
Object Management

for

Persistence and Recoverability

NLI4 (...,TLE	 "r	 LIBF I

by	
088 - '4-'9 4

Graeme N Dixon

PhD Thesis

The University of Newcastle upon Tyne

Computing Laboratory

July 1988

Abstract	 I

Abstract

As distribution becomes commonplace, there is a growing requirement for

applications that behave reliably when node or network failures occur. To

support reliability, operations on the components of a distributed application may

be declared to occur within the scope of an atomic action. This thesis describes

how atomic actions may be supported in an environment consisting of

applications that operate on objects.

To support the failure atomicity and permanence of effect properties of an

atomic action, the objects accessed within the scope of an atomic action must be

recoverable and persistent. This thesis describes how these properties may be

added to the class of an object. The approach adopted is to provide a class that

implements recovery and persistence mechanisms, and derive new classes from

this base class. By refining inherited operations so that recovery and persistence

is specific to that class, recoverable and persistent objects may be easily produced.

This thesis also describes how an atomic action may be implemented as a

class, so that instances of the class are atomic actions which manage the

recoverable and persistent objects. Multiple instance declarations produce nested

atomic actions, and the atomic action class also inherits persistence so that short-

term commit information may be saved in an object store which is used to

maintain the passive state of persistent objects.

Since the mechanisms and classes that support recovery, persistence, and

atomic actions are constructed using the feature of an object-oriented language,

they may be implemented in environments that provide suitable support for

objects and object-oriented programming languages.

Acknowledgments	 II

Acknowledgments

First and foremost, I owe a debt of gratitude to my supervisor, Santosh

Shrivastava, for starting the Arjuna project and allowing me to become a

member, for reading and commenting on the many drafts of this thesis, and in

particular, for suggesting my research topic.

I am also grateful to Pete Lee for his constructive criticism of a later draft of

this thesis, and the following people for reading and commenting on parts of it:

Graham Parrington, Jim Lyons, Brian Randell, and Krithi Ramamritham.

I would also like to thank the members of the Arjuna project, and the

Computing Laboratory, who have contributed to productive environment in

which to work.

Last, but by no means least, I would like to thank my parents for the help and

encouragement they have given me throughout my research, and particularly

during the time I have spent working on this thesis.

Financial support for this work was provided by grant from the Science and

Engineering Research Council, and a SERC/Alvey grant in Software

Engineering.

Table of Contents 	 m

Table of Contents

Abstract	 1

Acknowledgments	 II

Table of Contents	 m

List of Figures	 vi

Tables	 ix

1 Introduction	 1

1.1 Atomic actions	 2

1.2 Object-oriented programming	 5

1.3 Programming in distributed systems 	 7

1.4 Programming with objects and actions in a distributed system	 9

1.5 Thesis aims	 10

1.6 Thesis structure	 10

2 Reliable Programming in a Distributed System	 13

2.1 The distributed system model	 14

2.2 Fault-tolerance terminology	 15

2.3 Reliability issues	 17

2.4 Modelling and masking faults 	 19

2.5 Object-oriented issues 	 23

2.5.1 Data abstraction and encapsulation 	 23

2.5.2 Inheritance	 25

2.6 Arjuna	 28

2.7 A review of reliable distributed object-based systems	 35

2.7.1 Argus	 35

2.7.2 Clouds	 36

2.7.3 Profemo	 36

Table of Contents	 IV

2.7.4 Camelot/Avalon	 37

2.7.5 Other related projects	 38

2.7.6 Comparison with Arjuna	 40

2.8 Concluding Remarks	 43

3 Constructing Atomic Actions	 44

3.1 The atomic action model	 45

3.2.1 Atomic action events	 49

3.2 The functionality required by an atomic action 	 51

3.3 Constructing distributed atomic actions 	 54

3.4 The implementation of an atomic action	 59

3.5 The operation of the class At om i cAct i on 	 65

3.5.1 A simple example 	 67

3.6 Commitment and crash recovery 	 71

3.7 The design of a distributed atomic action 	 75

3.8 Atomic actions as objects	 80

3.9 Concluding remarks	 82

4 Recoverability	 84

4.1 Providing recoverability	 85

4.2 Constructing recoverable objects	 88

4.3 Managing recoverable objects	 94

4.4 Implementing recoverable objects	 95

4.5 Implementing state based recovery	 97

4.6 Implementing operation based recovery 	 103

4.7 Constructing a new recoverable class 	 109

4.8 An assessment of constructing recoverable classes using inheritance 115

4.9 Concluding remarks	 117

Table of Contents	 V

5 Persistence	 119

5.1 Permanence of effect and persistence	 120

5.2 Supporting persistence	 127

5.3 Implementing persistence	 131

5.3.1 A simple persistent class 	 141

5.4 The design of an object store 	 143

5.5 Implementing an object store	 149

5.6 Concurrency control and the object store	 152

5.7 An assessment of constructing persistent classes using inheritance 154

5.8 Concluding remarks 	 157

6 Performance and Optimisations	 158

6.1 A banking system	 159

6.2 Measuring the performance 	 166

6.3 Concluding remarks	 174

7 Conclusions	 178

7.1 Thesis summary	 178

7.2 Future work	 187

References	 192

List of Figures	 VI

List of Figures

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 2.6:

Figure 2.7:

Figure 2.8:

The class Date

Subtyping and multiple inheritance

The class Buffer

The class Ci rcul arBuffer

Local and distributed programs

The communication architecture

The Arjuna class X

The state and interface of an Arjuna class called X

24

26

26

27

29

29

31

32

Figure 3.1: Nested atomic actions 	 46

Figure 3.2: Action events
	 49

Figure 3.3: Atomic action states and events 	 50

Figure 3.4: Nested atomic actions and management information
	 52

Figure 3.5: After the commitment of the atomic action B
	

53

Figure 3.6: The composition of an atomic action 	 58

Figure 3.7 :The class Atom i cAct i on	 59

Figure 3.8: Using the class Atom i cAct i on
	 60

Figure 3.9: The class Ab s t rac t Reco rd
	

61

Figure 3.10: The atomic action subsystem class hierarchy 	 64

Figure 3.11: An example using an Atom i cAct i on
	 67

Figure 3.12: The Ex amp 1 eC1 as s update operation	 67

Figure 3.13: Objects created during Atom i cAc ti on A
	

68

Figure 3.14: Objects created before B commits	 69

Figure 3.15: Objects in existence after B commits
	 70

Figure 3.16: During phase one 	 72

Figure 3.17: At the end of phase one
	 73

Figure 3.18: A distributed atomic action	 78

List of Figures	 VII

Figure 3.19: Enforcing scope 	 81

Figure 3.20: Enforcing scope using macros	 82

Figure 4.1: The container approach	 90

Figure 4.2: The unrecoverable inheritance approach	 90

Figure 4.3: The recoverable inheritance approach	 92

Figure 4.4: The multiple inheritance approach	 93

Figure 4.5: The class Object	 99

Figure 4.6: The class Re cove rab 1 e I nteg e r	 100

Figure 4.7: Recove rab 1 eIntege r assignment	 100

Figure 4.8: RecoverableInteger save_state operation	 100

Figure 4.9: Recoverabl eInteger restore state operation	 101

Figure 4.10: Ob jectStateReco rd abort operation	 102

Figure 4.11: The class Operation	 103

Figure 4.12: The class Re co v e rab 1 eStac k 	 104

Figure 4.13: The class St ac kOpe rat i on Log	 104

Figure 4.14: Re cove rab 1 eStac k pop operation	 105

Figure 4.15: The class Printe r	 107

Figure 4.16: The Recoverabl ePri nter print operation	 108

Figure 4.17: The Printe rRe co rd abort operation	 108

Figure 4.18: The class RSt ring	 110

Figure 4.19: The class USt ring	 111

Figure 4.20: The class URSt ring	 112

Figure 4.21: The class MRStri ng	 112

Figure 4.22: The MRSt ring assignment operation	 113

Figure 4.23: The MRSt ring s ave_s tate operation	 114

Figure 5.1: Persistent object state transitions 	 123

Figure 5.2: A structured object	 130

Figure 5.3: The class Object	 134

List of Figures	 YE

Figure 5.4: Movement of persistent data	 135

Figure 5.5: The Object act i v ate operation	 135

Figure 5.6: The Object deactivate operation	 136

Figure 5.7: The Pe rs i stentRecord top_l evel_prepare operation	 137

Figure 5.8: The persistent class File	 141

Figure 5.9: The F i le constructor	 142

Figure 5.10: A single level object store 	 145

Figure 5.11: The class Entry	 145

Figure 5.12: The class Ob j e c tSto re	 146

Figure 5.13: A two-level object store 	 148

Figure 5.14: Object store implementation 	 151

Figure 6.1: The class Ac count	 159

Figure 6.2: The class Customer	 160

Figure 6.3: The class Bank	 161

Figure 6.4: The relationship between objects 	 161

Figure 6.5: The new declaration of class Customer	 163

Figure 6.6: The new declaration of class Bank	 164

Figure 6.7: The Customer transfer operation	 165

Figure 6.8: The performance of the environment 	 167

Figure 6.9: The modified operation overhead	 168

Figure 6.10: Recovery/persistent data for 3 Accounts	 171

Figure 6.11: Customer optimisations	 172

Figure 6.12: Bank and Custome r optimisations	 172

Tables

Tables

Table 1: Atomic action execution times 	 169

Table 2: Customer class optimisations 	 173

Table 3: Bank + Customer class optimisations 	 173

Introduction	 1

Chapter 1

Introduction

Over the last few years the impact of computing systems on our daily lives has

steadily increased to the extent that we are now seeing their use in many,

hitherto unthought of, application areas. Much of this proliferation can be traced

to the introduction of low-cost microprocessors, which have rapidly developed to

provide computational power beyond that of recent multi-user mainframe

computers. Additional factors, such as the decrease in cost of semiconductor

memory, have all led to the construction of powerful personal computers which

are intended for the dedicated use of a single user.

As the technology used to build powerful personal computers has advanced, so

too has the technology behind interconnection media such as local area networks.

Connecting computers (nodes) together using a local area network to produce a

distributed system is becoming commonplace. One reason is tile flexibilitu of a

distributed system since extra nodes may be added to the network as the demands

on system increase. In addition, distributed systems are not susceptible to the

single point of failure of a centralised system, where all executing computations

are affected by the failure, as only those computations executing on the failing

node will be affected.

To fully realise the advantages of distribution, a computation must be able to

access the resources which are available on other nodes in the network. A

computation which has this capability is termed a distributed computation, and

consists of a series of operations on a collection of both local and remote resources.

The execution of an operation on a resource is also a computation that in turn

Introduction	 2

may consist of a series of further operations on other local and/or remote

resources.

While distribution may remove the single point of failure of a centralised

system, a distributed computation becomes susceptible to remote node crashes,

and failures in communication between the distributed computation and its

remote resources. Independent failures of this type will result in the abnormal

behaviour of the distributed computation. To benefit from distribution therefore,

distributed computations should be reliable requiring consistent behaviour in the

face of node crashes and communication failures.

This thesis describes how distributed applications may be constructed that

operate consistently when node or network failures occur. To model this

environment the object-oriented paradigm is employed and to support consistency

atomic actions are used. The areas of research addressed by this thesis are how to

implement atomic actions, and how to provide support for constructing a class so

that instances of that class may be used within an atomic action. Since the

purpose of using atomic actions is to support consistent behaviour during node or

network failures in a distributed system, distribution aspects are also discussed

but are not the main topic of this thesis. The rest of this chapter describes the

components of this object and action environment, beginning with the properties

of an atomic action.

1.1 Atomic actions

An atomic action is a computing abstraction that encapsulates a computation

and controls its outcome, ensuring that the computation appears to execute in

isolation to completion. To provide control over the encapsulated computation, an

atomic action exhibits three properties; failure atomicity, serialisability, and

permanence of effect.

Introduction	 3

Failure atomicity ensures that the computation either terminates with the

intended results, or else all of the effects of the computation are undone and the

system is restored to the state it was in at the beginning of the atomic action. If

during the execution of a computation a fault causes the system to reach an

erroneous state then some form of error recovery is required. On detection of an

error, the error recovery mechanism provided by the containing atomic action

may be employed to recover the system state by aborting the atomic action. By

default, an atomic action provides backward error recovery where the system

state affected by the computation is restored to the state held at the beginning of

the atomic action. An alternative form of recovery is forward error recovery,

where errors in the system are removed by manipulating the system to produce a

new state.

The serialisability property of an atomic action ensures that if concurrent

computations wish to use common resources then they may only access the

required resources in a manner such that the effect is equivalent to that of the

computations occurring serially (i.e. one after another). In many cases, such as in

the case of the most common form of concurrency control which is locking, a

computation is guaranteed exclusive access to a shared resource if the

cOmputation is to modify the resource, with rules such as two-phase locking

ensuring that concurrent computations are kept interference free until they

terminate. Serialisability also guarantees the indivisibility of the computation

within the atomic action by ensuring that the intermediate states produced are

not accessible, and as a result cannot be viewed, outside the computation

encapsulated by the atomic action.

The remaining property of an atomic action, that of permanence of effect,

guarantees that the results of a computation encapsulated by an atomic action

will not be lost despite failures of the system after the successful completion of the

atomic action, thereby providing a consistent state with which to restart the

Introduction	 4

system should this be necessary. To provide the permanence of effect property,

newly established system state must be recorded in storage that is tolerant to

node crashes and media failures.

The concepts and practice behind the use of atomic actions are well understood

and have been utilised for a number of years in the database field where they are

commonly termed transactions. It is only relatively recently however, that

systems have been produced where atomic actions may be nested, and in which

resources other than databases can be used.

When an atomic action is nested within another atomic action (which is

termed its parent), the results of the nested atomic action are dependent upon the

outcome of the parent atomic action. As a result the permanence of effect

property may be relaxed for nested atomic actions thereby providing failure

atomicity without the expense of ensuring that the modified system state becomes

permanent. In addition, nested atomic actions offer greater flexibility by

enabling failures to be localised, since they can be aborted independently of their

containing (parent) action.

Nested atomic actions are also advantageous in systems that allow resourco

to be distributed. In this environment the inaccessibility of a remote resource,

due to either a network or remote node fault, may be contained by a nested atomic

action. Should the resources also be replicated, then another node with the

required resource may be chosen and the operation attempted anew at this

alternative node once suitable error recovery has taken place.

An additional advantage of nested atomic actions is that an existing

computation which employs atomic actions may be used as a sub-computation of

an application even though the atomic action in the sub-computation may be

nested within any atomic actions declared in the application. Clearly, if atomic

Introduction	 5

actions could not be nested then the re-use of the such a computation by an

application would not be possible.

The discussion so far has described why atomic actions provide useful support

when constructing reliable distributed computations. But what are the resources

manipulated by a computation, and how can they be modelled? One of the best

programming paradigms currently available for modelling a system is the object-

oriented paradigm.

1.2 Object-oriented programming

The most fundamental element of object-oriented programming is the object.

An object, which has an internal state and a set of operations that characterise its

behaviour, may be defined using an object-oriented programming language which

supports data abstraction, encapsulation and inheritance.

Object-oriented languages provide the class construct which supports data

abstraction by hiding the representation of data and implementation of

operations that constitute an abstraction. Instances of a class are objects, and all

objects of the same class exhibit common behaviour.

If the only way to modify or access the state contained within an instance of a

class is to invoke one of the public operations, then the data abstraction provided

by the language supports encapsulation. If a language supports encapsulation

then changes to the representation or implementation of a class can be made

without affecting programs which use that class.

Another important property which may be provided by an object-oriented

language is inheritance. This property enables new classes to be derived from

existing classes, with the new class inheriting the state and operations of the

existing class. The new class may in turn refine the existing class by adding extra

functionality or by providing a restricted interface to the inherited state. The

Introduction	 6

main benefit of inheritance is the way that it may be used to avoid the re-

implementation of common features. In a number of systems this takes the form

of a class hierarchy in which common functionality is shared between classes that

belong to the hierarchy.

Other requirements for true object-oriented classification have been proposed,

many of which are shown by what is regarded as the archetypal object-oriented

language - Smalltalk. Two of the more important properties are message passing

and dynamic-binding, both of which are often associated together since messages

contain names rather than values, the binding of name to value occurring

dynamically when the value is required. In languages such as Smalltalk, the

invocation of an operation on an object occurs by sending a message to the object,

with the receiver of the message performing the requested operation and

returning the result in a reply message. The alternative approach to operation

invocation is based on the procedure call mechanism, where an operation is a

conventional procedure call with arguments which may return a result. In

addition, the process which executes the implementation of an operation may

differ depending upon whether the objects are active or passive. In an active

system an object is managed by a process that executes the operations on behalf of

a client (the application). In contrast, in a passive system the operations are

executed by the process that is executing the application.

In the following discussions it will be assumed that the invocation of an

operation occurs via a procedure call and that objects are passive entities. In

addition, the three properties (data abstraction, encapsulation, and inheritance)

described above are assumed when object-oriented terminology is employed.

Introduction

L3 Programming in distributed systems

To enable a computation to access a remote resource (or object) requires a

method for invoking an operation on the remote object. Since the only means of

accessing an object is through one of its operations, it follows that access to remote

objects requires a (network) protocol which provides the abstraction of invoking

an operation (procedure) on the remote object. The generic term remote procedure

call is used to describe a network protocol of this type, which involves the

transmission of messages between local and remote nodes containing the request

for service (the operation on the remote object) and any reply (containing the

result of the operation).

When a computation (the client) invokes an operation on a remote object, the

remote procedure call mechanism creates a process, termed the server, on the

remote node to manage the required object and perform the requested operation.

The remote procedure call mechanism also contends with the faults in

communication that can occur, such as lost or multiple messages. Various

semantics are associated with different remote procedure call mechanisms

depending upon the effect of the call when it succeeds. For example, exactly once

semantics state that if the remote procedure call succeeds, then only one

execution of the requested operation was performed by the server. If the remote

procedure call failed then partial execution of the operation may have occurred,

and it is the responsibility of the client to ensure that the attempted operation is

recovered.

A distributed computation can be constructed using a programming language

that supports distributed programming, or by using a conventional (non-

distributed) language with support for remote procedure call invocations. When a

non-distributed programming language is employed, operations on local and

remote objects are unlikely to be transparent since the remote procedure call

Introduction	 8

mechanism is usually built on top of a message passing subsystem which is a

separate component of the system. As a result the invocation of an operation

involving a remote procedure call is likely to have a different syntax from a local

invocation.

When a distributed programming system consists of a conventional language

and remote procedure call mechanism, a common approach to providing identical

syntax for both local and remote invocations is to employ stubs to hide the remote

procedure call invocations. In this way, a distributed computation will contain a

stub object for each remote object, the stub object's interface being identical to the

remote object. When an operation is invoked by a computation on the stub object,

a corresponding remote procedure call to the server managing the remote object is

made by the stub object's implementation.

Stubs can be produced automatically by a stub generator from an interface

definition which specifies the operations that may be invoked on an object. Two

stubs are generated: a client stub for the local computation, and a server stub for

the server. The distributed computation is constructed using the client stub, and

the server is constructed using the server stub and the implementation of the

class of the object that the server is managing. The construction of mechanisms

which support access to remote objects has been extensively researched and the

solutions are well known. As a result, this thesis assumes that support for remote

procedure calls, and stubs, are available and need not be considered in any

greater detail.

Introduction	 9

1.4 Programming with objects and actions
in a distributed system

The above descriptions have introduced the basic features of the type of system

which is the concern and interest of this thesis. The system aims to be reliable

and resources in the system may be distributed. Application programs

(computations) which execute within the system consist of operations on objects

which are the resources of the system. The objects used by a computation may be

local or remote. If an object is remote, a computation invokes operations on the

remote object's client stub object, that in turn makes a remote procedure call to

the server managing the remote object.

To ensure a computation is reliable, surviving node crashes and

communication failures, the operations that constitute the computation may be

encapsulated in one or more atomic actions. The properties of an atomic actions

maintain the consistency of the objects accessed during the execution of the

atomic action should such failures occur. To guarantee that these properties can

be met, the objects accessed during the atomic action must be recoverable to meet

the failure atomicity property, persistent to meet the permanence of effect

property, and provide concurrency control to meet the serialisability property.

Providing support for atomic actions in a distributed object-oriented

programming system is an area of research that has been investigated by a

number of research projects (a number of which are surveyed in chapter two), yet

the approaches taken have been wide and varied. The aims of the work described

in this thesis are detailed in the next section. This work forms part of a project

called A rjuna, the aims of which are to develop a set of tools which enable reliable

distributed programs, using objects and atomic actions, to be produced.

Introduction	 10

1.5 Thesis aims

This thesis examines how atomic actions may be supported, and the state of

objects accessed within atomic actions managed, in a distributed programming

system. Most projects which are addressing this area of research have

concentrated on producing new languages or operating systems that provide the

necessary support for objects and actions. The three main aims of the research

presented in this thesis are therefore:

a) the design and implementation of mechanisms which enable the state of an

object to be managed so that it is recoverable and persistent, and may be used

from within an atomic action.

b) the design and implementation of atomic actions that control objects, which

are recoverable, persistent, and provide concurrency control, when accessed

within the scope of an atomic action.

c) the design and implementation of the mechanisms that meet the above two

aims in a manner that may be generalised to other environments (i.e. not

based on extending, or constructing a new, languages or operating systems).

1.6 Thesis structure

This thesis is organised as follows. The next chapter begins by expanding on

the background to the work described in this thesis and defining the system

model used to describe programming in a distributed environment using objects

and actions. This description of the distributed environment is followed by a

discussion of the properties of an object-oriented language, using the language

C++ as an example. Given the model described at the start of the chapter, the

later sections describe the approach taken by the Arjuna project, and compare and

contrast a number of projects with similar goals to Arjuna.

Introduction	 11

Chapter three begins by defining an atomic action model and employing this

model to discuss the functionality required to implement atomic actions in a

distributed system. This functionality is used as the basis of a design that

provides the abstraction of a non-distributed atomic action. After a description of

the implementation of this design, the means by which atomic actions are

committed and made crash recoverable are described. The following section

describes how the non-distributed atomic action design may be extended to enable

the atomic action abstraction to operate in a distributed environment. The

penultimate section of chapter three discusses a number of issues relating to the

use of objects to model atomic actions.

To support the failure atomicity property of an atomic action requires objects

that are recoverable. The construction of a class that supports recoverability is

therefore the subject of chapter four, which begins by describing two techniques

that may be used to support the recovery of an object, and how the resulting

recoverable objects are managed by an atomic action so that the failure atomicity

property is met. To add recoverability to a class, the remainder of chapter four

describes an approach based upon exploiting the inheritance property of an

object-oriented language. The approach taken is to construct a class that provides

recoverability and derive new recoverable classes from this base recoverable class

so that recoverability is inherited. Implementations of the two recovery

techniques are described, one is based upon managing the old state of an object,

the other the operations invoked on an object. A number of examples of the

flexibility of this approach to adding recoverability are included.

In chapter five it is shown how the mechanisms described in chapter four may

be extended to enable a class that supports recoverability to also support

persistence. The chapter describes how the scope rules of a language must be

overcome and how an object must be moved automatically between permanent

storage and the storage associated with an application for the object to persist.

Introduction	 12

The approaches taken by a number of persistent programming languages are

considered, and the design and implementation of the mechanisms required

described along with an object store design that provides a more suitable interface

for the storage of objects.

Chapter six begins by developing a simple example to show how the

mechanisms in earlier chapters of the thesis may be used to construct a class of

objects that are recoverable and persistent. The remainder of the chapter

describes a number of simple tests made on the example classes developed at the

start of the chapter to illustrate the performance of the experimental prototype

developed to test the soundness of the ideas presented in this thesis.

The final chapter speculates on future areas of work arising from the work

presented in this thesis, provides a summary of the thesis and presents the

conclusions of this work.

Reliable Programming in a Distributed System
	 13

Chapter 2

Reliable Programming
in a Distributed System

The previous chapter described how a distributed computation may behave

abnormally when there are node crashes or communication failures during the

invocation of operations on remote objects. Since abnormal behaviour is

undesirable, there is a requirement for distributed computations that behave in a

reliable manner when these types of failure occur. To construct a distributed

computation that behaves reliably however, requires an understanding of the

types of fault that give rise to node or communication failures and the techniques

available for managing such failures. This chapter expands on these reliability

issues, which were briefly described in the previous chapter, discussing the

reliability requirements of a distributed computation and the technique used to

model the resources accessed by a distributed computation.

The environment, models, and techniques described correspond to those

adopted by Arjuna [Shrivastava et al. 87, Shrivastava et al. 88], a brief description

of which is also included in this chapter. This description gives an overview of

how an application may be constructed using the tools provided by Arjuna,

covering issues such as how objects are named, created, made persistent, and

controlled by atomic actions declared in an application program. A number of

these issues are covered in greater depth in later chapters of this thesis.

The chapter begins by describing the distributed computation model and fault-

tolerance terminology employed throughout this thesis. Section 2.3 discusses the

reliability issues involved in producing a reliable distributed computation, and is

followed by the various fault models and common techniques that may be applied

Reliable Programming in a Distributed System 	 14

to tolerate any faults which may manifest themselves in a distributed

computation.

Since resources are modelled using the object paradigm, the properties of an

object-oriented language, and issues involving the use of such a language, are

covered by the middle sections of this chapter. To illustrate a number of these

issues, the language (C++ [Stroustrup 86]) chosen for the work described in this

thesis will be used.

The final sections of this chapter describe Arjuna in greater detail, and end by

briefly reviewing a number of research projects whose aims are similar to those

addressed by Arjuna. A comparison of the functionality provided by each

research project is made with that provided by Arjuna.

2.1 The distributed system model

The components of a distributed system, which were introduced in the

previous chapter, are defined in this section so that later sections may discuss the

reliability issues surrounding these components. The components are: the

computing elements (nodes), the communication network which connects the

nodes together, the computations which execute at the nodes, and the resources

employed by the computations.

Each computation may be considered to consist of a series of sub-computations

with each (sub-)computation consisting of a series of operations on resources

which are modelled as objects. A system resource is provided by the underlying

system and could be anything from the memory associated with a computation to

the storage facilities provided by the operating system. User-defined objects are

also considered to be resources since their implementation involves the use of

system provided resources. The outermost computation is known as an

application program, and will be referred to as an application in following

Reliable Programming in a Distributed System	 15

discussions to distinguish it from the sub-computations that constitute the

application.

The objects used by a computation may be either local to, or remote from, the

node where the computation is executing. It is assumed that when an operation is

invoked on a remote object, a remote procedure call (RPC) [Nelson 81] is made

which involves the computation (termed the client) sending value parameters to a

server created by the RPC mechanism to manage and invoke the operation

requested on the remote object. When the operation on the object at the server

terminates, the RPC returns the result of the operation. The operation invocation

at the server may also be considered to be a computation, as the implementation

of the operation may involve the invocation of further operations on other objects

in the system.

A distributed computation may behave abnormally if there are node or

communication failures during the invocation of an operation on a remote object.

To discuss these issues requires an understanding of the types of fault which

result in a node or communication failure. The next section describes the

terminology which will be used in section 2.3 to discuss the reliability issues of a

distributed computation, and in section 2.4 to model the most common types of

fault which are assumed to occur.

2.2 Fault-tolerance terminology

The terminology defined in this section is based on that of Anderson and Lee

[Anderson and Lee 81, Anderson and Lee 82]. A system is defined to consist of a

set of components that interact under the control of a design. The components of

the system are also considered to be systems, as is the design.

Reliable Programming in a Distributed System 	 16

The internal state of a system is an aggregation of the external states of all its

components, and the external state of a system is an abstraction of its internal

state. During the transition from one external state to another, the system may

pass through a number of internal states for which the abstraction, and hence the

external state is not defined. There is assumed to be an authoritative specification

of the behaviour for a system which defines the external states of the system, the

operations that can be applied to the system, the results of these operations and

the transitions between external states caused by these operations.

A failure is said to occur when the behaviour of the system first deviates from

that required by the specification. The reliability may be characterised by a

function R(t) that expresses the probability that no failure of the system will have

occurred by the time t. An internal system state is termed an erroneous state

when that state is such that there exists a point (within the specification of the

use of the system), which after further processing by the system, will lead to

failure. The internal part of the system that is incorrect is designated as an error.

The reason for the system reaching an erroneous state could be either the

failure of a component or the design (or both). Since a component (or design) is a

system, it may have failed because of its internal state being erroneous, the

erroneous state being referred to as a fault in the system. A fault could be either a

component fault (which can result in an eventual component failure) or a design

fault (resulting in a design failure). Either of these failures cause the system to go

from a valid state into an erroneous state, the transition being referred to as the

manifestation of the fault.

There are two complementary approaches to constructing reliable systems.

The first, fault prevention, aims to ensure that the system will not contain any

faults by using fault avoidance techniques such as design methodologies, and

fault removal techniques such as testing and verification. The second approach,

Reliable Programming in a Distributed System 	 17

fault tolerance, attempts to prevent faults from causing system failures by

detecting errors as they occur, applying damage assessment techniques to isolate

the extent of the damaged system state, followed by error recovery to transform

the erroneous system state to an error-free state allowing normal operation to

occur. There are two error recovery techniques: backward error recovery or

forward error recovery. During backward error recovery, the state of the

component is replaced by a previous state which is assumed to be error-free,

whereas when forward error recovery is employed, a state which is free from

errors is established by manipulating the current state to produce a new (error-

free) state.

The next section discusses the issues involved in constructing a reliable

distributed computation, and the most common faults which occur. Section 2.4

models these faults, and describes the reliability measures available for masking

and tolerating such faults to produce a reliable distributed computation.

2.3 Reliability issues

The important difference between a centralised and distributed computation

is the possibility that components of the distributed computation may fail

independently. Since a distributed computation lacks centralised control,

components of the distributed computation may be executing normally while

others have failed, resulting in the abnormal behaviour of the distributed

computation. Since such abnormal behaviour is undesirable, fault tolerance

techniques may be employed to ensure that faults in these components do not lead

to failures so that abnormal behaviour does not occur.

To produce a system that operates reliably in the presence of a large number of

different faults however, would require a very large amount of redundancy. The

overhead that would result from large amounts of redundancy is usually

considered to be economically unattractive, so that a tradeoff must be made by

Reliable Programming in a Distributed System 	 18

limiting the number of faults for which tolerance is provided. Consequently,

when constructing a fault-tolerant system, it is assumed that the type of fault for

which no tolerance is provided are rare.

It is therefore assumed that the most common forms of fault which occur in a

distributed system are communication and node faults, which result in

communication failures and node crashes if no fault tolerance techniques were

employed. In the presence of such failures, it is reasonable to require that a

computation behaves consistently. A very simple consistency constraint is that of

failure atomicity, whereby the computation either terminates normally producing

the intended results, or is aborted undoing all effects of the computation. A

distributed computation may be constructed to behave reliably if it meets this

consistency constraint.

The next section models the faults which lead to communication failures or

node crashes, and describes how they may be masked by the remote procedure call

protocol. If the remote procedure call protocol is unable to mask a node or

communication fault then the RPC will terminate abnormally. Atomic actions

[Lomet 77, Gray 78] may be employed to handle the abnormal termination of an

RPC so that the consistency constraint described above can be met.

By replicating resources, a distributed computation may be constructed to

behave in a reliable manner, using atomic actions to handle the abnormal

termination of an RPC, by allowing the operation which resulted in the abnormal

termination of the RPC to be retried at an alternative node with a replica of the

required resource.

Reliable Programming in a Distributed System	 19

2.4 Modelling and masking faults

Both the communication system and the nodes are assumed to be susceptible

to the occurrence of faults. Faults in the communication system are modelled as

being responsible for failures such as the loss, corruption, replication, or change

in ordering of a message (relative to other messages) transmitted between the

client (computation) and its servers.

Communication faults that corrupt messages during their transmission are

assumed to be detected by well known techniques, such as checksums, with the

corrupted message being discarded. The other communication failures which

may occur (the replication, loss, or change in ordering of a message) are managed

by the protocol used to provide communication: the remote procedure call. The

protocol employed by the RPC mechanism will attempt to mask these failures. If

normal termination of an RPC is not possible, due to the number of failures

exceeding that specified by the protocol, then the RPC will terminate abnormally.

Node faults are modelled in a simple manner. A node either works perfectly or

it crashes. If the node crashes then it is assumed that it immediately ceases to

operate (in a non-malicious manner), and restarts executing within a finite

amount of time. A node has two forms of storage: volatile and non-volatile

storage. Data held in volatile storage is lost when the node crashes. Data held in

non-volatile storage is permanent and assumed to be unaffected by the crash.

Non-volatile storage can be implemented using techniques such as stable storage

[Lampson and Sturgis 76] to provide this crash proof capability.

The crash of a remote node will affect communication between a distributed

computation and its servers on the remote node. When the RPC protocol does not

receive a reply to a message sent to a crashed node, the message will be resent

until either a reply is received or the number of retries specified by the protocol is

exceeded. Hence, a remote node failure will also result in the abnormal

Reliable Programming in a Distributed System 	 20

termination of the RPC made by the client. Additional factors may result in the

abnormal termination of an RPC, such as a partition in the communication

network [Davidson et al. 84] producing a situation where a client and one (or

more) of its servers are in different subnets. The client is assumed to be unable to

determine from the abnormal termination of an RPC whether it is due to a

communication failure, node crash, or a network partition.

The crash of the client node will result in the termination of the relationship

between the client computation and its servers, so that if the servers have no

other clients they will become orphan computations (or orphans). If orphans are

not removed then they may consume resources which are required by other

clients. To handle this situation, additional functionality may be added to the

RPC mechanism so that a server can be recognised as an orphan and terminated.

The RPC mechanism employed in the following discussion is assumed to have this

orphan-killing capacity.

Since faults which occur during the execution of an operation on a remote

object may result in the abnormal termination of the remote procedure call, this

effective failure of the RPC must be handled in such as way that the computation

which relies on the RPC is recovered so that the consistency constraint described

in the previous section can be met. To manage this situation, an atomic action

may be used. By enclosing a computation in an atomic action, the system state

modified by the computation may be recovered to the state held at the start of the

computation by aborting the atomic action.

The state restoration required during the abortion of an atomic action is

provided by the failure atomicity property of the atomic action. Given that the

system state consists of objects, then this involves restoring the abstract state of

all objects modified by the computation. State restoration of this type is referred

to as backward error recovery.

Reliable Programming in a Distributed System	 21

Backward error recovery may be provided by a number of techniques

[Verhofstad 78]. For example, the old state of an object can be maintained so that

it can replace the current state of the object when recovery is required.

Alternatively, sufficient information about changes to the state of an object may

be recorded, enabling the operations performed to be sequentially undone in

reverse order, or compensating operations invoked, to produce the original object

state.

To ensure that the new system state established by a successfully terminating

computation is not lost through subsequent system failures, the permanence of

effect property of an atomic action may be employed. Since the system state

modified by a computation is simply the collection of objects utilised by the

computation, those objects should become permanent when the atomic action

which encapsulates the computation successfully terminates. Ensuring the

permanence of an object involves saving its volatile state in non-volatile storage.

An object which can be saved in non-volatile storage is said to be persistent

[Atkinson et al. 83a].

An atomic action will also ensure that the consistency of the system is

maintained during both client and server node failures, since the system state

modified by the computation encapsulated by an atomic action will not be made

permanent until the action successfully terminates. The process of successfully

terminating an atomic action is known as committing an action, and involves the

use of a commit protocol [Gray 78]. A node failure before the commit point (the

point which successfully terminates the action) will undo the effects of the

computation encapsulated by the atomic action.

As noted above, to guarantee the consistency of the system when an RPC

terminates abnormally, the system state modified by the computation that

invoked the RPC should be restored to its previous state. Since an atomic action

Reliable Programming in a Distributed System 	 22

may be nested [Davies 73, Reed 78, Moss 81] within another (containing or

parent) atomic action, the possibility of the abnormal termination of an RPC may

be handled by enclosing the computation in a nested atomic action that may be

aborted independently of the main computation. If the abnormal termination Was

a result of the failure of the server node then, after suitable damage assessment,

an attempt may be made to tolerate the server node failure by retrying the RPC

at an alternative node with an equivalent resource.

During the commitment of a nested atomic action, the objects modified by the

computation encapsulated by the action need not become permanent since the

containing action may abort and recover the state of those objects. Hence, the

commitment of a nested action only involves making visible to the containing

action the objects which have been modified, and as a result require state

restoration should the containing action abort.

When the outermost (top-level) atomic action commits, a commit protocol is

required to ensure that either all or none of the persistent objects that have been

modified are made permanent, since a node failure during the execution of the

action commit would be liable to leave inconsistencies as a subset of the new

object states may be lost before they can be made permanent. In effect, the

commit protocol ensure the atomicity of the commit operation.

In the above discussion, the system state accessed by a computation is

assumed to be the collection of objects a computation may invoke operations upon.

To fully understand the issues surrounding the use of objects to model system

resources requires an understanding of the object-oriented paradigm. The next

section expands on the description given in the last chapter, enabling the features

of the paradigm to be employed with no further explanation when constructing

classes whose instances are recoverable and persistent.

Reliable Programming in a Distributed System	 23

2.5 Object-oriented issues

An object-oriented language provides three properties which support the

construction of objects: data abstraction, encapsulation, and inheritance. An

object is an abstraction that has state and behaviour, with the behaviour being

defined by a set of operations that are available on the object. The operations and

the internal state of the object are defined by a class declaration, so that objects

are instances of a class, and all instances of the same class share identical

behaviour.

To support the abstraction properties, object-oriented languages provided

facilities for data abstraction and encapsulation. These two properties enable the

features of a resource to be considered abstractly by both the implementor and

user of a class. The remaining property that is assumed to be provided by an

object-oriented language is inheritance which enables the features of an existing

class to be re-used by a newly declared class, thereby avoiding the re-

implementation of common features.

This section describes these three properties in greater detail using examples

written in the language C++. C++ [Stroustrup 86] is a superset of the language C

[Kernighan and Ritchie 78], adding features which enable C++ to be considered

as an object-oriented language. During the discussion of each of the properties, a

number of the features of C++ will also be described.

2.5.1 Data abstraction and encapsulation

Perhaps the most important property of an object-oriented language is data

abstraction. Data abstraction enables an object to be considered abstractly in

terms of its behaviour rather than its state. For instance, an object that

represents the date (the day, month and year) could have operations which enable

the date to be set and the date maintained by the object retrieved. How the actual

Reliable Programming in a Distributed System 	 24

date is maintained as the internal state of the object need not concern the user of

the object, they need only be concerned with the behaviour, defined by the two

operation provided by the class of the object. This is the power of data

abstraction, since the implementation of the abstraction is removed from the

behaviour that the abstraction provides.

Figure 2.1 illustrates one method of implementing a class that represents the

class Date

{
int day;
int month;
int year;

public:
Date(string);
"Date();

void	 set_date(string);
string get_date();

Figure 2.1: The class Date

date (in the language C++). In this example, the date is represented by the class

Date which provides two operations to set and read the date (s e t_d ate and

g e t_d ate respectively). In the class Date, the internal representation of the

date is implemented as three integers which, since both operations return or take

the date in the form of a st ri ng, requires the implementation of the class to

convert the internal representation of the date to or from a st ri ng when

required.

An alternative implementation of the class Date could maintain the date as a

St ri ng so that a conversion from the internal representation to the value

returned by the g e t_d at e operation would be unnecessary. The encapsulation

provided by an abstraction supports this ability to change the internals of a class

without affecting users of the class when the interface (the operations provided by

the class) does not change.

Reliable Programming in a Distributed System 	 25

The class Date illustrates a few important features of the language C++. The

operations which follow the public label may be invoked by a user with the

exception of the two operations Date and Date. The Date operation is known

as a constructor, and provides a means by which the internal state of an object

may be initialised. In this example, the constructor takes a st ring as an

argument so that a Date object will always have an initial value. The 'Date

operation is the inverse operation and is known as the destructor. In the

implementation of the destructor, any garbage collection required by an instance

of the class may be performed before the Date object is destroyed. In practise, the

language's compiler inserts calls to these operations when an instance of the class

comes into and goes out of scope in an application.

2.5.2 Inheritance

When an object-oriented language supports inheritance, a new class may be

declared that is derived from an existing base class, inheriting the state and

operations of the base class, thereby avoiding the re-implementation of the

functionality provided by the base class. If a derived class is only allowed a single

base class then the language used to declare the derived class supports sub-typing

inheritance, e.g. Smalltalk-80 [Goldberg and Robson 83]. When a class is allowed

one or more base classes then the language supports multiple inheritance, e.g.

Owl [Schaffert et al. 86]. Figure 2.2 illustrates the difference between sub-typing

(Figure 2.2(a)) and multiple (Figure 2.2(b)) inheritance. The base class may also

be termed the super class of the derived class, and the derived class is a sub class

of the base class.

To illustrate how inheritance may be employed, consider a class that provides

the abstraction of a fixed-size character buffer (called Buffer). Blocks of

characters may be placed in the buffer using the operation put, or retrieved using

the operation g et. Each p ut or get operation moves the current position in the

-
z

nn•nnn11.

A
B

/

Reliable Programming in a Distributed System 	 26

Y1
	

1 372 I

	

D

A I V
1
X1

I

	

X2
	

I w I

(a)
	

(b)

Figure 2.2: Subtyping and multiple inheritance

buffer, so that for example a sequence of p u t operations will place the data

(passed as a pointer to a character array - the c h a rs notation) in contiguous

storage in the buffer. The p u t and g e t operations return the number of

characters added or retrieved since the buffer size is bounded and both operations

may move the current position to the end of the buffer. To move to a particular

position in the buffer an operation called posit ion is provided. The class

declaration for the class Buff er is illustrated in Figure 2.3.

class Buffer

{
char buffer[BufferSize];
int buffer position;

public:
Buffer();
-Buffer();

int put(chars,int);
int get(char,o;int);
int position(int);

} ;

Figure 2.3: The class Buffer

Under certain circumstances a buffer that is circular, where once the end of

the buffer is encountered the current position moves back to the beginning of the

buffer, may be more suitable. Since the class Buffer already implements much

Reliable Programming in a Distributed System 	 27

of the functionality required by a circular buffer, a new class which represents a

circular buffer may employ inheritance to avoid re-implementing this common

functionality. The declaration of such a class (called Ci rcul a rBuf f e r) is

illustrated in Figure 2.4.

class CircularBuffer : Buffer

i
int buffer_end;

public:
CircularBuffer();
"CircularBuffer();

int put(char.;int);
int get(chars,int);

Figure 2.4: The class Ci rcu 1 a rBuf f e r

This declaration uses the C++ notation:

class DerivedC1 assName:BaseClassName

to define the inheritance of Buffer by Ci rcul a rB uffe r. In the

implementation of the class C i rcu 1 a rB uf fer the inherited operations put and

g et are refined so that the class provides the abstraction of a circular buffer. To

maintain the circularity, C i rcu 1 a rBuff e r adds extra state (the integer

buf ferend) to the state that is inherited from the class Buffer._

In systems such as Smalltalk-80 [Goldberg and Robson 83] and Trellis/Owl

[Schaffert et al. 86], inheritance is used to construct a class hierarchy, where all

classes share a root class, and all types are represented as classes. Hence, objects

represent all resources so that there is a uniform way of accessing and managing

objects.

For a good set of guidelines on the use of types, inheritance and the

construction of class hierarchies using an object-oriented language, the interested

reader is referred to [Halbert and O'Brien 87].

Reliable Programming in a Distributed System 	 28

2.6 Arjuna

Earlier sections of this chapter have described the distributed environment in

which a computation must operate. This section expands on this description to

detail the tools provided by Arjuna for constructing a reliable distributed

computation by briefly describing how objects may be recoverable, persistent and

provide concurrency control, and how such objects are controlled by an enclosing

atomic action. These descriptions introduce the research presented in this thesis,

which will be described in greater depth in the next three chapters.

The basic physical components of the distributed environment consist of a

number of workstations, each running the UNIX operating system [Ritchie and

Thompson 78], connected together by an Ethernet local area network [Metcalfe

and Boggs 76]. Each application program constructed using the tools provided by

Arjuna executes in this distributed environment.

The tools Arjuna provides are all constructed using the language C++, and

consist of a stub generator and a number of C++ classes. The classes support the

construction of user-defined classes, instances of which are recoverable [Dixon

and Shrivastava 87], lockable [Parrington and Shrivastava 88], and persistent

[Dixon et al. 87] (such objects will be termed Arjuna objects in the following

discussion). The ability to declare nested atomic actions in an application is

supported by another Arjuna-provided class. The remainder of this section will

briefly describe each of these components, beginning with stub generator.

To provide transparent access to remote objects Arjuna employs stubs [Birrel

and Nelson 84] which are created using the stub generator [Wheater 88a]. The

difference between a purely local program and a distributed program that

employs stubs is illustrated in Figure 2.5. An application operates on an

interface provided by the class's (local) implementation in the case of a local object

Server Stub
Implementation

Class
Implementation

Client
Program

Client Stub
Implementation

t
Procedure Call

+

Stub objects

Remote
ProcedureAt.--

Calls

(b)

t
Procedure Call

f

Local objects

-).	 Application Level

Stub Level

-.le 	 -).-
	 RPC Level

-JD- Message Passing Level

-de -- Network -----
	 Kernel

Application Level

Stub Level

RPC Level

Message Passing Level

Kernel

Reliable Programming in a Distributed System
	 29

Client
Program

Class
Implementation

t
Procedure Call

'i

Local objects

(a)

Figure 2.5: Local and distributed programs

(Figure 2.5(a)), whereas it operates on a client stub interface in the case of a

remote object (Figure 2.5(b)).

The stubs add an extra level to the hierarchy of layers provided by the remote

procedure call system. This communication hierarchy is illustrated in Figure 2.6.

Local
	

Remote

Figure 2.6: The communication architecture

The communication between a client stub object and its server occurs via a remote

procedure call mechanism called Rajdoot [Panzieri and Shrivastava 881 which

includes a mechanism for the detection and termination of orphan computations.

Reliable Programming in a Distributed System	 30

Arjuna provides nested atomic actions for constructing, and structuring,

reliable computations. The integrity of an Arjuna object is guaranteed, despite

communication failures or node crashes, providing that the operations invoked on

the object occur within the scope of an atomic action. Atomic actions are

implemented by the class Atom i cAct ion which provides a number of operations

that are associated with the abstraction of an atomic action. The implementation

of the class Atom i cAct ion manages a number of sub-components (termed

records) which are responsible for ensuring that the three properties associated

with an atomic action (failure atomicity, serialisability, and permanence of effect)

are met. To create atomic actions in an application program, instances of the

class At om i cAct ion may be declared. By invoking the operations provided by

this class, the computation bounded by the operation which starts the action

(Beg i n) and the operation which terminates the action (either Comm i t or Abort)

will be encapsulated by the resulting atomic action and the outcome of the Arjuna

objects accessed within this computation controlled. Multiple instances of the

class Atom i cAct io n, and the corresponding Begin invocations, result in nested

atomic actions.

Arjuna objects are the only objects managed by an Atom i cAct ion object, and

are instances of user-defined classes that have been derived from an Arjuna-

provided class called Loc k CC. In this way, functionality common to all objects

accessed within an atomic action is provided by exploiting inheritance to inherit

common features from the class Lo c kCC, and its base class Object. Both

LockCC and Object provide operations which must be invoked in the

implementation of a user-defined class to coordinate the management of a user-

defined object with an executing atomic action implemented by the class

AtomicAction.

Reliable Programming in a Distributed System 	 31

The operation provided by L oc kCC which must be invoked in the

implementation of a user-defined class is called Set Loc k. As its name suggests,

Se t Lock sets a lock (which is an instance of the class Lock) on the instance of the

class and adds information about the lock to the enclosing action. In this way, the

concurrency control provided by L oc kCC operates in conjunction with the atomic

action to guarantee the serialisability property. Locks acquired in a nested action

are propagated to their parent action when the nested action commits, and are

released only if an action aborts or the action committing is the top-level

(outermost) atomic action, thereby meeting the two-phase locking rules [Eswaren

et al. 76] which are needed to guarantee serialisability.

Loc kCC is itself derived from the class Oh ject which provides the support for

maintaining the state of an object. Ob j ect also provides an operation (called

mod if ie d) that will be inherited by a derived class, and which must be invoked

to ensure that instances of the class are recoverable and persistent When this

operation is invoked, the old state of the object is saved, and information added to

an enclosing action. This information enables the enclosing action to recover the

object using the old state, should the action be aborted. In addition, the

information is employed by a top-level action to decide which objects should

persist by having their current state saved in the object store.

As an example consider the Arjuna class X (illustrated in Figure 2.7) which

class X : public LockCC

(
state of X

public:
operations provided by X

Figure 2.7: The Arjuna class X

has been derived from L oc kCC and invokes the two inherited operations when

accessed. Figure 2.8(a) illustrates how the state of an instance of class X will

state of x

state of LockCC

state of Object

(a)

operations of x

operations of LockCC

operations of Object

(b)

SetLockmodified

Reliable Programming in a Distributed System 	 32

interface to x

Figure 2.8: The state and interface of an Arjuna class called X

consist of the state inherited from both Ob ject and Loc kCC, and Figure 2.8(b)

shows how the interface to a class is also extended by the operations inherited

from Loc kCC and Ob j e c t. In this way, each Arjuna object contains extra

functionality which assists the atomic action to control the object when it is

accessed within the atomic action's scope.

The type of concurrency control provided by the class Loc kCC, in conjunction

with the class that implements the locks (the class Lock), is the single

writer/multiple reader approach. It is possible however, to provide higher levels

of concurrency by utilising the semantics of a class to refine the operations

provided by Lock, thereby providing type-specific locking. Since the default

locking provided by Lock and type-specific locking may be mixed, the

concurrency control provided by Arjuna can be very flexible.

Similarly, the object state management provided by the class Object may be

overridden to provide alternative forms of recovery control which may be tailored

to the object being managed. Such flexibility is the result of the use of inheritance

for adding the extra functionality to a class, as with inheritance it is natural to be

able to refine existing implementations.

Reliable Programming in a Distributed System 	 33

To ensure the permanence of effect property of an atomic action, Arjuna

objects are persistent. Each persistent object is stored in its passive form in an

object store until it is required by a computation. When a computation wishes to

use a persistent object, the object is said to become active as it moves from the

(non-volatile) object store to the (volatile) memory associated with the

computation. The control over the movement of the state of an object is split

between the object itself and the state management record of the atomic action.

The activation of an object is performed by the object, whereas the deactivation is

controlled by the atomic action. In this way, the newly established state of a

persistent object will only become permanent providing that modifications to the

object occurred within the scope of an atomic action (and that the atomic action

and its parents commit).

The object store, that manages and locates the state of objects which are

instances of classes that are ultimately derived from the class Object, is

implemented by the class Ob jec tSto re, which is itself ultimately derived from

Object. Since the class Atom i cAc t ion is also derived from Object, the state

of instances of Atom i cAc t ion may also be saved in the object store.

To locate the persistent state of an object in the object store so that the object

may be activated requires a means of uniquely naming the object, and mapping

this unique name to the non-volatile state of the object in the object store. Since

all objects held in the object store will be instances of a class which has the class

Object as its root class, a common means of naming is provided by this root class.

An instance of the class Uid is declared as a part of the state of the class Object.

Uid provides the abstraction of a unique identifier, and is implemented using a

method which creates a value based upon the host identifier of the node where the

instance is created and the time of the instance's creation. Class 0bject provides

Reliable Programming in a Distributed System	 34

operations to access the value of the U i d instance contained in the state provided

by Object.

An operation is provided by the class Object for activating a persistent

object. This operation (called act i v ate) employs the value of the U i d to locate

the persistent state in the object store, so that to activate an existing persistent

object the U i d value for the object must be known. To avoid having to operate at

the level of unique identifiers, higher level naming schemes are available (such

as strings) with a name server mapping the higher-level name to the U i d value.

Since the class Atom cAct ion is also derived from Ob jac t, atomic actions

may be named and accessed in the same way as any other object in the system. A

single instance of the class Atom i cAct ion is an atomic action, and multiple

instances may be created to produce nested atomic actions (nesting occurring

when the action is begun). Each new nested atomic action maintains a reference

to its parent (containing) action when it is created, thereby enabling the action

hierarchy to be traced by executing an operation provided by Atom I cActi on

that returns this reference.

This concise description of the features of Arjuna will be expanded in the

following chapters as the design and implementation of the mechanisms that

support atomic actions, and manage the state of an object, are described. The

class Object which supports the management of the state of an Arjuna object,

the object store, and the class Atom i cAct i on which provides the abstraction of

an atomic action are all part of the research described in the following chapters.

The class Loc kCC which provides concurrency control is the work of Parrington

[Parrington 88] and is only briefly discussed in later chapters. To provide a

comparison of the features of Arjuna with existing approaches to a reliable

distributed programming system, the following section reviews a number of

projects and ends by briefly comparing the important features of each approach.

Reliable Programming in a Distributed System 	 35

2.7 A review of reliable distributed object-based systems

There are, and have been, a number of research groups occupied with

constructing a distributed programming system that address the same issues as

those addressed by Arjuna. This sections briefly reviews these systems and ends

by comparing each approach with that taken by Arjuna.

2.7.1 Argus

Argus [Liskov 84, Liskov et al. 87, Liskov 88] is a reliable distributed

programming language, based on the language CLU [Liskov et al. 81], which

provides support for nested atomic actions. In Argus, a distributed program

consists of a collection of operations on guardians [Liskov and Scheifier 83], which

are stable, crash resistant object managers that provide various services. Each

guardian provides a set of handlers which constitute the public interface to the

objects it manages. Each handler invocation creates a new process and nested

atomic action to manage the call.

To support atomicity Argus provides atomic data types [Weihl and Liskov 85],

instances of which are both serialisable and recoverable. In addition, the

instances of atomic data types, termed atomic objects, are recoverable and

persistent as their state is (only) saved on stable storage when a top-level action

that has modified the object commits. The language provides a number of built-in

atomic data types and constructs [Weihl 84] which enable user-defined atomic

data types to be constructed. The built-in atomic types employ the multiple

reader/single writer policy for locking, whereas user-defined atomic types can

implement type-specific concurrency control to provide increased concurrency.

Reliable Programming in a Distributed System	 36

2.7.2 Clouds

Clouds [Allchin and McKendry 83] supports robust distributed applications

which consist of objects and actions using an approach based on an operating

system kernel [Spafford 86] and associated language (Aeolus [LeBlanc and

Wilkes 85]). The objects which Clouds provides are location independent and may

be controlled using nested atomic actions, the implementation [Kenley 86] of

which is based on work by Allchin [Allchin 83].

The language Aelous provides support for objects, but not inheritance, and

uses the support provided by the Clouds kernel to facilitate the construction of

reliable distributed applications. Objects are specified in Aelous using an object

definition part which describes the internal state, operations, and class of an

object. In Aelous the term class is used to define the form of object management

that objects of a particular type require. A variety of different classes are

provided, enabling instances to be managed by the Aeolus run-time system, the

Clouds kernel, or action event handlers provided by the implementor of the type.

To guarantee serialisability, locks may be defined by the implementor of a

type or generated by the compiler for the language. For the compiler to generate

locks, the keyword autosynch is required in the object definition part along with

the keywords modifies and examines in the relevant operation declarations.

2.7.3 Profemo

The environment provided by Profemo [Nett et al. 85, Nett et al. 86] consists of

an object-oriented language and operating system executing on specially

designed hardware. The hardware provides support for the management of an

object's state, and includes an implementation of stable storage for the long-term

storage of objects.

Reliable Programming in a Distributed System	 37

The language supports type inheritance for constructing new types, and the

system reflects the type hierarchy using instances of a type object which maintain

the compiled operation code for the objects the type object represents. All objects

are named using a unique identifier and located using the Global Object Manager,

thereby providing system-wide transparent access. In addition, the Profemo

object model makes a distinction between objects which may be shared, and

therefore require concurrency control, and local objects which may not be shared

and are purely local to an object or program. Concurrency control takes the form

of locking with the conventional multiple reader/single writer rules.

An interesting aspect of the action management in Profemo is the separation

of the successful completion of an action from its commitment, so that an action

may have completed but its effects are not made permanent allowing the

possibility of an abort. Consequently the system does not explicitly prevent

cascading aborts (the domino effect [Randell 75]) since objects accessed by a

completed action are released when it has completed rather than committed,

thereby allowing greater concurrency. To ensure that failure atomicity is

possible, the dependencies that may arise from the use of uncommitted objects are

maintained in a recovery graph so that, if necessary, a global recovery line (the

point at which there is no dependency between concurrent computations) can be

found using a chase protocol [Merlin and Randell 78] to return the system to a

consistent state.

2.7.4 Camelot/Avalon

The Camelot system [Spector et al. 87] is the latest undertaking from the team

which developed TABS [Spector et al. 85]. Camelot is a general purpose system

which supports nested atomic actions operating in a distributed environment. An

object-oriented programming environment is being provided by the Avalon

project [Herlihy and Wing 861 which is employing linguistic constructs, in the

Reliable Programming in a Distributed System 	 38

form of extensions to languages such as C++, on top of the facilities provided by

Camelot to enable atomic actions to be employed in an application.

Camelot relies on the support provided by the Mach [Jones and Rashid 86]

operating system for inter-node communication and an interface specification

language and compiler called Matchmaker [Jones and Rashid 86]. Objects are

maintained by data servers which can accept multiple requests for service. Each

object is named by the port of the object's data server, and a logical object

identifier that identifies the object in that data server. Atomic action commit

information and object modification records are written to a log which is

implemented using stable storage techniques. Such information is only written

when a top-level action commits.

The approach adopted by Avalon [Detlefs et al. 87] to the construction of

objects that operate within the atomic action environment supported by Camelot

is clearly influenced by Arjuna. The support for synchronisation and recovery is

provided by a number of classes (called re s i 1 i e n t, atomic, and dynamic), so

that new classes may be derived which inherit the basic functionality in a similar

manner to the Arjuna classes Object and Loc kCC. The Avalon approach only

differs from Arjuna in that Avalon classes may use the underlying support

provided by Camelot.

2.7.5 Other related projects

There have been various other systems which address a number, if not all, of

the issues Arjuna is addressing. This section briefly describes these systems.

The Eden project [Almes et al. 85, Black 85] consists of an object based

programming system which, although not directly supporting atomic actions,

provides mechanisms which assist in the construction of reliable distributed

applications. Objects defined in the Eden programming language (called Ejects)

Reliable Programming in a Distributed System 	 39

have the ability to checkpoint their state and are kept active between accesses by

applications. The successor to Eden is Emerald [Black et al. 86, Black et al. 87],

an object-based language for constructing distributed applications. The aim of

the Emerald project is to simplify the programming of distributed applications

through language support rather than address reliability issues.

The ISIS project [Birman 86] was primarily concerned with providing

reliability and availability through replication. By replicating objects on

different nodes in the network, the unavailability of an object due to the crash of

the node where the object is located can be tolerated, since the inaccessible object

can be replaced by a replica which has been kept in synchronisation with the

unavailable object. The system also supports nested atomic actions, and makes

extensive use of broadcast primitives to maintain consistency between the

replicated objects. The successor to ISIS is ISIS2 [Birman and Joseph 87], a

toolkit for distributed programming.

There is growing interest in persistent programming, and perhaps the first

example was the language PS-Algol [Atkinson et al. 83b] which added persistence

to an existing language S-Algol [Morrison 79]. A number of operations have been

introduced into the language to enable all data objects to persist. In particular,

functions are provided to open and close a database (the designer's term for an

object store) in which a persistent object is to be explicitly saved. Objects are not

recorded in the database until a commit procedure is invoked. The transfer of an

object's state is managed by the Persistent Object System (POMS) [Cockshot et al.

84]. When the run-time system copies an object from the program's heap to the

database, any pointers in the object are converted into the persistent identifiers

(pids) of the objects referenced. When an object is restored from the database any

pids are left in the object, with attempts to de-reference a pid causing a trap into

POMS which automatically restores the referenced object from the database.

Reliable Programming in a Distributed System 	 40

The successor to PS-Algol is a new programming language called Napier

[Atkinson and Morrison 87] which supports persistence as a part of the language

rather than through functional extensions (as with PS-Algol). Persistence is also

being supported in distributed systems such as Guide [Baiter et al. 88], an object-

oriented operating system that provides nested atomic actions. Another project

that has constructed a new operating system which supports objects is the

COSMOS project [Blair et al. 86, Nicol et al. 87]. The COSMOS kernel includes a

database which provides storage and version management for objects, and

support for single level atomic actions. An alternative approach to persistence is

to provide hardware support, illustrated by the REKURSIV [Harland et al. 861

architecture which supports an object store called OBJEKT [Harland and Beloff

87]. OBJEKT is a single level storage system that effectively provides a large

object memory, automatically moving objects between volatile and non-volatile

storage in response to demands on the system.

The number of projects which are beginning to address the areas of research

that the Arjuna project has been addressing, continues to grow rapidly as the

importance of constructing reliable object-oriented distributed applications

becomes apparent. The next section compares the approach taken by the Arjuna

project with the projects reviewed in greater length at the start of this section.

2.7.6 Comparison with Arjuna

Supporting atomic actions which operate on objects in a distributed

environment can be approached in a number of ways, as the above reviews show.

Extending or defining a new language is one approach taken by a project such as

Argus. Alternatively, a new operating system can be constructed, with a

language relying on the underlying support it provides, in the manner of the

Clouds project. Arjuna, however, has taken a different approach. Since an object-

oriented language is employed, Arjuna provides the facilities required to support

Reliable Programming in a Distributed System 	 41

atomic actions by employing the features of the language to effectively extend the

language without having to modify it. Since no direct modifications are made to

the language, and the support for objects controlled by an atomic action is

provided through inheritance, this approach is very flexible because it allows

various techniques for access and state control to be employed and operate in

parallel with each other. For example, the state of an object may consist of a

number of objects each providing their own form of recovery or concurrency

control. One object may rely on the default locking scheme provided by the Lock

class, whereas another may use a special lock class that provides locking specific

to the semantics of the class of the object.

Another difference between the projects reviewed is each project's approach to

object management. The difference lies in the lifetime of the process which

manages an object. In Argus, for example, an object may only be accessed by

invoking the handler calls provide by the object's guardian. Each guardian exists

until it is explicitly deleted. This approach may be contrasted with that employed

by Arjuna (and Clouds), where an object is activated by a server process which

was created for the object, with the server existing only as long as there is a client

for the object. When the last client terminates, the server also terminates.

Hence, the process managing an object is only active when it is required, thereby

consuming less system resources. A good example of the resources required by an

Argus type approach to object management, is the requirement for at least 8

megabytes of memory to run Camelot release (0.98) [Spector 88]. The

disadvantage with the Arjuna approach is that the first operation invoked on an

object will take longer than subsequent invocations, as the server must be created

and the object activated. Another disadvantage is that method employed to

manage the state of an object in non-volatile storage is of greater importance,

since inefficient storage will also affect the time taken to activate an object. For

object managers, such as the guardians provided by Argus or the data servers

Reliable Programming in a Distributed System 	 42

provided by Camelot, the state of an object held in non-volatile storage is only

required when the node crashes and the server process is recreated, so the way

that an object's state is stored in non-volatile storage is less critical.

The level of support for atomic actions and the control over their use, varies

from project to project. For instance, in an application constructed using Argus

all remote invocations occur within an implicity provided nested atomic action.

Such atomic actions are in addition to any explicit declarations of atomic actions

the implementor of the application may provide. In Arjuna, there is no implicit

declaration of a nested atomic action as part of a remote procedure call. An

atomic action must be explicitly declared in an application, but may also be

declared in the implementation of a class to ensure that operations on the class

occur within the scope of an atomic action. The implementor of a class or

application has complete control over any atomic actions they may declare.

Of the systems reviewed, Clouds is perhaps the most uniform in its use of the

object paradigm for modelling and naming resources. Arjuna, however, has taken

a completely uniform object-oriented approach to all resources associated with the

provision of support for atomic actions. State management information is

maintained as objects in Arjuna, locks are objects, and even atomic action are

objects. Such an approach may be contrasted with a system such as Profemo

where almost all resources are objects, yet the state of an object, required to

ensure the object is recoverable, is not maintained as an object and as a result

cannot be saved in the object store provided for all other objects.

Reliable Programming in a Distributed System 	 43

2.8 Concluding Remarks

The aim of this chapter was to describe the environment in which a distributed

application may be constructed. In the first half of this chapter, this took the form

of describing the types of fault that are assumed to occur in a distributed

computation by defining the fault models for the two main components of' the

distributed environment: the communication system and the node. Given these

models, the techniques that may be employed to maintain the consistency of the

system in the face of node crashes and communication failures were presented. In

addition, the method used to model resources, the object-oriented paradigm, was

described, and issues involving its use discussed, using examples written in the

implementation language chosen by Arjuna.

Later sections of this chapter described how the Arjuna project supports

atomic actions operating on objects in a distributed environment. After this

description, a number of related projects which are addressing the same issues

were briefly reviewed. The approaches taken by these projects were contrasted

with the approach taken by Arjuna.

This chapter included a brief description of the way in which support for

nested atomic actions is provided. The next chapter expands on this description,

concentrating on the issues involved in designing and implementing the support

for atomic actions in a non-distributed environment. The design of a distributed

atomic action is also briefly presented. The next chapter assumes that the objects

accessed within the scope of an atomic actions are recoverable, persistent, and

provide concurrency control. The methods used to ensure an object can be

recoverable and persistent will be described in the chapters four and five.

Constructing Atomic Actions
	 44

Chapter 3

Constructin
Atomic Actions

An atomic action is a control abstraction that may be used to guarantee the

integrity of the system state modified by the computation it encapsulates, and

may be characterised by the three properties it exhibits: failure atomicity,

serialisability, and permanence of effect. This chapter discusses the issues

involved in implementing atomic actions which provide the above three

properties in a distributed system. In addition to this implementation level view

of atomic actions, this chapter also discusses how atomic actions may be used to

structure and control the computations that make up an application.

A description of the distributed system model employed throughout this thesis

was given in the last chapter. In this model, the resources provided by the

distributed system are modelled as objects, so that the system state consists of a

collection of objects. An atomic action must therefore manage the objects a

computation may access to provide the properties associated with an atomic

action. Since all resources are objects, the following discussions will assume that

atomic actions are also objects, and will employ the object-oriented terminology

defined in the last chapter when discussing the operation of an atomic action.

This chapter begins by describing the atomic action model, assumed in this

thesis, and the sequence of events that occur during the execution of an atomic

action. The following section then discusses the functionality needed to provide

the three properties associated with an atomic action. Given the model and

functionality required to provide the abstraction of atomic actions, the middle

sections of the chapter discuss the design and implementation of atomic actions

which manage objects that are local to the application in which the atomic action

Constructing Atomic Actions 	 45

is declared. After the description of a non-distributed atomic action

implementation, and issues such as commitment and crash recovery, the

following section describes how the implementation may be extended to enable

atomic actions to manage remote objects. The final sections describe how an

atomic action may be used in an application and how the atomic action

boundaries may be enforced.

3.1 The atomic action model

In the model described in this section, an atomic action is assumed to be a

passive entity that controls the outcome of the computation it encapsulates.

When discussing atomic actions however, phrases such as running or executing

may be employed for convenience. In addition, when the term computation is

used in the context of an atomic action, the term refers to the computation

encapsulated by the atomic action unless explicitly stated otherwise.

Each computation accesses resources which are modelled as objects. An object

may be newly created by the computation or may be an existing (persistent)

object. A persistent object is normally maintained in a passive state (in an object

store) until it is required by a computation, at which point it is activated by being

copied into the volatile storage associated with the computation. As a result it is

assumed that a computation only manipulates the volatile state of an object (this

restriction will be lifted in the next chapter when the discussion moves on to

constructing recoverable objects).

There are assumed to be three primitive operations which may be used to

declare and control an atomic action, these are: begin, commit, and abort. The

begin operation starts an atomic action that may be terminated successfully by

the commit operation. Using the terminology defined in [Anderson et al. 78] to

describe recovery, the begin operation establishes a recovery point and the commit

operation discards a previously established recovery point. The resulting region

B M time
	›-

begin B
begin A	 VcommitA

	_.----- commit B

Constructing Atomic Actions	 46

between the begin and commit operations (which is the computation) is termed a

recovery region. Hence, a recovery region corresponds to an atomic action.

An atomic action provides automatic backward error recovery through the

abort operation which restores the objects modified by the computation between

the begin and abort operations to the state held at the beginning of the atomic

action. To provide this capability, management information must be recorded

with the atomic action about the objects accessed during the execution of the

computation. Once the commit operation is invoked, this management

information will be discarded in such a way that it will not be possible to recover

the state of the objects to the state they held at the beginning of that atomic

action.

In this model, atomic actions may be nested within other atomic actions, and

may be represented using an action diagram such as that shown in Figure 3.1. In

Figure 3.1: Nested atomic actions

this figure an atomic action called B is nested within an outermost or top-level

atomic action called A. It is assumed that only one atomic action can be active at

any one time in an application, so that nested atomic actions may not overlap.

Constructing Atomic Actions 	 47

Once a nested atomic action (such as B) terminates, control passes to the parent or

containing action (A in the above example).

The boundaries of an atomic action define the scope of the atomic action. The

scope is considered to be the region bounded by the begin and corresponding

commit operations. If during the execution of the computation it becomes

necessary to abort the atomic action then the abort operation returns control to

the point immediately after the commit operation (to ensure that the scope of

aborted and committed atomic actions are the same).

Given the control structure described above, the execution model of an atomic

action may be described. By executing in isolation to completion, an atomic action

maintains the consistency of the objects accessed by the computation it

encapsulates.

The term "in isolation" implies that atomic actions may execute in parallel

with other atomic actions which require the same object, but the implementation

guarantees that the concurrent atomic actions appear to execute, and access the

shared objects, in a serial execution order (i.e. one after another). This capability

is provided through the serialisability property exhibited by an atomic action,

and requires concurrency control techniques to be employed when shared objects

are accessed by concurrent computations.

The term to completion" refers to the failure atomicity and permanence of

effect properties of an atomic action. Failure atomicity guarantees that either all

or none of the modifications to the objects are made, and permanence of effect

ensures that once a modified object is made permanent, the state of the object is

guaranteed to remain in a consistent state despite subsequent system failures. If

an atomic action is unable to execute to completion then the previous consistent

state of all objects that have been modified must be restored. Recovery is

Constructing Atomic Actions	 48

supported by the failure atomicity property and requires the objects to be

recoverable.

If an atomic action is interrupted, for example as a result of the crash of the

node where the atomic action is sited, then the intermediate object states

established by the computation, and the management information required by

the atomic action, are all assumed to be lost as they are maintained in volatile

storage. The result therefore, is the termination of the atomic action, and the

effective recovery of the system to the state held at the beginning of the atomic

action. During the commitment of an atomic action, a commit protocol is required

to achieve the atomicity of the commit operation despite such node crashes or

communication failures.

The commit protocol assumed by the following discussions is the well known

two-phase commit protocol [Gray 78]. During the first phase of this protocol, an

attempt is made to place the system in a state which will be unaffected by

subsequent node crashes. If the successful completion of first phase is not

possible, due for instance to a remote node crash, then the atomic action must be

aborted and the system state recovered to that held at the beginning of the action.

If the first phase succeeds then the second stage may proceed to make permanent

the modified system state.

To avoid inconsistencies during the update of permanent state the commit

protocol must maintain management information in non-volatile storage so that

a node crash during either phase can be tolerated and a consistent state produced.

As soon as a node recovers from a crash, a crash recovery mechanism is assumed

to execute and by utilising the management information held in non-volatile

storage, the consistency of the modified objects may be established. When a

nested atomic action commits it is not necessary to maintain the management

information required by the protocol in non-volatile storage since a node failure

begin

toplevel_abort	 abort

toplevel_commit nested commit_

commit	 abort	 Operations

top-level	 nested	 action type

/\

toplevel_prepare nested_prepare

action
events

begin

Constructing Atomic Actions	 49

will result in the abortion of the atomic action as the volatile state of the system is

lost.

As an aid to the discussion of the execution of an atomic action, the sequence of

events that occur as each of the three operations is invoked can be considered in

terms of a series of action events and changes in the state of an action. The next

sub-section defines these events.

3.2.1 Atomic action events

In effect an atomic action has seven events associated with the three basic

operations (illustrated in Figure 3.2). The begin and abort operations each result

Figure 3.2: Action events

in a single event (begin and abort), whereas the commit operation produces two

events due to the use of a two-phase commit protocol.

The events that occur during the commit operation depend upon whether the

action is nested or top-level. In the first phase of the commit protocol, either a

nested_prepare or topievel_prepare event occurs. If the prepare phase fails, the

\
abort or
top_level_abort

Constructing Atomic Actions	 50

corresponding abort event occurs. If the prepare phase succeeds, the

corresponding commit event occurs.

Each event is associated with a change in the state of the atomic action, and

not all changes, and hence event sequences, are valid. Figure 3.3 illustrates the

created
I

begin
41

running

nested_prepare or
abort toplevel_prepare

/	 \

state

event

aborted prepared

\
nested commit or
toplevel_commit

\
committed

Figure 3.3: Atomic action states and events

allowable state changes and events. Any operation invocation which results in an

action state and event sequence that is different to that illustrated in Figure 3.3

is invalid. For example, invoking a abort operation on an action whose status is

not running (i.e. which has not had a begin invocation or which has already been

committed) would attempt to move an action from its state of created to aborted.

Since this is not in the above figure it is an invalid transition, and should not be

allowed by an atomic action implementation. The properties provided by an

atomic action are only available to objects if the action's status is running, and

are therefore defined by the region between begin and either commit or abort

invocations.

Constructing Atomic Actions 	 51

In addition to the final states described above, there are a number of

intermediate states which reflect the type of operation invoked on an atomic

action. When the abort operation is invoked, the state of the atomic action

changes to aborting and holds this state until the abort operation terminates (at

which point the state is changed to aborted). Similarly, the prepare operation

results in the intermediate state preparing, and the commit operation the

intermediate state committing.

3.2 The functionality required by an atomic action

Before discussing the issues involved in implementing atomic actions, the

functionality required to provide the properties associated with an atomic action

during the execution of an application that contains atomic actions must be

considered. This is the purpose of this section. Since an atomic action is

responsible for controlling the system state, and this state is represented by

objects, it therefore follows that the abstraction of an atomic action must manage

the objects accessed within its scope to provide these three properties.

When an object is modified within the scope of an atomic action, information

about the changes made to the object must be maintained by the atomic action to

enable the object to be recovered and thereby satisfy the failure atomicity

property. Similarly, modifications or access to a shared object must involve some

form of concurrency control on the shared object, with the addition of the

corresponding management information to the controlling atomic action. The

management information maintained about the concurrency control should

enable it to be removed from an object when a top-level atomic action commits (to

guarantee two-phase locking [Eswaran et al. 76]) or when the atomic action,

within which the concurrency control was applied, is aborted.

0101 02

concurrency control r---;
,information	 .

symbols:
recovery
information 0

Constructing Atomic Actions	 52

To illustrate how management information is generated and maintained by

an atomic action about the objects accessed within the computation it

encapsulates, a modified form of the action diagram notation used in Figure 3.1 is

employed. The modifications involve removing the time axis and indications of

scope which result from the use of the atomic action operation names.

Consider an application containing two atomic actions (one nested within the

other in the manner of Figure 3.1) illustrated in Figure 3.4. In Figure 3.4, the

Figure 3.4: Nested atomic actions and management information

nested atomic action B is the active atomic action and has modified the object 02.

Before the modification took place, concurrency control was applied to 02 to

ensure that the action B had exclusive access to 02. During the application of the

concurrency control, concurrency control management information was added to

the atomic action B. Once concurrency control was applied, the object was

modified and recovery information added. Before the atomic action B was

created, the parent action of B (A) modified an object 01 which resulted in

recovery and concurrency control information being maintained by A about 01.

Figure 3.4 illustrates what information is created and by which action it is

maintained.

Constructing Atomic Actions .	 53

When a nested atomic action commits, the recovery and concurrency control

information maintained by the nested atomic action must be passed to (or merged

into) its parent since the system state established by the nested atomic action will

need to be recovered, and concurrency control released, should the parent atomic

action abort. This will not be possible unless the parent atomic action has the

management information for the objects accessed by the computation

encapsulated by the nested atomic action. Figure 3.5 illustrates how the

Figure 3.5: After the commitment of the atomic action B

management information maintained by the atomic action B has been passed to

its parent during the commit operation.

Since the outcome of a nested atomic action is dependent upon its parent, the

permanence of effect property need only be associated with a top-level atomic

action. The information about the modified objects held by a top-level action must

therefore be sufficient to enable the new state of those objects to be made

permanent. In the example illustrated in Figure 3.5, it is the management

information maintained about the objects O . and 02 that indicate these objects

should be made permanent if the atomic action A commits. During the

commitment of the atomic action A, a commit protocol is required to ensure that a

node crash during the commit operation either results in both 01 and 02, or

neither object, being made permanent.

Constructing Atomic Actions	 54

This section has described the basic functionality required by an atomic

action. To summarise, an atomic action must maintain information about the

objects accessed during the execution of the computation it encapsulates. The

information must be sufficient to enable the objects to be recovered to meet the

failure atomicity property, and any concurrency control applied to meet the

serialisability property released at the appropriate time. In addition, node

crashes during the commitment of a top-level atomic action must be tolerated so

that a consistent system state is established.

Given this functionality, the following section describes an approach to

implementing distributed atomic actions. The approach is to implement a non-

distributed atomic action and extend this implementation to a distributed

environment. The distributed atomic action described in the next section is

therefore only a design, whereas the non-distributed atomic action design has

been implemented and extensively tested.

3.3 Constructing distributed atomic actions

This section discusses the issues involved in providing atomic actions which

may be used in applications that access both local and remote objects, starting

with a discussion of how the support for atomic actions may be provided. One

approach is to produce a programming language that includes syntactic

extensions which correspond to atomic action declarations by either defining a

new, or modifying an existing, programming language. The resulting atomic

action syntax may then be used by the language's compiler to generate the

necessary support for atomic actions. An alternative approach is to modify the

underlying operating system to provide a set of system calls which support atomic

actions. A third alternative is a mixture of the previous two, where a language

provides syntactic constructs but relies on support provided by the underlying

operating system. The final alternative which is worth considering does not

Constructing Atomic Actions	 55

require any modifications to either the language or operating system, but

provides the necessary support by utilising the existing features of a

programming language. The most common approaches has been language

extensions which generally rely on additional support from the underlying

operating system.

Clearly each implementation approach has its advantages and disadvantages,

for instance an approach based on extending a language requires modifications to

the compiler which may be non-trivial, yet the resulting atomic action syntax is

likely to be integrated into the language and as a result could be the easiest of the

approaches to use. The most important differences between all approaches

however, is the type of support for atomic actions. For instance, in a language

based approach (such as Aeolus [LeBlanc and Wilkes 85]) it is common to be able

to declare an operation (or procedure) in an application to be atomic, implying

that the operation executes as an atomic action and is committed if it terminates

normally or is aborted if not. The atomic action boundaries are therefore implicit,

whereas in an approach such as that provided by Argus [Liskov 84], special

keywords provided by the language may be employed to explicitly define the

boundaries of an atomic action. Of equal importance when considering the

support for atomic actions is whether the concurrency control and recovery

management information (which were described in the last section) are created

statically during the compilation of a program written in the language, or are

created and added to an atomic action dynamically during the execution of the

computation.

The problem with language or operating system approaches is that they are

closely associated with a particular language or operating system, and as a result

are difficult to generalise to other environments (languages and/or operating

systems). If an approach is based on employing the features of a language, and

those features are provided by other languages, then such an approach may be

Constructing Atomic Actions	 56

employed in other suitable environments. This is the reason why the work

described in this thesis employs a language based approach, and uses a

programming paradigm (object-oriented programming) that provides abundant

functionality with which to construct the necessary support.

Since a language based approach has been chosen, the resulting atomic

actions must be explicitly declared in an application, and the management

information must be dynamically added to the atomic action. Given this

approach, consideration must be given to how the objects accessed by the

computation encapsulated by an atomic action are to be managed, and how to

ensure that the objects are suitable for management since support is not available

from the compiler for the programming language or the underlying operating

system.

If an object is modified then the state of, or changes to, the object must be

recorded so that if recovery is required to ensure the failure atomicity property

the previous object state may be re-established using the recorded information.

When a class is implemented using a language that supports encapsulation,

knowledge about changes to the state of an instance will be limited to the

implementation of the class. If an atomic action is required to control

modifications to the system state implemented by such a class then, since the

encapsulation should not be broken, the responsibility for providing recovery

must lie with the class itself. Hence, instances of the class should be recoverable.

To provide the serialisability property of an action, any objects accessed

during the computation encapsulated by an action must be controlled. Since the

only means of accessing an object is through the invocation of an operation

provided by the class of the object, knowledge about the type of access made by an

operation will only be available to the implementation of the class of the object.

Constructing Atomic Actions	 57

Hence, access control must be provided by the class and employed during the

operations provided by the class.

When a top-level atomic action successfully terminates, the system state that

has been modified by the action (and any nested actions which committed) should

become permanent. Since the system state is represented by objects, the new

object states must become permanent. Permanent objects are persistent objects

which exist beyond the lifetime of the computation that created or used them.

Instances of a class therefore must also be persistent.

In addition to having the functionality described above, an object must be

recorded with an executing atomic action in such a way that the functionality the

object provides is invoked, when required, to provide the properties associated

with an atomic action. The coordination of these properties may be considered

from the viewpoint of the type of management each property requires. To ensure

a class is recoverable and persistent, the state of instances of the class must be

managed. To control access to an instance of a class clearly requires access

management. Consequently, the management of the three properties may be

considered in two distinct stages. One is concerned with managing the state of an

object, the other with managing access to an object.

Given this approach, it would be desirable to provide a general mechanism for

both access and state management that could deal with the various different

types of object and alternative concurrency control techniques. The assumption

may be made however that to manage each, a corresponding sub-component

(termed a record) may be provided. The state management record therefore is

used for ensuring the failure atomicity and permanence of effect properties, and

the access management record is used for ensuring the serialisability property.

Constructing Atomic Actions	 58

The distributed programming environment in which atomic actions are

assumed to operate was described in the last chapter. In this environment, a

remote object is accessed through a stub object at the local node, which makes

remote procedure calls to the server that manages the remote object at the remote

node (see Figure 2.5). To enable an atomic action to manage the remote objects an

additional management record may be provided: the distribution management

record. Figure 3.6 summarises how an atomic action is assumed to consist of

I' ----- Ss

.,../ ./

Atomic
Action

i,,

distribution
management

records

1
,
1
%
%

%
x \

state
management

records

access
management

records

1
1
1
i
/
/
/

/
n
	

/
.. 	

\	
/
/

\
N
	 //N	 /

	

N.	 /•N
N. ". n

Figure 3.6: The composition of an atomic action

three different types of record, each managing a particular aspect of the control

provided by the resulting abstraction in the distributed environment assumed by

Arjuna.

/

When an atomic action is aborted, the state record must ensure that the object

which it is managing is recovered, the access record must release the concurrency

control maintained on the object, and the distribution record must ensure that the

necessary recovery and concurrency control operations take place at the remote

node managed by the record. Each record should therefore provide an operation

that can be invoked when the action is aborted or committed. To manage the

resulting records and provide the abstraction of, and interface to, an atomic

/

Constructing Atomic Actions 	 59

action an additional component is needed. This component is termed the atomic

action subsystem.

The above description has introduced the atomic action design. The following

section describes the design in greater detail, and how the design has been

realised.

3.4 The implementation of an atomic action

This section describes how the functionality required to provide the

abstraction of an atomic action may be implemented. This implementation is

limited to managing objects which are local to the application in which an atomic

action is declared, and begins by considering how the atomic action subsystem

may be implemented.

The assumption throughout this thesis is that the implementation language is

object-oriented, so that a practice of modelling resources as objects may be

followed. Since an atomic action can be considered to be a resource, it therefore

follows that atomic actions should also be modelled as objects. To illustrate this

approach using the language C++, Figure 3.7 illustrates a suitable class which is

enum Action_Status (CREATED,RUNNING,ABORTING,ABORTED,
PREPARING,PREPARED,COMMITTING,COMMITTED};

class AtomicAction

(
// private variables and operations

public:

void	 Begin ();
Action_Status Commit();
void	 Abort ();

Action_Status Status();

... add(AbstractRecord*);

Figure 3.7: The class Atom i cA ct i on

called Atom i cActi on. This class is assumed to implement the state transitions

defined in section 3.2.1 as each action event occurs. To determine the current

Constructing Atomic Actions 	 60

state of an atomic action declared in an application an additional operation called

Status is provided. Since the Commit operation may fail, the status of the

atomic action is also returned when this operation is invoked. The Beg i n and

Abort operations are assumed to always execute correctly, so that they do not

return a result (indicated by the void declaration in the above class). The

remaining operation (add) is provided so that the various management records

may be added to an Atom i cAct ion instance.

Instances of the class A tom i cAct ion may be declared in an application, and

the three operations provided by the class used to control and utilise the resulting

atomic actions. As an example, the skeleton program given in Figure 3.8 shows

AtomicAction A, B;

A. Begin()

// operations on object 01

B.Begin();

// operations on object 02

B.Commit();

A. Commit()

Figure 3.8 : Using the class At om i cAct ion

the code necessary to implement the simple example that was illustrated in

Figure 3.4.

A class such as Atom i cAc t ion provides the interface to atomic actions, and

manages the various records that in turn manage each of the properties

associated with an atomic action. Since the records are also resources they should

also be objects, requiring a suitable class for each. As each action event occurs

during the lifetime of the atomic action, that event should be reflected in all of the

records (with the obvious exception of the begin event). Since the set of events is

common to all records, a base class can be defined with an operation

corresponding to each action event. The records may then be implemented as

classes derived from this base class. In each of these derived classes the set of

Constructing Atomic Actions	 61

operations should be refined so that each record class invokes operations specific

to the function of that record. In this way the class Atom i cAc t ion may treat the

records as if they are instances of the base class, simply invoking the operations

corresponding to the action events as they occur.

An implementation of a suitable base class called Ab s t ractReco rd is

illustrated in Figure 3.9. The name of this class is intended to indicate that the

class AbstractRecord
{

AbstractRecord *next;
AbstractRecord *last;

public:
AbstractRecord();
-AbstractRecord();

virtual int nested_prepare();
virtual void nested_commit();
virtual void abort();
virtual int top_level_prepare();
virtual void top_level_commit();
virtual void top_level_abort();

Figure 3.9: The class AbstractRecord

class is an abstract class (a class created to provide common functionality and not

in order to have instances). This class provides facilities for the management of a

linked list of instances of itself, with a set of operations that may be invoked at

the various action events. Each of the event operations is declared to be a virtual

operation (a C++ mechanism that ensures dynamic binding of the operation

occurs).

When a nested atomic action is committed, the management information (or

records) must be passed to the parent atomic action (as described in section 3.2).

Depending upon the type of management provided by the record, the record may

be added to the parent atomic action, or may replace a similar record (discarding

the record in the parent atomic action), or may be discarded if the record in the

parent atomic action is more suitable. The responsibility for deciding which

action to take belongs to the implementation of the record, so that the

Constructing Atomic Actions	 62

Ab St rac t Reco rd class provides a suitable set of operations (not illustrated in

Figure 3.9) which may be invoked by At om cAc t ion to decide what action to

take.

To provide atomic actions which operate in a non-distributed environment it is

only necessary to provide record classes which manage recovery, concurrency

control, and persistence. For distribution, a distribution management record is

required. A number of suitable record classes have been defined, and the

operation of these classes will now be briefly described (a more complete

description of each will appear in the relevant sections of the following chapters).

If the implementor of a class wants to construct a recoverable class which

employs state restoration, based on the old state of an object, then they can derive

their class from a system provided class called Object. The class Object

provides an operation, which should be invoked before the state of the derived

class is modified, that creates and adds an instance of a record class to an instance

of Atom i cAc t i on. This record class, called Ob j e c tSt ate Reco rd, manages the

recovery data required by the class Ob ject to enable the user-defined object to be

recoverable. For example, when the current instance of A t om cA c t ion is

aborted, the implementation of the abort operation provided by the

Ob j e c tSt ate Re c o rd class invokes the operation provided by Ob ject to recover

the object, passing the recovery data maintained by the Ob j e c tSt ate Reco rd

instance as an argument.

To manage the persistence of an object, which is an instance of a class derived

from Object, another record class is required. This record class called

Pe rs istentReco rd is derived from Oh jectStateReco rd, so that a persistent

object is also recoverable. The fact that an instance of Pe rs istentRecord is

recorded in a top-level instance of Atom i cAction is sufficient to indicate that

the object managed by the Pe rs i stentReco rd instance has been modified, and

Constructing Atomic Actions	 63

should therefore persist when the top-level atomic action is committed. The

implementation of the top-level action event operations for the

Pe rs istent Re co rd class ensure that the object being managed is saved in an

object store to effect persistence.

If the implementor also wants to provide concurrency control for a class, then

they can derive their class from another system provided class, called Loc kCC.

The class Loc kCC provides an operation (Se t.L o c k) which may be invoked to set a

read or write lock on an object during the invocation of an operation provided by

the object. When Se t Lo c k is invoked, the implementation of the operation

creates and adds an instance of the class LockReco rd to the current active

instance of Atom i cAct ion. This record class manages the information about the

lock set on the object, and ensures that two-phase locking [Eswaran et at. 761

occurs by only releasing the lock (using the Loc kCC operation Rele as e Loc k)

when the top-level Atom i cAc t i on commits or the current Atom i cAc t ion

aborts. The propagation of Loc k Re c o rd objects from a nested to parent atomic

action also ensures that the lock inheritance rules described in [Allchin 83] are

met.

The remaining record of importance is the distributed management record.

When a computation accesses remote objects, the class Se r y e rAct ion Re co rd

will be instantiated and added to an Atom i cAct ion to manage the atomic

actions which are created by the server for the remote object at the remote node.

Se rve rAc t ion Re c o rd ensures that for each of the action events at the local

node, the remote server also has a corresponding operation invoked on the server

action which is managing the state of, and access to, the objects at that server.

The more detailed description of the function and purpose of this class will be

given in a later section which describes the design of a distributed atomic action.

Cbjec)

Constructing Atomic Actions	 64

All of the classes described above belong to a class hierarchy that has the class

Object as the root class. Both Abst ractRecord and AtomicAction are

derived from this class so that they can inherit a number of fundamental

properties useful to objects. One of the main purposes of the class Object is the

provision of a common means by which all objects can be named. This is provided

by the internal declaration (in Ob j e c t) of an instance of the class Ui d (which

provides the abstraction of a unique identifier), and an operation to read

(get Ui d) its value. The most important feature of the class Object, however,

is the operations that it provides for state based recovery and persistence which

were briefly described above.

Figure 3.10 illustrates how the record classes described above fit into the class

User defined classes

Figure 3.10: The atomic action subsystem class hierarchy

hierarchy. As this figure illustrates, the class L c kCC is derived from the class

0b j e c t, so that a user-defined class which wants to employ the state restoration

Constructing Atomic Actions	 65

provided by Ob ject and locking provided by Loc kCC, need only be derived from

the class LockCC.

If the implementor of a class wishes to provide alternative forms of recovery

and/or concurrency control, they may then create suitable management records

by defining the corresponding record classes (using Ab st ractRoco rd) and

ensuring that these record classes are instantiated and added to an

Atom i cAct ion during the invocation of operations on their class. The manner

in which a record class may be declared to provide class-specific management

forms part of the discussion on recoverable objects in the next chapter.

This section has described how the class Atom i cAct 1 on manages records

which are instances of classes derived from the class Ab st ractR e co rd. The

record classes each manage a property which characterises the behaviour of an

atomic action. The next section discusses and illustrates the operation of the

Atom i cAc t ion and record classes using a simple example that employs the

record classes described above.

3.5 The operation of the class Atomi cActi on

The main purpose of the class Atom i cAct ion is to manage all the records

which may be added during a computation's execution, invoking the

corresponding record operations as action events occur. For instance, when the

Abo rt operation is invoked on an instance of Atom i cAc t i on, the resulting abort

event involves the implementation of the Abort operation invoking the

AbstractReco rd abort operation on all the records held by the

Atom i cAc t ion instance. Since these records will be instances of classes (derived

from Ab s t ractReco rd) that have refined the abort operation, this will result

in the recovery of and removal of any concurrency control on, the objects accessed

by the computation encapsulated by the atomic action. Similarly, Commit

invocations result in the corresponding type of commit operation being invoked

Constructing Atomic Actions	 66

on each record. To know what type of commit to invoke, each instance of

Atom i cAct ion maintains a reference to its parent action. If this reference has

no value, then the Atom i cAct ion is a top-level action and will invoke the top-

level operations provided by the records instead of the nested operations.

To provide a means of discovering whether an atomic action is active, a global

variable called Cu r re n tAt om i cAct ion is provided and is maintained as a

reference to the currently executing atomic action. When the At onii cA ct ion

Beg i n operation is invoked, the value of this variable is used to determine

whether the Atom i cAc t ion instance is a top-level or nested atomic action. If the

variable has a value then the parental reference is set to this value, and the

Cu rrentAtomi cActi on variable set to the new (nested) Atomi cAct i on.

As noted previously, the class Atom i cAct ion implements the state

transitions, and internal states, defined in section 3.2.1. To ensure that incorrect

operation sequences do not occur, each operation is checked against the state of

the action (based upon the valid transitions described in section 3.2.1). A run-

time error occurs if an incorrect sequence takes place, with the severity of the

error being definable by a user for each action.

The following sub-section describes a simple example which illustrates how

the class Atom i cAct ion coordinates the state and access records added by an

instance of a class derived from Loc kCC, thereby ensuring the three properties of

the action are met. To simplify the description, the computation in this example

does not access any remote objects.

Constructing Atomic Actions	 67

3.5.1 A simple example

As an example of the operation of the class At omi c Ac t i on consider the

sequence of operations from an application illustrated in Figure 3.11. in this

ExampleClass ECI . , EC2;	 // with states
AtomicAction A, B;

A. Begin()
....

ECi.update();

B. Begin;
....

// ECi has states at this point

// set a lock and change state to statel

// EC1 has statel at this point

ECi.update(); // change state to state2
EC2.update(); // change state to statel
....

B.Commit();
....

A.Abort();
	

// state is recovered to states

....

Figure 3.11: An example using an Atom i cAc t ion

example, two instances of a class called Ex amp 1 eC1 ass (which is assumed to be

derived from Loc kCC) have been declared. The state of each instance before the

Atomi cAc t i on A begins may be considered to be states. Inside Atomi cActi on

A the object EC 1 is modified so that its state becomes statei. Before this

modification is allowed to occur, a write lock has been set on the object which

guarantees exclusive access to the object. The details of this lock are recorded in

an instance of LockRecord, and the recovery information (in the form of the old

state of the object) is saved in an instance of Ob j ec tSt ate Re c o rd.

The implementation of the update operation is shown in Figure 3.12 which

void ExampleClass::update()

(
LockCC::SetLock(new Lock(WRITE));
Object: :modified();

// now the state can be modified

}

Figure 3.12: The Ex amp 1 eC1 ass update operation

ObjectStateRecord

LockRecord

Exampl eC1 ass

ECi

CI

Constructing Atomic Actions 	 68

illustrates the extra operations the implementor of a class must invoke to ensure

that the Loc kRe co rd and 013 j e c tSt ate Re c o rd instances are created and

added to the currently executing instance of Atom i cAct ion, The Lockileco rd

instance is created and added by the Se tl oc k operation, and the

Ob jectStateRe co rd instance is created and added by the mod i f i ed operation.

The objects in existence just before the nested action B begins are illustrated in

Figure 3.13.

Figure 3.13: Objects created during Atom i cActi on A

In At om i cActi on B, the update operation is invoked on EC i so that the state

of EC i changes from statei to state2. In the update operation further invocations

ofSe t Loc k and modified will occur. Since the only other holder of a lock on ECi

is A (which is the parent of B), the attempt to set another write lock will be

allowed and a new Loc k Re co rd created to hold the information about the lock

added to B. Since the state of EC I is modified again, another

Ob j ec tSt ate Reco rd is created to hold recovery information for EC i which

contains the statei. In addition to the modification to EC i , another object is

modified within the scope of Atom i cActi on B. This object is EC 2, and its state

changes as a result of an invocation of the update operation from state° to statei,

along with the creation of an instance of L oc k Re c o rd and

Constructing Atomic Actions 	 69

Ob j ectSt ate Re c o rd. The objects in existence just before B commits are

illustrated in Figure 3.14.

EC i	ECi	 EC2

Figure 3.14: Objects created before B commits

When Atom i cAct i on B commits, the information contained in B must be

merged into its parent action A. The operations provided by

ObjectStateRecord and LockRecord that are invoked by AtomicAction to

determine what action to take during a merge, return a value which indicates

that the most recent version of the same record for an object can be discarded. In

the case of an Ob j ec tStat e Re co rd object, discarding the newest record object is

possible because the recovery supported by Ob j ec tStateRe co rd (and Object)

relies on the old state of an object which will be held by the parent of a nested

atomic action (this technique is an implementation of the recovery cache

algorithm [Horning et al. 74, Anderson and Kerr 76]). Since A has no record of

E C2, the records for this object will be added to those already held by A, producing

the situation illustrated in Figure 3.15.

Constructing Atomic Actions 	 70

EC i EC2

Figure 3.15: Objects in existence after B commits

During the Abort operation, the Atom i cAc t ion A takes the objects it

contains (the LockRecord and Ob jectStateRecord instances for EC i and EC2)

and invokes the abort operation on each. In the Ob jectStateReco rd

implementation the old state of each object replaces the current state so that, for

example, the state of EC 1 (which was state2) is restored to state°. Further details

of this recovery action are provided in the next chapter. The Lock Re c o rd

implementation employs the details of the lock held on the object to release the

lock. Once each record is processed it is deleted.

In this example, if the Atom i cAc t ion A commits, and the Ex amp 1 eC1 as s

objects were declared to be persistent, then the state of the two objects should be

made permanent since A is a top-level action. In this case, instances of the class

Pe rs i s te ntReco rd would have been added to the atomic action instead of

instances of the class Ob jectStateReco rd. A Pe rs i stentReco rd object

operates in an identical manner to an Ob j ec tState Re co rd object until the top-

level commit operation, at which point the new state of each object being

Constructing Atomic Actions 	 71

managed is saved in the object store using an operation provided by the class

Object (called deactivate) for this purpose.

The At om i cAct ion implementation also ensures that instances are crash

recoverable, and that the two-phase commit protocol is correctly followed. The

mechanisms behind crash recovery and commitment are described in the next

section.

3.6 Commitment and crash recovery

When a top-level atomic action is to be committed, a commit protocol is

required to ensure the atomicity of the commit operation despite the presence of

node crashes and communication failures. The commit protocol employed by the

Atom i cAct i on implementation, and described in this section, is the well known

two-phase commit protocol [Gray 78]. During the execution of this protocol,

management information must be saved in non-volatile storage to enable a node

crash to be tolerated. A node crash before the end of the first phase will result in

the commit operation being aborted, leaving any objects modified during an

atomic action in the state they held before the atomic action began. If a node

crash occurs after the first phase has completed successfully, then protocol

management information will be employed by the crash recovery mechanism to

mask the node crash and produce the system state that would have been

established if the node crash had not occurred.

The object and action model presented in this thesis provides an interesting

means of implementing the two-phase commit algorithm and providing crash

recovery. Each of the management records which an Atomi cActi on is

managing is an instance of a class that is ultimately derived from the class

Object. Since the class Ob ject supports persistence, the persistent operations

.

/

\
s.

5.
,..

/

/

/

I
I

I

I

I

t

%

1

%

\

\

.."
••I,

P R 1

Pk

Constructing Atomic Actions	 72

may be used to save the management records in non-volatile storage (managed as

an object store).

During the first phase of the Commit operation, the Atom i cAct i on

implementation invokes the de act i v ate operation on each management record,

thereby saving the state of each record in the object store. After making an

individual record permanent, the top_l eve 1_p rep a re operation provided by

the record may be invoked so that the record can indicate whether the protocol

may proceed to the second phase. In the case of the Pe rs i stentReco rd class,

the implementation of this operation involves saving the state of the object in the

object store. If the object cannot be saved in the object store then a value is

returned by the to p_l evel _p repa are operation which indicates that movement

to the second phase should not occur. The prepare stage is illustrated in Figure

3.16 using the example given in the last section, assuming that the

.

Object store ‘...
.... - -

,

Figure 3.16: During phase one

At omi cAc t ion A is committing, that the instances of Ex amp 1 eC1 a s s were

declared to be persistent, and omitting the L o c kR ecor ds to simplify the

example. In the above figure, the two modified objects (EC i and EC 2) have been

saved in the object store by their respective Pe rs i s ten tReco rds (labeled PRi

and PR 2). The state of each Pe rs i stentReco rd consists of the name of each

PRi
EC

Constructing Atomic Actions	 73

object the Pe rs stentRecord is managing, hence, PersistentRecord PRi

has as its state the name of EC 1 and so on.

If this operation succeeds for all records then the first phase has been

successfully completed. To indicate this situation, class Atom i cAct i on

maintains a private object in which each record's name is saved. This object,

which forms part of the state of an instance of Atom i cAct i on, is saved in the

object store as the Atom i cAct i on saves itself (the reason for deriving the class

Atom i cAc t i on from the class Object). This stage is illustrated in Figure 3.17,

Object store `.

Figure 3.17: At the end of phase one

where the A t om cAc t ion is labeled A.

Once the Atom i cAct ion has been saved, the second phase can begin. In this

phase each record is processed a second time, with the Atom i cAc t ion invoking

the t o p_l eve l_c omm i t operation on each record and removing the record's

state from the object store. If the first phase failed then the t op_l evel_ab o rt

operation is invoked on each record which had the top_l evel_p rep a re

operation invoked so that the implementation of each record may undo any effects

of the prepare operation. In the case of the Pe rs i s ten tReco rd this would take

the form of removing the state of the object placed in the object store during the

prepare operation. If the top_l eve _p rep are operation was not invoked on a

Constructing Atomic Actions 	 74

record, for example as a result of the first phase being aborted before the record

was processed, then the record need only have the abort operation invoked on it.

After the top-level commit or abort operation is invoked on a record, the record is

deleted by the Atom i cAc t i on. On completion of the processing of all records, the

At mil i cAct i on's state is removed from the object store when the commit protocol

terminates.

If a crash occurs then when the node recovers the crash recovery mechanism

(implemented by the program Crash Re cove r) is invoked. This program utilises

the two pieces of action management information contained in the object store.

One piece, the states of the objects whose classes are derived from

Abs t rac t Rec o rd (in the previous example P R i and P R 2), contains information

about objects which were being processed by a top-level action as it was

committing (the names of EC 1 and EC 2)• The other piece of information is the

state of the Atom i cAct i on, the existence of which indicates that the first phase

of that action successfully completed. The names of any records that are not in

the Atom i cAc t i on's state must belong to a top-level action that was either in

the process of aborting or had not completed the first phase. The information in

these records may be used to recover the objects that the records refer to. The

records recorded in Atom i cAc t ion are used to commit the objects thereby

completing the second phase.

Constructing Atomic Actions	 75

3.7 The design of a distributed atomic action

The discussion up to this point has concentrated on atomic actions that

manage purely local objects. This section briefly describes how the design and

implementation of the class Atom cAct i on may be extended to encompass the

distributed environment provided by Arjuna, in which a client program contains

stub objects that communicate with servers.

Since remote objects are managed by servers, a client program that contains

an atomic action needs an equivalent (server) atomic action at each server to

manage the state of, and control access to, each object managed by the server.

The atomic action in the client program is therefore responsible for coordinating

all of these server actions to provide the abstraction of a distributed atomic

action. When either the Commit or Abort operation is invoked on the client

action, the same operation should be invoked on each server action, if the object at

that server has been accessed during the scope of the client atomic action.

A new class could be defined to implement the functionality required by a

server atomic action, but since much of this functionality is already provided by

the previously described class At omi cAct ion, inheritance may be employed

again so that the extra functionality may be added by simply deriving a new class

that represents a server atomic action from Atom i cA c t ion. To create server

actions, and keep the client and server actions in synchronisation, additional

functionality is also required by the client stub object and server stub which are

produced by the stub generator.

The approach is very simple. The first time an operation is invoked on a stub

object, an instance of the class Se rve rActi onReco rd is added to the active

atomic action. This instance contains the address of the server which is

managing the object that the stub object represents. To be able to detect changes

in the action environment, an instance of a class called Cl i en t_A ctio n_S t u b

Constructing Atomic Actions 	 76

(created by the stub object when it is instantiated) is provided. An operation

provided by this class, which takes the server address as an argument, is invoked

before the stub object makes the RPC to the server (but after the server has been

created). This class is responsible for detecting changes in the action

environment (by examining the Cu r re n tAtom i cAct ion variable). When such

changes are detected, Cl ien t_Actio n_Stu b creates and adds a

Serve rAct i onReco rd instance to the current Atomi cAct ion, and returns

information to the stub object which is then added to the message that contains

the RPC. Each RPC message therefore contains a small amount of action

management information. This information describes the action hierarchy at the

client, so that the server may ensure that this hierarchy exists before the

operation on the (remote) object is invoked.

When an RPC is received by a server, the server stub which is responsible for

unpacking the RPC arguments invokes an operation provided by the class

Se rve r _ Act ion _Stub (instantiated by the server) passing the action

information as an argument. Using this information, the

Server _ Action _Stub will create new server atomic actions to reflect the action

hierarchy at the client, and set the global variable Cu r re n tAtom i cAc t ion to

point to the current atomic action.

The atomic action created at the server is an instance of the class

Serve rAtomi cActi on, which is a class derived from Atom i cA ctio n. The

reason for deriving this class from Atom i cAct ion is to utilise the support

provided by Atom i cAct ion for managing the state of, and access to, the object at

the server. The additional functionality that Se rv e rA tom i cAct ion provides is

two operations (a prepare and commit operation) which replace the single

Comm i t operation. This enables the client atomic action to correctly control a

server action during the two-phase commit protocol.

Constructing Atomic Actions 	 77

The client/server model employed by the distributed system allows servers to

make further remote procedure calls, thereby creating nested servers. Since the

class Se rve rA tomi cActi on is derived from Atomi cAct i on, the invocation of

an operation on a remote object by a server will result in the addition of a

Serve rAct i onReco rd to the Se rve rAtomi cAct i on and the creation of a

Se rve rAtom i cA cti on at the site of the remote object. The functionality

inherited from Atom i cActi on will ensure that the Se rve rAtomi cActi on

correctly manages any Se rv e rAtorni cActi ons that are created in this manner.

Each server is an instance of a class generated by the stub generator. The

interface that the server class provides (i.e. the operations it recognises) consist of

the operations provided by the class of the object, together with the operations

provided by Se rv e rA tom i cAc t i on. This enables the client atomic action,

through the Se rv e rAct i on Re co rd, to invoke the equivalent operations at the

various action events during the lifetime of the client action. The

implementation of Se rve rActi on Reco rd utilises the server address to make

RPCs directly to the server.

The following example may help to clarify how this design provides

distributed atomic actions. Consider again the example given in section 3.5.1

(ignoring the nested action B). Assume that the client program is on node N1. If

the instance of Ex amp 1 eC1 ass EC 1 is contained on node N2 then the declaration

of EC i will produce a server (Si) at that node. The sequence of events that occur

when the update operation is invoked on EC i are illustrated in Figure 3.18.

Each operation invocation is numbered in the order they occur.

Constructing Atomic Actions 78

fSoerrEvceir stub

s,
update	 . + action info

I
action info 4/

A-'
Se rverAtomi cActi on

A

Server_Action_Stub

for ECi

-----4.- invoke

....:* 	 return

	 x.- creation/add

N2

.A

.LockRecord +

ObjectStateRecord for ECi

N1	
ServerActionRecord

/t	

for S1--

////.

. .

AtomicAction
A

Cl ient_Action_Stub

for ECi

Stub object
for ECi 74‘,. action info

\

RPCupdate

/ i	
result-------

update

Figure 3.18: A distributed atomic action

When the update operation is invoked on the stub object for EC 1 (invocation

1), the stub object in turn invokes the operation provided by the

Cl i ent Act i on Stub (created by the stub object) for EC 1 (invocation 2). The

Cl lent _ Action _Stub operation recognises that the Atom i cAct i on A has

begun (by checking the value of Cu r re n tAt om i cAct i on), and that this is a new

action and not an action that returned to being the current atomic action as a

result of the termination of a nested action. Since A is a new A t om i cAct i on an

instance of Se r y e rAc ti on Re co rd containing the address of S 1 is added to A. In

addition, the Cl i en t_Ac t i on_Stub operation returns the action information

(in this case the name of A). The third invocation is the remote procedure call

from the stub object to the server.

Constructing Atomic Actions	 79

On receiving this RPC, the server invokes an operation provided by the

Se rv e r_A ct i on _Stub passing the action information as an argument

(invocation 4). The Se rv e r_Ac t i on_Stub discovers that the Atom i cAc t ion A

has no Serve rAtomi cActi on at S1, so a Se rverAtomi cActi on for A is

created, and the value of Cu r re n tA tom i cAc t ion assigned to the result. Once

control returns to the server stub, the update operation is invoked (invocation 5)

on the object EC i which in turn creates a LockReco rd and

ObjectStateRecord and adds these to the current AtomicActi on in the

manner previously described.

When the Abo rt operation is invoked on A, the only object in A is the

Se rve rAct ionRecord for S1. In the abort operation provided by the

Se rve rAction Re c o rd, an RPC is made to S1 to invoke the Ab a rt operation on

the Serve rAtomi cActi on for A. Since A is still the Cu rrentAtomi cActi on

the action environment has not changed so that no action information is passed.

On receiving this RPC, the server stub invokes the Abort operation on the

Se rve rAtomi cAct i on A. This operation recovers EC i in the manner previously

described.

An invocation of the Comm i t operation behaves in a similar manner, with the

client atomic action acting as the coordinator of the commit protocol. During the

prepare phase, the client atomic action invokes the Serve rAtomi c Ac t ion

Prepare operation. If each Serve rAtom i cAct i on returns a value to the client

atomic action which indicates that the prepare phase has successfully terminated

at the server, then the client atomic action invokes the Commit operation on each

Se rve rAtomi cActi on. If a Se rve rAtomi cActi on returns a value that

indicates that the prepare phase could not be successfully completed, or the RPC

to the server terminates abnormally, then the client atomic action invokes the

Abort operation on all Se rve rAtomi cActions that had invoked the Prepare

Constructing Atomic Actions	 80

operation, and/or those Serve rA t om i cActi o ns that had yet to invoke the

Prepare operation.

The distributed atomic action design presented in this section has not been

implemented, whereas the non-distributed atomic action design and record

classes described in the previous sections have been implemented and extensively

tested. This section and previous sections have described how a distributed

atomic action may be provided using the features of an object-oriented language.

The resulting atomic actions are objects which raises a number of issues involving

defining the scope, and declaring instances, of an atomic action. These issues are

described in the next section.

3.8 Atomic actions as objects

When an object-oriented language is used to implement atomic actions in the

manner described in this chapter, the declaration and use of the resulting atomic

actions differs from language or operating system based implementations. Before

the operations provided by a class such as Atom i cActi on can be invoked, an

instance of the class must be declared in an application. If atomic actions are

provided by a language or operating system then there is generally no need to

explicitly declare atomic actions before invoking the operations that they provide.

Another disadvantage of the object-oriented approach (which also applies to

an operating system approach) is that an invalid sequence of operation

invocations, such as a Commi t invocation on an atomic action which has not had a

previous Beg i n invocation, must be checked at run-time. If a language based

approach is employed then the compiler for the language can check the syntax of

the atomic action declarations so that such incorrect operation invocations can be

discovered at compile, rather than run, time.

Constructing Atomic Actions	 81

An additional disadvantage is defining the scope of atomic actions which are

declared in an application. In the section which described the atomic action

model, the scope was defined to be the region (or computation) bounded by the

beg in and commit operations. When an atomic action is aborted, the

implementation of the atomic action should ensure that the scope of the aborted

atomic action is the same as a committed atomic action, requiring the a b o rt

operation to return control to the point immediately after the c ommi t operation.

When an object-oriented approach is employed extra linguistic constructs must be

used, or an atomic action and its computation declared using a procedure/block

from which control may be return before the end of the procedure/block, to enforce

the scope of an atomic action. Figure 3.19 illustrates these two approaches using

AtomicAction A;
	

int AtomicOperation()

A. Begin()
	

{	
AtomicAction A;

if (operation failed) 	 A.Begin();

A.Abort();	 if (operation failed)
goto endofAction;	 {

A.Abort();
// do some more work	 return (-1);

A. Commit()

endofAction:	 // end of scope

(a)

// do some more work

A. Commit()
return (0);

(b)

Figure 3.19: Enforcing scope

the language C++. Figure 3.19(a) employs the got o statement to move the

execution of the program when the atomic action is aborted to the point

immediately after the Commit operation. Figure 3.19(b) is an example of a

function, that returns a value indicating whether the atomic action committed or

aborted, which employs the return statement to leave the function as soon as the

atomic action is aborted.

Constructing Atomic Actions	 82

To avoid having to explicitly declare instances of the class Atom i cf ct i on

and include extra linguistic constructs to enforce the scope of the resulting atomic

actions, additional mechanisms such as pre-processor macros may be employed.

The technique of using preprocessor macros to add exception handling constructs

to C programs was described in [Lee 83], and a similar technique may be used

with the class Atom i CA c t i On. Using such pre-processor macros, the example in

3.19(a) may be changed to that illustrated in Figure 3.20. The macros used in this

BEGIN

if (operation failed)
ABORT

...	 // do some more work

END

Figure 3.20: Enforcing scope using macros

example define the scope of the resulting atomic action to be the computation

between the BEGIN and END operations. If the computation reaches the END

operation then the atomic action is committed. When the atomic action should be

aborted the ABORT operation may be invoked, with control returning to the point

immediately after the END operation.

3.9 Concluding remarks

This chapter described the issues involved in the design and implementation

of atomic actions in a distributed environment using the support provided by an

object-oriented language. The approach was to design a non-distributed atomic

action and then extend this design to enable remote as well as local objects to be

controlled by the resulting distributed atomic action. The reason such an

approach is practical, is the way the implementation of the non-distributed

atomic actions is structured. During the design, common functionality between

the various activities an atomic action must provide was recognised. This led to

use of inheritance to define a base class that provided the common functionality,

Constructing Atomic Actions 	 83

with each activity being provided by classes (termed records) derived from this

base class. The implementation of this scheme to control local objects was

realised, and the design then extended to enable access to remote objects to be

controlled.

To manage each record, the class Atom i cAc t ion was defined. The

implementation of this class provides the properties that characterise an atomic

action. In the next two chapters, further examples of the use of this class will be

given. The objects controlled by these atomic actions must provide recovery and

concurrency control, and have associated record classes to manage these

properties. The next chapter discusses the issues involved in providing

recoverable objects, and describes a design, along with its implementation, which

addresses these issues. Chapter five describes how the design may be extended to

ensure objects are persistent.

Recoverability
	 84

Chapter 4

Recoverability

The last chapter described how nested atomic actions may be constructed.

During this discussion, a number of implementation techniques were considered,

and an approach based on employing the features of an object-oriented language

adopted. The advantage of this approach is that it avoids the expense of

modifying, or implementing new, languages or operating systems. The

disadvantage however, is that the support for objects generally provided by a

language compiler, or operating system, that directly supports atomic actions

must be provided by the objects themselves. The support required of an object is

that it is recoverable, persistent, and provides concurrency control. The subject of

this chapter concerns the first of these properties: recoverability.

To support the failure atomicity property of an atomic action requires the

addition of recoverability to an unrecoverable class of objects. There are two

aspects to providing recoverability, the first is the construction of recoverable

objects, the second is the management of these objects so that recovery occurs

when an atomic action is aborted.

The recovery issues discussed in this chapter are those that relate to the

recovery of the volatile state of an object. The recovery techniques employed are

well known, the purpose of this chapter being the description of a new approach to

the addition of these techniques to an unrecoverable class of objects to produce

recoverable objects. To manage recoverable objects, this chapter also describes

how a record (the abstraction by which the atomic action manages the various

properties) may be used to coordinate the type of recovery an object provides with

the control exercised by an atomic action. The advantage of the record

abstraction is that a variety of different management techniques can be employed

Recoverability	 85

to construct recoverable objects, and a recoverable object may consist of a number

of recoverable objects each providing alternative forms of recovery.

The chapter begins by discussing recoverability and two common recovery

techniques. To add recovery mechanisms to an unrecoverable class of objects,

using the features of an object-oriented programming language, a number of

approaches are considered in the following section. The section after discusses

how the resulting recoverable objects may be managed by an atomic action, so

that they are recovered if the atomic action is aborted. The two sections following

describe how recoverable objects may be implemented using the two recovery

techniques, and are followed by a discussion of the issues involved in providing

new abstractions from unrecoverable and/or recoverable objects. The final section

assesses the technique developed in this chapter for constructing a recoverable

class of objects.

4.1 Providing recoverability

When an atomic action is aborted, all the objects modified by the computation

encapsulated by the atomic action must be restored to their previous state. This

capability is supported by the property which is termed recoverability. This

section discusses how this property may be added to unrecoverable objects.

A recoverable object is an instance of a recoverable class, which is a class that

includes recovery mechanisms. Producing a recoverable object from an

unrecoverable object therefore involves adding recovery mechanisms to the class

of the unrecoverable object. During the invocation of operations on instances of a

recoverable class, the recovery mechanisms must create management

information to enable an atomic action to control the recoverable object. The

construction and management of recoverable objects are discussed in detail in the

Recoverability	 86

next two sections, this section provides an overview of the main issues

surrounding recoverability.

The section on object-oriented languages in chapter two described how an

object is an abstraction that may consist of a collection of internal objects. This

abstraction ensures that the state of an object viewed by a user is the abstract

state of the object. The implementation of an object's abstract state is termed the

concrete state, and is supported by the implementation language and the

underlying hardware. Because of this abstraction, the concrete state of an object

may change in such a way that the abstract state presented to a user of the object

remains unchanged. A recoverable object is therefore defined to be an object that

can be restored to a previous abstract state. This definition allows the concrete

state of an object to differ from a previous concrete state when the abstract state

of a recoverable object is restored.

Techniques which provide the abstraction of recovery generally take one of

two forms: either state or operation based. A state based recovery technique takes

a copy (or snapshot) of the state of an object before the object is modified. During

recovery, the current object state is replaced by the old state or snapshot. An

operation based recovery technique records the operations invoked on an object,

enabling the state to be recovered by sequentially invoking the inverse of each

operation recorded. Implementations of both techniques have been made in a

number of ways, for example [Schwarz 84] describes how a log may be used to hold

the recovery information, whereas [Horning et al. 74, Anderson and Kerr 76]

describe how the recovery cache (a stack) may be used.

Both recovery techniques require recovery information to be created during

operations that modify the state of an object, which consists of the recovery data

required to restore the state of the object and the management information

required by the atomic action. The amount of recovery data created and

Recoverability	 87

maintained by each technique varies. Operation based recovery techniques

generally require more recovery data since recovery is related to the number of

operations invoked on an object, whereas with a state based recovery technique,

the recovery data need only be recorded the first time the object is modified within

an atomic action.

Each time an object is modified within a new atomic action, recovery

information must be created and added to the atomic action. When a nested

atomic action commits, the recovery information maintained by the nested

atomic action must be merged into the parent atomic action (as described in the

last chapter). The recovery information maintained when a state based approach

is used can be discarded during a merge if the parent atomic action has more

suitable (i.e. older) recovery information for that object. In contrast, when an

operation based approach is employed, the recovery information maintained in a

nested atomic action must be added to that held by the parent atomic action.

The recovery information maintained about a recoverable object will be

dependent upon the class of the object, since the recovery mechanism employed by

an atomic action must know what operations to invoke on an object to effect

recovery. Some objects are inherently more recoverable than others and more

suitable for a particular recovery technique. For example, objects that provide an

assignment operation (such as integers) may be recovered using a state based

approach that involves saving a copy of the object and reassigning this copy

during recovery of the object. An object that provides the abstraction of a stack

however, may be better suited to an operation based approach, as a record of the

push and pop operations (and arguments) could be used to recover the stack by

sequentially invoking the inverse operation of each operation recorded in the

recovery data.

Recoverability	 88

If an object provides no suitable operations to support recovery, or more

efficient mechanisms are required, then additional recovery mechanisms may be

added. A means of adding such mechanisms are described in the next section.

Not all unrecoverable objects however, are suitable for the pure state or operation

based recovery techniques described above. For instance, objects which affect the

external environment of the system may be difficult, if not impossible, to recover.

In such circumstances the abstraction of recovery may be provided by performing

compensation operations on the environment affected by the operations invoked

on the object. The compensation required will be specific to a class and a function

of the operations invoked upon an instance of the class, so that this approach is an

extension of the operation based approach (an example of class-specific

compensation is described in [Shrivastava and Banatre 78]). Compensation

highlights the fact that recovery need only restore the abstract state of an object.

The concrete implementation of the object does not necessarily have to return to

the previous state held for recovery to be effective.

4.2 Constructing recoverable objects

To support recoverability an object must be capable of restoring a previously

held abstract state. This section describes how this capability may be added to an

unrecoverable class using the features of an object-oriented programming

language.

To construct a new recoverable class from an unrecoverable class requires the

addition of recovery mechanisms that correctly manage the abstract state of the

unrecoverable class. When atomic actions are supported by a language or

operating system the compiler for the language, or object management provided

by the operating system, generally provide the recovery mechanisms that ensure

an object is recoverable and controlled by an atomic action. The disadvantage of

language or operating system support however, is that they are almost

Recoverability	 89

exclusively based on managing the state of an object. Providing objects that may

be recovered by invoking inverse operations relies on knowledge of the semantics

of the class of the object, and as a result are difficult to generate automatically.

If a system does not support recovery then the recovery mechanisms must be

explicitly added to an unrecoverable class. The burden of this task lies with the

implementor of the recoverable class, but can be approached in a number of ways

using the features of an object-oriented language.

One approach is to produce a new class that contains an instance of the

unrecoverable class and provides a set of operations that are equivalent to those

provided by the unrecoverable class, but which create suitable recovery

information when an instance of the recoverable class is modified. To support

recovery, the recoverable class should also provide an operation that may be

invoked during an atomic action abort to recover an instance of the class using

the recovery data. This approach (which will be termed the container approach)

may be illustrated by considering how to implement a class that provides the

abstraction of a recoverable integer (i.e. integers that can be used within the

scope of an atomic action). Assuming that integers are instances of a class called

Integer, and that the recoverable interface is provide by an operation called

re cove r (the operation that will be invoked by the atomic action to recover the

object), then a recoverable integer may be implemented in the manner illustrated

in Figure 4.1. This example is written in the language C++, which allows the

implementor of a class to declare operations such as the assignment operation (as

ope r at o r=). The disadvantage of this approach, is that the implementor of the

recoverable class has to provide all the operations provided by the unrecoverable

class. In addition, since a RecoverableInteger is a new class, each operation

must be overloaded to take both Recoverabl eIntege r and Integer

Recoverability
	 90

class RecoverableInteger

(
Integer value;

public:

operator=(Integer);
operator=(RecoverableInteger);

operator+(Integer);
operator+(RecoverableInteger);
operator,o(Integer);
operator.(RecoverableInteger);

.... // and all the other Integer operations

recover();

Figure 4.1: The container approach

arguments so that instances of Re c ove r ab 1 e I n t ege r may be used in place of

instances of Integer.

A superior approach is to employ inheritance to derive a new recoverable class

from the unrecoverable class. In this way, the implementor need only refine those

operations which modify the inherited unrecoverable state, so that suitable

recovery information may be created before the modifications take place. This

approach will be termed the unrecoverable inheritance approach. In a similar

manner to the container approach, the new recoverable class should provide an

operation that constitutes the recoverable interface. An alternative

implementation of a recoverable integer class using this approach is illustrated in

Figure 4.2. The advantage of the unrecoverable inheritance approach is clear from

class RecoverableInteger : public Integer

(

public:
....
operator=(Integer);

recover();

Figure 4.2: The unrecoverable inheritance approach

the class declaration in Figure 4.2. The number of operations the implementor of

the class must re-implement is substantially reduced to only those operations

Recoverability	 91

that modify the object. In addition, since Recove rab 1 eInt ege r is a sub-type of

Integer the operations do not need to be overloaded as each operation may be

defined to take an argument of class Integer, but may be invoked with an

argumentofclass Integer or Recoverabl eInteger.

Implementing recoverable objects in the manner described above is dependent

upon semantic knowledge of an unrecoverable object for which recovery is being

provided. In the examples illustrated in Figures 4.1 and 4.2, each class

represents an integer, the semantics of which are well known, so that the

implementor of the recoverable class may employ this knowledge to refine the

operations that modify the state of the object (in this example the assignment

operation). If the semantics of a class are unknown then constructing recoverable

objects in this manner will not be possible, but if the semantics are not known

then it will not be possible to use the unrecoverable objects in any case.

Using the features of an object-oriented language in this manner, the recovery

mechanisms added to an unrecoverable class will be largely dependent on the

semantics of the unrecoverable class, but may share common functionality due to

the support the recoverable class provides for one of the recovery techniques

described in the last section. A general technique is needed to add this common

functionality and thereby avoid unnecessary duplication.

During the discussion on the design of the management records in the last

chapter, the advantages of inheritance for adding new functionality to an existing

class was outlined. In the record class design this took the form of defining a base

class with common functionality and deriving new classes to provide additional

class-specific functionality. An approach of this sort is also suitable for adding

recovery mechanisms to an unrecoverable class of objects, by defining a base class

that implements the recovery mechanisms and deriving new classes from this

base recoverable class.

Recoverability	 92

If an object-oriented language only supports sub-typing inheritance, then each

new recoverable class must be implemented in the manner described in the first

of the above two approaches, and will effectively act as a container for the

unrecoverable object, managing the abstract state of the unrecoverable object by

employing the inherited functionality. This recoverable inheritance approach is

similar to the type generator mutex provided by the Argus programming

language [Liskov 841 for generating user-defined atomic (recoverable) types

[Weihl 841. Another declaration of a recoverable integer class is illustrated in

Figure 4.3, with the recovery mechanism class assumed to be implemented by the

class RecoverableInteger : public RecoveryMechanism

{
Integer value;

public:

operator=(Integer);
operator=(RecoverableInteger);

operator+(Integer);
operator+(RecoverableInteger);
operator4,(Integer);
operator.(RecoverableInteger);

// and all the other Integer operations
;

Figure 4.3: The recoverable inheritance approach

class Re cove ryMec h an i sm. The advantage of this approach over the container

approach is that recoverable interface (in the form of the recover operation) is

provided by the Re cove ryMe c h an i sm class. In addition, it is assumed that the

Recove ryMechan i sm class provides an operation called record which may be

invoked to maintain the recovery information required by a recoverable object.

Both inheritance approaches rely on the provision of additional functionality

by the implementor of the recoverable class to correctly manage the

unrecoverable class (or object). The advantage of the unrecoverable inheritance

approach is that the recoverable class need only refine those operations that

modify the object (ignoring concurrency control aspects). There is no need to

refine the remaining operations, which may be contrasted with the recoverable

Recoverability	 93

inheritance approach, where all the operations provided by the unrecoverable

class must be re-implemented since the recoverable class acts as a container for

the unrecoverable object. The principle advantage of the recoverable inheritance

approach however, is that all recoverable classes will be sub-types of the

Re cove ryMec h an i sm class, enabling the recoverable objects to be managed by a

common management mechanism. With the unrecoverable inheritance

approach, each recoverable class will be a new type and require a management

mechanism that is specific to that particular class.

The above discussion has been considering sub-typing inheritance, where a

class may only have a single super-class. The disadvantages of the two

inheritance approaches can be removed if the implementation language supports

multiple-inheritance, where a class can have multiple super-classes. By

employing multiple-inheritance the functionality of the unrecoverable class may

be mixed with the Rec ove ryMe c h an i sm class, requiring only a subset of the

operations provided by the unrecoverable class to be refined, and enabling the

new recoverable class to be treated as a sub-type of both the

Re cove ryMec hanism class and the unrecoverable class. Figure 4.4 illustrates

class RecoverableInteger : public Integer, RecoveryMechanism

public:

operator=(Integer);

Figure 4.4: The multiple inheritance approach

another implementation of the recoverable integer class (in C++) that employs

multiple inheritance. This multiple inheritance approach is therefore the most

suitable approach to adding recovery mechanisms to an unrecoverable class, and

is the approach assumed whenever recoverable classes that are constructed using

inheritance are discussed.

Recoverability	 94

Employing inheritance to construct recoverable objects is a powerful

technique that has not been previously exploited. By providing suitable support,

in the form of flexible recovery mechanisms, the construction of recoverable

classes from unrecoverable classes using inheritance greatly eases the burden of

the implementor of a recoverable class. This technique, which was first described

in [Dixon and Shrivastava 87], will be described in greater detail in the

remainder of this chapter.

To manage the recoverable objects requires the addition of management

information to an atomic action. The next section describes how this

management information may be used to ensure an object is recovered when an

atomic action is aborted, and how the recovery data needed by the recoverable

object may be managed.

4.3 Managing recoverable objects

There are two aspects to the management of a recoverable object, the first

involves notifying an atomic action that a recoverable object has been modified,

the second, recording sufficient recovery data to enable the abstract state to be

restored. The previous section describes how it was assumed that the class

Recove ryMec h an i sm provides an operation called record for this purpose,

which is used to maintain the data needed to recover an object and record suitable

management information with the current atomic action. Notifying an atomic

action that an object has been modified need only occur on the first modification,

but recording recovery information may occur on each modification (particularly

if an operation based recovery technique is employed).

When an atomic action is aborted, the recoverable objects recorded in the

management information maintained by the atomic action should be recovered.

If a recoverable object provides an operation such as recover then an atomic

action simply has to invoke this operation to restore its abstract state. If all

Recoverability	 95

recoverable objects provide an identical recoverable interface then the

implementation of the recovery management mechanisms will be greatly

simplified.

The discussion so far has assumed that the management of recovery is a part

of a recoverable object. As a result, a recoverable object must take part in the

commitment of an atomic action, since the recovery data maintained for each

atomic action has to be merged into the parent atomic action. If instead, the

recovery of an object is directly managed by the atomic action, along with the

maintenance of the recovery data, then the atomic action could merge the

recovery information, and only involve the recoverable object when the atomic

action is aborted. This separation of management from the basic recovery

properties will simplify the class that provides the recovery mechanism. This

approach has been adopted by the implementation described in the next section.

This implementation of recoverable objects using inheritance operates in the

atomic action framework described in the last chapter.

4.4 Implementing recoverable objects

The separation of the management of recovery from the basic recovery

property is possible using the record classes described in the last chapter. A

record class is responsible for managing a particular property, so that new record

classes may be defined to manage various recovery techniques. The following

sections describe the implementation of the two recovery techniques described

earlier in this chapter, along with the corresponding record classes that are

responsible for managing each technique.

The technique described in the next section provides recovery based on the old

state of an object. To support state based recovery a class called Object has been

implemented. This class provides a recoverable interface that supports

operations which may be invoked to retrieve and restore the internal state of a

Recoverability	 96

recoverable object. Instances of a record class called Ob j ec tState R e co rd are

created by Ob ject to add to an atomic action to indicate that a recoverable object

(constructed using Object) has been modified. An Ob jectStateReco rd

instance also maintains the recovery data required to restore a recoverable object,

which is contained in an instance of another class called Ob jec tS t ate. The

design and implementation of each of these classes are described in the next

section.

Two examples of operation based recovery techniques follow the state based

approach. The first example adopts a similar approach to the state based

approach, by defining a base recoverable class called Op e ration that may be

inherited to construct a recoverable class. To manage the resulting recoverable

objects constructed using the class Op e rat i on, a record class called

Op e rat ion Reco rd is provided. The recovery data that the Ope rat i on Reco rd

objects manage are instances of classes derived from an abstract class called

Op e rat i on Log. The second example of a recoverable class that employs an

operation based recovery technique simply defines a new record class, and is only

derived from the unrecoverable class. This alternative implementation is

provided to illustrate the flexibility of the record class abstraction, and describe

how compensation may be employed to provide the abstraction of recovery.

In the following two sections, the discussion is limited to how to add recovery

mechanisms to an existing unrecoverable class to produce a recoverable version of

the unrecoverable class. The recovery techniques described in these sections may

also be used to construct new recoverable classes that contains instances of both

recoverable and unrecoverable classes. The issues involved in constructing new

recoverable classes rather than adding recovery mechanisms to existing classes

will be discussed in detail in a section following the next two sections.

Recoverability	 97

4.5 Implementing state based recovery

This section describes how a state based approach to recovery may be

implemented within the atomic action framework described in the last chapter.

A suitable starting point is to consider the interface that a recoverable class

should provide. As the discussion in a last section concluded, the management of

a recoverable object is best left to an atomic action. As a result, the recoverable

interface may consist of an operation that returns the state of a recoverable object

(called save _state), and a complementary operation (called restore_state)

that restores a previous state which is passed as an argument. When a

recoverable class is constructed from the (base recoverable) class which provides

the s av e _ state and re s to re _s tate operations, these two operations should

be refined to save and restore the state of the recoverable class in a form defined

by the base recoverable class. The way the recovery data is represented defines

the form required.

While the mechanics of state based recovery can be considered to be

independent of the class of an object, the recovery data required is not. If

inheritance is to be used to add the basic functionality then the recovery

mechanisms and data should be independent of the class to which they are being

added. One approach is to employ an abstraction in the form of a class that may

be refined to manage class specific recovery data, but may be treated as an

instance of the base abstract class by the inherited recovery mechanisms.

Consider a class called AbstractState which constitutes the recovery data

for the save _ state and restore _state operations. Each new recoverable

class may derive a class from Ab st ractState to contain the recovery data that

the new recoverable class requires. For instance, when constructing a

recoverable integer a class may be derived from Abst ractSt ate (say

Intege rState) to maintain an Integer instance that is a copy of the value of

Recoverability	 98

the unrecoverable integer. When recovery occurs, the recovery management will

invoke the base recoverable class re s to re _s tate operation passing an instance

of Abs t rac tSt ate as an argument. In practice however, the res to re_s t ate

operation invoked will be the refined version in the recoverable integer class, and

the argument passed will be an instance of Int ege rSt at e.

The disadvantage of the above approach to providing the recovery data is that

for each recoverable class, an associated class that maintains the recovery data

must be defined. An alternative approach, is to provide a means by which the

recovery data is managed in a class-independent manner.

The method adopted by the implementation which will be described in the rest

of this section, is to provide a class called Ob jec tS t at e that maintains a

snapshot of the state of an object as a bit-image. To convert the state of an object

into a bit-image, the class Ob j e c tS tat e provides an operation (called pack)

which copies the state of an object (in terms of the storage associated with the

underlying hardware). If a newly defined recoverable class consists of a number

of objects then each object may be copied into an Ob j ectSt ate instance so that

the state of the recoverable object will consist of a contiguous block of storage. In

effect, the pack operation behaves in a similar manner to the similarly named

procedure required to marshal parameters for remote procedure calls.

To restore the state of an object, the Ob j e c tSt a t e class provides a

complementary operation called u n p ac k. This operation copies the state from

the Ob j e c tState buffer into the volatile storage that constitutes the state of the

object being restored. The function of the Oh j ect operations (save_state and

restore _state) and the Ob jectState class is therefore to provide a class

independent assignment operation. The advantage of this approach is that it is

more efficient than employing a class specific assignment operation if the state of

an object consists of a number of internal objects that are contiguous (such as an

Recoverability	 99

array). In addition, the class enables objects that are inherently unrecoverable

(i.e. which have no operations that may be used to recover them) to become

recoverable.

The base recoverable class that provides the recoverable interface has been

briefly mentioned in the last chapter when describing the way the atomic action

subsystem is structured. A skeleton declaration of this class, which is called

Object, is illustrated in the language C++ in Figure 4.5. In addition to the two

class Object

f

protected:
void modified();

public:

virtual ObjectState* save_state(ObjectState*);
virtual	 restore_state(ObjectState*);
....

Figure 4.5: The class Object

operations previously described, the class Object also provides an operation

called modified (the label protected in Figure 4.5 is a C++ encapsulation

mechanism that ensures only derived classes may invoke operations that follow

this label). The function of the mod ified operation is to behave in a manner

similar to the operation record described in a previous section. That is, before

an object is modified the modified operation should be invoked to record

management information with an atomic action and create the recovery data

required to restore the recoverable object. A more detailed description of this

sequence of events will be given later in this section.

Recoverability	 100

To illustrate how a recoverable class may be declared, Figure 4.6 is the

class RecoverableInteger : public Object,Integer
{

public:
RecoverableInteger();

virtual ObjectState* save_state(ObjectState*);
virtual void	 restore_state(ObjectState*);

Integer operator=(Integer&);

Figure 4.6: The class Recove rabl eIntege r

declaration (in C++) of a class that provides the abstraction of a recoverable

integer. In this class declaration it is assumed that C++ provides multiple

inheritance and that integers are represented by the class Integer. The

operations refined are the s ave_s tate and res to re_s t ate operations, and

the assignment operation (ope r ato r=). An implementation of the assignment

operation is illustrated in Figure 4.7 which explicitly names the inherited

Integer RecoverableInteger::operator = (Integer& newvalue)

f
Object: :modified();

return (Integer::operator=(newvalue));
1

Figure 4.7: Recove rab le I n tege r assignment

operations that are invoked. An implementation of the s ave_state operation is

illustrated in Figure 4.8 which employs the C++ s i ze of operation to return the

ObjectState* RecoverableIntegernsave_state(ObjectState* newstate)
{

newstate-ppack((Integer*)this,sizeof(Integer));
return (newstate);

}
Figure 4.8: Recoverabl eInteger save_state operation

size of an I n tege r object in bytes. In this implementation, the pseudo-variable

provided by the C++ compiler (called t h i s) which points to the state of an object

in volatile storage is used to access the storage associated with the inherited state

from Integer by casting the pointer. The complementary operation

Recoverability	 101

res to re_s tate is illustrated in Figure 4.9 (the size is not required for this

void RecoverableInteger::restore_state(ObjectState. oldstate)

oldstate-o.unpack((Integers)this);

Figure 4.9: Recove rab 1 eInteger restore_state operation

operation as it is maintained by the Ob j ectSt ate object).

The discussion so far has concentrated on how to construct a recoverable class

from an unrecoverable class. The discussion may now move on to how to manage

the resulting recoverable objects. To ensure that instances of the recoverable

class are correctly managed by an atomic action requires that management

information is added to an atomic action. In the last section, the manner in which

the recovery information is implemented was described. The approach is to

employ an abstraction termed a record, and to derive classes from the base record

class to produce the required functionality.

Given the base record class Ab s t rac t Re cord, a suitable record class to

manage the recoverable classes constructed in the manner described in this

section may be provided. The record class for state based recovery, which is called

Ob jectStateReco rd, manages an instance of the class ObjectState that in

turn manages the recovery data for a recoverable object. When a recoverable

object is modified an instance of the class Ob j e c tS t ate Re c o rd is created to

manage and hold the newly created Ob j e c tSt ate instance (which contains the

current object state), and this is then added to the current atomic action.

The operation which creates the Ob jectState and ObjectStateReco rd

instances is the modified operation provided by the class Object. This

operation should be invoked in the implementation of each operation in a

recoverable class that modifies the inherited state. When invoked, the modif ied

operation begins by creating an Ob j e c tS tate instance and invoking the

Recoverability	 102

save_state operation to save the current state of the recoverable object in the

newly created ObjectState instance. An ObjectStateRecord is then

created, with the Obj ectState instance being passed as an argument, and is

added to the current atomic action. The mod if ied operation may be called a

number of times as operations are invoked on a recoverable object, but this

sequence of events only occurs the first time the mod i f i ed operation is invoked

in each atomic action.

To abort an atomic action the Ab o rt operation provided by the class

Atom i cAc t i on may be invoked. The implementation of this operation involves

invoking the abort operation implemented by each record instance that the

Atom i cAct i on instance is maintaining. In the implementation of the

Ob jec tS tate Re co rd abo rt operation (illustrated in Figure 4.10) the

void ObjectStateRecord::abort()

object_addr-.restore_state(state);

Figure 4.10: ObjectStateRecord abort operation

ObjectState instance is used as the argument to the restore_state

operation, thereby recovering the state of the recoverable object. Each

Ob jectStateReco rd object contains a pointer (called ob ject_add r) to the

recoverable object that created the Ob jectStateRecord instance, and a

variable (called state) that points to the Ob j e c tSt ate instance for the

recoverable object, enabling the Ob j e c tSt at eRe c o rd implementation to invoke

the re s to restate operation in the manner shown in Figure 4.10.

This section has described how a recoverable class that implements state

based recovery may be constructed from an existing unrecoverable class and a

base recoverable class using inheritance. The next section describes how an

Recoverability	 103

operation based approach to recovery may be used, and is followed by a discussion

on how to construct recoverable classes that provide new abstractions.

4.6 Implementing operation based recovery

This section describes how recovery mechanisms which are based on recording

the operations invoked on an object may be implemented within the atomic action

framework described in the last chapter. To be suitable for such an approach, the

semantics of the unrecoverable class must be known by the implementor of the

recoverable class so that the inverse of an operation may be invoked when

recovery is required. Hence, each unrecoverable class must have a set of

operations that have suitable inverse operations.

Providing an unrecoverable class is suitable, then a new recoverable class may

be constructed in a similar manner to the state based recovery technique where

class dependent recovery data is employed. Since the purpose of an operation

based recovery technique is to undo the operations invoked on an object, a

suitable base class called Ope rat ion may be defined that provides two

operations: undo and re c o rd. The skeleton declaration for such as class is

illustrated in Figure 4.11. Both operations defined by the class Operation take

class Operation

(

protected:
void record(OperationLog*);

public:

virtual void undo(OperationLog*);
....

} ;

Figure 4.11: The class Op e rat i on

instances of the class Op e rat i on Log which is provided to log the operations

invoked on a recoverable object. The Ope rat i on Log class is an abstract class

Recoverability	 104

provided so that new classes may be derived from it to provide class-specific

recovery data.

To illustrate the basic mechanism (the management issues being described

later in this section) consider the construction of a class that provides the

abstraction of a recoverable stack of integers. The unrecoverable class that

implements a stack of integers is called Stack and provides two operations: push

and pop. The class declaration for the recoverable stack is given in Figure 4.12,

class RecoverableStack : public Operation, Stack

(

public:

void	 push(Integer);
Integer pop();

virtual void undo(OperationLop);
....

Figure 4.12: The class RecoverableStack

illustrating how the recoverable class refines the pus h, pop, and undo

operations. To provide suitable recovery data the class StackOpe rat i onLog is

also provided (illustrated in Figure 4.13). This class is derived from

enum StackOperation (PUSH, POP};

class StackOperationLog : public OperationLog

(
StackOperation Op;
Integer argument;

public;
StackOperationLog(StackOperation,Integer);

StackOperation get_operation();
Integer	 get_argument();

Figure 4.13: The class StackOpe rat i onLog

Ope rat i on Log and (to simplify issues) contains the name of a single operation

(as a value of type StackOpe rat i on) that was invoked on an instance of the

Recoverability	 105

recoverable class, along with the argument needed when the inverse operation is

the pus h operation.

When either the push or pop operation is invoked on a Recove rab 1 eStac k

instance, an instance of Stac kOpe rat i on Log is created and the record

operation provided by the Ope rat i on class invoked. The implementation of the

pop operation is illustrated in Figure 4.14. The record operation performs a

Integer RecoverableStack::pop()

{
Integer temp . Stack::pop();

if (CurrentAtomicAction
&& CurrentAtomicAction-*Status() == RUNNING)

Operation::record(new StackOperationLog(POP,temp));

return temp;

}

Figure 4.14: RecoverableStack pop operation

similar service to the mod if ied operation provided by the class Object, adding

an instance of a record class (called Op e rat i onReco rd) to the current atomic

action. Before invoking this operation, the implementation of the push and pop

operations determine the status of the currently executing atomic action. If the

status is anything other than RUNNING then the record operation is not

invoked. The reason for this test is that each of these operations will be used to

undo the inverse operation during recovery (when the atomic action status will be

ABORTING), at which point recovery information should not be created and added

to the atomic action.

When the atomic action is aborted, the abo rt operation implemented by the

Ope rat i onReco rd class simply invokes the undo operation passing the

Operation Log instance as an argument. In the case of the

Recove rableStack, the undo operation invoked is the refined version and the

Op e rat i onLog instance passed is actually an St ac kOpe r at i o n Log instance.

The implementation of the undo operation (illustrated in Figure 4.15) provided

by the RecoverableStack class employs the StackOpe ration field in the

Recoverability	 106

void RecoverableStack::undo(OperationLog* Log)

StackOperationLog *Slog = (StackOperationLog*) Log;

if (Slog-o. get_operation() == POP)
Stack::push(Slog-*get_argument());

else
Stack: :pop();

Figure 4.15: The RecoverableStack undo operation

Stec kOp e rat i o n Log instance to invoke the inverse operation, passing the

argument if this operation is the push operation.

The simple operation based recovery technique described above can be

optimised in a number of ways, for example by maintaining a single log of

operations rather than a single operation per log object, and a single record class

instance per atomic action rather than a record class instance per operation. The

description of the simple recovery technique illustrates however, the flexibility of

employing inheritance to construct a recoverable class from an unrecoverable

class.

To further illustrate the power of this technique, consider a class that

manages a physical resource such as a printer. Once a printout is sent to a

printer, the act of sending the printout cannot be recovered, but the abstraction of

recovery can be provided by performing a compensation operation [Shrivastava

and Banktre 78]. To illustrate an alternative method of implementing operation

based recovery, the following example employs a class specific record class to

provide the necessary functionality. This approach may be contrasted with the

approach described above (which employs the class Ope r at i on) since the

recoverable class is only derived from the unrecoverable class and relies on the

record class to provide the recovery mechanism rather than a base recoverable

class such as Operation.

Recoverability	 107

To provide the capability of producing a hard copy of the state of an object

during its lifetime, consider the class Printe r. This class is an abstraction of a

physical printer typical to many systems, and is an unrecoverable object that

provides three operations. The first is print which sends the output from a

recoverable object (the result of invoking the p ri nt On operation implemented by

the class Object) to the physical printer, returning the job number of the

printout. This job number may be saved by an application and used to stop the

printout by invoking the operation kill. The final operation is called status

which, as its name suggests, returns the status of a particular job as an

enumerated value of type Printe rS t at u s. The class definition for Printer is

illustrated in Figure 4.15. In addition to the class declaration, the P r i nter

enum PrinterStatus {QUEUED,PRINTING,PRINTED,KILLED1;

class Printer

{

public:
Printer (String);
-Printer();

Integer print (Object&);
PrinterStatus kill (Integer);
PrinterStatus status(Integer);

inline void operator<<(Printer& P,Object& 0)

{
P.print(0);

}

Figure 4.15: The class Printer

definition includes an inl ine function that enables an instance of Printer to be

used in the same way as a C++ output stream. Given an instance of Printer

called twee dmou t h, statements of the form

tweedmouth << instance of class derived from Object;_	 _ _

can be made to print the state of an object.

To provide a recoverable printer that automatically kills print jobs if the

atomic action within which the print operation was invoked is aborted, the class

Recoverability	 108

Recove rab 1 ePrin te r is provided. This class is derived from Printer and

provides a single operation, a refined version of the print operation. To ensure

that instances of this class are recoverable, the implementation of the p ri n t

operation adds an instance of the class P ri nte rRe co rd (using the

Atom i cAc t ion ad d operation) to the currently executing Atom i cAc t ion

(accessed through the Cur re ntAtomi cAct i on variable). The body of the print

operation is illustrated in Figure 4.16 (the method used to add the

void RecoverablePrinter::print(Object& o)

int job number = Printer::print (o);

if (CurrentAtomicAction)
CurrentAtomicAction-oadd (new PrinterRecord (this, job_number));

Figure 4.16: The Recoverabl ePri nter print operation

PrinterRecord being similar to that used to add ObjectStateRecords

during the modified operation provided by Object). The state of a

P ri nte rReco rd consists of a reference to the Printe r object (printer) and

the job number (p_i d) passed as arguments to the class's constructor (as this

and j ob_n urn be r respectively in the above example).

When the enclosing Atom i cAct i on is aborted the abort operation provided

by the Printe rRe co rd is invoked (illustrated in Figure 4.17). This operation

void PrinterRecord::abort ()

PrinterStatus status = printer-sstatus(p_id);

If (status == PRINTING 11 status == QUEUED)
printer-0(M (p_id);

if (status == PRINTING 11 status == PRINTED)

Message message(form("Discard printout with job number %d", p_id));

printer-o.print(message);

Figure 4.17: ThePrinterRecordabortoperation

first finds the status of the job. If the job is either waiting to be printed, or is in

Recoverability	 109

the process of being printed, then recovery occurs as the operation invokes the

kill operation on the Rec ove ra b 1 ePrinter object (passing the job number as

the argument). If part, or all, of the job has been printed then compensation

occurs in the form of a message sent to the printer indicating that the printout

should be discarded. The compensating message is provided by the creation of an

instance of the class Message (a class derived from Object) that contains the

message text. Since the Message class is a subtype of Object, the print

operation provided by Printer may be directly invoked with a Message

instance as an argument.

This section has described how operation based recovery techniques may be

used to add recovery mechanisms to an unrecoverable class. The previous section

described how a state based approach may be used, and the next section discusses

how both these approaches may be used to construct new recoverable classes that

contain recoverable and/or unrecoverable objects.

4.7 Constructing a new recoverable class

The discussion so far has concentrated on constructing simple recoverable

classes that consist of a single unrecoverable class. This section discusses the

issues involved in constructing a recoverable class that consists of more than one

recoverable and/or unrecoverable class to provide a new abstraction.

A newly defined recoverable class can be constructed in one of three ways. The

first is a recoverable class that consists of objects that are already recoverable, the

second a class where all the objects are unrecoverable, and the third a class where

there is a mixture of recoverable and unrecoverable objects. In each of these

cases, if the new abstraction requires more than one instance of a particular class

then inheriting that class (in the manner described in previous sections) cannot

be used, since inheritance effectively provides only a single instance of the class

that is inherited. The rest of this section therefore concentrates on how to

Recoverability	 110

construct recoverable classes that instantiate other classes. The classes

instantiated by a recoverable class are termed the internal objects of the

containing recoverable class.

To illustrate the different approaches, the following discussion will employ a

simple class that provides the abstraction of a string, which may be represented

by a class that consists of a variable that references a block of volatile storage and

two integers that maintain the size of, and an index into, the volatile storage.

The unrecoverable volatile storage is implemented by the class

Vol ati leSto rage and the recoverable version by RecoverableVSto rage.

	

The unrecoverable integer is represented by the class In 	 and the

recoverable version by the class Recove rab le I ntege r.

Starting with the RSt ring class that is implemented using objects which are

already recoverable, illustrated in Figure 4.18. As the class declaration given in

class RString

RecoverableVStorage storage;
RecoverableInteger storage_size:
RecoverableInteger storage_indez;

public:
1;	 // various operations typical to strings

Figure 4.18: The class RSt ring

Figure 4.18 shows, no extra recovery mechanisms are needed by the class

RSt ring if all the internal objects are already recoverable. When the contents of

the volatile storage are changed, the Re cove rab 1 eVSt to rag e class will create

suitable recovery data and management information and add these to the current

atomic action. Similarly, when either the size or index changes, recovery data

and management information will be added to the current atomic action. If this

atomic action aborts then the objects modified will be recovered.

Recoverability	 111

The opposite approach is to construct a recoverable class from unrecoverable

objects producing the string implementation illustrated in Figure 4.19. In this

class UString : public Object

{
VolatileStorage storage;
Integer	 storage_size:
Integer	 storage_index;

public:

virtual ObjectState* save_state(ObjectState*);
virtual void	 restore_state(ObjectState*);

.	 // various operations typical to strings

Figure 4.19: The class USt ring

class (US trin g) the recovery technique chosen is the state based approach that is

supported by the class Object, so that US t ring refines the inherited

s av e _s tate and re s to re_s tate operation to save and restore the state of a

resulting string object. In the implementation of the s a v e_s t ate and

re s to re _s tate operations, the state (which consists of the three unrecoverable

objects) must be packed into, and unpacked from, a single instance of the recovery

data class Ob j ec tS t ate. The disadvantage of this approach is therefore

apparent, in that a change to a single unrecoverable object results in all the

objects being saved even if they are not modified at the same time.

The final approach is to construct a recoverable class from a mixture of

recoverable and unrecoverable objects. Assuming that the

RecoverableInteger class is not available, then the string class may be

represented in the manner shown in Figure 4.20. The refined versions of the

s ave_s tate and restore _s tate operations provided by the URSt ring class

simply have to manage the unrecoverable I n teg e r objects, since the volatile

storage object is already recoverable.

Recoverability
	 112

class URString : public Object
(

RecoverableVStorage storage;
Integer	 storage_size:
Integer	 storage_index;

public:

virtual ObjectState* save_state(ObjectState*);
virtual void	 restore_state(ObjectState*);

..	 // various operations typical to strings

Figure 4.20: The class URSt ring

Of the three approaches described above, the most useful are the RS t ring and

U RS t ring classes where the recoverable class consists either entirely, or partly,

of instances of recoverable objects. As a result, when an operation such as

retrieving a sub-string of the string is invoked then only the index object need be

saved. Similarly when the size of a string object is changed then only the volatile

storage object and and size object need be saved. If the entire string is changed in

an assignment operation however, all three objects will be modified and recovery

information recorded for each object. In this situation, the approach of

constructing a recoverable class entirely from unrecoverable objects will be the

most efficient, as only one set of recovery information is be needed. To optimise

recovery for a recoverable class that contains recoverable objects, a fourth

approach is possible if the recoverable class inherits extra recovery support from

the class Object. Figure 4.21 illustrates such as class. The optimisation that

class MRString : public Object
f

RecoverableVStorage storage;
RecoverableInteger storage_size:
RecoverableInteger storage_index;

public:
....

virtual ObjectState* save_state(ObjectState*);
virtual void	 restore_state(ObjectState*);

..	 // various operations typical to strings

Figure 4.21: The class MRSt ri ng

inheriting further recovery provides is the ability to recover all three objects

Recoverability	 113

together (as if they were unrecoverable). This capability saves management

information (only one copy being required instead of three) and instances of the

recovery data object Ob jec tSt ate.

A potential disadvantage with deriving a recoverable class that contains

recoverable objects from a base recoverable class is that if all of the recoverable

objects are modified, then recovery information will be recorded by the

mechanism the recoverable class inherits, in addition to the recovery information

that each recoverable object will record as it is modified. Clearly, recording

recovery information twice defeats the purpose of this optimisation. To rectify

this situation, the solution is to provide a means by which the recoverable class

can override the recovery management provided by the recoverable objects

contained in the recoverable class.

The method used to override the recovery mechanisms of the internal

recoverable objects is shown in Figure 4.22 which illustrates the assignment

void MRString::operator = (MRString& oldstring)

{
Object: :modified();

Recovery = Off;

storage = oldstring.storage;
storage_size = oldstring.storage_size;
storage_index = oldstring.storage_index;

Recovery = On;

Figure 4.22: The MRS t ring assignment operation

operation operation provided by the MRS t ring class. In this implementation, the

modified operation inherited from Ob ject is invoked to save the entire state of

the MRS t ring object. The implementation of the modif ied operation in turn

invokes the s av estate operation provided by MRSt ring for this purpose. The

implementation of the s ave_s tate operation (illustrated in Figure 4.23) simply

Recoverability	 114

ObjectState* MRString;:save_state(ObjectState* newstate)

C	
storage.save_state(newstate);
storage_size.save_state(newstate);
storage_index.save_state(newstate);

return newstate;

}

Figure 4.23: The MRSt ring sav e_state operation

invokes the save st ate operation provided by each recoverable object to save_

the state of that object in a single instance of Ob jec tState.

To override the recovery mechanisms the recoverable objects provide, the

value of the global variable Recove ry is set to Off. The value of this variable

should be checked in each operation that records recovery information with an

atomic action. The implementation of the inherited recovery operations (the

modified operation in the case of Object and the record operation in the case

of Op e rat ion) act in this manner, returning when invoked without recording

any recovery information if the value of Re cove ry is Of f.

The above approach to controlling when recovery information is recorded has

been discussed in terms of the inclusive and disjoint recovery models proposed by

[Anderson et al. 78]. When the recovery environment established by a

computation is also used by the objects the computation invokes operations on

(and any objects that have operations invoked as a result), then the type of

recovery is termed inclusive. Inclusive recovery is therefore the recovery model

implicitly employed throughout the discussion of recovery in this chapter. If the

recovery environment of a computation is not employed when an operation is

invoked on an object by the computation, then the recovery environments of the

main computation and the computation that implements the operation are

disjoint. An example of how disjoint recovery may be implemented, and when it

is required, is therefore illustrated in the assignment operation provided by the

MRStri ng class, enabling the assignment of the individual recoverable objects to

Recoverability	 115

be considered to be disjoint from the main assignment, thereby avoiding two sets

of recovery information from being recorded.

This section has discussed how a recoverable class may be constructed from

unrecoverable and recoverable objects. During this discussion, the advantages of

the various approaches were briefly described. The next section discusses the

advantages and disadvantages of constructing recoverable classes using

inheritance in the manner described in this chapter.

4.8 An assessment of constructing recoverable classes
using inheritance

This section assesses the technique of exploiting inheritance to construct a

recoverable class of objects. To summarise, the basic technique is to derive a new

recoverable class from two base classes. One is a previously unrecoverable class

and the other a class which provides the recovery mechanisms that enable the

newly constructed class to correctly manage the inherited unrecoverable state,

and in turn be managed by an atomic action. By exploiting inheritance in this

manner, the recoverable class will be a sub-type of the unrecoverable class on

which it is based and as a result, instances of the recoverable class may be used in

place of instances of the unrecoverable class. In addition, only a single recovery

management mechanism is required (for the base recoverable class) since the

newly constructed recoverable class will be a sub-type of the base recoverable

class.

When the programming language used to construct a class supports the

declaration of recoverable objects, then the compiler for the language will produce

the recovery mechanisms. With the approach described in this chapter, the base

recoverable class provides class-independent support which must be refined by

the implementor of a recoverable class to correctly manage that class. To refine

the inherited support, the implementor must know the semantics of the

Recoverability	 116

unrecoverable class and, in the case of the state based recovery technique, what

constitutes the state of an instance of the unrecoverable class. Without such

knowledge, recoverable classes will not correctly manage the unrecoverable state

and functionality they inherit. If the state of an unrecoverable class is unknown,

but the unrecoverable class provides suitable operations, then a recoverable class

can be constructed using the operation based recovery technique which also

exploits inheritance.

The principal advantage of an operation based approach to recovery is that the

implementation of the recovery mechanisms provided by the recoverable class

should be independent of the implementation of the unrecoverable class. For

instance, the stack used as an example earlier in the chapter could be

implemented as a linked list, and at a later date changed to an array of pointers

without affecting the implementation of the recovery mechanisms provided by

recoverable class. With the state based approach, recovery is dependent upon the

state of the unrecoverable class and as a result changes to the internal

representation of the unrecoverable class will effect the state that must be

managed by the recovery mechanisms, and must result in changes to the

implementation of the recovery mechanisms provided by the recoverable class.

Since the recovery mechanisms are provided by a class that may be inherited,

a recoverable class that consists entirely of instances of existing recoverable

classes may inherit extra recovery mechanisms to optimise the recovery of the

internal recoverable objects. The flexibility offered by providing recovery

through a class that may be inherited enables the granularity of recovery to be

chosen by the implementor of a recoverable class. An implementor can choose to

override the recovery mechanisms provided by a recoverable object so that

optimisations are possible when more than one internal object that constitutes

the state of the recoverable class is modified. Since recovery mechanisms can be

added to existing recovery mechanisms (in the case of a recoverable class that

Recoverability
	 117

contains recoverable objects which inherit recovery), and recovery mechanisms

can be overridden, employing inheritance to add recovery proves to be very

flexible.

4.9 Concluding remarks

When an atomic action is aborted, failure atomicity requires that the objects

modified during the atomic action are restored to the state held at the start of the

atomic action. This chapter described how the property that supports this

capability (recoverability) may be added to a class of objects. The chapter began

by considering how recovery mechanisms may be added to an unrecoverable class

to provide recoverability. Two alternative recovery techniques were described

during this discussion; a state based technique which manages the state of an

object, and an operation based technique which records the operations invoked on

an object.

To add recovery mechanisms that support either a state or operation based

recovery technique, this chapter described a novel approach that exploits the

inheritance property of an object-oriented programming language. By producing

a class that implements the basic recovery technique (the base recoverable class),

a new recoverable class may be constructed by deriving the new class from the

base recoverable class and an unrecoverable class. The result is a recoverable

class that has the functionality of both the unrecoverable and base recoverable

classes. Implementations of both recovery techniques which exploit inheritance

for constructing recoverable classes were described.

During the description of each approach, the issues involved in managing

instances of the resulting recoverable classes were discussed. The advantage of

inheriting recovery is that the resulting recoverable classes are sub-types of the

base recoverable class, requiring a single management mechanism for each base

recoverable class. This management mechanism was implemented for each base

Recoverability	 118

recoverable class using the record abstraction described in the last chapter. To

illustrate the flexibility of exploiting inheritance and the record abstraction, an

implementation of a class that provides the abstraction of recovery by performing

compensation operations was described.

A later section of this chapter discussed how new abstractions that are

recoverable may be constructed from instances of recoverable and unrecoverable

classes. The examples discussed in this section illustrated the flexibility of

employing inheritance to add recoverability, as the granularity of recovery of

internal objects contained in a recoverable class may be defined by the

implementor of the recoverable class.

In summary, the technique of using inheritance to construct recoverable

classes began partly out of necessity, the alternative being to modify a language

compiler or operating system, but the outcome has been a flexible and elegant

method of adding a property such as recovery to a previously unrecoverable class

of objects.

The next chapter describes how the base recoverable class that implements

state based recovery technique may be extended to enable an instance of a class,

derived from this base recoverable class, to persist beyond the lifetime of an

application that created it.

Persistence
	 119

Chapter 5

Persistence

The previous chapter described how the objects accessed by the computation

an atomic action encapsulates may be constructed in such a way that they can be

restored to a previously held state should the atomic action abort. This capability

is provided by the recoverability of the object and supports the failure atomicity

property of the atomic action. This chapter discusses another property of atomic

actions, that of permanence of effect. The permanence of effect property ensures

that the system state established by a successfully terminated top-level atomic

action will be unaffected by subsequent system failures. To provide the

permanence of effect property, newly established system state must be saved in

non-volatile storage which will not be corrupted by system failures. Since the

system state is represented by objects this involves ensuring the permanence of

those objects.

To move the state of an object to and from non-volatile storage requires a

mechanism for mapping the volatile state into, and out of, the form expected by

the non-volatile storage system. To simplify the implementation of this mapping

mechanism, non-volatile storage may be organised as an object store thus

providing a suitable interface for the management of objects in non-volatile

storage. When a programming system supports persistence, the automatic

movement of objects to and from an object store, and the mapping mechanisms,

are provided for each class of objects.

This chapter describes how the concept of persistence may be incorporated into

the object and action model described in earlier chapters of this thesis. The

aspects of persistence that will be discussed are those that directly relate to the

construction, storage, and naming of a persistent object. Since the purpose of the

Persistence	 120

work described in this thesis is to address reliability, issues which concern

researchers in the field of persistent programming, such as managing different

versions of a class of a persistent object (e.g. [Barman and Crawley 87]) or

providing database functionality (e.g. [Bloom and Zdonik 87]), are orthogonal to

the problem being considered and as a result are not discussed in this thesis.

This chapter begins by discussing when persistence is required and how the

implementor of an application may define which of the objects used during the

application are existing persistent objects, or new objects that must persist. The

following sections discuss how persistence may be added to a class, and how the

support for this property may be controlled by the state and access components of

an atomic action to move the state of a persistent object to and from the object

store. The final sections of the chapter discusses the problems that arise from

saving, retrieving, and organising object states in non-volatile storage, and how

these issues may be resolved by the design and implementation of an object store.

5.1 Permanence of effect and persistence

The permanence of effect property requires that the system state modified by

the computation (encapsulated by an atomic action) becomes permanent when the

atomic action commits. In the nested atomic action model employed in this

thesis, this occurs when the outermost atomic action (the top-level atomic action)

commits, all other (nested) commits simply involve the propagation of

management information to the enclosing atomic action.

When a programming system supports persistence [Atkinson et al. 83a,

Atkinson and Buneman 87], an object may be declared that exists beyond the

lifetime of the application program in which the object was created. If persistent

objects are used to model the permanent system state then the permanence of

effect property may be provided by ensuring that all persistent objects, which

Persistence	 121

have been modified during the top-level atomic action, persist once the top-level

atomic action commits.

The motivation behind the concept of persistence is to remove the two views of

storage (volatile and non-volatile) supported by conventional programming

systems. Normally, an object accessed by an application exists in volatile storage

and will be deallocated when the application terminates. In a conventional

programming system, if the state the object represents is required to exist beyond

the execution of the application then the state must be converted into a form that

can be stored in the non-volatile storage supported by the system (which is

typically a file).

The aim of a persistent programming language is to remove the burden of

mapping the state of an object between volatile and non-volatile forms and

provide a uniform view of state where no distinction is made between short and

long-term state. Atkinson et al. [Atkinson et al. 83a1 view persistence as an

orthogonal and independent property of a class, so that the persistence of an

object is not a function of the class of the object or the way the object is used.

Systems which support orthogonal persistence are considered to be more flexible

than systems that support limited forms of persistence where only certain classes

of object may persist, or persistent and nonpersistent objects must be accessed in

different ways.

Programming systems that address reliability issues all provide some form of

support for the permanence of data, but do not attempt to provide this

permanence in an orthogonal manner. For instance, the Aelous [Wilkes and

LeBlanc 86] language produced by the Clouds project [Allchin and McKendry 83]

allows a class to be declared as autorecoverable which results in the automatic

recovery and persistence of the entire state of instances of the class when modified

within an atomic action. Another form of declaration supported by Aelous allows

Persistence	 122

a class to be declared as recoverable, but only the variables declared within

recoverable areas are persistent. In both cases, the persistence of an object is a

function of the class of the object, hence, persistence is not an orthogonal property

as it is not possible to use an instance of a such a class without it persisting should

the top-level atomic action commit.

The research described in this chapter attempts to address persistence from a

reliability point of view by building upon the recovery mechanisms described in

the last chapter. The penultimate section of this chapter assesses whether the

persistence mechanisms that have been developed support orthogonal

persistence. The rest of this section however, discusses how persistence may be

employed in the object and action model assumed by the environment described in

this thesis, beginning with the terminology that will be used to describe

persistent objects.

While an application is using a persistent object, the object is said to be active.

Since the lifetime of a persistent object must extend beyond that of an application,

the persistent object must be maintained in non-volatile storage between

activations. When a persistent object is stored in non-volatile storage the object is

said to become passive as it is deactivated, the passive form being referred to as

the persistent data. To activate a passive object, a new instance may be created

with the default value and the persistent data held in non-volatile storage used to

give the new instance the identity and value of the passive persistent object.

Persistence	 124

conflicting access modes) in disjoint applications resulting in inconsistencies

when the objects are deactivated.

In the object and action environment, concurrency control is internal to an

object, since it is only the implementor of a class who knows which operations

modify the internal state of an instance of the class, and hence what type of

concurrency control should be placed on an instance. As a result, the

implementation of each operation must involve a concurrency control operation.

When the first operation is invoked on an object, the first act of the

implementation of the operation will be to invoke a concurrency control

operation, providing a suitable point at which to activate the object. It is

therefore assumed that the concurrency control mechanism is responsible for

activating an object. More precise details of the interaction between the

persistence and concurrency control mechanisms will appear later in this chapter.

Persistent and nonpersistent objects therefore differ, since access to a

persistent object must involve concurrency control as it can be accessed by

concurrent computations. Another important difference is that persistent objects

do not obey the scope rules normally associated with the programming language

used to construct the application in which they are declared. All programming

languages have some concept of scope which is defined by an operation,

procedure, or block during which the declaration of an object is valid. Once the

scope ends all objects declared within that scope may be deallocated since they

cease to be accessible.

The way that scope is supported differs from language to language but the

basic effect is the same. In a programming system such as Smalltalk [Goldberg

and Robson 83] objects are accessed through either temporary or global variables

which are explicitly assigned to new or old objects contained on the system heap.

When an operation or block terminates, the temporary variables declared within

Persistence	 125

the scope defined by the block, or operation, are automatically deallocated.

Objects are never explicitly deallocated, as the language employs a garbage

collector to deallocate objects when an object is determined to be inaccessible.

The method of object management supported by Smalltalk may be contrasted

with that of a procedural object-oriented programming language such as C++

[Stroustrup 86]. The variables declared in C++ can also be temporary or global,

but may reference an object in one of two ways. When an object is referenced by

an automatic variable, the variable and the object will be deallocated when the

block, within which the variable was declared, terminates. The compiler for the

language provides the support for the creation and deallocation of objects

referenced by an automatic variable. The second method of accessing an object is

through a pointer variable. Objects accessed through a pointer variable function

in a similar manner to those supported by Smalltalk as they must be explicitly

created and, in the case of C++, deallocated. To create a new instance of a class,

C++ provides the new operator. To deallocate an existing instance, the delete

operator is provided. With both types of declaration, the objects are allocated on

the program heap, but since the language does not provide a garbage collector the

implementor of an application is expected to deallocate objects that are accessed

using a pointer variable, before they become inaccessible.

The persistence of an object beyond its normal scope may therefore be achieved

by ensuring that either the persistent object is not deallocated, or the persistent

data for the object is maintained, until the end of the application (at which point

it may be deactivated). The former approach may be implemented by ensuring

that all persistent objects are maintained on the program heap and referenced in

a global object which is known as the persistence root. The persistence root can

then be processed when the application terminates to ensure all persistent objects

are deactivated. An approach of this type is used by the persistent programming

language PS-Algol [Atkinson et al. 83b11. It is important to note however, that

Persistence	 126

persistence only affects the state of the object, not the accessibility, since the

variable used to access the object will be deallocated.

Deactivation involves saving the persistent data for the persistent object in

non-volatile storage. Since this operation is susceptible to node or process

crashes, persistent programming systems provide atomic actions to ensure that

the deactivation of a persistent object is failure atomic. Generally, only single

level atomic actions are supported, so that an atomic action encompasses the

application and controls the deactivation of all persistent objects. If the atomic

action is not committed then the persistent objects will not be deactivated, so that

the deactivation of a persistent object becomes a function of the outcome of the

atomic action declared in an application.

If atomic actions can be nested then the persistence of an object becomes a

function of the outcome of the atomic action (and any containing atomic actions)

within which the object was modified. The management of persistence is

therefore more complex when atomic actions are nested, since a single global

persistent root cannot be used. The solution is to maintain information about the

persistent objects modified during nested atomic actions, and merge this

information into the information held by the containing atomic action (in the

manner described in the previous chapter for recovery information). If all atomic

actions in an application which have control over the persistence of an object

commit, then the newly established state of a persistent object will outlive the

application.

This section has described how the permanence of effect property of an atomic

action may be supported, and how this persistence is a function of the atomic

actions declared in an application. The next section describes how the

mechanisms that support persistence may be added to a class of objects.

Persistence	 127

5.2 Supporting persistence

There are a number of issues, which were covered in the last section, that must

be considered when constructing mechanisms that support persistence. The first

is how to declare that an object should be persistent, or name an existing

persistent object so that the persistent data may be located and the object

activated. Once active, any scope associated with the object's declaration must be

overridden so that the object persists until the outcome of the containing atomic

actions are determined. If all atomic actions up to the top-level atomic action

commit then the modified persistent objects must be automatically saved in non-

volatile storage, requiring mechanisms to move the state of an object (the

persistent data) from volatile to non-volatile storage. Finally, the means of

organising the non-volatile storage must be considered so that when a persistent

object is required by a subsequent application, the persistent data can be located.

This section discusses how these issues may be addressed in the object and action

environment after briefly considering the approaches taken by other research

projects.

To provide support for persistence, most research projects have concentrated

on producing persistent programming languages. One approach has been to

extend the type system of an existing language to provide new types that support

persistence. Examples of this approach are E, the language produced by the

EXODUS [Richardson et al. 87] project which is based on C++, and Trellis/Owl

[Bullis et al. 86, O'Brien et al. 86]. Another approach, based on extending an

existing language, is taken by PS-Algol [Atkinson et al. 83b] where the

mechanisms required are provided as functional extensions to the language S-

Algol [Morrison 79]. Rather than extend an existing language, n e w languages

have also been defined, for example the Napier [Atkinson and Morrison 87]

programming language.

Persistence	 128

To define which objects are persistent, one of two approaches are adopted by

these persistent programming languages. Either the class of the object is a

special persistent class (as in EXODUS and Trellis/Owl), or any type of object

may persist but must be explicitly retrieved from, and placed in, the persistent

environment (which defines the objects that are moved to and from the object

store - the PS-Algol and Napier approaches). When the persistent programming

language is based upon an existing language, the normal scope rules must be

overridden. The approach taken by PS-Algol relies on maintaining extra

references to a persistent object held in the heap, so that the garbage collector

does not deallocate the object.

The mechanisms required to map the state of an object between volatile and

non-volatile storage, are generally implemented in one of two ways: by providing

general mechanisms that can manage all classes using class structure

information (the PS-Algol approach), or by producing the mapping mechanisms

specifically for a class during the compilation of the class (the E approach). To

manage the state in non-volatile storage an object store is generally employed,

which may be constructed specifically for the language (as in PS-Algol), or may be

a general purpose object store. An example of the latter is the use of an object

store called ObServer [Skarra et al. 86] by an implementation of persistence in the

language Trellis/Owl described in [Moss 871.

The rest of this section discusses an approach to persistence, designed to

operate in the object and action environment described in this thesis, beginning

with how the recovery mechanisms, described in the last section, may be used as

the basis of an implementation of persistence. The mechanisms needed to support

persistence are similar to those that support recoverability, when recoverability

is based upon saving and restoring the state of an object. Both must be capable of

saving and restoring the state of an object, but will differ in where the state is

saved to or restored from. For recoverability, the state of an object is usually

Persistence	 129

maintained in temporary (volatile) storage, whereas with persistence the state of

an object is always maintained in permanent (non-volatile) storage.

Given the support for retrieving and restoring the state of an object, supplied

by the recovery mechanisms, a persistent class of objects may be constructed by

ensuring that the state of an object is saved in non-volatile rather than volatile

storage. The additional functionality required is described in the rest of this

section.

The last chapter described how a recoverable class may be constructed and

how instances of the class that are declared in an application which employs

atomic actions are restored when the atomic action aborts. In this

implementation, the declaration of an instance of the recoverable class produces a

recoverable object. A similar approach could be taken by persistent objects, in

that the declaration of an instance of a persistent class results in the persistence

of that object when the top-level atomic action commits, the effect being

equivalent to the creation of a file in a conventional programming (or operating)

system. This effect is undesirable however, since all instances of a persistent

class will persist by default. It should therefore be possible to declare an instance

of a persistent class in a manner that ensures it is either persistent or

nonpersistent, with the default being a nonpersistent object.

Another difference between the persistence and recovery mechanisms lies in

the data required by each, and the way that the data is used. If the state of an

object is unstructured, for example a simple contiguous character buffer, then the

persistent and recovery data for the object will be identical (a copy of the buffer).

If the state of an object is structured into a number of other (internal)

recoverable/persistent objects however, then the data required by the recovery

and persistence mechanisms will differ, as will the mechanisms.

Persistence	 130

Consider the recoverable/persistent object A shown in Figure 5.2, which

Figure 5.2: A structured object

contains two internal recoverable/persistent objects (B and C) and one internal

unrecoverable object (D). When either B or C are modified (assuming the inclusive

recovery model described in the last chapter), then the recovery of both objects

may be managed independently of A. The only time the object A has to create

recovery data and record management information is when the internal object D

is modified, since D is unrecoverable. When persistence is considered, a similar

approach may appear to be sufficient, in that the persistence of B and C are

managed independently of A. Since B and C are only accessible through A

however, there would be no way of activating B and C when A is activated by a

subsequent application. To ensure the persistence of the entire object therefore

requires that the names of B and C are recorded in the persistent data for A.

Hence the persistent data for A will differ from the recovery data for A. This

difference between recovery and persistent data highlights the fact that a

recoverable class can be implemented by ensuring that all internal objects are

recoverable, whereas a persistent class must always provide additional

mechanisms to manage the internal objects, even if all the internal objects

already support persistence.

Persistence	 131

In addition to the differences in data, the persistence mechanisms must handle

the creation of existing internal persistent objects in a different manner to new

internal persistent or nonpersistent objects. In the case of the above example,

when A is newly created, the internal persistent objects (B and C) may be created

by the initialisation operation implemented by the class of the object A. When A is

an existing persistent object however, the creation of the internal persistent

objects should not occur until the state of A is restored using the persistent data.

The reason being that it is only during the restoration of A that the names of the

internal persistent objects will be known, and the names must be known before an

existing persistent object is created since the identity and persistence of an object

is determined when it is created. As a result, the initialisation operations

provided by a persistent class for creating persistent instances will differ from

those that create nonpersistent instances.

To summarise, persistence can be considered to be an extension to

recoverability requiring that the state of an object is saved in non-volatile rather

than volatile storage. Under certain circumstances, the persistent data and

mechanisms may differ from the recovery data and mechanisms, and persistent

objects must be declared in a special manner. The next section describes how the

recovery mechanisms provided by the class Ob ject may be extended to support

persistence.

5.3 Implementing persistence

This section describes how the state based recovery mechanisms, implemented

by the class Object, may be used as the basis for new functionality to enable

instances of a class to persist. The approach taken in this implementation

employs the class that is used to hold the recovery data (0 b jec t St at e) also to

hold the persistent data. By adding extra operations (activate and

deactivate) to the class Ob jec t, and implementing an object store (as the class

Persistence	 132

Ob jectSto re) that manages instances of Ob jectState, the support for

constructing a persistent class of objects may be provided.

To control the persistence of an object in an atomic action environment

another record class (Pe rs i s te n t Re c o rd) may be implemented. In effect, the

atomic action acts as the persistence root, with each Pe rs i Ste n t Re co rd

instance referencing an active persistent object. During the commitment of the

top-level atomic action each Pe rs i s ten t Re co rd will deactivate the persistent

object it references.

A previous section described how one of two approaches may be taken to

override the scope of the programming language. Rather than rely on the

persistent objects being kept on the program heap (the approach adopted by PS-

Algol), the implementation described in this section takes the alternative

approach. To guarantee the persistence of an object only requires that the

persistent data is available when the top-level atomic action commits. By

providing a means of saving the persistent data before the persistent object is

deallocated, and a special record class to manage the persistent data, the scope

defined by the language may be overridden. Instances of the special record class

(Cad av e rReco rd) are created to hold the persistent data, immediately before

the object is deallocated. Each Cad av e rReco rd only takes part in the top-level

commit of an atomic action, saving the persistent data in the object store. If an

atomic action is aborted then the Cad av e rRe co rd instances will be deleted,

achieving the desired result and persistence. The rest of this section, beginning

with the extensions to the class Ob j e ct, describe in greater detail the

implementation of these classes which operate in the atomic action environment

described in chapter three.

Persistence	 133

To recap, the class Ob ject provides an operation called s av e_s t ate that

returns the state of an object as an instance of the class Ob j e c tSt ate. The

corresponding operation is called re s to re_s t ate which restores the state of an

object using the Objec tS t ate instance passed as an argument. To manage the

recovery data (implemented by the Ob jec tState class), and perform recovery on

an object, a record class called Ob jec t St a t eRe c o rd is provided. To uniquely

name objects the class Ui d is provided. An instance of this class is declared in the

class Object so that all recoverable/persistent objects may be named in a

uniform manner using the value of the Ui d instance. To read the value of this

variable, Ob ject provides the operation g e t_U I d. One example of the use of

unique identifiers is to determine whether two instances of the class

Ob jectState Re c o rd refer to the same object.

Given the unique identifier contained in the state implemented by the class

Object, a method of defining whether an object should persist is required. The

solution chosen in this implementation is to provide an operation called

pe rs i St. Invoking this operation changes the type of the object from recoverable

(the default) to recoverable/persistent. To represent the type of an object, a

variable called Type of type Ob jec t_Type is defined to be part of the state of

Ob ject. An invocation of the pe rs i St operation changes the value of Type

from RECOVERABLE to PERSISTENT. The persist operation also takes an

argument which is an instance of the class U i d and if this argument has a value

then the object is an existing persistent object, and the Ui d instance maintained

by Ob ject is set to the value of the argument. The method of naming persistent

objects is therefore based upon the value of the unique identifier maintained by

the class Ob j ect. Each class ultimately derived from Ob ject may provide class-

specific methods of defining whether an object is persistent or not, as long as the

pe rs i s t operation is invoked by the constructor when an instance of the class is

persistent. It is also possible, given this approach, to define a class that always

Persistence	 134

results in the persistence of instances of the class by invoking pe rs i s t in all the

constructors the class provides.

To directly support a persistent interface, the class Ob ject has been extended

by adding two new operations: activate and deactivate. A more complete

declaration (than that given in Figure 4.5) of the class Object is shown in Figure

5.3. In addition to activate and deactivate, three of the objects that

enum Object_Status {ACTIVE, PASSIVE, ACTIVE_NEW);
enum Object_Type	 {RECOVERABLE, PERSISTENT);

class Object

Object_Status Status;
Object_Type	 Type;
Uid	 object_uid;

protected:
void modified();
void persist(Uid*);

public:
Object();
-Object();

virtual ObjectState* save_state(ObjectState*,Object_Type);
virtual void	 restore_state(ObjectState*,Object_Type);

Uid* get_Uid();

Outcome activate();
Outcome deactivate();
virtual void destroy();

Figure 5.3: The class Object

represent the state of an Object instance are illustrated. The first is a variable

of type Ob j ec t_St at u s, the value of which follows the state changes described

in an earlier section of this chapter. The second is of type Ob j ect_Typ e which is

initialised to RECOVERABLE but may be changed to PERSISTENT when the

persist operation is invoked. The third variable (o b jec t_u d) is the Ui d

object used to name all objects which has already been mentioned.

The new operations, act i v ate and de act i vat e, each require access to an

object store to save or restore the persistent data. An object store is assumed to be

implemented by the class Ob j e c tSto re (see Figure 5.12) which provides two

Volatile storageNon-volatile storage

restore_state

active
0

save_stateL deactivate

write_state

read_state —4-41-

(----- activate

passive

Persistence	 135

operations that save and return instances of the class Ob j ectSt ate, called

wri te s tate and re ad state respectively. To simplify issues, there is always

assumed to be a global object store which may be accessed through the variable

Cu rrent Sto re. Figure 5.4 illustrates how the operations provided by the

ObjectState

Figure 5.4: Movement of persistent data

classes Object and Ob jectSto re move the state of a persistent object between

volatile and non-volatile storage.

The implementation of the act i v ate operation (illustrated in Figure 5.5)

Outcome Object: :activate()

{
if (Type == PERSISTENT && Status == PASSIVE)

ObjectState *oldstate = Current_Store-.read_state(&object_Uid);

if (oldstate)	 // was a valid ObjectState returned ?

restore_state(oldstate,PERSISTENT); // restore the old state
Status = ACTIVE;
return(SUCCESS);

return(FAILURE);

Figure 5.5: The Object activate operation

Persistence	 136

shows how the read _s tate operation provided by the Ob jectSto re (which

takes a unique identifier as an argument) may be used to return the persistent

data for an existing persistent object. The implementation of the complementary

operation de ac tivate is illustrated in Figure 5.6.

Outcome Object: :deactivate()

{
if (Type == PERSISTENT && Status == ACTIVE_NEW)

(
ObjectState newstate;

if (save_state(&newstate,PERSISTENT)) 	 // get the persistent data

(
if (Current_Store-.write_state(&newstate)) 	 // storage successfull ?

{
Status = PASSIVE;
return(SUCCESS);

}
1

1
return(FAILURE);

}

Figure 5.6: The Object deactivate operation

During the activate and deactivate operations, the state of a persistent

object is saved and restored using the Ob ject operations s ave_s tate and

rest° re _state. Since the data and mechanisms required for recovery and

persistence may differ (as described in the last section) the s av e_state

operation must return, and the re s to re_s t ate operation must expect,

persistent data when invoked by the act i v ate and de act i v ate operations to

function correctly. Rather than provide two operations for recovery and two for

persistence, the class Object uses the s ave_s tate and rest° re_s tate

operations to perform both functions, relying on the value of a second argument

(of type Ob jec t_Type) to determine which type of data to expect or return and

corresponding mechanisms to execute.

To support the automatic deactivation of an instance of a persistent class when

a top-level atomic action commits requires additional functionality beyond that

provided by the class Object. Chapter three described how the atomic action

implementation provide by the class At om i cA ct ion maintains instances of

Persistence	 137

record classes (classes derived from the class Ab s t r act Re co rd). When an

operation such as Commit or Abort is invoked on an At omi cActi on instance,

the implementation of the Atom i cAct i on invokes the corresponding (top-level

or nested) operation on all the record instances it holds. For each recoverable

object that is an instance of a class derived from Ob j ec t, there will be an instance

of the Ob ject StateRe co rd class in the atomic action. The only operation this

class implements is the abort operation, which simply invokes

rest° re s tate, provided by Ob j ect, to recover the state of an object using the

recovery data maintained by the Ob j ec tSt ate instance.

To support persistence therefore, a new record class is needed. This record

class, called Pe rsistentReco rd, is derived from ObjectStateRecord to

provide the functionality associated with a recoverable object. To control

persistence, the Pe rsi stentRecord class refines the operations that are

invoked when a top-level commit occurs. The implementation of the

Pe rs istentRecord takes an optimistic view of the commit operation. The first

phase of the two-phase commit protocol results in a top Jevel_prepare event, so

that the atomic action invokes the Abst ractReco rd top_l evel_prepare

operation for each Ab s t ractReco rd in the action. In the implementation of this

operation provided by Pe rs i s ten t Re cord (illustrated in Figure 5.7), the

int PersistentRecord;:top_level_prepare()

{
if (object_addr-). deactivate() == SUCCESS)

return (1);	 // deactivating the object suceeded
else

return (0);	 // deactivating the object failed

Figure 5.7: The PersistentRecord top_level_prepare operation

persistent object is deactivated by directly invoking the d e act i v ate operation

using the reference to the persistent object called ob j e c t_ad d r maintained by

the Pe rs i stentReco rd. The operation is optimistic, since the second phase of

the two-phase commit protocol need not perform any extra work. If the first phase

Persistence	 138

fails, due for instance to the object store failing to save the persistent data

resulting in the deactivate operation returning FAILURE, then for all the

objects for which the operation succeeded, the new state must be removed from

the object store. For each Pe rsi s te ntReco rd this is the function of the

to p1 eve l_abo rt operation which invokes an operation called del etestate

(provided by the Ob jectSto re) to remove the Ob jectState saved by the

wri te _state operation.

The Ob j ectSto re implementation employed by the above commit protocol is

implicitly assumed to maintain versions of an object's persistent data so that

compensation may be performed by removing the last version added. One

approach is to store the versions of the persistent data as a log. An alternative

approach is to provide a form of careful replacement [Verhofstad 78]. This could

take the form of an operation to add the persistent data for an object, with the

second phase of the protocol determining whether the old or the new persistent

data is removed. To simplify issues however, the approach described above will

be employed when the design and implementation of an object store is detailed in

later sections of this chapter.

The last chapter described how the first time modified is invoked in an

atomic action, an instance of the Ob j e c tS t a te Re c o rd class is created, and

added to the current atomic action, to hold the recovery data. To support

persistence therefore, mod if led must be enhanced so that the value of the

Ob j e c t_Ty p e variable maintained by Object (which will be either

RECOVERABLE or PERSISTENT) defines whether an ObjectStateRecord

instance or Pe rs i stentRecord instance is added to the current atomic action.

The remaining component required to support persistence is the mechanism to

override the scope imposed by the programming language. Depending upon the

Persistence	 139

language, an object may be deallocated when the number of references to the

objects are determined to be zero or when the scope ends.

If the language supports the former approach then the Pe rs istent Re co rd

created during the invocation of the modified operation will be sufficient to

ensure that at least one reference to the object is kept until the atomic action

terminates. Hence, the object will not be deallocated.

When an object declared in C++ (which supports the latter approach) is

deallocated, the destructor for the class of the object is invoked. To effectively

override the deallocation of the persistent object, the class Ob ject provides an

operation called te rm i nate which may be invoked in the destructor. The

te rm i n ate operation creates an instance of the record class Cad av e rRe c o rd

and invokes the s av e _s t at e operation to create the persistent data (an instance

of Ob j ec tSt a t e containing the current state of the object). The

Cad av e rRecord is then added to the current atomic action (replacing any

Pe rs i s t en t Reco rds for the object), thus ensuring that the persistent data for

the object is available when the atomic action terminates. To ensure the

persistence of an object, the to p_l eve 1 _p rep a re operation implemented by the

Cad a ve rReco rd class must operate in a similar manner to the deact iv at e

operation, directly placing the persistent data held by the Cad av e rReco rd in

the object store (using the w ri te_s t ate operation).

The remaining operation that Ob ject provides, which is of relevance to

persistence, is the operation destroy. The function of this operation is to remove

an existing persistent object from the object store. Since the object store already

provides an operation called del et e_s t ate (detailed during the description of

the commit protocol implemented by Pe rs i stentRecord), the dest roy

operation may appear to be unnecessary. The reason for providing this operation

however, is the same as the reason why the persistent data for an object may

Persistence	 140

differ from the recovery data. As the last section explained, an object may contain

other internal objects. If an internal object is persistent then the containing

object need only save the name of the persistent object as part of the containing

object's persistent data. If the persistent data for an object of this type was simply

deleted from the object store then the persistent data for the internal persistent

objects would be left in the object store.

To solve this problem therefore, the operation des t roy is implemented by the

class Oh j ec t. If an object is a structured object that references other persistent

objects then the class for the object must refine the destroy operation so that the

persistent data for the internal objects are destroyed when the containing object is

destroyed. In the case of the example given earlier (Figure 5.2), the class of the

object A would be responsible for invoking the destroy operation on the objects B

and C in addition to invoking the inherited destroy operation to remove the

persistent data for A (which contains the state of the object D). If the class is

unstructured then the default implementation provided by Ob jec t may be used.

To guarantee that the dest roy operation is recoverable, the del e te_state

operation is not directly invoked by the destroy operation. Instead, the

destroy operation creates an instance of a record class called Del e te Re c o rd

for each internal object, and the containing object, and adds these instances to the

current atomic action. The only operation implemented for this record class is the

t op_l e v el_comm i t operation. Since this operation is only invoked during the

second phase of the commitment of a top-level atomic action, the Ob j ectState
instance for the object the Del eteRecord is managing may be safely deleted. If

any atomic action before the top-level action is aborted then the Del eteRecord

will be discarded, thereby recovering the des t roy operation.

Persistence	 141

This section described how and when an object becomes persistent. The next

sub-section describes the implementation of a simple persistent class to illustrate

how easily a persistent class may be defined. In addition, the support that a class

must provide to ensure that instances of the class are persistent is contrasted

with the support required to ensure recoverability.

5.3.1 A simple persistent class

This section describes the design and implementation of a simple persistent

class that provides the abstraction of a file. The class, which is called F i 1 e

(illustrated in Figure 5.8), provides two operations (read and write) that take

class File : public Object
{

public:
File();
File(String);
"File();

Integer read(Buffer*,Integer);
Integer write(Buffer*,Integer);

virtual ObjectState* save_state(ObjectState*,Object_Type);
virtual void	 restore_state(ObjectState*,Object_Type);

} ;

Figure 5.8: The persistent class F i 1 e

instances of the class Buffer (a class that implements a character buffer).

In a C++ class, when an instance is declared with no arguments the default

constructor is invoked. To provide the capability of declaring persistent and

nonpersistent instances of the F 11 e class, the constructor is overloaded by

providing a constructor that takes no arguments and one that takes a St ri ng

argument. When an instance of the F i 1 e class is declared with no arguments,

the default constructor will be invoked. The implementation of this constructor

only initialises the F i 1 e object. To declare a persistent instance of the class

F i 1 e, an instance of the class String (a character string) is needed.

Persistence	 142

To map the St ring passed as an argument to the unique identifier needed by

the class Ob ject to name the persistent data, the F 11e constructor (illustrated

in Figure 5.9) employs a name server which is assumed to be implemented by the

File::File(String string)

Uid +id = Current_NameServer-t.lookup(string);

persist(id);

if (id == 0)
	

// is this a new object ?

Current_NameServer-n add(string,get_Uid()); // yes so add string and Uid

// create any internal persistent objects

// else leave the creation of internal persistent objects to restore state

// rest of the initialisation for this class

Figure 5.9: The File constructor

class NameSe r y e r, an instance of which is accessible using the global variable

Cu r re n t NameSe rve r. The lookup operation implemented by the class

N ameSe rve r returns the unique identifier associated with the St ring if the

St ri ng instance is held in the name server. If the St ring is not found then the

object is new, so the St ring and the Ui d for the File objects are added to the

name server (using the NameSe rv e r add operation). The Name Se rv e r class is

also assumed to be a recoverable/persistent class, so that if the containing atomic

action is aborted, the new F i le instance will not be added to the object store and

the St ring to Ui d mapping will be removed from the name server. In addition, if

the object is an existing persistent object then the constructor does not create any

internal persistent objects, leaving this to the re s to re_s tate operation which

will be invoked when the object is activated using the persistent data.

This example illustrates the functionality a persistent class must provide in

addition to that required by a recoverable class. These additions are a constructor

that invokes pe rs i St and leaves the creation of internal persistent objects to the

rest° re s tate operation if the object is an existing persistent object, and

refined versions of the s av e s tate and re s to re s t ate operations that are

Persistence
	 143

capable of returning persistent data or restoring the object (and creating any

internal persistent objects) using the supplied persistent data. Given the

extensions to the 0 b j ect class described in the previous section, these are the

only differences between a class which is declared so that all instances are

recoverable and a class which is declared so that an instance may be persistent.

This section described how the persistence mechanisms may be used to

construct a simple persistent class. To support persistence an object store is

required. The following section discusses the design of an object store which best

reflects the organisation of classes provided by the programming system

described in this thesis.

5.4 The design of an object store

During the description of the implementation of the mechanisms that support

persistence in the last section, the assumption was made that the data for a

persistent object could be saved in, and restored from, non-volatile storage.

Furthermore, it was assumed that the non-volatile storage was organised as an

object store implemented by the class 0 b j ec t St o re which provides three

operations: re ad_s tate, w r i te_s tate, and del e te_s t ate. This section

describes the design of the Ob jectSt o re class, concentrating on the logical

rather than physical organisation of the underlying non-volatile storage.

Since an object store must be capable of managing the persistent data for a

variety of different classes of object, a class-independent storage format is needed.

Earlier sections of this chapter described how the persistent data may be

managed in a class-independent manner using the ObjectState class, so that

the 0 b j ectStore implementation need only manage instances of this class.

Persistence	 144

It is assumed that persistent data is only added to the object store during the

commitment of a top-level atomic action. To ensure the atomicity of the commit

operation, the atomic action implementation employs a two-phase commit

protocol which saves management information in the object store so that a node

crash may be tolerated, and a consistent system state established when the node

restarts execution.

The non-volatile storage used by the object store is also assumed to be

implemented as stable storage [Lampson and Sturgis 76]. A stable storage system

uses replicated hardware and carefully designed fault tolerance strategies to

provide the abstraction of non-volatile storage which has a high probability of

remaining uncorrupted despite media or node failures. The object store therefore,

does not require any special reliability mechanisms for managing the addition of

persistent data, since the atomic action implementation is responsible for

ensuring that any inconsistencies, which would occur if the commit operation was

interrupted, are recoverable. To discover and recover any inconsistencies, an

application that implements a garbage collector is assumed to be available and

invoked when a node recovers from a node crash. Given these assumptions, the

rest of this section concentrates on the design of an object store, beginning with

the organisation of the persistent data so that location and access is both fast and

efficient.

The simplest organisation is a flat name space that maps an object's unique

identifier (the means by which all objects are assumed to be named) to the

location of the persistent data for the object in non-volatile storage (illustrated in

Figure 5.10). This location would be implementation dependent and could be a

block number on a hard disk, an address in non-volatile memory, or an index into

a sequential file. In this organisation, if an object has internal persistent objects

oe
ObjectStore instance

/

\

...*,	 ..4,.

	

..	 ss.n

	

i	 \

	

1	 Logical
1

	

)	 1-4-- object

	

.	 I	 store.

Non-volatile
storage

.0Persistent
data :

Persistence	 145

Entry instances

Figure 5.10: A single level object store

then the persistent data for the containing object must contain the unique

identifiers of the internal objects.

To manage the mapping from unique identifier to non-volatile storage

location, a class such as En t ry (Figure 5.11) may be defined. For each persistent

class Entry : public Object

{
Uid* object_uid;
Location data_locn;

public:
Entry(Uid*,Location);
-Entry();

Figure 5.11: The class Entry

object, an instance of En t ry may be used to maintain the value of the object's

Ui d, and the location of the persistent data for the object in non-volatile storage

(the type Loc at i on being implementation dependent).

To provide the overall abstraction of an object store the Ob j e c tS to re class

(illustrated in Figure 5.12) may be defined to manage the location of each

Ob j ec tSt ate object using an instance of Entry. Figure 5.10 illustrates an

active instance of the class 0 b j ectSto re which is maintaining the persistent

Persistence	 146

enum store_type {ROOT,USER};

class ObjectStore : public Object

(
Location store_locn;
Integer no_entries;
Entry **entries;
....

public:
ObjectStore(store_type =ROOT);
ObjectStore(String);
-ObjectStore();

ObjectState* read_state(Uid*);
Outcome	 write_state(ObjectState*);
void	 delete_state(Uid*);

virtual ObjectState* save_state(ObjectState*,Object_Type):
virtual void	 restore_state(ObjectState*,Object_Type);

Figure 5.12: The class Ob jectSto re

data for three objects using instances of the class En t ry. When an object store is

not being used, the mappings of unique identifier to location for the persistent

data in non-volatile storage must also persist. Hence, the Ob j ectSto re class

must also be a persistent class. The persistent data for an Ob j e c tS to re

instance may be organised in one of two ways: as the unique identifiers of the

Entry objects (since each E n t ry object may also persist), or as the persistent data

for all the En t ry objects (by declaring the En t ry objects to be nonpersistent and

using the s av e_s tate operation to retrieve the state of each Ent ry). The latter

approach has been chosen since it is more efficient, requiring fewer non-volatile

storage accesses.

Since instances of the 0 b j ectSto re class are persistent, they should be

activated and deactivated using an Ob j e c tSt o re instance. Given this approach

however, the activation of the ObjectStore instance will require an

Ob j ec tSto re instance to locate the persistent data for the Ob j ectSto re. To

break this circularity, the 0 b j ectSto re may be implemented so that the

persistent data for the object store can be recognised as such, and saved in a

location known to the Ob j e c tSto re implementation. In this way, an

Persistence	 147

ObjectSto re instance may be activated without the need for an Ob jectSto re

to locate the persistent data for the Objec tS to re instance.

Since objects stores are simply instances of the class Ob jec tS t o re, more

than one object store may be declared. Rather than attempt to define the location

of all possible object stores in the 0 b j ec t St o re implementation, the distinction

may be made between a single root object store and all other user object stores.

The location of root object may be defined by the ObjectStore implementation,

but the user object stores may be treated as just another persistent object. To

define the type of object store when an instance of the class Obj ectSto re is

declared, the constructor for the class takes an argument of type s t o retype

(illustrated in Figure 5.12). To locate a user object store therefore involves

activating and using the root object store to locate and access the persistent data

required for the user object store.

In the design presented above, if the object store contains many objects then its

state will consist of a large number of E n t ry objects, which will affect both the

speed to locate the Entry for a given U i d, and the time taken to save the

persistent data for the object store when a new object (and hence En t ry) is added.

To improve the ease with which the Ent ry for a persistent object is found, an

alternative approach may be employed, utilising the class of the object in the

organisation of persistent data in the object store to provide a two level name

space. In this way the class of the object will locate a flat name space that

contains the Entry objects for all the persistent data of that class.

When there are more instances of classes than classes, an organisation of the

type described above will reduce the number of E n t Ty objects that must be

searched to locate the persistent data for an object of a given class. An added

advantage of the above approach is that since the class of an object must be used

to locate the persistent data, it will not be possible to subvert the language's type

Class x
object store	 .

---- -.. \
,	

'I

i
1iIIi1/iIII

Non-volatileI
i storage

Ii /

\
•

• %.
.t.

...". ,
•

<-
%

_ Root,,
.-, (class Objectstore)
`‘ object store

%

i
/ I

/

/'^

Persistence	 148

system by activating an instance of a class using the persistent data for a

different class. To function however, a means of naming the class of an object is

required. To simplify issues, it will be assumed that a constant called

CLASSNAME is available which consists of a string with the same name as the

class of the object.

To locate the persistent data for a persistent object given the class name and

unique identifier, the E nt ry objects for a particular class must be located and

searched until the unique identifier of the object is found. To manage the extra

level of indirection that the class name adds, another class could be defined.

However, this is not necessary since the root object store can contain the location

of other object stores. Each class may therefore be represented by an object store,

with the root object store containing the E nt ry object for each class's object store.

In this situation, the root object store will be the object store for the class

Ob j ectSto re. An organisation of this type is illustrated in Figure 5.13. In this

Figure 5.13: A two-level object store

figure, there are two active Ob j e c tSto re instances, the root (or Ob jectSto re)

Persistence	 149

instance labeled OS and the instance for a class X. The root object store contains

the En t ry objects for two classes (X and Y), in addition to the En t ry object for the

root object store. The active object store for the class X also contains two E n t ry

objects which locate the persistent data for the objects X 1 and X2. The two

unreferenced sets of persistent data in the above figure are those for two instances

of the class Y, the references to which are contained in the persistent data of the

object store for the class Y.

This section has described how the abstraction of an object store may be

structured into a collection of object stores that each maintain the persistent data

for instance of a particular class. The next section describes how this object store

design may be implemented using the support of the operating system UNIX.

5.5 Implementing an object store

This section describes a simple implementation of the object store design

presented in last section. The aim of this implementation was to test the

soundness of the ideas presented, and the abstractions developed, in this thesis,

rather than provide the definitive object store implementation. To this end, the

object store has been implemented on top of the UNIX operating system.

Consequently, the performance of the implementation could be greatly improved

by alternative (lower-level) implementations. The advantages of the abstraction

developed using an object-oriented language however, will ensure that

subsequent object store implementations can be used by the rest of the

programming system described in this thesis (providing that the interface defined

by the class Ob ject Sto re is met).

This implementation provides no tolerance against media failures, and it is

assumed that previous work at Newcastle [Anyanwu 85, Anyanwu 861 which

extended the stable storage mechanisms described in [Lampson and Sturgis 761 to

provide the abstraction of a reliable, crash resistant, UNIX file system could be

Persistence	 150

employed at a later date. Anyanwu utilised standard magnetic disk technology,

but there are other approaches to the implementation of non-volatile storage

which is tolerant to media failures. One example is the stable storage

implementation provided by the Enchere system [Banatre et al. 86] which uses

stable random access memory instead of magnetic disk technology.

There are a number of different approaches to implementing the two-level

object store design described in the last section using the support provided by

UNIX. For instance, each object store could be implemented as a single UNIX file,

with the Loc at i on of the persistent data being the offset from the beginning of

the file. Whilst this approach is simple, as the number of persistent objects grow

the size of the file will increase, which may result in the time taken for an object

to be located being dependent upon when the object was created. A superior

approach would be to employ the directory structure supported by the UNIX file

system.

The UNIX file system is hierarchical in nature, with a directory containing

files and other (sub-)directories. Using the directory structure, an object store

may be represented by a directory, with each entry in the directory being an

instance of the class which the directory represents. In this way, separate E n t ry

objects are not required since an entry in a UNIX directory is equivalent. Each

entry in a directory therefore maintains the location (or name) of a file which

contains the persistent data for an object. To name each file, the unique identifier

may be used (when converted into a string). To name each directory, the

C L ASSN AM E, which is a string that names the class of an object, may be used.

Figure 5.14 illustrates three classes (and directories) that contains the names of a

number of instances of each class.

Object store
S.

S.

Iobject I

Persistence	 151

•••••
""	 ---------------

Figure 5.14: Object store implementation

This implementation differs from the design presented in the last section since

a distinction is made between ObjectSto re objects (which are UNIX directories)

and other types of object (which are UNIX files). To provide tolerance against

corruption due to a node crash during the update of the persistent data for an

object, the persistent data is stored as a log of versions. Each version contains

redundant information that enables the integrity of the data to be determined

(this information would not be required if the non-volatile storage was

implemented as stable storage).

Given that a directory is used to represent a class, and the unique identifier

converted into a string is the name of the file that contains the persistent data for

that object, then all the directories may in turn be contained in a single directory

which is the object store. This directory is a constant defined in the

ObjectSto re implementation, so that to locate the file for a persistent object, a

pathname may be constructed from the Ob jectSto re constant with the

classname, followed by instance name, appended. The object store

implementation described in this section is currently in use, and is one area

where the performance of the programming system described in this thesis may

be improved. The next section describes how the concurrency control mechanisms

Persistence
	 152

that may be inherited from the class Lock CC affect the persistence of objects and

the object store design.

5.6 Concurrency control and the object store

Apart from a brief mention of the class Loc kCC during the description of

Arjuna in chapter two and a discussion earlier in this chapter, the issues involved

in concurrency control have not been discussed. In Arjuna, concurrency control is

provided by the class Lo c kCC [Parrington 88], so that a class derived from

Loc kCC will be able to utilise inherited operations to set locks on its instances.

The default locking scheme provided by Lo c kCC is the well known pessimistic

strategy of single writer/multiple readers which allows an application exclusive

access to an object if a write lock is set.

If an object is newly created its existence will not be known to other users until

it is saved in the object store. When a persistent object is activated, the

concurrency control mechanisms come into play, ensuring that only a single

instance of the object may be activated if a write lock is set. As the previous

discussion outlined, the activation of an object (involving the retrieval of the

object's persistent data from the object store and the recreation of the persistent

state using the persistent data) must not occur until a lock has been set on the

object. If this discipline is not adhered to, multiple versions of the object may be

in existence, producing inconsistencies when the persistent data in the object

store is updated.

To assist the concurrency control mechanisms the class 0 b j ect provides an

operation called activate (see Figure 5.5). The first time this operation is

invoked, the persistent data for the object is retrieved from the object store and

the state established. Subsequent invocations return immediately since the

internal state of the object will have changed from PASSIVE to ACTIVE. The

Persistence	 153

operation provided by Lo c kCC which sets a lock on the object (Se tL 0 c k), only

invokes the act i vate operation once a lock as been granted.

When a class is derived from the class Lo c kCC, and the support this class

provides for setting locks employed, the concurrency control provided by Lee kCC

will ensure that two instances of the same object are never created and accessed

in conflicting access modes. Since the concurrency control is a part of the object

and cannot be overridden, two versions of the same object will not be available for

modification. As there will only ever be one version of an object available for

modification, there need be no access control on the object store.

Since the object store is itself a persistent object however, concurrency control

should be utilised to ensure that modifications to the object store, such as deleting

the persistent data for an object, do not occur concurrently with other operations

on the same part of the object store. If the class Ob jectSto re was derived from

Loc kCC it could utilise the pessimistic locking provided by this class, but the

degree of granularity provided by Loc kCC would be overly restrictive. For

instance, deleting an object would involve locking the 0 b j ectSto re instance

that represents that object's class using a write lock. Such a lock would restrict

access to all instances of that class, even though an entirely different instance

may be required.

To solve this problem type specific locking is required which reduces the

granularity of a lock enabling an entry in an Ob jectSt o re to be locked, rather

than the entire object store. An implementation of type specific locking for

directory type structures is described in [Parrington and Shrivastava 881. It is

intended that this approach will be utilised by the Ob jectSto re class to

increase the amount of concurrency in subsequent implementations.

Persistence	 154

5.7 An assessment of constructing persistent classes
using inheritance

This chapter has described how the support required to ensure an object is

recoverable can be extended to guarantee the persistence of the object. This

section assesses this technique, discussing the advantages and disadvantages of

this approach. To recap, by extending the interface provided by the class Obj ect,

and implementing an object store that manages the storage of persistent data,

new classes of object may inherit the basic functionality required to ensure that

instances of these classes persist when accessed within an atomic action. The

operations provided by the class Object ensure that a persistent object will be

automatically activated and deactivated. Activation is controlled by the

concurrency control mechanisms, deactivation by a instance of the record class

which is added to an atomic action the first time a persistent object is modified.

The principal advantage of the implementation of persistence described in this

chapter is that it builds upon the support provided to ensure the recoverability of

an object. A class, derived from the base recoverable class Object, that

implements the operations required to ensure that instances of the class are

recoverable, needs little extra functionality to ensure that instances also persist.

When a persistent class is constructed in this manner, the property of persistence

is independent of the way that the objects are used. For individual instances of a

class to persist however, the class must be derived from the class Object so that

persistence is dependent upon the class of an object. As a result, the

implementation of persistence described in this chapter is not orthogonal.

Another advantage of this implementation is the flexibility in the ways of

constructing persistent classes from instances of other persistent classes. For

example, an instance of a class (the containing object) can instantiate other

persistent classes (the internal objects) in such a way that they persist when

Persistence	 155

modified, with the containing class saving the names of the internal objects as

part of its state. This is the situation described earlier in the chapter when

illustrating the possible differences in recovery and persistent data.

An alternative implementation of the class of the containing object could

declare the internal objects to be nonpersistent. To ensure that the internal

objects do persist however, the containing object may use the operations provided

by Object (s ave_s tate and re s to re_state) to directly save and restore the

state of the internal objects, holding the persistent data for the internal objects in

the persistent data for the containing object. The main advantage of this

approach is that the number of non-volatile storage accesses is decreased, thereby

increasing the performance of the activation and deactivation, of a group of

objects.

Another alternative is also possible, where the internal objects are declared to

be persistent, but one or other of the two approaches described above effectively

occurs, with the decision which being determined dynamically during the

execution of operations on the containing object. This approach is possible using

the mechanism (described in the last chapter) to override the recovery of internal

objects. By switching recovery off, the Pe rsistentRecord objects will not be

created so that the internal objects will not persist, leaving the containing object

to manage the persistence of the internal objects. If recovery is not switched off

then the first of the above approaches to the persistence of the internal objects

will occur.

The next chapter describes an example that consists of a number of classes

that may be managed in this manner. To illustrate how the performance may be

increased by managing both the recovery and persistence of the internal objects

as a part of the containing object, a number of simple performance tests are

described.

Persistence	 156

The disadvantages of this implementation of persistence, apart from not

meeting the requirement for orthogonal persistence, is that the implementor of a

class must supply operations that correctly manage the persistent data for their

class. In addition, the implementor must overload the constructors if instances of

the class are allowed to be either persistent or nonpersistent. It is perhaps worth

noting however, that the implementor of a class can also ensure that all instances

of the the class persist by not providing a constructor that allows nonpersistent

instances to be declared.

If the implementation language provides class structure information (e.g. the

clsTypes field produced for an Objective-C [Cox 86] class), then a set of

mechanisms could be implemented by a class that would manage all classes using

this information. Inheritance could therefore be used to add persistence without

the implementor of a class having to add the operations that save and restore the

persistent data. They would however, still have to invoke an operation to add a

persistent object to the persistent root. The disadvantage of this approach would

be that the implementor would have no control over which parts of an object

persist, as typically not all of an object's state need persist. The fact that the

implementor of a class has to provide operations to save and restore the persistent

data is therefore not such a burden as might first appear.

In summary, the technique described in this chapter is sufficient to support

the permanence of effect property of an atomic action, but not to support

orthogonal persistence. Classes constructed using these persistence mechanisms

are more flexible than those constructed when the permanence mechanisms

conventionally used to support reliability are adopted. The end result therefore,

is beneficial, even though full support for orthogonal persistence is not possible.

Persistence	 157

5.8 Concluding remarks

This chapter described how the permanence of effect property of an atomic

action may be supported by ensuring that permanent system state is modelled

using objects which are persistent. The lifetime of a persistent object extends

beyond the lifetime of the application in which the object was created, thereby

ensuring the permanence of the state the object represents.

The chapter began by considering the requirements of persistence. These are

a means of overcoming the scope associated with an object's declaration, and a

mechanism for moving the state of an object to and from non-volatile storage.

Since much of this functionality is already provided by the recovery mechanisms

which were described in the last chapter, the approach described in this chapter

was to extend these mechanism so that an object may be persistent as well as be

recoverable. To organise the state of a persistent object in non-volatile storage,

the design and implementation of an object store was described.

The mechanisms described in this chapter, allow the object state that persists

to be under the control of the implementor of a class, and be determined either

statically or dynamically. In addition, by effectively overriding the persistence of

any internal objects, performance can be increased as the storage overhead is

decreased. The next chapter describes the design and implementation of a set of

classes that illustrate the possible optimisations.

Performance and Optimisations	 158

Chapter 6

Performance
and Optimisations

The last three chapters have described how atomic actions, and objects which

are recoverable and persistent, may be constructed using the features of an object-

oriented programming language. This chapter develops an example which

illustrates how the recovery and persistence mechanisms described in earlier

chapters can be used to construct classes that may be used within atomic actions.

One of the advantages of the way that classes may be constructed, using these

mechanisms, is that the recovery and persistence of internal objects may be

optimised. To illustrate these optimisations, this chapter describes the results of

a number of tests which were made to determine the performance of applications

that employ atomic actions and instances of the example classes.

The chapter begins by describing the design of the example which is a banking

system. This design is structured into a number of classes, each class being

derived from the class Object (described in chapters four and five). By using the

state based recovery and persistence provided by Object, instances of the classes

which make up the banking system may be controlled using atomic actions

implemented by the class At omi cAct ion (described in chapter three). The

remainder of this chapter describes a number of simple applications which were

constructed to measure the performance of the atomic action implementation, and

the recovery/persistence mechanisms. The performance figures given are not

intended to provide an authoritative measure of the implementation, which at the

time of writing is an experimental prototype, developed to test the soundness of

the ideas presented in this thesis and provide a testbed for experimentation. The

performance of the prototype can be optimised in numerous ways, and a number

Performance and Optimisations	 159

of these optimisations are described in the final chapter which discusses future

areas of work.

6.1 A banking system

Assuming that a bank consists of a number of customers, with each customer

holding a current account and perhaps a deposit account, then a number of classes

can be declared to represent the bank, the customers, and the accounts each

customer holds. This section begins by defining the classes required, not taking

into consideration any recovery or persistence aspects. Once these classes are

defined, the changes needed to add recoverability and persistence to the classes

will be briefly described.

The basic functionality required by an account may be represented by the

class Account (illustrated in Figure 6.1). To provide the current and deposit

class Account

(
Money amount;

public:
Account();
"Account();

Money deposit(Money);
Money withdraw(Money);
Money balance();

} ;

Figure 6.1: The class Account

accounts, the classes Cur re n tAc cou n t and De p os i tAccou nt are derived from

the class Accoun t. The class Cur re n tAc cou n t adds extra functionality such as

an overdraft limit, whereas the class De posi tAccount adds extra functionality

that enables the interest due on the amount maintained by the Account to be

calculated on a weekly basis. To simplify the following discussion however, it will

be assumed that the current and deposit accounts are instances of the class

Account.

Performance and Optimisations	 160

To model a customer, the class Customer (Figure 6.2) simply maintains

enum account_type (CURRENT, DEPOSIT);

class Customer

{
Account *Current;
Account *Deposit;

public:
Customer();
"Customer();

void OpenDepositAccount();

Money deposit (account_type, Money);
Money withdraw(account_type, Money);
Money balance (account_type);
Money transfer(account_type, Money);

} ;

Figure 6.2: The class Customer

references to the current and deposit accounts held by the customer. The deposit

account reference may be null as the deposit account must be explicitly created

using the OpenDeposi tAccount operation (the Cu rrentAccount instance

being automatically created when the Customer object is created). The three

main operations (deposit, withdraw, and bal ance) provided by the

Customer class correspond to those provided by the Account class, but take an

extra argument (of type acc ou n t_ty p e) that defines which Account (either

CURRENT or DEPOSIT) is required by the invoked operation. The extra operation

(t ran s f e r) enables an amount to be transferred from one account to the other,

the recipient account being passed as the accou nt_type argument.

To model a bank given the Customer and Account classes, a class such as

the class Bank is defined. This class (illustrated in Figure 6.3) maintains the

Customer instances, and provides operations that enable the accounts

maintained by a Customer to be opened or closed. When a new Customer is

added to the Bank using the OpenAccou n t operation, a Cu s tome rId is returned

which must be used to access the accounts held by the customer, so that all access

to both the Customer and Account instances must pass through a Ban k

instance.

r
N

Performance and Optimisations	 161

typedef Integer CustomerId;

class Bank

f
Customer **customers;
Integer no_customers;

public:
Bank();
-Bank();

CustomerId OpenAccount();
void
	

CloseAccount(CustomerId);
void
	

OpenDepositAccount(CustomerId);

Money deposit (CustomerId, account_type, Money);
Money withdraw(CustomerId, account_type, Money);
Money balance (CustomerId, account_type);
Money transfer(CustomerId, account_type, Money);

Money Assets();

} ;

Figure 6.3: The class Bank

Declaring an instance of the class Bank in an application, and invoking

operations to create customers and their accounts will produce the relationship

between objects shown in Figure 6.4 (which illustrates a Bank with two

Bank	 Customer	 Account

Figure 6.4: The relationship between objects

customers, each having both a current and deposit account).

This very simple banking system provides no support for tolerating system

crashes and maintaining the integrity of the objects that represent the banking

system. In addition, the persistence of the objects created is not supported, so that

Performance and Optimisations 	 162

the scope of the objects is that of the application program in which they are

created.

To enable atomic actions to be used in an application the classes described

above must be recoverable, persistent and provide concurrency control. To

provide the first two of these three properties, the mechanisms described in the

previous two chapters can be used (concurrency control aspects being ignored as

they are not part of the work described in this thesis). This involves adding

recovery and persistence mechanisms to the three classes described above, and

declaring instances of the class Atom i cAc t ion to control the outcome of

operations, and provide tolerance against system crashes. These additions are

easily achieved and are described in the remainder of this section.

To add recoverability and persistence to a class, that class can be derived from

the class Ob ject (described in chapter four). When deriving a new class from the

class Ob jec t, three (or more) additional operations must be implemented to

correctly support the functionality Ob ject provides. Two of the three operations

are concerned with managing the state of the object so that a bit-image may be

taken (in the case of save_s tate) or restored (in the case of re s to re_s tate).

To support recovery, recovery data must be created before an object is

modified. The class Object provides an operation (modified) that should be

invoked in the implementation of each operation that updates the state of the

object. When the modified operation is invoked, management information is

created to hold the recovery data which is created as the s a v e_s t at e operation

is invoked. Each class must therefore refine the s av e _state (and corresponding

re s t o re _st ate) operation to return (or expect) suitable recovery data which

enables an instance to be recovered should the containing atomic action be

aborted.

Performance and Optimisations 	 163

To ensure the persistence of instances of the Bank, Customer, and Account

classes, each class must also refine the s av e_s tate and restore_state

operations so that they return or expect persistent data. Since the Ban k and

Customer classes are structured, the recovery and persistent data (and

mechanisms) will differ, and both classes must refine the dest roy operation to

ensure that the persistent data for the internal objects is removed from the object

store when the destroy operation is invoked on the containing object.

To enable instances of the three classes to persist, each class must implement

a constructor that invokes the persist operation, passing the unique identifier

needed to name the persistent data as an argument when the object is an existing

persistent object. The simplest form of constructor is one that takes a unique

identifier argument, and directly invokes the persist operation using this

argument. A constructor of this type can be added to both the Customer and

Account classes, since they are only accessed by a Bank object. The class

declaration for the Customer class is shown in Figure 6.5 to illustrate the

enum account_type (CURRENT, DEPOSIT);

class Customer : public Object	 // new super-class

(
Account *Current;
Account *Deposit;

public:
Customer();
Customer(Uid.);
	

// new constructor
-Customer();

void OpenDepositAccount();

Money deposit (account_type, Money);
Money withdraw(account_type, Money);
Money balance (account_type);
Money transfer(account_type, Money);

virtual ObjectState* save_state(ObjectState*); 	 // new operation
virtual void	 restore_state(ObjectState*); // new operation

virtual void destroy();	 // new operation

) ;

Figure 6.5: The new declaration of class Customer

changes required.

Performance and Optimisations	 164

To provide a convenient way of naming a Bank instance, a constructor may be

added that takes a St ring argument and employs a name server to map the

St ring to the unique identifier (in the manner described in the example given in

section 5.3.1 of the last chapter). A new declaration of the class Bank that has the

four extra operations is illustrated in Figure 6.6.

typedef Integer CustomerId;

class Bank : public Object
	

// new super-class
{

Customer **customers;
Integer no customers;

public:
Bank();
Bank(String);
	

// new constructor
-Bank();

CustomerId OpenAccount();
void	 CloseAccount(CustomerId);
void	 OpenDepositAccount(CustomerId);

Money deposit (CustomerId, account_type, Money);
Money withdraw(CustomerId, account_type, Money);
Money balance (CustomerId, account_type);
Money transfer(CustomerId, account_type, Money);

Money Assets();

virtual ObjectState save_state(ObjectState*);	 If new operation
virtual void	 restore_state(ObjectState*); // new operation

virtual void destroy();	 // new operation

} ;

Figure 6.6: The new declaration of class Bank

Given these changes to the class, declarations of the form:

Bank MyBank("NatWest") ;

are all that is required to create a new, or name an existing, instance of Bank (in

this case one called N a tWe s t).

In addition to declaring an atomic action in an application to control the

outcome of operations invoked on instances of these classes, atomic actions may

also be declared within the implementation of an operation. For instance, the

class Custome r provides an operation called t ran sf e r that transfers an

amount from one type of account to another. To perform this task, the

Performance and Optimisations	 165

implementation must invoke the withdraw operation provided by the relevant

account. In the implementation provided by the class Account, this operation

returns a value that is the maximum amount that can be withdrawn up to the

value requested. If this amount held in the source account is insufficient for the

transfer operation, then the amount withdrawn must be replaced in the source

account and the transfer operation abandoned. To simplify the

implementation of this operation an instance of the class Atom i cAction can be

declared in the implementation of the t ran sfer operation, so that recovery of

the Account object may be performed automatically by simply aborting the

atomic action. An implementation of transfer that operates in this manner is

illustrated in Figure 6.7.

Real Customer::transfer(account_type to, Real amount)

if (Deposit && (amount > 0)) // deposit account and valid amount ?

AtomicAction transfer_Action;
transfer_action.Begin();

Account *in = (to == DEPOSIT) ? Deposit : Current;
Account *out = (to == DEPOSIT) ? Current : Deposit;

if (out-l.withdraw(amount) < amount) // amount insufficient ?

transfer_action.Abort();
amount = 0;

else

in-odeposit(amount);
transfer_action.Commit();

else
amount = -1;

return (amount);

Figure 6.7: The Customer transfer operation

In addition to declaring and using instances of Atom i cAct ion in the

implementation of an operation, instances can also be declared to be part of the

state of a class. One example of a situation where this might be useful is the class

Bank, where the Beg i n operation can be invoked in the constructor for the class,

Performance and Optimisations 	 166

and a corresponding Comm i t in the destructor, resulting in all operations on the

Bank occurring within an atomic action environment.

The description of the classes that make up the banking system, and changes

necessary to ensure that the classes are recoverable and persistent, illustrate how

easy it is to add this extra functionality to a class. Because the class Ob j ect and

the various record classes provide most of the necessary recovery and persistence

mechanisms, the implementor of a class only has to add three (or four in the case

of Bank and Customer) operations in the manner described for instances of the

class to be recoverable and persistent. The burden of this task is greatly eased by

the support these classes provide, so that this approach to providing

recoverability and persistence is a truly practical approach.

The next section describes the performance of a number of simple applications

that employ instances of the Bank, Customer, and Account classes. The

purpose of the tests described in the next section was to measure the Overhead

imposed when adding recovery and persistence to a class using inheritance, and

how this performance may be optimised by altering the granularity of recovery

and persistence.

6.2 Measuring the performance

This section describes a number of simple tests which illustrate the

performance of the experimental, unoptimised, implementation of the system

described in this thesis. Since distributed atomic actions remain to be

implemented, all tests were made using objects and atomic actions that were local

to the process and node of the test program. The tests were performed on a Sun

3/160 workstation that has four megabytes of memory and runs the Sun

implementation (version 3.5) of the Berkeley BSD4.2 UNIX operating system.

The execution time of an operation, system call, or application, was determined

Performance and Optimisations 	 167

using the UNIX getrusage system call, taking the average user time for a large

number of executions.

To illustrate the performance of this environment, Figure 6.8 lists the

1. UNIX get hostid system call 25 iis

2. UNIX file open system call 50]is

3. UNIX file write + fsync calls 60 i's

4. Creation of U i d object 	 150 "is

Figure 6.8: The performance of the environment

execution times for a number of basic operations. The first time given in Figure

6.8 is for a typical minimal system call (gethostid). The second is another system

call (open) which involves access to secondary storage, measuring the time taken

to open an existing file in the same directory as the test program. To illustrate

the input/output performance of the secondary storage provided by the

workstation, the third figure gives the average time taken to write a 512 byte

buffer to a file and flush the buffered write to the disk (i.e. a write system call

followed by an fsync system call). The final figure is the time taken to create a

typical small object, in this case an instance of the class used to represent unique

identifiers (the class U i d). The creation of this class involves two system calls

(gethostid and gettimeofday) and the use of the free store operator (called new)

provided by the language C++, that in turn involves the execution of the C/UNix

library function malloc.

When the state of a recoverable/persistent object is updated, management

information must be added to an atomic action so that the object may be recovered

if the atomic action aborts, or made persistent when the top-level atomic action

commits. The first performance tests described in this section were made to

determine the overhead of invoking an operation that records management

Performance and Optimisations 	 168

information with an atomic action. Both this test, and the rest described in this

section, are limited to the mechanisms provided by the class Ob j e c t, which

provides an operation called mod if ied for recording management information.

To measure the overhead of recording (or attempting to record) management

information using the mod ified operation, tests were made on instances of the

class Account (described in the last section) which is a sub-type of Ob j e c t. To

provide a basic comparison, the time taken to execute the de pos I t operation on

an instance of the unrecoverable (i.e. not derived from Ob ject) implementation

of this class was measured. Several measurements were also made on the

recoverable implementation: when in a non atomic action environment; when in a

new atomic action environment; and when in an existing atomic action

environment. The results of these tests are listed in Figure 6.9. The overhead of

1. Unrecoverable deposit	 100 us

2. Recoverable deposi t, non-action environment 	 110

3. Recoverable deposi t, new action environment	 1.4 ms

4. Recoverable deposi t, old action environment	 150 us

Figure 6.9: The mod ified operation overhead

executing the modified operation when no atomic actions are active is

approximately 10%. The only time the modified operation creates recovery

data and records management information is the first time the object is modified.

The third timing is a measure of this situation. As the time for the third test

illustrates, the overhead imposed by creating recovery data and recording

management information with an atomic action is approximately ten times

slower than when there is no atomic action executing. This overhead is partially

dependent upon the amount of the recovery data required by the recoverable

object, but in the above example the majority of the overhead is in the creation of

the management information and the addition of this information to the active

Performance and Optimisations 	 169

atomic action. When the modified operation is invoked in an action

environment, and the object has already recorded management information, the

overhead is approximately 50% of the unrecoverable object execution time as the

fourth result listed in Figure 6.9 shows.

To determine the execution overhead of an atomic action, tests were made to

measure the time taken to perform a null atomic action that involves invoking

the Begin operation followed immediately by either a Comrni t or Abort

operation. To test for any difference between top-level and nested atomic actions,

four sets of tests were made, but the result of the all tests gave the execution time

of a null atomic action to be approximately 70 us.

To examine the performance of atomic actions and the recoverable/persistent

classes described at the start of this chapter, a number of tests were made which

involved timing the execution of an atomic action within which an instance of

Bank is created, one or more Customers added to the Ban k (using the

OpenAccount operation) and an amount deposited in the current Account of

each Customer (using the deposit operation). The number of Customers

added to a B an k varied from one to one hundred per atomic action. The time

taken for both nested and top-level atomic actions to commit and abort these

modifications are listed in Table 1.

Atomic Action
Type

1 Cus tome r
(seconds)

10 Custome rs
(seconds)

100 Custome rs
(seconds)

nested commit 0.005 0.06 1.9

nested abort 0.004 0.07 2.3

top-level commit 0.04 0.2 4.3

top-level abort 0.004 0.07 2.3

Table 1: Atomic action execution times

Performance and Optimisations 	 170

As the results in Table 1 show the times for the abort of nested and top-level

atomic actions are the same. The commit of a nested atomic action is fractionally

slower for a single Customer object, as this involves merging management

information held by the nested atomic action with that held by the parent atomic

action. As the number of Customers increase however, the cost of recovery

becomes greater than the cost of merging information so that a nested commit

becomes faster than either a nested or top-level abort.

The results for the commitment of a top-level atomic action illustrate the cost

of the two-phase commit protocol and the storage of the persistent data for the

modified objects in the object store. As the number of objects increase however,

the overhead of storage reduces as the amount of management information that

must be merged (in the case of a nested commit) becomes correspondingly greater.

From being almost eight times slower with one Customer, the top-level commit

becomes four times with ten, to twice as slow as a nested commit with one

hundred.

To increase the performance of an application, changes could be made to the

implementation of the Atomi cActi on class to improve the method of managing

the records. A high proportion of the atomic action overhead is due to the way

that the records are managed, the overhead becoming greater as the number of

records held by the atomic action increase. Even so, applications that use atomic

actions, and classes constructed using the experimental system, produce

acceptable results. In addition, performance optimisations are possible if the

implementor of a class manages the persistence and recoverability of any internal

objects.

Chapter four described how a class that instantiates instances of other

recoverable classes (which are termed internal objects) may override the recovery

management provided by the class of the internal recoverable objects to directly

Bank:

Customer:0 .-.....: 	 ''.....:
e' -- \
	

/ -- \
I	 I
	

1	 i	 1	 I
\ __, I
	

N. /	 \ /

Performance and Optimisations	 171

recover the internal objects. In this manner, the granularity of recovery may be

altered to suit the situation in which the internal objects are modified. The set of

classes described in the previous section are an ideal candidate for such a

technique, as instead of each class being responsible for managing its own

recovery the containing classes (the classes Customer and Bank) may override

the recovery of the internal objects (instances of the class Account and

Customer respectively).

In addition to directly managing the recovery of internal objects, the

persistence of the internal object may also be controlled in the manner described

in chapter five. To illustrate three possible levels of recovery and persistence,

consider a newly created instance of Bank that consists of three Cu s tome rs, each

Customer having a current Account. Assuming a similar sequence of

operations to those which produced the results given in Table 1, then the

recovery/persistence data that will be created when the classes that make up the

banking system are structured in the manner illustrated in Figure 6.4 are shown

in Figure 6.10.

Figure 6.10: Recovery/persistent data for 3 Ac coun ts

If the same number of Customers and Accounts are created by an application,

but the Custome r class assumes the management of recovery and persistence for

the Account objects, then the recovery/persistent data will be structured in the

manner shown in Figure 6.11.

Performance and Optimisations
	 172

••••-••••

.	 •..\

!	 !

Figure 6.11: Customer optimisations

The final organisation considered is one where the Bank class manages the

recovery and persistence of the Customer objects, with each Customer object

managing the Accou n t objects, the resulting structure being shown in Figure

6.12.

Figure 6.12: Bank and Customer optimisations

To determine the effect that these changes in granularity have on execution

time, the application that produced the results in Table 1 was used with

alternative implementations of the Cu s tome r and Bank classes.

The results for the first situation, where a Customer object assumes the

recovery of the Account objects, are listed in Table 2. The results in this table

may be contrasted with those given in Table 1, illustrating how the performance

may be significantly improved by such optimisations. In this situation, two sets

of recovery data and management information (instead of three) will be created

and recorded with an atomic action (the situation illustrated in Figure 6.11). The

first set is for the Custome r objects (which includes the recovery data for the

Account objects), and the second for the Bank object, whereas previously there

had been a set of recovery data for each class. The effect of this optimisation

Performance and Optimisations
	

173

Atomic Action
Type

1 Custome r
(seconds)

10 Custome rs

(seconds)

100 Customers
(seconds)

nested commit 0.003 0.03 0.6

nested abort 0.003 0.03 0.7

top-level commit 0.02 0.1 1.5

top-level abort 0.003 0.04 0.7

Table 2: Customer class optimisations

becomes larger the greater the number of objects created, from taking around a

two thirds the original time to execute with a single object (since there are only

two objects being managed instead of three), to half as long with ten objects (a

reduction from 21 to 11 objects), to a third of the time with one hundred objects

(201 to 101 objects). The difference in times between the top-level and nested

atomic actions also reflect those observed in the previous table.

Table 3 gives the results for the situation where the B an k class assumes the

Atomic Action
Type

1 Custome r
(seconds)

10 Custome rs

(seconds)
,

100 Custome rs

(seconds)

nested commit 0.002 0.01 0.06

nested abort 0.003 0.01 0.08

top-level commit 0.01 0.03 0.2

top-level abort 0.003 0.01 0.08

Table 3: Bank + Customer class optimisations

recovery of the Customer class (which is also assuming the recovery of the

Account objects). This situation produces only one set of recovery data and

management information per Bank object. When only one Account object is

modified, the execution time is almost the same as that for the previous example

(Table 2). As the number of objects increase however, the performance increases

so that for ten objects the execution time is a third of that for the previous case, to

Performance and Optimisations 	 174

a tenth when one hundred objects are modified. Comparing the results in Table 3

with those in Table 1, the optimisations available are clear, as the performance

may be increase by thirty times for one hundred objects when aborting the atomic

action, or committing a nested atomic action. When the commitment of a top-

level action is considered, the increase in speed of around twenty times illustrates

how the speed of the non-volatile storage becomes the limiting factor.

6.3 Concluding remarks

To illustrate how the recovery/persistence mechanisms may be added to a

class, the first section of this chapter described the design of an unrecoverable and

nor persistent set of classes that provide the abstraction of a banking system. The

remainder of the section then described how the recovery/persistence mechanisms

may be added by deriving the existing classes from the class Object, and

implementing three (or four) extra operations. Since the classes developed to

support recovery and persistence provide much of the necessary support, the

addition of recovery/persistence mechanisms to an existing class was easily

achieved.

To show that the example classes (developed in the first section) operate in the

manner described in earlier chapters, the second section of this chapter described

the performance of a number of tests that employ instances of these classes. As

the results show, the performance of the system is adequate, despite the fact that

the current implementation has been constructed to test the soundness of the

ideas presented in this thesis and provide a flexible testbed rather than address

performance issues. One of the major advantages of the mechanisms described in

this thesis is the way that the recovery and persistence of objects can be altered to

improve the performance.

Performance and Optimisations 	 175

When an instance of a recoverable/persistent class consists of instances of

other recoverable/persistent classes then the containing class may be

implemented in such as way that the speed of recovery and storage is tailored to

the way that the containing class is used. For example, with the banking system

described in this chapter, if a bank has a large number of customers who

infrequently use the bank then the best form of recovery and storage would be on

a per customer basis. In the opposite case, a small number of customers who

frequently use the bank, the optimum granularity of recovery and storage would

be the entire bank.

The results given in the previous section showed how both the granularity of

recovery and persistence may be altered at the same time. In a banking system,

recovery should be on a per Account basis. The results described in this chapter

show that optimisations are possible but do not conform to the ideal abstraction of

a banking system (recovery being on a Cu s tome r or Bank basis). Since instances

of a persistent class can be declared to be nonpersistent and still return persistent

data, a more suitable set of classes could be defined. The Bank class may be

constructed so that it is responsible for the persistence of nonpersistent

Custome rs, and the persistent data returned by the Customer save_state

operation may include the persistent data for the Account objects (the result

being the situation illustrated in Figure 6.12). Given this approach, the

Customer and Account objects will be grouped into the persistent data for the

Bank object. This example illustrates the flexibility of the recovery and

persistence mechanisms, and the advantages of being able to declare

nonpersistent instances of a persistent class. Approaches of this type are not

possible when the compiler for the implementation language, or underlying

operating system, automatically provides the necessary support for recovery and

persistence.

Performance and Optimisations 	 176

Clearly, the execution overhead imposed by the addition of these mechanisms

and the use of atomic actions in an application is considerably greater than when

no reliability or persistence mechanisms are employed. The advantages of being

able to declare a persistent object, and not have to explicitly manage its storage,

in addition to the added recovery benefits, are difficult to quantify. The tests

described in this section have all been concerned with measuring the execution

overhead and performance of the recovery/persistence mechanisms and the

atomic action implementation. The addition of these mechanisms to a class, and

the use of atomic actions, also increases the non-volatile storage (disk space)

required by an application, and any persistent objects created, in addition to the

amount of volatile storage (memory) needed to execute the application. Given

that the cost of both types of storage are rapidly decreasing, and the processing

power of computers rapidly increasing, then the benefits of adding recovery and

persistence to support reliability, greatly outweigh the increasing storage

requirements and execution overhead that results.

The performance figures given in the last section are for local objects and non-

distributed atomic actions. When objects are remote, operation invocations must

involve remote procedure calls which will add to the execution overhead. With

the distributed atomic action design described in chapter three, the overhead that

results from operating in an atomic action environment will be slightly higher

(ignoring the RPC overhead) than that for a non-distributed atomic action, as

each invocation involves calls on the components that manage the action

environment at both the local and remote node. When the a cost of a remote

procedure call is considered (approximately 10ms for a null RPC in the

environment used for the tests) then, until the atomic action is terminated, the

greatest overhead will be the RPC itself.

Performance and Optimisations	 177

To further improve the performance of an application that uses instances of

classes constructed using the mechanisms described in this thesis, the

implementation of the mechanisms and supporting components (such as the

object store) may be optimised. A number of optimisations are described in the

next chapter which summarises the work described in this thesis, and discusses

future areas of work.

Conclusions
	 178

Chapter 7

Conclusions

The construction of reliable distributed applications is a difficult task that can

be aided by the use of programming constructs such as atomic actions. The

concepts and practise behind the use of atomic actions for maintaining the

integrity of databases are well understood and are beginning to be employed in

distributed environments. Their use in distributed object-oriented systems is

relatively new however, with current approaches concentrating on providing

support through special linguistic constructs or operating system calls. The

research described in this thesis differs from previous research in that support for

atomic actions is provided using only the features of an object-oriented language.

Using this approach, atomic actions may be implemented as objects, and the

support required to ensure the failure atomicity and permanence of effect

properties added to a class of objects by exploiting inheritance. The result is a

programming system for constructing reliable distributed applications that is the

closest so far to being classified as object-oriented, since the principle components

provided by the programming system are modelled as objects. This chapter

summarises the work presented in this thesis and speculates on future areas of

work.

7.1 Thesis summary

As distribution becomes commonplace the need for a programming system

that may be used to construct distributed applications, becomes greater.

Distribution introduces a new domain of problems however, as the independent

failure of components of a distributed computation can lead to the abnormal

behaviour of the computation. Unless such failures are addressed by a

Conclusions	 179

programming system, then the applications produced using the programming

system will not be reliable.

One approach towards supporting the reliability of an application is to use the

computing abstraction known as the atomic action. The properties of an atomic

action ensure that the system state, modified during the execution of the

application, will be failure atomic, unaffected by concurrent computations, and

permanent when successfully terminated. To provide these properties, the

system state accessed within the scope of an atomic action must be managed by

the containing atomic action. To model the system state, the object paradigm

may be used.

The object paradigm is currently one of the best programming methodologies

for managing state and modelling behaviour. The properties provided by a

language that supports the object paradigm are: data abstraction, encapsulation,

and inheritance. Data abstraction and encapsulation enable behaviour and state

to be implementing using a class. Instances of a class share common behaviour

and are known as objects. The state that each object represents is defined by the

class of the object, and consequently may be managed by an atomic action if

suitable mechanisms are added to each class of objects.

To take advantage of the support provided by the object paradigm, the

programming system known as Arjuna (of which the work in this thesis forms

part) employs an object-oriented language. Arjuna supports nested atomic

actions which may be used to control the objects declared in an application

program. To support distribution, Arjuna employs remote procedure calls and the

client/ server execution model, and these mechanisms are hidden through the use

of stubs. The stub objects required by the client program, and the server which

manages a remote object, are produced using a stub generator from a class

definition.

Conclusions	 180

The research presented in this thesis has addressed two distinct issues

surrounding the production of objects and atomic actions. The first has concerned

the construction of atomic actions, the second the mechanisms required to ensure

that a class of objects may be controlled by an atomic action so that the properties

an atomic action provides may be met. To support atomic actions, objects must be

recoverable (to ensure the failure atomicity property), provide concurrency

control (to support the serialisability property), and persist (to meet the

permanence of effect property).

A class which provides recoverability, persistence and concurrency control is

known as an Arjuna class. When an instance of an Arjuna class is modified,

recovery data is recorded so that the old object state may be restored, thereby

supporting the failure atomicity property. Arjuna objects may also be persistent

and are stored in a passive state in an object store until required by an application.

When an application that has invoked operations on a persistent Arjuna object

terminates successfully, the persistent state of the object is saved in the object

store if the object has been modified, ensuring the permanence of effect property.

As operations are invoked on an Arjuna object, concurrency control in the form of

locking occurs ensuring that the serialisability property is met.

Of the above three properties, this thesis only addresses those associated with

managing the state of an object: the recoverability and persistence properties.

The rest of this section summarises how the work described in this thesis has

approached the provision of these properties and the abstraction of atomic

actions.

In chapter two the system model, along with the fault-tolerance terminology

used throughout the thesis, was defined. In addition, the features and properties

of the object paradigm were described using the language C++, and the

programming system Arjuna detailed. Since the Arjuna project is addressing

Conclusions	 181

similar issues to a number of other projects, chapter two also included a review of

the more important projects. The major difference between Arjuna and other

research projects is the way that the support for programming reliable

distributed applications using objects and atomic actions is provided. Most

research projects have produced new programming languages or operating

systems to provide the necessary support. Arjuna is unique however, in that the

support required has been provided using the features of an object-oriented

programming language. The result is a number of classes that provide the

abstraction of atomic actions and the mechanisms required to ensure that a dass

of objects is recoverable, persistent, and supports concurrency control.

Chapter three described how the abstraction of atomic actions may be

provided using the features of an object-oriented language. The chapter began by

describing a model of atomic actions and the way that the execution of an atomic

action may be considered in terms of a sequence of event and state changes. This

model led to a description of the functionality required by an atomic action,

detailing what information is required to meet the properties associated with an

atomic action, and the way that this information must be managed when atomic

actions are nested within one another. To manage the information an abstraction

termed a record was defined that provides operations which may be invoked at

each action event. Three types of record have been produced: the state

management record which manages the recovery and persistence of an object, the

access management record which manages the concurrency control applied on an

object, and the distribution management record which coordinates the state and

access management records maintained on remote nodes to manage remote

objects.

To provide the abstraction of atomic actions, the design and implementation of

the class Atom i cAc t ion was described. This approach of implementing atomic

actions as objects is unique, as other research projects have concentrated on

Conclusions	 182

providing atomic actions through special linguistic constructs or operating

system calls. The Atom i cAct i on class provides operations that enable the

outcome of a computation that accesses Arjuna objects to be controlled. Since

much of the functionality is provided by the record abstraction, the

Atom i cActi on class simply invokes record operations in response to the various

action events that occur during the execution of a computation. During the

description of the implementation, an example was given to illustrate how the

various records are managed, and how each record in turn manages a specific

property to ensure that the objects accessed by a computation provide the

properties associated with an atomic action.

In the atomic action model described in chapter three, it was assumed that

only the volatile state of an object is accessed during a computation, with the non-

volatile state only being updated should the top-level action in an application

successfully commit. As a result, a node crash during an application will result in

the loss of all volatile state and the effective abort of the atomic action. If the

atomic action is performing a top-level commit however, a node crash during the

commit operation must not result in an inconsistent system state being

established. To ensure the atomicity of the commit operation in such

circumstances, chapter three described how a commit protocol may be employed.

An implementation of the two-phase commit protocol was described that took

advantage of the fact that the management information, the record objects and

the atomic action, are persistent objects, enabling their state to be saved in the

object store, thereby providing tolerance against node crashes.

To extend the design and implementation of an atomic action to a distributed

environment, a later section of chapter three described the distribution

management record, and changes to the stub objects needed to support distributed

atomic actions. The chapter ended by discussing the disadvantage of modelling

Conclusions	 183

atomic actions as objects, which is the inability to enforce the scope or boundaries

of the resulting atomic action. A simple solution to this problem was described.

Chapters four and five described how the mechanisms that support

recoverability and persistence, respectively, may be provided. Chapter four

began by considering how recoverability may be added to a class of objects by

adding suitable mechanisms. Two forms of recovery were considered: state and

operation based. A state based approach relies on saving a snapshot of an object

so that the object may be recovered to the state held in the snapshot. An

operation based approach involves recording the operations invoked on an object,

so that the old state of an object may be recovered by undoing the operations.

Chapter four discussed the alternative methods of adding recovery

mechanisms to an existing class, given that modifications to the compiler for the

implementation language, or underlying operating system, were not available.

Using the features of an object-oriented programming language, a number of

approaches were considered. The first was termed the container approach which

consisted of a new class that contains an instance of the unrecoverable class,

providing an identical interface but ensuring that sufficient recovery data is

recorded should the internal object be updated. The second approach was the

unrecoverable inheritance approach, which relies on exploiting inheritance to

inherit the functionality of the unrecoverable class, with refined versions of the

operations that update the unrecoverable object being provided to record suitable

recovery data. The third approach, termed the recoverable inheritance approach,

was a mixture of the previous two, with a class containing an instance of an

unrecoverable class, but inheriting recovery mechanisms from a base recoverable

class. The advantages and disadvantages of these three approaches were

considered, leading to the final approach, which was termed the multiple

inheritance approach. Using this approach, a new class is constructed by

inheriting from a base recoverable class, and the unrecoverable class. In this

Conclusions	 184

way, the new recoverable class is a sub-type of both classes, enabling instances to

be treated as if they are instances of the unrecoverable class, but requiring only a

single management class (the record class) as all instances are also sub-types of

the base recoverable class.

Given such an approach, chapter four described how the base recoverable class

may be implemented. Two implementations were described, one providing state

based recovery, the other operation based recovery. The base recoverable class

that implements state based recovery is called Ob j e c t, and provides mechanisms

that enable a snapshot (or bit-image) of the state of an object to be taken in a

class-independent manner. The base recoverable class that supports operation

based recovery, called Operation, relies on class-dependent recovery

information and greater support from the implementor of a new recoverable class.

During the description of each approach, a number of examples were given

illustrating the flexibility of each approach. In addition, during the description of

the operation based approach a method of performing compensation operations

was detailed. Compensation enables unrecoverable objects, such as a hard-copy

printer, to provide the abstraction of recovery.

As the discussion in the earlier sections of chapter four had been concerned

with adding recoverability to an existing class, a later section described how

recoverable classes that provide new abstractions may be constructed. The

discussion concerned the various methods that may be used, such as constructing

a new class using existing recoverable objects or, alternatively, unrecoverable

objects with the class inheriting recovery in the manner described in earlier

sections of the chapter. The differences is granularity were described, allowing a

degree of flexibility in the amount of state recovered when an object is restored.

The final section of the chapter assessed the approach of constructing recoverable

objects based upon inheriting from a class that provides recovery mechanisms.

The conclusions that may be made from this chapter are that exploiting

Conclusions	 185

inheritance to add a property such as recoverability to a class of objects, either an

existing class or a class that provides a new abstraction, is both simple and

flexible.

Chapter five began by describing how the permanence of effect property of an

atomic action may be met by modelling the permanent system state as persistent

objects. The concept of persistence was described, and the way that the scope

rules of a programming language must be overridden to ensure that an object is

not deallocated before being saved in non-volatile storage to effect persistence.

Because the state of an object is saved in non-volatile storage, persistent

programming language provide atomic actions to ensure the failure atomicity of

the storage of new object state. The chapter described how the persistence of an

object therefore becomes a function of the outcome of an atomic action.

Since the persistence of an object is in effect large grained recovery, the

mechanisms that must be added to a nonpersistent class were considered to be

extensions to those developed for state-based recovery. As a result, the operations

provided by the class Ob ject to support recovery were extended and modified so

that they could also support persistence, and two new operations (act i v ate and

deactivate) provided. The chapter described how the concurrency control

mechanisms were responsible for activating an object, and how a new record class

was derived from the recovery record class to ensure that a persistent object is

deactivated when the top-level atomic action commits.

To organise the persistent data in non-volatile storage, the design and

implementation of an object store was described. To collect instances of the same

class together, the object store is structured into two-levels. The first level is

designed to be the root object store, with each class having its own object store in

this root object store. The second level is the object store for each class which

Conclusions	 186

contains all instances of this class. An implementation of this organisation was

described using the UNIX file system.

One advantage of the object store organisation is that since the location of an

object is based upon the class of the object, it is not possible to subvert the type

system by creating an object using the persistent data of another class. A further

use of this organisation is made by the program that recovers the object store

after node crash. This crash recovery program scans the object stores of

particular classes of object to discover the outcome of any top-level atomic actions

which were in the process of committing. Since all instances of a class are

collected together, the crash recovery program simply employs the natural

organisation of the object store, simplifying the commit protocol and crash

recovery mechanism.

The penultimate chapter of this thesis described the construction of a simple

example, and used this example to make tests on the performance of the

implementation of atomic actions and the class Ob jec t. The ease with which

recovery and persistence may be added to an existing class was illustrated as the

example was first developed without thought to such mechanisms. Once the

classes were designed to support the example, the way in which the

persistence/recovery mechanisms may be added by inheriting the support that

the class Ob j ect provides, was described. By structuring the example into a

number of classes, the way that the recovery granularity may be altered to

increase the performance of an application containing atomic actions was

described and the optimisations supported by the test figures. Given that the

current implementations of atomic actions, the object store, and the

recovery/persistence mechanisms are all unoptimised prototypes, the

performance figures achieved illustrated the practicality of this approach to

constructing reliable applications that use atomic actions and objects.

Conclusions	 187

7.2 Future work

During the description of the mechanisms required to provide atomic actions

and objects that are recoverable and persistent, a number of areas of future work

have become apparent, and are described in this section.

The first area of future work concerns the distribution of atomic actions, the

design of which was described in chapter three. A full implementation of this

design remains to be realised, although the a number of tests have been made to

verify the soundness of the design. To fully support distribution, the simple

naming scheme described in this thesis must be expanded so that information

about the server for a particular class of objects is stored along with the mapping

from user name to unique identifier for the persistent objects. Given such a

design, a distributed name server is needed which is both replicated and fault-

tolerant. As a first step towards this aim a simple name server is being

implemented, and once fully distributed atomic actions are available, a more

complex name server may be implemented using the support provided by the

Arjuna programming system.

Another extension to the atomic action design which will be possible once

objects and atomic actions can be distributed is concurrency within an atomic

action. Concurrency within an atomic action enables nested atomic actions that

have a common parent to execute concurrently. One advantage of concurrent

atomic actions is that a number of nested atomic actions may be invoked to

perform an operation, with the first nested atomic action to commit resulting in

the abortion of the outstanding atomic actions. Such an approach is useful in a

distributed environment where resources are replicated. A concurrent nested

atomic action design has also been made and the design tested, but concurrency is

not possible until both the objects and atomic actions are fully distributed since

objects cannot be shared between processes unless the objects are managed by a

Conclusions	 188

server. This restriction is due to the fact that multi-threading is not provided by

the process model of the underlying operating system. If the underlying

operating system supported multi-threading then concurrency within atomic

actions could be implemented without the need for distribution.

The lifetime of atomic actions was implicitly assumed throughout this thesis

to be short, yet there is growing interest in, and need for, long-running atomic

actions that span days rather than seconds. If a node crash occurs during the

execution of a long-running atomic action constructed in the manner described in

this thesis, then a considerable amount of work may be lost as a result of the

failure atomicity of the atomic action design and the fact that permanence of

effect is only associated with committing top-level atomic actions. To reduce the

amount of work lost, concepts such as top-level nested atomic actions have been

introduced. A top-level nested atomic action is a special type of nested atomic

action that has the permanence of effect associated with its commitment, even

though it is nested with another atomic action. The problem with such an

approach however, is that serialisability is weakened as dependencies between

atomic actions that employ objects committed by a top-level nested atomic action

are not maintained, and are therefore not controlled by the outcome of the parent

action of the top-level nested atomic action. Other approaches to long-running

actions are possible, for instance the Arjuna project is considering the concept of

glued atomic actions [Wheater 88b] which are top-level atomic actions that

appear to execute immediately after one another. By this means, the

commitment of an atomic action acts as a checkpoint but it remains to be seen

whether applications can be structured in such a way that glued actions may be

used.

Implementing atomic actions using a class introduces problems not normally

associated with atomic actions. In particular, instances of the class

Atom icAct i on must be declared before the operations the class provides can be

Conclusions	 189

used, and the boundaries of the atomic action are not enforceable. A simple

solution to these problems based upon the use of pre-processor macros was

described in chapter three. A superior solution to the boundary problem would be

possible however, if the implementation language provided exception handling

constructs, enabling the atomic action class to define an exception context.

The work described in this thesis has been adopted by the Arjuna project,

which is currently developing a multicast remote procedure call mechanism and

set of multicast primitives [Hedayati 88]. A multicast primitive allows a group of

objects to be controlled by a single primitive invocation. The intention of the

project is to employ the multicast primitives to manage the replication of objects

and commitment of atomic actions. To ensure that the group management

operations provided by the multicast primitives are recoverable, a suitable

management record has been designed. Once the multicast primitives are

available, this design, and an atomic action design that employs the multicast

primitives for controlling the commit or abort, will be implemented.

A current limitation of the Arjuna programming system is that it provides no

support for recovering from an application program (process) crash. Given the

nested atomic action model employed by Arjuna, the only time a process crash

will result in inconsistencies is during the commitment of a top-level atomic

action. The mechanisms described in this thesis that support the commitment of

a top-level atomic action have been designed to handle node crashes, not process

crashes. As a result, the implementation of the commit protocol and crash

recovery program would require changes, in addition to the ability of the system

to detect when a process has crashed. This is an area of development that the

project is currently considering.

Conclusions	 190

Earlier in this section, a limitation of the environment used to support the

classes described in this thesis was discussed. The limitation was the inability to

execute concurrent lightweight processes within the main process executing an

application. In addition to this limitation, there are a number of other limitations

which could be resolved by changing the base programming environment (the

language C++ and the UNIX operating system). One is the lack of support for the

storage of objects, since the operating system supports a conventional file system.

The resulting programming system is therefore not uniform because components

of the system which should be persistent objects (such as the source and

executable forms of a program) must be stored and managed in files. A more

suitable environment would be a persistent object system where all permanent

state is maintained as persistent objects, such as that supported by the

REKURSIV architecture (described in chapter two). Alternatively a more

suitable operating system, which uses conventional hardware and supports

objects, such as Ameoba [Mullender and Tannenbaum 851 or Mach [Jones and

Rashid 86], could be used.

The advantages of the language C++ is that it is an efficient implementation

language, and can be easily ported to different hardware configurations. The

disadvantages lie in its ancestry, since it is a superset of the language C. The

result, is a non-uniform type system, were variables may be objects (instances of

classes constructed using the language) or primitive types. Libraries are

becoming available so that all variables may be objects, a good example being the

OOPS library [Gorlen 881 which is effectively an implementation of the

Smalltalk-80 class hierarchy. Even so, the static binding and lack of dynamic

loading ensure that an extensible system cannot be constructed. An example of

this situation is the object store. To construct a true object store (i.e. one that

takes and returns objects rather than persistent data) is not possible in C++

because the implementation of the object store would have to know all possible

Conclusions	 191

classes as the language does not support dynamic loading, or full dynamic

binding. It is recognised [Morrison et al. 88] that to support persistent object

systems, languages that support flexible binding mechanisms (both static for

efficiency and dynamic for extensibility) are needed.

Given the above limitations, a more suitable environment would be an object-

oriented language that has a flexible binding mechanism supported by an

operating system that supports objects. If the mechanisms described in this

thesis were limited to a particular language or operating system then changes in

the programming environment would not be possible. Fortunately, one of the

aims of this thesis was to produce these mechanisms is a manner that could be

generalised to other environments. Since this aim has been met, movement to a

more suitable environment is currently being considered.

References	 192

References

[Allchin 83]

J.E. Allchin, "An Architecture for Reliable Decentralized Systems", Ph.D

Thesis, Technical Report GIT-ICS-82/23, School of Information and

Computer Science, Georgia Institute of Technology, September 1983.

[Allchin and McKendry 831

J.E. Allchin and M.S. McKendry, "Synchronization and Recovery of Actions",

Proceedings of the 2nd Annual ACM Symposium on Principles of Distributed

Computing, pp. 31-44, August 1983.

[Almes et al. 85]

G.T. Almes, A.P. Black, E.D. Lazowska, and J.D. Noe, The Eden System: A

Technical Review", IEEE Transactions On Software Engineering, Vol. SE-11,

No. 1, pp. 43-59, January 1985.

[Anderson et al. 78]

T. Anderson, P.A. Lee, S.K. Shrivastava, "A Model of Recoverability in

Multilevel Systems", IEEE Transactions on Software Engineering, Vol. SE-4,

No. 6, pp. 486-494, November 1978.

[Anderson and Kerr 76]

T. Anderson and R. Kerr, "Recovery Blocks in Action: A System Supporting

High Reliability", Proceedings of the 2nd IEEE International Conference on

Software Engineering, pp. 447-457, October 1976.

[Anderson and Lee 81]

T. Anderson and P.A. Lee, Fault Tolerance, Principles and Practice, Prentice-

Hall, 1981.

References
	 193

[Anderson and Lee 82]

T. Anderson and P.A. Lee, "Fault Tolerance Terminology Proposals", IEEE

Digest of papers, FTCS -12, pp. 29-33, June 1982.

[Anyanwu 85]

J.A. Anyanwu, "A Reliable Stable Storage System for UNIX", Software-

Practice and Experience, Vol. 15, No. 10, pp. 973-990, October 1985.

[Anyanwu 86]

J.A. Anyanwu, "A Crash Resistant Unix File System", Software-Practice and

Experience, Vol. 16, No. 2, pp. 107-118, February 1986.

[Atkinson et al. 83a]

M.P. Atkinson, P.J. Bailey, K.J. Chisholm, P.W. Cockshot and R. Morrison,

"An Approach to Persistent Programming", The Computer Journal, Vol. 26,

No. 4, pp. 360-365, 1983.

[Atkinson et al. 83h]

M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshot and R. Morrison,

"PS-Algol Papers", Persistent Programming Research Report 2, Dept. of

Computer Science, University of Edinburgh and Dept. of Computational

Science, University of St. Andrews, May 1983.

[Atkinson and Buneman 87]

M.P. Atkinson and O.P. Buneman, "Type and Persistence in Database

Programming Languages", ACM Computing Surveys, Vol. 19, No. 2, pp. 105-

190, June 1987.

References	 194

[Atkinson and Morrison 87]

M.P. Atkinson and R. Morrison, "Polymorphic Names, Types, Constancy and

Magic in a Type Secure Persistent Object Store", Proceedings of the Workshop

of Persistent Object Systems: their design, implementation and use, Appin,

Scotland, pp.1-12, August 1987.

[Baiter et al. 88]

R. Baiter, D. Decouchant, A. Freyssinet, S. Krakowiak, M. Meysembourg, C.

Roisin, X. Rousset de Pina, R. Scioville, and G. VandOme, "Guide: an object-

oriented distributed operating system", Technical Report, Centre de

Recherches Bull, 1988

[Bana.tre et al. 861

J-P. Bana.tre, M. Banatre, G. Lapalme, and F. Ployette, "The Design and

Building of Enchere, A Distributed Electronic Marketing System",

Communications of the ACM, Vol. 29, No. 1, January 1986.

[Barman and Crawley 87]

H.J. Barman and S.C. Crawley, "Flexibility in a Persistent Object-based

Type System", Proceedings of the Workshop of Persistent Object Systems: their

design, implementation and use, Appin, Scotland, pp.233-245, August 1987.

[Birman 861

K.P Birman, "ISIS: A System for Fault-Tolerant Distributed Computing",

Technical Report TR 86-744, Department of Computer Science, Cornell

University, April 1986.

[Birman and Joseph 871

K.P Birman and T.A. Joseph, "Exploiting Virtual Synchrony in Distributed

Systems", Technical Report TR 87-811, Department of Computer Science,

Cornell University, February 1987.

References	 195

[Birrell and Nelson 84]

A.D. Birrell and B.J. Nelson, "Implementing Remote Procedure Calls", ACM

Transactions on Computer Systems, Vol. 2, No. 1, pp. 39-59, February 1984.

[Black 85]

A.P. Black, "Supporting Distributed Applications: Experience with Eden",

Proceedings of the 10th ACM Symposium on Operating Systems Principles,

Special Issue ACM Operating Systems Review, Vol. 19, No.5, December 1985.

[Black et al. 86]

A. Black, N. Hutchinson, E. Jul, and H. Levy, "Object Structure in the

Emerald System", Proceedings of the Object-Oriented Programming Systems,

Languages and Applications (00PSLA '86) Conference, Sept. 29 - Oct. 2,

Special Issue SIGPLAN Notices, Vol. 21, No. 11, pp. 78-86, November 1986.

[Black et al. 87]

A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter, "Distribution and

Abstract Types in Emerald", IEEE Transactions on Software Engineering,

Vol. SE-13, No. 1, pp. 65-76, January 1987.

[Blair et al. 86]

G.S. Blair, J.A. Mariani, and J.R. Nicol, "COSMOS - A Nucleus for a

Program Support Environment", Technical Report, Department of

Computing, University of Lancaster, 1986.

[Bloom and Zdonik 87]

T. Bloom and S.B. Zdonik, "Issues in the Design of Object-Oriented Database

Programming Languages", Proceedings of the Workshop of Persistent Object

Systems: their design, implementation and use, Appin, Scotland, pp. 495-517,

August 1987.

References	 196

[Bullis et al. 86]

B. Bullis, P. O'Brien, and C. Schaffert, "Adding Database Capability to

Trellis/Owl", Technical Report DEC-TR-440, Object-Based Systems Group,

Digital Equipment Corporation, April 1986.

[Cockshot et al. 84]

W.P. Cockshot, M.P. Atkinson, K.J. Chisholm, P.J. Bailey, and R. Morrison,

"Persistent Object Management System", Software-Practice and Experience,

Vol. 14, No. 1, pp. 49-71, January 1984.

[Cox 86]

B.J. Cox, Object Oriented Programming, Addison Wesley, 1986.

[Davidson et al. 84]

S.B. Davidson, H. Garcia-Molina, and D. Skeen, "Consistency in a

Partitioned Network: A Survey", Technical Report TR 84-617, Department

of Computer Science, Cornell University, June 1984.

[Davies 731

C.T. Davies, "Recovery Semantics for a DB/DC System", Proceeding of the

ACM Annual Conference, Atlanta, Georgia, pp. 136-141, August 1973.

[Detlefs et al. 87]

D. Detlefs, M. Herlihy, and J. Wing, "Inheritance of Synchronization and

Recovery Properties in Avalon/C++", Technical Report CMU-CS-87-133,

Department of Computer Science, Carnegie-Mellon University, March 1987.

References	 197

[Dixon et al. 87]

G.N. Dixon, S.K. Shrivastava, and G.D. Parrington, "Managing Persistent

Objects in Arjuna: A System for Reliable Distributed Computing",

Proceedings of the Workshop of Persistent Object Systems: their design,

implementation and use, Appin, Scotland, pp.246-265, August 1987.

[Dixon and Shrivastava 87]

G.N. Dixon and S.K. Shrivastava, "Exploiting Type Inheritance Facilities to

Implement Recoverability in Object Based Systems", Proceedings of the Sixth

IEEE Symposium on Reliability in Distributed Software and Database

Systems, Williamsburg, Virginia, pp. 107-114, 17-19 March 1987.

[Eswaran et al. 76]

K. Eswaran, J.N. Gray, R. Lone, and I. Traiger, "The Notions of Consistency

and Predicate Locks in a Database System", Communications of the ACM,

Vol. 19, No. 11, pp. 624-633, November 1976.

[Goldberg and Robson 83]

A. Goldberg and D. Robson, Smalltalk-80: the language and its

implementation, Addison-Wesley, 1983.

[Gorlen 87]

K.E. Gorlen, "An Object-Oriented Class Library for C++ Programs", Software

Practice and Experience, Vol. 17, No. 12, pp. 899-922, December 1987.

[Gray 78]

J.N. Gray, "Notes on Data Base Operating Systems" in Operating Systems

An Advanced Course, Lecture Notes in Computer Science, Vol. 60, Springer-

Verlag, 1978.

References
	 198

[Halbert and O'Brien 861

D.C. Halbert and P.D. O'Brien, "Using Types and Inheritance in

Object-Oriented Languages", Technical Report DEC-TR-437, Digital

Equipment Corporation, 1986.

[Harland et al. 86]

D.M. Harland, H.I.E. Gunn, I.A. Pringle and B. Beloff, "REKURSIV - An

architecture for Artificial Intelligence", Proceedings of Al Europe,

Wiesbaden, September 1986.

[Harland and Beloff 87]

D.M. Harland and B. Beloff, "OBJEKT - A Persistent Object Store With An

Integrated Garbage Collector", ACM Sigplan Notices, Vol. 22, No. 4, pp. 70-

79, April 1987.

aledayati 88]

F. Hedayati, "Multicast Primitives Supporting a Large Class of Applications

in Distributed Computing Systems", Ph.D. Thesis, Computing Laboratory,

University of Newcastle upon Tyne, in preparation.

[Herlihy and Wing 86]

M.P. Herlihy and J.M. Wing, "Avalon: Language Support for Reliable

Distributed Systems", Technical Report CMU-CS-86-147, Department of

Computer Science, Carnegie-Mellon University, September 1986.

[Horning et al. 741

J.J. Horning, H.C. Lauer, P.M. Melliar-Smith, and B. Randell, "A Program

Structure for Error Detection and Recovery", in Lecture Notes in Computer

Science, Vol. 16, pp. 177-193, Springer-Verlag, 1974.

References	 199

[Jones and Rashid 86]

M.B. Jones and R.F. Rashid, "Mach and Matchmaker: Kernel and Language

Support for Object-Oriented Distributed Systems", Proceedings of the Object-

Oriented Programming Systems, Languages and Applications (00PSLA S6)

Conference, Sept. 29 - Oct. 2, Special Issue SIGPLAN Notices, Vol. 21, No. 11,

pp. 67-77, November 1986.

[Kenley 86]

G.C. Kenley, An Action Management System for a Decentralized Operating

System", M.Sc. Thesis, Technical Report GIT-ICS-86/01, School of

Information and Computer Science, Georgia Institute of Technology,

January 1986.

[Kernighan and Ritchie 78]

B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice-

Hall, 1978.

[Lampson and Sturgis 76]

B.W. Lampson and H.E. Sturgis, "Crash Recovery in a Distributed Data

Storage System", Technical Report, Xerox Palo Alto Research Center, Palo

Alto, California, 1976.

[LeBlanc and Wilkes 85]

R.J. LeBlanc and C.T. Wilkes, "Systems Programming with Objects and

Actions", Proceedings of the 5th IEEE International Conference on

Distributed Computing Systems, pp. 132-139, May 1985.

[Lee 83]

P.A. Lee, "Exception Handling in C Programs", Software-Practice and

Experience, Vol. 13, No. 5, pp. 389-405, May 1983.

References	 200

[Liskov 84]

B. Liskov, "Overview of the Argus Language and System", Programming

Methodology Group Memo 40, Laboratory for Computer Science,

Massachusetts Institute of Technology, February 1984.

[Liskov 88]

B. Liskov, "Distributed Programming in Argus", Communications of the

ACM, Vol. 31, No. 3, pp. 300-312, March 1988.

[Liskov et al. 81]

B. Liskov, R. Atkinson, T. Bloom, E. Moss, C. Schaffert, R. Schiefler and A.

Snyder, CLU Reference Manual, Lecture Notes in Computer Science 114,

Eds. Goos and Hartmanis, Springer-Verlag, Berlin, 1981.

[Liskov et al. 87]

B. Liskov, D. Curtis, P. Johnson, and R. Scheifler, "Implementation of

Argus", Proceedings of the 11th ACM Symposium on Operating Systems

Principles, Special Issue SIGOPS, Vol. 21, No. 5, pp. 111-122, November

1987.

[Liskov and Scheifler 83]

B. Liskov and R. Scheifler, "Guardians and Actions: Linguistic Support for

Robust, Distributed Programs", ACM TOPLAS, Vol. 5, No, 3, pp. 381-404,

July 1983.

[Lomet 77]

D.B. Lomet, "Process structuring, synchronisation and recovery using atomic

actions", Proceedings of ACM Conference on Language Design for Reliable

Software, SIGPLAN Notices, Vol 12, No. 3, pp. 128-137, March 1977.

References	 201

[Metcalfe and Boggs 76]

R.M. Metcalfe and D.R. Boggs, "Ethernet: Distributed Packet Switching for

Local Computer Networks", Communications of the ACM, Vol. 19, No. 7, pp.

395-403,July 1976.

[Merlin and Randell 781

P.M. Merlin and B. Randell, "Consistent State Restoration in Distributed

Systems", Digest of Papers, IEEE FTCS-8, pp. 129-134, June 1978.

[Morrison 79]

R. Morrison, "S-Algol reference manual", Technical Report CS 79/1,

Department of Computer Science, University of St. Andrews, 1979.

[Morrison et al. 88]

R. Morrison, M.P. Atkinson, A.L. Brown, and A. Dearle, "Bindings in

Persistent Programming Languages", ACM SIGPLAN Notices, Vol. 23, No.

4, pp. 27-34, April 1988.

[Moss 81]

J.E.B. Moss, "Nested Transactions: An Approach to Reliable Distributed

Computing", Ph.D. Thesis, Technical Report 1VHT/LCS1TR-260, Laboratory

for Computer Science, Massachusetts Institute of Technology, April 1981.

[Moss 87]

E. Moss, "Experience Interfacing an Object Oriented Language and an Object

Server", Proceedings of the Workshop of Persistent Object Systems: their

design, implementation and use, Appin, Scotland, August 1987.

References	 202

[MuRender and Tanenbaum 861

S.J. Mullender and A.S. Tanenbaum, "The Design of a Capability-Based

Distributed Operating System", Computer Journal, Vol. 29, pp. 289-299,

August 1986.

[Nelson 811

B.J. Nelson, "Remote Procedure Call", Ph.D. Thesis, Technical Report CMU-

CS-81-119, Department of Computer Science, Carnegie-Mellon University,

1981.

[Nett et al. 85]

E. Nett, K. Grapietsch, A. Jungblut, J. Kaiser, R. Kroger, W. Lux, M.

Speicher, and H. Winnebeck, "Profemo: Design and Implementation of a

Fault Tolerant Distributed System Architecture", GMD-Studien, Nr. 100,

June 1985.

[Nett et al. 86]

E. Nett, R. Kroger, and J. Kaiser, 'Implementing a General Error recovery

Mechanism in a Distributed Operating System", Digest of Papers, IEEE

FTCS-16, Vienna, Austria, pp. 124-129,1-4 July 1986.

[Nicol et al. 87]

J.R. Nicol, G.S. Blair, and J. Walpole, "Operating System Design: Towards a

Holistic Approach?", ACM SIGOPS, Vol. 21, No. 1, pp. 11-19, January 1987.

[O'Brien et al. 86]

P. O'Brien, B. Bullis, and C. Schaffert, 'Persistent and Shared Objects in

Trellis/Owl", Proceedings of the 1986 International Workshop on Object-

Oriented Database Systems, Asilomar, California, pp. 113-123, September

1986.

References	 203

[Panzieri and Shrivastava 88]

F. Panzieri and S.K. Shrivastava, "Rajdoot: A Remote Procedure Call

Mechanism Supporting Orphan Detection and Killing", IEEE Transactions

on Software Engineering, Vol. SE-14, No. 1, pp. 30-37, January 1988.

[Parrington 88]

G.D. Parrington, "Management of Concurrency in a Reliable Object-Oriented

Computing System", Ph.D thesis, Computing Laboratory, University of

Newcastle upon Tyne, in preparation.

[Parrington and Shrivastava 88]

G.D. Parrington and S.K. Shrivastava, "Implementing Concurrency Control

for Robust Object-Oriented Systems", Proceedings of the Second European

Conference on Object-Oriented Programming, ECOOP88, August 1988.

[Randell 75]

B. Randell, "System Structure for Software Fault Tolerance", IEEE

Transactions on Software Engineering, Vol. SE-1, No. 2, pp. 220-232, June

1975.

[Reed 78]

D.P. Reed, "Naming and Synchronization in a Decentralized Computer

System", Ph.D. Thesis, Technical Report MIT/LCS/TR-205, Laboratory for

Computer Science, Massachusetts Institute of Technology, September 1978.

[Richardson et al. 87]

J.E. Richardson, M.J. Carey, D.J. DeWitt, and D.T.Schuh, "Persistence in

EXODUS", Proceedings of the Workshop of Persistent Object Systems: their

design, implementation and use, Appin, Scotland, pp. 96-113, August 1987.

References	 204

[Ritchie and Thompson 78]

D.M. Ritchie and K. Thompson, "The UNIX time-sharing system",

Communications of the ACM, Vol. 17, No. 7, pp. 365-375, July 1974.

[Schaffert et al. 86]

C. Schaffert, T. Cooper, B. Bullis, M. Kilian and C. Wilpolt, "An Introduction

to Trellis/Owl", Proceedings of the Object-Oriented Programming Systems,

Languages and Applications (00PSLA '86) Conference, Sept. 29 - Oct. 2,

Special Issue SIGPLAN Notices, Vol. 21, No. 11, pp. 9-16, November 1986.

[Schwarz 84]

P.M. Schwarz, "Transactions on Typed Objects", Ph.D Thesis, Technical

Report CMU-CS-84-166, Department of Computer Science, Carnegie-Mellon

University, December 1984.

[Shrivastava et al. 871

S.K. Shrivastava, G.N. Dixon, and G.D. Parrington, "Objects and actions in

reliable distributed systems", IEE Software Engineering Journal, Vol. 2, No.

5, pp. 160-168, September 1987.

[Shrivastava et al. 88]

S.K. Shrivastava, G.N. Dixon, F. Hedayati, G.D. Parrington and S.M.

Wheater, "A Technical Overview of Arjuna: A System for Reliable

Distributed Computing", Proceeding of UK IT 88 Conference, July 1988.

[Shrivastava and Banatre 78]

S.K. Shrivastava and J.-P. Banatre, "Reliable Resource Allocation Between

Unreliable Processes", IEEE Transactions on Software Engineering, Vol. SE-

4, No. 3, pp. 230-241, May 1978.

References	 205

[Skarra et al. 86]

A. Skarra, S.B. Zdonik, and S.P. Reiss, "An Object Server for an Object-

Oriented Database System", Proceedings of the 1986 International Workshop

on Object-Oriented Database Systems, Asilomar, California, pp. 196-204,

September 1986.

[Spafford 86]

E.H. Spafford, "Kernel Structures for a Distributed Operating System",

Ph.D. Thesis, Technical Report GIT-ICS-86/16, School of Information and

Computer Science, Georgia Institute of Technology, May 1986.

[Spector et al. 85]

A.Z. Spector, J. Butcher, D.S. Daniels, D.J. Duchamp, J.L. Eppinger, C.E.

Fineman, A. Heddaya, and P.M. Schwarz, "Support for Distributed

Transactions in the TABS Prototype", IEEE Transactions on Software

Engineering, Vol. SE-11, No. 6, pp. 520-530, June 1985.

[Spector et a/. 87]

A.Z. Spector, D. Thompson, R.F. Pausch, J.L. Eppinger, D. Duchamp, R.

Draves, D.S. Daniels, and J.J. Bloch, "Camelot: A Distributed Transaction

Facility for Mach and the Internet - An Interim Report", Technical Report

CMU-CS-87-129, Department of Computer Science, Carnegie-Mellon

University, June 1987.

[Spector 88]

A.Z. Spector, "Camelot Release 0.98(52) [Alpha] Release Notes", Department

of Computer Science, Carnegie-Mellon University, May 1988.

[Stroustrup 86]

B. Stroustrup, The C++ Programming Language, Addison-Wesley, 1986.

References
	 206

[Verhofstad 78]

J.S.M. Verhofstad, "Recovery Techniques For Database Systems", ACM

Computing Surveys, Vol. 10, No. 2, pp. 167-195, June 1978.

[Weihl 84]

W. Weihl, "Specification and Implementation of Atomic Data Types", Ph.D.

Thesis, Technical Report MIT/LCS/TR-314, Laboratory for Computer

Science, Massachusetts Institute of Technology, March 1984.

[Weihl and Liskov 85]

W. Weihl and B. Liskov, Implementation of Resilient, Atomic Data Types",

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 2,

pp. 244-269, April 1985.

[Wheater 88a]

S. Wheater, "A Stub Generator for Distributed Programming using C++",

Internal Report, Computing Laboratory, University of Newcastle upon Tyne,

1988.

[Wheater 88h]

S. Wheater, Ph.D. Thesis, Computing Laboratory, University of Newcastle

upon Tyne, in preparation.

[Wilkes and LeBlanc 86]

C.T. Wilkes and R.J. LeBlanc, "Rationale for the Design of Aeolus: A Systems

Programming Language for an Action/Object System", Technical Report

GIT-ICS-86/12, School of Information and Computer Science, Georgia

Institute of Technology, December 1986.

	DX084867_1_0001.tif
	DX084867_1_0003.tif
	DX084867_1_0005.tif
	DX084867_1_0007.tif
	DX084867_1_0009.tif
	DX084867_1_0011.tif
	DX084867_1_0013.tif
	DX084867_1_0015.tif
	DX084867_1_0017.tif
	DX084867_1_0019.tif
	DX084867_1_0021.tif
	DX084867_1_0023.tif
	DX084867_1_0025.tif
	DX084867_1_0027.tif
	DX084867_1_0029.tif
	DX084867_1_0031.tif
	DX084867_1_0033.tif
	DX084867_1_0035.tif
	DX084867_1_0037.tif
	DX084867_1_0039.tif
	DX084867_1_0041.tif
	DX084867_1_0043.tif
	DX084867_1_0045.tif
	DX084867_1_0047.tif
	DX084867_1_0049.tif
	DX084867_1_0051.tif
	DX084867_1_0053.tif
	DX084867_1_0055.tif
	DX084867_1_0057.tif
	DX084867_1_0059.tif
	DX084867_1_0061.tif
	DX084867_1_0063.tif
	DX084867_1_0065.tif
	DX084867_1_0067.tif
	DX084867_1_0069.tif
	DX084867_1_0071.tif
	DX084867_1_0073.tif
	DX084867_1_0075.tif
	DX084867_1_0077.tif
	DX084867_1_0079.tif
	DX084867_1_0081.tif
	DX084867_1_0083.tif
	DX084867_1_0085.tif
	DX084867_1_0087.tif
	DX084867_1_0089.tif
	DX084867_1_0091.tif
	DX084867_1_0093.tif
	DX084867_1_0095.tif
	DX084867_1_0097.tif
	DX084867_1_0099.tif
	DX084867_1_0101.tif
	DX084867_1_0103.tif
	DX084867_1_0105.tif
	DX084867_1_0107.tif
	DX084867_1_0109.tif
	DX084867_1_0111.tif
	DX084867_1_0113.tif
	DX084867_1_0115.tif
	DX084867_1_0117.tif
	DX084867_1_0119.tif
	DX084867_1_0121.tif
	DX084867_1_0123.tif
	DX084867_1_0125.tif
	DX084867_1_0127.tif
	DX084867_1_0129.tif
	DX084867_1_0131.tif
	DX084867_1_0133.tif
	DX084867_1_0135.tif
	DX084867_1_0137.tif
	DX084867_1_0139.tif
	DX084867_1_0141.tif
	DX084867_1_0143.tif
	DX084867_1_0145.tif
	DX084867_1_0147.tif
	DX084867_1_0149.tif
	DX084867_1_0151.tif
	DX084867_1_0153.tif
	DX084867_1_0155.tif
	DX084867_1_0157.tif
	DX084867_1_0159.tif
	DX084867_1_0161.tif
	DX084867_1_0163.tif
	DX084867_1_0165.tif
	DX084867_1_0167.tif
	DX084867_1_0169.tif
	DX084867_1_0171.tif
	DX084867_1_0173.tif
	DX084867_1_0175.tif
	DX084867_1_0177.tif
	DX084867_1_0179.tif
	DX084867_1_0181.tif
	DX084867_1_0183.tif
	DX084867_1_0185.tif
	DX084867_1_0187.tif
	DX084867_1_0189.tif
	DX084867_1_0191.tif
	DX084867_1_0193.tif
	DX084867_1_0195.tif
	DX084867_1_0197.tif
	DX084867_1_0199.tif
	DX084867_1_0201.tif
	DX084867_1_0203.tif
	DX084867_1_0205.tif
	DX084867_1_0207.tif
	DX084867_1_0209.tif
	DX084867_1_0211.tif
	DX084867_1_0213.tif
	DX084867_1_0215.tif
	DX084867_1_0217.tif
	DX084867_1_0219.tif
	DX084867_1_0221.tif
	DX084867_1_0223.tif
	DX084867_1_0225.tif
	DX084867_1_0227.tif
	DX084867_1_0229.tif
	DX084867_1_0231.tif
	DX084867_1_0233.tif
	DX084867_1_0235.tif
	DX084867_1_0237.tif
	DX084867_1_0239.tif
	DX084867_1_0241.tif
	DX084867_1_0243.tif
	DX084867_1_0245.tif
	DX084867_1_0247.tif
	DX084867_1_0249.tif
	DX084867_1_0251.tif
	DX084867_1_0253.tif
	DX084867_1_0255.tif
	DX084867_1_0257.tif
	DX084867_1_0259.tif
	DX084867_1_0261.tif
	DX084867_1_0263.tif
	DX084867_1_0265.tif
	DX084867_1_0267.tif
	DX084867_1_0269.tif
	DX084867_1_0271.tif
	DX084867_1_0273.tif
	DX084867_1_0275.tif
	DX084867_1_0277.tif
	DX084867_1_0279.tif
	DX084867_1_0281.tif
	DX084867_1_0283.tif
	DX084867_1_0285.tif
	DX084867_1_0287.tif
	DX084867_1_0289.tif
	DX084867_1_0291.tif
	DX084867_1_0293.tif
	DX084867_1_0295.tif
	DX084867_1_0297.tif
	DX084867_1_0299.tif
	DX084867_1_0301.tif
	DX084867_1_0303.tif
	DX084867_1_0305.tif
	DX084867_1_0307.tif
	DX084867_1_0309.tif
	DX084867_1_0311.tif
	DX084867_1_0313.tif
	DX084867_1_0315.tif
	DX084867_1_0317.tif
	DX084867_1_0319.tif
	DX084867_1_0321.tif
	DX084867_1_0323.tif
	DX084867_1_0325.tif
	DX084867_1_0327.tif
	DX084867_1_0329.tif
	DX084867_1_0331.tif
	DX084867_1_0333.tif
	DX084867_1_0335.tif
	DX084867_1_0337.tif
	DX084867_1_0339.tif
	DX084867_1_0341.tif
	DX084867_1_0343.tif
	DX084867_1_0345.tif
	DX084867_1_0347.tif
	DX084867_1_0349.tif
	DX084867_1_0351.tif
	DX084867_1_0353.tif
	DX084867_1_0355.tif
	DX084867_1_0357.tif
	DX084867_1_0359.tif
	DX084867_1_0361.tif
	DX084867_1_0363.tif
	DX084867_1_0365.tif
	DX084867_1_0367.tif
	DX084867_1_0369.tif
	DX084867_1_0371.tif
	DX084867_1_0373.tif
	DX084867_1_0375.tif
	DX084867_1_0377.tif
	DX084867_1_0379.tif
	DX084867_1_0381.tif
	DX084867_1_0383.tif
	DX084867_1_0385.tif
	DX084867_1_0387.tif
	DX084867_1_0389.tif
	DX084867_1_0391.tif
	DX084867_1_0393.tif
	DX084867_1_0395.tif
	DX084867_1_0397.tif
	DX084867_1_0399.tif
	DX084867_1_0401.tif
	DX084867_1_0403.tif
	DX084867_1_0405.tif
	DX084867_1_0407.tif
	DX084867_1_0409.tif
	DX084867_1_0411.tif
	DX084867_1_0413.tif
	DX084867_1_0415.tif
	DX084867_1_0417.tif
	DX084867_1_0419.tif
	DX084867_1_0421.tif
	DX084867_1_0423.tif
	DX084867_1_0425.tif
	DX084867_1_0427.tif
	DX084867_1_0429.tif
	DX084867_1_0431.tif
	DX084867_1_0433.tif

