis Platform (https://platform.rd-

https://omim.org/
https://platform.rd-connect.eu/
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connect.eu/) integrates Exomiser as well as variant/phenotype matchmaking tools, to further 

facilitate short listing of variants and genes (Thompson et al., 2014). The platform now also 

utilizes haplotype data for analysis of large pedigrees and homogenous cohorts. PhenIX 

(Phenotypic Interpretation of Exomes) uses terms from the HPO to prioritize variants in genes 

with a known association to phenotypes similar to the individual under investigation 

(Zemojtel et al., 2014). seqr (https://seqr.broadinstitute.org/) allows users to visualize the 

reads and ascertain the variant calls through integrating the Integrative Genomic Viewer 

(IGV) software (http://software.broadinstitute.org/software/igv/).  

Researchers will have different preferences of variant prioritization methods and this relies on 

the type of NGS project. In addition, while some larger scale projects would benefit from 

automated workflows, smaller ones may require a more interactive filtering process (Wang 

and Xing, 2013; Jalali Sefid Dashti and Gamieldien, 2017).  

Once candidate variants are prioritized, they then need to be validated by phenotypic data, 

Sanger sequencing, segregation analysis and functional studies (Coonrod et al., 2011). 

 

1.5 Benchmarking NGS bioinformatics pipelines 

As NGS is increasingly being adopted in clinics, it is crucial to validate bioinformatics 

pipelines to ensure high sensitivity; the ability to correctly identify sites where the patient’s 

DNA differs from the reference (true positives), and high specificity; the ability to correctly 

identify sites that match the reference (true negatives) (Zook et al., 2014).  

There is a lack of published guidelines on how to benchmark NGS bioinformatics pipelines 

and as a result, validation methods vary between researchers. Some labs will validate their 

pipeline results by selecting a number of sites for confirmation via Sanger sequencing (Beck 

et al., 2016; Gao et al., 2016), while others use SNP-array data on the same samples and 

assess concordance (Cottrell et al., 2014). Not only do both methods carry a degree of 

selection bias, the lack of uniformity in validation methods makes it difficult to compare 

results across experiments, and thus identify inaccuracies and judge discrepancies. A more 

recent trend follows the use of well characterized reference data. For example, the National 

Institute of Standards and Technology (NIST) and the Genome in a Bottle (GIAB) consortium 

have created reference material for genome sequencing as well as guidance on benchmarking. 

The material is characterized to outstanding levels and publicly available for researchers to 

use when validating their sequencing technologies, bioinformatics pipelines and variant 

https://platform.rd-connect.eu/
https://seqr.broadinstitute.org/
http://software.broadinstitute.org/software/igv/
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detection methods. It includes consensus data from a number of sequencing technologies, 

library preparation methods and bioinformatics pipelines (Zook et al., 2014; Zook et al., 

2016). These initiatives not only allow WES and WGS experiment benchmarking, they also 

enable comparison of experiments against a well-defined reference. Recent literature 

demonstrate the usefulness of the GIAB reference material in designing next generation 

sequencing experiments and comparing reliability of the many bioinformatics tools in read 

mapping and variant calling (Zook et al., 2014; Cornish and Guda, 2015; Laurie et al., 2016).  

The benchmarking materials have also facilitated the identification of regions in the genome 

where SNV and InDel calls are less reliable. This meant that it was possible to publish reliable 

genomic regions for benchmarking, where variant calls are expected to be highly consistent 

(Zook et al., 2014; Laurie et al., 2016).   

Very recently, the Association for Molecular Pathology and the College of American 

Pathologists published a set of guidelines for validating NGS bioinformatics pipelines. 

Amongst the 17 recommendations mentioned in table 2, there is great emphasis on the use of 

a representative reference set of high quality variants produced by an orthogonal method (Roy 

et al., 2018).  
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Table 2: Recommendation from the Association for Molecular Pathology and the College 
of American Pathologists for validating NGS bioinformatics pipelines (Roy et al., 2018). 

Recommendation 

number 
Statement 

1 
Clinical laboratories offering NGS-based testing should perform their own 

validation of the bioinformatics pipeline 

2 
A qualified medical professional with appropriate training in NGS interpretation 

and certification must oversee and be involved in the validation process 

3 

Validation must be performed only after completion of design, development, 

optimization, and familiarization of the bioinformatics pipeline and its 

components 

4 
Bioinformatics pipeline validation should closely emulate the real-world 

environment of the laboratory in which the test is performed 

5 

Validation should include all individual components of the bioinformatics 

pipeline used in the analysis, and each component must be reviewed and 

approved by an appropriately qualified medical molecular professional and the 

laboratory director 

6 

The design and implementation of the bioinformatics pipeline must ensure the 

security of identifiable patient information and be compliant with all applicable 

laws at the local, state, and national levels 

7 

Validation of the NGS bioinformatics pipeline must be appropriate and 

applicable for the intended clinical use, specimen, and variant types detected of 

the NGS test 

8 

Laboratories must ensure that the design, implementation, and validation of the 

bioinformatics pipeline are compliant with applicable laboratory accreditation 

standards and regulations 

9 

The bioinformatics pipeline is part of the test procedure, and its components and 

processes must be documented according to laboratory accreditation standards 

and regulations 

10 The identity of the sample must be preserved throughout each step of the NGS 

bioinformatics pipeline with a minimum of four unique identifiers, including a 
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Recommendation 

number 
Statement 

unique location identifier within the content of each data file read and/or 

generated by the pipeline 

11 

Specific quality control and quality assurance parameters must be evaluated 

during validation and used to determine satisfactory performance of the 

bioinformatics pipeline 

12 

The methods used to alter or filter sequence reads at any point in the 

bioinformatics pipeline before interpretation must be validated to ensure that the 

data presented for interpretation accurately and reproducibly represent the 

sequence in the specimen, and full documentation of these methods must be kept 

as part of the test documentation according to laboratory accreditation standards 

and regulations 

13 

Laboratories must include specific measures to ensure that each data file 

generated in the bioinformatics pipeline maintains its integrity and provides alerts 

for or prevents the use of data files that have been altered in an unauthorized or 

unintended manner 

14 

In silico validation can be used to supplement the validation of the bioinformatics 

pipeline but shall not be used in lieu of end-to-end validation of the 

bioinformatics pipelines using human samples 

15 

Validation of the bioinformatics pipeline must include confirmation of a 

representative set of variants with high-quality independent data; appropriate 

validation metrics by variant type should be reported 

16 

Clinical laboratories must ensure the accuracy of software-generated HGVS 

variant nomenclature and annotations and have an alert in place to indicate when 

the software-generated nomenclature and annotations need to be manually 

reviewed and/or corrected, and documentation of any corrections must be 

maintained 

17 
Supplemental validation is required whenever a significant change is made to any 

component of the bioinformatics pipeline 

HGVS; Human Genome Variation Society, NGS; next generation sequencing.  
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1.6 Advantages and drawbacks of NGS 

NGS provides high throughput data in a single reaction. It has the advantage of relatively 

uniform coverage of larger proportions of the genome and in the case of WGS, uniform 

coverage across the whole genome. NGS allows hypothesis- free experiments and has 

facilitated novel disease gene discoveries. For example, loci for three autosomal dominant 

limb girdle muscular dystrophies had been identified through linkage studies for decades prior 

to WES identifying mutations in DNAJB6, TNPO3 and HNRPDL as disease causing for 

LGMD1D, LGMD1F and LGMD1G, respectively (Sarparanta et al., 2012; Torella et al., 

2013; Vieira et al., 2014). In addition, it is the technique of choice in heterogeneous disorders 

(Lek and MacArthur, 2014) and is particularly useful for identifying variants in larger genes 

such as TTN (Toro et al., 2013; Liu et al., 2017a). 

Nonetheless, NGS is a continuously developing entity and many points are to be considered 

when designing NGS experiments. First, despite the continuing decline in cost of sequencing, 

the costs remain high and vary depending on the setting, the technology and the analysis 

strategy (Sims et al., 2014). The aim is thus to design a sequencing experiment that provides 

reliable results at the lowest costs possible.  

The large volume of data is another drawback for analysis and storage. It has been suggested 

that with the decreasing cost of sequencing, it may be more appropriate to re-sequence a 

patient’s DNA than to store the original sequencing data (Efthymiou et al., 2016). However, 

the development of compressed forms of NGS data files, such as gVCF and CRAM, may 

potentially reduce storage costs (Lek and MacArthur, 2014).   

A further key consideration in NGS experiment design is coverage. Coverage has been used 

to define the “depth of coverage” which is the number and length of high quality reads from 

an NGS experiment that represent each base in the reference genome. Coverage also refers to 

the “breadth of coverage” of a target genome, which represents the percentage of bases in the 

target that are sequenced a given number of times, and have a given minimum depth. Depth 

and coverage are terms that are often used interchangeably, as they are in this account. The 

higher the coverage, the higher the experiment cost. Sanger sequencing remains the gold 

standard and the most commonly used genetic test. It has high coverage for the target segment 

of the genome being sequenced as Sanger sequencing has longer reads that are derived from 

larger insert libraries and can be assembled using reliable computational algorithms. 

However, from the genome point of view, Sanger sequencing is not a practical test and may 

not be cost effective in rare diseases with phenotypic and genetic heterogeneity. WES 
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provides a more comprehensive coverage of 1-2% of the genome where an estimated 85% of 

disease causing mutations are located. However, it has been reported that up to 10% of the 

exome in WES experiments is not adequately covered (has a depth of <20) (Rabbani et al., 

2014). The power to detect InDels in particular is directly related to uniformity of coverage. 

WGS has higher breadth of coverage compared to WES, in that it provides a more uniform 

coverage of coding and non-coding parts of the genome. However, WGS is still unreliable in 

detecting structural rearrangement and repeat expansions that are longer than the read length.  

Technical limitations in NGS may result in inaccuracies. For example, capture kits are liable 

to reference bias. This occurs for variants in the heterozygous state, where the capture probes 

that match the reference sequence tend to enrich the reference allele, resulting in a false 

negative call (Abnizova et al., 2017). In addition, at GC-rich sites and sites with repetitive 

elements, PCR amplification may result in areas with poor coverage, duplicate reads, off-

target capture, and thus a decrease in uniformity of coverage. These technical limitations of 

NGS lead to lower sensitivity and thus false negative calls, and need to be accounted for 

(Treangen and Salzberg, 2011; Abnizova et al., 2017; Roeh et al., 2017).  

False positives also need to be considered. Template amplification and sequencing can lead to 

false variant calls. To overcome this, Sanger sequencing can be used to confirm variants that 

are of interest. In addition, methods for variant quality assurance (for example, joint variant 

calling and variant quality score recalibration, VQSR) and filtering should be applied to the 

pipeline (Carson et al., 2014; Efthymiou et al., 2016).  

A PCR-free WGS experiment will provide more uniform coverage of the genome (breadth) 

and thus require a smaller average depth to reliably cover the target sequence.  Nonetheless, 

WES remains cheaper than WGS and despite the limitations discussed here, can achieve a 

near similar breadth of coverage for the coding genome. This makes WES more popular than 

WGS as reduced costs of the experiment allows researchers and clinical diagnostics services 

to include more samples (Sims et al., 2014; Li et al., 2015; Patwardhan et al., 2015; Warman 

Chardon et al., 2015; Evila et al., 2016).  

A further crucial point to consider in NGS data analysis is choice of bioinformatics tools. It 

has been suggested that the two most important differentiating steps in NGS analysis are 

alignment of reads to the reference genome and variant calling (Zook et al., 2014; Cornish 

and Guda, 2015; Hofmann et al., 2017). Many studies have been carried out in an attempt to 

identify the best combination of computational tools. A 2015 paper by Cornish et al used the 

reference GIAB data to compare performance of alignment tools and variant callers. The 
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authors used six aligners and five variant callers (figure 3) resulting in 30 combinations of 

pipelines. They found that Novoalign as the alignment tool and the GATK UnifiedGenotyper 

as the caller provided the best sensitivity. From the six alignment tools the Borrows-wheeler 

Aligner (BWA) had the best performance with all variant callers but results still varied 

depending on the variant caller in the pipeline. However, the GATK UnifiedGenotyper had 

sensitive results regardless of the aligner. The authors also noted that sensitivity for InDels 

was considerably lower and posed a difficulty for all pipelines (Cornish and Guda, 2015).   

A further study compared bioinformatics pipelines on WES and WGS samples focusing on 

InDels only. They compared GATK’s Unifiedgenotyper, HaplotypeCaller and Pindel, and 

found that for short indels with high read depths, validation data supported HaplotypeCaller. 

They suggested that Pindel was best suited for larger InDels at smaller read depths (Ghoneim 

et al., 2014). A more recent study by Laurie et al in 2016, also used the GIAB reference 

genome to assess robustness of bioinformatics pipelines and found that for 70% of the human 

genome results of the various pipelines were consistent. However, this consistency was more 

so for SNV over InDels (Laurie et al., 2016). The results of these studies highlight the need 

for continued development and validation of bioinformatics tools and pipelines in NGS data 

analysis.  

Copy number variants (CNV) are an additional challenge for NGS experiments and the gold 

standard for their detection is still array-CGH (Wenric et al., 2017). However, a number of 

bioinformatics tools have recently been developed and integrated into NGS analysis pipelines. 

Although such integration is becoming more and more accurate at mapping and detecting 

CNV, validation of many of these software tools has shown considerable variation and the 

algorithms require further development (D'Aurizio et al., 2016; Nam et al., 2016; Onsongo et 

al., 2016; Tan et al., 2017; Wenric et al., 2017). 

These technical issues are currently being addressed by combining NGS technologies with 

other methods, by increasing sequencing coverage and read lengths and improving 

bioinformatics software (Efthymiou et al., 2016).  

VUS are also a major issue for NGS analysis and distinguishing true pathogenic mutations 

from polymorphic or benign variants with no clinical significance is problematic. In addition, 

the “narrative potential” with the researcher building a plausible but false story about 

functional variants in the genome is also a problem (Lek and MacArthur, 2014). Both these 

issues are continuously being addressed through improved variant filtering and annotation 

methods, as well as integrating up-to-date human variation and phenotypic knowledge, and 
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following the most recent published guidelines on associating genetic variants with disease 

(MacArthur et al., 2014).  

 

 

Figure 3: Bioinformatics analysis pipeline used in the Cornish et al study comparing six 

alignment tools and five variant callers using Genome in a Bottle as the reference (Cornish 
and Guda, 2015).  

 

1.7 Data sharing 

Sharing data is critical to scientific advancement. However, it has been hindered by traditional 

scientific practices.  The Personal Genome Project (http://www.personalgenomes.org/) is an 

international collaboration led by Harvard Medical School since 2005. It aims to sequence the 

genomes of 100, 000 individuals from the USA, UK, Canada and Austria and to make genetic 

and phenotypic data publically available for use in scientific research. In doing so, the project 

aims at understanding how human genetic variation influences health and disease. In addition, 

biological samples from participants are stored in biobanks for potential uses in research. This 

would allow clinicians and scientists internationally access to large amounts of data and 

samples (Zarate et al., 2016). 

In rare disease research, the concept of data sharing becomes even more critical, when sharing 

of high quality genotype and phenotype data may lead to an improved analysis of genomic 

http://www.personalgenomes.org/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=4619817_BMRI2015-456479.001.jpg
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data from cohorts with rare and heterogeneous disorders. Large amounts of patient data will 

result in a more accurate variant annotation, analysis and interpretation. Sharing data relies on 

active participation of clinicians and scientists and on the involvement of patients and public 

in the process.   

A few examples of collaborative data sharing projects are well established while many others 

are in their early stages. Through genomic data sharing, the National Institute of Health’s 

(NIH) National Cancer Institute (http://www.cancer.gov/) have used genomic data contributed 

through various collaborative projects in translational research and therapy development. The 

Mitochondrial Disease Sequence Data Resource (MSeqDR, https://mseqdr.org/), established 

by the United Mitochondrial Disease Foundation, provides a robust data resource. MSeqDR is 

a web-based, user-friendly portal allowing researchers to share and access sequence data from 

individuals and families with a suspected mitochondrial disease. Further integration with 

online tools and databases facilitates further interrogation of the shared phenotypic and 

sequence data (Falk et al., 2015).  

More recent data sharing projects in rare disease include The Beacon Project and The 

Matchmaker Exchange (MME) project. The Beacon Project (http://ga4gh.org/#/beacon) is an 

initiative to test the willingness of international sites to share genetic data. It is a simple web 

service that allows users to query whether or not other users have any genomes with a 

particular nucleotide at a particular position on the chromosome of interest. The MME 

(http://www.matchmakerexchange.org) recognises that a proportion of the undiagnosed cases 

of rare genetic diseases have a VUS in a novel gene. Finding an additional patient with a 

similar phenotype and a variant in the same gene would increase evidence for causation. The 

MME enables this through data sharing and linking a large number of projects, institutes and 

databases for rare disease as shown in figure 4 (Thompson et al., 2014; Gonzalez et al., 2015; 

Philippakis et al., 2015).  

The vast amounts of data produced by global research necessitates development of means to 

pool and integrate phenotypic, genomic and biological sample data together. This will enable 

interpretation of the integrated data, not only for disease gene discovery, but also for 

identifying Mendelian disease modifiers and for selection of patient cohorts for therapeutic 

trials (Thompson et al., 2014).  

 

http://www.cancer.gov/
https://mseqdr.org/
http://ga4gh.org/#/beacon
http://www.matchmakerexchange.org/
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Figure 4: The Matchmaker Exchange participants and collaborators. 

(http://www.matchmakerexchange.org)  

 

1.8 Ethical considerations 

NGS technology is continuously ascertaining its benefit in rare disease research and 

diagnosis. However, application of this advancing technology needs to be regulated through 

standard policies and ethical constraints in order to maximise the benefit of the data produced 

to patients and the public while protecting rights of privacy and data ownership of patients. In 

rare diseases, the clinical benefit of NGS may not be immediately obvious to the patient as its 

primary focus is on diagnosis rather than treatment of a rare disorder. Likewise, from the 

public’s perspective it may not prove its utility and cost effectiveness in diagnosing a disease 

affecting a small number of individuals with limited treatment options. In addition, these 

treatment options where available are expensive and issues may be raised within governments 

on whether to fund therapies benefiting larger populations or those for a small number of 

patients with a rare disease (Kang, 2013; Curnutte et al., 2016). 

The most apparent ethical concern with regards to NGS in rare diseases is the uncertainty 

created by the large amounts of data that needs to be interpreted and associated with disease. 

VUS are the most challenging in terms of deciding what to report to patients and families. 

http://www.matchmakerexchange.org/
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Unexpected incidental findings not related to the disease under investigation are a particular 

challenge. A recent survey on the views of healthcare professionals in the UK on disclosure of 

prenatal genetic testing data found that the majority thought that VUS should not be reported 

to patients. However, the majority of participating health care professionals also agreed that 

reporting incidental findings associated with adult-onset disease risk is justified. Participants 

also supported involvement of parents in deciding what information to disclose (Shkedi-Rafid 

et al., 2016). These views may also be relevant in the context of NGS testing for rare diseases. 

The American College for Medical Genetics and Genomics (ACMG) recommendations 

on reporting of incidental findings advise reporting of variants in the published consensus 

gene list. The ACMG also recommend that the matter should be an ongoing process for 

discussion and updating (Green et al., 2013). 

A further issue posed by NGS data for some rare disease patients is the issue of discrimination 

based on genetic data. Insurance companies may request and use genetic data on individuals 

before issuing their policies. In addition, patients may miss employment and educational 

opportunities. Sharing of genomic data should therefore be regulated using guidelines put 

together by policy makers in conjunction with clinicians, geneticists and patients (Desai and 

Jere, 2012; Fiore and Goodman, 2016). 

A recent survey of patients with rare diseases found that data sharing was a main issue and 

that patients were particularly concerned about security of their data and its misuse 

(McCormack et al., 2016). It is critical that genomic data is secure with restricted access and 

data sharing is regulated through governance frameworks that involve patients and their views 

in policymaking (Thompson et al., 2014; Falk et al., 2015). 

All the above illustrate the importance of a comprehensive informed consent procedure prior 

to performing an NGS-based test. In addition, if patients’ data and samples are to be stored 

and further used or shared then they should be informed and the purpose fully explained 

(Pelissier et al., 2016). 

1.9 NGS in rare neuromuscular disorders 

Neuromuscular diseases (NMD) are a group of genetically and phenotypically heterogeneous 

disorders that arise from defects in the motor neuron, the neuromuscular junction or the 

muscle itself. The World Muscle Society (WMS, https://www.worldmusclesociety.org/) 

https://www.worldmusclesociety.org/
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categorizes NMD into 16 disease groups as shown in box 1. They acknowledge the difficulty 

of maintaining and updating the list of diseases and their associated genes in a printed format 

because of genetic and phenotypic heterogeneity. These are rather published online as the 

“muscle gene table” (http://www.musclegenetable.fr/).  The heterogeneity, individual rarity, 

overlapping clinical presentations, varying age of onset and atypical presentations means that 

molecular diagnosis for NMD is, in many cases, challenging (Warman Chardon et al., 2015). 

As in other rare disease groups, NGS has played a major role in diagnosis, gene discovery, 

disease pathophysiology and developing therapies (Bauche et al., 2016; O'Connor et al., 

2016; Di Gioia et al., 2017; Harris et al., 2017; Johnson et al., 2017). NMD NGS panels have 

demonstrated higher diagnostic yields when compared to sequential single gene testing, 46% 

and 19%, respectively (Ankala et al., 2015). WES on a cohort of patients with limb girdle 

muscular dystrophy (LGMD) resulted in molecular diagnosis in 45% of patients. This rate 

was higher at 60% for trios. This study also identified mutations in genes associated with 

other muscle disorders such as myofibrillar myopathies (MFM) and congenital myasthenic 

syndromes (CMS), highlighting the phenotypic overlap and the genetic heterogeneity of 

NMD (Ghaoui et al., 2015). A further WES study on a UK patient cohort with LGMD was 

able to achieve a molecular diagnosis in 37%, including identification of a novel gene. With 

regards to mutations in known NMD genes, the authors identify reasons as to why patients 

were not diagnosed via single gene testing as: atypical phenotypes, reassignment of 

pathogenicity of variants and somatic mosaicism (Harris et al., 2017).  

WGS has also played a role in novel gene discovery and in identifying functional InDels in 

NMD (Wang et al., 2013a; Brewer et al., 2016). And with large scale genomic projects such 

as the 100,000 Genomes (https://www.genomicsengland.co.uk/the-100000-genomes-project/), 

many patients with rare NMD are being sequenced along with patients with other rare 

diseases. As clinical and genomic data from these genomes is being interpreted, many new 

genetic associations are likely to be revealed (Efthymiou et al., 2016).  

Nonetheless, many patients with rare NMD remain undiagnosed. This, in part, is due to 

technical limitations in NGS such as coverage and limitations in detecting certain mutation 

types (such as trinucleotide repeat expansions and CNV), and in part due to limitations in 

analysis and interpretation of the data. These issues can be addressed by combining NGS with 

other mutation detection methods such as complementary Sanger sequencing and CGH-array, 

mutation validation methods such as family segregation and animal model studies, and an 

integrated diagnostic pathway, which includes clinical, population, genetic and matchmaking 

data (Biancalana and Laporte, 2015).  

http://www.musclegenetable.fr/
https://www.genomicsengland.co.uk/the-100000-genomes-project/
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Box 1: NMD groups as categorised in the muscle gene table by the World Muscle Society 

(http://www.musclegenetable.fr/).  

1. Muscular dystrophies 

2. Congenital muscular dystrophies 

3. Congenital myopathies 

4. Distal myopathies 

5. Other myopathies 

6. Myotonic Syndromes 

7. Ion channel muscle disease 

8. Malignant hyperthermia  

9. Metabolic myopathies 

10. Hereditary cardiomyopathies 

11. Congenital myasthenic syndromes 

12. Motor neuron disease 

13. Hereditary ataxias 

14. Hereditary motor and sensory neuropathies 

15. Hereditary paraplegias 

16. Other neuromuscular disorders 

 

 

1.10 Thesis aims and objectives   

- Compare WES and WGS data for patients with NMD to assess the limitations of 

WES and the added yield of WGS when examining NMD genes. 

- Compare three genomic platforms namely: the RD-Connect Genome-Phenome 

Analysis Platform, seqr, the Clinical Sequence Analyser (CSA), and their 

respective bioinformatics pipelines using WES and WGS data from patients with 

NMD.  

- Demonstrate the utility of using an integrated genomics platform in diagnosing a 

cohort of patients with rare NMD in a research setting.  

- Describe the genetic, demographic and clinical aspects for patients with GNE 

myopathy from Kuwait. 

http://www.musclegenetable.fr/
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Chapter 2. WES and WGS comparison 

2.1 Introduction  

Rare disease research focuses on cost effective projects that will have the most impact on 

patient care and disease outcomes. This includes determining the molecular basis of rare 

genetic diseases. In theory, current genomics technology has the capability to identify all 

causes of genetic disease. However, the majority remain undiagnosed. In part, this is due to 

the rarity and heterogeneity of these disorders, the lack of a systematic coordinated 

international system to coordinate novel discoveries, and in part, due to technical limitations 

in sequencing technologies and analysis pipelines (Lupski et al., 2010; Majewski and 

Rosenblatt, 2012; Toscano et al., 2017; Volk and Kubisch, 2017).  

With the decreasing costs of NGS, WGS has become feasible in many setting in research and 

increasingly in diagnostics. An obvious additional benefit for WGS over WES is that the 

former is powered to identifying potentially relevant variants in non-coding regions of the 

genome. Although WGS flourished identification of non-coding mutations in cancer genetics 

(Araya et al., 2016; Khurana et al., 2016; Gan et al., 2018), this has not been as impressive 

for Mendelian disorders and the number of non-coding mutations identified using WGS has 

been limited (Protas et al., 2017; Liskova et al., 2018). In part, this may be due to the 

difficulty in interpreting the significance of non-coding variants and the need for their 

validation through laboratory-based methods (Biancalana and Laporte, 2015). Nonetheless, 

non-coding regulatory and splice-site mutations are known to be implicated in human disease 

and WGS will eventually identify many more (Warman Chardon et al., 2015).  

WGS is also expected to have higher sensitivity for InDel and CNV detection aided by the 

longer reads, the relatively uniform coverage and a PCR-free experiment (Fang et al., 2014; 

Meienberg et al., 2016; Trost et al., 2018). However, with improved bioinformatics 

performance and read alignment methods, algorithm intersections and incorporation of CNV 

detection software into WES analysis pipelines, InDel and CNV detection rates are claimed to 

be comparable with WGS (D'Aurizio et al., 2016; Rennert et al., 2016; Kim et al., 2017). 

A recent study focused on the exome capture defined as reliably callable (Zook et al., 2014) 

to compare WES and WGS variant agreement. The study used a number of bioinformatics 

pipelines consisting of different combinations of variant callers and alignment tools for WES 

and WGS data from the reference NA12878 GIAB sample. This revealed that there was high 

variant agreement between the two methods especially for SNV (98.03-99.46%). However, 

this was significantly lower for InDels at 65.76-84.85% (Laurie et al., 2016).  
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In the context of rare disease, inherited retinal disease has been an extensively studied group 

of disorders. Although a common cause of visual impairment, individual retinal disorders are 

rare and known to be genetically and phenotypically heterogeneous. An undiagnosed cohort 

of patients with inherited retinal disorders underwent WES; this yielded a diagnosis in 50% of 

patients. For an additional 6% of the patients, pathogenic mutations were identified using 

WGS. These additional mutations were missed by WES either because the region where the 

variant was localised was not included in the capture kit, the variant was a large InDel not 

called by WES or the variant was called but filtered out due to low quality. WGS also 

identified a novel intronic variant in a known inherited retinal disease gene (CHM) (Carss et 

al., 2017).  

These mechanisms may also play a limiting role in WES for other rare inherited disorders. 

For example, alternative splicing creates a long muscle-specific isoform of GFPT1 (Selcen et 

al., 2013). In the NeurOmics project (https://rd-neuromics.eu/), which included patients with 

CMS, it was discovered that the muscle specific exon of GFPT1 was not included in the WES 

62 Mb capture kit (Illumina Nextera Rapid expanded exome) used in the project (personal 

communication from Hanns Lochmüller and Ana Töpf). 

In addition, a deep intronic mutation in the DMD gene has been found to create a cryptic 

splice site and introduce a pseudo-exon causing a frameshift in the gene and resulting in 

muscular dystrophy (Zaum et al., 2017). Furthermore, for laminopathies, intronic splice site 

mutations have been reported in the LMNA gene and it has been suggested that these are 

responsible for some genotype-negative cases with a clinical phenotype consistent with 

laminopathies (Rogozhina et al., 2016).  

These types of mutations are expected to play an important role in monogenetic disorders, 

including NMD, through creating pseudo-exons, altering splice sites and affecting 

transcription regulation. These variants are likely to become more recognised as WGS moves 

into clinical practice (Vaz-Drago et al., 2017).   

Similarly, structural variations such as large InDels, trinucleotide repeat expansions and 

CNVs are known causative mechanisms in NMD and WGS is expected to increase the 

number of known pathogenic structural variations in this group of disorders (Laing, 2012). 

Nonetheless, although WGS provides superior variant detection, interpretation and cost 

remain an issue and deciding which technology to use requires careful consideration. Here, 

both WES and WGS were performed for 10 patients with NMDs. Focusing on coding regions, 

the additional yield of WGS over WES was assessed and limitations of WES identified.  

 

https://rd-neuromics.eu/


 

32 

 

2.2 Aims 

- Assess the comprehensiveness of WES when compared to WGS for coverage of 

coding regions in the context of NMD by using the variant output from both. 

 

- Identify genomic features leading to low coverage in WES. 

 

- Examine the added benefit of WGS in detecting InDels and CNV in coding 

regions in NMD genes. 

 

2.3 Methods 

2.3.1 Ethical approval  

Ethical approval for this project was granted by Newcastle University Research Office (ref. 

2306/2015). Informed consent for research was obtained from all patients undergoing WES 

and WGS under the protocol for Newcastle MRC Centre Biobank for Neuromuscular 

Diseases (REC reference: 08/H0906/28 + 5). 

2.3.2 Genomic platforms  

a. Clinical Sequence Analyser  

CSA is a commercial web interface developed by deCODE Genetics to integrate NGS into 

clinical practice. Patient samples are sequenced at deCODE Genetics using an Illumina 

platform, reads aligned using BWA and variants called by GATK UnifiedGenotyper. The 

pipeline produces an annotated VCF file in addition to a Genomic ordered Relational (GOR) 

architecture file (Guethbjartsson et al., 2016) containing coverage and variant frequency 

statistics. Variants are annotated for their predicted effect (Ensembl VEP package) and 

population allele frequency (1000 Genome project, NHLBI GO Exome Sequencing Project, 

Icelandic population statistics). CSA allows rapid retrieval and visualisation of sequence raw 

data by integrating the Sequence Miner software. This allows confirmation of candidate 

variant calls in the raw reads (NEXTCODE-HEALTH, 2016).   
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b. The RD-Connect Genome-Phenome Analysis Platform 

RD-Connect Genome-Phenome Analysis Platform receives Fastq files or BAM files (WES or 

WGS) from data deposited at European Genome Archive (EGA). BAM files are reverted back 

to Fastq files. These are then processed through a standardized bioinformatics pipeline as 

shown in figure 5. GATK HaplotypeCaller is used for variant calling. Variants are annotated 

(table 3) and the resulting genomic VCF (gVCF) file is uploaded on the RD-Connect genomic 

platform in a Hadoop Distributed File System (HDPS). This is a system that allows 

distributed storage and processing of large data sets. A search engine is then included and 

allows real-time queries through a web-based client interface. On the interface, this is taken 

even further by cross-linking data from various databases and registries and through 

integrating databases and providing application-programming interface (API) access to 

relevant third-party resources, all in an authorized secure manner. The interface allows 

authorized users to customize queries and filter variants using for example, genotype and 

genotype quality, pathogenicity predictions or allele frequencies (Laurie, 2016).  

 

Figure 5: RD-Connect bioinformatics pipeline (Laurie, 2016). 
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Table 3: RD-Connect variant annotation tools and databases 

Annotation  Tool  

Call specific (quality score, read depth, 

etc.)  

Bioinformatics algorithm  

Functional annotation (gene name, 

transcript ID, amino acid change) 

GRCh37-Ensembl 75 

Variant Effect  SnpEff, Polyphen2, Mutation Taster, 

UMD, CADD 

Population allele frequencies  1000 Genomes Project, ExAC, ESP6500 

 

2.3.3 Patient samples 

WES and WGS were performed and data processed for 10 patients with NMD (N1-10) 

according to the protocols in table 4 at deCODE Genetics (Iceland). 

WES data for a cohort of 50 patients with neurodegenerative disorders was used as a control 

sample to assess coverage. Sequencing for these patients was also performed at deCODE 

Genetics and processed through the same WES pipeline.  
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Table 4: Sequencing and analysis pipeline at deCODE Genetics used for processing WES and 

WGS N1-10 samples (Personal communication: Nanna Vidarsdottir, deCODE Genetics).  

Tool WES WGS 

Sequencing method Illumina Nextera Rapid 

expanded exome (62Mb 

target) 

 

Illumina PCR-free whole 

genome sequencing 

Mark duplicates Picard 1.55 Picard 1.117 

Aligner BWA 0.6.2 BWA 0.7.10 

Assembly NCBI Build 37 of the 

human reference 

sequence (GRCh37/hg19) 

NCBI Build 37 of the 

human reference 

sequence (GRCh37/hg19) 

Caller GATK Lite version 2.3-9 

UnifiedGenotyper 

GATK Lite version 2.3-9 

UnifiedGenotyper 

Reference data version 20130917.DCREF_1-1-0 DCREF_1-2-0 

Sequence Miner 2.13.0 M5 (2014-09-24-

1013) 

5.21.1 

 

CSA version 2.13.0M12 4.11.2 

Damp in-house pipeline clinseq_build37 clinseq_build37_v2 

WES, whole exome sequencing; WGS, whole genome sequencing; BWA, Burrows-Wheeler Aligner; NCBI, National Centre 

for Biotechnology Information; GATK, Genome Analysis Tool Kit; CSA, Clinical Sequence Analyzer. 
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2.3.4 Analysis and filtering parameters 

Variant output analysis was performed on the CSA platform using the filtering parameters 

shown in table 5 and focusing on coding variants.  

Where variants were not consistent in WES and WGS for the same patient, Sequence Miner 

(version 5.7) was used to visualise the raw data for both and confirm the call. Exons in which 

variants were missed by WES were further studied for coverage. Read depth is provided for 

each variant position in the CSA output report and on the Sequence Miner. 

The comparison of WES and WGS data for the same samples (N1-10) was repeated on the 

RD-Connect platform. Both data sets were processed through the same pipeline as described 

in figure 5 and table 3. Variant output analysis focused on coding regions in NMD genes and 

were filtered for variants with a population frequency of 0.01 or less, a read depth of 8 or 

more and variants with a predicted moderate to high impact on the protein. 

For the major part of the analysis, output was restricted on both platforms to variants falling 

in NMD genes. This gene list was constructed based the 416 genes reported to be implicated 

in NMD by the World Muscle Society (WMS, http://musclegenetable.fr/) in July 2016 

(appendix A).  
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Table 5: Filtering parameters used for WES and WGS comparison on the CSA  

Section Parameter Default value  

Variant effect and frequency filter Recessive max allele freq 0.03 

Variant effect and frequency filter Dominant max allele freq 0.01 

Variant effect and frequency filter Recessive max gt freq 0.0001 

Variant effect and frequency filter VEP maximum impact   MODERATE 

Variant quality Variant filter Include LowQual 

Variant quality Min Gt Likelihood 5 

Variant quality Min Het Call Percent 20 

Variant quality Min Hom Call Percent 66 

Variant quality Min read depth 8 

ASMG Category settings Cat1 clinical impact pathogenic_only 

ASMG Category settings Cat1B distance 2 

Genomeic range filter Max dinstance for exome overlap 10 

Genomeic range filter   exclude_repeat_regions false 

Genomeic range filter Max dinstance for repeat overlap 2 

Penetrance   case_delta 0 

Penetrance   control_delta 0 

Custom reference sources Allele frequency file  None 

Custom reference sources   max_cust_af 0.01 

Custom reference sources   max_cust_gf 0.0001 

Custom reference sources Annotation variation file None 

Custom reference sources Annotation region file None 

Custom reference sources Exclusion variant file None 

Custom reference sources Region file None 

Custom reference sources   region_file_usage exclude 

Custom reference sources   Max overlap distance 0 

Custom reference sources Gene panel info file None 

Gene reference Gene coverage Coding  only  

Gene reference VEP genes Ensembl 
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2.3.5 Coverage assessment 

Variant metric data from the CSA and RD-Connect were used to assess WES read 

depth/coverage at variant sites identified through WGS but missed by WES. Coverage was 

determined at the chromosomal position for each variant and inferred to the respective exon. 

The mean coverage was estimated for the N1-10 samples and for the control sample (N=50). 

These means were then compared to the mean coverage at respective sites in the ExAC 

population data (version 0.3.1, http://exac.broadinstitute.org/).   

2.3.6 Assessment of trinucleotide repeats calling 

WES and WGS data for the N1-10 samples were compared for their ability to call 

trinucleotide repeat variants. These were assessed at loci known to be implicated in 

neurogenetic disorders via trinucleotide repeat expansions and for coding regions only. These 

loci are listed in table 6. 
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Table 6: Positions affected by trinucleotide repeat expansions and implicated in 
neurogenetic disorders. 

Gene  Repeat  Disease (Clin/var)  Position on (GRch37) 

Position in 

gene 

ATN1  CAG 

Dentatorubral pallidoluysian 

atrophy 

chr12:7045892-

7045894 Exon 5/10 

ATN1  CAG 

Dentatorubral pallidoluysian 

atrophy 

chr12:7045880-

7045882 Exon 5/10 

HTT  CAG Huntington's Chorea chr4:3076604-3076606 Exon 1/67 

AR  CAG Bulbar-spinal atrophy, X-linked  

chrX:66765160-

66765162 Exon 1/5 

ATXN1  CAG Spinocerebellar ataxia 1 

chr6:16327918-

16327920 Exon 8/9 

ATXN3  CAG Spinocerebellar ataxia 3 (MJD) 

chr14:92537382-

92537384 Exon 10/11 

CACNA

1A  CAG 

Spinocerebellar ataxia 6, Episodic 

ataxia 2 

chr19:13318673-

13318675 Exon 47/47 

ATXN7  CAG Spinocerebellar ataxia 7 

chr3:63898362-

63898364 Exon 3/13 

TBP  CAG Spinocerebellar ataxia 17 

chr6:170870996-

170870998 Exon 3/8 

FMR1  CGG Fragile X syndrome 

chrX:146993570-

146993572 Exon 1/15 

DMPK  GAA 

Steinert myotonic dystrophy 

syndrome 

chr19:46273520-

46273522 Exon 15/15 
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2.3.7 Relationship between sequence specificity and read depth 

The Ensembl BLAST tool for human GRCh37/hg19 

(http://grch37.ensembl.org/Homo_sapiens/Tools/Blast) was used to assess whether variants 

were in regions with low sequence heterogeneity and thus may map to multiple sites in the 

genome. The analysis was performed by including 100, 75 and 50 bases upstream and 

downstream of the variant position and looking for matches in the genome for sequence 

lengths of 201, 150 and 101, respectively.  

 

2.3.8 Relationship between GC content and read depth. 

To assess whether the GC content had an impact on read depth for the N-10 samples, variants 

that were detected by WGS but missed by WES due to low coverage (read depth =/<10) were 

examined. UCSC Genome Browser (http://genome.ucsc.edu/) and version GRCh37/hg19 of 

the human genome were used to determine the GC content at particular variant positions. A 

GC content percentage is given on the bowser based on a 5-base window.  

An additional 20 variant positions in NMD genes (table 7) with adequate coverage in WES 

for the N1-10 samples were randomly selected and assessed for GC content.  
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Table 7: WES variant position randomly selected from the N1-10 samples for 
assessment of the relation between GC content and coverage.  

Gene Exon Position  

ITPR1 44 chr3:4808290 

MYH2 27 chr17:10432042 

KCNE1 3 chr21:35821680 

POMGNT1 20 chr1:46655645 

PFKM 19 chr12:48537578 

SBF1 37 chr22:50886728 

TTN 42 chr2:179629358 

HSPG2 3 chr1:22214036 

VAPB 5 chr20:57016039 

DDHD1 1 chr14:53619480 

TBP 2 chr6:170871051 

TTN 301 chr2:179404402 

FLNA 38 chrX:153580986 

TTN 325 chr2:179441295 

KLHL41 1 chr2:170366686 

ETFDH 6 chr4:159618760 

GNE 11 chr9:36217445 

AKAP9 9 chr7:91630298 

MURC 2 chr9:103348329 

TUBB3 1 chr16:89986130 
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2.3.9 Statistics 

Statistical significance was assessed using single tailed student t-Test in Microsoft Excel, 

where the p-value was assessed against an alpha value of 0.01. Standard deviation was 

calculated for the mean values from the patient samples for WES and WGS separately.  

The CORREL function in Microsoft Excel was used to calculate the Pearson Product-Moment 

correlation co-efficient. The syntax for the function is CORREL (array1, array2) for two sets 

of values (GC content percentage and coverage) where, array 1 is the independent variable 

(GC content percentage) and array2 the dependant one (coverage). 

 

2.4 Results 

2.4.1 WES and WGS comparison using CSA 

WES and WGS were performed for ten cases (N1-10) according to the pipeline in table 4. 

Using the filtering parameters in table 5, the CSA was initially used to analyse the data with a 

focus on rare variants in known NMD-causing genes and with a moderate to high impact on 

the protein structure.  

The mean number of coding variants and coding variants in NMD genes are shown in figure 

6. For coding variants in NMD genes the difference in the number of variants between WES 

and WGS experiments was not significant (p-value = 0.06). Nonetheless, WES was limited by 

low coverage (read depth <10) at particular exons in NMD genes. This meant that a number 

of variants were present in the output report as possible candidates by WGS analysis but were 

missed by WES for the same patients.  

Exons in which variants had a read depth of 10 or less are shown in figure 7. Read depth at 

these positions was then examined in 50 WES control samples. With the exception of exon 1 

of the AR gene, coverage analysis of the remaining exons revealed consistent low coverage.  

These positions were then further examined in the ExAC database for read depth. For three of 

the genes, the exomes from the ExAC population also showed low read depth: for exon 1 of 

the KCNC3 gene, for the majority of exon 1 of the SLC10A4 gene and for the last exon (exon 

36) of the SLIT3 gene (table 8).  

These exons were then examined for sequence features leading to low coverage. Variants that 

were called through WGS in these exons were not at sites affected by homopolymers or repeat 
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sequences based on the NCBI reference genome (GRCh37/hg19) and thus, these mechanisms 

cannot explain low coverage.  

The second observation from this comparison was the presence of a CAG trinucleotide repeat 

expansion in exon 9 of the ATXN3 gene. The expansion ranged from 7-10 repeats and was 

called by WGS in six individuals. Despite this region having adequate read depth and the 

repeat sequence being present in the WES raw reads (visualized through Sequence Miner on 

the CSA), the expansion was not called by the WES analysis pipeline of CSA. This indicated 

a limitation of the latter in calling the trinucleotide repeat expansion.  

To examine this further, 13 coding loci in the human genome implicated in disease through 

trinucleotide repeat expansions (table 6) were investigated. Results showed that WGS called 

more trinucleotide repeat expansions at these sites than WES when the samples were analysed 

using CSA and the filters in table 6. This observation was still correct when loci with a mean 

read depth of less than 10 were excluded from the analysis as shown in figure 8.  

 

  

Figure 6: Mean number of coding variants for WES and WGS for 10 patient samples as 

outputted by the CSA. (n=10). A; all coding variants, B; coding variants in NMD genes.  
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Figure 7: Mean read depth in WES for exons with variants proposed by WGS but missed by 
WES for the same patient. Error bars represent the spread of read depth across the sample 
(n=10). 
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Table 8: Coverage data for exons identified as having a read depth of 10 or less in WES 
of the N1-10 samples. Mean coverage is shown for randomly selected samples for 
patients with neurogenetic disorders and from the ExAC population. 

Gene Exon 

identified 

with low 

read 

depth  

Mean read 

depth in 

Neuromics 

WES data 

set* 

Mean read 

depth in 50 

Neuromics 

WES 

samples** 

Maximum coverage per 

base in exon in ExAC 

population (WES data) 

Average read 

depth for all 

exons in ExAC 

population 

KCNC3 Exon 1 0.6 <10 <10  30.07 

PSMD2 Exon 15 3.2 <10 90 70.49 

PFKM Exon 3 0.8 <10 75 68.57 

AR Exon 1 0.4 >100 65  30.20 

SLC10A4 Exon 1 7.2 >10 (13.8) 10 (for initial 2/3 of 

exon) 

51.70 

SLIT3 Exon 36 5.9 >10 (12.7) <10  55.37 

OPA1 Exon 2 0.3 <10  85 53.89 

*, ** Read depth refers to that at the site of variants identified by WGS in each exon. Genes in 

bold font: consistently showing low coverage for the exons stated. 
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Figure 8: Number of coding trinucleotide repeats (TNRs) at known neurogenetic disease 
loci* from analysis of WES and WGS samples for patients (N1-10) on CSA. * Only loci with a 

mean read depth of 10 or more in WES were included.  
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2.4.2  WES and WGS comparison on the RD-Connect Genome-Phenome 
Analysis Platform. 

The mean number of coding variants for the N1-10 samples WES and WGS in the RD-

Connect platform output is given in figure 9. Variants were filtered for frequency, impact on 

protein structure and read depth as mentioned in the methods and the concordance of variants 

between WES and WGS was then assessed (figure 10). Overall, 65.6% of coding NMD gene 

variants were called by both WES and WGS on the RD-Connect platform. This was mainly 

accounted for by concordance in calling SNV (78.9%).   

For coding variants in NMD genes on the RD-Connect platform, the difference in the number 

of variants called by WES and WGS for the N1-10 samples was not significant (P-value= 

0.29 and 0.10 for SNV and InDel variant number, respectively). 

In addition to the three regions identified by the CSA as having low coverage in WES, 11 

additional variants were missed by WES due to low coverage (read depth =/<10) in WES. The 

sites of these variants were further examined in the ExAC population and their coverage 

remained low. These sites are listed in table 9. GC content and read specificity to align to the 

correct site in the genome are also shown for these loci.  

To assess the relationship between GC content and coverage, an additional 20 positions with 

adequate coverage to call a variant in WES for the N1-10 samples were randomly selected. 

The line chart in figure 11 shows the relationship at all positions (n=31). The association of 

GC content and coverage at these positions shows a moderate negative trend (correlation 

coefficient =-0.51), suggesting that GC content and coverage are inversely related.  

As for the specificity of these sites to match a single region in the genome, data in table 9 

shows that sequences at these positions are not unique and align to more than one region in 

the genome. This data shows that a high GC content and similarity of sequence reads with 

more than one site of the reference genome are features of areas with low coverage in WES.  

With regards to the limitation of WES in identifying TNRs shown in section 2.4.1, this 

difference between WES and WGS was not significant on the RD-Connect platform where 

only two additional TNR were called in the WGS experiment. This was a nine CAG repeat in 

exon 9 of the ATXN3 gene and appeared in the output for two patients.  
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Figure 9: Mean number of coding variants for WES and WGS for 10 patient samples as 
outputted through the RD-Connect (n=10). A; all coding variants, B; coding variants in 
NMD genes.  

  

 

 

Figure 10: Concordance for coding variants in NMD genes between WES and WGS on the 

RD-Connect platform (n=10). 
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Table 9: Variant positions identified as having low coverage in WES for the N1-10 
samples showing, coverage in the ExAC population, GC content and number of matches 
in the genome using the BLAST tool.  

Variant position Gene Exon 

ExAC 

coverage 

GC 

content 

% * 

Number of matches in the 

genome using BLAST  

N=201 N= 151 N=101 

chr3:63898360 ATXN7 exon 3 0 100 1 1 5  

chr2:241696840 KIF1A exon 27 10 60 2**  2  2  

chr19:13318672 CACNA1A exon 23 2 80 7  7 7 

chr14:105173862 INF2 exon 8 10 80 7  6  8  

chr12:112036753 ATXN2 exon 1 10 100 9  3  4  

chr12:112036770 ATXN2 exon 1 10 80 3  3  4  

chr15:23086364 NIPA1 exon 1 10 100 6**  6**  15** 

chr12:32687343 FGD4 exon 1 2 40 3  3  9  

chr12:112036796 ATXN2 exon 1 5 80 3  3  1 

chr16:66583871 TK2 exon 1 5 100 1 1 2  

chr17:4852305 PFN1 exon 1 0 100 9  6  9  

* based on 5 base window, **E-value significant (=/<0.01), E-value: probability that the 

alignment between the query sequence and the subject sequence is due to chance (BLAST).  
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Figure 11: Relationship between GC content and coverage in ExAC WES data at variant 

positions from the RD-Connect platform output report for sample N1-10. 

 

2.5 Discussion  

Patients N1-10 had an undiagnosed NMD and were recruited for WES and later underwent 

WGS as part of the same project as WES did not propose any causative mutations. Although 

in this case WGS failed to identify relevant pathogenic mutations, comparison of the WES 

and WGS data was informative.  

The sequencing was performed at deCODE Genetics (Iceland) and the data was uploaded on 

their analysis platforms the CSA. Later, NGS data for the N1-10 samples was shared and 

uploaded onto the RD-Connect Genome-Phenome Analysis Platform.  

Comparison between WES and WGS data for these patients focused on coding regions in 

NMD genes. Analysis on the CSA showed that the number of rare, damaging variants in 

NMD genes was not significantly different between WES and WGS datasets. However, the 

analysis highlighted two limitations of WES. First, coding exons in known NMD genes were 

found to consistently have poor coverage and second, that WGS analysis pipeline was 

superior at calling trinucleotide repeats. The latter was due to a limitation of the WES 

bioinformatics pipeline as the repeats were present in the raw sequences for these patients but 

did not appear in the output report. The time gap of approximately 18 months between when 

WES and WGS experiments were carried out and processed at deCODE Genetics meant that 

pipeline tools were updated and more recent versions were used to process WGS data as 

shown in table 4. The difference in the pipelines is likely to have contributed to the 
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discrepancies in the output results between WES and WGS. Therefore, the comparison was 

repeated on the RD-Connect platform, where all WES and WGS experiments are processed 

through the same pipeline and re-processed following any software update.  

On the RD-Connect platform, again, coding variant number in NMD genes were not 

significantly different between WES and WGS. However, WES and WGS agreed on only 

65.6% of the variants. InDel agreement was much lower (34.4%). In addition, comparison of 

the variants proposed an additional 11 NMD gene exons that are poorly covered by WES, 

having a read depth of 10 or less.  

The most important reason for low sensitivity in an NGS experiment is low coverage. It is 

generally agreed that sufficient coverage for variant calling is 20x or more. However, for 

WES experiments achieving uniform coverage for all coding exons is not currently possible 

as 5-10% of coding regions are not sufficiently covered (Dewey et al., 2014; Lelieveld et al., 

2015; Warman Chardon et al., 2015).  In part, WES low coverage maybe attributed to coding 

regions that are missed in the exome capture kit. Earlier generations of exome capture 

platforms were able to capture 80.5% of coding regions (Parla et al., 2011).  Whereas, newer 

version have shown higher capture (up to 95%) and thus higher sensitivity in variant calling 

(Lelieveld et al., 2015). Nonetheless, WGS is superior to WES in providing uniform coverage 

for more than 98% of coding regions. This even coverage not only is expected to result in 

higher sensitivity of SNV detection but also InDel and CNV detection (Medvedev et al., 

2010). 

GC-content bias is another important cause of low coverage. Studying the relationship 

between GC content percentage and coverage at variant positions proposed on the RD-

Connect showed moderate negative correlation (correlation coefficient -5.1), indicating that as 

GC content increases coverage decreases. In addition, seven of the low coverage regions 

identified (63.6%) correspond to exon 1 of their respective genes. The first exons are known 

to be GC-rich and their capture and coverage is known to be problematic due to PCR bias. 

GC-bias occurs at a threshold of a GC content of 62%. Above that, loss of reads and thus low 

coverage may occur (Roeh et al., 2017). This bias is directly related to the number of PCR 

cycles in the sequencing protocol (Lelieveld et al., 2015). A PCR-free WGS is expected to 

completely overcome this issue and thus coverage of these GC-rich regions will be adequate 

and uniform leading to a higher sensitivity for variant detection (Meienberg et al., 2016). It is 

important to note that solutions to overcome GC-bias may vary for different sequencing 

technologies. For example, on the Illumina systems, optimising conditions for library 
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preparations and PCR thermocycler has been proven to reduce PCR related bias (Aird et al., 

2011). However, these solutions are not effective on the SOLiD sequencing systems (Applied 

Biosystems) and Illumina is more suited for experiments requiring sequencing for GC rich 

parts of the genome including for WGS experiments (Roeh et al., 2017).  

For variant positions with low coverage, specificity to match to the correct site in the 

reference human genome was also assessed using the BLAST tool. This revealed that even at 

sequence reads of 200 bases, 9/11 sites had at least two hits in the genome. This may cause an 

incorrect read alignment and poor coverage at the correct site. Increasing the positional 

accuracy of read alignment maybe overcome by longer and paired-end reads and by 

intersecting results from more than one alignment tool. In addition, de novo assembly rather 

than alignment to the reference genome may also be relevant here. These solutions to improve 

read specificity in WES come with additional costs and computational complexity. The longer 

reads in WGS maybe a more efficient solution (Ratnakumar et al., 2010; Techa-Angkoon et 

al., 2017).  

With regards to trinucleotide repeats, analysis on the CSA revealed that WGS was superior in 

detecting these variants. Examining the raw reads showed that the majority of these 

trinucleotide repeats were present but were not detected as variants by the WES analysis 

pipeline. As mentioned above, deCODE Genetics used an updated pipeline for the analysis of 

WGS data. Therefore, for these relatively short sequence variations, the limitation was in the 

analysis pipeline and the calling algorithm rather than the sequencing technology itself. This 

is further supported by the RD-Connect analysis, where there was no significant difference 

between the number of coding trinucleotide repeats called by WES and WGS.  

In conclusion, WGS provides higher sensitivity in variant detection in coding regions by 

overcoming issues in coverage related to capture kits, GC-bias and read specificity. The 

uniform coverage of WGS also increases sensitivity to detect large InDels, CNVs and 

trinucleotide repeat expansions. These are all described pathogenic molecular mechanisms in 

inherited neuromuscular disorders (Laing, 2012). It is expected that WGS will replace array-

based methods for detecting these structural variations. In addition, WGS is able to detect 

intronic variants that may account for a proportion of undiagnosed cases. Improvement in 

WES coverage through deep sequencing, improved capture kits and improved analysis 

algorithms are likely to improve variant detection in the exome capture region. However, 

WGS currently remains superior for the detection of intronic and structural variants (Lelieveld 

et al., 2015; Meienberg et al., 2015; Meienberg et al., 2016; Zatz et al., 2016).  



 

53 

 

Nonetheless, WGS costs remain high, analysis is complex and the technique carries a higher 

risk of incidental findings unrelated to the patients' presenting disease. These however maybe 

overcome through exon targeted analysis of WGS data or the use of a "virtual panel" 

consisting of genes related to the disease of interest (Meienberg et al., 2016).      
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Chapter 3. Genomic Platform and bioinformatics pipeline 
comparison 

3.1 Introduction 

Development and continued innovation of NGS sequencing technologies have led to a 

decrease in costs and an increase in application in medical research and in diagnostics (Alioto 

et al., 2015). Nonetheless, clinical use of NGS requires it to show high sensitivity and 

specificity when compared to the current gold standard, Sanger sequencing. Although NGS 

technologies offer high sensitivity across larger proportions of the genome, this may be low 

for particular loci due to genomic features and limitations of the sequencing technology 

leading to low coverage (Lelieveld et al., 2015). In addition, challenges in analysis and 

interpretation of NGS data may contribute to this low sensitivity (Alioto et al., 2015). 

Comparisons of the performance of sequencing platforms, and enrichment and capture 

methods have shown significant variability in target capture, coverage and thus variant calls. 

These issues are unceasingly addressed through innovative sequencing method development 

with a focus on increasing the depth and uniformity of coverage (Clark et al., 2011; Lelieveld 

et al., 2015). 

NGS data analysis methods have also shown discrepancies. These may arise from the many 

steps of the analysis pipeline and may be due to variations and limitations in the algorithms 

for quality assessment, alignment, variant calling, variant annotation or variant filtration 

(Alioto et al., 2015; Cornish and Guda, 2015; Laurie et al., 2016; Allali et al., 2017).  

The two most important steps of the analysis pipeline are read alignment (giving an indexed 

BAM file) and variant calling (producing a VCF file). Previous work comparing various 

combinations of tools at these two steps has shown that performance is variable, and it has 

been suggested that the performance of variant callers is highly dependable on the read 

alignment tool in the algorithms tested  (Cornish and Guda, 2015). 

In clinical research and diagnostics, variant annotation and prioritization are equally vital to 

identifying variants that are implicated in the disease of interest and understanding of its 

biology and in developing novel therapeutics (Butkiewicz and Bush, 2016).  Computational 

algorithms assign attributes to variants using a comprehensive transcript set. Filters can then 

be applied to the annotated variants to produce a shorter list of disease-relevant candidates for 

further investigation. Filtering is also performed using computational algorithms and 
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interfaces that generally differ depending on their developer, purpose and target users (Wang 

and Xing, 2013; Taylor et al., 2015; Yang and Wang, 2015; Stark et al., 2017).  

Functional variant annotation may follow an algorithmic or non-algorithmic method. For the 

former, annotation takes a qualitative or quantitative approach. The qualitative variant 

annotation algorithm examines the sequence in which the variant is located and assigns its 

consequence accordingly. The algorithm uses a reference transcript catalogue for example, the 

Ensembl or Refseq transcript sets, and databases for genomic functional elements, such as 

those developed by the GENCODE and ENCODE projects. Initially, the algorithm identifies 

and annotates where the variant falls in the genome (exon, intron or untranslated region). It 

then uses known sequence motifs to identify and annotate for sequence features such as splice 

sites. Finally, it defines the sequence change (SNV or InDel) and assesses its consequence 

(amino acid substitution, premature stop, frameshift, or splice site modification). The result is 

that each variant in the VCF file gets one or more of the attributes listed in table 10. These 

attributes follow the standard Sequence Ontology (SO, http://www.sequenceontology.org/). 

The most commonly used annotation tools, such as ANNOVAR, SNPEff and VEP, use the 

qualitative algorithm (Pabinger et al., 2014; Frankish et al., 2015; Butkiewicz and Bush, 

2016). 

The quantitative algorithm is based on assigning an impact score to variants. This is based on 

statistical or machine learning algorithms that predict the impact of a variant. The algorithm 

requires a training set of disease associated variants to be used as a reference. Mutations 

provided in OMIM and HGMD are usually used for this purpose. Quantitative scores may 

also use sequence features such as motifs, domains and species conservation data. Software 

applications that attribute an impact or deleteriousness score to sequence variants include 

tools such as SIFT, Polyphen2, Mutation Taster and CADD (Butkiewicz and Bush, 2016). 

Variants are then filtered and prioritised based on the associated annotations. Many software 

applications (genomics platforms) with complex computational algorithms are developed for 

this purpose. The applications have a user interface that allows users to manipulate and filter 

variants from the annotated VCF files. These software applications vary in the databases they 

integrate, filtering options, filtering algorithms and degrees of flexibility and interactivity 

(Alexander et al., 2017; Jalali Sefid Dashti and Gamieldien, 2017; Muller et al., 2017; Stark 

et al., 2017).  

NGS patient data used in this project utilise three genomics platforms developed at different 

academic or commercial institutions for the analysis of panel, WES, WGS and RNA 

http://www.sequenceontology.org/
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sequencing data. RD-Connect (CNAG, Barcelona, http://www.cnag.crg.eu/), the Broad 

Institute of Harvard and MIT and deCODE Genetics process the raw data in the form of Fastq 

files to the VCF/gVCF stage. These are then uploaded on the respective genomics platforms, 

the RD-Connect Genome-Phenome Analysis platform, seqr and the Clinical Sequence 

Analyzer (CSA). The data is then available for collaborating researchers to interrogate 

through a computer interface. The bioinformatics tools used at each site are specified in table 

11. Overall, all three sites use a version of the BWA for read alignment and a GATK variant 

caller. The Broad Institute and deCODE Genetics use the VEP for variant annotation, while 

RD-Connect uses the SNPEff annotation tool. 

Here, WES and WGS data from patients with rare NMD are used to assess the agreement of 

variant output from RD-Connect, seqr and CSA platforms. A reference genome, GIAB, is 

also used on the platforms as a mean of comparing the platforms against a set of high quality 

reference variants. This data is also used to assess concordance of the site-specific 

bioinformatics pipelines.  
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Table 10: Sequence ontology terms and identifiers assigned by tools using a qualitative 
annotation algorithm based on the Standard Sequence Ontology(Eilbeck et al., 2005). 

SO term  SO identifier 

transcript_ablation SO:0001893 

splice_acceptor_variant SO:0001574 

splice_donor_variant SO:0001575 

stop_gained SO:0001587 

frameshift_variant SO:0001589 

stop_lost SO:0001578 

start_lost SO:0002012 

inframe_insertion SO:0001821 

inframe_deletion SO:0001822 

missense_variant SO:0001583 

splice_region_variant SO:0001630 

incomplete_terminal_codon_variant SO:0001626 

stop_retained_variant SO:0001567 

synonymous_variant SO:0001819 

coding_sequence_variant SO:0001580 

mature_miRNA_variant  SO:0001620 

5_prime_UTR_variant SO:0001623 

3_prime_UTR_variant SO:0001624 

non_coding_transcript_exon_variant SO:0001792 

intron_variant SO:0001627 

NMD_transcript_variant SO:0001621 
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non_coding_transcript_variant SO:0001619 

upstream_gene_variant SO:0001631 

 

downstream_gene_variant SO:0001632 

TFBS_ablation SO:0001895 

TFBS_amplification SO:0001892 

TF_binding_site_variant SO:0001782 

SO: Sequence Ontology, UTR: untranslated region, NMD: nonsense-mediated decay, TFBS: 

transcription factor binding site, TF: transcription factor. 
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Table 11: Genomic Platforms used for NGS data analysis. 

Genomic 

Platform 

Affiliation  Bioinformatics data processing  

Pre-

processing  

Alignment Variant calling Variant 

annotation  

RD-

Connect 

CNAG, 

Barcelona 

(Academic)  

BAM> 

FASTQ 

FASTQC 

Picard 

BWA-

MEM 

HaplotypeCaller  SNPEff 

Clinical 

sequence 

Analyser 

(CSA) 

WuXi 

NextCODE, 

Iceland 

(Commercial)   

Picard  BWA UnifiedGenotyper  VEP 

Seqr  Broad 

Institute, 

Boston  

(Academic)  

Picard BWA HaplotypeCaller VEP 

BWA; Burrows Wheeler Aligner, CNAG; National Centre for Genomic Analysis Barcelona, 

VEP; Variant Effect Predictor, 
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3.2 Aims 

- Compare variant output from RD-Connect, seqr and CSA platforms for WES and 

WGS data from patients with NMD and assess concordance rates between the 

platforms for variants falling in NMD genes. 

- Compare the bioinformatics pipelines used to process WES and WGS data prior to 

upload on the genomic platforms.  

- Use a set of high confidence variant calls (GIAB) to assess agreement of the platforms 

and bioinformatics pipelines with each other and with the reference.  

 

3.3 Methods  

3.3.1 Ethical approval  

Ethical approval for this project was granted by Newcastle University Research Office (ref. 

2306/2015). Informed consent for research was obtained from all patients undergoing WES 

and WGS under the protocol for Newcastle MRC Centre Biobank for Neuromuscular 

Diseases (REC reference: 08/H0906/28 + 5). 

 

3.3.2 WES and WGS samples 

To maximise sample size, all WES and WGS data available for analysis on at least 2/3 

platforms were used. All samples belonged to affected and non-affected individuals from 

families with NMD. Datasets were labelled: cohorts A, B, C, D and sample NA12878. A 

description of each cohort, the sequencing technology and bioinformatics pipeline is given 

below and summarised in table 12.  

 

a. Cohorts A and B 

Cohorts A and B consisted of data from 88 WES samples and 30 WGS respectively. These 

samples were sequenced at deCODE Genetics in Iceland and processed through the WES and 

WGS bioinformatics pipeline for deCODE Genetics shown in table 4. Data from these 

samples was also processed at RD-Connect according to the pipeline and tools shown in table 

3 and figure 5. VCF/gVCF files for Cohorts A and B were uploaded on the CSA and the RD-

Connect Genome-Phenome Analysis Platform and used to compare variant output from both 

platforms.  
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b. Cohort C 

Data from 120 samples were sequenced at the Broad Institute of Harvard and MIT on an 

Illumina HighSeqXs platform. The capture kit used was the Agilent Sure-Select Human All 

Exon v.2.0 (44Mb). Read alignment was performed using BWA, variant calling via GATK 

and annotation using VEP. Data was then uploaded on the seqr platform for analysis. The 

data was also processed through the RD-Connect pipeline (table 3 and figure5) and uploaded 

onto the RD-Connect Genome-Phenome Analysis pipeline. Cohort B datasets were then used 

to compare variant output between seqr and the RD-Connect platform.  

c. Cohort D 

WES data from 27 individuals and a candidate mutation proposed through analysis of WES 

data on the seqr platform were used. These samples were sequenced at the Broad Institute of 

Harvard and MIT using an Illumina exome capture (38Mb) on the Illumina HighSeqXs 

platform. BWA, GATK and VEP were used for read alignment, variant calling and variant 

annotation respectively. These samples were also processed and uploaded on the RD-Connect 

platform. Data analysis on the latter was used to test whether the platform proposes the same 

candidate mutations as seqr.  

d. Cohort E 

WES data for 9 samples was used to compare all three bioinformatics pipelines and genomic 

platforms. Samples were sequenced at the Broad Institute and processed through all three 

pipelines. VCF/gVCF files for these samples were uploaded for analysis on seqr, CSA and the 

RD-Connect platform where variant output was compared. VCF files for Cohort E were also 

used to assess agreement of variant calling between the bioinformatics pipelines. 

e. NA12878 reference genome 

The reference genome for the NA12878 sample from the GIAB was used as ground truth to 

assess sensitivity of the bioinformatics pipelines by comparing pipeline outputs to the 

reference material published online. Platform outputs for the GIAB sample was also 

compared.  

Fastq files for the NA12878 reference genome sample were downloaded from the European 

Nucleotide Archive (www.ebi.ac.uk.ena/data/view/ERP001229). The Fastq files were 

generated on the Illumina HiSeq2000 platform and corresponds to approximately 50x 

http://www.ebi.ac.uk.ena/data/view/ERP001229
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coverage for the genome. Files were then sent to deCODE Genetics, the Broad Institute and 

RD-Connect for processing through site-specific bioinformatics pipelines and uploaded on the 

respective platforms (CSA, seqr or RD-Connect Genome Phenome Analysis Platform) for 

analysis of variant output. VCF files were requested from each site and used to assess 

agreement of the bioinformatics pipelines at the three sites in variant calling. 

The reference VCF file for the NA12878 sample was downloaded from the Genome in a 

Bottle Resources (http://jimb.stanford.edu/giab-resources/). Version 3.3.2 of the high 

confidence variant calls was downloaded from  

 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/ on 13.12.2017.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://jimb.stanford.edu/giab-resources/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/
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Table 12: Whole exome and genome sequencing data used for the comparison of 
genomics platforms and bioinformatics pipelines. 

Dataset Type of NGS 

data 

Number of 

patients  

Sequencing site Processing 

pipelines  

Data analysis 

platforms  

Cohort A WES 88 deCODE 

Genetics 

deCODE 

Genetics and 

RD-Connect  

CSA and RD-

Connect Genome 

Phenome Analysis 

Platform  

Cohort B WGS 33 deCODE 

Genetics 

deCODE 

Genetics and 

RD-Connect 

CSA and RD-

Connect Genome 

Phenome Analysis 

Platform 

Cohort C WES 120 The Broad 

Institute of 

Harvard and MIT 

The Broad 

Institute of 

Harvard and 

MIT and RD-

Connect  

seqr and RD-

Connect Genome 

Phenome Analysis 

Platform 

Cohort D WES 27 The Broad 

Institute of 

Harvard and MIT 

The Broad 

Institute of 

Harvard and 

MIT and RD-

Connect 

seqr and RD-

Connect Genome 

Phenome Analysis 

Platform 

Cohort E WES 9 The Broad 

Institute of 

Harvard and MIT 

The Broad 

Institute of 

Harvard and 

MIT, deCODE 

and  RD-

Connect 

seqr, CSA and RD-

Connect Genome 

Phenome Analysis 

Platform 

NA12878 WGS 1 Reference set of 

high confidence 

calls generated 

from 14 

sequencing 

experiments. 

The Broad 

Institute of 

Harvard and 

MIT, deCODE 

and  RD-

Connect 

seqr, CSA and RD-

Connect Genome 

Phenome Analysis 

Platform 
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3.3.3 Standardised filters for platform output assessment  

Assessment of agreement in variant output between the RD-Connect platform, CSA and seqr 

was carried out by standardising the user-modifiable filters on the platforms. The filters in 

table 13 were applied on all three platforms. All passing variants were included irrespective of 

inheritance model. 

 

Table 13:  Standardized filters applied to compare the RD-Connect, seqr and CSA 
platforms. 

Parameter  Filter  

Variant quality (GQ) 50 

Read depth >8* 

Variant effect Moderate-high 

Variant frequency in control 

population(s) 

1% 

Gene coverage Coding and non-coding regions 

Deleteriousness predictions Include all variants  

 *With the exception of seqr, as the Broad Institute represent read depth in an overall 

sensitivity score for each variant.  

3.3.4 Assessment of platform agreement  

For each individual WES or WGS dataset, the filters above were applied on the relevant 

platforms. The total number of passing variants on each platform for a particular patient were 

noted and the mean calculated for each cohort. For NMD genes (appendix A), variant outputs 

for each individual from each platform under comparison were assessed for concordance. A 

mean concordance rate was then calculated for each cohort.  

Cohort D was used to assess whether the RD-Connect platform agreed with seqr in proposing 

the same candidate causative mutations.  On the RD-Connect platform, variants were filtered 

for those with a read depth of 8 or more, having a moderate to high impact, a maximum 

population frequency of 1%, and those located in known NMD genes. 
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3.3.5 Bioinformatics pipeline assessment 

To assess the agreement of variants in VCF files produced by the site-specific bioinformatics 

pipelines for seqr, CSA and RD-Connect, the VCF comparison commands of VCFtools 

(v0.1.12a, Adam Auton and Anthony Marcketta 2009, 

http://vcftools.sourceforge.net/man_latest.html) were used. The tool was used on a Newcastle 

University remote server (Monolith). Files were analysed in the “.vcf.gz”/zipped format. The 

following commands were used to assess concordance for all variants, InDels and SNVs, 

respectively: vcftools --gzvcf file1.vcf.gz --gzdiff file2.vcf.gz --out filename, vcftools --gzvcf 

file1.vcf.gz --gzdiff file2.vcf.gz --keep-only-indels --out filename and vcftools --gzvcf 

file1.vcf.gz --gzdiff file2.vcf.gz --remove-indels --out filename. 

For analysis of the reference genome sample (NA12878), VCFtools (v.0.1.15) was used on 

Newcastle University’s Faculty of Medical Sciences remote cluster (fmsclustergw). The 

following commands were used for the updated VCFtools version: 

vcftools --gzvcf file1.vcf.gz --gzdiff file2.vcf.gz --diff-site  --out filename, vcftools --gzvcf 

file1.vcf.gz --gzdiff file2.vcf.gz --diff-site --keep-only-indels --out filename and vcftools --gzvcf 

file1.vcf.gz --gzdiff file2.vcf.gz --diff-site --remove-indels --out filename. 

To retrieve the total number of variants and the number of SNV and InDels in each file the 

following commands were used:  

vcftools –gzvcf file.vcf.gz --keep-only-indels --out filename and vcftools –gzvcf file.vcf.gz --

remove-indels --out filename 

 

 

 

 

 

 

 

 

 

http://vcftools.sourceforge.net/man_latest.html
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3.4 Results 

3.4.1 Two platform comparisons for Cohorts A, B, C, and D 

WES data in Cohorts A (n=88) and C (n=128) were analysed and compared for RD-Connect 

with CSA and seqr, respectively. Variants passing the standardised filters in table 13 were 

included in the analysis. The mean number of variants from patient datasets in each cohort is 

shown in figures 12 and 13. Mean variant numbers are also given for variants in NMD genes.  

These figures show that the number of passing variants on the RD-Connect platform is 

significantly higher than for seqr and CSA. For passing variants in NMD genes, this remained 

significant only when comparing RD-Connect to seqr.  

For each pair of platforms, concordance rates were calculated across the samples for variants 

falling in NMD genes. Concordance was also assessed for SNV and InDels separately. These 

are given in figure 14.  

These figures show that mean concordance of variants for RD-Connect and CSA is 49%, and 

for RD-Connect and seqr is 34 % for the Cohort A and C, respectively. Concordance 

percentages are mostly accounted for by concordance in SNVs. InDel agreement averaged as 

low as 3%.  

For Cohort C, a significantly higher number of InDels in NMD genes was present in the 

output report for RD-Connect compared to seqr. In this WES cohort, the total number of 

discrepant InDels was 796, for which RD-Connect called 727 (95%) and seqr 42 (5%). The 

passing InDels on the RD-Connect platform were further examined due to their significantly 

higher number (Figure 15). This revealed that these 727 InDels represented 104 unique 

positions only. Although intronic, these InDels were annotated by the RD-Connect pipeline as 

having a protein-altering feature. 
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Figure 12: Mean number of variants in the output reports from RD-Connect and CSA for 
Cohort A (n=88) 

 

 

Figure 13: Mean number of variants in the output reports from RD-Connect and seqr for 
Cohort C (n=120) 

 

 

 

 

1043

635

26 20

0

200

400

600

800

1000

1200

1400

RD-Connect CSA RD-Connect CSA

All variants NMD genes

1543

326

30 13
0

200

400

600

800

1000

1200

1400

1600

1800

RD-Connect Seqr RD-Connect Seqr

All variants NMD genes



 

68 

 

 

Figure 14: Two-platform variant output agreement for variants in NMD genes. A; Cohort A, 
B; Cohort C.  

 

 

 

 

 

 

 

 

 

Figure 15: Discordant InDels for Cohort C samples in the RD-Connect and seqr output 

reports. 
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WGS data (Cohort B, n=30) was also compared for agreement on two platforms (CSA and 

RD-Connect) using standardised platform variant filters. Agreement between the platforms 

was extremely low and the two platforms only agreed on an average of 13% of variants. InDel 

agreement was 8%.  

 

The mean number of variants produced by each sample in the cohort is shown in figure 16. 

Concordance rates for all variants, SNVs and InDels are given in figure 17. Variant output on 

the RD-Connect platform had 5 times more the number of variants in the output for the same 

patients from the CSA platform. The higher number of variants was also significant for those 

falling in NMD genes only.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Mean number of variants for Cohort B WGS samples in the output report for 
CSA and RD-Connect platforms (n=30). 
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Figure 17: Variant agreement rates (concordance) between CSA and RD-Connect for Cohort 

B WGS samples (n=30). 

 

 

For Cohort D, a small number of solved cases (n=27) were used to assess agreement of the 

seqr and RD-Connect platforms in proposing correct disease causing mutations.  

For all but three of the 27 cases, RD-Connect proposed the same variants as causative 

mutations as seqr. The variants reported as disease causing following analysis on the seqr 

platform included: a one base pair (bp) frameshift insertion in exon 5 of the ANO5 gene 

(chr11:22242646), an intronic SNV in exon 9 of the CAPN3 gene (chr15:42695919), and a 9 

base inframe deletion in intron 4 of the SGCA gene (chr17:48246421). The RD-Connect 

pipeline annotated these variants as having low impact on the protein. Annotations of these 

variants was similar for the Broad Institute’s pipeline. On the seqr platform, these three 

mutations did not appear in the output report when the variant search was limited to those 

with moderate to high impact on the protein.  

 

3.4.2 Three-platform WES comparison 

WES Data from Cohort E were processed through the bioinformatics pipelines at the three 

sites and the variant calling files (VCF) were used to assess agreement of the pipelines in 

variant calling. The VCF files were then uploaded onto their respective platforms. Variant 

filtering was standardised on the platforms and the variants that appeared in the output report 

for each patient were compared for agreement between all three platforms.  
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a. Bioinformatics pipeline comparison  

Figure 18 shows the average number of variants in each set of VCF files from RD-Connect, 

deCODE Genetics and the Broad Institute for patients in Cohort E.  

The variant content in the VCF files was used to calculate pairwise concordance rates. This 

was calculated for the total number of variants from each platform and for SNV and InDels 

separately. Figure 19 illustrates the average concordance percentage between the site –

specific VCF files in a pairwise manner. Figures 20 shows the mean number of variants that 

appear in two VCF files for each patient in the cohort.   

This analysis revealed that there is a significant difference in the number of variants called by 

each of the three bioinformatics pipelines and that, while deCODE Genetics calls the highest 

number of variants, RD-Connect calls significantly more InDels than the other two platforms. 

The seqr pipeline called the lowest number of variants for this cohort. 

Mean concordance for all variants called was highest for CSA and RD-Connect VCFs (75%). 

For all pairwise analyses, concordance of variants was mainly accounted for by SNV, as 

concordance for InDels was significantly low across all three platforms (figures 19 and 20). 
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Figure 18: Mean number of variants in VCF files for Cohort E from the Broad Institute, RD-
Connect and deCODE Genetics bioinformatics analysis pipelines.  

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Mean pairwise variant concordance percentage in VCF files for Cohort E from 
the Broad Institute, RD-Connect and deCODE Genetics bioinformatics analysis pipelines. 
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Figure 20: Pairwise agreement of Cohort E (n=9) VCF samples shown in variant number for 
VCF files from deCODE Genetics and RD-Connect (A), deCODE Genetics and the Broad 
Institute (B), and RD-Connect and the Broad Institute (C).  
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b. Platform variant output comparison 

Using the filtering options specified in table 13, variant output for Cohort E samples was 

analysed on each of the three platforms. The mean number of all variants and variants in 

NMD genes in the output reports are as shown in figure 21.  

NMD gene variants were further examined. Overall, locus concordance for the three 

platforms averaged at 36.6% for all variants. With regards to pairwise concordance, CSA and 

seqr appeared to have the highest mean percentage concordance. However, this showed 

significant variation across this cohort as illustrated per sample in figure 22.  
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Figure 21: Mean number of variants in the output reports for CSA, RD-Connect and seqr for 
Cohort E WES samples. Standardised filters were applied on all three platforms. 
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Figure 22: Pairwise agreement for variants in NMD genes in the output reports for Cohort 
E WES samples on the RD-Connect, CSA and seqr platforms. * Mean percentage agreement 
from all nine samples. NMD, neuromuscular disease; CSA, Clinical Sequence Analyzer. 
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3.4.3 Reference genome (GIAB) comparison on all three platforms 

a. Bioinformatics pipeline comparison 

VCF files produced for the NA12878 reference sample from RD-Connect, the Broad Institute 

and deCODE Genetics were compared using VCFtools. Total numbers of variants in each 

VCF file are shown in figure 23. VCF files were compared with the reference file and with 

one another (figures 24 and 25).  

For the NA12878 sample, overall pairwise variant agreement between the three pipelines was 

as high as 91%, and 81% for agreement with the reference file. Variant agreement for InDels 

was comparatively low.  

 

 

Figure 23: Number of variants in VCF files for the NA12878 WGS sample processed by RD-
Connect, the Broad institute, deCODE Genetics and in the reference file.  
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Figure 24: Variant agreement between the NA12878 VCF reference file and VCF files from 
RD-Connect, the Broad institute and deCODE Genetics. 

 

 

 

 

Figure 25: NA12878 variant agreement between VCF files from RD-Connect, the Broad 
institute and deCODE Genetics. 
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b. Platform output comparison 

Using data for the NA12878 sample from the GIAB reference material, variant output on RD-

Connect, seqr and CSA was examined using standardised filters (table 13).  

The number of variants from each platform is shown in figure 26. NMD gene variant 

agreement is shown in figure 27.  

Variant output on the RD-Connect platform contained a significantly higher number of 

variants. In addition, pair-wise variant output agreement was lower for comparisons involving 

the RD-Connect platform and was highest at 29% for seqr and CSA. Overall, all three 

platforms only agreed on 5% of variants.  

 

 

 

 

 

 

 

 

 

Figure 26: Number of variants for the NA12878 reference sample on the RD-Connect, CSA 

and seqr platforms using standardised variant filters.  
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Figure 27: NMD genes variant agreement for the NA12878 sample on the RD-Connect, CSA 
and seqr platforms using standardised variant filters. 
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3.5 Discussion 

Real WES and WGS data from patients with previously undiagnosed rare NMD was used to 

compare three bioinformatics pipelines at RD-Connect, the Broad Institute and deCODE 

Genetics and their respective genomic analysis platforms, the RD-Connect Phenome-Genome 

Analysis Platform, seqr and CSA. Filters were standardised for variant quality, population 

frequency and impact on protein on all three platforms.  

WES data from two cohorts of patients (Cohorts A and C) were used assess pairwise 

agreement between the platforms. The RD-Connect platform had the highest number of 

variants in the output report and seqr had a significantly lower number. Variant agreement 

was low at 34% and 40% for RD-Connect and seqr and RD-Connect and CSA, respectively. 

Agreement was mainly accounted for by SNVs as InDel agreement was less than 10%. 

When using WGS data (Cohort B) for patients with NMD, the discrepancies were magnified. 

The differences in variant numbers were greater, where the mean number of passing variants 

on RD-Connect was five times more that from CSA and the difference remained significant 

for passing variants in NMD genes. In addition, variant agreement between the two platforms 

was low (13%). 

Comparison of WES samples (Cohort E) on all three platforms revealed significant 

discrepancies in variant numbers and concordance. The RD-Connect platform had more than 

twice the number of passing variants as the other two platforms. For NMD genes, RD-

Connect still had the highest number of variants although the difference was not statistically 

significant. For these genes, variant agreement was highest for seqr and CSA (60%) although 

this was very variable across the sample. For passing variants falling in NMD genes, all three 

platforms only agreed on 36.6%.  

Examination of the bioinformatics pipelines was carried out by comparing VCF files for the 

same patients that were processed at the three sites. This analysis also revealed discrepancies 

in overall VCF variant numbers and agreement. The mean number of variants in the VCF files 

from deCODE Genetics was higher than the other two sets of VCF files. The Broad Institute’s 

pipeline called a significantly lower number of variants compared to the pipelines at the other 

two sites.  

All three pipelines use a version of BWA to map reads to the human reference genome (build 

hg19). For variant calling RD-Connect and seqr use the GATK HaplotypeCaller while CSA 

uses a previous version in the GATK pipeline, UnifiedGenotyper. GATK developers 

recommend use of the HaplotypeCaller in their recent versions of the workflow and claim it to 

be as effective as the UnifiedGenotyper in calling SNV, but far more superior at calling 
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InDels (TheBroadInstitute). This may be represented in Cohort E exomes by the significantly 

fewer InDels called by deCODE Genetics’ pipeline when compared to those called by the 

Broad Institute and RD-Connect.  

It is also important to note here that for the seqr platform, the Broad Institute incorporates 

joint variant calling in the GATK HaplotypeCaller pipeline (Lek et al., 2016).  Joint calling is 

when variants (SNV and InDels) are called simultaneously from all BAM files in a cohort, 

and generate a single call file for the entire sample. Joint calling is proposed to have greater 

sensitivity for low frequency variants, where the whole cohort of samples is used to ascertain 

and call a variant with poor coverage. This variant would otherwise be filtered out when 

applying read depth and quality filters, however, is rescued by other samples in the cohort 

having a variant with adequate coverage at that position. In addition, joint calling is also set to 

reduce false positive calls by applying variant quality filtering uniformly across the whole 

sample. Joint calling also comes with the drawback of cost, computational complexity and the 

need for large hardware space. In addition, joint calling requires all cohort samples to be 

available at the same time which is not feasible in many diagnostic and research labs. This 

also means that addition of any sample(s) at a later stage would require the whole variant 

calling process to be repeated and that results may vary for each patient depending on the 

cohort their sample is processed with (TheBroadInstitute; Lek et al., 2016). For Cohort E 

samples, the higher agreement of the RD-Connect and deCODE Genetics VCF files may 

provide some confidence in the variants called by these two pipelines. This may also suggest 

that, while joint calling used in the Broad Institute’s pipeline is proposed to reduce false 

positives, it may also filter out real but low quality or rare variants that are not supported by 

the rest of the cohort.  

Also worth noting, while genome alignment and variant calling are considered crucial steps in 

any sequencing experiment, further processing steps have also been found to impact the final 

set of variants called. GATK UnifiedGenotyper InDel calls have been found to be more 

sensitive to post-alignment processing steps, while these had little or no effect on pipelines 

using the GATK HaplotypeCaller (Tian et al., 2016). This may also account for the 

discrepancy in the number of InDels called by all three pipelines and by CSA/deCODE 

Genetics specifically.  

Overall, using the platforms to analyse Cohort E samples showed varying concordance and 

this was inconsistent with site-specific VCF file concordance rates for these samples. 

Platform NMD variant agreement rates were lower than overall variant numbers in VCF files 
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and although RD-Connect and deCODE Genetics’s VCF file had higher agreement, the CSA 

platform output agreed more with seqr. These findings point towards an important role for 

annotation and filtering algorithms and gene prioritization methods in determining the final 

variant output from the genomic platforms.  

A further observation from the VCF files for these nine samples is that the number of InDels 

called by the RD-Connect pipeline is significantly higher than the other two sites. In addition, 

there is a significant high number of passing InDels on the RD-Connect platform that are not 

supported by CSA or seqr. The RD-Connect-specific InDels in the original VCF file require 

validation. However, further examination of the discordant passing InDels on the RD-Connect 

platform for Cohort C exomes revealed that the InDels were incorrectly annotated as having a 

protein-altering feature and a moderate impact and thus, were not filtered out and appeared in 

the final variant output. As mentioned above, RD-Connect used the SNPEff (Cingolani et al., 

2012) as the annotation tool in the pipeline while the other two sites use Ensembl VEP 

(McLaren et al., 2016). Findings of this analysis as well as those by other researchers at 

Newcastle University were reported back to the RD-Connect bioinformatics pipeline 

developers and plans are in place to replace SNPEff with the VEP in the pipeline (personal 

communication, Steve Laurie and Ana Topf).  

As mentioned above, annotation tools perform differently depending on the transcript set used 

as a reference (McCarthy et al., 2014). However, this was not an issue here as all three 

pipelines used the Ensembl transcript set. Therefore, annotation discordance is mostly related 

to the annotation software itself. A recent study (Yen et al., 2017) compared annotation from 

SNPEff and Ensembl against those in ClinVar. The authors found that concordance between 

the tools was very high (99.5%) for SNV annotations in coding regions. However, 

concordance for InDels was significantly lower (<90%). The authors also compared both 

annotation tools using a large somatic mutation dataset (COSMIC). They found that in the 

case of somatic mutations, agreement was lower for SNV (<90%) and substantially lower for 

InDels (<15% for insertions mutations). It is also important to note here that half of the 

SNPEff errors were found to be due to random right-shifting of the variant. This error has 

been corrected in the newer version of SNPEff (4.2) (Yen et al., 2017). These discordances 

are likely to contribute to discordances in output reports when filtering to prioritise variants in 

the context of rare disease. For the small sample of solved cases (n=27) in Cohort D, RD-

Connect and seqr proposed the same candidate mutations. For this cohort, three variants were 

annotated as having a low impact by both platforms. However, due to the clinical relevance of 

the genes, they were further investigated and later assigned as pathogenic mutations.   
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Using WGS data for the reference GIAB NA12878 sample, the bioinformatics pipelines had a 

relatively high concordance with each other (approximately 90%) and with the reference VCF 

(approximately 80%). These results are comparable with ones from a recent study using the 

NA12878 reference sample to compare six combinations of read aligners and variant callers. 

They found that all pipelines performed well in variant calling particularly for calling SNVs 

(sensitivity >99%). InDels were more problematic for all pipelines (mean sensitivity 87.4%) 

(Laurie et al., 2016).  

Overall variant numbers in all three VCF files were not significantly different. The previously 

evident role of joint calling in the Broad’s pipeline in eliminating noise and reducing variant 

numbers was no longer evident using the high quality calls in the NA12878 sample. This can 

be explained by the fact that the variants no longer need other samples in the joint calling 

process due to their high quality.  

The high variant agreement of pipelines when using a reference set of high confidence 

variants contradicts findings of the analysis performed using real patient WES data. This 

highlights that variant calling is sample and project-specific and that errors may occur prior to 

the bioinformatics analysis stage. Thus, sample quality, sequencing platform, sequence 

coverage, in-house pre-alignment processing of the raw data and variations in quality control 

parameters may play a role in discrepancies between the bioinformatics pipelines and the final 

variant output (Clark et al., 2011; Alioto et al., 2015; Lelieveld et al., 2015).  

In addition, despite the high agreement of the VCF files reflecting the high performance of 

bioinformatics pipelines when using the reference NA12878 data, there was very low 

agreement when the VCF files were analysed on the corresponding three platforms. For 

variants in NMD genes, all three platforms only agreed on 5% of variants. This suggests a 

high contribution from variant annotation and filtering algorithms to the discrepancies 

between the three genomics platforms. 

It is important to note here that NGS projects are usually designed for a specific purpose. For 

example, an NGS workflow designed for diagnostics may not be suitable for rare disease 

research and for the latter the pipelines are usually customised for the nature of disease and 

population under investigation and to overcome known sequencing challenges and artefacts. 

In addition, default parameters for a particular pipeline may change depending on the project. 

For example, imputation, computational linkage and pedigree incorporation and association 

tools maybe integrated into a pipeline for a project investigating disease in families. This 

customisation is proposed to increase the sensitivity and yield of the pipelines (Wittig et al., 

2015; Chung et al., 2016; Peng et al., 2016; Zucca et al., 2016; Blauwendraat et al., 2017). 



 

85 

 

In conclusion, it is clear that variations in bioinformatics tools, annotation software and 

filtering algorithms lead to discordances in variant outputs. This must be considered in the 

design and development of NGS projects particularly in the field of rare diseases when highly 

accurate and sensitive data is necessary for novel discoveries. Research into somatic mutation 

detection suggests that a workflow that intersects and combines data from more than one 

combination of aligner and variant caller in addition to intersecting calls from the same 

variant caller but different aligners, improves performance and increases call sensitivity and 

specificity (Chung et al., 2016). This approach may also be appropriate for rare genetic 

disorders such as NMD.  

Moreover, research involving comparisons of NGS data processing, alignment tools and 

variant callers is extensive and has led to impressive improvements. However, performance 

comparisons between annotation tools and platform filtering algorithms remain limited. In 

addition, although in-house sample preparation and DNA sequencing protocols are 

standardised, these vary between research and diagnostic labs and may bias comparisons of 

results from different sites. Furthermore, a set of high confidence variant calls is important for 

benchmarking bioinformatics pipelines in the development stage. However, use of real patient 

data may also provide valuable insights for assessment and development of the bioinformatics 

pipelines and variant prioritisation methods.  
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Chapter 4. Genomics platform utility in WES analysis in patients 
with limb girdle weakness. 

 

4.1 Introduction 

With the immense data produced through WES, differentiating sequence variants that are 

pathogenic from those that are polymorphisms is an ongoing challenge. This is further 

complicated by the computational complexity of bioinformatics algorithms used in data 

analysis and variant prioritization. Patient sequence data needs to be linked to phenotypic 

data, inheritance patterns, population frequencies and bioinformatics prediction tools. In 

addition, integration of databases for genomic features, gene expression, RNA sequencing 

data and protein interaction networks is essential. All this information needs to be 

incorporated in a defined yet flexible workflow accessible to researchers via an on-screen 

interface. The aim of this is to enable researchers to visualise, manipulate and filter sequence 

data to prioritize the most relevant variants for further investigation (Coonrod et al., 2011; 

Jalali Sefid Dashti and Gamieldien, 2017).   

LGMDs are a genetically and phenotypically heterogeneous group of disorders with limb 

girdle weakness being a common feature. Many of the LGMDs have additional features that 

are non-distinguishing and overlap with other LGMDs as well as other myopathies and 

neuropathies. MRI and histopathology have been traditionally used to guide molecular testing 

for LGMD. Sequential gene testing by Sanger sequencing in this group has led to lengthy 

diagnoses and low diagnostic yields (Lo et al., 2008). Although yield is higher for gene 

panels, it depends on the genes included in the panel and on the nature of the patients tested. 

In addition, a gene panel may not account for other phenotypically overlapping disorders and 

for novel genes (Ghosh and Zhou, 2012; Efthymiou et al., 2016).  

WES in an effective data workflow and a user-friendly interface offers the opportunity to 

provide diagnosis and novel gene discoveries.  

WES was performed on patients presenting with limb girdle weakness and suspected to have 

LGMD. These patients have been extensively investigated prior to WES and remained 

without a genetic diagnosis. The WES data was analysed using the seqr platform and a study 

of this cohort is presented here as an example of application of an integrated genomics 

platform in a cohort of patients with rare NMD.  
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4.2 Aims 

- Study the genetic aetiology of undiagnosed patients with limb girdle weakness using 

WES.  

- Identify the genetic cause in undiagnosed cases and propose novel candidates for 

NMD. 

- Assess the added benefit of using and integrated genomics platform in analysis of 

WES data for patients with a rare NMD presenting with limb girdle weakness.  

 

4.3 Patients and methods 

4.3.1 Consent  

Informed consent for research was obtained from all patients undergoing WES under the 

protocol for Newcastle MRC Centre Biobank for Neuromuscular Diseases (REC reference: 

08/H0906/28 + 5). 

4.3.2 Patients 

Patient were selected for WES if they presented with limb girdle weakness and had been 

extensively screened for mutations in known genes as dictated by their phenotype. 

Recruitment occurred during 2014-2015. Informative family members were included where 

relevant and available.  

4.3.3 Sequencing and bioinformatics pipeline  

WES samples were sequenced at the Broad Institute of Harvard and MIT on an Illumina 

HighSeqXs platform. The capture kit used was the Agilent Sure-Select Human All Exon v.2.0 

(44Mb). Read alignment was performed using BWA, variant calling via GATK, and 

annotation using VEP. 

4.3.4 Platform analysis 

Analysis of WES data was carried out on the seqr platform. Initially, variants were filtered for 

those that fit an inheritance model suggested by the family pedigree, allele frequency <0.01 in 

the ExAC and 1000 Genomes population, variants that were predicted to have a damaging 

effect on the protein and those that were in the NMD gene list (appendix A). Predicted 

damaging variants include nonsense, frameshift, essential splice site, in-frame and missense 
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variants. Any potential candidate variants were assessed further for their population 

frequencies and for missense variants, pathogenicity prediction (as given by Sift, Polyphen2, 

Mutation Taster and FATHMM tools on seqr). These variants were then also evaluated 

according to phenotype, reports of patients with the same variant or other variants in the same 

gene, and with tissue-specific expression data provided via GTEx (https://gtexportal.org) and 

integrated onto the seqr platform. Furthermore, seqr provides direct web links to PubMed, 

OMIM, NCBI Gene and the Protein Atlas and these were used to further examine the 

relevance of the variant as a disease candidate.  

If the initial analysis did not propose any candidates, the analysis was repeated with less 

stringent filters for inheritance model and effect on protein and expanded to include the whole 

exome.  

4.3.5  Evidence for pathogenicity 

Where relevant and available, candidate diagnoses where evaluated with other test results 

such as MRI and muscle histology results and by Sanger sequencing and segregation studies 

in affected and non-affected family members. 

For novel candidate genes, species conservation data, intolerance to loss of function 

mutations, association with disease, and tissue-specific expression were examined amongst 

other features using the online tools and databases in table 14.     

Finally, candidates were discussed with a multidisciplinary team to accept or disprove the 

variant as a causative mutation.  

 

 

 

 

 

 

 

 

 

https://gtexportal.org/
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Table 14: Online tools and databases used to gather evidence for variant pathogenicity 
and association with NMD. 

Tool/Database  URL  Supporting evidence 

provided  

UCSC Genome 

browser (hg19) 

https://genome.ucsc.edu/  Conservation data. 

Variant localization. 

Genomic features. 

ExAC Browser  http://exac.broadinstitute.org/  Allele and genotype 

frequencies.  

Loss of function mutation 

metrics. 

Pubmed https://www.ncbi.nlm.nih.gov/pubmed/  Gene function. 

Disease association.  

OMIM https://omim.org/  Disease association. 

EMBL-EBI 

Expression Atlas 

GTEx portal 

https://www.ebi.ac.uk/gxa/home 

https://gtexportal.org/home/  

Tissue-specific gene 

expression. 

STRING database https://string-db.org/   Protein interaction 

network. 

 

 

4.3.6 Segregation studies  

Potential pathogenic variants were segregated in family members via Sanger sequencing. 

Primer design, primers, PCR and sequencing protocols are detailed in the appendices.   

 

https://genome.ucsc.edu/
http://exac.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/pubmed/
https://omim.org/
https://www.ebi.ac.uk/gxa/home
https://gtexportal.org/home/
https://string-db.org/
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4.4 WES results  

4.4.1 Patients 

Patients were selected for WES when prior genetic screening of candidate genes did not 

reveal a molecular diagnosis. WES was performed on 178 individuals from 93 families with 

125 affected with a NMD and 53 unaffected relatives. Seventy were single cases with no 

relatives undergoing WES and one family consisted of the unaffected parents only.  

 

4.4.2 Molecular diagnosis in patients presenting with limb girdle weakness 

through analysis of WES data on the seqr platform. 

Prior to the start of this project, WES data for this cohort was reviewed by team members at 

Newcastle University. Out of the 93 families, 33 (35.5%) had candidate variants proposed as 

causative, of which three were in novel unpublished genes. These are described in more detail 

in table 15.  

WES data from the remaining 60 families were analysed and a molecular diagnosis was 

proposed for an additional 28 families, including variants in 11 novel candidate genes. 

Overall, 61 families (65.6%) had a proposed genetic diagnosis. This included 47 families with 

a proposed diagnosis in known NMD genes and 14 families with new candidate genes (77% 

and 22.6% of all families with a proposed diagnosis, respectively). A pie chart of the 

distribution of molecular diagnoses is given in figure 28. The highest number of proposed 

causative variants were in the TTN gene (19.7%) followed by the COL6 genes (COL6A1, 

COL6A2 and COL6A3). 

Fifty out of the 93 families (53.8%) consisted of a single affected individual. Families where 

at least one additional affected or unaffected individual also underwent WES were slightly 

more likely to have a candidate molecular diagnosis than singletons (67.4% and 62%, 

respectively).  

The variants presented here are the best candidates proposed through WES. Moreover, for 

many of these variants, pathogenicity is yet to be confirmed through family segregation 

analyses, deep phenotyping, and functional work for the gene and the proposed mutations.  
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Table 15: Proposed genetic diagnosis from WES for 33 families presenting with limb 
girdle weakness using the seqr genomic platform prior to the work presented in this 
thesis. 

Family  Gene DNA change Protein change 

Variant 

reported/

novel 

Evidence supporting 

pathogenicity  

6 DMD c.8146C>T p.Gln2716Ter novel 

De novo novel variant. 

Fits with phenotype 

11 SRPK3* c.1146G>A 

p.Trp382Ter  

novel 

Novel nonsense variant.  

Segregates. 

Variants in the same gene 

discovered in phenotypically 

similar cases in other NGS 

projects. 

12 MYH7 

c.5560-2A>G  

ESS novel 

Damaging variant. 

Fits with phenotype. 

14 DNM2 c.1115T>C p.Phe372Ser novel 

Damaging variant. 

Fits with phenotype. 

18 COL6A1 

c.472G>A  p.Asp158Asn  novel Damaging variants. 

Segregate. 

Fit with phenotype. 

c.958_961delGG

AG  
p.Gly320ArgfsTer13  

novel 

26 FKTN 

c.203delA  p.Asn69MetfsTer10  novel Damaging variants. 

Fit with phenotype. c.1098T>A p.Asp366Glu  novel 

27 RYR1 

c.8137G>A  p.Asp2713Asn  reported Damaging variant. 

Fit with phenotype. c.14614T>G p.Cys4872Gly novel 

28 KLF15* 

c.103C>G p.Leu35Val 

novel 

Damaging variant. 

Gene highly expressed in skeletal 

and cardiac muscle. 
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Variant segregates in family. 

29 MUSK 

c.1119G>T  p.Leu373Phe  reported Damaging variants. 

Segregate  c.1141G>T  p.Glu381Ter  novel 

35 VCP c.329G>A p.Arg110His 

reported 

pathogenic 

Fits with phenotype 

Segregates 

36 COL6A2 

c.1769C>T  p.Thr590Met  reported Damaging variants. 

Fit with phenotype. c.2192C>T  p.Thr731Met novel 

38 TTN 

c.107377+1G>A  ESS  reported Damaging variants. 

Fit with phenotype. 

Segregate.  

c.71783delA  

p.Phe23928SerfsTer11 

 

novel 

40 TTN 

c.76440_76444del

GCAGA  

p.Leu25481HisfsTer7

  reported Damaging variants. 

Fit with phenotype. 
c.35828dupA 

p.Glu11945ArgfsTer

6  novel 

42 COL6A1 

c.362A>G***  p.Lys121Arg  

novel 

Damaging variant. 

Fit with phenotype. 

Segregate. 

44 STIM1 

c.20G>A  p.Gly7Asp  

novel 

Damaging variant. 

Fits with phenotype 

55 LAMA2 

c.2049_2050delA

G  
p.Arg683SerfsTer21  

reported 
Damaging variants. 

Fit with phenotype. 
c.6992+5G>A  ESS  reported 

58 LMNA 

c.746G>A  p.Arg249Gln  

novel 

Damaging variant. 

Fits with phenotype 
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59 DNM2 

c.1679_1681delA

GA  
p.Lys562del  

novel 

Damaging variant. 

Fits with phenotype 

64 STIM1 

c.40A>G  p.Ser14Gly  

novel 

Damaging variant. 

Fits with phenotype. 

65 TTN 

c.107377+1G>A  ESS  reported Damaging variants. 

Fit with phenotype. c.71043G>A  p.Trp23681Ter  novel 

66 

MAMDC

2* 

c.2008_2009delA

C  
p.Thr670AsnfsTer9  

novel 

Damaging variant. 

Gene highly expressed in skeletal 

muscle. 

Segregate. 

Second family with similar 

phenotype and mutations in the 

same gene. 

69 GMPPB 

c.860G>A  p.Arg287Gln  reported Damaging variant. 

Fit with phenotype. c.338G>A  p.Cys113Tyr  reported 

70 MTM1 

c.1054-2A>T  ESS 

novel 

Damaging variant. 

Fit with phenotype. 

Proposed manifesting female 

carrier. 

71 TTN 

c.107377+1G>A  ESS reported Damaging variants. 

Fit with phenotype. c.60709A>T  p.Lys20237Ter  novel 

72 COL6A3 c.7447A>G p.Lys2483Glu reported 

Damaging variant. 

Fits with phenotype 

76 TTN 

c.77593C>T  p.Arg25865Ter  

reported 

likely 

pathogenic Damaging variants. 

Fit with phenotype. c.80103T>A  p.Asn26701Lys  reported 
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78 ANO5 

c.155A>G  p.Asn52Ser  

reported 

with 

uncertain 

significanc

e 

Segregate. 

Fit with phenotype. 

c.191dupA  p.Asn64LysfsTer15  
reported 

pathogenic 

80 LAMA2 

c.611C>T  p.Ser204Phe  novel 
Damaging variant. 

Fit with phenotype. c.4533delT  
p.Gly1512AlafsTer83

  novel 

82 PIEZO2 

c.2136G>A  p.Met712Ile  

novel 

Fit with arthrogryposis phenotype. 

Damaging variant. 

Segregates.  

88 COL6A3 

c.5665G>C  p.Gly1889Arg  

novel 

Damaging variant. 

Fit with phenotype. 

Segregates. 

90 COL6A2 

c.541G>A  p.Glu181Lys  reported 

pathogenic 

Pathogenic variant. 

Fits with phenotype. 

92 MYH7 

c.5533C>T  p.Arg1845Trp  

reported 

pathogenic 

Pathogenic variant. 

Fits with phenotype 

Segregates.  

93 TTN 

c.48312+2_48312

+15delTGAGTTT

TGAGCAG  ESS novel 

Damaging variants. 

Fit with phenotype. 

c.1933G>T  p.Glu645Ter  reported 

*Novel gene in neuromuscular disorders. **Reported pathogenicity from ClinVar or reported 

in control populations in ExAC/gnomAD at a frequency <0.001 in a heterozygous state. All 

variants listed here are in a heterozygous state unless stated as homozygous (marked with***). 

ESS, essential splice site. 
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Figure 28: Number of families per candidate genes for a cohort with limb girdle weakness 
and WES data analysed on seqr (n=93). 
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4.4.3 Proposed genetic diagnosis as a result of this project 

A. Variants in known NMD genes 

As a result of the work presented in this thesis, a genetic diagnosis was proposed for 28 

families following this analysis. For 17 of these families, variants were proposed in genes 

with a described association with NMD. These are further detailed in table 16.  

 

Table 16: Families with proposed candidate mutations in known NMD genes identified 
through analysis of WES data on the seqr platform as a result of the work presented in 
this thesis. 

Family 

NMD 

gene DNA change Protein change 

Variant 

novel/reported* Evidence supporting pathogenicity 

2 CASQ1 

c.401G>A  p.Gly134Glu  

novel 

Damaging variant. 

Fits with phenotype. 

24 TTN 

c.5289T>A  p.Asp1763Glu 

novel 

Damaging variant. 

May fit with phenotype. 

30 TTN 

c.25561C>A  

c.36509A>T  

p.Pro8521Thr  

p.Glu12170Val  

novel 

reported 

Damaging variants. 

May fit with phenotype. 

31 COL6A2 

c.1138C>T  p.Arg380Cys  

novel 

Damaging variant. 

Fits with phenotype. 

32 PHKA1 

c.890T>C  p.Leu297Pro  

reported 

Damaging variant. 

May fit with phenotype. 

34 TTN c.53789C>G  p.Pro17930Arg  novel Damaging variant. 

37 CAV3 

c.136G>A  p.Ala46Thr  reported 

pathogenic 

Fits with phenotype. 

Segregates. 

46 COL6A1 

c.957G>T  p.Lys319Asn  
reported 

pathogenic 

Fit with phenotype. c.1043C>T  p.Ser348Leu  reported 
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47 CNTN1 

c.623A>T  p.Asn208Ile  

novel 

Damaging variant. 

CNTN1 mutations reported in AR 

lethal congenital myopathy in one 

family. 

AD inheritance proposed  

48 TTN 

c.35794G>T  p.Glu11932Ter  reported 

Damaging variants. 

Fit with phenotype. 

c.28226_2822

7insA  

p.Val9410Glyfs

Ter6  novel 

62 TTN 

c.70947_7094

8insTTCC  

p.Lys23650Phe

fsTer23  novel Damaging variants. 

Fit with phenotype. c.61815A>G  p.Ile20605Met  reported 

67 CAPN3 

c.759_761del

GAA  
p.Lys254del  reported 

pathogenic 

Pathogenic mutation. 

Fits with phenotype. 

74 DYSF 

c.988G>C  p.Gly330Arg  reported 

Fits with phenotype. 
c.2929C>T  p.Arg977Trp  

reported 

pathogenic 

77 AIFM1 c.340G>A  p.Ala114Thr  reported May fit with phenotype. 

79 TTN 

c.60223G>A  p.Val20075Met  novel Damaging variants. 

Fit with phenotype. c.71705T>C  p.Ile23902Thr  reported 

81 MEGF10 

c.352T>C  p.Cys118Arg  novel 

Damaging variants. 

Fit with phenotype. 

c.1426+1G>T

  
ESS  

novel 

91 PHKA1 

c.3359T>A  p.Phe1120Tyr  

novel 

Damaging variant 

Fits with phenotype. 

* Reported pathogenicity from ClinVar or reported heterozygous frequency in control 

populations (ExAC/GNOMAD) less than 0.001.  
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B. Variants in novel candidate NMD genes 

For 11 families in this cohort variants in novel candidate genes were proposed to be causative. 

WES did not reveal any potential mutations in known NMD genes and the search was 

expanded across the whole exome. The families and the candidate genes are further described 

below. 

a. MYMK  

The patient (family 49) is a 70 year-old white male with juvenile onset limb girdle, proximal 

and distal myopathy. Clinical features are illustrated in Figure 29. Muscle weakness was mild, 

symmetric, slow progressing and more evident proximally. Facial muscle weakness, ptosis 

and lagophthalmos were also features of disease in this patient. In addition, he suffered with 

scoliosis, pectoralis muscle hypoplasia and cryptorchidism. The patient suffered severe 

gastrointestinal symptoms that led to food avoidance and weight loss. Progression of the 

myopathy has been unremarkable and at the age of 70 the patient remains ambulant and living 

independently.  

Serum creatine kinase (CK) levels were mildly elevated (500-1000IU/L). EMG studies were 

suggestive of a chronic mildly active necrotising myopathy. Muscle MRI showed selective 

involvement in the lower limbs as shown in figure 30, and muscle histology showed non-

specific myopathic changes (figure 31) (Alrohaif et al., 2018).  

Analysis of WES data for this patient revealed no pathogenic variants in known NMD genes. 

However, two compund heterozygous variants in the MYMK  gene: c.271C>A (p.Pro91Thr) 

and c.553T>C (p.Cys185Arg) were identified. The proposed mode of inheritance was 

autosomal recessive. 

The MYMK gene encodes the transmembrane protein 8 (TMEM8C), also known as 

myomaker. It is a highly conserved protein with muscle-specific expression during muscle 

development and regeneration (Millay et al., 2013; Millay et al., 2014). At the time of this 

analysis, the MYMK gene was not associated with disease. However, a recent publication 

described eight patients with phenotypic similarity to the patient described here and mutations 

in the MYMK gene (Di Gioia et al., 2017). The gene is now associated with Carey-Fineman-

Ziter syndrome, a congenital myopathy with facial weakness, cryptorchidism and 

gastrointestinal disturbance, amongst other consistent features. The patient described here is 

now also described in the literature, as mild case of Carey-Fineman-Ziter syndrome and 

mutations in the MYMK gene (Alrohaif et al., 2018). 
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Figure 29: Clinical features in MYMK-related CFZS. (A) Top: Front and profile facial photos 
demonstrating lagophthalmos (left, patient attempting lid closure), muscle hypoplasia, 

retrognathia and broad nasal tip. Middle: Wasting of intrinsic hand muscles, contracture 
deformities of the right little finger and of the toes. Bottom: Scoliosis (left) and generalised 
muscle atrophy with pectoralis muscle hypoplasia (right). Reproduced with permission 
under CC-BY license, Wolter Kluwer. 
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Figure 30: Muscle MRI images for a patient with MYMK gene mutations (Alrohaif et al., 
2018). A: MRI T2 weighted images of the thighs (left) showing severe fatty replacement of 

hamstrings, thigh adductors and sartorius muscles, with relative sparing of the gracilis and 
quadriceps muscles bilaterally, and of the calves (right) showing asymmetric involvement 

with more marked fatty replacement in muscle of the right leg. Gastrocnemius, and soleus 
muscles are severely affected and the tibialis anterior on the right is relatively spared.  

Reproduced with permission under CC-BY license, Wolter Kluwer. 
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Figure 31: Needle biopsy of the left vastus lateralis from a patient with MYMK mutations. 
Patient images (left) and control images (right). H&E stain demonstrates fibre size 

variation (H&E 100x) and occasional internal nuclei (H&E 200x, arrows). Mild moth-eaten 
changes seen on NADH stain indicating uneven mitochondrial enzyme activity within the 

sarcoplasm (NADH 200x). Reproduced with permission under CC-BY license, Wolter 
Kluwer. 
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b. FILIP1 

For family 53, the index case is the first child to consanguineous Pakistani parents living in 

the UK. She presented at birth with hypotonia, contractures and feeding difficulties. Her 

motor development was delayed and she sat independently at 18 months of age and took her 

first steps at 24 months. She was noted to have early kyphoscoliosis, a rigid spine, 

symmetrical scapular winging and Gowers’ manoeuvre. She had contractures at the elbows, 

knees and long finger flexors. She also has dysmorphic facial features (figure 32), facial 

weakness, ptosis, a high arched palate and webbing of the neck. Her skin was rough and prone 

to hypertrophic scaring. She had mild learning difficulties with speech delay and required 

learning support at school.  

Although in early childhood she suffered with frequent episodes of pneumonia, she had no 

respiratory muscle weakness. She underwent echocardiography and this did not reveal any 

abnormalities. There was no evidence of delayed growth and menarche was normal at the age 

of 12 years.     

At the age of 15 years, she was walking unaided and able to climb stairs. Manual muscle 

testing using the MRC-muscle strength grading showed 5/5 in neck flexion, shoulder 

abduction, elbow flexion, elbow extension, hip flexion, hip extension, knee flexion, knee 

extension, dorsiflexion and plantar flexion bilaterally. At this stage of the disease, she was 

also complaining of exercise-induced myalgia. She also demonstrated a one hand Gower’s 

manoeuvre to rise from the floor.  

The patient had two affected younger sisters and one healthy brother. 

Her CK levels have been persistently mildly elevated at 400-900 IU/L. One of the affected 

sisters however, had a significantly higher CK at 3400 IU/L. 

Cultivated skin fibroblasts were used to investigate the possibility of a collagen VI disorder 

but no abnormality was detected in collagen VI expression. 

A muscle biopsy was taken from the left quadriceps and histology showed type1 fibre 

predominance while immunohistochemistry showed patchy dystrophin deficiency (figure 33). 

Analysis of the dystrophin gene showed a heterozygous pathogenic non-sense mutation, 

c.8713C>T (p.Arg2905Ter). However, no X chromosome inactivation skewing was identified 

and this mutation did not explain the phenotype.  
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WES highlighted a homozygous non-sense novel variant, c.169C>T (p.Arg57Ter), in exon 2 

of the FILIP1 gene as a potential candidate for this patient.  

FILIP1 codes for filamin A interacting protein 1 and is highly expressed in skeletal muscle. 

The protein has recently been shown to interact with myogenic transcription factors such as 

Myog (Chen et al., 2018). Mutations in FLNA, which encodes the interacting protein, filamin 

A, is associated with a spectrum of disorders including Melnick-Needles, fronto-metaphyseal 

dysplasia and oto-palato-digital syndromes (Moutton et al., 2016). The extra-muscular 

features in the patient overlap with features from these syndromes. For example, facial 

features such as frontal bossing, high arched palate and micrognathia, spinal deformities, 

scapular winging, joint contractures and learning disabilities are features of FLNA-related 

syndromes and are also features in our patient with FILIP1 mutations. Furthermore, reported 

chromosome 6q microdeletion syndromes include deletion of the FILIP1 gene and the 

phenotypic features include, intellectual disability, facial dysmorphism, skeletal deformities 

and hypotonia (Becker et al., 2012).    

Segregation studies were performed to further strengthen the evidence for pathogenicity of the 

FILIP1 variant in this this family. These revealed that both parents are heterozygous carriers, 

an affected sibling is homozygous and an unaffected sibling is heterozygous for the variant. 

Therefore, the variant segregates with the disease in this family.  

Additional FILIP1 variants were identified through WES in patient from a parallel sequencing 

project at Newcastle University. The index is a boy of German origin, born to consanguineous 

parents who are first cousins, and had prenatal onset disease with polyhydramnios. At birth, 

he presented with hypotonia, joint contractures and poor feeding. He had delayed motor 

development, delayed speech and generalised muscle weakness. He is also reported to have 

dysmorphic facial features. A homozygous missense variant, c.3398C>T (p.Pro1133Leu), in 

exon 5 of the FILIP1 gene was identified using WES. The variant is novel, corresponds to a 

highly conserved amino acid and is predicted to be damaging by Polyphen2, SIFT and 

Mutation Taster. Deep phenotyping, muscle biopsy and segregation of the variant in this 

second family is currently ongoing.  

FILIP1 is proposed to be a novel disease gene for NMD and particularly for syndromic 

congenital myopathy.  
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Figure 32: Disease features in a female patient with homozygous p.Arg2905Ter FILIP1 
variants. A and B, Dysmorphic features: Large forehead with prominent ridging of the 
metopic suture, large prominent ears, prominent nose and micrognathia, ptosis, 
myopathic face, neck webbing, kyphoscoliosis, elbow and knee flexion contractures and 
bilateral foot pronation. C, rigid spine and D, flexion contractures of the fingers.   
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Figure 33: Muscle histology and immunohistochemistry for a female patient with FILIP1 
variants. A: H&E stain; fibre-size variation. B: ATPase pH4.3; type 1 fibre predominance. C: 
immunohistochemistry; patchy dystrophin deficiency.  
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c. TENM2  

Family 21 is a consanguineous family from Yemen. The affected daughter presented in early 

childhood with frequent falls, and difficulties with walking and climbing stairs. She was 

found to have proximal weakness, joint hyper-laxity, scapular winging and lordosis. She also 

had facial muscle weakness. At 11 years old, she was ambulant but had difficulties climbing 

stairs and rising from a lying position. She had severe neck and truncal weakness with some 

spinal rigidity. Her proximal limb weakness remained mild and she had foot extensor 

weakness. She was found to have hypertrophic scarring. 

CK levels and muscle histology were normal. However, the muscle biopsy was taken from a 

relatively unaffected muscle (medial gastrocnemius).  EMG studies pointed towards a 

myopathic process and nerve conduction studies were normal.  

WES performed for the affected child and her parents proposed a homozygous missense 

variant in the TENM2 as a candidate gene in the affected child. Both parents were 

heterozygous carriers. The variant, c.5879G>A (p.Arg1960His) is rare (allele frequency in 

ExAC: 0.0001326) and predicted to be damaging by Polyphen, Mutation Taster and 

FATHMM.  

TENM2 encodes teneurin transmembrane protein 2, which is proposed to have role in neural 

development and establishment of connectivity in the nervous system. By sequence similarity, 

the protein is also expected to act as a transcription inhibition factor (Silva et al., 2011). 

TENM2 is expressed in moderate to high levels in muscle, skin, heart, brain and peripheral 

nerves.  

Segregation of the variant showed that an unaffected brother was heterozygous for the variant.  

TENM2 is proposed as a novel candidate for congenital myopathy.  

 

d. NRAP 

For family 9, WES was performed for one affected individual. She presented with a 

congenital myopathy, generalized muscle weakness that was more evident proximally, and 

involvement of the extra-occular muscles manifesting with ptosis and opthalmoplegia.  

WES highlighted two heterozygous variants (c.3300+1G>A; essential splice site variant and 

c.741C>T; c.741C>T(p.=)) in the NRAP gene. The variants are rare with no homozygous 

individuals reported in the ExAC control population for either of them. The second variant is 
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a synonymous one and is not predicted to cause an amino acid change. Nonetheless, 

synonymous mutations are implicated in disease through mechanisms related to splicing or 

alteration of RNA structure and rate of translation (Sauna and Kimchi-Sarfaty, 2011; Supek et 

al., 2014).  

NRAP encodes the nebulin-related anchoring protein, which is an actin-binding cytoskeletal 

protein with high expression in skeletal and cardiac muscle (Truszkowska et al., 2017). 

Homozygous NRAP mutations have been reported in a single individual with dilated 

cardiomyopathy (Truszkowska et al., 2017), and a heterozygous mutation has been discussed 

in the context of BAG3-related myofibrillar myopathy (D'Avila et al., 2016).  

 

e. XIRP2 

The patient (family 23) has a congenital myopathy with facial weakness and scoliosis and 

proximal muscle weakness and wasting. He is the only affected child to non-consanguineous 

healthy parents.  

WES identified compound heterozygous variants in the XIRP2 gene. The missense variants, 

c.3014A>G (p.Gln1005Arg) and c.2682T>A (p.Asn894Lys), are rare variants with no 

homozygous individuals reported in control populations. Bioinformatics pathogenicity 

predictions were conflicting with 1/5 predictions tools classifying the variants as damaging. 

XIRP2 is highly expressed in skeletal and cardiac muscle. It belongs to the Xin gene family 

that are known to regulate intercalated disk development in cardiac muscle. Mutations in 

XIRP2 have been associated with cardiac muscle and conduction defects (Long et al., 2015). 

The protein has also been shown to interact with a number of proteins with known expression 

and importance in skeletal muscle development, function and disease (figure 34). Its unique 

and direct interaction with FLNC, a known NMD gene (Leber et al., 2016), makes XIRP2 a 

plausible candidate for muscle disease.    
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Figure 34: Protein interaction network for XIRP2. The image was produced on the STRING 
database (https://string-db.org/) using XIRP2 in homosapiens as the query protein.  FLNC, 

filamin C; NEBL, nebulette; XIRP1, Xin-related protein 1; SETMAR, SET domain and mariner 
transposase fusion gene; MOCS2, Molybdenum cofactor synthesis 2; XIRP2, Xin-related 
protein 2; MEF2A, myocyte enhancer factor 2A and NSMAF, Neutral sphingomyelinase 
activation associated factor. 

 

f. CAMK2B 

The affected father and son (family 66) underwent WES. The clinical presentation was of 

progressive adult onset weakness and an autosomal dominant inheritance pattern. WES 

proposed a novel, damaging missense variant, c.559C>T (p.Arg187Cys), in both father and 

son in exon 8 of the CAMK2B gene.  

CAMK2B encodes the calcium/calmodulin-dependent protein kinase II, which is a 

serine/threonine kinase that is highly expressed in skeletal muscle, heart, brain and peripheral 

nerves. CAMK2B has a protein kinase domain 

(https://www.ebi.ac.uk/interpro/protein/Q13554) where the variant identified here is located.  

De novo mutations in CAMK2B have been associated with mental disability and 

neurodevelopmental disorders. These were de novo missense mutations that were found to 

affect the auto-phosphorylation of the protein in the brain (Kury et al., 2017; Akita et al., 

2018). In the context of NMD, although, CAMK2B has not directly been associated with 

https://string-db.org/
https://www.ebi.ac.uk/interpro/protein/Q13554


 

110 

 

muscle disease, the protein was proposed as one of the top candidates in a study searching for 

therapy-responsive biomarkers in a mouse model of Duchenne muscular dystrophy (Coenen-

Stass et al., 2015).  

 

g. CCDC158 

Family 75 has two affected siblings that underwent WES along with their parents. The 

siblings presented with proximal weakness, contractures, ptosis, dysphagia and respiratory 

impairment. WES revealed that both the affected individuals carry compound heterozygous 

variants in the CCDC158 gene, c.2485C>T (p.Arg829Cys) and c.1094G>A (p.Arg365His). 

Each parent carries one of the variants only. Both variants are rare and predicted to be 

damaging.  

CCDC158 codes for coiled coil domain containing protein 158. Function of the protein 

remains unknown and it has no known association with disease. However, a study looking 

into single nucleotide polymorphisms (SNP) in cattle and their association with carcass 

quality traits found that SNPs in CCDC158 were associated with longissimus dorsi muscle 

area and muscle fat content and distribution (Lee et al., 2013). 

 

h. MYH13  

Family 86 consisted of one female who presented with limb girdle weakness and was thought 

to have a vacuolar myopathy following muscle biopsy.  WES found two MHY13 missense 

variants, c.5108G>T (p.Arg1703Leu) and c.4021C>T (p.Arg1341Cys). Both variants are rare 

and predicted to be damaging.  

MYH13 encodes a fast twitch myosin belonging to the extra-ocular myosin heavy chains 

(MYH-EO) (Mascarello et al., 2016). However, moderate to high expression has been 

detected in other skeletal and cardiac muscles, as evident by experiments reported on Gtex 

Portal and the EBI Expression Atlas in humans and other mammals, making it a potential 

candidate gene for a generalized muscle disorder.  
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i. DSG2 

One individual from family 89 underwent WES. He suffered with proximal limb weakness 

and myalgia. CK was raised to levels up to 1000 units per litre (U/L). He also had mild left 

ventricular impairment. His brother also suffered with cardiac disease, however, no further 

details are available regarding his diagnosis.  

WES identified two heterozygous variants in the DSG2 gene; a frame shift deletion 

(c.602_603delTA, p.Leu203GlyfsTer12) and a missense variant (c.604T>C, p.Ser202Pro). 

Both variants were absent in control populations and predicted to be damaging. Due to the 

proximity of these variants to each other, it was possible to examine the sequence reads via 

the Integrated Genomics Viewer (IGV) integrated on seqr. This revealed that both variants 

were in cis and thus the proposed mode of inheritance here would be that of an autosomal 

dominant (AD) one.  

DSG2 codes for desmoglein-2. In cardiac muscle, desmoglein-2 is a transmembrane protein in 

the desmosomes of the intercalated discs, which are responsible for linking cells to 

intermediate filaments (Kessler et al., 2017). Although DSG2 is highly expressed in cardiac 

and skeletal muscle, localization within skeletal muscle is not known.  

Homozygous and heterozygous mutations in DSG2 have been associated with dilated 

cardiomyopathy 1BB and with arrythmogenic right ventricular dysplasia 10. However, to 

date, mutations in the gene have not been reported to cause a generalized muscle disorder.   

 

j. WDR49 

For family 17, WES was performed for three affected children, an affected father and an 

unaffected mother. The phenotype was of autosomal dominant LGMD.  

WES identified a novel essential splice site variant at the border of exon 6 of the WDR49 

gene. The variant (c.1126-1G>A) is predicted to be damaging. All four affected individuals 

were heterozygous for the variant and the unaffected mother had the wildtype allele.  

WDR49 encodes a WD-repeat domain protein, belonging to a family of proteins with diverse 

functions (Smith, 2008). WDR49 protein function and expression in muscle is not well 

characterized. 
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k. LARS 

Family 10 consists of one individual who underwent WES. He complained of proximal 

weakness and wasting with calf muscle hypertrophy.  

WES identified a heterozygous novel nonsense variant in the LARS gene (c.1228C>T; 

p.Gln410Ter). LARS encodes the leucyl-tRNA synthetase, an aminoacyl tRNA synthetase. 

This group of proteins are responsible for catalysing the specific attachment of amino acids to 

their respective tRNA (Han et al., 2012). The gene is highly expressed in muscle; however, its 

specific role remains to be investigated.  

 

4.5 Discussion  

WES was performed for 93 families with at least one individual presenting with limb girdle 

weakness. These patients have been extensively examined and investigated through sequential 

single gene testing but remained without a molecular diagnosis and therefore, they were 

recruited in a WES project. Analysis of the WES data was carried out on the integrated 

genomics platform seqr. Analysis on the platform allowed filtering the VCF files to a smaller, 

manageable and more relevant number of variants. Variants were filtered for inheritance 

model, predicted damaging effect on the protein, population frequency and, in the initial 

analysis, for those falling in NMD genes. The output report was further examined for variant 

type, predicted or known pathogenicity, tissue-specific expression, gene function, allele 

frequency, gene constraint metrics and phenotypic associations. This was possible on one 

interface through the integrated databases and application programme interfaces (API) that 

link, and allow queries across, various software and web tools.   

Using an integrated platform, a genetic diagnosis was proposed for 65.6% of families in this 

cohort. For 51% of all families, this was in a known NMD gene. WES also proposed 14 novel 

candidate genes for NMD by querying the entire exome on seqr for rare, damaging and 

potentially pathogenic variants, that segregate in the family with disease, and that are in genes 

known to be expressed in skeletal muscle tissue. For example, in consanguineous families 

(families 21 and 53), the report output on the platform was filtered to include variants that fit 

and autosomal recessive inheritance, in addition to filters for population frequency and 

predicted effect on the protein. This lead to the identification of the novel candidates TENM2 

and FILIP1. Using the data provided on the platform and the additional links to genomic 
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databases, the importance of these variants was evaluated. For example, expression of the 

FILIP1 variant in muscle was found to be high in skeletal muscle (figure 35). In addition, the 

TENM2 variant was predicted to be damaging by four out of the five pathogenicity prediction 

tools incorporated on the platform. This result was reported directly in the variant output 

report (figure 36).  Further segregation of both variants in additional family members via 

Sanger sequencing confirmed that both segregate with disease. Moreover, the platform 

enables gene queries across all projects, and interrogating other NMD WES projects found an 

additional family with compound heterozygous variants in FILIP1.  

As the cohort described here was recruited on a collaborative research basis, clinical data and 

bio-samples were limited for a considerable number of patients. In addition, many of the 

variants described here require validation prior to being assigned as disease causing. This 

should be done through reverse and deep phenotyping, re-evaluation of muscle imaging and 

biopsy tests, segregation within the family, and for novel candidates, identification of other 

families with variants in the same gene and a similar phenotype, and functional in vivo and in 

vitro studies in the laboratory (Coonrod et al., 2011).  

Overall, there was a small benefit in including affected and unaffected relatives when 

performing WES for patients with rare NMD. The benefit has been previously demonstrated 

in a cohort of 60 patients with LGMD, where trios WES analysis proposed a diagnosis in 60% 

compared to 40% when only the proband was sequenced (Ghaoui et al., 2015). The analysis 

in this latter study was also performed on the seqr platform (known as xBrowse at the time). 

Inclusion of parents and family members, with the added knowledge of their disease status 

allows the researcher to apply additional filters to fit a particular inheritance model and to 

validate candidates based on their segregation in the family with disease (Ghaoui et al., 2015).  

The highest number of variants proposed in a single gene were in the TTN gene, where it was 

a candidate for 12 families (19.6% of families with a proposed diagnosis). Using WES and 

myopathy-gene targeted NGS methods, novel and rare TTN variants rank highest amongst all 

variants detected in genes of interest (Norton et al., 2013; Evila et al., 2016; Harris et al., 

2017). TTN is an extremely large gene (363 exons) and thus is prone to higher variability and 

assigning pathogenicity to these variants is difficult (Evila et al., 2016; Harris et al., 2017). 

Using an integrated platform allows for TTN variants to be evaluated in the context of up-to-

date published knowledge of the human variome through the interface. However, for novel 

TTN variants, it is recommended that functional confirmation is carried out prior to assigning 

pathogenicity (Hackman et al., 2017).  

The proposed causative variants discussed here were the best candidates from the WES 

experiment for these patients. Patients with a variant in a novel candidate gene did not have 
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any pathogenic or predicting damaging mutations in known NMD genes. To establish 

pathogenicity, novel candidates require validation via familial analysis, RNA and protein 

studies, functional experiments in model systems and identifying additional patients with a 

similar phenotype and variants in the same gene (Coonrod et al., 2011; Biancalana and 

Laporte, 2015).  

For the remaining families with no proposed diagnosis, it is possible that the genetic defect is 

in a region not detectable by WES (for example introns, promoter or intergenic regions), is in 

a novel gene, or is a structural variation not detected by WES. In addition, it is also possible 

that the pathology is not genetic in origin, particularly for sporadic cases (Efthymiou et al., 

2016).  

WES has substantially changed the way rare diseases are diagnosed and has led to many novel 

genetic associations. Nonetheless, validating variants in a WES experiment and assigning 

pathogenicity can be difficult. Integrated genomics platforms, such as the one used in this 

analysis, are becoming increasingly popular for variant prioritization in WES and WGS. The 

interfaces require minimal training and are increasingly being tailored to researchers’ needs, 

making them practical and user friendly (Ghaoui et al., 2015). The platforms allow users to 

manipulate NGS and customize the variant output report, adding flexibility to a rigid 

computational algorithm. The filtering options applied in this analysis as well as the links and 

tools used on the platform are also part of the CSA, RD-Connect, and many other integrated 

analysis platforms. The RD-Connect Genome-Phenome Analysis Platform integrates the 

Exomizer software application that allows users to further filter and prioritize variants using 

the Exomizer algorithm. This algorithm uses data from protein interaction networks and 

cross-species phenotype comparisons (Smedley et al., 2015).  

A highlight of seqr is the summary page provided for each variant. This page includes basic 

information about the gene, statistics on gene variation in control populations, disease 

associations, links to external databases and a visual summary of tissue-specific expression 

levels provided by GTEx. This information is also accessible on CSA and RD-Connect either 

directly on the platforms or via external links. In addition, seqr and CSA enable visualization 

of the sequence reads at a particular variant position via IGV and Sequence Miner integrated 

on seqr and CSA respectively.  

Furthermore, seqr, RD-Connect and CSA allow searches in particular genes of interest across 

all projects on the platform. This is particularly important for validating novel candidates, 

when a second family with a similar phenotype and variants in the same gene would support 

the proposed pathogenicity.  
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Overall, it is evident that analysis of WES data on an integrated platform is a practical 

solution for rare disease diagnosis and disease gene discovery. The benefits of these platforms 

are also evident in clinical settings, where software platforms for WES data analysis have 

shown success and cost-effectiveness despite technical and bioinformatics challenges 

(Coonrod et al., 2011).  

A successful integrated platform should have a simple and user-friendly interface, separating 

the clinician or researcher from the complex computational algorithms carried out by the 

platform. In addition, the many options and filters for data manipulation and variant 

prioritization should be grouped on the interface in themes and organized in dropdown menus. 

Users should be able to trust that the platform is executing the expected analysis and errors 

should be reported with possible solutions. Finally, the bioinformatics pipeline and the 

integrated platform should be flexible enough to cope with different standard forms of input 

files and with updates in integrated tools and databases. This will ensure interoperability and 

allow data from different NGS projects to be analysed on the same platform (Coonrod et al., 

2011; Shyr et al., 2014).  

The example shown here has demonstrated the usefulness and practicality of an integrated 

platform for the analysis of WES in NMD. The analysis allowed candidate genes to be 

proposed for more than 60% of families in this difficult to diagnose cohort. Despite the 

proposed candidate being in a known NMD for most patients in the cohort, traditional single 

gene testing did not reveal a diagnosis. This highlights the genetic and phenotypic 

heterogeneity of NMD and the effectiveness of WES and integrated analysis. A number of 

novel genes, a novel mode of inheritance and phenotypic expansions of existing genetic 

associations were also proposed, and were all facilitated by data accessible from a single 

interface.  

With continued improvements of sequencing technologies, bioinformatics tools, knowledge 

of the human genome and variome and phenotypic data, the integration of all this data in an 

effective and easy-to-use workflow, the use of integrated platforms will increasingly move 

into clinical settings (Coonrod et al., 2011). This will undoubtedly lead to a molecular 

diagnosis of more patients with rare NMD and to more novel gene discoveries.  
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Figure 35: Screen shot of gene expression data provided on seqr for FILIP1, showing high 

expression in muscle (amongst other tissues).  

 

 

 

Figure 36: Screen shot from seqr variant output report for TENM2, the proposed novel 

candidate gene in family 21. Pathogenicity predictions are given in the initial variant 
output report.   
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Chapter 5. GNE myopathy in the Bedouin population of Kuwait 

5.1 Introduction 

GNE myopathy is also known as hereditary inclusion body myopathy (HIBM), distal 

myopathy with rimmed vacuoles (DMRV) and Nonaka myopathy. Clinically, it is an 

autosomal recessive juvenile to adult onset distal myopathy with relative quadriceps muscle 

sparing. Proximal muscles are also affected and progression is usually slow. The disease 

initially affects the tibialis anterior muscles, causing foot drop. Serum creatine Kinase (CK) 

levels are normal to mildly elevated. Rimmed vacuoles are usually seen in fibres of affected 

muscles in patients with GNE myopathy (Eisenberg et al., 2003; Argov and Mitrani 

Rosenbaum, 2015; Chamova et al., 2015).  

GNE myopathy is caused by mutations in the GNE gene that encodes UDP-N-

acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. The enzyme catalyses the 

initial two rate-limiting steps in N-acetylneuraminic acid biosynthesis. The latter is a member 

of the sialic acid family. The gene is located on chromosome 9p12-13 and has multiple 

isoforms. Although ubiquitously expressed, highest expressions of the GNE gene are seen in 

the liver, lungs and kidneys. However, these organs are not affected in GNE myopathy. 

Enzyme levels in skeletal muscle is relatively low and the exact mechanism by which GNE 

mutations selectively result in a myopathy remains unknown (Hinderlich et al., 1997; Stasche 

et al., 1997).  

GNE myopathy has shown population clustering and several founder mutations have been 

described: the Middle Eastern p.M743T mutation (Argov et al., 2003; Argov and Mitrani 

Rosenbaum, 2015), the p.I618T mutation in the Roma/Gypsy population in Bulgaria (Argov 

and Mitrani Rosenbaum, 2015; Chamova et al., 2015), and the two common mutations, 

p.N409T and p.A662V, with potential founder effects in Northern Britain (Chaouch et al., 

2014; Argov and Mitrani Rosenbaum, 2015). In Asian populations, GNE myopathy is more 

heterogeneous. However, a few mutations show higher prevalence and founder effects in 

Japan (p.V572L) (Cho et al., 2014), Southern India (p.V727M) (Argov and Mitrani 

Rosenbaum, 2015), and China (p.D207V) (Zhao et al., 2015).   

Screening for the Middle Eastern mutations in Kuwait started in 2013. To date, the mutation 

has been described in five families of Arab Bedouin origin. Following establishing a genetic 
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diagnosis in these families, a retrospective study using data from the molecular laboratory and 

patient records was carried out to study GNE myopathy in the Kuwaiti population. A clinical, 

demographic and epidemiological description of the disease in the Kuwaiti population is 

given.  

5.2 Aim 

- Report on the epidemiological, clinical and genetics findings in patients with GNE 

myopathy from Kuwait.  

 

5.3 Patients and methods 

5.3.1 Ethical approval 

Informed consent for participation in research was obtained from all patients according to 

protocols at the Kuwait Medical Genetics Centre (KMGC). Ethical approval for the project 

was granted by Newcastle University Ethics Committee (Ref: 3601/2018). 

 

5.3.2  Patients, clinical evaluation and mutation analysis 

GNE mutation screening commenced at KMGC in 2013. Patients presenting with distal 

myopathy and relative quadriceps sparing were tested. In addition, patients with undiagnosed 

distal myopathy were re-evaluated for the possibility of GNE-myopathy and screened where 

indicated.  

Using the molecular laboratory register at KMGC, a retrospective analysis was performed for 

all patients screened for the p.M743T mutation, between January 2013 and August 2017. This 

revealed that 37 patients (figure 37) were screened for the mutation, fourteen of whom were 

found to have GNE myopathy. Clinical assessment of patients took place at KMGC and 

included thorough history and examination, clinical photography, family history and pedigree 

structure, cardiac evaluation, serum CK levels and muscle electrophysiology studies. Muscle 

MRI was performed for three patients and muscle biopsy for six patients in this cohort. 

Cardiac evaluations were carried out by specialist cardiologists and electrocardiography 

(ECG) +/- echocardiography performed as indicated.  



 

119 

 

Mutation analysis was performed for suspected cases using Sanger sequencing. Protocols for 

DNA extraction, PCR, primers and sequencing for the Middle Eastern p.M743T mutation at 

KMGC are given in the appendices.  

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Patients screened for the p.M743T mutation at the Kuwait Medical Genetics 
Centre between January 2013 and August 2017.  

 

5.3.3 Prevalence estimate and carrier frequency  

KMGC is the only governmental clinical genetics centre in Kuwait and all cases suspected to 

have a genetic disorder are referred to KMGC clinics for evaluation and testing.  

Therefore, the number of cases with a GNE mutation identified at the KMGC reflects the 

number of all known GNE myopathy cases in Kuwait. To date (01-August-2017), KMGC has 

identified fourteen cases with a mutation in the GNE gene since 2013. 

To estimate carrier frequency in the Bedouin population of Kuwait, 100 DNA samples were 

screened for the p.M743T mutation. These samples were obtained from the DNA bank at 

KMGC and were for patients attending the centre for anything other than a neuromuscular 

Patients presenting with 

distal myopathy 

(33) 

Unaffected family members 

(4) 

p.M743T detected 

(14) 

Mutation not 

detected 

(19) 

Patients screened for 

p.M743T 

(37) 
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disorder. All DNA samples were from individuals of Bedouin origin as GNE myopathy has 

not been described in any other population group in Kuwait.  

 

5.4 Results 

5.4.1 Demographic and genetic findings  

All fourteen patients identified as having GNE myopathy and the p.M473T mutation were of 

Bedouin Arab origin. The patients belonged to five apparently unrelated families (KW-1-5 in 

figure 38) from Kuwait, with one family originating from Saudi Arabia. Three additional 

cases (KW-5/5 and 6, and KW-4/3) were reported by family members to have muscle 

weakness, however, were not seen in clinic or tested for the mutation. 

With the exception of KW-4/1, all patients were born to consanguineous parents and all are 

from large inbred Bedouin tribes. KW1-4 belong to one of the major Arab Bedouin tribes in 

the gulf and Middle East and KW-5 descend from an equally large but distinct tribe. Families 

KW-1 and 5 show pseudo-dominant inheritance, where offspring appear to directly inherit the 

disease from an affected parent. Pseudo-dominance highlights the complex consanguinity in 

these families.  
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Figure 38: Pedigrees for families affected with GNE myopathy from Kuwait. 
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5.4.2 Clinical findings 

Table 17 describes disease aspects in the five families. Mean age of symptom onset was 27.4 

years (range 18-37 years). The tibialis anterior muscle and intrinsic hand muscles were 

significantly affected. All patients presented with distal weakness in upper and lower limbs, 

progressing to foot drop and hand grip weakness.  

Proximal weakness was also prominent in these families and manifested as progressive 

walking difficulties and loss of ability to climb stairs. Seven out of fourteen patients have 

been followed up for 10 years or more since onset of symptoms, six of which have lost 

ambulation and are wheel chair dependant.  From the remaining seven patients, two have lost 

ambulation remarkably early at 5-6 years from disease onset. At 10 to 15 years from disease 

onset, approximately 50% of patients remain ambulant.  

All patients had relative sparing of the quadriceps muscle, with the exception of one (KW-

5/4) who had markedly weak quadriceps bilaterally and lost ambulation early at the age of 30 

years (5 years from disease onset).  

All patients showed distal muscle wasting of the upper limbs. However, this varied in the 

lower limbs where individuals from two of the families had prominent pseudo-hypertrophied 

calves (KW-2 and 4). Atrophy and weakness were also evident in hip and shoulder girdle 

muscles and scapular winging and gait abnormalities were subsequently early features of the 

disease.  

Atypical findings such as bilateral ophthalmoplegia, ptosis and tongue wasting were signs 

noted in case KW-2/2.  

With the exception of KW-4/2, none of the patients had cardiac-related complaints or 

symptoms suggestive of respiratory insufficiency. All patients were nonetheless referred to 

cardiology specialists for assessment, and no abnormalities were reported back except for case 

KW-4/2. The latter patient complained of difficulty breathing and snoring. Her ECG and 

Holter monitoring showed sinus rhythm and sinus arrhythmia. Echocardiogram revealed 

normal ejection left ventricular size, motion and ejection fraction and heart valves, but grade 

2/4 ventricular diastolic dysfunction and right atrial enlargement. Pulmonary function tests 

showed decreased vital capacity and decreased maximal respiratory pressures consistent with 

poor performance or respiratory muscle weakness. Overnight pulse oximetry was normal and 

swallowing assessment did not show any abnormality.  
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Serum CK levels were mildly elevated in this cohort, ranging from 195 units/litre (u/L) to 712 

u/L. EMG studies were performed for one or more affected individuals from each family. 

Results were either myopathic (3 out of 8) or showed a mixed neuropathic and myopathic 

pattern (5 out of 8).  

MRI studies (Figure 39) were performed for four individuals (KW-1/1, KW-2/2, KW-5/1 and 

2) from three families and all showed selective and symmetrical muscle involvement. In the 

lower leg, muscles of the anterior and lateral compartments were atrophied, while posterior 

compartment muscles were relatively preserved. Proximally, the hamstrings were affected and 

the quadriceps were spared.   

Muscle biopsy was performed for six out of the fourteen patients evaluated (KW-1/1, KW-

3/1, KW-4/1 and 2, and KW-5/1 and 3). Histological and immunohistochemical analysis 

showed non-specific myopathic changes such as fibre-size variation, atrophy and 

regeneration. Muscle biopsy for patient KW-1/1 also showed some possible neurogenic 

findings (Figure 40). He underwent cervical, dorsolumbar and sacral MRI to exclude 

pathology contributing to neurogenic changes seen on his muscle biopsy but no abnormalities 

were detected. 
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Table 17: Clinical features for patients with GNE myopathy homozygous for the 
p.M743T mutation. All patients are of Bedouin Arab origin.  

Case 

Age at 

clinical 

onset  

Relative 

quadriceps 

sparing 

Clinical 

highlights  

Serum 

CK 

levels 

(u/L)* 

Ambulation (total 

years from disease 

onset at last 

examination)   EMG 

KW-1/1 34 Yes Beevor's sign  471 Ambulant (3) mixed 

KW-1/2 34 Yes Hyperlordosis  264 Ambulant (7) mixed 

KW-1/3 30 Yes 

 

N/A WCD (30) N/A 

KW-2/1 34 Yes 

 

190 WCD (6) myopathic 

KW-2/2 37 Yes 

Calf hypertrophy,  

ophthalmoplegia,  

ptosis,  

asthenia, 

oligospermia,  

tongue wasting  609 Ambulant (8) N/A 

KW-3/1 25 Yes - 411 WCD (15) mixed 

KW-3/2 24 Yes - 195 

Ambulant with aids 

(11) mixed 

KW-3/3 23 

Early 

disease 

stages  - N/A Ambulant (6) N/A 

KW-4/1 21 Yes Calf hypertrophy  500 Ambulant (8) Myopathic 
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KW-4/2 29 Yes 

Cardio-respiratory 

involvement, 

urinary 

incontinence 185  WCD (18) Myopathic  

KW-5/1 18 Yes - 712 WCD (19) mixed 

KW-5/2 25 Yes - N/A WCD (8) N/A 

KW-5/3 25 Yes - N/A WCD (14)  N/A 

KW-5/4 25 

No, severely 

affected 

quadriceps 

Markedly weak 

quadriceps N/A 

WCD (30), lost 

ambulation 5 years 

from disease onset N/A 

*reference CK values for males and females: 39-308 U/L and 26-192 U/L, respectively. CK; creatine kinase, 

WCD; wheelchair dependent.  
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Figure 39: MRI T1 weighted images, axial (A-C, for KW-2/1) and coronal (D, for KW-1/1) 
views. Images show the selective muscle involvement associated with GNE myopathy. Red 
and white arrows point to affected muscles with fatty replacement, and preserved 
muscles, respectively. A, Mid-calf, bilateral fatty tissue infiltration and atrophy of the 
anterior compartment (tibialis anterior, extensor digitorum muscles), lateral compartments 
(peroneus longus and brevis) and tibialis posterior from the deep posterior compartment. 

Posterior and deep posterior compartments (soleus, gastrocnemius and flexor digitorum 
longus) are preserved.  

B, Mid-thigh, severe bilateral fatty tissue infiltration and atrophy of the posterior knee 
flexors, and medial hip adductor muscles. Quadriceps femoris and sartorius are spared. 

C, pelvis, bilateral fatty tissue infiltration and atrophy of iliopsoas, pectineus, adductors 
magnus and brevis and paraspinal muscles. Both Gluteus maximus are relatively 

preserved. 

D, bilateral severe fatty tissue infiltration and atrophy of thigh adductors. Psoas muscles 
are preserved. 
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Figure 40: Histological and immunohistochemical findings from the hamstrings muscle for 
patient KW-1/1. A, H&E x200; fibre size variation and angulated atrophic fibres. B, myosin 
heavy chain (MHC) fast x200; Selective type 2 atrophy and type 1 fibre predominance. C, 
MHC neonatal; selective dark staining indicating regeneration in pathologic muscle fibres. 

D, NADH x200; intracytoplasmic cores (arrows) surrounded by occasional coarse NADH-
positive granules.  
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5.4.3 Disease prevalence and p.M743T carrier frequency in the Kuwaiti 
population 

According to national statistics 

(http://stat.paci.gov.kw/englishreports/#DataTabPlace:ColumnChartEduAge) the population 

of Kuwait is almost 4.4 million, from which around 100 000 constitute Bedouin Arab tribes. 

Therefore, we can estimate disease prevalence to be 14 per 100 000 (0.00014) in the Bedouin 

population in Kuwait and thus carrier frequency is expected to be 1 in 43 (0.0233). When 

screening 100 DNA samples belonging to Kuwaiti Bedouins for the Middle Eastern p.M743T 

mutation, no carriers were detected.  

5.4.4  Patients with no GNE gene mutations in exon 12 

Screening for the p.M743T mutation was performed in 37 cases (figure 37). 23/37 patients did 

not have the mutation. Four were tested because they were in a consanguineous marriage 

with, or they were related to an affected person (2 and 2, respectively). Eleven patients were 

not from Bedouin families. The remainder were descendant of Bedouin tribes distinct from 

the patients with GNE myopathy discussed above. These patients were from families either 

showing recessive (9), dominant (2) or sporadic (9) inheritance. Eight patients also showed 

sensory impairment in addition to distal weakness and the clinical picture appeared to fit with 

hereditary sensory motor neuropathy (HSMN). Features that were not consistent with GNE 

myopathy were: onset at birth (1), respiratory insufficiency (1), fluctuating weakness (3), 

vocal cord paralysis (1), and facial muscle weakness (1). Three patients had predominantly 

proximal weakness and two have a predominantly distal myopathy. For the latter two patients, 

GNE myopathy remains in the differential diagnoses. 

 

5.5 Discussion  

GNE Myopathy caused by the p.M743T mutation was first described in the Persian Jewish 

population from Iran. Soon after, the mutation was detected in Jewish communities from 

other countries in the Middle East (Argov and Mitrani Rosenbaum, 2015).  

In Kuwait, GNE myopathy associated with the p.M743T mutation was first identified through 

sequencing of exon 12 of the GNE gene. The diagnosis was then considered for patients 

presenting with distal myopathy and relative quadriceps muscle sparing. Here, a description 

of the genetic, epidemiological aspects of five families of Bedouin Arab origin with GNE 

myopathy and the p.M743T mutation from Kuwait is given. This report further expands the 

http://stat.paci.gov.kw/englishreports/#DataTabPlace:ColumnChartEduAge
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founder effect of the p.M743T mutation to the Arabian Gulf. There are also reports of 

p.M743T GNE myopathy in three unrelated Arab patients from Saudi Arabia (Personal 

communication, A. Urtizberea, Centre Neuromusculaire, Hendaye, France). 

Due to high consanguinity and low genetic diversity in the studied cohort, sequencing of the 

whole GNE gene was not indicated (Alsmadi et al., 2013). However, it is a possibility that 

other mutations are associated with GNE myopathy in the Kuwaiti population.  

Pseudo-dominance was evident in this cohort as a mode of inheritance for GNE-myopathy in 

two families. Pseudo-dominance occurs when inheritance of an autosomal recessive disorder 

appears to mimic that of an autosomal dominant one, due to high frequency of the mutant 

allele within families. This phenomenon has previously been described in one pedigree of the 

Roma/Gypsies in Bulgaria, where cryptic consanguinity appeared as pseudo-dominant 

inheritance in GNE myopathy (Chamova et al., 2015). It is also worth noting here that upon 

further investigation of extended family pedigrees, three out of five pedigrees (KW-1, 2 and 

4) were found to share a fifth grandparent. 

The carrier frequency for the p.M743T mutation in the Bedouin community was calculated to 

be 1 in 43. However, testing 100 DNA samples belonging to Bedouin families from Kuwait 

revealed no carriers. Assuming a 99% probability of observing at least one carrier, a larger 

sample of 200 individuals or more from the Bedouin population is required. Nevertheless, we 

now classify GNE-myopathy as the most common cause for inherited distal myopathy in 

Kuwait and recommend it be considered early in a diagnostic process in patients presenting 

with distal myopathy. We also recommend pre-marital counselling and carrier testing for the 

p.M743T mutation in the Bedouin community, due to the expected high carrier frequency in 

this group.  

Clinically, there was variability in age of onset and disease progression rate amongst and 

within families despite harbouring the same mutation. This has been previously reported in 

other cohorts in the Middle East (Khademian et al., 2013). In addition, severely affected 

quadriceps muscles progressing to early loss of ambulation, in an established quadriceps-

sparing myopathy, was an early presenting feature in one patient in this cohort. Relative 

quadriceps sparing is a distinctive feature in GNE myopathy. If the quadriceps muscles are 

affected early in the disease course, diagnosis of GNE myopathy maybe missed or delayed 

and thus the diagnosis should not be dismissed in patients with weak quadriceps.  
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In addition, ophthalmoplegia, ptosis and tongue atrophy were found here in a patient with 

p.M743T- associated GNE myopathy. The possibility of two co-existing disorders in this 

patient remains high. However, atypical features associated with the GNE myopathy Middle 

Eastern p.M743T mutation have been reported and include marked quadriceps weakness, 

facial weakness and low frequency of proximal weakness (Argov et al., 2003).   

These findings may indicate a role for disease modifying genes or environmental factors. 

Dietary influences have previously been proposed as a disease-modifying mechanism in the 

Sangesar population of North Iran, where high dietary sialic acid content is thought to delay 

disease onset and produce a milder phenotype (Khademian et al., 2013).  

Furthermore, one of the patients suffered with cardiac and respiratory muscle dysfunction. 

Typically, GNE myopathy is not associated with cardio-respiratory disease. However, cohort 

based studies report varying degrees of structural and functional abnormalities in GNE 

myopathy patients.  For example, patients homozygous for mutations in the kinase domain 

and at advanced disease stages were at higher risk of developing respiratory dysfunction 

(Mori-Yoshimura et al., 2013). Also, an association of cardiac disease with GNE myopathy in 

the Roma/Gypsy population has been described (Chamova et al., 2015). 

On muscle biopsy, patients with GNE myopathy typically have rimmed vacuoles. Muscle 

biopsies from six patients here failed to show this. Rather, non-specific myopathic changes 

were seen. Although rimmed vacuoles are the most prominent feature on muscle biopsy in 

HIBM, non-specific myopathic features have been reported without rimmed vacuoles 

(Eisenberg et al., 2003; Haghighi et al., 2016). This can be attributed to the selective nature of 

the disease where relatively unaffected muscles are selected for biopsy (Haghighi et al., 2016) 

or when the biopsy is done very early in the disease course.  The latter possibility is because 

the accumulated “aggrephagy” producing the rimmed vacuoles results from the autophagy 

build up (Nishino et al., 2015). Protein aggregates should nonetheless be seen earlier, 

however are difficult to visualise without immune-histochemical staining, for example P62 

staining (Nishino et al., 2015).  

Further muscle biopsy findings included possible neuropathic changes such as fibre type 

grouping, selective fibre-type atrophy and the presence of target fibres. These were described 

in one patient. A potential explanation could be the decrease in sialylation, and its effects on 

proteins such as neural cell adhesion molecule (NCAM) or on proteases like neprilysin, 

proposed in some credible experiments (Malicdan et al., 2008; Broccolini et al., 2009).  In 
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addition, NCAM is essential for muscle innervation and has been shown to be hypo-sialylated 

in GNE myopathy (Ricci et al., 2006).   

The patients described here underwent molecular testing for disorders such as calpainopathy, 

dysferlinopathy, mitochondrial myopathy and fascio-scapulo-humoural muscular dystrophy. 

In hindsight, these tests were unnecessary and added to costs per patient as well as causing 

diagnostic delays. However, with GNE myopathy being the most common cause of distal 

myopathy in the Bedouin community in Kuwait, initial screening for the p.M743T mutation is 

expected to decrease costs and reduce presentation-to-diagnosis time.   

Finally, the exact mechanism of how GNE mutations cause myopathy remains under study. 

Normal sialylation in skeletal muscle is key to stabilisation and function of muscle 

glycoproteins and changes in sialylation of skeletal muscle glycoproteins may impact cell 

adhesion and signal transduction causing myofibrillar degeneration (Hinderlich et al., 2004; 

Chamova et al., 2015). Evidence for altered sialylation of skeletal muscle glycoproteins in 

GNE myopathy however, has been contradictory. This mechanism remains controversial and 

further research is needed (Hinderlich et al., 2004; Huizing et al., 2004; Broccolini et al., 

2008). 

Nonetheless, sialic acid replacement therapy has been tested in a phase III trial for the 

treatment of GNE-myopathy (Mori-Yoshimura and Nishino, 2015; Suzuki et al., 2017).  The 

families described here represent a homogenous cohort for an ultra-rare disease. Continued 

identification and characterization of such patients is warranted to develop on the 

understanding of the natural history of the disease, define outcome measures and eventually 

recruitment into international disease registries, disease monitoring programmes and clinical 

trials (Pogoryelova et al., 2018).  
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Chapter 6. Conclusions and future directions 

Advances in NGS technology over the past few years have led to a decrease in per-base 

sequencing cost, increased accuracy and increased speed of generating sequence data.  These 

advances have also led to identification of the mutated genes in many of the rare Mendelian 

diseases including rare NMD (Laing, 2012; Lee et al., 2014a).  

NMD are a complex group of disorders to diagnose due to their genetic heterogeneity. For 

example, mutations in at least 29 genes are responsible for causing the autosomal recessive 

limb girdle muscular dystrophies alone (WMS, Muscle Gene Table, May 2018 

http://www.musclegenetable.fr/). In addition, multiple types of mutations in these genes result 

in a NMD, requiring laboratories to perform multiple diagnostic techniques to detect them 

(Laing, 2012).  

Adding to the diagnostic complexity in this group is that multiple phenotypes are caused by 

mutations in the same gene. For instance, mutations in RYR1 are associated with a range of 

muscle pathologies that are inherited as autosomal recessive, dominant or as an inherited 

susceptibility for malignant hyperthermia or rhabdomyolysis (Voermans et al., 2016; 

Witherspoon and Meilleur, 2016). In addition, mutations in LMNA have the most clinically 

varied phenotypes, where the gene is associated with progeria, congenital malformations, 

lipodystrophy, dermopathy, cardiomyopathy, Charcot-Marie Tooth disease and a spectrum of 

muscular dystrophies (OMIM 150330). Furthermore, some of the genes associated with 

NMD, such as DMD, TTN, RYR1 and NEB, are very large genes; sequencing of these genes 

via traditional methods (Sanger sequencing) is costly as well as time and labour exhaustive 

(Laing, 2012).  

The genetic, phenotypic and mutation heterogeneity of NMD makes NGS an ideal method for 

diagnosis and novel gene discovery. For the genetically heterogeneous LGMDs, gene panel 

tests may reduce the time and cost associated with sequential gene testing and may replace the 

need for invasive tests such as muscle biopsies as well as increase diagnostic yield in this 

group of patients. In addition, WES and WGS are designed to cover all the genes associated 

with NMD, particularly the larger genes, as well as the remainder of the genome for novel 

gene discoveries. Also, with advances in the sequencing technologies and the computation 

analysis of sequencing data, these tests are powered to detect multiple mutatio n types 

including SNV, InDels and CNV (Laing, 2012; Lek and MacArthur, 2014; Efthymiou et al., 

2016). Nonetheless, the majority of patients with rare NMD remain without a molecular 

diagnosis. In part, this may be due to our limited knowledge of the human genome and that 

http://www.musclegenetable.fr/
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the defect is an undiscovered novel genetic association. It is also possible that in some cases 

the disease is not genetic in origin or is a multigenic disorder.  However, many of the 

undiagnosed cases can be attributed to limitations of the NGS sequencing technology and the 

computational analysis of the data. Comparisons of the most widely used sequencing 

platforms and bioinformatics analysis tools have shown that challenges arise at the many 

stages of the NGS process. From the sequencing technology itself, the initial processing of the 

data, genome alignment and variant calling, to the process of variant annotation and 

prioritisation (Clark et al., 2011; Cornish and Guda, 2015; Lelieveld et al., 2015; Laurie et al., 

2016; Yen et al., 2017). 

The work presented in this thesis utilised three NGS bioinformatics pipelines and genomic 

platforms used for data analysis and variant prioritization for patients with rare NMD. NGS 

data processing occurred at the Broad Institute (USA), deCODE Genetics (Iceland) and RD-

Connect (CNAG, Barcelona) and the variant call files (VCF/gVCF) were then uploaded on 

seqr, CSA, and the RD-Connect Genome-Phenome Analysis Platform, respectively, for 

variant filtering and prioritisation. 

The initial aim here was to compare data from WES and WGS experiments for patients with 

NMD and to assess the limitations of WES when examining NMD genes. The analysis used 

real patient data and revealed that WES was limited by low coverage in a number of coding 

regions across several NMD genes. Investigating these regions identified high GC content and 

low sequence heterogeneity as reasons for the low coverage. These were overcome by the 

longer reads and the PCR-free WGS experiment and therefore, additional potentially disease-

causing variants were called in these regions.  

WGS provides uniform coverage of the genome and thus higher sensitivity in variant 

detection in coding regions by overcoming issues related to capture kits, GC-bias and read 

specificity. This higher sensitivity in variant detection applies to SNVs, InDels, CNV and 

trinucleotide repeat expansions, which are all relevant mutations in NMD (Laing, 2012). In 

addition, some of the undiagnosed cases in NMD may be accounted for by mutations in non-

coding regions. Nonetheless, data analysis from WGS is more challenging and the risk of 

VUS is higher. Therefore, as WGS costs continue to decline, and the technology is further 

used in research and diagnostics, virtual gene panels or exome targeted analysis of WGS data 

may be an appropriate initial approach (Meienberg et al., 2016). 

The next part of the analysis focused on a comparison between the bioinformatics pipelines at 

deCODE Genetics, the Broad Institute and RD-Connect and their respective variant 
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prioritisation platforms. The analysis used real patient data as well as the reference GIAB 

sample NA12878 and a number of important conclusions were made. The analysis 

highlighted that, although high quality reference data is useful for benchmarking and 

development of the NGS bioinformatics pipelines (Roy et al., 2018), the use of real patient 

data is also informative and may provide insights on the NGS experiment as a whole and the 

effects of the quality of the sequencing on the downstream analysis. This was highlighted by 

the fact that the bioinformatics pipelines had high variant agreement rates when the reference 

sample was used (up to 91%) however, this was significantly lower when using patient 

samples (mean 75%). Using patient WGS data, the discrepancies between the platforms were 

magnified and the platform variant agreement was as low as 13%.  

A further important conclusion is that variant discrepancies were more evident in the platform 

output reports than in the VCF files. This suggested that variant annotation and platform 

filtering algorithms vary considerably between the three sites. This was also highlighted when 

the reference genome was used.  

Use of patient data highlighted the discrepancies and suggested the sequencing quality, 

annotation and filtering algorithms as contributors to these discrepancies. However, they 

cannot be used to assess sensitivity of the bioinformatics pipelines in detecting variants. In 

this context, use of high quality reference data may be more appropriate for performance 

comparison of multiple bioinformatics pipelines as sensitivity in variant detection can be 

accurately defined against a well-characterised reference (Cornish and Guda, 2015; Laurie et 

al., 2016).  

Communication is crucial between clinical researchers, clinical and molecular geneticists and 

software tool and analysis platform developers. During the course of the work presented in 

this thesis, errors and drawbacks of the platforms were reported back to their developers and 

subsequently actions were taken. For example, the high number of incorrectly annotated 

InDels in the RD-Connect Genome-Phenome Analysis Platform output reports was discussed 

with the team in Barcelona and plans were put in place to replace the annotation tool in their 

pipeline. In addition, the platform also now operates an internal frequency filter in the 

algorithm where variants with high allele frequency in the RD-Connect database are removed 

from the output report so that passing variants reflect only true rare ones (personal 

communication from Hanns Lochmüller). 

Overall, the NGS data analysis pipeline comparison presented here constitutes an 

observational study that highlighted discrepancies and suggested levels in the pipeline where 
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issues may arise. A more analytical approach looking into the algorithms should be 

undertaken by bioinformaticians and software developers.  

A further aim of the work presented here, was to assess the value of using an integrated 

genomics platform for WES variant prioritisation and diagnosis in patients with rare NMD. 

Analysis of WES data from 93 families with a phenotype of limb girdle weakness led to a 

candidate diagnosis in 65.6% of families including 14 novel candidate genes. This included 

the novel MYMK (Alrohaif et al., 2018) gene and the strong candidate FILIP1 (manuscript in 

preparation). These candidates were highlighted on the seqr platform due to the integrated 

tools and databases that enabled filtering variants for population frequency, variant quality, 

predicted damaging effect and inheritance model. In addition, evaluation of the variants in the 

output reports was feasible on the platform where information on disease associations and 

tissue expression levels as well as external links to public databases is incorporated. All 

candidates need to be further confirmed by Sanger sequencing, functional studies and by 

identifying additional confirmatory families, which requires cross-project data sharing and 

matchmaking such as, through RD-Connect (Lochmuller et al., 2018).  

Finally, following a confirmed genetic diagnosis in patients with GNE myopathy in the 

Bedouin population of Kuwait, a description of the clinical and demographic aspects in this 

cohort was given. Unusual phenotypic findings such as facial muscle and cardiorespiratory 

involvement, and severely affected quadriceps, were described in this cohort. Accurate 

molecular diagnosis is essential to phenotype-genotype correlation studies, which will aid in 

the understanding of the disease course and in the provision of homogenous cohorts for 

natural history studies and clinical trials. This study also highlighted the expected high carrier 

frequency for the Middle Eastern p.M743T mutation that will have implications on pre-

marital counselling and testing the Bedouin population in Kuwait.  

As with all rare diseases, NMD patients benefit from a molecular diagnosis. A molecular 

diagnosis leads to an accurate clinical diagnosis and directs disease management, surveillance 

and genetic counselling. In research, an accurate diagnosis allows for genotype-phenotype 

correlation studies and deeper insights into the course of a disease (Amburgey et al., 2013; 

Pogoryelova et al., 2018). In addition, most clinical trials into inherited disorders require a 

confirmed genetic diagnosis prior to recruitment in to the study (Bushby et al., 2014; 

Goemans et al., 2016). Furthermore, the genetic aetiology increases our knowledge of disease 

patho-mechanisms and provides novel therapeutic targets (Natrajan and Wilkerson, 2013; 

Borad et al., 2016; Ruiz-Martinez et al., 2017).  
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WES and WGS have had a remarkable impact on diagnosis and novel gene discoveries and 

are expected to continue to identify new genes associated with NMD.  Understanding 

technical limitations in the sequencing methods and the downstream data analysis allows 

innovative methods to be developed to increase the accuracy of variant calling and annotation 

and the efficacy of variant prioritisation methods. These improvements may solve a 

proportion of the undiagnosed cases. In addition, use of orthogonal experiments such as 

metabolomics, transcriptomics or proteomics will increase the number of novel discoveries as 

well as confirming pathogenicity by investigating the functional effects of variants (Boycott et 

al., 2017).  A further proportion is likely to be solved by data sharing and matchmaking 

through systematic collaborations between researchers and clinicians worldwide (Philippakis 

et al., 2015; Lochmuller et al., 2018).  
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Chapter 8. Appendices 

A. Muscle Gene Table  

The NMD gene list used in the analyses presented in this thesis was compiled from the 

Muscle Gene Table provided by the World Muscle Society at http://musclegenetable.fr/ in 

July 2016, and consists of the 416 genes listed below.  

AARS BICD2 DMPK GBA2 

KIAA019

6 NDRG1 PRX SPAST TTN 

AARS2 BIN1 DNAJB2 GBE1 KIF1A 

NDUFAF

1 PSEN2 SPEG TTPA 

ABCC9 BSCL2 DNAJB6 GDAP1 KIF1B NEB PTPLA SPG11 TTR 

ABHD5 C10orf2 DNM2 GFPT1 KIF21A NEFH PTRF SPG20 TUBB3 

ACADVL 

C12orf6

5 DNMT1 GJA5 KIF5A NEFL PUS1 SPG21 UBA1 

ACTA1 

C19orf1

2 DOK7 GJB1 KLHL40 NEXN PYGM SPG7 

UBQLN

2 

ACTC1 C9orf72 DOLK GJB3 KLHL41 NGF RAB7A SPTBN2 VAPB 

ACTN2 

CACNA1

A DPAGT1 GJC2 KLHL9 NIPA1 RAPSN SPTLC1 VCL 

ACVR1 

CACNA1

C DPM1 GLE1 L1CAM NOP56 RBCK1 SPTLC2 VCP 

ADCK3 

CACNA1

S DPM2 GMPPB LAMA2 NPPA RBM20 

SQSTM

1 VMA21 

AFG3L2 CACNB2 DPM3 GNB4 LAMA4 NT5C2 REEP1 STIM1 VRK1 

AGL CACNB4 DSC2 GNE LAMB2 NUP155 RNF216 SUCLA2 WNK1 

AGRN CAPN3 DSG2 GPD1L LAMP2 OPA1 RRM2B SURF1 YARS 

http://musclegenetable.fr/
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AIFM1 CASQ1 DSP GYG1 LARGE OPTN RTN2 SYNE1 YARS2 

AKAP9 CASQ2 DTNA GYS1 LDB3 ORAI1 RYR1 SYNE2 

ZFYVE2

6 

ALDH3A2 CAV3 DUX4 HCN4 LDHA PABPN1 RYR2 SYT2 

ZFYVE2

7 

ALG13 

CCDC88

C 

DYNC1H

1 HEXB LIMS2 PDK3 SACS TARDBP 

 
ALG14 CFL2 DYSF HINT1 LITAF PDYN SBF1 TAZ 

 
ALG2 CHAT EEF2 HK1 LMNA PEX7 SBF2 TBP 

 

ALS2 

CHCHD1

0 EGR2 

HNRNPD

L LMOD3 PFKM SCN1B TCAP 

 
AMPD2 CHKB ELOVL4 HOXD10 LPIN1 PFN1 SCN2B TDP1 

 
ANG CHMP2B ELOVL5 HSPB1 LRSAM1 PGAM2 SCN3B TECPR2 

 
ANK2 CHRNA1 EMD HSPB3 MARS PGK1 SCN4A TFG 

 
ANKRD1 CHRNB1 ENO3 HSPB8 MATR3 PGM1 SCN4B TGFB3 

 
ANO5 CHRND ENTPD1 HSPD1 MED25 PHKA1 SCN5A TGM6 

 
AP4B1 CHRNE ERBB3 HSPG2 MEGF10 PHOX2A SDHA TIA1 

 
AP4E1 CHRNG ERLIN2 IFRD1 MFN2 PHYH SEPN1 TK2 

 

AP4M1 CLCN1 ETFA 

IGHMBP

2 MPZ PIP5K1C  SEPT9 

TMEM4

3 

 
AP4S1 CLN3 ETFB IKBKAP MRE11A PKP2 SETX TMEM5 

 
AP5Z1 CNBP ETFDH ILK MRPL3 PLEC SGCA TMPO 

 
APTX CNTN1 EXOSC3 INF2 MRPL44 PLEKHG5 SGCB TNNC1 

 
AR COL6A1 EXOSC8 ISCU MSTN PLN SGCD TNNI2 
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ARHGEF1

0 COL6A2 EYA4 ISPD MTM1 PLP1 SGCE TNNI3 

 
ARL6IP1 COL6A3 FA2H ITGA7 MTMR2 PMP22 SGCG TNNT1 

 
ASAH1 COLQ FBLN5 ITPR1 MTO1 PNPLA2 SH3TC2 TNNT2 

 

ATL1 COX15 FBXO38 JPH2 MTPAP PNPLA6 

SIGMAR

1 TNNT3 

 
ATM COX6A1 FGD4 JUP MURC PNPLA8 SIL1 TNPO3 

 
ATP2A1 CPT2 FGF14 KARS MUSK POLG SLC12A6 TOR1A 

 

ATP7A CRYAB FHL1 

KBTBD1

3 MYBPC3 POLG2 SLC1A3 TOR1AIP1 

ATXN1 CSRP3 FIG4 KCNA1 MYH2 

POMGNT

1 SLC22A5 TPM1 

 

ATXN10 CTDP1 FKRP KCNA5 MYH3 

POMGNT

2 

SLC25A2

0 TPM2 

 
ATXN2 CYP2U1 FKTN KCNC3 MYH6 POMK SLC25A4 TPM3 

 
ATXN3 CYP7B1 FLNA KCND3 MYH7 POMT1 SLC33A1 TRAPPC11 

ATXN7 DAG1 FLNC KCNE1 MYH8 POMT2 SLC52A2 TRIM2 

 
ATXN8OS DCTN1 FUS KCNE2 MYL2 PPP2R2B SLC52A3 TRIM32 

 
B3GALNT

2 DDHD1 FXN KCNE3 MYL3 PREPL SLC5A7 TRIM54 

 
B3GNT1 DDHD2 GAA KCNH2 MYLK2 PRKAG2 SMCHD1 TRIM63 

 
B4GALNT

1 DES GAN KCNJ2 MYOT PRKCG SMN1 TRPV4 

 
BAG3 DHTKD1 GARS KCNJ5 MYOZ2 PRPH SNTA1 TSFM 

 
BEAN1 DMD GATAD1 KCNQ1 MYPN PRPS1 SOD1 TTBK2 
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B. PCR and Sequencing protocols  

i. Newcastle University  

Variant segregation for FILIP1 and TENM2 variants. 

Variant segregation was performed by two Newcastle University undergraduate students, 

Isaac Walton and Rebecca Haigh. 

Primer pairs were designed using Primer3 (http://primer3.ut.ee/). For FILIP1, the primers 

amplified a 242bp region including the variant at chr6:76124519 where the nonsense variant 

(A>G) was detected by WES.  

The regions were amplified in DNA samples from the index, father, mothers, unaffected 

paternal uncle, affected sister and unaffected brother. 

For the TENM2 variant, chr5:167673823 C>G, the primers amplified a 377bp region in the 

index, parents and unaffected sibling.  

A HotStarTaq PCR protocol was used according to manufacturer’s instructions. 

Amplification was confirmed using a 2% agarose gel run at 100 volts for 40 minutes in TAE 

buffer. The amplified DNA was then purified using an ExoSap protocol according to 

manufacturer’s instructions. Sanger sequencing was then performed by Eurofins Genomics 

and the chromatograms were returned. Variant location was manually determined on the 

chromatogram and segregation of the variant was evaluated in the family. Primer pairs and the 

chromatogram image are shown in supplementary figures 1 and 2 for the FILIP1 and TENM2 

variants respectively.  

 

 

 

 

 

 

 

 

http://primer3.ut.ee/
http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&highlight=hg19.chr5:167673823-167673823&position=chr5:167673813-167673833
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Supplementary figure 1: A, Forward and reverse primers used for the segregation of the 
FILIP1 variant at position chr6:76124520 (output from Primer3, http://primer3.ut.ee/). B, 
chromatogram image for variant segregation in the family. The variant position is 
underlined in yellow. 

A 

Template masking not selected  

No mispriming library specified  

Using 1-based sequence positions OLIGO            start   len      tm     gc%  any_th  3'_th hairpin seq   

LEFT PRIMER        385   20   58.73   55.00    0.00   0.00    0.00 TGACTCTACCTGCAACTCCC  

POSITION PENALTY, QUALITY: 92.000000, 0.267121  

RIGHT PRIMER       626   20   58.56   55.00    0.00   0.00    0.00 ATATCTCCTGTCCCAAGCCC  

POSITION PENALTY, QUALITY: 112.000000, 0.439543  

SEQUENCE SIZE: 1001  

INCLUDED REGION SIZE: 1001  

PRODUCT SIZE: 242, PAIR ANY_TH COMPL: 0.00, PAIR 3'_TH COMPL: 0.00 TARGETS (start len  EXCLUDED REGIONS (start 

len   

    1 AAGCAAAATTAGCAATTGACCTGAACTCTCCATTTTAATAATCACTGCATTTCTACATTT  

   61 TTCAGTCACAGTCAATGTCTAAATTAGATAACCTAATTGATTACCTACTGACCGAAAGGA  

                                                           X        

  121 TCTGTATTAAATCACCACCAAAATCATATAATGAAGAAATTTTCTGCTTCTAGAGAAGTT  

  181 TGAAGTTGGAATCAGCACTTTTTCATTTAGCATTCATTCAACAAATATTTATTTAGTGCA  

  241 AACTTGTGCCAGGCACTAGGGATTTAGAAATAAGGGAAACATTCTCCTTTCCCCATAAAG  

                                                                X   

  301 TTCATTACTCAGAGAGGGGAACAGATTTACATTCTCTTATTTTATAGCTTAGAAACCAAA  

  361 GACACAATAACAGTTGGGAAAGTTTGACTCTACCTGCAACTCCCCTTCCATTATACTGAG  

                              >>>>>>>>>>>>>>>>>>>>                  

  421 TAGTTGGATGAGGTCTTCTTTGGATAACTCCAGGGATTTCTTAGTTTTTCGTTCACATTC  

http://primer3.ut.ee/
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                                    ******************************  

  481 TCCAGATGTTTTTAGGTGTCGTTTGACAGTTCCTGAGGCCATGACATCATCCTCCTTCCT  

      ************************************************************  

  541 ATTTGATTTCTTCTTCTTTTTTGCATCTTCTGAGAGACTTTTTTCACCAGCATTGCCGAT  

      **********                                                    

  601 GATGGAGGGCTTGGGACAGGAGATATGCCCATCAGATGCACTTTCACCACCTTGGTTTCG  

            <<<<<<<<<<<<<<<<<<<<                                    

  661 AGATCTCATTCCCACCTACAACACATACATAAAAAAAGATAAGATGTTCTTTACCACCAT  

  721 CAAAATTATTTTTGCCTAAATACTTAGAAACTTATAGCAGCTTTACCACATCGCCAATAA  

                                                          X         

  781 GGAAAAATCAAATTAACATGTCATTAAAATTTTCAGGAAACCCCTTTGATGGTCTTCAGA  

  841 AAAAATGAAAGTAAGATTTTAACCTGACAAACCCCTCAAGCCAAATGATCAAGGTCAGTA  

  901 TCAATAGTGCTAAGTCATATTGCTGTTACATAGCCCCCATAATAATATATCAATATTGGT  

  961 TCATTGATTGTAACAAACGTACTATACTATCCTAATGGAGA  

KEYS (in order of precedence):  

XXXXXX excluded region  

****** target  

>>>>>> left primer  

<<<<<< right primer 
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Supplementary figure 2: A, forward and reverse primers used for the segregation of the 
TENM2 variant at position chr5:167673823 (output from Primer3, http://primer3.ut.ee/). 
B, chromatogram image variant segregation in the father (top), affected individual (centre) 
and unaffected sibling (bottom).  

A 

Template masking not selected 

No mispriming library specified 

Using 1-based sequence positions 

OLIGO            start  len      tm     gc%  any_th  3'_th hairpin seq  

LEFT PRIMER        110   21   57.88   47.62    0.00   0.00    0.00 

TCTGGTCTAAGCTTCCCATCT 

RIGHT PRIMER       486   20   59.24   50.00    0.00   0.00    0.00 

ACTTGTAGAACACCTGGCGT 

SEQUENCE SIZE: 601 

INCLUDED REGION SIZE: 601 

 

PRODUCT SIZE: 377, PAIR ANY_TH COMPL: 0.00, PAIR 3'_TH COMPL: 0.00 

TARGETS (start len  

 

    1 TTACAAGATCCTGAGTATTTTGCATGCACATTAAATTTGGGAAGCACTGGTCTAGGCAAC 

                                                                   

 

   61 CACCATGATCCATCAAAATTGGCATGTCCAGTGAAATAAATCTGTTTAATCTGGTCTAAG 

                                                       >>>>>>>>>>> 

 

  121 CTTCCCATCTTTCATGACTTTTGAGTTGACATTTGGGGAAATGGACTAAATTCTGTCTGT 

      >>>>>>>>>>                    ****************************** 

http://primer3.ut.ee/
http://primer3.ut.ee/cgi-bin/primer3/primer3web_help.cgi#p3w_primer_start
http://primer3.ut.ee/cgi-bin/primer3/primer3web_help.cgi#p3w_primer_len
http://primer3.ut.ee/cgi-bin/primer3/primer3web_help.cgi#p3w_primer_tm
http://primer3.ut.ee/cgi-bin/primer3/primer3web_help.cgi#p3w_primer_gc
http://primer3.ut.ee/cgi-bin/primer3/primer3web_help.cgi#p3w_primer_any
http://primer3.ut.ee/cgi-bin/primer3/primer3web_help.cgi#p3w_primer_three
http://primer3.ut.ee/cgi-bin/primer3/primer3web_help.cgi#p3w_primer_hairpin
http://primer3.ut.ee/cgi-bin/primer3/primer3web_help.cgi#p3w_primer_seq
http://primer3.ut.ee/cgi-bin/primer3/primer3web_help.cgi#p3w_primer_start
http://primer3.ut.ee/cgi-bin/primer3/primer3web_help.cgi#p3w_primer_len
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  181 TTGAATGCTTGGTCCTCAAAAGCCAACTGATATGTTCTGTTCCCCTTTCCTTTCTGCAGT 

      ************************************************************ 

 

  241 CCATGGTCCTCCTGCTTCAGAGCCAACGTCAGTATATATTTGAGTATGACTCCTCTGACC 

      ************************************************************ 

 

  301 GCCTCCTTGCCGTCACCATGCCCAGCGTGGCCCGGCACAGCATGTCCACACACACCTCCA 

      ************************************************************ 

 

  361 TCGGCTACATCCGTAATATTTACAACCCGCCTGAAAGCAATGCTTCGGTCATCTTTGACT 

      ************************************************************ 

 

  421 ACAGTGATGACGGCCGCATCCTGAAGACCTCCTTTTTGGGCACCGGACGCCAGGTGTTCT 

      ******************************                <<<<<<<<<<<<<< 

 

  481 ACAAGTATGGGAAACTCTCCAAGTTATCAGAGATTGTCTACGACAGTACCGCCGTCACCT 

      <<<<<<                                                       

 

  541 TCGGGTATGACGAGACCACTGGTGTCTTGAAGATGGTCAACCTCCAAAGTGGGGGCTTCT 

                                                                   

 

  601 C 

        

KEYS (in order of precedence):  
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XXXXXX excluded region  

****** target  

>>>>>> left primer  

<<<<<< right primer 
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ii. Kuwait Medical Genetics Centre  

Target mutation analysis via Sanger sequencing for the Middle Eastern mutation (pM743T) in 

exon 12 of the GNE gene at KMGC is performed for all suspected cases of GNE myopathy. 

Total genomic DNA is extracted from approximately 4 millilitres of peripheral blood to be 

processed by using the Maxwell® 16 System (Promega). Amplification of target sequence is 

performed by standard protocols of polymerase chain reaction (PCR), using apparatus 

GeneAmp (Applied BioSystem). Amplification is performed using a pair of primers: “sense”, 

5'-GAACAGCTTTGGGTCTTGGG-3' and "antisense", 5'-CTGGACTACACAACACGCAG-

3'. The GoTaq® Green MasterMix (Promega) is used in all the amplifications. For direct 

sequencing, the purified PCR products are prepared according to manufacturer’s instructions 

using a 3130 Genetic Analyzer (Applied BioSystem) automatic sequencer. The sequencing 

results are then analysed in SeqScape V2.6 software (Applied BioSystem) and compared with 

the reference database (NM_005476). 

 

 

 

 

 

 

 


