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Abstract

We introduce structures which model the quotients of Bruhat-Tits buildings by type-
preserving group actions. These structures, which we call Weyl graphs, generalize
chamber systems of type M by allowing 2-residues to be quotients of generalized
polygons. Weyl graphs also generalize Tits amalgams with a trivial chamber stabilizer
group by allowing for group actions which are not chamber-transitive. We develop
covering theory of Weyl graphs, and characterize buildings as connected, simply
connected Weyl graphs. We describe a procedure for obtaining a group presentation
of the fundamental group of a Weyl graph W , which acts naturally on the universal
cover of W . We present an application of the theory of Weyl graphs to Singer lattices.
We construct the Singer cyclic lattices of type M , where mst ∈ {2, 3,∞} for all
s, t ∈ S. In particular, by taking the Davis realization of a building, we obtain new
examples of lattices in polyhedral complexes.
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Chapter 1

Introduction

In geometric group theory, one classically studies discrete groups by considering
their actions on non-positively curved metric spaces. The subject began with the
pioneering work of Gromov, who promoted the study of finitely generated groups as
coarse geometric objects (see [Gro84]). A modern perspective on this idea is that
every locally compact, second countable, compactly generated group has a canonical
coarse structure, obtained by taking the bounded coarse structure of the word-metric
associated to a compact generating set. Then, since compactly generated discrete
groups are exactly finitely generated groups, one can study properties of finitely
generated groups which are invariants of the underlying coarse structure. Group
actions are an important tool, since a finitely generated group must have the same
coarse structure as a geodesic metric space it can act on properly and cocompactly.
One often studies CAT(0) groups, which are groups that can act properly and
cocompactly on metric spaces which are non-positively curved, in the sense that their
geodesics grow apart as fast as geodesics in Euclidean space. The CAT(0) property
puts a bound on the torsion in a group; a CAT(0) group has finitely many conjugacy
classes of finite subgroups.

One would like to find classes of non-positively curved metric spaces which are ‘QI
rigid’, i.e. equivalent coarse geometry implies isometric. Common examples include
Tits buildings, which, from a geometric point of view, are highly symmetrical cell
complexes. Classically, (spherical) buildings are viewed as simplicial complexes which
realize the symmetries described by Lie groups and groups of Lie type. An abstract
definition of a building, which is motivated by the discovery of twin buildings, is that
of a metric space whose metric, instead of taking values in a totally ordered abelian
group (e.g. R), takes values in a Coxeter group W ordered by the Bruhat order. Just
as R is trivially a metric space, W is trivially a building called an apartment. One
can construct a building by gluing together lots of apartments in a compatible way.
If W is a lattice in either Euclidean or hyperbolic space, then apartments can be
realized as tessellations of either Euclidean or hyperbolic space. The result of gluing
together apartments is then a piecewise Euclidean or hyperbolic polyhedral complex.
More generally, one realizes apartments as so-called Davis complexes, producing the
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Chapter 1. Introduction Section 1.0

CAT(0) geometric realization of a building (see [Dav94].
The theory of lattices in Lie groups was extended by Bruhat-Tits, Ihara, Serre and

others to algebraic groups over discretely valued fields by equipping such a group with
an action on its associated Bruhat-Tits building. Similarly, lattices in Kac-Moody
groups have been studied by constructing actions on Kac-Moody buildings (see
[CG03], [RR06]). In general, the automorphism group of a locally finite building is a
locally compact group, which, assuming the group is non-discrete, has a non-trivial
theory of lattices (see [FHT11]). Therefore in the study of lattices in locally compact
groups, the automorphism groups of buildings are natural examples to study after
Lie groups and algebraic groups. Indeed, many aspects of lattice theory for algebraic
groups have been extended to locally finite trees, which are the non-classical buildings
of type W = Ã1 generalizing the Bruhat-Tits building for SL2 (see the remarkably
rich theory of tree lattices by Bass-Lubotzky [BL01]). One would like to generalize
the theory of tree lattices to higher dimensional buildings, however few constructions
of lattices in non-classical buildings are known (see e.g. [CMSZ93], [Bou00], [HP03],
[Tho07], [NTV16]).

Important in the work of Bass-Lubotzky is the theory of graphs of groups, which
are the ‘stacky’ quotients trees (see [Ser80], [Bas93], [Noo05]). However higher
dimensional graphs of groups, called complexes of groups (see [Hae91]), do not take
advantage of the combinatorial aspects of building. In this thesis, we develop a theory
of quotients of buildings which makes use of the combinatorial W -metric structure
enjoyed by buildings. We then use of this theory to construct and classify certain
Singer lattices, which are lattices that act regularly (simply-transitively) on the panels
of a building.

A Coxeter group W is a group which admits a certain geometric description as a
group generated by a set of reflections S ⊂ W . Each Coxeter group W acts on an
associated simplicial complex, called the Coxeter complex of W . The generators S
and their conjugates act by reflections in ‘walls’ of the complex, and the action is
regular on maximal simplices. In addition, each Coxeter group W acts geometrically
on an associated CAT(0) regular cell complex (regular in the sense of [Bjö84]), called
the Davis complex of W . However, unlike the Coxeter complex, the walls of the Davis
complex cut through cells. For example, the Davis complex of the Coxeter group
Ã2 is a tessellation of the Euclidean plane by hexagons, whose fundamental domain,
called the Davis chamber, is an equilateral triangle.

A building ∆ of type W was originally defined by Tits to be a simplicial complex
which can be expressed as a union of copies of the Coxeter complex of W in a
way which satisfies certain axioms (see [Tit74] and [AB08, Chapter 4]). In this
simplicial approach, chambers are maximal simplices, galleries are sequences of
adjacent maximal simplices, apartments are sub-complexes which are isomorphic to
the Coxeter complex of W , and residues are links. If W is the dihedral group of
order 2m, then a building ∆ of type W is exactly the same structure as a generalized
m-gon Π by taking ∆ to be the incidence graph of Π. In particular, if W is the
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dihedral group of order 6, then a building of type W is exactly the same structure as
a projective plane.

Beginning with [Tit81], the notion of a building was abstracted. A building of
type W is equivalently a so-called W -metric space (C, δ), which is a set of points C
equipped with a W -distance function δ : C × C → W which satisfies certain axioms
(see [Tit92] and [AB08, Chapter 5]). In the W -metric approach, chambers are the
points of the set C, galleries are sequences of points such that the distance between
consecutive points is a generator s ∈ S ⊂ W , apartments are subspaces ‘isometric’ to
W , and residues are ‘balls’, i.e. subspaces of the form {C ∈ C : δ(C,D) ∈ WJ}, where
D ∈ C is any chamber, and WJ is the subgroup of W generated by a subset J ⊆ S.
The maximal simplices of the Coxeter complex of W come with a canonical W -metric,
which is isometric to W . Simplicial buildings are obtained from W -metric spaces by
modeling the apartments as the Coxeter complex of W . The rather obscure axioms
of a simplicial building ensure that the W -metrics on each apartment induce a global
W -metric. One can reasonably define geodesics in W -metric spaces to be so-called
‘galleries of reduced type’, which connect each pair of chambers. A consequence
of geodesics is that the metric can be recovered from a structure associated to the
W -metric space, called a chamber system, which only remembers when chambers are
separated by distance a generator.

Every building of type W has a geometric realization which is a CAT(0) cell
complex, obtained by modeling the apartments as the Davis complex of W (see
[Dav94] and [AB08, Chapter 12]). In particular, the chambers are modeled as Davis
chambers. Although this cell complex is not regular in general, if the Davis chamber
of a Coxeter group W is a polytope, then the Davis realization of a building of type W
is a (regular) polyhedral complex; for irreducible Euclidean buildings, Davis chambers
are Euclidean simplices, and for hyperbolic buildings, Davis chambers are hyperbolic
polytopes.

By the ‘quotient’ of a building, we mean a structure associated to the type-
preserving action of a group on a building which is obtained by identifying chambers
in the same orbit, and from which one can recover the action. The theory of complexes
of groups is the theory of quotients of cell complexes (see [BH99, Chapter III.C]).
Since buildings are naturally cell complexes, either as a simplicial complex or by
taking the Davis realization, complexes of groups can be used to model the quotients
of buildings (e.g. [Bou97], [NTV17]). If one uses the Davis realization, and restricts
to the action of torsion-free groups, then the corresponding complexes of groups
have trivial local groups, and so cell complexes are sufficient to model quotients (e.g.
[CMSZ93], [Vdo02]). In [Tit85] and [Tit86], Tits introduced a way of constructing
buildings by amalgamating groups. Tits’ amalgams model the quotients of buildings
by chamber-transitive actions. From a modern point of view, Tits’ amalgams are also
complexes of groups (see [GP01]).

In this thesis we introduce the notion of a Weyl graph, which is an edge labeled
quiver together with a rule for composing adjacent edges of the same label and a
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collection of relations between edges of different labels. We develop the theory of Weyl
graphs and show that they are naturally the quotients of buildings by type-preserving
and chamber-free group actions. We develop their covering theory, allowing for the
construction of buildings by taking the universal cover of a Weyl graph. We show
that one can associate to any type-preserving and chamber-free group action on a
building its quotient Weyl graph, from which one can recover the group action.

The theory of Weyl graphs further develops Tits’ local approach to buildings in
[Tit81] by going ‘beyond’ 2-residues. Tits’ notion of a chamber system is an indexed
family of equivalence relations on a set of chambers. A chamber system of type M is
a chamber system whose generalized polygons are buildings. By modeling certain
quotients of buildings as chamber systems of type M , covering theory of buildings
was developed by Tits in [Tit81], described by Kantor in [Kan86], and by Ronan in
[Ron89] and [Ron92]. The theory of Weyl graphs reduces to the theory of chamber
systems of type M if one assumes that coverings are injective on 2-residues.

By a generalization of Tits’ local-to-global result concerning spherical 3-residues
(see [Tit81, Corollary 3]), Weyl graphs can be constructed by amalgamating quotients
of generalized polygons by flag-free group actions. Thus, one obtains a powerful way
of constructing lattices in buildings. Weyl graphs generalize chamber system of type
M by allowing 2-residues to be quotients of generalized polygons.

There are two main advantages of the Weyl graph approach. Firstly, the theory
of Weyl graphs is tailored to buildings, unlike the theory of complexes of groups.
Secondly, we take advantage of the fact that covering theory can be ‘classical’ (i.e.
‘non-orbi’) if we make the assumption that actions are chamber-free. Modeling
buildings as CAT(0) cell complexes will force an ‘orbi’ approach whenever spherical
residues have non-trivial isotropy. Weyl graphs also provide a framework in which
quotients of generalized polygons can be glued together to form (quotients of) buildings.
This notion of gluing is encapsulated in the defining graph of a Weyl graph (see
Section 3.1.5).

In our final chapter, we present an application of the theory of Weyl graphs to
so-called Singer lattices. A Singer lattice is a discrete subgroup of the locally compact
automorphism group of a locally finite building whose associated quotient is finite,
and which acts regularly on panels. A Singer cyclic lattice is a Singer lattice whose
isotropy of spherical 2-residues is cyclic. We construct the Singer cyclic lattices of type
M , where mst ∈ {2, 3,∞} for all s, t ∈ S, and the defining graph of M is connected.
We achieve this by first describing the 2-residues which can exist in the quotient
of a Singer cyclic lattice of type M , and then determining all the ways in which
these 2-residues can be glued together. Our lattices generalize those in [Ess13], in
which the Singer cyclic lattices of type Ã2 are constructed using complexes of groups.
We obtain simple presentations of these lattices which are, roughly speaking, free
products of collections of Singer cycles, quotient out a set of relations which are read
off the defining graph of M by going around cycles (see Theorem 5.11).
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This thesis is structured as follows: Chapter 2 contains preliminary material,
Chapter 3 and Chapter 4 develop the theory of Weyl graphs, and Chapter 5 features
an application of the theory of Weyl graphs. Finally, Appendix A and Appendix B
contain some extra material on Coxeter groups, in particular the solution to the word
problem and the Bruhat order. The definitions used in the appendix are introduced
in the sections up to Section 3.2.1. We only begin to make use of the results in the
appendix in Section 3.2.2.

7





Chapter 2

Preliminaries

This chapter contains the basic definitions and results which are relevant to this thesis.
We define graphs and galleries, Coxeter groups, and groupoids. We also develop
covering theory of groupoids which does not use base-points, but instead represents
coverings with so-called outer embeddings of groups.

2.1 Graphs and Galleries

In this section, we describe the notation and terminology we will be using for graphs.
We also introduce our notion of a gallery.

2.1.1 Graphs

Definition of Graphs. For us, the term ‘graph’ will refer to a directed graph,
possibly with loops and multiple edges. Formally, we define a graph Γ = (Γ0,Γ1)
to be a set of vertices Γ0 together with a set of edges Γ1 which is equipped with a
function,

Γ1 → Γ0 × Γ0, i 7→ (ι(i), τ(i)).

We call ι(i) and τ(i) the extremities of i. In particular, we call ι(i) the initial
vertex of i, and we call τ(i) the terminal vertex of i. For an edge i ∈ Γ1, we
denote the ordered pair (ι(i), τ(i)) by ei. A loop is an edge i ∈ Γ1 with ι(i) = τ(i),
and multiple edges are edges i, i′ ∈ Γ1 with i 6= i′ and ei = ei′ . In graphs without
multiple edges, i ∈ Γ1 can be identified with ei.

Provided there is no ambiguity, we let Γ denote both Γ0 and Γ1. For example, we
may speak of an edge i ∈ Γ.

Morphisms of Graphs. Let Γ = (Γ0,Γ1) and Γ′ = (Γ′0,Γ
′
1) be graphs. A mor-

phism of graphs ω : Γ → Γ′ is a pair ω = (ω0, ω1) consisting of a function of the
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vertices ω0 : Γ0 → Γ′0, and an auxiliary function of the edges ω1 : Γ1 → Γ′1 which
preserves the extremities of Γ. Thus, for all i ∈ Γ1, we have,

ω0(ι(i)) = ι(ω1(i)), ω0(τ(i)) = τ(ω1(i)).

Provided there is no ambiguity, we let ω denote both ω0 and ω1. For example, given
an edge i ∈ Γ, we may denote ω1(i) by ω(i). Let ω : Γ → Γ′ and ω′ : Γ′ → Γ′′ be
morphisms of graphs. The composition ω′◦ω : Γ→ Γ′′ of ω with ω′ is the morphism
of graphs whose function of the edges is ω′0 ◦ ω0, and whose auxiliary function of the
edges is ω′1 ◦ ω1.

Definition of Labeled Graphs. Let S be a set of labels. A graph labeled over
S is a graph Γ = (Γ0,Γ1) which is equipped with a type function on its edges into
S,

Γ1 → S, i 7→ υ(i).

The label υ(i) ∈ S is called the type of i. We call a labeled graph slim if ei = ei′

implies that υ(i) 6= υ(i′).

Morphisms of Labeled Graphs. Let Γ and Γ′ be graphs labeled over S and S ′

respectively, and let σ : S → S ′ be a function of sets. A morphism ω : Γ → Γ′ of
labeled graphs over σ is a morphism of the underlying unlabeled graphs such that for
all edges i ∈ Γ, we have,

υ(ω(i)) = σ(υ(i)).

Let ω : Γ → Γ′ and ω′ : Γ′ → Γ′′ be morphisms of labeled graphs over σ and σ′

respectively. The composition ω′ ◦ω : Γ→ Γ′′ of ω with ω′ is just their composition
as morphisms of graphs. Then ω′ ◦ω is a morphism of labeled graphs over σ′ ◦ σ. If Γ
and Γ′ are labeled over the same set S, then we assume that a morphism ω : Γ→ Γ′

takes place over the identity S → S. In this case, a morphism of labeled graphs is
just an ordinary morphism of graphs which preserves the type function.

Morphisms of Slim Graphs. Let ω : Γ → Γ′ be a morphism of labeled graphs
over σ. If Γ′ is slim, then ω1 is uniquely determined by ω0. Therefore in this case,
a morphism of labeled graphs is equivalently a single function between the vertices
ω : Γ0 → Γ′0 such that for each edge i ∈ Γ, there exists an edge i′ ∈ Γ′ such that,

ι(i′) = ω(ι(i)), τ(i′) = ω(τ(i)), υ(i′) = σ(υ(i)).

2.1.2 Galleries

Roughly speaking, galleries are paths in labeled graphs which are determined by a
sequence of adjacent edges. It will be useful to model galleries as certain morphisms.

10
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Definition of Galleries. Let a, b ∈ Z be integers with a ≤ b. The finite line
ba, bc is the graph whose set of vertices is the interval [a, b] ⊂ Z, with a single edge ik
traveling from k − 1 to k for each k ∈ {a+ 1, . . . , b}. Let Γ be a graph labeled over
S, and let ba, bc be a finite line also labeled over S. A gallery β in Γ is a labeled
graph morphism β : ba, bc → Γ.

For a gallery β : ba, bc → Γ, we denote by ι(β) the vertex β(a), and we denote
by τ(β) the vertex β(b). We call the vertices ι(β) and τ(β) the extremities of β.
In particular, we call ι(β) the initial vertex of β, and we call τ(β) the terminal
vertex of β. The length |β| of β is the number of edges of ba, bc. Putting sk = υ(ik)
for k ∈ {a+ 1, . . . , b}, then the type βS of β is the sequence of labels,

βS = sa+1, . . . , sb.

A trivial gallery is a gallery β with |β| = 0, in which case βS is empty. A cycle
is a gallery β with ι(β) = τ(β). A minimal gallery is a gallery β whose length is
minimal amongst all the galleries from ι(β) to τ(β). The sequence of edges of β
is the sequence of edges,

β(ia+1), . . . , β(ib).

Conversely, a finite sequence of edges j1, . . . , jn of Γ such that τ(jk) = ι(jk+1) for all
k ∈ {1, . . . , n− 1} determines a gallery β : b0, nc → Γ by putting β(ik) = jk.

Remark 2.1. Let x, y ∈ Γ be vertices in a labeled graph. We have defined galleries
such that there may be a gallery from x to y, but no gallery from y to x. However, in
the graphs which will concern us, each directed edge i will have an associated inverse,
which has the same extremities as i, but points in the opposite direction. Thus, a
gallery from x to y will naturally induce an inverse gallery from y to x.

A subgallery of a gallery β is a gallery whose sequence of edges is a consecutive
subsequence of the sequence of edges of β.

Let β and β′ be galleries in Γ such that τ(β) = ι(β′). The concatenation ββ′ of
β with β′ is a gallery whose sequence of edges is the sequence of edges of β followed
by the sequence of edges of β′.

2.2 Coxeter Groups

Most of the material of this section is standard, although our terminology concerning
homotopy of words is slightly different to that adopted by many authors (see Sec-
tion 2.2.3). Some references for the material of this section are [Bou02], [Dav08], and
[BB06].

11
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2.2.1 Groups Generated by Involutions

A marked group (G,S) is a group G which is equipped with a choice of a finite
generating set S ⊆ G. A group generated by involutions (W,S) is a marked
group whose generators S ⊆ W are involutions; thus s2 = 1 for all s ∈ S. By abuse
of notation, we let W denote both (W,S) and the underlying group of (W,S); the
meaning will always be clear from the context.

Recall that the order of a group element g ∈ G is the smallest positive integer
n such that gn = 1. For (W,S) a group generated by involutions and s, t ∈ S, we
denote by mst the order of w(st) ∈ W . In particular, mss = 1 for all s ∈ S.

Words over S. A word f = s1 . . . sn over S is a finite sequence of elements of S.
The length |f | of a word f is just the length of f as a sequence. If f = s1 . . . sn,
then we denote by f−1 the word sn . . . s1. A subword of a word f is a consecutive
subsequence of f . A substring of a word f is a (perhaps non-consecutive) subsequence
of f . For example, if f = sttustu, then sttus and tust are subwords, whereas stsu is
the substring obtained by skipping every second letter.

Equivalence of Words and Decompositions. Let f = s1 . . . sn and f ′ =
s′1 . . . s

′
n be words over S. The concatenation ff ′ of f with f ′ is the word,

ff ′ = s1 . . . sns
′
1 . . . s

′
n.

Let M(S) denote the free monoid on S. Thus, M(S) is the set of words over S
equipped with the binary operation of the concatenation of words. Let w : M(S)→ W
be the unique monoid homomorphism such that s 7→ s. In general the word,

f = s1 . . . sn ∈M(S)

is mapped to the product,
w(f) = s1 . . . sn ∈ W.

We say that two words f and f ′ are equivalent if w(f) = w(f ′). Notice that the
map w is surjective because S is a generating set of involutions. When there is no
risk of ambiguity, we may identify f with w(f).

The word f is called a decomposition of w(f). We call a word f reduced if
there are no words equivalent to f which have a strictly shorter length. If f is reduced,
then f is called a reduced decomposition of w(f).

Word Length. For w ∈ W , the word length |w| of w is length of the reduced
decomposition(s) of w. It is straight forward to check that for all w,w′ ∈ W , we have:

(i) |w| = 0 if and only if w = 1

(ii) |w| = |w−1|

12
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(iii) |ww′| ≤ |w|+ |w′|.
It then follows that the function,

d : W ×W → Z, d(w,w′) 7→ |w−1w′|
is a left-invariant metric on W , called the word metric of W .

Cayley Graphs. Let W = (W,S) be a group generated by involutions. The
Cayley graph of W is the graph labeled over S whose set of vertices is W , whose
set of edges is W × S, with,

ι(w, s) = w, τ(w, s) = ws, υ(w, s) = s.

Notice that C(W ) is an example of a graph whose edges have a natural structure of
inverses, mentioned in Remark 2.1, since we can put (w, s)−1 = (ws, s). This relies
on the fact that S is a set of involutions.

We conclude this section with two easy observations:

Proposition 2.1. Let (W,S) be a group generated by involutions. Let s1 . . . sn be a
word over S which is a decomposition of w ∈ W . Then w−1 = w(sn . . . s1).

Proof. If w = s1 . . . sn as a product in W , then w−1 = s−1n . . . s−11 = sn . . . s1.

Proposition 2.2. Let (W,S) be a group generated by involutions. For all s, t ∈ S,
the order of w(st) is equal to the order of w(ts), i.e. mst = mts.

Proof. We have,

w(st)n = 1 ⇐⇒ (w(st)−1)n = 1 ⇐⇒ w(ts)n = 1

where the second ‘if and only if’ follows from Proposition 2.1.

2.2.2 Coxeter Groups

In this section, we introduce Coxeter groups. There are several ways to characterize
Coxeter groups amongst groups generated by involutions. The following characteriza-
tion can be found in [Bou02, p. 4].

Definition of Coxeter Groups. A Coxeter group W = (W,S) is a group
generated by involutions such that for any group G and any function F : S → G such
that (F (s)F (t))mst = 1 for all s, t ∈ S, then F extends to a unique homomorphism
F̄ : W → G. It follows that,

W =
〈
S | (st)mst = 1 : s, t ∈ S

〉
.

We call this presentation the canonical presentation of W . The rank of a Coxeter
group (W,S) is the cardinality of S. The data of a Coxeter group, together with its
choice of generators, is sometimes called a ‘Coxeter system’. This term is redundant
for us since by ‘Coxeter group’ we mean a certain marked group.

13
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Standard Subgroups. The marked subgroups of a Coxeter group (W,S) which
are generated by subsets J ⊆ S of the generators are called standard subgroups.
We denote by WJ = (WJ , J) the standard subgroup which is generated by J . We will
see that standard subgroups WJ are themselves Coxeter groups in a natural way. A
subset J ⊆ S is called spherical if WJ is a finite group.

Definition of Coxeter Matrices. A Coxeter matrix M on a set S is a sym-
metric matrix,

M : S × S → Z≥1 ∪ {∞}, (s, t) 7→Mst

such that Mss = 1 for all s ∈ S, and Mst 6= 1 for all distinct s, t ∈ S. If M is a
Coxeter matrix on S, and J ⊆ S, then we denote by MJ the Coxeter matrix which is
the restriction of M to J × J . A Coxeter matrix M is called universal if Mst =∞
for all distinct s, t ∈ S.

The Defining Graph of a Coxeter Matrix. A simplicial graph L = (V (L), E(L))
is an undirected graph without loops or multiple edges in which the edges E(L) are
modeled as 2-element subsets of the vertices V (L). Let M be a Coxeter matrix.
The defining graph L = L(M) of M is the edge labeled simplicial graph with,

V (L) = S, E(L) =
{
{s, t} : s, t ∈ S, s 6= t, mst <∞

}

where the edge {s, t} ∈ E(L) is labeled by mst. Notice that L is defined differently
to the so-called Coxeter-Dynkin diagram of M .

Coxeter Groups vs Coxeter Matrices. A Coxeter group W determines a Cox-
eter matrix M = M(W ) by putting Mst = mst. Conversely, given a Coxeter matrix
M on S, the Coxeter group of type M is the group,

W (M) =
〈
S | (st)Mst = 1 : s, t ∈ S

〉
.

Notice that this is indeed a Coxeter group. So we have a map W 7→M(W ), which
takes Coxeter groups to the matrices which encode their canonical presentations, and
a right-inverse of this map M 7→ W (M), which takes matrices to Coxeter groups. The
following result shows that M(W (M)) = M , and so M 7→ W (M) is also a left-inverse
of W 7→M(W ).

Theorem 2.3. Let M be a Coxeter matrix on S. For all s, t ∈ S, the order of
st ∈ W (M) is equal to Mst, i.e. mst = Mst.

The following proof is taken from [Ron89, (2.1) Lemma (i)]:

Proof. We construct a linear representation of W (M). Let X be a vector space over R
with the basis (xs)s∈S. We define a symmetric bilinear form (−,−) on X by putting,

(xs, xt) = − cos(π/Mst), for all s, t ∈ S.

14
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Let s ∈ S act on X by the involution,

x 7→ x− 2(x, xs), for all x ∈ X.

Let Xst = span{xs, xt} ⊆ X. Then st acts with order Mst on Xst, and st acts trivially
on X⊥st . Hence, st has order Mst on X, and so st must have order Mst in W (M).

Thus, Coxeter groups are essentially in bijection with Coxeter matrices (up to
suitable notions of equivalence). However, there exist inequivalent Coxeter groups
with isomorphic underlying groups.

From now on, given a Coxeter matrix M , we denote Mst by mst.

We will need the following for the proof of an important result in the appendix:

Theorem 2.4. Let M be a Coxeter matrix on S, and let J ⊆ S. For each s ∈ S, if
s ∈ WJ , then s ∈ J .

The following proof is taken from [Ron89, (2.1) Lemma (ii)]:

Proof. Let W act on the real vector space X with the basis (xs)s∈S as in Theorem 2.3.
Let ϕ : W → GL(X) be the corresponding homomorphism. Let XJ ⊆ X denote the
span of {xt : t ∈ J}. If s ∈ WJ , then ϕ(s) ∈ ϕ(WJ). Therefore s · x ∈ x+XJ for all
x ∈ X. In particular −xt = s · xt ∈ xt +XJ , and so xt ∈ XJ . Thus, s ∈ J .

Morphisms of Coxeter Matrices. Let M and M ′ be Coxeter matrices on S
and S ′ respectively. A morphism of Coxeter matrices σ : M → M ′ is a function
σ : S → S ′ such that mσ(s)σ(t) is a factor of mst for all s, t ∈ S. This is exactly
the property that σ : S → S ′ extends to a homomorphism σ : W (M) → W (M ′).
An embedding of Coxeter matrices is an injective function σ : S ↪→ S ′ such that
mσ(s)σ(t) = mst for all s, t ∈ S. If J ⊆ J ′ ⊆ S, then we have the natural embedding,

ιJJ ′ : MJ ↪→MJ ′ , s 7→ s.

We denote ιJS by ιJ . The fact that the corresponding extension,

ιJJ ′ : W (MJ) ↪→ W (MJ ′)

is an embedding of groups will follow from some classical facts about Coxeter groups
(see Proposition 2.10).

2.2.3 Homotopy of Words

Our terminology concerning homotopy of words is slightly different to that adopted
by many authors. We fix some notation for this section; let W = (W,S) be a Coxeter
group whose associated Coxeter matrix is M , let f , f ′ and f ′′ be (possibly empty)
words over S, and let s, t ∈ S.

15
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Words in Coxeter Groups. Let s 6= t. An (s, t)-word, or just alternating
word, is a word over {s, t} which begins with the letter s, and contains no consecutive
letters. For n ∈ Z≥0, we denote by pn(s, t) the unique (s, t)-word which has length
n. For example, we have p5(s, t) = ststs and p1(t, s) = t. If mst <∞, we denote by
p(s, t) the word pmst(s, t); thus,

p(s, t) = stst . . .︸ ︷︷ ︸
mst

.

Notice that inW , the element w(p(s, t)) is an involution. Therefore, by Proposition 2.1,
we have w(p(s, t)) = w(p(t, s)). We denote by p−1(s, t) the word obtained from p(s, t)
by reversing the order. For example, if mst = 4, then,

p(s, t) = stst, p−1(s, t) = tsts.

In particular, if mst is odd, then p(s, t) = p−1(t, s). Note that authors such as Tits
and Ronan take p−1(s, t) as their definition of p(s, t).

Contractions and Expansions. A contraction is an alteration from a word of
the form fssf ′ to the word ff ′. An expansion is the inverse of a contraction, that is
an alteration from a word of the form ff ′ to the word fssf ′. Notice that contractions
and expansions of a word f produce words which are equivalent to f .

Strict Homotopy of Words. An elementary strict homotopy is an alteration
from a word of the form fp(s, t)f ′ to the word fp(t, s)f ′. Since we have w(p(s, t)) =
w(p(t, s)), an elementary strict homotopy of a word f produces a word which is
equivalent to f . A strict homotopy is an alternation of a word which is a composition
of elementary strict homotopies. If a word f can be altered via a strict homotopy
to give the word f̂ , we say f is strictly homotopic to f̂ , and we write f ' f̂ . The
relation ‘'’ is an equivalence relation on words over S.

Our notion of strict homotopy of words is what Tits and Ronan call homotopy of
words in [Tit81] and [Ron89].

Example 2.1. Let S = {s, t, u}, and let (W,S) be the Coxeter group known as Ã2, i.e.
mst = mtu = mus = 3. The alteration sttu 7→ su is a contraction, and the alteration
stutu 7→ sutuu is a strict elementary homotopy. The alteration stusu 7→ tstus is
a strict homotopy since it is the composition of the strict elementary homotopy
stusu 7→ stsus with the strict elementary homotopy stsus 7→ tstus.

Homotopy of Words. A homotopy of words is any composition of contractions,
expansions, and elementary strict homotopies. If a word f can be altered via a
homotopy to give the word f̂ , we say f is homotopic to f̂ , and write f ∼ f̂ . The
relation ‘∼’ is an equivalence relation on words over S. One can easily see that if two
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words are strictly homotopic, then they are homotopic. A partial converse to this
holds (see Theorem 2.8).

Lemma 2.5. Let (W,S) be a Coxeter group. Two words over S are equivalent if
and only if they are homotopic.

Proof. This is a straightforward consequence of what it means for a Coxeter group to
have its canonical presentation.

Corollary 2.5.1. Let (W,S) be a Coxeter group, and fix w ∈ W . Then the words
over S which are decompositions of w has the same length modulo 2.

Proof. Contractions and expansions change the length of a word by ±2. Elementary
strict homotopies do not change the length of a word. Then, since a homotopy is a
composition of contractions, expansions, and elementary strict homotopies, the result
follows from Lemma 2.5.

M-Reduced Words. In light of Lemma 2.5, a word f over S is reduced if and
only if there are no words homotopic to f which are strictly shorter than f . We say
a word f is M-reduced if there are no words strictly homotopic to f which are of
the form f ′ssf ′′. One can easily see that reduced implies M -reduced. In fact, the
converse also holds (see Theorem 2.8).

2.2.4 Properties of Coxeter Groups

In this section, we collect some classical results on word manipulation in Coxeter
groups. We continue to denote by W = (W,S) a Coxeter group with Coxeter matrix
M .

Proposition 2.6. For all w ∈ W and s ∈ S, we have the dichotomies,

|ws| = |w|+ 1 or |ws| = |w| − 1

and,
|sw| = |w|+ 1 or |sw| = |w| − 1.

Proof. We have,

|ws| ≤ |w|+ |s| = |w|+ 1 and |w| ≤ |ws|+ |s| = |ws|+ 1

from the triangle inequality of word length (see Section 2.2.1). Thus,

|w| − 1 ≤ |ws| ≤ |w|+ 1.

We cannot have |ws| = |w| by Corollary 2.5.1. The first dichotomy follows. The
second dichotomy follows by a symmetric argument.

17
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Once we have defined the Bruhat order, we’ will tend to think of these dichotomies
in terms of the Bruhat order (see Remark 2.2). An alternative approach to the
theory we will develop minimizes the roll of the Bruhat order, and refers only to the
dichotomies as they are stated in Proposition 2.6.

Proposition 2.7. For all w ∈ W and s ∈ S, if |ws| = |w| − 1 (alternatively
|sw| = |w| − 1), then there exists a reduced decomposition f of w which ends
(alternatively starts) with s.

Proof. Let f ′ be a reduced decomposition of ws. Then |f ′| = |ws| = |w| − 1. Put
f = f ′s. Firstly, f is a decomposition of w since,

w = (ws)s = w(f ′)s = w(f ′s) = w(f).

Secondly, f is reduced since,

|f | = |f ′s| = |f ′|+ 1 = |w|.

The result for when |sw| = |w| − 1 follows by a symmetric argument.

We give a geometric proof of the following two theorems in Appendix A. Our
approach is essentially a translation of [Ron89, Chapter 2] into the language of Cayley
graphs of Coxeter groups. Such Cayley graphs are prototypical examples of pre-Weyl
graphs, which are introduced in Section 3.2.1. The first theorem is a key result of
Tits from [Tit69], which gives a solution to the word problem in Coxeter groups:

Theorem 2.8. (Main Theorem) For any Coxeter group W :

(MT1) M -reduced words are reduced

(MT2) homotopic reduced words are strictly homotopic.

Proof. See Section A.3.

We also have the following classical result on word manipulation in Coxeter groups,
called the deletion condition:

Theorem 2.9. Let (W,S) be a Coxeter group. If a word f over S is not reduced,
then there exists a substring of f obtained by deleting two letters which is homotopic
to f .

Proof. See Section A.3.

Example 2.2. Let W be Ã2 with S = {s, t, u}, as in Example 2.1. Then uststu is
not reduced since,

uststu ' utsttu ∼ utsu.

However, we can obtain utsu from uŝtst̂u by deleting the two highlighted letters.

18
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Notice that for a reduced word f , the statement ‘fs is not reduced’ is equivalent
to the statement ‘|w(fs)| = |w| − 1’. Thus, the following consequence of the deletion
condition, called the exchange condition, can be viewed as a strengthening of
Proposition 2.7 above:

Corollary 2.9.1. Let f be a reduced word. If fs (alternatively sf) is not reduced,
then there exists a substring f ′ of f , obtained by deleting one letter, which is
homotopic to fs (alternatively sf).

Proof. By the deletion condition, fs is homotopic to a word f ′ which is obtained
from fs by deleting two of its letters. Suppose neither of these letters is the last
letter. Then f ′s is homotopic to a word of length less than f by a contraction, since
the last two letters of f ′s are s. Since f ′s ∼ f , this contradicts the fact that f is
reduced. Thus, exactly one letter of f is deleted to obtain f ′. The case where fs is
not reduced follows by a symmetric argument.

In fact, Tits proved more. The deletion condition and exchange condition have
obvious generalizations to groups generated by involutions. Tits proved that if W is
a group generated by involutions, then the property of being a Coxeter group, the
deletion condition, and the exchange condition are all equivalent.

Corollary 2.9.2. Let f be a word, and let f ′ and f ′′ be reduced words. If f ′f ∼ f ′′f
(or ff ′ ∼ ff ′′), then f ′ ' f ′′.

Proof. We have w(f ′f) = w(f ′′f), so w(f ′)w(f) = w(f ′′)w(f), which implies that
w(f ′) = w(f ′′). Thus f ′ ∼ f ′′, and so f ′ ' f ′′ by (MT2). The result for when
ff ′ ∼ ff ′′ follows by a symmetric argument.

Proposition 2.10. Let W = (W,S) be a Coxeter group with Coxeter matrix M ,
and let J ⊆ S. The extension ιJ : W (MJ)→ W of the embedding ιJ : MJ ↪→M is
an embedding of groups. In particular, the standard subgroup WJ ≤ W is naturally
the Coxeter group W (MJ).

Proof. Let f and f ′ be words over J which are homotopic with respect to M . It
suffices to show that this homotopy is a composition of contractions, expansions, and
elementary strict homotopies between words over J , since this shows that f and f ′

are also homotopic with respect to MJ . The result then follows by Lemma 2.5.
Indeed, (MT1) tells us we can homotope f and f ′ to reduced words, say f̂ and

f̂ ′ respectively, using only strict homotopies and contractions. Then, by (MT2), we
have f̂ ' f̂ ′.

Corollary 2.10.1. Let M be a Coxeter matrix on S, and let J ⊆ J ′ ⊆ S. Then,

ιJJ ′ : W (MJ)→ W (M ′
J)

is an embedding of groups.
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2.2.5 The Bruhat Order

We now briefly describe the Bruhat order, which is a way of ordering the elements of
a Coxeter group. We treat the Bruhat order in more detail in Appendix B. A good
reference for the Bruhat order is [BB06].

To give a quick definition of the Bruhat order, we need the following:

Proposition 2.11. Let W be a Coxeter group, and let w,w′ ∈ W . If a decomposition
of w′ is a substring of a reduced decomposition of w, then every reduced1 decomposition
of w contains a substring which is a decomposition of w′.

Proof. See Proposition B.5.

Definition of the Bruhat Order. Let W be a Coxeter group. The Bruhat
order of W is the binary relation ‘≤’ on the elements of W such that w′ ≤ w if a
reduced decomposition of w contains a substring which is a decomposition of w′. By
Proposition 2.11, we have w′ ≤ w if and only if every reduced decomposition of w
contains a substring which is a decomposition of w′.

In general, we have 1 < s, for s ∈ S. By multiplying both sides of the inequality by
s on the left or right, we see that the Bruhat order is neither left- nor right-invariant
in any non-trivial Coxeter group.

Proposition 2.12. Let W be a Coxeter group, and let ‘≤’ be the Bruhat order on
W . Then ‘≤’ is a partial ordering of the elements of W .

Proof. Irreflexivity is clear. For antisymmetry, suppose that w′ ≤ w and w ≤ w′.
Let f be a reduced decomposition of w. By hypothesis (and the deletion condition),
there exists a substring f ′ of f which is a reduced decomposition of w′. Similarly,
there exists a substring of f ′ which is a reduced decomposition of w. But |w| = |f |,
therefore f ′ = f , and so w = w′. For transitivity, suppose that w′′ ≤ w′ ≤ w. Let
f be a reduced decomposition of w, let f ′ be a substring of f which is a reduced
decomposition of w′ (here we use the deletion condition), and let f ′′ be a substring of
f ′ which is a decomposition of w′′. Then f ′′ is a substring of f , and so w′′ ≤ w.

Remark 2.2. Let w ∈ W and s ∈ S. Notice that ws > w if and only if |ws| = |w|+1,
and, by the exchange condition, ws < w if and only if |ws| = |w| − 1. Similarly,
sw > w if and only if |sw| = |w|+ 1, and sw < w if and only if |sw| = |w| − 1.

Example 2.3. Let W be Ã2 with S = {s, t, u}, as in Example 2.1. If w = stus, then
ws < w and sw < w. If w = tus, then ws < w and sw > w. If w = tut, then ws > w
and sw > w.

1 by the deletion condition, we can remove the word ‘reduced’ here without changing the statement
of the proposition
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2.3 Groupoids

In this section, we introduce groupoids and collect some of their basic properties. We
show that the local groups of a connected groupoid are naturally ‘outer isomorphic’,
we define the fundamental group of a connected groupoid in a way which does not
require the choice of a base-point, and we associate to every homomorphism of
connected groupoids an ‘outer homomorphism’ of their fundamental groups.

2.3.1 Introducing Groupoids

Recall from Section 2.1.1 that by ‘graph’ we mean a directed multigraph, i.e. a quiver.

Definition of Groupoids. A groupoid G = (G0,G1) is a non-empty graph, with
vertices G0 and edges G1, which is equipped with the following additional data:

(1) a function id : G0 → G1, which assigns to each vertex x ∈ G0 the identity edge
1x of x

(2) a function inv : G1 → G1, which assigns to each edge g ∈ G1 the inverse edge
g−1 of g

(3) a partial function G1 × G1 → G1, which assigns to each pair of edges (g, h) such
that τ(g) = ι(h), their composition, which is denoted either by gh, or by g;h
to avoid ambiguity

which satisfies the following compatibility:

(i) for all g, h ∈ G1 such that gh is defined, we have ι(gh) = ι(g) and τ(gh) = τ(h)

(ii) for all x ∈ G0, we have ι(1x) = x and τ(1x) = x

(iii) for all g, h, k ∈ G1 such that τ(g) = ι(h) and τ(h) = ι(k), we have g(hk) = (gh)k

(iv) for all g ∈ G1, if ι(g) = x and τ(g) = y, then 1xg = g = g1y

(v) for all g ∈ G1, we have gg−1 = 1ι(g) and g−1g = 1τ(g).

The function id : G0 → G1 is injective since if x, y ∈ G0 and 1x = 1y, then
x = ι(1x) = ι(1y) = y. We call an edge trivial if it is an identity edge, and non-
trivial otherwise. Often, we will let 1 denote an arbitrary trivial edge, that is 1 = 1x
for some x ∈ G0.

For vertices x, y ∈ G, we denote by G(x, y) the set of edges i ∈ G such that ι(i) = x
and τ(i) = y. Since (g−1)−1 = g for all g ∈ G1, the function,

G(x, y)→ G(y, x), g 7→ g−1
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is a bijection. The local group Gx at x is the group whose set of elements is G(x, x),
and whose binary operation is the restriction of the composition of G.

For a vertex x ∈ G, we denote by G(x,−) the set of edges i ∈ G such that ι(i) = x,
and we denote by G(−, x) the set of edges i ∈ G such that τ(i) = x. Thus,

G(x,−) =
⊔

y∈G0
G(x, y), G(−, x) =

⊔

y∈G0
G(y, x).

A setoid is a groupoid G such that G(x, y) contains at most one edge for all
vertices x, y ∈ G. A groupoid G is called connected if G(x, y) is non-empty for all
vertices x, y ∈ G. A groupoid G is called a bundle of groups if G(x, y) is empty for
all vertices x, y ∈ G such that x 6= y. A groupoid is called finite if it has a finite
number of edges.

Example 2.4 (Setoids vs Equivalence Relations). The notion of a setoid is the same
as that of an equivalence relation. Given a setoid G, one can equip the vertices of G
with the equivalence relation,

x ∼ y ⇐⇒ G(x, y) is non-empty.

Conversely, if (X,∼) is a set equipped with an equivalence relation, let,

R =
{

(x, y) ∈ X ×X : x ∼ y
}
.

Then one can form the setoid G = (X,R), where,

ι(x, y) = x, τ(x, y) = y, (x, y); (y, z) = (x, z).

These two constructions are mutually inverse (up to isomorphism).

Later on, we will see that (the isomorphism classes of) connected groupoids are
naturally in bijection with pairs (G, κ), where G is an isomorphism class of groups,
and κ is a cardinal. We will denote the groupoid corresponding to the pair (G, κ) by
G× κ.

Subgroupoids, Subgroups and Cosets. Let G = (G0,G1) be a groupoid. A
subgroupoid G ′ = (G ′0,G ′1) of G consists of a two subsets G ′0 ⊆ G0, G ′1 ⊆ G1, equipped
with the restriction of the structure of G, with the requirement that G ′ is itself a
groupoid. A subgroup of a groupoid G is a subgroup of a local group of G. Let
H ≤ Gx be a subgroup of G. We let H\G denote the set,

H\G =
{
Hg : g ∈ G(x,−)

}
.

We call the elements of H\G right cosets of G. There is also the symmetrical notion
of left cosets G/H.
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Homomorphisms of Groupoids. Let G and G ′ be groupoids. A homomor-
phism of groupoids ϕ : G → G ′ is a morphism of graphs ϕ = (ϕ0, ϕ1), with vertex
function ϕ0 and edge function ϕ1, which satisfies the following two properties:

(i) for all vertices x ∈ G, we have,

ϕ1(1x) = 1ϕ0(x)

(ii) for all edges g, h ∈ G such that gh is defined, we have,

ϕ1(gh) = ϕ1(g)ϕ1(h).

In order to define a homomorphism of groupoids ϕ : G → G ′, it suffices to define a
function on the edges ϕ1 : G1 → G ′1 such that for all edges g, h ∈ G such that gh is
defined, ϕ1(g)ϕ1(h) is defined with,

ϕ1(gh) = ϕ1(g)ϕ1(h).

If we let ϕ0 : G0 → G ′0 be the map which sends x ∈ G0 to the vertex of G ′ whose identity
is ϕ1(1x), then the pair ϕ = (ϕ0, ϕ1) is a homomorphism of groupoids ϕ : G → G ′.

Let ϕ : G → G ′ and ϕ′ : G ′ → G ′′ be homomorphisms of groupoids. The
composition ϕ′ ◦ ϕ : G → G ′′ of ϕ with ϕ′ is just their composition as morphisms of
graphs. Then ϕ′ ◦ ϕ : G → G ′′ is itself a homomorphism of groupoids.

We call a groupoid homomorphism ϕ : G → G ′ faithful if the restriction of
ϕ to each local group of G is injective. We call a groupoid homomorphism ϕ an
embedding if ϕ1 is injective, surjective if ϕ1 is surjective, and an isomorphism if
ϕ1 is bijective. It is easy to see that a groupoid homomorphism is an isomorphism if
and only if it has an inverse. An automorphism of a groupoid G is an isomorphism
from G to itself. We denote by Aut(G) the group whose elements are automorphisms
of G, and whose binary operation is the composition of homomorphisms.

Groupoidizing Graphs. Suppose we have a graph Γ which we want to become
the underlying graph of a groupoid G. When we equip Γ with the structure of a
groupoid, we make the convention that every edge of Γ becomes a non-trivial edge
in G, so that the trivial edges of G are extra edges which can be identified with the
vertices of Γ. For example, the graph consisting of one vertex and one loop has a
unique ‘groupoidization’ as the groupoid with one vertex whose local group is the
group of order 2.

Conjugation in Groupoids. Let G be a groupoid. Let x, x′, y, y′ ∈ G be vertices
such that G(x, y) and G(x′, y′) are non-empty. Associated to each choice of g ∈ G(x, y)
and h ∈ G(x′, y′) is the bijection,

χgh : G(x, x′)→ G(y, y′), k 7→ g−1kh.
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x

y

x′

y′

hg–1

χgh

χg–1h–1

Figure 2.1: The mutually inverse maps χgh and χg−1h−1

This is a bijection since χgh has the inverse,

χg−1h−1 : G(y, y′)→ G(x, x′), k 7→ gkh−1.

See Figure 2.1. If h = g, so that x = x′ and y = y′, then it is easy to see that χgg is
an isomorphism of local groups. Let us denote χgg by χg. Thus,

χg : Gx → Gy, k 7→ g−1kg.

This shows that if G(x, y) is non-empty, then Gx is isomorphic to Gy. However, there
is not a natural isomorphism from Gx to Gy in general; different choices of g ∈ G(x, y)
may result in different isomorphisms χg.

2.3.2 Outer Homomorphisms

Let G and H be groups. Let ϕ be a homomorphism ϕ : G→ H, and let ϕh denote
the conjugate of ϕ by h,

ϕh : G→ H, g 7→ hϕ(g)h−1.

An outer homomorphism Φ : G→ H is a conjugacy class of homomorphisms,

Φ = [ϕ] = {ϕh, h ∈ H}.

In other words, an outer homomorphism is a group homomorphism defined only up
to conjugacy. Outer automorphisms are classical examples of outer homomorphisms.
For outer homomorphisms Φ : G→ H and Φ′ : H → K, we put,

Φ′ ◦ Φ = [ϕ′] ◦ [ϕ] = [ϕ′ ◦ ϕ].

This is well defined since ϕk ◦ ϕh = (ϕ ◦ ϕ)kϕ(h). If ψ : G→ H is an isomorphism of
groups, we denote [ψ−1] by Ψ−1. Let 1G and 1H be the identity homomorphisms of
G and H respectively. We have,

Ψ ◦Ψ−1 = [1G], Ψ−1 ◦Ψ = [1H ].
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G G′

Φy

Φx

Ψxy Ψx′y′

Gy

Gx

G′
y′

G′
x′

ϕ

Figure 2.2: Proposition 2.13

Also, for any outer homomorphism Φ : G→ H, we have,

[1G] ◦ Φ = Φ ◦ [1G] = Φ.

An outer homomorphism Φ is called an outer embedding if one (and therefore
every) homomorphism in Φ is injective. An outer homomorphism Φ is called an outer
isomorphism if one (and therefore every) homomorphism in Φ is an isomorphism.
We say two outer embeddings Φ : H → G and Φ′ : K → G are isomorphic if
there exists an outer isomorphism Ψ : H → K with Φ′ ◦ Ψ = Φ. One can identify
isomorphism classes of outer embeddings into a group G with conjugacy classes of
subgroups of G.

The Internal Outer Isomorphism Ψxy. Let G be a groupoid, and let x, y ∈ G be
vertices. Let g, g′ ∈ G(x, y), and let g′′ = g′−1g. Then χg′ = χg

g′′ , and so [χg′ ] = [χg].
That is, different choices of g ∈ G(x, y) produce conjugate isomorphisms χg. Therefore,
if G(x, y) is non-empty, there is a natural outer isomorphism,

Ψxy = [χg] : Gx → Gy

where g ∈ G(x, y). The outer isomorphism Ψxy is called the internal outer isomor-
phism from x to y. Notice that,

Ψyz ◦Ψxy = Ψxz, Ψ−1xy = Ψyx, Ψxx = [1].

The Outer Homomorphism Φx. Let ϕ : G → G ′ be a homomorphism of
groupoids. Let x ∈ G be a vertex, and let x′ = ϕ(x). Let ϕ �Gx denote the re-
striction of ϕ to the local group Gx. Then we denote by Φx the outer homomorphism,

Φx = [ϕ �Gx ] : Gx → G ′x′ .

The internal outer isomorphisms Ψxy are compatible with the Φx in the following
sense:
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G G′

Gx G′x′

π1(G) π1(G′)

ϕ

Φx

π1(ϕ)

Ψx Ψ−1x′

Figure 2.3: Defining π1(ϕ)

Proposition 2.13. Let ϕ : G → G ′ be a homomorphism of groupoids. Let x, y ∈ G
be vertices, and let x′ = ϕ(x) and y′ = ϕ(y). Then,

Φy ◦Ψxy = Ψx′y′ ◦ Φx.

See Figure 2.2.

Proof. Let g ∈ G(x, y). Then,

Φy ◦Ψxy = [ϕ �Gy ◦ χg] = [χϕ(g) ◦ ϕ �Gx ] = Ψx′y′ ◦ Φx

where the middle equality follows from the fact that ϕ preserves the composition of
G.

2.3.3 The Fundamental Group of a Groupoid

Usually, fundamental groups depend upon the choice of a base-point. Our notion of
fundamental group does not require the choice of a base-point, but rather associates
a group to a connected groupoid G which is naturally outer isomorphic to the local
groups of G.

Definition of the Fundamental Group. Let G be a connected groupoid. We
define the fundamental group π1(G) of G to be the abstract group which is iso-
morphic to the local groups of G, and which is equipped with an outer isomorphism
Ψx : π1(G) → Gx to each of the local groups of G such that Ψxx′ ◦ Ψx = Ψx′ for all
vertices x, x′ ∈ G.

We associate to a homomorphism of connected groupoids ϕ : G → G ′ an outer
homomorphism π1(ϕ) : π1(G)→ π1(G ′), called the outer homomorphism induced by
ϕ, which is defined as follows; pick a vertex x ∈ G, and let x′ = ϕ(x), then put,

π1(ϕ) = Ψ−1x′ ◦ Φx ◦Ψx.

See Figure 2.3.
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Proposition 2.14. The definition of π1(ϕ) does not depend on the choice of x.

Proof. Suppose we make a different choice for x, say y. Let y′ = ϕ(y). Then, by
Proposition 2.13, we have Φy ◦Ψxy = Ψx′y′ ◦ Φx. Thus, Φy = Ψx′y′ ◦ Φx ◦Ψyx, and,

Ψ−1y′ ◦ Φy ◦Ψy = Ψ−1y′ ◦ (Ψx′y′ ◦ Φx ◦Ψyx) ◦Ψy

= Ψ−1x′ ◦ Φx ◦Ψx

= π1(ϕ).

Proposition 2.15. The map ϕ 7→ π1(ϕ) is functorial; for homomorphisms ϕ : G → G ′
and ϕ′ : G ′ → G ′′ of connected groupoids, we have,

π1(ϕ
′ ◦ ϕ) = π1(ϕ

′) ◦ π1(ϕ).

Proof. Let ϕ′′ = ϕ′ ◦ ϕ, let x ∈ G be a vertex, and let x′ = ϕ(x) and x′′ = ϕ′′(x) =
ϕ′(x′). Since ϕ′′ �Gx= ϕ′ �Gx′ ◦ ϕ �Gx , we have Φ′′x = Φ′x′ ◦ Φx. Then,

π1(ϕ
′ ◦ ϕ) = Ψ−1x′′ ◦ Φ′′x ◦Ψx

= Ψ−1x′′ ◦ Φ′x′ ◦ Φx ◦Ψx

= (Ψ−1x′′ ◦ Φ′x′ ◦Ψx′) ◦ (Ψ−1x′ ◦ Φx ◦Ψx)

= π1(ϕ
′) ◦ π1(ϕ).

We have the following characterization of isomorphisms of connected groupoids in
terms of the induced outer homomorphism.

Proposition 2.16. A homomorphism of connected groupoids ϕ : G → G ′ is an
isomorphism if and only if π1(ϕ) is an outer isomorphism and ϕ is bijective on
vertices.

Proof. One can easily see that if ϕ is an isomorphism then π1(ϕ) is an outer iso-
morphism and ϕ is bijective on vertices. Conversely, suppose that π1(ϕ) is an
outer isomorphism and ϕ is bijective on vertices. First we show surjectivity. Let
g′ ∈ G ′(x′, y′) be an edge of G ′, and let x = ϕ−1(x′) and y = ϕ−1(y′). Let g ∈ G(x, y)
and h = ϕ−1(g′ϕ(g)−1). Then ϕ(hg) = g′. For injectivity, let g, h ∈ G be edges such
that ϕ(g) = ϕ(h). We must have ι(g) = ι(h) = x and τ(g) = τ(h) = y because ϕ
is injective on vertices. Then, ϕ(gh−1) = ϕ(g)ϕ(h)−1 = 1. But π1(ϕ) is an outer
isomorphism, and so gh−1 = 1. Therefore g = h.

2.3.4 Generating Sets and the Classification of Groupoids

In this section, we develop the idea of generating sets of groupoids, and show that
the classification of groupoids easily reduces to the classification of groups.
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Figure 2.4: The unique expression for h

Generating Sets. Let G be a connected groupoid. Pick a base vertex x ∈ G, and
for each vertex y ∈ G, pick gy ∈ G(x, y). We make the convention that gx = 1x. Then
we call Gx ∪ {gy : y ∈ G0} a generating set of G. For every edge h ∈ G, putting
y = ι(h) and y′ = τ(h), then there exists a unique edge g ∈ Gx such that h = g−1y ggy′ .
See Figure 2.4. More generally, we say a subset S ⊆ G1 generates G if every edge in
G is a product of edges in S ∪ S−1.

Defining Homomorphisms. We can define a homomorphism of connected groupoids
ϕ : G → G ′ by picking a generating set Gx ∪ {gy : y ∈ G0} of G, picking the value
of ϕ(x), picking a group homomorphism ϕ̄ : Gx → G ′ϕ(x), and picking the values of
ϕ(gy), with the requirement that ι(ϕ(gy)) = ϕ(x). Any such collection of choices will
determine ϕ; for y ∈ G0 and h ∈ G1, we must have,

ϕ(y) = τ(ϕ(gy)), ϕ(h) = ϕ(gy)
−1ϕ̄(g)ϕ(gy′)

where h = g−1y ggy′ is the unique expression for h.

The Classification of Groupoids. The isomorphism classes of connected groupoids
are in bijection with pairs (G, κ), where G is (the isomorphism type of) a group, and
κ is a cardinal. To see this, let G×κ be the following groupoid; the set of vertices is κ,
for x, y ∈ κ the set of edges from x to y is a copy of G, and the composition of edges is
just their composition as elements of G. Now, suppose that G is a connected groupoid
whose local groups are isomorphic to G, and whose set of vertices has cardinality κ.
An isomorphism ϕ : G → G× κ can be constructed as follows. Let Gx ∪ {gy : y ∈ G0}
be a generating set of G, and let F : G0 → κ be any bijection. Let GF (x) denote the
local group of G× κ at F (x). Let ϕ̄ : Gx → GF (x) be any isomorphism, and let ϕ(gy)
be the copy of the identity of G whose initial vertex is F (x) and whose terminal vertex
is F (y). This defines an isomorphism ϕ by Proposition 2.16. Groupoids G which are
not connected are disjoint unions G = G1 t · · · t Gn of connected groupoids. The
groupoids in the disjoint union are the connected components of G. We denote
by nG the n-fold disjoint union,

G t · · · t G︸ ︷︷ ︸
n

.
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Thickness of Groupoids. Let us introduce some terminology which comes from
the theory of buildings. The thickness of a connected groupoid G×κ is the cardinal∣∣|G| × κ

∣∣− 1. A connected groupoid is called:

(i) thin if
∣∣|G| × κ

∣∣ = 2, that is thickness equal to 1

(ii) weak if
∣∣|G| × κ

∣∣ ≥ 2, that is thickness at least 1

(iii) thick if
∣∣|G| × κ

∣∣ ≥ 3, that is weak but not thin.

A groupoid G is called thin, weak, or thick if G is a disjoint union of thin, weak, or
thick connected components respectively. In particular, every thin groupoid is of the
form n(Z2 × 1) tm(1× 2), where Z2 denotes the cyclic group of order 2.

2.4 Covering Theory of Groupoids

In this section, we describe covering theory of groupoids. Our approach models
coverings of groupoids with outer embeddings of the fundamental groups. In general,
information is lost when one replaces a homomorphism of connected groupoids with
the outer homomorphism which it induces, however a covering of connected groupoids
can be recovered from the outer embedding it induces. A good reference for the
material of this section, which uses base-points, is [Bro06].

2.4.1 Coverings of Groupoids

In this section, we define coverings and morphisms of coverings, and collect some
basic properties.

Definition of Coverings of Groupoids. A covering of groupoids is a surjective
groupoid homomorphism p : G̃ → G such that for all vertices x̃ ∈ G̃, the restriction
of p to G̃(x̃,−) is a bijection into G(p(x̃),−). Notice that if G is connected, then
surjectivity automatically follows since any edge g ∈ G can be written as g = h−1k,
where h, k ∈ G(p(x̃),−). We say that a covering p : G̃ → G is connected if G̃ is
connected, which implies that G is also connected.

It is easy to see that a covering of groupoids is equivalently a surjective groupoid
homomorphism p : G̃ → G such that, for all vertices x̃ ∈ G̃, the restriction of p to
G̃(−, x̃) is a bijection into G(−, p(x̃)). We have the following equivalent definition in
the case of connected groupoids:

Proposition 2.17. A covering of connected groupoids is equivalently a groupoid
homomorphism p : G̃ → G such that there exists a vertex x̃ ∈ G̃ such that the
restriction of p to G̃(x̃,−) is a bijection into G(p(x̃),−).
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Proof. Let x̃, ỹ ∈ G̃0, and let g ∈ G̃(x̃, ỹ). Let ϕg be the function,

ϕg : G(x̃,−)→ G(ỹ,−), h 7→ g−1h

and let ϕp(g)−1 be the function,

ϕp(g)−1 : G(p(ỹ),−)→ G(p(x̃),−), h 7→ p(g)h.

Then,
p �G̃(x̃,−)= ϕp(g)−1 ◦ p �G̃(ỹ,−) ◦ ϕg.

But ϕg and ϕp(g)−1 are bijections since they have inverses h 7→ gh and h 7→ p(g)−1h

respectively. Thus, the restriction of p to G̃(x̃,−) is a bijection if and only if the
restriction of p to G̃(ỹ,−) is a bijection. The result follows.

We have the following characterization of isomorphisms amongst coverings:

Proposition 2.18. A covering p : G̃ → G is an isomorphism if and only if p is
injective on the vertices of G̃.

Proof. One can easily see that if p is an isomorphism, then p is injective on vertices.
Conversely, suppose that p is injective on vertices, and let g, g′ ∈ G̃ be edges with
p(g) = p(g′). Notice that we must have ι(g) = ι(g′) and τ(g) = τ(g′) by the fact
that p is injective on the vertices of G̃. Let x = ι(g) and y = τ(g). Since p is a
covering, its restriction to G̃(x, y) is injective, and so we must have g = g′. Thus, p is
an embedding. Finally, p is surjective by the fact it is a covering.

Morphisms of Coverings. Let p : G̃ → G and p′ : G̃ ′ → G be coverings of a
groupoid G. A morphism of coverings λ : p → p′ is a groupoid homomorphism
λ : G̃ → G̃ ′ such that p = p′ ◦ λ. We call two coverings isomorphic if there exists
a morphism between them which is a groupoid isomorphism. The composition of
morphisms of coverings is just their composition as groupoid homomorphisms.

The following result shows that in particular, a morphism of coverings of connected
groupoids is itself a covering:

Proposition 2.19. Let p : G̃ → G, p′ : G̃ ′ → G, and λ : G̃ → G̃ ′ be homomorphisms
of connected groupoids with p = p′ ◦ λ. If p and p′ are coverings, then λ is a covering,
and if p and λ are coverings, then p′ is a covering.

Proof. Pick a vertex x̃ ∈ G̃, and let x̃′ = λ(x̃), and x = p(x̃) = p′(x̃′). Then,

p �G̃(x̃,−)= p′ �G̃′(x̃′,−) ◦ λ �G̃(x̃,−) .

Therefore if p �G̃(x̃,−) and p′ �G̃′(x̃′,−) are bijections, then so is λ �G̃(x̃,−), and if p �G̃(x̃,−)
and λ �G̃(x̃,−) are bijections, then so is p′ �G̃′(x̃′,−). The result then follows by Proposi-
tion 2.17.
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2.4.2 Coverings and Fundamental Groups

We now give an exposition of the relationship between coverings of connected groupoids
and their induced outer homomorphisms.

Proposition 2.20. If p : G̃ → G is a covering of connected groupoids, then π1(p) is
an outer embedding.

Proof. If p is a covering, then for each vertex x̃ ∈ G̃, the restriction p �G̃x̃ is injective, i.e
p is faithful. It then follows from the definition that π1(p) is an outer embedding.

Thus, a covering p : G̃ → G of connected groupoids induces a conjugacy class of
subgroups of π1(G). We have the following characterization of isomorphisms amongst
coverings of connected groupoids:

Proposition 2.21. A covering p : G̃ → G of connected groupoids is an isomorphism
if and only if π1(p) is an outer isomorphism.

Proof. If p is an isomorphism, then it follows from the definition that π1(p) is an
outer isomorphism. Conversely, suppose that π1(p) is an outer isomorphism, and let
x̃, ỹ ∈ G̃ be vertices such that p(x̃) = p(ỹ) = x. Then for each g ∈ G̃(x̃, ỹ), we have
p(g) ∈ Gx. But p �G̃x̃ is a bijection into Gx because π1(p) is an outer isomorphism.
Therefore, since p is a covering, we must have x̃ = ỹ, and the result follows by
Proposition 2.18 (or indeed Proposition 2.16).

2.4.3 Lifting Outer Homomorphisms

In this section, we show that one can recover a covering of connected groupoids from
the outer embedding which it induces. This result relies on the fact that certain outer
homomorphisms can be ‘lifted’ to groupoid homomorphisms.

Theorem 2.22 (General Lifting). Let G, G̃, and G ′ be connected groupoids. Let
p : G̃ → G be a covering, and let ϕ : G ′ → G be a homomorphism. Let Φ : π1(G ′)→
π1(G̃) be an outer homomorphism with π1(p) ◦ Φ = π1(ϕ). Then there exists a
homomorphism ϕ′ : G ′ → G̃ such that p ◦ ϕ′ = ϕ and π1(ϕ

′) = Φ.

Proof. Pick a vertex x′ ∈ G ′ and a generating set G ′x′ ∪ {gy′ : y′ ∈ G ′0} based at x′.

Recall that we can construct ϕ′ : G ′ → G̃ by giving ϕ′ �G′
x′

and the images of the gy′ .

Let x = ϕ(x′), and let x̃ ∈ G̃ be any vertex such that p(x̃) = x. Let ϕx′ : G ′x′ → G̃x̃
denote a homomorphism such that [ϕx′ ] = Ψx̃ ◦ Φ ◦Ψ−1x′ . Then,

[p �G̃x̃ ] ◦ [ϕx′ ] = (Ψx ◦ π1(p) ◦Ψ−1x̃ ) ◦ (Ψx̃ ◦ Φ ◦Ψ−1x′ )

= Ψx ◦ π1(p) ◦ Φ ◦Ψ−1x′

= Ψx ◦ π1(ϕ) ◦Ψ−1x′

= [ϕ �G′
x′

].

31



Chapter 2. Preliminaries Section 2.4

So there exists g ∈ Gx with,

χg ◦ p �G̃x̃ ◦ ϕx′ = ϕ �G′
x′
. (♠)

Let g̃ ∈ G̃(x̃,−) be the unique edge such that p(g̃) = g. Let ỹ = τ(g̃), and begin
defining ϕ′ by putting ϕ′(x′) = ỹ and ϕ′ �G′

x′
= χg̃ ◦ ϕx′ . Then,

p �G̃(ỹ) ◦ ϕ′ �G′x′ = p �G̃ỹ ◦ χg̃ ◦ ϕx′ by the definition of ϕ′ �G′
x′

= χg ◦ p �G̃x̃ ◦ ϕx′ since p is a homomorphism

= ϕ �G′
x′

by (♠)

as required (since we want p ◦ ϕ′ = ϕ). We finish defining ϕ′ by letting ϕ′(gy′) be

the unique edge of G̃(ỹ,−) such that p(ϕ′(gy′)) = ϕ(gy′). Then we have p ◦ ϕ′ = ϕ
since p ◦ ϕ′ agrees with ϕ on the generating set G ′x′ ∪ {gy′ : y′ ∈ G ′0}. Finally, we have
π1(ϕ

′) = Φ since,

Φ = Ψ−1x̃ ◦ [ϕx′ ] ◦Ψx′ by the definition of ϕx′

= Ψ−1ỹ ◦Ψx̃ỹ ◦ [ϕx′ ] ◦Ψx′

= Ψ−1ỹ ◦ [χg̃] ◦ [ϕx′ ] ◦Ψx′

= Ψ−1ỹ ◦ [ϕ′ �G′
x′

] ◦Ψx′ by the definition of ϕ′ �G′
x′

= π1(ϕ
′) by the definition of π1(ϕ

′).

Corollary 2.22.1. Let G, G̃, and G̃ ′ be connected groupoids. Let p : G̃ → G
and p′ : G̃ ′ → G be coverings. Let Φ : π1(G̃) → π1(G̃ ′) be an outer embedding
with π1(p

′) ◦ Φ = π1(p). Then there exists a morphism of coverings λ : p → p′

with π1(λ) = Φ. Moreover, if Φ is an outer isomorphism, then any such λ is an
isomorphism.2

Proof. A homomorphism λ : G̃ → G̃ ′ such that p′ ◦ λ = p and π1(λ) = Φ exists by
Theorem 2.22. Then λ is a covering of groupoids by Proposition 2.19, and so λ is an
isomorphism if Φ is an outer isomorphism by Proposition 2.21.

The following tells us that a covering is determined by the outer embedding which
it induces:

Corollary 2.22.2. Let G, G̃, and G̃ ′ be connected groupoids. Let p : G̃ → G and
p′ : G̃ ′ → G be coverings. If π1(p) and π1(p

′) are isomorphic outer embeddings, then
p and p′ are isomorphic coverings.

2 This can be expressed in the language of category theory as follows; let cov(G) denote the slice
category of coverings of G, and let cov(π1(G)) denote the slice category of outer embeddings into
π1(G), then the functor cov(G)→ cov(π1(G)) induced by π1 is full and conservative.
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Proof. By hypothesis, there exists an outer isomorphism Ψ : π1(p) → π1(p
′) with

π1(p
′) ◦ Ψ = π1(p). There exists an isomorphism of coverings λ : p → p′ with

π1(λ) = Ψ by Corollary 2.22.1.

Therefore, the (isomorphism classes of) connected coverings of a connected
groupoid G naturally inject into the conjugacy classes of subgroups of π1(G). Of
course, we still do not know if, given a conjugacy class of subgroups, a covering exists
which induces it.

2.4.4 Existence of Coverings

Let G be a connected groupoid. We begin by describing a construction of connected
coverings of G, and then show that this constructs coverings for each conjugacy class
of subgroups of π1(G).

The Covering Based at H. Let H ≤ Gx be a subgroup of a connected groupoid
G. For each coset Hg, pick a representative g∗ ∈ Hg. We make the convention that
h∗ = 1x for h ∈ H. We construct a connected groupoid, denoted G̃H , by letting the
vertices of G̃H be the set of cosets H\G, and letting the edges of G̃H be the set,

G̃H1 =
{

(h,Hg,Hg′) : h ∈ H; g, g′ ∈ G(x,−)
}
.

For the extremities, put,

ι(h,Hg,Hg′) = Hg, τ(h,Hg,Hg′) = Hg′

and for the composition, put,

(h,Hg,Hg′)(h′, Hg′, Hg′′) = (hh′, Hg,Hg′′).

It is easy to check that this defines a groupoid G̃H . Let pH : G̃H → G be the
homomorphism whose map on edges is,

(h,Hg,Hg′) 7→ (g∗)−1hg′∗.

This implies that for vertices we have pH(Hg) = τ(g), and in particular pH(H) = x.
Checking that pH is a homomorphism, we have,

pH(hh′, Hg,Hg′′) = (g∗)−1hh′g′′∗

= (g∗)−1hg′∗(g′∗)−1h′g′′∗

= pH(h,Hg,Hg′)pH(h′, Hg′, Hg′′).

Proposition 2.23. Let H ≤ Gx be a subgroup of a connected groupoid G. Then
pH : G̃H → G is a covering of groupoids.
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Proof. Consider the restriction of pH to the edges (h,H,Hg) which issue from the
vertex H ∈ G̃H . For injectivity, if pH(h,H,Hg) = pH(h′, H,Hg′), then hg∗ = h′g′∗,
and so h = h′ and g = g′. Thus, (h,H,Hg) = (h′, H,Hg′). For surjectivity, let
g ∈ G(x,−), and let h ∈ H such that g = hg∗. Then we have pH(h,H,Hg) = g. The
fact that pH is a covering then follows by Proposition 2.17.

We call pH : G̃H → G the covering based at H. Notice that the local group
G̃HH of G̃H at H is naturally isomorphic to H.

Proposition 2.24. Let G be a connected groupoid, and let Φ : K → π1(G) be
an outer embedding. Then there exists a covering p : G̃ → G such that π1(p) is
isomorphic to Φ.3

Proof. Pick a subgroup H ≤ Gx of G such that Ψ−1x �H is isomorphic to Φ. Put
p = pH : G̃H → G. Let ϕH : G̃HH → H ≤ Gx be the identity map and put ΦH = [p �G̃HH ].
Notice that ϕH is just the embedding p �G̃HH restricted to its image. Pick representatives

ψ−1x ∈ Ψ−1x and ψH ∈ ΨH . Then [ϕH ] ◦ΨH is an outer isomorphism, and,

π1(p) = Ψ−1x ◦ ΦH ◦ΨH

= [ψ−1x ◦ p �G̃HH ◦ ψH ]

= [ψ−1x �H ◦ ϕH ◦ ψH ]

= [ψ−1x �H ] ◦ [ϕH ] ◦ [ψH ]

= Ψ−1x �H ◦ [ϕH ] ◦ΨH .

Therefore π1(p) and Ψ−1x �H are isomorphic via [ϕH ] ◦ ΨH . Then, since Ψ−1x �H is
isomorphic to Φ, we have that π1(p) is also isomorphic to Φ.

This shows that the connected coverings of a connected groupoid G are naturally
in bijection with outer embeddings in π1(G) (up to isomorphism), which in turn are
naturally in bijection with the conjugacy classes of subgroups of π1(G).

The Universal Cover of a Groupoid. Let p : G̃ → G be a covering of connected
groupoids. Then p is called a universal cover if for any covering p′ : G̃ ′ → G such
that G̃ ′ is connected, there exists a covering morphism λ : p → p′. Given the 1-1
correspondence between coverings and conjugacy classes of subgroups, it is easy to
see that a covering p : G̃ → G is universal if and only if G̃ is a connected setoid. Thus,
each connected groupoid G has a unique universal cover (up to isomorphism).

2.4.5 Coverings and Group Actions

In this section, we expose the relationship between groups acting on groupoids and
coverings.

3 This says that the functor cov(G) → cov(π1(G)) induced by π1 is essentially surjective. To
summarize, we have shown cov(G)→ cov(π1(G)) is conservative, full, and essentially surjective.
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Groups Acting on Groupoids. Groups act by automorphisms on groupoids. We
say a group G acts freely on a groupoid G if the action of G restricted to G1, or
equivalently to G0, is free.

The Deck Transformation Group. Let p : G̃ → G be a covering. An automor-
phism of p is a covering isomorphism from p to itself. The deck transformation
group of p is the group Aut(p) whose elements are automorphisms of p, and whose
binary operation is the composition of homomorphisms. Notice that Aut(p) ≤ Aut(G̃).
Therefore a covering p : G̃ → G determines a faithful action of Aut(p) on the left of G̃.

Proposition 2.25. Let G and G̃ be connected groupoids, and let p : G̃ → G be a
covering. Then Aut(p) acts freely on G̃.

Proof. We show that Aut(p) acts freely on vertices. Let γ ∈ Aut(p), and suppose
there exists x ∈ G̃0 with γ · x = x. Since p is injective on G̃(x,−), we have γ · g = g
for all g ∈ G̃(x,−). But G̃(x,−) generates G̃, and so γ = 1.

We will see that conversely, if a group G acts freely on a connected groupoid G ′,
then G is naturally the deck transformation group of a covering G ′ → G.

Regular Coverings. A covering p : G̃ → G of connected groupoids is called
regular if its associated conjugacy class of subgroups is a single normal subgroup;
equivalently if π1(p) is a singleton. If p is regular, then we identify π1(p) with the
embedding it contains, and we identify π1(G̃) with its π1(p) image in π1(G).

Proposition 2.26. Let G and G̃ be connected groupoids, and let p : G̃ → G be a
regular covering. Then the action of Aut(p) restricted to the p-preimage of a vertex
or an edge is regular.

Proof. We know that these actions are free by Proposition 2.25. First, we show
that the action is transitive in the case of a vertex. Let x̃, ỹ ∈ G̃ be vertices with
p(x̃) = p(ỹ). We construct a deck transformation γ ∈ Aut(p), with γ · x̃ = ỹ, by
defining γ on a generating set G̃x̃ ∪ {gy : y ∈ G̃0}. Let γ �G̃x̃ : G̃x̃ → G̃ỹ be defined by

γ · g = g−1ỹ ggỹ, and let γ · gy be the unique edge of G̃(ỹ,−) such that p(γ · gy) = p(gy).

Notice that γ is a covering morphism γ : p → p because, for g ∈ G̃x̃, we have
p(γ · g) = p(g−1ỹ ggỹ) = p(g) since p is regular. Then π1(γ) is an outer isomorphism,
and so γ is an automorphism by Corollary 2.22.1.

In the case of an edge, let g, g′ ∈ G̃ be edges with p(g) = p(g′). Then we have just
shown that there exists γ ∈ Aut(p) such that γ · ι(g) = ι(g′). Thus γ · g = g′, since p
is a covering.

Theorem 2.27. Let G and G̃ be connected groupoids, and let p : G̃ → G be a regular
covering. Then there exists a natural outer isomorphism,

Ψ : π1(G)/π1(G̃)→ Aut(p).
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Proof. Pick vertices x ∈ G and x̃ ∈ G̃ such that p(x̃) = x. For g ∈ G(x,−), let
g̃ ∈ G(x̃,−) be the unique edge such that p(g̃) = g. Let ϕ : Gx → Aut(p) be
the surjective homomorphism such that ϕ(g) · x̃ = τ(g̃). This is well defined by
Proposition 2.26. To see that ϕ is a homomorphism, let g, h ∈ Gx, and put k = gh.
Then τ(k̃) = ϕ(g) · τ(h̃) since ϕ(g) · h̃ must be in the p-preimage of h. Thus,

ϕ(gh) · x̃ = ϕ(k) · x̃ = τ(k̃) = ϕ(g) · τ(h̃) = ϕ(g) · ϕ(h) · x̃.

To see that ϕ is surjective, let γ ∈ Aut(p) and pick gγ ∈ G̃(x̃, γ · x̃). Then p(gγ) ∈ Gx,
and ϕ(p(gγ)) = γ.

Let Φ : π1(G)→ Aut(p) be the outer homomorphism Φ = [ϕ] ◦Ψx. We now show
that Φ does not depend on the choice of x and x̃. Suppose that we make a different
choice of vertices y ∈ G and ỹ ∈ G̃ such that p(ỹ) = y. Let ϕ′ : Gy → Aut(p) be the

new homomorphism. Pick g̃′ ∈ G̃(ỹ, x̃) and let g′ = p(g̃′). Let χg′ : Gy → Gx be the
usual isomorphism g 7→ g′−1gg′. Then ϕ′ = ϕ ◦ χg′ , and so,

[ϕ′] ◦Ψy = [ϕ ◦ χg′ ] ◦Ψy = [ϕ] ◦Ψyx ◦Ψy = [ϕ] ◦Ψx.

For g ∈ Gx, we have ϕ(g) = 1 if and only if g̃ is a loop. Therefore the kernel of ϕ is
p(Gx̃) ≤ Gx, and so the kernel of each group homomorphism in Φ is π1(G̃). Let Ψ be
the set of isomorphisms obtained by factoring out the kernels of the homomorphisms
in Φ. Then Ψ is an outer isomorphism Ψ : π1(G)/π1(G̃)→ Aut(p).

We now show that if a group G acts freely on a connected groupoid G, then
there exists a groupoid G ′ and a regular covering G → G ′ of which G is naturally the
automorphism group.

The Quotient by an Action. We associate to the free action of a group G on a
groupoid G the quotient groupoid G\G, which is the groupoid defined as follows;
the set of vertices of G\G is the set of orbits of vertices G\G0 =

{
[x] : x ∈ G0

}
, the

set of edges of G\G is the set of orbits of edges G\G1 =
{

[g] : g ∈ G1
}

, and for the
extremities of edges, we have,

ι([g]) = [ι(g)], τ([g]) = [τ(g)].

The extremities are well defined since for all γ ∈ G and all edges g ∈ G, we have
ι(γ · g) = γ · ι(g) and τ(γ · g) = γ · τ(g). The groupoid structure is as follows:

(1) for identities, let 1[x] = [1x]

(2) for inverses, let [g]−1 = [g−1]

(3) the composition [g][g′] is defined if there exists an edge g′′ ∈ [g′] such that gg′′

is defined, in which case we put,

[g][g′] = [gg′′].

36



Chapter 2. Preliminaries Section 2.4

Notice that the identities and inverses are well defined since for all γ ∈ G, we have
1γ·x = γ · 1x and (γ · g)−1 = γ · g−1. To see that the composition is well defined, first
notice that if there exists an edge g′′ ∈ [g′] such that gg′′ is defined, then,

τ([g]) = [τ(g)] = [ι(g′′)] = ι([g′′]) = ι([g′]).

Conversely, if τ([g]) = ι([g′]), let γ ∈ G be the unique element such that γ ·ι(g′) = τ(g).
Then by putting g′′ = γ · g′, we see that [g][g′] is defined. Finally, if g; g′ is defined
and so is γ · g; γ′ · g′, then γ = γ′ because G acts freely, and so,

[γ · g; γ′ · g′] = [γ · g; g′] = [gg′].

From now on, whenever we write the composition [g][g′] we will assume that g′ has
been chosen such that gg′ is defined, and so [g][g′] = [gg′]. The quotient map
π : G → G\G is the graph morphism such that x 7→ [x] for x ∈ G0, and g 7→ [g] for
g ∈ G1, which clearly preserves extremities.

Theorem 2.28. Let G be a group which acts freely on a groupoid G. Then G\G is
a groupoid and π : G → G\G is a covering of groupoids. Moreover, if G is connected,
then G is naturally isomorphic to Aut(π).

Proof. First, we show that G/G is a groupoid. For the initial vertices we have,

ι([g][g′]) = ι([gg′]) = [ι(gg′)] = [ι(g)] = ι([g])

and for the terminal vertices we have,

τ([g][g′]) = τ([gg′]) = [τ(gg′)] = [τ(g′)] = τ([g′]).

Also,
ι(1[x]) = ι([1x]) = [ι(1x)] = [x]

and,
τ(1[x]) = τ([1x]) = [τ(1x)] = [x].

The fact that composition in G/G is associative follows from the fact that the
composition in G is associative. Also, the edges [1x] clearly act as identities, and for
the inverses have,

[g][g−1] = [gg−1] = [1], [g−1][g] = [g−1g] = [1].

It follows that G/G is a groupoid. The fact that π : G → G\G is a homomorphism
follows directly from the definition of the composition of edges in G\G. To see that
π is a covering, let x ∈ G be a vertex, and let [g] be an edge which issues from [x].
Let γ ∈ G be the element such that γ · ι(g) = x. Then γ · g is an edge which issues
from x with π(γ · g) = [g]. Suppose that g′ is an edge which also issues from x with
π(g′) = [g]. Then there exists γ′ ∈ G with γ′ · g = g′. Then γγ′−1 · x = x, and so
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γ = γ′ since G acts freely on G. Therefore g′ = γ · g. Finally, π is clearly surjective
on vertices. This proves that π is a covering.

We have a natural embedding ϕ : G ↪→ Aut(π). To see that ϕ is surjective in the
case where G is connected, let a ∈ Aut(π), and for any edge g ∈ G, let γ ∈ G such
that γ · g = a · g. Then ϕ(g) = γ by Proposition 2.25.

Finally, we show that given a regular covering p, the quotient map associated to
the action of Aut(p) is p (up to isomorphism):

Proposition 2.29. Let G and G̃ be connected groupoids, let p : G̃ → G be a regular
covering, and let π : G̃ → Aut(p)\G̃ be the quotient map associated to the action
of Aut(p). Then there exists a unique isomorphism ψ : Aut(p)\G̃ → G such that
p = ψ ◦ π.

Proof. Since we want p = ψ ◦ π, we have no choice but to let ψ : Aut(p)\G̃ → G be
the homomorphism whose map on edges is,

[g] 7→ p(g), for g ∈ G̃.

This is well defined since for γ ∈ Aut(p), we have p(γ · g) = p(g). Checking that ψ is
a homomorphism, we have,

[g][g′] = [gg′] 7→ p(gg′) = p(g)p(g′).

The restriction of ψ to edges of Aut(p)\G̃ is a bijection because it has the inverse
g 7→ π(p−1(g)). This inverse is well defined by Proposition 2.26. Thus, ψ is an
isomorphism.
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Chapter 3

Pre-Weyl Graphs

In this chapter we introduce pre-Weyl graphs, which are structures that are ‘almost’
the quotients of buildings. A pre-Weyl graph which is in fact the quotient of a
building will be called a Weyl graph, and will be studied in Chapter 4. Equivalently,
a pre-Weyl graph is a Weyl graph if its universal cover is a building.

It will be convenient to introduce the additional notion of a 2-Weyl graph, which
is a pre-Weyl that satisfies an extra local condition, and yet is not necessarily the
quotient of a building. An equivalent definition is that a 2-Weyl graph is a pre-
Weyl graph whose 2-residues are Weyl graphs. We will see in Chapter 4 that by a
generalization of the famous local-to-global result of Tits in [Tit81], the universal
cover of a 2-Weyl graph is a building if (and only if) its spherical 3-residues are
covered by buildings. Thus, the pathological phenomenon of homotopic geodesics not
having the same length arises locally in bad ≤ 3-residues. The notion of a 2-Weyl
graph generalizes Tits’ ‘chamber systems of type M ’ by allowing the 2-residues to be
quotients of generalized polygons.

We start in Section 3.1 by collecting several definitions and basic notions. For
M a Coxeter matrix, we introduce graphs of type M which are directed multigraphs
whose edges are labeled over the generators of the Coxeter group of type M . Then, a
generalized chamber system of type M is a graph of type M whose adjacent edges of
the same type have a well defined composition. A generalized chamber system can
also be viewed as a family of groupoids indexed by the generators; one recovers Tits’
notion of a chamber system when all these groupoids are simply connected. We define
Weyl data to be a generalized chamber system which is equipped with a collection of
‘suites’ that tell us what (strict) homotopies of galleries are permitted. In Section 3.2,
we define a pre-Weyl graph to be Weyl data which satisfies a thickness condition,
and a property which implies the existence of ‘geodesics’, which is our name for
galleries whose type is a reduced word. We study the property of being a 2-Weyl
graph amongst pre-Weyl graphs. The ‘W -length’ of a geodesic is the element of the
Coxeter group of type M corresponding to the sequence of types of its edges. The
axioms of a pre-Weyl graph are strengthened to those of a Weyl graph by requiring
that homotopic geodesics have the same W -length. In particular, a pre-Weyl graph
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is a 2-Weyl graph if the geodesics which are contained within 2-residues have a well
defined W -length up to homotopy. Finally, in Section 3.3, we develop covering theory
of 2-Weyl graphs, which is closely related to covering theory of groupoids.

3.1 Weyl Data

In this section, which consists mainly of definitions, we introduce Weyl data and some
associated notions. In particular, we describe how the groupoid data of generalized
chamber systems and the ‘suites’ of Weyl data induce homotopies of galleries.

3.1.1 Graphs of Type M

We begin by introducing graphs of type M , where M is a Coxeter matrix. From now
on we denote graphs by ‘W’ for ‘Weyl’, instead of ‘Γ’ as in Chapter 2, and we say
‘chambers’ instead of ‘vertices’.

Definition of Graphs of Type M . Recall from Section 2.1.1 that a graph labeled
over S is a directed multigraph whose edges are equipped with a type function into
S. For M a Coxeter matrix on S, a graph of type M is a graph W = (W0,W1)
labeled over S, with chambers (vertices) W0 and edges W1.

As usual, we denote by W the Coxeter group whose Coxeter matrix is M . The
Cayley graph C(W ) of W is an example of a graph of type M .

W -Length of Galleries. Recall from Section 2.1.1 that a gallery is a path in a
labeled graph which is determined by a sequence of adjacent edges. Let β be a gallery
in a graph of type M . Recall that βS denotes the word over S which is the sequence
of the types of edges of β. The element w(βS) ∈ W for which βS is a decomposition
is called the W -length of β. We denote the W -length of β by βW .

Geodesics. A geodesic γ is a gallery in a graph of type M whose type γS is a
reduced word (with respect to M). In particular, trivial galleries are geodesics. In
the theory of buildings, geodesics are usually called ‘galleries of reduced type’.

Alternating Geodesics. Let s, t ∈ S, s 6= t, and mst < ∞. An (s, t)-geodesic,
or alternating geodesic, is a geodesic whose type is an (s, t)-word; that is a word
of the form,

pm(s, t) = stst . . .︸ ︷︷ ︸
m

for 0 ≤ m ≤ mst.

An maximal (s, t)-geodesic, or maximal alternating geodesic, is a gallery whose
type is the word,

p(s, t) = stst . . .︸ ︷︷ ︸
mst

.

40



Chapter 3. Pre-Weyl Graphs Section 3.1

That is, a maximal alternating geodesic is an alternating geodesic of maximum
length. We denote alternating geodesics with type pm(s, t) by ρm(s, t), and maximal
alternating geodesics with type p(s, t) by ρ(s, t), or sometimes just ρ.

(s, t)-Cycles. Let s, t ∈ S, s 6= t, and mst < ∞. An (s, t)-cycle is a gallery in a
graph of type M which is a cycle, and whose type is the word,

p2mst(s, t) = stst . . .︸ ︷︷ ︸
2mst

.

We denote (s, t)-cycles by θ(s, t), or sometimes just θ.

Remark 3.1. Let us collect some easy facts:

(i) a gallery β is a geodesic if and only if |β| = |βW |

(ii) an (s, t)-geodesic ρm(s, t) will have a different W -length to a (t, s)-geodesic
ρm′(t, s) unless m = m′ = mst, in which case the W -lengths are both equal to
w(p(s, t)) = w(p(t, s))

(iii) an (s, t)-cycle θ(s, t) has length 2mst, and W -length 1.

Restrictions of Graphs of Type M . Let M be a Coxeter matrix on S, and let
W = (W0,W1) be a graph of type M . For J ⊆ S, the J-restriction WJ of W is the
graph of type MJ with chambers W0, and edges,

(WJ)1 =
{
i ∈ W1 : υ(i) ∈ J

}
⊆ W1.

The extremities and type function of WJ are the restrictions to (WJ)1 of the corre-
sponding functions of W . For J = {s}, we write Ws.

3.1.2 Generalized Chamber Systems and Weyl Data

In this section, we introduce generalized chamber systems and Weyl data. Classically,
a chamber system is an indexed family of equivalence relations on a set. Recall
that equivalence relations are equivalent to simply connected groupoids. Generalized
chamber systems generalize chamber systems by moving from equivalence relations to
groupoids. In the following definition, see Section 2.3.1 for our convention regarding
the groupoidization of graphs.

Definition of Generalized Chamber Systems and Weyl Data. A general-
ized chamber system W = (W0,W1,Ws) of type M is a graph W = (W0,W1) of
type M , with additional data,

(1) for each s ∈ S, a groupoidization of Ws, called the panel groupoid of type s.
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If in addition W has data,

(2) for each pair (s, t) ∈ S × S such that s 6= t and mst < ∞, a set W(s, t) of
(s, t)-cycles, called defining (s, t)-suites, or defining suites

then W = (W0,W1,Ws,W(s, t)) is called Weyl data. An s-panel is a connected
component of the panel groupoid of type s. More generally, a panel is an s-panel for
some s ∈ S.

The defining suites can be viewed as analogs of defining relators in combinatorial
group theory. They will tell us what (strict) homotopies of galleries are permitted.

The Panel Groupoids. Recall that the edges of the graph Ws are (in bijec-
tion with) the non-trivial edges of its groupoidization, and the trivial edges of its
groupoidization can be thought of as an extra set of edges, in bijection with the set
of chambers W0.

From now on, we let Ws denote its groupoidization, i.e. Ws denotes the panel
groupoid of type s.

However when we speak of an edge i ∈ Ws, we make the convention that we mean a
non-trivial edge; that is an edge which is also an edge of the graph W .

Chamber Systems. A generalized chamber system of type M is equivalent to a
set of chambers W0 which is equipped with an indexed family of groupoids (Ws)s∈S,
where the set of chambers of each groupoid Ws is W0. If all the indexed groupoids
Ws are setoids, then they can be viewed as equivalence relations ∼s on W0, and we
recover Tits’ notion of a chamber system (see [Tit81]). Thus, we define a chamber
system to be a generalized chamber system such that each panel groupoid is a setoid.

The rank of a generalized chamber system is the cardinality of S. Notice that in
the rank 1 case, and the case where M is universal, generalized chamber systems are
equivalent to Weyl data. A generalized chamber system is called locally finite if
each of its panels is a finite groupoid.

Weyl data W is called simple if every (s, t)-cycle of the underlying graph of W
is a defining suite. Thus, a generalized chamber system canonically induces simple
Weyl data. A generalized chamber system is called thin, weak, or thick if each of
its panels is correspondingly thin, weak, or thick in the sense of Section 2.3.4.

Inverses and Compositions of Edges. Let W be a generalized chamber system.
For an edge i ∈ W, with υ(i) = s, we denote by i−1 the inverse of i in the panel
groupoid Ws. Thus, i−1 has the same set of extremities and type as i, but points in
the opposite direction. We may have i = i−1 if i is a loop. For edges i, i′ ∈ W with
υ(i) = υ(i′) = s and τ(i) = ι(i′), we denote by i; i′ their composition in Ws. Thus,
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as long as i′ 6= i−1, then i; i′ is an edge of W with ι(i; i′) = ι(i), τ(i; i′) = τ(i′), and
υ(i; i′) = s.

For edges i, i′ ∈ W with τ(i) = ι(i′), we let ii′ denote the gallery which is the
concatenation of i with i′.

The Inverse of a Gallery. Let β be a gallery in a generalized chamber system W ,
and let i1, . . . , in be the sequence of edges of β. The inverse β−1 of β is the gallery
in W whose sequence of edges is i−1n , . . . , i−11 .

Backtracks and Detours. A backtrack β is gallery which consists of an edge
followed by its inverse; β = ii−1. A detour is a gallery β which consists of two edges
of the same type which are not mutually inverse; β = ii′, where υ(i) = υ(i′), and
i′ 6= i−1. In particular, if ii′ is a detour, then i; i′ is an edge of W . If a gallery β is of
type ss for some s ∈ S, then β is either a backtrack or a detour.

We now introduce morphisms of generalized chamber systems only. We postpone
the definition of morphisms of Weyl data until we have developed the notion of
homotopy of galleries (see Section 3.1.3).

Morphisms of Generalized Chamber Systems. Let σ : M → M ′ be a mor-
phism of Coxeter matrices, and let W and W ′ be generalized chamber systems of
type M and M ′ respectively. A morphism ω :W →W ′ of a generalized chamber
systems over σ is a labeled graph morphism over σ (in the sense of Section 2.1.1),
which satisfies the following two properties:

(i) for all edges i ∈ W , we have,

ω(i−1) = (ω(i))−1

(ii) for all detours ii′ in W , we have,

ω(i; i′) = ω(i);ω(i′).

Let ω :W →W ′ and ω′ :W ′ →W ′′ be morphisms of generalized chamber systems
over σ and σ′ respectively. The composition ω′ ◦ω of ω with ω′ is their composition
as graph morphisms. It is easy to check that ω′ ◦ ω :W →W ′′ is itself a morphism
of generalized chamber systems over σ′ ◦ σ. If W and W ′ are generalized chamber
systems of the same type M , then we assume that a morphism ω :W →W ′ takes
place over the identity M →M .

Remark 3.2. Since a chamber system is slim as a labeled graph, a morphism of
generalized chamber systems whose target is a chamber system does not need the
auxiliary function ω1 of the edges (see ??). In particular, a morphism of chamber
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systems is just a function on the chambers which preserves s-equivalence ∼s, for all
s ∈ S, and such that equivalent but unequal chambers do not get mapped to the
same chamber.

Remark 3.3. The composition of a backtrack with a morphism is a backtrack, and
the composition of a detour with a morphism is a detour. The first statement follows
from the first property of morphisms. To see the second statement, suppose that the
composition of a detour ii′ with a morphism ω is a backtrack. Then ω(i′) = ω(i)−1.
But ω(i; i′) = ω(i);ω(i′) must be non-trivial, a contradiction.

We say a homomorphism of groupoids ϕ : G → G ′ has a trivial kernel if for each
edge g ∈ G, ϕ(g) = 1 implies that g = 1.

s-Homomorphisms. If we think of a generalized chamber system as an indexed
collection of groupoids (W0, (Ws)s∈S), then a morphism of generalized chamber
systems is equivalently an indexed collection of groupoid morphisms ϕs :Ws →Wσ(s),
s ∈ S, each of which has a trivial kernel and consists of the same function on the
chambers.

To see this, suppose we have a morphism ω : W → W ′ of generalized chamber
systems over σ. Let ωs :Ws →Wσ(s) be the graph morphism whose map on chambers
is ω0, and whose map on edges is the restriction of ω1 to the edges labeled by s, union
the map on trivial edges determined by ω0. Then ωs is a groupoid homomorphism
by the properties ω has as a generalized chamber system morphism. It has a trivial
kernel because non-trivial edges get mapped to non-trivial edges by ω. We call the
groupoid homomorphism ωs the s-homomorphism of ω. Conversely, suppose we
have an indexed collection of groupoid morphisms ϕs :Ws →Wσ(s), s ∈ S, each of
which has a trivial kernel and consists of the same function (ϕs)0 :W0 →W ′0 on the
chambers. Let ω0 = (ϕs)0 for any s ∈ S, and let ω1(i) = ϕυ(i)(i). Then its easy to
check that ω = (ω0, ω1) is a generalized chamber system morphism ω :W →W ′ over
σ.

Notice that the morphisms we have defined are like isometries in that they preserve
the W -length of galleries. One could define a more general kind of morphism, which
would be like so-called metric maps from metric geometry. These would allow non-
trivial edges to be mapped to trivial edges. When making analogies with metric
geometry, one should have the Bruhat order in mind.

3.1.3 Homotopy of Galleries

Throughout this section, we assume that W denotes Weyl data; that is W is a
generalized chamber system equipped with a choice of defining suites. Concerning
our description of gallery homotopy, the analogy one should have in mind is that of
groups presented by generators and relations.
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Elementary Homotopy. Let i ∈ W be any edge. Let j, j′ ∈ W be edges such
that jj′ is a detour in W , and let k = j; j′. Let θ(s, t) be a defining suite of W . Then
a contraction of a gallery in W is any of the following:

(i) delete a backtrack; an alternation from a gallery of the form βii−1β′ to the
gallery ββ′

(ii) take a shortcut; an alternation from a gallery of the form βjj′β′ to the gallery
βkβ′

(iii) delete a defining suite; an alternation from a gallery of the form βθ(s, t)β′ to
the gallery ββ′.

An expansion is an alteration of a gallery which is the inverse of a contraction.
An elementary homotopy is an expansion or a contraction. A 1-elementary ho-
motopy is an elementary homotopy of type (i) or (ii). A 2-elementary homotopy
is an elementary homotopy of type (iii).

Notice that 1-elementary homotopies of type (i) change the type of a gallery by
adding or deleting the subword ss, and 1-elementary homotopies of type (ii) change
the type of a gallery by moving between subwords s and ss. Finally, 2-elementary
homotopies change the type of a gallery by adding or deleting the subword p2mst(s, t).

Remark 3.4. A 1-elementary homotopy of type (i) does not preserve length, but it
does preserve W -length. An 1-elementary homotopy of type (ii) does not preserve
length or W -length. A 1-elementary homotopy of either kind will not preserve the
property of being a minimal gallery or a geodesic. A 2-elementary homotopy does
not preserve length, but it does preserve W -length. A 2-elementary homotopy also
will not preserve the property of being a minimal gallery or a geodesic.

Homotopy. A homotopy is an alteration of a gallery which is a composition of
elementary homotopies. If a gallery β can be altered via a homotopy to give the
gallery β̂, we say β is homotopic to β̂, and write β ∼ β̂. Since the inverse of an
elementary homotopy is an elementary homotopy, ‘∼’ is an equivalence relation on
galleries. We denote by [β] the homotopy equivalence class of the gallery β. We say
a gallery β is null-homotopic if β is homotopic to a trivial gallery, i.e. a gallery of
length 0.

Remark 3.5. Let β be a gallery in Weyl data W. Then the concatenations ββ−1

and β−1β are null-homotopic since these galleries can be altered to give a trivial
gallery via a composition of contractions of type (i).

Remark 3.6. If we have some homotopy altering β to give β̂, then this homotopy
can be applied to any gallery of the form β′ββ′′, to give β′β̂β′′. Thus, if galleries
differ only by homotopic subgalleries, then they are homotopic.

We now introduce a kind of homotopy which preserves both length and W -length.
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Elementary Strict Homotopy. Let ρ(s, t) be a maximal (s, t)-geodesic, and let
ρ(t, s) be a maximal (t, s)-geodesic such that ρ(s, t) ∼ ρ(t, s). Note that ρ(s, t)
being homotopic to ρ(t, s) does not imply that there is a defining suite containing
them, i.e. homotopies between them may be complicated compositions of many
elementary homotopies. An elementary strict homotopy is an alteration from a
gallery of the form βρ(s, t)β′ to the gallery βρ(t, s)β′. It follows from Remark 3.6 that
βρ(s, t)β′ ∼ βρ(t, s)β′. Elementary strict homotopies change the type of a gallery by
an elementary strict homotopy of words.

Strict Homotopy. A strict homotopy is an alteration of a gallery which is a
composition of elementary strict homotopies. If a gallery β can be altered via a strict
homotopy to give the gallery β̂, we say β is strictly homotopic to β̂, and write
β ' β̂. Since the inverse of an elementary strict homotopy is an elementary strict
homotopy, ‘'’ is an equivalence relation on galleries. We denote by [β]' the strict
homotopy equivalence class of the gallery β. One can easily see that if two galleries
are strictly homotopic, then they are homotopic. Strict homotopies change the type
of a gallery by a strict homotopy of words.

Remark 3.7. Strict homotopies preserve both the length and the W -length of a
gallery, and therefore the property of being a minimal gallery or a geodesic. Thus, if
γ is geodesic, then so is every gallery in [γ]'.

The W -Length of [β]'. We define the W -length of a strict homotopy class of
galleries [β]' (but usually geodesics) to be βW . That is, the W -length of [β]' is the
W -length of the galleries which it contains.

The γ-Gallery Map Fγ. Let γ be a geodesic in W. The γ-gallery map Fγ is
the function whose domain is [γ]', and which sends a gallery to its type. Thus,

Fγ : [γ]' →M(S), γ̂ 7→ γ̂S.

By Remark 3.7, each γ̂ ∈ [γ]' is a geodesic, and so the image of Fγ is a subset of the
words which are reduced decompositions of γW .

Suites. An (s, t)-suite, or suite, is an (s, t)-cycle which is null-homotopic. Since
a 2-elementary homotopy can be applied to a defining suite to produce a trivial
gallery, we see that defining suites are suites. An (s, t)-cycle θ(s, t) can be presented
as the concatenation of a maximal (s, t)-geodesic ρ(s, t) with the inverse of a maximal
(t, s)-geodesic ρ(t, s) thus,

θ(s, t) = ρ(s, t)ρ(t, s)−1.
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The geodesics ρ(s, t) and ρ(t, s) are uniquely determined. Notice that if mst is even,
then ρ(t, s)−1 is a maximal (s, t)-geodesic, and if mst is odd, then ρ(t, s)−1 is a maximal
(t, s)-geodesic. We now show that an elementary strict homotopy always take place
‘within’ a suite, and conversely, suites give rise to elementary strict homotopies.

Proposition 3.1. Let θ(s, t) be an (s, t)-cycle in Weyl data W. Let θ(s, t) =
ρ(s, t)ρ(t, s)−1 be the presentation of θ(s, t) as a concatenation of maximal alternating
geodesics. Then θ(s, t) W if and only if ρ(s, t) ∼ ρ(t, s).

Proof. We have,

θ(s, t) is a suite

⇐⇒ ρ(s, t)ρ(t, s)−1 is null-homotopic

⇐⇒ ρ(s, t)ρ(t, s)−1ρ(t, s) ∼ ρ(t, s)

⇐⇒ ρ(s, t) ∼ ρ(t, s)

Let θ be a cycle in W, and let i1, . . . , in be its sequence of edges. A cyclic
permutation of θ is a cycle whose sequence of edges is a cyclic permutation
im, . . . , in, i1, . . . , im−1 of the sequence of edges of θ.

Proposition 3.2. Let θ be a cycle in Weyl data W . If θ is a suite of W , then so is
θ−1, and so is any cyclic permutation of θ.

Proof. Since θ is null-homotopic, we have θ ∼ θθ−1 by Remark 3.5, and so θ−1θ ∼
θ−1θθ−1. Thus, θ−1θθ−1 is null-homotopic, and so θ−1 must also be null-homotopic.

Let θ = i1, . . . , in, let θ′ = im, . . . , in, i1, . . . , im−1 be a cyclic permutation of θ,
and let β = i1, . . . , im−1. Then θ′ ∼ β−1θβ. But θ is null-homotopic by hypothesis.
Therefore θ′ ∼ β−1β, and so θ′ is null-homotopic.

3.1.4 Morphisms of Weyl Data

We are now able to define morphisms of Weyl data. Roughly speaking, a morphism
of Weyl data is a morphism of the underlying generalized chamber systems which
additionally sends defining suites to suites:

Morphisms of Weyl Data. Let σ : M →M ′ be a morphism of Coxeter matrices,
and let W and W ′ be Weyl data of type M and M ′ respectively. A morphism
ω :W →W ′ of Weyl data over σ is a morphism of the underlying generalized chamber
systems over σ (see Section 3.1.2), which additionally satisfies the following property

(iii) for each pair (s, t) ∈ S × S with s 6= t and mst < ∞, and each defining suite
θ(s, t) ∈ W(s, t), we have,

ω ◦ θ(s, t) is a suite of W ′.
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As with generalized chamber system morphisms, if W and W ′ are Weyl data of type
M , then we assume that a morphism ω : W → W ′ takes place over the identity
M →M .

We need to establish a result before we mention the composition of morphisms of
Weyl data. First, we show that morphisms of Weyl data preserve homotopies:

Lemma 3.3. Let ω :W →W ′ be a morphism of Weyl data. If β and β̂ are homotopic
galleries in W , then ω ◦ β and ω ◦ β̂ are homotopic galleries in W ′.

Proof. Suppose that β ∼ β̂ via an elementary homotopy. If it is a 1-elementary
homotopy, then ω ◦ β ∼ ω ◦ β̂ by Remark 3.3. If it is a 2-elementary homotopy, then
ω ◦ β ∼ ω ◦ β̂ by the fact that morphisms send defining suites to suites. The result
then follows, since a homotopy is a composition of elementary homotopies.

By definition, morphisms send defining suites to suites, however Lemma 3.3 shows
that morphisms also send suites to suites:

Corollary 3.3.1. Let ω :W →W ′ be a morphism of Weyl data and let θ be a suite
of W , then ω ◦ θ is a suite of W ′.

Proof. If θ is a suite, then θ ∼ β0, where β0 is a trivial gallery. Then, by Lemma 3.3,
ω ◦ θ ∼ ω ◦ β0. But ω ◦ β0 is also a trivial gallery. Thus, ω ◦ θ is null-homotopic, and
therefore is a suite.

The composition of morphisms of Weyl data is just their composition as mor-
phisms of generalized chamber systems. By Corollary 3.3.1, this composition is again
a morphism of Weyl data.

Isomorphisms of Weyl Data. Let W and W ′ be Weyl data of type M . An
isomorphism ω :W →W ′ is a morphism which has an inverse. An automorphism
of Weyl data W is an isomorphism from W to itself. We denote by Aut(W) the
group whose elements are automorphisms of W, and whose binary operation is the
composition of morphisms.

We have the following characterization of isomorphisms:

Proposition 3.4. LetW andW ′ be Weyl data of type M . A morphism ω :W →W ′
is an isomorphism if and only if ω is bijective on chambers and edges, and for all
galleries β in W such that ω ◦ β is a defining suite of W ′, we have that β is a suite of
W .

Proof. Suppose that ω :W →W ′ is an isomorphism, and let ω−1 be the inverse of ω.
Then ω0 and ω1 must be bijective since they have inverses ω−10 and ω−11 respectively
as functions of sets. Let β be a gallery in W such that ω ◦ β is a defining suite of W ′.
But as a morphism, ω−1 sends defining suites to suites, and so ω−1 ◦ ω ◦ β = β must
be a suite.
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Now suppose that ω :W →W ′ is a morphism, ω0 and ω1 are bijective, and for
all galleries β in W such that ω ◦ β is a defining suite of W ′, we have that β is a
suite of W . Let ω−1 = (ω−10 , ω−11 ). This is clearly a morphism of generalized chamber
systems. Moreover, ω−1 is a morphism of Weyl data by the hypothesis on ω, and so
is an inverse for ω.

3.1.5 Restrictions, the Defining Graph, and Residues

In this section, we define various notions of ‘subdata’ of Weyl data, and introduce
a way of encoding Weyl data in a labeled simplicial graph. We fix the following
notation; M is a Coxeter matrix on S, and W is Weyl data of type M .

Full Subdata. Let C be a subset of the chambers of W . The full subdata WC of
W on C is the Weyl data with chambers C, and edges,

(WC)1 =
{
i ∈ W1 : ei ∩ C = ei

}
⊆ W1.

The extremities and type function of WC are the restrictions to (WC)1 of the corre-
sponding functions of W. The panel groupoids are the obvious restrictions of the
panel groupoids of W, and the defining suites are the defining suites of W whose
images are contained in WX . This gives WC the structure of Weyl data of type M .

J-Restrictions. Let J ⊆ S. The J-restriction WJ of W is the Weyl data of type
MJ whose underlying graph of type MJ is the J-restriction of W (in the sense of
Section 3.1.1), whose panel groupoid of type s, for s ∈ J , is the panel groupoid of
type s of W, and whose set of defining (s, t)-suites, for (s, t) ∈ J × J , is the set of
defining (s, t)-suites W(s, t) of W .

For J ⊆ J ′ ⊆ S, there is a natural embedding εJJ ′ :WJ ↪→WJ ′ over the inclusion
J ↪→ J ′, called the internal embedding from J to J ′. We denote εJS by εJ .

In the same way that the data which defines a Coxeter group can be encoded in
an edge labeled simplicial graph, Weyl data can be encoded in a vertex and edge
labeled simplicial graph, whose flags (adjacent vertex-edges pairs) are associated to
embeddings of rank 1 Weyl data into rank 2 Weyl data.

The Defining Graph of Weyl Data. Let W be Weyl data of type W . Let L be
the defining graph of W . The defining graph L of W is the graph L whose vertex
s ∈ S is labeled by Ws, and whose edge J = {s, t} ∈ E(L) is labeled by WJ . Each
ordered pair, or flag, (s, J) ∈ V (L) × E(L) such that s ∈ J , is equipped with the
embedding εsJ :Ws ↪→WJ . The defining graph of W essentially reconstructs W as
an amalgam of rank 2 Weyl data along the panel groupoids of W .

49



Chapter 3. Pre-Weyl Graphs Section 3.1

Gluing Data. Data which encodes the embeddings along flags is called gluing
data. Examples of gluing data include the four diagrams in [Ron89, p. 48], which
determine the quotients of the four chamber-regular lattices of type Ã2 and order 2,
and the ‘based difference matrices’ in [Ess13], which determine the quotients of the
so-called Singer lattices of type Ã2. See Chapter 5 for an explicit description of the
Weyl data associated to the lattices of Essert.

J-Residues. Let C ∈ W be a chamber. The J-residueRJ(C) at C is the connected
component of WJ which contains C. Formally, RJ(C) is the full subdata of WJ on
the subset of W0 containing those vertices which are connected by galleries in WJ to
C. Thus, RJ(C) is connected Weyl data of type MJ . For J = {s}, we write Rs(C).
If |J | = n, then we call RJ(C) an n-residue. The 1-resides are the panels, and the
0-residues are the chambers. A J-residue is called spherical if J is a spherical subset.

Lemma 3.5. Let W be Weyl data and let R be a residue of W. Let g ∈ Aut(W)
be an automorphism of W. If there exists a chamber C ∈ R with g · C ∈ R, then
g ·R = R.

Proof. Let J be the type of R. The automorphism g is an automorphism of WJ ,
preserving the connectivity of J-residues. Therefore g ·R is contained in R. But g ·R
must be a J-residue of W , and therefore g ·R = R.

Remark 3.8. Groups act by automorphisms on Weyl data. By Lemma 3.5, the
action of a group G on Weyl data W induces an action of G on the set of J-residues
of W, for each J ⊆ S. The action on ∅-residues is the restriction of the action
to chambers, and the action on S-residues is the action induced on the connected
components of W .

Local Properties. If p is a property of rank n Weyl data, we say Weyl data W is
n-p if each n-residue of W has the property p. Let G be a group which acts on Weyl
data W. If p is a property of G-sets, we say this action is n-p if the action induced
on n-residues has the property p. In particular, we have the notion of n-free actions.
A 0-free action is just an action which is free on chambers. An n-free action is m-free
for all m < n.

3.1.6 The Fundamental Groupoid of Weyl Data

Roughly speaking, the fundamental groupoid of Weyl data W is the groupoid that’s
generated by the panel groupoids (Ws)s∈S, subject to the defining suitesW(s, t) being
treated as relators.
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Definition of the Fundamental Groupoid. The fundamental groupoid of
Weyl data W , denoted W , is the groupoid whose set of vertices is the set of chambers
of W , and whose set of edges is,

W1 =
{

[β] : β is a gallery in W
}
.

Recall that [β] denotes the set of galleries which are homotopic to β. The extremities
of edges are,

ι([β]) = ι(β), τ([β]) = τ(β).

Let id : W0 → W1 be the map which sends a chamber C ∈ W to the class of
the trivial gallery at C, let inv : W1 → W1 be the map [β] 7→ [β−1], and let the
composition be,

[β][β′] = [ββ′]. (♥)

First, we need to check that these functions are well defined:

Proposition 3.6. Let W be Weyl data. The extremities, inverses and composition
of W are well defined.

Proof. For the extremities, just notice that an elementary homotopy of a gallery
preserve its extremities. For the inverses, suppose that β ∼ β̂ via an elementary
homotopy, then we need to show that β−1 ∼ β̂−1. In the case of a 1-elementary
homotopy of type (i), just notice that the inverse of a backtrack is a backtrack. In
the case of a 1-elementary homotopy of type (ii), notice that if jj′ is a detour with
k = j; j′, then j′−1j−1 is a detour with k−1 = j′−1; j−1. The case of a 2-elementary
homotopy follows from Proposition 3.2. For the composition, if β ∼ β̂, then ββ′ ∼ β̂β′

by Remark 3.6. Similarly, if β ∼ β̂, then β′β ∼ β′β̂.

We now show that W is indeed a groupoid:

Proposition 3.7. Let W be Weyl data. Then the fundamental groupoid W of W is
a groupoid.

Proof. The properties (i) and (ii) of groupoids are clearly satisfied, property (iii)
follows from the associativity of the concatenation of galleries, property (iv) follows
from the fact that the concatenation of a gallery β with a trivial gallery is β, and for
property (v), we have that [β][β]−1 is trivial by Remark 3.5.

Notice that W is connected if and only if W is connected. Weyl data W is called
simply connected if W is a setoid. We will tend to denote connected and simply
connected Weyl data by ∆. The fundamental group π1(W) of connected Weyl data
W is the fundamental group of W . Thus, connected Weyl data is simply connected
if and only if its fundamental group is trivial.
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The Homomorphism Induced by a Morphism of Weyl Data. Given a mor-
phism of Weyl data ω : W → W ′, let ω̄ denote the following homomorphism of
groupoids,

ω̄ :W →W ′, [β] 7→ [ω ◦ β].

This is well defined because homotopies descend (see Lemma 3.3). To see that ω̄ is a
groupoid homomorphism, we have,

[β][β′] = [ββ′] 7→ [ω ◦ ββ′] = [ω ◦ β][ω ◦ β′].

We call ω̄ the groupoid homomorphism induced by ω. The map ω 7→ ω̄ is functorial;
for morphisms ω : W → W ′ and ω′ : W ′ → W ′′, putting ω′′ = ω′ ◦ ω, we have
ω̄′′ = ω̄′ ◦ ω̄. This follows directly from the fact that (ω′ ◦ ω) ◦ β = ω′ ◦ (ω ◦ β).

The J-Groupoids. We call the fundamental groupoidWJ ofWJ the J-groupoid
of W. For J ⊆ J ′ ⊆ S, we have a homomorphism εJJ ′ : WJ → WJ ′ , called the
internal homomorphism from J to J ′. Later on, we will see that εJJ ′ is an
embedding of groupoids when W is the quotient of a building.

3.1.7 The Weyl Data of Coxeter Groups

Coxeter groups and their Cayley graphs are prototypical examples of Weyl data. As
usual, let W be the Coxeter group associated to the Coxeter matrix M on S. The
1-residues of the Cayley graph C(W ) consist of pairs of edges pointing in opposite
directions. We give these the structure of the groupoid 1×2. Then the defining suites
of C(W ) are all the possible ones. In particular, Cayley graphs are simply connected
as Weyl data. Let us denote C(I2(m)) by Cm, where I2(m) is the dihedral group of
order 2m.

A Coxeter group W is naturally Weyl data W(W ) as follows. Take a single
chamber and let the type function be a bijection between the edges of W(W ) and S.
The panel groupoids are all Z2×1. Again, the defining suites are all the possible ones.
It is easy to see that the fundamental group of W(W ) is isomorphic to W . Covering
theory of Weyl graphs (see Section 3.3) will formalize and generalize the notion that
C(W ) is the universal cover of W(W ), and that W(W ) is the quotient of the action
of W on C(W ). See Figure 3.1, which shows C(W ) and W(W ) for W = Ã2.

3.2 Pre-Weyl Graphs and 2-Weyl Graphs

In this section, we introduce pre-Weyl and 2-Weyl graphs, and collect some of their
basic properties. We will see that 2-Weyl graphs are exactly the quotients of chamber
systems of type M , introduced in [Tit81], by chamber-free actions. Chamber systems
of type M are also known as ‘pre-buildings’ in [TW02], and ‘SCABs’ in [Kan86].
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Figure 3.1: 13 chambers of C(Ã2), and W(Ã2)

3.2.1 Definition of Pre-Weyl Graphs and 2-Weyl Graphs

See Section 3.1.2 for an introduction to Weyl data. We only briefly restate the
definition here. Recall that by a ‘geodesic’, we just mean a gallery of reduced type.

Definition 3.1. Let M be a Coxeter matrix on S. A pre-Weyl graph W of type
M is Weyl data W = (W0,W1,Ws,W(s, t)) of type M , that is:

(1) a directed multigraph W = (W0,W1) whose edges are labeled by S

(2) for each s ∈ S, a groupoid Ws whose non-trivial edges are of those W
which are labeled by s

(3) for each (s, t) ∈ S×S such that s 6= t and mst <∞, a setW(s, t) of cycles
in W of type p2mst(s, t), called defining suites

which satisfies the following two properties:

(PW0) no panel is isomorphic to the trivial groupoid 1× 1

(PW1) each maximal (s, t)-geodesic is homotopic to a maximal (t, s)-geodesic.

If, in addition, W satisfies the following property,

(2W) homotopic alternating geodesics have the same W -length

then W is called a 2-Weyl graph, or we say that W is 2-Weyl.

Notice that property (PW0) just says that the underlying generalized chamber
system ofW is weak. Property (PW1) implies that given a gallery β and an elementary
strict homotopy of words βS 7→ f , we can always find a gallery β̂ such that β̂S = f
and β̂ ∼ β.

These axioms should be compared with those in [Tit81, Section 3.2] (the axiom
playing the role of (2W) is denoted (CSM2) by Tits). A morphism, isomorphism,
or automorphism of pre-Weyl or 2-Weyl graphs is a morphism, isomorphism, or
automorphism, respectively, of the underlying Weyl data (see Section 3.1.3).

53



Chapter 3. Pre-Weyl Graphs Section 3.2

The Panel Groupoids as Subgroupoids of W. A gallery whose type is a one
letter word is an alternating geodesic. Therefore property (2W) implies that a gallery
consisting of a single edge cannot be null homotopic. Thus

εs :Ws →W , i 7→ [i]

is injective for each s ∈ S. In the setting of 2-Weyl graphs, this allows us to make
the convention of identifying Ws with the subgroupoid εs(Ws) ≤ W . In other words,
we think of the edges of a 2-Weyl graph W as also being edges of its fundamental
groupoid W .

3.2.2 First Properties of Pre-Weyl Graphs

In this section, we collect some basic properties of pre-Weyl graphs. We now begin to
make use of properties (MT1) and (MT2), the deletion condition, and the exchange
condition of Coxeter groups; these are proven in the language of pre-Weyl graphs in
Appendix A.

Proposition 3.8. LetW be Weyl data. Property (PW0) is equivalent to the property
that for any chamber C ∈ W , and any word f over S, there exists a gallery β in W
with ι(β) = C and βS = f .

Proof. By (PW0), connected components of panel groupoids cannot be the trivial
groupoid 1 × 1. Thus, for each s ∈ S and every chamber C ∈ W, there exists an
edge i with ι(i) = C and υ(i) = s. The required gallery β can then be formed by
concatenating edges. The converse is clear.

Of course, β will rarely be unique for fixed choices of C and f . The lack of
uniqueness is caused by thick panels. Thus, β will be unique in thin pre-Weyl graphs.

Proposition 3.9. LetW be Weyl data. Property (PW1) is equivalent to the property
that for all geodesics γ in W , the γ-gallery map Fγ is surjective into the words which
are reduced decompositions of γW .

Proof. By (MT2), every reduced decomposition of γW is strictly homotopic to γS.
By definition, this strict homotopy of words is a composition of elementary strict
homotopies, which can be done at the gallery level by (PW1). The converse is
clear.

Proposition 3.10. Let W be a pre-Weyl graph. Then every gallery β of W is
homotopic to a geodesic. Moreover, this homotopy can be chosen to be a composition
of 1-elementary contractions, and strict homotopies.

Proof. If βS is reduced, we are done. If not, then by (MT1), βS is strictly homotopic to
a word which repeats a letter. Therefore, by property (PW1), β is strictly homotopic
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γ

γ̂

Figure 3.2: A pre-Weyl graph of type A2

to a gallery β′ which contains either a backtrack or a detour. Then, β′ is homotopic
via a 1-elementary contraction to a shorter gallery. We can keep carrying out this
process of applying strict homotopies and then 1-elementary contractions until we
obtain a geodesic, which will be homotopic to β.

It follows that ifW is a pre-Weyl graph, then the edges of its fundamental groupoid
are homotopy classes of geodesics :

W1 =
{

[β] : β is a gallery in W
}

=
{

[γ] : γ is a geodesic in W
}
.

Corollary 3.10.1. Let W be a pre-Weyl graph. Then the galleries consisting of a
minimal number of edges between two fixed chambers of W are geodesics.

Proof. Let β be a minimal gallery. If βS is not reduced, then we can obtain a gallery
from β via a strict homotopy and a 1-elementary contraction which is homotopic to
β, and yet is shorter than β. This contradicts the minimality of β.

In buildings the converse holds; minimal galleries and geodesics coincide.

Example 3.1. Let W be the simple pre-Weyl graph of type A2 = 〈s, t〉 shown in
Figure 3.2, with s corresponding to the lighter gray, and t to the darker gray. Recall
that simple just means that all suites are null homotopic. The panel groupoids are
all setoids, with each edge in Figure 3.2 representing two mutually inverse edges
of a groupoid. Notice that the geodesic γ is homotopic to the geodesic γ̂. They
are homotopic via a composition of two elementary homotopies and two elementary
strict homotopies. They are; an expansion of type (ii), with type change sts 7→ stss,
two elementary strict homotopies with type changes stss 7→ tsts 7→ stss, and a
contraction of the type (i) with type change stss 7→ st. Therefore W does not satisfy
property (2W).

3.2.3 The 2-Weyl Properties

Let us introduce three more properties which arbitrary Weyl data may satisfy. These
properties, together with (2W), are the rank 2 cases of what we will call the ‘Weyl
properties’ (see Section 4.1.1):
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(2C) homotopic alternating geodesics are strictly homotopic.

(2SH) strictly homotopic alternating geodesics of the same type are equal.

(2H) homotopic alternating geodesics of the same type are equal.

Remark 3.9. Notice that alternating geodesics which are not maximal alternating
geodesics are only strictly homotopic to themselves, since their type does not contain a
subword of the form p(s, t). Thus, (2SH) is equivalent to the property that homotopic
maximal alternating geodesics of the same type are equal. Also, notice that (2SH) is
equivalent to the property that Fγ is injective for all alternating geodesics γ.

We now show that for pre-Weyl graphs W , we have the following,

(2C) ⇐⇒ (2W) =⇒ (2H) ⇐⇒ (2SH).

We begin with a simple observation:

Lemma 3.11. Let W be a pre-Weyl graph. If two homotopic maximal alternating
geodesics of W have the same type, then they are strictly homotopic.

Proof. Let ρ(s, t) and ρ′(s, t) be two homotopic maximal (s, t)-geodesics of W. By
(PW1), ρ(s, t) is homotopic to a maximal (t, s)-geodesic ρ(t, s). Then ρ′(s, t) ∼
ρ(s, t) ' ρ(t, s), thus, ρ′(s, t) ' ρ(t, s). Then ρ(s, t) ' ρ(t, s) ' ρ′(s, t), and so,
ρ(s, t) ' ρ′(s, t).

We now prove (2H) ⇐⇒ (2SH):

Proposition 3.12. Let W be a pre-Weyl graph. Then the following are equivalent,

(i) W has property (2SH)

(ii) W has property (2H)

(iii) each maximal (s, t)-geodesic is homotopic to at most one maximal (t, s)-geodesic.

Proof. We have (2SH) =⇒ (2H) since two unequal homotopic alternating geodesics
of the same type can be extended by property (PW0) to give two unequal homotopic
maximal alternating geodesics of the same type, which will be strictly homotopic by
Lemma 3.11. The converse (2H) =⇒ (2SH) is clear.

To see (2SH) =⇒ (iii), let ρ(s, t) be a maximal (s, t)-geodesic which is homotopic to
maximal (t, s)-geodesics ρ and ρ′. Then ρ and ρ′ are strictly homotopic by Lemma 3.11,
and so ρ = ρ′ by (2SH). For the converse (iii) =⇒ (2SH), suppose that W does not
have property (2SH). Then two unequal maximal (t, s)-geodesics ρ and ρ′ are strictly
homotopic. By (PW1), ρ is homotopic to a maximal (s, t)-geodesic ρ(s, t), which by
transitivity will also be homotopic to ρ′. Thus, W does not have property (iii).
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We now prove (2W) =⇒ (2H):

Proposition 3.13. Let W be a 2-Weyl graph. Then W has property (2H).

Proof. Let ρ and ρ′ be homotopic alternating geodesics in W with the same type.
Let i be the last edge of ρ, and let i′ be the last edge of ρ′. Towards a contradiction,
suppose that i 6= i′. Let j = i′i−1. Let α and α′ be the subgalleries such that
αi = ρ and α′i′ = ρ′. Then α and α′j are homotopic alternating geodesics with
different W -lengths, a contradiction. Thus, i = i′. Then α and α′ are also homotopic
alternating geodesics, and so can apply the same argument to the penultimate edges
of ρ and ρ′. Therefore, by induction, we may conclude that ρ = ρ′.

Remark 3.10. In particular, 2-Weyl graphs have property (iii) of Proposition 3.12.
In the presence of (PW1), property (iii) implies that each maximal (s, t)-geodesic is
homotopic to exactly one maximal (t, s)-geodesic. In light of Proposition 3.1, this just
says that every maximal alternating geodesic is contained within exactly one suite.
Therefore in 2-Weyl graphs, elementary strict homotopies of words induce unique
elementary strict homotopies of galleries.

Finally, we prove (2C) ⇐⇒ (2W):

Proposition 3.14. Let W be a pre-Weyl graph. Then the following are equivalent,

(i) W is 2-Weyl

(ii) W has property (2C).

Proof. First we show that (2W) =⇒ (2C). If (2W) holds, then distinct homotopic
alternating geodesics must either be maximal with different types, or have the same
type. If they have the same type, then this implies the existence of a null homotopic
cycle of length < 2mst. Such cycles are ruled out by (2W) since they can be cut in two
to give distinct homotopic alternating geodesics with different W -lengths. Therefore
in the presence of (2W), distinct homotopic alternating geodesics must be maximal
and with different types, which means they are strictly homotopic. Thus, (2C) holds.
The converse (2C) =⇒ (2W) is clear.

3.3 Covering Theory of 2-Weyl Graphs

In this section, we develop covering theory of 2-Weyl graphs. In particular, we show
that one can model coverings of 2-Weyl graphs with coverings of groupoids. We
show that the (isomorphism classes of) coverings of a connected 2-Weyl graph W are
naturally in bijection with the conjugacy classes of subgroups of the fundamental
group of W .
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3.3.1 Coverings of Weyl Data

We begin by defining étale morphisms and coverings of Weyl data. All such morphisms
will take place over the identity morphism of types M →M , which is just the identity
function on S.

Let W be Weyl data, and let C ∈ W be a chamber. We denote by W(C,−) the

set of edges i ∈ W such that ι(i) = C. Let ω : W̃ → W be a morphism of Weyl data,
then we denote by ω �W̃(C,−) the restriction,

ω : W̃(C,−)→W(ω(C),−).

Definition of Étale Morphisms. A morphism ω : W̃ → W of generalized cham-
ber systems of type M is called surjective-étale if for each chamber C ∈ W̃,
the restriction ω �W̃(C,−) of ω to W̃(C,−) is a bijection into W(ω(C),−). If ω is
additionally surjective on chambers, then ω is called étale.

Given a morphism of generalized chamber systems ω : W̃ → W of type M , recall
that ωs : W̃s → Ws denotes the induced s-homomorphism (see Section 3.1.2). It
follows directly from the definitions that ω is étale if and only if ωs is a covering of
groupoids for each s ∈ S.

Let ω :W ′ →W be a morphism of generalized chamber systems. We say a gallery
β in W lifts with respect to ω to the gallery β′ if β = ω ◦ β′.

Proposition 3.15. Let ω : W̃ → W be a surjective-étale morphism of generalized
chamber systems. Then for each chamber C̃ ∈ W̃ , every gallery β in W which issues
from ω(C̃) has a unique lifting with respect to ω to a gallery β̃ which issues from C̃.

Proof. Let C = ω(C̃). First we prove existence. Let i1, . . . , in be the sequence of

edges of β. For k ∈ {1, . . . , n}, let ĩk ∈ W̃ be an edge with ω(̃ik) = ik, ι(̃i1) = C,
and τ (̃ik) = ι(̃ik+1). Notice that such ĩk exist by the fact that β is surjective-étale.
Then, letting β̃ be the gallery whose sequence of edges is ĩ1, . . . , ĩn, we have β = ω ◦ β̃
as required. For uniqueness, let β̃ = ĩ1, . . . , ĩn and β̃′ = ĩ′1, . . . , ĩ

′
n be galleries in W̃

issuing from C̃, with ω ◦ β̃ = ω ◦ β̃′ = β. In particular ω(̃i1) = ω(̃i′1), with ĩ1 and ĩ′1
issuing from the same chamber C̃. Thus, ĩ1 = ĩ′1 since ω is surjective-étale. The same
argument shows that ĩ2 = ĩ′2, and so on along the sequences of edges. We conclude
that ĩ1 . . . ĩn = ĩ′1 . . . ĩ

′
n.

Proposition 3.16. Let ω : W̃ → W be a surjective-étale morphism of generalized
chamber systems. If W is connected, then ω is étale.

Proof. Suppose that W is connected. To see that ω is surjective on chambers, let
C ∈ W be any chamber. Pick a chamber D ∈ W̃ , and let β be a gallery in W which
goes from ω(D) to C. Lift β to a gallery β̃ of W̃ which issues from D. Then we have
ω(τ(β̃)) = C.
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Definition of Coverings. A pre-covering p : W̃ → W from a generalized cham-
ber system W̃ to Weyl data W is an étale morphism such that for all galleries β in
W̃, if p ◦ β is a defining suite of W, then β is a cycle. A covering p : W̃ → W of
Weyl data is an étale morphism such that for all galleries β in W̃ , if p ◦β is a defining
suite of W, then β is a suite of W̃. A covering p : W̃ → W is called connected if
W̃ is connected.

Completions of Generalized Chamber Systems. Let W̃ be a generalized cham-
ber system, let W be Weyl data, and let p : W̃ → W be a pre-covering. The
completion of W̃ with respect to p is the Weyl data whose underlying generalized
chamber system is W̃, and whose suites are defined as follows; for any gallery β of
W̃ , if β descends to a defining suite of W , then let β be a defining suite of W̃ . With
W̃ redefined to be its completion, then p : W̃ → W is a covering of Weyl data.

We now show that homotopies lift with respect to coverings:

Lemma 3.17. Let p : W̃ → W be a covering of Weyl data. Let β and β′ be galleries
in W with β ∼ β′. Let C = ι(β) = ι(β′), and pick any C̃ ∈ W̃ such that p(C̃) = C.
Let β̃ and β̃′ be the unique lifts of β and β′, respectively, issuing from C̃. Then
β̃ ∼ β̃′.

Proof. By hypothesis, there exists a sequence of galleries,

β = β1, . . . , βn = β′

such that consecutive galleries differ only by an elementary homotopy. Let,

β̃ = β̃1, . . . , β̃n = β̃′

be the sequence of galleries obtained by lifting each βm, for m ∈ {1, . . . , n}, to a gallery
issuing from C̃. Suppose that βm and βm+1 differ by a 1-elementary homotopy of type
(i). Since p is étale, for edges i, i′ ∈ W̃ with υ(i) = υ(i′), if p(i; i′) = p(i); p(i′) = 1
then i; i′ = 1. Thus, backtracks lift to backtracks, and so β̃m ∼ β̃m+1. Suppose
that βm and βm+1 differ by a 1-elementary homotopy of type (ii). But for edges

j, j′, k ∈ W̃ with υ(j) = υ(j′) = υ(k), if p(j); p(j′) = p(k) then j; j′ = k by the fact
that p is étale. Thus, detours lift to detours, and so β̃m ∼ β̃m+1. If βm and βm+1

differ by a 2-elementary homotopy, then β̃m ∼ β̃m+1 by the fact that p lifts defining
suites to suites. Therefore, by transitivity, we have β̃ ∼ β̃′.

By definition, coverings lift defining suites to suites, however Lemma 3.17 shows
that coverings also lift suites to suites:

Corollary 3.17.1. Let p : W̃ → W be a covering of Weyl data. Then for all galleries
β in W̃ , if p ◦ β is a suite of W , then β is a suite of W̃ .
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Proof. We have p ◦ β ∼ β0, where β0 is a trivial gallery. Then, by Lemma 3.17, β is
homotopic to the lifting of β0, which is trivial. Thus, β is null-homotopic.

We have the following characterization of isomorphisms amongst coverings:

Proposition 3.18. Let p : W̃ → W be a covering of Weyl data. Then p is an
isomorphism if and only if p is injective on chambers.

Proof. One can easily see that if p is an isomorphism then p is injective on chambers.
Conversely, suppose that p is injective on chambers. By Proposition 3.4, it suffices to
show that p is bijective on chambers and edges. This follows from that fact that each
ps is an isomorphism by Proposition 2.18.

We now show that coverings preserve and reflect the property of being 2-Weyl
amongst Weyl data.

Lemma 3.19. Let p : W̃ → W be an étale morphism of Weyl data. Then W̃ has
property (PW0) if and only if W has property (PW0).

Proof. This follows from the fact that each s-homomorphism ps : W̃s → Ws is a
covering of groupoids.

Lemma 3.20. Let p : W̃ → W be an étale morphism of Weyl data. If W̃ has
property (PW1), then W has property (PW1).

Proof. Let ρ be a maximal (s, t)-geodesic of W . Lift ρ to a maximal (s, t)-geodesic ρ̃

of W̃. Let ρ̃′ be a maximal (t, s)-geodesic which is homotopic to ρ̃. Then p ◦ ρ̃′ is a
maximal (t, s)-geodesic which is homotopic to ρ.

Lemma 3.21. Let p : W̃ → W be a covering of Weyl data. If W has property
(PW1), then W̃ has property (PW1).

Proof. Let ρ̃ be a maximal (s, t)-geodesic of W̃ . Let ρ = p◦ ρ̃, and let ρ′ be a maximal
(t, s)-geodesic which is homotopic to ρ. Lift ρ′ to the gallery ρ̃′ which issues from the
same chamber as ρ̃. Then, since homotopies lift with respect to coverings, ρ̃ and ρ̃′

are homotopic.

Lemma 3.22. Let p : W̃ → W be a morphism of Weyl data. If W has property
(2W), then W̃ has property (2W).

Proof. Let γ̃ and γ̃′ be two homotopic alternating geodesics in W̃. Let γ = p ◦ γ̃
and γ′ = p ◦ γ̃′. Then γ and γ′ are homotopic alternating geodesics in W, and
γ̃W = γW = γ′W = γ̃′W , since W has property (2W).

Lemma 3.23. Let p : W̃ → W be an covering of Weyl data. If W̃ has property
(2W), then W has property (2W).
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ω ◦ β

ω ◦ ρ(s, t) ω ◦ ρ(t, s)

β

ρ(t, s)

ρ(s, t)

ρ̂

ω

W̃ W

Figure 3.3: Proposition 3.26 with mst = 2

Proof. Let γ and γ′ be two homotopic alternating geodesics inW . Lift these geodesics
to homotopic alternating geodesics γ̃ and γ̃′ in W̃ . Then γW = γ̃W = γ̃′W = γ′W , since

W̃ has property (2W).

Theorem 3.24. Let p : W̃ → W be a covering of Weyl data. Then W̃ is 2-Weyl if
and only if W is 2-Weyl.

Proof. Recall that a 2-Weyl graph is Weyl data with properties (PW0), (PW1), and
(2W). The result then follows directly from Lemma 3.19, Lemma 3.20, Lemma 3.21,
Lemma 3.22, and Lemma 3.23.

A covering of Weyl data induces local coverings of the residues:

Proposition 3.25. Let p : W̃ → W be a covering of Weyl data. Let R̃ be a J-residue
of W̃, and let R be the J-residue of W which contains the p-image of R̃. Then the
restriction of p to R̃ is a covering of R.

Proof. Let pR̃ : R̃→ R be the morphism of Weyl data which is the restriction of p to

R̃. Clearly pR̃ : R̃→ R is surjective-étale, and so is étale by Proposition 3.16. The

fact that pR̃ is a covering then follows directly from the fact that p : W̃ → W is a
covering.

We call pR̃ : R̃→ R the local covering at R̃. We finish this section with a result
which shows that, as long as one establishes the 2-Weyl property, étale morphisms
suffice when it comes to coverings:

Proposition 3.26. LetW be a 2-Weyl graph, and let W̃ be a pre-Weyl graph. Then
an étale morphism ω : W̃ → W is a covering.

Proof. Let β be a gallery in W̃ which descends to a defining suite. Towards a
contradiction, suppose that β is not a suite. Since β has the type of a suite, we may
write β = ρ(s, t)ρ(t, s)−1. Let ρ̂ be a gallery which is strictly homotopic to ρ(s, t),
which must exist by (PW1). We have ρ̂ 6= ρ(t, s) by hypothesis. Since ω is étale, ω
preserves the distinction of galleries, thus ω ◦ ρ̂ 6= ω ◦ ρ(t, s). But ω ◦ ρ̂ ∼ ω ◦ ρ(s, t)
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since ρ̂ ∼ ρ(s, t) by our choice of ρ̂, and homotopies descend through morphisms.
Also,

ω ◦ ρ(s, t) ∼ ω ◦ ρ(t, s)

since ω ◦ β is a suite and,

(ω ◦ ρ(s, t))−1(ω ◦ ρ(t, s)) = ω ◦ β.

Therefore ω◦ρ̂ ∼ ω◦ρ(t, s) by transitivity. This is a contradiction of the fact thatW is
2-Weyl, since both ω ◦ ρ̂ and ω ◦ ρ(t, s) have the same type (see Proposition 3.13).

Corollary 3.26.1. An étale morphism between 2-Weyl graphs is a covering.

3.3.2 The Classification of Coverings of 2-Weyl Graphs

We now move to the setting where Weyl dataW is 2-Weyl. Recall that in this setting,
the panel groupoids of W are naturally subgroupoids of the fundamental groupoid of
W ; that is Ws ≤ W , for s ∈ S.

In this section, we develop a bijective correspondence between connected coverings
of 2-Weyl graphs W and connected coverings of the fundamental groupoid W. By
results in Section 2.4, this gives a bijective correspondence between connected coverings
of W and conjugacy classes of subgroups of the fundamental group of W .

We begin with the following simple observation:

Proposition 3.27. LetW be a 2-Weyl graph. Then the edges of the panel groupoids
of W generate W .

Proof. Let [β] ∈ W be a homotopy class of galleries. Let i1, . . . , in be the sequence
of edges of β. Then in W , we have,

[β] = [i1 . . . in] = i1; . . . ; in.

Proposition 3.28. Let p : W̃ → W be a covering of 2-Weyl graphs. Then the
induced homomorphism p̄ of the fundamental groupoids is a covering of groupoids.

Proof. Firstly, p̄ is surjective on vertices since p is surjective on chambers. Let C̃ ∈ W̃
be a chamber and let C = p(C̃). Let β be a gallery of W which issues from C, and
let β̃ be the lifting of β to a gallery which issues from C̃. Then,

p̄([β̃]) = [p ◦ β̃] = [β].

Therefore the restriction of p̄ to the homotopy classes which issue from C̃ is surjective
into the homotopy classes which issue from C. Finally, towards a contradiction,
suppose that the restriction of p̄ to the homotopy classes which issue from C̃ is not
injective. This implies that there exist non-homotopic galleries in W̃ issuing from C̃
whose p-images are homotopic. This contradicts Lemma 3.17.
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Morphisms of Coverings. Let p : W̃ → W and p′ : W̃ ′ → W be coverings of a
2-Weyl graph W. A morphism of coverings µ : p→ p′ is a morphism µ : W̃ → W̃ ′
such that p = p′ ◦ µ. We call two coverings isomorphic if there exists a morphism
between them which is an isomorphism of 2-Weyl graphs. The composition of
morphisms of coverings is just their composition as morphisms of 2-Weyl graphs.

The following shows that in particular, a morphism of connected coverings of
2-Weyl graphs is itself a covering:

Proposition 3.29. Let p : W̃ → W , p′ : W̃ ′ →W , and µ : W̃ → W̃ ′ be morphisms
of connected 2-Weyl graphs with p = p′ ◦ µ. If p and p′ are coverings, then µ is a
covering, and if p and µ are coverings, then p′ is a covering.

Proof. Suppose that p and p′ are coverings. For any chamber C ∈ W̃ , we have,

p �W(C,−)= p′ �W(µ(C),−) ◦ µ �W(C,−) .

Then, since p �W(C,−) and p′ �W(µ(C),−) are bijections, we must have that µ �W(C,−) is

a bijection for all C ∈ W̃ . Therefore µ is surjective-étale, and so is étale because W̃ ′
is connected. To see that µ is a covering, let β be a gallery in W̃ such that µ ◦ β is a
defining suite of W̃ ′. Therefore p′ ◦ (µ ◦ β) is a suite of W, since p′ is a morphism.
But p ◦ β = p′ ◦ µ ◦ β, and so β is a suite since p is a covering and coverings lift suites
to suites by Corollary 3.17.1.

Now suppose that p and µ are coverings. Let D ∈ W̃ ′ be any chamber. Pick a
chamber C ∈ W̃ such that µ(C) = D (here we use the fact that µ is surjective on
chambers). Then we have,

p �W(C,−)= p′ �W(D,−) ◦ µ �W(C,−) .

Then, since p �W(C,−) and µ �W(C,−) are bijections, we must have that p′ �W(D,−) is a
bijection. Therefore p′ is surjective-étale, and so is étale because W is connected. To
see that p′ is a covering, let β be a gallery in W̃ ′ such that p′ ◦ β is a defining suite of
W. Lift β with respect to µ to a gallery β̃ in W̃. Then p ◦ β̃ = p′ ◦ β. Since p is a
covering, p ◦ β̃ must be a suite of W . Then, since µ is a morphism, β must be a suite
of W̃ ′.

The following result shows that morphisms of 2-Weyl graphs can be recovered
from the groupoid homomorphisms they induce:

Proposition 3.30. Let ω, ω′ :W →W ′ be two morphisms between the same 2-Weyl
graphs. If ω̄ = ω̄′, then ω = ω′.1

1 In the language of category theory, this says that the functor on 2-Weyl graphs into groupoids
is faithful.
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Proof. Towards a contradiction, suppose that ω 6= ω′. Since W is weak, there exists
an edge i ∈ W with ω(i) 6= ω′(i). We cannot have ω(i) ∼ ω′(i) as galleries because

W ′υ(i) ≤ W
′
. Therefore,

ω̄([i]) = [ω(i)] 6= [ω′(i)] = ω̄′([i])

and so ω̄ 6= ω̄′, a contradiction.

We now show how coverings of groupoids can be ‘lifted’ to coverings of 2-Weyl
graphs:

Proposition 3.31. Let p : W̃ → W and p′ : W̃ ′ → W be coverings of a 2-Weyl
graph W . Let λ : p̄→ p̄′ be a covering morphism of the groupoid coverings p̄ and p̄′.
Then there exists a unique covering morphism µ : p→ p′ such that µ̄ = λ.2

Proof. Let µ : W̃ → W̃ ′ be the generalized chamber system morphism whose s-
homomorphism µs is the restriction of λ to W̃s. This is well defined because the
restriction of λ preserves types by the fact its a covering morphism. Then µ is a
morphism of Weyl data since a suite, as a sequence of edges whose composition the
fundamental groupoid of W̃ is trivial, must get mapped by λ to a sequence of edges
whose composition is also trivial. Then µ̄ = λ since they agree on a generating set
(see Proposition 3.27). Finally, µ is unique by Proposition 3.30.

Corollary 3.31.1. Let λ : p̄ → p̄′ be an isomorphism, and let µ : p → p′ be the
unique morphism such that µ̄ = λ. Then µ is an isomorphism. Thus, if two coverings
of a 2-Weyl graph induce isomorphic groupoid coverings, then they are isomorphic.

Proof. Let µ′ : p′ → p be the unique morphism with µ̄′ = λ−1. Put µ′′ = µ′ ◦ µ. Then
µ̄′′ = λ−1 ◦ λ = 1. Thus, µ′′ = 1 by Proposition 3.30. By a symmetric argument,
µ ◦ µ′ = 1, and so µ is an isomorphism µ : p→ p′.

This shows that coverings of 2-Weyl graphs can be modeled in a non-forgetful
way by coverings of groupoids. We now show that the injective correspondence we
have just established on coverings of a 2-Weyl graph W into groupoid coverings of W
is bijective.

Theorem 3.32. Let W be a 2-Weyl graph. For every groupoid covering ϕ : G → W ,
there exists a covering p : W̃ → W with p̄ ∼= ϕ.3

Proof. Let the chambers of W̃ be the vertices of G. Let the panel groupoid W̃s be the
subgroupoid Gs ≤ G which is the ϕ-preimage ofWs ≤ W . This gives W̃ the structure
of a generalized chamber system. Let p : W̃ → W be the generalized chamber system
morphism such that the s-homomorphism ps is the restriction of ϕ to Gs. The map

2 This says that the functor from the slice category cov(W) of coverings ofW to the slice category
cov(W) of groupoid coverings of W is full.

3 This shows that the functor cov(W)→ cov(W) is an equivalence of categories.
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p : W̃ → W is étale because ϕ is a groupoid covering. It is a pre-covering since a
suite in W lifts to a loop in G because the composition of the sequence of edges of a
suite is trivial. Finally, redefine W̃ to be its completion with respect to p. Thus, we
obtain a covering p : W̃ → W . We have p̄ = ϕ by Proposition 3.27.

The Universal Cover of a 2-Weyl Graph. Let p : W̃ → W be a connected
covering of 2-Weyl graphs. Then p is called a universal cover if for any connected
covering p′ : W̃ ′ →W , there exists a covering morphism µ : p→ p′.

Proposition 3.33. A connected covering p : W̃ → W of 2-Weyl graphs is a universal
cover if and only if W̃ is simply connected.

Proof. Suppose that p : W̃ → W is a universal cover. Then p̄ is a universal cover of
groupoids. Therefore, the universal groupoid of W̃ is a setoid, and so W̃ is simply
connected. Conversely, suppose that W̃ is simply connected. Again, this means that p̄
is a universal cover of groupoids. Then p is a universal cover by Proposition 3.31.

Recall that we denote simply connected Weyl data by ∆.

Corollary 3.33.1. Universal covers are unique up to isomorphism, and every con-
nected 2-Weyl graph W has a universal cover p : ∆→W .

Proof. Universal covers are unique up to isomorphism by Proposition 3.33 and the
1-1 correspondence between 2-Weyl graph coverings and groupoid coverings. The
existence of universal covers follows from Proposition 3.33 and Theorem 3.32.

Corollary 3.33.2. Let p : ∆ → W and p′ : ∆′ → W be universal covers of a
connected 2-Weyl graph W , and let µ : p→ p′ be a covering morphism. Then µ is an
isomorphism.

Proof. Notice that π1(µ̄) is an outer isomorphism between trivial groups. Then µ̄ is
an isomorphism by Proposition 2.21, and µ is an isomorphism by Corollary 3.31.1.

3.3.3 Coverings and Group Actions

In this section, we expose the relationship between groups acting on 2-Weyl graphs
and coverings.

Groups Acting on 2-Weyl Graphs. Groups act on 2-Weyl graphs by auto-
morphisms. We say a group G acts chamber-freely on a 2-Weyl graph W if the
restriction of the action of G to the set of chambers of W is free; equivalently if its
0-free in the sense of Section 3.1.5.
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The Deck Transformation Group. Let p : W̃ → W be a covering of 2-Weyl
graphs. An automorphism of p is a covering isomorphism from p to itself. The
deck transformation group of p is the group Aut(p) whose elements are the
automorphisms of p, equipped with the composition of morphisms. We have Aut(p) ≤
Aut(W̃). Thus, a covering p : W̃ → W determines a faithful action of Aut(p) on the

left of W̃. Notice that the homomorphism Aut(p)→ Aut(p̄), g 7→ ḡ, is injective by
Proposition 3.30, and surjective by Proposition 3.31.

Proposition 3.34. Let p : W̃ → W be a connected covering. Then Aut(p) acts

chamber-freely on W̃ .

Proof. Given the natural isomorphism Aut(p) → Aut(p̄), g 7→ ḡ, this follows from
Proposition 2.25.

We will see that conversely, if a group acts chamber-freely on a connected 2-Weyl
graph W ′, then it is naturally the deck transformation group of a covering W ′ →W .

Regular Coverings. A connected covering p : W̃ → W of 2-Weyl graphs is called
regular if the induced groupoid covering p̄ is regular. Thus, if p is regular, then we
can identify π1(W̃) with its π1(p̄) image in π1(W).

Proposition 3.35. Let p : W̃ → W be a regular covering of 2-Weyl graphs. Then
the action of Aut(p) restricted to the p-preimage of a chamber or an edge is regular.

Proof. Given the natural isomorphism Aut(p) → Aut(p̄), g 7→ ḡ, the case of a

chamber follows from Proposition 2.26. In the case of an edge, let i, i′ ∈ W̃ be edges
with p(g) = p(g′). Let g ∈ Aut(p) such that g · ι(i) = ι(i′). Then g · i = i′, since p is
a covering.

Proposition 3.36. Let p : W̃ → W be a regular covering of 2-Weyl graphs. Then
there exists a natural outer isomorphism,

π1(W)/π1(W̃)→ Aut(p).

Proof. Given the natural isomorphism Aut(p) → Aut(p̄), g 7→ ḡ, this follows from
Theorem 2.27.

We now show that, conversely, if a group G acts chamber-freely on a connected
2-Weyl graphW , then there exists a 2-Weyl graphW ′ and a regular coveringW →W ′
of which G is naturally the automorphism group.
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The Quotient of an Action. We associate to the chamber-free action of a group
G on a connected 2-Weyl graph W the quotient 2-Weyl graph G\W, which is the
2-Weyl graph defined as follows.

First, we define a generalized chamber system G\W , by letting the set of chambers
be the set of orbits G\W0, and letting the panel groupoid of type s be the quotient
groupoid G\Ws (see Section 2.4.5). The quotient map π : W → G\W is the
morphism of generalized chamber systems such that the s-homomorphism πs is the
groupoid quotient map πs :Ws → G\Ws. Notice that π :W → G\W is étale since
the πs are coverings by Theorem 2.28.

We give G\W the structure of Weyl data by letting the suites be the π-images of
suites in W ; that is, θ is a defining suite of G\W if there exists a defining suite θ′ of
W with θ = π ◦ θ′. This ensures that π is a morphism of Weyl data.

Proposition 3.37. If a group G acts chamber-freely on a 2-Weyl graph W, then
G\W is a 2-Weyl graph, and the quotient map π :W → G\W is a covering.

Proof. Notice that π :W → G\W is a covering since all the defining suites of G\W
are π-images of defining suites of W . Then G\W is 2-Weyl by Theorem 3.24.

If a group G acts chamber-freely on a 2-Weyl graph W, then this induces a
free action of G on W. The following result shows that our 2-Weyl graph quotient
construction is compatible with our groupoid quotient construction:

Proposition 3.38. Let G be a group which acts chamber-freely on a 2-Weyl graph
W with quotient map π : W → G\W. Let ϕ : W → G\W be the quotient
map of the associated action of G on W. Then there exists a unique isomorphism
ψ : G\W → G\W such that ϕ = ψ ◦ π̄.

Proof. Since ϕ = ψ ◦ π̄, then ψ : G\W → G\W must be the homomorphism whose
map on edges is,

π̄(g) 7→ ϕ(g), for g ∈ W1.

This is well defined because ϕ is constant on G-orbits. Checking that ψ is a homo-
morphism, we have,

π̄(g)π̄(g′) = π̄(gg′) 7→ ϕ(gg′) = ϕ(g)ϕ(g′).

Then ψ is a covering by Proposition 2.19. Notice that ψ is injective on chambers
since both ϕ and π̄ identify chambers if and only if they are in the same G-orbit.
Therefore ψ is an isomorphism by Proposition 2.18.

Corollary 3.38.1. Let G be a group which acts chamber-freely on a connected
2-Weyl graph W , and let π :W → G\W be the associated quotient map. Then G is
naturally Aut(π).

Proof. We have a natural embedding G ↪→ Aut(π). The composition of this embed-
ding with the isomorphism Aut(π) → Aut(π̄) is an isomorphism by Theorem 2.28
and Proposition 3.38. Therefore G ↪→ Aut(π) is an isomorphism.
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Proposition 3.39. Let p : W̃ → W be a regular covering, and let π : W̃ →
Aut(p)\W̃ be the quotient associated to the action of Aut(p). Then there exists a

unique isomorphism ω : Aut(p)\W̃ → W such that p = ω ◦ π.

Proof. Since p = ω ◦ π, then ω : Aut(p)\W̃ → W must be the map such that for
chambers,

π(C) 7→ p(C), for C ∈ W̃0

and for edges,
π(i) 7→ p(i), for i ∈ W̃1.

This is well defined since p is constant on Aut(p)-orbits. Checking that ω is a graph
morphism, for the extremities we have,

ι(π(i)) = π(ι(i)) 7→ p(ι(i)) = ι(p(i)), τ(π(i)) = π(τ(i)) 7→ p(τ(i)) = τ(p(i))

and for the type function we have,

υ(π(i)) = υ(i) = υ(p(i)).

Checking that ω is a morphism of generalized chamber systems, we have,

π(i−1) 7→ p(i−1) = p(i)−1, π(i);π(i′) = π(i; i′) 7→ p(i; i′) = p(i); p(i′).

Then ω is a bijection on chambers since it has the inverse C 7→ π(p−1(C)), for
C ∈ W0, and ω is a bijection on edges since it has the inverse i 7→ π(p−1(i)), for
i ∈ W1. Notice that these inverses are well defined by Proposition 3.35. Therefore ω
is an isomorphism of generalized chamber systems.

Let θ be a suite of Aut(p)\W̃ . Lift θ to a gallery θ̃ in W̃ . Then θ̃ is a suite since
π is a covering. Then p ◦ θ̃ = θ is also a suite since p is a morphism of Weyl data.
Therefore ω is an morphism of Weyl data. Then ω is a covering by Proposition 3.29,
and so ω is an isomorphism of Weyl data.

Let G be a group which acts chamber-freely on a 2-Weyl graph W. Let R be a
residue of W . Then the isotropy HR of R is the subgroup,

HR = {g ∈ G : g ·R = R} ≤ G.

We now show that the local covering at R of the quotient mapW → G\W is naturally
the quotient map R→ HR\R:

Proposition 3.40. Let G be a group which acts chamber-freely on a 2-Weyl graph
W , and let π :W → G\W be the associated quotient. Let R be a residue of W , and
let πR denote the local covering at R. Let H = HR ≤ G be the isotropy of R. Let
πH : R→ H\R be the quotient map associated to the action of H on R. Then there
exists a unique isomorphism ω such that πR = ω ◦ πH .
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Proof. Since πR = ω ◦ πH , then ω must be the map such that for chambers,

πH(C) 7→ πR(C), for C ∈ R0

and for edges,
πH(i) 7→ πR(i), for i ∈ R1.

This is well defined because πR is constant on H-orbits. Also, ω is bijective on
chambers and edges by the definition of H. Then ω is an isomorphism of Weyl data
by the same arguments as those in the proof of Proposition 3.39.
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Chapter 4

Weyl Graphs and Buildings

In this chapter, we introduce Weyl graphs, which model the quotients of buildings by
type preserving chamber-free group actions. Weyl graphs are pre-Weyl graphs whose
homotopy classes of galleries have a well defined W -length. Weyl graphs are examples
of 2-Weyl graphs, but not all 2-Weyl graphs are Weyl graphs. More precisely, a
2-Weyl graph is a pre-Weyl graph which is a Weyl graph only locally at the level
of 2-residues. There are several ways to characterize Weyl graphs amongst 2-Weyl
graphs. These different characterizations are encapsulated in the Weyl properties (see
Section 4.1.1), which are global versions of the 2-Weyl properties of Section 3.2.3.

In Section 4.1, we show that a pre-Weyl graph is a Weyl graph if and only if its
universal cover is a building. In particular, every Weyl graph determines a building by
taking its universal cover. Conversely, the quotient of a building by a type preserving
chamber-free group action is naturally a Weyl graph. Thus, we show that Weyl
graphs are essentially equivalent to buildings equipped with a type preserving and
chamber-free group action. In this way, we obtain an equivalent definition of a
building, that of a simply connected Weyl graph. Heuristically, one can say that Weyl
graphs are buildings which are not necessarily simply connected.

We prove a Weyl graph version of Tits’ local-to-global theorem of [Tit81]. This
shows that 2-Weyl graphs are often Weyl graphs. Precisely, a 2-Weyl graph is a Weyl
graph if (and only if) its spherical 3-residues of type C3 and H3 are Weyl graphs.
Importantly, this result enables the construction of many Weyl graphs by gluing
together 2-Weyl graphs. Examples of 2-Weyl graphs are easy to come by, since they
are equivalent to generalized polygons equipped with a chamber-free (flag-free) group
action.

Finally, in Section 4.2, we give a method to obtain a presentation of the funda-
mental group of a connected Weyl graph. This group then acts naturally on the
covering building of the Weyl graph.

71



Chapter 4. Weyl Graphs and Buildings Section 4.1

4.1 Weyl Graphs

In this section, we define Weyl graphs, and collect some of their basic properties. We
also describe the various characterizations of Weyl graphs amongst 2-Weyl graphs.

4.1.1 The Weyl Properties

We begin by introducing the following stronger versions of the 2-Weyl properties:

(W) homotopic geodesics have the same W -length.

(C) homotopic geodesics are strictly homotopic.

(SH) strictly homotopic geodesics of the same type are equal.

(H) homotopic geodesics of the same type are equal.

We call these four properties the Weyl properties. Properties similar to these
feature in [Tit81] and [Ron89]. Notice that the 2-Weyl properties (2W), (2C), (2SH),
and (2H) are the properties that 2-residues satisfy (W), (C), (SH), and (H) respectively.
Notice that (C) is the property which we proved that Cayley graphs of Coxeter groups
have in Appendix A. Stated another way, (SH) says that the γ-gallery map Fγ is
injective for all geodesics γ.

One can easily see that (H) =⇒ (SH). In fact, we will show that for 2-Weyl
graphs, we have the following,

(C) =⇒ (W) =⇒ (H) =⇒ (SH) =⇒ (C).

Thus, for 2-Weyl graphs, the Weyl properties are all equivalent. The only implication
which is not straight forward is (SH) =⇒ (C). Finally, we have a property which
will characterize buildings amongst connected 2-Weyl graphs,

(B) geodesics with the same extremities have the same W -length.

If Weyl data has property (B), then the geodesics can be used to give us a well defined
notion of ‘distance’ between chambers, whose value is an element of W .

4.1.2 The Universal Cover of a 2-Weyl Graph with Property

(SH)

In this section, we show that the universal cover of a connected 2-Weyl graph W with
property (SH) can be constructed by representing the chambers as strict homotopy
classes of geodesics issuing from a fixed chamber C ∈ W . By using a method similar
to the proof of [Ron89, Proposition 4.8], this construction will be used to prove that
(SH) =⇒ (C) in the setting of 2-Weyl graphs.

We begin with two important consequences of property (SH).
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Figure 4.1: Lemma 4.1

Lemma 4.1. Let W be a pre-Weyl graph with property (SH), and let γ and γ′ be
strictly homotopic geodesics inW whose types end (begin) with the same letter s ∈ S.
Then the final (initial) edges of γ and γ′ must be equal.

Proof. Let γS = fs, and γ′S = f ′s. Let i be the final edge of γ, and let α be the
subgallery such that γ = αi. In particular, αS = f . Since γ ' γ′ as galleries, we have
fs ' f ′s as words, and so f ' f ′ by Corollary 2.9.2. Therefore there exists a gallery
α′ with α′S = f ′ and α ' α′. By transitivity, α′i is strictly homotopic to γ′, but they
also have the same type. Thus, α′i = γ′ by (SH), and so the final edge of γ′ is also i.
The case of beginning with the same letter follows by a symmetric argument.

Lemma 4.2. Let W be a pre-Weyl graph with property (SH), and let γ, γ′, and γ′′

be geodesics in W . If γ′γ ' γ′′γ (or γγ′ ' γγ′′), then γ′ ' γ′′.

Proof. Suppose that γ′γ ' γ′′γ. Since γ′SγS ' γ′′SγS, we have γ′S ' γ′′S by Corol-
lary 2.9.2. Therefore there exists a gallery γ̂ with γ̂S = γ′′S and γ̂ ' γ′. Then γ̂γ ' γ′′γ,
and so γ̂ = γ′′ by (SH). Thus γ′ ' γ̂ = γ′′ as required. The case where γγ′ ' γγ′′

follows by a symmetric argument.

For the remainder of this section, W is a connected 2-Weyl graph with property (SH),
C ∈ W is a fixed chamber, and for geodesics γ in W, we will denote by [γ] the strict

homotopy class [γ]'.

We now describe a certain representation of the universal cover of W , which we
will denote by p : W̃C →W .

The Chambers and Edges. Let the chambers of W̃C be the strict homotopy
classes of the geodesics which issue from C. Thus,

W̃C
0 =

{
[γ] : γ is geodesic in W such that ι(γ) = C

}
.

We denote the class of the trivial geodesic at C by C̃. Since we are trying to construct
(at least) an étale morphism W̃C →W , which will turn out to send the chamber [γ]
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Figure 4.2: Defining τ([γ], i)

to τ([γ]), we let the edges be pairs ([γ], i), where i is an edge of W which issues from
the chamber at which [γ] terminates. Thus,

W̃C
1 =

{
([γ], i) : [γ] ∈ W̃C

0 , ι(i) = τ(γ)
}
.

The Extremities. We now define the extremities of W̃C . Fix an edge ([γ], i). The
value of ι is easy, and is suggested by how we have modeled the edges; we always
have,

ι([γ], i) = [γ].

Let s = υ(i), and w = γW . If ws > w (in the Bruhat order), then γi is a geodesic,
and we put,

τ([γ], i) = [γi].

This is clearly well defined. If ws < w, then γi is not a geodesic, however by the
exchange condition, there exist geodesics in [γ] whose types end with s. By Lemma 4.1,
all these geodesics end with same s-labeled edge. Call this edge j, and let k = j; i.
We may have j = i−1, and k = 1, in which case we let k as a gallery denote the
corresponding trivial gallery. Pick any geodesic α such that αj ∈ [γ] (see Figure 4.2).
We put,

τ([γ], i) = [αk].

To see that this is well defined, suppose that α′ is another geodesic used instead
of α. Then, by Lemma 4.2, we have α ' α′, thus [αk] = [α′k]. Finally, we put

υ([γ], i) = υ(i). This gives W̃C the structure of a graph of type M .

The Panel Groupoids. We now show that W̃C is naturally a chamber system.
Let s, w, j, k, and α be as before for a fixed edge ([γ], i). Firstly, notice that W̃C

does not have loops, for this would imply either:

• γ ' γi in the case where ws < w, which is not possible since these galleries
have different lengths
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• γ ' αk in the case where ws > w, which also is not possible; if k is trivial,
then these galleries have different lengths, and if k is not trivial, then k = j by
Lemma 4.1, which contradicts the fact that k = j; i.

Secondly, W̃C is slim. To see this, suppose that ([γ], i) and ([γ], i′) are edges which
issue from [γ] and terminate at the same chamber D, with υ(i) = υ(i′). If ws > w,
then [γi] = [γi′] = D. But by Lemma 4.1, we must have i = i′, and so ([γ], i) = ([γ], i′).
If ws < w, then [αk] = [αk′] = D, where k′ = j; i′, and so:

• if both k and k′ are trivial, then i = i′ = j−1, and ([γ], i) = ([γ], i′)

• if exactly one of {k, k′} is trivial, then αk cannot be strictly homotopic to αk′

since they have different lengths, a contradiction

• if neither are trivial, then k = k′ by Lemma 4.1, so again we must have i = i′,
and so ([γ], i) = ([γ], i′).

We now claim that if [γ]
([γ],i)−−−→ [γ′] and [γ′]

([γ′],i′)−−−−→ D are two edges with υ(i) = υ(i′)
and i 6= i′, then ([γ], i; i′) is an edge which terminates at D. If ws > w, then [γ′] = [γi].
Therefore D = [γi′′], where i′′ = i; i′. The result follows. If ws < w, then ([γ], i; i′)
terminates at [αi′′′], where i′′′ = j; i; i′. But [γ′] = [αi′′], and so D = [αi′′′]. Therefore,
for edges i, i′ ∈ W with υ(i) = υ(i′) and i 6= i′, we can define the composition,

([γ], i); ([γ′], i′) = ([γ], i; i′).

If ws > w, the inverse of an edge ([γ], i) is ([γi], i−1). If ws < w, the inverse of an

edge ([γ], i) is ([αk], i−1). This gives W̃C the structure of a chamber system.

The Covering. Define a map p : W̃C →W by putting p([γ]) = τ(γ) for chambers,
and p([γ], i) = i for edges. In particular we have p(C̃) = C. This map preserves
extremities; for ι, this follows from the fact that τ(γ) = ι(i), and for τ , this follows
from the fact that p([γi]) = τ(i) if ws > w, and p([αk]) = τ(k) = τ(i) if ws < w.
Moreover, p is an surjective-étale morphism of generalized chamber systems; this
follows directly from the definition of composition in W̃C and the definition of edges
in W̃C . Then p is étale since W is connected. We now show that p : W̃C → W is
also a pre-covering. First, we need the following observation:

Lemma 4.3. Let β be a gallery in W which issues from C, and let β̃ be the lifting
of β to a gallery which issues from C̃. Then β is homotopic to the geodesics in τ(β̃).

Proof. We prove by induction on the length of β. If β consists of one edge, then the
result is trivial since τ(β̃) is the set containing β. Suppose that the result holds for
galleries of length n, and that |β| = n+ 1. Let i be the last edge of β, and let β′ be
the subgallery such that β′i = β. Let β̃′ be the lifting of β′ to a gallery which issues
from C̃, and let γ ∈ τ(β̃′). Notice that β′ ∼ γ by the induction hypothesis. Now,
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either τ(β̃) = [γi], or τ(β̃) = [αk]. In either case, γi is homotopic to the geodesics
in τ(β̃) since αk ∼ γi. Then β = β′i ∼ γi by the induction hypothesis, and so β is
homotopic to the geodesics in τ(β̃).

Lemma 4.4. The étale morphism p : W̃C →W is a pre-covering.

Proof. Let β be a gallery in W̃C such that p ◦ β is a suite of W. Let ρ and ρ̂ be a
maximal (s, t)-geodesic and a maximal (t, s)-geodesic respectively such that β = ρ−1ρ̂.
We now prove that τ(ρ) = τ(ρ̂), which implies that β is a cycle. Let [γ] = ι(ρ) = ι(ρ̂),
and put w = γW . Let ρW = p ◦ ρ, and ρ̂W = p ◦ ρ̂.

Let J = {s, t}, and let w′ be the unique representative of the coset wWJ with
minimal word length (see Theorem A.11). Then w = w′wJ , for some wJ ∈ WJ . We
may assume that γ is of the form γ = γ′γJ , where γ′W = w′ and γJW = wJ . Let ρ′

and ρ̂′ be geodesics which are homotopic to γJρW and γJ ρ̂W respectively. It follows
from Theorem A.11 that γ′ρ′ and γ′ρ̂′ are geodesics. Since p ◦ β is a suite of W , we
have ρW ∼ ρ̂W , and so,

ρ′ ∼ γJρW ∼ γJ ρ̂W ∼ ρ̂′.

Then ρ′ ' ρ̂′ sinceW has property (2C), and so γ′ρ′ ' γ′ρ̂′. The geodesics in τ(ρ) are
homotopic to γρW , and therefore to γ′ρ′, by Lemma 4.3. Similarly, the geodesics in
τ(ρ̂) are homotopic to γρ̂W , and therefore to γ′ρ̂′. Thus, γ′ρ′ ∈ τ(ρ) and γ′ρ̂′ ∈ τ(ρ̂),
and so τ(ρ) = τ(ρ̂) as required.

Redefine W̃C to be its completion with respect to p. Thus, we obtain a covering
p : W̃C →W .

Theorem 4.5. The covering p : W̃C →W is the universal cover of W .

Proof. First, notice that p is a connected covering since for chambers [γ], [γ′] ∈ W̃C ,

the lifting of γ and γ′ to galleries in W̃C which issue from the class of the trivial
gallery connect [γ] and [γ′] respectively to the class of the trivial gallery.

Let p′ : W̃ → W be the universal cover of W. We now construct a morphism
of coverings µ : p → p′, which proves that W̃C is also simply connected. Pick a
chamber C̃ ∈ W̃ such that p′(C̃) = C. Let µ : W̃C → W̃ be the morphism whose
map on chambers is [γ] 7→ τ(γ̃), where γ̃ is the lifting of γ to a gallery which issues

from C̃. To see that this is a morphism of chamber systems, let [γ]
([γ],i)−−−→ [γ′] be an

edge of W̃C , and let ĩ be the unique edge of W̃ such that p′(̃i) = i and ι(̃i) = τ(γ̃).

Then τ (̃i) = τ(γ̃′), and so [γ]
([γ],i)−−−→ [γ′] is mapped to ĩ. We have p = p′ ◦ µ since

p′(τ(γ̃)) = τ(γ). Finally, to see that µ is a morphism of Weyl data, let θ be a suite of

W̃C . Then p ◦ θ must be a suite of W̃ because W̃ is simply connected.

4.1.3 Introducing Weyl Graphs

In this section, we define Weyl graphs and collect some of their basic properties. We
show that the notion of a building is equivalent to that of the universal cover of a
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connected Weyl graph. We also prove the equivalence of the Weyl properties for
2-Weyl graphs, which will give us several characterizations of Weyl graphs.

Definition of Buildings. Recall property (B) of pre-Weyl graphs,

(B) geodesics with the same extremities have the same W -length.

We define a building of type M to be a connected pre-Weyl graph of type M with
property (B). In [Ron89], a building of type M is defined to be a weak chamber
system W of type M which admits a function

W0 ×W0 → W

such that if f is a reduced word over S, then (C,D) 7→ w(f) if and only if there
exists a geodesic γ which travels from C to D with γS = f . One can easily see
that the underlying chamber system of a pre-Weyl graph with property (B) admits
such a function. Recall that we call Weyl data W simple if every (s, t)-cycle of the
underlying graph of W is a defining suite. Conversely, given a building W in the
sense of [Ron89], the simple Weyl data associated to the chamber system W will be
a pre-Weyl graph with property (B). Thus, the definitions are equivalent.

We have the following characterization of buildings:

Proposition 4.6. A connected pre-Weyl graph satisfies property (B) if and only if
it is simply connected and has property (W ).

Proof. If a pre-Weyl graph with property (B) is simply connected, then all the
geodesics with the same extremities will be homotopic, and therefore have the same
W -length. Conversely, suppose that a connected pre-Weyl graph W satisfies property
(B). Let γ be a geodesic in W with ι(γ) = τ(γ) = C. Then (B) implies that γW = 1,
since the trivial gallery at C is a geodesic. Thus, γ is trivial, and so there is only one
homotopy class of loops at C. Therefore W is simply connected. That (B) =⇒ (W )
is clear.

Definition of Weyl Graphs. We now define a Weyl graph to be a pre-Weyl
graph which has property (W). Thus, buildings are exactly connected and simply
connected Weyl graphs. Notice that 2-Weyl graphs are exactly pre-Weyl graphs
whose 2-residues are Weyl graphs. Notice also that the residues of Weyl graphs are
again Weyl graphs, thus Weyl graphs are 2-Weyl. We will denote Weyl graphs which
are buildings by ∆.

The Metrization of the Fundamental Groupoid. Property (W) allows us to
define the W -length [γ]W of a homotopy class of galleries [γ] in a Weyl graph to be
the W -length of the geodesics which it contains. Thus, [γ]W = γW . The function,

W1 → W, [γ] 7→ [γ]W

is called the metrization of the fundamental groupoid W of W .
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Simplicial Buildings. Associated to every building ∆ is the simplicial complex
whose poset of cells is the poset of residues of ∆, where the ordering is reverse inclusion.
Thus, the smallest residues, i.e. the chambers, correspond to the maximal simplices.
We call this simplicial complex the simplicial building of ∆. The building ∆ can
be recovered from its simplicial building, and the simplicial complexes which are
isomorphic to the simplicial building of some building ∆ were characterized in Tits’
original definition of a building as an amalgam of Coxeter complexes (see [Tit74]).

Weyl Polygons and Generalized Polygons. A Weyl polygon is a rank 2
connected Weyl graph. A generalized polygon is a rank 2 building, i.e. a simply
connected Weyl polygon (thus, our convention is that generalized polygons can be
weak). A generalized polygon of type I2(m) is called a generalized m-gon. The
simplicial building of a generalized m-gon, m <∞, is a bipartite graph of girth m
and diameter 2m. Conversely, any such graph determines a generalized polygon.
Generalized polygons can also be modelled as certain incidence geometries (see
[VM12]). In light of covering theory of Weyl graphs, Weyl polygons are essentially
equivalent to generalized polygons which are equipped with a chamber-free (i.e.
flag-free) action of a group.

We now show that the image of a Weyl graph under a covering is a Weyl graph,
and that a covering of a Weyl graph is again a Weyl graph.

Lemma 4.7. Let ω :W ′ →W be a morphism of Weyl data. If W has property (W),
then W ′ has property (W).

Proof. Let γ̃ and γ̃′ be two homotopic geodesics in W ′. Let γ = ω ◦ γ̃ and γ′ = ω ◦ γ̃′.
Then γ and γ′ are homotopic geodesics in W , and so γ̃W = γW = γ′W = γ̃′W since W
has property (W).

Lemma 4.8. Let p : W̃ → W be an covering of Weyl data. If W̃ has property (W),
then W has property (W).

Proof. Let γ and γ′ be two homotopic geodesics in W. Lift these geodesics to
homotopic geodesics γ̃ and γ̃′ in W̃. Then γW = γ̃W = γ̃′W = γ′W since W̃ has
property (W).

The following is our main result:

Theorem 4.9. The universal cover of a connected Weyl graph is a building, and the
image of a building under a covering is a connected Weyl graph. Thus, connected
Weyl graphs are exactly the quotients of buildings by chamber-free actions, and
buildings are exactly the universal covers of connected Weyl graphs.

Proof. Recall from Theorem 3.24 that coverings preserve and reflect the properties
(PW0) and (PW1). Therefore it follows from Lemma 4.7 and Lemma 4.8 that if

p : W̃ → W is a covering of Weyl data, then W̃ is a Weyl graph if and only if W is a
Weyl graph. The result follows.
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We now show that the Weyl properties are equivalent in the setting of 2-Weyl
graphs. The implications which we will prove are,

(C) =⇒ (W) =⇒ (H) =⇒ (SH) =⇒ (C).

That (C) =⇒ (W) is a simple observation:

Lemma 4.10. Let W be a 2-Weyl graph with property (C). Then W is a Weyl
graph.

Proof. Recall that property (C) says homotopic geodesics are strictly homotopic. But
strict homotopies preserve W -length. Therefore homotopic geodesics must have the
same W -length.

We now prove (W) =⇒ (H):

Lemma 4.11. Let W be a Weyl graph. Then W has property (H).

Proof. The proof is essentially the same as the proof of Proposition 3.13, which was
the rank 2 case. Let ρ and ρ′ be homotopic geodesics in W with the same type. Let
i be the last edge of ρ, and let i′ be the last edge of ρ′. Towards a contradiction,
suppose that i 6= i′. Let j = i′i−1. Let α and α′ be the subgalleries such that αi = ρ
and α′i′ = ρ′. Then α and α′j are homotopic geodesics with different W -lengths, a
contradiction. Thus, i = i′. Then α and α′ are also homotopic geodesics, and so
can apply the same argument to the penultimate edges of ρ and ρ′. Therefore, by
induction, we may conclude that ρ = ρ′.

Finally, we prove (SH) =⇒ (C), using the construction of Section 4.1.2:

Lemma 4.12. Let W be a 2-Weyl graph with property (SH). Then W has property
(C).

Proof. Let γ and γ′ be homotopic geodesics in W. Put C = ι(γ) = ι(γ′), and let

p : W̃C →W be the covering constructed in Section 4.1.2. The map µ constructed in
the proof of Theorem 4.5 is bijective on chambers by Corollary 3.33.2. Since γ ∼ γ′,
we have µ([γ]) = µ([γ′]), thus [γ] = [γ′], and so γ ' γ′.

Theorem 4.13. Let W be a 2-Weyl graph. If W has any of the Weyl properties,
then W is a Weyl graph. Conversely, if W is a Weyl graph, then W satisfies all the
Weyl properties.

Proof. One can easily see that if W has property (H), then W has property (SH).
The result then follows by Lemma 4.10, Lemma 4.11, and Lemma 4.12.

Corollary 4.13.1. Let W be a Weyl graph which is labeled over S. For each J ⊆ S,
the groupoid homomorphism,

εJ :WJ →W
is an embedding. Thus, WJ is naturally a subgroupoid of W .
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Proof. Let γ and γ′ be homotopic geodesics of W which are contained in a J-residue
R. Then γ and γ′ are strictly homotopic, and so a homotopy from γ to γ′ can take
place within R. Thus, γ and γ′ are also homotopic in WJ .

Corollary 4.13.2. The residues of buildings are buildings.

Proof. Let ∆ be a building. Then the fundamental groupoid ∆ is a connected setoid.
For J ⊆ S, ∆J is naturally a subgroupoid of ∆. Thus, ∆J is also a setoid, and the
result follows.

4.1.4 Tits’ Local to Global Results.

In this section, we show that 2-Weyl graphs are often Weyl graphs; in particular, the
only thing which stops a 2-Weyl graph from being a Weyl graph are the spherical
3-residues of type C3 and H3. Given the preservation and reflection of property (W)
under covering maps, and the fact that buildings are exactly the universal covers of
connected Weyl graphs, this is an easy consequence of results in [Tit81]; however we
provide a more direct proof of the first part of Tits’ result, along the lines of [Ron89,
Theorem 4.9]:

Lemma 4.14. Let W be a 2-Weyl graph. Then W is a Weyl graph if (and only if)
the spherical 3-residues of W are Weyl graphs.

Proof. We claim that W has property (SH), which suffices by Theorem 4.13. To see
this, let γ and γ′ be strictly homotopic geodesics of W with the same type. A strict
homotopy between γ and γ′ induces a strict homotopy of words, which, by [Ron89,
Theorem 2.17], decomposes into self strict homotopies which are either inessential,
or else only alter a subword over J , where J is a 3-element spherical subset of S. A
strict homotopy of galleries which induces an inessential self strict homotopy of words
cannot change a gallery. It then follows that γ = γ′ by the hypothesis on W . Thus,
W has property (SH), and so is a Weyl graph.

Lemma 4.15. If a 2-Weyl graph W of type M and of rank 3 is not a Weyl graph,
then either M = C3 or M = H3.

Proof. Since W is not a Weyl graph, it must have a connected component which is
not a Weyl graph. Let ∆ be the universal cover of this connected component. By
Theorem 4.9, ∆ is a connected simply connected chamber system of type M which is
not a building. Therefore M = C3 or M = H3 by the discussion in [Tit81, Section
2.2] and [Tit81, Theorem 1].

Then, combining Lemma 4.14 and Lemma 4.15 gives:

Theorem 4.16. Let W be a 2-Weyl graph. Then W is a Weyl graph if (and only if)
the residues of W of type C3 and H3 are Weyl graphs.
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4.2 The Fundamental Group of a Weyl Graph

In this section, we give a method for obtaining a group presentation of the fundamental
group of a connected Weyl graph.

4.2.1 A Presentation of the Fundamental Group

Let M be a Coxeter matrix on S, and let W be a connected Weyl graph of type M .

Generating Sets of Weyl Graphs. For each s ∈ S, pick a base chamber in each
connected component of Ws. Let Bs = {Bs,0, Bs,1, . . . } be the set of base chambers
in Ws, and let,

Bs =
{
i ∈ W1 : υ(i) = s, ι(i) = τ(i) ∈ Bs

}
.

Thus, Bs is the set of non-trivial loops in Ws at the base chambers. For each s ∈ S
and for each chamber C ∈ Ws with C /∈ Bs, pick an edge iC ∈ Ws with ι(iC) ∈ Bs

and τ(iC) = C. Let,

I+s = {iC : C ∈ W0 \Bs}, I−s = {i−1C : C ∈ W0 \Bs}, Is = I+s t I−s .

Also put Ss = Bs t Is, and,

B =
⊔

s∈S
Bs, I =

⊔

s∈S
Is, I+ =

⊔

s∈S
I+s , I− =

⊔

s∈S
I−s , S =

⊔

s∈S
Ss = B t I.

We call S a generating set of W . Notice that Ss generates Ws, and S generates W .

Expressions of Edges. For each edge i ∈ W, putting s = υ(i), then there exists
a unique 3-tuple (i−, iB, i+) of edges of Ws such that:

(i) i = i−; iB; i+

(ii) either i− ∈ I−s or i− is trivial

(iii) either iB ∈ Bs or iB is trivial

(iv) either i+ ∈ I+s or i+ is trivial.

The expression of i with respect to S is the word obtained from the sequence
i−, iB, i+ by deleting any trivial edges. In particular, if i ∈ S, then the expression of i
is just i.
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S-Sequences and S-Suites. Let W be a connected Weyl graph and let S ⊆ W1

be a generating set of W. Let r = i1, . . . , in be a sequence of edges of W. The
S-sequence of r is the sequence obtained from r by replacing each edge ik, for
k ∈ {1, . . . n}, by the expression of ik with respect to S. Notice that if r is the
sequence of edges of a gallery β, then the S-sequence of r is the sequence of edges of
a gallery which can be obtained from β by a composition of expansions.

We let R denote the set of sequences of edges of W which are obtained as the
S-sequences of the defining suites of W . The elements of R are called S-suites, and
we think of them as words over S.

The Universal Group of a Weyl Graph. Let W be a connected Weyl graph
and let S be a generating set ofW . The universal group FG(W) ofW with respect
to S is the group generated by S, subject to the relations of the local groups at each
base chamber, and R (treated as a set of relators). Explicitly, let Rs,k be a set of
defining relations for the local group of Ws at Bs,k ∈ Bs, and let RB =

⊔
s,kRs,k.

Then,

FG(W) =
〈
S | R, RB, ij = 1 : i ∈ I+, j = i−1 ∈ I−

〉
.

This is just the smallest numbers of relations which makes the natural projection,

π :W → FG(W), i 7→ i for i ∈ S

a well defined homomorphism. To see that π is well defined, let [β] ∈ W. Let
r = i1, . . . , in be the sequence of edges of β. Then π([β]) is the product in FG(W) of
the S-sequence of r. Let β̂ be a gallery obtained from β by a 1-elementary homotopy.
Then π([β̂]) = π([β]) by the inclusion of the relations RB, and the relators of the
form ij = 1. Let β̂ be a gallery obtained from β by a 2-elementary homotopy. Then
π([β̂]) = π([β]) by the inclusion of the relators R.

Spanning Trees. Let W be a connected Weyl graph and let S be a generating set
of W . Let Γ be the following undirected graph:

(i) the vertices of Γ are the chambers of W

(ii) the edges of Γ are sets of the form {i, i−1}, where i ∈ I+

(iii) the extremities of the undirected edge {i, i−1} are ι(i) and τ(i).

Notice that Γ is connected. Let Γ′ be a spanning tree of Γ, and let T ⊆ I be the set
of edges which are contained in some edge of Γ′. We call T a spanning tree of W .
Notice that if a panel groupoid Ws is connected, then we can take T to be Is.
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g−1D′
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Figure 4.3: Defining ψ : FG(W)/T →WC

The Fundamental Group at T . Let W be a connected Weyl graph. Let S be a
generating set of W and let T be a spanning tree of W. The fundamental group
of W at T is the group,

π1(W , T ) =
〈
S | R, RB, ij = 1, t = 1 : i ∈ I+, j = i−1 ∈ I−, t ∈ T

〉
.

The following is our main result:

Theorem 4.17. Let W be a connected Weyl graph. Let S be a generating set of
W and let T be a spanning tree of W. Then the local groups of W are naturally
isomorphic to π1(W , T ).

The fact that these isomorphisms are natural might seem surprising, but remember
that a choice of T has been made.

Proof. Pick a chamber C ∈ W , and let WC be the local group of W at C. Let,

ϕ :WC → π1(W , T )

be the the restriction of π :W → FG(W) to WC , composed with the quotient map
FG(W)→ π1(W , T ). For each chamber D ∈ W , let gD ∈ W(C,D) be the homotopy
class of the gallery corresponding to the unique path in T from C to D. Let,

ψ : π1(W , T )→WC

be the homomorphism mapping a generator i ∈ S to the composition gι(i); i; g
−1
τ(i) ∈ W

(see Figure 4.3). This is a well defined homomorphism because the relations of
π1(W , T ) are satisfied in WC , since WC is a subgroup of W . Notice that ϕ ◦ ψ is the
identity on S because π(gD) lies in the kernel of FG(W) → π1(W , T ). Also, ψ ◦ ϕ
is the identity because the gD cancel via contractions, and one recovers the original
gallery up to homotopy. Thus, ϕ and ψ are mutually inverse isomorphisms.
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C

Figure 4.4: The flower F(C) in a weak generalized 3-gon

Therefore we have a natural isomorphism WC
∼= π1(W , T ). If we make the choice

of a chamber in the universal cover ∆ of W , we get a well defined action of π1(W , T )
on ∆.

A method one can employ when calculating the fundamental group of a Weyl
graph is to first calculate the universal groups of its Weyl polygons, take the union of
each presentation, and then quotient out by a spanning tree.

4.2.2 Flowers and Petals

In this section, we show that in order to determine a Weyl polygon, i.e. a connected
rank 2 Weyl graph, one only has to know the underlying generalized chamber system,
and a set of homotopic maximal alternating geodesic pairs, called ‘petals’, issuing
from a fixed chamber. This will simplify the task of calculating fundamental groups
of Weyl graphs in many cases.

Flowers. Let C be a fixed chamber in a Weyl graph W. Let J = {s, t} be a
2-element spherical subset of S. The J-flower based at C, denoted FJ(C), is the set
of maximal (s, t)-geodesics and maximal (t, s)-geodesics which issue from C. Thus,
the maximal alternating geodesics of FJ(C) are contained in the residue RJ(C),
which is a Weyl polygon. If W is a polygon, then we must have J = S, and we speak
simply of the flower F(C) based at C.

Petals. A J-petal is a subset of a J-flower which contains a maximal (s, t)-geodesic
ρ(s, t), together with the unique maximal (t, s)-geodesic ρ(t, s) such that ρ(s, t) ∼
ρ(t, s). The petals form a partition of the flower. A flower naturally induces a set of
suites; for each petal

{
ρ(s, t), ρ(t, s)

}
, take the suite ρ(s, t)ρ(t, s)−1.

Figure 4.4 shows a Weyl graph of type A2, in fact a weak generalized 3-gon, with
the flower at C drawn.

Theorem 4.18. Let P be a Weyl polygon, and let C ∈ P be a chamber. Let PC
denote the Weyl data whose underlying generalized chamber system is that of P , and
whose defining suites are those induced by the flower F(C) of P of C. Then PC is
isomorphic to P .
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Proof. Let ω : PC → P be the identity map, which is a morphism of Weyl data since
the defining suites of PC are suites of P . Let θ be a suite of P . We claim that θ is also
a suite of PC , which proves that ω : PC → P is an isomorphism by Proposition 3.4.

To see this, let γ be a geodesic from C to ι(θ) = τ(θ). Using 1-elementary
homotopies and strict homotopies which take place in the suites induced by the flower
F(C) at C, we can obtain a geodesic γ′ which is homotopic to γθγ−1 in both P
and PC . Since P has property (W) and γθγ−1 is null-homotopic in P , any geodesic
homotopic to γθγ−1 in P must be trivial. Thus, γ′ is trivial. Therefore γθγ−1 is
null-homotopic in PC , and so θ is also null-homotopic in PC .

Usually, the data of a Weyl polygon in the form of a rank 2 generalized chamber
system equipped with a flower will come from a group acting freely on the chambers
(flags) of a generalized polygon. The petals can be determined by inspecting the
action. Weyl graphs of rank ≥ 3 can then be constructed by gluing together Weyl
polygons.
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Chapter 5

Singer Lattices

In this chapter, we present an application of the theory of Weyl graphs. We obtain
presentations of all the so-called Singer cyclic lattices in buildings of type M , where
mst ∈ {2, 3,∞} for all s, t ∈ S, and the defining graph L associated to M is connected
(recall that L is different to the Coxeter-Dynkin diagram of M). We achieve this by
first describing the Weyl polygons which can exist as 2-residues in the quotient of
a Singer cyclic lattice of type M , and then determining all the ways in which these
polygons can be glued together to form a Singer graph. Our results generalize those
of [Ess13], in which the Singer lattices of type Ã2 are constructed using complexes of
groups.

5.1 Singer Cyclic Polygons

In this section, we obtain representations of those Weyl m-gons, for m ∈ {2, 3}, which
can exist as 2-residues in the quotient of a Singer cyclic lattice. For 2-gons, the
construction is straightforward. For 3-gons, we will use the method of difference sets
from finite geometry.

5.1.1 Singer Graphs, Singer Polygons, and Singer Lattices

We begin with some definitions. Notice that n-transitive and n-free actions on
buildings correspond to n-connected and n-simply connected quotients respectively.
We call an action panel-regular if its 1-regular. The quotients of buildings which
correspond to panel-regular actions will be called Singer graphs. Thus, a Singer
graph is a Weyl graph whose underlying generalized chamber system consists of
copies of a fixed connected setoid. The cardinal q such that W has k = q + 1 many
chambers is called the order of W. Since all the panel groupoids of W are then
isomorphic to 1× k, the order of a Singer graph determines its underlying generalized
chamber system. We define a Singer building of order q to be a building which is
the universal cover of a Singer graph of order q. If ∆ is a Singer building of order
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q, then each of its panels is isomorphic to 1× k. Thus, a Singer building is locally
finite if and only if it has finite order. The quotient of a building by a group acting
panel-regularly is a Singer graph, and the deck transformation group of the universal
cover of a Singer graph acts panel-regularly. Thus, Singer graphs are essentially
equivalent to buildings which are equipped with a panel-regular action of a group.

We define a Singer polygon to be a rank 2 Singer graph.1 Notice that a Weyl
graph is a Singer graph if and only if its 2-residues are Singer polygons. A Singer
cyclic polygon is a Singer polygon whose fundamental group is cyclic.

Example 5.1. For each 2 ≤ m ≤ ∞, there exists a unique Singer m-gon of order 1.
It is the quotient of Cm by the cyclic group of order m acting by rotations of 2π/m.
We denote this quotient by m\Cm. The Weyl graph m\Cm can be characterized as
the unique simple Weyl polygon with two chambers, and whose panel-groupoids are
both 1× 2.

We will see that for q ≥ 2, there exists a unique Singer cyclic 2-gon of order q, and
for q ≥ 2 a prime power, there exists a Singer cyclic 3-gon of order q. The uniqueness
of this Singer 3-gon is (equivalent to) a long standing conjecture.

We define a Singer lattice Γ < Aut(∆) of order q to be a subgroup of the
automorphism group of a locally finite building ∆ such that Γ\∆ is a Singer graph
of order q. Thus, a Singer lattice Γ acts panel-regularly on ∆. We define a Singer
cyclic lattice to be a Singer lattice whose isotropy of each spherical 2-residue of
∆ is (finite) cyclic. By Proposition 3.40, a Singer cyclic lattice is equivalently a
Singer lattice whose quotient’s 2-residues are Singer cyclic polygons. Our definitions
of Singer lattices and Singer cyclic lattices generalize those in [Ess13] and [Wit16]
to all types of building. Notice that covering theory of Weyl graphs reduces the
construction of Singer lattices to the construction of Singer graphs of finite order.

In this Chapter, we construct the Singer cyclic lattices which act on buildings
whose spherical 2-residues are either generalized 2-gons or generalized 3-gons. We do
this by constructing the corresponding quotients by gluing together Weyl polygons.
Thus, we need representations of the Singer cyclic 2-gons and the Singer cyclic 3-gons.

5.1.2 Weyl Digons

A Weyl digon is a Weyl 2-gon, or equivalently, a Weyl digon is a connected Weyl
graph of type I2(2). Similarly, a generalized digon is a generalized 2-gon. It is well
known that (the isomorphism classes of) finite generalized digons are in bijection with
pairs (q1, q2), where q1, q2 ∈ Z≥1. The simplicial building of the digon corresponding

1 This is more restrictive than the usual definition of a Singer polygon. Many authors define a
Singer polygon to be a generalized polygon equipped with an action of a group which is point-regular.
Our definition of a Singer polygon is equivalent to a generalized polygon equipped with an action of
a group which is point-regular and line-regular.
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to (q1, q2) is the complete bipartite graph on q1 + 1 white vertices and q2 + 1 black
vertices. We denote by D(q1, q2) the Weyl digon which is the generalized digon
corresponding to (q1, q2). For q ∈ Z≥1, we denote D(q, q) by D(q).

A Representation of D(q1, q2). Put k1 = q1 + 1 and k2 = q2. We use the fact
that the simplicial building of D(q1, q2) is the complete bipartite graph on k1 + k2
many vertices to obtain the following representation of D(q1, q2). Let the chambers
of D(q1, q2) be the set,

D(q1, q2)0 = Z/k1Z× Z/k2Z.
Let S = {s, t} be the set of labels of D(q1, q2). The panel groupoid of type s of
D(q1, q2), which is a setoid, is (equivalent to) the equivalence relation,

(x, y) ∼s (x′, y′) if x = x′.

The panel groupoid of type t of D(q1, q2), which is also a setoid, is the equivalence
relation,

(x, y) ∼t (x′, y′) if y = y′.

Thus, the generalized digon D(q1, q2) is a k1 × k2 grid of chambers, with chambers in
the same column being s-equivalent, and chambers in the same row being t-equivalent.
See the left part of Figure 5.1, which shows D(2).

5.1.3 The Singer Cyclic Digons k\D(q)

A Singer cyclic digon is Singer cyclic 2-gon. In this section, we obtain representa-
tions of the Singer cyclic digons. If a group G acts panel-regularly on D(q1, q2), then
|G| = q1 + 1 = q2 + 1. Put q = q1 = q2 and k = q + 1.

Proposition 5.1. Let G be the cyclic group of order k. Then G acts panel-regularly
on D(q), and this action is unique up to equivariant automorphism.

Proof. The group G acts panel-regularly on D(q) as follows; pick a generator g ∈ G
and for (x, y) ∈ Z/kZ× Z/kZ a chamber of D(q), put,

g · (x, y) = (x+ 1, y + 1).

This is an automorphism of D(q) since it is a permutation of the chambers which
preserves ∼s and ∼t. Suppose that G acts in a second way on D(q), which we
denote by ‘•’. For x ∈ Z/kZ, let xs be the s-panel which contains gx • (0, 0), and
for y ∈ Z/kZ, let yt be the t-panel which contains gy • (0, 0). Let (xs, yt) denote the
unique chamber which is contained in both xs and xt. We claim that (x, y) 7→ (xs, yt)
is a permutation of the chambers of D(q). To see this, suppose that,

(x, y) 7→ (xs, yt), (x′, y′) 7→ (x′s, y
′
t), and (xs, yt) = (x′s, y

′
t).
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Then xs = x′s and yt = y′t, and so x = x′ and y = y′ since the action ‘•’ is free on
panels. This permutation is an automorphism since if (x, y) ∼s (x′, y′), then x = x′,
and so xs = x′s (likewise for t). To see that this automorphism is equivariant, we need
to show that h · (x, y) = h • (xs, yt), for each h ∈ G and each chamber (x, y) of D(q).
Let h · x and h · y be the integers such that (h · x, h · y) = h · (x, y), and let h • xs and
h • yt be the integers such that (h • xs, h • yt) = h • (xs, yt). For h = gn, we have,

(h · x)s = (x+ n)s = gx+n • (0, 0) = gn • gx • (0, 0) = gn • xs = h • xs

(h · y)t = (y + n)s = gy+n • (0, 0) = gn • gy • (0, 0) = gn • yt = h • ys.

Corollary 5.1.1. For each q ∈ Z≥1, there is a unique Singer cyclic digon of order q
(up to isomorphism).

Proof. Equivariant actions will produce isomorphic quotients. Therefore the result
follows from Proposition 5.1.

We denote by k\D(q) the unique Singer cyclic digon of order q. Notice that for
q = 1, we have 2\D(1) ∼= 2\C2 (see Example 5.1).

A Representation of k\D(q). Whilst k\D(q) is well defined up to isomorphism,
it will be useful to have a canonical representation of k\D(q). Let G be the cyclic
group of order k, and let g ∈ G be a generator. We represent k\D(q) as the quotient
of D(q) by the action of G given by g · (x, y) = (x+ 1, y + 1), for (x, y) a chamber of
D(q).

Recall that we have an associated covering π : D(q) → G\D(q). Let the set of
chambers of k\D(q) be C = Z/kZ, and identify k\D(q) with G\D(q) by letting a
chamber x ∈ C be the π-image of (0, x) ∈ D(q). To complete our representation of
k\D(q), we need to specify a set of defining suites. We first determine what the
flowers of k\D(q) are by inspecting the covering π : D(q)→ k\D(q). We can do this
because the suites of k\D(q) are exactly the images of the suites of D(q).

Let us introduce some notation for galleries. Let x, y and z be chambers. Then
we denote by,

[x
s−→ y

t−→ z]

the gallery whose sequence of edges is i, j, where υ(i) = s, υ(j) = t, i goes from x to
y, and j goes from y to z.

Proposition 5.2. For each chamber x ∈ C, the petals of the flower of k\D(q) based
at x are,

[x
s−→ y

t−→ z] ∼ [x
t−→ y′

s−→ z]

where y, z, y′ ∈ C, x 6= y 6= z, and y′ = x− y + z.
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Proof. Let,

ρ(s, t) = [x
s−→ y

t−→ z]

be a maximal (s, t)-geodesic of k\D(q) which issues from x. Lift ρ(s, t) with respect
to π to a gallery ρ̃(s, t) of D(q). Let (c, d) ∈ D(q) be the initial chamber of ρ̃(s, t). It
follows from the construction of D(q) that,

ρ̃(s, t) =
[
(c, d)

s−→ (c, d+ y − x)
t−→ (c+ y − z, d+ y − x)

]
.

Let,

ρ(t, s) = [x
t−→ y′

s−→ z]

be the unique maximal (t, s)-geodesic of k\D(q) with ρ(s, t) ∼ ρ(t, s). Let ρ̃(t, s) be
the unique lifting of ρ(t, s) to a gallery which issues from (c, d). Then,

ρ̃(t, s) =
[
(c, d)

t−→ (c+ x− y′, d)
s−→ (c+ x− y′, d+ z − y′)

]
.

We have ρ̃(s, t) ∼ ρ̃(t, s) since π is a covering, and so,

(c+ y − z, d+ y − x) = (c+ x− y′, d+ z − y′)

which occurs if and only if,

y′ = x− y + z.

The Defining Suites of k\D(q). We let the defining suites of k\D(q) be those
which are induced by the flower based at 0. Thus, by Proposition 5.2, the defining
suites of k\D(q) are the cycles,

[0
s−→ y

t−→ z
s−→ (z − y)

t−→ 0] (♦)

where y, z ∈ C and 0 6= y 6= z. Notice that there are q2 many defining suites. These
defining suites are sufficient by Theorem 4.18.

Example 5.2. Let q = 2. Let us calculate the 22 = 4 defining suites of 3\D(2):

[0
s−→ 1

t−→ 0
s−→ 2

t−→ 0]

[0
s−→ 1

t−→ 2
s−→ 1

t−→ 0]

[0
s−→ 2

t−→ 0
s−→ 1

t−→ 0]

[0
s−→ 2

t−→ 1
s−→ 2

t−→ 0].

One can check that the lifting of these galleries in Figure 5.1 to galleries which issue
from either (0, 0), (1, 1), or (2, 2) are cycles in D(2).
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Figure 5.1: The generalized digon D(2) and the Singer cyclic digon 3\D(2)

Lemma 5.3. Let q ∈ Z≥1, k = q + 1, and let C = Z/kZ. Let r ∈ Z/kZ. Then the
map,

C → C, x 7→ x+ r

is an automorphism of k\D(q).

Proof. This map is clearly a chamber system automorphism. To check that it is also an
automorphism of Weyl data, by the characterization of isomorphisms Proposition 3.4
and the properties of flowers Theorem 4.18, we just have to check the preservation of
the flowers of k\D(q). This follows from Proposition 5.2, and the fact that,

y′ + r = (x+ r)− (y + r) + (z + r).

Corollary 5.3.1. Let P be a Singer cyclic digon of order q, and let C ∈ P be any
chamber. Then there exists an isomorphism ω : P → k\D(q) such that ω(C) = 0.

Proof. By Corollary 5.1.1 there exists an isomorphism ω′ : P → k\D(q). Let ω′′ be
the isomorphism,

ω′′ : k\D(q)→ k\D(q), x 7→ x− ω′(C).

Then we can take ω = ω′′ ◦ ω′.

5.1.4 The Universal Group of k\D(q)

To calculate the universal group of k\D(q), we need to equip k\D(q) with a generating
set S = B t I. Since each panel groupoid of k\D(q) is a setoid, we have B = ∅.
Let C∗ = {1, . . . , q} ⊂ C. For n ∈ C∗ and σ ∈ {s, t}, let g(n,σ) be the edge 0

σ−→ n of
k\D(q). Then put,

S = I =
{
g(n,s), g(n,t), g

−1
(n,s), g

−1
(n,t) : n ∈ C∗

}
.
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For notational convenience, let g(0,s), g(0,t), g
−1
(0,s), and g−1(0,t) denote the empty word.

Then it follows from (♦) that the set of S-suites of k\D(q) is,

R =
{
g(y,s)g

−1
(y,t)g(z,t)g

−1
(z,s)g(z−y,s)g

−1
(z−y,t) : y, z ∈ C; 0 6= y 6= z

}
.

We now substitute a(n) = g(n,s)g
−1
(n,t), for n ∈ C∗. Thus, the new generating set is,

S ′ =
{
g(n,s), g(n,t), g

−1
(n,s), g

−1
(n,t), a(n) : n ∈ C∗

}

and, letting a(0) and a−1(0) denote the empty word, a new set of equivalent relations is,

R′ =
{
a(y)a

−1
(z)a(z−y) = 1 : y, z ∈ C; 0 6= y 6= z

a(n) = g(n,s)g
−1
(n,t) : n ∈ C∗

}
.

By putting z = 0, we see that a(y)a(−y) = 1 for y ∈ C∗. By putting z = 1, we see
that a(y)a

−1
(1)a(1−y) = 1, or equivalently a(y) = a(y−1)a(1), for y ∈ C∗, y 6= 1. Thus, by

induction, we have a(y) = ay(1) for y ∈ C∗. In particular, we have ak(1) = 1. If we put

a = a(1) and include the consequence ak = 1, then the relations a(y)a
−1
(z)a(z−y) = 1 are

redundant. Therefore a new generating set is,

S ′′ =
{
g(n,s), g(n,t), g

−1
(n,s), g

−1
(n,t), a : n ∈ C∗

}

and a new set of equivalent relations is,

R′′ =
{
ak = 1, an = g(n,s)g

−1
(n,t) : n ∈ C∗

}
.

Thus, we obtain the following:

Lemma 5.4. Let k\D(q) be the unique Singer cyclic digon of order q. Then the
universal group of k\D(q) is,

FG(k\D(q)) =
〈
g(n,σ), g

−1
(n,σ), a | ak = 1, an = g(n,s)g

−1
(n,t), g(n,σ)g

−1
(n,σ) = 1

〉

for σ ∈ {s, t} and n ∈ C∗.

The Fundamental Group of k\D(q). Recall that to calculate the fundamental
group of k\D(q) we need to quotient out a spanning tree. Of course, we know the
fundamental group should be cyclic of order k. Let T be the spanning tree,

T =
{
g(n,t), g

−1
(n,t) : n ∈ C∗

}
.

Then we recover the fundamental group of k\D(q),

π1(k\D(q), T ) =
〈
g(n,s), g

−1
(n,s), a | ak = 1, an = g(n,s), g(n,s)g

−1
(n,s) = 1

〉
∼
〈
a|ak = 1

〉

for n ∈ C∗. Notice that the image of the gallery [0
s−→ n

t−→ 0] in the fundamental
group at T is an (see Figure 5.1). Recall that one obtains an action of π1(k\D(q), T )
on D(q) by picking a chamber in D(q). In fact, different choices of chamber will
result in the same action since π1(k\D(q)) is abelian.
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5.1.5 Weyl Triangles

A Weyl triangle is a Weyl 3-gon, or equivalently, it is a connected Weyl graph of
type A2. A simply connected Weyl triangle is called a generalized triangle.

Thick Generalized Triangles vs Projective Planes. The simplicial building
of a thick generalized triangle is (isomorphic to) the incidence graph of a projective
plane; conversely, the incidence graph of a projective plane is (isomorphic to) a
simplicial building (see [AB08, Section 4.2]). In this way, thick generalized triangles
are equivalent to projective planes.

Finite Moufang Triangles. See [VM12, Section 2.2] and [TW02] for more details
on the following. Let q ≥ 2 be a prime power, and let Fq be the Galois field of order
q. Associated to each Fq is the finite Desarguesian projective plane PG(2, q). We
denote by T (q) the building whose associated simplicial building is the incidence
graph of PG(2, q). Thus, the T (q) are exactly the thick generalized triangles which
correspond to finite Desarguesian projective planes. The generalized triangles T (q)
are exactly the so-called finite Moufang triangles. Let k = q + 1 and δ = q2 + q + 1.
We have the following; T (q) has δ many panels of each type, kδ many chambers, and
the panel groupoids are all 1× k.

Finite Non-Moufang Triangles. As well as the T (q) are the weak but not thick
finite generalized triangles, and the thick finite triangles which correspond to non-
Desarguesian projective planes.

5.1.6 The Singer Cyclic Triangles δ\T (D)

A Singer cyclic triangle is Singer cyclic 3-gon. In this section, we obtain repre-
sentations of the Singer cyclic triangles using the method of difference sets. A good
reference for the material of this section is [Dem68].

Difference Sets. In the language of Weyl graphs, the method of difference sets
D in a group G provides a way of constructing a generalized triangle T (D) and a
universal cover,

π : T (D)→ G\T (D)

where π is the quotient map associated to a panel-regular action of G on T (D). A
good reference for general difference sets is [Dem68]. We focus on the case where G
is cyclic, or equivalently, where G\T (D) is a Singer cyclic triangle. Such difference
sets are usually called cyclic difference sets, and are studied in [Ber53]. We define a
difference set D of order q to be a subset D ⊂ Z/δZ such that the map,

D ×D → Z/δZ, (x, y) 7→ x− y
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when restricted to the off-diagonal elements is a bijection into
{

1, . . . , δ − 1
}

. Thus,
for all non-zero n ∈ Z/δZ, there exists a unique pair d, d′ ∈ D such that d− d′ = n.
Notice that |D| = q + 1 = k. A difference set D is called based if 0 ∈ D, in which
case we let D∗ = D \ {0}.

Operations on Difference Sets. Let D be a difference set of order q, and let
x ∈ Z/δZ and r ∈ Aut(Z/δZ) = Z/δZ∗. Then rD + x = {rd + x : d ∈ D} is also a
difference sets of order q. Two difference sets D and D′ are called equivalent if there
exists x ∈ Z/δZ and r ∈ Z/δZ∗ such that D′ = rD + x. Our notion is equivalence is
different to that of [Ber53].

The Generalized Triangle T (D). Let D be a difference set of order q. By results
of Singer [Sin38], we obtain a generalized triangle T (D) of order q from D as follows.
Let the chambers of T (D) be the set,

T (D)0 =
{

(x, x+ d) : x ∈ Z/δZ, d ∈ D
}
.

Let S = {s, t} be the set of labels of T (D). The panel groupoid of type s of T (D) is
(equivalent to) the equivalence relation,

(x, y) ∼s (x′, y′) if x = x′.

The panel groupoid of type t of T (D) is the equivalence relation,

(x, y) ∼t (x′, y′) if y = y′.

Figure 5.2 shows T (D) for D = {0, 1, 3}, in which case T (D) ∼= T (2) ∼ PG(2, 2).
Let G be the cyclic group of order δ, and let g ∈ G be a generator. Then G acts
panel-regularly on T (D) via g · (x, y) = (x+ 1, y + 1). Hence, we obtain a universal
cover,

π : T (D)→ G\T (D)

where G\T (D) is a Singer cyclic triangle of order q. Let us denote by δ\T (D) a Weyl
graph which is isomorphic to G\T (D) .

A difference set D is called Desarguesian if T (D) ∼= T (q). We have the following
well known open question:

Conjecture 5.5. All difference sets are Desarguesian.

Equivalent Difference Sets. Let D and D′ be equivalent difference sets of order q.
Let z ∈ Z/δZ and r ∈ Z/δZ∗ such that D′ = rD+ z. Then the bijection of chambers,

ω0 : T (D)0 → T (D′)0, (x, y) 7→ (rx+ z, ry + z)

clearly preserves ∼s and ∼t. Thus, ω0 determines an isomorphism ω : T (D)→ T (D′).
Let G and G′ be the cyclic groups of order δ which act on T (D) and T (D′) respectively,
with g ∈ G and g′ ∈ G′ being the chosen generators. Let ψ : G → G′ be the
isomorphism such that g 7→ (g′)r. Then ω is ψ-equivariant. Thus, equivalent
difference sets essentially construct the same universal cover.
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Difference Sets Obtained from Actions. Let G be a cyclic group of order δ
which acts panel-regularly on a generalized triangle T of order q. Pick a generator
g ∈ G, an s-panel P of T , and a t-panel L of T . Then,

D = {d ∈ Z/δZ : P ∩ gd · L 6= ∅}

is a difference set of order q, called a difference obtained from the action of G.
Different choices of g, P and L produce equivalent difference sets.

Let G also act on T (D) by g · (x, y) = (x+ 1, y+ 1). For x ∈ Z/δZ and d ∈ D, let
(Px, Lx+d) denote the unique chamber of T which is contained in gx · P and gx+d · L.
Then,

T (D)→ T , (x, x+ d) 7→ (Px, Lx+d)

is an equivariant isomorphism. Conversely, the difference sets obtained from the action
of G on T (D) will be equivalent to D. Thus, there is essentially a 1-1 correspondence
between difference sets up to equivalence and panel-regular actions of cyclic groups
on generalized triangles.

The following is a classical result of Singer, combined with the uniqueness result
of Berman:

Theorem 5.6 (Singer-Berman). For all q a prime power, there exists a Desarguesian
difference set of order q, and this difference set is unique up to equivalence.

Proof. For existence see [Sin38], for uniqueness see [Ber53].

A Representation of δ\T (D). As with the Singer cyclic digons, it will be useful
to have a canonical representation of δ\T (D). Let the set of chambers of δ\T (D) be
D, where d ∈ D is the π-image of (x, x+ d) ∈ T (D). To complete our representation
of δ\T (D), we need to specify a set of defining suites. Let us first determine what
the flowers of δ\T (D) are by inspecting the covering π : T (D)→ δ\T (D):

Proposition 5.7. Let D be a difference set of order q. For each chamber C ∈ D,
the petals of the flower of δ\T (D) based at C are,

[C
s−→ x

t−→ y
s−→ z] ∼ [C

t−→ x′
s−→ y′

t−→ z]

where C, x, y, z, x′, y′ ∈ D, C 6= x 6= y 6= z, and x′ − y′ = C − x+ y − z.

Proof. Let

ρ(s, t) = [C
s−→ x

t−→ y
s−→ z]

be a maximal (s, t)-geodesic of δ\T (D) which issues from C. Lift ρ(s, t) with respect
to π to a gallery ρ̃(s, t) of T (D). Let (c, d) ∈ Z/δZ× Z/δZ be the initial chamber of
ρ̃(s, t). It follows from the construction of T (D) that,

ρ̃(s, t) =
[
(c, d)

s−→ (c, d+x−C)
t−→ (c+x−y, d+x−C)

s−→ (c+x−y, d+x−C+z−y)
]
.
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Let,

ρ(t, s) = [C
t−→ x′

s−→ y′
t−→ z]

be the unique maximal (t, s)-geodesic of δ\T (D) with ρ(s, t) ∼ ρ(t, s). Let ρ̃(t, s) be
the lifting of ρ(t, s) to a gallery which issues from (c, d). Then,

ρ̃(t, s) =
[
(c, d)

t−→ (c+C−x′, d)
s−→ (c+C−x′, d+y′−x′) t−→ (c+C−x′+y′−z, d+y′−x′)

]
.

We have ρ̃(s, t) ∼ ρ̃(t, s), and so,

(c+ x− y, d+ x− C + z − y) = (c+ C − x′ + y′ − z, d+ y′ − x′)

which occurs if and only if,

x′ − y′ = C − x+ y − z.

Let us assume that D is based. One can easily see that every difference set is
equivalent to a based difference set, so this is no real restriction. We let the defining
suites of δ\T (D) be those which are induced by the flower based at 0 ∈ D. Thus, by
Proposition 5.7, the defining suites of δ\T (D) are the cycles,

[0
s−→ x

t−→ y
s−→ z

t−→ y′
s−→ x′

t−→ 0]

where x, y, z, x′, y′ ∈ D, 0 6= x 6= y 6= z, and,

y′ − x′ = x− y + z. (♣)

Notice that there will be q3 many defining suites.

Example 5.3. Let D = {0, 1, 3}. Then D is a difference set of order 2. Let us
calculate the 23 = 8 defining suites of 7\T (D):

[0
s−→1

t−→ 0
s−→ 1

t−→ 3
t−→ 1

s−→ 0]

[0
s−→1

t−→ 0
s−→ 3

s−→ 0
t−→ 3

t−→ 0]

[0
s−→1

t−→ 3
s−→ 0

t−→ 1
s−→ 3

t−→ 0]

[0
s−→1

t−→ 3
s−→ 1

s−→ 0
t−→ 1

t−→ 0]

[0
s−→3

t−→ 0
s−→ 1

s−→ 0
t−→ 3

t−→ 0]

[0
s−→3

t−→ 0
s−→ 3

s−→ 0
t−→ 1

t−→ 0]

[0
s−→3

t−→ 1
s−→ 0

s−→ 3
t−→ 1

t−→ 0]

[0
s−→3

t−→ 1
s−→ 3

s−→ 1
t−→ 3

t−→ 0].
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Figure 5.2: The generalized triangle T (D) and the Singer cyclic triangle 7\T (D)

The Singer Cyclic Triangle δ\T (q). Let D and D′ be equivalent difference sets
of order q with D′ = rD + x. Then it follows from Proposition 5.7 that,

ω : δ\T (D)→ δ\T (D′), d 7→ rd+ x

preserves flowers, and so is an isomorphism. By Theorem 5.6, this shows that if
Conjecture 5.5 holds, then for each q a prime power, there is a unique Singer cyclic
triangle of order q. We let δ\T (q) denote the unique (up to isomorphism) Singer
cyclic triangle of order q whose universal cover is T (q). Thus, if D is Desarguesian,
we have δ\T (D) ∼= δ\T (q).

The following result shows that given any chamber C in a Singer cyclic triangle
P, we can represent P as δ\T (D), for some based difference set D, such that C is
identified with 0 ∈ D.

Lemma 5.8. Let P be a Singer cyclic triangle of order q, and let C ∈ P be any
chamber. Then there exists a based difference set D of order q and an isomorphism
ω : P → δ\T (D) such that ω(C) = 0.

Proof. Let g be a generator of the deck transformation group of the universal cover
∆→ P. Let D′ be a difference set obtained from this action. Then there exists an
isomorphism ω′ : P → δ\T (D′). Let D = D′ − ω′(C), and let ω′ be the isomorphism,

ω′ : δ\T (D′)→ δ\T (D), x 7→ x− ω′(C).

Then we can take ω = ω′′ ◦ ω′.
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5.1.7 The Universal Group of δ\T (D)

In this section, we calculate the universal group of δ\T (D). We assume that D is a
based difference set. Recall that D∗ = D \ {0}.

First, we need to equip δ\T (D) with a generating set S = B∪I. Since each panel
groupoid of δ\T (D) is a setoid, we have B = ∅. For n ∈ D∗ and σ ∈ {s, t}, let g(n,σ)
be the edge 0

σ−→ n. Then put,

S = I =
{
g(n,s), g(n,t), g

−1
(n,s), g

−1
(n,t) : n ∈ D∗

}
.

For notational convenience, let g(0,s), g(0,t), g
−1
(0,s), and g−1(0,t) denote the empty word. It

follows from (♣) that the set of S-suites of δ\T (D) is,

R =
{
g(x,s)g

−1
(x,t)g(y,t)g

−1
(y,s)g(z,s)g

−1
(z,t)g(y′,t)g

−1
(y′,s)g(x′,s)g

−1
(x′,t) :

x, y, z, y′, x′ ∈ D; 0 6= x 6= y 6= z; y′ − x′ = x− y + z
}
.

We now substitute a(n) = g(n,s)g
−1
(n,t), for n ∈ D∗. Thus, the new generating set is,

S ′ =
{
g(n,s), g(n,t), g

−1
(n,s), g

−1
(n,t), a(n) : n ∈ D∗

}

and, letting a(0) and a−1(0) denote the empty word, a new set of equivalent relations is,

R′ =
{
a(x)a

−1
(y)a(z)a

−1
(y′)a(x′) = 1 : x, y, z, y′, x′ ∈ D; 0 6= x 6= y 6= z; y′ − x′ = x− y + z

a(n) = g(n,s)g
−1
(n,t) : n ∈ D∗

}
.

Let us rearrange a(x)a
−1
(y)a(z)a

−1
(y′)a(x′) = 1 to give,

a(x)a
−1
(y)a(z) = a−1(x′)a(y′) (♠)

for x, y, z, y′, x′ ∈ D, 0 6= x 6= y 6= z, and y′ − x′ = x − y + z. Let e, e′ ∈ D be the
unique integers such that e− e′ = 1, and put a = a(e)a

−1
(e′). In particular, if 1 ∈ D, we

just have a = a(1) = g(1,s)g
−1
(1,t). Fix n ∈ {1, . . . , δ− 1}, and let c, c′ ∈ D be the unique

integers such that,
c− c′ = n.

If n 6= δ − 1, let d, d′ ∈ D be the unique integers such that,

d− d′ = n+ 1.

If n 6= −e, let f, f ′ ∈ D be the unique integers such that,

f ′ − f = n+ e.

Now, if n = δ − 1, then c′ = e and c = e′, and so,

a(c)a
−1
(c′)a = a(c)a

−1
(c′)a(e)a

−1
(e′) = 1. (♥)
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We now claim that if n 6= δ − 1, then,

a(c)a
−1
(c′)a = a(d)a

−1
(d′).

If n 6= δ − 1 but n = −e, then c = 0, c′ = e, d = 0, and e′ = d′, and so,

a(c)a
−1
(c′)a = a(c)a

−1
(c′)a(e)a

−1
(e′) = a−1(e′) = a(d)a

−1
(d′).

If n 6= δ − 1, n 6= −e, c′ 6= e, and f ′ 6= e′, then by two applications of (♠), we have,

a(c)a
−1
(c′)a = a(c)a

−1
(c′)a(e)a

−1
(e′) = a−1(f)a(f ′)a

−1
(e′) = a(d)a

−1
(d′).

If n 6= δ − 1, n 6= −e, and c′ = e, then c = d and e′ − d′, and so,

a(c)a
−1
(c′)a = a(c)a

−1
(c′)a(e)a

−1
(e′) = a(c)a

−1
(e′) = a(d)a

−1
(d′).

Finally, if n 6= δ − 1, n 6= −e, and f ′ = e′, then d = 0 and f = d′, and so,

a(c)a
−1
(c′)a = a(c)a

−1
(c′)a(e)a

−1
(e′) = a−1(f)a(f ′)a

−1
(e′) = a(d)a

−1
(d′).

This proves the claim. Therefore, by induction, we have an = a(c)a
−1
(c′), and in particular

an = a(n) if n ∈ D. The fact that aδ = 1 then follows from (♥). Notice that in the
presence of an = a(n) and aδ = 1, the relations of the form a(x)a

−1
(y)a(z)a

−1
(y′)a(x′) = 1 are

redundant. Thus, similar to Section 5.1.4, a new generating set is,

S ′′ =
{
g(n,s), g(n,t), g

−1
(n,s), g

−1
(n,t), a : n ∈ D∗

}

with relations,
R′′ =

{
aδ = 1, an = g(n,s)g

−1
(n,t) : n ∈ D∗

}
.

We obtain the following:

Lemma 5.9. Let D be a based difference set and let δ\T (D) be the Singer cyclic
triangle constructed from D. Then the universal group of δ\T (D) is,

FG(δ\T (D)) =
〈
g(n,σ), g

−1
(n,σ), a | aδ = 1, an = g(n,s)g

−1
(n,t), g(n,σ)g

−1
(n,σ) = 1

〉

for σ ∈ {s, t} and n ∈ D∗.

The Fundamental Group of δ\T (D). Let T be the spanning tree,

T =
{
g(n,t), g

−1
(n,t) : n ∈ D∗

}
.

Thus, we recover the fundamental group of δ\T (D),

π1(δ\T (D), T ) =
〈
g(n,s), g

−1
(n,s), a | aδ = 1, an = g(n,s), g(n,s)g

−1
(n,s) = 1

〉
∼
〈
a | aδ = 1

〉
.

Notice that the image of the gallery [0
s−→ n

t−→ 0] in the fundamental group at T is
an (see Figure 5.2).
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( 13 ) ( 51 )

( 64 )

t

s u

Figure 5.3: A gluing matrix of type Ã2 and order 2

5.2 Singer Cyclic Lattices of Type M

In this section, we construct the Singer cyclic lattices of type M , where mst ∈ {2, 3,∞}
for all s, t ∈ S, and the defining graph of M is connected. Modulo an equivalence
relation on our construction, this classifies all such lattices. This equivalence is
described in the Ã2 case in terms of ‘based difference matrices’ by Witzel [Wit16],
which builds on the work of Essert [Ess13]. Based difference matrices correspond
to what we will call gluing matrices. Gluing matrices are examples of gluing data,
described in Section 3.1.5.

5.2.1 Gluing Matrices M
The Graph L. Let M be a Coxeter matrix with mst ∈ {2, 3,∞} for all s, t ∈ S,
whose defining graph L is connected. Thus, L is a connected simplicial graph with
V (L) = S, and whose edges are labeled over {2, 3}.

Gluing Matrices M. Gluing matrices will play the same roll as based difference
matrices in the work of Essert [Ess13]. Let q ∈ Z≥2 and k = q + 1. Let C = Z/kZ
and C∗ = {1, . . . , q} ⊂ C. Let Ē be an orientation of L; formally, let Ē ⊆ S × S such
that for all (s, t) ∈ Ē, we have {s, t} ∈ E(L), and for all {s, t} ∈ E(L), exactly one
of {(s, t), (t, s)} is contained in Ē. We define a gluing matrixM =MM,q of type
M and order q to be a matrix,

M : C∗ × Ē → Z≥1

such that,

(i) for (s, t) ∈ Ē with mst = 2, each C∗-tuple M(−, (s, t)) is a permutation of C∗

(ii) for (s, t) ∈ Ē with mst = 3, each C∗-tupleM(−, (s, t)) is a permutation of some
D∗, where D is a based difference set of order q.

Let us denoteM(n, (s, t)) by n(st). If mst = 2, we think of the integer n(st) as being
an element of Z/kZ, and if mst = 3, we think of the integer n(st) as being an element
of Z/δZ.
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Example 5.4. Let L be the defining graph of Ã2. Figure 5.3 shows L decorated
with the data of the following gluing matrix M =ML,2:

(s, t) (t, u) (u, s)

1 1 5 6
2 3 1 4

Notice that each column is of the form D∗ for some based difference set D of order 2.

5.2.2 The Singer Graph WM
The Weyl Data of WM. Let L, Ē, q, k, C, and C∗ be as above, and let M be a
gluing matrix of order q. We associated a Singer graph W =WM of type M toM as
follows. The set of chambers is W0 = C, and each panel groupoid is Ws

∼= 1× k, for
s ∈ S. Let (s, t) ∈ Ē, and let J = {s, t}. Notice that there is exactly one J-residue
WJ of W .

If mst = 2, let Ωst : WJ → k\D(q) be the chamber system morphism (over
id : J → J) such that for x ∈ W0, we have,

Ωst(x) =

{
0 if x = 0

x(st) otherwise.

Then, let the defining suites of WJ be the Ωst-preimages of the defining suites of
k\D(q). Thus, the defining suites are,

[0
s−→ y

t−→ z
s−→ y′

t−→ 0]

where y, z, y′ ∈ C, 0 6= y 6= z, and Ωst(y
′) = Ωst(z)− Ωst(y).

If mst = 3, put D = M(−, (s, t)) ∪ {0}, and let Ωst : WJ → δ\T (D) be the
chamber system morphism (over id : J → J) such that for x ∈ W0, we have,

Ωst(x) =

{
0 if x = 0

x(st) otherwise.

Then, let the defining suites of WJ be the Ωst-preimages of the defining suites of
δ\T (D). Thus, the defining suites are,

[0
s−→ x

t−→ y
s−→ z

t−→ y′
s−→ x′

t−→ 0]

where y, z, y′, x′ ∈ C, 0 6= x 6= y 6= z, and Ωst(y
′)− Ωst(x

′) = Ωst(x)− Ωst(y) + Ωst(z).
This defines the Weyl data W . Then, W is a Weyl graph by Theorem 4.16.
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The Universal Group of WM. Let W =WM be as constructed above. We now
calculate the universal group of W . First, we need a generating set S = B t I. Since
each panel groupoid of W is a setoid, we have B = ∅. For n ∈ C∗ and σ ∈ S, let g(n,σ)
be the edge 0

σ−→ n. Then put,

S = I =
{
g(n,σ), g

−1
(n,σ) : n ∈ C∗, σ ∈ S

}
.

Then the set of S-suites R of W is the union of the S-suites in each of its spherical
2-residues,

R =
{
g(y,s)g

−1
(y,t)g(z,t)g

−1
(z,s)g(y′,s)g

−1
(z−y,t)

g(x,u)g
−1
(x,v)g(y,v)g

−1
(y,u)g(z,u)g

−1
(z,v)g(y′,v)g

−1
(y′,u)g(x′,u)g

−1
(x′,v)

}

where (s, t) ∈ Ē with mst = 2, y, z ∈ C with 0 6= y 6= z, and,

Ωst(y
′) = Ωst(z)− Ωst(y)

and (u, v) ∈ Ē with muv = 3, x, y, z, y′, x′ ∈ C with 0 6= x 6= y 6= z, and,

Ωst(y
′)− Ωst(x

′) = Ωst(x)− Ωst(y) + Ωst(z).

We now make the same substitutions in each spherical 2-residue of W that we made
in order to obtain the presentations of Lemma 5.4 and Lemma 5.10. For (s, t) ∈ Ē
with mst = 2, let n ∈ C∗ such that Ωst(n) = 1. Then put,

ast = g(n,s)g
−1
(n,t).

For (s, t) ∈ Ē with mst = 3, let n, n′ ∈ C such that Ωst(n) − Ωst(n
′) = 1. For

notational convenience, let g(0,σ) denote the empty word for all σ ∈ S, and put,

ast = g(n,s)g
−1
(n,t)(g(n′,s)g

−1
(n′,t))

−1.

Thus, for both mst = 2 and mst = 3, ast is the ‘a’ from the calculation of the universal
group of the target of Ωst. Let us also stop including the g−1(n,s) as generators for
simplicity, which is obviously possible. Then the new set of generators is,

S ′ =
{
g(n,σ), ast : n ∈ C∗; σ ∈ S; (s, t) ∈ Ē

}

and it follows from Lemma 5.4 and Lemma 5.10 that a new set of equivalent relations
is,

R′ =
{

(ast)
δ(st) = 1, (ast)

n(st) = g(n,s)g
−1
(n,t) : (s, t) ∈ Ē; n ∈ C∗

}

where for (s, t) ∈ Ē, we have,

δ(st) =

{
k = q + 1 if mst = 2

δ = q2 + q + 1 if mst = 3.

Thus, we obtain the following:
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Lemma 5.10. Let M be a gluing matrix and let W = WM be the Weyl graph
associated to M. Then the universal group of W is,

FG(W) =
〈
g(n,σ), ast | (ast)

δ(st) = 1, (ast)
n(st) = g(n,s)g

−1
(n,t)

〉

for n ∈ C∗, σ ∈ S, and (s, t) ∈ Ē.

L-Cycles. We define an L-cycle to be a sequence σ1, . . . , σµ of adjacent vertices
of L with σ1 = σµ. We denote the set of L-cycles in L by Cyc(L). If (s, t) /∈ Ē, let
ast = a−1ts ∈ FG(W). Then for each L-cycle σ1, . . . , σµ, and for each n ∈ C∗, we have,

(aσ1σ2)
n(σ1σ2)(aσ2σ3)

n(σ2σ3) . . . (aσµ−1σµ)n(σµ−1σµ)

= g(n,σ1)g
−1
(n,σ2)

g(n,σ2)g
−1
(n,σ3)

. . . g(n,σµ−1)g
−1
(n,σµ)

since (ast)
n(st) = g(n,s)g

−1
(n,t)

= 1 since σ1 = σµ.

Therefore (aσ1σ2)
n(σ1σ2)(aσ2σ3)

n(σ2σ3) . . . (aσµ−1σµ)n(σµ−1σµ) = 1 is a consequence of the
relations of FG(W), which we call the relation induced by σ1, . . . , σµ.

5.2.3 The Singer Lattice ΓM.

In this section, we obtain a presentation of the fundamental group ofW =WM whose
generators are the ast.

The Fundamental Group of W. Fix ξ ∈ S, and let us assume that Ē has been
chosen such that for all u ∈ S, if {u, ξ} ∈ E(L), then (u, ξ) ∈ Ē, i.e. the oriented
edges at ξ terminate at ξ. Let T be the spanning tree,

T =
{
g(n,ξ), g

−1
(n,ξ) : n ∈ C∗

}
.

Then by quotienting out T in FG(W), we obtain,

π1(W , T ) =
〈
g(n,σ), ast,auξ |

(ast)
δ(st) = (auξ)

δ(uξ) = 1, (ast)
n(st) = g(n,s)g

−1
(n,t), (auξ)

n(uξ) = g(n,u)
〉

for n ∈ C∗, σ ∈ S \ {ξ}, (s, t) ∈ Ē with s, t 6= ξ, and (u, ξ) ∈ Ē(L).

Eliminating the g(n,σ). For s, t ∈ S, if (s, t) /∈ Ē, let ast = a−1ts ∈ π1(W , T ). For
σ ∈ S, let σ, σ1, . . . , σµ, ξ be a sequence of adjacent vertices of L (recall that L is
connected). For n ∈ C∗, we have (aσµξ)

n(σµξ) = g(n,σµ), and so,

g(n,σ) = g(n,σ)g
−1
(n,σ1)

g(n,σ1) . . . g
−1
(n,σµ)

g(n,σµ)

= (aσσ1)
n(σσ1)(aσ1σ2)

n(σ1σ2) . . . (aσµ−1σµ)n(σµ−1σµ)(aσµξ)
n(σµξ).
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In the presence of relations induced by L-cycles, the relations of the form (ast)
n(st) =

g(n,s)g
−1
(n,t) are redundant since, after substitution, the relation is induced by an L-cycle

of the form,
ξ, σµ, . . . , σ1, t, s, σ

′
1, . . . , σ

′
µ, ξ.

Therefore we can drop the g(n,σ) from the generating set of π1(W , T ) and include the
relations induced by L-cycles to obtain an equivalent group presentation of π1(W , T ):

Theorem 5.11. Let M be a gluing matrix and let W = WM be the Weyl graph
associated to M. Then the fundamental group Γ = ΓM of W has the presentation,

Γ =
〈
ast, ats | astats = (ast)

δ(st) = (aσ1σ2)
n(σ1σ2) . . . (aσµ−1σµ)n(σµ−1σµ) = 1

〉

for (s, t) ∈ Ē, n ∈ C∗, and σ1, . . . , σµ ∈ Cyc(L). Thus, Γ is a Singer cyclic lattice in
a building ∆ = ∆M of type M , with Γ\∆ ∼=W .

The number of relations induced by L-cycles that need to be included in order to
obtain a sufficient set of relations will depend upon the homotopy type of L

5.2.4 Classification of Singer Cyclic Lattices of type M

Let M be a Coxeter matrix with mst ∈ {2, 3,∞} for all s, t ∈ S, whose defining graph
L is connected. We now show that every Singer cyclic lattice Γ < Aut(∆) in a building
∆ of type M is equivalent to a Singer cyclic lattice of the form ΓM < Aut(∆M), for
some gluing matrix M of type M . This generalizes a theorem of Essert, who did
type Ã2.

The Quotient by a Singer Cyclic Lattice. Let ∆ be a locally finite building of
type M , and let Γ < Aut(∆) be a Singer cyclic lattice in ∆ of order q. Then Γ\∆ is
a Singer graph of order q with spherical Weyl polygons either the digon k\D(q), the
triangle δ\T (q), or (if they exist) non-Desarguesian Singer cyclic triangles. Therefore
the only choices Γ\∆ has are however these polygons are glued together. We now
show that gluing matrices encode all the possible choices, and so Γ\∆ ∼= WM for
some gluing matrix M.

The Gluing Matrix M(Γ). Let C = Z/kZ, and let Ē be an orientation of L. By
choosing a bijection (Γ\∆)0 → C, let us identify the chambers of Γ\∆ with C. We
now define a gluing matrix,

M =M(Γ) : C∗ × Ē → Z≥1

of type M and order q as follows. For each (s, t) ∈ Ē such that mst = 2, by
Corollary 5.3.1, there exists a permutation C → C with 0 7→ 0 which is an isomorphism
on the {s, t}-residue of Γ\∆ into k\D(q). Let M(−, (s, t)) be the restriction of the
permutation C → C to C∗. For each (s, t) ∈ Ē such that mst = 3, by Lemma 5.8,
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there exists a based difference set D and a bijection C → D with 0 7→ 0 which is
an isomorphism on the {s, t}-residue of Γ\∆ into δ\T (D). Let M(−, (s, t)) be the
restriction of C → D to C∗. We call M the gluing matrix associated to Γ. Then we
obtain the following:

Theorem 5.12. Let M be a Coxeter matrix with mst ∈ {2, 3,∞} for all s, t ∈ S,
whose defining graph is connected. Let ∆ be a locally finite building of type M , and
let Γ < Aut(∆) be a Singer cyclic lattice in ∆. Let M =M(Γ) be a gluing matrix
associated to Γ. Then there exists an isomorphism ω : Γ\∆→WM.

Proof. Let ω : Γ\∆→WM be the morphism whose map on chambers is the identity
C → C. The fact that ω is an isomorphism then follows directly from the definition
of M and the construction of WM.

This gives a classification of Singer cyclic lattices of type M modulo an equivalence
relation on gluing matrices, since different gluing matrices may construct the same
lattice. This equivalence for M = Ã2 is described in [Wit16, Corollary 3.19] (in terms
of difference matrices).

5.3 Examples of Singer Cyclic Lattices

We finish by constructing some examples of Singer cyclic lattices.

5.3.1 Singer Cyclic Lattices of Type Ã2

The Singer cyclic lattices of type Ã2 were constructed by Essert in [Ess13], and
classified by Witzel in [Wit16]. In [Wit16], it is shown that there are two non-
isomorphic Singer lattices of type Ã2 and order 2. We construct these lattices:

(1) Take the gluing matrixM of type Ã2 shown in Figure 5.4. Put a = ast, b = atu,
and c = aus. Notice that we only need to include one L-cycle in the presentation.
From Theorem 5.11, we obtain,

ΓM =
〈
a, b, c | a7 = b7 = c7 = abc = a3b3c3 = 1

〉
.

(2) Take the gluing matrixM′ of type Ã2 shown in Figure 5.5. Put a = ast, b = atu,
and c = aus. Then,

ΓM =
〈
a, b, c | a7 = b7 = c7 = abc = a3b3c5 = 1

〉
.
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( 13 ) ( 13 )

( 13 )

t

s u

Figure 5.4: The gluing matrix M

( 13 ) ( 13 )

( 15 )

t

s u

Figure 5.5: The gluing matrix M′

5.3.2 Hyperbolic Singer Lattices

We define a hyperbolic Coxeter group to be a Coxeter group whose Davis chamber
is a compact hyperbolic polytope. A hyperbolic building is a building whose type
is a hyperbolic Coxeter group. A Fuchsian building is a locally finite hyperbolic
building whose Davis chamber is a hyperbolic polygon.

Example 5.5. Let M be the Coxeter matrix on S = {s, t, u, v} with mst = mtu =
muv = mvs = 3, and msu = mtv =∞. The Coxeter group W of type M acts on the
hyperbolic plane by tiling with squares whose internal angles are all π/3. Let M be
the following gluing matrix of type M and order 3,

(s, t) (t, u) (u, v) (v, s)

1 1 1 1 1
2 3 3 3 3
3 9 9 9 9

Put a = ast, b = atu, c = auv, and d = avs. Again we only need to include one L-cycle
in the presentation. We obtain,

ΓM =
〈
a, b, c, d | a13 = b13 = c13 = d13 = abcd = a3b3c3d3 = a9b9c9d9 = 1

〉
.

Then ∆M is a Fuchsian building. In the language of polyhedral complexes (see
[FHT11]), ΓM is a uniform lattice in the Davis realization of ∆M, which is a (4, L)-
complex, where L is the simplicial building of the projective plane PG(2, 3).

Example 5.6. Let M be the Coxeter matrix on S = {s, t, u, v} with mst = mvs = 2,
mtu = muv = 3, and msu = mtv =∞. Let M be the following gluing matrix of type
M ,

(s, t) (t, u) (u, v) (v, s)

1 1 1 1 1
2 2 3 3 2
3 3 9 9 3
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Figure 5.6: The gluing matrix M of
Example 5.7
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Figure 5.7: The gluing matrix M of
Example 5.8

Put a = ast, b = atu, c = auv, and d = avs. Then,

ΓM =
〈
a, b, c, d | a4 = b13 = c13 = d4 = abcd = a2b3c3d2 = a3b9c9d3 = 1

〉
.

This is a lattice in a Fuchsian building whose Davis realization models apartments as
copies of the hyperbolic plane tessellated by Saccheri quadrangles. The links of the
Davis realization are the complete bipartite graph on 4 + 4 vertices, and the simplicial
building of the projective plane PG(2, 3).

5.3.3 Wild Singer Cyclic Lattices

We finish by constructing two exotic Singer cyclic lattices.

Example 5.7. Let M be the Coxeter matrix on S = {s, t, u, v} with mst = mtu =
mus = muv = 3, and msv = mtv = ∞. Take the gluing matrix M of type M and
order 2 shown in Figure 5.6. Put a = ast, b = atu, c = aus, and d = auv. Then we
only need to include one L-cycle in the presentation. We have,

ΓM =
〈
a, b, c, d | a7 = b7 = c7 = d7 = abc = a5b3c3 = 1

〉
.

Example 5.8. Let M be the Coxeter matrix whose defining graph consists of a
3-cycle and a 4-cycle identified at a vertex, and whose labels are all 3. Take the
gluing matrix M of type M and of order 2 shown in Figure 5.7. Put a = ast, b = atu,
c = aus, d = auv, e = avw, f = awx, and g = axu. The 3-cycle and the 4-cycle of L
are sufficient L-cycles for the presentation, thus,

ΓM =
〈
a, b, c, d, e, f, g | a7, b7, c7, d7, e7, f 7, g7, abc, a3b3c3, defg, d5e5f 5g5

〉
.
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Strict Homotopy in Cayley Graphs

In this section, we establish several properties of those pre-Weyl graphs which are
(isomorphic to) Cayley graphs of Coxeter groups. By Remark A.1, these results are
equivalent to well known facts of word manipulation in Coxeter groups (e.g. the
deletion condition). This section is essentially a translation of [Ron89, Chapter 2]
into the language of pre-Weyl graphs.

Throughout this appendix, W = (W,S) is a Coxeter group and C(W ) is the
pre-Weyl graph which is the Cayley graph of W .

Remark A.1. Since C(W ) is thin, the map β 7→ βS taking a gallery to its type is a
bijection into words over S when restricted to the galleries which issue from a fixed
chamber. The gallery starting at the chamber w ∈ W and with type s1 . . . sn will
finish at the chamber ww(s1 . . . sn). Moreover, for w1, w2 ∈ W , the map β 7→ βS
is a bijection into the homotopy class of words which are decompositions of w−11 w2

when restricted to all the galleries going from w1 to w2. This bijection is compatible
with the notions of homotopy that exist on words and galleries. In other words, this
bijection takes an x homotopy of galleries to an x homotopy of words, where x can
be any of the types of homotopy we defined (apart from a 1-elementary homotopy of
type (ii), since C(W ) is thin).

Minimal Galleries and Geodesics in C(W ). Notice that β is a minimal gallery
if and only if βS is reduced. Thus, geodesics and minimal galleries coincide in C(W ).
Let us call a gallery in C(W ) an M-geodesic if its type is an M -reduced word, i.e.
an M -geodesic is a gallery which is not strictly homotopic to a gallery containing a
backtrack. One can easily see that geodesics are M -geodesics. In this appendix we
prove that in C(W ), M -geodesics are geodesics, and homotopic geodesics are in fact
strictly homotopic.
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A.1 Reflections and Walls

We define a reflection r ∈ W to be a conjugate of a generator s ∈ S. Let T (W )
denote the set of all reflections of W . The wall Mr of r ∈ T (W ) is the set of edges in
C(W ) which are mapped to their inverse by r. Thus, if we model the edges of C(W )
as ordered pairs of chambers, then,

Mr =
{

(w,w′) ∈ W ×W : rw = w′ and ws = w′ for some s ∈ S
}
.

Since s and r are involutions, this is equivalent to requiring that w = rw′ and w = w′s.
Hence, if (w,w′) ∈ Mr, then (w′, w) ∈ Mr. Notice that for r = wsw−1, we always
have (w,ws) ∈ Mr. Thus, walls are non-empty. Clearly r is recoverable from any
edge in the wall, therefore,

Mr = Mr′ =⇒ r = r′

and it follows that reflections are in bijection with walls.

Proposition A.1. The set of edges of C(W ) is the disjoint union of its walls. In
particular, each edge is contained in a unique wall.

Proof. The edges of C(W ) are the union of the walls since an edge of the form (w,ws)
is contained in the wall Mwsw−1 . This union is disjoint since if (w,ws) is contained in
Mr, then we must have r = wsw−1.

Let β : b0, bc → C(W ) be a gallery, and let ic ∈ b0, bc be an edge for some
c ∈ {1, . . . , b}. We say the gallery β crosses the wall Mr at ic if β(ic) ∈Mr.

Lemma A.2. A geodesic in C(W ) cannot cross a wall in two places or more.

Proof. Towards a contradiction, suppose that we have a geodesic,

γ : b0, bc → C(W )

such that there exist distinct edges ic, id ∈ b0, bc with γ(ic), γ(id) ∈ Mr. Let α be
the subgallery of γ which is the restriction of γ to bc, d− 1c, i.e. α is the part of γ
between the crossings. Let α′ = r ◦α (here r denotes r’s corresponding automorphism
of C(W )). It follows from our definition of walls that α′ is a gallery from γ(c − 1)
to γ(d). Let β be the restriction of γ to b0, c− 1c, and let β′ be the restriction of γ
to bd, bc. Then the concatenation βα′β′ is a gallery with the same extremities as γ,
but with |βα′β′| = |γ| − 2. This contradicts the fact that γ is a geodesic, because
geodesics are minimal galleries in C(W ).

A corollary of the result we are working towards is the converse of this; that is, if
a gallery does not cross any wall twice, then its a geodesic.
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Figure A.1: The {s, t}-residue at w

Lemma A.3. Let J = {s, t} be a 2-element spherical subset of S. Then the J-
residues in C(W ) are isomorphic to Cmst , and if a wall has a non-empty intersection
with a J-residue, then it intersects in exactly two opposite pairs of edges.

Proof. Let J = {s, t} be a 2-element spherical subset of S. It follows from the
canonical presentation of a Coxeter group that the J-residues are cycles of girth 2mst,
alternately labeled by s and t (see Figure A.1).

If a wall Mr intersects an {s, t}-residue R at an edge (w,ws) (without loss of
generality), then r restricts to an involution of the 2mst-cycle R (see Lemma 3.5),
which we know must invert an edge. It follows that r must be acting as a reflection
on R, therefore r must also invert the edge (wts, wtst), which is opposite to (w,ws)
in R.

Corollary A.3.1. The number of times a gallery crosses a given wall is an invariant
of strict homotopy.

Proof. A strict homotopy takes place in a spherical 2-residue. The result then follows
from Lemma A.3.

Lemma A.4. Fix two chambers w1, w2 ∈ W , and a wall Mr. Then all of the galleries
from w1 to w2 cross Mr the same number of times modulo 2.

Proof. Let β, β̂ be two galleries from w1 to w2. Then β and β̂ are homotopic
via a composition of 1-elementary homotopies (of type (i)) and elementary strict
homotopies, which determines a sequence of galleries,

β = β1, . . . , βn = β̂

such that any two consecutive galleries βk, βk+1 differ by either a 1-elementary
homotopy or an elementary strict homotopy. If suffices to show that βk and βk+1 cross
Mr the same number of times modulo 2. If they differ by a 1-elementary homotopy,
the result is clear. If they differ by an elementary strict homotopy, the result follows
from Corollary A.3.1.
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Corollary A.4.1. The number of times modulo 2 a gallery crosses a given wall is
invariant of homotopy.

For a given wall Mr, for w1, w2 ∈ W temporarily put w1 ∼ w2 if the galleries
between w1 and w2 cross Mr an even number of times. In light of Lemma A.2, this
is equivalent to saying that the geodesics between w1 and w2 do not cross Mr. It
follows from Lemma A.4 that ‘∼’ is an equivalence relation with two equivalence
classes. Thus, each wall Mr partitions W into two parts called the roots of Mr.

If w1 � w2, then we say Mr separates w1 and w2. Thus, two chambers are
separated by a wall Mr if and only if the geodesics between those chambers cross Mr.
The roots of a wall are always non-empty since, if r = wsw−1, then Mr separates w
and ws.

Notice that galleries between two chambers must cross all the walls separating
those chambers at least once. On the other hand, a geodesic must cross all the walls
separating those chambers exactly once, and it crosses no other walls than these.
Hence, the distance between chambers is the number of walls separating them.

Lemma A.5. Let w1, w2 ∈ W and let Mr be a wall of C(W ). Then exactly one of
the following must hold:

(i) Mr separates w1 and w2, which implies that d(w1, rw2) < d(w1, w2)

(ii) Mr separates w1 and rw2, which implies that d(w1, rw2) > d(w1, w2).

Proof. Suppose that Mr separates w1 and w2. Let,

γ : b0, bc → C(W )

be a geodesic from w1 to w2, and let ic be the single edge of b0, bc such that β(ic) ∈Mr.
Let α be the subgallery which is the restriction of γ to bc, bc, i.e. α is the part of γ
after the crossing. Let α′ = r ◦ α. Then α′ is a gallery from γ(c− 1) to rw2, which
does not cross Mr. Let β be the restriction of γ to b0, c− 1c. Then the concatenation
βα′ is a gallery from w1 to rw2. Notice that Mr cannot separate w1 and rw2 because
βα′ does not cross Mr, and d(w1, rw2) < d(w1, w2) because |βα′| = |γ| − 1.

Now suppose that Mr does not separate w1 and w2. Let w be a chamber which is
separated from w1 by Mr (recall that the roots of Mr are non-empty). Now, Mr also
separates w and w2, so Mr does not separate w and rw2. Thus, Mr does separate w1

and rw2, and the fact that d(w1, rw2) > d(w1, w2) follows from the first part of the
proof.

Remark A.2. For w1, w2 ∈ W and r ∈ T (W ), we have the following dichotomy;
either d(rw1, w2) < d(w1, w2) or d(rw1, w2) > d(w1, w2). Letting w1 = w and w2 = 1,
we see that for all w ∈ W and r ∈ T (W ), we have either |rw| > |w| or |rw| < |w|.
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Lemma A.6. A chamber w lies on a geodesic between w1 and w2 if and only if the
set of walls separating w1 and w2 is the disjoint union of the walls separating w1 and
w, and the walls separating w and w2.

Proof. If w lies on a geodesic γ from w1 to w2, then the part of γ before w crosses
exactly once those walls separating w1 and w, and the part of γ after w crosses exactly
once those walls separating w and w2. On the other hand, the whole of γ crosses
exactly once those walls separating w1 and w2. The result follows.

Conversely, if the set of walls separating w1 and w2 is the disjoint union of the walls
separating w1 and w, and the walls separating w and w2, then d(w1, w) + d(w,w2) =
d(w1, w2). So to get a geodesic from w1 to w2 via w, simply concatenate a geodesic
from w1 to w with a geodesic from w to w2.

A.2 Projections and the Gate Property

Lemma A.7. Let w ∈ W be a chamber and let R be a residue of C(W ). There
exists a unique chamber of R which is at minimal distance from w.

Proof. Suppose that w1 and w2 are two chambers in R at minimal distance from w.
Towards a contradiction, suppose that w1 and w2 are distinct, and take a wall Mr

separating them. This wall intersects R since any gallery in R from w1 to w2 must
cross Mr at least once (in particular an odd number of times). It follows that r is
an automorphism of R (see Lemma 3.5), in particular rw2 ∈ R. Without loss of
generality, suppose this wall separates w2 and w. Then, by Lemma A.5, rw2 is nearer
to w than w1 or w2, a contradiction of the hypothesis on w1 and w2.

Let us denote the unique chamber of Lemma A.7 by projR w.

Lemma A.8. Let R be a residue of C(W ). A geodesic from any chamber w ∈ W to
any chamber wR ∈ R can be chosen to go via projR w.

Proof. By Lemma A.6, it suffices to show that the set of walls separating wR from
w is the disjoint union of the walls separating wR from projR w and projR w from
w. Towards a contradiction, suppose this union is not disjoint. Thus, a wall Mr

separates wR from projR w and projRW from w. Then Mr intersects R, and r is an
automorphism of R. Therefore r · projR w is a chamber in R which is nearer to w
than projR w, a contradiction.

Lemma A.9. The residues of C(W ) are convex.

Proof. Take any residue R, and let w1, w2 ∈ R be chambers. Suppose the chamber w
lies on a geodesic γ from w1 to w2. Then projR w must coincide with w, otherwise a
gallery shorter than γ would go via projR w. Therefore w ∈ R. The fact that γS will
be a word over the type of R follows from Theorem 2.4. Thus, γ is a gallery in R.
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A.3 The Main Theorem

Theorem A.10. In the Cayley graph of a Coxeter group, the following hold:

(i) homotopic geodesics are strictly homotopic

(ii) M -geodesics are geodesics.

Proof. Let C(W ) be the Cayley graph of a Coxeter group W . We prove (i) by
induction on the length of geodesics. Let w1, w2 ∈ W , and let γ and γ̂ be (homotopic)
geodesics going from w1 to w2. Let s be the final letter of γS, and let t be the final
letter of γ̂S. If s = t, then the result follows by induction. So assume s 6= t.

Let R = R{s,t}(w2), and let z = projR w1. Let zs = w2s, and let zt = w2t. Then
zs, zt ∈ R. By Lemma A.8, there exists a geodesic γs from w1, via z, to zs, and a
geodesic γt from w1, via z, to zt. Then, γs extends by one edge (with type s) to
a geodesic βs from w1 to w2. Similarly, γt extends by one edge (with type t), to a
geodesic βt from w1 to w2. By Lemma A.9, the subgalleries of βs and βt which go
from z to w2 are contained in R.

Suppose that mst = ∞, so that R is a bi-infinite line. Then, without loss of
generality, γs travels to zs via w2. But then βs crosses a wall twice, a contradiction.
Therefore mst <∞.

Now, the subgalleries of βs and βt which go from z to w2 and are of types p−1(s, t)
and p−1(t, s) respectively (since R is isomorphic to Cmst). Therefore, by the induction
hypothesis, we have βs ' βt. Then, also by the induction hypothesis, we have γ ' βs

and βt ' γ̂, since both pairs of galleries agree on their final edges. Thus, γ ' γ̂ by
transitivity.

We now prove (ii), also using induction. Let β be a M -geodesic from w1 to w2.
The result clearly holds if β has length ≤ 2. So assume that βS = fst, where f is a
non-empty word over S, and s, t,∈ S. We assume all M -geodesics of length less than
the length of β are geodesics. In particular, the M -geodesic γ′, obtained by removing
the last edge from β, is a geodesic. Let w be the final chamber of γ′.

Towards a contraction, suppose that β is not a geodesic. Then, since d(w1, w) =
|β| − 1, we have d(w1, w2) = |β| − 2. So there exists a geodesic γ′′ from w1 to w, via
w2. Since γ′S = fs and γ′′S = f ′t for some word f ′, by (i), β is not an M -geodesic, a
contradiction.

Corollary A.10.1. If a gallery is not a geodesic, then it crosses a wall twice. Thus,
geodesics are characterized by the property that they only cross walls once.

Proof. If a gallery β is not a geodesic then it is not a M -geodesic, i.e. β is strictly
homotopic to a gallery whose type repeats a letter. Therefore, by Corollary A.3.1, β
must cross a wall twice.

We now use the close relationship between words and galleries in C(W ) (see
Remark A.1) to give us some results on word manipulation in Coxeter groups.
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Theorem 2.8. (Main Theorem) For any Coxeter group W :

(MT1) M -reduced words are reduced

(MT2) homotopic reduced words are strictly homotopic.

Proof. This follows from Theorem A.10 and the bijective correspondence between
galleries issuing from a fixed chamber in C(W ) and words over S.

Theorem 2.9. Let (W,S) be a Coxeter group. If a word f over S is not reduced,
then there exists a substring of f obtained by deleting two letters which is homotopic
to f .

Proof. Let β : b0, bc → C(W ) be a gallery with type f . Then β crosses a wall Mr twice
by Corollary A.10.1. So let ic, id ∈ b0, bc be the edges such that β(ic), β(id) ∈ Mr.
Let α be the restriction of β to bc− 1, dc. Let α′ = r ◦ α. Let β′ be the restriction
of β to b0, c− 1c and let β′′ be the restriction of β to bd, bc. Then β̂ = β′α′β′′ is a
gallery which is homotopic to β, thus β̂S is homotopic to f . Also, β̂S is obtained from
f by deleting two letters, corresponding to the edges ic and id.

Theorem A.11. Let W = (W,S) be a Coxeter group and let J ⊆ S. Let WJ ≤ W
be the standard subgroup generated by J . Then every coset wWJ has a unique
representative w′ of minimal word length. Moreover, we have,

|w′wJ | = |w′|+ |wJ |

for all wJ ∈ WJ .

Proof. Let R be the J-residue of C(W ) which contains w, and put w′ = projJ(1).
Then w′ is the unique representative of minimal word length of wWJ by Lemma A.7.
By Lemma A.8, a geodesic γ = γ′γ′′ exists such that γ′ goes from 1 to w′, and γ′′

goes from w′ to w′wJ . Then,

|w′wJ | = |γ| = |γ′|+ |γ′′| = |w′|+ |wJ |.
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The Bruhat Order

The set up for this section is that the Bruhat order is yet to be defined, and that the
established facts about Coxeter groups are those which have been proven so far in
this appendix. Throughout this section, W is a Coxeter group with generators S.

Recall that T (W ) denotes the set of reflections of W , where a reflection r is a
conjugate r = wsw−1 of a generator s ∈ S. For w ∈ W , let T (w) be the set of
reflections which correspond to the walls which separate w and 1.

For w,w′ ∈ W , we write w′lw if there exists r ∈ T (w) such that w′ = rw. Thus,
w′ l w if and only if w′ is the image of w by a reflection in a wall which separates w
and 1. It follows directly from Lemma A.5 that,

T (w) =
{
r ∈ T (W ) : |rw| < |w|

}
.

Therefore, if w′ l w, then |w′| < |w|.

Lemma B.1. Let W be a Coxeter group, and let w,w′ ∈ W . If w′ l w, then a
decomposition of w′ may be obtained from any decomposition of w by deleting one
letter.

Proof. Let w′ = rw, r ∈ T (w). Let f be any decomposition of w, and let β be the
gallery of type f from 1 to w. Apply r to the part of β after its final crossing of Mr.
Then, in the same way as the proof of Lemma A.2, we obtain a gallery from 1 to w′

whose type is f with one letter deleted.

Lemma B.2. Let W be a Coxeter group, and let w,w′ ∈ W . If a decomposition of
w′ is obtained by deleting a letter in a reduced decomposition f of w, then w′ l w.

Proof. Let γ be the geodesic with type f from 1 to w. Let i ∈ C(W ) be the edge
of γ which corresponds to the deleted letter of f , and let Mr be the wall which
contains i. Then r ∈ T (w) since γ is a geodesic which crosses Mr, and w′ = rw.
Thus, w′ l w.

Combining these last two lemmas, we obtain:
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Proposition B.3. Let W be a Coxeter group, and let w,w′ ∈ W . The following are
equivalent:

(i) w′ l w

(ii) a decomposition of w′ may be obtained from any decomposition of w by deleting
one letter

(iii) a decomposition of w′ may be obtained from a reduced decomposition of w by
deleting one letter.

Proof. (i) =⇒ (ii) is Lemma B.1, (ii) =⇒ (iii) is clear, (iii) =⇒ (i) is Lemma B.2.

Definition of the Bruhat Order. Let us define a pre-order ‘≤’ on W , called the
Bruhat order, by letting ‘≤’ be the transitive and reflexive closure of ‘l’. Thus,
w′ ≤ w if and only if there is a sequence of elements w0, . . . , wn of W such that,

w′ = w0 l · · ·l wn = w.

The Bruhat order is antisymmetric since if w′lw, then |w′| < |w|. Thus, the Bruhat
order is a partial order.

Let w ∈ W and s ∈ S. If |sw| = |w| − 1, then s ∈ T (w). Also, if sw < w, then
|sw| < |w|. It then follows that,

sw < w if and only if |sw| = |w| − 1

w < sw if and only if |sw| = |w|+ 1.

Notice that the symmetric results, which do in fact hold, are not clear at this point.
They will follow from Proposition B.5 below.

Lemma B.4. Let W be a Coxeter group, and let w,w′ ∈ W . If w′ < w, then
sw′ ≤ max{sw,w}.

Proof. Let w′ = r1 . . . rnw, where rk ∈ T (W ), and rk+1 . . . rnwl rk . . . rnw. We prove
by induction on n. If n = 1, then sw′ = sr1w, or equivalently,

sw′ = (sr1s)sw.

Notice that sw′ = w if and only if s = r1. So assume that s 6= r1. If sw′ < w′ we
are done, so assume further that sw′ > w′. Notice that if |sw′| < |sw|, then we may
conclude that sw′ < sw since sr1s is a reflection. So, towards a contradiction, assume
that |sw′| ≥ |sw|. Then sr1s ∈ T (sw′) by Lemma A.5, and so,

sw = (sr1s)sw
′ < sw′.
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Let f be a reduced decomposition of w′. Then sf is a reduced decomposition of sw′.
By Proposition B.3, we can delete a letter from sf to obtain a decomposition of sw.
This letter cannot be the first letter because r1 6= s. But then |w| < |w′|, which is a
contradiction of the fact that w′ < w. Thus, the result holds for n = 1. For n > 1,
we have r1 . . . rnw < r2 . . . rnw, and so,

sw′ = sr1 . . . rnw ≤ max{sr2 . . . rnw, r2 . . . rnw}.

By the induction hypothesis, we have sr2 . . . rnw ≤ max{sw,w}. We also have
r2 . . . rnw < w. Thus,

sw′ ≤ max{sw,w}
as required.

Proposition B.5. Let W be a Coxeter group, and let w,w′ ∈ W . The following are
equivalent:

(i) w′ ≤ w

(ii) every decomposition of w contains a substring which is a decomposition of w′

(iii) a reduced decomposition of w contains a substring which is a decomposition of
w′

Proof. (i) =⇒ (ii) follows from Proposition B.3, and (ii) =⇒ (iii) is clear. We prove
(iii) =⇒ (i) by induction on |w|. The result is clear for |w| = 1. For |w| > 1, let
f be a reduced decomposition of w, and let s be the first letter of f . Let f ′ be a
substring of f , and let w′ = w(f ′). If f ′ does not contain the first letter of f , then by
applying the induction hypothesis to sw, we obtain w′ ≤ sw < w. If f ′ does contain
the first letter of f , then the induction hypothesis tells us that sw′ ≤ sw. Then, by
Lemma B.4, either w′ ≤ sw < w, or w′ ≤ w.
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