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Abstract 

Ischaemia and reperfusion injury (IRI) in renal allografts is an important contributing 

factor to chronic allograft dysfunction. MicroRNAs (miRNA) have been shown to play 

important roles in cellular adaptation to pathological conditions, including IRI. This study 

aimed to evaluate changes in miRNA profile following IRI, and how the changes in particular 

miRNAs may influence renal proximal tubular epithelial cell (PTEC) morphology and 

function, potentially contributing to the development of chronic allograft dysfunction. To 

achieve this, several objectives were set. These included: (1) isolation and culture of primary 

human PTECs, (2) miRNA expression profiling following IRI and selection of candidate 

miRNA, and (3) in vitro and human pathology validation to explore the molecular mechanism 

of the candidate miRNA. 

Primary PTECs were isolated from normal renal tissue. These cells showed features of 

epithelial cells under light microscope and electron microscope. The cells were also 

characterised using immunofluorescent staining, which showed positive expression of 

epithelial cell markers, and negative expression for mesenchymal cell markers. MiRNA 

profiling using NanoString platform was performed on cell lines (HKC-8 and HK-2) and 

primary PTECs, which were exposed to either hypoxia or free radicals. Results revealed 

distinct miRNA signature changes following IRI in cells. However, only a small proportion of 

microRNAs were found to be significantly up/down-regulated in either cell lines or primary 

cells, which included miR-21, miR-376, miR-190b, miR-34a, miR-210, miR-363, miR-142 

and miR-130b. MiR-21 was shown to be up-regulated in all cells following both type of 

injuries. Online target prediction analysis also showed miR-21 to be involved in pathways 

relevant to cellular response to IRI and the development of fibrosis. 

The role of miR-21 was studied in detail. Up-regulation of miR-21 following ischaemia 

was shown to suppress SMAD7 and facilitate intra-nuclear localisation of SMAD3. In the 

presence of exogenous TGF-b1 or hypoxia, over-expression of miR-21 in cells led to an 

increase in SMAD3 activity. Over-expression of miR-21 also led to phenotypic shift in HKC-

8 cells, characterised as a decrease in E-cadherin and an increase in a-SMA and Collagen-1 

expression. Human pathology evaluation confirmed high expression of miR-21 in the tubular 

cells of severely ischaemic kidneys compared to non-ischaemic kidneys. 

In conclusion, changes in miRNA profile were observed in acute IRI in the kidney. One of the 

significantly affected miRNAs was miR-21. MiR-21 up-regulation resulted in sensitisation of 

tubular cells to TGF-b1, which may be essential in cellular repair processes, but may also 

contribute to deterioration of long-term organ function. 
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Chapter 1. Introduction 

1.1. Chronic Kidney Disease & Kidney Transplantation 

1.1.1. CKD: Overview & Epidemiology 

The universal definition of chronic kidney disease developed by the National Kidney 

Foundation, 2002, encompasses any structural or functional abnormalities of the kidney 

remittent for more than 3 months. CKD may be present with or without reduction in 

glomerular filtration rate (GFR) and manifest by either pathological abnormalities or detection 

of markers of kidney damage in blood or urine, or using available imaging tests (National 

Kidney Foundation, 2002). Based on the classification developed by the National Kidney 

Foundation-Kidney Disease Improving Global Outcomes team (NKF-KDIGO), CKD is 

classified into clinical stages, based on the severity of GFR loss and degree of albuminuria, 

which is associated with disease progression and prognosis. 

 

 

Figure 1-1 Classification and prognosis of CKD 
Clinical stages  and prognosis of CKD based on GFR and albuminuria according to the National 
Kidney Foundation (National Kidney Foundation-Kidney Disease Improving Global Outcomes, 2012)  

 



 
 

2 

As seen from Figure 1-1, CKD is a disease entity with a wide spectrum of severity. 

Although the classification and definition may appear to be robust and clear, it has been 

proven difficult to estimate the magnitude of problems related to CKD. CKD is not associated 

with the presence of pathognomonic signs and symptoms; thus, successful early detection of 

CKD relies largely on the availability of supplementary tests as well as on the identification of 

population at risk.   

Moreover, CKD is not a solitary disease entity, but is associated with many underlying 

diseases (e.g. glomerulonephritis, urinary tract stone disease, hypertension, and diabetes). In 

addition, it is associated with many complications (e.g. cardiovascular diseases, anaemia, 

mineral and bone disorders). The kidneys, through their involvement in regulation of blood 

pressure, acid-base and electrolyte balance, and other homeostatic functions, also play pivotal 

role in initiating or exacerbating systemic complications of a disease. The relationship 

between CKD with poor patient outcomes, especially with the incidence of end-stage renal 

disease, cardiovascular complications and early mortality highlights the importance of 

adequate and prompt management of CKD. Furthermore, recent reports have identified CKD 

as a growing global health problem. Analysis from 188 countries for the global burden of 

disease documented an increase in mortality related to CKD in 2013 compared to year 1990, 

regardless of the underlying cause. (GBD 2013 Mortality and Causes of Death Collaborators, 

2015). Regardless, it is likely that this rate is an underestimation, since it does not take into 

account the number of CKD-related cardiovascular events leading to mortality. 

1.1.2. The Role of Kidney Transplantation in Alleviating the Global Burden of CKD 

Since the first successful transplant performed by Dr. Joseph Murray in 1954, kidney 

transplantation has evolved from a therapeutic modality for a selected few to a routine 

procedure offered to wide spectrum of patients, aimed to not only enhance quality of life, but 

also to save life. Previously only considered as an adjunct to dialysis, kidney transplantation 

has currently emerged as a therapy of choice for end-stage renal diseases (ESRD). A series of 

studies describe the importance of kidney transplantation as an integral component of renal 

replacement therapy, both from medical perspective as well as from health economic 

standpoint. 

One of the earliest evidence highlighting the pivotal role of kidney transplantation was 

published by Wolfe et al., which reported a survival advantage in patients receiving a kidney 

transplant from a deceased donor compared to patients who remained on the waiting list 

(Wolfe et al., 1999). The benefit of transplantation is observed even in high-risk groups, such 

as elderly patients and patients with diabetes. Relative risk death is better in transplanted 
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patients, even after considering the risk of surgery, early complications, infections and 

cardiovascular events. The significance of transplantation is further emphasised by the 

negative effect of longer time in dialysis before transplantation on the post-transplant 

mortality rate, suggesting that dialysis is associated with more complication, such as infection 

and impaired cardiovascular dynamics (Cosio et al., 1998; Pesavento, 2009). 

Numerous studies on cost-analysis of kidney transplantation have also been published. 

Although results may vary between different countries and regions, it is generally accepted 

that kidney transplantation has a significantly higher first-year cost compared to maintenance 

dialysis. This initial higher cost, however, decreases significantly during subsequent years 

post-transplant and falls considerably below the cost of chronic maintenance dialysis. Overall, 

transplantation generally reduces overall cost associated with the management of ESRD.  

Despite global disparities in its uptake, kidney transplantation clearly plays a pivotal 

role in alleviating global burden of CKD, even more, considering its much-improved outcome 

and cost-effectiveness. With a steady increase in CKD prevalence worldwide, and limited 

health budgets, kidney transplantation should appeal as a therapeutic option for CKD, hence, 

the number is expected to continue to rise.   

1.1.3. Chronic Graft Loss in Kidney Transplantation; Magnitude of the Problem 

The literature uses interchangeable terminologies to describe chronic graft loss. 

Chronic allograft dysfunction is a terminology used to describe deterioration of function, 

primarily related to the development of fibrosis and glomerulosclerosis. The term chronic 

reflects the persistent and ongoing loss of function, and the late occurrence of a clinically 

detectable injury. The use of term chronic graft loss, however, is not always the same across 

different publications. Some literatures reserve the use of this term specifically for long-term 

functional loss, in which no clear aetiology could be identified, as in the cases related to initial 

IRI.  Others adopt the term more generally to include other causes, such as due to the use of 

nephrotoxic agents or chronic rejection. 

Successful efforts have been made to improve short-term allograft survival and patient 

survival through advancement in immunosuppressive therapy, better organ allocation and 

careful recipient selection. Despite the short-term improvement achieved, transplanted organs 

are still lost in the longer-term. This can be attributed to immunologic and non-immunologic 

events that occur from the time of the transplant procedure as well as de novo events arising at 

later time points post-transplant. Chronic graft loss affects all solid organ transplantation, with 

varying degrees of severity, regardless of the source of donor. Data from National Health 

Service Blood and Transplant (NHSBT) in the United Kingdom, documented a steady decline 
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in long-term graft survival in both adult and paediatric kidney transplant cohorts. There is 5-

15% reported graft loss at 10-year post-transplant in recipients receiving organs from living 

donors (NHSBT, 2017). The rate of graft loss increases to approximately 20-30% in 

transplantation from donors after brain death and circulatory death (NHSBT, 2017). Indeed, 

available data suggests that chronic graft loss remains one of the biggest hurdles in kidney 

transplantation.  

The rate of long-term graft loss is not expected to decrease unless the contributing 

factors are identified and prevention strategies developed. One of these contributing factors is 

ischaemia reperfusion injury (IRI) that leads to acute allograft injury. As the global burden of 

CKD steadily increases, the demand for kidney transplantation is also expected to rise. To 

meet this increasing demand and to overcome potential shortage of available donors, several 

strategies have been introduced, including the use of extended criteria donor. Inadvertently, 

however, this also means increasing the use of organs with more severe IRI, and therefore 

escalates the likelihood of earlier deterioration of function, increasing the prospect of 

developing chronic allograft dysfunction. 

1.1.4. Chronic Graft Loss as a Consequence of Acute Kidney Injury 

An increasing number of clinical epidemiology studies have reported an association 

between acute kidney injury (AKI) and the development of CKD. One of the clearest finding 

is described by Mammen et al. in a large paediatric intensive care unit cohort, in which only 1 

of 126 patients had CKD at immediately post discharge. However, the percentage of patients 

developing CKD increased to 10.3% during 1-3 years follow-up period. In addition, 46.8% of 

patients in this study developed hypertension, microalbuminuria or mildly decreased GFR, 

which are considered risk factors for CKD (Mammen et al., 2012; Heung and Chawla, 2014).  

In the context of IRI, a transplant cohort serves as an ideal model to investigate the link 

between acute ischaemic injury and development of late organ dysfunction. Acute ischaemic 

injury in kidney transplantation manifests clinically as delayed graft function (DGF). DGF is 

associated with prolonged hospitalisation and the need for renal replacement therapy post-

transplant. Nevertheless, recovery of organ function is usually achieved in patients with DGF, 

indicating a degree of resolution of acute ischaemic injury. Interestingly, regardless of this 

short-term resolution of function, DGF is still associated with increased risk of long-term 

graft loss, earlier functional deterioration and higher probability of rejection. This indicates an 

apparent association between acute events caused by ischaemia and persistent cellular 

damage, which impacts long-term function. Despite the well-established epidemiological link 

between AKI and CKD, available evidence to explain the causative relationship between the 
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two clinical entities is still lacking (Rifkin et al., 2012). This is one of the reasons that 

highlights the significance of my work.  

1.2. Delayed Graft Function; the Clinical Hallmark of IRI in Transplantation 

1.2.1. Definition of Delayed Graft Function; Consensus and Controversies 

Delayed graft function (DGF) in kidney transplantation is best defined as the inability 

of a transplanted kidney to function immediately after transplantation. DGF has been closely 

associated with IRI and the homeostatic dysregulation and immunological injury associated 

with IRI. It is considered as a form of AKI unique to the transplant setting. 

Although the term DGF has been adopted globally, the specific clinical criteria used to 

define DGF may vary between centres. A systematic review by Yarlagadda et al. has 

addressed this issue, concluding that current utilisation of heterogeneous clinical criteria used 

to define DGF may have certain limitations and lead to unreliable, delayed and inaccurate 

identification of DGF cases (Yarlagadda et al., 2008). The review highlighted the three most 

common diagnostic criteria used to define DGF; (1) the need for renal replacement therapy 

(RRT) after transplantation, (2) failure of serum creatinine to decrease or (3) the combination 

of criteria (1) and (2). Yaralagadda et al. reviewed the available literature and listed over 10 

definitions of DGF, as shown in Table 1-1. 

The most commonly found definition of DGF in the literature; the need for RRT after 

transplantation is associated with several problems, which are mainly due to the subjectivity 

(clinician-dependent) of the decisions made in initiating RRT. In addition, there is a marked 

variation in the time frame used, ranging from the first 4 days to 10 days after the transplant 

procedure. Defining DGF based on the requirement of RRT alone may also potentially 

include patients undergoing post-transplant RRT for a specific indication, such as volume 

overload or hyperkalaemia, despite a functioning graft. On the other hand, this definition may 

exclude patients with poor allograft function and low GFR who still have significant residual 

renal function (such as pre-emptively transplanted patients).   

Although serum creatinine is clinically still valued as the gold standard measurement of 

renal function, there have been several publications highlighting its inadequacy in reflecting 

the actual severity of tubular injury (Bosch, 1995; Herrera and Rodriguez-Iturbe, 1998; 

Malyszko et al., 2015), especially considering that creatinine level may be influenced by 

many factors, including muscle mass, diet, drugs and hydration status. Moreover, transplant 

patients may undergo dialysis to optimise their condition prior to transplantation, which may 

also mask a high creatinine level caused by DGF (Yarlagadda et al., 2008).  
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Table 1-1. Various clinical criteria used to define DGF 
Dialysis-based definitions 
§ Need for dialysis in the first week after transplantation 
§ Need for dialysis in the first week after transplantation once hyperacute rejection, vascular and 

urinary tract complications were ruled out 
§ Need for dialysis after transplant 
§ Need for dialysis in the first 10 days after transplant 
§ Absence of life-sustaining renal function that requires dialysis performed for hyperkalaemia 
§ Need for dialysis in the first 7 days after transplant with specific exclusion of single early post-

operative dialysis performed for hyperkalaemia 
§ Return to maintenance haemodialysis within the first 4 days after transplantation 
Creatinine-based definitions 
§ Serum creatinine increased or remained unchanged or decreased <10%/day during 3 consecutive 

days after transplant 
§ Creatinine (Cr) reduction ratio <30% and /or urine creatinine on day 2 <1000 mg 
§ Serum Cr >2.5 mg/dL on Day 7 or the need for post-transplant hemodialysis 
§ Time required for the kidney to reach Cr clearance >10 mL/min greater than 1 week. 
§ Failure of creatinine to decline in the first 48 h in the absence of rejection 
Combination of dialysis and creatinine based definitions 
§ Failure of serum creatinine to fall below pre-transplant levels, within 1 week regardless of the 

urine output 
§ Rise in serum Cr at 6–8 h post-operatively or <300cc of urine despite adequate volume and 

diuretics 
§ Dialysis requirement after transplant or a serum Cr >150µmol/L at day 8 
§ Urine output <1L in 24h and <25% fall in serum Cr from baseline in first 24 h post-transplant 
§ Urine output <75 mL/h in first 48 h or failure of serum Cr to decrease by 10% in the first 48 h 
§ Need for dialysis in the first week after transplant or failure of serum Cr to decrease within 24 h 

after transplant 
Modified from (Yarlagadda et al., 2008) 

Despite the existing heterogeneity in the clinical criteria used to define DGF, no current 

development has been reported to homogenise or improve our diagnosis of DGF. Several 

novel biomarkers, such as kidney injury molecule (KIM)-1 or neutrophil gelatin-associated 

lipocalin (NGAL) have been proposed, on the basis that they show better correlation with the 

degree of actual tubular injury occurring after IRI. However, the validation and uptake of their 

use clinically use is still limited, especially compared to the already widely accepted serum 

creatinine.  

In addition, DGF is used to describe lack of immediate function due to IRI. In reality, 

this functional delay may be the result of several conditions distinct from IRI (such as 

antibody-mediated rejection, thrombotic microangiopathy, acute calcineurin inhibitor toxicity 

and primary non-function), which may present independently of, or coexist with, IRI 

(Yarlagadda et al., 2008). Hence, a true diagnosis of DGF can only be made after excluding 

the presence of these other conditions, which is not always be straightforward. Considering 
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the aforementioned problems, it is still a challenge to reach a universal consensus on the 

definition of DGF.  

1.2.2. Delayed Graft Function: Incidence and Risk Factors 

Reports on DGF incidence vary greatly between different centres. Disparity in clinical 

criteria used to identify DGF is the main reason for such variation. In general, DGF has been 

reported to affect 3-16% of recipients receiving a living donor kidney (Senel et al., 1998; 

Yarlagadda et al., 2008; Sharma et al., 2010; Healthcare Systems Bureau Division of 

Transplantation and United Network for Organ Sharing, 2012; Salamzadeh et al., 2012; 

Redfield et al., 2016). Predictably, the incidence is higher and varies more in deceased donor 

cohorts, ranging from 5-50% in all cases (Yarlagadda et al., 2008) to 18-35% in donation 

after brain death (DBD) cohorts and 35-43% in donation after circulatory death (DCD) 

cohorts (Healthcare Systems Bureau Division of Transplantation and United Network for 

Organ Sharing, 2012). The wide range of incidence reported suggests a difference in DGF 

definition used. Interestingly, none of the definitions used is superior in predicting graft 

failure at 1 year in the DBD cohort.   

Inconsistency in defining DGF also affects the way the literature reports causes and risk 

factors for DGF. Generally, when DGF is viewed as a clinical entity, per se, and not 

considered as a specific pathological consequence of IRI, risk factors of DGF can be 

classified into two groups; (1) risk factors related to procurement and pre-existing donor 

characteristics and (2) risk factors associated with the recipients as listed in Table 1-2 below. 

Table 1-2 Risk factors of the development of DGF  
Procurement / Donor Associated Recipient Associated 
§ Non-heart-beating (DCD) donor 
§ Inotropic use 
§ Extensive ischaemia time 
§ Older age donor (>55 years) 
§ Increased BMI 
§ Marginal donor (diabetic or hypertensive 

disorders) 

§ Hypovolaemia 
§ Increased BMI 
§ Intra-operative albumin administration 
§ Allosensitisation (number of previous 

transplants) 
§ Inherited thrombophilia 
§ Pre-formed antidonor antibodies 
§ Cyclosporine nephrotoxicity 
§ Ureteral leakage 
§ Ureteral obstruction 

Modified from (Perico et al., 2004). 

When a more stringent definition of DGF is used, which designates DGF uniquely as a 

consequence of IRI, then the risks are limited to only the factors which contribute to a 

significant increase in IRI severity, such as prolonged ischaemia time and non-heart beating 
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donor. Clinical data analysis obtained from various cohorts strongly supports ischaemia time 

as a strong risk factor of DGF (Ojo et al., 1997; Senel et al., 1998; Lebranchu et al., 2005; 

Jeldres et al., 2009; Jung et al., 2010; Sharma et al., 2010; Salamzadeh et al., 2012; Ounissi et 

al., 2013; Redfield et al., 2016).  

1.2.3. Delayed Graft Function; Early Consequences and Its Implication to Long-term Graft 

Survival 

The most apparent early consequences of DGF are related to a more complex post-

operative clinical course for the recipient, such as utilisation of RRT, requirement for 

additional intensive/high level care and medications, all of which result in prolonged 

hospitalisation and increased cost. Currently available data suggests an increase hospital 

length of stay of up to 8 days for patients with DGF (Miglinas et al., 2013; Redfield et al., 

2016). An interesting approach to address the question of cost analysis related to DGF was 

made in the study by Snyder et al. Using a developed hypothetical analysis model, the study 

acknowledged a higher cost associated with an increased DGF incidence as a potential short-

term complication of adding DCD kidneys to the donor pool. However, it also concluded that 

the cost is acceptable when compared to keeping the patients on dialysis (Snyder et al., 2013). 

DGF has also been shown to influence graft survival, patient survival and rejection 

rates. During shorter-term follow-up (within 1-year post-transplantation), DGF patients are 

reported to have poorer graft survival and significantly higher acute rejection rates 

(Dominguez et al., 2004; Yarlagadda et al., 2009; Miglinas et al., 2013). During longer-term 

follow-up, however, the deleterious effect of DGF on graft and patient survival is less 

consistent. This may partly be attributable to the differences in the degree of the initial insult 

suffered by the allograft, hence producing either reversible or irreversible degrees of injury. It 

is plausible that the graft lost by the 1-year time point had suffered significantly more severe 

IRI, and thus underwent irreversible changes compared to the grafts that survived. Grafts that 

survived past the 1-year point may not have been as severely injured, thus regaining more 

normal function, resulting in a less clear cut link between DGF and graft survival.  

Nevertheless, a systematic analysis of currently available evidence compiled by 

Yarlagadda et al. clearly suggests detrimental effect of DGF on acute rejection and long-term 

renal function. The result of this meta-analysis of 33 studies showed that the DGF cohort had 

a 41% increased risk of graft loss at 3.2 years follow-up, significantly higher serum creatinine 

level at 1 year and 3.5 years follow-up, and DGF was associated with 38% relative increase in 

the risk of acute rejection (Bronzatto et al., 2009; Yarlagadda et al., 2009). However, the 

study did not find any significant difference in 5-year patient survival between the DGF and 
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non-DGF group. Taken together, this analysis has provided a clear link between acute 

ischaemic kidney injury and long-term deterioration in function, despite a period of relatively 

“normal” function during earlier stages. Identification and validation of a mechanistic link 

between acute IRI and progression to chronic organ dysfunction has been gaining a lot of 

research interest. Several mechanisms have been proposed for the development of chronic 

dysfunction, which involves the role of cellular changes during ischaemia (oxygen and energy 

deprivation, pH alteration and ion re-distribution), the role of inflammatory mediators, the 

role of oxidative stress, the role of cellular components within the kidney (endothelial, 

epithelial and immune cells), and the role of epigenetics. It is important to consider these 

mechanisms not as separate pathophysiologic entities, rather as components of an intricate 

mechanistic network, which much overlap and cross-talk. The detailed mechanisms of which 

IRI leads to tissue injury and delayed function will be discussed in the following section on 

the biology of IRI.  

1.3. Biological Basis of Ischaemia Reperfusion Injury 

1.3.1. Organ Specific response to IRI 

The cascade of responses subsequent to cessation and restoration of blood in different 

organs will generally follow a common and fundamental pattern, which will be discussed in 

detail in following subsections. The universal use of cold preservation in organ transplant 

procedures is based upon the knowledge that cellular damage can be delayed at low 

temperature in all organs. Nevertheless, the capacity of different organs to tolerate ischaemia, 

the threshold of injury reversibility, and the capability to limit the injury may vary 

significantly. Reports have shown that the time required to induce irreversible damage is 

different for different organs. This may partly be attributed to organ specific basal energy 

requirements, but also determined by tissue variation in the structure and function of 

microvascular beds and other cellular components within the organ (Kalogeris et al., 2012). In 

the kidney, normothermic ischaemia of 30 minutes or less has been found to be well tolerated 

and caused no irreversible organ damage (Kalogeris et al., 2012). 

1.3.2. The Kidney; Anatomical & Physiological Considerations 

The anatomy of the nephron and renal microcirculation plays a crucial role in 

understanding the effect of ischaemia on the kidney. In physiological conditions, kidneys 

receive approximately 20% of cardiac output. This blood flow is primarily channelled to the 

cortex, whereas a small proportion supplies the medullary region. This creates a gradient of 
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oxygen tension within the kidney, with the cortex being the most oxygenated region, the 

medulla being relatively hypoxic, and the papillae being the least oxygenated. Blood flow to 

the medulla is supplied by an intricate microvasculature network, which arises from the vasa 

recta, the continuation of efferent arterioles of the juxtamedullary glomeruli. Studies in rats 

have shown that pre- and post-glomerular arterio-venous shunting creates a relatively hypoxic 

environment within the kidney (Ngo et al., 2014). In comparison to other parts of the body, 

the kidney operates at lower oxygen tensions, both during normoxia and hypoxia (Safran et 

al., 2006). Moreover, in response to hypoxia, kidney blood flow may alter dramatically, 

especially to the outer medullary region. Altogether, these factors predispose the kidney to 

hypoxic damage. To date there is substantial evidence describing how hypoxia induces acute 

kidney injury (Granger and Korthuis, 1995; Kosieradzki and Rowinski, 2008; Basile et al., 

2012). However, demonstrating the role of hypoxia in the progression of kidney injury in the 

longer-term, is more challenging. Several studies have shown an association of chronic 

hypoxia in the renal tubulointerstitium with oxidative stress and chronic inflammation, and 

that these factors are involved in the progression of CKD (Eckardt et al., 2005; Nangaku, 

2006; Fine and Norman, 2008; Heyman et al., 2008). A recent rodent study has shown the 

significance of hypoxia alone in the progression of CKD. The authors reported increased 

urinary protein excretion and tubular vimentin expression as well as infiltration of 

inflammatory cells, in rats treated with dinitrophenol, a mitochondrial uncoupler, which 

increased renal oxygen consumption without altering oxidative stress (Friederich-Persson et 

al., 2013) 

1.3.3. Cellular Response to Acute IRI and Pathways of Progression to Long-Term 

Functional Impairment 

1.3.3.1. ATP Depletion and Intracellular pH Alteration 

Cessation of an oxygen supply adequate to maintain normal cellular function is the 

main driver of ischaemic injury. This is immediately followed by a switch to an anaerobic 

pathway of energy production, which will only generate small amounts of high-energy 

phosphates and lead to decrease in intra-cellular pH due to the build-up of lactate, protons and 

nicotinamide adenine dinucleotide (NAD+). Conversion of pyruvate to lactic acid is necessary 

to regenerate the lost NAD+ in the anaerobic glycolysis pathway. This process acidifies the 

cytoplasm up to a point where the low pH starts to inhibit phosphofructokinase, a key enzyme 

of the glycolysis pathway. Insufficient blood flow to remove accumulating lactate will 

eventually stop energy production and further worsen the level of acidosis.   
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Ischaemic condition in cells results in metabolic substrate depletion. Ischaemic tissues 

contain much fewer glycogen granules than normal tissue (Kosieradzki and Rowinski, 2008). 

Exhaustion of cellular glycogen arrests anaerobic glycolysis. Unavailability of adequate 

adenosine tri-phosphate (ATP) to initiate glycolysis will also result in metabolic arrest, even if 

there is still glycogen available. Degradation of ATP to adenosine di-phosphate (ADP) and 

adenosine mono-phosphate (AMP) occurs very rapidly during ischaemia, aggravating energy 

source deprivation. AMP will be metabolised further to adenine nucleotides and 

hypoxanthine, which will contribute significantly to generation of reactive oxygen species 

during subsequent reperfusion (Devarajan, 2006).  

1.3.3.2. Altered Ion Exchange and its Consequences 

Intracellular accumulation of hydrogen ions will be compensated by increased Na+/H+ 

exchange resulting in the influx of sodium ions. In turn, the sodium ions will be exchanged 

for Ca2+ by the Na+/Ca+ exchanger.  ATP depletion causes the cell to inactivate ATPases, 

including Na+/K+ ATPase and Ca2+ ATPase, resulting in even more intracellular Ca2+. Some 

reports have suggested that this influx of extracellular Ca2+ only takes place during prolonged 

ischaemia and reperfusion, whilst during the initial phase of ischaemia, the increase in 

intracellular Ca2+ is primarily due to active redistribution of endoplasmic reticulum (ER) 

calcium (Schumacher et al., 1998; Kosieradzki and Rowinski, 2008). Reperfusion further 

increases intracellular Ca2+. As extracellular H+ is removed after the re-establishment of blood 

flow, the proton gradient will increase across cell membrane, leading to an increase in Na+/H+ 

exchanger function, which increases intracellular Ca2+  (Kalogeris et al., 2012).  

The overload of Ca2+ is an important underlying mechanism for subsequent cellular 

pathology following IRI, which may lead to cell death. Ca2+ overload is detrimental to cell 

survival by triggering mitochondrial permeability transition pore (mPTP/mPT) activity, 

activating pathological Ca2+/calmodulin-dependent protein kinases (CaMKs), stimulating 

calpains and generating danger signals (Kalogeris et al., 2012).  Opening of mTP allows H+ to 

move back into the mitochondrial matrix disrupting ATP synthesis. The opening of this non-

selective pore will also lead to sudden influx of water, which in turn may cause mitochondrial 

swelling and rupture. Danger signals, such as calcium pyrophosphate and uric acid exert their 

effects by binding to inflammasomes. Binding to inflammasomes initiates cytokine release, 

which in turn activates transcription factors (NFkB), stimulating even more cytokine and 

chemokine release eventually leading to exacerbation of IRI. 

The disruption in trans-membrane ion channels and the phospholipid bilayer due to 

ischaemic damage, eventually leads to accumulation of water in the intracellular 
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compartment. In addition, glycolysis pathway arrest and dephosphorylated ATP lead to 

continuous accumulation of metabolic intermediates and products (e.g. glucose-6-phosphate, 

a-glycerol phosphate, lactate, NADH, inorganic phosphatases, etc.), all of which cause an 

increase in intra-cellular osmolarity (Kosieradzki and Rowinski, 2008). Hyperosmolarity 

attracts water to the intracellular compartment, which leads to ischaemic oedema. In the 

transplantation setting, the use of hypertonic preservation solution was introduced to prevent 

ischaemic oedema, as introduction of isotonic fluid may generate a greater osmotic gradient.  

Furthermore, oedema can develop in the cytosol affecting the outer cellular membrane, 

as well as within the cell organelles, further compromising cellular function. Different 

organelles will be impaired by the state of altered ion exchange and ischaemic oedema in 

different ways. For instance, ER requires a carefully regulated milieu to perform its function. 

Ischaemia impairs this fine-tuned environment by altering ion concentration/gradient and pH, 

preventing ER from performing many important biochemical reactions important to the cell, 

such as the folding of proteins (Kalogeris et al., 2012). The state of accumulation of misfolded 

and unfolded proteins in ER is known as ER stress., which will activate the unfolded protein 

response (UPR), in an attempt to degrade the unfolded protein. Failure to eradicate the 

unfolded protein causes cells to undergo apoptosis (Minamino et al., 2010). 

1.3.3.3. The Role Hypoxia-Inducible Factor (HIF) 

Cellular adaptation to hypoxia is largely regulated by a heterodimeric transcription 

factor, hypoxia-inducible factor (HIF), which consists of two sub-units; a and β. Whereas the 

β sub-unit is relatively insensitive to alteration in oxygen levels, the cellular concentration of 

the sub-unit alpha (HIF-a) is highly dependent on cellular oxygen levels, a process that 

involves hydroxylation of conserved residues (Tanaka et al., 2014; Burslem et al., 2017). 

HIF-a has two major isoforms; HIF-1a, HIF-2a and one additional minor isoform HIF-3a 

(Tanaka et al., 2014; Tanaka, 2017). The main difference between HIF-1a and HIF-2a lies 

mostly in the variation of their N-terminal transactivation domain (N-TAD), which determine 

their binding to specific target genes (Loboda et al., 2012). The difference in their regulation 

and action is still not fully understood. HIF-1a is detectable after a short-term hypoxic period, 

whilst HIF-2a is known to be only activated in chronic hypoxia, thus is associated with the 

regulation and survival of cancer cells and cellular adaptation to hypoxia (Hu et al., 2003; 

Ratcliffe, 2007). Understanding of the role of HIF-3a is even less complete. Available 

literatures hypothesise that HIF-3a acts as negative regulator of HIF-mediated transcription 

(Loboda et al., 2012).  
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1.3.3.3.1. The Regulation of HIF 

HIF-1a is continuously expressed at low levels in the cell. In normoxia, HIF-1a levels 

are kept low by the action of HIF-prolyl hydroxylase domains (PHDs). In order to perform 

their catalytic function, the enzyme PHDs require O2, Fe, and 2-oxoglutarate (an intermediate 

in the Tri-carboxylic acid cycle) (Rabinowitz, 2013). PHDs hydroxylate two proline residues 

in HIF-1a, which enables recognition of HIF-1a by von Hippel-Lindau tumour suppressor 

(pVHL), leading to proteosomal degradation of HIF-1a . This degradation process occurs 

very rapidly, resulting in a very short half-life of HIF-1a, thus making it undetectable in 

normoxic conditions. During hypoxia, catalytic function of PHDs is reduced or diminished, 

leading to accumulation of HIF-1a in the cytoplasm. Existing HIF-1α will form complexes 

with the constitutively expressed HIF-1β, leading to subsequent binding of the complex to 

hypoxia-response element (HRE) region, initiating gene transcription. A co-activator protein 

p300/CBP (CREB-binding protein) has been identified in a stable complex with HIF-1a, 

which was closely linked with HIF activity in inducing several hypoxia responsive genes (e.g. 

erythropoietin enhancer and vascular endothelial growth factor) (Arany et al., 1996).  

 

 

Figure 1-2 Regulation of Hypoxia-Inducible Factor 
Schematic illustration of HIF-a regulation during normoxia and hypoxia. (HIF = hypoxia-inducible 
factor; PHD = prolyl hydroxylase domains; VHL = von Hippel Lindau; HRE = hypoxia-response 
element) 
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Study of ischaemic rat kidneys identified that HIF-1a was expressed predominantly in 

tubular epithelial cells, while HIF-2a was expressed mainly in vascular endothelial cells and 

interstitial fibroblasts (Rosenberger et al., 2002; Tanaka, 2017). HIF regulates the 

transcription of numerous genes to control haematopoiesis, angiogenesis and anaerobic 

metabolism in response to hypoxia (Mole et al., 2009). Conde et al. found that HIF-1a is 

expressed during ischaemia, but disappears 24 hour after hypoxia is reversed, then reappears 

in late reperfusion (Conde et al., 2012), suggesting recurrence of tissue hypoxia during the 

cell regenerative phase (Nangaku et al., 2013). In human kidney allograft biopsies, up-

regulation of HIF is detected immediately after engraftment, at 10-14 days post procedure, but 

not after 3 months (Rosenberger et al., 2007). From these findings, we can conclude that 

kidney hypoxia occurs not only during the acute phase of ischaemic injury but also during the 

recovery phase (Tanaka et al., 2014), presumably due to the activity of oxygen-consuming 

regenerative processes. 

1.3.3.3.2. HIF and the Development of Fibrosis 

The activation of HIF plays a pivotal role in both immediate cell responses to injury as 

well as long-term regulation of fibrosis. Current evidence is contradictory regarding the actual 

role of HIF in progression of CKD. Experiments using cobalt chloride (CoCl2) and 

dimethyloxalyglycine (DMGO) to stabilise HIF and increase expression of HIF target genes 

in a mouse model of renal fibrosis showed up-regulation of vascular endothelial growth factor 

(VEGF), glucose transporter 1 (GLUT1) and cell proliferation, indicating a reno-protective 

effect of HIF (Deng et al., 2010). Another study in mice assessed the relationship between 

HIF-1, ischaemic acute kidney injury (AKI) and the development of fibrosis by increasing 

HIF levels using pre-ischaemic pharmacological inhibition of PHD. Kobayashi et al. 

documented repression of fibrogenesis in mice subjected to unilateral ureteral obstruction 

(UUO) by global activation of HIF (Kobayashi et al., 2012). Using a murine model of IRI, 

Kapitsinou et al. showed a protective effect of pre-ischaemic PHD inhibition in mice 

subjected to acute ischaemic kidney injury. Pre-ischaemic increase in HIF level caused by 

PHD inhibition was associated with reduced fibrotic area and less alpha-smooth muscle actin 

(a-SMA) expression at 21-day post IRI (Kapitsinou et al., 2012). Interestingly, this anti-

fibrotic effect was not observed when PHD inhibition was given after IRI, or in PHD-

inhibitor treated animals lacking endothelial HIF-2a (Kapitsinou et al., 2012; Kapitsinou et 

al., 2014).  

Conversely, extensive evidence is available to support a pro-fibrotic role of HIF. Wang 

et al. showed decreased collagen and a-SMA induction by silencing HIF-1a gene in rats with 
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chronic renal ischaemia (Wang et al., 2014c). Moreover, HIF-1a knockout was shown to 

prevent transforming growth factor-β1 (TGF-β1) induced epithelial-to-mesenchymal 

transition (EMT) in mouse proximal tubular epithelial cells subjected to unilateral ureteral 

obstruction (UUO) (Higgins et al., 2007). Endothelial HIF-2a was also reported to play an 

important role in protection against ischaemic kidney injury. Despite some discrepancies, 

current findings clearly indicate an association between ischaemia, post-ischaemic increases 

in HIF levels and long-term pro-fibrotic changes. Post-ischaemic renal fibrogenesis occurs 

through several mechanisms, such as direct transcriptional regulation of pro-fibrotic genes, 

epithelial-to-mesenchymal transition (EMT) and induction of epigenetic changes, all of which 

may be driven by HIF activation, either through direct regulation or indirectly, involving 

crosstalk with multiple signalling pathways (Higgins et al., 2008; Liu et al., 2017). 

1.3.3.4. Mitochondrial Dysfunction and Oxidative Stress 

The role of mitochondria is central and very complex in the cellular response to IRI. 

Initially, to neutralise the continuous increase of intracellular Ca2+, cells will initiate the 

uptake of Ca2+ into the mitochondria using a mitochondrial Ca2+ uniporter. However, this 

mechanism alone will not be sufficient, especially if the initial ischaemic insult is severe or 

prolonged.  

There are several ways how mitochondria contribute to cell death after IRI. Firstly, 

ischaemia alone inhibits mitochondrial metabolism, resulting in rapid depletion of ATP. 

Secondly, during the initial phase of ischaemia, the relatively acidic intracellular milleu keeps 

the mitochondrial permeability transition pore (mTP) in the mithocondrial membrane inactive. 

However, upon reperfusion, mTP pores open, which in turn alters mitochondrial 

transmembrane potential significantly, allowing non-selective in/efflux of molecules leading 

to mitochondrial depolarisation (Kalogeris et al., 2012; Elshenawy et al., 2017).  Prolonged 

opening of mPTP leads to apoptosis, and has been used to differentiate between irreversible 

and reversible reperfusion injury. Moreover, the mitochondrial electrochemical gradient is 

also disrupted, interfering with mitochondrial capacity to generate ATP. Thirdly, 

mitochondria act as a source of reactive oxygen species (ROS) after an ischaemic insult, 

mainly attributed to the disturbance in the electron transport chain (e.t.c). Lastly, 

mitochondrial morphology may also be impaired following IRI. Conditions such as low ATP 

level and increased ROS generation can cause excessive mitochondrial fission, which also 

contributes to post-ischaemic cell death (Kalogeris et al., 2012).  

Tissue injury due to oxidative stress plays a role in the reperfusion component of IRI. 

However, it is important to understand that the severity of reperfusion injury is a result of the 
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severity of ischaemia. Various sources of ROS have been identified in different tissues; these 

include xanthine oxidase (XO), NADPH oxidase, nitric oxide synthase (NOS), 

lipoxygenase/cyclooxygenase, monoamine oxidase and the mitochondria. Similar sources of 

ROS have also been identified in kidney IRI (Granger and Kvietys, 2015).  

Degradation of ATP to ADP and AMP during ischaemia leads to accumulation of 

hypoxanthine, which acts as the main fuel for ROS formation. Availability of O2 and 

restoration of ATP in tissue upon reperfusion enables the conversion of hypoxanthine to 

xanthine, generating superoxide and hydrogen peroxide, which subsequently leads to 

production of more reactive secondary species. Moreover, altered redox status caused by the 

initial ischaemic injury means that there is higher level of NADH available relative to NAD+, 

which has been shown to be capable of enhancing production of O2
- independent of XO.  

(Granger and Kvietys, 2015).  

There are two forms of superoxide-producing nitrous oxide (NOXs) known to be 

involved in tissue reperfusion injury. The main isoform is from macrophages and neutrophils 

(phagocyte NOXs), and the other isoform is produced by non-phagocytic cells of the vascular 

wall  (vascular NOXs) (Kalogeris et al., 2012). Phagocyte NOXs remain inactive until 

stimulated, and are responsible for ‘respiratory burst’ of oxidant production, characterised by 

sudden and marked increase of oxidant synthesis, immediately following phagocyte activation 

by inflammatory mediators (Kvietys and Granger, 2012; Raedschelders et al., 2012). 

Physiologically, this serves as a host defence mechanism, whereby the reactant species are 

released extracellularly or into phagolysosomes (Kalogeris et al., 2012). On the other hand, 

vascular NOX is present in a fully-active state, but at low-levels of constitutive activity and 

has subtle oxidant effects. A minor proportion of vascular NOX is maintained in a separate 

compartment in the cytosol, and behaves similar to phagocyte NOX (Kalogeris et al., 2012; 

Kvietys and Granger, 2012).  Although the generation of ROS from phagocyte NOX and 

vascular NOX are distinct, the activation of both cell types has been shown to be involved in 

the pathogenesis of IRI in most organs, including the kidney (Kvietys and Granger, 2012; 

Raedschelders et al., 2012). 

In conclusion, a high mitochondrial ROS level is a major feature of cellular reperfusion 

injury, which reflects increased ROS production and inadequate ROS disposal. This leads to 

further deleterious effect to the cells, such as alteration in mitochondrial oxidative 

phosphorylation, depletion of ATP, increase in intra-cellular calcium levels, activation of 

proteases and lipid peroxidation (Paller et al., 1984; Weinberg, 1991; Ratliff et al., 2016). 

Furthermore, oxidative stress may also damage cellular proteins and DNA, which may lead to 

apoptosis and cell death (Kehrer and Klotz, 2015).  
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1.3.3.5. Endothelial Injury and Vascular Rarefaction 

Depending on its severity, ischaemia alone may cause endothelial injury/dysfunction. 

As a consequence, dysfunctional endothelium will no longer able to serve as an adequate 

barrier between the interstitium and the vascular compartment, lose its ability to control 

adhesion and infiltration of immune/inflammatory cells and fail to regulate key haemostatic 

mechanisms (Kalogeris et al., 2012). Endothelial cells contribute to progression of IRI by two 

main mechanisms; (1) increased permeability and (2) vasomotor dysregulation. 

Increased endothelial permeability can be attributed to direct injury to the endothelial 

cells, actin cytoskeleton alterations, cell-to-cell junctional dissociation and enhanced 

leukocyte-endothelial interactions (Sutton, 2009; Verma and Molitoris, 2015). In normal 

conditions, the endothelium is maintained as a monolayer, which requires the formation of 

junctional complexes. These junctional complexes are highly sensitive to physiological or 

pathophysiological stimuli, such as ROS, cytokines, lipid mediators and proteases (Kalogeris 

et al., 2012). The release of pro-inflammatory mediators and ROS during IRI will induce 

phosphorylation, internalisation and degradation of junctional complex proteins resulting in 

endothelium structural damage (Kumar et al., 2009). Disruption of glycocalyx and up-

regulation of cellular adhesion molecules, such as ICAM, VCAM and selectins that will 

promote accumulation of leukocytes (Bonventre and Yang, 2011).  

Increased level of prostaglandin H2, leukotrienes C4 and D4 and increased sympathetic 

nerve stimulation have all been documented to follow endothelial injury, leading to excessive 

vasoconstriction. As the result of increased sympathetic activity, there is a reduction in 

circulating NO, which will further amplify the degree of vasoconstriction (Bonventre and 

Yang, 2011). The injured endothelium will also release chemotactic cytokines, increasing 

leukocyte-endothelial adhesion during reperfusion. Increased leukocyte activation and 

leukocyte-endothelial adhesion stimulates the release of vasoactive cytokines, including TNF-

a, IL-1b, IL-6, IL-12, IL-15, IL-18 and IL-32, which in turn amplify the vasoconstriction that 

occurs (Bonventre and Yang, 2011). As a consequence, a greater degree of ischaemia will 

ensue, adding more injury to the initial insult as well as affecting subsequent repair processes. 

A significant reduction in peritubular capillary (PTC) density has been suggested as a 

possible factor that makes the post-ischaemic kidney susceptible to further deterioration of 

function. Using the bilateral ischaemia reperfusion rat model, Basile et al. showed a 30-50% 

permanent reduction in PTC in the outer medullary region despite normal tubular 

morphology. The ischaemic group was also reported to develop subsequent tubulointerstitial 

fibrosis after longer follow-up (Basile et al., 2001). Similar findings were also reported in a 
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kidney transplant cohort. Loss of PTC after during the first 3 months post-transplant was 

associated with increased interstitial fibrosis, tubular atrophy and reduced renal function 

(Steegh et al., 2011).  

Basile et al. (Basile and Yoder, 2014) summarised three possible mechanisms in which 

post-ischaemic PTC loss could contribute to  the development of long-term fibrosis; (1) 

exacerbation of pre-existing hypoxia, (2) changes in outer medullary haemodynamics and (3) 

endothelial-to-mesenchymal transition (EndoMT), which promotes proliferation of new 

fibroblasts. Exacerbation of hypoxia is mainly the result of increased intra-renal 

microvascular resistance due to vasoactive cytokine activity, as discussed previously. This is 

also closely tied to alteration in medullary haemodynamics. It is hypothesised that hypoxia 

and medullary haemodynamic alterations lead to apoptosis, which perpetuates PTC loss. 

EndoMT was proposed as an alternative explanation of PTC loss. A study on bilateral 

ischaemic kidney mouse model showed co-existing staining of endothelium (CD31 or cablin) 

and mesenchymal marker (S100A4) (Basile et al., 2011). The role of EndoMT is still not 

clearly understood, but recently has been gaining increasing interest. 

Moreover, IRI induced inflammatory conditions reduces naturally occurring anti-

coagulant activity (Verma and Molitoris, 2015). The combination of excessive 

vasoconstriction, leukocyte activation and subsequent coagulation system activation may lead 

to mechanical obstruction of the renal micro-capillary network and reduction in blood vessel 

patency, which further compromises regional microcirculation, especially in the outer renal 

medulla. 

1.3.3.6. Role of Damaged Tubular Epithelial Cells, Failed Tubular Recovery & Tubular 

Maladaptive Repair 

The proximal tubular epithelial cells (PTECs) are the main site of injury in the acutely 

ischaemic kidney. Consequently, the severity and recurrence of injury at this site acts as an 

important factor in determining reversibility of the damage and progression to long-term 

organ failure. Tubular injury induced by diphtheria toxin showed that tubular injury alone can 

initiate interstitial fibrosis, which primarily developed around proximal tubules (Takaori et 

al., 2016). Further experiments utilising toxin receptor-mediated cell knock-out (TRECK) 

enabled selective injury only to proximal tubules, which again induced transition of 

fibroblasts to myofibroblats, leading to fibrosis. Repeated and more severe selective injury 

was reported to induce interstitial fibrosis, distal tubular injury and glomerulosclerosis and 

atubular glomeruli (Takaori et al., 2016; Takaori and Yanagita, 2016). 
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Ischaemic tubular injury is most evidently found in the S3 segment of the proximal 

tubule (Heyman et al., 2010), and recent studies have highlighted the significant role of 

PTECs in renal IRI (Han et al., 2002; Chevalier, 2016). Ischaemic injury to TEC initially 

results in loss of cytoskeletal integrity. The degree of cytoskeletal alteration depends on the 

severity and duration of ischaemia. This loss of cytoskeletal integrity further modifies cellular 

polarity, cell-to-cell interactions as well as cell-to-matrix interactions, and loss of function 

(Sutton and Molitoris, 1998). 

Kidney tubular epithelial cells (TECs) have been shown to play active roles in 

progression of post-ischaemic tissue damage.  There is substantial evidence that TECs release 

pro-inflammatory and chemotactic cytokines in response to IRI (Sutton and Molitoris, 1998; 

Kapper et al., 2002; Moll et al., 2013), which includes TNF-α, IL-6, IL-1β and TGF-β in 

addition to chemokines, such as MCP-1, IL-8, RANTES and ENA-78 (Kapper et al., 2002). 

This leads to recruitment of immune cells, important for repair following IRI, but also 

involved in the damage that occurs. In addition, damaged epithelial cells produce damage-

associated molecular patterns (DAMPs), which act as warning signals by activating a series of 

pattern recognition receptors (PRRs), known as Toll-like receptors (TLR2, TLR3 and TLR4), 

express complement receptors and other co-stimulatory molecules which regulate T 

lymphocyte activity (Leemans et al., 2005; Wu et al., 2007; Bonventre and Yang, 2011). 

Down-regulating the expression of TLR-2 on kidney parenchymal cells were also shown to 

reduce the level of pro-inflammatory cytokines (IL-1β, IL-6, MCP-1) produced by the kidney, 

thus providing functional and structural protection against IRI progression (Leemans et al., 

2005). Wu et al. demonstrated up-regulation of TLR4 post IRI in TECs and inhibiting TLR4 

effectively prevented progression of IRI (Wu et al., 2007). Futhermore, TLR4 knockout mice 

also showed reduced tubular injury with better preservation of renal function after induction 

of IRI compared with wild type mice (Pulskens et al., 2008). 

Dedifferentiation of proximal tubule cells caused by IRI may not always be followed 

by complete re-differentiation and resolution of injury. Rodent kidneys subjected to IRI still 

had a proportion of abnormal tubules with flat epithelium without brush borders after 14 days. 

These cells were morphologically abnormal, atrophic and growth arrested. As well as 

showing strong TGF-β signalling, these abnormal cells also showed persistent loss of 

phosphate and tension homologue (PTEN) associated with increased expression of vimentin, 

pro-fibrotic c-Jun N-terminal kinase (JNK) activation and platelet-derived growth factor 

(PDGF)-B production (Lan et al., 2012a).  

Tubular cell secretion of cytokines and growth factors is important for cell survival and 

repair, however, this should halt once complete regeneration is achieved (Bonventre, 2010; 
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Venkatachalam et al., 2015). Study of five different murine models of acute kidney injury 

revealed large numbers of proximal tubule were arrested in the G2/M phase of the cell cycle, 

which is associated with persistent activation of JNK signalling and higher production of 

COL4A1 and ACTA2 mRNA levels (Yang et al., 2010). A number of studies by 

Venkatachalam et al. also showed that tubular cell arrest and atrophy is linked with increased 

secretion of fibrogenic peptides, which accelerates proliferation of interstitial 

pericytes/fibroblasts  through multiple pathways, including PI3K-Akt-mTOR, ERK-MAPK, 

JNK-MAPK and previously mentioned TGF-β pathways (Suzuki et al., 2001; Canaud and 

Bonventre, 2015; Venkatachalam et al., 2015), eventually resulting in nephron loss. These 

findings are the basis of validating several cell cycle arrest biomarkers in the detection of 

acute kidney injury (Kashani et al., 2013).  

Tubular cells maladaptive repair is also associated with activation of several other pro-

fibrotic pathways, such as Notch and Wnt signalling. Recent work using a mouse model with 

inducible proximal tubule Wnt1 secretion displayed interstitial myofibroblast activation and 

proliferation and increased matrix protein production (Maarouf et al., 2016). Interestingly, no 

evidence of inflammatory cytokine expression, leukocyte infiltration, or epithelial injury were 

detected in these fibrotic kidneys, demonstrating direct paracrine Wnt1 activity in initiating 

interstitial fibrosis through tubulointerstitial crosstalk (Maarouf et al., 2016). 

1.3.4. IRI and Immune System Activation 

IRI is a result of various mechanisms, including the host inflammatory/immune 

response. The immune system activation exerts its effect largely upon reperfusion of an 

ischaemic kidney. However, it is important to recognise that the initiation of inflammation 

occurs during ischaemia, whilst post-ischaemic events contribute to its amplification. These 

reperfusion events include oxygen re-fuelling, ROS generation, endothelial dysfunction, 

leukocyte recruitment, chemokine and cytokine synthesis and complement activation (Jang et 

al., 2009; Kvietys and Granger, 2012). The ischaemic kidney is not merely the target of 

immune activation. Instead, it plays an active role in promoting immune activation.  

An acute inflammatory component of IRI involves the expression of cell surface 

adhesion molecules. To evaluate the effect of IRI on the expression of these adhesion 

molecules, rat renal grafts were cold preserved for 2, 4, 6, 12, 24 and 48 hours, before being 

transplanted into syngeneic recipients (Dragun et al., 2001). This study revealed that longer 

duration of cold-ischaemia led to loss of endothelial integrity and increased expression of 

VCAM-1. Ischaemic grafts also displayed enhanced intra-graft pro-coagulant capacity and a 

worse tubular necrosis score (Dragun et al., 2001). Unexpectedly, renal functions measured 
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by creatinine and urea was not different between grafts with shorter ischaemia and grafts with 

longer ischaemia time. This implies that there are potentially injurious processes occurring 

after moderate IRI that are clinically undetectable. Whether the same can be extrapolated to 

the effects of IRI on long-term allograft function in patients receiving ischaemic allografts but 

who do not develop DGF remains an important research question.  

1.3.4.1. The Role of Neutrophils and Macrophages 

Neutrophil adhesion to dysfunctional endothelial cells is a rapid and important 

component in the initiation of damage to the ischaemic kidney. Recruitment of neutrophils by 

endothelial cells requires the expression of ICAM1, E and P selectin, which cross-talk with 

integrins and L-selectin on polymorphonuclear (PMN) cells (Thornton et al., 1989; 

Kosieradzki and Rowinski, 2008; Yago et al., 2015), however the exact mechanism and 

trafficking of neutrophils in renal IRI is not yet clear. Neutrophils have been shown to migrate 

into the transplanted organ within 6 hours of reperfusion and are attracted by chemokines, 

such as CXCL8, CXCL10, IL-17 and MCP-I (Neto et al., 2004; Kosieradzki and Rowinski, 

2008; Chaturvedi et al., 2013; Kolaczkowska and Kubes, 2013). Damaged cells will be killed 

by neutrophils by direct phagocytosis or degranulation, releasing proteases, myeloperoxidase, 

nitrogen species, antimicrobial peptides and cytokines (Kinsey et al., 2008). The presence of 

neutrophils in the glomeruli after reperfusion was reported to have a deleterious consequence 

to long-term kidney outcomes, with higher serum creatinine levels at 3 and 6 months after 

transplantation (Koo et al., 1998; Friedewald and Rabb, 2004). Inhibiting the accumulation of 

neutrophils in the kidney or blocking neutrophils-endothelial interactions may prevent acute 

kidney injury (Haug et al., 1993; Kelly et al., 1994; Kelly et al., 1996; Jang and Rabb, 2009; 

Chaturvedi et al., 2013; Yago et al., 2015). In contrast, others have failed to reproduce the 

beneficial effects of neutrophil depletion and reported neutrophil independent mechanisms in 

the pathophysiology of acute tubular injury (Thornton et al., 1989; Salmela et al., 1999; 

Melnikov et al., 2002). Nevertheless, the majority of evidence supports a role of neutrophils 

in the development of post-ischaemic injury, by mechanisms including obstruction of renal 

microvasculature and the releasing free radicals and proteases (Friedewald and Rabb, 2004).     

The role of macrophages in renal response to IRI is complex. Macrophages has been 

shown to promote tubular injury during the initial phase of IRI. On the other hand, 

suppressing macrophage function during the repair process (at later time points post 

reperfusion) has been shown to suppress tubular proliferation, thus impairing the normal 

recovery process. Studies have described the involvement of macrophages in the early 

inflammatory response, during cellular regeneration and tissue repair as well as the 
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development of fibrosis. These diverse roles are played by different sub-types of macrophages 

based on their activation and functional states. Classical activation of macrophages is driven 

by interferon gamma (IFNg). Ischaemia induced cellular injury also produces DAMPs, which 

will contribute to macrophage activation. These classically activated M1 macrophages are 

pro-inflammatory in nature, thus associated with tissue damage. However, they also play an 

important role in clearing apoptotic cells and debris, thereby initiating the repair process 

(Huen and Cantley, 2015). Alternatively activated macrophages include M2a macrophages, 

which are responsible for wound healing and M2b macrophages, also known as 

immunoregulatory macrophages. Generally, M2 macrophages activate regulatory T-cells 

(TReg) and restore renal tissue homeostasis (Huen and Cantley, 2017), by promoting tubular 

proliferation and limiting renal injury. M2a macrophages are activated through IL-4/IL-13 

binding to IL-4 receptor, which leads to production of growth factors, collagen precursor 

synthesis and generation of extracellular matrix. M2b macrophages regulate inflammatory 

response by producing immunosuppressive cytokines, IL-10 and TGF-b. Production of TGF-

b is to limit inflammatory cytokine production, but at the same time may contribute to 

activation of pro-fibrotic pathways. When injury persists, chemokines, macrophage colony 

stimulating factors (M-CSF) and IL-34, are secreted to sustain monocyte recruitment and 

retention of macrophages (Huen and Cantley, 2017). Blockade of M-CSF receptor has 

protective effects following transplantation (Jose et al., 2003). Retention of M2b macrophages 

in the injured tissue will produce macrophages-derived factors, which subsequently activate 

and support myofibroblasts, inducing extracellular matrix deposition and fibrosis. The signals 

responsible for retaining pro-fibrotic macrophages in the kidney remain unclear, but studies 

using unilateral ureteral obstructive (UUO) rodent model suggest a role for the chemokine 

receptors CCR1, CCR2, CX3CR1 (Huen and Cantley, 2017). 

1.3.4.2. The Role of Complement System 

The complement system plays an important role in the post-ischaemic inflammatory 

process. The importance of complement in the kidney transplantation setting was highlighted 

in several studies, primarily linking complement allotype and complement gene expression to 

transplant outcome (Brown et al., 2006; Naesens et al., 2009). In IRI, complement has been 

identified as an important mediator (Zhou et al., 2000; Sheerin et al., 2008; Danobeitia et al., 

2014).  

Complement activation in the kidney occurs predominantly through the alternative 

pathway. A murine study of renal IRI identified the re-distribution of the complement 

inhibitor, complement receptor 1-related protein (Crry) from the tubular basolateral surface 
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prior to complement activation and C3 deposition (Thurman et al., 2006). Interestingly, in a 

non-ischaemic milieu, the deposition of C3 on the basolateral surface was not correlated with 

any apparent abnormality. Mice deficient in Crry showed worse renal injury, which was 

correlated with increased mononuclear phagocyte infiltration and TEC apoptosis (Miao et al., 

2014). In addition, injured peritubular endothelium may allow plasma C3 into the 

tubulointerstitial space, providing sufficient C3 to exceed local complement regulation (Brar 

and Quigg, 2014).  

A number of studies have also investigated the role of C5 in the response to renal IRI 

and kidney transplantation. Ischaemic insult to the kidney has been shown to involve both 

C3a and C5a with up-regulation of their respective receptors (C3aR and C5aR). C3a and C5a 

generated during IRI were shown to increase pro-inflammatory cytokine/chemokine 

production by macrophages, and was associated with increased kidney injury molecule 

(KIM)-1 expression by proximal TECs (Peng et al., 2012). A comparison between the two 

complement components, however, showed a predominant role of C5 (Peng et al., 2012). 

Moreover, the membrane attack complex C5b-9 has been linked to up-regulation of collagen 

gene expression in renal TECs, and suggested as a potential target for IRI prevention (Zhou et 

al., 2000; Abe et al., 2004). 

1.3.4.3. The Role of Lymphocytes 

Several lymphocyte sub-populations have been identified as important components of 

the renal response to IRI. This includes; natural killer (NK) and NKT cells, renal dendritic 

cells (DCs), T cells and B cells. Substantial evidence is available to link all of these sub-types 

to the renal response to IRI, mainly linking their actions to direct targeting of injured tubular 

and endothelial cells, activation of neutrophils and macrophages, and secretion of pro-

inflammatory cytokines, such as IFN-γ, TNF-α, IL-4 and IL-10.  

Although initially regarded as by-standers, current evidence suggests that T cells are 

involved in the pathogenesis of IRI. Depletion of CD4 and CD8 T cells in mice with renal IRI 

has been shown to improve renal function and reduce neutrophil infiltration and tubular 

atrophy (Rabb et al., 2000). Furthermore, reconstitution of T cells in these T cell-deficient 

mice restored the level of injury (Burne et al., 2001). Pre- and post-ischaemic adoptive 

transfer of regulatory T cells (Tregs) has been shown to protect the kidney from ischaemic 

injury, reduce TNF-α and IFN-γ production and accelerate repair (Kinsey et al., 2009; 

Monteiro et al., 2009; Kinsey et al., 2013; Kinsey and Okusa, 2014).  

B cells are involved in the adaptive immune response to IRI by releasing antibody. To 

date, available studies showed a predominantly harmful effect of post-ischaemic B cell 
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activation (Linfert et al., 2009). Depleting B cells in mice improves renal function and 

reduces tubular injury after ischaemia (Burne-Taney et al., 2003). A study by Jang et al. 

reported that B cell-deficient mice subjected to ischaemia showed more tubular proliferation, 

less tubular atrophy and higher expression of IL-10 and VEGF (Jang et al., 2010). Further 

adoptive transfer of B cells into these mice exerted the opposite effect, suggesting that B cells 

may interfere with the post-ischaemic repair processes in the kidney. In contrast, another 

study found worse post-ischaemic renal injury in mice lacking all mature B cells (Renner et 

al., 2010), suggesting a more complex and divergent role for B cells in the progression of IRI.       

1.4. MicroRNA; an Overview of Structure, Biology and Function 

1.4.1. Introduction to MicroRNA 

A microRNA (miRNA) is a small non-coding RNA consisting of only ~20-30 

nucleotides in length. miRNA was first discovered in the nematode Caenorhabdtis elegans by 

the joint work of Victor Ambros, Rosalind Lee and Rhonda Feinbaum in 1993 (Lee et al., 

1993). Their initial work identified Lin-4 as a small non-coding RNAs, which acts as an 

endogenous regulator of various genes that control developmental timing in C. elegans 

(Carthew and Sontheimer, 2009). This finding led to a series of important discoveries, which 

have shaped our current understanding of the complexity and regulation of the transcriptome. 

MiRNAs are highly conserved across different mammalian species and play a pivotal role in 

cellular functions in normal conditions, such as cellular proliferation, cell cycle and 

developmental processes, cellular differentiation and apoptosis, as well as in a range of 

pathological processes, including cancer, degenerative diseases, auto-immune diseases, 

fibrogenic processes and IRI (Friedman et al., 2009; Bernardo et al., 2012). A miRNA can 

play its regulatory function by targeting several messenger RNAs (mRNAs), and may 

influence one or more pathways involved in cellular function. This ability to regulate multiple 

genes in a pathophysiological network is an attractive feature for the use of miRNA as 

biomarkers and therapeutic targets. The effect of a stimulus, such as ischaemia and 

reperfusion injury is exerted not only by one distinct mechanism, but through several 

synergistic pathways. Identification and targeting key miRNAs involved in this process would 

allow more comprehensive monitoring of a pathologic process and potentially enable a 

greater therapeutic effect. 

MiRNA is not the only post-transcriptional regulatory mechanism identified in cells. 

Evidence is available on the role of other non-coding RNAs, such as long non-coding RNA 

(lncRNA) and short interfering RNA (siRNA), in the regulation of various cellular functions. 
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As the name implies, the nucleotide length is the main difference between lncRNA (more than 

200nt) and short non-coding RNAs (i.e. siRNA and miRNA). LncRNA affects both RNA 

processing and protein function by complementary binding to its target RNA or directly 

interacting with target protein and facilitating riboprotein complex formation (Wilusz et al., 

2009). In principle, siRNA and miRNA function through similar mechanisms, thus cannot be 

distinguished based on their function alone. However, differences exist in their nature, 

structure, precursor and function as described in Table 1-3.  

Table 1-3 Distinction between the main features of siRNA and miRNA 
Characteristics miRNA siRNA 

Occurrence Naturally occurs across all species 
(plants, animals, human) 

Occurs in plants and lower animal 
species. Presence in mammals is 
questioned 

Structure Single stranded, 19-25nt Double stranded, 21-22nt 
Interaction to target 
and Mode of action 

No exact complementarity to target 
mRNA required. 
Result: mRNA decay, translational 
repression of many target mRNAs 

Exact match to target mRNA needed 
Result: mRNA endonucleolytic 
cleavage, specific genes knock-down, 
minor off-target effects 

Biogenesis Expressed by miRNA encoding genes 
(different from genes that they 
regulate) 

Expressed by the same genes that 
they regulate 

Precursors Precursor miRNA (pre-miRNA); 
hairpin structure containing 70-100nt 
with interspersed mismatches 

Double stranded RNA containing 30 
to >100nt 

Clinical applications Diagnostic tool / biomarker 
Therapeutic target 

Therapeutic target 

  

Increasing evidence links miRNAs to various physiological and pathological processes 

positioning miRNA as an attractive candidate for a diagnostic tool or therapeutic target 

(Schena et al., 2014; Wilflingseder et al., 2014). Moreover, unlike mRNA, the short nature of 

miRNA and its resistance to cleavage make miRNA very stable (Bhatt et al., 2011; Scian et 

al., 2013a; Wilflingseder et al., 2014). MiRNAs are reliably detected in body fluids or tissues. 

To compensate their diminutive size and lack of exact homology to target mRNA sequence 

miRNAs are present in high copy number, which facilitates in situ detection of miRNAs in 

blood, urine and fresh frozen and formalin fixed paraffin embedded tissues (Nuovo, 2010).     

1.4.2. MicroRNA Biology and Function 

MicroRNAs are found intracellularly in protein complexes and extracellularly in 

microvesicles in body fluids, such as urine or plasma (Bhatt et al., 2011; Maluf et al., 2014; 

Wilflingseder et al., 2014). MicroRNA biosynthesis involves a relatively complex pathway 

(Figure 1-3). Pri-miRNA, which is several kilobases in length, is derived from transcription of 

miRNA genes. Pri-miRNA has a distinct hairpin structure, which is recognised by a nuclear 
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protein, DiGeorge syndrome critical region 8 (DGRC8). The DGRC8 pri-miRNA complex 

recruits the RNAse Drosha to form the Microprocessor complex. This process leads to the 

cleavage pri-miRNA at the base of stem-loop, producing pre-miRNAs containing 

approximately 70 nucleotides. Pre-miRNA is transferred to the cytoplasm by exportin 5. In 

the cytoplasm, pre-miRNA is further cleaved to mature miRNA, which consists of 21-25 

nuclotides by the enzyme Dicer. The mature miRNA will interact with members of the 

argonaute protein (AGO) family to form the RNA-induce silencing complex (RISC), which is 

the effector complex of miRNA. MiRNA then plays its role by either blocking protein 

translation or degradation of target messenger RNA (mRNA) (Bhatt et al., 2011). The RISC 

is directed to target mRNA based on the complementary sequences in the miRNA and mRNA 

(Bhatt et al., 2011). The biology of miRNA can be modified by the introduction of miRNA 

mimic to over-express a certain miRNA, or by miRNA inhibitor or anti-miR (Figure 1-3). The 

modification of miRNA expression has the potential to be exploited in miRNA research and 

future therapies.  

 

Figure 1-3 Illustration of miRNA biology and mechanism of action 
Primary miRNAs (Pri-miRNA) are transcribed from a miRNA gene. This is followed by Drosha 
processing, which cleaved Pri-miRNAs into precursor miRNA (Pre-miRNA). Following export of 
Pre-miRNA into the cytoplasm, Dicer processes Pre-miRNAs into mature miRNA, which will be 
assembled into RNA-induce silencing complex (RISC) to perform its function (Bernardo et al., 2012) 
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1.4.3. MiRNA Nomenclature 

MiRNA nomenclature begins with the species of its origin; ‘hsa’ for homo sapiens, 

‘mmu’ for mouse, ‘rno’ for rat, ‘d’ for drosophilia, and many others. Description of whether it 

is a mature sequence or a precursor follows the description of the species. Precursor hairpins 

are written as ‘mir’, the gene that encodes a particular miRNA is written as ‘MIR’, whilst 

mature sequence is written as ‘miR’. This is then followed by number(s) as the actual name of 

the miRNA, which usually, but not always indicate the order of naming or timing of 

discovery relative to other miRNAs. Closely related miRNA with nearly identical sequences 

are annotated with an additional lower case after the number set (for example, miR-34a). In 

addition, identical miRNA sequences may be excised from opposite arms of the same 

precursor. These miRNAs will be labelled by adding ‘5p’ or ‘3p’ at the end of their 

annotations, indicating excision from either the 5’- or 3’- arm respectively (for example, miR-

21-5p or miR-21-3p). Addition of asterisk is given to indicate the “passenger” strand of the 

mature miRNA, which is usually thought to be degraded, except in a small number of 

miRNAs where it may also be functional. 

1.5. MicroRNAs; Their Relevance to Normal Cellular Function and Disease Processes  

Studies have identified specific miRNAs involved in regulating distinct cellular 

functions, such as cellular division, apoptosis, cellular metabolism, intra-cellular signalling, 

immunity and cellular movement. Abnormalities in the level of miRNAs, therefore, will also 

affect specific cellular functions leading to pathological outcomes. A role for miRNAs in the 

pathogenesis of human diseases have been identified in developmental disorders, cancer, 

autoimmune, infectious and inflammatory diseases involving almost all human organs.  

1.5.1. MicroRNAs in Human Developments and Diseases 

MiRNAs are involved in regulating at least 60% of transcripts of the human genome, 

and therefore play a part in diverse cellular functions and disease processes.  The roles of 

miRNAs in human diseases are complex and diverse. The apparent connection between 

miRNAs and the development of disease is supported by substantial miRNA profiling data 

showing altered expression of certain miRNAs in various disease processes. In some diseases, 

the degree of miRNA up-/down-regulation has also been associated with disease sub-types, 

severity and progression, highlighting the potential of miRNA as a meaningful diagnostic and 

prognostic marker.  
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MiRNAs play a role in the pathogenesis of cancer through two possible mechanisms; 

(1) by suppressing translation of tumour suppressor genes, or (2) by inhibiting important 

cellular regulatory processes such as apoptosis and cell differentiation (Waldman and Terzic, 

2009). The link between miRNAs and various form of cancer is well established, largely 

based on the abundant profiling studies available. This includes cancer of the lung, head and 

neck, gastrointestinal tract (oesophageal, gastric, colon), reproductive organs (breast, ovary, 

endometrium, and cervix), kidney and various haematological malignancies (Waldman and 

Terzic, 2009; Li and Kowdley, 2012). Because miRNA is tissue specific, the up-/down-

regulation of a miRNA is often unique for different type of cancer and organs involved, which 

is crucial for their use as screening tool, prognostic indicator or potential therapeutic target.  

Cardiovascular research is one of the earliest fields where the role of miRNA was 

recognised. MiRNAs play important role in the regulation of the cardiovascular system 

through several components, including endothelial cells, myocardium and the regulation of 

angiogenesis and vascular regression. So far, changes in miRNA expression level has been 

linked with cardiac hypertrophy, cardiac failure and cardiac development, primarily through 

miR-1, miR-133 and miR-208, which are expressed at a high level in the heart (Ardekani and 

Naeini, 2010; Li and Kowdley, 2012).  

MiRNA has also been demonstrated to play a very important role in the development of 

the brain and pathogenesis of various diseases involving the nervous system. Interestingly, the 

level of expression of several miRNAs was shown to be specific not only to different cell 

types of the nervous system, but also to certain neurodevelopmental phases (Ardekani and 

Naeini, 2010). Changes in the level of a distinct miRNA, therefore, may indicate an 

abnormality in a specific developmental stage. More importantly, this provides a strong 

support that miRNAs play a pivotal role in determining the fate of cellular lineage, as well as 

in cellular division, cellular programming and apoptosis (Ardekani and Naeini, 2010).  

Recent studies have demonstrated regulatory function of several miRNAs in 

inflammatory and immunological pathways. A recent study on cultured human endothelial 

cells identified the role of miR-126 in preventing leukocyte adherence to endothelial cells by 

inhibiting the expression of an adhesion molecule VCAM-1 (Harris et al., 2008). Another 

study using murine macrophages showed that secretion of cytokines, such as TNF-a and IFN-

b induces miR-155 expression, which has been linked to activation of immunological 

pathways through several actions, including granulocyte/monocyte expansion and B- and T-

cell activation (O'Connell et al., 2007). The role of miRNAs in cellular differentiation was 

also found in the development of inflammatory cells. Several studies have identified key 

miRNAs, such as miR-17 and miR-150, involved in B-cell maturation (Zhou et al., 2007; 
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Ventura et al., 2008), miR-424 in monocyte differentiation (Rosa et al., 2007) and miR-223 in 

granulocyte differentiation and activation (Johnnidis et al., 2008). The link between miRNAs 

and the immune system is further highlighted by significant changes in the expression profile 

of several miRNAs in inflammatory and autoimmune diseases, such as rheumatoid arthritis 

(Stanczyk et al., 2008; Tili et al., 2008) and systemic lupus erythematosus (Dai et al., 2007). 

The evidence mentioned above is only a small part of the abundant literature on the role 

of miRNAs in various human disease processes, which clearly reflects the biological 

importance and potential clinical utilisation of miRNAs.  

1.5.2. MicroRNAs in Kidney Physiology and Disease 

Early studies involving Dicer-knock-out mice highlighted the importance of miRNAs 

in maintaining structural and functional integrity of various components of the kidney, 

including renal endothelium, the glomerular barrier and tubular epithelial cells. The 

abnormalities observed suggest that miRNAs play a vital role in kidney development and 

kidney physiology. Conditional knock-out of Dicer in the ureteric bud epithelium of mice 

resulted in hydronephrosis and parenchymal cyst formation (Pastorelli et al., 2009). Selective 

deletion of Dicer in mouse podocytes induce cytoskeletal changes, which in turn causes 

proteinuria and glomerulosclerosis, leading to rapidly progressing chronic kidney disease 

(Harvey et al., 2008; Shi et al., 2008). Removal of Dicer from renin secreting cells of mice 

was also shown to deplete the number of juxtaglomerular cells, decrease renin gene 

expression and renin concentration in the plasma, and most importantly lowered systemic 

blood pressure (Sequeira-Lopez et al., 2010). The resulting pathologies included marked 

vascular deformity and fibrosis. In mouse proximal tubular epithelial cells, inhibition of Dicer 

resulted in global down-regulation of miRNAs, especially in the renal cortex (Wei et al., 

2010). However, this abnormal miRNAs expression level was not followed by histological 

changes or abnormal renal function. Interestingly, this change made the tubular cells more 

resistant to IRI, with improved renal function, less tissue damage, reduced apoptosis and 

better survival (Wei et al., 2010).  

The link between miRNA with various renal pathologies, such as acute kidney injury, 

fibrosis, polycystic kidney and neoplasm has been extensively studied (Spiegel et al., 2011; 

Chung et al., 2013; Hou and Zhao, 2013; Amrouche et al., 2014; Schena et al., 2014; 

Wilflingseder et al., 2014). As the leading cause of CKD, the association between diabetic 

nephropathy and miRNAs has been a major focus of research. Several miRNAs have been 

identified as important in the pathogenesis and progression of diabetic nephropathy, mainly 

based on studies using animal models.  
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The expression of a miR-192 was shown to be significantly higher in the mesangial 

cells of diabetic mice. MiR-192 targets SMAD-interacting protein 1 (SIP1), which regulates 

the expression of TGF-b induced Collagen type 1 and type 2. This is crucial in the 

progression of diabetic nephropathy (Kato et al., 2007). Based on this study, it is plausible 

that miR-192 acts as an effector of the TGF-b pathway. In contrast, another study 

demonstrated that treatment of tubular epithelial cells with TGF-b down-regulates the 

expression of miR-192, which correlated with increased fibrosis and decreased estimated 

GFR in diabetic nephropathy patients (Krupa et al., 2010). The results of both studies imply 

that the same miRNA may respond differently to the same stimulus (i.e. TGF-b stimulation) 

in different cell types, which makes interpreting and obtaining a comprehensive picture of a 

miRNA’s role more complex and challenging.  

The expression of a miRNA may fluctuate throughout the course of a disease. An 

animal study highlighting the role of miR-21 in diabetic nephropathy showed initial down-

regulation of miR-21 in early phase of the disease (Zhang et al., 2009). MiR-21 provides a 

degree of protection by preventing renal mesangial cell hypertrophy through inhibition of 

PI3K/Akt pathway (Zhang et al., 2009). However, other studies have shown that higher levels 

of miR-21 in renal biopsy specimens of diabetic nephropathy patients, and this is associated 

with more advanced renal pathology, including higher degrees of fibrosis (McClelland et al., 

2015). In addition, miR-216a and miR-217 have also been linked to the progression of 

diabetic nephropathy, primarily through PTEN inhibition, which in turn activates the Akt 

kinase pathway (Kato et al., 2009). 

The association between miRNAs and other kidney diseases were largely made by 

comparing miRNAs expression in affected patients to a normal cohort. Some of the kidney 

diseases associated with abnormal miRNA expression include; IgA nephropathy (miR-148b, 

miR-200c, miR-141, miR-205 and miR-192) (Wang et al., 2010; Szeto and Li, 2014), 

autosomal dominant polycystic kidney disease (down-regulation of miR-15a) (Lee et al., 

2008), lupus nephritis, hypertension (loss of down-regulation of angiotensin receptor-1 

(AGTR1) by miR-155) (Sethupathy et al., 2007), and renal-cell carcinoma, which is 

associated with dysregulation of a hypoxia-regulated miRNA, miR-210 (Jung et al., 2009).  

The role of miRNAs in the progression of acute kidney injury to chronic kidney disease 

is especially interesting. Epithelial-to-mesenchymal transition (EMT) has been proposed as an 

important contributor to the long-term development of fibrosis following acute injury in the 

kidney, and substantial evidence is available to link changes in miRNA profile to the 

development of EMT. The miR-200 family is among the most extensively studied miRNAs, 
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and they are involved in the regulation of EMT. Down-regulation of the miR-200 family 

induces EMT in a TGF-β dependent manner, which is implicated in progression of fibrosis 

and also in tumour metastasis (Gregory et al., 2008). In addition, induction of EMT was 

associated with a decrease in the expression level of miR-205. Inhibition of mature miR-205 

in Madin-Darby canine kidney epithelial cells lead to changes in cell phenotype including 

elongated cell morphology, loss of plasma membrane E-cadherin and ZO-1 expression and 

increased cytoskeletal stress-fibre formation (Gregory et al., 2008). Other miRNAs have also 

been examined in the context of fibrogenesis, among many are; miR-363, miR-192, miR-200, 

miR-21-, miR-34a, miR-155 and miR-127 (Goodwin et al., 2010; Shapiro et al., 2011; 

Aguado-Fraile et al., 2012; Chau et al., 2012; Saikumar et al., 2012; Li et al., 2013; van den 

Akker et al., 2015).  

1.5.3. MicroRNA in Kidney Transplantation and Ischaemia/Reperfusion Injury; Current 

Knowledge 

In the kidney transplantation setting, miRNA expression has been profiled in 

association with rejection, interstitial fibrosis, tubular atrophy as well as ischaemia and 

reperfusion injury. Correlation between intrarenal miRNAs, clinical and histological profile of 

a kidney transplant cohort revealed a set of differentially expressed miRNAs in acute rejection 

cases compared to normal allograft tissues (Anglicheau et al., 2009). The study identified 

overexpression of miR-142-5p, miR-155 and miR-223 during acute rejection, and highlights 

the potential for these miRNAs to predict acute rejection episodes (Anglicheau et al., 2009). 

Another profiling study detected down-regulation of 12 miRNAs (including miR-324-3p, 

miR-611, miR-654) and up-regulation of 8 miRNAs (including miR-658, miR-320, miR-381) 

in acute rejection cases (Sui et al., 2008). Interestingly, despite a very similar approach used, 

the changes in miRNAs listed were distinct and there was a lack of overlap between the two 

studies. This may be attributed to differences in patient characteristics or disparity in the 

technology of the profiling platform used. Moreover, it is important to acknowledge the 

contribution of potential confounding factors in these studies. These factors may be related to 

the renal function, presence of viral infection, effect of immunosuppressive drugs in the 

kidney and time since transplantation, all of which may affect the level of expression of 

miRNAs.  

Several authors have published the expression profiles of miRNA following IRI in the 

kidney. Numerous studies have been published, with most of the work performed in rodents. 

There is very little data to validate the observations made in rodent models to human cells or 
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diseases. Currently available studies on miRNA profile in kidney performed using ischaemia 

or reperfusion model are listed in Table 1-4. 

 

Table 1-4. Existing evidence in the involvement of various miRNAs in the renal response to IRI 
miRNA Model Treatment Expression / 

Results 
Effect / 
Target 

Ref. 

miR-10a Rat 45 min. bilateral 
renal pedicle 
clamping 
followed by 
reperfusion. 
Microarray 
profiling 

Up-regulated within 
1hr 

Not stated (Wang et 
al., 2014a) 

miR-18a Wistar rats 30 min. renal 
bilateral IRI 

Up-regulated in 
kidney tissue 
Blood: Down-
regulated 
Urine: Undetectable 

Not stated (Saikumar 
et al., 
2012) 

miR-20a C57BL/6 
mice 

30min. unilateral 
warm ischaemia 

Rapidly up-
regulated 

Not stated (Goodwin 
et al., 
2010) 

(Shapiro et 
al., 2011) 

miR-21 C57BL/6 
mice 

30min. unilateral 
warm ischaemia 

Rapidly up-
regulated 

Not stated (Goodwin 
et al., 
2010) 

(Shapiro et 
al., 2011) 

Mice 30 min. unilateral 
warm ischaemia 

Rapidly up-
regulated 

 (Chau et 
al., 2012) 

Mice miR-21+/+ vs 
mir-21-/- 

More Mpv17l in 
mir-21-/- 

amplifies ROS 
generation by 
targeting 
Mpv171 

(Chau et 
al., 2012) 

Mice miR-21-/- Higher serum 
creatinine after IRI 

Not stated (Jia et al., 
2013) 

Mice Xenon pre-
conditioning 
(protection for 
IRI) 

Up-regulated Not stated (Jia et al., 
2013) 

Wistar rats 30 min. renal 
bilateral IRI 

Up-regulated in 
kidney tissue 
Down-regulated in 
blood 
Down-regulated 
initially, modestly 
elevated within 72h 
in urine 

Not stated (Saikumar 
et al., 
2012) 

Mice IPC (ischaemic 
pre-conditioning) 
vs Sham 

Up-regulated in IPC Not stated (Xu et al., 
2014) 

Mice miR-21-/- and 
IPC 

Exacerbate IRI Up-regulate 
PDCD4 
(increase 
apoptosis) 

(Xu et al., 
2014) 

Mice miR-21-/-, no IPC No effect on IRI N/A (Xu et al., 
2014) 
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BALB/c 
mice 

Bilateral renal 
ischaemia 
(45min.) followed 
by reperfusion. 
Sham vs IRI 
assigned to: pre-
miR-21, 
antagomiR-21, 
PBS 

Pre-miR-21 + IRI: 
lower plasma BUN, 
creatinine, 
histological scores. 
Decreased PDCD4 
mRNA and active 
caspase-3, caspase-
8 protein 
expressions. 

Anti-apoptotic 
properties by 
supressing 
expression of 
PDCD4 gene 
and active 
caspase-3, 
caspase-8. 

(Hu et al., 
2014) 

miR-24 Human Observation on 
kidney transplant 
biopsy specimens 
with prolonged 
cold ischemic 
time 

Up-regulated Regulating H2A 
histone family, 
member X, 
heme 
oxygenase1 

(Lorenzen 
et al., 
2014) 

 Mice 
 

Unilateral I/R 
injury 

Up-regulated 
 

(Lorenzen 
et al., 
2014) 

 HK2 cells ATP depletion 
(chemical anoxia) 
for 1hr + ATP 
repletion for 
30min. 
Transfection with 
miR-24 
precursors  
miR-24 silencing 

Increased apoptosis 
Increased ROS 
production 
Altered functional 
parameters 
Ameliorate 
apoptosis, rescued 
functional 
parameters 

(Lorenzen 
et al., 
2014) 

miR-34 HK-2 cells 1% O2 Down-regulated Promote EMT (Du et al., 
2012) 

miR-126 Mice Bilateral renal 
pedicle clamping 
in control vs miR-
126 
overexpressed 
mice 

N/A Increase 
circulating Lin-
/Sca-1+/cKit+ 
haematopoietic 
stem and 
progenitor cells, 
thus promotes 
vascular 
integrity and 
supports 
recovery 

(Bijkerk et 
al., 2014) 

miR-127 Rat (NRK-
52E) 
HK2 cells 

Ischaemia / 
reperfusion 

 

Up-regulated Mediated by 
HIF-1α 
Target KIF3B, 
involved in cell 
trafficking. 
Involved in cell-
matrix and cell-
to-cell adhesion 
maintenance 

(Aguado-
Fraile et 

al., 2012) 

miR-
146a 

C57BL/6 
mice 

30min. unilateral 
warm ischaemia 

Up-regulated after 
day 3 

Not stated (Goodwin 
et al., 
2010) 

(Shapiro et 
al., 2011) 

miR-155 Wistar rats 30 min. renal 
bilateral IRI 

Up-regulated in 
kidney tissue 
Down-regulated in 
blood 
Unchanged (slight 
non-significant 
decrease) in urine 
 

Not stated (Saikumar 
et al., 
2012) 
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miR-187 C57BL/6 
mice 

30min. unilateral 
warm ischaemia 

Rapidly down-
regulated, continue 
to decrease 

Not stated (Goodwin 
et al., 
2010) 

(Shapiro et 
al., 2011) 

miR-192 C57BL/6 
mice 

30min. unilateral 
warm ischaemia 

Rapidly down-
regulated, continue 
to decrease 

Not stated (Goodwin 
et al., 
2010) 

(Shapiro et 
al., 2011) 

Rat 45 min. bilateral 
renal pedicle 
clamping 
followed by 
reperfusion. 
Microarray 
profiling 

Up-regulated after 
6hr 

Not stated (Wang et 
al., 2014a) 

miR-194 C57BL/6 
mice 

30min. unilateral 
warm ischaemia 

Down-regulated, 
remain at level ≈ 
control 

Not stated (Goodwin 
et al., 
2010) 

(Shapiro et 
al., 2011) 

Rat 45 min. bilateral 
renal pedicle 
clamping 
followed by 
reperfusion. 
Microarray 
profiling 

Up-regulated after 
6hr 

Not stated (Wang et 
al., 2014a) 

miR-
199a-3p 

C57BL/6 
mice 

30min. unilateral 
warm ischaemia 

Up-regulated after 
day 3  

Not stated (Goodwin 
et al., 
2010) 

(Shapiro et 
al., 2011) 

miR-210 Human  Urinary miRNA 
profile of stable 
transplant patients 
vs acute rejection 

Low miR-210 
associated with 
higher decline in 
GFR 1 year post-
transplant 

Not stated (Lorenzen 
et al., 

2011b) 

 Human Plasma miRNA of 
AKI patients vs 
healthy control 

Up-regulated Not stated (Lorenzen 
et al., 

2011a) 
 BALB/c 

mice 
30min. bilateral 
clamping of renal 
pedicle, followed 
by de-clamping 

Up-regulated, most 
prominent at 4hr 
and 24hr after 
reperfusion 

Targeting VEGF 
signalling 
pathway to 
regulate 
angiogenesis 
post IRI. 

(Liu et al., 
2012) 

miR-214 C57BL/6 
mice 

30min. unilateral 
warm ischaemia 

Up-regulated after 
day 3, wane by day 
21 

Not stated (Goodwin 
et al., 
2010) 

(Shapiro et 
al., 2011) 

miR-494 Mice Not stated Up-regulated 
rapidly (within 1 
hr) 

Reduce 
overexpression 
of ATF3  

(Lan et al., 
2012b) 

miR-714 C57BL/6 
mice 

27min. bilateral 
renal pedicle 
clamping 

Up-regulated at 3, 6 
and 24hr. 

Not stated (Bellinger 
et al., 
2014) 

miR-805 C57BL/6 
mice 

30min. unilateral 
warm ischaemia 

Down-regulated, 
remain at level ≈ 
control 

Not stated (Goodwin 
et al., 
2010) 
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(Shapiro et 
al., 2011) 

miR-
877* 

C57BL/6 
mice 

27min. bilateral 
renal pedicle 
clamping 

Up-regulated at 3, 6 
and 24hr. 

Not stated (Bellinger 
et al., 
2014) 

miR-
1188 

C57BL/6 
mice 

27min. bilateral 
renal pedicle 
clamping 

Up-regulated at 3, 6 
and 24hr. 

Not stated (Bellinger 
et al., 
2014) 

miR-
1224 

C57BL/6 
mice 

27min. bilateral 
renal pedicle 
clamping 

Up-regulated at 3, 6 
and 24hr. 

Not stated (Bellinger 
et al., 
2014) 

miR-
1897-3p 

C57BL/6 
mice 

27min. bilateral 
renal pedicle 
clamping 

Up-regulated at 3, 6 
and 24hr. 

Closely 
associated with 
Nucks1 gene 
expression, 
which putative 
downstream 
targets include 
genes linked to 
renal injury, 
inflammation 
and apoptosis 

(Bellinger 
et al., 
2014) 

 

Although there have been a lot of studies performed to identify which miRNAs are 

involved in the renal response to IRI, little has been done to elucidate their actual mechanism 

of action to. Furthermore, as described in Table 1-4, most published reports conducted their 

experiments on immortalised cell lines or animal models, and only a small number of studies 

have attempted to correlate these observations with results from clinically available tissues or 

perform experimental validation on primary human cells.  

Published data have suggested the potential of microRNAs to be utilised as biomarkers, 

therapeutic targets or to provide additional insights to the mechanisms of ischaemia and 

reperfusion injury in the kidney, especially in the transplantation setting. However, at present, 

this potential has not yet being fulfilled as results have been inconclusive and in some cases 

contradictory due to differences in study design and the technology platform used (van den 

Akker et al., 2015). 

1.6. Introduction to Methodology in MicroRNA Research 

A growing interest in understanding the physiological role of miRNAs has led to the 

development and modification of novel molecular genetic techniques. Principally, 

methodologies in miRNA include five major components; (1) small RNA isolation, (2) 

miRNA detection or profiling, (3) target determination and validation, (4) miRNA regulation 

and (5) clinical correlation. 
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1.6.1. Isolation of Small RNAs 

Developments in RNA isolation techniques have enabled researchers to capture small 

RNAs with <200nt either using specifically optimised kits for small RNA isolation or by 

isolating total RNA using a phenol-based reagent such as TRIzol® or TRI Reagent®, without 

the need for a small RNA enrichment step. Recovery of small RNA, including miRNAs has 

been performed successfully using Phenol based isolation techniques, and is the 

recommended procedure for isolating total RNA for miRNA profiling using microarray 

platforms. 

1.6.2. MicroRNA Detection and Profiling 

There are various methods available commercially to profile and detect expression of 

miRNAs. However, their technical development has not come without challenges. Bernardo 

et al. attributed these challenges to several miRNA features; (1) the short nature and lack of 

common sequence (e.g. poly(A) tail) in mature miRNAs, (2) the presence of target sequence 

in not only mature miRNA, but also in pri- and pre-miRNAs and (3) the sequence similarities 

between miRNAs of the same family, which may differ by only one nucleotide (Bernardo et 

al., 2012). Principally, microarray or deep sequencing platforms and real-time quantitative 

polymerase chain reaction (qPCR) are the most common instruments utilised in miRNA 

profiling.  

Microarray and deep sequencing enable researchers to simultaneously determine the 

relative change in expression level, rather than the absolute abundance, of a large set of 

miRNAs. The use of pre-designed microarray probes, which rely on available databases and 

prior knowledge of known miRNAs, limit the ability of this method to find new miRNA 

sequences. The introduction of deep sequencing platforms (or next generation 

sequencing/RNA-seq) overcomes this problem by its ability to provide absolute quantification 

of all RNA species in a sample. The technology provides opportunity for novel miRNA 

discovery. Predictably, this leads to the generation of a very large and complex dataset, which 

require new methods of data interpretation, bioinformatic analysis, validation and functional 

experiments (Koshiol et al., 2010; Bernardo et al., 2012).  

qPCR is a method commonly used to validate the results obtained from microarray or 

deep sequencing. The quantification step is preceded by reverse transcription of the miRNA 

of interest, which can be performed either by adding a stem-loop primer specific to a 

particular miRNA or by adding a universal sequence (poly(A) tail) to all miRNAs. The first 

method is quantified using TaqMan® assays, while the latter utilises SYBR based qPCR. The 
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use of miRNA specific primers provides more efficient and specific amplification, as well as 

allowing discrimination between mature miRNA and pre-miRNA. However, the technique is 

more expensive and requires separate reverse transcription reaction for each miRNA of 

interest. On the other hand, despite being more cost effective and less laborious, the use of a 

universal primer would not be able to differentiate mature from pre-miRNA sequence. 

In situ hybridisation (ISH) is the only technique available to visualise and localise 

miRNA in cells or tissue. Knowing the distribution of a particular miRNA is important in 

understanding its biological role. However, the steps involved in this technique require 

thorough and lengthy optimisation. Short probes used in ISH are less specific and may yield 

inconsistent and false negative results, especially when detecting low copy number miRNAs. 

Northern blotting is the least commonly used method, due to the time required, and the 

technical challenges involved in working with small and low copy number miRNAs. This 

technique requires high concentration of RNA in a sample to start with. Nonetheless, it is the 

only technique capable to detect both miRNA and its precursor. Both ISH and northern 

blotting have benefited from recent development of locked-nucleic acid (LNA) probes. LNA 

is formed by addition of a methylene bridge to nucleic acid analogues to “lock” the RNA 

conformation, resulting in higher binding affinity to complementary RNA, enhanced single 

nucleotide discrimination and better resistance to exo- and endonucleases, thus improving 

overall assay sensitivity and specificity (Vester and Wengel, 2004).  

1.6.3. Target Prediction and Validation 

The miRNA – mRNA interaction is determined by the seed region of miRNA, which 

contains a short nucleotide sequence. This property enables miRNA to bind with multiple 

mRNA targets, at the same time allowing a single mRNA to be regulated by multiple 

miRNAs. Using prediction databases that match miRNA seed region sequences to that of 

mRNAs, it is possible to predict potential target genes of a particular miRNA, which justifies 

further experimental validation. Currently, there are a number of miRNA prediction 

programmes freely accessible online, each relying on its own unique algorithm based on 

knowledge on miRNA behaviour. Target prediction of a miRNA is not recommended based 

on only a single database, due to differences in the criteria used by each algorithm. Available 

comparative studies failed to identify a single database that is consistently superior to the 

others. To combine the strengths of each programme, it is recommended to use three to four 

computational approaches in predicting miRNA targets or a single algorithm that combines 

several prediction databases (Li et al., 2010; Witkos et al., 2011; Bernardo et al., 2012).  
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To further verify miRNA targets, several experimental validation methods have been 

proposed. Reporter assays are amongst the most commonly used method. In principle, cell 

lines need to be transfected with plasmid containing luciferase reporter vector incorporated 

with the 3’ UTR of the predicted miRNA target. MiRNA-mRNA binding is confirmed by co-

transfecting the cells with either miRNA mimic or inhibitor. A change in luciferase 

expression is expected if miRNA-mRNA binding occurs. Alternatively, qPCR and Western 

blotting can be used to quantify the predicted targets of a miRNA, thus indirectly identifying 

potential miRNA-mRNA interactions. The same methodologies may also be applied to 

evaluate regulation and functionality of a miRNA of interest. Transfection of miRNA mimic 

or inhibitor to cultured cells may lead to a change in protein expression and consequently 

phenotypic alteration. Introduction of double-stranded miRNA mimic will complement 

endogenous mature miRNA leading to further protein inhibition. On the other hand, a miRNA 

inhibitor, which is single-stranded oligonucleotide, will block endogenous miRNA binding, 

increasing protein synthesis. These changes can then be assessed by several methods 

including immunofluorescence studies and Western blotting. 

In vitro validation of miRNA target is often followed by determination of its regulation 

and function in vivo. This is most commonly achieved by administering miRNA inhibitor in 

vivo to reduce the level of mature miRNA, thus increasing target mRNA and protein levels. In 

contrast, in vivo application of miRNA mimics in miRNA research is very limited, largely due 

to their significant off-target effects. Both miRNA inhibitors and miRNA mimics used in vivo 

must be chemically modified in a way to facilitate permeability into cells, delay excretion and 

enhance in vivo stability. However, these requirements can be problematic especially for 

miRNA mimics, as they will result in miRNA uptake by tissues that do not normally express 

the miRNA of interest, resulting in unwanted side effects (Rooij, 2011). A number of 

developments have been made to address this issue, including the use of viral vectors for 

miRNA mimic delivery. The use of adeno-associated viruses (AAVs) also enables continuous 

expression of miRNA, thus ensuring more effective replacement of down-regulated miRNAs. 

Different AAVs serotypes have different tissue specificity which can also be exploited to 

facilitate more directed delivery (Rooij, 2011).  

1.7. Aims and Hypothesis 

The aims of this study are to: 

1. Profile microRNA in kidney proximal tubular epithelial cell lines and human primary 

proximal tubular epithelial cells following ischaemia and reperfusion injury. 
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2. Identify key potential microRNAs which are involved in the renal response to 

ischaemia and reperfusion injury. 

3. Analyse functional aspects of those key microRNAs in vitro to try to explain their 

potential role in cellular response to injury. 

4. Validation of key microRNAs profile in vivo. 

 

This study hypothesises that ischaemia – reperfusion injury will result in changes in 

microRNA expression in renal proximal tubular epithelial cells, which will affect their 

morphology and function. 
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Chapter 2. General Methods and Reagents 

2.1. Risk Assessment 

All experiments conducted are in compliance with Biological Control of Substances 

Hazardous to Health (BIOCOSH) and Control of Substances Hazardous to Health (COSHH) 

regulations. Risk assessment form was submitted and approved by the University Biological 

Committee. All laboratory work was conducted in accordance with Institutional rules and 

regulations.  

2.2. Project Overview 

This project is divided into three main experimental steps as illustrated in Figure 2-1. 

The first part of the project was focused on the generation of primary PTECs, which involved 

optimisation of the isolation protocol and characterisation of the cells isolated. The second 

part of the project was directed at generating protocols for inducing ischaemia and reperfusion 

injury in the cells and evaluating the changes induced by these injuries. More importantly, the 

second part of the project concentrated in profiling the changes of miRNAs, selection of 

candidate miRNAs, and prediction and validation of their target genes. The last part of the 

project was aimed at interrogating the biomolecular role of specific miRNAs in vitro and 

validating their expression and distribution in human tissues.  
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Figure 2-1. Project flowchart  
Summary of the overall experimental steps involved in the study. Numbers indicate the sequence in 
which these experimental steps were conducted. 

2.3. Tissue Culture; HKC-8 & HK-2 Cells 

2.3.1. Cells Lines Used 

HKC-8 is an immortalised human cortical kidney tubular epithelial cell developed in 

the National Cancer Institute, Bethesda, US. The cell line was immortalised by transfection 

with an Adenovirus-12 SV40 vector. HKC-8 has been well characterised and demonstrated to 

have a profile of cell integrins typical of the proximal tubule (Thraves et al., 1990). Its 

biochemical properties were also found comparable to other established cell lines, including 

LLC-RK1, OK and HK-2 cells (Racusen et al., 1996). HKC-8 has been used in several 

studies, including those focusing on the role of epithelial cells in renal fibrosis (Moll et al., 

2013). 

HK-2 is an immortalised proximal tubular epithelial cell line from normal adult human 

kidney developed in the Fred Hutchinson Cancer Research Centre, USA. It is derived from a 

primary proximal tubular epithelial cell culture of normal adult human renal cortex. The cells 

were immortalised by recombinant retrovirus containing HPV 16 E6/E7 genes (Ryan et al., 
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1994). It has been shown to retain functional characteristics of primary tubular epithelium and 

demonstrated reproducible experimental results compared with freshly isolated proximal 

tubular epithelial cells (Ryan et al., 1994). 

2.3.2. Culture & Maintenance of HKC-8 and HK-2 Cells 

HKC-8 and HK-2 cells were cultured in specified growth medium as described in Table 

2-1. The cells were grown in a humidified incubator at 37°C with 5% CO2 until they reached 

approximately 80% confluence. To passage, the culture medium was removed and replaced 

with 4 mL of sterile Dulbecco’s Phosphate Buffer Saline (DPBS; Sigma-Aldrich, USA). 

DBPS was removed prior to incubation with 0.5 gram/L Trypsin – 0.2 gram/L EDTA (Lonza, 

Switzerland) for 5 minutes. Trypsin-EDTA will break cell adhesion to the culture dish and 

cell-to-cell adhesion. Detached cells were recovered by adding culture medium before 

centrifugation for 5 minutes at room temperature. The supernatant was discarded. Cells were 

seeded onto a plastic flask. For experimental purposes, the cells were seeded in 6-well plates 

at 100,000 cells/mL/well, with 2mL cells suspension in each well.  

Table 2-1 Specification of culture media, media supplementation, centrifugation and seeding 
protocol for cell line 

Cells Base Culture 
Medium 

Medium 
supplementation 

Rotor 
speed 
(G) 

Seeding 
vessel 

Seeding 
density 

HKC-8 DMEM / HAM 
F-12 (Lonza) 

5% FBS (Sigma)  
100 U/mL Penicillin 
100 µg/ml Streptomycin 
(Sigma) 

1,000 g 75cm2 flask 
 
6-wells plate 

2 x 105 
cells/mL 
0.5 x 105 
cells/mL/well 

HK-2 DMEM – high 
glucose (4.5 
gram/L)  
(Lonza)  

5% FBS (Sigma) 
100U/mL Penicillin 
100µg/ml Streptomycin 
(Sigma) 

300 g 25cm2 flask 
 
6-wells plate 

1.5 x 105 
cells/mL 
0.5 x 105 
cells/mL/well 

2.3.3. Cell Counting 

Cells were counted manually using a haemocytometer. The pellet was re-suspended in 

1 mL culture media. 10 µL of cell suspension was mixed with 10 µL of 0.4% Trypan blue 

(Sigma-Aldrich, USA) to estimate cell count per millilitre. The mixture placed in a 

haemocytometer and a bright field inverted microscope was used to count the number of cells. 

Viable cells should exclude the blue dye, thus will appear clear against the blue background.  
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2.3.4. Cryopreservation, Recovery & Passage Selection 

Alternatively, cells were cryopreserved by re-suspending the cell pellet in foetal bovine 

serum (FBS) containing 10% Dimethylsulfoxide (DMSO; Sigma-Aldrich). The suspension 

was stored in a 1.5 mL cryovial which was frozen gradually at -80°C before transferring to 

liquid nitrogen for long-term storage. If required, cryopreserved cells were thawed slowly to 

37°C. Once thawed, complete culture media was added to the suspension. The mixture was 

centrifuged for 5 minutes (centrifuge speed is described in Table 2-1) at room temperature 

and cells re-suspended in media. Subsequent culture and propagation were performed as 

described previously. To ensure reproducibility, I only used cells with passage number 38-40 

for HKC-8 cells, and passage number 10-15 for HK-2 cells. 

2.4. Isolation of Primary Proximal Tubular Epithelial Cells 

2.4.1. Tissue Origin and Ethical Approval 

Ethical approval was obtained from National Research Ethics Committee, East 

Midland, UK for works on gene and protein expression in the kidney (REC reference number 

13/EM/0311). Kidney tissue was derived from macroscopically normal parts of nephrectomy 

specimens removed for oncological indications. The tissue was collected in sterile RPMI 

1640 media (isolation media; Sigma-Aldrich, USA) supplemented with 5% FBS and 

Penicillin (100 U/mL) / Streptomycin (100 µg/ml), and was immediately transported at 4°C 

for cell isolation.  

2.4.2. Isolation Protocol 

All isolation steps were conducted in a sterile environment dedicated to human primary 

cell work. The renal fibrous capsule and medulla (if present) were removed, leaving only the 

renal cortex. Tissue was inspected for any macroscopic pathology, which if evident would 

exclude the sample from further isolation steps. Gross weight of the specimen should be at 

least 1.5 gram wet weight. Renal cortex was minced into approximately 1 mm3 pieces. 

Collagenase-4 (Sigma-Aldrich, USA) was added to isolation medium to make the final 

concentration of 0.67 mg/ml and tissue was incubated at 37°C for 2 hours on an automated 

rocker.  The suspension then passed through a 40 µm cell strainer. Discontinuous Percoll 

(Sigma-Aldrich, USA) gradients were made up in two densities; 1.04 gram/mL in isolation 

medium and 1.07 gram/mL in PBS. The sieved suspension was loaded onto the gradient and 

spun down at 900 g for 25 minutes at 4°C. A band containing tubular epithelial cells should 
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be visible after the centrifugation. This population was recovered by careful aspiration and 

was seeded into a 25 cm2 flask for further culture.  The seeding density in a 25 cm2 flask 

should not exceed approximately 1.5 x 105 cell/mL. This seeding density should reach 80-

90% confluency in 5-7 days. Culture media was replaced every 2-3 days by mixing the new 

media with 1mL of conditioned media. The detail of media used and their respective 

supplementation can be found in Table 2-2.  

Table 2-2 Type and composition of media used in isolation and culture of human primary 
PTECs 

Cells Base Culture 
Medium Medium supplementation 

Isolation 
medium 

RPMI 1640  
(Sigma)  

5% FBS (Sigma) 
100 U/mL Penicillin 100 µg/ml Streptomycin (Sigma) 

Culture 
medium 

DMEM / HAM F-12 
(Lonza) 

REGM SingleQuot Kit + growth factors (Lonza), 
containing: 
   0.5 mL Insulin 
   0.5 mL Hydrocortisone 
   0.5 mL GA-1000 
   0.5 mL Adrenaline 
   0.5 mL T3 
   0.5 mL Transferrin 
   2.5 mL FBS 
   Human epithelial growth  
   factor 

2.4.3. Passaging Cells 

Cells were passaged once they reached 80% confluency. Confluent cells were washed 

and detached using trypsin EDTA as previously described in section 2.3.2. Trypsin was 

neutralised by adding growth media before pelleting the cells by centrifugation at 500 g for 5 

minute. To maintain subsequent passages, 25 cm2 flask was used with 1.5 x 105 cell/mL 

seeding density. For use in specific experiments, cells were seeded in accordance to the 

experimental protocol, using multi-well plates.  

2.4.4. Cryopreservation, Recovery & Passage Selection 

Cryopreservation was performed by re-suspending the cell pellet in freezing medium 

containing FBS and 10% DMSO (Sigma-Aldrich, USA). The suspension was transferred to 

1.5 mL cryovials. Cell cooling was performed gradually at a rate of approximately 1°C per 

minute using a cryo-freezing container until reaching -80°C. Cryovials were placed in liquid 

nitrogen for long-term storage.  Recovery was performed as described for HKC-8 and HK-2 

cells. 
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2.5. RNA Isolation and Quality Control 

2.5.1. Protocol 

Cells were harvested from flasks or plates by trypsinisation and centrifugation. 

Remaining growth medium was replaced with DPBS (Sigma-Aldrich, USA), and samples 

were kept on ice (4°C). RNA was isolated using miRvana microRNA isolation kit (Ambion, 

Life Technologies, USA). Briefly, DPBS was removed followed by disruption of cells using 

lysis buffer and denaturing solution in 1:1 ratio, using 300 µL of lysis buffer for every 1 

million cells. Purification and DNA removal were performed by adding Acid-Phenol: 

Chloroform extraction mixture, followed by 5 minute centrifugation at 12,000 g at room 

temperature. The mixture should separate into aqueous and organic phases after 

centrifugation. Using 100 µL pipette, the upper aqueous phase was carefully transferred into a 

fresh micro-centrifuge tube. The volume of aqueous phase collected should be recorded at this 

step, in order to accurately determine the volume of 100% ethanol to be added subsequently. 

Pure ethanol was added to the sample, and the mixture was passed through the filter cartridge. 

Samples were washed and centrifuged three times using two types of Washing Solutions 

provided in the kit (once with Was Solution 1, and twice with Wash Solution 2/3). The flow-

through was discarded after each washing step. To ensure complete removal of organic 

compunds, the filter cartridge, was centrifuged at 11,000 g for 2 minutes at room temperature. 

The filter cartridge was transferred into a new collection tube. 100 µL of nuclease-free water 

was heated at 60°C, and then added to the centre of the filter cartridge. The tube was 

centrifuged at 12,000 g to elute the final RNA product. The product was immediately placed 

on ice for analysis or quality control, or stored in -80°C.  

2.5.2. RNA Quality Control 

RNA quality was evaluated by spectrophotometry (NanoDrop ND-1000: Thermo 

Scientific, USA) and agarose gel electrophoresis.  Purity of RNA was assessed from the ratio 

of absorbance of a sample at 260 nm and 280 nm, as well as 260 nm and 230 nm. A ratio 

equivalent to 1.8 – 2.0 was considered acceptable for RNA. Lower than acceptable ratio 

indicates possibility of protein or other contaminants with absorption close to 280 nm.  An 

acceptable ratio value of 260/230 nm absorbance was 2.0-2.2. Lower absorbance value may 

be a sign of carbohydrate, phenol or other contaminants, which absorb at 230 nm. Each RNA 
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sample was validated individually before being used in downstream gene expression analysis 

assay.  

Based on absorbance measurements the RNA was free of significant contamination. 

Figure 2-2 shows the spectrophotometry results of RNA isolated from human primary PTEC, 

HKC-8 and HK-2 cells. Absorbance ratios at 230 nm, 260 nm and 280 nm were all within 

acceptable range (Figure 2-2). The isolation method was also proven to yield a good RNA 

concentration. In summary, the spectrophotometry results indicated that relatively pure RNA 

was isolated from cells. Consistent RNA concentration obtained from each cell line indicated 

consistent cell seeding density and reproducibility of the RNA isolation methods used. 

 

 

Figure 2-2 Spectrophotometry results of RNA isolated from different cell types  
The figures demonstrate absorbance at 280 nm, 260 nm and 230 nm. Results were randomly selected 
representative of RNA isolation result from (a) HKC-8 cell, (b) HK-2 cell and  (c,d) human primary 
PTECs obtained from two different patients  

 

In addition, RNA integrity was evaluated using agarose gel electrophoresis. A 1.2% 

agarose gel was prepared in 1x TBE buffer (Table 2-3) containing 0.5 µg/mL Ethidium 

Bromide.  The mixture of RNA and loading dye was heated at 65°C for 5 minutes before 

loading. Electrophoresis was performed in 1x TBE buffer at 10 V/cm.  

 

 

a b 

c d 

HKC8 HK2 

pPTEC pPTEC 
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Table 2-3 1x TBE buffer composition 
Reagents Weight Concentration 
Tris Base 10.8 gram 89mM 
Boric Acid 5.5 gram 89mM 
Na2EDTA 0.93 gram 2mM 

 

Subsequently, the gel was imaged under UV light (Syngene G:Box gel dock and 

software) to detect the presence RNA bands. 1 kb DNA ladder (Promega, USA) was used as 

reference and positive control. Visible and intact 28s rRNA and 18s rRNA bands indicates 

good RNA integrity. Figure 2-3 illustrated the integrity of RNA isolated from HKC8 cells, 

with two distinct bands (18s and 28s rRNA) visible on RNA gel electrophoresis. 

 

 

Figure 2-3. RNA gel electrophoresis 
Gel electrophoresis of RNA isolated from HKC-8 cells. 1 µg of total RNA was loaded into a lane 
(denoted as RNA). 1 kb DNA ladder (denoted as LAD) was used as a reference and positive control. 

2.6. Gene Expression Analysis 

2.6.1. Reverse Transcription 

First strand cDNA was synthesised using TaqMan® Small RNA Assays - Reverse 

Transcription Kit (Life Technologies, USA). This is a commercially available kit, with pre-

formulated primer and probe sets designed to detect and quantify mature microRNAs 

(miRNAs). Principally, the assay consists of two main steps; (1) hybridisation of a miRNA 

specific stem-loop reverse transcription (RT) primer to a single-stranded miRNA, and (2) 

addition of reverse-transcriptase enzyme, which extends the cDNA (Figure 2-4). 
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Figure 2-4 Reverse transcription of a miRNA 
Illustration of the first step in quantifying miRNA expression using real-time PCR, which involved 
addition of a specific stem-loop RT primer followed by reverse-transcriptase enzyme. Source: 
(Bernardo et al., 2012)  

Briefly, a master-mix containing the components listed in Table 2-4 was made in 

accordance to the assay protocol. The master mix was then added to the mixture of 5x miRNA 

specific reverse-transcription primer and the RNA sample. The composition of each RT 

reaction is summarised in Table 2-4. 

Table 2-4 Components of RT Reaction 
RT master mix Component Vol. (µL) / reaction 
100mM dNTPs (with dTTP) 0.15 
MultiSCribe™ RTase, 50U/uL 1.00 
10x RT Buffer 1.50 
RNase Inhibitor, 20U/uL 0.19 
Nuclease-free water 4.16 
Master mix volume 7.00 
     +  5x RT primer 3.00 
     +  RNA sample 5.00 
Total volume 15.00 

 

Each reaction was performed in a 0.2 mL nuclease-free microtube which was 

centrifuged for 2 minute at 2,000 g at room temperature. After a 5-minute incubation period 

on ice, the samples were placed in a thermal-cycler (TC-512, Techne Bibby Scientific). The 

thermal cycler settings shown in Table 2-5 were used. 

Table 2-5 Reverse transcription thermal cycler setting 
Step Time Temperature 
Hold 30 minutes 16°C 
Hold 30 minutes 42°C 
Hold 5 minutes 85°C 
Hold ∞ 4°C 
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2.6.2. Real-time PCR 

2.6.2.1. Materials & Protocol 

TaqMan qPCR Assay kits (Life Technologies, USA) were used to quantify miRNA 

expression. Each PCR reaction contained the components shown in Table 2-6. The initial 

phase of the assay denatured the double-stranded cDNA by increasing temperature. TaqMan 

oligonucleotide probes contain a reporter fluorescent dye on the 5’ end and quencher dye on 

3’ end. When target sequence is detected, the probe anneals, allowing it to be cleaved by the 

5’ nuclease activity of Taq DNA polymerase. This cleavage separates the reporter dye from 

the quencher, increasing emission (Figure 2-5).  The increase in fluorescence intensity will be 

proportional to the number of amplicons produced, as more reporter dye molecules are 

cleaved with each PCR cycle. This method permits specific hybridization between probe and 

target, and measurement of multiple targets in one reaction. Primers used in this study are 

listed in Table 2-7 

Table 2-6 Components of PCR Reaction 
Component Vol. (µL) / reaction 
TaqMan Small RNA Assay (20x) 1.00 
Product from RT Reaction 1.33 
SensiFAST™ Probe-HiROX mix 10.00 
Nuclease-free water 7.67 
Total volume 20.00 

 

 

 

Figure 2-5 Amplification and miRNA detection by TaqMan probe 
MiRNA sequence was amplified using forward and reverse primer, and TaqMan probe specific for the 
miRNA. TaqMan probe is dual labelled with a fluorophore (F) and a quencher (Q). Source: (Bernardo 
et al., 2012)   
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Table 2-7 PCR Primers 
Primer Name Nucleotide sequence Source 

hsa-miR-21-5p UAGCUUAUCAGACUGAUGUUGA Life Technologies, USA 

hsa-miR-34a-5p UGGCAGUGUCUUAGCUGGUUGUU Life Technologies, USA 

hsa-miR-363-3p AAUUGCACGGUAUCCAUCUGUA Life Technologies, USA 

hsa-miR-210-5p AGCCCCUGCCCACCGCACACUG Life Technologies, USA 

hsa-miR-142-3p UGUAGUGUUUCCUACUUUAUGGA Life Technologies, USA 

hsa-miR-130b CAGUGCAAUGAUGAAAGGGCAU Life Technologies, USA 

 

Each reaction was loaded into a 96-well plate. The real-time PCR system (7500 Fast 

real Time PCR System, Applied Biosystem, USA) was set in accordance to the 

manufacturer’s protocol (Table 2-8) 

Table 2-8 PCR Setup for MicroRNA 

Step 
Enzyme Activation PCR 

Hold Cycle (40 cycles) 
Denature Anneal/extend 

Temperature 95°C 95°C 60°C 
Time 10 minutes 15 seconds 60 seconds 
Run mode: standard 
Sample volume = 20µL 

 

2.6.2.2. Data Analysis 

During the initial phases of a PCR, little change in fluorescent signal should be 

detected. This is regarded as baseline. A fixed fluorescence threshold was set above the 

baseline for each PCR amplification plot. The cycle number at which the fluorescence 

detection passes the fixed threshold was recorded (CT or threshold cycle) for each reaction.  

Comparative quantification (ΔΔCT) was used to determine the fold difference in gene 

expression. This method of qPCR analysis allows comparison between a given sample with a 

control sample (control / calibrator) and a reference gene (normaliser / endogenous control). 

The calculation for this analysis is summarized below (tar C = target gene in control; ref C = 

reference gene in control; tar S = target gene in sample; ref S = reference gene in sample). 

CT tar C - CT ref C = ΔCT calibrator 

CT tar S - CT ref S = ΔCT sample 

ΔCT sample - ΔCT calibrator = ΔΔCT 

Fold difference = 2 –ΔΔCT 
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2.6.2.3. Reference Gene Selection 

An ideal reference gene should be expressed constantly and with high abundance 

across the cell lines of interest and under different conditions. Several human endogenous 

controls have been identified, with RNU48, among others, reported as the most highly 

abundant across a selection of 38 human tissues (CT = 22.2 ± 0.8) (Biosystems, 2007). 

RNU48 also showed relatively stable expression in National Cancer Institute-60 human cell-

lines (CT = 22.2 ± 1.4) (Biosystems, 2007). I confirmed this abundance and stability of 

expression by analysing CT values of RNU48 across the cell lines used in this study as well as 

across different treatment conditions (Figure 2-6). Threshold cycle of RNU48 was similar in 

HKC-8 and HK-2 cells. This is the basis of selecting RNU48 as reference gene in our study. 

 

 

Figure 2-6 RNU48 threshold cycle in HKC-8 and HK-2 cells in various treatment conditions 
CT values of RNU48 in HKC-8 and HK-2 cells. Comparison was made between the cells incubated in 
1% O2 for 24-hour, the cells treated in H2O2 and untreated cells. Each point represents the mean of CT 
values + SD of three samples. Detection of the difference between the mean was performed using one-
way ANOVA test. 
 

2.6.2.4. Primer Efficiency 

The efficiency of both the reference and target primers were measured by performing 

PCR for reference and target gene on serial dilutions of cDNA (1:10, 1:100, 1:1,000 and 

1:10,000). The CT values of each dilution were used to generate a standard curve. The slope 

(y) was obtained from the standard curve and was used to calculate percentage amplification 

efficiency (E) using the formula below: 

E = [(10–1/slope)-1] × 100% 
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The acceptable percentage amplification efficiency result should be between 85% - 

110% (Biosystems, 2014). Experiments to validate primer efficiency were performed for three 

genes of interests (miR-21, miR-34a and RNU48), which were used in the initial phase of this 

study. Through serial dilutions of cDNA, each primer set showed an increase in CT values 

(Figure 2-7). The efficiency for all primers was close or within the accepted range. 

 

 

Figure 2-7 Primer efficiency validation of RNU48, miR-21 and miR-34a 
Primer efficiency validation of (a) RNU48 as reference gene, (b) miR-21 and (c) miR-34a. Three 
replicates were for each cDNA dilution of a primer. The experiments were performed using RNA 
isolated from untreated HKC-8 cells. Percentage efficiency (E) was calculated from the slope (y) 
generated from each standard curve, using the formula E = [(10–1/slope)-1] × 100%. The acceptable 
range is between 85%-110% 
 

2.7. Luciferase Assays 

2.7.1. Materials and Protocol 

Reagents and buffers used in all luciferase assays were performed using a Luciferase 

Assay System kit (Promega, USA). The system required lysis of the cells containing the 

luciferase, which was followed by addition of luciferase assay reagent that generates nearly 
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constant light for at least 1 minute. The amount of light generated reflects the activity of 

firefly luciferase present.  

Briefly, cells containing the luciferase reporter under the control of a promoter of 

interest were used for this assay. After removal of growth medium, cells were washed gently 

with sterile PBS. Cells were lysed by dispensing 100 µL of 1x Lysis Reagent provided in the 

kit, into each well used in a 24-well plate. Samples underwent a freeze-thaw cycle at 37°C for 

10 minutes followed by -80°C for 10 minutes before mechanically detached from plate using 

a cell scraper. The cell suspension was mixed well and centrifuged at 2,000 g for 15-30 

seconds. 30 µL of each cell suspension was transferred into a designated well in a 96-well 

white opaque plate. 70 µL of luciferin reagent was added to each 30 µL sample immediately 

prior to luciferase activity measurement. Luciferase activity was measured using a multimode 

microplate reader (Molecular Devices, USA). The remaining 50 µL of cell suspension was 

used for protein quantification. Luciferase activity was normalised to the total protein 

concentration of the sample. Normalised values were analysed to detect differences in 

luciferase activity between samples.  

The cells containing the luciferase reporter used in this study include SMAD3-

luciferase HKC-8 cells, HRE-luciferase HKC-8 cells, and pGL3-luciferase HKC-8 cells. The 

details of these cells will be discussed under sub-sections describing their use in specific 

experiments.  

2.8. Western Blotting 

2.8.1. Materials 

Buffers and reagents used for Western blotting (WB) are listed in Table 2-9. Western 

blot technique was used in various experimental steps of this project. Primary and secondary 

antibodies used are listed in Table 2-10 and Table 2-11 respectively. 
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Table 2-9 General buffers, washing solutions and other reagents used in Western blotting 
Buffers / Reagents Contents Source 
RIPA buffer 150 mM NaCl 

50 mM Tris (pH 7.5) 
0.1% sodium dodecyl sulfate (SDS) 
1% Triton x-100 
0.5% deoxycholic acid 
10 µL/mL phosphatase inhibitor 
protease inhibitor  
made up to 50 mL with nanopure water 

Sigma 
Sigma 
Sigma 
Sigma 
Sigma 
Abcam 
Thermo Scientific 

4X Laemmli sample 
buffer 

355 mM 2-mercaptoethanol (50 µL) + 
950 µL of 4X Laemmli buffer 

Sigma 
Bio-Rad, USA 

10X MOPS running 
buffer 

MOPS 52.3 gram 
Tris (base) 30.3 gram 
SDS 5 gram 
EDTA 1.5 gram 
Make up to 1 L with distilled water 

Sigma 
Sigma 
Sigma 
Sigma 

10X Transfer buffer Tris (base) 30.2 gram 
Glycine 144 gram 
Make up to 1 L with distilled water 

Sigma 
Sigma 
 

10X Tris-buffered 
saline (TBS) 

NaCl 87.6 gram 
Tris (base) 12.1 gram 
pH 8.0 
Make up to 1 L with distilled water 

Sigma 
Sigma 
 

TBS Tween (TBST) 9 volumes of distilled water 
1 volume of 10X TBS 
0.05% w/v Tween-20 

 
 
Sigma 

Blocking solution 5% w/v non-fat dry milk in 1X TBST Not applicable 
General diluent for 
antibodies (see Table 
2-10 and Table 2-11 
for exception) 

1% w/v non-fat dry milkin 1X TBST Not applicable 

Developing substrates Pierce ECL Western blotting substrates Thermo Scientific 
Film developer RG X-ray developer solution Champion Photochemistry 
Film fixer RG X-ray fixer solution Champion Photochemistry 

 

2.8.2. General Protocol 

Protein lysates for Western blotting were prepared by mixing cells with a pre-made cell 

disruption (RIPA) buffer. From here on, cells were kept at 4°C. 100 µL of RIPA buffer was 

added to every well in a 6-well plate. Cells were scraped and transferred into a 

microcentrifuge tube and sonified twice for 10 second with approximately a 5-10 second 

interval. Lysates were centrifuged at 4°C, at maximum speed (12,000 g) for 15 minutes. 

Supernatant was aspirated without disturbing the debris at the bottom of the tube, and 

transferred into a clean tube. Protein concentration was measured using the BCA protein 

assay. Lysates were diluted to 1 µg/µL in 4X Laemmli sample buffer containing 2-

mercaptoethanol. Samples were heated to 95°C for 5 minutes.  
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Protein electrophoresis was performed using pre-cast 4-12% Acrylamide protein gel, 

1.0 mm (Invitrogen, USA), immersed in 1X MOPS running buffer. Protein gels were run at 

120 constant voltage for approximately 2 hours. Proteins were transferred to a 0.2 µm-pore 

PVDF membrane (Amersham, USA) using a semi-dry transfer method for 30 minutes at 1 A; 

25 V. The membrane was washed and blocked using blocking solution at room temperature 

for 1 hour.  Subsequently, the membrane was incubated in the diluted primary antibody at 4°C 

overnight. The antibody was diluted in the diluent listed in Table 2-10. Diluted secondary 

antibody was applied after the membrane was adequately washed (four times 10 minutes 

washing time) using 1X TBS. Diluent for secondary antibody is listed in Table 2-11. The 

membrane was incubated in secondary antibody for 2 hours at room temperature. Prior to film 

exposure, Pierce enhanced chemiluminescent (ECL) substrates were applied onto the 

membrane for 1 minute. Protein bands were visualised by exposing the membrane to a film 

for a designated exposure time, followed by film development and fixing.   

2.8.3. Protein Band Intensity Analysis 

Protein band intensity was quantified using image analysis software, ImageJ 

(Schindelin et al., 2015). The band intensity of a particular protein was normalised to the 

intensity of a loading reference protein (GAPDH) band of the respective sample. The 

normalised intensity measurements were compared to identify the effect of a particular 

treatment given.  
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Table 2-10 Primary Antibodies 

Protein Antibody Source Host Target Application Clonality Dilution Diluent Secondary 
Antibody 

ZO-1 Anti-ZO-: sc-10804 Santa Cruz Bio, Inc. Rabbit Human IF Polyclonal 1 : 100 PBS 1 
E-Cadherin  Anti-E-Cadherin BD Transduction 

Lab. 
Mouse Human IF 

WB 
Monoclonal 1 : 100 

1 : 2000 
PBS 
General 

2 
5 

K-Cadherin  Anti-K-Cadherin: sc-1503 Santa Cruz Bio, Inc. Goat Human IF Polyclonal 1 : 100 PBS 4 

Cytokeratin  Anti-Cytokeratin 19 Abcam Rabbit Human IF Polyclonal 1 : 100 PBS 1 
α-SMA Anti- α-Actin: sc-32251 Santa Cruz Bio, Inc.  Mouse Human IF 

WB 
Monoclonal 1 : 100 

1 : 1000 
PBS 
General 

2 
5 

Vimentin Anti-Vimentin Abcam Rabbit Human IF Polyclonal 1 : 100 PBS 1 
Collagen I Anti-Collagen I Abcam Rabbit Human IF Polyclonal 1 : 100 PBS 3 
Collagen I Anti-Collagen I alpha 1 Novus Bio Rabbit Human WB Polyclonal 1 : 1000 Blocking sol. 6 
SMAD3 Anti-SMAD3 Abcam Rabbit Human IF Polyclonal 1 : 100 PBS 3 
SMAD7 Anti-SMAD7 Invitroge Rabbit Human WB Polyclonal 1 : 1000 Blocking sol. 6 
HIF-1α Anti-HIF-1α Santa Cruz Bio, Inc Mouse Human IF Monoclonal 1 : 100 PBS 2 
GAPDH Anti-GAPDH Sigma Mouse Human WB Monoclonal 1 : 2000 General 5 
GAPDH Anti-GAPDH Sigma Rabbit Human WB Polyclonal 1 : 2000 General 6 

Table 2-11 Secondary Antibodies 

Number Antibody Source Host Target Application Dilution Diluent 
1 Alexa Fluor 488 AbCam Goat Rabbit IF 1 : 200 Pure water 
2  Alexa Fluor 488 Invitrogen Goat Mouse IF 1 : 200 Pure water 
3 Alexa Fluor 546 Invitrogen Goat Rabbit IF 1 : 200 Pure water 
4 FITC Abcam Rabbit Goat IF 1 : 200 Pure water 
5 HRP-conjugate Dako Goat Mouse WB 1 : 2000 General 
6 HRP-conjugate Dako Goat Rabbit WB 1 : 2000 General 
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2.9. Immunofluorescence 

2.9.1. Materials 

For immunofluorescent (IF) staining, the buffers/reagents are used (Table 2-12). 

Immunofluorescent staining technique was used in various experimental steps of this project. 

Primary and secondary antibodies used are listed in Table 2-10 and Table 2-11 respectively. 

Table 2-12 General buffers and reagents used in immunofluorescence technique 
Buffers / Reagents Contents Source 
Phosphate buffered saline 
(PBS) 

1.15 gram Na2HPO4 
8.0 gram NaCl 
0.2 gram KCl 
0.2 gram KH2PO4 
in 1000 mL distilled water, pH 
adjusted to 7.4 

Sigma 
 

Blocking solution 5% goat serum  
in PBS 

Sigma 

Mounting medium Anti-fading agent 
0.015 mol/L sodium azide 

Dako 

2.9.2. General Protocol 

Briefly, cultured cells were grown on 13 mm diameter sterile coverslips in 6-well plates 

until a visible monolayer of cells was formed. Cells were fixed with ice-cold methanol for 10 

minutes, followed by three washes with PBS, each for approximately 3 minutes. Coverslips 

were incubated in 5% serum from the secondary antibody host to block non-specific binding. 

The blocking solution was removed and coverslips were incubated overnight at 4°C with 

primary antibody. Residual unbound primary antibody was removed by washing the 

coverslips with PBS three-times, each for approximately 3 minutes. This was followed by 

incubating the coverslips in secondary antibody for 2 hours at room temperature. Nuclei were 

counter-stained with 100 µL DAPI (4',6-diamidino-2-phenylindole; Sigma-Aldrich) 1 : 3,000 

dilution in PBS for 10 minutes at room temperature. Coverslips were washed with PBS before 

mounting onto microscopy slides using fluorescence mounting medium. Visualisation was 

performed using Zeiss AxioImager fluorescent microscope available in BioImaging Core 

Facility, Newcastle University and Leica Fluorescent microscope at the Biobank Imaging 

Service Unit, Newcastle University, UK. For each immunofluorescent experiment performed, 

the expression of a protein of interest in the treatment group was compared to its expression in 

a non-treated group (control). Negative control using cells fixed onto a slide, which were 

given primary antibody or secondary antibody only were used to detect possible non-specific 

signal.  
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2.9.3. Quantitation of Fluorescence Staining 

Area of fluorescence (µm2) indicates the level of expression of a protein of interest in 

one field of view.  Area of fluorescence was quantified using image analysis software, ImageJ 

(Schindelin et al., 2015). Mean area of fluorescence were calculated from three different 

slides. Data analysis was performed as mentioned in subsequent statistical analyses section. 

2.10. Protein Quantification – Bicinchoninic Acid (BCA) Protein Assay 

Total protein concentration was quantified using the colorimetric based BCA protein 

assay (Pierce™ BCA Protein Assay, Thermo Scientific™, USA). Briefly, 25 µL of each 

sample was added to 200 µL of a mixture of reagents containing BCA and 4% cupric 

sulphate. Reduction of Cu2+ to Cu1+ by protein will chelate BCA molecules, producing a 

purple-coloured product, which exhibits a strong absorbance at 562 nm. A multimode micro-

plate reader was used to detect absorbance of standards and samples arranged in a clear-

bottom 96-well plate. Using a set of protein standards with known concentration (20-2000 

µg/mL), a standard curve was generated (Figure 2-8), which was used to calculate protein 

concentration in test samples.  

 

 

Figure 2-8. Standard curve of BCA method 
An example of a BSA curve generated by linear regression used in protein quantification. The graph 
was produced from serial protein standards provided in the assay kit.  
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2.11. Characterisation of Human Primary Proximal Tubular Epithelial Cells  

2.11.1. Light Microscopy 

Inverted bright-field microscopy was used to visualise cellular morphology. Isolated 

cells from different patients were imaged at each passage from passage 1 to passage 5. The 

main objective was to evaluate morphological resemblance of the isolated cells to the known 

features of human PTECs. In addition, light microscopy would also identify reproducibility of 

the isolation technique, to find potential variation in cellular morphology that may exist 

between different samples and to determine potential morphological changes occurring after 

passaging cells. Qualitative comparisons were made between different passages of the same 

cell lineage and between different cell lineages at the same passage number. 

2.11.2. Immunofluorescent staining 

Immunofluorescence allows qualitative evaluation of the presence of membrane and 

cytosolic proteins specific for epithelial and mesenchymal cells. Preparation of slides is 

described in section 2.9.2. To characterise primary PTEC, I used several epithelial cell protein 

markers; ZO-1, E-Cadherin, K-Cadherin and Cytokeratin. To detect potential cellular 

contamination, the isolated cells were also stained for the presence of mesenchymal cell 

markers; α-SMA, Vimentin and Collagen I. The details of primary antibodies used are listed 

in Table 2-10. Characterisation of primary PTECs was performed using cells at passage 2.  

2.11.3. Scanning Electron Microscopy 

Scanning electron microscopy was used to assess the presence of microvilli as a typical 

feature of renal tubular epithelial cells. Two different cell isolates were randomly selected for 

electron microscopy. Cells were grown on 13mm diameter coverslips until a monolayer of 

cells was formed. To remove contaminants cells were washed with PBS. Fixation of cells was 

performed using 2% glutaraldehyde in Sorenson’s phosphate buffer at 4°C for at least 

overnight. This was followed by removal of excess fixative by PBS washes 2 times 15 

minutes. Cells underwent step-wise dehydration by immersion in a graded series of ethanol 

concentrations. Subsequent mounting, plating and imaging were performed in the Electron 

Microscopy Research Facilities, Newcastle University. Briefly, the specimens were dried 

using a Critical Point Drying (CPD) procedure, whereby carbon dioxide was removed after 

transition from the liquid to the gas phase. This step is critical to ensure the integrity of 

specimen surface in the SEM chamber. The dried specimen was mounted on a metallic stub to 
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be later inserted into the SEM. Before visualisation, the specimen was coated with 20-30 nm 

of gold-palladium to increase its conductivity as well as to prevent the build-up of high 

voltage charges (Bozzola, 2007). The preparation of SEM slides and image acquisition were 

performed with the assistance of the Electron Microscopy Research Services Unit, Newcastle 

University, United Kingdom. 

2.12. Methods to Induce Hypoxia or Simulating the Effect of Hypoxia 

To induce hypoxia or mimicking the effect of hypoxia, several methods were used. 

These include the use of 1% O2 chamber, increasing HIF-1α expression by transient 

transfection of HIF-1α plasmid, or stabilisation of HIF-1α by cobalt chloride (CoCl2) 

treatment.  

2.12.1. Hypoxic Chamber 

Hypoxia was induced by incubating cells in a 1% O2 incubator available in the Institute 

of Cellular and Molecular Biology, Newcastle University, United Kingdom. The incubator is 

equipped with airtight ports to maintain relatively constant internal O2 concentration, even 

during sample placement into the chamber or removal from the chamber.  

2.12.2. HIF-1a Plasmid Transfection 

A HIF-1a plasmid with pcDNA3 backbone vector (William Kaelin; Addgene, USA, 

see Figure 2-9) was used (Kondo et al., 2002). Bacteria (Dh5-alpha strain Escherichia coli) 

containing the plasmid was transferred onto a culture petri dish containing solidified LB agar 

supplemented with ampicillin, and incubated overnight at 37°C. 100 mL LB broth solution 

containing 50 µg/mL ampicillin was prepared. One colony of plasmid-containing bacteria 

from the agar plate was added to the broth and incubated at 37°C overnight with continuous 

mixing. The bacteria were harvested by centrifugation at 2,000 g for 5 minutes at room 

temperature. Chargeswitch-Pro® filter plasmid Maxiprep Kit (Invitrogen, UK) was used to 

isolate the plasmid. Briefly, the bacterial cell pellet was re-suspended in 7 mL resuspension 

buffer. The suspension was mixed gently with 7 mL lysis buffer, before incubating it at room 

temperature for 5 minutes. An equal volume of precipitation buffer was added to the cells 

until a white precipitate was visible. Plasmid DNA was filtered by running the lysate through 

a filter column, which was centrifuged at 4,000 g for 2 minutes at room temperature. After 

centrifugation, the flow-through collected was discarded. Wash Buffer was added to the 

column, followed by centrifugation at 4,000 g for 2 minutes. To elute the purified plasmid 
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DNA, Elution Buffer was added to the column before centrifugation at 4,000 g for 1 minute. 

The DNA quality was assessed using a Nanodrop® spectrophotometer. Isolated DNA could 

be used directly or stored at -20°C. 

HIF-1a plasmid DNA was transfected into HKC-8 cells using a reverse transfection 

method. Transfection mixture containing 50 µL basal media for HKC-8, without antibiotic or 

serum supplementation, 1.5 µL transfection reagent (Lipofectamine LTX reagent, Invitrogen, 

USA) and 500 ng of plasmid DNA was prepared inside each well prior to seeding the well 

with approximately 30,000 HKC-8. For experiments using the HIF-1a plasmid, the backbone 

vector pcDNA3 (AddGene, USA, see Figure 2-10) was transfected to HKC-8 cells as the 

control plasmid. 

 

 

Figure 2-9 Map of the HIF-1a plasmid 
Genetic sequence mapping of the HIF-1a plasmid Source: AddGene, USA 
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Figure 2-10 Plasmid map of pcDNA 
Genetic sequence mapping of the pcDNA backbone vector Source: AddGene, USA 

2.12.3. Cobalt Chloride Treatment 

Treating cells with CoCl2 will replace Fe in the enzyme HIF-prolyl hydroxylase 

domains (PHDs), responsible for degrading HIF-1α. This will inhibit their ability to recognise 

HIF-1α. Thus, CoCl2 has been widely used as a method to simulate hypoxic effect in cells. A 

10mM stock solution of CoCl2 was prepared by dissolving 0.024 gram of CoCl2 powder 

(237.93 gram/mL; molecular weight = 237.93, Sigma, USA) in 10mL of complete media. The 

stock solution was sterile filtered and diluted to a working solution of 100 µM using complete 

media.  

2.13. Assessment of the Effect of Hypoxia 

The effect of Hypoxia on the cells was validated using immunofluorescent staining for 

hypoxia-induced factor 1 – alpha (HIF-1α) and using HKC-8 cells transfected with hypoxia 

responsive element (HRE) luciferase. HKC-8 cells were used to assess hypoxia and findings 

with HKC-8 extrapolated to other cells, on the basis that all these cells possess common renal 

tubular epithelial features and therefore should behave in a similar pattern under a given 

condition.  
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2.13.1. Immunofluorescence for HIF-1a 

HKC-8 cells were grown on 13 mm diameter coverslips in 6-well plate until reaching 

90% confluency. Cells were serum starved 24 hours prior to hypoxia at in 1%O2 for 24 hours. 

HKC-8 cells treated with 100 µM cobalt chloride (CoCl2; Sigma-Aldrich) for 72 hours were 

used as positive control. Slides were prepared as described in section 2.9.2. To assess the 

effect of hypoxia, HKC-8 cells were stained for HIF-1a protein. In hypoxic conditions, HIF-

1a stabilisation is expected, indicated by intra-nuclear localisation of HIF-1a staining.  

2.13.2. Hypoxia Response Element – Luciferase Reporter Assay 

A luciferase reporter containing three hypoxia response elements (HRE) from the Pgk-

1 gene (Navdeep Chandel; AddGene, USA, see Figure 2-11) was used (Emerling et al., 

2008). The HRE-luciferase is contained in a pGL3 vector plasmid. DNA isolation from the 

bacteria containing the plasmid were performed as for the HIF-1a plasmid described in 

2.12.2.  

HRE-luciferase plasmid DNA was transfected into HKC-8 cells using a reverse 

transfection method. Briefly, approximately 30,000 HKC-8 cells were seeded in each well of 

a 24-well plate. Each well contained 50 µL basal media for HKC-8, without antibiotic or 

serum supplementation, 1.5 µL transfection reagent (Lipofectamine LTX reagent, Invitrogen, 

USA) and 500 ng of plasmid DNA. Transfected HKC-8 cells were incubated in standard 

incubator to serve as control, and in a 1% O2 incubator for 12 and 24 hours as treated groups. 

HRE-luciferase transfected HKC-8 cells were also treated with 100 µM of CoCl2 for 48 hours 

as positive control. 
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Figure 2-11 Plasmid map of HRE-luciferase 
Genetic sequence mapping of HRE-luciferase plasmid developed by Navdeep Chandel. Source: 
AddGene, USA 

The pGL3 plasmid (see Figure 2-12) was also transfected to HKC-8 cells as a vector 

control. At each designated time points, cells were harvested for the measurement of 

luciferase activity, according to luciferase assay preparation protocol described in section 

2.7.1. 

 

Figure 2-12 Plasmid map of pGL3 vector 
Genetic sequence of pGL3 basic plasmid, as a vector control for HRE-luciferase plasmid. Source: 
Addgene, USA 
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2.14. Inducing Oxidative Stress 

Treatment with hydrogen peroxide (H2O2) has been widely used as a method to induce 

oxidative stress in cells. H2O2 stock solution of 1,000 µM was prepared by adding 11.33 µL of 

H2O2 (30% w/w; 8.82 M, Sigma) into 10mL complete media. Working concentration of 100-

800 µM was diluted in sterile working environment from the stock solution. Preliminary 

viability study was performed on each cell line to determine the optimal concentration of 

H2O2. HKC-8, HK-2 or primary cells were grown to 80% confluency in 6-well plates. Cells 

were serum starved for 24 hours before treatment. 

2.14.1. Viability Assay 

Varying concentrations of hydrogen peroxide (from 100 µM to 1,000 µM in 100 µM 

intervals) in complete culture media was used to recreate reperfusion injury. Cells were kept 

in H2O2 treated media for 4 hours before the media was replaced with normal complete 

media. The cells remained in the fresh media for the following 20 hours. Cell viability was 

calculated by dividing the number of live cells (non-stained cells in Trypan blue exclusion 

assay) by the total number of cells recovered. The H2O2 concentration which showed 

evidence of cell injury with a sufficient number of surviving cells to permit analysis was 

regarded as optimal. This concentration would then be used to induce oxidative stress in that 

particular cell line. 

2.14.2. Reactive Oxygen Species Detection 

To qualitatively analyse oxidative stress in a cell population, a molecular probe 

detection reagent was used. Measurement of dichlorofluorescein (DCF) oxidation is a 

commonly used method to detect reactive oxygen species (ROS). In its reduced and 

acetylated form, 2’,7’-di-chlorofluorescein (DCF) is non-fluorescent. Intracellular esterase 

will cleave the lipophilic blocking groups, which yield a charged form of the dye (Jakubowski 

and Bartosz, 2000). Carboxy-H2DCFDA is the carboxy derivative of fluorescein, which 

carries additional negative charge, allowing greater stability. Oxidation of these molecular 

probes can be quantified by measuring the increase in fluorescence using flow cytometry. For 

this experiment, a H2DCFDA derivative with a thiol-reactive chloromethyl group, 5-(and-6)-

chloromethyl-2,7-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) was 

used. H2O2 treated HKC-8 cells were re-suspended in PBS containing 1 µM H2DCFDA dye 

and incubated for 30 minutes at 37°C.  The suspension was centrifuged at 1,000 g for 5 

minutes at room temperature. The pellet formed was re-suspended in PBS. Cell fluorescence 
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was assessed using a FACS Canto II flow cytometer (BD Biosciences, UK). HKC-8 cells 

without exposure to dye was also analysed to measure cell auto-fluorescence. Results were 

analysed using FACS Diva Clinical Software (BD Biosciences). 

2.15. MicroRNA Profiling using NanoString® nCounter Platform 

2.15.1. Assay Principle 

NanoString® nCounter is a direct digital detection platform for individual target 

molecules (i.e. microRNA) by utilising fluorescent spots that are spatially ordered (also 

known as molecular probes). Each colour arrangement represents a different type of target 

molecules, creating a huge diversity of colour barcodes. The assay colour barcodes bind to 

target miRNAs in one-to-one ratio, allowing the targets to be added directly without the need 

of amplification or enzymatic reaction. Each code will be sorted, individually counted, and 

cross-referenced to a target identity. This will give digital count of target molecules present in 

a sample. The assay involves three main steps; ligation and hybridisation, purification / 

immobilisation and counting.  

In ligation and hybridisation step, unique miRNA tag (miRtag) was added to the 

sample. This enables extension of a miRNA for downstream detection. This ligation process 

is assisted by a temporary binding to a bridge sequence with partial complementarity to both 

the miRNA and the miRtag (see Figure 2-13). The ligated target miRNA is then hybridised to 

reporter and capture probes, forming a target-probe complex (see Figure 2-14). 

 

 

Figure 2-13 Target miRNA ligation by NanoString system 
Illustration of ligation of a target mature miRNA sequence by miRTag sequence with temporary 
binding to a bridge sequence unique to both the target miRNA and miRtag. Source: NanoString 
Technologies, Inc. (NanoString Technologies Inc, 2014) 
 



 
 

67 

 

Figure 2-14 Hybridisation of miRNA in NanoString system 
Illustration of miRNA hybridisation to capture and target probes to form target-probe complex. 
Source: NanoString Technologies, Inc. (NanoString Technologies Inc, 2014) 

Excess probes are then washed, before the purified complexes are inserted to a sample 

cartridge (see Figure 2-15). Electrical current will immobilise, arrange and fix these 

complexes onto the cartridge surface. Using the Digital Analyser (DA) unit of the NanoString 

system, the target-probe complexes were captured using a microscopic CCD camera, and then 

counted. The count of each barcode is the count of a target miRNA it refers to (see Figure 

2-16). The binding of the colour barcodes to the target miRNA is performed occurred in one-

to-one ratio. In addition, no amplification step is performed in this system, limiting the 

possibility of amplification bias.  

 

Figure 2-15 Purification and immobilisation step in NanoString system 
Illustration of the removal of the excess of probes and immobilisation of target-probe complexes to the 
assay cartridge. Source: NanoString Technologies, Inc. (NanoString Technologies Inc, 2014) 
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Figure 2-16 Image capture and counting of molecular barcode in NanoString System 
Illustration of target-probe complexes being captured and counted in the Digital Analyser (DA) unit of 
a NanosString system. Counted molecules may be in the form of mRNA (as illustrated) or miRNA. 
Source: NanoString Technologies, Inc. (NanoString Technologies Inc, 2014) 

2.15.2. Assay Preparation and Setup 

The preparation for NanoString assay was performed in NanoString core facility, the 

Department of Academic Haematology, Newcastle University, United Kingdom by a 

specialised technician. The nCounter Human v3 microRNAs Expression Assay CodeSet was 

used to profile miRNAs in the samples. All experiments performed in NanoString system 

should be designed in sets of a maximum of twelve assays. In this experiment, four cell types 

were used: HKC-8, HK-2, and two primary PTECs isolated from two different patients. Each 

cell type was treated with either hypoxia or H2O2 for 2 and 12 hours. Each cell type has a 

corresponding non-treated control, which were kept in standard normoxic incubator for 12 

hours. In total, 24 samples were arranged for this profiling assay as illustrated in Figure 2-17.  

The nCounter assay platform consists of two instruments; the Prep Station and the 

Digital Analyser (DA). Assay protocol provided by the manufacturer has been previously 

tested using the same miRNA CodeSet as was used in this experiment, and therefore, was 

directly applied without further modification. The following description is only a summary of 

the procedures performed prior to NanoString data analysis. The complete protocol was 

described in detail in the Appendix, as also described in the manufacturer’s protocol 

(NanoString Technologies Inc., 2010). 

Prior to preparation, total RNA samples were normalised to 33 ng/mL using RNAse-

free water. Firstly, samples were annealed by mixing each normalised sample with previously 

prepared mixture of diluted miRNA Assay Controls, Annealing Buffer and miRNA Tag 

Reagent provided in the assay kit. Annealing step was performed using a thermocycler 
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programmed according to the assay recommendation. Ligation of miRNA targets was 

initiated after annealing by the addition of Ligation Master mix provided in the assay kit. 

After ligation, samples were hybridised to form target-probe complex. Each hybridisation 

reaction contains the following components; reporter CodeSet, hybridisation buffer, Capture 

ProbeSet, and an aliquot of the ligated miRNA. Once the hybridisation reaction is completed, 

the samples were placed in the Prep Station. Purification and immobilisation of the hybridised 

complexes onto the surface of a specialised cartridge was performed automatically in the Prep 

Station. The Prep Station allows a maximum of 12 samples per run, which are loaded into a 

12-lane cartridge. The cartridge was then analysed in the Digital Analyser to identify and 

count the barcodes captured for each sample.  

 

 

Figure 2-17 Samples setup for miRNAs profiling using Nanostring® nCounter platform 

2.15.3. Quality Control Metrics, Normalisation and Background Elimination 

The output of Nanostring® nCounter assay is presented in form of a number of counts 

for each molecular probe. Several quality control measures were applied to screen possible 

errors related to technical issues of the assay (problems related to cartridge, capture camera, 

etc.). These measures include field of view count (FOV), binding density (BD) and internal 

controls (positive ligation controls and negative controls). 

Each lane in the cartridge was imaged by the DA in discrete units, known as fields of 

view (FOV). Imaging problems can be detected by comparing the ratio of successfully 

imaged FOVs (FOV Counted) to the total number of imaging attempts (FOV Count). A large 

disparity between the FOV Count and FOV Counted reflects potential technical issues related 

to inability of the camera to focus, presence of bubbles or insufficient oiling of the cartridge.  
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The DA maintains its accuracy in capturing colour barcodes (miRNA probes) by 

excluding any code overlap that may exist in an image. This ensures accuracy of the assay, 

and provides assurance that the molecular counts provided were in fact a set of truly 

recognisable codes. However, the data could be compromised if the image captured is 

saturated, causing a large proportion of the data to be excluded due to codes overlap. To 

prevent this, the nCounter platform provides a measurement of the number of optical features 

per square micron, known as the binding density. Binding density includes many system 

controls that are not affected by samples, and therefore act as an imaging quality control 

rather than sample performance quality control. In a specific range of binding density (0.05-

2.25), the DA can detect and count each reporter barcode accurately. Binding density greater 

than 2.25 means larger number of reporter overlaps and code exclusions, which may 

potentially affect data interpretation. 

The platform utilises several probes for positive and negative control. These probes 

were designed against a set of target transcript sequences derived from the External RNA 

Control Consortium (ERCC), which are of similar size to a miRNA. The positive control 

transcript sequences were ligated and hybridised in the same manner as endogenous miRNAs. 

This enables them to act as controls for the entire miRNA analysis process, from sample 

preparation through hybridisation. In addition, these positive controls were also used in data 

normalisation step. Positive control counts are used to normalise all platform associated 

sources of variation (e.g. purification, hybridisation, conditions, etc.), which may indicate 

under-performance of a lane/lanes. The nCounter platform calculates geometric mean of 

positive control counts of each lane. The average of these calculated values across all lanes is 

used as the reference against which each lane is normalised. A scaling factor is then 

calculated for each of the lanes based on the calculated value for the positive control in each 

lane relative to the average of this value for the positive controls across all lanes. This scaling 

factor may then be used to adjust the counts for each gene target and negative controls in the 

associated lane. The typical range of this positive control normalisation scale is between 0.3 

to 3. This normalisation using positive control, however, will not account for differences in 

sample input between technical/biological replicates. To account for differences between 

sample inputs, normalisation using either a set of reference genes or large numbers of 

reporters (known as global normalisation i.e. 100 microRNAs that are highly expressed across 

all samples) was used. The assay also uses several negative control probes, for which no 

transcript is supplied. These can be used to estimate systematic background counts within any 

single hybridisation reaction. 
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2.16. Profiling Analysis and Target Prediction 

2.16.1. Selection Criteria 

Several microRNAs were chosen from the NanoString® output based on their degree 

of expression after ischaemia or reperfusion injury. Up/down-regulation of the level of 

expression of 2-fold or greater was considered significant. As mentioned previously, only 

those microRNAs which were consistently up/down-regulated in either HKC-8 and HK-2 

cells or both primary PTECs were included in the subsequent functional analysis works.  

2.16.2. MiRNA Functionalitiy and Target Gene Prediction 

A selection of miRNAs which fulfil the selection criteria were analysed to identify their 

potential role in specific biological pathways. Analysis of miRNA functionality and 

prediction of target genes were performed in two steps as illustrated in Figure 2-18. MiRNAs, 

that fulfilled the selection criteria were firstly analysed for their association with specific 

genes and biological pathways using DIANA-MirPath v.3.0 (Vlachos et al., 2015). This 

database enables combinatorial prediction of multiple miRNA targets in a specific biological 

pathway derived from the Kyoto Encyclopedia of Genes and Genomes (Kanehisa and Goto, 

2000). I opted to use the a priori method provided by DIANA-MirPath v3.0 to identify all 

genes targeted by at least one of the selected miRNAs (known as the gene union approach). 

DIANA-MirPath identified potential target genes of these miRNAs in three different indexes; 

DIANA-microT-CDS (Vlachos et al., 2015), Tarbase v7.0 (Sethupathy et al., 2006) and 

TargetScan (Agarwal et al., 2015). KEGG biological pathways associated with these genes 

were listed. Only biological pathways which were identified by all three indexes were 

selected. 

Secondly, I selected a specific miRNA from the MiRPath analysis result, which is 

associated with a pathway relevant to cellular response to IRI. Using MiRWalk 2.0 database 

(Dweep and al., 2015), I identified potential target genes of individual miRNA of interest with 

respect to the certainty of its miRNA-mRNA interactions. The results only include target sites 

for miRNAs at the 3’UTR with three types of canonical sites; the 7mer1A (adenine in 

position 1 at the 5’ end of miRNA), the 8mer (matched adenine in position 1 and an additional 

match in position 8) and the 7mer-m8 (match in position 8). MiRWalk allows simultaneous 

prediction using several established target prediction algorithms. For the purpose of this 

study, four target predictor algorithms were chosen, which includes MiRWalk’s own 

database, DIANA-MirPath, TargetScan, and MiRanda (John et al., 2004; Betel et al., 2008). 
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Only those targets that were predicted by all four programs were regarded as candidates for 

further in vitro validation experiments. 

 

 

Figure 2-18 MiRNAs functionalities and miRNA target prediction steps  
Flow-chart of steps performed in the analyses of miRNA functionality and miRNA target prediction. 
The steps include identification of relevant pathways involved using MiRPath. Subsequently, the 
miRNAs identified in the relevant pathways were imported into MirWalk to predict potential target 
genes   

2.17. Transfection of MicroRNA Mimic and Inhibitors 

2.17.1. Materials and Protocol 

Transfection of miRNA mimic and inhibitor was performed using the transfection 

reagent Lipofectamine® RNAiMAX (Life Technologies™, USA) using the reverse 

transfection method, in accordance to the manufacturer’s protocol. Briefly, transfection 

complexes containing serum-deprived medium (Opti-MEM® medium, Gibco®, Life 

Technologies™, USA), RNAiMAX transfection reagent and the desired miRNA mimic or 

inhibitor were added into each well. The final transfection complex contained 25 pmol of 

miRNA mimic/inhibitor and 7.5 µL of RNAiMAX in one well of a 6-well plate or 5 pmol of 

miRNA mimic/inhibitor and 1.5 µL of RNAiMAX in a one well of a 24-well plate. HKC-8 
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cell suspension was then added to the well and incubated in 5%CO2 incubator at 37°C for 24 

hours to allow the cells to incorporate the mimic and inhibitor molecules. 

2.17.2. Assessing Transfection Efficiency 

2.17.2.1. Fluorescent-labelled microRNA mimic transfection control 

The effectiveness of the transfection protocol was evaluated using a fluorescence-

labelled (miRIDIAN® Dy547) miRNA mimic based on the cel-miR-67 (Dharmacon, USA). 

This non-targetting miRNA transfection control was introduced to HKC-8 cells using the 

exact same protocol as was used to transfect the miRNA mimic/inhibitor of interest. The cells 

were transfected for 24 and 48-hour to capture intracellular uptake of miRNA mimic 

molecules. Visualisation of mimic delivery was performed by fluorescence microscopy at 

maximal absorbance/emission wavelengths of 557/570 nm. 

2.17.2.2. Expression of miR-21 after Transfection 

The level of expression of miR-21 after transfection of miR-21 mimic was used as an 

indicator of success of the transfection method. HKC-8 cells were transfected with miR-21 

mimic according to the protocol described in the previous section. After a 24-hour incubation, 

cells were harvested for RNA isolation. Expression analysis was performed by qPCR for 

miR-21. The expression level of miR-21 in mimic transfected HKC-8 cells was compared to 

miR-21 level in non-transfected HKC-8 cells and HKC-8 cells transfected with scrambled 

mimic control. 

2.18. Luciferase Reporter Assay to Assess TGF-b Activity 

To assess activation of TGF-β pathway, a clone of HKC-8 cell lines containing the 

SMAD3 luciferase reporter construct pCAGA12-luc was generated in our facility (see Figure 

2-19). The plasmid was a courtesy of Jean-Michel Gauthier (Dennler et al., 1998). This stably 

transfected cell line was maintained in full media for HKC-8 cells listed in Table 2-1 with the 

addition of 300 µg/mL Hygromycin B as a selection agent. The cells were used in the 

experiments to investigate the role of TGF-β1 in the PTEC response to IRI and the effect of 

miR-21 in modifying this response.  
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Figure 2-19 Plasmid map of SMAD3 luciferase reporter 
Plasmid map of SMAD3 luciferase reporter construct pCAGA12-luc which was stably transfected to 
HKC-8 cells to generate a clone of SMAD3-luciferase reporter HKC-8 clone. 

2.18.1. Determining the Effect miR-21 Over-expression in PTECs on TGF-β Signalling 

SMAD3-luciferase HKC-8 cells were seeded onto transfection complex containing 

miR-21 mimic or scrambled sequence miRNA mimic in 6-well plates. After 24-hour of 

incubation, transfection media was substituted with media containing 0, 0.1, 0.25, 0.5, 1, 2.5 

and 5 ng/mL TGF-β, and were incubated for another 24-hour. Cells were harvested and 

prepared for measurement of luciferase activity as described in section 2.7.1.     

2.18.2. Establishing the Role of IRI in TGF-β Activity in PTECs 

SMAD3-luciferase HKC-8 cells were transfected with miR-21 mimic and scrambled 

miRNA mimic control. Hypoxia was induced in these transfected cells by incubation in 1%O2 

for 12-hours. To induce reperfusion injury, cells were treated with 400 µM H2O2 for 4 hours, 

followed by incubation in normal growth medium for the remaining 24 hours. Cells were 

harvested and lysed in accordance to the luciferase assay measurement protocol described in 

section 2.7.1.     

2.18.3. Evaluating the effect of miR-21 over-expression in the post ischaemic response to 

TGF- β1 

SMAD3-luciferase HKC-8 cells were transfected with miR-21 mimic and scrambled 

miRNA mimic control. Hypoxia was induced in these transfected cells by incubation in 1% 
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O2 for 12-hours. TGF-β was introduced in several concentrations (0, 1, 5 and 10 ng/mL) after 

induction of hypoxia. Cells were harvested and lysed in accordance to the luciferase assay 

measurement protocol described in section 2.7.1. 

2.18.4. Evaluating the effect of miR-21 inhibition in ischaemic PTECs 

HKC-8 cells containing SMAD3-luciferase reporter gene were co-transfected with 

miR-21 mimic, miR-21 inhibitor and their respective scrambled control. The cells were 

subsequently exposed to 1%O2 to simulate hypoxia. Luciferase activity was measured as an 

indicator of TGF-β pathway activity.  

2.19. Protein Expression Studies to Assess the Link between TGF-b1, miR-21 and 

Ischaemia in PTECs 

Western blot and immunofluorescence were used to assess how TGF-β1 may alter 

PTEC morphology, and to evaluate the implication of over-expressing or inhibiting miR-21 

on the expression and distribution of SMAD3, SMAD7, epithelial marker proteins, such as E-

cadherin, and in mesenchymal marker proteins, such as a-SMA and Collagen I. Antibodies 

used against these proteins were listed in Table 2-10. These protein expression studies were 

undertaken to achieve the specific objectives summarised in 2.19.1 - 2.19.4.  

2.19.1. Assessing the Effect of TGF-β1 on PTEC Morphology 

An experiment to assess the effect of TGF-β1 treatment on PTEC phenotype was 

conducted. For this purpose, only HKC-8 cells were used. Cells were cultured in 6-well plate 

to 80% confluency. Growth medium was substituted with serum-free medium 24-hour prior 

to TGF-β treatment. Cells were incubated in 0, 0.1, 0.5, 1, 5 and 10 ng/mL of TGF-β. The 

effect of TGF-β to cellular expression of α-SMA and E-Cadherin was evaluated by 

immunofluorescence. 

2.19.2. The Effect of Ischaemia on the Expression of SMAD7 

HKC-8 cells were incubated in 1%O2 for 24 hours. Cells were harvested and protein 

lysates were prepared based on the method described in 2.8.2. SMAD7 expression level was 

determined by Western blotting.  
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2.19.3. Evaluating the Effect of miR-21 on the Expression of SMAD7 

Total protein was isolated from HKC-8 cells transfected with miR-21 mimic, miR-21 

inhibitor and their respective scrambled controls. Transfection of miR-21 mimic and inhibitor 

was performed on 6-well plates using reverse transfection procedure method described in 

section 2.17.1. Cells were harvested 24-hour after transfection, and protein lysates were 

obtained. The level of expression of SMAD7 was visualised by Western blotting.  

2.19.4. The Effect of miR-21 on Cellular Morphology  

To evaluate whether alteration in miR-21 expression level affects PTEC phenotype 

changes in response to TGF-b1, we quantified the expression of E-Cadherin, α-SMA and 

Collagen I in HKC-8 cells transfected with miR-21 mimic. Briefly, HKC-8 cells were seeded 

onto 6-well plates following the addition of transfection complex containing either miR-21 

mimic, srambled miRNA mimic control and transfection reagent only. Cells were incubated 

in 5% CO2 incubator for 24-hour to allow transfection of miRNA mimic before being treated 

with 1 ng/mL TGF-b1.    

2.20. Evaluating miR-21 Expression and Distribution in Renal Tissue 

2.20.1. Tissue origin and ethical approval 

Normal human kidney tissue was obtained from macroscopically normal poles of 

nephrectomy specimens removed for oncological indications. Ethical approval was obtained 

from National Research Ethics Committee, East Midland, UK for works on gene and protein 

expression in the kidney (REC reference number 13/EM/0311). Evaluation of ischaemic 

kidney tissue was carried out using sections from kidneys that are deemed unsuitable for 

transplantation, and was rejected by all UK centres due to various reasons. These organs have 

cold ischaemic time of more than 12-hour. Ischaemic kidney tissue was accessed through the 

Institute of Transplantation Tissue Biobank, Freeman Hospital, Newcastle upon Tyne, UK 

(REC reference number 11/NE/0352). 

2.20.2. qPCR to quantify miR-21 expression  

Tissue RNA was isolated from frozen ischaemic and non-ischaemic kidneys. Tissues 

were processed immediately after their removal from -80°C, without allowing tissue to thaw. 

600 µL of Cell Disruption buffer was added to each tissue sample in a RNAse-free 
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microcentrifuge tube. Tissue was mechanically homogenised using a Tissue Lyser II (Qiagen, 

USA). Denaturing solution was added once the sample was homogenised, and RNA isolation 

process was continued as described in the RNA isolation method in section 2.5.1. Mir-21 

expression in ischaemic and non-ischaemic tissue was quantified in accordance to the qPCR 

protocol mentioned in section 2.6.2.   

2.20.3. In situ hybridisation 

2.20.3.1. Assay principle 

In situ hybridisation (ISH) was used to visualise the expression and distribution of miR-

21 in renal tissues. ISH allows detection of a specific nucleic acid sequence (in this case miR-

21) in tissue samples using a labelled nucleic acid probe at a specific annealing temperature. 

In this experiment, ISH was performed using mirCURY LNA™ microRNA ISH kit for 

formalin-fixed paraffin embedded tissue (FFPE) (Exiqon, Denmark). Initially, the tissues 

were treated with Proteinase-K to facilitate hybridisation of a specific miRNA sequence by its 

complementary double-digoxigenin (DIG) labelled probes. The hybridised sequences marked 

by DIG-labelled probes were then detected using a specific anti-DIG antibody, which was 

coupled with the enzyme alkaline phosphatase (AP). To visualise, the substrate 4-nitro-blue 

tetrazolium (NBT) and 5-bromo-4-chloro-3’-indolylphosphate (BCIP) was used. Presence of 

the enzyme AP will precipitate NBT-BCIP, resulting in the formation of purple fine 

precipitates on the hybridised complexes. Finally, nuclear fast red staining was added to the 

slides to provide a better histological orientation. 

2.20.3.2. Assay optimisation 

ISH optimisation was performed to obtain the optimal conditions for the assay to 

produce strong and specific signal from the positive control miRNA probe, and minimal 

signal from the scrambled negative control miRNA probe. Assay parameters which needed 

optimisation included duration and concentration of Proteinase-K treatment, probe 

concentration and probe incubation time. 

2.20.3.3. Materials and assay protocol 

FFPE tissue samples were cut into three 3µm sections, designated for the detection of 

miR-21, positive control, and scrambled negative control. Residual paraffin was removed by 

immersing the slides in Xylene, 100% ethanol and 70% ethanol consecutively. This is 

followed by washing in PBS. The buffers shown in Table 2-13 were used for ISH.   
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Table 2-13 Buffers and reagents used in in situ hybridisation 
Buffers and Reagents Composition / Description Source 

Proteinase-K buffers 

5 mL of 1 M tris-HCl (pH 7.4) 
2 mL of 0.5 M EDTA 
0.2 mL of 5 M NaCl 
Add to 900 mL RNAse-free 
water, adjust volume to 1000 mL 

Sigma 
Sigma 
Sigma 
Sigma 
 

SSC Buffer concentrate 
(20X) 

0.3 M sodium citrate in 3M NaCl Sigma 

PBS 

1.15 gram Na2HPO4 
8.0 gram NaCl 
0.2 gram KCl 
0.2 gram KH2PO4 

in 1000 mL distilled water, pH 
adjusted to 7.4 

Sigma 

PBS-T (0.1%) 
1 mL of Tween-20 +  
1 L PBS (pH 7.4) 

Sigma 
Sigma 

KTBT solution 

7.9 gram Tris-HCl (50mM) 
8.7 gram NaCl (150mM) 
0.75 gram KCl (10mM) 
Add to 900 mL RNAse-free 
water, adjust volume to 1000 mL 

Sigma 
Sigma 
Sigma 
Sigma 
 

Proteinase-K reagent 
To make 15 µg/mL: 
Add 7.5 µL proteinase-K stock + 
10 mL proteinase-K buffer 

 
Exiqon 
Not applicable 

Hybridisation mix 
2x miRNA ISH buffer and 
RNAse-free water (1:1) 

Exiqo 

Antibody blocking solution 
10 mL PBS-T +  
200 µL sheep serum  + 
 330 µL 30% BSA 

Sigma 
Sigma 
Sigma 

Antibody dilutant 
10 mL PBS-T (0.05%) +  
100 µL sheep serum +  
330 µL 30% BSA 

Sigma 
Sigma 
Sigma 

Ant-DIG reagent 
Sheep-anti-DIG-AP antibody + 
antibody dilutant (1:800) 

Roche 
Not applicable 

AP substrate  
1 NBT-BCIP tablet + 
10 mL RNAse-free water +  
20 µL levamisol 

Roche 
Sigma 
Vector Laboratorie 

 

Slides were treated with 15 µg/mL of Proteinase-K at 37°C for 10 minutes. 

Hybridisation was performed using 80 nM of DIG-labelled miR-21 probe, positive control 

probe (miR-126) or scrambled negative control probe for 2 hours at 50°C. After hybridisation, 

slides were washed in 5X and 1x saline citrate buffers (SSC buffers) and PBS consequtively. 

Slides were incubated at room temperature for 15 minutes with blocking solution before the 

application of anti-DIG antibody for 60 minutes, after which the slides were washed with 

PBS-T. AP substrate was added to the sections and incubated for 2 hours at 30°C. The final 
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reaction was terminated using KTBT buffer followed by the addition of nuclear counter 

staining (nuclear fast red, Sigma, USA). Finally, slides were dehydrated and mounted using 

Eukitt (Sigma) mounting medium. 

Slides were visualised using a Nikon Eclipse microscope (Nikon, Japan). The same 

imaging parameters were applied to all samples. Images were taken to qualitatively 

demonstrate the location of miR-21 in renal tissues, as well as to observe differences in miR-

21 distribution between ischaemic and non-ischaemic kidneys. Staining was not quantified.          

2.21. Statistical Analyses 

All statistical analyses were performed using Prism 7.0 (Graph Pad, USA) statistical 

analysis software. Due to the limited number of samples in each experiment, no normalisation 

test was performed. Normal distribution was assumed prior to statistical analysis. Comparison 

of the means of two unmatched groups was performed using unpaired t-test. One-way 

ANOVA with the appropriate multiple comparison tests (Bonferoni, Dunnet or Tukey) were 

used to detect statistically significant differences between the means of more than two groups 

defined by one factor. To determine how a variable is affected by two factors, two-way 

ANOVA was used. Data was expressed as the mean ± the standard deviation (SD). p Value 

<0.05 was considered as statistically significant, which was classified into several categories 

as represented in form of the following symbols: * = p ≤0.05; ** = p ≤0.01; *** = p ≤0.001; 

**** p ≤0.0001.  
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Chapter 3. Isolation and Characterisation of Human Primary Tubular 

Epithelial Cell  

3.1. Introduction and Objectives 

Although immortalised cell lines are a useful model to validate miRNA targets, their 

response to IRI may be significantly distinct from human primary cells. Both HKC-8 and HK-

2 cells used in this study are among the most common cell lines used in the study of TECs. 

Nonetheless, several limitations in their use have been observed, including the lack of 

phenotypic resemblance to human primary PTECs (Sharpe and Dockrell, 2012). I 

hypothesised that IRI alters the profile of miRNAs in the PTECs, and these changes may be 

different across different PTEC cell types. Despite these differences, I predicted a set of 

miRNAs would still be altered in a similar pattern across the different cell types. This set of 

overlapping miRNAs would be an attractive candidate for further target prediction and 

validation, and thus would be the focus of my thesis. To achieve this, I generated human 

primary PTECs derived from normally functioning kidney.  

There are several methods described to isolate human PTECs. The initial isolation 

protocols almost uniformly included the use of mechanical and enzymatic digestion followed 

by cellular suspension using Percoll centrifugation (Baer et al., 1997; Qi et al., 2007; Brown 

et al., 2008; A.Vesey et al., 2009; Van der Hauwaert et al., 2013). As an alternative to Percoll 

centrifugation, the use of cell dissociation followed by cellular separation using anti-

Prominin-1 antibody (Legouis et al., 2015), and the consecutive sieving method using 125-

µm and 45-µm pores (Sharpe and Dockrell, 2012) have been proposed. Other authors 

suggested an additional immunogenic separation step following centrifugation of cells, 

mainly by utilising antibody against CD10 or CD13 (Baer et al., 1997; Van der Hauwaert et 

al., 2013).  

Most authors have documented that isolation of a relatively pure PTEC population is 

achievable using the Percoll gradient centrifugation method. In addition, this method is easy 

to learn and adapt, as it does not require additional immunology-based sorting. Based on its 

reported efficacy, cost-efficiency and practicality I decided to adapt the Percoll gradient 

method to isolate PTECs from non-ischaemic kidney tissue. The final cellular yield of this 

method is highly dependent upon the initial tissue dimension and weight. It was therefore 

crucial to evaluate the success of this technique in the tissue specimens available to our 

facility which are relatively small. Furthermore, the initial tissue weight may also affect the 
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final quality and purity of the isolated cells, especially if they were to be used at later 

passages.   

3.2. Results 

3.2.1. Light microscopic appearance of primary PTEC 

Under light microscope, the isolated cells showed distinct cobblestone-like appearance 

when a confluent monolayer was formed. This appearance is especially apparent during 

earlier passage number. Most cells are hexagonal in shape with distinct inter-cellular borders 

as seen in Figure 3-1. 

 

 

Figure 3-1 Light microscopic images of primary PTECs at passage 1  
Each picture (a-d) represents cells isolated from a different patient. Cells were grown in complete 
media to form a monolayer. Images were acquired at 200x magnification to demonstrate a typical 
epithelial cobblestone. 

Upon seeding, the cells grew in an island-like pattern or clusters, before consolidating 

to form a confluent monolayer. This characteristic was maintained throughout passage 2 

(Figure 3-2) and passage 3 (Figure 3-3), with a reasonably uniform appearance across 

different patients. On average, the isolated cells reach 80% confluency in 72 to 96 hours after 

initial seeding. 
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Figure 3-2 Light microscopic appearance of primary PTEC at passage 2  
Primary PTEC light microscopy images captured at 200x magnification showing prominent 
cobblestone appearance. Individual cells have a pentagonal/hexagonal morphology characteristic of 
epithelial cells. Each picture (a-d) represents cells isolated from a different patient 
 

 

Figure 3-3 Light microscopic appearance of primary PTEC at passage 3 
Primary PTEC isolated from four different patients (a-d) forming a monolayer at passage 3. Images 
were taken under light microscope at 200x magnification. No difference in cell morphology could be 
seen when compared to earlier passages. 
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At passage 4, more cells were identified to have a spindle-like shape, which is not a 

feature of epithelial cells. This characteristic became more prominent as the culture reached 

later passages. Cellular dedifferentiation started to occur at passage 4 in almost all isolates 

(Figure 3-4). Although the cells initially grew in clusters, their ability to maintain growth and 

form a confluent monolayer diminished markedly compared to passage 1 and 2. At passage 4, 

the cobblestone-like pattern was no longer prominent, and was replaced by an irregular and 

patchy growth pattern.  

 

 

Figure 3-4 Light microscopic appearance of primary PTEC at passage 4  
Primary PTEC isolated from four different patients were grown to a monolayer. Images were acquired 
using a light microscope at 200x magnification, which showed a loss in epithelial morphology. Each 
image (a-d) represents cells isolated form different patients.  

The development of senescence and cellular dedifferentiation were more notable at 

passage 5 (Figure 3-5). Cells obtained from different patients showed loss of features 

associated with normal epithelial cells, including change in the shape of cell from hexagonal 

to a more elongated shape. 
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Figure 3-5 Light microscopic appearance of primary PTEC at passage 5 
Primary PTEC at passage 5 under light microscopy (imaged at 200x magnification). Cellular 
arrangement was markedly different from passage 1-3. Each image (a-d) represents cells isolated from 
different patients. 

Furthermore, the formation of hemicysts or “domes” in some of the isolated cells was 

evident (Figure 3-6), which is indicative of active transcellular transport in these cells. These 

“domes” were only seen at earlier passage (passage 1-3), and not at later passages. 

 

 

Figure 3-6. Hemicysts formation in primary PTEC 
Primary PTEC at passage 2 showing “domes” formation or hemicysts when cells were grown to more 
than 80% confluency. Image was acquired using a light microscope at 200x magnification.  
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To evaluate the effect of cryopreservation to the cells, we recovered frozen cells and 

identified any morphological changes that may be present.  These thawed cells from four 

different isolates showed no morphological abnormality, compared to the freshly isolated 

cells (Figure 3-7).  

 

 

Figure 3-7 Appearance of primary PTEC grown after thawing    
Light microscopy images of cells which were frozen at passage 1. Images were taken at 200x 
magnification. Cobblestone arrangement was prominently shown in (a) passage 2 and (b) passage 3. 
Morphologic changes started to appear at (c) passage 4 and becoming more apparent at (d) passage 5. 

3.2.2. Immunofluorescent characterisation of primary PTEC 

Isolated cells were stained to determine the expression of proteins known to be 

expressed in epithelial cells and non-epithelial cells. Expression of ZO-1, as a tight junction 

protein, was prominent in almost all cells (Figure 3-8, panel a-c) with a ‘honeycomb’ 

appearance indicating the cells are epithelial in nature.  E-Cadherin staining was also positive, 

although was weaker in certain regions of the slides (Figure 3-8, panel d-f). K-Cadherin, a 

relatively specific marker of proximal tubular epithelial cells, was strongly expressed in 

almost all cells (Figure 3-8, panel g-i). Unlike E-Cadherin, K-Cadherin (also known as 

Cadherin-6) was not distinctly expressed on the cell surface, with previous reports describing 

a cytoplasmic distribution (Paul et al., 1997; Baer et al., 2006; Systems, 2015). Cytokeratin 
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has been widely used to characterise renal proximal tubular epithelial cells. It was strongly 

expressed in the cytoplasm of most of the primary PTECs isolated (Figure 3-8, panel j-l). In 

conclusion, all epithelial markers selected to characterise primary PTEC were consistently 

expressed across cells originating from different patients. 

 

 

Figure 3-8 Expression of various markers of epithelial cells in the isolated primary PTECs  
Immunofluorescent staining of proteins commonly expressed by tubular epithelial cells; (a-c) ZO-1, 
(d-f) E-cadherin, (g-i) K-cadherin and (j-l) Cytokeratin. Characterisation was made to primary PTEC 
at passage 2 or 3. Three images were displayed for each antibody (N=3), with each image representing 
a biological replicate.  Images were captured with fluorescence microscope at 200x magnification.  

Cells were also stained with non-epithelial markers to rule out possibility of a mixed 

population. Colagen-1, α-SMA and vimentin were used for this purpose. Our isolated primary 

PTEC did not show expression of these proteins (Figure 3-9, panel a-c). The results were 
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compared to primary human kidney fibroblasts isolated from the same tissue origin, which 

showed positive expression of these proteins (Figure 3-9, panel d-f). 

 

 

Figure 3-9. Expression of mesenchymal markers in primary PTECs and primary renal 
fibroblasts 
Immunofluorescent staining of mesenchymal markers; (a) Vimentin, (b) α-SMA and (c) Collagen-1 in 
the isolated primary PTECs. As positive controls, the same mesenchymal markers were applied to 
human primary fibroblasts isolated from similar tissue (d) Vimentin, (e) α-SMA and (f) Collagen-1. 
One image is a representation of an experiment conducted on biological duplicates (N=2). Images 
were acquired at 200x magnification.  

3.2.3. Scanning Electron Microscopy 

Scanning electron microscopy (SEM) images were taken on cells at passage 2, which 

highlight the round or hexagonal morphology common for PTEC (Figure 3-10 panel a). 

Higher SEM magnification showed presence of microvilli as a typical characteristic of 

epithelial cells (Figure 3-10 panel a-c). However, not all cells have these distinct microvilli on 

their surface. In a small area (as shown in Figure 3-10 panel b), some of these cells have very 

short villi. As expected, the isolated population contains some degree of contamination from 

other cell types (Figure 3-10 panel c), however, lower magnification (Figure 3-10 panel d), 

demonstrated that most cells were constituted by PTECs. An overview image of the slide also 

displayed distinct cobblestone-like conformation in a confluent monolayer (Figure 3-10 panel 

d). As comparison, fibroblasts isolated from similar samples were also imaged with SEM. 

This revealed a cell population with distinct morphology, mainly having a longer and spindle-

like appearance with no microvilli (Figure 3-11). 
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Figure 3-10 SEM images of human primary PTEC 
Scanning electron microscopy images of human primary PTECs at passage 3. Images a, b and c were 
captured at 5,000x magnification to show the presence of microvilli on the cell surface. Image d was 
taken at 500x magnification to provide an overview on how most area of the visual field was occupied 
by cells with microvilli.   
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Figure 3-11. SEM images of human primary fibroblasts 
Scanning electron microscopy images of human primary renal fibroblast at passage 2. Cells were 
isolated from tissue source similar to the tissues from which PTECs were isolated. Images a, b and c 
were acquired at 5,000x magnification to show the absence of microvilli on cell surface. Image d was 
captured at 500x magnification as an overview of a wider visual field.   
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3.3. Discussion 

Tubulointerstitial pathology has been frequently considered as the hallmark of various 

abnormalities in the kidney, including acute kidney injury due to IRI. PTEC is a key player in 

tubulo-interstitial pathology, thus has been the subject of numerous studies. In vitro studies 

using PTECs has been considered an important element of kidney research, as it is able to 

provide a well-controlled model to study renal response to a particular injury or disease. 

Despite the availability of animal primary PTECs and some immortalised PTEC cell lines, 

their genetic and biomolecular profile may not be an adequate representation of human 

primary PTECs. Establishing an effective and reproducible method to isolate human primary 

PTECs is therefore an important step in a kidney research.  

The most widely utilised method to isolate human primary proximal tubular cells is by 

Percoll density gradient centrifugation. Several adaptations of this technique have been 

reported in the literatures. Some authors used an ultracentrifuge to create the gradient density, 

while others performed collagenase digestion of renal tissue and mechanical sieving prior to 

the centrifugation step (Qi et al., 2007; Brown et al., 2008; A.Vesey et al., 2009; Sharpe and 

Dockrell, 2012). Despite being the most common method utilised, there are potential 

problems associated with this technique. One of the most common criticisms is the 

heterogeneity of the final product, which may contain not only proximal tubular cells, but also 

distal tubular cells, kidney fibroblasts and cellular debris. To overcome this problem, some 

authors reported the use of additional purification technique. This includes immune-magnetic 

separation technique using microbeads (Baer et al., 1997; Van der Hauwaert et al., 2013). 

Alternatively, others have proposed cellular sorting technique with the use of antibodies 

against prominin-1, a surface glycoprotein expressed in the brush border of proximal PTECs 

(Weigmann et al., 1997; Legouis et al., 2015) or by elimination of the contaminating distal 

convoluted tubular cells using anti-Tamm-Horsfall glycoprotein (Kamiyama et al., 2012). 

Despite their highly selective final product, the use of these additional immunogenic 

separation techniques is expensive, laborious, and are often associated with low cell yield and 

poor cell viability.  

Regardless of the criticism, several authors have evaluated the effectiveness of Percoll 

density gradient centrifugation protocol, especially when it was preceded with initial 

collagenase digestion and mechanical sieving steps. Cells characterisation performed by Qi et 

al. showed that the isolated cells have brush border enzyme activities (high gamma-glutamyl 

transpeptidase and alkaline phosphatase level) and transport activities indicative of PTEC (Qi 

et al., 2007). In our Institution, gradient centrifugation protocol with Percoll has been 
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established and applied to isolate primary PTECs from whole kidney, without the need to 

perform additional immunogenic separation steps. The isolated cells were mainly used for 

basic renal physiological experiments and drug transporter related research (Brown et al., 

2008).  

The use of higher collagenase concentration and longer collagenase exposure will result 

in less contamination of the final cell population; however, they are also associated with lower 

cell yield, thus lower cellular density, accelerated cellular dedifferentiation and earlier 

senescence. Deciding the most appropriate collagenase concentration and digestion time is 

therefore important to achieve the balance between reasonably pure culture and acceptable 

cellular yield. Initial optimisation steps to determine the appropriate concentration of 

collagenase, optimal enzymatic digestion and centrifugation time required, have been 

performed and reported previously (Brown et al., 2008). With this knowledge, I isolated 

PTECs from normal sections of human kidney, removed for oncological indications available 

to our facility using the already established protocol. It is important to mention that the 

original protocol was optimised for cell isolation from a larger section of renal tissue 

(approximately a quarter of the total minced cortical region of the whole kidney) compared to 

the tissues available to us (only sections of macroscopically normal kidney). Smaller tissue 

specimens were shown to yield cell populations with poorer quality and morphology. 

Moreover, smaller tissue specimens produced a very feint band of epithelial cells after 

gradient centrifugation. Manual aspiration of such a fine band is very likely to result in 

contamination by fibroblasts, erythrocytes or other cellular debris. Indeed, I found a visible 

contamination and poor growth capacity in cells isolated from tissue specimens that weighed 

below 1.5 gram. Brown et al. (Brown et al., 2008) documented the yield of around 3.5 million 

cells/gram wet weight kidney. Using the same collagenase concentration per gram weight of 

tissue, I have managed to achieve the yield of 1.5 to 2 million cells/gram wet weight of tissue 

specimen. 

Adequate characterisation of the isolated cells is necessary to ensure that the correct 

phenotype has been obtained in a reasonably pure culture. There are several characterisation 

methods that can be used. The simplest method is by examining the cell growth pattern and 

morphology by light microscopy. PTEC has a distinct hexagonal/round shape, initiates their 

growth in clusters, and when grown in high density, demonstrates the classic cobblestone-like 

appearance (Qi et al., 2007; A.Vesey et al., 2009). These features were easily identifiable in 

the cells that I isolated. Viable and functioning tubular cells have an intact cell-to-cell tight 

junction, and perform active cellular transport. This can be seen as accumulation of fluid 

between the cell monolayer and the solid growth surface of the culture vessels (Qi et al., 
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2007), which is often referred to as ‘domes’. Formation of ‘domes’ was also present in the 

PTECs populations I isolated.  

Presence of brush border is a typical feature of PTECs. To visualise this feature, I 

imaged the isolated cells using SEM. Microcillia were clearly present on the surface of most 

of the isolated cells. This strongly indicates that the majority of cells isolated have epithelial 

cell characteristics. However, the appearance of these microvilli appeared to be shorter than 

what normally seen on PTECs. It is highly likely that this was caused by the static (no 

continuous flow) environment in which the cells were cultured. Moreover, these primary cells 

were seeded directly on plastic surface, and not on a collagen matrix, which may affect the 

appearance of these villi. One other possible explanation is that the isolated cells were a mix 

population of cells consisting of distal TECs (DTECs) and not PTECs. DTECs are 

characterised by shorter villi compared to PTECs.  

Characterisation by immunofluorescence was performed to confirm that the isolated 

population are indeed epithelial cells, also to identify the extent of possible contamination by 

fibroblasts. For this purpose, several proteins, which are expressed in epithelial and mesangial 

cells, were selected. Zona Occludens-1 (ZO-1) is a tight junction protein presents on cellular 

membrane. ZO-1 is widely expressed on epithelial cells, but not specific to the renal tubular 

epithelial cells. This marker was selected to detect the proportion fibroblast contamination in 

the cultured population. Images from all our tissue samples showed that ZO-1 was strongly 

expressed in almost all regions of a slide, indicating negligible contamination from 

fibroblasts. Cytokeratin has been documented to be highly expressed in PTC culture (Qi et al., 

2007). In the isolated cells, prominent cytokeratin expression is uniformly identifiable, 

providing further support that the cells isolated are indeed PTECs.  

To further confirm, I decided to stain the cells for cadherins protein. The cadherins 

protein family are established markers of renal tubular epithelial cells. Their strong expression 

in the isolated cells clearly highlights the fact that renal tubular epithelial cells constituted 

majority, if not all, of the cultured cell population. Several papers have reported contradicting 

evidence of E-Cadherin, K-Cadherin or N-Cadherin expression in renal tubular epithelial cell 

sub-populations. It was previously accepted that generally E-Cadherin was highly expressed 

in renal proximal tubular epithelial cells. In contrast, some more recent authors documented 

that E-Cadherin was highly expressed in distal tubular cells and not as strongly expressed in 

proximal epithelial cells. K-Cadherin on the other hand was a prominent marker of proximal 

tubular cells. In a cultured proximal tubular cell population, however, both cadherins have 

been documented to be expressed equally strongly, as was also shown in the population I 

isolated. The immunofluorescence suggested stronger expression of K-Cadherin compared to 
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E-Cadherin, which is a consistent finding in proximal tubular epithelial cell population as 

documented by several authors (Paul et al., 1997; Baer et al., 2006; Systems, 2015). 

Mesangial and fibroblast markers, such as collagen-1, α-smooth muscle actin and vimentin 

were used to exclude cells of mesangial or fibroblast origin. These markers were not 

expressed in any of the isolated cells. 

Although primary culture of PTECs provides a better model to study the human kidney, 

their use has been restricted by the limited number of passages they could undergo. Some 

authors reported the end of mitotic lifespan of primary PTECs is reached after approximately 

8 to 10 passages, while others have only managed to successfully propagate primary PTECs 

for 5 passages (Qi et al., 2007; A.Vesey et al., 2009; Sharpe and Dockrell, 2012). Despite 

these differences, all authors have recommended only to use cells at passage 2 or 3 in 

experiments, to ensure unaltered characteristics of these cells. This agrees with my findings, 

which identified significant cellular morphological changes in these cells after four passages. I 

hypothesised that such an early change may be partly due to direct seeding of these cells to 

plastic surface with no collagen coating. However, I decided not to modify the seeding 

method since I was intending to use the cells only at passage 2 or 3 in my experiments.  

Taken into consideration the results of all characterisation methods used, I have satisfactorily 

proved that the isolated cells fulfil the characteristics of PTECs. Furthermore, I have also 

established a modified gradient centrifugation protocol to isolate PTECs from a relatively 

small kidney tissue, which has been shown to be relatively easy to perform as well as 

reproducible. This method also produces a pure final population of cells without the need to 

perform additional separation techniques. I could confidently conclude that the isolated 

population is representative of human primary PTECs. 
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Chapter 4. Effect of Ischaemia and Free Radicals in MicroRNA Profile of 

Tubular Epithelial Cell 

4.1. Introduction and Specific Objectives 

Ischaemia and reperfusion injury is one of the contributing factors to the progression of 

allograft damage after kidney transplantation. As to whether the injury induces reversible or 

irreversible tissue damage depends upon the duration of injury, frequency and degree of 

severity. There is substantial evidence available to support that IRI leaves signature miRNA 

changes, which vary between different organ and tissues. How these miRNA changes affect 

organ function at shorter or longer time points, however, remains to be comprehensively 

investigated. 

Proximal tubular epithelial cells have been identified as both the target and an active 

player in the renal response to IRI.  Identifying the signature changes in PTEC miRNA after 

IRI is the first step in selecting key miRNAs involved in the renal response to IRI.  The main 

objective of this part of the study is to create an optimal IRI model in vitro, and to further 

observe how IRI alters miRNA expression level in various types of renal PTECs. Prior to 

miRNA profiling, an optimal protocol to induce hypoxia and reperfusion in the various cell 

types used had to be established. An ideal ischaemia or reperfusion treatment should be 

adequate to induce detectable level of stress resulting in miRNA changes without 

compromising cellular viability. To determine these optimal treatment conditions, I set up a 

series of experiment to objectively measure each cell’s viability threshold and tolerability to 

either ischaemia or reperfusion injury.  

Profiling miRNA in only one cell type following a specific condition is not ideal, and is 

considered one of the factors contributing to the lack of overlapping results among existing 

data. This is an important factor to consider, especially if the profiling is based only on 

immortalised cell lines, which arguably possesses limited resemblance to primary human 

cells.  By using several cell types in this profiling step, we expect to see an overlapping set of 

miRNAs, which are consistently up/down-regulated following ischaemia or reperfusion.  

These miRNAs will be considered strong candidates to be explored and validated further.  
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4.2. Results: Simulating Ischaemia and Reperfusion Injury 

4.2.1. Assessment of the Effect of Hypoxia 

4.2.1.1. HIF-1a Nuclear Localisation  

After 12 hours of incubation with 1% O2, HKC-8 cells were stained with anti HIF-1α 

antibody to assess the response to hypoxia. HKC-8 cells treated with 100 µM CoCl2 for 72 

hours were used as a positive control (Figure 4-1 panel d-f).  Intra-nuclear staining of HIF-1α 

was visible in both positive control and HKC8 cells incubated in hypoxia chamber. (Figure 

4-1 panel a-f). Chemical stabilisation of HIF-1α by CoCl2 treatment resulted in more HIF-1α 

nuclear localisation compared to induction of hypoxia using a hypoxia chamber. Nevertheless, 

it is evident that there was a clear increase in cytoplasmic and intra-nuclear HIF-1α staining in 

the hypoxic cells compared to the normoxic cells.  

 

Figure 4-1 HIF-1α expression in HKC-8 cells in ischaemic condition 
HIF-1α expression in HKC-8 cells incubated in 1% O2 for 12 hours (a and b), CoCl2 for 72 hours (c 
and d), and in normoxia (e and f). Images were taken at 400x magnification using Zeiss Axio imaging 
unit. Images shown are the representative of images captured from two independent experiments 
(N=2). 
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4.2.1.2. HRE-Luciferase Activity 

Indirect measurement of hypoxia responsive element activation through luciferase 

activity enabled demonstration of a functional effect of hypoxia to HKC-8 cells. Incubation in 

1% O2 for 12 hours initiate a HRE activation. Interestingly, further incubation time resulted in 

less luciferase activity (Figure 4-2). At both time points, HKC-8 cells were clearly shown to 

be responding to hypoxia, indicated by the significance increase in luciferase activity 

compared to HKC-8 cells in normoxic environment. 

 

Figure 4-2 HRE luciferase activity following hypoxia 
Fold change in luciferase activity of hypoxia response elements (HRE)-transfected HKC-8 cells after 
12 and 24-hour incubation in 1% O2. Luciferase expression was compared to HRE-transfected HKC-8 
cells incubated in normoxia. Mean luciferase activity was normalised to the total protein. HKC-8 cells 
transfected with an empty plasmid (PGL3) were used as plasmid control. Data was presented as fold 
change of the mean of normalised luciferase activity + SD. One-way ANOVA test was used to detect 
significant difference between the means. Multiple comparisons between samples were performed 
using Bonferroni post-hoc analysis. (*** = p ≤0.001; **** p ≤0.0001) 

4.2.2. Assessment of Oxidative Stress 

4.2.2.1. Viability Assay 

To appropriately simulate reperfusion injury, cells should be stressed enough to induce 

gene expression changes without significant effects on cell viability. 80% viability was 

chosen as it is an arbitrary cut-off to demonstrate cell loss due to free radical injury, but with 

sufficient cell survival for analysis. Every cell type responded similarly to H2O2 treatment. 

Increasing concentration of H2O2 resulted in gradual cell death in all cells. In HKC-8 cells, the 

threshold concentration is 400 µM. HK-2 and primary PTECs were more sensitive to H2O2 
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treatment, with a H2O2 concentration of 200 µM and 300 µM, respectively sufficient to cause 

20% cell death (Figure 4-3).  

 

Figure 4-3 PTEC viability after induction of free radical 
Percentage viability of various types of cells: (a) HKC-8 cells; (b) HK-2 cells, and (c, d) primary 
PTEC from two different patients after exposure to short-term H2O2 treatment (4 hour in H2O2 
followed by incubation in fresh complete media for 20-hour). Percentage viability was measured by 
trypan blue dye exclusion assay. Data was presented as the mean of percentage viability + SD from 
three replicates (N=3).  

The initial phase of this experiment was performed in HKC-8 cells. A wider range of 

H2O2 concentration was used to define the concentrations to use for future experiments. For 

HKC-8 cells, 400 µM was chosen as the optimal concentration as it resulted in 80% cell 

viability. HK-2 and primary human cells were more susceptible to free radical injury. The 

same concentration used for HKC-8 markedly reduced HK-2 and primary human cell viability 

to 50% and 60% respectively. Therefore, lower concentrations of H2O2 were considered as 

optimal treatment conditions. As the origin of human primary cells varies in terms of patient 

clinical status, underlying renal disease, and other undefined factors, the response to free 

radical stress was assessed in cells isolated from each patient. The results suggested the same 

optimal concentration of H2O2. 
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4.2.2.2. Detection of Oxidative Stress 

Fluorescence-activated cell sorting (FACS) was used to detect oxidative activity in 

cells. Population gating was performed based on FSC (forward scatter) and SSC (side scatter) 

(Figure 4-4). Unstained cells emitted negligible degree of fluorescence, which was regarded 

as cell auto-fluorescence (Figure 4-4 panel A). Median intensity emission of CM-H2DCFDA 

was plotted against number of events recorded on histograms. Untreated cells stained with 

dye showed an increase in fluorescence emission compared to unstained cells. This was used 

as control. As shown in Figure 4-4, there was an increase in fluorescence with increasing 

hydrogen peroxide concentration up to 400µM. This is represented as shift of the peak to the 

right (Figure 4-4 panel C-F). 

 

Figure 4-4 ROS molecular probe activity after H2O2 treatment 
Population gating and fluorescence emission of CM-H2DCFDA in HKC-8 cells treated with various 
H2O2 concentrations. Cells were exposed to H2O2 for 4 hours before incubation in normal media for 20 
hours before staining with CM-H2DCFDA. Results were presented as follows; (A) no probe, no H2O2; 
(B) with probe, no H2O2; (C) with probe, 200 µM H2O2; (D) with probe, 400 µM H2O2; (E) with probe, 
600 µM H2O2; (F) with probe, 800 µM H2O2. 
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As illustrated in Figure 4-4 (panel D), 400 µM H2O2 induced the most ROS in HKC8 

cells. Further increases in H2O2 concentration resulted in a lower median intensity (Figure 4-4 

panel E and F). At 800 µM, generation of ROS fell almost to the level comparable to control. 

There were two peaks of intensity visible at this concentration (Figure 4-4 panel F). The lower 

intensity peak may represent unviable cells, as a consequence of higher H2O2 concentration. 

 

Figure 4-5 Summary of ROS probe activation in H2O2 treated PTECs 
Graph showing median intensity emission of CM2-H2DCFDA in HKC-8 cells treated with different 
H2O2 concentrations. Data is presented as median intensity + SD of three replicates (N=3). One-way 
ANOVA with Bonferroni post-hoc analysis was used analyse emission at 200 µM, 400 µM, 600 µM 
and 800 µM compared with emission at 0 µM. (*** = p ≤0.001; **** p ≤0.0001) 

4.3. Results; MicroRNA Profiling  

4.3.1. MicroRNA Selection Criteria 

A change in a miRNA level of expression by 2-fold or greater was considered 

significant. As different cell types were used, their genetic differences need to be appreciated, 

especially between cell line (HKC-8 and HK-2 cells) and the two primary PTECs used. 

Therefore, miRNA selection was not performed only based on the magnitude of change in the 

level of expression, but also based on the consistency of up or down-regulation. Subsequent 

analysis will only include miRNAs which were consistently up/down-regulated in either both 

cell lines (HKC-8 and HK-2 cells) or both primary PTECs. These miRNAs that fulfil the 

selection criteria were included in the subsequent functional analysis work. 
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4.3.2. Quality Control and Normalisation Methods 

Several quality control metrics were performed to ensure that all samples were 

correctly processed and captured. This include field of view (FOV) and binding density. The 

data did not show significant discrepancy between the FOV count and FOV counted; 

indicating that no technical issues related to imaging performance was encountered in the 

experiment. The image saturation of all lanes was also within the desired range of binding 

density, reflecting the integrity of probe counts produced. The quality control metrics verified 

that there was no quality control issue related to sample quality, sample processing and assay 

techniques.  

To assess the performance of ligation controls, positive and negative controls, a 

heatmap illustrating their expression level was generated (Figure 4-6). All ligation controls 

performed as expected, indicated by positive detection of positive ligation controls, and 

negative expression of negative ligation control. The codeset provides six positive controls, 

which were ligated and hybridised in the same way as an endogenous miRNA in the codeset. 

These positive controls should be in six decreasing concentrations after hybridisation process; 

128 fM, 32 fM, 8 fM, 2 fM, 0.5 fM and 0.12 fM. The expression of these positive controls 

were also appropriately visualised in the heatmap. In addition, the expression levels of a set of 

mRNAs used as reference genes were also displayed, which were shown to be relatively equal 

across different samples. 

To profile miRNAs expression after IRI, I utilised a human miRNA codeset containing 

800 miRNAs. Following the manufacturer’s recommendation, I chose to normalise the data 

readings using global normalisation method (using the 100 mostly expressed miRNAs in the 

dataset). Prior to applying this method, however, it was necessary to ascertain that the 

expression of these reporter probes did not vary significantly between different samples. 

Using one of the sample/lane as a reference point, I selected the 100 most highly expressed 

miRNAs across all samples. 

As an alternative to global normalisation method, Nanostring® recommends the use of 

a set of reference genes in the raw data normalisation process. To evaluate whether the 

selection of normalisation method has an impact on the detection of miRNA changes, I 

compared the analysis results of data normalised by global normalisation to the analysis result 

of data normalised by reference gene normalisation. For the purpose of illustrating the 

similarity or differences of the two methods, I performed the comparison in both ischaemic 

injury and reperfusion injury cells at 12-hour time point only. 
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Figure 4-6 Control probes expression 
Heatmap illustrating the expression level of ligation controls (3 negative and 3 positive), positive 
controls (6 probes), negative controls (8 probes) and reference mRNAs (B2M, GAPDH, RPL19, 
ACTB, RPLP0). Level of expression data was displayed in (log2) of molecule count standardised to 
the z-score of the probe.  

 

At 12 hour hypoxia, 87 miRNAs that fulfil the selection criteria were identified using 

reference gene normalisation method, whilst global normalisation method identified 58 

miRNAs. Out of these miRNAs, 50 were commonly identified by both methods (Figure 4-7). 

At 12 hour free radical exposure, reference gene normalisation identified 79 miRNAs that 

fulfil the selection criteria, whilst only 58 miRNAs were identified by the global 

normalisation method. 46 miRNAs were commonly identified by the two methods at 12 hour 

exposure to H2O2 (Figure 4-8). 
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Figure 4-7 Detection of miRNAs using top 100 miRNAs vs reference gene normalisation in hypoxic cells 
Heatmap illustrating differential expression of miRNAs in all cell types after 12-hour hypoxia. Detection of miRNA was performed using two different 
normalisation method; top 100 miRNA normalisation and reference gene normalisation. The latter method detected 50 out of 58 miRNAs detected by top 100 
miRNA normalisation method. 
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Figure 4-8 Detection of miRNAs using top 100 vs reference gene normalisation in cells exposed to H2O2 
Heatmap illustrating differential expression of miRNAs in all cell types after 12-hour exposure to free radical. Detection of miRNA was performed using two 
different normalisation method; top 100 miRNA normalisation and reference gene normalisation. The latter method detected 45 out of 58 miRNAs detected by top 
100 miRNA normalisation method. 
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4.3.3. Assessing Stability of Profile 

Alteration in miRNAs profile following IRI in PTECs was detected by calculating the 

ratio of expression of a miRNA in ischaemia or reperfusion injury to its expression in the non-

treated cells. To evaluate the effect of incubation alone (without induction of ischaemia or 

reperfusion) on the cells, I compared miRNA expression in non-treated cells at 0-hour and 12-

hour for every cell type used. The comparison showed that in every cell type, there were a 

small number of miRNAs which were differentially expressed at the two observation points. 

However, the expression of the majority of miRNAs in the codeset was not altered by 12-hour 

incubation alone. The comparison between the two time points was illustrated in Figure 4-9. 

Detailed analysis of the two primary PTECs showed that the pattern of expression of most 

miRNAs was similar, which confirms the reproducibility of cell isolation procedure and 

relatively stable miRNA profile.  

 

 

Figure 4-9 MiRNA expression in untreated cells at 0-hour and 12-hour 
Scatter plots illustrating miRNA expression in untreated PTECs. Data was displayed as (log2) count of 
each miRNA. Comparison was made between: (a) HK-2 cells at 12-hour and 0-hour, (b) HKC-8 cells 
at 12-hour and 0-hour, and (c, d) pPTECs isolated from two different patients at 12-hour and 0-hour.  
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4.3.4. MicroRNA Profile Following Hypoxia and Induction of Free Radical  

For further analysis, we decided to include only the miRNAs which met the selection 

criteria described in section 2.15.1. These are miRNAs with consistent up or down-regulation 

of 2-fold change or more, in either both cell lines (HKC-8 and HK-2 cells) or both primary 

PTECs following a given treatment. The nCounter® platform detected 168 out of 800 

miRNAs provided in the codeset fulfilled the selection criteria. The relationship of the 

number of miRNAs and the treatment condition in which their expression level was found to 

be significantly altered was illustrated in Figure 4-10.  

 

 

Figure 4-10 Summary of the number of miRNAs significantly altered at a given treatment 
condition 
Codeset miRNAs is the total number of miRNA probes provided in the assay kit. Only miRNAs that 
met selection criteria were included in this diagram.  

To evaluate whether different injury types altered miRNA profile differently, we 

clustered miRNAs, which fulfilled the selection criteria, based on the direction of their 

alteration in either ischaemia or reperfusion injury. This is illustrated in Figure 4-11 and 

Figure 4-12. Analysis of both the 2 and 12-hour time points showed that hypoxia alone or free 

radical exposure alone produced distinct miRNA signature in PTECs. At 2-hour, only 21 out 

of 120 miRNAs were identified in both ischaemic injury and reperfusion injury, while 23 out 

of 87 miRNAs were identified by both injuries at 12-hour. We have identified only three 

miRNAs that showed significant and consistent up/down-regulation in either all cells, both 

cell lines, or both primary cells after hypoxia and H2O2 treatment; miR-21, miR-376a and 

miR-190b.  
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To assess similarities or differences between miRNA profile in cell lines and PTECs, 

the miRNAs which fulfil the selection criteria were grouped into several categories, based on 

their pattern of up or down-regulation in either cell lines (HKC-8 and HK-2) or primary 

PTECs as described in Table 4-1. Expectedly, each cell type produced a unique miRNA 

signature in response to either ischaemia or reperfusion, highlighting differences in cellular 

genetic characteristics. These differences are especially apparent between the two primary 

PTECs and cell lines (HKC-8 and HK-2). This is reflected by the dominance of category 2 

and 3, which represent consistent up/down-regulation in either cell lines or primary PTECs at 

all time points (Table 4-1). 

Table 4-1 Categorisation of miRNA profile 
Category Number of altered miRNAs at 2 hour Number of altered miRNAs at 12 hour 

Hypoxia ROS Hypoxia ROS 
1 5 5 6 3 
2 39 24 23 20 
3 19 58 29 35 
4 0 0 0 1 

Category 1: consistent up/down-regulation in all cell types 
Category 2: consistent up/down-regulation in cell lines (HKC-8 and HK-2) 
Category 3: consistent up/down-regulation in both primary PTECs 
Category 4: opposite effect between cell lines (HKC-8, HK-2) and primary PTECs 
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Figure 4-11 MiRNAs profile in all cells at 2-hour time point 
Heatmap illustrating differential expression of miRNAs in all cell types after 2-hour hypoxia or free-radical exposure. Data was expressed as fold change of gene 
expression (ratio of gene expression between treated and non-treated cells at 2-hour). Only miRNAs that fulfil the selection criteria were included. MiRNA 
clustering was performed solely based on the selection criteria. 
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Figure 4-12 MiRNAs profile in all cells at 12-hour time point 
Heatmap illustrating differential expression of miRNAs in all cell types after 12-hour hypoxia or free-radical exposure. Data was expressed as fold change of gene 
expression (ratio of gene expression between treated and non-treated cells at 12-hour). Only miRNAs that fulfil the selection criteria were included. MiRNAs were 
clustered based on the selection criteria. There was no statistical method applied to rank the miRNAs. 
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The miRNA expression profile at 2-hour and 12-hour after the same type of injury were 

also different. Consistent up- or down-regulation of a miRNA at both time points by a given 

injury may reflect its particular importance in performing a specific cellular function. 

Therefore, I have listed several miRNAs with the same pattern of expression at both 2-hour 

and 12-hour in either hypoxia alone or exposure to H2O2 alone. This is shown in Figure 4-13. 

 

 

Figure 4-13 Expression pattern of selected miRNAs at 2 and 12-hour hypoxia or free-radical 
exposure 
Heatmap showing expression of miRNAs that were significantly and consistently up- or down-
regulated after ischaemia or reperfusion injury. Data was expressed as fold change of gene expression 
(ratio of gene expression between treated and non-treated cells at 12-hour). MiRNAs were clustered 
based on the selection criteria without performing a specific statistical analysis.  

 

For the purpose of this study, I focused on 12-hour time point. At this time point, I 

identified 35 miRNAs with miRNAs level of expression changes unique to ischaemia. 

Similarly, 12-hour of free-radical injury induced changes in 35 other miRNAs (Figure 4-14). 

The expression level of 23 miRNAs was significantly altered in both injuries. The magnitude 

of changes of these miRNAs is shown in Figure 4-15 and Figure 4-16. 
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Figure 4-14 Venn diagram showing significantly altered miRNA at 12-hour time point  
The diagram enlists selected miRNAs, which were altered after hypoxia only, after exposure to H2O2 
only, and after both injuries. MiRNAs which have been previously identified in the literature which 
focused on renal model of IRI (see Table 1.1) were printed in bold italic font 
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Figure 4-15 Detailed list of miRNAs that fulfil the selection criteria at 12-hour hypoxia 
List of miRNAs which were up/down-regulated by more than 2-fold in either the two cell lines (HKC-
8 and HK-2) or in the two primary PTECs after 12 hour hypoxia. MiRNA was categorised based on 
their patter of expression (category 1: up/down-regulation in all cells, category 2: up/down-regulation 
in cell lines only, category 3: up/down-regulation in primary cells only, category 4: opposite effect in 
cell lines vs primary cells). Data was presented as the mean of fold change of expression compared to 
normoxic cells. Magnitude of expression was calculated by averaging the fold change in the affected 
cells respective of their miRNA pattern categories).  MiRNAs were listed based on the mean of 
magnitude (from the greatest magnitude of up-regulation at the top of the list to the greatest magnitude 
of regulation on the bottom of the list).  
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Figure 4-16 Detailed list of miRNAs that fulfil the selection criteria at 12-hour after H2O2 
treatment  
List of miRNAs which were up/down-regulated by more than 2-fold in either the two cell lines (HKC-
8 and HK-2) or in the two primary PTECs at 12 hour after H2O2 treatment. MiRNA was categorised 
based on their patter of expression (category 1: up/down-regulation in all cells, category 2: up/down-
regulation in cell lines only, category 3: up/down-regulation in primary cells only, category 4: opposite 
effect in cell lines vs primary cells). Data was presented as the mean of fold change of expression 
compared to non-ischaemic cells. Magnitude of expression was calculated by averaging the fold 
change in the affected cells respective of their miRNA pattern categories).  MiRNAs were listed based 
on the mean of magnitude (from the greatest magnitude of up-regulation at the top of the list to the 
greatest magnitude of regulation on the bottom of the list).  
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To examine possible overlaps between my findings and the results from previous 

miRNAs profiling studies in kidney IRI, a heatmap illustrating the expression pattern of 

several miRNAs mentioned in the literatures was generated (Figure 4-17). I found several 

miRNAs with significant changes in their level of expression, which have also been identified 

in previous reports. These miRNAs include miR-18a, miR-21, miR-34a, miR-155, miR-194, 

miR-199a, miR-210, miR-214, miR-494, and miR-877.  

 

Figure 4-17 Expression of previously identified miRNAs from the literature, in our dataset 
Heatmap illustrating the differential expression of previously identified miRNAs from the literature. In 
our dataset, only a few of these miRNAs showed significant differential level of expression after 
hypoxia or free-radical exposure. MiRNAs were clustered based on the selection criteria without 
performing a specific statistical analysis. 
 

4.4. Validation of Profiling Results 

Microarray results were validated using real-time quantitative PCR. Several 

microRNAs were selected from a group of microRNAs that were consistently up/down-

regulated in all cells (HKC-8, HK-2 and primary PTECs) following either ischaemia or 

reperfusion. These include miRNAs which were consistently up/down-regulated following 

exposure to both injuries, such as miR-21-5p and miR-34a-5p; miRNAs which were 

consistently altered following ischaemic injury only, such as miR-210-5p and miR-363-3p, 

and miRNAs which were consistently altered following reperfusion injury only, such as miR-

130b-3p and miR-142-3p.  
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4.4.1. Up-regulation of miR-21 After Hypoxia 

Up-regulation of miR-21 was seen consistently in all cells at 12-hour after induction of 

ischaemia (Figure 4-18). Unlike the result from NanoString® profiling, miR-21 expression 

was not significant in HKC-8 and HK-2 cells after 2 hours (Figure 4-18; (a) and (b)). In both 

HKC-8 and HK-2 cells, up-regulation of miR-21 reached its peak at 12-hour following 

ischaemic injury. In two primary PTECs, miR-21 was significantly up-regulated at both 2 and 

12-hour. I later confirmed this up-regulation in two other primary PTECs isolated from 

different patients (Figure 4-19).  

 

 

Figure 4-18  MiR-21 expression in PTECs following hypoxia 
Expression of miR-21 by real-time qPCR in HKC-8, HK-2 and primary PTECs isolated from two 
patients, relative to the expression of a housekeeping gene, RNU48. Data was presented as the mean 
of fold change of relative expression compared to control at 0 hour. Each graph is the result of  an 
experiment performed in three technical replicates. Statistical significance was derived by comparing 
the mean expression of miR-21 of the treated groups to their respective control at 0-hour using one-
way ANOVA with Dunnett’s post-hoc analysis. Chart bars represent the mean of fold-change 
expression + SD (* = p ≤0.05; ** = p ≤0.01; *** = p ≤0.001; **** p ≤0.0001) 
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Figure 4-19 Compilation of miR-21 expression in all primary PTECs following hypoxia 
Combined analysis of miR-21 expression by real-time qPCR in primary PTECs isolated from four 
different patients (N=4), relative to the expression of RNU48. Data presented were the results of four 
independent experiments, each performed in three technical replicates. Results were presented as the 
mean of fold-change expression + SD compared to normoxic cells at 0 hour. One-way ANOVA with 
Dunnett’s post-hoc analysis was applied to measure existing statistical difference in treated samples 
compared to untreated samples at 0-hour (*** = p ≤0.001; **** p ≤0.0001) 
 

4.4.2. Up-regulation of miR-21 After Free-Radical Stress 

Generally, the level of expression of miR-21 showed a trend of up-regulation in all 

cells following treatment with H2O2 (Figure 4-20). However, the level of increase was not 

enough to reach statistical significance in HKC-8 cells and one of the primary PTECs (Figure 

4-20; (a) and (c)) at the 2-hour observation time-point. Similar to the result from miRNA 

profiling, 12-hour of H2O2 treatment significantly increased miR-21 level of expression in all 

PTECs. Despite being statistically significant, the fold change increase in miR-21 did not 

reach two-fold in one of the primary PTECs. Taking into consideration the pre-existing inter-

individual differences, the magnitude of changes is also expected to vary across primary cells 

isolated from different patients. To confirm this finding, the same validation experiment was 

conducted in additional primary PTECs isolated from two more patients. The combined result 

revealed a statistically significant increase in miR-21 expression at 12-hour (Figure 4-21). 

MiR-21 was up-regulated by an average of three folds in all primary PTECs after H2O2 

treatment, with peak up-regulation occurring at 12-hour after injury. 
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Figure 4-20 MiR-21 expression in PTECs after H2O2 treatment 
Expression of miR-21by real-time qPCR in HKC-8, HK-2 and two primary PTECs after 2 and 12-hour 
H2O2 treatment. Expression of miR-21 was measured relative to RNU48 expression. Data was 
presented as the mean + SD of fold-change expression. Each graph presented was the result of a single 
experiment performed in three technical replicates. One-way ANOVA with Dunnett’s post-hoc 
analysis was applied to detect statistical significance by comparing the mean expression of miR-21 at 
each time point to untreated cells at 0-hour (* = p ≤0.05; ** = p ≤0.01; *** = p ≤0.001; **** p 
≤0.0001) 

 

Figure 4-21 MiR-21 expression in all primary PTECs following H2O2 treatment  
Data showing the mean of fold-change in miR-21 expression at 2 and 12-hour following reperfusion 
injury, normalised to the expression of RNU48. Expression level of the treated cells at 2 and 12-hour 
were compared to untreated cells at 0-hour. Data presented were the results of four independent 
experiments using primary cells isolated from four different patients (N=4). Each experiment was 
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performed in three technical replicates. Statistical significance was obtained using one-way ANOVA 
with Dunnett’s post-hoc analysis (*** = p ≤0.001) 

4.4.3. Expression of miR-34a in hypoxic PTECs 

Nanostring profiling showed down-regulation of miR-34a in hypoxic PTECs. 

Validation with qPCR also detected decrease in miR-34a expression during ischaemia. 

However, at 2-hour time point, the changes were only found to be statistically significant in 

primary PTECs (Figure 4-22; (c) and (d)), but not in HKC-8 or HK-2 cells (Figure 4-22; (a) 

and (b)). The decrease in miR-34a expression persisted, and reached statistical significance in 

all cells at the 12-hour time point. Generally, 12-hour ischaemia reduced miR-34a expression 

by approximately 3-4fold in all PTECs. This decrease in miR-34a expression was also 

verified in two additional primary PTECs isolated from different patients (Figure 4-23).  

   

 

Figure 4-22. MiR-34a expression following hypoxia 
qPCR results showing miR-34a expression in HKC-8, HK-2, and two primary PTECs after hypoxia, 
relative to the expression of a reference gene, RNU48. Each graph was the result of a single 
experiment performed in three replicates. Data were presented as the mean of fold-change expression 
+ SD. Statistical significance was tested using one-way ANOVA with Dunnett’s post-hoc analysis by 
comparing the mean of fold-change expression in the hypoxic group to the normoxic cells at 0-hour. 
(** = p ≤0.01; *** = p ≤0.001; **** p ≤0.0001) 
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Figure 4-23 MiR-34a expressionin primary PTECs  following hypoxia 
qPCR results of miR-34a expression in HKC-8, HK-2, and two primary PTECs after hypoxia, relative 
to the expression of RNU48. Data presented was the result of four independent experiments (N=4), 
each performed in three technical replicates. Data were presented as fold-change expression compared 
to the respective control at 0-hour.  Statistical significance was tested using one-way ANOVA with 
Dunnett’s post-hoc analysis by comparing the mean miR-34a expression in the treatment group to the 
control group at 0-hour. (* = p ≤0.05; ** = p ≤0.01; *** = p ≤0.001; **** p ≤0.0001) 
 

4.4.4. Expression of miR-34a After H2O2 Treatment 

Similar to ischaemia, induction of free radicals in PTECs also decreased miR-34a 

expression in all PTECs. Again, qPCR did not detect statistically significant changes at the 2-

hour time point. The down-regulation of miR-34 was sustained and reached statistical 

significance at 12-hour after H2O2 treatment in all cells (Figure 4-24). Down-regulation was 

3-4 fold in HKC-8 and primary PTECs compared to untreated cells (Figure 4-24; (a), (c) and 

(d)). In HK-2 cells, the expression of miR-34a was only reduced by approximately half of its 

control level (Figure 4-24; (b)). This finding was further verified by conducting the same 

experiment in additional primary PTECs isolated from two additional patients. The overall 

findings concluded that in all primary PTECs, 2 and 12-hour H2O2 treatment caused 

significant down-regulation of miR-34a (Figure 4-25).   
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Figure 4-24 Mir-34a expression after H2O2 treatment  
Mean of fold-change expression of miR-34a by real time qPCR, relative to RNU48 expression, in 
HKC-8, HK-2, and primary PTECs isolated from two patients. Each graph showed the result of a 
single experiment performed in three technical replicates. Result was presented as mean + SD. One-
way ANOVA test with Dunnett’s multiple comparison analysis was applied to compare the mean of 
each treatment group to control group at 0-hour. (* = p ≤0.05; ** = p ≤0.01; *** = p ≤0.001; **** p 
≤0.0001)  

 

Figure 4-25 MiR-34a expression after H2O2 treatment in all primary PTECs  
MiR-34a relative expression to RNU48 by real-time qPCR in primary PTECs isolated from different 
patients. Data presented was the result of four independent experiments (N=4), each performed in 
three technical replicates Diagram represents the mean of fold-change expression + SD. Statistical 
significance was tested by comparing the mean of fold-change expression at 2 or 12-hour time points 
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to untreated cells at 0-hour. Statistical analysis was performed using one-way ANOVA followed by 
Dunnett’s multiple comparison analysis. (**** p ≤0.0001) 

4.4.5. Other miRNAs  

The expression level of miR-210 and miR-363 were increased in hypoxic primary 

PTECs, but not after H2O2 treatment. Using qPCR, I validated this increase, which showed a 

significant up-regulation of both miRNAs by 2-fold specifically in response to hypoxic injury 

(Figure 4-26). In contrast, the expression of miR-130b and miR-142 was increased in 

response to H2O2 treatment (Figure 4-26). 

 

 

Figure 4-26. Expression level of miR-210, miR-363, miR-130b and miR-142 in hypoxia or after 
free radical induction 
The expression of selected miRNAs in primary PTECs incubated in hypoxia or treated with H2O2 by 
real-time qPCR. Expression of miRNA was  normalised to the expression of RNU48 as the reference 
gene. For each miRNA, experiments were conducted in primary PTECs isolated from three different 
patients (N=3). Comparison was made between the expression of each miRNA in a treatment time-
point to its control at 0-hour. Bar chart represents the mean fold-change expression + SD of the 
investigated miRNA. One-way ANOVA was applied to detect variance across sample set. Difference 
in the mean between treatment groups at 2, 12-hour and untreated group at 0-hour were analysed using 
Dunnett’s multiple comparison test. (* = p ≤0.05; ** = p ≤0.01; *** = p ≤0.001; **** p ≤0.0001) 
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4.5. Functional Analysis and Target Prediction Results 

This step of the project was only applied to miRNAs which fulfilled the selection 

criteria (consistently up/down-regulated in cell lines or both primary PTECs by 2-fold) at 12-

hour time point. Firstly, I utilised miRPath to find a potential association between the 

miRNAs listed in Figure 4-14 to any known biological pathway listed in the KEGG database. 

MirPath was selected for its practicality, as it allows analysis of a large selection of miRNAs 

in a single search. Association between a miRNA and a KEGG biological pathway was 

detected by miRPath through three prediction softwares; Tarbase, microT-CDS and 

TargetScan. To detect all potential pathways in which a miRNA from our set is targeting, we 

opted to use genes union selection method. This method calculates the union of targeted genes 

by the selected miRNAs set, listing all genes targeted by at least one of the miRNAs in the 

set. MiRPath then identified pathways associated with these genes. With this method, I was 

able to list all pathways targeted by a single miRNA.  The pathways targeted include HIF-1a 

signalling pathway, regulation of actin cytoskeleton, mTOR signalling pathway and TGF-b 

signalling pathway.  I then selected the pathways which were considered relevant in cellular 

response to IRI.  

 From the pathways listed above, I selected the TGF-b signalling pathway which is 

involved in the cellular response to both ischaemia and reperfusion injury. I identified 45 

miRNAs from the dataset, which were predicted to be involved in the regulation of TGF-b 

signalling pathway. These miRNAs include miR-133a, miR-363, miR-376a, miR-21, 

miR124, miR34a and miR-142. 

4.5.1. Targets of miR-21 

 Mir-21 is one of the miRNAs which was up-regulated in all cell types. Based on this, I 

performed target validation and explored the role of miR-21 in the TGF-b signalling pathway 

in the kidney following IRI. The potential target genes of miR-21 in the TGF-b signalling 

pathway listed by miRPath can be seen in Figure 4-27. 
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Figure 4-27 Illustration of TGF-b signalling pathway and potential target genes of miR-21 
Predicted mRNA targets of miR-21 in the TGF-b signalling pathway. Target genes predicted by two 
prediction software (both micro-T-CDS and Tarbase) were highlighted in amber, and target genes 
predicted by only one software (either micro-T-CDS or Tarbase) were highlighted in yellow. Diagram 
was accessed through miRPath version 2.0 computational tool and KEGG pathway (Kanehisa 
Laboratories). 

As described in the introductory section, all prediction software performed 

identification of miRNA targets by matching the nucleotide sequence between the seed region 

of miR-21 (2-8 bases) and 3’ untranslated region (UTR) of a potential target mRNA. 

However, each computational tool utilises a different algorithm, and therefore, it is crucial to 

use more than one tool to ensure the accuracy of each algorithm. I used miRWalk prediction 

software as it allows this verification process using three or four available computational tools 

in parallel. The following mRNA targets from miRPath were also listed by four 

computational tools in miRWalk: STAT3, IL6R, SMAD7, TGFBR2, BMPR2, TGFB2, 

CREB5, CDK6 and FASLG (also listed in Table 4-2).  

4.5.2. Targets of other potential miRNAs 

In addition, I applied the same target prediction steps to other significantly altered 

miRNAs at 12-hour, which were considered relevant to tubular epithelial cell response to IRI. 

The result of this analysis is displayed in Table 4-2. 
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Table 4-2 Predicted mRNA targets of selected miRNAs 
miRNA +/- Condition Cells Pathway Genes 

miR-21-5p + Ischaemia 
and ROS All 

HIF-1 signalling STAT3, IL6R 

TGF-β signalling TGFBR2, TGFB2, 
SMAD7, BMPR2 

PI3K-Akt PTEN, CREB5, CDK6, 
FASLG, IL6R 

miR-30a-3p - Ischaemia pPTECs HIF-1 signalling ANGPT2, AKT3 
TGF-β signalling CREBBP, PITX2 

miR-34a-5p - Ischaemia 
and ROS All 

HIF-1 signalling 

ERBB2, PIK3CB, BCL2, 
PGF, LDHA, PRKCB, 
MAP2K1, VEGFA, 
SERPINE1, IL6R 

EMT NOTCH1, NOTCH2, 
NOTCH4 

TGF-β signalling SMAD4, E2F5 

miR-363-3p + Ischaemia pPTECs 

Extra-cellular matrix 
receptor 

COL2A1, ITGB6, ITGA5, 
ITGAV, COL1A2, FST, 
BMPR2 

EMT SOX4 
TGF-β signalling FST, BMPR2 
HIF-1 signalling PIK3R3, PI3CA 

miR-376a-3p + Ischaemia 
and ROS pPTECs TGF-β signalling BMPR2 

HIF-1 signalling PIK3CB 

miR-190b + Ischaemia 
and ROS pPTEC NFK-B TAB2, BCL2L1 

TGF-β signalling ROCK1 

miR-200c-3p + Ischaemia HKC-8, 
HK-2 

HIF-1 signalling EGFR, TCEB1, FLT1, 
RPS6KB1, EGLN1 

TGF-β signalling SMAD5, EP300, 
RPS6KB1 

miR-142-3p + ROS All NFK-B TAB2, ERC1, IRAK1 
TGF-β signalling TGFBR1 

miR-130b-3p + ROS pPTEC TGF-β signalling 
SMURF2, INHBA, SKP1, 
SMAD4, TGFB2, 
TGFBR2, BMPR2 

HIF-1 signalling EDN1 

miR-124-3p - Ischaemia pPTECs TGF-β signalling 
ROCK1, BMPR1B, 
ROCK2, BMP6, SMAD5, 
SP1 

HIF-1 signalling RPS6KB1 

miR-302a-5p + Ischaemia All 
TGF-β signalling INHBB, SMAD4 

HIF-1 signalling BCL2, IGF1R, PIK3R1, 
PRKCB 

miR-7-5p + ROS HKC-8, 
HK-2 

TGF-β signalling SP1, RPS6KB1 

HIF-1 signalling FIGF, IGF1R, EGFR, 
MTOR, RELA, RPS6KB1 

miR-155-5p + ROS pPTECs TGF-β signalling SMAD2, PPP2CA, GDF6, 
SP1, ACVR1C, RPS6KB1 

miR-18b- 
5p + Ischaemia 

ROS 

pPTECs 
HKC-8, 
HK-2 

TGF-β signalling THBS1 

Genes listed were selected from miRPath pathways, which overlap with genes obtained from multiple 
computational analysis performed using miRWalk database. The sign +/- represents direction of 
changes in the level of expression of a miRNA; (+) = up-regulation and (-) = down-regulation 
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4.6. Discussion 

4.6.1. Assessment of Treatment Effect  

4.6.1.1. Assessing the Effect of Hypoxia  

The literature suggests various ways of mimicking hypoxia. The most commonly used 

methods include chemically-induced hypoxia, cell-density mediated hypoxia generation, and 

by using a hypoxic chamber/incubator. Cell-density mediated hypoxia is generated through 

over-confluent growth of cells (Marsters et al., 2014). The degree of hypoxia induced by 

growth over-confluence may not be uniform across all cells within a vessel. Furthermore, 

over-confluency itself may induce cellular changes, which are difficult to control, in addition 

to hypoxia. Although relatively inexpensive, chemically mimicking hypoxia (using cobalt 

chloride or desferoxamine) only targets the HIF-1α downstream response (Triantafyllou et al., 

2006). HIF-1α plays an important role in the cellular response to hypoxia, however, it is only 

one pathway among many other equally important pathways, thus may not reflect the 

comprehensive picture of the overall cellular response to oxygen deprivation. The use of a 

hypoxic chamber enables a more physiological resemblance of the effects of hypoxia. A 

pitfall associated with this method is fluctuating oxygen concentrations due to chamber 

opening and closing. Although transient loss of the hypoxic environment may not be a major 

problem, a short period of oxygenation (reperfusion) may interact with the effect of 

ischaemia. In my experimental setting, the design of the chamber allowed the cells to be 

inserted and handled under anaerobic conditions, minimising potential exposure to normal 

oxygen pressure.  

Deprivation of oxygen will not immediately lead to cell death, especially in renal 

PTECs. The unique physiology of renal blood flow enables PTECs to be both accustomed to 

yet still sensitive to hypoxia. PTECs are able to adapt well to physiological state of hypoxia, 

due to their constant exposure to a border-line hypoxic environment within the kidney. 

Assessing the effect of hypoxia by determining cell viability is therefore not an ideal method. 

To confirm whether hypoxia stimulates changes to PTECs, I stained the cells for HIF-1α.  

As described in Chapter 1, HIF is an important transcription factor in determining 

cellular response to hypoxia. During hypoxia, HIF-1α degradation by PHDs is impaired, 

leading to the accumulation in HIF-1α. This is followed by dimerization of HIF-α to HIF-b, 

nuclear localisation and activation of cellular pathways involved in cell survival, apoptosis or 

fibrogenesis. Immunofluorescence staining of hypoxic HKC-8 cells clearly illustrated HIF-1α 

in the nucleus (Figure 4-1 panel d-f). Interestingly, intra-nuclear HIF-1α in CoCl2 treated cells 
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was more prominent compared to the cells treated in a hypoxic chamber for 24 hours. This 

may be due to the nature of the stabilisation of HIF by CoCl2. Introduction of Co replaces Fe 

in PHDs, which inhibits their ability to recognise HIF-1α. Therefore, the mechanism of CoCl2 

in mimicking the effect of hypoxia is specific and limited to HIF-1α activation, reflected in a 

strong HIF-1α staining. 24-hour oxygen deprivation does not induce such strong HIF 

expression. Although HIF is a very important pathway, it is only a part of a more global 

cellular response to hypoxia associated with numerous pathways and various feedback 

regulators, which act at multiple levels of HIF regulation; mRNA level, protein level, and 

transcriptional activity of HIF (Henze and Acker, 2010).  These regulators were mainly 

studied in relation to cancer biology, but may also be potentially important in progression of 

damage from acute hypoxia.  

Furthermore, HIF is a transcription factor that is rapidly degraded, even if the effect of 

hypoxia persists in the cell. It is possible that evaluation of HIF expression at 24-hour is not 

the most appropriate time-point to assess hypoxia in a cell. To resolve this, I designed another 

experiment to confirm that the method of hypoxia induction elicited a biologically significant 

response in the cell.  The effect of hypoxia was quantified using an HRE-luciferase reporter 

plasmid transfected to HKC-8 cells. Results from this experiment clearly showed that 24-hour 

incubation in 1%O2 increased HRE driven luciferase expression compared to normoxic cells. 

Interestingly, the peak luciferase activity was recorded at 12-hour after hypoxia induction and 

decreased to almost half of its initial increase at 24-hour. This suggests that the cellular 

response to hypoxia is a very dynamic process involving complex regulatory feedback. A 

decrease in HRE activity despite continued exposure to low oxygen level suggests a form of 

cellular adaptation to hypoxia or an attempt to normalise HRE activation. Nonetheless, the 

increased luciferase activity is evidence that the intervention successfully induced hypoxia in 

PTECs.  

Prior to profiling using NanoString platform, a series of experiments were conducted in 

HKC-8 and HK-2 cells to detect changes in miR-21 and miR-34 level at 2 hour interval for up 

to 24-hour, following hypoxic injury. The results of these experiments showed that miR-21 

was up-regulated following hypoxia starting at 2-hour, which was followed by a marked 

increase at 12-hour. Based on this, both 2 and 12-hour time points were selected as the time 

points for the experiments using NanoString platform.  

4.6.1.2. Assessing the Effect of H2O2 Treatment 

Cells should be stressed enough to induce gene expression changes without significant 

reduction in cell viability. In this experiment, the cells were treated in H2O2 for a maximum of 
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4 hours, as prolonged exposure to H2O2 will result in cell death. Whilst reduced viability 

demonstrates the effect of H2O2 exposure, it does not provide evidence of ROS generation 

intracellularly. Fluorescence activity of CM-H2DCFDA was used as a measure of oxidative 

activity within the cells. This fluorescence activity increased after treatment with 200µM 

H2O2. The emission increased further as H2O2 concentration was increased to 400µM. A 

further increase in H2O2 concentration, however, resulted in markedly reduced fluorescence. 

This may indicate significant cellular stress or even cellular death because of H2O2 exposure. 

At 800µM, the number of events captured by FACS fell to 50% of the original parent 

population. This suggests significantly compromised cellular viability, thus highlighting the 

injurious effect of high concentrations of H2O2. The flow cytometry result supports previous 

viability experiments, confirming the optimal concentration of H2O2 to be used in HKC-8 

experiment is 400µM. To decide the time points of observation for miRNA profiling using 

NanoString platform, a qPCR to detect changes in miR-21 and miR-34 were performed in 

HKC-8 and HK-2 cells treated with the specified concentration of H2O2. As was observed in 

hypoxic cells, the expression level of both miRNAs was found to be significantly altered after 

2-hour exposure to H2O2. The changes were further significantly detected at 12-hour. Based 

on these findings, 2 and 12-hour were selected as the observation time points in cells treated 

with H2O2. 

4.6.2. Global MicroRNA Profiling 

4.6.2.1. Assessment of the Technology and Data Analysis 

Profiling of miRNA expression in different cells, tissues, treatment conditions and 

disease processes is an important step in miRNA research. There are several commercial 

measurement platforms currently available, mainly based on three main technologies; RNA 

sequencing, reverse transcription-quantitative PCR (qPCR) and microarray hybridisation. 

Ideally, the platform which provides the best detection rate, should be selected. Detection rate 

is influenced by several factors, such as assay sensitivity, assay detection cut-off, and the 

number of probes available within the platform. Although the latter factor does not apply to 

sequencing-based technology, it is often the deciding factor in choosing between PCR based 

and microarray hybridisation methods. 

Several studies have used the Nanostring nCounter platform in their miRNA profiling 

method, and have shown excellent robustness and reproducibility. In addition, the fully 

automated process has allowed minimal manual handling time, which not only reduced the 

likelihood of user error, but also increased efficiency and practicality. 
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There are several normalisation methods recommended before changes in the level of 

miRNA expression could be analysed; (1) using a set of reference/housekeeping genes, (2) 

using total counts of expression within a sample, and (3) global normalisation method using 

the top 100 most highly expressed miRNAs. Typically, the first method relies on the selection 

of at least three reference genes, which are consistent in their expression across different cell 

types with different treatments. The choice of reference genes is therefore crucial, and the 

accuracy of the normalisation is highly determined by the number of genes included. With a 

codeset of approximately 800 miRNAs from different cell types, normalisation of raw data 

using only three or four genes may not be the best option. In addition, we also showed that the 

expression level of some of the provided reference mRNAs was significantly altered in the 

treated group (RPL0, RPL19 and GAPDH were significantly up-regulated in primary TECs 

following exposure of H2O2). Nevertheless, we have shown that the selection of normalisation 

method did not greatly affect the detection of changes in miRNA expression. 

Alternatively, the sum of all counts in each sample can be used to approximately 

determine the total nucleic acid expression within a sample. This total sum of a sample 

relative to the mean sum of all counts of each sample can be used to generate a scaling factor. 

However, this method is not suitable in comparing different cell types with different overall 

expression profiles, as it may skew the data inappropriately and not produce representative 

results. More appropriately, I opted to normalise the dataset using the global normalisation 

method. In a large codeset containing more than 300 probes, it is assumed that the level of 

expression of only a small portion of the targets assayed may fluctuate in any given sample, 

and that the level of expression of most will be the same. This method utilises much larger 

numbers of reporters, thus providing more accuracy. Nevertheless, it is crucial to determine 

that the fraction of probes used as reporters do not exhibit differential expression from sample 

to sample. My preliminary analysis showed no significant inter-sample variations exist across 

the top 100 mostly expressed miRNAs. In parallel, I also analysed the data using reference 

gene normalisation, to confirm whether the choice of normalisation method altered the 

findings significantly. The result of this parallel analysis showed reasonably similar findings 

to the result from global normalisation, especially in regards to the consistently up/down-

regulated miRNAs across all cell types. 

Assessment of background technical noise in the platform is important to determine 

background threshold and ascertain that all read-outs were indeed true signal. As mentioned 

previously, the assay employs negative control probes, in which no target transcripts were 

supplied. Positive signals coming from these probes can therefore be assumed as technical 

noise or background. The average expression of these negative controls in a specific sample 
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can therefore be used as background threshold for that lane. To avoid false discovery, I 

decided to use the average plus two standard deviation (mean + 2SD) of all negative control 

probe counts as the background threshold for all samples. This adds a level of stringency to 

ascertain that any reading above the threshold was a real signal.          

4.6.2.2. Ischaemia versus Reperfusion; Distinct but Linked 

Clinically, ischaemia and reperfusion injury is one continuous process. The severity of 

reperfusion injury is closely linked to the initial ischaemic insult, which will determine the 

total injury suffered by an organ/tissue. However, ischaemia or reperfusion injury involved 

different mechanistic pathways, and induce distinct effector cellular response. Kalogeris et al. 

stated that the onset of ischaemia triggers two separate pathologic processes (Kalogeris et al., 

2012). Firstly, there are processes which result from ischaemia per se, and secondly are 

biomolecular changes during ischaemia that contribute to the surge in generation of reactive 

oxygen species and subsequent activation of the immune system. The data analysis from this 

experiment showed distinct genetic regulation involved in the two processes, which indicates 

potential differences in effector pathways involved. However, there are also miRNAs which 

were commonly up/down-regulated during ischaemia as well as after free radical induction. 

The in vitro ischaemia model used in this experiment only allowed a very short normoxic 

recovery phase, and the reperfusion model was not preceded by any ischaemic injury. Thus, 

the altered miRNAs identified in both injuries were very likely to be induced separately by 

either ischaemia or the presence of free-radicals. 

4.6.2.3. Cell lines vs Primary Cells 

 The miRNA profiling analysis results showed that the expression of a miRNA in 

primary PTECs is not always similar to its expression in either HKC-8 or HK-2 cells. This is 

especially of importance in interpreting miRNA studies which base their findings on profiling 

miRNAs in cell lines only. In addition to differences in platform and technologies used, in my 

opinion, the genetic discrepancies between immortalised cell lines and primary cells is also a 

strong contributor to the lack of overlap in the results of currently available miRNA studies.  

To accommodate these differences in genetic characteristics, I modified the initial 

selection criteria for a miRNA of interest. Initially, I intended to include only those miRNAs 

with level of expression changes in all cells after a given treatment and at all observation 

points. However, this approach will exclude the majority of miRNAs from the codeset, and 

may overlook the potential biological importance of a miRNA. Hence, I decided to group the 

cells used into cell lines (HKC-8 and HK-2) and primary cells (pPTEC 1 and pPTEC 2). 
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Application of the modified selection criteria allowed more miRNAs to be included. These 

miRNAs showed similar pattern of up- or down-regulation in either the cell lines or primary 

PTECs. These are the best microRNA candidates to be analysed further for their involvement 

in the tubular epithelial cell response to IRI. The distinctly different response between cell 

lines and primary cells highlights the significance of including human primary cells in this 

study or any microRNA profiling study. 

4.6.3. MiR-21 

Due to its abundance in various organs and tissues, miR-21 has been the subject of 

many miRNA studies. Mir-21 has been linked with an array of biological functions and 

disease processes, including cancer, inflammation, cardiovascular diseases, various fibrotic 

processes and epithelial-to-mesenchymal transition. In kidney transplantation, up-regulation 

of miR-21 has been associated with poorer allograft function, delayed graft function, and 

development of interstitial fibrosis (Ben-Dov et al., 2012; Scian et al., 2013b; Khalid et al., 

2016). Furthermore, miR-21 has also been shown to be involved in various kidney 

pathologies, including renal cell carcinoma, development of renal fibrosis, and progression to 

chronic kidney disease  (Zhong et al., 2011; Li et al., 2013; Wang et al., 2014b; Zhou and 

Jiang, 2014; McClelland et al., 2015; Hennino et al., 2016). The precise role of miR-21 in the 

renal response to IRI, however, is less clear. Some studies suggested up-regulation of miR-21 

after IRI may have beneficial and pro-survival effect. In contrast, there is substantial evidence 

available to link miR-21 to activation of apoptosis, fibrosis and deleterious clinical outcome. 

In this study, miR-21 is the only miRNA, which was significantly altered in all PTEC 

types at all time points after both ischaemia and reperfusion injury. This result reiterates what 

has been reported by other authors. MiRNA profiling studies conducted in murine and human 

renal tubular cells also showed rapid up-regulation of miR-21 in hypoxic PTECs compared to 

normoxic controls (Goodwin et al., 2010; Shapiro et al., 2011). The same findings were also 

reported in studies using a mouse IRI model (Saikumar et al., 2012; Jia et al., 2013). The 

expression of miR-21 following free radical injury alone, however, has not been reported. 

Although all these findings suggest an important role that miR-21 after IRI, it is previously 

not known whether miR-21 up-regulation is involved in the molecular events following 

ischaemia per se, the events related to the surge in reactive oxygen species following 

reperfusion, or both. The design of this study allowed me to investigate these potential links 

individually. Our findings clearly showed that miR-21 was involved in the response to both 

ischaemia and free radical injuries. 
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In a study utilising mice IRI model, up-regulation of miR-21 was consistently detected 

at 24-, 72- and 120-hour (Saikumar et al., 2012). Interestingly, I found that the up-regulation 

of miR-21 was detectable at as early as 2-hour after injury by approximately 2-fold change, 

which continued to rise to approximately 3-4 fold change at 12-hour after injury. This finding 

suggests a role of miR-21 at a very early phase of injury. To my knowledge, there is currently 

no available data documenting the pattern of miR-21 expression at these early time points.  

Using multiple computational analysis software, I identified miR-21 targets, which 

were considered relevant to renal IRI. Data suggests that mir-21 interacts with the HIF 

pathway by targeting the gene phosphatase and tensin homology deleted on chromosome 10 

(PTEN), which indirectly activates the Akt pathway, leading to HIF stabilisation (Liu et al., 

2011). Expression of miR-21 is also activated by the pro-inflammatory cytokine, IL-6 through 

STAT3-dependent mechanism (Xu et al., 2014). Both IL-6 and STAT3 were also detected in 

my computational analysis result.  

I also identified several potential target genes of miR-21 in the TGF-β pathway, such as 

SMAD7 and TGFBR2. The interaction between miR-21 and TGF-β pathway is especially 

important to evaluate the mechanistic link between IRI, early up-regulation of miR-21 and the 

development of fibrosis as the main mechanism for deterioration in allograft function. This is 

the main objective and will be discussed in detail in the following chapter.    

4.6.4. Other Potential MiRNAs 

Akker et al. (van den Akker et al., 2015) highighted on the lack of overlapping results 

in currently available studies on miRNA in kidney transplantation. In order to find other 

potential miRNAs, I compared the expression pattern of selected miRNAs in my dataset to 

their expression reported in the literature. To maintain uniformity in study design and model, I 

only listed studies that use the ischaemia and reperfusion injury model. The comparison is 

summarised in Table 4-3. 

I observed a similar pattern of change in some of these miRNAs, such as miR-34a, 

miR-155, miR-194, miR-199 and miR-210. However, a significant proportion of these 

miRNAs were not significantly altered or were only altered in one type of cell, so were not 

included in the selection. These differences in findings may be attributed to several factors.  

Differences in detection platform technology utilised for miRNA profiling, sample types 

(cellular RNA vs tissue RNA vs body fluids; human vs murine; FFPE vs fresh frozen 

preparation) have been proposed as a main contributor to the lack of overlap miRNA studies. 

This could also be the main reason for the differences seen in our profiling result. As seen in 

Table 4-3, the majority of studies listed performed miRNA profiling in murine tissue.
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Table 4-3 Summary of the expression pattern of previously identified miRNAs in the literature compared to their expression pattern in the current dataset 

miRNA Current Dataset Literature References 
Expression Cell Type Condition Expression Model Specimen Platform 

miR-10a No significant changes detected Up-regulated within 1hr Rat IRI (45 min. bilateral pedicle 
clamping; 12hr reperfusion) 

Tissue  Microarray 
qPCR (Wang et al., 2014a) 

miR-18a No significant changes detected 
Tissue: Up-regulated 
Blood: Down-regulated 
Urine: Undetectable 

Rat IRI (30 min. bilateral pedicle 
clamping, 24, 72 and 120 hr 
reperfusion) 

Tissue, blood, 
urine 

Microarray (Saikumar et al., 
2012) 

miR-20a No significant changes detected Up-regulated at day 1 
Mice (30 min; unilateral pedicle 
clamping, 1, 3, 5, 7, 14, 21, 30-
day reperfusion) 

Tissue  Microarray 
qPCR (Goodwin et al., 

2010) 

miR-21 Up-regulated All Ischaemia 
and ROS 

Up-regulated at day 1 
Mice (30 min; unilateral pedicle 
clamping, 1, 3, 5, 7, 14, 21, 30-
day reperfusion) 

Tissue  Microarray 
qPCR (Goodwin et al., 

2010) 

Up-regulated Mice (30 min. unilateral pedicle 
clamping) 

Tissue Microarray (Chau et al., 2012) 

Tissue: Up-regulated at 24, 
72, 120-hr 
Blood: Down-regulated 
Urine: Down-regulated 
initially, modestly elevated 
within 72h  

Rat IRI (30 min. bilateral pedicle 
clamping, 24, 72 and 120 hr 
reperfusion) 

Tissue, blood, 
urine 

Microarray 

(Saikumar et al., 
2012) 

miR-24 No significant changes detected Up-regulated 

Mice IRI (30 min. unilateral 
pedicle clamping) 

Tissue qPCR 
(Lorenzen et al., 

2014) Chemical anoxia for 1hr + ATP 
repletion for 30min. 

HK-2 cells qPCR 

miR-34a Down-
regulated All Ischaemia 

and ROS Down-regulated 1% oxygen for 2,4, 6, 12, 24, 48, 
72 hr 

HK-2 cells Microarray 
qPCR (Du et al., 2012) 

miR-127 No significant changes detected Up-regulated 

Rat IRI (45 min. bilateral pedicle 
clamping, 0, 1, 3, 5, 7-day 
reperfusion) 

Tissue Microarray 
qPCR (Aguado-Fraile et 

al., 2012) 1% oxygen for 6 hours, re-
oxygenation for 1, 3, 6, 24 hr. 

HK-2 cells qPCR 

miR-
146a No significant changes detected Up-regulated after day 3 

Mice (30 min; unilateral pedicle 
clamping, 1, 3, 5, 7, 14, 21, 30-
day reperfusion) 
 

Tissue  Microarray 
qPCR (Goodwin et al., 

2010) 
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miR-155 Up-regulated pPTEC ROS 

Up-regulated in tissue 
Down-regulated in blood 
Unchanged (slight non-
significant decrease) in 
urine 

Rat IRI (30 min. bilateral pedicle 
clamping, 24, 72 and 120 hr 
reperfusion) 

Tissue, blood, 
urine 

Microarray 

(Saikumar et al., 
2012) 

miR-187 No significant changes detected Rapidly down-regulated, 
continue to decrease 

Mice (30 min; unilateral pedicle 
clamping; 1, 3, 5, 7, 14, 21, 30-
day reperfusion) 

Tissue  Microarray 
qPCR (Goodwin et al., 

2010) 

miR-192 No significant changes detected 

Rapidly down-regulated, 
continue to decrease 

Mice (30 min; unilateral pedicle 
clamping; 1, 3, 5, 7, 14, 21, 30-
day reperfusion) 

Tissue  Microarray 
qPCR (Goodwin et al., 

2010) 

Up-regulated after 6hr Rat IRI (45 min. bilateral pedicle 
clamping, 12hr reperfusion) 

Tissue  Microarray 
qPCR (Wang et al., 2014a) 

miR-194 Up-regulated pPTEC Ischaemia 

Down-regulated, remain at 
level ≈ control 

Mice (30 min; unilateral pedicle 
clamping, 1, 3, 5, 7, 14, 21, 30-
day reperfusion) 

Tissue  Microarray 
qPCR (Goodwin et al., 

2010) 

Up-regulated after 6hr Rat IRI (45 min. bilateral pedicle 
clamping, 12hr reperfusion) 

Tissue  Microarray  
qPCR (Wang et al., 2014a) 

miR-
199a-3p Up-regulated pPTEC Ischaemia  Up-regulated after day 3  

Mice (30 min; unilateral pedicle 
clamping; 1, 3, 5, 7, 14, 21, 30-
day reperfusion) 

Tissue  Microarray 
qPCR (Goodwin et al., 

2010) 

miR-210 Up-regulated All Ischaemia 

Up-regulated AKI patients vs healthy control Plasma qPCR (Lorenzen et al., 
2011a) 

Up-regulated, most 
prominent at 4hr and 24hr 
after reperfusion 

Mice IRI (30min. bilateral 
pedicle clamping) 

Tissue Microarray 
(Liu et al., 2012) 

miR-214 No significant changes detected Up-regulated after day 3, 
wane by day 21 

Mice (30 min; unilateral pedicle 
clamping; 1, 3, 5, 7, 14, 21, 30-
day reperfusion) 

Tissue (fresh) Microarray 
qPCR (Goodwin et al., 

2010) 

miR-494 No significant changes detected Up-regulated rapidly 
(within 1 hr) 

Mice IRI (45 min. bilateral 
pedicle clamping; 1, 3, 6, 12, 24 
48 hr reperfusion) 

Tissue qPCR 
(Lan et al., 2012b) 

miR-
877* No significant changes detected Up-regulated at 3, 6 and 

24hr. 
Mice IRI (27 min. bilateral renal 
pedicle clamping) 

Tissue 
Plasma 

qPCR (Bellinger et al., 
2014) 
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Previous studies have associated changes in expression of several miRNAs to a 

number of clinical events in kidney transplantation, including delayed graft function, 

interstitial fibrosis or tubular atrophy. The expression of these miRNAs, which fulfil the 

selection criteria in our dataset are summarised in Table 4-4.  

Table 4-4 MiRNAs associated with post-transplant clinical events relevant to IRI 
Clinical 

focus miRNAs Literatures Current Dataset 
+/- Specimen Reference +/- Cell Type Condition 

DGF 

miR-21 + Tissue 
(Wilflingseder et 

al., 2013) 
+ All 

Ischaemia 

and ROS 
miR-21 + Tissue, urine 

(Ben-Dov et al., 

2012) 

IF/TA 

miR-92a + Urine (Maluf et al., 2014) - pPTECs 
Ischaemia 

and ROS 

miR-345 + Urine (Maluf et al., 2014) - pPTECs ROS 

miR-142-

3p 
+ Tissue, urine 

(Scian et al., 2011; 

Ben-Dov et al., 

2012) 

+ pPTECs 
Ischaemia 

and ROS 

The sign +/- represents direction of changes in the level of expression of a miRNA; (+) = up-
regulation and (-) = down-regulation. DGF = delayed graft function; IF = interstitial fibrosis; TA = 
tubular atrophy  
  

4.6.4.1. MiR-34a 

The research on miR-34 has been gaining substantial interest since the discovery of its 

important role as a master regulator in tumour suppression. A long list of cancer types, which 

include lung, liver, prostate, colon, brain, skin and several haematological malignancies have 

been shown to down-regulate expression of miR-34 (Bader, 2012). Mir-34 is a miRNA family 

consisting of three family members; miR-34a, miR34b and miR34c. Mir-34a is identified as 

the most prevalent across all organs in physiological condition, whilst miR-34b and miR-34c 

are more specific to lung, ovary, testes and trachea (Bader, 2012). The miR-34 family has a 

very close homology (80-95%), enabling them to regulate similar target genes involved in 

tumour-related biological pathways, including cell cycle arrest, inhibition of proliferation, 

apoptosis, cellular differentiation, inhibition of WNT signalling and p53 activity (Chen and 

Hu, 2012; Agostini and Knight, 2014).  

The role of miR-34 in kidney pathologies has not been extensively studied. Several 

authors have reported the effect of miR-34 in renal cellular senescence and apoptosis. MiRNA 

profiling at ageing renal mesangial cells showed up-regulation of miR-34a, which was 

associated to the suppression of the anti-oxidant activity of thioredoxin reductase 2 (Txrnd2), 
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which in turn promotes renal senescence (Bai et al., 2011). In relation to ischaemic renal 

injury, Du et al. showed down-regulation of miR-34a after 24-hour of hypoxia in HK-2 cells 

(Du et al., 2012). Interestingly, I also observed this down-regulation in other human PTECs, 

including human primary PTECs after 12-hour of either ischaemia or free radical injury. The 

same author related post-ischaemic down-regulation of miR-34a to an increase in Notch1 and 

Notch2 expression, which promote EMT (Du et al., 2012). In contrast, induction of IRI in 

mice resulted in increased expression of miR-34a, which inhibited autophagic activity of renal 

TECs by direct binding to Atg4B mRNA (Liu et al., 2015). The gene Atg4B was also 

identified in our computational tool analysis result.   

4.6.4.2. MiR-363 

The role of miR-363 was found to be important in the progression of several 

malignancies. An association between high expression of miR-363 and increased 

proliferation, poorer prognosis and promotion of chemo-resistance in gastric cancer has been 

reported (Zhang et al., 2016). However, miR-363 was identified to have a tumour suppressive 

role in lower gastrointestinal tract malignancy. Down-regulation of miR-363 was linked with 

increased invasion and cell migration of colorectal cancer, primarily by allowing Sox4 gene to 

be over-expressed (Hu et al., 2016), a gene that contributes to cancer cell survival and 

metastasis. 

The link between miR-363 and IRI has not been well studied. To date, mir-363 has 

only been linked with the HIF-1a pathway in the regulation of haematopoiesis in human 

leukemic cell lines (Xie et al., 2016). In the kidney, miR-363 was identified as an inducer of 

EMT in human renal tubular epithelial cell lines by interacting with the TWIST pathway, 

thereby promoting EMT (Morizane et al., 2016). This data suggests that miR-363 exerts its 

effect through interaction with the inhibitors of the TWIST pathway. However, further 

validation to demonstrate that an increase in miR-363 reduces the levels of TWIST inhibitors 

has not been successful. Interestingly, a previous study in colorectal cancer cells showed that 

it is inhibition of miR-363 that promotes EMT, proven by reduction in E-cadherin expression 

(Hu et al., 2016). 

Computational analysis or the current dataset detected several target mRNAs of miR-

363. Some of which should be explored further. A possible interaction between miR-363 with 

genes encoding proteins involved in extra-cellular matrix formation, such as Collagen and 

Integrin-b6 is especially compelling, to relate IRI to subsequent fibrogenic processes within 

the kidney.  
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4.6.4.3. MiR-210 

MiR-210 has been identified as one of many miRNAs induced by hypoxia, and 

involved in the regulation of key pathophysiological aspects following hypoxia (also known 

as a hypoxamir). Its role has been investigated in relation to the progression of various 

malignant processes. The role of miR-210 in the progression of malignant cells is closely 

linked with HIF-1a stabilisation (McCormick et al., 2013). MiR-210 facilitates tumour 

progression through multiple synergistic pathways, such as by increasing the rate of cell cycle 

progression, interfering with normal DNA repair process, altering normal mitochondrial 

function and cellular metabolism, aiding malignant cells to evade apoptosis, and promoting 

angiogenesis and metastatic potential (Qin et al., 2014; Dang and Myers, 2015). MiR-210 is 

highly expressed in renal cancer cells compared to healthy normal kidney. It is also correlated 

with poorer prognosis in renal clear cell carcinoma patients (Samaan et al., 2015). In relation 

to IRI to the kidney, a higher plasma level of miR-210 is associated with activation of 

vascular endothelial growth factor (VEGF) and increased renal angiogenesis (Liu et al., 

2012). In critically ill patients with acute kidney injury, higher plasma levels of miR-210 has 

been shown to be a predictor of mortality (Lorenzen et al., 2011a). In a kidney transplant 

cohort, lower urinary level of miR-210 was associated with acute T-cell mediated rejection 

and more rapid decline in GFR 1-year after transplantation (Lorenzen et al., 2011b). 

As a hypoxamir, I expected miR-210 to be upregulated following ischaemia. At a very early 

time point, this up-regulation could only be seen in primary PTECs. At the 12-hour time 

point, however, miR-210 was significantly up-regulated across all cell types. This change was 

seen only in ischaemic PTECs, but not in H2O2 treated cells, indicating its close association 

with HIF-1a signalling. Interestingly, one report showed that even though miR-210 was up-

regulated in hypoxia, the majority of its target genes are not classical hypoxia inducible genes. 

The target genes of miR-210 are involved in regulating cellular metabolic processes and gene 

expression (Huang et al., 2009). It is hypothesised that miR-210 may act as a mediator of 

HIF-1a to indirectly switch-off unnecessary cellular function during hypoxia (Huang et al., 

2009). In accordance, the computational analysis of miR-210 targets that I performed also did 

not reveal any miR-210 target genes directly relevant to the renal response to IRI. 
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Chapter 5. The Role of miR-21 in Kidney Response to IRI 

5.1. Introduction and Objectives 

There are a number of reports describing the involvement of miR-21 in disease 

processes. MiR-21 has been identified as one of the miRNAs involved the regulation of 

cancer cells, thus recognised as an oncomir. High level of expression of miR-21 has been 

associated with various malignancies, including glioblastomas, cholangiocarcinoma, lung 

cancer, renal cancer, prostate cancer, and gastrointestinal cancer (Selcuklu et al., 2009; 

Jazbutyte and Thum, 2010). The involvement of miR-21 in this range of organ malignancies 

could be explained by the fact that miR-21 was ubiquitously expressed in different human 

organs, which is an uncommon feature for a miRNA. Furthermore, miR-21 has also been 

shown to play roles in several biological processes, including inflammation, cellular 

proliferation, cellular migration and apoptosis (Kumarswamy et al., 2011).  

The link between miR-21 and the renal response to IRI was established, largely based 

upon profiling urinary, plasma, or tissue miR-21 in relation to acute kidney injury (AKI). 

Although most studies agreed that miR-21 was up-regulated following IRI, data on the 

implications of this up-regulation for kidney function is still conflicting. Several authors 

documented the role of miR-21 in decreasing apoptosis and necrosis of tubular cells following 

IRI, which may have a protective capacity, and that knocking-down miR-21 resulted in cell 

death (Li et al., 2013; Hu et al., 2014; Xu et al., 2014). On the other hand, others have shown 

that high expression of miR-21 did not prevent cellular death after an ischaemic insult 

(Goodwin et al., 2010). These findings suggest that fine-tuning miR-21 levels in response to 

an injury is essential for cell survival. More importantly, the molecular mechanism on how an 

increase of miR-21 level after IRI influences cellular function still requires investigation. 

In this part of the project, I am interested in investigating the association of higher 

expression of miR-21 following IRI with changes in PTEC phenotype, and how this may 

affect kidney function in the longer term. To control biological variation across different 

PTEC types, only HKC-8 cells were used in the experiments described in this chapter. The 

main objective of this chapter is to verify known miR-21 mRNA targets, and to assess the 

relationship of miR-21 to the pathways involved in kidney response to IRI; the TGF-b 

signalling pathway and HIF-1a signalling pathway. To provide a more complete overview of 

the role of miR-21 in renal response to IRI, the distribution and quantification of miR-21 in 

ischaemic and non-ischaemic renal tissue were also assessed. 
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5.2. Results 

5.2.1. Qualitative Assessment of MicroRNA Mimic Transfection 

The experiments included in this chapter involved transfection of either miRNA mimic 

or inhibitor to simulate conditions of a high-level or an absence of miR-21. A method to 

evaluate successful transfection protocol was therefore needed. Fluorescent-labelled miRNA 

mimic was utilised to visualise the miRNA transfected into the cells. Incubation of 24-hour 

with miRNA mimic and transfection reagent was adequate to introduce miRNA mimic 

molecule into HKC-8 cells. At 24-hour, the delivery of miRNA mimic was visible in almost 

all cells as shown in Figure 5-1.  

To assess the result of the transfection process, miR-21 expression following miR-21 

mimic transfection was quantified, and compared to its expression in non-transfected HKC-8 

cells and in HKC-8 cells transfected with miRNA mimic with scrambled sequence. MiRNA 

probe for mature miR-21 sequence as described in Chapter 2 was used in this experiment. The 

result showed that 24-hour incubation of HKC-8 cells in the transfection complex containing 

miR-21 mimic molecule increased mature miR-21 expression to more than 80-fold compared 

to transfection with scrambled miRNA mimic sequence (Figure 5-2). As expected, HKC-8 

cells incubated in media only, or addition of transfection reagent to the media did not increase 

the expression of miR-21. 

In summary, the result of transfection procedure applied to HKC-8 cells was 

qualitatively visible from tracking the incorporation of immunofluorescent-labelled miRNA 

as well as semi-quantitatively evident in the increase of miR-21 expression following 

transfection. Taking these factors into consideration, mimic transfection procedure was 

decided to be performed by incubating HKC-8 cells in the transfection complex containing 

miRNA mimic or inhibitor for 24-hour. 

The objective of over-expressing miR-21 in PTEC in the experiments described in this 

chapter is to elucidate the molecular mechanism of miR-21 in renal response to IRI. For this 

purpose, all experiments were performed using HKC-8 cell line, as this cell could be 

transfected easily and relatively tolerant to the use of transfection reagent. However, the 

transfection of miR-21 mimic to primary PTECs may be of importance to assess how 

alteration in miR-21 may affect the viability of primary cells. This could be evaluated by 

calculating the transfection efficiency of miR-21 mimic in primary cells, which will determine 

the number of viable cells that uptake miR-21 mimic molecule in relation to varying 

concentration of the miRNA mimic molecule and the transfection reagent.  
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Figure 5-1 Fluorescent-labelled miRNA mimic in HKC-8 cells 
Incorporation of fluorescent-labelled miRNA mimic into HKC-8 cells following incubation in 
transfection complex containing the miRNA mimic and transfection reagent for 24-hour. DAPI was 
applied for nuclear counter-staining. Slides were visualised at 557/570nm in (a) 100x magnification 
and (b) in 200x magnification. Non-transfected HKC-8 cells and HKC-8 cells incubated in 
transfection reagent only for 24-hour were used as comparison (image c and d).   

 

Figure 5-2 MiR-21 Expression after miR-21 mimic transfection 
Expression of miR-21 in HKC-8 cells, relative to the expression of RNU48. MiR-21 expression was 
measured following miR-21 mimic transfection using qPCR. miRNA probe used was specific for 
mature miR-21 sequence. Samples were incubated for 24-hour in; media only (No TFX), media with 
transfection reagent only (TFX Reagent), or media with transfection complex containing either 
scrambled miRNA mimic or miR-21 mimic. Each bar represents the mean of three replicates + SD. 
Statistical significance was indicated by **** p ≤0.0001, and was calculated using one-way ANOVA 
test followed by Bonferroni multiple comparison analysis.  
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5.2.2. SMAD7 is a target of miR-21 

The result of computational analysis showed that SMAD7 is a potential target of miR-

21. Over-expression of miR-21, therefore, was expected to supress the expression level of 

SMAD7 level in HKC-8 cells. An experiment comparing the expression of SMAD7 in miR-

21 mimic treated cells to non-transfected cells was conducted to verify this assumption. As 

shown in Figure 5-3, the intensity of SMAD7 was significantly reduced in miR-21 mimic 

transfected cells, which indicate suppression of SMAD7 by miR-21 over-expression.  

 

 

Figure 5-3 SMAD7 expression following miR-21 over-expression 
Expression of SMAD7 in miR-21 mimic transfected HKC-8 cells, compared to non-transfected HKC-
8 cells (No TFX), and HKC-8 cells transfected with scrambled miRNA mimic control. Each group 
represents three independent experiments (N=3). SMAD7 expression was quantified by measuring its 
band intensity in each sample, relative to the band intensity of loading control protein (GAPDH). Data 
was presented as the mean + SD of band intensity, as measured using ImageJ imaging analysis 
software. Statistical significance was indicated by * = p ≤0.05, and was calculated using one-way 
ANOVA test followed by Bonferroni multiple comparison analysis.  

5.2.3. MiR-21 over-expression facilitates nuclear translocation of SMAD complexes 

SMAD7 is an inhibitory SMAD that functions to block SMAD2/3 activation. Hence, 

inhibition of SMAD7 by miR-21 would favour SMAD2/3 activation, leading to translocation 

of SMAD complex into the nucleus. To assess this, antibody against SMAD3 was used to 
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detect SMAD3 localisation following transfection with miR-21 mimic, in the absence of 

exogenous TGF-β. 

Figure 5-4 showed that transfection of miR-21 induced translocation of SMAD 

complexes into the nucleus. This is indicated by detection of SMAD3 inside the nuclei in a 

punctate pattern. This appearance was not observed in non-transfected cells and in cells 

transfected with scrambled sequence miRNA mimic.   

 

Figure 5-4 Intra-nuclear localisation of SMAD3 in HKC-8 cells over-expressing miR-21 
Nuclear translocation of SMAD complexes were detected by applying primary antibody against 
SMAD3 in HKC-8 cells transfected with miR-21 mimic. Alexa Fluor 546 secondary antibody was 
used to visualise SMAD3. HKC-8 cells which were not transfected, and cells transfected with 
scrambled sequence miRNA mimic control were used as comparison. Nuclei were counter-stained 
using DAPI. Images were captured using fluorescent microscope under 400x magnification. Images 
displayed were representative of three independent experiments (N=3). 
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5.2.4. In the absence of TGF-b1, miR-21 did not cause significant increase in SMAD3 

activity  

To assess whether the observed SMAD3 translocation had any effect on SMAD3 

activity, HKC-8 cells containing SMAD3-luciferase reporter plasmid was used. These cells 

were transfected with miR-21 mimic and were incubated for 24 hour. In the absence of TGF-

b1, transfection of miR-21 mimic to HKC-8 cells did not significantly increase SMAD3 

activity. Mir-21 mimic transfected cells showed more luciferase activity compared to control 

groups (Figure 5-5). However, the increase was not enough to reach statistical significance.  

 

 

Figure 5-5 The effect of miR-21 over-expression in SMAD3-luciferase activity without TGF-b1 
HKC8-cells containing SMAD3-luciferase reporter plasmid were transfected with miR-21 mimic 
before the measurement of luciferase activity. Data was presented as the mean + SD of fold change in 
luciferase activity compared to non-coding miRNA mimic-transfected (NC-mimic) cells. Non-
transfected group was denoted as No TFX. Statistical analysis was performed with three replicates 
using One-way ANOVA test, which revealed no statistically significant different between the groups.  

5.2.5. MiR-21 sensitised the HKC-8 cell response to TGF-b1 

Addition of TGF-b1 after miR-21 transfection resulted in a marked elevation in fold-

change increase of SMAD3 activity (Figure 5-6). TGF-b1 at a concentration of 0.1ng/mL was 

sufficient to induce SMAD3 activity significantly from its activity in the scrambled miRNA 

mimic transfected cells or in non-transfected cells. A further increase in TGF-b1 

concentration increased SMAD3-luciferase activity, creating an even bigger difference 

between miR-21 transfected cells and the control groups. Differences of luciferase activity 

between these groups were found to be statistically significant for every concentration of 

TGF-b1 used.  
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TGF-b1 Groups pValue TGF-b1 Groups pValue 
0 miR-21 vs Scrambled ns 1.0 miR-21 vs Scrambled ≤0.0001 

miR-21 vs No TFX ns miR-21 vs No TFX ≤0.0001 
Scrambled vs No TFX ns Scrambled vs No TFX ns 

0.1 miR-21 vs Scrambled ≤0.0001 2.5 miR-21 vs Scrambled ≤0.0001 
miR-21 vs No TFX ≤0.0001 miR-21 vs No TFX ≤0.0001 
Scrambled vs No TFX ns Scrambled vs No TFX ns 

0.25 miR-21 vs Scrambled ≤0.0001 5.0 miR-21 vs Scrambled ≤0.0001 
miR-21 vs No TFX ≤0.0001 miR-21 vs No TFX ≤0.0001 
Scrambled vs No TFX ns Scrambled vs No TFX ns 

0.5 miR-21 vs Scrambled ≤0.0001    
miR-21 vs No TFX ≤0.0001    
Scrambled vs No TFX ns    

Figure 5-6 The effect of miR-21 over-expression and TGF-b1 in SMAD3-luciferase activity 
TGF-b1 was added in a range of concentrations (0.1-5ng/mL) to miR-21 mimic-transfected HKC-8 
cells. The same treatment was also given to non-transfected HKC-8 cells (No TFX), and cells 
transfected with scrambled miRNA mimic. Luciferase activity was measured and normalised to the 
total protein from each sample. Fold-change of luciferase activity was calculated from the ratio of 
luciferase activity of a sample in each TGF-b1 concentration to its luciferase activity without TGF-b1 
(e.g. miR-21 mimic transfected cells at 0.1ng/mL / miR-21 mimic transfected cells at 0 ng/mL).   Data 
was presented as the mean of fold-change + SD. Each value was generated from three experiments 
(N=3). Data was analysed using Two-way ANOVA followed by comparison of the mean within each 
concentration (simple effects within the rows) using Tukey’s multiple comparison test. (ns = not 
significant) 
 

5.2.6. Determining TGF-β1 Concentration that Induces a Change in Cellular Morphology 

I hypothesised that miR-21 may require the presence of TGF-b1, in order for it to have 

an effect on PTEC morphology. However, the addition of exogenous TGF-b1 alone has been 

documented to cause PTEC phenotypic changes. Therefore, it was crucial to identify a 
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concentration of TGF-b1 that does not elicit a marked change in PTEC. To do this, HKC-8 

cells were treated with serial concentration of TGF-b1. The upper limit of TGF-b1 

concentration was set at 10ng/mL, as this is the most widely used concentration to induce 

changes in PTEC morphology documented in the literature.  

As expected, normal HKC-8 cells (with no TGF-b1 treatment) expressed E-cadherin, 

without any evidence of a-SMA expression. Down-regulation of E-cadherin was detectable 

when TGF-b1 concentration was increased to 0.5ng/mL. Expression of a-SMA started to be 

detected when HKC-8 cells were treated with 1ng/ml of TGF-b1, which was also 

accompanied by further decrease in E-cadherin expression. This pattern of an increase in a-

SMA expression and decrease in E-cadherin down-regulation became clearer as the TGF-b1 

concentration was increased to 5 and 10ng/mL (Figure 5-7). The area of fluorescence of E-

cadherin and a-SMA were quantified and plotted against serial concentration of TGF-b1 to 

obtain pattern of E-cadherin and a-SMA expression changes following TGF-b1 treatment 

(Figure 5-8).  Based on this, 1ng/mL was chosen as the concentration of TGF-b1 to be used in 

future experiments. This concentration was considered adequate to induce a modification in 

cellular phenotype without changing the morphological characteristic of PTECs completely.   
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Figure 5-7 The effect of TGF-b1 on the expression of E-cadherin and a-SMA in HKC-8 cells 
Expression of E-cadherin and a-SMA following addition of TGF-b1 at the concentrations shown. 
Proteins of interest were probed using Alexa fluor 488 secondary antibody following incubation with 
primary antibodies against E-cadherin and a-SMA. DAPI was applied for nuclear staining. Images 
were captured at 100x magnification. Images displayed were representative of three technical 
replicates.  
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Figure 5-8 Quantification of fluorescence area of E-cadherin and a-SMA in TGF-b1-treated 
HKC-8 cells 
Area of fluorescence of E-cadherin and a-SMA in relation to TGF-b1 treatment at increasing 
concentrations. Data was presented as the mean of total area of fluorescence in µm2 per field of view + 
SD. Analysed images were captured from three different area of a slide. Three slides were analysed for 
each concentration.   

5.2.7. The effect of miR-21 over-expression and TGF-b1 on PTEC morphology 

The following experiments were designed to evaluate the effect of the modification of 

TGF-b1 signalling pathway by miR-21 over-expression in PTEC. Immunofluorescent and 

Western blot techniques were used to assess changes in PTEC and to quantify protein changes 

in miR-21 mimic-transfected HKC-8 cells, which were treated with 1ng/mL of TGF-b1. The 

investigation was focused on the alteration of E-cadherin, as a marker of epithelial cells, and 

Collagen type 1 and a-SMA as markers of fibrosis.  

Figure 5-9 and Figure 5-10 showed down-regulation of E-cadherin expression in HKC-

8 cells transfected with miR-21 mimic, and treated with 1ng/mL of TGF-b1. This pattern of 

down-regulation was detected by two techniques, both of which showed a statistically 

significant effect. HKC-8 cells transfected with scrambled miRNA mimic and non-transfected 

cells, and then treated with TGF-b1 were used as controls.  
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Figure 5-9 Visualisation of E-cadherin expression following miR-21 over-expression and TGF-b1 
treatment  
E-cadherin expression was assessed in miR-21 mimic transfected HKC-8 cells, non-transfected cells, 
and HKC-8 cells transfected with scrambled miRNA mimic. Cells were treated with 1ng/mL TGF-b1 
for 24 hour prior to analysis. Cells were probed with primary antibody against E-cadherin, followed by 
AlexaFluor 488 secondary antibody. Total area of fluorescence per field of view was measured from 
three independent experiments (N=3). Data was presented as the mean of total area of fluorescence in 
log2 format + SD from three fields of view. Images were captured at 400x magnification, and image 
analysis were performed using ImageJ software. One-way ANOVA was used to detect statistically 
significant changes between the groups, followed by Bonferroni post-hoc analysis. (*** = p ≤0.001) 
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Figure 5-10 Western blot analysis of E-cadherin in HKC-8 cells over-expressing miR-21 treated 
with TGF-b1  
Western blotting was used to detect E-cadherin expression in miR-21 mimic-transfected cells, 
scrambled miRNA mimic-transfected cells, and non-transfected cells.  Band intensity was analysed 
and measured using ImageJ analysis software. Band intensity of a sample reflects E-cadherin quantity 
in that sample, relative to the amount of total protein loaded, which was shown by GAPDH 
expression.  Each band represents an independent experiment. Data was presented as the mean of 
relative intensity + SD of the three bands displayed. Statistical analysis was performed using One-way 
ANOVA with Bonferroni post-hoc analysis. (** = p ≤0.01)  

The expression of a-SMA was markedly increased in cells transfected with miR-21 

mimic. Immunofluorescent staining of miR-21 mimic-transfected cells showed prominent 

development of actin stress-fibres in HKC-8 cells. Without miR-21 mimic, treatment of 

1ng/mL of TGF-b1 resulted in less expression of a-SMA in HKC-8 cells. The up-regulation 

of a-SMA due to miR-21 over-expression in these cells was found to be statistically 

significant. Western blotting also showed that a-SMA expression in HKC-8 cell lysates after 

miR-21 mimic transfection was significantly increased.  
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Figure 5-11 The effect of miR-21 over-expression on a-SMA expression in TGF-b1-treated 
HKC-8 cells  
After transfection of miR-21 mimic, HKC-8 cells were treated with 1ng/mL TGF-b1. A primary 
antibody against a-SMA was used. AlexaFluor 488 was used as secondary antibody, followed by 
DAPI nuclear counter-staining. Images were viewed at 400x magnification to capture total area of 
fluorescence per visual field. Experiments were conducted in three independent times (N=3). Data was 
presented as the mean of total area of fluorescence in log2 format + SD. Image analysis was performed 
using ImageJ software. One-way ANOVA was used to detect statistically significant changes between 
the groups, followed by Bonferroni post-hoc analysis. (*** = p ≤0.001) 
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Figure 5-12 a-SMA expression by Western blotting in HKC-8 cells following transfection with 
miR-21 mimic and TGF-b1 treatment 
Evaluation of a-SMA expression by Western blotting. Scrambled miRNA mimic-transfected cells, 
and non-transfected cells were used as controls. ImageJ analysis software was used to quantify and 
analyse the a-SMA band intensity relative to GAPDH. Each band represents an independent 
experiment. Data was presented as the mean of relative intensity + SD of the three bands displayed. 
Statistical analysis was performed using One-way ANOVA with Bonferroni multiple comparison test. 
(**** = p ≤0.0001) 

Unlike a-SMA, the expression of Collagen type 1 did not show any notable increase by 

immunofluorescent staining. There was only a very faint increase in Collagen type 1 

expression seen in HKC-8 cells transfected with miR-21 mimic compared to the control 

groups. Quantification of Collagen type 1 using Western blot technique, however, showed 

that over-expression of miR-21 induced Collagen type 1 protein synthesis.  
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Figure 5-13 Immunofluorescent staining for Collagen-1 following miR-21 over-expression and 
TGF-b1 treatment  
Collagen-1 staining in miR-21 mimic transfected HKC-8 cells, non-transfected cells, and HKC-8 cells 
treated with scrambled miRNA mimic following treatment with 1ng/mL TGF-b1. AlexaFluor 488 was 
used as secondary antibody. Images were representative of three independent experiments (N=3). The 
mean of total area of fluorescence per field of view + SD was analysed. Images were captured under 
400x magnification, and image analysis were performed using ImageJ software. One-way ANOVA 
was applied to detect statistically significant changes between the groups, followed by Bonferroni 
post-hoc analysis. 
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Figure 5-14 Collagen-1 expression by Western blotting in miR-21 mimic transfected-HKC-8 
cells 
Western blotting for Collagen-1 using lysates from HKC-8 cells transfected with miR-21 mimic, 
scrambled miRNA mimic, and non-transfected cells. Band intensity was measured by ImageJ 
software. The mean of band intensity relative to the band intensity of loading control protein, GAPDH 
was compared between the groups. Comparison of the means between the groups was performed with 
One-way ANOVA with Bonferroni multiple comparison test. Each band represents an independent 
experiment. Data was presented as the mean of relative intensity + SD of the three bands displayed. 
(*** = p ≤0.001) 

5.2.8. Hypoxia leads to increase in miR-21 and SMAD7 suppression  

Previous experiments have established the relationship between miR-21 up-regulation 

and SMAD7 inhibition, which was followed by activation of TGF-b1 signalling. To assess 

whether ischaemia alone can lead to these series of event, the level of expression of miR-21, 

SMAD7 and SMAD3 activity were measured in hypoxic cells. For this purpose, hypoxia was 

simulated in HKC-8 cells using several validated methods; by transfection with HIF-1a 

plasmid, thus increasing HIF-1a expression, by stabilisation of intra-cellular HIF-1a using 

CoCl2, and incubation in 1%O2 for 24 hours. To confirm if these methods of inducing or 

mimicking hypoxia resulted in equal miR-21 up-regulation, qPCR was utilised to detect 

changes in miR-21 following a given treatment.  
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Figure 5-15 MiR-21 level following different methods of inducing hypoxia  
Changes in miR-21 level of expression after induction of hypoxia by HIF-1a plasmid transfection, 
CoCl2 treatment, and incubation in 1%O2, as quantified by real-time PCR. Mir-21 expression was 
normalised to the reference gene RNU48. Each bar represents the mean of fold-change of expression + 
SD from three replicates in a single experiment. To detect significant variation, comparison of the 
means was performed with One-way ANOVA. Multiple comparison test using Bonferroni method was 
then applied to test the difference of the means between specified groups for statistical significance. (* 
= p ≤0.05) 

 

Based on my observations using miR-21 mimic, I hypothesise that the increase in miR-

21 induced by hypoxia will reduce SMAD7 levels. To test this, Western blotting was used to 

visualise SMAD7 expression from cell lysates of hypoxic, CoCl2 treated and HIF-1α 

transfected HKC-8 cells. Figure 5-16 showed that SMAD7 levels were reduced in conditions 

mimicking hypoxia. Although incubating the cells in 1%O2 for 24-hour led to a reduction in 

SMAD7 levels, stabilisation of HIF-1a through transfection of HIF-1a plasmid or CoCl2 

treatment showed a greater reduction in SMAD7.  
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Figure 5-16 SMAD7 expression in hypoxic HKC-8 cells  
Western blot results of SMAD7 expression. Hypoxic-like conditions were induced by transfection of 
HIF-1a plasmid, CoCl2 treatment, and 24-hour incubation in 1%O2. SMAD7 expression in these cells 
were compared to normoxic non-transfected HKC-8 cells, and normoxic HKC-8 cells transfected with 
pCDNA control plasmid. Band intensity was quantified with ImageJ software. Data was presented as 
the mean of band intensity relative to the intensity of the loading control protein, GAPDH. Each bar 
represents the mean of 2 samples (N=2) in each group. One-way ANOVA test was used to compare 
the means. To test for statistical significance between the groups, Bonferroni post-hoc analysis was 
used. (* = p ≤0.05; ** = p ≤0.01). 

  

The effect of hypoxia to SMAD3 activation was also investigated. To do this, I used a 

clone of HKC-8 cells stably transfected with SMAD3-luciferase reporter plasmid, which was 

cultured in conditions to mimic hypoxia as described previously. Compared to HKC-8 cell 

grown in a normoxic environment, hypoxia induced by 1% O2 incubation increased SMAD3 

reporter activity by approximately 30-fold (Figure 5-17). This increase in SMAD3 reporter 

activity was even greater when there was an increase in intra-cellular HIF-1a expression, or 

when HIF-1a was stabilised. The activity of SMAD3 reporter induced by HIF-1a plasmid 

transfection or CoCl2 were statistically different from the increase of SMAD3 reporter 

activity induced by 1%O2. The same clone of HKC-8 cells incubated in the transfection 

reagent in normoxia was used as controls for HIF-1a plasmid transfection. SMAD3 reporter 
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activity in this group was no different form the other control groups, ensuring that the 

transfection process did not affect the observed findings.  

 

 

Figure 5-17 SMAD3-luciferase activity in hypoxia or conditions mimicking hypoxia 
Measurement of luciferase activity in a SMAD3-luciferase transfected HKC-8 cells. To simulate the 
effect of hypoxia, cells were cultured for 24-hour in 1% O2, transiently transfected with HIF-1a 
plasmid, or treated with CoCl2. The same clone of HKC-8 cells incubated in a normoxic environment 
were used as control for 1%O2 and CoCl2 treated groups, whilst cells transfected with pCDNA control 
plasmid was used as a comparison for HIF-1a-transfected cells. HKC-8 cells incubated with 
transfection reagent only (denoted as TFX Reagent) were also assessed. Luciferase activity was 
normalised to the total protein for each sample. Each bar represents the mean + SD of fold change in 
luciferase activity in three replicates from a single experiment. One-way ANOVA test was used to test 
for existing statistical significant difference between the means. Multiple comparison test between 
groups was performed using Bonferroni post-hoc analysis. (** = p ≤0.01; *** = p ≤0.001; **** p 
≤0.0001). 

As hypoxia led to an increase in miR-21 expression and a subsequent reduction in 

SMAD7, I hypothesised that hypoxia would make cells more responsive to TGF-b1. To test 

this hypothesis, I evaluated whether hypoxia increased SMAD3-luciferase reporter gene 

activity in HKC-8 cells treated with exogenous TGF-b1. To achieve this, the same 

experimental design was applied with the additional treatment of cells with increasing 

concentrations of TGF-b1. The results showed that hypoxia or augmentation of HIF-1a 

concentration significantly increased SMAD3 reporter gene activity in HKC-8 cells (Figure 

5-18). HIF-1a stabilisation by CoCl2 caused the greatest change in SMAD3 activity compared 

to the other hypoxic groups.     
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TGF-b1 Groups pValue 
0 Normoxia vs 1%O2 ns 

Normoxia vs CoCl2 ns 
Control plasmid vs HIF-1a ns 

1 Normoxia vs 1%O2 p ≤0.01 
Normoxia vs CoCl2 p ≤0.001 
Control plasmid vs HIF-1a p ≤0.01 

5 Normoxia vs 1%O2 p ≤0.01 
Normoxia vs CoCl2 p ≤0.0001 
Control plasmid vs HIF-1a p ≤0.0001 

10 Normoxia vs 1%O2 p ≤0.0001 
Normoxia vs CoCl2 p ≤0.0001 
Control plasmid vs HIF-1a p ≤0.0001 

Figure 5-18 SMAD3-luciferase activity in conditions that simulate hypoxia in the presence of 
exogenous TGF-b1 
Experiment was conducted in a clone of HKC-8 cells containing SMAD3-luciferase reporter plasmid. 
SMAD3-luciferase activity in HKC-8 cells transfected with HIF-1a plasmid, HKC-8 cells treated with 
CoCl2, and HKC-8 cells incubated in 1% O2 for 24-hour is shown. Non-transfected normoxic HKC-8 
cells, HKC-8 cells containing the control plasmid pCDNA and HKC-8 cells incubated in transfection 
reagent only were used as controls. All cells were also treated with 0, 1, 5 and 10ng/mL of TGF-b1. 
Luciferase activity was normalised to the total protein for the respective samples. Each measurement 
point represents the mean of fold change + SD of luciferase activity compared to non-transfected, 
normoxic HKC-8 cells without TGF-b1 treatment. Two-way ANOVA was used to detect difference in 
the means across all groups. Further multiple comparison was performed using Bonferroni post-hoc 
analysis to test for statistical significant difference between groups. 
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5.2.9. Inhibition of miR-21 prevents SMAD7 suppression 

I have provided evidence establishing a link between ischaemia, miR-21 up-regulation, 

SMAD7 down-regulation, and subsequent sensitivity of TGF-b1 signalling pathways. Firstly, 

the effect of miR-21 inhibition on SMAD7 was investigated by transfecting HKC-8 cells with 

anti-miR-21, and compare the result of transfecting the cell with miR-21 mimic. As shown 

previously, over-expression of miR-21 lead to suppression of SMAD7. Expectedly, this was 

not seen in cells treated with anti-miR-21. Inhibition of miR-21 did not result in an increase of 

SMAD7 expression (see Figure 5-19).  

 

Figure 5-19 The effect of miR-21 inhibition on SMAD7 expression in normoxic HKC-8 cells  
Western blot for SMAD7 in normoxic HKC-8 cells. Cells were transfected with miR-21 inhibitor 
(anti-miR-21) and compared to SMAD7 expression in cells transfected with miR-21 mimic. MiRNA 
inhibitor with non-coding nucleotide sequence (NC-anti) and scrambled sequence miRNA mimic 
(NC-mimic) were used as controls. The band intensity was quantified using ImageJ software. 
Experiment were performed using lysates from three different cells (N=3), except for NC-mimic cells 
(N=2). Each bar illustrates the quantified intensity of SMAD7 band relative to the intensity of 
GAPDH. Data was displayed as the mean of relative intensity + SD. Comparison of the means 
between treatment groups was performed using one-way ANOVA followed by Bonferroni post-hoc 
analysis (* = p ≤0.05; ** = p ≤0.01; ns = no significant difference detected) 

To assess whether inhibition of miR-21 would prevent post-ischaemic SMAD7 down-

regulation, HKC-8 cells transfected with miR-21 inhibitor (anti-miR-21) followed by 

incubation in 1% O2 for 24-hour to simulate hypoxia. Without anti-miR-21, hypoxia 

supressed SMAD7 expression. This down-regulation of SMAD7 was not observed in the cells 

transfected with anti-miR-21 (Figure 5-20).  
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Figure 5-20 The effect of miR-21 inhibition on SMAD7 expression in hypoxic HKC-8 cells  
Western blot for SMAD7 in hypoxic HKC-8 cells. Cells were transfected with either miR-21 inhibitor 
or miRNA inhibitor with non-coding nucleotide sequence (denoted as NC-anti). Band intensity was 
quantified using ImageJ software. SMAD7 expression in cells with miR-21 inhibitor of each treatment 
group was compared to SMAD7 expression of its respective non-coding antimiR control. Experiment 
were performed using lysates from three different cells (N=3). Each bar illustrates the quantified 
intensity of SMAD7 band relative to the intensity of GAPDH. One-tailed t-test was used to compare 
the means in each treatment group (** = p ≤0.01) 
 

The same experiment was repeated with the addition of lysates of HKC8 cells 

transfected with non-coding miRNA inhibitor incubated in normoxic condition to compare 

the expression of SMAD7 after anti-miR-21 treatment following hypoxia to the basal level of 

SMAD7 at normoxic condition. The results showed that treating hypoxic TECs with anti-

miR-21 brought the level of SMAD7 expression back to its basal level at normoxia (see 

Figure 5-21). 
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Figure 5-21 SMAD7 expression in hypoxic cells treated with anti-miR-21 and in normoxic cells 
Western blot for SMAD7 in hypoxic HKC-8 cells treated with anti-miR-21 (denoted as antimiR-
21+hypoxia). Expression level was compared to hypoxic HKC-8 cells transfected with non-coding 
miRNA inhibitor (denoted as NC-anti+hypoxia). Hypoxia was simulated by incubating the cells in 
1%O2 for 24-hour. Basal SMAD7 level during normoxia was represented by HKC-8 cell transfected 
with non-coding miRNA inhibitor (denoted as NC-anti+normoxia). Each band represents protein 
lysate prepared in an independent experiment (N=2 for NC-anti+normoxia and N=3 for other 
treatment groups). Band intensity was measured using ImageJ software, relative to the expression of 
GAPDH. Data was presented as the mean of relative intensity + SD. One-way ANOVA test with 
Bonferroni multiple comparison test was used to detect statistical significance (* = p ≤0.05; ns = no 
significant difference detected) 

5.2.10. Inhibition of miR-21 prevents post-ischaemic SMAD3 activation 

The effect of miR-21 inhibition in preventing hypoxia-induced down-regulation of 

SMAD7 has been shown in the previous section. The next objective was to test whether miR-

21 inhibition also resulted in decreased activation of SMAD3. For this purpose, I used HKC-8 

cells stably transfected with SMAD3-luciferase reporter plasmid. These cells were co-

transfected with anti-miR-21, miR-21 mimic, non-coding antimiR, and miRNA mimic with 

scrambled nucleotide sequence. The transfected cells were incubated in 1% O2 to simulate 

hypoxia, or co-transfected with HIF-1a plasmid to resemble post-ischaemic increase in HIF-

1a.  

Previous experiments showed that hypoxia alone increased SMAD3-luciferase activity 

in HKC-8 cells, and the addition of miR-21 mimic was shown to further increase SMAD3 

activation. Introduction of anti-miR-21 to hypoxic cells showed the opposite effect, lowering 

SMAD3-luciferase activity by approximately 2-fold (Figure 5-22). The effect of modifying 



 
 

159 

miR-21 activity was also assessed using HKC-8 cells containing SMAD3-luciferase reporter 

gene, which were co-transfected with HIF-1a plasmid. Cells over-expressing miR-21 led to 

higher SMAD3-luciferase activity compared to scrambled mimic miRNA-transfected cells. 

Similarly, inhibiting miR-21 reduced SMAD3 activity compared to transfecting the cells with 

non-coding miRNA inhibitor (Figure 5-23).  

The effect of miR-21 mimic or inhibitor transfection was insignificant in the absence of 

hypoxic injury or HIF-1a over-expression. This is the finding from experiments using the 

same clone of HKC-8 cells incubated in normoxia for 24-hour, and by transfecting the cells 

with control plasmid, pCDNA. Although miR-21 mimic increased SMAD3-luciferase 

activity, and its inhibition reduced SMAD3 activity in normoxic cells, the magnitude of their 

changes was not statistically significant (Figure 5-24).     

 

 

Figure 5-22 The effect of modifying miR-21 function on SMAD3 activity in hypoxic HKC-8 cells  
SMAD-3 luciferase activity in HKC-8 cells incubated in 1% O2 for 24-hour. Cells were transiently 
transfected with either miR-21 mimic or anti-miR-21 prior to induction of hypoxia. Cells transfected 
with non-coding sequence antimiR (denoted as NC-anti) and non-coding miRNA mimic (denoted as 
NC-mimic) were used as controls respectively. Luciferase activity for each group was normalised to 
protein concentration. Data was presented as the mean fold change of luciferase activity + SD from 
three replicates. Result presented is from a single experiment representatives of N=3.  To test for 
statistically significant difference between the means, One-way ANOVA test was used, followed by 
Bonferroni post-hoc analysis. (** = p ≤0.01; **** p ≤0.0001) 
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Figure 5-23 The effect of miR-21 inhibition on SMAD3 activity in HIF-1a-transfected HKC-8 
cells  
SMAD-3 luciferase activity was measured in HKC-8 cells over-expressing HIF-1a following 
transfection of these cells with miR-21 inhibitor and miR-21 mimic. Luciferase activity was compared 
to the luciferase activity of cells containing HIF-1a plasmid, which were transfected with non-coding 
sequence antimiR (denoted as NC-antimiR+HIF) and non-coding miRNA mimic (denoted as NC-
mimic+HIF). Luciferase reading for each group was normalised to the total protein concentration 
quantified in the sample. Data was presented as the mean fold change of luciferase activity + SD from 
three replicates. Result presented is from a single experiment representatives of N=3.  One-way 
ANOVA and subsequent Bonferroni multiple comparison tests were used to test for statistically 
significant difference between the means (** = p ≤0.01; **** p ≤0.0001).  
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Figure 5-24 The effect of miR-21 inhibition on SMAD3 activity in normoxic HKC-8 cells  
The mean fold change of luciferase activity + SD from SMAD-3 luciferase HKC-8 cells grown in 
normoxic conditions (top), and SMAD-3 luciferase HKC-8 cells transfected with pCDNA as control 
plasmid (bottom). Data was the result of three replicates. Result presented is from a single experiment 
representatives of N=3.   Cells were transiently transfected with either miR-21 mimic, anti-miR-21, 
non-coding mimic (denoted as NC-mimic) or non-coding anti-miR (NC-antimiR). One-way ANOVA 
test was applied, followed by Bonferroni post-hoc analysis, which showed no statistical significant 
difference between the groups 
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5.2.11. Tissue Expression and Distribution of miR-21 

Evaluation of miR-21 distribution and level of expression in ischaemic renal tissue is 

essential to verify the in vitro findings. To achieve this objective, I compared miR-21 

expression using real-time qPCR using RNA isolated from ischaemic and non-ischaemic 

renal tissue. The range of miR-21 expression was considerably wide in both groups, 

especially in the ischaemic group. Nevertheless, it was obvious that miR-21 expression level 

was significantly higher in ischaemic tissue compared to miR-21 expression in non-ischaemic 

renal tissue (Figure 5-25).   

 

 

Figure 5-25 Mir-21 expression in ischaemic and non-ischaemic renal tissue 
Expression level of miR-21 as measured using real-time qPCR. The unaffected part of kidneys 
removed for oncological indication was used for non-ischaemic tissues, whilst ischaemic tissues were 
derived from kidneys deemed unsuitable for transplantation with cold ischaemia time of more than 24-
hour. Data was presented as the mean relative expression of miR-21 (2-ΔCT) to the reference gene 
RNU48. There were 10 kidneys included in non-ischaemia group (N=10), and ten kidneys included in 
ischaemia group (N=10). To test for statistical significance, comparison of the means was performed 
using one-tailed t-test. (**** =  p ≤0.0001) 

Qualitative assessment of miR-21 distribution in renal tissue was performed using in 

situ hybridisation (ISH). Three specimens were randomly selected from each ischaemic and 

non-ischaemic kidney group. The tissues were incubated in hybridisation mixture containing 

DIG-labelled miRNA probe for miR-21or DIG-labelled probe with random sequence. I 

presented the results as individual comparison of three paired specimens (Figure 5-26, Figure 

5-27, Figure 5-28). The pairing between a sample from ischaemic kidney group and a sample 

from non-ischaemic kidney group was performed randomly.  Thus, any sample from the 

ischaemic kidney was eligible to be paired with any of the non-ischaemic kidney samples.   
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Figure 5-26 and Figure 5-27 show that the expression of miR-21 was stronger in 

ischaemic renal tissue. It was also shown that miR-21 was predominantly detected in tubular 

cells. In both figures, miR-21 was undetectable in the non-ischaemic renal tissues. As 

expected, there was no staining using for scrambled miRNA sequence, indicating no non-

specific binding of the probes. Figure 5-28 also showed marked miR-21 expression in the 

ischaemic tissue. However, this figure showed that miR-21 staining was also observed in the 

non-ischaemic tissue. MiR-21 expression in Figure 5-28 was also shown to be limited to 

tubular cells.  

 

 

Figure 5-26 Distribution of miR-21 in ischaemic and non-ischaemic renal tissue – comparison 1 
MiR-21 distribution in human renal tissue by in situ hybridisation. Ischaemic and non-ischaemic renal 
tissues were incubated in hybridisation mixture containing 80nM of DIG-labelled ISH probe for miR-
21 sequence, or 80nm of DIG-labelled probe with scrambled nucleotide sequence. Anti-DIG antibody 
conjugated with Alkaline Phosphatase (AP) was subsequently applied, followed by the addition of 
NBT-BCIP substrate to allow visualisation of miRNAs. Nuclei were stained using nuclear fast red 
staining. Images were captured at 200x magnification.  
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Figure 5-27 Distribution of miR-21 in ischaemic and non-ischaemic renal tissue – comparison 2 
In situ hybridisation for miR-21 in ischaemic and non-ischaemic renal tissue. Hybridisation mixture 
containing DIG-labelled miRNA probe for miR-21 and DIG-labelled scrambled sequence miRNA 
probe were applied to both tissues. Anti-DIG antibody coupled with AP was applied following probe 
incubation. To visualise miRNA, NBT-BCIP substrates was added. Nuclei were counter-stained using 
fast red nuclear staining.  Images were captured at 200x magnification. 
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Figure 5-28 Distribution of miR-21 in ischaemic and non-ischaemic renal tissue – comparison 3 
In situ hybridisation to detect the presence of miR-21. DIG-labelled probe for scrambled miRNA 
sequence was used as comparison. Probe bound to miRNA of interest were visualised by adding anti-
DIG antibody conjugated to AP followed by the addition of NBT-BCIP substrate. Fast red nuclear 
staining was used. Slides were visualised at 200x magnification. 
 

5.3. Discussion 

5.3.1. Establishing the miR-21 – SMAD7 – SMAD3 axis in the renal response to ischaemia 

The involvement of miR-21 in the renal response to IRI has been suggested from the 

miRNA profiling results. Computational prediction of miRNA targets has also identified 

various pathways and genes, which may be regulated by miR-21. Ideally, it will be possible to 

investigate miR-21 involvement in all the pathways relevant to the renal response to IRI, such 

as PI3K-Akt, HIF-1a signalling and TGF-b signalling pathways. Previous studies performed 

in our laboratory have shown that hypoxia is associated with changes in cell phenotype, 

potentially contributing to the progression of injury, and deterioration in renal function. These 

post-ischaemic morphological changes were closely associated with activation of the TGF-b 

signalling pathway. Several publications have reported that SMAD3 may regulate the 

expression of miR-21 (Zhong et al., 2011).  In addition, studies on diabetic nephropathy have 
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described how miR-21 can target SMAD7, and that this is correlated with worse renal 

structure and function (Wang et al., 2014b; McClelland et al., 2015). However, there is no 

data on the effect of miR-21 changes following ischaemia on the activity of TGF-b signalling, 

and how this may affect cellular phenotype. This was the main reason for focusing this part of 

the study on elucidating the link between miR-21 up-regulation after IRI to alteration in TGF-

b signalling activity, and potentially subsequent tubular cell morphological changes.  

The TargetScan database predicted a near-perfect complementary interaction between 

miR-21 and its predicted target site in the 3’ UTR of SMAD7 mRNA, suggesting a potentially 

strong inhibitory effect on SMAD7 function by miR-21. This inhibition of SMAD7 by miR-

21 in renal tubular epithelial cells was previously documented by Lin et. al. (Lin et al., 2014). 

Using rat tubular epithelial cell line, Lin et. al showed inhibition of SMAD7 protein following 

transfection with lentivirus over-expressing miR-21. I verified this finding in a human tubular 

epithelial cell line, HKC-8, using a different transfection method. The expression of SMAD7 

was lower in human tubular epithelial cells over-expressing miR-21. The implication of lower 

SMAD7 levels in renal tubular cell, however, has not been well described. Rat tubular cells 

with miR-21 over-expression and low SMAD7 protein levels showed inhibited proliferation 

compared to normal cells (Lin et al., 2014). In a high glucose environment rodent tubular 

epithelial cells, inhibition of SMAD7 by miR-21 enhanced TGF-b1 activity (McClelland et 

al., 2015). I tested whether this link between miR-21, SMAD7 and activation of TGF-b 

pathways was also present in an in vitro model of IRI using human tubular epithelial cell 

lines. Using immunofluorescence, I showed that intra-nuclear localisation of SMAD3 

occurred in cells over-expressing miR-21. This complements the findings observed by 

McClelland et. al., which showed increased phosphorylation of SMAD3 in miR-21 mimic 

transfected rat tubular epithelial cells.  

Further, I also explored whether SMAD3 translocation into the nucleus resulted in an 

increase in the SMAD3/TGF-b activity. In the absence of exogenous TGF-b, miR-21 

transfected cells did not show significantly more SMAD3-luciferase activity compared to the 

control groups. Addition of even very low concentration of TGF-b, however, caused a 

significant increase in SMAD3-luciferase activity in miR-21 mimic-transfected cells, but not 

in cells transfected with scrambled miRNA mimic or non-transfected cells. Interestingly, 

TGF-b has also been shown to play role in the regulation of miR-21. In a breast carcinoma 

cell line, mutation in the kinase domain of the TGF-b receptor type 1, which inhibits TGF-b 

signalling, has been shown to reduce pre-miR-21 expression, but not pri-miR-21. This 

suggests the contribution of TGF-b in maintaining high miR-21 levels in tumour cells in an 
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autocrine fashion (Davis et al., 2008). SMAD proteins have also been shown to interact with 

RNA helicase p68, which is a critical sub-unit of the DROSHA microprocessor complex. In 

addition, SMAD3 knock-out mice also showed reduced miR-21 expression, again suggesting 

the involvement of SMAD3 in the up-regulation of miR-21.  

In a normoxic environment, inhibition of SMAD7 by miR-21 alone was not enough to 

cause significant alteration to TGF-b activity. The presence of an injury, such as ischaemia, 

plays a major role in determining if miR-21 up-regulation resulting in an increase in TGF-b 

activity. The results showed that simulation of hypoxia by 24-hour incubation in hypoxic 

chamber, or conditions mimicking hypoxia by CoCl2 treatment, or transfection of HIF-1a 

plasmid, also led to inhibition of SMAD7 and sensitisation of HKC-8 cells to TGF-b. This 

finding establishes that post-ischaemic miR-21 up-regulation inhibits SMAD7, which has the 

potential to relieve the inhibition of TGF-b activity. However, the interaction between 

ischaemia, miR-21 and TGF-b/SMADs activation is more complex, and may involve 

numerous feedback auto-regulatory mechanisms (Figure 5-29). Several reports have 

suggested inter-dependence between HIF-1α and SMAD3. Some authors have documented 

that HIF-1α induced by hypoxia activates the TGF-b/SMAD3 pathway, which may up-

regulate genes related to fibrosis (Kimura et al., 2008; Kushida et al., 2016). In contrast, other 

reports have not found that hypoxia alone activates SMAD3, but instead showed that SMAD3 

plays a role in stabilising HIF-1α (Basu et al., 2011). In addition, HIF-1a has also been 

suggested to occupy direct binding sites on the miR-21 promoter (Liu et al., 2014), which in 

part also lead to an increase in HIF-1α. MiR-21 has been also shown to regulate PTEN, a 

suppressor of Akt pathway (Liu et al., 2014; McClelland et al., 2015). Inhibition of PTEN 

will increase Akt pathway activity, leading to an increase in its down-stream products, such as 

HIF-1α. Available evidence, therefore suggests that there is an established link between 

ischaemia, miR-21 and SMADs signalling. In ischaemia, SMAD7 is down-regulated leading 

to an increase in SMAD3 activity. In addition, the increase in SMAD3 activity will directly 

up-regulate miR-21, completing a positive feedback system which makes the injured cell 

more sensitive to TGF-b. 
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Figure 5-29 The proposed link between ischaemia, miR-21 and TGF-β 
 

The role miR-21 in TGF-β pathway and hypoxia was further confirmed in the 

experiments using miR-21 inhibitor. Inhibiting miR-21 was shown to prevent the down-

regulation of SMAD7 following exposure to either TGF-β or hypoxia. In hypoxia, 

stabilisation of HIF-1α may lead to increased SMAD3 activity, due to the interdependence of 

HIF-1α and TGF-β pathways (Basu et al., 2011). The addition of miR-21 inhibitor in these 

cells significantly reduced SMAD3 activity. In normoxic cells, this significant reduction in 

SMAD3 activity was not seen, primarily due to the absence of an injury to elevate the 

baseline SMAD3 activity level. In the mouse model of diabetic nephropathy, the introduction 

of miR-21 inhibitor has been shown to increase E-cadherin expression and lower α-SMA 

level (Wang et al., 2014b). 

5.3.2. Modification of MiR-21 Expression in Normal vs Disease 

The results from experiments using miR-21 mimic or inhibitor during normoxia and 

hypoxia showed that the effect of modifying miR-21 expression is especially greater when the 

cells were under stress. This has also been documented in an in vivo mouse model. Microarray 

analysis of healthy kidneys from miR-21 knocked-out mice showed similar genetic 

expression of predicted miR-21 targets to wild-type mouse. However, differences were only 

seen after obstruction of the ureter or after induction of IRI (Chau et al., 2012). This is further 
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supported by Androsavich et al., which showed that miR-21 strongly degraded its mRNA 

targets in cancer cells, but not in healthy mouse liver (Androsavich et al., 2012). Although 

there has been no satisfactory explanation for this, it has been proposed that the difference in 

miR-21 activity in normal and disease condition may be closely related to its low 

thermodynamic stability and low abundance of its target genes (Androsavich et al., 2012).  

Specifically, for the experiments in this study, the differences in miR-21 effect in 

hypoxic and normoxic conditions may also be related to the level of pre-existing endogenous 

TGF-β1 induced during hypoxia. The results suggest that miR-21 was not the initiator of 

injury progression, but rather, act as a mediator which sensitised cells to TGF-β1. The higher 

level of pre-existing TGF-β1 is, therefore, associated with greater changes facilitated by miR-

21. 

5.3.3. MiR-21 and changes in TEC morphology 

Changes in epithelial cells morphology has been identified as a contributing factor in 

the progression and deterioration of function in various kidney pathologies. Tissue analysis 

from diabetic nephropathy rat models showed increased in miR-21 expression, which was 

associated with increased in Collagen type 1, fibronectin, α-SMA, and decreased in E-

cadherin expression in renal epithelial cells (Zhong et al., 2011; McClelland et al., 2015). 

Similarly, this was also observed in tissue and cells isolated after unilateral ureteric 

obstruction (UUO). Increased miR-21 expression was detected in the ligated mouse kidney, 

which was also shown to have higher expression of α-SMA, fibronectin, and collagen type I 

and IV (Zhong et al., 2011). Furthermore, introducing miR-21 inhibitor agent to the 

obstructed kidney was shown to reduce the level of TGF-β1, as well as the expression of 

fibrotic markers, such as α-SMA, fibronectin, and collagen type I (Zarjou et al., 2011). 

In the absence of any pathology, such as high glucose level, or artificially-induced 

interstitial fibrosis, the effect of miR-21 expression on tubular cell morphology has not been 

described previously. My initial experiment using miR-21 mimic-transfected cells without the 

addition of exogenous TGF-b revealed no changes in the expression of E-cadherin and α-

SMA. Thus, as suggested by the result of SMAD3-luciferase experiment, it appeared that 

addition of TGF-b was required to induce potentially detectable changes. For this purpose, a 

low concentration of TGF-β was used, which was sufficient to initiate some phenotypic 

changes, but not completely alter the normal cellular morphology. In the presence of 

exogenous TGF-β, the expression of fibrotic markers represented by α-SMA and Collagen 

type 1 were significantly increased by over-expressing miR-21. This was accompanied by 
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down-regulation of the epithelial marker E-cadherin. These findings strengthen the argument 

that miR-21 may have a deleterious effect in renal tubular cells, particularly in combination 

with an increased level of TGF-β or in the presence of an injury, such as hypoxia.   

5.3.4. Post-ischaemic miR-21 expression and distribution in cellular sub-population of the 

kidney 

So far, in vitro results have shown that miR-21 level of expression was higher in 

ischaemic PTECs than in normal PTECs. To validate whether this also occurred in vivo, 

comparison was made between severely hypoxic renal tissue and non-ischaemic tissue. The 

severely ischaemic tissues were obtained from kidneys which were deemed unsuitable for 

transplantation for various reasons, and had been in cold ischaemia for more than 12 hours. 

Despite being grouped under ‘non-ischaemic tissues’, the kidney tissues used as comparison 

were obtained from macroscopically normal section of kidneys removed for oncological 

indications, thus will to have experienced a brief period of ischaemia. This could explain the 

result in comparison 3 (Figure 5-28), which detected miR-21 in the non-ischaemic kidney. In 

addition, miR-21 has also been linked with malignancy in the kidney, such as renal cell 

carcinoma. This could also explain the detection of miR-21, even in the non-ischaemic 

kidney. Nevertheless, real-time qPCR results still showed significant difference in miR-21 

expression between the two-groups, which clearly suggests that ischaemic injury increases 

miR-21 expression.   

Most miRNA profiling studies in the kidney focused their investigation primarily on 

tubular epithelial cells of the kidney, and indeed documented high level of miR-21 expression 

in this sub-population of cells. The results of miR-21 in situ hybridisation presented in this 

chapter also showed that miR-21 was detected mainly in tubular cells, and not in the 

glomerulus. Moreover, the result of several studies focusing on the role of miRNAs in 

glomerular injury did not detect significantly levels of miR-21 in the glomerulus (Kato et al., 

2012; Trionfini and Benigni, 2017). This does not imply that miR-21 has no regulatory 

function in other cell populations within the kidney. In fact, miR-21 has been shown to 

repress pro-apoptotic activity, resulting in inhibition of podocyte loss following TGF-β 

stimulation or in hyperglycaemic glomerular injury. This in part suggests that the effect of 

miR-21 in the glomerulus is the opposite of its effect in tubulo-interstitial cells (Lai et al., 

2015).  
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In conclusion, I have shown that post-ischaemic miR-21 lead to PTEC sensitisation to 

TGF-β through a complex regulatory feedback involving SMAD7, SMAD3 and HIF1-α. In a 

relatively physiological state, or when an injury was transient and tolerable, this is expected to 

facilitate cellular recovery and survival. When the injury was repetitive or severe, the 

interaction between miR-21, SMADs signalling and HIF may contribute to the worsening of 

the effect of the initial injury, resulting in the changes of cellular morphology and 

fibrogenesis. In kidney transplant settings, the outcome of this interaction becomes more 

complex and harder to predict, as the organ is more susceptible to injury due to various 

contributing factors, such as pre-existing morbidities, the use of nephrotoxic medications and 

the degree of ischaemic and reperfusion injury. 
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Chapter 6. Thesis Summary 

6.1. Summary of Aims and Outcomes 

6.1.1. Profiling and Identifying Key MiRNAs Involved in the Renal Response to IRI 

In this study, I have identified that ischaemia (induced by treating the cells in 1% O2 

incubator for 12-hour) or ROS treatment (given in the form of H2O2 treatment) induced 

changes in miRNA expression on PTECs. The changes in miRNA expression were detected 

using a microarray platform, NanoString, and was validated using real-time PCR.  

Using different tubular epithelial cell types, I have shown that these changes were 

unique to different cell types, and especially distinct between cell lines and human primary 

cells. This is evident from the analysis of the pattern of changes, which showed that most 

detectable changes in miRNA occurred only in cell line, but not in primary cells, or only in 

primary cells, but not in cell lines. The findings have also shown that different type of injury 

left distinct pattern of miRNA changes in cells.  Despite the difference in miRNAs pattern in 

different cells or different injury, a number of miRNAs were found to be consistently up- or 

down-regulated in all cells at a given time point, suggesting their common involvement in 

renal response to IRI. These identified miRNAs include miR-21, miR-34a, miR-363, miR-

210, miR-142 and miR-130b. These miRNAs were considered as key miRNA candidates to 

be explored and validated further.  

Multiple computational miRNA target prediction databases were used to predict the 

target of these miRNAs, which highlighted their involvement in pathways related to the renal 

response to IRI, such as HIF-signalling pathway and TGF-b signalling pathway. The potential 

role of miR-21 and miR-34a are especially of interest, as the change of expression in both 

miRNAs were shared consistently by all cell types used in this study. Interestingly, other 

authors have also reported the involvement of miR-21 and miR-34a in various disease 

processes in the kidney, unrelated to IRI or kidney transplant setting. This indicates that both 

miR-21 and miR-34a play essential roles in various cell regulatory mechanisms and function 

in the kidney.   

6.1.2. Functional Analysis of miR-21 

MiR-21 was selected to be the focus of this project due to its expression profile pattern 

in all PTEC types used in this study. Furthermore, despite being frequently investigated for its 

role in various kidney pathologies, lack of overlap and conflicting research findings has 
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limited the potential utilisation of miR-21. I was particularly interested in the consequence of 

miR-21 up-regulation following ischaemia or ROS treatment. The literature has reported that 

an association between high miR-21 expression with biopsy proven interstitial fibrosis/tubular 

atrophy (Ben-Dov et al., 2012; Wilflingseder et al., 2013). Others have also associated miR-

21 increase to kidney pathologies resulting from a relatively long-term exposure to injury, 

such as chronic hypoxia or diabetic nephropathy (McClelland et al., 2015).  

The change in miR-21 level of expression in this study was detected after exposure to a 

short-term and transient injury, indicating its role, even in early renal response to injury. The 

effect of miR-21 up-regulation was then investigated in vitro using miR-21 mimic 

transfection to over-express mature miR-21, or by transfection of anti-miR-21 to inhibit miR-

21 production. The link between ischaemia, miR-21 and TGF-b signalling pathway was 

especially interesting, as previous work by our group has shown that ischaemia may lead to 

modification in PTEC phenotype through TGF-b pathway activity. SMAD7 was predicted 

and validated as the target for miR-21. In this study, I observed that up-regulation in miR-21 

after ischaemia has led to suppression of SMAD7 and an increase in SMAD3 activity in a 

renal PTEC cell line. However, the effect of miR-21 up-regulation did not have a significantly 

detectable consequence in a physiological setting, or in the absence of additional injury, such 

as ischaemia. In hypoxic cells, over-expression of miR-21 in PTEC showed significantly 

higher SMAD3-luciferase activity compared to cells with no miR-21 over-expression. Over-

expression of miR-21 in PTEC appeared to have sensitised the cells to exogenous TGF-b1, 

indicated by significantly higher SMAD3-luciferase activity in these cells compared to the 

cells transfected with non-coding miRNA mimic or the non-transfected cells.  

Furthermore, this study has also shown that changes in PTEC phenotype was also 

exaggerated when miR-21 was over-expressed in PTEC. Treatment with 1ng/mL of TGF-b1 

resulted in a reduced E-cadherin expression and an increase in a-SMA and Collagen type 1 

expression in PTEC. When this was combined with miR-21 over-expression, the reduction of 

E-cadherin and the increase in a-SMA and Collagen type 1 were shown to be more obvious.  

The link between ischaemia, miR-21 and SMADs activity was further established by 

the results from experiments using hypoxic PTEC or by simulating the effect of hypoxia using 

HIF-1a transfection or CoCl2 treatment. These cells showed higher miR-21 level, lower 

SMAD7 expression and a significant increase in SMAD3-luciferase activity compared to their 

normoxic controls. These consequences of hypoxia or mimicking hypoxia effect were 

prevented by transfecting the cells with anti-miR-21.  



 
 

174 

6.1.3. In vivo Validation 

Post-ischaemic increase in miR-21 was validated in this study using real-time PCR and 

ISH in non-hypoxic and severely hypoxic renal tissues. The expression of miR-21 was 

significantly higher in hypoxic renal tissues. ISH results further confirmed that miR-21 was 

selectively distributed in the tubular cells of the kidney. Overall, the objectives and results of 

the study is summarised in Figure 6-1 . 

 

 

Figure 6-1 Project summary 
Schematic illustration of the objectives, steps, and results obtained in this study. 

6.2. Overall Discussion 

6.2.1. Study Implications 

This study has highlighted that short-term and transient ischaemic injury or induction 

of free-radicals has a clear effect in altering miRNA profile in different types of PTECs. To 

my knowledge, this is the only study available, which compared the expression of miRNAs in 

different PTEC cell types following IRI. Significant differences in miRNA profiles following 

IRI in cell line and PTECs implies that relying on cell lines alone may not be an ideal method 
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to perform a miRNA profiling study. Thus, careful measures should be taken when 

extrapolating miRNA profile in immortalised cell lines to human primary cells. The use of 

four different types of cells has enabled a selective inclusion of candidate miRNAs for further 

validation and functional analysis. Consistent detection of changes in a miRNA in four 

different cell type, as was seen for miR-21 in this study, is a strong supporting evidence to 

highlight the role of that particular miRNA in renal response to IRI.    

Biologically, changes in miRNA level indicate activation of pathways, which serves as 

an effector component of renal response to IRI. In this case, this study has established the 

association between post-ischaemic miR-21 up-regulation to suppression in the activity of an 

inhibitory SMAD7, and subsequent increase in SMAD3 activity. This may serve as a crucial 

response by which PTECs make themselves more sensitive to the presence of growth factor 

(i.e. TGF-b1). This may be aimed to promote repair and facilitate cell survival. However, 

when the injury is repetitive, or when the degree of injury is severe, this may lead to 

continuous activation of a positive feedback mechanism, causing an exaggerated response and 

uncontrolled repair process, which may be detrimental to long-term organ renal function. 

Furthermore, this study adds to the knowledge that the link between miR-21 and TGF-b 

pathway is not only limited to the direct miR-21 regulation by SMAD3. Indeed, this study has 

shown that miR-21 has an important role in regulating TGF-b signalling through SMAD7. 

Moreover, this study has also shown that the interaction between miR-21 and TGF-b in the 

kidney was not only limited to chronic injury or diabetic nephropathy, but also in an IRI 

model.  

6.2.2. Study Limitations 

Although the use of four different cell types has added a different perspective to the 

miRNA profiling results, it must be carefully approached and interpreted. Limitation in time 

and resources have only allowed the use of 24 samples in the initial profiling using 

NanoString. This means that only the primary PTECs could only be run in duplicates. 

Profiling of miRNAs in cell lines (i.e. HK-2 and HKC-8) had to rely only on a single 

experiment. Regardless, validation of the expression of selected key miRNAs using real-time 

PCR has shown consistent results in cell lines, which demonstrated the reproducibility of the 

profiling technique.  

The use of H2O2 in mimicking reperfusion injury has been reported in many studies. 

However, induction of free-radical using H2O2 only simulated a component of reperfusion 

injury. Comprehensively, reperfusion injury consists of other equally important components, 
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such as activation of the immune system. The interaction between tubular cells and the 

immune system is an important determinant of successful renal recovery or progression of 

injury, resulting in deterioration in function. This element of reperfusion has not been 

addressed by the model of reperfusion injury used in this study. This was accepted as the 

consequence of achieving the aim of profiling miRNA profile in PTECs as two separate 

injuries, in order to discover the potentially unique miRNA signature changes.      

In vivo validation of miR-21 expression in this study was performed on tissues 

originated from severely ischaemic kidney rejected for transplant, which were compared to 

the non-ischaemic tissues taken from the normal poles of kidney removed for oncological 

reasons. Although the expression of miR-21 was significantly different between these tissues, 

it would be more ideal to use a relatively healthy renal tissue for control, such as tissues from 

living donor. As has been reported, miR-21 may also be up-regulated in renal cell carcinoma, 

which could be a potential confounding factor.  

6.2.3. Challenges in microRNA Research 

The discovery of miRNAs has opened a rapidly growing research field. Initial technical 

challenges have been overcome by novel methodologies or modifications of existing 

technologies. Despite these efforts, miRNA research still faces significant obstacles. 

Increasing number of miRNA research has identified the complexity of miRNA biology, their 

regulatory roles and the intricate nature of miRNA-mRNA interaction. This complexity will 

influence the way we interpret, translate and apply available research findings. 

Despite the abundance of miRNA profiling studies and mechanistic experiments 

linking miRNAs to certain disease processes, little progress has been made in understanding 

the biology of miRNAs themselves. MiRNAs have been shown to be modified and interact 

with other epigenetic events, which will affect their capability to bind with mRNA (Kim et 

al., 2010; Yu and Chen, 2010; Singh and Campbell, 2013).  Moreover, it is becoming more 

widely accepted that the regulation of miRNA biogenesis does not take place by a single 

universal mechanism. Instead, different classes of miRNAs may undergo different processing, 

regulation and turnover (Davis and Hata, 2009). The details of these mechanisms and their 

biological consequences remain largely unknown. 

A published work on oncogenes by Poliseno et al. described functional role of 

pseudogenes, which were previously thought to be redundant (Poliseno et al., 2010). 

Pseudogenes are the transcripts of protein-coding genes, which are highly homologous to 

their cognate genes, except for several base pairs mismatches. Given this homology, 

pseudogenes compete with their respective mRNA for miRNA binding, acting as a ‘miRNA 
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decoy’, thus may be involved in disease pathogenesis (Poliseno et al., 2010; Bernardo et al., 

2012). This miRNA-pseudogene interaction complicates our attempt to translate the profile of 

a miRNA of interest to its actual biological role. 

Furthermore, different miRNAs may undergo maturation through different pathways. 

In contrast to the general miRNA maturation process, some miRNAs undergo maturation 

independent of Drosha or Dicer (Suzuki and Miyazono, 2011; Ha and Kim, 2014). As 

discussed previously, several authors have also documented interaction between miRNA 

maturation pathways and intracellular signalling molecules, nuclear genetic machinery and 

RNA binding proteins (Suzuki and Miyazono, 2011). These complicated interactions should 

be taken into consideration in the interpretation of profiling results or in drawing conclusion 

from an experimental model.    

It has been proven very difficult to assess the influence of a single miRNA to a 

particular cellular process or disease pathway. A cellular biological response or a disease 

process is a result of an orchestrated interaction of many genes requiring fine-tuning by many 

miRNAs. Theoretically, the different miRNAs may be up- or down-regulated to produce a 

synchronised biological effect. In reality, however, detection of such up- or down-regulation 

is not always simple, as the expression of some miRNAs may be altered below a detectable 

threshold, and yet still contributes to a biologically significant effect. Even if the alteration is 

detectable, experimental validation of only a single miRNA will only provide a partial picture 

of an overall biological response. It is almost impossible to design an experimental study that 

can evaluate a net result of numerous miRNAs interacting together to generate a fine-tuned 

cellular response.   

Another level of complexity in miRNA research is added by the discovery made by 

Vasudevan et al. on how miRNA may directly up-regulate gene expression during cell 

quiescence. Quiescence is stimulated by several factors, such as contact inhibition, loss of 

adhesion or serum starvation (Vasudevan et al., 2007). Initially, Vasudevan et al. identified 

two proteins required for translational up-regulation during serum starvation; argonaute 2 

(Ago 2) and fragile-X-mental retardation related protein (FXR1). These two key components 

need to bind to A+U-rich elements (AREs) in the 3’ UTR of TNF-α mRNA to increase its 

translation. The hypothesis that miRNAs may mediate this binding was tested using a 

computational prediction approach, which identified several miRNAs having seed regions 

complementary to TNF-α AREs. Hsa-miR-369-3 was found to be necessary for translational 

up-regulation of the ARE reporter, and that miR-369-3 was reduced in non-quiescent 

HEK293 cells. Whether this is specific to miRNAs targeting only TNF-α mRNA, or in fact 

also takes place in other miRNA-mRNA interaction still requires investigation. However, 
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further observation by the same author on other miRNAs; let7-a and miRcxcr4, showed 

translational down-regulation of their respective target mRNAs only in proliferating cells, but 

not in serum starved milieu (Vasudevan et al., 2007; Rusk, 2008). This finding notably adds a 

different dimension in the design and analysis of miRNA research, but more importantly to 

how miRNAs can be exploited in a specific cellular condition. 

To complicate the matter even further, technological variation in existing profiling 

platforms, differences in bioinformatics criteria and diversity in experimental design used also 

affect the result of different studies addressing the same research question. This is evident in 

the lack of overlapping results shown by many studies performed to investigate the role of 

miRNAs in kidney transplantation and kidney IRI. 

6.2.4. Future Directions 

The miRNA profiling results from this study have nominated several miRNAs with the 

potential to be validated further. The role of a hypoxamiR, miR-210, which can be indirectly 

involved in HIF-1a activity following ischaemia has not been well documented in kidney 

transplant setting, especially in its relation to IRI. Other potential candidates are miR-34a and 

miR-363. The link between miR-34a and the initiation of EMT process after ischaemia can be 

explored further. The role of miR-363 is especially interesting, due to its interaction with 

TWIST pathway and subsequent down-regulation in E-cadherin expression. Interestingly, 

miR-363 has also been linked with genes encoding Collagen and Integrin-b6. Therefore, over-

expression of miR-363 is expected to inhibit the expression of both Collagen and Integrin-b6. 

The resulting effect of this interaction also has the potential to be elucidated further. 

MiR-21 is an important player in renal response to IRI and other renal pathologies. This 

has been documented in vitro as well as in vivo. There are several literatures, which have 

already established an association between the higher expression of miR-21 in tissue or 

plasma to post-transplant graft function. Although these studies are valuable, in my 

perspective, the level of miR-21 in urine appeared to be especially attractive to be used as 

potential biomarker and predictor of graft function. Currently available literatures have 

highlighted the potential use of urinary miR-21 as a biomarker.  They detected that miR-21 is 

up-regulated in mouse hypertensive kidney injury model (Chen et al., 2017), mouse kidney 

fibrosis model (Chen et al., 2017), human renal interstitial fibrosis/tubular atrophy (IF/TA) 

(Wang et al., 2012; Maluf et al., 2014; Zununi Vahed et al., 2017), and in acute kidney injury 

(Saikumar et al., 2012; Du et al., 2013). However, not many studies have documented the use 

of miR-21 as a predictor of graft function in the context of kidney transplant. A report by 
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Maluf et al. (Maluf et al., 2014) did not detect miR-21 to be differentially expressed in urine 

of patients with IF/TA and in patients with normally functioning graft. The other closest 

available data is reported by Khalid et al. (Khalid et al., 2016), which showed significant 

correlation between miR-21 level in hypothermic machine perfusate to graft function at 6 and 

12 months after transplant. Future studies correlating miR-21 level in the urine or plasma 

immediately after transplant to graft function will be important if miR-21 is to be adapted as a 

potential biomarker or predictor.  

6.3. Study Conclusion 

Ischaemia and reperfusion injury induced changes in miRNA profile in renal proximal 

tubular epithelial cells, which is involved in the renal response to IRI. One of the miRNAs 

detected is miR-21, which is involved in the regulation of SMAD signalling following 

ischaemia. Through its interaction with SMAD7 and SMAD3, miR-21 was shown to make 

PTEC more sensitive to TGF-b1, which may be essential in cellular repair process and 

cellular survival. Mir-21 is highly expressed in tubular cells of ischaemic kidneys, further 

emphasising its role in the renal response to IRI. 

 

  



 
 

180 

List of Publications and Presentations 

Manuscript in preparation for publication 

1. Situmorang G, Sheerin N (2018). Ischaemia and Reperfusion Injury; Implications for 

Long-term Transplant Outcome. (submitted for a review article in Pediatric 

Nephrology journal) 

2. Situmorang G, Taher A, Ali S, Kirby J, Sheerin N (2018). MicroRNA Profile and 

Function in Renal Response to Ischaemia and Reperfusion Injury; A Closer Look at 

The Role of miR-21. (manuscript in preparation) 

 

Oral and poster presentations at conferences 

1. Situmorang G, Taher A, Ali S, Kirby J, Sheerin N (2015). MicroRNA Profile and 

Function in Kidney Ischaemia and Reperfusion Injury. Oral presentation at 

MicroRNA Day meeting, Newcastle University, Newcastle upon Tyne, United 

Kingdom. 

2. Situmorang G, Taher A, Ali S, Kirby J, Sheerin N (2017). MicroRNA Profile and 

Function in Kidney Ischaemia and Reperfusion Injury. Poster presentation at the 

Blood and Transplant Research Unit in Organ Donation and Transplantation Research 

Meeting, Cambridge University, United Kingdom. 

3. Situmorang G, Taher A, Ali S, Kirby J, Sheerin N (2017). MicroRNA Profile and 

Function in Kidney Ischaemia and Reperfusion Injury. Oral presentation at the 54th 

European Renal Association – European Dialysis and Transplant Association (ERA-

EDTA) Congress, Madrid, Spain. 

 

 



 
 

181 

Appendix – NanoString Sample Preparation Protocol 

The following sections describe materials and methods used in the preparation of samples to 

be profiled with NanoString platform, as adapted from the NanoString nCounter miRNA 

Expression Assay Manual. 

 

Materials Required 

1. nCounter miRNA Expression Assay Kit (NanoString Technologies, USA) 

2. DEPC-treated (or RNASse-free) water 

3. 100ng total RNA per sampe, normalised to 33 ng/µl 

4. Spectrophotometer (NanoDrop Technologies, USA) 

5. Micropipettes (0.5-10µl; 2.0-20µl; 20-200µl) 

6. Picofuge with strip-tube adaptor (Applied Biosystem, USA) 

7. Thermocycler (Applied Biosystem, USA) 

8. nCounter Prep Station (NanoString Technologies, USA) 

9. nCounter Digital Analyser (NanoString Technologies, USA) 

 

Thermocycler Protocols 

1. Annealing Protocol 

Temperature :  94°C – 1 minute 

    65°C – 2 minute 

    45°C – 10 minute 

    48°C – hold  

Total time :   13 minute 

2. Ligation Protocol 

Temperature :  48°C – 3 minute 

    47°C – 3 minute 

    46°C – 3 minute 

    45°C – 5 minute 

    65°C – 10 minute 

      4°C – hold 

Total time :   24 minute 
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3. Purification Protocol 

Temperature :  37°C – 2 hours 

    70°C – 10 minute 

      4°C – hold 

Total time :   2 hours 10 minute 

 

Sample Preparation Protocol 

1. RNA sample was normalised to 33 ng/µl using RNAse-free water. 

2. 499 µl RNAse-free water was added to 1 µl of the miRNA Assay Controls provided in 

the kit, in a sterile microcentrifuge tube. Solutions were mixed by vortexing and 

centrifugation at 1,000G for 30 second. The tube was stored on ice. 

3. Annealing master mix was prepared by combining 13 µl of Annealing Buffer, 26 µl of 

nCounter miRNA Tag Reagent and 6.5 µl of the diluted Assay Controls prepared in 

Step 2. Solutions were mixed well by pipetting up and down. 

4. 3.5 µl of the annealing master mix prepared in Step 3 was aliquoted into each tube of a 

12 x 0.2 ml strip tube. 

5. 3 µl (100ng) of RNA sample was added to each tube. The tubes were capped and 

gently flicked to ensure that the solutions were thoroughly mixed. Tubes were 

centrifuged at 1,000G for 30 second. 

6. The tubes strip was placed in a thermocycler and Annealing Protocol (as described in 

Thermocycler Protocol point 1) was initiated. 

7. Ligation master mix was prepared by combining 19.5 µl PEG and 13 µl Ligation 

Buffer. It was important to pipette PEG slowly to ensure accurate transfer of volume 

into the mix, as PEG is viscous. The solutions were mixed well by pipetting up and 

down.  

8. Following completion of the Annealing protocol, when the thermocycler has reached 

48°C, 2.5 µl of the ligation master mix was added to each tube. Thorough mixing of 

the solutions was ensured by flicking the tubes gently, which was followed by 

centrifugation at 1,000G for 30 second. Thermocycler was maintained at 48°C during 

this process. 

9. Tubes were returned to 48°C thermocycler, and were incubated for 5 minute. 
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10. With the tubes still in place in the heating block, 1 µl of Ligase was added directly to 

each tube. Incubation temperature was maintained at 48°C. No mixing required at this 

stage. 

11. Immediately after addition of Ligase to the final tube, tubes were recapped and 

Ligation Protocol (as described in Thermocycler protocol section point 2) was 

initiated.  

12. After Ligation protocol is completed, the tubes were removed from the heat block, and 

1 µl Ligation Clean-Up Enzyme was added into each reaction. To mix, tubes were 

gently flicked followed by centrifugation at 1,000G for 30 second. 

13. Tubes were returned into the thermocycler and Purification Protocol (as described in 

Thermocycler Protocol section point 3) was initiated. 

14. After completion of Purification Protocol, 40 µl of RNAse-free water was added to 

each sample. Ensure samples were thoroughly mixed by pipetting up and down 

followed by centrifugation at 1,000G for 30 second. 

15. Samples were immediately used for miRNA CodeSet hybridisation. 

 

Sample Preparation Protocol 

The final hybridisation reaction contained the following component: 10 µl Reporter CodeSet, 

10 µl hybridisation buffer, a 5 µl aliquot from the miRNA Sample Preparation protocol, and 5 

µl capture ProbeSet. The hybridisation reaction was prepared as follows: 

1. Aliquots of both Reporter CodeSet and Capture ProbeSet reagent were thawed on ice.  

To ensure aliquots were mixed well, the tubes were inverted several times, followed 

by centrifugation at 1,000G for 15 second. 

2. 130 µl of hybridisation buffer was added to the tube containing the Reporter CodeSet 

to create a master mix containing 130 µl of the Reporter CodeSet and 130 µl of 

hybridisation buffer. Tuber were inverted several times to mix, followed by 

centrifugation at 1,000G for 15 second. 

3. A 12-tube strip provided in the kit was labelled and cut in half to fit in a picofuge. 

4. 20 µl of master mix prepared in Step 2 was added into each of the 12 tubes. 

5. Samples from the miRNA Sample Preparation Protocol were denatured by incubation 

at 85°C for 5 minutes and were quickly stored on ice. 5 µl aliquot from the miRNA 

Sample Preparation protocol was added to each tube. 
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6. Thermocycler was pre-heated to 65°C and programmed for 30 µl volume and heated 

lid option. Time setting was programmed to infinite to ensure that the thermocycler 

temperature did not change to 4°C at the end of the run.  

7. 5 µl of Capture ProbeSet was added to each tube immediately prior to placing the tube 

at 65°C. To mix, strip tubes were inverted several times and gently flicked, followed 

by centrifugation at 1,000G for 15 second. It was important that this step was 

performed as quickly as possible, as minimising the time between the addition of the 

Capture ProbeSet and the placement of the reaction at 65°C will increase the 

sensitivity of the assay.  

8. Hybridisation assays were incubated for 16 hours, and left at 65°C until ready for 

further processing in nCounter Prep Station. 
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