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Abstract

Higher order processing by circuits in the cerebral cortex is highly dependent on inhibitory
interneurons; failure in their generation and/or functions is thought to lead to
neurodevelopmental conditions. In rodents, interneurons are almost entirely generated in the
ganglionic eminences (GE) and migrate into the cortex; however, it is still contentious to what
degree this applies to the more complex human cerebral cortex.

In this study, immunohistochemical analysis of early fetal human ventral telencephalon showed
distinct (although overlapping) expression domains for several interneuron precursor
transcription factors revealing the complex subdivisions of the GE; including three
compartments for the CGE (medial, lateral, ventral) and septum (MGE-like, LGE-like, pallial
septum). Two migratory pathways of interneurons from the CGE (anteriorly via LGE) and
septum (medially) into the cortex, not previously reported in rodents, were also described.
Cortically-derived cultures of fetal human neuroprogenitors contained considerable numbers
of GABA+ and calretinin+ cells; significantly more so in anterior- versus posterior-derived
cortical cultures. Many cells expressed either COUP-TFI or COUP-TFII, but not NKX2.1,
characteristic of MGE-derived cells. Furthermore, RNA sequencing data from fetal human
cortical samples found mRNA levels for DLXI, DLX2, GSH2, ASCLI, ARX, OLIG2 and
CALB2, genes characteristic of GABAergic interneurons and their progenitors, to be
significantly higher in samples derived from anterior than posterior cortical regions.

As in mice, SP8 and COUP-TFI were expressed in counter-gradients across the cortex, but
unlike in rodents, expression overlapped extensively in the ventricular zone (VZ) of parietal,
occipital and dorso-temporal cortex. COUP-TFII was expressed widely throughout the ventral
temporal and ventral posterior cortex overlapping extensively with COUP-TFI. VZ OLIG2
expression was confined to anteromedial cortex at early stages. Arealised expression of
transcription factors in the cortical wall may, in turn, control expression of signalling pathways
that attract migrating cells expressing the same transcription factors, setting up various
pathways into the cortex for interneurons arriving from the GE.

In conclusion, the early fetal human brain shares the fundamental mechanisms of protomap
formation and interneuron generation with rodents; however, there may also be specific
differences. The much larger human cortex may require additional migratory pathways for
interneuron precursors. Interneuron generation in the anterior regions of developing human
cortex in particular, along with more complex interplay between arealisation genes in the
formation of the protomap, could be two mechanisms by which association cortex has become
expanded and more specialised in human.
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Chapter 1: Introduction

The six-layered cerebral cortex is considered the most complex structure in the mammalian
nervous system. Although the cortex is known to be heterogeneous at the cellular level, it
contains two principal types of neurons: projection neurons and interneurons. The
interconnectivity and synchronicity between these two types of neurons form the key role of
cerebral cortex functions in memory and cognitive abilities. The more numerous pyramidal
projection neurons are excitatory in action and release glutamate (also known as glutamatergic
neurons). The interneurons are mainly inhibitory and use the neurotransmitter gamma-
aminobutyric acid (GABA, also known as GABAergic interneurons). The proper and complex
function of the neocortical circuits largely depends on maintaining the balance between the
excitatory and inhibitory inputs delivered by the glutamergic neurons and GABAergic
interneurons, respectively (Marin and Rubenstein, 2001; Klausberger and Somogyi, 2008).
Evidence presented suggests that the developmental origins of these two classes are distinct;
while the glutamergic neurons are generated from the radial glia cells in the proliferative zone
of the dorsal telencephalon and radially migrate within the cortex, the GABAergic interneurons
appear to be derived from a separate type of progenitor cell in the ventral telencephalon and
follow distinct tangential pathways of migration to the dorsal telencephalon (Lavdas et al.,
1999; Anderson et al., 2001; Anderson et al., 2002; Nery et al., 2002). In rodents, interneurons
comprise almost 20% of all cortical neurons (Wonders and Anderson, 2006). Despite their
relatively small proportion, GABAergic interneurons play essential roles in orchestrating
higher cognitive functions in the cerebral cortex and it has been widely suggested that defects
in the generation, migration and function of these interneurons are a cause of
neurodevelopmental conditions such as autism and schizophrenia (Marin, 2012; Le

Magueresse and Monyer, 2013).

GABA is the major inhibitory neurotransmitter in GABAergic interneurons where it is
synthesized from glutamate using two isoforms of L-glutamic acid decarboxylase (GAD) 65
and 67. Each one of these isoforms has distinct distribution; GAD65 is mainly found in nerve
endings and responsible for vesicular GABA production, GAD67 is more distributed in
cytoplasm and seems to be responsible for cytoplasmic GABA synthesis (Le Magueresse and
Monyer, 2013). GABA is known as the first neurotransmitter active in the immature brain,
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GABA B receptors are also known to be expressed in radial glia and migrating neurons early
in the developing brain. Unlike in the adult, where this neurotransmitter acts synaptically to
inhibit the target neurons, this early form of GABA signalling during development may act as
paracrine signalling molecules and play essential role in regulating cortical development
(Manent and Represa, 2007, Wang and Kriegstein, 2009). GABA can depolarize progenitor
cells and their progeny due to their high intracellular chloride concentration, thus providing the
main excitatory drive for the immature cortical network (Li et al. 2002; Wang et al. 2002).
GABA is also required to serve as an ideal signal to coordinate corticogenesis (Wang and
Kriegstein, 2009) via decreasing the net DNA synthesis and cortical progenitor proliferation,
this effect is likely to be due to its ability to depolarize the cell and activate voltage-gated Ca2+
channels that in turn regulate DNA synthesis (LoTurco et al. 1995; Owens and Kriegstein,
2002; Represa and Ben-Ari, 2005). Furthermore, activation of specific GABA receptors is
instrumental in cell migration by acting as a motility promoting, acceleratory, or stop signal

(Manent and Represa, 2007).

The recent advances in studying the development of cortical interneurons and the network of
transcription factors that regulates their production, migration, and sorting these neurons into
diverse subtypes will be addressed in this chapter. Although most studies cited in this chapter
used rodents as an experimental model, the latest published work on human tissue is also
reported in order to understand the different aspects of GABAergic interneurons production

and specification in developing human cortex.

1.1 The early human brain development

The process of human brain development begins in the third gestational week and extends
through late adolescence. The gestational period in human is divided into the embryonic and
fetal periods; the embryonic period begins from the time of fertilization (at conception) and
last approximately for 60 days (8 weeks) (Stiles, 2008; O'Rahilly and Miiller, 2010; Stiles and
Jernigan, 2010). Based on the morphologic features of the embryo (not the age or the size) this
period is divided into 23 stages which are known as Carnegie stages (CS) (Hamilton, 1974).
By the end of the embryonic period, the primary rudimentary structures of the brain are
established and well defined (Stiles, 2008). After 8 weeks, the term embryo is usually replaced
with the term fetus, indicating the beginning of the following fetal period which extends from
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the 9 gestational week through to the end of gestation. In this period, the brain continues to
grow and the primary structures differentiate into the adult brain structures (Stiles and Jernigan,

2010).

By the end of the third week of development, the embryo is a three-layered structure: the inner
endodermal stem cell layer, the intermediate mesodermal stem cell layer, and the external
ectodermal stem cells layer. Brain development begins by the formation of the neural tube,
which arises from the neuroectoderm (the neural progenitor cells located along the rostral-
caudal midline of the ectodermal layer and referred to as the neural plate). The neural plate
develops two lateral ridges that fold inwards and fuse to create the hollow neural tube structure
(Copp et al., 2003). Following the complete closure of the neural tube (CS12, approximately
embryonic day 30), the rostral end of the neural tube expands forming the three primary brain
vesicles, while the caudal part develops into the spinal cord. The three vesicles aligned along
rostral-caudal axis are as follow: the prosencephalon (forebrain), the mesencephalon
(midbrain), and the rhombencephalon (hindbrain). Later and by the end of the embryonic
period, the prosencephalon and rhombencephalon further subdivide, whereas the
mesencephalon does not divide. The prosencephalon divides into the telencephalon and the
diencephalon, and the rhombencephalon subsequently divides into the metencephalon and
myelencephalon, ending up with fives secondary vesicles which establish the primary
organization of the developing brain (Stiles, 2008; Stiles and Jernigan, 2010). The early
development and organization of the telencephalon will be discussed further below from data

that are mostly from rodent studies.

1.1.1 Development of the telencephalon

The telencephalon, the most rostral part of the developing central nervous system, is partitioned
into structurally and functionally distinct dorsal and ventral regions, the neuroepithelium of
these two regions are called pallium and sub-pallium, respectively. The pallium (dorsal
telencephalon) is the primordium of cerebral cortex, whilst the sub-pallium gives rise to the
structures of the basal ganglia (caudate, putamen, globus pallidus and nucleus acumbens). In
rodent, the pallial and sub-pallial regions are mainly identified by characteristic expression of

certain transcription factors across each region (Figure 1.1), their expression controlled by



gradients of soluble morphogens (such as FGFs, BMPs and SHH) released from four discrete
forebrain signalling centres (Figure 1.2A). The pallium is characterized by the expression of
Paired-box 6 (PAX6), Empty spiracles homeobox 1 and 2 (EMX1, EMX2), and T-box brain 1
(TBR1), whereas transcription factors like Glutathione synthetase homeobox (GSH), Distal-
less homeobox (DLX), and Nk2 homeobox (NKX) are solely expressed in the sub-pallium
(Anderson et al., 1997b; Pabst et al., 2000; Monuki et al., 2001; Flames et al., 2007). The
boundary between the pallium and sub-pallium made by these transcription factors does not
strictly correlate with the morphological boundary between these domains. The expression

boundary is located ventral to the apparent anatomical sulcus between these two regions
(Figure 1.1).
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Figure 1.1: The subdivisions of telencephalon. Schematic coronal section showing the
subdivisions of telencephalon identified by the expression of certain transcription factors. The
pallium is divided into medial, dorsal, lateral, and ventral pallial regions; the sub-pallium is
divided into medial and lateral ganglionic eminences (MGE and LGE). Adapted from
(Schuurmans and Guillemot, 2002). Abbreviations in this figure legend and those following
are given in Table of abbreviation.



The discrete or graded expression of either dorsally or ventrally expressed transcription factors
in the pallium or sub-pallium further subdivide these two regions into various progenitor
domains (Figure 1.1) that give rise to wide diversity of specific neuronal subtypes. Along the
medio-lateral axis, the proliferative zones of pallium are partitioned into four distinct regions
(medial, dorsal, lateral, and ventral pallial regions). The medial pallium corresponds to the
hippocampal primordium, dorsal pallium gives rise to the neocortex, lateral pallium generates
the priform cortex, ventral pallium gives rise to the claustroamygdaloid complex (Campbell,
2003). Similarly, the proliferative zones of the sub-pallium are divided into distinct regions
called the ganglionic eminences (GE). Corresponding to their anatomical positions, the GE
are known as the medial ganglionic eminence (MGE), lateral ganglionic eminence (LGE) and
caudal ganglionic eminence (CGE); Gene expression and fate mapping studies have shown that
these three sub-pallial domains can be also further subdivided into smaller domains which
increases the neuronal diversity produced in these regions (Wonders and Anderson, 2006;
Flames et al., 2007). Unlike the pallium, the GE is source of neural types that populate not only
the sub-pallial structures (like striatum, globus pallidus, and parts of the amygdala) but also
give rise to multiple interneuronal subtypes that tangentially migrate into the cortex and
olfactory bulb. The MGE is known as the source of projection neurons of the pallidum but is
also the major source of cortical interneurons (Lavdas et al., 1999; Anderson et al., 2001; Butt
et al., 2005; Wonders and Anderson, 2006); whereas the LGE is the source of projection
neurons of striatum and interneurons of the olfactory bulb (Stenman et al., 2003). Although the
CGE is defined only as caudal extensions of the MGE and the LGE, several studies have
demonstrated that the CGE has its own identity and is the source of neuronal types that are
discrete from those generated in the MGE and the LGE (Nery et al., 2002; Corbin et al., 2003;
Wonders and Anderson, 2006; Miyoshi et al., 2010).

1.1.2  The early patterning of the telencephalon

The areal organization (the protomap hypothesis) of telencephalon begins early in the
embryonic period and prior to the arrival of thalamic inputs which have also been postulated
to contribute to determining the layout of the cerebral cortex and its maturation (Rakic, 1988).
Coordinated interactions between intrinsic and extrinsic signals results in dividing the ventral
and dorsal telencephalon into molecularly distinct proliferative zones that generate the neuronal

diversity in the adult brain (Campbell, 2003; Hébert and Fishell, 2008). Work on rodent
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development has identified the presence of certain organizers (signalling centres) that regulate
the early pattering of the telencephalon (Figurel.2A). Cells in these centres release soluble
morphogens (such as, Wnts, BMPs, FGFs and Shh) that usually act in concentration dependent
manner to induce the expression of several specific transcription factors (Figurel.2B) (Monuki
et al., 2001; Campbell, 2003; Hébert and Fishell, 2008). In turn, transcription factors appear to
control regional expression of secondary signalling molecules, cell adhesion molecules, and
cell surface receptors, leading to, not only the formation of the pallial-sub pallial boundary, but
also organizing the cerebral cortex into distinct functioning areas (Ericson ef al., 1995; Muzio
et al., 2002; Lopez-Bendito and Molnar, 2003; O'Leary et al., 2007; Rakic, 2009). Interference
in transcription factor expression, for instance in transgenic mice (Figure1.2C) (Bishop et al.,
2000; Armentano et al., 2007; O'Leary et al., 2007; Borello et al., 2013) or in intercellular
signalling by applying exogenous morphogens (Fukuchi-Shimogori and Grove, 2001; Fukuchi-
Shimogori and Grove, 2003; Sahara et al., 2007) leads to expansion or contraction of primary
cortical areas. Similarly, the regional identity of the proliferative zones of the ventral
telencephalon can be also shifted by manipulation of morphogens or transcription factor

expression (Gutin et al., 2006; Lodato et al., 2011).

The ventral and dorsal identities of the telencephalon are regulated by the ventralizing and
dorsalizing functions of the secreted signalling protein Shh and the zinc-finger gene Gli3,
respectively. The antagonistic interplay between these two signals establishes the early pallial-
sub pallial boundary (Ericson et al., 1995; Rallu et al., 2002; Campbell, 2003; Hébert and
Fishell, 2008). The source of Shh that is involved in the telencephalic patterning is from the
ventral midline of the diencephalon (Ericson et al., 1995). Shh is required for the patterning of
the ventral telencephalon by repressing the dorsalizing function of Gli3 and promoting the
generation of the ventral cell types (Kohtz et al., 1998; Rallu et al., 2002). Shh induces the
expression of NKX2.1 which is known as a characteristic marker for MGE. In Shh-null mice,
NKX2.1 expression is lost and MGE fails to develop (Pabst ef al., 2000; Rallu et al., 2002).
However, the expression of other transcription factors that are expressed in both the MGE and
LGE (like DIx and Gsh2) is conserved in these mutants, suggesting that Shh is only required
for patterning the MGE but not LGE (Rallu et al., 2002). Conversely, Gli3 is expressed
throughout the dorsal telencephalon and is required to repress the ventralizing signal of Shh;
loss of Gli3 function leads to ectopic expression of Gsh2, a characteristic marker of the ventral

telencephalon (Rallu et al., 2002). The dorso-ventral patterning of the telencephalon in
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Shh;Gli3 double mutants is improved over either that in Shh or G/i3 single mutants (Rallu et
al., 2002) suggesting the presence of other signalling pathways (SHH-independent) may also
act during the development of telencephalon (Rallu et al., 2002; Campbell, 2003).

Other important signalling centres involved in the patterning of the telencephalon are the
cortical hem, anterior neural ridge (ANR)/septum, and the antihem/ventral pallium (VP)
(Figure 1.2A) (Furuta et al., 1997; Grove et al., 1998; Monuki et al., 2001; Campbell, 2003).
The cortical hem is located in the dorsal midline of the telencephalon (roof plate), it is known
as the source of BMP and WNT signalling molecules (Furuta ef al., 1997; Grove et al., 1998;
Monuki ef al., 2001). BMPs and WNTs regulate the expression of several transcription factors
like Emx1, Emx2, and Lhx2 that are involved in the development and expansion of the dorsal
and medial pallium including the hippocampus (Porter et al., 1997; Monuki et al., 2001;
Campbell, 2003). The ANR is known as the source of Fgf signalling, mainly Fgf8, which
diffuses caudally in gradient antagonizing the effect of BMPs and Wnts released from the
cortical hem (Fukuchi-Shimogori and Grove, 2001; Hébert and Fishell, 2008) suggesting a role
of cortical hem and ANR released signalling molecules in patterning the rostro-caudal axis of
the cerebral cortex. The antihem is positioned in the ventricular zone of the ventral pallium at
the boundary between the LGE and the lateral neocortex. The rodent antihem is marked by
expression of the Dbx 1, Fgf7, and secretable WNT antagonist secreted frizzled-related protein
2 (SFRP2) (Assimacopoulos et al., 2003; Kawano and Kypta, 2003; Subramanian et al., 2009).
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Figure 1.2: Generating the protomap in the rodent cortex. (A) Shows the location of the
signalling centres of the forebrain and how Cajal-Retzius (CR) cells derived from these centres
distribute across the cortical surface. It also lists the signalling molecules released from each
centre and illustrates how these interact with each other. (B) Shows location of expression of
Fgf8 and some of its downstream effectors, all of which show high anteromedial expression
(Fgf17, Pea3, Sp8) along with transcription factors expressed in an opposing gradient (Coup-
TFI, BhblbS) and Pax6 and Emx2, expressed in opposing anterolateral to posteromedial
gradients. (C) Summarises the effects of experiments down-regulating the expression of these
morphogens or transcription factors upon the size and location of primary cortical areas,
usually identified and delineated in perinatal animals by expression of specific cell adhesion
molecules. Adapted from (O'Leary et al., 2007; Alfano and Studer, 2013) .



1.1.3 The neurogenesis in the cerebral cortex

Following the complete closure of the neural tube (CS12, approximately E30), the number of
the neural progenitor cells in the neuroepithelium is still far too small to produce the billions
of neurons found in the normal human brain. Therefore, between E25 and E42, these progenitor
cells undergo a symmetrical mode of cell division, in which two identical neural progenitor
cells are produced (Stiles and Jernigan, 2010). When the pool of the neural progenitor cells is
adequately expanded, the mode of cell division is shifted from symmetrical to asymmetrical
producing one progenitor cell and one neuron for each division. The progenitor cell remains in
the proliferative zones (the ventricular and subventricular zones) to go through another round
of cell division, while the newly born neuron leaves the ventricular zone (VZ) and move
radially into the neocortex (Figure 1.3) (Wodarz and Huttner, 2003). In human, the neurons
production begins at approximately E32 in the lateral cortical wall and at E42 in the other parts
of cortical wall and continues over the fetal period (Bystron et al., 2008; Stiles and Jernigan,

2010).

As the neurogenesis continues, the first produced neurons migrate from the VZ into the
neocortex via somal translocation (Nadarajah and Parnavelas, 2002; Stiles and Jernigan, 2010).
However, as the cortex expands in size, the means of migration is changed in order to
accommodate the greater distance that should be traversed by the neurons. Special population
of cells called the ‘’radial glia cells’” within the VZ extend basal processes to the pial surface
of the brain, these processes provide the guidance scaffold for the neural migration, therefore
this mean of migration is called “glia guided” (Figure 1.3) (Bystron et al., 2008; Stiles and
Jernigan, 2010). In addition to their role in cell migration, radial glia cells are also neural
progenitor cells and divide to produce other progenitors and neurons (Noctor et al., 2001;
Noctor et al, 2002). After a certain time of neurogenesis, distinct progenitor cells
(“intermediate” progenitors) start to appear in a compartment located above the VZ, this
compartment is called the sub-ventricular zone (SVZ). The intermediate progenitors
exclusively express TBR2, not expressed in the VZ progenitors, and their symmetrical division
produce two neurons. other types of progenitor cells found mainly in the outer sub-ventricular
zone (0SVZ) called outer radial glial cells; these cells, unlike ventricular radial glia cells,

maintain connection with pial surface only and divide asymmetrically to self-renew, and give



rise to an extended lineage of transit amplifying cells (Figure 1.3) (Bystron et al., 2008; Hansen
etal., 2010; Lui et al., 2011).
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Figure 1.3: A schematic model of neurogenesis in the cerebral cortex. Radial glia cells
provide the guidance scaffold for the migration of newly born neurons from ventricular zone
(VZ) into the cortical plate (CP). The intermediate progenitors are only found in the sub-
ventricular zone (SVZ). The Cajal-Retzius cells in the marginal zone (MZ) play vital roles in
neuronal migration and cortical lamination. Cells of the subplate (SP) are important in the
formation of cortical connections including the targeting of thalamocortical fibres to the cortex.
Adapted from (Hoerder-Suabedissen and Molnar, 2015).
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The first batch of neurons to arrive from the ventricular zone form a transitory structure called
the preplate (PP) (Figure 1.3), the following arriving neurons split the preplate into two separate
transient layers, the marginal zone (MZ) and subplate (SP). These new arrival cells form a new
region called the cortical plate (CP) between the MZ and SP (Figure 1.3). Neurons in the CP
are arranged in an “inside out” pattern, where first migrating cells occupy the deeper layers and
late arriving cells form the superficial layers (Bystron et al., 2008; Stiles and Jernigan, 2010).
The marginal zone and SP play important roles in the development of the neocortex and both
disappear by the end of the fetal period. Cells in the marginal zone called “Cajal-Retzius cells”
release a signalling molecule called reelin which has a vital role in neuronal migration and
cortical lamination (Bielle et al., 2005; Huang, 2009). Cells of the SP are known to be
important in the formation of cortical connections including the thalamocortical fibres into the
cortex (Stiles and Jernigan, 2010). The neurogenesis in the ganglionic eminences and the mode

of neural migration (of cortical interneurons) into the neocortex will be discussed below.

1.2 The origin of cortical GABAergic interneurons in mouse

There is general agreement that the MGE and CGE are considered the primary source of
cortical GABAergic interneurons (Lavdas et al., 1999; Nery et al., 2002; Butt et al., 2005;
Wonders and Anderson, 2006). However, other subcortical structures like the LGE and
preoptic area also known to be smaller contributors to the neocortical GABAergic interneuron
population (Figure 1.5) (Wichterle et al., 1999; Anderson et al., 2001; Wichterle et al., 2001).
In primates, including human, in addition to the ventral telencephalon, a considerable amount
of literature has revealed a potential origin of cortical interneurons from the dorsal
telencephalon. However, the developmental origin of cortical interneurons in human will be

discussed extensively later in this chapter (see 1.5).

1.2.1 Medial ganglionic eminence

The medial ganglionic eminence in rodents is the primary birthplace of GABAergic
interneurons for the cortex. It is believed to be the origin of almost 50-60 % of neocortical
GABAergic interneurons in rodents (Wonders and Anderson, 2006). The first experimental

demonstration of cell migration from the GE to dorsal telencephalon was reported by De Carlos
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et al. (1996) through injecting the LGE of live embryos from E12- E14 rat with lipophilic
carbocyanine fluorescent tracers Dil and DiA, after two days, many labelled cells were found
in the cortex. Anderson et al. (1997a) provided evidence that 20% of migrating Dil-labelled
cells to the cortex are GABAergic interneurons and express the GABAergic interneuron
neurotransmitter GABA. However, these studies did not distinguish whether these cells are

derived from the LGE or from elsewhere in the ventral telencephalon.

Subsequent studies provided evidence that most of these cells are originally born in the MGE
and they migrate through the LGE into the cortex. One day after the injection of Dil into the
MGE of mouse slices (E14), large number of labelled cells were found in LGE and cortex
(Wichterle et al., 1999). Similarly, reported that after fluorescent labelling of the MGE in slice
cultures from E13-E19 rats, results showed a substantial stream of GABAergic interneurons
migrating from the MGE to the cortex passing through the LGE. By comparing the migratory
behaviour of MGE and LGE cells, MGE cells have also shown higher tendency to migrate into
the cortex (Anderson et al., 2001). These findings were also supported by study on homeobox
transcription factor Nkx2.1 (transcription factor that is necessary for the development of MGE).
Nkx2.1 mutant mice have shown an almost 50% reduction of GABAergic interneurons in the

cortex (Sussel et al., 1999).
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B RostralTelencephalon C Caudal Telencephalon

Figure 1.4: The origin of cortical GABAergic interneurons in rodents. (A) Diagram
showing the spatial origins of cortical GABAergic interneurons from the MGE (red) LGE
(green) POA (yellow) and CGE (blue). (B) Rostral and coronal sections through the
telencephalon showing the migratory pathways of interneurons from their origins into the
cortex. Adapted from (Laclef and Métin, 2017)

1.2.2 Caudal ganglionic eminence

The CGE is another neurogenic domain in the ventral telencephalon that is considered to be
the second greatest contributor to the neocortical GABAergic interneurons. It is the source of
almost 30% of all neocortical GABAergic interneurons in rodent (Nery et al., 2002; Wonders
and Anderson, 2006). Anatomically, the CGE is considered to be a caudal extension of both
MGE and LGE (Fig 1.4). Further, it is a hybrid of MGE and LGE in accordance with the
expression of specific transcription factors. The dorsal part (also called dorsal CGE) that
protrudes to the lateral ventricle expresses Gsh2 and ER81 which are required for LGE
patterning. The ventral part which lies directly opposing to the narrow ventral extension of
lateral ventricle, is also called ventral CGE and it expresses the homeobox transcription factor
Nkx2.1 which is required for patterning of the MGE (Corbin et al., 2003; Stenman et al., 2003).
By a fate mapping study via in-vivo homotopic and heterotopic transplantations of CGE and
MGE cells at E13.5 mice, Nery ef al. (2002) was the first group to show that CGE is a distinct

origin of neocortical GABAergic interneurons. Subsequent in-vivo and in-vitro studies have
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confirmed these results and referred to specific morphological and electrophysiological
features of CGE—derived interneurons (Xu et al., 2004; Butt et al., 2005; Miyoshi et al., 2010).
In addition, the GABAergic interneuron precursor marker COUP-TFII is preferentially
expressed in CGE, where it is required to drive CGE-derived interneuron migration into the

cortex (Kanatani ef al., 2008).

1.2.3 Lateral ganglionic eminence

The LGE has been known as a source of striatal projection neurons and interneurons of the
olfactory bulb (Stenman et al., 2003). The possibility that the LGE is also a birthplace of
neocortical GABAergic interneurons has been debated. After MGE and CGE, several studies
provided evidence that LGE could be far smaller contributor to neocortical GABAergic
interneurons (Wichterle et al., 1999; Anderson et al., 2001; Wichterle et al, 2001). In a
transplantation study of cell division marker bromodeoxyuridine (BrdU) labelled LGE cells
from E 14.5 to E16.5 mice to a host tissue at the same age of development, small numbers of
proliferated cells within the LGE migrated to cortex; however, not all migrating cells were also
GABA positive (Anderson et al., 2001). As discussed earlier, in a study on Nkx2.1 mutant
mice, in which MGE fails to form, these mutants have shown only 50% reduction of
GABAergic interneurons in the cortex. While MGE is the primary source of neocortical
interneurons, that there was only a 50% reduction raises the possibility that other regions in the
brain are also responsible for generating neocortical interneurons (Sussel et al., 1999).
Furthermore, cells migration from LGE to the cortex continued when MGE had been removed

from explants taken from rat embryos (Jiménez et al., 2002).

1.2.4 Preoptic Area

The preoptic area (POA) is a part of the hypothalamus; it is located immediately adjacent to
the MGE in front of optic recess. Contribution of embryonic POA to neocortical GABAergic
interneurons has been recently demonstrated by Gelman et al (2009) via in-utero
electroporation and fate mapping experiments. Results showed that cellular migration from

POA to the cortex does exist, these cells were also found to express GABAergic interneuron
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markers. Subsequently, another study showed that multiple subtypes of interneurons are
generated from the POA and possibly make up 10% of all neocortical GABAergic interneurons
as the third most important source after MGE and CGE (Gelman et al., 2011).

1.3 Interneuronal subtypes

Wide diversity of cortical GABAergic interneurons was described in both developing and adult
brains. This variety of interneuronal subtypes is thought to provide the means by which the
cortex performs complex functions. However, the classification of GABAergic interneurons is
still under debate, for the most part because of overlapping of several interneuronal subtypes.
These subtypes are grouped on the basis of the physiological diversity including their synaptic
targets and firing patterns. Additional heterogeneities are also provided by the
immunohistochemical signature and the morphology for these interneurons (Markram et al.,
2004; Rudy et al., 2011). GABAergic interneurons can be categorized into three major groups
(Table 1.1) that express the calcium binding protein parvalbumin (Pv), the neuropeptide
somatostatin (Sst), and the Serotonin receptor 3a (5-HT3aR) (Lee et al., 2010; Fogarty et al.,
2007; Rudy et al., 2011). Transplantation and fate-mapping studies have established that the
spatial and temporal origins of interneurons can determine their subtype. The early born Pv+
and Sst+ cortical interneurons are predominantly derived from MGE and migrate tangentially
initially into the deep cortical layers of anterior two thirds of the cortex (Wichterle et al., 2001;
Wonders and Anderson, 2006) before populating the whole cortex. Conversely, the CGE
appears to be the main source of late born cells that express 5-HT3aR, which migrate first to
the superficial cortical layers of caudal cortex (Nery et al., 2002; Butt et al., 2005). Further
spatial segregation has been also observed within the MGE for the generation of Sst+
interneurons from the dorsal MGE whereas Pv+ interneurons tend to be derived from the

ventral MGE (Figure 1.5) (Fogarty et al., 2007; Wonders et al., 2008).
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Table 1.1: Cortical interneuronal subtypes and their characteristics in rodents.

Marker and %total Morphology Axonal targeting on Firing References
origin GABA+ cells projection neurons pattern
Gibson et al., 1999: Cauli et
Parvalbumin Large basket Proximal dendrites and | Fast al, 1997: Kawaguchi and
Kubota, 1997; Xu and
VvMGE ~40% soma spiking Callaway, 2009; Rudy et al.,
2011
Chandelier Axonal initial segment Fast
spiking
Kawaguchi and Kubota,
Somatostatin ~30% Martinotti Distal dendrites Bursting
1997; Markram et al., 2004;
dMGE Wang et al., 2004; Uematsu
et al., 2008; Rudy et al.,
2011
Cauli et al., 1997; Porter et
5-HT3aR VIP+: Bipolar Proximal dendrites Irregular
al., 1998; Cauli et al., 2000;
CGE ~30% spiking Férézou et al., 2002; Caputi
etal.,, 2009; Lee et al., 2010;
Miyoshi et al., 2010; Rudy
VIP-: Other GABA+ cells Fast etal., 2011;
Neurogliaform adapting

1.3.1 Parvalbumin -expressing interneurons

Pv-expressing interneurons represent approximately 40% of all

cortical GABAergic

interneuron population (Rudy ez al, 2011). Physiological and morphological analysis of

interneuronal subtypes have indicated that MGE derived Pv-expressing interneurons are mostly

fast spiking, characterized by a high-frequency train of action potentials (Gibson et al., 1999;

Cauli et al., 1997; Kawaguchi and Kubota, 1997; Xu and Callaway, 2009) and contain two

morphological subtypes: basket and chandelier interneurons (Markram et al, 2004;
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Helmstaedter et al., 2009; Uematsu et al., 2008). Furthermore, these interneurons possess the
lowest input resistance and the fastest membrane time constant of all interneurons (Ascoli et
al., 2008; Goldberg et al., 2008; Markram et al., 2004; Gibson et al., 1999; Cauli et al., 1997,
Kawaguchi and Kubota, 1997). Basket cells are the most common and comprise almost 50%
of all inhibitory interneurons that have multipolar morphology; they tend to make synapses at
the soma and proximal dendrites of the target pyramidal neurons (Kawaguchi and Kubota,
1997; Markram et al., 2004; Ascoli et al., 2008). Fast-spiking basket neurons are considered
the dominant inhibitory system in the cortex by mediating fast inhibition to target neurons
(Rudy et al., 2011; Kelsom and Lu, 2013). Unlike basket cells, chandelier cells are infrequent
and target the axon initial segment of pyramidal neurons, therefore they are known as axo-

axonic cells (Kawaguchi and Kubota, 1997; Ascoli et al., 2008).

1.3.2 Somatostatin-expressing interneurons

Sst-expressing interneurons make up roughly 30% of all cortical GABAergic interneurons and
represent distinct non-overlapping population with Pv-expressing interneurons (Fogarty et al.,
2007; Rudy et al, 2011). Sst-expressing interneurons are associated with Martinotti-like
morphology, these cells are found in cortical layers II-VI, most abundant in layer V, with
ascending axons to layer [ where they arborize and make synapses on the apical dendritic tufts
of pyramidal neuron (Kawaguchi and Kubota, 1997; Markram et al., 2004; Wang et al., 2004;
Uematsu et al., 2008; Rudy et al., 2011). This interneuronal subtype mediate a regular adapting
firing pattern, but also fire bursts of two or more spikes when depolarized from depolarized

from hyperpolarized potentials (Xu et al., 2013; McGarry et al., 2010; Ma et al., 2006).

17



vMGE dMGE | _ CGE

[ 4

PV —

40% 30%

\

30%

Figure 1.5: Origin of cortical interneuronal subtypes. Schematic diagram demonstrates the
molecular expression profiles and developmental origins of three major interneuronal subtypes:
Pv-, Sst-, and SHT3aR- expressing interneurons. PV- and SST-expressing cells represent two
non-overlapping populations that are exclusively derived from the Lhx6-expressing MGE
lineage (Fogarty et al., 2007). All CGE-derived interneurons express the serotonin receptor
SHT3aR which includes subtypes express reelin, calretinin, and vasoactive intestinal peptide
(VIP). Proportion of MGE derived Sst-expressing cells also coexpress Reelin and CR. (adapted
from Myioshi et al., 2010).

1.3.3 5-HT3aR-expressing interneurons

The CGE derived 5-HT3aR expressing interneurons comprise 30% of all the cortical
GABAergic interneuron population. These cells are grouped into vasoactive intestinal peptide
(VIP)-expressing cells (40%) and non-VIP-expressing cells (60%) (Lee et al., 2010; Rudy et
al., 2011). Most of VIP-expressing cells also express the calcium binding protein calretinin
(CalR) and are mainly associated with a bipolar, or bitufted, morphology (Lee et al., 2010;
Miyoshi et al., 2010; Caputi et al., 2009). These cells generally make synapses onto proximal
dendrites of target neurons (Lee et al., 2010; Miyoshi et al., 2010; Cauli et al., 2000) and are
characterized by an irregular spiking pattern (Cauli et al., 1997; Porter et al., 1998; Cauli et al.,
2000; Férézou et al., 2002; Miyoshi et al., 2010). They are vertically oriented and found in
layer II-IV with dendrites extending towards layer I and down to layer VI, (Markram et al.,
2004). However, the smaller proportions of VIP-expressing cells that do not co-express CalR
are known to mediate fast-adapting firing pattern (Lee ef al., 2010; Miyoshi et al., 2010).
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The majority of non-VIP SHT3aR-expressing interneurons are reelin-positive. Neurogliaform
cells are one type belonging to this group and characterized by multiple dendrites radiating
from a round soma. These cells are also known to co-express neuropeptide Y (NPY) (Olah et
al., 2007; Kawaguchi and Kubota, 1997). Neurogliaform cells function by activating slow
GABAA and GABAB receptors in order to elicit long lasting inhibitory postsynaptic potentials
onto pyramidal neurons and other interneurons (Tamas et al., 2003; Olah et al, 2007;).
Furthermore, these cells have a unique feature among other types of interneurons because they
make synapses not only with each other but also with other interneuronal subtypes as well,
while other interneurons can make synapses with homologous interneurons, thus solidifying
their important role in regulating neural circuitry (Price et al., 2005; Simon et al., 2005; Zsiros

and Maccaferri, 2005).

1.4 Specification of cortical GABAergic interneurons

Large efforts have been made over the last 20 years to determine the genetic regulatory
pathways that promote GABAergic interneurons production, migration, and how their
functional diversity becomes established. It is now widely recognised that the molecular
differences in the neural progenitors of these interneurons have strong implications with
regards to their spatial and temporal development, and their specification into diverse subtypes.
The neuroepithelium lining of each of the primary origins of cortical GABAergic interneurons
(MGE, CGE, and POA) is identified by a distinct transcriptional network, resulting in distinct

neuronal fates produced in these regions (Kelsom and Lu, 2013; Kessaris ef al., 2014)

1.4.1 Specification of GABAergic interneurons in the MGE

Several transcription factors were identified to play an essential role in regulating the
production and specification of MGE-derived GABAergic interneurons (Figure 1.6). At the top
of the molecular hierarchy in the MGE is the homeobox transcription factor Nkx2.1, which is
considered as the key regulator of MGE-derived interneurons specification (Sussel et al., 1999;
Xu et al., 2004; Butt et al., 2008; Du et al., 2008). Nkx2.1 is the only transcription factor that
characterizes MGE from other subcortical domains. In early loss of Nkx2./ function (Nkx2.1
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mutants) the MGE acquires an LGE-like character (Sussel er al, 1999), whereas late
conditional loss of function switches MGE to CGE in character (Butt ef al., 2008). In contrast
to Nkx2.1 null animals which are not viable postnatally, most likely because NKX2.1 is also
essential for the organogenesis of lung and thyroid (Kimura et al., 1996), conditionally mutant
mice are viable postnatally and show pronounced epileptic seizures and dyskinesia (Butt et al.,

2008).

While MGE is the major source of cortical GABAergic interneurons, Nkx2.1 expression in this
region is required for the specification of Sst+ and Pv+ interneurons derived from this region
(Xu et al., 2004; Butt et al., 2008; Du et al., 2008). Slice cultures in Nkx2.1 mutant mice have
shown apparent failure in MGE progenitors to differentiate to Pv and Sst expressing
interneurons and a three-fold reduction in their number (Xu et al., 2004; Butt et al., 2008; Du
et al., 2008). Significant increase in the production of VIP/CalR CGE- derived interneurons
was observed in these mutants which suggested as a compensation process for the loss of Pv
and Sst MGE- derived interneurons (Xu et al., 2004; Butt et al., 2008). However, rescued
expression of Nkx2.1 (electroporation of Nkx2.1 cDNA) into the ventral telencephalon of slice
cultures from Nkx2.1 mutants can rescue the loss of these interneuronal subtypes (Du et al.,
2008). Although NKX2.1 is broadly expressed through the MGE, it has been shown that the
VZ of the MGE can be further subdivided into distinct progenitor domains which could encode
the neuronal diversity produced in this region (Flame ef al., 2007; Flandin et al., 2010); for
example, Nkx6.2 is expressed in a restricted spatial pattern at the MGE/LGE boundary
(interganglionic sulcus) and at the most dorsal aspect of the Nkx2-1-positive region in the MGE
(Stenman et al., 2003; Flame ef al., 2007). Nkx6.2+ domain has been shown to give rise to both
Pv and Sst-expressing interneurons and in particular be enriched in a subpopulation of Sst/CalR

expressing interneurons (Fogarty et al., 2007; Sousa et al., 2009).

A second transcription factor which is downstream of Nkx2.1 is Lhx6. Nkx2.1 appears to
directly induce the expression of Lhx6 which is required for specification of Pv+ and Sst+
MGE-derived interneurons by supressing the CGE-like identity in MGE cells (Liodis et al.,
2007; Du et al., 2008; Vogt et al., 2014). Lhx6 activity is also required for migration of these
interneuronal subtypes from MGE to the cortex (Liodis et al., 2007; Zhao et al., 2008; Flandin
et al., 2011). While Nkx2.1 expression is downregulated as interneurons migrate out of MGE

(Marin et al., 2000), the onset of Lhx6 expression appears in these interneurons around the
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time of their final cell cycle and as they exit the proliferative zone through to their maturity in
the developing cortex (Lavdas et al., 1999; Liodis et al., 2007). Most interneurons in Lhx6

mutant mice failed to integrate into their appropriate cortical layer (Zhao et al., 2008).

One factor that appears to be upstream of Nkx2.1 is Shh (Xu et al., 2005; Xu et al., 2010).
Three crucial actions of Shh signalling were identified. First, at an early stage of neural
development, Shh signalling is required for establishment of dorsoventral patterning in the
telencephalon, as mentioned above, Shh signalling initiates the patterning of ventral
telencephalon by promoting the induction of ventral transcription factors and repressing of Gli3
function (Gunhaga et al., 2000; Rallu et al., 2002; Fuccillo et al., 2004). Second, Shh is also
required for expanding the numbers of neuronal progenitors in ventral telencephalon (Machold
et al., 2003; Xu et al., 2005). Third, it has become apparent that Shh signalling is required for
maintaining Nkx2.1 expression in MGE, thereby, Pv+ and Sst + interneurons fate
determination in this region (Xu et al., 2005; Xu et al., 2010). The concentration gradient of
Shh signalling across the MGE has also been shown to preferentially promote one specific
subtype over another, a higher level of Shh signalling in dorsal MGE promote the generation
of Sst+ interneurons while the lower level in ventral MGE promotes the generation of PV+
interneurons (Xu et al., 2010). Shh- mutant mice at embryonic day E 12.5 have shown reduced
Nkx2.1 expression in MGE and pronounced reduction in Nkx2.1- dependent Pv+ and Sst+
interneurons in the postnatal cortex. In the same study exogenous Shh rescued the loss of
Nkx2.1 expression and interneuron fate effects in slices from these mutants (Xu ez al., 2005).
In addition to reduction in Nkx2.1 expression, downregulation of Shh signaling in MGE results
in upregulation of Gsh2, a transcription factor enriched in CGE and contributes in production
of bipolar CalR+ interneurons, which means that loss of Shh signaling leads to conversion of
MGE-derived interneurons fate from Pv+ and Sst+ interneurons to CalR+ interneuron which

are normally derived from CGE (Butt et al., 2005; Xu et al., 2010).

Lhx8 and Sox6 are other transcription factors that lie downstream of Nkx2.1 and have roles in
the genetic regulatory pathway of interneuron production and migration in the MGE. Although
the precise roles of Lhx8 in the specification of cortical MGE-derived interneurons need to be
better delineated, it is known to work in conjunction with Lhx6 (Zhao et al., 2003; Flandin et

al.,2011). In a study of Lhx8/Lhx6 double mutants (but not single mutants) there was reduction

21



in tangentially migrated interneurons to the cortex. The same study has also indicated that both
Lhx8 and Lhx6 are important in promoting the expression of Shh signal in MGE (Flandin et
al., 2011). However, Lhx8 single mutants analysis has shown that Lhx8 plays a major role in
the development of striatal interneurons and minor role in the development of GABAergic
cortical interneurons (Zhao et al., 2003). Sox6 acts downstream of Lhx6; it is primarily
expressed in postmitotic MGE cells (Zhao et al., 2003; Liodis et al., 2007; Batista-Brito ef al.,
2009) and mainly required for normal positioning and maturation, but not the specification, of

MGE-derived interneurons (Azim et al., 2009; Batista-Brito et al., 2009).

The DIx family of homeobox genes, mainly DIx1/2, are believed to be functioning at the top
of the genetic cascade of interneuron development, not only in the MGE, but also in the other
subcortical regions (Anderson et al., 1997a; Cobos et al., 2005; Long et al., 2009). DIx1/2 are
required to induce expression of several transcription factors in MGE progenitors as well as
proteins involved in migration and integrations of MGE-derived interneurons into the cortex
(Long et al., 2009). For example, DIx1/2 are required for the generation of interneuron
precursors in the MGE and their migration to the cortex (Anderson et al., 1997a), and are
particularly involved in specification of Sst/CalR expressing interneurons (Xu et al., 2004;
Cobos et al., 2005). DIx1 is also essential for the preserving of functional interneurons in the
cortex of adult brain (Cobos et al., 2005). Additionally, DIx1/2 are required to induce the
expression of DIx5/6 in the ventral telencephalon (Liu et al., 1997), which are required for
interneuron migration and differentiation, but not their generation; they are particularly
required for the differentiation of Pv expressing interneurons (Wang et al., 2010). The Arx
homeobox transcription factor is highly expressed in the GE, it appears to be downstream of
DIx genes, and is required for interneurons migration from the ganglionic eminence to the
cortex (Kitamura et al., 2002). However, recent study has shown that Arx is direct downstream
target for Lhx6 in MGE-derived interneurons, where it is required to determine their fate and

laminar position in the cortex (Vogt et al., 2014).
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Figure 1.6: Production of cortical interneurons in the MGE. Adapted from (Kelsom and
Lu, 2013).

1.4.2 Specification of GABAergic interneurons in the CGE

The CGE is a source of interneuronal subtypes that are different from those generated in the
MGE; it is believed to be the main source for CalR and/or VIP- expressing interneurons (Xu et
al., 2004; Butt et al., 2005; Fogarty et al., 2007). The CGE is also known to be molecularly
distinct, expressing separate set of transcription factors that regulate the interneurongenesis in
this domain (Figure 1.7). In addition to their role in production of striatal projection neurons
and olfactory bulb interneurons from LGE (Stenman et al., 2003) the homeobox transcription
factor Gsx2 is at the top of the hierarchy governing the production and specification of CGE-
derived cortical GABAergic interneurons (Xu et al., 2010). It is also considered among the
earliest transcription factors expressed within the LGE and CGE progenitors, but weakly
expressed in MGE (Corbin et al., 2003). Conditional null mutants of this transcription factor,
where Gsx2 expression is eliminated in the majority of telencephalic progenitors, have shown
dramatic loss of bipolar CalR-expressing interneurons (Xu et al., 2010). A related gene is Gsx1;
although they are co-expressed, the Gsx1/2 have been known to have antagonist functions,

while Gsx2 maintains the undifferentiated state of progenitors, Gsx1 promotes the progenitors’
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maturation and differentiation; however, downstream targets of Gsx1/2 seem to be involved in

this process. (Pei et al., 2011).

One of the well-known targets of Gsx genes is Ascll (also known as Mashl) (Wang et al.,
2009). Ascll is proneural basic helix-loop-helix transcription factors expressed in the
progenitor zones of the ventral telencephalon, together with DIx1/2 have a complementary role
in regulating notch signalling, thereby controlling the temporal neurogenesis in the ventral
telencephalon (Casarosa ef al., 1999; Marin et al., 2000; Yun et al., 2002). While Ascll is
required for early neurogenesis in the ventral telencephalon (Casarosa et al., 1999; Horton et
al., 1999). DIx1/2 which are located downstream of both Gsx2/ Ascll are required to
downregulate these two transcription factors to promote the differentiation of late born neurons
(Anderson et al., 1997b; Marin et al., 2000; Yun et al., 2002). Ascll promotes the expression
of Notch Ligand Delta 1 and mediates lateral inhibition via Notch signalling pathway thus
prevents precocious differentiation of neural progenitors (Casarosa et al., 1999; Horton et al.,
1999; Yun et al., 2002). Ascll mutants have shown a reduction in early- born neurons in the
ventral telencephalon (E10.5) (Casarosa et al., 1999; Yun et al., 2002). These mutants have
also shown molecular defects in both the proliferative and postmitotic zones, the presence of
these defects suggests an accelerated differentiation and thereby production of neurons
prematurely (Fode et al., 2000; Yun et al., 2002). DIx1/DI1x2 mutants have shown defects in
the late- born neurons in the ventral telencephalon (E12.5), which was attributed to the
expanding of Notch signaling domain to SVZ, where DIx1 and DIx2 play crucial roles in down-
regulating the Notch signaling and promoting the terminal differentiation of these later subset
of neural progenitors (Marin et al., 2000; Yun et al., 2002). One more piece of evidence of
interaction of DIx1/2 with Ascll is that DIx1/2 expression is up-regulated in most VZ cells in

Ascll mutant ventral telencephalon (Casarosa et al., 1999).

The nuclear receptors COUP-TFI and COUP-TFII (also known as Nrf2fl and Nrf2f2,
respectively) are important transcription factors that play essential roles in CGE-derived
interneurons specification and migration. Both COUP-TFI and COUP-TFII are preferentially
expressed in the CGE as well as in the migrating interneurons into the cortex (Kanatani et al.,
2008; Lodato et al., 2011). CGE-derived interneurons preferentially migrate caudally to the
most caudal part of telencephalon (Yozu et al., 2005). COUP-TFII is essential to establish this

caudal migratory stream of these interneurons (Kanatani et al., 2008). COUP-TFI is required
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to maintain the balance of generation of different interneuronal subtypes from MGE and CGE
by regulating the rate of proliferation of progenitor cells in CGE. Conditional inactivation of
COUP-TFI leads to significant decrease in the number of CGE-derived CalR/VIP interneurons
(Lodato et al.,, 2011). Another transcription factor, Proxl, is specifically important for
migration and differentiation, but not production, of CGE-derived interneurons in rodents
(Miyoshi et al., 2015). However, the precise roles of COUP-TFs and Prox1 transcription factors

in specification the CGE-derived interneurons are still unclear.

SP8 is another transcription factor that is widely expressed in the ventral and dorsal
telencephalon in mouse (Waclaw et al., 2006; Sahara et al., 2007; Waclaw et al., 2010; Ma et
al., 2012; Borello et al., 2013) it is a member of the Sp1 zinc finger transcription factor family
(Bell et al. 2003; Treichel et al. 2003). Its expression in the ventral telencephalon regulates
differentiation of LGE-derived interneurons that populate the amygdala and the olfactory bulb
via the rostral migratory stream (Waclaw et al., 2006; Waclaw et al., 2010). However, Sp8 is
also expressed in subpopulation of dorsal LGE/CGE-derived cortical interneurons that
preferentially occupy superficial cortical layers (Ma et al., 2012). Its expression in the dorsal
telencephalon regulates the cortical patterning where it is required to establish the rostral

identity of the cerebral cortex (Sahara et al., 2007; Zembrzycki et al., 2007).
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Figure 1.7: Production of cortical interneurons in the CGE. Adapted from (Kelsom and
Lu, 2013).
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1.4.3 Specification of GABAergic interneurons in the POA

The network of transcription factors that regulates the production of GABAergic interneurons
in POA is not well defined yet (Figure 1.8). It is located immediately adjacent to the MGE and
nearly all precursor cells in POA express Nkx2.1 but not its downstream effector Lhx6 (Flames
et al., 2007). Thus, the POA seems to be molecularly distinct from the MGE. In addition,
transcription factors such as Dbx 1, Nkx6.2, Nkx5.1, and Shh morphogen are expressed in POA
progenitors but not in MGE progenitors (Gelman ef al., 2009). In a fate mapping and in utero
transplantation study, using Cre line mice under the control of Nkx5.1 (exclusively expressed
in POA), it has been shown that POA is a birthplace of cortical interneurons that express NPY
and/or reelin. Neither of these cells co-express Sst, suggesting that NPY+/Sst- and Reelin+/Sst-
interneurons are derived from both CGE and POA (Gelman et al., 2009). In addition to Nkx5.1-
derived cortical interneurons, it has been reported that another population of interneurons are
derived from Dbx1 expressing progenitor cells. Diverse classes of interneurons are derived
from this domain (Gelman et al., 2011). Despite these findings, the network of transcription

factors that plays role in specification of POA-derived interneurons remains unclear.
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Figure 1.8: Production of cortical interneurons the POA. Adapted from (Kelsom and Lu,
2013).
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1.5 The generation of cortical GABAergic interneurons in human fetal brain

Due to the availability of transgenic models, the neocortical development has been widely
studied in rodents; however, it is less recognized to what degree the developmental rules in
human can match those found in our experimental models which have a less complex and
shorter developmental course (Rakic, 2009). Humans have considerably expanded cognitive
abilities compared to all other species, which may be dependent on the remarkable increase in
the number of neurons and cortical connections (DeFelipe, 2011; Buckner and Krienen, 2013).
With no correlate in rodents, humans have expanded higher order associative areas which cover
a large part of the human cortical surface (Uylings and van Eden, 1991), the deep layer III
pyramidal neurons in these associative areas form crucial elements for substantial number of
connections with other cortical areas (Barbas et al., 2005; Yeterian et al., 2012) which are
important for higher cognitive abilities (Selemon et al., 2003; Wang et al., 2006; Verduzco-
Flores et al., 2009). The tremendous increase in cortical volume has been linked to the
expanded outer subventricular zone (OSVZ) of the developing cortical wall in human (Rakic,

2009; Geschwind and Rakic, 2013; Sousa ef al., 2017).

The generation of interneurons may be also more complicated in primates, which have evolved
an expanded OSVZ in the ganglionic eminences (Hansen et al., 2013a). Proportionally more
interneurons appear to be produced in the CGE, the majority of which populate the superficial
layers of the cortex (Nery et al., 2002; Butt et al., 2005, Hansen et al., 2013a; Ma et al., 2013).
Furthermore, several studies have reported that during the early stage of development, cortical
GABAergic interneurons in primate, like in rodents, are mainly generated in the GE; whereas
in the second trimester (15-24 PCW in human and E64-E75 in macaque monkey) the
proliferative zone of the dorsal telencephalon could also contribute to a proportion of cortical
GABAergic interneurons (Letinic et al., 2002; Petanjek et al., 2009a; Zecevic et al., 2011;
Radonji¢ et al., 2014a). Unlike rodents, where Pv-expressing interneurons are the dominant
subtype, the proportion of CalR-expressing interneurons increased three fold in human, where
they become the dominant subtype and increase the proportion of cortical neurons that are
interneurons by 50% in primate compared to the rodents (Condé et al., 1994; Gabbott et al.,
1997; Zaitsev et al., 2005; Barinka and Druga, 2010; Hladnik et al., 2014). Almost half of all
these CalR interneurons are found in the frontal associative area (Hladnik et al., 2014). The

distant anatomical positions of frontal associative area in the frontal lobe and the posteriorly
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positioned CGE (which is the major source of CalR-expressing interneurons) suggest that

proportion of these subtypes could be generated intra-cortically (Hladnik ez al., 2014).

The first indication for generation of cortical interneurons in the proliferative zone of the dorsal
telencephalon was demonstrated by Letinic et al. (2002) using retroviral labelling of DIx2 and
Ascll expressing progenitors in slice cultures of human fetal brain. This study proposed the
presence of two distinct sources of neocortical GABAergic interneurons; 65% of all cortical
GABAergic interneurons are generated in the proliferative zone of the dorsal telencephalon,
and only 35% are generated in the proliferative zone the ventral telencephalon. Similar findings
were also reported in a study on the macaque monkey, suggesting that this can also occur in
other primates (Petanjek et al., 2009b). These two groups proposed that the generation of
cortical GABAergic interneurons takes place in distinctive temporal profiles. For example, at
earlier stages of development (10-13 PCW) in human and (E47-E55) in macaque monkey, the
GE of ventral telencephalon is the birthplace of all cortical GABAergic interneurons. At later
stages of development (15-24 PCW) in human and (E64-E75) in macaque monkey, in addition
to the ventral telencephalon, cortical GABAergic interneurons are massively generated in the
ventricular zone of the cortex (Letinic ez al., 2002; Petanjek et al., 2009b). The presence of
CalR+ interneurons that are double labelled with K167 (cell division marker) in the VZ/SVZ
of dorsal telencephalon of 20 PCW human fetal brain also supports these findings (Zecevic et
al., 2011). Moreover, subsequent studies have confirmed the presence of proliferative
interneurons progenitor cells that express interneuronal markers, such as ASCL1, DLX2, and
NKX2.1 in proliferative zone of dorsal human telencephalon which suggests the cortical origin

of GABAergic interneurons (Radonji¢ et al., 2014a; Al-Jaberi et al., 2015).

Despite of all these findings, other groups have argued that interneuronogenesis in primate fetal
brains is essentially the same as in rodent. In studies in human and monkey, they reported that
all proliferative interneurons progenitor cells found in the cortex are originally derived in the
GE but may retain proliferative capacity after migrating into the cortex (Hansen et al., 2013a;
Ma et al., 2013). Furthermore, as there is general agreement that most of the calretinin-
expressing interneurons in rodents are derived from the CGE (Nery et al., 2002; Butt et al.,
2005), Hansen et al. (2013a) reported that the CGE in human generates a greater percentage of

interneurons than in rodents, which could give explanation for higher prevalence of calretinin-
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expressing interneurons in adult human brain than in rodents. However, the possibility of dorsal

origins for GABAergic interneurons is still divisive and needs more investigation.

1.6 Aims of the study

The aims of this project were to:

Identify the expression patterns of specific transcription factors expressed in
GABAergic interneuron precursors in the ventral telencephalon and the cortex of 8—12

PCW human fetal brain (Chapters 3 and 4).

Reveal the complex organization for the GE and septum into distinct neurogenic

domains (Chapters 3 and 4).

Demonstrate the distinct migration pathways, identified by the expression of specific
transcription factors, of GABAergic interneurons from the ventral telencephalon into

the cortex (Chapters 3 and 4).

Explore the extent to which expression of COUP-TFs and SP8 the in the human

forebrain mirrors that in the rodent models (Chapter 4).

Explore the potentially expanded origins of GABAergic interneurons in human fetal
brain (Chapters 3 and 5).

Investigate the gradient of “GABAergic” genes expression in human fetal cortex.
(Chapters 4 and 5).

Explore the effect of exogenous sonic hedgehog (Shh) treatment on cortical cell
cultures (Chapter 5).
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Chapter 2: Materials and Methods

2.1 Human Fetal Brains and Ethical approval

Human fetal tissue from terminated pregnancies was obtained from the joint MRC/Wellcome
Trust-funded Human Developmental Biology Resource (HDBR, http://www.hdbr.org; Gerrelli
etal. 2015) based in Newcastle, UK. All tissue was collected with appropriate maternal consent
and approval from the Newcastle and North Tyneside NHS Health Authority Joint Ethics
Committee (REC reference 08/H0906/21+5). HDBR Newcastle is licensed as a tissue bank as
part of Newcastle Biobanks (http://www.ncl.ac.uk/biobanks/) which is licensed by the UK

Human Tissue Authority (licence number 12534). Fetal samples ranging in age from 8 to 12
PCW were used in this study. Ages were estimated from foot, and heel to knee length

measurements according to Hern (1984).

2.2 Tissue Processing and Sectioning

Processing and sectioning of embryonic and foetal material for paraffin sections was performed
by the HDBR Newcastle staff. Brains were isolated and fixed for at least 24 h at 4°C in 4%
paraformaldehyde dissolved in 0.1 M phosphate- buffered saline (PBS) (PFA; Sigma Aldrich).
Once fixed, whole or half brains (divided sagittally) were dehydrated in graded ethanols (70%
for 15 minutes, 100% for 45 minutes, 2 x 100% for 1 hour) at room temperature. The fixed
brains were dissected into blocks of approximately equal size, with the number depending on
the size of the brain. Blocks were then incubated in xylene (2 h) before embedding in paraffin
(Shandon Pathcentre Tissue Processor, Thermo Scientific, Epsom, UK). Brain tissue blocks
were cut at 8 um section thickness (Leica RM 2235 microtome) in three different planes;
horizontally, sagittally, and coronally (Table 2.1), mounted on slides and used for haematoxylin

and eosin staining (H&E) and immunostaining.
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Table 2.1: Details of the human fetal samples used in this study for IHC and cell culture.

Brain No. HDBR Sample ID Age Application Sectioning
Number Orientation
1 12506 8 PCW HC Sagittal
2 11872 8 PCW IHC Horizontal
3 1975 8§ PCW HC Horizontal
4 11577 8§ PCW HC Horizontal
5 12294 8 PCW HC Sagittal
6 13107 8 PCW HC Sagittal
7 12294 8 PCW Cell culture -
8 13254 9 PCW Cell culture -
9 13642 9 PCW Cell culture -
10 12721 10 PCW HC Horizontal
11 13136 10 PCW HC Coronal
12 13081 10 PCW HC Coronal
13 13168 10 PCW Cell culture -
14 13183 11 PCW Cell culture -
15 13405 11 PCW Cell culture -
16 13854 11 PCW Cell culture -
17 11610 12 PCW HC Sagittal
18 11761 12 PCW HC Coronal
19 11523 12 PCW HC Coronal
20 11795 12 PCW HC Sagittal

Note: the brain numbers in column 1 have been given in the figure legends in chapters 2-5 to
identify the specific fetal sample used to illustrate methods or in the experiments described.
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2.3 Haematoxylin & eosin histological staining

Paraffin sections were dewaxed in xylene for 5 minutes and rehydrated in a series of ethanol
dilutions (100%, 100%, 95%, 70%). Sections were rinsed in tap water and placed into Harris’
Haematoxylin solution (Raymond A Lamb Ltd., Eastbourne, UK) for 1 minute and rinsed in
tap water afterward. The nuclei of cells were ‘blued’ in Scots tap water substitute (3.5g sodium
bicarbonate, 20g magnesium sulphate, 1L distilled water (Sigma Aldrich), placed in eosin (1%
aqueous, Raymond A Lamb Ltd) for 10 seconds to stain the cytoplasm and rinsed in tap water.
Sections were then dehydrated by serial dilutions of ethanol (70%, 95% and 100%), immersed
in two changes of xylene and mounted using DPX (Sigma-Aldrich, Poole, UK).

2.4 Immunohistochemistry (IHC)

2.4.1 Immunoperoxidase histochemistry

Paraffin sections were dewaxed by treatment with two changes of xylene for 5 minutes each
and rehydrated via four changes of graded ethanol (100%, 100%, 95%, and 70%). Endogenous
peroxidase activity was blocked by treatment with methanol peroxide (3ml hydrogen peroxide,
Sigma Aldrich, 180 ml methanol) for 10 minutes. Sections were rinsed in tap water and boiled
by microwave treatment in 10mM citrate buffer pH6 (Table 2.2) for antigen retrieval for 10
minutes. Sections were then incubated with the appropriate normal 10% blocking serum
(species in which secondary antibody was raised, Vector Labs) in Tris buffered saline (TBS;
Table 2.2) for 10 min at room temperature before incubation with the primary antibody (diluted
in 10% normal blocking serum) overnight at 4 °C. Details of all the primary antibodies used in
this study are found in Table 2.3. Then, sections were washed and incubated with the
biotinylated secondary antibody for 30 minutes at room temperature (Vector Laboratories Ltd.,
Peterborough, UK) at 1:500 dilution in 10% normal serum in TBS followed by washing and
incubation with avidin-peroxidase for 30 minutes (ABC-HRP, Vector Labs). The sections were
developed with diaminobenzidine (DAB) solution for 10 minutes (Vector Labs) washed,
dehydrated and mounted using DPX (Sigma-Aldrich). Positive signal is indicated by the brown

stain.
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Table 2.2: Components of commonly used solutions.

Solution Components pH | Concentration

TBS 8.75g NaCl 75 |-
6.50g Trizma base
800ml distilled H20

Citrate Buffer | 5.88g of (C6H5Na307)2H20 tri-sodium citrate 6 0.1M
2L distilled H20

2.4.2 Immunofluorescence (double and triple labelling)

We used a novel immunofluorescent staining method, Tyramide Signal Amplification (TSA)
that permits sequential double and triple staining using antibodies from the same species
without cross-reactions (Goto et al., 2015; Harkin et al., 2016). Sections were treated as
described above until the secondary antibody stage, then they were incubated with HRP-
conjugated secondary antibody for 30 minutes (ImmPRESS™ HRP IgG [Peroxidase] Polymer
Detection Kit, Vector Labs) washed twice for 5 minutes in TBS and incubated in the dark for
10 minutes with fluorescein tyramide diluted at 1/500 in 1X Amplification buffer (Tyramide
Signal Amplification (TSA™) fluorescein plus system reagent, Perkin Elmer, Buckingham,

UK). Tyramide reacts with HRP to leave fluorescent tags covalently bound to the section.

Prior to starting the second round of staining, sections were first washed in TBS and boiled in
10mM citrate buffer to remove all antibodies and unbound fluorescein from the first round.
Sections were then incubated in 10% normal serum before incubating with the second primary
antibody (Table 2.3) for 2 hours at room temperature. Following washing, sections were again
incubated with ready to use HRP-conjugated secondary antibody then incubated with CY3
tyramide for 10 minutes (Tyramide Signal Amplification [TSA™] CY3 plus system reagent,
Perkin Elmer). The same steps were repeated for the third round of staining (if triple labelling
was needed) using CY5 Tyramide (Tyramide Signal Amplification (TSA™) CY5 plus system

reagent, Perkin Elmer). Sections were washed before applying 4',6-diamidino-2-phenylindole
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dihydrochloride (DAPI; Thermo Fisher Scientific, Cramlington, UK) and mounted using

Vectashield Hardset Mounting Medium (Vector Labs).

Table 2.3: Details of all primary antibodies used in the study.

Primary Species Dilution | Supplier RRID number

antibody

KI67 Mouse monoclonal | 1/150 Dako, Ely, UK. AB 2142378

TBR1 Rabbit polyclonal | 1/1000 Abcam, Cambridge, UK. | AB 2200219

TBR2 Rabbit polyclonal | 1/200 Abcam AB 778267

PAX6 Rabbit polyclonal | 1/500 Cambridge Bioscience, AB 2565003
Cambridge, UK.

NKX2.1 Mouse monoclonal | 1/150 Dako Not available

SOX6 Rabbit polyclonal | 1/3000 Abcam AB 1143033

COUP-TFI | Mouse monoclonal | 1/1500 Abcam AB 742210

COUPT-FII | Mouse monoclonal | 1/500 R&D Systems, AB 2155627
Abingdon, UK.

OLIG2 Rabbit polyclonal | 1/1000 Merck Millipore, AB 10141047
Watford, UK.

CalR Mouse monoclonal | 1/2000 Swant, Marly, Not available
Switzerland.

Calbindin Rabbit polyclonal | 1/1000 Swant AB_ 10000340

GADG67 Mouse polyclonal | 1/1000 Merck Millipore. AB 2278725

SP8 Goat polyclonal 1/500 Santa Cruz, Heidelberg, | AB 2194626
Germany.

GABA Rabbit polyclonal | 1/400 Sigma-Aldrich, Poole, AB 477652
UK.

GFAP Rabbit polyclonal | 1/500 Abcam AB 305808

B-tubulin III | Mouse monoclonal | 1/300 Sigma-Aldrich AB 477590

B-tubulin IIT | Rabbit polyclonal | 1/300 Abcam AB 444319

OLIG2 Rabbit polyclonal | 1/1000 Merck Millipore
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2.5 RNA Sequencing

Apart from the data analysis and interpretation reported in this thesis, this work was carried out
as part of another study (Lindsay er al, 2016) (http://www.hdbr.org/expression/). The

processes involved and the people who undertook the work are briefly outlined below.

2.5.1 Brain dissections (HDBR staff, Dr Lauren Harkin and Dr Nadhim Bayatti)

Whole fetal brains were isolated from the skull and the meninges were removed. The
hemispheres were separated, and the choroid plexus and subcortical structures removed. One
or both hemispheres (each hemisphere represented an independent sample) was then divided
into 6 blocks. The temporal lobe, including lateral and medial walls was removed and labelled
block 6. The remaining cortex was divided into 5 blocks of equal width from the anterior (A)
to the posterior (P) pole of the cortex including lateral and medial cortical walls (labelled 1-5).
Sections 1, 3, 5, and 6 were used for RNA extraction and corresponded to anterior, central (C),
posterior and temporal (T) regions (Figure 2.1). In this study, the quantitative RNAseq analysis
only included samples from two developmental time points, 34 at 9—10 PCW and 67 at 11-12
PCW (Table 2.4).

Table 2.4: The number of samples of fetal cortex included at each age and location for
RNAseq analysis in this thesis.

Age (PCW) Number of samples
Anterior | Central Posterior Temporal Total
9-10 9 4 10 11 34
11-12 20 5 24 18 67
101
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A Human foetal brain 10 PCW

Right hemisphere

Hindbrain
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B Cerebral cortex

Central

Anterior
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J

Temporal

Figure 2.1: Human brain dissection for RNA sequencing. Brains were isolated from the
head (A); meninges, blood vessels, and sub-cortical structures were removed, cortex which was
then divided into six blocks including the anterior, central, posterior and temporal regions (B).
Adapted from (Harkin, 2017).
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2.5.2 From RNA extraction to RNAseq data mapping and quality control.

RNA extraction, library preparation and sequencing performed by AROS Applied
Biotechnology (Aarhus, Denmark). Poly A RNA was prepared from frozen tissue samples

following the company’s protocols and quality assurance procedures.

The RNA libraries were prepared following the guidelines produced for the TruSeq Stranded
mRNA LT sample prep kit (Illumina part # 15031047 Rev. E) and were quality controlled with
respect to concentration and size profile. The libraries contain approximately 120 nucleotides
of adapter sequence and the remaining size of the library is derived from the input RNA. The
average size of the inserts was 80 bp and the data output corresponded to an average of 90 M

reads and a minimum of 63M reads.

Quality control and genomic mapping of RNAseq data were performed by Dr Yaobo Xu at the
Newcastle University Bio-informatics unit. Only reads that were at least 20bp in length after
trimming were kept. These high-quality reads were then mapped to the human reference
genome hg19 with Tophat2 (Kim et al., 2013). Number of reads mapped to genes were counted
using HTSeq-count (Anders et al., 2014). RPKMs (Reads per kilo base per million) of genes
were calculated and normalized using conditional quantile normalization following the

methods set out by Hansen et al. (2012).

2.6 Isolation, Expansion, and Differentiation of NSCs from human fetal brain

2.6.1 General Reagents used in the protocol

All reagents were reconstituted and prepared following the supplier instructions:
- NeuroCult NSC Basal Medium (Human)
Stem Cell Technologies (Catalog #: 05750)

- NeuroCult™ NS-A Proliferation supplements (Human)

Stem Cell Technologies (Catalog number: 05751)

- NeuroCult™ NS-A Differentiation supplements (Human)
Stem Cell Technologies (Catalog number: 05752)
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Basic Fibroblast Growth Factor, human (hbFGF)
Sigma-Aldrich (Catalog number: F0291): A 25 pg/vial of rh bFGF was diluted in 2.5
ml sterile PBS containing 0.1% BSA

Epidermal Growth Factor, human (hEGF)Sigma, 200 pg
Sigma-Aldrich (Catalog number: E9644-2MG): A 200 pg/vial of rh EGF was

dissolved in 0.1 ml sterile 10 mM acetic acid containing at least 0.1% BSA

0.2% Heparin Sodium Salt in PBS
Stem Cell Technologies (Catalog number: 07980)

Recombinant Human Sonic Hedgehog/Shh
R&D Systems (Catalog number: 1845-SH-100): A 100 pg/vial of rh Shh was

dissolved in 1ml sterile PBS containing at least 0.1% BSA

Bovine serum albumin (BSA)

Thermo Fisher Scientific, Invitrogen (Catalog number: 15561-020)

Recovery™ Cell Culture Freezing Medium

Life Technologies, Gibco (Catalog number: 12648010)

Penicillin-Streptomycin (5,000 U/mL)
Thermo fisher (Catalog number 15070-06300

% 0.05 trypsin-EDTA
Life Technologies, Gibco (Catalog number 15400-054)

Soybean trypsin inhibitor
Sigma-Aldrich (Catalog number: T6522-100mg)
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- Distilled Water
Thermo fisher (Catalog number: 1097703)

- DPBS no calcium, no magnesium

Life Technologies, Gibco (Catalogue number: 14190-094)

- Hank’s balanced salt solution no calcium, no magnesium, no phenol red (HBSS 1x)
Life Technologies, Gibco (Catalogue number: 14175-053)

2.6.2 Preparation of complete proliferation and differentiation media

The proliferation and differentiation media were prepared according to supplier instructions:

- Preparation of 10 ml complete proliferation media (with cytokines)

1 mL of NeuroCult™ NS-A Proliferation Supplement was added to each 9mL

NeuroCult™ NS-A Basal Medium (1: 9 ratio), cytokines were then added as follow:
- 20 pL of 10 pg/mL rh EGF (to give a final concentration of 20 ng/mL rh EGF)
- 10 pL of 10 pg/mL rh bFGF (to give a final concentration of 10 ng/mL rh bFGF)
- 10 pL of 0.2% Heparin (to give a final concentration of 2 pg/mL)

- Preparation of 10 ml complete differentiation media

I mL NeuroCult™ NS-A Differentiation Supplement was added to each 9 mL
NeuroCult™ NS-A Basal Medium (1:9 ratio).
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2.6.3 Tissue dissociation and initial plating of primary fetal NSCs in neurosphere cultures.

The isolation and expansion of NSCs were carried out using the neurosphere culturing method
(Reynolds and Weiss, 1992; Azari et al., 2011; Siebzehnrubl et al., 2011). In this method, the
majority of differentiating and differentiated cells die in 2-3 days, while the neural stem cells
continue to proliferate to form neurospheres in the presence of epidermal growth factor (EGF)
and basic fibroblastic growth factor (bFGF) (Reynolds and Weiss, 1992; Siebzehnrubl et al.,
2011).

Human fetal brains (n =7, 9-11 PCW; Table 2.1) were dissected in a sterile 100mm petri dish
containing cold Dulbecco's phosphate-buffered saline (DPBS). Using fine forceps, brains were
isolated; meninges and blood vessels were removed (Figure 2.2A-C). The GE, anterior cortex,
and posterior cortex, from either one or two hemispheres, were detached (Figure 2.2D-F) and
minced into tiny pieces before incubation in 0.05% trypsin-EDTA (Thermo Fisher Scientific,
Paisley, UK) for 30 minutes in a 37°C water bath for chemical dissociation. Trypsin activity
was terminated by adding the same amount of soybean trypsin inhibitor (Sigma-Aldrich).
Tissue was pelleted at 110 g for 5 minutes, re-suspended in Sml basal media (NeuroCult NSC
Basal Medium, Stem Cell Technologies, UK) and gently pipetted up and down (15-20 times)
until single cell suspension is achieved. The suspension was then filtered through a 70-pm-pore
cell strainer (Becton Dickinson). Cells were plated at 2x103 cells /cm? into T-25¢m? flasks in
serum-free proliferation media (NeuroCult™ NS-A Proliferation Supplements-Human, Stem
Cell Technologies) and supplemented with 20 ng/mL rh EGF (Sigma-Aldrich), 10 ng/mL rh
bFGF (Sigma-Aldrich), and 2 pg/mL heparin (Stem Cell Technologies) at 37°C with 95% O/
5% COz.
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Ant Crx

E PostCrx

Figure 2.2: Human brain dissection for cell cultures. Brains were isolated from the head (A,
B); meninges and blood vessels were removed (C). Anterior (Ant Crx, D), posterior (Pos Crx,
D), and ganglionic eminences (GE, B) were detached. A-F from brain No: 7 (Table 2.1).
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2.6.4 Plating of the NSCs for differentiation

The medium was replenished every two days for 10-15 days until the neurospheres reach
approximately 100-150 pm in diameter. The condition of the cultures was monitored daily,
viable neurospheres generally appear semi-transparent and phase bright, with many of the cells
on the outer surface displaying microspikes (Reynolds and Weiss, 1992; Azari et al., 2011;
Siebzehnrubl ez al., 2011). Neurospheres were mechanically dissociated into single cells for

passaging and/or differentiation.

For cell differentiation, cells were plated at 2x103 cells /cm? onto poly-L-lysine coated glass
coverslips, in 12-well culture dishes, in differentiation media (NeuroCult™ NS-A
Differentiation Supplements-Human, Stem Cell Technologies) for 8 days at 37°C with 5%
COsz. A half-medium change was carried out every two days, cells were then fixed with cold
4% paraformaldehyde (Sigma-Aldrich) in PBS for 20 minutes and subjected to

immunocytochemistry.

2.6.5 Treatment of cell cultures with rh SHH

Two group of cell cultures were treated every two days with two concentrations of recombinant
human SHH (100 ng/ml and 200 ng/ml, R&D Systems). The first group was treated for 12 days
in differentiation media, the second group was treated for 14 days in proliferation media and
12 days in differentiation media. The counting and images displayed in this thesis are from the

group of cells treated with 200 ng/ml concentration in differentiation media.

2.7 Immunocytochemistry

After fixation, cells were washed three times with PBS and blocked with 10% fetal calf serum
in 0.3% Triton X-100/PBS for 1 hour at room temperature. Primary antibodies diluted in 10%
fetal calf serum in 0.3% Triton X-100/PBS were applied overnight at 4°C. The list of antibodies
used in immunocytochemistry and their dilutions are found in Table 2.3. On the second day,
cells were washed with PBS and incubated with Texas Red conjugated goat anti-rabbit and

fluorescein conjugated horse anti-mouse secondary antibodies (Vector Laboratories) at 1:200
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dilution in PBS for 2 hours at room temperature. Cells were counterstained and mounted with

anti-fade mounting medium containing DAPI (Vector laboratories).

2.8 Image Acquisition

2.8.1 Light microscopy and slide scanning

Images of all immunoperoxidase staining presented in this study were captured using either a
Zeiss Axioplan 2 microscope or Leica SCN400 Slide Scanner (Newcastle Biomedicine
Biobank Imaging facility). Processing of images, which included only adjustment of brightness

and sharpness, was achieved using the Adobe Photoshop CS6 software.

2.8.2 Fluorescent microscopy

The double immunofluorescent figures (sections and cells) were obtained with a Zeiss
Axioimager Z2 apotome using DAPI, GFP, and Texas Red filters. Triple immunofluorescent
images were obtained with a Nikon A1R confocal microscope using DAPI, GFP, Texas Red,
and CY5 filters. The excitation and emission values for the used fluorophores are shown in
Table 2.5. Processing of images, which included only adjustment of brightness and sharpness,

was achieved using the Adobe Photoshop CS6 software.

Table 2.5: The Excitation/ emission values (nm) for DAPI and fluorophore used in double
and triple labelling.

Fluorophore Excitation/Emission (nm)
DAPI 358461
Fluorescein 494/517
CY3 550/570
Texas Red 550/570
CYS5 649/665
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2.9 Cell Quantifications

2.9.1 Cell counts in proliferative zones of 12 PCW fetus sections

Nine sections from one 12 PCW brain were selected at intervals along the anterior—posterior
axis and immunoperoxidase stained for NKX2.1, OLIG2, or COUPTFII (see chapter 3). For
each section, using images obtained with the slide scanner, a counting box 100 micron-wide
and approx. 500-750 micron-deep (the exact dimensions were recorded and used in
calculations) was placed over the ventricular and subventricular zones (VZ and SVZ;
delineated by the expression of PAX6 and KI67), with the 100 micron edge parallel to the
ventricular surface, at three equally spaced locations within the following regions of the section
(if present); lateral, dorsal, medial, or ventral cortex, MGE, LGE, or ventral CGE, or sub-
cortical septum. The number of immunopositive cells within these counting boxes was
recorded manually and the area of the box measured (Figure 2.3). From these counts, the
average density of immunopositive cells in the VZ/SVZ of each anatomical region was

recorded.

In a 3D reconstruction of a 12—13 PCW fetal brain made from MRI scans (Figure 2.4, available
at http://database.hudsen.eu); using Image J software (https://imagej.nih.gov/ij/), we calculated
the volume of the proliferative zones (VZ/SVZ) of each of the brain regions that we had
counted cells in (Table 2.6) and then multiplied the volume of the brain region by the average
density of immunopositive cells in that region to give an estimate of the total number of
immunopositive cells in that brain region (see Table 3.1). The percentage of cells in each
compartment from the total number of cells (in VZ/SVZ) with the standard error were also
calculated. In this way, we took into account that although the cortex contained a low density
of some cell types, the much larger volume of the cortical regions might contain a relatively

large number of cells.
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Kie7 PAX6 COUP-TFII

Figure 2.3: Example of cell counts boxes in proliferative zones of 12 PCW fetus sections.
(A, B) The proliferative zones of different compartments were delineated by the expression of
cell division marker KI67 and/or the radial glia cell marker PAX6. (B) Coronal section stained
for COUPTFIL. (A’, B”) KI67 and PAX6 delineated the VZ and SVZ in the cortical wall. (C)
Example of 100 micron-wide and approximately 500 micron-deep counting box (red boxed
area) for COUP-TFII+ cells in the proliferative zone of dorsal cortex. Boxed areas in A, B, and
C show where images (A’-C’) were taken. A-C’ from brain No: 18. Scale bar: 1 mm in C (and
for A and B). 100 pm in A’-C’.
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Figure 2.4: Orientation using a 3D MRI model of 12 PCW human fetal brain. The panels
have images from the 3D model visualised using MAPaint software (ADD URL). In each panel
the left hand image shows the coronal section while the right hand image has a sagittal section
of the model. The red line on the sagittal section indicates the position of the coronal section
in the left hand image. (A) Anterior coronal sections, only anterior cortex can be seen at this
level. (B) Section at the level of the rostral thalamus showing central cortex, MGE, LGE, and
septum. (C) Section at the level of the caudal thalamus showing central cortex and CGE. (D)
Posterior coronal sections, only posterior cortex can be seen at this level. (Available at

http://database.hudsen.eu).
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Table 2.6: The volume (mm?) of different brain regions of 3D reconstruction of a 12-13
PCW fetal brain made from MRI scans.

Brain Region Volume (mm3)
Cortical Proliferative Zone 2196.6

MGE 155.9

LGE 380.3

Ventral CGE 161.6
sub-cortical septum 46.8

2.9.2 Cell counts in double fluorescent 8 and 12 PCW immunostained sections

The counting was performed on sections labeled with two markers each along with the nuclear
staining (DAPI). Cells were manually counted from 5 sections from each fetal sample (8 PCW,
n =2 and 12 PCW, n = 2). Sections were observed under medium magnification (10x),
rectangular counting boxes of approx. 300-500 pum width were placed over the
ventricular/subventricular zones (VZ/SVZ) and intermediate zone/CP (I1Z/CP) delineated by
the nuclear staining (DAPI) on intact parts of the anterior and posterior cortex (Figure 2.5).
Mean values with the standard error were calculated. Experimental groups were compared

using a 2-tailed t-test.
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COUP-TFII GAL

Figure 2.5: Example of cell counts in double fluorescent immunostained sections. (A, B)
Double labelling for COUP-TFII and COUPTFII (red) with GAD67 (green) in the cortical
wall of 8 PCW fetus, the nuclear staining (DAPI) was used to delineate the different
compartments of cortical wall (VZ,SVZ,1Z,CP, and MZ). Arrows indicate examples of double
labelled cells; asterisks indicate examples of single labelled cells. A and B from brain No: 1.
Scale bar: 100 um in B (and for A).

2.9.3 Cell counts of dissociated cell cultures

For quantification in dissociated culture, cells from 3 different fetal brains were cultured in 12-
well plates were fixed after culture and immunocytochemistry carried out with antibodies to
various markers and the nuclear staining (DAPI), each staining combination was made in
duplicate (see chapter 5, Figure 5.4 and Figure 5.6). Photomicrographs (20x) were captured
from 3 random fields of view from each well from which manual cell counts were made
(therefore n = 18). Mean values with the standard error were calculated. Experimental groups

were compared using a 2-tailed t-test.
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Chapter 3: Expression of the Transcription Factors NKX2.1, OLIG2 and
COUP-TFII in Early Fetal Human Telencephalon

3.1 Summary

The extent of similarities and differences between cortical GABAergic interneuron generation
in rodent and primate telencephalon remains contentious. We examined expression of three
interneuron  precursor transcription factors, alongside other markers, using
immunohistochemistry on 8-12 post-conceptional weeks (PCW) human telencephalon
sections. NKX2.1, OLIG2, and COUP-TFII expression occupied distinct (although
overlapping) neurogenic domains which extended into the cortex and revealed three CGE
compartments: lateral, medial, and ventral. NKX2.1 expression was very largely confined to
the MGE, medial CGE, and ventral septum confirming that, at this developmental stage,
interneuron generation from NKX2.1+ precursors closely resembles the process observed in
rodents. OLIG2 immunoreactivity was observed in GABAergic cells of the proliferative zones
of the MGE and septum, but not necessarily co-expressed with NKX2.1, and OLIG2 expression
was also extensively seen in the LGE, CGE, and cortex. At 8 PCW, OLIG2+ cells were only
present in the medial and anterior cortical wall suggesting a migratory pathway for interneuron
precursors via the septum into the medial cortex. By 12 PCW, OLIG2+ cells were present
throughout the cortex and many were actively dividing but without co-expressing cortical
progenitor markers. Dividing COUP-TFII+/PAX6+ progenitor cells were localized to ventral
CGE and gave rise to calretinin expressing interneurons in the CGE as previously described,
which not only migrated posteriorly into the cortex from ventral CGE but also anteriorly via
the LGE. COUP-TFII expressing progenitors were also numerous in adjacent ventral cortex
co-expressing PAX6 in proliferative zone and TBR1 in the post-mitotic zone mostly likely
giving rise to glutamatergic pyramidal cells in the ventral cortex. However, small numbers of
COUP-TFII cells were also found undergoing division in anterior and dorsal regions of the
cortex. These did not co-express PAX6 suggesting they are most likely interneuron progenitors.
Whether they migrated to the cortex, retaining the capacity to divide, or were born in the dorsal

telencephalon, is still unclear.
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3.2 Introduction

Humans have considerably expanded cognitive abilities compared to all other species which
may be dependent on the evolution of a greater interconnectedness of a larger number of
functional modules (DeFelipe, 2011; Buckner and Krienen, 2013). This not only depends on
the physical presence of neurons, axon pathways, and synapses, but also on synchronicity of
neural activity between cortical areas binding together outputs of all neurons within a spatially
distributed functional network (Singer and Gray, 1995; Fries, 2009). The synchronicity
essential to higher order processing is dependent on the activity of GABAergic interneurons
(Whittington et al., 2011; Buzsaki and Wang, 2012), and we might predict a more sophisticated
functional repertoire for interneurons in higher species (Yafez et al., 2005; Molnar et al., 2008;
DeFelipe, 2011; Povysheva et al, 2013; Clowry, 2015). Is this expanded repertoire of
functional types matched by an evolution of their developmental origins? It is well established
in rodents that GABAergic interneurons are born almost entirely outside the neocortex in the
ganglionic eminences and associated structures (such as the preoptic area) from which they
migrate tangentially into the cortex (De Carlos et al, 1996; Parnavelas, 2000; Marin and
Rubenstein, 2001; Welagen and Anderson, 2011).

Whether or not the cortical proliferative zones are a source of interneurogenesis, to what extent
and significance, is a contentious issue (Molnar and Butt, 2013; Clowry, 2015). Some
researchers have proposed that primates generate significant numbers of interneurons in the
proliferative zones of the dorsal telencephalon (Letinic et al., 2002; Petanjek et al., 2009a;
Zecevic et al., 2011; Radonji¢ et al., 2014a; Al-Jaberi et al., 2015a) as well as in the ganglionic
eminences. Other groups have convincingly argued that interneuronogenesis is essentially the
same in primates as in rodent models (Hansen et al., 2013b; Ma et al., 2013; Arshad et al.,
2015). As there is growing evidence that conditions such as autism, schizophrenia, and
congenital epilepsy, may have developmental origins in the failure of interneuron production
and migration (DeFelipe, 1999; Lewis et al., 2005; Uhlhaas and Singer, 2010; Marin, 2012), it
is important that we understand fully the similarities and differences between human
development and that in our animal models. Therefore, a detailed study of expression of three
transcription factors expressed by interneuron progenitors, NKX2.1, OLIG2, and COUP-TFIL
was carried out between the ages of 8—12 post-conceptional weeks (PCW) which have been a

relatively neglected period of development in the previous studies of interneurogenesis.
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3.3 Aim of study

The present chapter firstly aimed to map and quantify the expression of three transcription
factors expressed by interneuron progenitors NKX2.1, OLIG2, and COUP-TFII between the
ages of 812 PCW, an important stage of development prior to the arrival of thalamic
innervation. Secondly, reveal the complex organization for the CGE and septum into distinct
neurogenic domains. Thirdly, demonstrate the distinct migration pathways of GABAergic
interneuron from the ventral telencephalon into the cortex. Finally, explore the potential

expanded origin GABAergic interneuron in human fetal brain.

3.3 Results

Examination of our immunoperoxidase labelled sections for various markers at low
magnification revealed details of the characteristics of the CGE and septum in human not fully
reported on before in detail. Therefore, the results section begins by describing these regions
before moving on to describe the level of expression of each GABAergic interneuron precursor
transcription factor in different parts of the telencephalon, aided by a more detailed knowledge

of CGE and septal sub-compartments.

3.3.1 The anatomical position of the caudal ganglionic eminence (CGE)

The position of the CGE can be determined with respect to other subcortical landmarks in H&E
stained sections (Figure 3.1). For example, in the horizontal plane, at the level of the internal
capsule, the MGE and LGE appeared as prominent bulges into the lateral ventricles, and in an
anterior position relative to the internal capsule. The CGE can be seen as the part of the GE
positioned caudally to the internal capsule immediately adjacent to the ventral/temporal cortex
(Figure 3.1A). In sagittal sections, the most dorsal part of the CGE appeared as well-defined
protrusion into the lateral ventricle, close to the hippocampus, the central part lies next to the

narrow ventral extension of the lateral ventricles, while the most ventral part of CGE is located
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immediately adjacent to the ventral /temporal cortex. Anteriorly, and continuous with CGE,
either the LGE or MGE can be seen in lateral and medial cut parasagittal sections, respectively
(Figure 3.1B,C). In a coronal section plane, cut anterior to the thalamus, only MGE and LGE
can be delineated but not CGE (Figure 3.1D); in a section at the level of the anterior half of
thalamus, parts of MGE and LGE can be seen dorsal to the internal capsule and only the most
ventral part of the CGE was observed ventral to the internal capsule and close to the ventral/
temporal cortex (Figure 3.1E,F). At the level of the caudal half of thalamus and caudal to the
internal capsule, the CGE was present but not the MGE and LGE (Figure 3.1G).

Figure 3.1: The anatomical position of the subdivisions of GE in human fetal forebrain.
(A) Horizontal section at 8§ PCW. (B) Lateral parasagittal section at 12 PCW. (C) Medial
parasagittal section at 12 PCW. (D) Coronal section anterior to the thalamus at 12 PCW. (E)
Coronal section at the level of the anterior half of thalamus at 12 PCW. (F,G) Coronal section
at the level of the caudal half of thalamus and caudal to the internal capsule at 12 PCW. cp:
choroid plexus, Lv: lateral ventricle, Hip: hippocampus, Th: thalamus, Cer: cerebellum, crx:
cortex, IC: internal capsule. A from brain No. 4; B and C from brain No. 17; D-G from brain
No. 18 (Table 2.1). Scale bar: 1 mm in G (and for A-F).
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3.3.2 The molecular subdivisions of the caudal ganglionic eminence (CGE)

The molecular definition of the CGE as a distinct neurogenic domain different from those
found in the MGE and LGE is still unclear, mainly because no genetic mutant model has been
known to affect specifically CGE. Anatomically, as mentioned in the previous section, the CGE
is considered as a caudal extension of both MGE and LGE principally because the CGE shares
molecular features with these two regions. In rodents, the most lateral part expresses Gsh2 and
ERS81 which are required for LGE patterning (Corbin ef al., 2003; Stenman et al., 2003)
whereas, the medial part expresses NKX2.1, characteristic of the MGE (Sussel et al., 1999;
Corbin et al., 2003). Flames et al. (2007) have shown that CGE does not contain any specific
pools of neural progenitors different from those found in the LGE and MGE in mice. Despite
these findings, fate mapping studies reported that specific interneuronal subtypes that express
calretinin or/and vasoactive intestinal peptide are exclusively derived from the CGE but not
from MGE and LGE (Nery et al., 2002; Butt et al., 2005). In addition, the GABAergic
interneuron precursor marker COUP-TFII is preferentially expressed in CGE, where it is

required to drive CGE-derived interneuron migration into the cortex (Kanatani et al., 2008).

In order to further identify the specific neurogenic domains that exist in the CGE of human
fetal brain, the expression of several transcription factors expressed by interneuron progenitors
was studied, and revealed that the CGE can be subdivided into three major compartments,
medial, lateral and ventral (Figure 3.2; Figure 3.3). PAX6 was expressed in a gradient with
higher expression in the cortical proliferative zones to lower expression in the LGE. In addition
to this gradient, a well-defined cortical/subcortical boundary was also revealed by an abrupt
change in the expression pattern of PAX6 located ventral to the physical sulcus between the
cortex and the bulge of LGE. Whereas in the cortex PAX6 expression is confined to easily
recognisable ventricular, subventricular, and intermediate zones (VZ, SVZ and 1Z) in the LGE
this organization was not well defined, with a more diffuse cell population in the subcortical
SVZ (Figure 3.2A,C). A complementary expression pattern of PAX6 and NKX2.1 was seen
across the GE, as previously described at 7-8 PCW (Pauly ef al., 2014). While PAX6 was
expressed in the LGE, decreasing in expression from the lateral boundary with the cortex to
the boundary with the MGE, NKX2.1 was almost exclusively expressed in the MGE (Figure
3.2A-D). A marked boundary between PAX6 and NKX2.1 expression was located at the level

of the intereminential sulcus between LGE and MGE. This division also extended continuously
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and caudally into the CGE. PAX6 expression extended to the VZ of the most dorsal and lateral
part of the CGE which protruded into the lateral ventricle, whereas NKX2.1 expression
extended to the medial part of the CGE which lay close to the ventral extension of the lateral
ventricles (Figure 3.2C,D; Figure 3.3A,A’,B,B’). Previous studies in rodents defined these two
parts of the CGE as caudal extensions of the LGE and MGE, respectively (Corbin et al., 2003;
Flames et al., 2007). Accordingly, these two domains can be anatomically defined as lateral
CGE (LCGE) and medial CGE (MCGE). However, no molecular domains are found in these
two regions distinct from those found the LGE and MGE, respectively.

PAX6 ) NKX2.1
A

NKX2.1 PAX6 .
MGE
MGE-like
septum

LGE-like
septum

Pallium

Figure 3.2: Complementary expression of PAX6 and NKX2.1 in the ganglionic eminences
and septum of human fetal forebrain at 8 PCW. All sections are in the horizontal plane. (A)
PAX6 was expressed in a gradient with higher expression in the proliferative zone of the cortex
to lower expression in the LGE and its caudal extension (LCGE). (B) NKX2.1 expression was
mainly confined to the MGE and its caudal extension (MCGE). (C,D) Higher magnification of
boxed areas in A and B. (E,F) Ventral sections cut at the level of the septum; PAX6 was densely
expressed in the proliferative zone of VCGE, but no NKX2.1 expression was found in VCGE.
(G,H) Higher magnification of boxed areas in E and F. Similar to the ganglionic eminences,
PAX6 was expressed in a gradient from the cortex part to dorsal part of the septum (LGE-like
septum) and NKX2.1 was exclusively expressed in the most ventral part of the septum (MGE
like septum). A-H from brain No. 4. Scale bars | mm in F (and for A, B, and E); 100 um in H
(and for C, D, and G).
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Interestingly, these two domains could not be distinguished in the most ventral part of CGE,
which was located immediately adjacent to the ventral/temporal cortex (Figure 3.2E,F; Figure
3.3A”’,B”*). Thus, we propose there is a third compartment to the CGE in human, “ventral
CGE” (VCGE) which was characterized by strong immunoreactivity for PAX6, but not
NKX2.1. Despite the high PAX6 expression in the VCGE, there was still a distinct boundary
between it and the adjacent cortex, characterized by a thicker cortical VZ compared with more
condensed PAX6+ cells in the SVZ of the VCGE (Figure 3.3A”’,B”’). As the CGE is
recognised as the birth place of calretinin (CalR) expressing interneurons in rodents (Nery et
al., 2002; Butt et al, 2005) we studied the expression of CalR in the three defined
compartments of the CGE. CalR was preferentially expressed in cells of the VZ and SVZ of
the LCGE and VCGE. Only scattered CalR+ cells were observed in MCGE (Figure 3.3C-C").
In addition, as will be shown later in this chapter, COUP-TFII progenitor cells which give rise
mainly to calretinin-expressing interneurons were exclusively found in VCGE but not LCGE
and MCGE (see below). All these findings suggest that only the dorsal part of CGE (LCGE
and MCGE) shares the molecular features of the LGE and MGE; however, distinct neurogenic
domains can be identified ventrally (vCGE).
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Figure 3.3: The subdivisions of the CGE in sagittal sections at 12 PCW. (A, A’, A’’) PAX6
was expressed in the proliferative zone of LCGE but not MCGE, PAX6 was also expressed in
the VCGE with a distinct cortical/subcortical boundary (arrow in A”’). (B, B’, B*’) NKX2.1
was confined to the caudal extension of MGE (MCGE). (C,C’,C’’) Calretinin (CalR) is
preferentially expressed in ventricular and subventricular zones of the LCGE and only scattered
cells have been observed in MCGE, consistent with PAX6. Ant (anterior); Pos (posterior). A-
C”’ from brain No. 17. Scale bars: Imm in C (and for A, B); 100 pm in C*’ (and for A’, A”’,
B’, B, B’).

3.3.3 The subdivisions of the septum

The septum is a largely subcortical structure in mouse that is also known as a contributor of
cortical GABAergic interneurons (Wonders and Anderson, 2006). However, far too little
attention has been paid to the molecular features of this structure either in human or in rodents.
The transcriptional morphology showed that the septum shares common molecular features of
the ganglionic eminences along the dorsoventral axis (Figure 3.2; Figure 3.4). Complementary

expression was exhibited for PAX6 and NKX2.1; the most ventral part of septum could be
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defined as MGE-like septum characterized by strong immunoreactivity for NKX2.1 but not
PAX6 expression. More dorsally we found LGE-like septum, which was characterized by
moderate expression of PAX6 but not NKX2.1. The most dorsal part of septum had a cortical
rather than sub-cortical identity, manifested by higher PAX6 expression in the VZ and SVZ
and expression of TBR1 by post-mitotic cells in the SVZ, IZ and cortical plate (Figure 3.2E-
H; Figure 3.4). Similarly, the expression patterns of OLIG2 and SP8 in MGE-like and LGE-
like septum (as shown later in this chapter and chapter 4) shared their patterns of expression
with the MGE and LGE, respectively. In addition, a new migration pathway of septum derived

cells, not described previously, was also described in this chapter (see below).

PAX6 £ Neea OLIG2
LGE

LGE

LGE

LGE

Figure 3.4: Distinct expression patterns of PAX6, NKX2.1, OLIG2 and TBR1 show three
subdivisions of the septum. Pallial septum was characterised by strong expression of PAX6
(A) and TBR1 (D) the presence of some OLIG2+ cells (C) and an absence of NKX2.1 (B).
LGE-like septum was characterised by a dorsal to ventral gradient of PAX6 expression (A)
OLIG2 expression (C) and an absence of NKX2.1 expression (B). MGE-like septum exhibited
NKX2.1 (B) and OLIG2 (B) expression only. An arrow marks the border between the LGE
and MGE. A-D from brain No. 18. Scale bar: 100 um in D (and for A-C).
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3.3.4 Subcortical neurogenic domain of NKX2.1 progenitors

In the ventral telencephalon, NKX2.1 expression was almost entirely confined to the MGE
including its caudal extension (the MCGE) and the ventral part of the septum (MGE-like
septum) (Figure 2B,D,F,H; Figure 3.4B).

Double immunofluorescence labelling for NKX2.1 and GAD65/67 (enzyme catalysing
synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, GABA) of 8§ PCW
human sections revealed that they co-localized in the majority of cells in the SVZ of the MGE;
GADG65/67 was also expressed in migrating cells in the cortex; however, no NKX2.1+ cells
were found in the cortex at 8 PCW (Figure 3.5A) in agreement with the previous findings in
rodents and human that NKX2.1 is downregulated in GABAergic interneurons migrating out

of MGE (Marin and Rubenstein, 2001; Letinic ef al., 2002; Hansen et al., 2013b).
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Figure 3.5: The expression of NKX2.1 in the human fetal forebrain. (A) Double labelling
for GAD65/67 (green) and NKX2.1 (red) in coronal section at 8 PCW. Co-localization detected
as orange signal. GAD65/67 was expressed mainly in the subventricular zone (SVZ) of the
MGE and LGE. In LGE, GAD65/67 immunoreactivity also showed a clear cortical/subcortical
boundary anteriorly (arrow). NKX2.1 was expressed in the ventricular zone (VZ) and
subventricular zone (SVZ) of the MGE, and in cells probably migrating through the non-
proliferative mantle zone of LGE toward the cortex (crx). No NKX2.1+ cells were found in the
cortex at 8 PCW. (B, C, D) At 12 PCW, NKX2.1 was expressed in the majority of cells in the
MGE; scattered NKX2.1+ cells were found in the proliferative zones of the LGE and cortex.
(E) The distribution of NKX2.1+ cells in the proliferative zones of different regions of human
fetal forebrain at 12 PCW (n=1, see Table 3.1 for more details). A from brain No. 5; B-D from
brain No.18. Scale bars: 1 mm in A and B; 100 pm in D (and for C).
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However, at 12 PCW, dispersed NKX2.1 positive (NKX2.1+) cells were found in the cortical
VZ and SVZ sometimes far removed from the ganglionic eminences and septum (Figure 3.5B-
D) but no NKX2.1+ cells were observed to co-express KI67 (not shown) a marker for active
cell division (Scholzen and Gerdes, 2000). Quantification of the average density of NKX2.1+
in the proliferative zones of the MGE, septum, LGE, VCGE, and the cortex of a 12PCW brain
cut in the coronal plane (Figure 3.5E; Table 3.1) estimated that 93% of NKX2.1 cells in
proliferative layers were found in the MGE and ventral septum, 4.6 % in the LGE and VCGE,
and only 2.4 % in the cortex. Although only a very small percentage, the presence of NKX2.1+
cells in the cortex of 12 PCW brain suggests that these cells could be generated in the
proliferative zone of the dorsal telencephalon, and their incidence in the cortex gradually
increases with age. However, since no evidence for dividing NKX2.1+ cells in the cortex, these
cells could be also generated in the MGE (or septum) but continued expressing NKX2.1 while

migrating.

Table 3.1: Cell counts in Proliferative zones of 12 PCW fetus.

Compart- | Volume | NKX2.1 OLIG2 COUPTF-II

ment (mm?) Density Number Density Number Density Number
cells/mm3 % cells/mm3 % cells/mm?3 %
x103 X106 x103 X106 x103 X106

MGE 155.9 593.4 92.5 86.5 | 450.7 70.3 359 | 433 6.7 1.5

LGE 380.3 10.6 4.0 3.8 176.6 67.2 343 | 329.8 125.4 27.2

vCGE 161.6 5.5 0.9 0.8 191.1 30.9 15.8 | 1118.3 180.7 39.2

Septum 46.8 147.4 6.9 6.5 81.1 3.8 1.9 15.2 0.7 0.2

Cortex 2196.6 | 1.2 2.6 24 10.8 23.7 12.1 | 674 148 32.1

The volume of each compartment, which refers only to the SVZ and VZ, was estimated from
a 3D reconstruction of post-mortem MRI scans. Cell counts were made in randomly placed
counting frames, a density calculated and the value extrapolated to represent the whole
compartment. The percentage of cells refers to the proportion in the compartment of the total
number of cells expressing each transcription factor in the proliferative zones.
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3.3.5 Expression of OLIG2 in human fetal ventral telencephalon

Distinct patterns of OLIG2 immunoreactivity were seen in MGE, LGE, septum and CGE
compartments of human fetal brain. At both 8 and 12 PCW, OLIG2 was strongly expressed in
cells of the VZ and SVZ of the MGE, but weaker expression was observed in the VZ and SVZ
of the LGE; we observed aggregations of OLIG2+ cells amongst OLIG2- cells throughout the
SVZ of the MGE (Figure. 3.6A,B; Figure 3.7A-C). We estimated that OLIG2+ cells in the
MGE are largely dedicated to neurogenesis at these ages because there was no expression for
markers of oligodendrocytes precursors like NKX2.2 (this study, data not shown) and SOX10
(Hansen et al., 2013). In CGE compartments, both the level and the pattern of expression of
OLIG?2 in the MGE and LGE was extended caudally to the MCGE and LCGE, respectively
(Figure 3.7A-E); similar to NKX2.1, the level of OLIG2 expression in the vVCGE was only
confined to very few cells (Fig. 4k) confirming that this compartment of the CGE contains
neurogenic domain distinct from those located dorsally (MCGE and LCGE) which are more

likely considered as caudal extension of the MGE and LGE, respectively.
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Figure 3.6: The expression pattern of OLIG2 in human fetal forebrain at 8 PCW. (A)
OLIG2 was strongly expressed in the proliferative zones of MGE. Weaker expression was
observed in LGE. (B) Higher magnification of boxed area in A. (C) The anterior (ant) cortex
was heavily populated with OLIG2+ cells whereas no OLIG2+ cells were found in the most
posterior cortex. (D) Higher magnification of boxed area in C, OLIG2+ cells from the GE
appeared to be only starting to invade the posterior cortex (arrows). (E) OLIG2 was expressed
in the proliferative zone of septum, with a stream of OLIG2+ cells appearing to migrate (arrow)
into the medial cortex (crx). A and B from brain No. 5; C-E from brain No. 2; H from brain
No. 4. Scale bars: 1 mm in A, C; 100 pm in B, D, E.
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Figure 3.7: The expression pattern of OLIG2 in human fetal forebrain at 12 PCW. (A, B)
Similar to 8 PCW, OLIG2 was strongly expressed in the proliferative zone of MGE at 12 PCW,
with aggregations of OLIG+ cells amongst OLIG2- cells. (C) Relatively weaker expression
was observed in LGE. (D, E) The expression pattern of OLIG2 in the MGE and LGE extended
to the MCGE and LCGE, respectively. (F) Scattered OLIG2+ cells were observed in the
VCGE. A, B and C- coronal section plane. D, E and F- sagittal section plane. A-C from brain
No. 18; D-F from brain No. 17. Scale bars: 1 mm in D (and for A); 100 um in F (and for B,C,E).

Although OLIG2 was highly expressed in the NKX2.1-expressing neurogenic domain,
showing overlapped expression in the MGE and ventral septum; cellular co-localization of
these two markers revealed the presence of three separate population of progenitor cells in the
MGE, NKX2.1-/OLIG2+, NKX2.1+/OLIG2-, and NKX2.1+/OLIG2+ (Figure 3.8A) which
could contribute to the neuronal diversity generated in this domain. To confirm that OLIG2+
cells at this stage of human forebrain development (8-12 PCW) were GABAergic interneuron
precursors, OLIG2 and GAD65/67 double labelling was performed it was found that most
OLIG2+ cells in the SVZ of the MGE co-expressed GAD65/67 (Figure 3.8B,C). Furthermore,
a proportion of cells in the MGE were triple labelled with OLIG2, NKX2.1, and GAD65/67
(Figure 3.8D-G). However, although both OLIG2 and calretinin were expressed in LCGE and
MCGE, no double labelling for these two markers was detected (data not shown) suggesting
that calretinin expressing cells (interneurons) are not generated from OLIG2 and NKX2.1

expressing progenitors.
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Figure 3.8: OLIG2 and NKX2.1 co-localization in the MGE of human fetal forebrain at
8 and 12 PCW. (A) Double labelling for NKX2.1 (green) and OLIG2 (red) in the MGE at 8
PCW showed three population of cells located in the MGE: the first expressed only OLIG2
(red), the second expressed only NKX2.1 (green), and a third population co-localized these two
markers (yellow). (B, C) Double labelling for OLIG2 (red) and GAD65/67 (green) in the MGE
at 8 and 12 PCW showed that most of nuclear OLIG2+ cells were double labelled with
GADG65/67 in the cytoplasm. (D, E, F, G) Triple labelling for NKX2.1 (green), OLIG2 (red),
and GADG65/67 (purple) in the MGE at 8 PCW showed many cells coexpressed the
transcription factors NKX2.1 and OLIG2 (nuclear staining, yellow) and GAD65/67
(cytoplasmic, purple). A,B, D-E from brain No. 5; C from brain No. 19. Scale bars: 100 um in
A; 50 ym in B, C; 20 pm in G (and for D, E, F).
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3.3.6 Expression of OLIG2 in human fetal dorsal telencephalon

At 8 PCW a quite different pattern of OLIG2 expression was observed in the posterior and
anterior cortex. A stream of OLIG2+ cells from the GE appeared to be starting to invade the
posterior cortex, however no OLIG2+ cells were observed in the most posterior cortex at this
stage (Figure 3.6C,D). In contrast, the anterior cortex was heavily populated with strongly
OLIG2 immunoreactive cells and there was a moderate immunostaining throughout the cortical
wall including the cortical plate (Figure 3.6C), as was previously observed at 7.5 PCW (Al-
Jaberi et al, 2015) suggesting a role for OLIG2 in cortical arealization. In addition to the
OLIG2+ cells seen entering the cortex from the LGE, a stream of OLIG2+ cells also appearing
to migrate from the septum into the medial wall of the anterior cortex (Figure 3.6C,E) revealing
a new migration pathway (medial pathway) of septum- derived cells into the cortex, which is
in conflict with previous findings in rodents where cells from the septum only migrate into the
cortex via the lateral pathway through the MGE and LGE (Pleasure et al., 2000; Wonders and
Anderson, 2006; Morozov et al., 2009; Faux et al., 2012). One other explanation for the
increasing density of OLIG2+ cells in the anterior cortical wall is that considerable number of
OLIG2+ cells in the anterior cortex were double labelled with K167 showing that these cells
were dividing (Figure 3.9A) which suggested either a dorsal origin for these cells or that they

retained proliferative capacity after migrating into the cortex.
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Figure 3.9: Double labelling for OLIG2 (red) with KI67, PAX6, and TBR2 (green) in
human fetal forebrain at 8 and 12 PCW. (A) Many OLIG2+ cells (red) co-expressed the cell
division marker K167 (green) at 8 PCW (arrows). (B) Many OLIG2+ cells co-expressed K167
at 12 PCW (arrows). (C) OLIG2+ cells (red) did not co-express the radial glia cell marker
PAX6 (green). (D) OLIG2+ cells (red) did not also co-express the intermediate progenitor cell
marker TBR2 (green). (E) OLIG2 expression in the cortex of coronal section 12 PCW. (F)
OLIG2 expression in ventral cortex. (G) OLIG2 expression in lateral cortex. (H) OLIG2
expression in the dorsal cortex. (I) OLIG2 expression in the medial cortex. (J) The distribution
of OLIG2+ cells in the proliferative zones between different regions of human fetal forebrain
at 12 PCW (n=1). (K) The average density of OLIG2+ cells in the ventral cortex, lateral cortex,
dorsal cortex, and medial cortex of 12 PCW human fetal brain (n=1). Images A-D were taken
from the anterior cortical wall. Boxed areas in E show where images (F-I) were taken. A from
brain No. 2; C-I from brain No. 18. Scale bars: 50pum in A; 20pum in B; 50 pym in C; 20 pm in
D; 1 mm in E; 100 um in I (and for G, H).
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At 12 PCW, OLIG2+ cells populated the whole cortex and were mainly seen in the SVZ and
1Z, nevertheless scattered positive cells were sometimes observed in the VZ and the cortical
plate (CP; Figure 3.9E-I). A proportion of OLIG2+ cells in the cortex were also found to co-
express K167 (Figure 3.9B); However OLIG2+ cells were not double-labelled with either
PAX6 or TBR2 (Figure 3.9C,D) showing that OLIG2 is not expressed by typical cortical radial
glial progenitors or intermediate progenitors (Bayatti et al., 2008a; Lui et al., 2011). Finally,
the average density of OLIG2+ cells has been also quantified in the proliferative zones of
different regions of the ventral and dorsal telencephalon (Table 3.1). Overall, OLIG2
expression was far less confined to the MGE than NKX2.1, with approximately 38% of all
OLIG2+ cells in proliferative layers found in the MGE and the adjacent ventral septum, 50%
in the LGE and VCGE, and 12% in the cortex (Figure 3.9J; Table 3.1). When comparing the
average density between four different cortical regions, a higher density was found in the
medial cortex with a decreasing gradient to the latero-ventral regions (Figure 3.9K) as
demonstrated above, the medial migration of OLIG2 + cells from the septum could be the

reason for the raised density in the medial cortex.

3.3.7 The vCGE and MGE/LGE boundary are exclusive source of COUP-TFII progenitors
in the ventral telencephalon

In the ganglionic eminences, COUP-TFII expression was very specific at 8 PCW; it was largely
confined to the CGE compartments and MGE/LGE boundary although dispersed cells were
also observed within the MGE and LGE (Figure 3.10A-C). At 12 PCW, COUP-TFII was still
highly expressed in the proliferative zones of the CGE, with a decreasing gradient of COUP-
TFII+ cells toward the LGE and anterior cortex, and only a few cells occupied the MGE;
however, strong immunoreactivity was still observed at the MGE/LGE boundary (Figure
3.11A-C; Figure 3.12A-D). COUP-TFII immunoreactivity also revealed a clear
cortical/subcortical boundary between the LGE and the lateral cortex (boundary located ventral
to the physical sulcus between the cortex and the bulge of LGE (Figure 3.11D). Although
COUP-TFII is expressed either side of this boundary, there is markedly higher expression in
the LGE. Similarly, Pauly et al. (2014) reported an abrupt transition from high to low DLX2
expression (subcortical marker, a transcription factor expressed upstream of COUP-TFII)
going from the LGE to cortex in human at 7-8 PCW, even though PAX6 was expressed on

either side of the boundary (Figure 3.2A). However, no similar boundary was observed by
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COUP-TFII expression between the vCGE and the adjacent ventral/temporal cortex, where
strong COUP-TFII expression appeared to be continuous across these two regions (Figure

3.12A).
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Figure 3.10: The expression pattern of COUP-TFII in human fetal forebrain at 8 PCW.
(A, B) COUP-TFII expression was mainly expressed in the CGE and at the boundary between
MGE and LGE. Scattered cells were also observed in MGE and LGE. (C) The expression
pattern of COUP-TFII in the anterior (ant) and posterior (pos) cortex at § PCW. (D) Higher
magnification of boxed area in the posterior cortex in C, COUP-TFII expression appeared to
be restricted to two migratory streams, one in the subventricular zone (SVZ) and one at the
border between the intermediate zone (IZ) and the cortical plate (CP). (E) Higher magnification
of boxed area in the anterior cortex in C, COUP-TFII+ cells were found in all layers of the
cortex. A and B from brain No. 1; C-E from brain No. 2. Scale bars: 1 mm in C (and for A);
100 pm in E (and for B,D).
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Figure 3.11: The expression pattern of COUP-TFII in human fetal forebrain at 12 PCW.
(A, B,C) COUP-TFII was strongly expressed in VCGE, moderately expressed in LGE, with
scattered COUP-TFII+ cells found in the MGE. Strong expression was observed in the
VZ/SVZ at the boundary between MGE and LGE (boxed area in (B). (D) COUP-TFII
expression showed a distinct cortical/subcortical boundary (arrow) between LGE and cortex
(crx). (E) The distribution of COUP-TFII+ cells in the proliferative zones between different
regions of human fetal forebrain at 12 PCW (n=1). A-D from brain No. 18. Scale bars: 1 mm
in A; 100 um in D (and for B,C).

Quantification of the average density of COUP-TFII+ cells in the proliferative zones of MGE,
LGE, and VCGE (and cortex) in a coronally cut brain at 12 PCW showed that the proportion
of all COUP-TFII+ cells located in the vCGE (-39%) was considerably higher than in the much
larger LGE (27%) with only a very small proportion found in the MGE and ventral septum
(<2%) (Figure 3.11E; Table 3.1). Examination of the cellular co-localization of COUP-TFII
with KI67 in the GE subdivisions was performed to further investigate the origin of these
COUP-TFII expressing cells. Notably, COUP-TFII/KI67 co-localization was only observed in
the ventral compartment of the CGE (vCGE) and MGE/LGE boundary. Although the most
dorsal part of the CGE (LCGE) showed high expression of COUP-TFII there was no evidence
of dividing (KI67 expressing) COUP-TFII+ cells even in the proliferative zones (Figure
3.12A,B; figure 3.13A-C). Similarly, the MCGE showed relatively lower expression of COUP-
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TFII and in post-mitotic cells only (Figure 3.12A,B). These findings are in agreement with
Hansen et al. (2013b) who found a gradient of KI67 positive COUP-TFII cells between the
most ventral part of the CGE and the more dorsal and anterior regions. Thus the vCGE is the
main birth place for all COUP-TFII+ precursors in the ganglionic eminences but surprisingly
most of these COUP-TFII+ cells precursors co-expressed PAX6, a marker for dorsal radial

glial progenitor cells (Figure 3.13F).

The CGE is the major source of cortical CalR expressing interneurons in rodents (Miyoshi et
al., 2010) and COUP-TFII is required for the migration of CGE cell in the caudal migratory
stream (CMS) into the posterior cortex (Tripodi ef al., 2004; Kanatani ef al., 2008). In human,
the decreasing gradient of COUP-TFII+/CalR+ cells from the CGE compartments toward the
LGE and anterior cortex (Figure 3.14) supported by the fact that vCGE not LGE (see above,
Figure 3.13) is the source of most COUP-TFII+ cells, suggests the presence of additional
anterior migratory stream of COUP-TFII/CalR expressing cells into the anterior cortex. It is
worth mentioning that substantial number of cells in different regions in the GE and cortex
expressed these two markers separately (Figure 13.14) suggesting that there is a distinct

population of CalR-expressing GABAergic interneurons which are COUP-TFII independent.
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Figure 3.12: COUP-TFII was predominantly expressed in VCGE but spans sub-
cortical/cortical domains in human fetal forebrain. (A) COUP-TFII expression in a sagittal
section at 12 PCW. (B,C,D) COUP-TFII was highly expressed in the proliferative zone of
LCGE with lower expression in the LGE and anterior cortex (ant). (E) The strongest expression
was observed in the proliferative zone of vVCGE where COUP-TFII+ cells were not organized
radially. (F) Strong expression of COUP-TFII in the VZ of ventral/temporal cortex with radial
nuclear morphology of COUP-TFII+ cells. Ant: Anterior, Pos: posterior; Temp: temporal, Crx:
cortex. A-F from brain No. 17. Scale bars: Imm in A; 100um in D (and for B, C); 100pm in F
(and for E).

3.3.8 COUP-TFII Expression in the dorsal telencephalon

A distinct distribution of COUP-TFII+ cells between the anterior and posterior cortex was
found at 8 PCW. In the anterior cortex, COUP-TFII protein was localized to all layers.
Although most COUP-TFII+ cells were located in the SVZ and 1Z, a considerable number of
cells were also observed in the VZ and CP (Figure 3.10C,E). A different distribution of COUP-
TFII+ cells was observed in the posterior cortex, where cells were restricted to what appeared
to be two migratory streams; a major one in the SVZ, and a less defined one in the nascent pre-
subplate at the border between the 1Z and the CP. few, if any, COUP-TFII+ cells were found
in the VZ (Figure 3.10C,D). COUP-TFII was also expressed in cells in the outer layer of MZ
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which are most likely Cajal-Retzius cells (Figure 3.10D,E; Meyer et al., 2000; Meyer et al.,
2002; Zecevic et al., 2011).

By 12 PCW, about 32% of all COUP-TFII+ cells in proliferative zones of the telencephalon
were located in the cortex (Table 3.1) and particularly dense immunoreactivity for COUP-TFII
in the VZ and SVZ of the ventral parts of the frontal and temporal cortex was observed (with
decreasing gradients from the medial wall to the lateral wall) located close to the vCGE (Figure
3.15A,B). Most of COUP-TFII+ cells in the VZ of ventral cortex showed a radial morphology
whereas cells in the VZ of the VCGE showed disorganized morphology (Figure 3.12E,F).
Similar to the vCGE, most of COUP-TFII+ cells in the VZ of ventral/temporal cortex were
double labelled with KI67 (Figure 3.13D). Furthermore, we also found double labelling of
COUP-TFII cells with the radial glial progenitor cell marker PAX6 (Figure 3.13F) and the
post-mitotic glutamatergic neuron marker TBR1 (Figure 3.13H). In the anterior and dorsal
cortical regions, a substantial number of COUP-TFII+ cells was observed in the VZ and SVZ
and were not double labelled with PAX6 or TBR1 (Figure 3.13G,I) suggesting they are most
likely GABAergic interneurons; interestingly, many of these cells were also dividing (co-
expressing KI167; Figure 3.13E). Although it is still controversial that interneuron precursors
can retain the proliferative capacity after migrating to the cortex (Hansen et al., 2013b; Ma et
al.,2013; Radonji¢ et al., 2014a) the presence of these dividing cells far distant from the vCGE
(the origin of COUP-TFII+ interneuron precursors) may indicate that these cells are generated

locally in the cortex.

Finally, we quantified the average density of COUP-TFII+ cells in the proliferative zones
across the cortex (Figure 3.15A-F) and found a decreasing gradient of density from higher
gradient in the ventral cortex to a lower gradient more dorsally. In a recent study, Reinchisi et
al. (2012) reported that COUP-TFII+ cells are more abundant in the temporal/caudal cortex of
human fetal brain, which was attributed to a caudal migratory stream from the CGE. However,
our results (see above) suggest that, in humans, the neurogenic domain of COUP-TFII
expressing progenitor cells is not confined to the CGE, but extends to the ventral cortex (Figure

3.13A) and includes radial glial progenitor cells that generate glutamatergic neurons.
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COUP-TFII DAPI

COUP-TFII

Figure 3.13: Double labelling for COUP-TFII (red) with KI67, PAX6, and TBR1 (green).
(A) Double labelling for COUP-TFII and K167 in sagittal section of 12 PCW human fetal brain
(A). In the GE, COUP-TFII and KI67 co-localization was mainly observed in vCGE (yellow,
B) but not in LCGE (C). In the cortex, Most of COUP-TFII+ cells in the proliferative zone in
the ventral cortex also showed double labelling with KI67 (D) with only few double labelled
cells seen in dorsal cortex (arrows, E). (F,G) COUPT-TFII+ cells in the proliferative zone of
vCGE and ventral cortex co-expressed PAX6 (yellow, F) but not cells in the dorsal cortex (G).
(H,I) A proportion of COUP-TFII + cells were double labelled with TBR1 in the ventral cortex
(yellow, H), no double labelling was observed in the dorsal cortex (I). The inset is drawing of
sagittal sections with boxed areas where images (G-1) were taken. A-I from brain No. 20. Scale
bars: Imm in A, 100 pm in C (and for B); 100 um in I (and for D-H).
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In conclusion, it appears that the neurogenic domain for COUPT-FII precursors occupies
subcortical and cortical domains in early human fetal brain (Figure 3.15 G) expanding from
the vCGE into the cortical wall of the ventral/temporal cortex where COUP-TFII might have a
role in cortical arealization. However, dividing COUPTFII+ cells were also present in the
dorsal and anterior cortical walls which might be interneuron precursors generated locally in
the cortex; furthermore, an additional anterior migratory stream of COUP-TFII/CalR
expressing cells from the VCGE via LGE into the anterior cortex was observed. Altogether,
these findings could provide a reasonable explanation for the significantly higher incidence of

CalR expressing interneurons in primate (Hladnik ez al., 2014).

COUP-TFII

Figure 3.14: Double labelling for COUP-TFII (red) and calretinin (CalR, green) in a
sagittal section at 12 PCW. Decreasing gradient of COUP-TFII /CalR double labelled cells
(yellow) was observed from LCGE (A) LGE (B) and anterior cortical wall (C,D). Many COUP-
TFII+ cells in the ventral cortex also co-expressed CalR (E). The inset is drawing of sagittal
sections with boxed areas where images (A-E) were taken. A-E from brain No. 17. Scale bars:
50 ym in A, B; 20 pm in D (and for E); 100 pm in E.
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Figure 3.15: The distribution of COUP-TFII+ cells in different compartment of 12 PCW
human fetal cortex. (A) COUP-TFII expression in frontal cortex (coronal section, 12 PCW).
(B) COUP-TFII expression in ventral cortex (C) lateral cortex (D) dorsal cortex and (E) the
medial cortex. (F) The average density of COUP-TFII+ cells in the ventral, lateral, dorsal and
medial cortex. (G) Schematic diagram showing the distribution of COUP-TFII+ cells in the
telencephalon and proposed migratory paths from the VCGE to the anterior and posterior
cortex (large arrows). COUP-TFII progenitors also undergo division in the ventral cortex but
the migratory paths and phenotype of the cells remains unclear (small arrows). A-E from brain
No. 19. Scale bars: 1 mm in A; 100 pm in E (and for B-D). Ant, anterior cortex; Pos, posterior
cortex; Tem, temporal cortex; Med, medial cortex; BG, basal ganglia; ChP, choroid plexus;
MZ/CP, marginal zone/ cortical plate; SP/IZ, presubplate/intermediate zone; SVZ/VZ,
subventricular zone/ventricular zone.
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3.4 Discussion

We have described the expression patterns of three transcription factors important to the
generation of cortical interneurons in the early fetal human telencephalon and demonstrated
that they occupy distinct (although overlapping) neurogenic domains which can extend into the
cortex. NKX2.1 was very largely confined to the MGE, MCGE and ventral septum, and at this
stage of development these observations support previous studies suggesting interneuron
generation from NKX2.1 positive cells may be identical in nature with the process occurring
in rodents (Hansen et al., 2013b; Ma et al., 2013; Arshad et al., 2015). OLIG2 was expressed
by cells in the proliferative zones of the MGE, MCGE and septum, co-expressed with
GADG65/67, but was not necessarily co-expressed with NKX2.1, and was also extensively
expressed in the LGE, LCGE and in dividing cells in the cortex; observations previously
unreported at this key stage of development. Within the ganglionic eminences dividing COUP-
TFII precursors were localised to the VCGE as previously described (Hansen et al., 2013b) but
were also numerous in adjacent regions of ventral cortex. From careful examination of multiple
expression patterns, we have been able to more accurately compartmentalise the CGE than has
previously been attempted, and describe additional ventral to dorsal migratory streams for
interneuron precursors not previously reported in rodents, as will be discussed in more detail
below. Further evidence for interneuron generation in the human dorsal telencephalon has been

presented.

3.4.1 Anatomical and molecular subdivisions of the CGE

In rodents the CGE has been identified as a source of specific GABAergic interneuronal
subtypes different from those generated from the MGE (Miyoshi et al., 2010; Rudy et al.,
2011). Some researchers have concluded that the CGE comprises caudal extensions of LGE
and MGE, respectively by virtue of its gene expression patterns (Corbin et al., 2003; Flames et
al., 2007). However as additional transcription factors such as COUP-TFI and COUP-TFII are
enriched in CGE, it is possible that the CGE has evolved as a distinct neurogenic domain
separate from the MGE and LGE (Kanatani et al., 2008). The present study has revealed that
in the developing human brain, the lateral and medial portions of the CGE share the expression
patterns of PAX6, OLIG2, and NKX2.1 of the LGE and MGE, respectively. However, in
addition to these lateral and medial portions of the CGE, the extension of the CGE along the
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lateral ventricle into the greatly enlarged temporal lobe has produced a third compartment
distinguishable by its characteristic co-localisation of intense COUP-TFII and PAX6
expression in the proliferative layers. Dividing COUP-TFII+ cells were confirmed as being
confined to this ventral region of the CGE (Hansen et al., 2013b). In addition, unlike the
dorsally located lateral and medial portions, almost no NKX2.1+ cells were found in the
VCGE. These findings suggest that the anatomical and molecular boundaries of the CGE
should be defined carefully and separately, with the dorsal region formed from caudal
extensions of the LGE and MGE, albeit with a higher density of post-mitotic COUP-TFII and
CalR positive cells, and the ventral region having its own molecular signature including COUP-

TFII positive progenitor cells.

3.4.2 Are anterior and medial migratory streams prominent in the human telencephalon?

Quantitative PCR, microarray, in situ hybridisation and immunohistochemical studies between
8-12 PCW have previously identified an anterior to posterior gradient of expression of multiple
genes identified with GABAergic interneurons and GABAergic neurotransmission including
transcription factors characteristic of interneuron precursors, isoforms of GAD, GABA
receptor sub-units and calcium binding proteins (Bayatti et al., 2008a; Ip et al., 2010; Al-Jaberi
et al., 2015a) seemingly at odds with the accepted lateral (MGE derived) and posterior (CGE
derived) pathways of migration for interneuron precursors from ventral to dorsal telencephalon
(Wonders and Anderson, 2006). This led to speculation that the anterior cortex in particular
may be a novel site for generation of interneurons in the primate telencephalon, perhaps to
populate the enlarged prefrontal lobes of the primate brain (Al-Jaberi et al., 2015a; Clowry,
2015). The present study offers up the alternative explanation that migrating interneurons may
more rapidly invade the anterior than the posterior cortex, even from apparently caudal
structures such as the vVCGE. We saw evidence of an anterior migratory stream of COUP-TFII
and CalR expressing cells from the vCGE, where COUPTFII expressing progenitors
exclusively underwent division, to the anterior cortex via the LCGE, LGE and ventral pallium
(Figure 3.12A-D, Figure 3.13A). Such cells were more numerous in the anterior than posterior
cortex, as previously described for CalR+ neurons (Bayatti ef al., 2008a). Examination of our
3D reconstructions of the 12 PCW fetal brain confirmed that this path length is similar or even
shorter than that from the VCGE to the dorso-posterior cortex via the temporal lobe (Figure
3.15G). Recently this migration route has been also described in rodents (Touzot et al., 2016)
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but may be more prominent in human which has expanded frontal associative area (Hladnik et

al., 2014).

In addition, we have observed increased expression of OLIG2 in the anterior compared to
posterior cortex in agreement with previous studies (Ip et al., 2010; Al-Jaberi et al., 2015a)
particularly at 8 PCW where there was also a distinct medial to lateral gradient of OLIG2
expression. In this case the migratory stream appeared to derive from progenitor cells in the
MGE and sub-cortical septum, and enter the cortex via the medial wall. This is in direct
contradiction to what has been reported in rodents where interneurons populating medial wall
derived structures such as the hippocampus are described as deriving from the MGE and CGE
via lateral migration (Pleasure et al., 2000; Wonders and Anderson, 2006; Morozov et al.,
2009; Faux et al., 2012). In our preparations we found evidence that OLIG2+ and NKX2.1+
progenitors reside in the septum and OLIG2+ cells, at least, migrate medially to the cortex.
Again this is in disagreement with findings in rodents, where septum derived cells were
reported not to enter the cortex at all (Rubin et al., 2010). Thus we propose that the human or
primate brain possesses an additional medial migratory pathway (Figure 3.6) for GABAergic
interneurons populating frontal and medial areas of the cerebral cortex. The much larger human
cortex may require additional migratory pathways compared to smaller mammalian brains.
However, it is worth noting that a medial migratory pathway for NKX2.1 positive precursors
from the MGE to the medial pallium has recently been reported in the shark (Quintana-
Urzainqui et al., 2015) therefore such a pathway cannot be proposed as evolutionarily novel to
the human brain. Instead we might speculate that this is missing or relatively small and

overlooked in rodent compared to other vertebrate species.

3.4.3 Potential dorsal telencephalic origin of GABAergic interneurons

Based on studies conducted principally around mid-gestation, Radonji¢ et al. (2014a) proposed
that three mechanisms exist for the production of cortical interneurons in primates; generation
in the ventral telencephalon followed by migration to the cortex, precursors arriving in the
cortex from the ventral telencephalon and undergoing further division intra-cortically, and
cortically derived progenitors giving rise to interneurons. The last two proposals are
controversial, being firmly rejected by recent influential and persuasive studies (Hansen et al.,
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2013b; Ma et al., 2013; Arshad et al., 2015). However, our present study found clear evidence
for the second mechanism. OLIG2+ precursors appeared to follow migratory paths into the
cortex, however OLIG2+ cells were also shown to be undergoing proliferation and these
OLIG2+ cells did not co-express any markers of cortically derived progenitors such as PAX6
or TBR2 (although such double-labelling has been reported at later stages of human
development (Jakovcevski and Zecevic, 2005)). This firmly suggests that OLIG2 is not
immediately downregulated in cells entering the cortex from subcortical structures, unlike
NKX2.1, and that these cells may retain the ability to divide within the cortex, preferentially
within anterior and medial locations, where the highest density of such cells was found.
However, there also remains the possibility that OLIG2+/TBR2- intermediate progenitor cells
are generated by cortical radial glial progenitor cells which go on to produce GABAergic

Interneurons.

It is also clear that in the more ventral areas of the anterior and temporal cortex there is high
expression of COUP-TFII expressing progenitor cells and post-mitotic neurons. That these
cells co-express either PAX6 or TBR2, and that post-mitotic cells co-expressing TBR1 and
COUPTFII were also observed, demonstrates that in the cortex dividing COUP-TFII+
progenitors give rise to glutamatergic neurons. Although there are also COUP-TFII+/CalR+
presumptive interneurons present, it is impossible to judge whether these have migrated in from
the adjacent CGE, or been generated intra-cortically. However, small numbers of COUP-TFII
cells were also found undergoing division in anterior and dorsal regions of the cortex did not
co-express PAX6 suggesting they are most likely interneuron progenitors. Whether they
migrated to the cortex, retaining the capacity to divide, or were born in the dorsal telencephalon,
is still open to debate. However, a neuronal progenitor marker GSX2, expressed upstream of
COUP-TFII, which localises to the LGE and CGE in rodent (Hsieh-Li et al., 1995; Wang et
al., 2013) has been found to be expressed in cells undergoing division in the VZ/SVZ of the

human fetal cortex (Radonjic et al., 2014) making intra-cortical generation a possibility.

Whether or not proliferative NKX2.1+ progenitor cells are present in the cortex is contentious.
Our observation at 12 PCW of NKX2.1+ cells throughout the latero-medial extent of the
cortical wall, making up about 2.4% of all NKX2.1+ cells in the proliferative zones of the
telencephalon at this time, whivh is in conflict with Hansen et al. (2013b) who reported nearly

no NKX2.1+ cells in the cortex and only close to LGE/lateral cortex border. However, our
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findings are in partial agreement with Radonji¢ et al. (2014a) who found NKX2.1+ cells in the
cortical wall of human and macaque monkey fetal forebrains (at later stages of development,
15-22 PCW for human) undergoing active division, as did Arshad et al. (2015) in human
between 16-28 PCW although in very small numbers. As no NKX2.1+ cells were seen in the
cortex at 8PCW in agreement with previous studies (Hansen et al., 2013b; Pauly et al., 2014)
we propose that with age the incidence of NKX2.1+ cells in the cortex gradually increases,
along with the capacity to undergo proliferation. Whether these cells are generated in the cortex
or have migrated there from the ventral telencephalon without downregulating NKX2.1

remains a question for further investigation.

3.4.4 OLIG2 and COUP-TFII as regulators of cortical arealisation

The division of the cerebral cortex into functional areas (the cortical map) differs little between
individuals in any given species (Rakic et al., 2009). Previous work on rodent development has
identified certain transcription factors (e.g. PAX6, SP8, EMX2, COUP-TFI) expressed in
gradients across the neocortex that appear to control regional expression of cell adhesion
molecules and organization of area specific thalamocortical afferent projections (Lopez-
Bendito and Molnar, 2003; O'Leary et al., 2007; Rakic et al., 2009). There may be common
mechanisms between species, as the developing human neocortex displays counter-gradients
of PAX6 and EMX2 at early stages of cortical development (Bayatti et al., 2008b). However
the human cerebral cortex is composed of different and more complex local area identities and
so might be specified by a wider range of transcription factor gradients; for instance an anterior
to posterior gradient of CTIP2 expression has been observed in human early fetal cortex (Ip et
al.,2011). In the present study, a prominent anterior to posterior gradient of OLIG2 expression,
and a ventral to dorsal gradient of COUP-TFII expression were observed. In both cases the
transcription factors are also expressed at moderate levels in the cortical plate as well as the
proliferative zones, suggesting that areal specification mechanisms in cells extend into the post-
mitotic period. The extent to which these gradients interact with interneuron precursors is not
known, but we might speculate that OLIG2 or COUP-TFII control expression of cell adhesion
molecules locally that attract migrating cells expressing the same transcription factors, setting
up the migratory pathways into the cortex for interneurons arriving medially via the septum

(OLIG2+) or laterally via ventral anterior or temporal cortex (COUP- TFII+).
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3.5 Conclusion

Evidence continues to accumulate that cortical GABAergic interneuron production in primates
differs in certain details from what has been learnt from our rodent models. A higher proportion
of interneurons arise from the CGE in primates and we provide a description of the
compartmentalisation of the CGE. This chapter presents further evidence that interneuron
precursor cells may undergo division in the cortex, although it remains to be proven whether
they are originally generated in the dorsal telencephalon. Finally, whereas in rodents
interneuron precursors are believed to enter the cortex from the ganglionic eminences
exclusively via lateral and posterior routes, in human we provide evidence of pathways via the

anterior and medial cortex.

Note: text, data and figures in this chapter have been taken from a recently published original

article (Alzu’bi et al., 2017) published under a creative commons licence (See appendices):

- Alzu’bi, A., Lindsay, S., Kerwin, J., Looi, S.J., Khalil, F. and Clowry, G.J. (2017)
'Distinct cortical and sub-cortical neurogenic domains for GABAergic
interneuron precursor transcription factors NKX2. 1, OLIG2 and COUP-TFII in
early fetal human telencephalon’, Brain Structure and Function, 222(5), pp. 2309-
2328.
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Chapter 4: Arealisation and GABAergic Interneuron Specification in
the Early Human Fetal Telencephalon.

4.1 Summary

Studies in rodents show roles for the transcription factors COUP-TFI, COUP-TFII and SPS§ in
telencephalic patterning and neuron migration. In human dorsal telencephalon at 8-12 post-
conceptional weeks, RNAseq and immunohistochemistry revealed cortical COUP-TFI
expression in a high ventro-posterior to low anterior gradient except for raised
immunoreactivity in the anterior ventral pallium. SP8, on the other hand exhibited a distinct
counter gradient of expression from high anterior to low ventro-posterior. However, unlike in
mouse, COUP-TFI and SP8 were extensively co-expressed in dorsal sensory neocortex and
dorsal hippocampus. On the other hand COUPTFI/COUPTFII co-expression defined ventral
temporal cortex and ventral hippocampus. In the ganglionic eminences COUP-TFI
immunoreactivity demarcated the proliferative zones of CGE, dorsal MGE, MGE/LGE
boundary, and ventral LGE whereas COUP-TFII was limited to ventral CGE and the
MGE/LGE boundary. SP8 was expressed in the SVZ of the LGE, ventral CGE, and LGE-like
septum. Co-labelling with GABAergic interneuron markers revealed that COUP-TFI was
expressed in subpopulations of either MGE-derived (SOX6+) or CGE-derived (calretinint)
cortical interneurons. COUP-TFII expression was mainly confined to CGE-derived
interneurons. Twice as many GADG67+ cortical cells co-labelled for COUP-TFI than for
COUP-TFII and a fifth of COUP-TFI+ cortical cells also co-expressed COUP-TFII. SP8 was
expressed in a population of CGE- derived COUP-TFUI/II positive interneurons; however, the
LGE could be also a source of cortical interneurons that expressed SP8 solely. In conclusion,
the expression pattern of these three and other related TFs delineates the subdivisions of the
developing human GE and several routes of cell migration from the GE compartments into the

cortex (anterio-laterally and posteriorly), basal telencephalon, and olfactory bulb.
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4.2 Introduction

COUP-TFI and COUP-TFII are related transcription factors that show very high degrees of
homology in their C-terminal ligand binding domain (97%) and central DNA binding domain
(80%) but far less in their N-terminal region (45%) which includes an activation function
domain (Wang et al., 1989; Ladias and Karathanasis, 1991; Li et al., 2003). This suggests that
although they may control transcription in a similar way, each COUP-TF may respond to quite
different sets of activators or repressors. Therefore, it is perhaps not surprising that the COUP-
TFs are expressed in overlapping but still distinct patterns of expression in developing mouse
forebrain. COUP-TFI is expressed in a high caudal to low rostral gradient across the whole
cerebral cortex from Embryonic day (E) 9.5 whereas COUP-TFII is only highly expressed in
more restricted regions, either nested within the COUP-TFI expressing domain but limited to
the caudal-most region of the neocortex, or expressed in the caudo-medial wall where COUP-
TFI expression is low (Qiu et al., 1994; Takiguchi-Hayashi et al., 2004; Tripodi et al., 2004;
Flore et al., 2016). In the ganglionic eminences expression of both COUP-TFs is considered
characteristic of the CGE (Tripodi et al., 2004). However, COUP-TFI is actually expressed
throughout the mouse ganglionic eminences from E10.5 to E12.5 before becoming restricted

to the corticostriatal boundary, dorsal MGE, and CGE, by E13.5 (Lodato et al., 2011).

In mouse, the high expression of COUP-TFI caudally plays an important role in cortical
arealisation by suppressing frontal cortex associated gene expression (Armentano et al., 2007;
Faedo et al., 2008; Borello et al., 2013; Alfano et al., 2014a). COUP-TFI is known to promote
the caudal identity of cortical region mainly by opposing the function Fgf signalling (released
from the ANR and known to promote rostral cortical development) by repressing the
downstream effector of Fgf 8 and 17, MAPK/ERK signalling, (Faedo et al., 2008) and
promoting the expression of negative regulators of Fgf8, sprouty 1 and 2 (Faedo et al., 2010).
Unlike other transcription factors that are involved in the cortical patterning in mouse (PAX6,
EMX2, and SP8) COUP-TFI regulates the areal patterning not only in the neural progenitors,
but also in the post-mitotic cells (Liu et al., 2000; Alfano et al., 2014a) although EMX2 has
been shown to be expressed in post-mitotic cells early in human cortical development (Bayatti
et al, 2008b). Inactivation of COUP-TFI function in post-mitotic neurons resulted in expansion
of the motor area at the expense of the sensory area (Alfano et al., 2014a). COUP-TFI has been

also shown to have a number of roles in defining the functional identity of cortical neurons.
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For instance, it suppresses the differentiation of corticospinal motor neurons in the caudal
somatosensory cortex, allowing for their correct specification in frontal cortex (Tomassy et al.,

2010).

COUP-TFI promotes faster radial migration of newborn glutamatergic neurons towards the
cortical plate (Alfano et al., 2011) ensuring that concomitant axon outgrowth from these
caudal/temporal cortical neurons happens in time to meet developmental deadlines such as
when callosal axons are permitted to cross the midline. On the other hand, the role and/or
mechanism by which COUP-TFII could contribute to the cortical map is not currently well
understood; in mouse COUPTFII expression is limited to the most caudoventral telencephalon
with a medial high to lateral low gradient (Tang et al., 2012). In human, we have previously
shown (See chapter 3) that COUP-TFII is highly expressed in the progenitor and post-mitotic
zones of the ventro-temporal region, mainly in cells that give rise to glutamatergic neurons,

suggesting that COUP-TFII also has a potential role in cortical arealization.

Similarly, COUP-TFI and COUPT-TFII showed distinct expression patterns in mouse GE
suggesting a role in specifying GABAergic forebrain neuron phenotype. Conditional loss of
COUP-TFI function in the intermediate progenitor and post-mitotic interneurons alters the
balance between CGE and MGE derived cortical interneurons without reducing their total
number. CGE- derived interneurons were significantly decreased, whereas the number of
MGE-derived interneurons increased (Lodato et al., 2011). It is proposed that before E13.5,
COUP-TFI expression in the MGE inhibits division of progenitor cells, and at later stages
promotes production of CGE-derived interneurons. COUP-TFII expression is largely restricted
to CGE-derived interneurons (Kanatani et al., 2008; Miyoshi et al., 2010). Both transcription
factors control rate and direction of cell migration (Tripodi et al., 2004) by regulating
expression of molecules crucially involved in cell migration such as neuropilins (Tang ef al.,
2012) and the chemokine CXCL12 and its receptor CXCR4 (Boudot ef al., 2014) important in
controlling tangential migration of interneurons and Cajal-Retzius cells (Stumm et al., 2003;
Borrell and Marin, 2006). COUP-TFI and COUP-TFII are expressed in different populations
of cells in the GE; COUP-TFI in cells following dorsal (to cortex) and ventro-caudal (to
diencephalon) migratory pathways (Tripodi ef al., 2004) and COUP-TFII in caudally migrating
cells from the CGE to the most posterior part of the telencephalon (Yozu et al., 2005; Kanatani
et al., 2008; Faux et al., 2012) however, conditional knockdown of COUP-TFII has no effect
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upon caudal migration of cortical interneurons which appear to maintain expression of COUP-
TFI instead (Tang et al., 2012). In human, to our knowledge, the expression of COUP-TFI in
human ventral telencephalon and in a population of cortical GABAergic interneurons has not
been identified up to until now. Whereas, consistent with previous findings (Hansen et al.,
2013b), we have shown in the previous chapter that vCGE and MGE/LGE boundary are the
main source of COUP-TFII+ cells in the GE of human fetal brain; in addition, a proportion of
CalR+ cells found in the cortex also co-localized COUPTFIL.

Another transcription factor that is widely expressed in ventral and dorsal telencephalon and
known to have essential roles in the cortical arealization and generation of GABAergic
interneurons is the zinc finger transcription factor SP8 (Waclaw et al., 2006; Sahara et al.,
2007; Waclaw et al., 2010; Ma et al., 2012; Borello et al., 2013). In dorsal telencephalon, SP8
is a downstream effector of FGF8 which is required to promote rostral cortical identity (Sahara
et al., 2007). SP8 is expressed in a complementary pattern to COUP-TFI with high rostral to
low caudal gradient (Sahara et al., 2007); while COUP-TFI represses FGF signalling (Faedo
et al., 2008; Faedo et al., 2010) SP8 maintains Fgf8 transcription in the ANR (Sahara et al.,
2007). The opposite expression of these two transcription factors regulates the balance of
cortical patterning between frontal/motor and caudal/sensory areas (Armentano et al., 2007;
Borello et al., 2013). In ventral telencephalon, SP8 plays an essential role in the differentiation
of mouse LGE-derived interneurons that populate the amygdala and the olfactory bulb via the
rostral migratory stream (Waclaw et al., 2006; Waclaw et al., 2010). However, in human and
mouse, SP8 is also expressed in a proportion of cortical interneurons that are most likely

derived from the dorsal lateral/ caudal GE (Ma et al., 2012; Ma et al., 2013).
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4.3 Aim of Study

The present chapter firstly aimed to explore the extent to which expression of COUP-TFs and
SP8 the in the human forebrain mirrors that in the rodent models. Secondly, to investigate the
potential role for COUP-TFs and SP8 in interneuron specification, and which migratory
pathways interneurons expressing these TFs follow. Finally, to reveal the complex subdivisions
of the human ganglionic eminences based on the expression of COUP-TFs, SP8, and other

related transcription factors.

4.4 Results

4.4.1 Gradients of COUP-TFI, COUP-TFII and SP8 mRNA expression across the
developing cerebral cortex.

Thirty four samples of RNA were taken at 9-10 PCW and sixty seven at 11-12 PCW from four
different regions of the cerebral cortex (Figure 4.1A) and subjected to quantitative RNA seq
analysis. Expression of COUP-TFI, COUP-TFII and SP8 was compared with two other genes,
FGFR3 and ROBOI] that are predicted to show gradients of expression from previous animal
experiments and human studies (Iwata and Hevner, 2009; Ip et al., 2010; Ip et al., 2011; Miller
et al., 2014). Both COUP-TFI and COUP-TFII were expressed across the cortex between 9
and 12 PCW (Figure 4.1B,C) however COUP-TFI was more highly expressed than COUP-
TFII in all regions and in both age groups. Significantly greater COUP-TFI expression was
observed in the temporal and posterior, compared to central and anterior cortex, at 9-10 PCW
(p<0.05; Figure 4.1B). Although a decrease in COUP-TFI expression was observed in the
temporal and posterior cortex at 11-12 PCW, the levels still remained significantly higher in
these regions (Figure 4.1B). COUP-TFII showed a consistent but more confined expression
pattern with significantly higher expression observed in the temporal lobe compared to all other
cortical regions. No significant difference was observed between anterior, central and posterior
regions at 9-10 PCW, although there were differences at 11-12 PCW. COUP-TFII expression
also decreased in the temporal regions with age but remained significantly higher than in the

rest of the cortex (Figure 4.1C). SP§ mRNA showed a complementary expression pattern with
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COUP-TFI and COUPTFII mRNA; a higher level expression was observed in anterior and
central regions compared to posterior and temporal regions at 9-10 PCW. At 11-12 PCW, the
overall expression considerably decreased; however, the expression level in anterior and

central regions were significantly higher than in other cortical regions (Figure 4.1D).

We tested our RNAseq data for the expression of other genes like ROBO! and FGFR, two
genes that have known gradient expression patterns in the developing human cortex (Ip et al.,
2010; Ip et al., 2011; Miller et al., 2014), and confirmed that graded expression can occur in
the human cortex in both directions at these developmental stages and that the gradients seen
for COUP-TFs and SP8 were not an artefact of the experimental procedure. ROBO! showed
decreasing anterior to posterior gradients as expected (Figure 4.1E) (Ip et al., 2010; Ip et al.,
2011), whereas FGFR3 showed a distinct counter gradient, particularly at the earlier ages,
similar to COUP-TFI (Figure 4.1F) (Ip et al., 2010; Miller et al., 2014).
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Figure 4.1: Gradients of COUP-TFI, COUP-TFII, SP8, ROBOI, and FGFR3 expression
across the cortex by RNAseq. (A) The location of four cortical sampling cortical regions;
anterior (A), central (C), posterior (P), and temporal (T). (B) COUP-TFI expression is
significantly higher in temporal and posterior regions at all ages. (C) Highest expression of
COUP-TFII in the temporal regions, with no significant difference in the expression between
anterior, central, and posterior regions at 9—-10 PCW, although there were differences at 11-12
PCW. (D) SP8 was expressed in decreasing anterior posterior gradient at 9-10 PCW, the overall
level of expression decreased at 11-12 PCW. (E) ROBOI1 at both 9-10 and 11-12PCW is
expressed in decreasing anterior posterior gradients (F) FGFR3 expressed in increasing anterior
posterior gradient at both timepoints. Asterisk(s) represent statistically significant differences
between regions (1-way ANOVA, Tukey’s post hoc comparison, *P < 0.05, **P < 0.01). Error
bars represent the standard error of the mean.
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4.4.2 Characterization of COUP-TFI expression across the cortex and in relation to COUP-
TFII and SP8

In sagittal sections from across the medio-lateral axis of 8 PCW human telencephalon, COUP-
TFI immunoreactivity was seen to increase along an anterior to posterior gradient (Figure 4.2A-
A’’; Figure 4.3A) consistent with the previous reports in rodents (Armentano et al., 2007;
Borello et al., 2013; Alfano et al., 2014a). This gradient was not confined to the proliferative
ventricular (VZ) and subventricular (SVZ) zones of the cortical wall, but was also observed in
the post-mitotic intermediate zone (IZ) and cortical plate (CP; Figure 4.3A-D). Generally,
cellular COUP-TFI immuno-labelling was found in all layers of the posterior cortical wall,
however, relatively stronger expression was observed in proliferative compared to the post-
mitotic zones. A gradual decrease in COUP-TFI immunoreactivity was seen through the central
to the anterior cortex (Figure 4.3B-D). COUP-TFI expression in the VZ of the anterior cortex
was restricted to only a few scattered cells, however weak to moderate immunoreactivity was
observed in many cells of the SVZ/1Z/CP, indicating a more important role for this transcription
factor in post-mitotic neurons of the anterior cortex (Figure 4.3B). Interestingly, in the ventral
pallium (VP; the part of the developing cortex immediately adjacent to the LGE) there was
strong expression in both the proliferative and post-mitotic zones even in more anterior regions
(Figure 4.2A”). COUP-TFI was also expressed in the cortical hem, choroid plexus, and pia

matter but with no apparent gradients across these structures (Figure 4.2A-A"’; Figure 4.3A).
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Figure 4.2: Gradients of COUP-TFI and COUP-TFII immunoreactivity across the
telencephalon. (A-A’’) Parasagittal sections from medial to lateral parts of the 8 PCW fetal
brain; COUP-TFI was highly expressed in the majority of the GE except the dLGE, strong
expression was also observed in the proliferative zones and cortical plate of posterior, lateral
and temporal cortex but also anterior ventral pallium. (B-B’’) COUPT-FII was mainly
expressed in the vCGE and at the MGE/LGE boundary (arrow, B) and temporal ventral pallium
(VP, B’, B”’) and amygdala (Amy, B”) with dispersed scattered cells throughout the rest of the
GE. (C) TBR1 expression shows location of anterior and temporal ventral pallium and piriform
cortex (Pcrx). D and E show that two streams of PAX6 positive cells appear to migrate (arrows)
from the LGE and CGE towards the amygdala and accumulate there. (F, G) COUP-TFI was
expressed in high ventro-posterior to low dorso-anterior gradient across the cortex; COUP-
TFII expression was high in the ventral/temporal cortex and low in the dorsal cortex. Ant:
anterior (= rostral), pos: posterior (=caudal), cent: central, Crx: cortex, Pcrx: piriform cortex,
CP: choroid plexus, d and v Hip: dorsal and ventral hippocampus, CH: cortical hem, LGE:
lateral ganglionic eminence, CGE: caudal ganglionic eminence, vCGE: ventral caudal
ganglionic eminence, VP: ventral pallium, Th: thalamus, Pr Th: pre thalamus, Amy: amygdala.
A-E were taken from brain No. 1; F and G were taken from brain No. 17 (Table 2.1). Scale
bars: 2mm in D (and for A-C); 500 um in E, 2mm in G (and for F).
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Figure 4.3: COUP-TFI immunoreactivity in the cortical wall of early human fetal brain.
(A) Distinct high posterior to low anterior gradient in COUP-TFI expression across cortex in
sagittal section 8 PCW. (B) Only a few scattered COUP-TFI+ cells observed in anterior cortex
VZ, moderate to weak immunoreactivity in the SVZ/IZ/CP. (C) Moderate immunoreactivity
across cortical wall of central cortex. (D) Strongest immunoreactivity in posterior cortex,
relatively stronger in proliferative than in postmitotic zones. (E) Similar expression gradient at
12 PCW. (F) Strong COUP-TFI expression in proliferative and postmitotic zones of ventral
pallium (VP). (G) COUP-TFI+ cells broadly distributed to all cortical layers of anterior cortex
at 12 PCW. (H-J) COUP-TFI expression increased gradually in central, posterior, and temporal
(ventral) regions, respectively. Boxed areas in A and E show where images (B—-D and F-J)
were taken. Ant, anterior; pos, posterior; VZ, ventricular zone; SVZ, subventricular zone; MZ,
marginal zone; cp, choroid plexus; Pia, pia matter; VP, ventral pallium; Th, thalamus; Pr Th,
pre-thalamus. A-D were taken from brain No. 1; E-J were taken from brain No. 20. Scale bars:
500 pm in A, E; 100 pm in D (and for B, C); 100 pm in F; 100 pm in J (and for G, H, I).

This gradient was maintained at later stages (10 and 12 PCW) and there was still strong
expression in the VP (Figs. 4.2F; Figure 4.3E-J; Figure 4.4G). However, a change in the
expression pattern in the cortical wall of the anterior cortex was observed by 12 PCW, with
scattered COUP-TFI+ cells localized to all layers, including occasionally in the VZ (Figure
4.3G). In general, COUP-TFI protein expression consistently reflected the mRNA expression
level seen by RNA seq analysis. Furthermore coronal sections through the anterior- posterior

axis of the telencephalon revealed, in addition to a posterior/anterior gradient, a pronounced
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decreasing ventral to dorsal gradient of COUP-TFI expression in both the proliferative and
post-mitotic zones (Figure 4.5A,B).

COUP-TFI positive (+) cells showed a distinct pattern of co-localization with three cortical cell
type-specific markers PAX6 (radial glia) TBR2 (intermediate progenitors) and TBR1 (post-
mitotic pyramidal neurons) (Bayatti et al., 2008a; Lui et al., 2011) in different cortical areas
(Figure 4.6). In posterior cortex, most COUP-TFI+ cells double-labelled with PAX6, TBR2 or
TBRI1, however a small proportion expressed COUP-TFI alone (Figure 4.6A°-C’). In contrast,
the majority of COUP-TFI+ cells in the anterior cortex did not co-localise with cortical markers
(Figure 4.6A-C). Double immunofluorescence with the cell division marker KI67 (Scholzen
and Gerdes, 2000) revealed that most actively proliferating COUP-TFI+ cells were located in
the posterior cortex; however a few were seen in the anterior cortex (Figure 4.7A-C). Thus in
posterior/temporal cortex COUP-TFI is expressed by both progenitor cells and post-mitotic
pyramidal neurons. In the anterior cortex, COUP-TFI is almost entirely confined to a few post-

mitotic cells likely to be of sub-cortical origin.

Finally, as was demonstrated in chapter 3 (section 3.3.8) COUP-TFII immunoreactivity was
expressed within the ventro-temporal region nested within the larger COUP-TFI expressing
domain (Figure 4. 2B’,B’’,G; Figure 4.5C). COUP-TFI showed a complementary expression
pattern to SP8 immunoreactivity which was expressed in a counter gradient from high anterior
to low posterior as previously described in rodents (Sahara et al., 2007; Zembrzycki et al.,
2007) (Figure 4.8A,F; Figure 4.9A). Interestingly, whereas there was extensive overlap of
expression of COUP-TFI and SP8 in parietal, dorso-posterior, dorso-temporal and dorsal
hippocampus (Figure 4.9A), SP8 and COUP-TFII expressions formed sharp boundaries such
that SP8 was excluded from the ventral posterior and temporal cortex including the ventral
hippocampus (Figure 4.9C). Unlike COUP-TFI and COUP-TFII, SP8 was downregulated in
post-mitotic neurons in the cortical plate (Figure 4.9A,C). These observations are in accord
with the RNA seq data (see above) and previous observations by immunohistochemistry (Ma
et al., 2013) but the double labelling experiments presented in this study throw light on possible

interactions between the three transcription factors in human cortical development.
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Figure 4.4: Multiple progenitor domains in the GE of early human fetal brain. (A-D)
Medial parasagittal sections of 8 PCW human fetal brain. NKX2.1 expression was mainly
confined to the MGE (A). OLIG2 was highly expressed in the MGE and LGE (B). PAX6
expressed in a gradient with higher expression in the proliferative zone of the cortex to lower
expression in the LGE(C), arrows in A and C indicate to the boundary between MGE and LGE.
COUP-TFI showed partial overlapped expression with NKX2.1 and OLIG2 in the MGE, arrow
head marks the boundary between two distinct domains in the MGE (D). (E-I) Horizontal
sections of 10 PCW human fetal brain; NKX2.1 expression was confined to the MGE and its
caudal extension (E,E”). PAX6 was complementary expressed with NKX2.1 in the GE (F,F’).
COUP-TFI was expressed in the VZ/SVZ of the MGE, CGE, vLGE, and only in migrating
cells in the dLGE (G,G’). COUPT-FII highly expressed in CGE, the MGE/LGE boundary
(arrowhead), and in stream of cells entering the cortex from dLGE (H,H’). SP8 was expressed
in the SVZ of the CGE, and in increasing gradient from the vLGE to dLGE (I, I’). Boxed areas
in E Shows where images (E’-I’) were taken. Ant, anterior; pos, posterior; Lat, lateral, Med,
medial; Crx, cortex; IC, internal capsule; Sep, septum; v and d LGE, ventral and dorsal LGE;
Th, thalamus. A-D were taken from brain No. 1; E-I’ were taken from brain No. 10. Scale bars:
200 pm in D (and for A—C); 1 mm in I (and for E-H), 200 pm in I’ (and for E’-H").
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4.4.3 COUP-TFI differentially expressed in the subdivisions of the ganglionic eminences

The expression of COUP-TFI immunoreactivity was mapped to the sub-divisions of the GE
revealed by the expression patterns of three transcription factors PAX6, NKX2.1, and OLIG2;
(Chapter 3; Figure 4.4) (Pauly et al., 2014). When correlated with NKX2.1 and OLIG2
expression, COUP-TFI immunoreactivity revealed two distinct neurogenic domains in the
MGE; one large dorsal domain characterized by overlapped and intense cellular expression of
COUP-TFI, NKX2.1 and OLIG2 in the proliferative zone (AMGE) and a smaller ventral
domain (vMGE) characterized by strong expression of NKX2.1 and OLIG2 only (Figure 4.4A-
D; Figure 4,5D,E). In rodents NKX2.1 was expressed throughout the MGE and is required for
the specification of all MGE-derived neurons (Flames et al., 2007); we observed that a
proportion of COUP-TFI+ cells in the AIMGE co-expressed NKX2.1 (Figure 4.10A, B). Similar
co-expression was also observed with OLIG2 (Figure 4.10C).
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Figure 4.5: COUP-TFI and COUP-TFII expression in coronal sections of 12 PCW human
fetal brain. (A, B) Two sections cut at different levels; in addition to a posterior-anterior
gradient, COUP-TFI was also expressed in decreasing ventro-dorsal gradient. (C) COUP-TFIL
was highly expressed in vCGE and the adjacent ventral/temporal cortex with lower expression
in the dorsal cortex. (D) COUP-TFI was highly expressed in MGE, but not in VZ of most
ventral part of MGE and the adjacent septum, where COUP-TFI immunoreactivity was
confined to dispersed cells. (E) COUP-TFI also strongly expressed in VZ of vLGE but not
dLGE. (F) COUP-TFII highly expressed at MGE/LGE boundary; moderate expression in LGE
and only scattered cells in MGE. The inset is drawing of 12 PCW sagittal sections shows the
levels at which sections A and B were cut. Sections D and E are higher magnifications of
section A while section F is a higher magnification of a section at the same level as A. Crx:
cortex, Sep: septum, v and d LGE: ventral and dorsal LGE, v and d MGE: ventral and dorsal
MGE, Th: thalamus. A-F were taken from brain No. 19. Scale bars: 2mm in C (for A, B, and
C); 500 pm in D; and 500 um F (for E and F).
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Intense COUP-TFI expression marked the proliferative zones at the MGE/LGE boundary and
the ventral part of the LGE (VLGE; Figure 4.4G,G’; Figure 4.5D,E). In the dorsal LGE (dLGE)
COUP-TFI expression was limited to a few scattered cells in the post-mitotic mantle at 8§ PCW
(Figure 4.4D); however, more cells appeared here at 10 and 12 PCW, possibly cells migrating
into the cortex (Figure 4.4G’; Figure 4.5E). In the CGE, COUP-TFI+ cells were present
throughout the proliferative zones of d and vCGE (Figure 4.3E; Figure 4.4G; Figure 4.5B). Co-
localization of COUP-TFI with KI67 in the GE similarly showed that proliferating COUP-
TFI+ cells were only found in the AIMGE, CGE and vLGE, but not in the dLGE (Figure 4.7).

COUP-TFI PAX6 COUP-TFI TBR2 COUP-TFI TBR1

Figure 4.6: Double labelling for COUP-TFI (red) and PAX6, TBR2, and TBR1 (green).
(A, A’) Double labelling for: COUP-TFI and the radial glia marker PAX6 in anterior (A) and
posterior cortex (A’). (B, B’) COUP-TFI and the intermediate progenitor marker TBR2 in
anterior (B) and posterior cortex (B’). (C, C’) COUP-TFI and the post-mitotic pyramidal
neuron marker TBR1 in anterior (C) and posterior cortex (C’). The inset is drawing of 12 PCW
sagittal sections with boxed areas where pictures (A-C’) were taken. VZ: ventricular zone,
SVZ: sub-ventricular zone, [Z: intermediate zone, pSP: pre sub-plate CP: cortical plate. A-C’
were taken from brain No. 17. Scale bar = 200 um.
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Figure 4.7: The progenitor domains of COUP-TFI at 8 and 12PCW. (A-C) Double
labelling for COUP-TFI and the cell division marker KI67 in the VZ/SVZ of the GE (A)
anterior cortex (B) and posterior cortex (C) at 8 PCW. (D-F) Double labelling for COUP-TFI
and K167 in the LCGE (D) vCGE (E) but not dLGE (D) of 12 PCW. The insets are drawing of
sagittal sections with boxed areas where images (A-C and D-E) were taken. VZ: ventricular
zone, SVZ: sub-ventricular zone, dCGE: dorsal CGE, vCGE: ventral CGE. A-C were taken
from brain No. 1; D-F were taken from brain No. 20. Scale bars = 500 um in A; 100 pm in B
(and for C); 200 pum in E (and for D, F).
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4.4.4 COUP-TFII expressed in both distinct and partially overlapping GE domains with
COUP-TFI

We have previously demonstrated (See chapter 3, section 3.3.7) that COUP-TFII expression
was not only confined to the sub-cortical territory in the ventral CGE (vVCGE) where the
majority of dividing COUP-TFII cells are found but also extended into the proliferative and
post-mitotic zones of the adjacent ventral region of the temporal cortex (Figure 4.2B’,G; Figure
4.5C). However, while COUP-TFII appeared to be continually expressed throughout the vVCGE
and ventro-temporal cortex, a cortical/sub-cortical boundary was still clearly delineated by the
expression of TBR1 and PAX6; TBR1 was exclusively expressed in the post-mitotic zone of
the cortex (Figure 4.2C); whereas PAX6 was expressed in a gradient, high in all cortical
proliferative zones to progressively lower across the GE proliferative zones from vCGE to LGE
(Figure 4.2D). A stream of COUP-TFII+ and PAX6+ cells was observed that appeared to
migrate out from the CGE into the posterior part of the mantle zone lateral and ventral to the
GE, a region that may anatomically correspond to the medial amygdaloid nuclei. However, the
anterior pole of the same region contained only PAX6+ cells (not COUP-TFII+) which were
most likely to be derived from the PAX6+/COUP-TFII- dLGE (Figure 4.2B’°,D, E). COUP-
TFII positive progenitor zones of the temporal cortex are likely to contribute neurons to the
cortical nuclei of the amygdala complex as well (Tang et al., 2012). There was less COUP-TFI
than COUP-TFII immunoreactivity in the mantle zone of the ventro-posterior telencephalon
(VCGE and adjacent ventral/temporal cortex) (Figure 4.2A’, F). No marked COUP-TFII
expression was observed in the COUP-TFI expressing anterior ventral pallium (Figure 4.2B-

B").
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Figure 4.8: The expression pattern of SP8 in the human fetal brain at 8 and 12 PCW. (A,
B) SP8 was expressed in high dorso-anterior to low ventro-posterior gradient in cortical VZ,
and in SVZ of the LGE and CGE at 8 PCW (A). Broad stream of SP8+ cells appearing to
migrate ventrally from vCGE towards the posterior part of the mantle zone lateral and ventral
to the GE, with only few SP8+ cells entering ventral-temporal cortex from the vCGE at this
stage (B). (C-E) SPS8 expression in coronal section of 12 PCW fetal brain (C), stream of SP8+
cells appeared to be entering the cortex from dLGE (D), SP8 was also expressed in septum
with stream of cells appearing to migrate ventrally and rostrally into the rostral migratory
stream (RMS;E). (F, G) SP8 expression in sagittal section at 12 PCW (F), many SP8+ cells
appeared to be entering the ventral-temporal cortex from vCGE at 12 PCW (G). Boxed area in
A, C and F show where images (B, D, E and G) were taken. ant: anterior, pos: posterior, Crx:
cortex, Hip: hippocampus, Amy: amygdala, MGE: medial ganglionic eminence, dLGE: dorsal
LGE, vCGE: ventral CGE, Sep: septum, RMS: rostral migratory stream, LV: lateral ventricle.
A and B were taken from brain No. 1; C-E were taken from brain No. 19; F and G were taken
from brain No. 20. Scale bars: 500 um in A, C; 200 pm in B,E,G; 100 um in D; 2mm in E.
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Double immunofluorescence histochemistry revealed co-expression of COUP-TFI and COUP-
TFII by cells in both the cortex and GE (Figure 4.11). Throughout both compartments COUP-
TFI was more widely expressed than COUP-TFII, however a large proportion of cells in the
CGE were immunoreactive for both transcription factors (Figure 4.11A, E, F). Gradients of
either single or double-labelled cells suggested two possible migratory pathways out from the
CGE: posteriorly into the temporal cortex, and anterio-laterally through the LGE into the
anterior and central cortical regions (Figure 4.11B,E-H) (Touzot et al., 2016). At 8 PCW, it
appeared that the posterior pathway was predominant (Figure 4.2A°, B’; Figure 4.11B)
however, the number of the cells that migrated anterio-laterally increased by 10-12 PCW
(Figure 4.11G). This suggests that the pathway selected for cell migration out of the CGE is
controlled in a temporal manner. The present study also shows that, in addition to the CGE,
COUP-TF+ cells could also originate from the MGE (COUP-TFI+; Figure 4.5A,D) and the
MGE/LGE boundary (COUP-TFI+, COUP-TFII+, and COUP-TFI+/COUP-TFII+ cells;
Figure 4.2A,B). At 8 and 12 PCW respectively, 20 3.6 % and 22 £3 % of all COUP-TFII+
cells in the cortex also expressed COUP-TFI. The highest proportion of double-labelled cells

was observed in the ventro-temporal cortex (Figure 4.11 C,D,H-J).
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Figure 4.9: Double labelling for SP8 (red) and COUP-TFI, COUP-TFII, and Calretinin
(green). (A) Counter gradients of SP8 and COUP-TFI expression in cortical VZ broadly
overlapped (yellow) including in posterior cortex (Pos) and the hippocampal primordium
dorsal to the cortical hem (dHip). Only anterior cortex (Ant) predominantly expressed SPS8, and
only ventral temporal cortex including ventral hippocampus (vHip) exclusively expressed
COUP-TFI. Likewise, a counter gradient of SP8 expression in SVZ and COUP-TFI in VZ/SVZ
was apparent in GE. The medial amygdala (Amy) predominantly expressed SP8, whereas
ventral pallium (VP) and piriform cortex (PCrx) expressed COUP-TFI. (B) COUP-TFI
expression in the anterior ventral pallium (VP) with SP8 confined to LGE. (C) In the cortex
SP8 and COUP-TFII show abrupt expression boundaries; COUP-TFII confined to ventral
temporal lobe. (D) Posterior regions of medial amygdala populated by SP8+/COUP-TFII+
cells. (E) the dLGE/cortex boundary was still sharply delineated by SP8 and COUP-TFI
expression at 10 PCW. (F) Relatively small numbers of SP8+/COUPTFI- cells migrate from
LCGE into the cortex at this stage. (G) Low density of COUP-TFII+ cells in SP8+ dLGE. (H)
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High density of SP8 + /COUP-TFII+ cells in SVZ of the LGE-Like CGE. (I and J)
SP8+/COUP-TFI+ cells predominantly seen in cortical VZ although double-labelled cells
present in SVZ and 1Z (I). SP8+/COUP-TFII+ double-labelled cells predominantly observed
in SVZ and IZ (J). (K and L) SP8 Co-expressed with both COUP-TFI and COUP-TFII in
ventral CGE. (M, N, O) Extensive co-expression of SP8 and CalR in the vCGE (M) but also in
the LGE and cortex (N, O). Crx, cortex; d and vHip, dorsal and ventral hippocampus; Amy,
amygdala; VP, ventral pallium; dLGE, dorsal LGE; L and vCGE, lateral and ventral CGE; VZ,
ventricular zone. A-D were taken from brain No. 1; E-J were taken from brain No. 10; K-O
were taken from brain No. 17. Scale bars: 2mm in A, C; 500 um in K, L, M; 200 pm in E-H,
N, O; 100 um in B, D, I, J.

COUP-TFI NKX2.1 COUP-TFI OLIG2

8 PCW
B

Figure 4.10: Double labelling for COUP-TFI (red) with NKX2.1 and OLIG2 (geen). (A,
B) Double labelling for COUP-TFI and NKX2.1 in the VZ/SVZ of the MGE of 8 PCW. Cells
in the VZ are largely double-labelled, but the further into the SVZ, the more cells become
labelled for either one transcription factor or the other (B). (C) shows double labelling for
COUP-TFI and OLIG2 in the VZ/SVZ of the MGE of 8§ PCW. In both cases double-labelling
is confined to the dorsal MGE. The boxed area in (A) shows where image (B) was taken. MGE:
medial ganglionic eminence, LGE: Lateral ganglionic eminence. A-C were taken from brain
No. 1. Scale bars: 500 um in A and C; 20 pm in B.
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4.4.5 SP8 expressed in distinct populations of post-mitotic COUP-TF expressing CGE and
LGE derived cells.

In mouse the transcription factor SP8 plays a role in the differentiation of LGE-derived
interneurons that populate the amygdala and the olfactory bulb via the rostral migratory stream
(RMS) (Waclaw et al., 2006). In the human ventral telencephalon, SP8 was expressed in the
SVZ of the LGE with an increasing gradient from ventral to dorsal, in the septum and in the
RMS (Figure 4.41, I’; Figure 4.8). Two streams of SP8+ cells were observed migrating
ventrally and rostrally into the RMS from both the dLGE and septum (Figure 4.8C,E)
suggesting the septum also contributes interneurons to the human olfactory bulb. SP8 was also
highly expressed across the SVZ of the vCGE (Figure 4.8A,B) not only in the caudal extension
of the LGE (LCGE) as previously described (Ma et al., 2013). Two migratory routes were
identified for SP8+ cells in the vCGE, a large number of SP8+ cells formed a migratory stream
from the vCGE ventrally toward the anlage of the medial amygdaloid nuclei (Figure 4.8B).
Although few SP8+ cells were seen entering the cortex from the vCGE at 8 PCW, the number
increased at 12 PCW (Figure 4.8B,G). SP8 was expressed in dividing cells (KI67+) in the SVZ
in of LGE, but all SP8+ cells appeared to downregulate K167 and therefore stop dividing before
entering the cortex (Figure 4.12A).

In either the LGE or CGE, SP8 was predominately expressed in COUP-TFII+ cells and to a
lesser extent in COUP-TFI+ cells. These double-labelled cells were mostly located in the SVZ
of the LGE and CGE and in cells appearing to migrate tangentially into the cortex (Figure
4.9A-H,K-L). SP8 also co-localized with COUP-TFII in cells that appeared to be migrating
ventrally from the vCGE into the posterior part of the mantle zone lateral and ventral to the GE
(Figure 4.9C,D). However, similar to PAX6, SP8 was also expressed in the anterior part of this
region, where these cells appeared to be migrating from the LGE (Figure 4.9C). In the cortical
wall both COUP-TFI+/SP8+ and COUP-TFII+/SP8+ cells were mainly found in the SVZ and
1Z; a few, if any, were found in the CP (Figure 4.91J). As SP8 was not expressed in the MGE
or at the MGE/LGE boundary. SP§ and SOX6, a marker of post-mitotic MGE-derived cells
(Batista-Brito et al., 2009), were expressed in completely separate populations of cells either
in the GE or the cortical SVZ and IZ (Figure 4.12B,C). cortical COUP-TFI+/SP8+ cells and
COUP-TFII+/ SP8+ cells were most likely generated in the CGE (not the LGE) migrating

either posteriorly or anterio-laterally into the cortex, confirmed by observing that a large
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proportion of SP8+ cells in these two pathways co-expressed CalR (Figure 4.9M-0O) a marker
of CGE- derived interneurons (Kanatani et al., 2008; Miyoshi et al., 2010). However, we also
found a population of SP8+ cells entering the cortex from the dLGE, similar to Ma et al. (2013)
except that these cells did not co-express COUP-TFI, COUP-TFII, or CalR (Figure 4.9) but
instead formed a population distinct from CGE derived cells. To confirm that SP8+ cells
entering the cortex from the GE were GABAergic interneurons, we performed SP8 and GABA
synthesizing enzyme glutamate decarboxylase 67Kd (GAD67) double labelling and observed
proportion of SP+ cells entering the cortex from the LGE and vCGE co-localized GAD67;
however, there was a number of cells entering the cortex expressing SP8 only (Figure 4.12D-

F) which are most likely to be immature cells not yet expressing detectable levels of GAD67.

8 PCW COUP-TFI COUP-TFII

oSVZ

iSVZ

Figure 4.11: Double labelling for COUP-TFI (red) and COUP-TFII (green) in 8 and 12
PCW human fetal brain. (A) Sagittal section of § PCW fetal brain. The majority of cells in
the caudal part of GE show co-localization of these two markers (yellow signal); while COUP-
TFI was expressed in a decreasing posterior to anterior gradient; the anterior cortex was
generally more populated with COUP-TFII+ cells than the posterior cortex however COUP-
TFI (but not COUP-TFII) was markedly expressed in the anterior ventral pallium (B). Streams
of COUP-TFI+ and COUP-TFII+ cells, and scattered COUP-TFI+/COUP-TFII+ cells
appeared to migrate from the GE through the LGE toward the anterior cortex. (C, D) A
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proportion of cells in the anterior and posterior cortex also showed co-localization for these
two markers. (E-J). Differing proportions of COUP-TFI+/COUP-TFII+ cells were observed in
the CGE compartments (E, F) dLGE (G), ventral cortex (H), anterior cortex (I) and the posterior
cortex (J) of 12 PCW fetal brain. cp: choroid plexus, d Hip: dorsal hippocampus, dLGE: dorsal
LGE, VZ: ventricular zone, SVZ: sub-ventricular zone, 1Z: intermediate zone, CP: cortical
plate, cp: choroid plexus, VP: ventral pallium, Pcrx: piriform cortex, dLGE: dorsal LGE, d and
vCGE: dorsal and ventral CGE. A-D were taken from brain No. 5; E-J were taken from brain
No. 20. Scale bars: 500 pum in A; 200 um in B; 100 um in C (and for D); 200 pm in E (and for
F, G); 200 um in I (and for H ,J).

SP8 SOX6 DAPI

Figure 4.12: SP8 expression in cortical GABAergic interneurons. (A) SP8+ cells co-
localized KI67 in LGE, all SP8+ cells downregulated KI67 before entering the cortex. (B,C)
SP8 and SOX6 were expressed in separated population of cells in the LGE (B) and migrating
cells in the VZ and IZ of the cortex (C). (D-F) proportion of SP8+ cells co-expressed GAD67
in the GE and cells entering the cortex from the LGE (E) and vCGE (F), Arrows indicate to
examples of double labelled cells. boxed areas in D show where images (E and F) were taken.
A-C were taken from brain No. 10; D-F were taken from brain No. 1. Scale bars: Scale bars:
200 pum in B (and for A); 2mm in D; 100 pm in F (and for C and E).
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4.4.6 COUP-TFI expressed in both MGE- and CGE- derived cortical GABAergic
interneurons.

The majority of COUP-TFI+ cells in the anterior cortex expressed GAD67 demonstrating that
COUP-TFI was predominantly expressed in GABAergic interneurons in this region. As
expected, a smaller proportion of COUP-TFI+ cells in the posterior cortex expressed GAD67
because there is a far higher density of cells co-expressing COUP-TFI with markers for
glutamatergic neurons and their precursors (TBR1, PAX6 and TBR2; Figure 4.6; Figure
4.13A,B). In the cortex at 8§ PCW GADG67+ cells were mostly found in either the 1Z/SVZ or
the MZ, the two major migration streams of GABAergic interneurons in the developing cortex
(Lavdas et al., 1999; Marin, 2013); however a considerable number of GAD67+ cells appeared
to be migrating in the VZ and SVZ as well (Figure 4.13A-E). COUP-TFI/GAD67 co-
localization was also observed in all these compartments with 45 £2.4% of all GAD67+ cells
in the proliferative zones (VZ/SVZ) co-expressing COUP-TFI. In particular, the majority of
GADG67+ cells migrating in the VZ co-expressed COUP-TFI and some of these cells were
shown to have a longitudinal rather than transverse morphology suggesting radial migration.
A similar proportion was also seen in post-mitotic layers (47 £2.7%) mostly located either at
the CP/MZ border or just below in the pSP/ 1Z; few, if any, were found in the CP (Figure
4.13A-C/F).

NKX2.1 is downregulated in migrating MGE-derived cells before they enter the cortex; the
transcription factor SRY-box6 (SOX6) acts downstream of NKX2.1 and its expression is
maintained in migrating interneurons in mouse (Batista-Brito et al., 2009). At 8 PCW, SOX6
was expressed in the SVZ of the MGE, in cells probably migrating through the LGE, and in
the cortex. SOX6+ cells were also broadly distributed throughout the cortical wall, the majority
of which co-expressed GAD67 (Figure 4.13G) and a proportion of which also co-expressed
COUP-TFI (Figure 4.13H) confirming that a population of COUP-TFI+ cortical interneurons
are derived from the dMGE. This was apparent at 10 PCW, where COUP-TFI+ cells showed
co-localization with SOX6 in the SVZ of the MGE and in a large number of cells migrating
into the cortex from the LGE (Figure 4.13LK). Moderate SOX6 immunoreactivity also
appeared in both the cortical and dLGE VZ at this stage (Figure 4.131) suggesting, as in rodents,

a role in determining cortical progenitor identity (Azim et al., 2009).
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In addition, other interneurons expressing COUP-TFI were characterised by co-expression of
either calretinin (CalR) or calbindin (CalB; Figure 4.13N,P). CalR, in particular, is
characteristic of CGE- derived cortical GABAergic interneurons in rodents (Kanatani ef al.,
2008; Miyoshi et al., 2010). At 12 PCW, when the cortical wall was extensively populated with
CalR+ cells, we found a sub-population of these cells co-localized COUP-TFI (Figure 4.13N).
Overall, we estimated 39 + 4.7% of all CalR+ cells in the various cortical regions co-expressed
COUP-TFI. Although there were fewer CalB+ cells present at this stage, a proportion of these
also co-expressed COUP-TFI (Figure 4.13P).
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Figure 4.13: COUPT-FI and COUP-TFII expression in cortical GABAergic interneurons.
(A—C) Double labelling for COUPT-FI and GAD67 in cortical wall at § PCW. COUP-TFI+/
GADG67+ cells broadly distributed in the cortical wall, mostly either just above the thin CP in
the marginal zone or just below in the pre-subplate/IZ; (A, B) A considerable number also
found in proliferative (VZ/SVZ) zone of anterior and posterior cortex with radial nuclear
morphology (arrows). (C) A stream of COUP-TFI+/GAD67+ cells enter temporal cortex from
vCGE, migrating tangentially mainly in the SVZ/IZ. (D, E) A smaller proportion of GAD67+
cells co-express COUP-TFIIL. (F) The percentage of COUP-TFI+ and COUPTFII+ cells from
all GAD67+ cells in the proliferative (VZ/SVZ) and postmitotic zones (IZ/CP) of 8§ PCW
cortical wall. (G, H) Double labeling for SOX6 and GAD67 in the 8 PCW cortical wall. The
majority of SOX6+ cells co-expressed GAD67 this stage (G), and a proportion of SOX6+ cells
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also co-expressed COUP-TFI (H). (I) Double labeling for SOX6 and NKX2.1 in the GE of of
10 PCW fetal brain. SOX6 mainly expressed in NKX2.1+ cells in SVZ of MGE and in cells
migrating through the LGE mantle zone; SOX6 also expressed in the cortical and dLGE VZ.
(K-M) Double labeling for COUPT-FI or COUP-TFII with SOX6 in GE at 10 PCW; COUP-
TFI highly expressed in SOX6+ cells in MGE and in cells entering cortex from LGE (L), no
similar double labeling with COUP-TFII (L, M).(N, O) Double labeling for COUPT-FI and
COUP-TFII with calretinin (CalR) in cortical wall of 12 PCW fetal brain. (P, Q) Double
labeling for COUPT-FI and COUP-TFII with calbindin (CalB) in 12 PCW cortical wall. Scale
bars: 100 um in B, D (and for A); 200 pum in C, E; 100 um in K (and for G, H, I); 100 um in M
(and for L) 500 pm in P (and for N, O); 100 um in Q.

4.4.7 COUP-TFII expressed mainly by CGE-derived cortical GABAergic interneurons

The expression of COUP-TFII by a subpopulation of cortical GABAergic interneurons was
also analysed by double immunofluorescence with GAD67, CalR, CalB, and SOX6 (Figure
4.13). Either in the proliferative zone or postmitotic layers, a far smaller proportion of GAD67+
cells expressed COUP-TFII than COUP-TFI; only 19 + 3% of all GAD67+ cells expressed
COUP-TFII in the proliferative zone (mainly in the SVZ), many COUP-TFII+ cells were seen
in the VZ, but these cells did not co-express GAD67. In the postmitotic layers, 20 £+ 2.8% of
GADG67+ cells expressed COUP-TFII and were also mostly seen in the 1Z/SP and above the
CP in the marginal zone (Fig. 8D, E, F). Conversely, a higher proportion of COUP-TFII+ cells
co-localized CalR (Figure 4.130); 67+ 6% of all CalR+ cells in the cortex of 12 PCW human
brain co-expressed COUP-TFII, however a proportion of COUP-TFII+/ CalR+ cells are
probably Cajal-Retzius cells (Meyer et al., 2000; Meyer et al., 2002; Zecevic et al., 2011).
Some COUP-TFII+ cells in the cortex were also immunoreactive for CalB (Figure 4.13Q).
Although the MGE/LGE boundary could also be an origin for COUP-TFII+ cells (Chapter 3;
Figure 4.2B) , similar to SP8, COUP-TFII was not co-expressed with SOX6 (Figure 4.13L,M)
this demonstrates that COUP-TFII cells are not MGE derived, however, COUP-TFII+ cells in
the cortex can co-express OLIG2 (Reinchisi ef al., 2012) and these cells could be derived from
the MGE/LGE boundary.
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4.5 Discussion

COUP-TFs and SP8 have been shown to be key regulators of telencephalic development in
numerous experiments in rodents contributing to the protomap, controlling neurogenesis,
determining phenotype and influencing rates and direction of cell migration (Waclaw et al.,
2006; Sahara et al., 2007; Borello et al., 2013; Alfano et al., 2014Db). It is important to determine
the extent to which these roles have been retained or altered in human development particularly
as mutations in COUP-TFI have been implicated in intellectual disability (Bosch et al., 2014).
The present study confirms that these transcription factors are likely to have equally important
and largely similar roles in human, however it also revealed small differences that may be
important in understanding the greater complexity of the human compared to the rodent brain

and in neurodevelopmental disorders.

4.5.1 COUP-TFI, COUP-TFII and SP8 as regulators of cortical arealisation.

This study confirms that the observation that COUP-TFI and SP8 form counter-gradients of
expression across the mouse pallium (O'Leary et al., 2007; Rakic et al., 2009; Sansom and
Livesey, 2009; Borello et al., 2013; Alfano et al., 2014a) is also the case in the human cerebral
cortex. A fundamental difference between mouse and primate, and in particular human,
cerebral cortex is the substantially larger surface area with, more importantly, a more
complicated pattern of functional arealisation and a considerably larger proportion devoted to
higher functioning association cortex (Van Essen and Dierker, 2007; Krubitzer and Seelke,
2012; Buckner and Krienen, 2013). One mechanism that could contribute to the increased
complexity is more variation in the combinatorial patterning of transcription factor expression
to determine the human protomap. What the present chapter demonstrates is that whereas
expression of SP8 and COUP-TFI overlap extensively in certain cortical regions, the
expression of SP§ and COUP-TFII form distinct boundaries. In this way the cortical wall is
divided up into regions that express SP8 only (the frontal pole excluding anterior ventral
pallium) COUP-TFI/COUP-TFII (ventral temporal cortex, lateral and medial) and COUP-
TFI/SP8 (central, posterior, and dorsal temporal cortex) (Figure 4.14; Table 4.1). This differs
from the mouse protomap in which COUP-TFI and SP8 show little overlap (Borello et al.,
2013) and where COUP-TFII is confined to a very small portion of the posterior cortex (Qiu et

al., 1994) which is possibly the origin of the mouse secondary temporal cortex (Wree et al.,
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1983). Combinatorial expression of COUP-TFI and SP8 could maintain a common genetic
identity for some future primary sensory areas (visual, auditory and somatosensory) and a
partially shared identity with SP8-expressing frontal motor cortex with which these sensory
areas will interconnect, along with allied association cortex, via dorsal sensorimotor pathways
(Baker, 2007; Hickok and Poeppel, 2007; Milner and Goodale, 2008). On the other hand,
expansion of cortical COUP-TFII expressing territory in human fetal brain mirrors the increase
in size and complexity, in human compared to mouse, of the association areas of the ventro-
temporal cortex that includes the ventral stream of cognitive visual processing (Milner and

Goodale, 2008; Kaas, 2013).

COUP-TF| Pyriform cortex
SPa Frontal cortex
SPE/ICOUP-TFI Parietal/occipital/dorsal

temporal {primary sensory
cortex and dorsal stream)

SP8ICOUP-TFI Dorsal hippocampus

COUP-TFVCOUP-TFII Ventral hippocampus

COUP-TFIVCOUP-TFII Ventral temporal
lobe (ventral stream)

Figure 4.14: The roles of transcription factors COUP-TFI, COUP-TFII, and SP8 in
cortical arealisation. Schematic sagittal section showing how the progenitor zones of the
cortex are subdivided into compartments identified by unique or combined expressions of
COUP-TFI, COUP-TFII, and SP8 that give rise to different functional areas of cortex in
maturity. Ant: anterior; Pos: posterior; Temp: temporal.

An extension of this observation was that dorsal (posterior in adult human) and ventral (anterior
in adult human) hippocampus are also differentiated by combinatorial expression of
SP8/COUP-TFI and COUP-TFII/COUP-TFI respectively. The dorsal domain featured in our
sections lies anterior and dorsal of the cortical hem but does not include that anterior-most
portion that dissipates after 14 PCW as the corpus callosum develops (Kier ez al., 1995).
Evidence from animal studies demonstrates that dorsal and ventral hippocampus have distinct
roles; dorsal carries out primarily cognitive functions whereas ventral hippocampus function is
primarily related to stress, emotion and affective states (Fanselow and Dong, 2010; Strange et

al., 2014) reflected by distinct patterns of gene expression in adult and post-natal rodents (Dong
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et al., 2009; O’Reilly et al., 2015) and by the distinct efferent and afferent connections each
sub-compartment makes, also demonstrated in primates (Friedman et al., 2002; Kondo ef al.,
2009; Aggleton et al., 2012). Neuroimaging studies show this holds true for human
hippocampus also (Bunsey and Eichenbaum, 1996; Chua et al., 2007; Strange et al., 2014). It
has recently been demonstrated in mouse that high to low expression of COUP-TFI along a
septo-temporal gradient is important for the functional organisation of the hippocampus (Flore
et al, 2016). Here we provide evidence that the protomap for human hippocampal
specialisation is laid down prior to formation of afferent and efferent connections, but that it is
determined by complementary expression of SP8 and COUP-TFII rather than graded
expression of COUP-TFI.

The ventral pallium, a cortical structure which forms the boundary between the cortex and the
LGE and shown to contribute cells to the olfactory cortex, claustrum and amygdala in mouse
(Puelles ef al., 2000; Medina et al., 2004) has also been identified in human (Lindsay et al.,
2005). The present study shows it is characterized by COUP-TFI expression regardless of
whether it was located posteriorly or anteriorly. Instead, anterior and posterior regions were
defined by SP8 or COUP-TFII expression, respectively. This is in agreement with findings in
mouse that have described expression of Coup-TFI at the anterior corticostriatal boundary
(Lodato et al., 2011) essentially part of the ventral pallium. In both human and mouse there is
expression of COUP-TFI in post-mitotic cells of the nearby piriform olfactory cortex (Figure
4.9A) (Lodato et al., 2011).

Interaction of COUP-TFI, COUP-TFII and SP8 with other transcription factor expression
gradients demonstrated to exist in human fetal brain at this stage of development, for instance
EMX2 and PAXG6 (Bayatti et al., 2008b; Ip et al., 2010) CTIP2 (Ip et al., 2011) and OLIG2
(Chapter 3) may produce a sufficiently complicated mosaic of organising maps that “tether”
the subsequent rapid expansion of the human cerebral surface that occurs during development
to produce the complex but largely stereotyped interconnection of primary, secondary and
association cortex (Buckner and Krienen, 2013). For instance, it has been proposed that the
early developing middle temporal (MT) and V1 areas of the visual cortex in non-human
primates act as “molecular anchors” for the subsequent development of the dorsal and ventral

visual streams respectively (Bourne and Rosa, 2006; Homman-Ludiye and Bourne, 2013).
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These areas could be defined in early cortex by co-expression of SP8 with COUP-TFI (MT) or
COUPTFII with COUP-TFI (V1).

Table 4.1: The expression level of COUP-TFI, COUP-TFII, and SP8 in the cortex and
hippocampus.

Ventral Anterior | Central | Posterior | Temporal Dorsal Ventral
pallium cortex cortex cortex cortex hippocampus | hippocampus
COUP-TFI ++ - + ++ ++ ++ ++
COUP-TFII - - - - ++ - ++
SP8 - ++ ++ ++ - + -

(-) No expression (+) Moderate expression (++) Strong expression

4.5.2 Compartmentalisation of the ventral telencephalon

Taken together with our previous findings (chapter 3) the proliferative zones of the ventral
telencephalon can be divided according to transcription factor expression (including COUP-
TFI and COUP-TFII) and some predictions made as to how interneuron precursors derived
from each compartment migrate into the telencephalon (Table 4.2). COUP-TFI
immunoreactivity subdivided the MGE with NKX2.1 and OLIG2 expressed throughout but
with COUP-TFI confined to the larger dorsal region. In rodents the dMGE is the birthplace of
nearly all parvalbumin-positive (Pv+) and somatostatin-positive (Sst+) cortical interneurons,
whereas the VMGE predominantly gives rise to globus pallidus neurons (Flandin ez al., 2010)
although at later stages it may be the source of cortical chandelier cells (Taniguchi et al., 2013).
We observed co-expression of COUP-TFI with SOX6, a downstream regulator of NKX2.1
(Batista-Brito et al., 2009) in the IMGE and in neuroblasts laterally migrating through the LGE
and into the cortex, demonstrating co-expression of COUP-TFI and SOX6 in cortical
interneurons in human for the first time. COUP-TFI may have a role in guiding migration
(Boudot et al., 2014) perhaps ensuring neurons migrate dorsally towards the cortex and not

ventrally towards the basal ganglia.
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Table 4.2: The subdivisions of GE and subcortical septum identified by the expression of
certain transcription factors.

VMGE dMGE MGE/LGE VLGE dLGE MCGE LCGE vCGE MGE-LIKE LGE-LIKE
boundary Septum Septum
NKX2.1 ++ ++ - - - ++ - - +
OLIG2 ++ ++ ++ + + ++ + - + +
COUP-TFI - ++ ++ ++ s ++ ++ ++
COUP-TFII - - ++ * * - ¥ ++
post-mitotic | post-mitotic Post-mitotic
cells cells cells
SP8 - - - + ++ + ++ ++ - +
SVZ only SVZ only SVZ only SVZ only SVZ only
PAX6 - - - + + - ++ ++ - +

(-) No expression (+) Moderate expression (++) strong expression

The confinement of COUP-TFI expression to its ventral region also divides the LGE into dorsal
and ventral portions. Dorsal LGE is characterised by stronger PAX6 expression, SPS§
expression in post-mitotic cells and few COUP-TFII+ cells. In the age range studied here
COUP-TFII immunoreactivity in the dLGE appeared to belong only to anteriorly migrating
cells arising from the vCGE. Instead, dLGE provided predominantly SP8+ only cells that
migrated towards the RMS, amygdala and cortex and did not express CalR. The boundary zone
of the MGE and LGE is identified by its own transcription factor expression profile, which is
distinct from the adjacent AMGE and vLGE. Whereas COUP-TFI is continuously expressed
across these three regions, COUP-TFII was exclusively expressed at the MGE/LGE boundary
(Chapter 3; Figure 4.2A,B; Figure 4.4G,H) (Ma et al., 2013); suggesting that this region could
be an origin for COUP-TFII+ interneurons in addition to the vCGE (see below). In rodents,
this boundary region is the source of COUP-TFII+/Sst+ cells that occupy cortical layer V (Cai
et al., 2013). However, no co-expression of COUP-TFII with SOX6, the developmental marker
for Sst+ interneurons, was observed which suggests a difference between human and rodent
models where a previous report indicated that one third of cortical COUP-TFII+ cells co-
express SOX6 (Ma et al., 2012).
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Our previous analysis showed that the sub-cortical septum is divided into MGE-like (NKX2.1
expressing) and LGE-like (PAX6 expressing) domains and suggested that OLIG2+ cells from
this compartment migrate medially into the cortex (See chapter 3). Here this was extended by
confirming expression of SP8 in LGE-like septum (Ma et al., 2013) and showing that septal
SP8+ cells also migrate towards the RMS in addition to dLGE derived SP8+ cells (Ma et al.,
2013). However, COUP-TFI and COUP-TFII expression in both the MGE-like and LGE-like
septum were confined to a very few, dispersed cells most likely to have migrated from other
subcortical structures, making these septal compartments very similar to vMGE and dLGE,

respectively.

The CGE is characterised by high expression of COUP-TFI and COUP-TFII, as well as SP8
and CalR. Dorsally, MGE-like CGE expresses NKX2.1, LGE-like CGE expresses PAX6
(Chapter 3) but neither compartment expresses COUP-TFII in dividing cells of the VZ, which
is only seen in the vCGE (Chapter 3; Hansen et al., 2013; Ma et al., 2013). We have previously
suggested that COUP-TFII+/CalR cells derived from the vCGE migrate both posteriorly into
the temporal cortex and dorsally/laterally/anteriorly via the LGE towards more anterior cortex
(Chapter 3). Here we show that many of these cells also express COUP-TFI and SP8 and that
numerous cells in the LGE co-expressing SP8 and COUP-TFII are passing through rather than
originating from the LGE as previously suggested (Ma et al., 2013).

4.5.3 Migration pathways out of the ganglionic eminences

The idea that interneuron precursors principally enter the dorsal from the ventral telencephalon
via two pathways; laterally from the MGE and caudally from the CGE (Faux et al., 2012;
Marin, 2013) has been challenged by recent observations. Medial migration of interneurons
from the septum into the medial cortex has been described in shark (Quintana-Urzainqui ef al.,
2015) and human (Chapter 3). Furthermore, studies in mouse (Touzot et al., 2016) and human
(Chapter 3) have suggested that CGE-derived interneurons reach their final location in the
cortex via two distinct pathways. In addition to the caudal migratory stream (CMS) directing
CGE-derived cells into the temporal cortex and hippocampus (Yozu et al., 2005) these cells
can also migrate anteriorly via the LGE into the anterior and lateral cortical regions. While
COUP-TFII is important to establish the CMS (Kanatani et al., 2008) COUP-TFI is proposed
to control the lateral/anterior migratory stream of CGE-derived cells in mice (Touzot ef al.,
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2016). In addition, a third route that directs CGE-derived cells ventrally into the basal
telencephalon, a region corresponding to the medial amygdala (Nery et al., 2002; Touzot et al.,

2016) was confirmed to be the case in human in the present study.

Two reasons are proposed for the presence of multiple migration routes for CGE derived cells
(Touzot et al., 2016). Firstly, the CGE is the source of neurons for various telencephalic
structures (cortex, hippocampus, and amygdala) and multiple routes are required for these cells
to reach their specific targets. Possibly, the anterior pathway for CGE-derived interneurons
might be more important in human to allow these interneurons to rapidly reach the expanded
and more evolved frontal cortex where the majority (50%) of calretinin- expressing
interneurons reside (Ma et al., 2013; Hladnik et al., 2014). Secondly, the temporal control of
migration of later born CGE-derived interneurons allows proper laminar distribution in the
cortex (Miyoshi et al., 2010; Touzot et al., 2016). We found that expression of COUP-TFI and
COUP-TFII, and their downstream regulator SP8 are temporally distinct; however, the
distribution of these three markers in each pathway might not be exactly the same as has been
observed in mice by Touzot et al. (2016). The CMS seemed to be dominant at the early stages
(8 PCW) where cells mainly expressed COUP-TFI and -TFII but not SPS. However, SP8 was
highly expressed in COUP-TFII+ cells in particular in the CMS at older stages (12 PCW). In
disagreement with observations in mice (Touzot et al., 2016) SP8 was also highly enriched in
COUP-TFII+ cells migrating ventrally from the vCGE into the amygdala even at the earliest
age studied; furthermore COUP-TFI was much less expressed by cells following this pathway.
This suggests that in human, as has been demonstrated in experiments with transgenic mice
(Tang et al., 2012) COUP-TFII is important in patterning the amygdala, whereas COUP-TFI
does not play a role. However, it should be noted cells from dLGE migrating to anterior regions
of the amygdala co-expressed PAX6 and SP8 but not COUP-TFII (Figure 4.2D,E; Figure
4.9C).

The anterior pathway for vCGE-derived cells via the LGE into the cortex became more
prominent at older stages with COUP-TFII and SP8 more highly expressed than COUP-TFI in
this migratory stream. In agreement with Ma et al. (2013) we observed that a proportion of
SP8+ cells entering the cortex from the LGE appeared to originate locally in dLGE rather than
migrating from the CGE. However, these particular cells were negative for COUP-TFI, COUP-

TFII and CalR expression, thus our observations suggest that cells co-expressing any of these
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three markers with SP8 are uniquely generated in the vCGE. In addition, a proportion of
COUP-TFI+ and COUP-TFII+ cells entering the cortex from the LGE could also have
originated from the MGE/ LGE boundary which can be also a birthplace for COUP-TFI+ and
COUP-TFII+ cells.

It is proposed that diverse interneuronal subtypes generated in various domains in the ventral
telencephalon use similar cellular mechanisms to translocate while tangentially migrating into
the cortex but respond to different chemical cues based on distinct expression of specific
surface receptors controlled by a specific transcriptional network (Marin, 2013). Regardless of
their subtypes, it has been suggested that the appropriate responsiveness of GE cell sub-types
to their particular guidance cues allowing them to migrate through the cortical wall and invade
the CP is also unique to mammals and could contribute to the evolution of the neocortex
(Tanaka et al., 2011). In rodents migrating interneurons disperse in the cortex via two specific
major migratory streams: a superficial stream located in the MZ and deep stream in the lower
1Z, although smaller numbers of cells also migrate through the SP (Lavdas et al., 1999; Marin
and Rubenstein, 2001; Marin, 2013). The present study shows that the migration pattern of
interneurons in the developing human cortex might be more dispersed with less distinguishable
pathways than in rodents, at least in the early stage of development (8-12 PCW) where a
considerable number of GAD67+ cells also appeared to be migrating through the VZ and SVZ.
However, it has been reported that tangentially migrating interneurons, upon reaching the
dorsal telencephalon, actively seek the cortical VZ before they migrate to their positions in the
cortical plate, possibly to receive information related to their layer position (Nadarajah et al.,
2003). In the SVZ or the post-mitotic layers, GAD67+ migrating cells co-expressed COUP-
TFI, COUP-TFII, or SOX6. However, interneurons in the VZ were solely MGE-derived cells
co-expressing either SOX6 or COUP-TFI only (Figure 4.13) whereas SP8 expression was
confined to cells migrating in the SVZ/IZ but not in the MZ, SP, or VZ (Figure 4.9) (Ma et al.,
2013). Therefore, the spatial origin and the expression of unique, or unique combinations of,
transcription factors in migrating interneurons from the GE may control migration routes and
thus their final laminar position in the developing cortex, which may be more complicated in
human than in rodents, and could contribute to the evolution of the human neocortex as

previously suggested (Tanaka et al., 2011).
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4.6 Conclusion

COUP-TFI, COUP-TFII and SP8 are likely to play important roles in human forebrain
development. In conjunction with other transcription factors, their expression helps delineate
the protomap of the human cortex with SP8 defining more anterior parts of the cortex, COUP-
TFI expression more posterior parts of the cortex but COUP-TFII confined to ventro-temporal
cortex, which is relatively enlarged in human in comparison to other species. COUP-TFI
expression defines the VZ of nearly all the ganglionic eminence compartments contributing
interneurons to the cortex whereas COUP-TFII is confined to the VZ of the MGE/LGE
boundary and the vCGE, the latter being where distinct classes of interneurons more prominent
in the primate brain are generated. Arealised expression of transcription factors in the cortical
wall may, in turn, control expression of molecules that attract migrating cells expressing the
same transcription factors, setting up the migratory pathways into the cortex for interneurons
arriving anteriorly or posteriorly, medially or laterally from the ganglionic eminences. For
instance, COUP-TFI expression in the anterior ventral pallium guides entry of COUP-TFI

expressing interneurons from the MGE.

Note: Much of this chapter (data, figures and text) has been recently published in a research
article (Alzu'bi et al., 2017) under a creative commons licence and in a review article (Clowry

et al., 2017) which is reproduced here with permission (See appendices):
- Alzu'bi, A., Lindsay, S.J., Harkin, L.F., McIntyre, J., Lisgo, S.N. and Clowry, G.J.
(2017) 'The Transcription Factors COUP-TFI and COUP-TFII have Distinct

Roles in Arealisation and GABAergic Interneuron Specification in the Early
Human Fetal Telencephalon', Cerebral Cortex, 27(10), pp. 4971-4987.

- Clowry, G.J., Alzu'bi, A., Harkin, L.F., Sarma, S., Kerwin, J. and Lindsay, S.J. (2017)
'Charting the protomap of the human telencephalon', Seminars in cell &
developmental biology, Online version.
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Chapter 5: Potential Regional Variation and Generation of Subtype-
specific Interneurons in the Dorsal Telencephalon of Early Fetal
Human brain

5.1 Summary

The prefrontal associative area of the cerebral cortex provides the main biological substrate for
higher cognitive abilities in human. In primates it forms a much larger proportion of the frontal
lobe compared to all other species; this area contains 50% of all calretinin (CalR) expressing
interneurons in the human cortex, and furthermore the proportion of interneurons that are
calretinin positive is threefold higher in humans than in rodents. In cultures differentiated from
isolated human cortical progenitors from anterior and posterior cortex of (9-12 PCW) human
fetal brain, 19% of b-tubulin+ post-mitotic neurons expressed GABA in anterior cortex derived
cultures, which was a significantly higher proportion than found in posterior cortex derived
cultures (14%). Similarly, a higher proportion of CalR+ cells was observed in anterior derived
cultures (37%) than posterior derived cultures (28%), more than half of CalR+ cells in either
derived cultures also co-expressed GABA. Many cells expressed either of the COUP-TFs and
30% of these cells also co-expressed GABA, however no cells expressed the characteristic
marker of MGE progenitor cells NKX2.1. Treatment of cortical cultures with exogenous sonic
hedgehog (SHH) significantly increased cell proliferation but did not alter the regional identity
for these cultures, which still lacked NKX2.1 expression and maintained similar proportions
of GABA+, COUP-TFII+, and OLIG2+ cells. In RNAseq analysis for 18 genes expressed in
GABAergic interneurons and their progenitors of fetal tissue samples taken at two
developmental time points (9—10 PCW and 11-12 PCW), the expression of many genes,
including DLXI, DLX2, GSH2, ASCLI1, ARX, OLIG2, CALB2 (calretinin) was significantly
higher in samples derived from the anterior cortical region than posterior region. Collectively,
these data suggest that, in addition to the GE, fractions of GABAergic interneurons could be
generated intra-cortically, preferentially in the anterior cortical region. Most of these
interneurons resemble CGE-derived interneurons, mostly express CalR and are generated from

progenitors expressing either COUP-TFI or COUP-TFII.
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5.2 Introduction

The remarkable expansion of human neocortex has been known as the main substrate providing
the platform for the higher cognitive abilities compared to all the other species. It is well
recognized that the prefrontal cortex (also known as frontal associative area) in humans is the
key element for higher cognitive function and working memory (Teffer and Semendeferi,
2012). In primates higher order associative areas have expanded and these cover large part of
the human cortical surface (Uylings and van Eden, 1991); in which, the frontal associative area
represents 80% of all the associative areas including the parietal associative area (Teffer and
Semendeferi, 2012; Hladnik et al., 2014). The deep layer Il pyramidal neurons in these
associative areas form crucial elements for substantial number of connections with other
cortical areas (Barbas et al., 2005; Yeterian ef al., 2012) which have been reported as essential
substrates involved in higher cognitive abilities (Selemon et al., 2003; Wang et al., 2006;
Verduzco-Flores et al., 2009). In addition to the cortical expansion and vast cortical-cortical
connectivity, the intrinsic organization of cortical circuitries has been also shown to be
evolutionary elements for higher functional properties of the neural networks in primates
(Burkhalter, 2008; Forbes and Grafman, 2010). The efficiency of cortical circuitries is highly
dependent on the function of inhibitory GABAergic interneurons, which act as intrinsic
modulators essential to higher order processing (Whittington et al., 2011; Buzsaki and Wang,

2012).

The majority of interneuronal subtypes are characterized by the expression of parvalbumin
(Pv), somatostatin (Sst), or calretinin (CalR) (Wonders and Anderson, 2006; Fogarty et al.,
2007; Rudy et al., 2011). In rodents, these interneuronal subtypes comprise 16% of total
number of cortical neurons, represented by 7%, 5%, and 4% for Pv, Sst, and CalR expressing
interneurons, respectively. The proportions of Pv (7%) and Sst (5%) expressing interneurons
are also similar in primate; however, CalR interneurons become the dominant subtype
increasing from 4% in rodents to 13% in primate. This notable increase in these interneuronal
subtypes raises the total proportion of interneurons by 50% in primate compared to the rodents
(Condé et al., 1994; Gabbott er al., 1997; Zaitsev et al., 2005; Barinka and Druga, 2010;
Hladnik et al., 2014). Almost half of all these calretinin interneurons, in human, are found in
the higher order associative areas (Hladnik et al., 2014). Such a large increase in the proportion
of CalR interneurons in the associative cortex could be accompanied by structural

reorganization of neural networks in the human associative cortex, initiating different modes
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of signal processing, which in turn, increase the cognitive functions of human brain

(Burkhalter, 2008; Forbes and Grafman, 2010; Hladnik et al., 2014).

Are interneuron generation mechanisms in human like those found in rodent models? In rodents
cortical interneurons are generated in the ganglionic eminences and there is no evidence for
generation in the cortex directly (See chapter 1, section 1.2). Are there additional sources for
cortical CalR interneurons in human leading to the three-fold increase of these interneuronal
subtypes? We have already demonstrated the presence of OLIG2+ and COUP-TFII+
progenitor cells in the cortex of 8-12 PCW fetal human brain (chapters 3 and 4); whether or
not these could give rise to GABAergic interneurons remained an open question. Therefore we
isolated and cultured progenitor cells from anterior and posterior cortex avoiding temporal
cortex where it adjoins the ventral CGE. We then differentiated neurons from these progenitors
to see if we produced cells that expressed GABA and markers of interneuron progenitors, like

NKX2.1, OLIG2, and COUP-TFs.

This study investigated the spatial (anterior versus posterior cortex) mRNA expression levels
for several transcription factors that promote the production, specification, and migration of
cortical GABAergic interneurons (See chapter 1, section 1.4). At the top of the molecular
hierarchy are the transcription factor ASCLI1 and its downstream effectors DLX1/2. They are
considered among the earliest transcription factors expressed within the GE, where they act
together to coordinate the differentiation of interneuron precursors by regulating notch
signalling. Ascll is expressed earlier and maintains the undifferentiated state of progenitors;
DLX1/2 promotes the progenitor maturation and differentiation (Casarosa et al., 1999; Marin
et al., 2000; Yun et al., 2002). DLX1/2 induce the expression of DLXS5/6, which are required
for interneurons migration and differentiation, but not their generation (Liu et al., 1997; Wang
et al., 2010). The ARX homeobox transcription factor also appears to be downstream of DLX
genes, which is important for interneuron migration and integration into their laminar position
in the cortex (Kitamura et al., 2002; Vogt et al., 2014). Upstream of ASCL1 and DLX1/2 genes
are the transcription factors GSX1/2, they are among the earliest transcription factors that are
enriched in the LGE and CGE progenitors, but weakly expressed in the MGE (Corbin et al.,
2003; Xu et al., 2010). GSX2 maintains the undifferentiated state of progenitors, GSXI
promotes progenitor maturation and differentiation (Pei et al., 2011). GSX1/2 are mainly
required for the specification of CGE- derived interneurons; Gsx2 mutants have shown

dramatic loss of bipolar CalR-expressing interneurons mainly derived from the CGE (Xu et al.,
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2010). A sequential transcriptional cascade of Nkx2.1-Lhx6-Sox6 was identified for
interneurogenesis in the MGE. NKX2.1 is the key regulator of MGE-derived interneuron
specification (Sussel et al., 1999; Xu et al., 2004; Butt et al., 2008; Du et al., 2008); its
expression is required for the specification of Sst+ and Pv+ interneurons in this region (Xu et
al., 2004; Butt et al., 2008; Du et al., 2008). NKX2.1 directly induce the expression of LHX6
in MGE cells, which is also required for specification of Pv+ and Sst+ interneurons and their
migration into the cortex as well (Liodis et al., 2007; Du et al., 2008; Zhao et al., 2008; Flandin
et al., 2011; Vogt et al., 2014). SOX6 acts downstream of LHX6, it is mainly required for
normal positioning and maturation, but not the specification, of MGE-derived interneurons

(Azim et al., 2009; Batista-Brito et al., 2009).

Finally, this study explored the effect of exogenous SHH treatment on cortical cell cultures. In
mice, Shh is a well-known ventralizing factor required for the patterning of the ventral
telencephalon by promoting the generation of ventral cell types (Kohtz et al., 1998; Rallu et
al., 2002). Shh induces the expression of NKX2.1 in the MGE, which is required for the
specification of Pv and Sst expressing cortical interneurons (Kohtz et al., 1998; Rallu et al.,
2002; Xu et al., 2004). The ventral midline of the diencephalon has been known as the main
source of Shh in the developing brain (Ericson et al., 1995). The low level of Shh expression
in the dorsal telencephalon is also required to regulate neural progenitor cell proliferation
(Komada et al., 2008; Dave et al., 2011). Briefly, Shh binds and inactivates the transmembrane
receptor Patched 1 (Ptchl) alleviating the inhibition of a second transmembrane receptor
Smoothened (Smo), which in turn initiates a cascade of events lead to nuclear localization of
glioma-associated (Gli) transcription factors, the terminal mediators of Shh signalling. In the
absence of Shh, Suppressor of Fused (SuFu) binds to GLi transcription factors and anchoring
them in the cytoplasm preventing the activation of GLi target genes (Figure 5.1) (Choudhry et
al., 2014; Rimkus et al., 2016). In human, SHH and its downstream components (Ptch1, Smo,
and Gli transcription factors) are expressed in the human developing cortex from 10th
gestational week, their expression increases during development, including both progenitor
cells and postmitotic neurons (glutamatergic and GABAergic neurons) (Radonji¢ et al., 2016;
Memi et al., 2018). /n vitro treatment for RGC cultures, isolated from the dorsal telencephalon
of human brain at mid-gestation, with exogenous SHH demonstrated that SHH can promote

the MGE-like identity by inducing NKX2.1 expression in these cultures (Radonji¢ et al., 2016).
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Figure 5.1: Schematic diagram of the Shh signalling pathways. In the absence of Shh
ligand, Ptch inhibits Smo, SuFu anchoring Gli transcription factors in the cytoplasm preventing
the activation of Gli target genes (left). Binding of Shh ligand to Ptch relieves the inhibition of
Smo resulting in the nuclear localization of Gli transcription factors and activation of their
target genes (right). Adapted from (Biiller et al., 2012).

5.3 Aim of Study

The present chapter firstly aimed to further investigate the potential dorsal origin of specific
GABAergic interneuronal subtypes in dissociated cortical cell cultures from (9-12 PCW)
human fetal telencephalon. Secondly, investigate the mRNA expression level of selected 18
genes expressed by GABAergic neurons and their progenitors at two developmental time
points (9-10 PCW and 11-12 PCW). Finally, explore the effect of exogenous sonic hedgehog

(Shh) treatment on cortical cell cultures.
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5.4 Results

5.4.1 Expansion and differentiation of neural stem cells

The human fetal brains (n =7, 9-11 PCW; Table 2.1) were dissected, dissociated into single
cell suspension, and plated in serum-free medium in the presence of a cytokines (rh EGF, rh
bFGF) and heparin (See chapter 2, section 2.6). After 24 h of plating, round single cells were
still suspended in the medium and translucent in appearance, progenitors continue to proliferate
to form neurospheres in the presence of epidermal growth factor (EGF) and basic fibroblastic
growth factor (bFGF) (Reynolds and Weiss, 1992; Siebzehnrubl ez al., 2011). In the next two
days, the NSCs (progenitor cell) started to proliferate forming small clusters of cells (Figure
5.2A), the majority of these clusters became attached to the surface of the culture ware.
However, these clusters grew and increased in size day 4 and day 5, detached from the surface
and floated in the medium (Figure 5.2B). Over the next few days, the neurospheres increased
in size and became rounded in shape; their centres were light in colour and translucent, with
microspikes displayed from the cells on the outer surface (Figure 5.2C). The condition of the
cultures was monitored every day; the medium was also replenished every two days. By day
13 and day 14, although neurospheres had various sizes, the majority of these neurospheres
reached 100-200 p in diameter, their centres were darkened in colour and became ready for
passaging. If neurospheres grow too large, the darkened area will expand, and the centre of the
neurosphers become blackened due to cell death, as these cells in the centre are not able to
acquire the required oxygen and nutrients (Reynolds and Weiss, 1992; Siebzehnrubl et al.,
2011). Neurospheres were chemically and mechanically dissociated into single cell suspension

and plated under the same conditions as the primary culture (See chapter 2, section 2.6.4).

Cells from dissociated neurospheres were spontaneously differentiated by withdrawal of the
growth factors, adding small amount of serum, and plating the cells on poly-I-lysine (adhesive
substrate) coated culture ware (Figure 5.2D). After 8 days, NSCs had become differentiated

into the three primary cell types found in the developing human cortex (see next section).
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Figure 5.2: Phase contrast images of neurospheres and monolayer differentiating
neurons. (A) 3 days in vitro (DIV), progenitor cells started to proliferate forming small
clusters still attached to the surface of the culture ware. (B) By 6 DIV, neurospheres have grown
in size and detached from surface. (C) Floating 10 DIV neurosphere, rounded in shape, light in
colour and translucent, with microspikes displayed from the cells on the outer surface. (D) 8
days monolayer differentiating neurons. Scale bars: 50 um.
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5.4.2 Characterization of the cortical cell culture

The dissociated cortical cell cultures from anterior and posterior cortical regions (n=3) were
first characterized by testing their immunoreactivity for general markers for various cell types
after 8 days of plating in differentiating media, the time point when a high proportion of neural
progenitors are present (Figure 5.3). The intermediate filament protein nestin, cell division
marker KI67, and radial glia cell marker PAX6 were used to identify the human cortical neural
stem/progenitor cells (Englund er al., 2005; Bayatti et al., 2008a), b-tubulin used for post-
mitotic neurons (Katsetos et al., 2003), TBR1 for cortically-derived glutamatergic neurons
(Englund et al., 2005; Bayatti et al., 2008a), and the Glial fibrillary acidic protein (GFAP) to
identify the glia cells like the astrocytes (Levitt and Rakic, 1980).

Generally, mixed populations of progenitor and post-mitotic cells were observed (Figure 5.3;
Figure 5.4). 21 + 1 % of the total number of cells identified by nuclear DAPI labelling
expressed the cell division marker K167, 25 + 2 % expressed the radial glia marker PAX6, 35
+ 1% expressed b-tubulin, and only 3 + 0.02 % expressed GFAP (Figure 5.4A). Almost 67 +
3% of b-tubulin expressing neuroblasts/neurons were also TBRI1 positive (Figure 5.3A)
suggesting that a proportion of these postmitotic cells may be neuronal cell types other than
glutamatergic neurons. When analysing anterior versus posterior cultures, statistically
significant differences in the number of cells expressing these markers were found only for
PAX6 and b-tubulin; more PAX6+ cells found in posterior (30 + 2%) than anterior (21 + 2%)
derived cortical cultures (Figure 5.4C). Only a proportion of these PAX6+ cells were also
dividing (Figure 5.3C) in either anterior or posterior cultures. Conversely, the number of b-
tubulin + cells was generally higher in anterior (37 + 2%) than posterior (30 = 1%) derived
cultures (Figure 5.4D). However, the number of dividing (KI67+) cells and astrocytes
(GFAP+) was not significantly different in anterior and posterior derived cortical cultures

(Figure 5.4B,E).
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Figure 5.3: Characterization of the cortical cell cultures derived from human fetal cortex.
Examples of double immunofluorescent staining for various markers of neuronal stem cells,
post-mitotic neurons and glia cells like TBR1 and b-tubulin (A) nestin and b-tubulin (B) K167
and PAX6 (C) GFAP and b-tubulin (D). Scale bar: 50 pm.

127



% of total number of cells (DAPI+) % of KI67/DAPI

50 50
45 - 45
40 40
35 - 35
30 30
25 - 25
20 - 20
15 1 15
10 | 10
5 4 5
Ki67 PAX6 B-tubulin GFAP Ant Crx Post Crx
% of PAX6/DAPI % of B-tubulin/DAPI % of GFAP/DAPI
50 50 50
* *
45 | | 45 [ | 45
40 40 40
35 35 35
30 30 30
25 25 25
20 20 20
15 15 15
10 10 10
5 5 5
ol | o . N mm
Ant Crx Post Crx Ant Crx Post Crx Ant Crx Post Crx

Figure 5.4: Cells quantification for general markers positive cells in cultures derived from
anterior and posterior human fetal cortex (n=3). The overall percentage of KI67+, PAX6+,
B-tubulin+, and GFAP+ cells from the total number of cells (DAPI+) in human fetal cortex
cultures (A). No significant difference in the number K167+ cells was found in cultures derived
from the anterior and posterior cortex (B). Significantly higher PAX6+ cells were found in
cultures derived from the posterior cortex (C). Conversely, higher B-tubulin+ cells were found
in cultures derived from anterior cortex (D). No significant difference was found in the number
GFAP+ cells in cultures derived from the anterior and posterior cortex (E). Asterisk denotes a
statistically significant difference P < 0.05, 2-tailed t-test.

5.4.3 GABA+ and calretinin+ cells in cortical derived cell cultures

In further investigations for the diversity of neuronal progenitor cells in the cortex of early
human fetal brain, we next sought to explore if the cortex contains populations of progenitor

cells, similar to those found in the GE, that give rise to different pools of cortical GABAergic
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interneurons. We tested cells in our cultures (from cortex and GE; n=3; Figure 5.5) for
immunoreactivity to GABA, the neurotransmitter of inhibitory interneurons often proposed to
derive almost entirely from progenitor cells of ganglionic eminence origin (Le Magueresse and
Monyer, 2013) (Chapter 1, section 1.2). Cells were also tested for immunoreactivity to the
calcium binding protein calretinin which is used as phenotypic marker for CGE-derived
GABAergic interneurons (Kanatani et al., 2008). Remarkably, immunoreactivity for these two
markers was not confined to GE-derived cultures, but was also found in either anterior and/or

posterior derived cortical cultures (Figure 5.5 A-C).

Figure 5.5: GABA+ and CalR+ neurons can be generated from cortically-derived
progenitor cells. (A,B) Proportion of b-tubulin+ (green) co-expressed GABA and CalR (red)
cortically-derived cultures. (C) Only proportion of ClaR+ cells were double labelled with
GABA. (D,E) Higher proportion of GABA+ and CalR+ cells were observed in GE-derived
cultures. (F) NKX2.1 expression was only found in GE-derived cultures (but not cortical
cultures). Scale bar: 50um.
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As both GABA and calretinin are considered as post-mitotic markers, the expressions of these
two markers were normalized to the expression of b-tubulin when investigating potential
regional variations for GABAergic interneuron generation. Almost 19 + 2% (177 b-tubulin+
cells and 34 GABA+ cells) of b-tubulin+ cells expressed GABA in cultures from the anterior
cortex, which was higher than in cultures from the posterior cortex (14 + 2%, 126 b-tubulin+
cells and 18 GABA+ cells; Figure 5.6A). As GABAergic interneurons are proposed to derive
almost entirely from progenitor cells of the ganglionic eminences in primate (Hansen et al.,
2013b; Ma et al., 2013; Arshad et al., 2015) these observations may indicate either that cells
have lost their regional identity during dissociation, expansion and culturing or that a
proportion of interneurons are generated from cortical progenitor cells in developing fetal
human brain as we proposed in chapter 1 and has been suggested previously (Zecevic ef al.,
2011; Radonji¢ et al., 2014a; Clowry, 2015). There was evidence, however, that the cultures
retained regional identity; cultures of GE derived cells from the same brains showed a far
higher proportion of b-tubulint/GABA+ cells (53 £2%, 132 b-tubulin+ cells and 70 GABA+
cells; Figure 5.5D,E; Figure 5.6A) and a proportion of cells expressed NKX2.1, characteristic
of MGE derived progenitors (Figure 5.5F), whereas no NKX2.1 immunoreactivity was
observed in cortical cultures (data not shown) as seen in forebrain sections immunostained for
NKX2.1 before 12 PCW (See chapter 3, section 3.3.4) (Hansen et al., 2013b; Pauly et al.,
2014).

In addition, significantly higher proportions of calretinin+ cells were also observed in culture
from the anterior cortex than cultures from the posterior cortex; 37 + 4% (157 b-tubulin+ cells
and 59 CalR+ cells) and 28 + 2% (172 b-tubulin+ cells and 48 CalR+ cells) of b-tubulin+ cells
expressed calretinin in cultures from the anterior cortex and posterior cortex, respectively
Figure 5.6B). However, only a proportion of CalR+ (49 + 3%, 45 CalR+ cells and 22 GABA+
cells) cells co-expressed GABA (Figure 5.5C) confirming that calretinin expression in human
fetal brain is not restricted to GABAergic interneurons but is also a marker for cortically
derived pioneer neurons and Caja-Retzius cells (Gonzalez-Gémez and Meyer, 2016). All these
findings provide additional evidence that the cortex is capable of making its own interneurons.
In addition, our findings suggest that the anterior cortex, origin of the highly evolved prefrontal
cortex crucial to higher cognitive function, might be considered as favoured region for cortical

interneurogenesis.
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Figure 5.6: Cells quantification for GABAergic interneuron markers positive cells in
cultures derived from anterior and posterior human fetal cortex (n=3). (A) The percentage
of GABA+ cells of all B-tubulin+ cells in cultures derived from the GE, anterior cortex, and
posterior cortex. (B) The percentage of CalR+ cells of all B-tubulin+ cells anterior and posterior
derived cortical cultures. (C,D) The percentage of COUP-TFI+ and COUP-TFII+ cells of total
number of cells (DAPI+) in anterior and posterior derived cortical cultures. (E,F) The
percentage of GABA+ cells co-expressed COUP-TFI and COUPTFII in cultures derived from
the GE, anterior cortex, and posterior cortex. Asterisk denotes a statistically significant
difference P < 0.05, 2 asterisks P < 0.0005, 2-tailed t-test.

5.4.4 OLIG2+ cells but not NKX2.1+ cells in cortical derived cell cultures.

Analysis of immunoreactivity for NKX2.1 and OLIG2, MGE-derived GABAergic interneuron
precursor transcription factors, on sections of 8-12 PCW forebrain has shown that NKX2.1
expressing progenitors were mainly confined to the MGE and the sub-pallial septum (MGE-
like septum) and NKX2.1 appeared to be downregulated in cells migrating into the cortex. On

the other hand, OLIG2 appeared continually expressed in migrating cells, but also seen
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throughout the cortex in considerable numbers of actively dividing cells (See Figure 3.9). When
testing cells in our cultures for these two markers, similar findings were also observed; NKX2.1
positive cells were only observed in culture from the GE but not from either the anterior or
posterior derived cortical cultures (Figure 5.5F; data not shown). Conversely, cortical cultures
were noticeably populated with OLIG2+ cells. Furthermore, 43 + 2% of OLIG2+ cells were
also dividing, actively expressing the cell division marker K167 (Figure 5.7A). However, no
statistically, significant difference was found in the numbers of OLIG2+ cells of all cells in the
anterior (11 + 1%) or posterior (8 + 1%) derived cortical cultures, which was inconsistent with
our previous findings in the immunostained sections where the anterior cortex was more

heavily populated with OLIG2+ cells (see chapter 3, section 3.3.6).

Unfortunately, we were not able to investigate if OLIG2 expressing cells/ neuroblasts that we
found in our cortical cultures are the source of GABA cells observed in the same cultures (see
previous sections) because, firstly, double immunostaining for these two markers was not
possible because the available commercial antibodies for these two markers were raised in the
same species. Secondly, OLIG2 appeared to be expressed mainly in neuronal progenitor
(dividing) cells, whereas GABA expression is found mainly postmitotic cells (b-tubulin
expressing cells; Figure 5.5A). However, the absence of NKX2.1 expression in these cortical
cultures indicates that these GABA cells may constitute interneuronal subtypes different from

those generated in the MGE.

5.4.5 COUP-TFI and COUP-TFII expression in cortical derived cell cultures

We have previously demonstrated that COUP-TFs are expressed in populations of cortical
GABAergic interneurons in human fetal brain; these two transcription factors were widely
expressed in neuronal progenitor and postmitotic cells of ventral and dorsal telencephalon
(Chapters 3 and 4). The expression, particularly of COUP-TFI, in the cortex was not confined
to the inhibitory GABAergic interneurons but also observed in progenitor cells that give rise
to populations of excitatory glutamatergic neurons (Figure 3.13H; Figure 4.6). Whether or not
COUP-TFs expressing progenitors could give rise to GABAergic interneurons as well as

glutamatergic pyramidal neurons remained an open question.
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In additional analysis for cell type specification of in vitro cortical derived cultures, further
evidence that our cultures retained regional identity was provided by the observation that both
COUPTFI and COUPTFII were expressed in distinct gradients (Figure 5.6C,D; Figure 5.7B,C).
COUP-TFI was expressed differentially between anteriorly and posteriorly derived cortical
cultures as it is between anterior and posterior cortex; 29 + 3 % of all cells in anterior derived
cultures and 63 + 6% of cells in posterior cortical derived cultures (Figure 5.6C). A proportion
of COUP-TFI+ cells were double-labelled with either PAX6 (45 + 3 %) or B-tubulin (20 £ 2
%), indicating that COUP-TFI was expressed in both progenitor and post-mitotic cortical cells
(Figure 5.7B). A lower level of expression was found for COUPTFII than for COUP-TFI
(Figure 5.6D; Figure 5.7C). All these observations are consistent with the
immunohistochemical and RNAseq data from intact brains (chapter 4). Furthermore, and
contrary to the findings for COUP-TFI expression, the proportion of DAPI labelled cells also
immunoreactive for COUP-TFII+ was significantly higher in anterior cortex (25 +2%) than in

posterior cortex cultures (16 + 2%; Figure 5.6D).

OLIG2 KI&7 DAPI COUP-TFI B-tubulin DAPI COUP-TFII B-tubulin DAPI

Figure 5.7: The expression of OLIG2, COUP-TFI, and COUP-TFII in cortically-derived
cell cultures. (A) OLIG2 (B,C) Double labelling for COUP-TFI and COUP-TFII (red) with B-
tubulin (green) in cortically-derived cell cultures.(D-G) Proportion of COUP-TFI+ and COUP-
TFII+ cells co-expressed GABA in cortically-derived cell culture. (F,G) The majority of
COUP-TFI+ and COUP-TFII+ cells co-expressed GABA in MGE-derived cell cultures. Scale
bar: 50um.
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We hypothesised that COUP-TFI and COUP-TFII positive progenitors could provide the origin
of GABAergic interneurons born in the cortex, as has been previously suggested, especially
for COUP-TFII (Chapters 3 and 4) (Reinchisi et al., 2012; Radonji¢ et al., 2014a). In anterior
cortex cultures 14 + 2% of COUP-TFI+ and 31 + 3% of COUP-TFII+ cells co-labelled for
GABA and in posterior cortex cultures 13 = 2% of COUP-TFI+ and 20 + 2% of COUP-TFII+
cells were similarly double-labelled. However, a higher proportion of cells co-labelled for
GABA and COUP-TFs in GE cultures (Figure 5.6E,F; Figure 5.7D-G). We conclude that there
was no difference in the proportion of GABAergic neurons deriving from either COUP-TFI or
COUP-TFII expressing precursors between anterior or posterior derived cultures, but, bearing
in mind the higher proportion of COUP-TFI+ cells posteriorly and COUP-TFII+ cells
anteriorly, there could be differences in the composition of populations of interneurons deriving
from anterior and posterior cortex in terms of COUP-TFI and COUP-TFII expression. The
conclusion still is that at the time of culturing there were progenitors present in the cortex that
express COUP-TFI and/or COUP-TFII and are capable of generating GABAergic

interneurons.

5.4.6 Investigating the gene expression level and gradient for GABAergic genes using
RNAseq analysis

The largest RNAseq study to date of human cerebral cortex with 137 samples from different
cortical regions with an age range of 7.5 to 17 PCW has been recently completed by our
research group, from which we have produced normalised RPKM data for all genes for
comparison of gene expression levels and can classify protein coding genes as very highly
expressed (top 5% normalised RPKM >160) high expression (top 25%; 40-160) moderate
expression (25-50%: 10-40) low expression (50-75%; 0.4-10) no expression above background
(bottom quartile; <0.4) (Lindsay et al., 2016; Clowry et al., 2017; Harkin et al., 2017).

In a subset of samples from 9-10 and 11-12 PCW (Table 2.3), we specifically analysed anterior
versus posterior differences in the expression of 18 genes expressed by GABAergic neurons
and their progenitors including several transcription factors, the two isoforms of GABA
synthesising enzymes (GADI and GAD?2), and two GABA interneuron phenotypic markers
(CALBI and CALB2, the genes for calbindin and calretinin respectively) (Table 5.1). As

demonstrated earlier (see chapter 4, Section 4.4.1) analysis of the expression of several
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transcription factor genes (COUP-TFI, COUP-TFII, and SP8) using the same set of RNAseq
data confirmed that graded expression can occur in the human cortex at these developmental
stages (Figure 4.1). In addition, RNA expression gradients for these genes were also consistent
with the protein expression displayed by the immunohistochemical analysis indicating that
these gradients were not an artefact of the experimental procedures (Figure 4.9A,C). In both
studied stages, 9-10 and 11-12 PCW, the obtained data have shown that only three of our
selected genes were classified as highly expressed genes (RPKM values 40-100) which are
ASCLI, ARX, and CALB?2 (Figure 5.8). Conversely, three genes (GSXI, LHXS, and CALBI)
have shown RPKM values at only the background level (RPKM <0.4). Whereas the remaining
genes were classified as either moderately expressed (RPKM values 10-40) or expressed at low

level (PRKM values 0.4-10).
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Table 5.1: List of GABAergic genes used in RNAseq analysis with their description from
rodent studies.

Gene Name Description (from rodent studies)
DILX] GABA interneuron progenitor™®
DILX? GABA interneuron progenitor™®
DLXS GABA interneuron *
DLX6 GABA interneuron *
ASCLI GABA interneuron progenitor*
GSX]1 GABA interneuron progenitor*
GSX2 GABA interneuron progenitor*
NKX2.1 MGE- GABA interneuron progenitor*
OLIG? GABA interneuron/Oligodendrocyte progenitor marker*
LHX6 MGE-derived GABA interneuron®
LHXS MGE-derived GABA interneuron®
SOX6 MGE-derived GABA interneuron*
PROXI CGE-derived GABA interneuron *
ARX GABA interneuron*
GADI GABA synthesizing enzyme (GAD67)
GAD? GABA synthesizing enzyme (GAD65)
CALBI GABA interneuron phenotypic marker calbindin
CALB? CGE- derived GABA interneuron phenotypic marker calretinin

*Transcription factor.
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At 9-10 PCW, a significant fold increase in anterior/posterior expression levels was detected
in the overall average expression for the transcription factors ASCLI and its downstream
effectors DLX1/2 (Figure 5.8A; Figure 5.9), three transcription factors that are early expressed
in the precursors of GABAergic interneurons, where they act together to coordinate their
differentiation by regulating the notch signalling (Casarosa et al., 1999; Marin et al., 2000;
Yun et al., 2002). Although the overall expression level of ASCLI considerably decreased at
11-12 PCW, anterior/posterior fold increase was still significant (Figure 5.8B; Table 5.2). On
the contrary, the expression levels DLX1/2 increased at 11-12 PCW in both anterior and
posterior cortex with a tendency for higher expression in anterior cortex (Figure 5.10; Table
5.2). These findings for these three transcription factors are also in agreement with previous
quantitative PCR and microarray studies between 8-12 PCW, which identified an anterior to
posterior gradient of expression for these three markers (Bayatti ef al., 2008a; Al-Jaberi et al.,
2015a). DLX5/6 are another two genes of DLX family, located downstream of DLX1/2, that
were also expressed in the developing human cortex. Far higher expression, 8 fold, was
observed for DLX5 compared to DLX6 at 9-10 PCW (Figure 5.9); an increase of the cortical
DLX5/6 mRNA levels was recognised at 11-12 PCW, changing 7 and 5 fold for DLX5 and
DLXG6, respectively (Figure 5.10). For both DLX5/6, a higher expression was always observed
in the anterior cortex compared with posterior cortex in the studied stages of development, but

was statistically significant only for DLX5 at 11-12 PCW (Figure 5.9; Figure 5.10; Table 5.2).
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Figure 5.8: Gradients of ASCL1, ARX, and CALB?2 expression across the cortex of 9-10
and 11-12 PCW human brain by RNAseq. (A) Significantly higher expressions were
observed for these three markers in anterior cortex than posterior cortex at 9-10 PCW. (B) The
overall expression levels decreased at 11-12 PCW; however, anterior/posterior fold increase
was still significant. (1-way ANOVA, Tukey’s post hoc comparison, *P < (0.05).

Upstream to ASCLI and DLX genes are GSX1 and GSX2 which are enriched in the CGE and
important for the generation of calretinin expressing interneurons in this domain (Corbin et al.,
2003; Wang et al., 2009; Xu et al., 2010). Very low expression was identified for these two
transcription factors in the developing human cortex at 9-10 PCW, with RPKM values was
close to background (<0.4; Figure 5.9); however, GSX2 expression has greatly increased at 11-
12 PCW, changing 20 fold from 9-10 to 11-12 PCW. Although it was not statistically
significant, the trend for higher expression obtained in the anterior cortex was also identified
(Figure 5.10; Table 5.2). Another transcription factor which is specifically important for
migration and differentiation, but not production, of CGE-derived interneurons is Prox1 in
rodents (Miyoshi et al., 2015) which was also shown to have very low expression in fetal

human cortex at both 9-10 and 11-12 PCW (Figure 5.9; Figure 5.10).

The transcription factors that are specifically expressed by MGE derived GABAergic
interneurons and their progenitors (like NKX2.1, OLIG2, LHX6, LHXS, and SOX6) also
showed a low (NKX2. 1 and LHX8) and moderate (OLIG2, LHX6, SOX6) level of expression in
our RNAseq data. The mRNA level for NKX2.1 and OLIG?2 followed the trend seen for their
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protein expression in either dissociated cell culture (see section 5.4.4) and/or in forebrain
sections immunostained for NKX2.1 and OLIG2 (Chapter 3). Very low expression was
observed for NKX2.1 at 9-10 PCW, with slightly higher expression found at 11-12 PCW
(Figure 5.9; Figure 5.10, Table 5.2); this is inconsistent with our previous findings where
NKX2.1 protein expression was only found in very small number of cells in sections of 12
PCW human cortex (see chapter 3, section 3.3.4); similarly, no NKX2.1+ cells were found in
dissociated cell culture from the cortex of 9-12 PCW human brain (see above, section 5.4.4).
Unlike NKX2.1, OLIG2 mRNA has shown a considerably higher level of expression at 9-10
PCW, with significantly higher expression seen in the anterior cortex than posterior cortex. The
overall expression doubled at 11-12PCW; although it was not statistically significant, higher
expression was observed in the anterior cortex (Figure 5.9; Figure 5.10; Table 5.2). These
findings are also in agreement with our previous findings, where significant numbers of
OLIG2+ cells, mostly dividing cells, were populating the cortex of 8-12 PCW brains; either in
immunostained sections or dissociated cell cultures, OLIG2+ cells were more common in the
anterior cortex (Figure 3.9A,B; Figure 5.7A). LHX6, LHXS8, SOX6 and ARX are located
downstream of NKX2.1, but their expression is maintained in migrating MGE-derived
interneurons where they are required for their specification, migration and integration in the
cortex (Zhao et al., 2003; Liodis et al., 2007; Du et al., 2008; Batista-Brito et al., 2009; Vogt
et al., 2014). Moderate expression was observed for LHX6 in both developmental stages, with
no significant difference in the expression level in the anterior and posterior cortex. However,
The expression of other member of LHX family LHXS was only at the background level
indicating no expression for LHXS in the human fetal cortex at these stages of development
(<0.4; Figure 5.9; Figure 5.10). The effectors downstream of LHX6 are SOX6 and ARX (Zhao
et al., 2003; Liodis et al., 2007; Batista-Brito et al., 2009; Vogt et al, 2014) Moderate
expression was also observed for SOX6 and it was the only transcription factor that showed
significantly higher posterior expression at 9-10 PCW, however there was no significant
difference in the expression level observed in the anterior and posterior cortex at 11-12 PCW
(Figure 5.9; Figure 5.10). ARX was generally more highly expressed (RPKM > 100) than LHX6
and SOX6, with significantly higher expression obtained from the anterior cortex than the
posterior cortex (Figure 5.8; Table 5.2) suggesting that ARX may be expressed in neuronal
subtypes other than MGE-derived interneurons for example CGE-derived interneurons or even
in the glutamergic neurons. Similar to ASCLI significantly higher expression obtained from

the anterior cortex than the posterior cortex at 9-10 PCW, with considerable decrease in the
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expression level observed at 11-12 PCW; however, anterior/posterior fold increase was still

significant (Figure 5.8A,B; Table 5.2).
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Figure 5.9: Gradients of GABAergic gene expression across the cortex of 9-10 PCW
human brain by RNAseq. DLXI, DLX2, GSX2 and OLIG2 showed significant higher
expressions in anterior cortex than posterior cortex. Only SOX6 showed significant higher
expression in posterior cortex at this stage (1-way ANOVA, Tukey’s post hoc comparison, *P
<0.05).
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Finally, we have also analysed the mRNA expression for the two glutamate decarboxylase
isoforms of GABA synthesising enzymes (GADI and GADZ2) and two GABA interneuron
phenotypic markers (CALBI and CALB2). GAD1 was 5 fold more highly expressed than GAD?2
at 9-10 and 11-12 PCW, with no significant difference in the expression in anterior and
posterior cortex (Figure 5.9; Figure 5.10). Far higher expression was observed for CALB?2 than
GAD genes (up to more than 10 fold) suggesting, as mentioned above, that CALB?2 is expressed
in cells other than inhibitory interneurons like cortically derived pioneer neurons and Caja-
Retzius cells (Meyer et al., 2000; Gonzalez-Gémez and Meyer, 2016). In addition, anterior
cortex showed significantly higher expression of CALB?2 than the posterior cortex at 9-10 PCW
(Figure 5.8A). Although there was a dramatic decrease of CALB2 expression in the anterior
cortex at 11-12PCW, it was still significantly higher than in the posterior cortex (Figure 5.8B).
In contrast, the expression level of other calcium binding protein CALBI was only at the
background level in both anterior and posterior cortical regions at these stages of development

(<0.4, Figure 5.9; Figure 5.10).
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Figure 5.10: Gradients of GABAergic gene expression across the cortex of 11-12 PCW
human brain by RNAseq. DLX1, DLX2, and DLX5 showed significant higher expressions in
anterior cortex than posterior cortex. (1-way ANOVA, Tukey’s post hoc comparison, *P <
0.05).
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Table 5.2: The fold difference of GABAergic genes expression in anterior (A) and
posterior (P) cortex.

Fold Difference A>P
Gene Name
9-10 PCW 11-12 PCW

DLX1 18 1.5
DLX2 14 1.3
DLXS5 1 4 1.9
DLX6 13 1.9
ASCL1 15 1.3
GSX1 1 1.3

GSX2 ) 2
NKX2.1 16 1.9
OLIG2 1.4 1.2
LHX6 1 0.9
LHX8 1 4.2

SOX6 0.8 1
PROX1 11 0.5
ARX 1.4 1.3

GADI1 12 1
GAD2 | 1.1
CALBI1 0.7 0.5

CALB2 31 2

142



5.4.7 The effect of exogenous Shh treatment on cortical cell cultures

The final aim of this project was to explore the effect of exogenous SHH treatment on cortical
cell cultures. We firstly evaluated our RNA seq data for the expression levels of SHH mRNA
and other downstream components of Shh signalling pathway (PTCHI, SMO, SUFU, GLII,
GLI2, and GLI3). For these genes we used the full age range of samples available from 7.5 to
17 PCW (Figure 5.11). Distinct expression levels were observed for these various components;
low level of expression was detected for SHH (RPKM values 0.4-10) at any time point between
8-12 PCW (Figure 5.11A). Nevertheless, a remarkable higher expression level was observed
for the Shh receptor PTCHI (RPKM values 10-40) and SMO (Figure 5.11B,C; RPKM values
up to 70). Similarly, the negative regulator of Shh signalling pathway SUFU showed moderate
level of expression (Figure 5.11D; RPKM values 20-25). The terminal effectors of the pathway
GLII, GLI2, and GLI3 also showed distinct expression levels. Similar to SHH, very low
expression was observed for GLII (Figure 5.11E; RPKM values 0.4-4); whereas moderate
expression observed for GLI2 (Figure 5.11F; RPKM values 20-40). The highest expression
level GLI family genes was for GLI3 (RPKM values 60-120) which also showed noticeable
decrease with age (Figure 5.11G). Consistent with previous findings at mid-gestation (Radonji¢
et al., 2016) these results demonstrate that various components of Shh signalling pathway are
expressed in the dorsal telencephalon of human fetal brain at earlier stages of development (the
end of first trimester). However, the very low level of Shh mRNA in the cortex observed in
this study compared to higher expression observed at mid-gestational period (Radonji¢ et al.,
2016) could suggest that the incidence of Shh expression in the human fetal cortex increases

with age.
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Figure 5.11: The expression levels of PTCH1, SMO, SUFU, GLI1, GLI2, and GLI3 mRNA
in human fetal cortex (7.5-17 PCW) by RNAseq. Very low level of expression was detected
for SHH (A). Moderate to high expression for PTCH1 (B) SMO (C) and SUFU (D). GLII was
expressed at low level expression (E) moderate expression was observed for GLI2 (F) whereas
the highest expression level observed for GLI3 (G). Note: the scales for the vertical axes used

in the figures are different. For these genes we used the full age range of samples available (7.5
to 17 PCW).

As SHH receptors appear to be expressed in the human fetal cortex, we next sought to
investigate the effect of exogenous SHH treatment on cortical cell cultures. Cells isolated from
the cortex of 9 and 11 PCW were differentiated for 12 days, cultures were treated with
recombinant human SHH (200 ng/mL) every other day (Chapter 2, section 2.6.5). After 12
days, we observed that cell density was apparently higher in treated cultures compared to
control cultures (Figure 5.12A,B) indicating that Shh promote cell proliferation of neural
precursors; which was also confirmed when our cultures were tested for immunoreactivity for

KI67 (cell division marker) and TBR1 (post-mitotic glutamatergic neuronal marker; Figure
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5.12C). Significantly higher numbers of K167+ cells (of total number of cells) were found in
treated (25 = 1%) than control (17 = 1%) cultures (Figure 5.12D). Conversely, the number of
TBRI1+ cells was significantly higher in controls (54 + 3%) than treated (41 + 1%) cultures
(Figure 5.12E). These findings are consistent with many in vivo and in vitro studies in both
human and rodent models which reported that SHH maintains the proliferative state of neural
progenitor cells (Rowitch et al., 1999; Gulacsi and Lillien, 2003; Komada et al., 2008; Shikata
et al., 2011; Radonji¢ et al., 2016). Investigating the identity of dividing cells in treated
cultures; 74 + 4% and 16 + 2% of KI67+ cells in treated cultures co-expressed PAX6 and
OLIG2, respectively (Figure 5.12F,G), which weren’t significantly different from control
cultures where 69 + 5% and 16 £ 1% of KI67+ cells co-expressed PAX6 and OLIG2,
respectively. When testing cultures for GABAergic markers, Shh treatment failed to induce
any NKX2.1 expression in these cultures; furthermore, the treated cultures maintained similar
proportions of GABA+, CalR+, OLIG2+, and COUP-TFII+ cells compared to control cultures
(See Figure 5.6). Collectively, all these findings suggest that although the human cortex has
the necessary components for Shh signalling pathway at the early stage of development,
exogenous Shh isn’t sufficient to alter the differentiation pathway of dorsal neural progenitor

cells switching their fate from glutamatergic neurons into GABAergic interneurons.
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Figure 5.12: The effect of exogenous Shh treatment on cortical cell cultures. (A,B) Phase
contrast images of 12 days monolayer differentiating neurons in control (A) and Shh treated
(B) cortical cultures showing higher cells density in treated cultures compared to control
cultures. (C-E) Immunofluorescent analysis for and quantification TBR1 and K167 of in control
and SHH cultures after 12 days of treatment illustrating that exogenous SHH promote cells
proliferation. (F,G) Most of dividing (KI67+) cells in treated cultures expressed PAX6 (F)
proportion expressed OLIG2 as well. Scale bar: 50pm in G (and A-C, and F).
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5.5 Discussion

Several studies have reported that during the early stage of development, cortical GABAergic
interneurons in primate, like rodents, are mainly generated in the GE; whereas in the second
trimester (15-24 PCW in human and E64—E75 in macaque Monkey) the proliferative zone of
the dorsal telencephalon could also contribute to a proportion of cortical GABAergic
interneurons (Letinic et al., 2002; Petanjek et al., 2009a; Zecevic et al., 2011; Radonji¢ et al.,
2014a). In addition, only one study suggested a potential regional variation of interneuron
generation in the dorsal pallium (Al-Jaberi et al., 2015a). In the present study, we confirmed
that the dorsal pallium of human fetal brain can also give rise to a proportion of cortical
interneurons at earlier stages (9-12 PCW), mainly CGE-like interneuronal subtypes. We have

also shown that these interneurons are preferentially generated from anterior cortical regions.

5.5.1 Is dorsal interneurogenesis limited to subtypes associated with the CGE?

To a large extent the organisation and function of cortical GABAergic interneurons is shared
between species, however primates have a higher proportion of cortical interneurons (25-34%
of cortical neurons) than rodents (15-25%) particularly in frontal cortex (Hladnik et al., 2014).
CalR+ GABAergic interneurons are more common in adult primates than in rodents (Condé et
al., 1994; Gabbott ef al., 1997; Barinka and Druga, 2010). The ratio of parvalbumin positive
interneurons to projection neurons is similar in mouse and human but the ratio of CalR positive
interneurons to projection neurons has increased exponentially accounting for the overall
increased proportion of interneurons in the human cortex (Hladnik er al, 2014). It is
established that the human fetal brain has evolved an expanded outer SVZ in the ganglionic
eminences (Hansen ef al., 2013b) and the CGE has increased in complexity extending ventrally
as the temporal lobe has increased in size (Chapter 3 and 4) (Hansen et al., 2013b; Ma et al.,
2013). Together, these changes might underlie the relative increase in CGE-derived CalR+
interneurons. However, a more contentious proposal is that CalR+ interneurons, in particular,
may be generated intra-cortically in primates especially at later developmental stages (Petanjek
et al., 2009a; Zecevic et al., 2011; Reinchisi et al., 2012; Hladnik et al., 2014; Radonji¢ et al.,
2014b) which is supported by findings in cases of human holoprosencephaly with severe

hypoplasia in ventral telencephalon, where interneurons expressing nitric oxide synthase 1
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(NOS1), NPY, and Sst were absent or largely reduced, while CalR interneurons were present
in the cortex of these cases (Fertuzinhos ef al., 2009) indicating that this subtype is not merely

produced in the ventral telencephalon, but locally in the dorsal telencephalon as well.

The present study shows that at 8-11 PCW a proportion of neurons derived from the cultured
cortical progenitors are GABAergic and can co-express CalR, COUP-TFI or COUP-TFIIL. We
showed also that our cortical cultures retain positional information in terms of gene expression
from the tissue from which they were cultured. This therefore provides another piece of
evidence in favour of cortical interneurogenesis in human. There are three possible origins of
GABAergic interneuron progenitor cells in culture; either 1) they are of cortical origin and/or
2) they are ventral progenitors that have migrated into the cortex retaining their proliferative
capacity (Radonji¢ et al., 2014a) or 3) as has been shown in previous rodent studies, cortical
progenitors in vitro can “abnormally” generate GABAergic interneurons (Go6tz and Bolz,
1994; He et al., 2001) possibly in response to exogenous factors (Trinh et al., 2006). If we
consider possibility 1) the lack of NKX2.1 expression in our cultures rules out cortex being
able to produce interneurons associated with the MGE, such as basket cells and others, at this
stage of development. However, for possibility 2) COUP-TFI+ progenitors, that have down-
regulated NKX2.1, could have reached the cortex from dMGE and undergone further division.
For 3) it is possible that FGF2 added to proliferating progenitors may have induced a ventral
phenotype via induction of SHH signalling (Gabay ef al., 2003). However, expression of FGF2
and its receptors is robust in developing human cortex in vivo (Ip et al., 2011; Lindsay et al.,
2016) and cortical SHH expression possibly increases with age (Miller et al., 2014; Radonji¢
et al., 2016) although we found no strong evidence to support the third possibility in our
RNAseq analysis. Nevertheless, the conditions we employed in culture may not be so far
removed from the in vivo condition of the developing human brain. We propose that COUP-
TFI and particularly COUP-TFII positive progenitors for GABAergic cells could have reached
the cortex from the CGE, or be generated in the cortex, given the high levels of CalR expressed
by GABAergic cells from cortical cultures. It would seem that if cortical interneurogenesis

exists it is primarily to contribute to CGE-like interneuron populations.

148



5.5.2 Anterior cortex is preferred region for dorsal interneurogenesis

The presence of the higher order associative areas suggests that different developmental
mechanisms are used in different species and these led to such cortical expansion in primate
(Teffer and Semendeferi, 2012). Two associative areas, frontal and parietal, were identified as
unique to, or at least more highly developed in, the primate cortex; the frontal associative area
is the largest and covers the frontal part of the frontal lobe (almost covering 80% of the entire
frontal lobe) and one third of the total cortical surface (Teffer and Semendeferi, 2012; Hladnik
et al., 2014). Calretinin expressing interneurons are the major interneuronal subtype in this
area, representing almost 50% of all GABAergic interneurons. Remarkably, one half of all
calretinin expressing interneurons in human are in this region (Condé¢ et al., 1994; Gabbott et
al., 1997; Zaitsev et al., 2005; Barinka and Druga, 2010; Hladnik et a/., 2014). Similarly, in a
study on the developing fetal brain of human and monkey, the frontal and parietal regions were
more highly populated with calretinin interneurons compared to other cortical areas (Ma et al.,

2013).

Why are there significantly higher proportions of CalR interneurons in the frontal lobe when it
is apparently anatomically distant from the posteriorly positioned CGE, the major source of
calretinin expressing interneurons (Hladnik ez al., 2014)? We have previously demonstrated
that these CGE- derived interneurons may reach the frontal lobe more rapidly than expected
through the anterior pathway via LGE (See chapter 3); Recently this migration route has been
also described in rodents (Touzot er al., 2016). As mentioned in the previous section, we
propose that a proportion of CalR GABAergic interneurons are generated intra-cortically, more
likely from the newly evolved outer sub-ventricular zone in primates (Rakic, 2009; Geschwind
and Rakic, 2013; Sousa et al., 2017). But is dorsal interneurogenesis only confined to, or more
prominent in, the frontal region explaining the three-fold increase of CalR interneurons in this
region? In this study, we found a higher proportion of GABA+, CalR+ and COUP-TFII+
progenitors were present in anterior compared to posterior cortex derived cultures (Figure 5.6).
In addition, the mRNA levels for several genes expressed in interneurons progenitors and
involved in the genetic regulatory pathway of interneuron specification (like DLX, GSH,
ASCLI genes) were generally higher in samples derived from the anterior cortical region than
posterior region. These findings also reflect previous qPCR studies suggesting elevated
expression of various “GABAergic” genes anteriorly including CalR, OLIG2, GAD and DLX
genes (Ip et al., 2011; Al-Jaberi et al., 2015a). Collectively all these data indicate an anterior
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preference for cortical interneurogenesis, at least over posterior if not temporal cortex;

however, the regional variation of dorsal interneurogenesis needs further investigation.

Finally, we propose various potential sources for CalR-expressing GABAergic interneurons
destined for the expanded frontal associative area in human. The CGE, or more precisely
vCGE, is still the main source for these interneuronal subtypes, but probably at higher
proportions (Hansen et al., 2013b) and more characteristic anterior migration, via LGE, into
the frontal area than in rodents (Chapter 3). Additionally, proportions of CalR interneurons are
generated intra-cortically and preferentially in the anterior cortical region, corresponding to the
anatomical position of the frontal associative area. Such distinct mechanisms for CalR
interneuron generation could provide an explanation for the exponential increase of these
interneurons in the higher order associative areas in human (Hladnik et al., 2014) which could
provoke substantial change in the intrinsic organization of cortical circuitries resulting in higher

cognitive abilities (Burkhalter, 2008; Forbes and Grafman, 2010).

5.5.3 Exogenous Shh doesn't alter the fate dorsal neural progenitor cells

In human, Shh is expressed in the dorsal telencephalon at the mid-gestational period (Miller et
al., 2014; Radonji¢ et al., 2016). Radonji¢ et al. (2016) have reported the presence of SHH
mRNA and protein in radial glia cells and postmitotic neurons; the same study has also reported
the expression of all other necessary components of Shh signalling pathway including PTCHI1,
SMO, SUFU, GLI1, GLI2, and GLI3 at the mid-gestational period. In our study, we also
confirm moderate to high expression for PTCH1, SMO, SUFU, GLI2, and GLI3 at earlier stage
of development around the end of first trimester. However, although these four elements were
expressed at relatively high levels, the very low levels of SHH expression in the cortex at this
stage of development suggest that SHH signalling is inactive unless SHH is diffusing into the
cortex from external signalling centres in appreciable amounts. However, GLI1 expression,
which is used as an indicator of cells actively responding to high levels of Shh signalling (Bai
et al., 2002) also exhibited very low levels of expression (RPKM values 0.4-4). The higher
expression levels for Shh and GLI1 reported at mid-gestation (Radonji¢ et al., 2016) suggest
that the incidence of Shh expression in the human fetal cortex increases with age, but our

RNAseq data indicates this happens after 17 PCW at the earliest.
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The prospective age-related role of Shh signalling in the specification of neural progenitor cells
in human cortex can be estimated firstly, as Shh is important to induce NKX2.1 expression in
ventral progenitor cells (Kohtz et al., 1998; Rallu et al., 2002) by the incidence of NKX2.1+
cells in the human cortex, which are mainly observed around mid-gestational period (Petanjek
et al., 2009b; Radonji¢ et al., 2014a). Secondly, exogenous Shh treatment in our cortical
cultures (from 9-12 PCW) could not induce NKX2.1 expression and did not reduce the number
of CalR+ and COUP-TFII+ cells in these cultures either; whereas applying the same treatment
on cortical cultures at mid-gestation increased the proportion of NKX2.1+ cells and
downregulated CalR expression (Radonji¢ et al., 2016). However, although exogenous Shh
treatment in our study has showed no influence on the plasticity of dorsal neural progenitor
cells, our results showed that this treatment affected the cell cycle kinetics by increasing
proliferation and decreasing the number of differentiated cells (Figure 5.12), which is also
consistent with many in vivo and in vitro studies which reported that Shh promotes the
proliferative state of neural progenitor cells (Rowitch et al., 1999; Gulacsi and Lillien, 2003;
Komada et al., 2008; Shikata et al., 2011; Radonji¢ et al., 2016). The selective influence of
exogenous Shh treatment on cell cycle but not the plasticity of dorsal neural progenitor cells in
our studied stage could suggest that these cortical cells lack crucial factors important for

promoting the MGE-like identity in these cells as identified by NKX2.1 expression.

5.5.4 Conclusion

These studies provide additional evidence that the human cortex is capable of making its own
interneurons; however, intra-cortically generated interneurons seem to be confined to specific
subtypes similar to those generated in the CGE (Calretinin interneurons in particular). COUP-
TFs expressing GABAergic neurons were generated from cortical progenitors in culture
suggesting that these transcription factors may direct the expansion of cortical interneuron
populations in developing primate brain. In addition, our findings suggest that the anterior
cortex, origin of the highly evolved prefrontal cortex crucial to higher cognitive function, might
be considered as a favoured region for cortical interneurogenesis. Exogenous Shh treatment
promotes the progenitor state of cortical cells but did not influence the phenotypic plasticity of

these cells.
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Note: Data from this chapter has been recently published in an original article (Alzu'bi et al.,
2017, see appendices):

- Alzu'bi, A., Lindsay, S.J., Harkin, L.F., MclIntyre, J., Lisgo, S.N. and Clowry, G.J.

(2017) 'The Transcription Factors COUP-TFI and COUP-TFII have Distinct

Roles in Arealisation and GABAergic Interneuron Specification in the Early
Human Fetal Telencephalon', Cerebral Cortex, 27(10), pp. 4971-4987.
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Chapter 6: General Discussion and Future Work

The availability of genetic mutants in murine studies has allowed us to make significant
advances in our understanding of mammalian brain development. Although the mouse is
considered a reliable experimental model to study the basic steps of neurogenesis, cell type
specification, and cell migration in the developing brain, its ability to model the unique
composition and higher cognitive function of the human brain, which has larger and folded
cortex, and a higher proportion of inhibitory interneurons among other differences, is limited.
Therefore, despite limitations in the experimental approaches that can be employed, working
directly on the developing human brain has become a necessity in order to unveil the main
molecular and cellular divergences between human and other species, which could provide
further understanding for several neurodevelopmental conditions such as autism, schizophrenia
and epilepsy. This thesis investigated the generation of cortical GABAergic interneurons in
human early fetal forebrain between 8 -12 PCW, a stage of development that has not been
thoroughly studied before. This study characterized the developmental expression patterns for
several interneuron precursor transcription factors in the ventral and dorsal telencephalon. A
more detailed description of the subdivisions of the GE compartments and septum into several
neurogenic domains has been provided. The migration routes of interneurons from the ventral
telencephalon to dorsal telencephalon, identified by the expression of several transcription
factors, have been described. Finally, this study has investigated the possibility of interneuron
generation in the proliferative zones of dorsal human telencephalon; in addition, the potential

regional variation for dorsal interneurogenesis has been also inspected.

6.1 There are complex subdivisions of the human ventral telencephalon

Using extensive immunohistochemical analysis, this thesis described the organization of the
MGE, LGE, CGE and septum in human ventral telencephalon (Figure 6.1; see chapters 3 and
4). NKX2.1 and OLIG2 were expressed throughout the MGE; whereas COUP-TFI
immunoreactivity subdivides the MGE into vMGE and dMGE, with COUP-TFI confined to
the larger dorsal region (Figure 6.1A). In rodents, spatial segregation for interneurons
generation has been described within the MGE, the dMGE is the birthplace of nearly all Pv+
and SST+ cortical interneurons, whereas the vMGE predominantly gives rise to globus pallidus
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neurons (Flandin et al., 2010) although at later stages it may be the source of cortical chandelier
cells (Taniguchi et al., 2013). COUP-TFI was expressed in SOX6+ cells, a downstream
regulator of NKX2.1 (Batista-Brito et al., 2009) in the SVZ of dMGE and the cortex perhaps
ensuring Pv+ and SST+ interneurons migrate dorsally towards the cortex and not ventrally
towards the basal ganglia, as COUP-TFI is known to have a role in guiding migration (Boudot
et al., 2014). Neither vVMGE nor dMGE expressed COUP-TFII, SP8, and PAX6.

VZ Expression SVZ Expression
NKX2.1/0LIG2/COUP-TFI NIX2. 1
NKX2.1/0LIG2 . OLIG2
B COUP-TFI/PAX6 (weak)/OLIG2 (weak) «SOXE
m COUP-TFI/PAX6 3 g
B COUP-TFI/COUP-TFI/OLIGZ (weak) ggﬂﬁ_;ﬂ, .
W COUP-TFI/COUP-TFII/PAX6 SP3 Sagittal
W PAX6/OLIG2 (weak) « PAX6
m PAX6/SP8
Anterior Coronal Posterior Coronal

’ VCGE

Figure 6.1: The complex subdivisions of human ventral telencephalon. Schematic coronal
(A,B) and sagittal (C) sections showing the subdivisions of ventral telencephalon identified by
the expression of certain transcription factors in the proliferative zones (solid colour) and post-
mitotic cells (dots).

The confinement of COUP-TFI expression in the VZ to its ventral region also divides the LGE
into VLGE and dLGE (Figure 6.1A). OLIG2 was moderately expressed in the VZ and SVZ of
both vLGE and dLGE. However, PAX6 was expressed in a decreasing gradient from high in
dLGE to low in vLGE, which also applied to SP8 expression but only in the SVZ. COUP-TFII

was expressed in post-mitotic cells in the dLGE. The expression patterns of both SP8 and
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COUP-TFII delineated a clear pallial/sub-pallial boundary; although SP8 and COUP-TFII were
expressed either side of this boundary, there was markedly higher expression of both in the
dLGE. COUP-TFII immunoreactivity in the dLGE appeared to belong only to anteriorly
migrating cells arising from the vCGE (See chapter 3, section 3.3.7). Instead, the dLGE
provided predominantly SP8+ only cells that migrated towards the RMS, amygdala and cortex
and did not express CalR. The proliferative zone of MGE/LGE boundary was molecularly
distinct from the adjacent IMGE and vLGE, characterized by strong expression of COUP-TFII
suggesting that this region could be a site of origin for COUP-TFII+ interneurons in addition
to the vCGE. This boundary region was positive for OLIG2 and COUP-TFI expression but
negative for NKX2.1. In rodents, this is the source of COUP-TFII+/Sst+ cells that occupy
cortical layer V (Cai et al., 2013); however, no co-expression of COUP-TFII with SOX6, the
developmental marker for Sst+ interneurons (Batista-Brito et al., 2009) was observed in the

cortical wall in human fetal brain.

This study also provided a better demonstration of CGE compartments than previous attempts
along with the distinguishing features of their progenitor cells. We have shown that the CGE
can be divided into at least three compartments, two located dorsally, the MCGE and LCGE
which are considered as caudal extensions of the MGE and LGE respectively, sharing the
expression patterns of OLIG2, NKX2.1 and PAX6 see in more the more anterior ganglionic
eminences (Figure 6.1B). However, in addition to these two compartments, the extension of
the CGE along the lateral ventricle into the greatly enlarged temporal lobe has produced a third
compartment called vCGE distinguishable by its characteristic co-localisation of intense
COUP-TFII, SP8 and PAX6 expression in the proliferative layers (Figure 6.1B,C). Dividing
COUP-TFII+ cells were confirmed as being confined to this ventral region of the CGE (this
study, Hansen et al., 2013). While COUP-TFII appeared to be continually expressed
throughout the vCGE and ventro-temporal cortex, although pallial/sub-pallial boundary was
still clearly delineated by the expression of TBR1 and PAX6; TBR1 was exclusively expressed
in the post-mitotic zone of the cortex; whereas PAX6 was expressed in a gradient, high in all

cortical proliferative zones to progressively lower across the proliferative zones from vCGE.

Finally, transcriptional patterning showed that the septum shares common molecular features
of the ganglionic eminences along the dorsoventral axis. The sub-cortical septum was divided
into the ventrally located MGE-like septum characterized by the immunoreactivity for NKX2.1
and OLIG2 but not PAX6 expression; and more dorsally LGE-like septum was characterized
by the expression of PAX6, SP8, and OLIG2 but not NKX2.1. The most dorsal part of septum
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had a cortical rather than sub-cortical identity, manifested by higher PAX6 expression in the
VZ and SVZ and expression of TBR1 by post-mitotic cells.

6.2 Additional migration pathways for interneurons from the ventral to dorsal
telencephalon

The migration routes of interneurons identified by the gradients of expression of several
transcription factors have been revealed in this thesis. In addition to the well-known lateral
(MGE derived) and posterior (CGE derived) pathways of migration for interneuron precursors
from ventral to dorsal telencephalon (Wonders and Anderson, 2006) this thesis has described
two new migration routes of interneurons from the ventral to dorsal telencephalon in human

that have not been described before.

Unlike in rodents, where septal derived interneurons are reported not to enter the cortex at all
(Rubin et al., 2010) and interneurons populating medial wall derived structures such as the
hippocampus are derived from the MGE and CGE via lateral migration (Pleasure et al., 2000;
Wonders and Anderson, 2006; Morozov et al., 2009; Faux et al., 2012) this study presented
evidence that OLIG2+ and NKX2.1+ progenitors reside in the septum and OLIG2+ cells, at
least, can reach the cortex via medial migration pathway (See chapter 3, section 3.3.5).
Although this route of migration has not been reported, or has been overlooked, in rodent
models, the medial migratory pathway for Nkx2.1+ precursors from the MGE to the medial
pallium has recently been reported in the shark (Quintana-Urzainqui et al., 2015) making this

pathway not evolutionarily novel to the human brain.

This study described three migration routes for CGE (or more precisely vCGE) cells to reach
their specific targets; we have also shown that these routes are identified by the expression of
specific transcription factors (COUP-TFI, COUP-TFII, and SP8) and controlled in a temporal
manner. In addition to the well-known CMS that guides CGE cells into the posterior cortex
(Yozu et al., 2005; Kanatani et al., 2008) this study and a recent study in mouse (Touzot et al.,
2016) have shown that CGE cells can also migrate anteriorly via LGE to reach the anterior
cortex. We have also shown that migrating interneurons may more rapidly invade the anterior
than the posterior cortex, even from apparently caudal structures such as the vVCGE. While the
CMS is controlled by COUP-TFII (Kanatani et al., 2008) COUP-TFI is required to guide the
cells in the anterior migratory stream (Touzot et al., 2016). Some vCGE-derived cells also

appeared to be migrating ventrally to the caudal regions of basal telencephalon, a region
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corresponding to the medial amygdala (Nery et al., 2002; Tang et al., 2012; Touzot et al.,
2016). At the earliest studied stage (8§ PCW) the caudal and ventral migratory streams of vVCGE
cells appeared to be dominant; however, cells migrating in anterior routes considerably
increased with age. The expression of COUP-TFI, COUP-TFII, and SP8 in each pathway (see
chapter 4, section 4.5.3 for more details) was not exactly the same as has been observed in mice
(Touzot et al., 2016). However, the distinct expression of these transcription factors in these
three routes in human could differentially control their responsiveness to their particular
guidance cues which is unique to mammals, and could contribute to the evolution of the

neocortex (Tanaka et al., 2011).

In addition, this study proposes that regionalised expression of transcription factors in both
cortex and the GE controls the migration pathways from ventral to dorsal telencephalon.
COUP-TFI is expressed in the ventral pallium along the lateral border of the dorsal
telencephalon, even in more anterior regions of the cortex, and in interneuron precursors
migrating laterally from either MGE or CGE into the cortex (see chapter 4). COUP-TFI is
proposed to control the lateral/anterior migratory stream of CGE-derived cells in mice (Touzot
et al., 2016) in addition to the lateral migration from the MGE to cortex (Faux et al., 2012;
Marin, 2013). In mouse COUP-TFII is important in establishing a caudal migratory stream
(CMS) directing CGE-derived cells into temporal cortex and hippocampus (Yozu et al., 2005;
Kanatani et al., 2008). In human, COUP-TFII is expressed in temporal and ventral anterior
cortex, as well as interneuron precursors generated in the vCGE (Chapters 3 and 4; Reinchisi
etal., 2012; Hansen et al., 2013; Ma et al., 2013). Again it appears that COUP-TFII is expressed
in gateway regions of the dorsal telencephalon for the entrance of COUP-TFII expressing
interneurons into the cortex. Similarly, at early developmental stages (8PCW) SP8+ cells
migrate from dLGE to SP8+ anterior cortex, but SP8+/COUP-TFII co-expressing cells were
not seen within the CMS migrating towards SP8- temporal cortex (Chapter 4) however this
distinction broke down at later developmental stages where SP8+ cells where present in the
CMS in abundance. In addition, we have observed increased expression of OLIG2 in the
anterior-medial cortex at 7-8 PCW (Chapter3; Ip et al., 2010; Al-Jaberi et al., 2015) in
conjunction with a migratory stream of MGE and sub-cortical septum derived OLIG+ cells
entering the cortex via the medial wall. Thus arealised expression of transcription factors in the
cortical wall may, in turn, control expression of cell adhesion molecules and chemokine

secretion locally that attracts migrating cells expressing the same transcription factors, setting
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up the migratory pathways into the cortex for interneurons arriving anteriorly or posteriorly,
medially or laterally, The much larger human cortex may require additional migratory
pathways compared to smaller mammalian brains, although some pathways may not be missing

but relatively small and overlooked in rodent.

6.3 Evidence for a cortical origin of cortical GABAergic interneurons in human fetal
brain

Over the past decade, a considerable amount of literature has been published on the
developmental origins of cortical interneurons in human brain. However, to date there has not
been universal agreement to what degree the developmental rules of cortical interneuron
generation, in human, are similar to those found in our experimental models. The first serious
discussion of potential divergence of interneuron origins in human brain has been raised by
Letinic et al. (2002), using retroviral labelling of DLX2+ and ASCLI1+ progenitors in slice
cultures of human fetal brain, this study suggested that perhaps up to 65% of cortical
interneurons in human fetal brain are locally generated in the proliferative zone of the dorsal
telencephalon. Whilst more recent studies have arrived at similar conclusions in both human
and macaque monkey, but perhaps with a smaller dorsal contribution to cortical interneurons
(Petanjek et al., 2009a; Zecevic et al., 2011; Reinchisi et al., 2012; Radonji¢ et al., 2014b; Al-
Jaberi et al., 2015a) two other influential studies reported that the origins of cortical
interneurons in human and monkey are similar to those found in rodents where cortical
interneurons are almost solely generated in the proliferative zone of ventral telencephalon and
tangentially migrate into the dorsal telencephalon (Hansen et al., 2013b; Ma et al., 2013). In
addition, these two studies also rejected the possibility that interneurons precursors generated
in ventral telencephalon could retain their proliferative capacity after migrating into the dorsal

telencephalon.

This thesis revisited the generation of cortical GABAergic interneurons in human early fetal
brains between 8-12 PCW. Our findings indicate that the GE is the main source of cortical
GABAergic interneurons; however, this study supports previous findings and provides further
evidences that a proportion of interneuron precursor cells may, if not intra-cortically derived,
at least undergo division in the cortex. This study also suggests that at the early stage of
development, intracortical interneuogenesis could be more prominent in specific types of

interneuron precursor cells most likely similar to those generated the CGE. In addition, we
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have also shown that the anterior cortex may be the favoured region for intracortical
interneurogenesis. In immunostained forebrain sections (See chapter 3) we demonstrated the
presence of OLIG2+ and COUP-TFII+ progenitor cells (KI67+) in the cortex of 8-12 PCW
fetal human brain; the expression of NKX2.1, the characteristic marker of MGE cells, was
limited to a few number of cells found only in 12 PCW cortex. Similarly, in cultures
differentiated from human cortical progenitors from anterior and posterior cortex (see chapter
5) GABA+ and CalR+ cells were present in these cultures in considerable numbers but most
of these cells were expressing either of the COUP-TFs, the CGE-derived interneuron markers
(Kanatani et al., 2008; Miyoshi et al., 2010). Consistent with the findings in the immunostained
forebrain sections, these cultures entirely lacked NKX2.1 expression. The incidence of
GABA+, CalR+, and COUP-TFII+ cells was always higher in cultures derived from anterior
cortex compared with cultures derived from posterior cortical regions. The anterior regional
preference for the expression of GABAergic interneuron markers was also observed by
RNAseq analysis for several “GABAergic” genes like DLXI, DLX2, GSH2, ASCLI, ARX,
OLIG2, CALB2. All these findings lead us to propose that a proportion of cortical interneurons
could be generated intra-cortically, preferentially in the anterior cortical region; most of these
interneurons resemble CGE-derived interneurons (CalR+) which could provide a sensible
explanation for the higher proportion of CalR-expressing interneurons reported in the highly
evolved human prefrontal cortex (Uylings and van Eden, 1991; Teffer and Semendeferi, 2012;
Hladnik ez al., 2014).

6.4 Future work

The present work described the presence of additional migration pathways for interneurons
from the ventral to dorsal telencephalon; however, the experimental approaches for the
identification of these migration routes was mainly based on the expression gradients of
transcription factors like COUP-TFI, COUPTFII, and SPS. So, it will be important to further
study these pathways using more specific techniques; for example, by using the
micromanipulator to inject the lipophilic tracer (Dil) into the proliferative zone of individual
subcortical structures (like CGE, MGE, septum) in whole hemisphere slice cultures, and

tracking the migrating labelled cells over a period of time. Similarly, migrating cells in slice
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cultures could also be transfected with green fluorescent protein GFP- expressing virus and

tracked.

Although this study provided evidence for the presence of COUP-TF+ and OLIG2+
interneuron progenitors in immunostained forebrain sections and cortical cell cultures, it is still
not determined if these cells are generated intra-cortically or if they are ventral telencephalon
derived progenitors that have retained their proliferative capacity after migrating into the
cortex. Again, organotypic slice culture experiments might be able to shed some light.
Migrating cells from the ventral telencephalon could be tracked to see if they undergo intra-
cortical cell division. Dyes or viruses could be targeted to the cortical ventricular zone to see if

any of the progeny of these cell co-expressed GABAergic markers such as GAD67.
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Abstract The extent of similarities and differences
between cortical GABAergic interneuron generation in
rodent and primate telencephalon remains contentious. We
examined expression of three interneuron precursor tran-
scription factors, alongside other markers, using immuno-
histochemistry on 8-12 post-conceptional weeks (PCW)
human telencephalon sections. NKX2.1, OLIG2, and
COUP-TFII expression occupied distinct (although over-
lapping) neurogenic domains which extended into the
cortex and revealed three CGE compartments: lateral,
medial, and ventral. NKX2.1 expression was very largely
confined to the MGE, medial CGE, and ventral septum
confirming that, at this developmental stage, interneuron
generation from NKX2.1+ precursors closely resembles
the process observed in rodents. OLIG2 immunoreactivity
was observed in GABAergic cells of the proliferative zones
of the MGE and septum, but not necessarily co-expressed
with NKX2.1, and OLIG2 expression was also extensively
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seen in the LGE, CGE, and cortex. At 8 PCW,
OLIG2+ cells were only present in the medial and anterior
cortical wall suggesting a migratory pathway for
interneuron precursors via the septum into the medial
cortex. By 12 PCW, OLIG2+ cells were present through-
out the cortex and many were actively dividing but without
co-expressing cortical progenitor markers. Dividing
COUP-TFII+ progenitor cells were localized to ventral
CGE as previously described but were also numerous in
adjacent ventral cortex; in both the cases, COUP-TFII was
co-expressed with PAX6 in proliferative zones and TBR1
or calretinin in post-mitotic cortical neurons. Thus COUP-
TFII+ progenitors gave rise to pyramidal cells, but also
interneurons which not only migrated posteriorly into the
cortex from ventral CGE but also anteriorly via the LGE.

Keywords Ganglionic eminences - Inhibitory
interneurons - Neurodevelopment - Neuronal fate
specification - Pallium - Subpallium

Abbreviations
COUP-TFII  Chicken ovalbumin upstream promotor-

transcription factor 2
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NKX2.1 NK?2 homeobox 1

OLIG2 Oligodendrocyte lineage transcription
factor 2

PAX6 Paired box 6

TBRI1 and T-box brain 1 and 2

TBR2

CGE Caudal ganglionic eminence

LGE Lateral ganglionic eminence

MGE Medial ganglionic eminence
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Abstract

In human telencephalon at 8-12 postconceptional weeks, ribonucleic acid quantitative sequencing and
immunohistochemistry revealed cortical chicken ovalbumin upstream promotor-transcription factor 1 (COUP-TF]I)
expression in a high ventro-posterior to low anterior gradient except for raised immunoreactivity in the anterior ventral
pallium. Unlike in mouse, COUP-TFI and SP8 were extensively co-expressed in dorsal sensory neocortex and dorsal
hippocampus whereas COUPTFI/COUPTFII co-expression defined ventral temporal cortex and ventral hippocampus. In the
ganglionic eminences (GEs) COUP-TFI immunoreactivity demarcated the proliferative zones of caudal GE (CGE), dorsal
medial GE (MGE), MGE/lateral GE (LGE) boundary, and ventral LGE whereas COUP-TFII was limited to ventral CGE and the
MGE/LGE boundary. Co-labeling with gamma amino butyric acidergic interneuron markers revealed that COUP-TFI was
expressed in subpopulations of either MGE-derived (SOX6+) or CGE-derived (calretinin+/SP8+) interneurons. COUP-TFII was
mainly confined to CGE-derived interneurons. Twice as many GAD67+ cortical cells co-labeled for COUP-TFI than for COUP-
TFIL A fifth of COUP-TFI cells also co-expressed COUP-TFII, and cells expressing either transcription factor followed
posterior or anterio-lateral pathways into the cortex, therefore, a segregation of migration pathways according to COUP-TF
expression as proposed in mouse was not observed. In cultures differentiated from isolated human cortical progenitors,
many cells expressed either COUP-TF and 30% also co-expressed GABA, however no cells expressed NKX2.1. This suggests
interneurons could be generated intracortically from progenitors expressing either COUP-TF.

Key words: cerebral cortex development, ganglionic eminences, hippocampus development, interneuron migration, SP8,
ventral pallium
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newborn neurons is maintained during their migration to the overlying cortical plate. Much evidence has
been found to support this hypothesis from studies of primary cortical areas in mouse models in particular.
Differential expansion of cortical areas and the introduction of new functional modules during evolution
might be the result of changes in the progenitor cells. The human cerebral cortex shows a wide divergence
from the mouse containing a much higher proportion of association cortex and a more complicated

Keywords:
Cerebral cortex
Cortical arealisation

Development

Evolution regionalised repertoire of neuron sub-types. To what extent does the protomap hypothesis hold true

Ganglionic eminences for the primate brain? This review summarises a growing number of studies exploring arealised gene
expressionin the early developing human telencephalon. The evidence so far is that the human and mouse
brain do share fundamental mechanisms of areal specification, however there are subtle differences
which could lead us to a better understanding of cortical evolution and the origins of neurodevelopmental
diseases.
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1. Introduction
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Abstract

TOP2A and TOP2B are type Il topoisomerase enzymes that have important but distinct roles in DNA replication
and RNA transcription. Recently, TOP2B has been implicated in the transcription of long genes in particular
that play crucial roles in neural development and are susceptible to mutations contributing to
neurodevelopmental conditions such as autism and schizophrenia. This study maps their expression in the early
foetal human telencephalon between 9 and 12 post-conceptional weeks. TOP2A immunoreactivity was
restricted to cell nuclei of the proliferative layers of the cortex and ganglionic eminences (GE), including the
ventricular zone and subventricular zone (SVZ) closely matching expression of the proliferation marker KI67.
Comparison with sections immunolabelled for NKX2.1, a medial GE (MGE) marker, and PAX6, a cortical
progenitor cell and lateral GE (LGE) marker, revealed that TOP2A-expressing cells were more abundant in MGE
than the LGE. In the cortex, TOP2B is expressed in cell nuclei in both proliferative (SVZ) and post-mitotic
compartments (intermediate zone and cortical plate) as revealed by comparison with immunostaining for PAX6
and the post-mitotic neuron marker TBR1. However, co-expression with KI67 was rare. In the GE, TOP2B was
also expressed by proliferative and post-mitotic compartments. In situ hybridisation studies confirmed these
patterns of expression, except that TOP2A mRNA is restricted to cells in the G2/M phase of division. Thus,
during early development, TOP2A is likely to have a role in cell proliferation, whereas TOP2B is expressed in
post-mitotic cells and may be important in controlling expression of long genes even at this early stage.

Key words: autism susceptibility genes; cortical development; DNA replication; ganglionic eminences; RNA
transcription.

Introduction

The helical structure and supercoiling of DNA is essential
for nuclear packaging; however, processes such as DNA
replication and transcription require complete separation
and partial separation of the strands, respectively. During
transcription, the partial separation of the DNA allows RNA
polymerase and transcription factors to access specific gene
regions, creating tension in the DNA. Topoisomerase
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enzymes govern the topological state of DNA in both
prokaryotic and eukaryotic cells, allowing unwinding of the
DNA and relieving the torsional strain created by supercoil-
ing (Nitiss, 2009a). Cells have type | and Il topoisomerase
enzymes. Type | topoisomerases (TOP1 and TOP3) are able
to break a single strand of DNA, allowing the intact strand
to pass through it before re-joining the broken strand,
whilst type Il topoisomerases (TOP2) carry out ATP-
mediated strand breakage of one or both strands. Human
topoisomerases comprise distinct alpha and beta isoforms
(Austin & Marsh, 1998). Topoisomerase poisons are effective
anti-cancer drugs as they prevent cell replication and induce
apoptosis (Nitiss, 2009b).

In rodents, expression of Top2a and Top2b in the brain is
higher during early embryogenesis compared with the later
stages (Capranico et al. 1992). However, there is a surge of
Top2b expression in the brain of newborn mice that is not
observed for Top2a or the marker of cell proliferation
thymidylate synthase. Top2a expression is most apparent
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Abstract

Neurexins (NRXNs) are presynaptic terminal proteins and candidate neurodevelopmental disorder susceptibility genes;
mutations presumably upset synaptic stabilization and function. However, analysis of human cortical tissue samples by
RNAseq and quantitative real-time PCR at 8-12 postconceptional weeks, prior to extensive synapse formation, showed
expression of all three NRXNs as well as several potential binding partners. However, the levels of expression were not
identical; NRXN1 increased with age and NRXN2 levels were consistently higher than for NRXN3. Immunohistochemistry for
each NRXN also revealed different expression patterns at this stage of development. NRXN1 and NRXN3 immunoreactivity
was generally strongest in the cortical plate and increased in the ventricular zone with age, but was weak in the
synaptogenic presubplate (pSP) and marginal zone. On the other hand, NRXN2 colocalized with synaptophysin in neurites of
the pSP, but especially with GAP43 and CASK in growing axons of the intermediate zone. Alternative splicing modifies the
role of NRXNs and we found evidence by RNAseq for exon skipping at splice site 4 and concomitant expression of KHDBRS
proteins which control this splicing. NRXN2 may play a part in early cortical synaptogenesis, but NRXNs could have diverse
roles in development including axon guidance, and intercellular communication between proliferating cells and/or
migrating neurons.
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