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Abstract 

Robust evidence of fisheries impacts, fishing intensity, and spatial distribution of 

fishers are required, driven by a push towards evidence based management, and the 

trend towards Marine Spatial Planning (MSP). Intertidal fisheries have received 

considerably less research and management attention to date compared to inshore 

and offshore counterparts. The need for additional intertidal fisheries data, 

specifically within European Marine Sites (EMS), has been identified. This research 

focusses on the collection of lugworms Arenicola marina and Arenicola defodiens, 

and periwinkle Littorina littorea within the Berwickshire and North Northumberland 

Coast European Marine Site (BNNC EMS), UK. This thesis aims to provide an 

interdisciplinary evidence base for marine managers and future research to build 

upon.  

Comparisons of sites experiencing a gradient of fishing pressure at the EMS scale, 

combined with small scale experimental disturbances, revealed the potential and 

actual impacts of local harvesting regimes. Data on the target species revealed no 

significant impacts between sites, suggesting that at current collection intensities, 

Northumberland populations of neither periwinkle nor lugworm are reduced or altered 

by fishing beyond naturally occurring levels. Community assessments revealed no 

observable impacts on the rocky shore, but sediment communities were negatively 

impacted with reductions in infaunal abundance and taxonomic richness, and altered 

community structure observed between sites and treatments. Recovery timescales 

were investigated and discussed.  

Fisher distribution was mapped from shore observations, highlighting collection 

hotspots, and combined with questionnaire data to estimate biomass removal, with 

economic value discussed. Adherence to current fisheries regulations were 
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investigated, revealing a shortfall in existing enforcement measures, with illegal night 

time collection especially prevalent at some sites. Commercial and recreational 

collection characteristics were contrasted, and identification features recommended. 

Finally, spatial models of habitat suitability, sensitivity, and vulnerability were 

produced for the lugworm fishery, assessing the appropriateness of current spatial 

management measures. The spatial extent of existing bait digging byelaws included 

most of the highly vulnerable areas identified in the model outputs, with suggestions 

to further improve the coverage discussed. 
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1.1 Introduction to the Thesis  

1.1.1 Background and Rationale 

Coastal marine ecosystems are some of the most valued and productive habitats in 

the world (Costanza et al., 1997). However they are often the most degraded, with 

ever increasing human pressures (Reid et al., 2005). The impacts of activities and 

both potential and observed degradation of coastal ecosystems has gained more 

attention in recent years, and marine ecologists, managers, users, and policy makers 

are concerned about how they can be protected (Crain et al., 2009).  

The conservation of coastal ecosystems is both globally and locally important. At a 

global scale, The Convention on Biological Diversity has set an international target to 

protect 10% of coastal and marine areas by 2020, through designation of protected 

areas (Boonzaier and Pauly, 2016). This global network is made up of local and 

national networks, such as those within Europe and the UK. On a European scale 

there are areas designated as Special Area of Conservation (SAC) and Special 

Protection Area (SPA). SACs and SPAs with a ‘marine area’ (any land covered 

continuously or intermittently by tidal waters or any part of the sea in or adjacent to 

Great Britain up to the seaward limit of territorial waters) can be considered a 

European Marine Site (EMS) (The Conservation (Natural Habitats, &c.) Regulations, 

1994). EMSs contribute to the global aim of protecting the oceans and coasts. The 

Berwickshire and North Northumberland Coast European Marine Site (BNNC EMS) 

is one example of these protected areas within the UK, and is the study site selected 

for this thesis, due to the availability of numerous coastal habitats subject to multiple 

human pressures, combined with the relevant legislation and management 

requirements to drive the research (MMO, 2014b).  

The numerous anthropogenic stressors threatening coastal ecosystems include: 

habitat loss, climate change, eutrophication, pollution, invasive species, and 

overexploitation (Kay and Alder, 1998; Beatley et al., 2002; Lotze et al., 2006; Crain 

et al., 2009). This thesis focusses on the threat from over exploitation. The intertidal 

zone is usually accessible over the tidal regime, and regularly exploited by humans. 

Intertidal exploitation has been occurring since prehistoric times (e.g. Thompson et 

al., 2002; Erlandson et al., 2011; Braje et al., 2012), now with many organisms 

collected from the intertidal zone for both food and fishing bait, both recreationally 
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and commercially (Fowler, 1999). Both rocky shores and sand/mud flats in the 

intertidal zone are exploited in this way in Britain.  

Ecologists have long pursued accurate assessments of the environmental impacts of 

multiple human activities, with the ultimate aim of protecting ecosystems from 

degradation. However, significant uncertainties remain, especially at local scales, as 

many activities and geographic locations remain poorly covered in the literature due 

to the large scale and distribution of human pressures. Little research into intertidal 

collection activities has been conducted in the North-East of England, and 

management concerns over currently unidentified impacts mean that there is a real 

need for research within the BNNC EMS. The main driver of this thesis is Department 

for Environment, Food & Rural Affairs (DEFRA) ‘Revised Approach to the 

Management of Commercial Fisheries in European Marine Sites’, which was 

announced in August 2012. This project is now known as the ‘Fishing in MPAs’ 

project. Information on anthropogenic activities is needed to inform effective 

management. Within protected areas, such as EMSs, fishing activities are only 

allowed if they do not undermine the conservation objectives of the site, or impact 

upon the site integrity (MMO, 2014b).  Therefore, every fishing activity occurring 

within an EMS must undergo a Habitat Regulation Assessment (HRA) in agreement 

with Article 6 of the Habitats Directive (Council Directive 92/43/EEC), with the aim of 

assessing possible impacts on the site’s designated features. If it is deemed possible 

or likely that a significant impact could occur from an activity, an appropriate 

assessment must be completed. This assessment will also inform management 

options to ensure the maintenance of site integrity. An evidence gap was 

acknowledged for intertidal collection activities for both rocky and sediment shores 

(assigned an amber rating – meaning the impacts are unknown), which is required to 

be filled before informed management decisions can be made.  

Many species are collected throughout the BNNC EMS. Rocky shores are generally 

used for the collection of crabs, periwinkles, and mussels, whilst sandy shores are 

used for the collection of worms and crabs (Fowler, 1999). However, this study focuses 

on three target species, as a study on all collected species is beyond the scope of this 

thesis. The species investigated are the lugworms Arenicola marina and Arenicola 

defodiens from the sandy shores, and the periwinkle Littorina littorea from the rocky 

shores. This choice of species allows for representation of both shore types, as the 
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collection methods used, and consequently the impacts of collection can vary 

considerably between substrate types and target species (Fowler, 1999).  
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1.2 Introduction to the Literature Review   

This introductory chapter aims to summarise the current state of knowledge of intertidal 

collection activities, the current management and legislation of these activities, and the 

impacts they have upon ecosystems, focussing on Arenicola marina (Linnaeus, 1758), 

Arenicola defodiens (Cadman & Nelson-Smith, 1993) and Littorina littorea (Linnaeus, 

1758) as target species.  

First, the background of intertidal collection, collection methods, and trends are 

discussed. Next, the legal framework surrounding the topic is reviewed, covering 

management, legislation, and description of the study site. The biology and ecology of 

Arenicola marina, Arenicola defodiens and Littorina littorea are then reviewed. The 

biology and ecology of a species must be understood if the impacts of collection are to 

be studied, especially when interactions at the community level could be affected. The 

impacts of collection on the target species and their associated communities, including 

bird populations, are also reviewed, identifying gaps in knowledge for each species. 
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1.3 Intertidal Collection 

1.3.1 Food Collection - Littorina littorea 

Foraging for intertidal gastropods occurs worldwide, with variety of target species (e.g. 

Duran and Castilla, 1989; Povey and Keough, 1991; Kyle et al., 1997; Sharpe and 

Keough, 1998; Keough and Quinn, 2000; Roy et al., 2003; Fenberg and Roy, 2012). 

Within the UK, the primary gastropod target species is L. littorea (e.g. McKay et al., 

1997; Cummins et al., 2002; Morgan and Richardson, 2012). L. littorea is collected by 

hand as a food source, commonly commercially, and occasionally for personal use 

(Cummins et al., 2002). They are also occasionally used for bait (Kelly, 1999) and 

exported live to be used as a biological anti-fouling method on oyster farms 

(Crossthwaite, 2012). Periwinkles are collected in large quantities, traditionally by part 

time fishermen and women (O'Sullivan, 1977 as cited by Cummins et al., 2002).  

1.3.2 Bait Collection – A. marina and A. defodiens   

Bait digging is widely practiced to support both commercial and recreational fishing 

(Cunha et al., 2005). This activity occurs globally, with a vast array of species 

harvested, including worms and prawns (e.g. Wynberg and Branch, 1994; Cunha et 

al., 2005; Napier et al., 2009; Sypitkowski et al., 2010; Nel and Branch, 2014). The 

most commonly collected bait species are burrowing polychaete worms (Gambi et al., 

1994), including A. marina and A. defodiens in the UK.  Polychaetes are often used 

as fresh bait by fishermen due to the fact they form part of the diet of several targeted 

demersal fish species (Cunha et al., 2005). Both species of lugworm can be collected 

using a fork to dig them out of the sediment, however, only A. defodiens can be 

extracted by the use of a bait pump, which extracts with suction (Cadman and 

Nelson-Smith, 1993; Brind and Darbyshire, 2015). Lugworms are sometimes 

mechanically harvested from large bait bed areas (Beukema, 1995); however this is 

not carried out in the UK. In Northumberland, lugworms are often collected for bait, 

along with Nereis virens (NIFCA, 2013b). It is believed that most of the bait collection 

in this area is carried out by amateur anglers, however some small-scale commercial 

digging also occurs (NIFCA, 2013b). 

1.3.3 Trends in Intertidal Collection 

Global coastal collection activities are likely to increase in the near future, especially 

in developing countries where the human populations are expanding rapidly, 
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increasing the pressure on resources (Thompson et al., 2002). Leisure time and 

disposable income have dramatically increased over the last few decades in 

industrialized countries, which has been associated with increased impacts from 

recreation activities, including intertidal collection (Thompson et al., 2002). 

Trends in Intertidal Collection of Food 

 In the developed world, subsistence gathering of food has declined over the last 50 

years, linked with increasing disposable income (Fletcher and Frid, 1996; Thompson 

et al., 2002). Despite this, Italy and the USA still have considerable collection 

activities occurring (Fanelli et al., 1994; Murray et al., 1999; Fraschetti et al., 2001). 

The collection of food from shores is at a low intensity in the UK when compared with 

other countries, such as New South Wales, Australia (Underwood, 1993). The age 

profile of periwinkle collectors in Ireland indicates that the industry might decrease in 

the future, as only 18.5% of collectors were less than 40 years old, and young people 

perceive it as too hard work for little financial reward (Cummins et al., 2002). 

Trends in Intertidal Collection of Fishing Bait 

The demand for wild caught bait by sea anglers in the UK is high, and it is said to be 

in short supply (Olive, 1999). In the 1970s it was estimated by the National Anglers 

Council, that 1.5 million anglers collected their own bait in the UK. Since then the 

number of sea anglers is believed to have decreased, possibly due to declining 

fishing stocks (Fowler, 1999). However, there is currently a national angling strategy 

in the UK, which aims to increase the participation of this sport in the future, in turn 

increasing the demand for bait (Angling Trust, 2013; Environment Agency, 2013). 

This potential increase in fishing bait demand could be added to by the changing 

demographics of the UK, with an influx of foreign nationals with a strong sea angling 

culture (Angling Trust, 2013).  

1.3.4 Scale and Market Value of Intertidal Collection 

Collection of Littorina littorea 

Marine gastropods make up 2% of the molluscs fished in the world, with the UK, 

France and Ireland having the most important gastropod fisheries in Europe (Leiva 

and Castilla, 2001). One of the main species extracted from these fisheries is L. 

littorea (Leiva and Castilla, 2001), which are usually exported from the UK to the 

continent, where there is a large market for them, especially in France (Cummins et 
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al., 2002). The periwinkle fishery has not been well studied in England, and the 

market value is not well known. However, in Ireland, the periwinkle trade was 

estimated to be worth £5 million in 1994 (Pearson, 1994 as cited by Cummins et al., 

2002), with no detailed economic evaluation since. Studies in both Ireland and 

Scotland estimate that 4,000 tonnes of periwinkles are exported annually from each 

country, and around 500 part-time pickers work in Ireland (McKay et al., 1997; 

Cummins et al., 2002). However, it is difficult to accurately assess the size of 

periwinkle fisheries due to the unregulated, under reported, and often black market 

nature (Cummins et al., 2002; Crossthwaite, 2012). Landings data are not a reliable 

estimate of collection levels in this industry, as many places which have no such data 

are still harvested (McKay et al., 1997).  

More people pick winkles when the prices are high, driven by higher demand on the 

continent (Cummins et al., 2002). At Christmas, prices are highest £2,200 per tonne 

(compared to £1,400 per tonnes at other times of the year). Summer used to be the 

low season, however since exporting to France began, the restaurant trade still has 

demands in summer (Cummins et al., 2002), meaning winkle picking occurs year 

round. Price also depends on the size of the animals, and grading (Cummins et al., 

2002). In 2002, pickers typically received as little as 80p per kilo, or up to £1.50 at 

Christmas time in Ireland, with  wholesalers’ prices about £2.10 per kilo for small 

winkles and £2.50 for larger ones (Cummins et al., 2002). Currently within the BNNC 

EMS, wholesalers’ prices average £10 per Kg (Berwick Shellfish Company, 2017; The 

Fish Society, 2017). 

Collection of Arenicola marina and Arenicola defodiens  

Total numbers of bait harvesters are difficult to ascertain due to many anglers not 

being associated with any formal associations/clubs (Saunders et al., 1998). 

However, it is estimated that 2.5% of the UK population participate in sea angling 

annually (Watson et al., 2017a), which in 2017 would equate to approximately 1.65 

million individuals, of whom a significant proportion use polychaetes as bait (AFBI, 

2014; Monkman et al., 2015). In 1999 it was estimated that the UK used at least 

1,000 tonnes of bait worms every year, with 500-700 tonnes being dug for personal 

use, and 300-500 tonnes by commercial bait collectors (Fowler, 1999). A lot of trade 

is conducted through a “black economy”, meaning exact quantification of the market 

value is difficult (Olive, 1999). A recent assessment of the global polychaete bait 
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industry estimated that 121,000 tonnes are collected annually, worth £5.9 billion, with 

Arenicola defodiens listed as one of the five most expensive marine species on the 

global fisheries market (retail price per kg) (Watson et al., 2017a). Retail values of A. 

marina and A. defodiens in 2017 are £4 and £53 per kg respectively (Watson et al., 

2017a).  
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1.4 Legal Framework and Management  

1.4.1 The Bigger Picture  

Conservation of biodiversity is globally important, and is helped with such legislation 

as the Convention on Biological Diversity, and the RAMSAR convention. To protect 

biodiversity, all countries need to act together to preserve natural ecosystems and 

improve biodiversity (DEFRA and England, 2013). As part of this global aim to 

protect biodiversity, the UK is required to have 10% of its oceans and/or coasts 

protected by 2020 (Boonzaier and Pauly, 2016).  

1.4.2 European Legislation  

As a member of the European Union (EU), the UK also has European conservation 

legislation to follow. The EU has specific targets for biodiversity conservation and 

legislation to protect key habitats and species (JNCC, 2015a). The two key EU 

Directives for wildlife and nature conservation are the Birds Directive (Directive 

2009/147/EC on the Conservation of Wild Birds) and the Habitats Directive (Directive 

92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna 

and flora) (JNCC, 2015a). These Directives protect important species and habitats, 

particularly through the designation of protected sites. Under these regulations, 

Special Protected Areas (SPA) for birds, and Special Areas of Conservation (SAC) 

for habitats and other species are designated (NCAONB, 2009). Together, SPA and 

SAC areas form the European-wide sites known as the Natura 2000 network. An 

SPA and/or SAC site which incorporates a ‘marine area’ is called a European Marine 

Site (EMS), of which there are 81 in the UK (NCAONB, 2009). Within EMSs, activities 

need to be balanced with the ecological needs of the qualifying features (NCAONB, 

2009).  

1.4.3 UK Legislation  

The Wildlife and Countryside Act 1981  (WCA) was designed to consolidate and 

amend earlier national legislation with the aim of helping to implement the Bern 

Convention and the Birds Directive within the UK (JNCC, 2015b). The WCA allows 

the designation and subsequent protection of Sites of Special Scientific Interest 

(SSSI). SSSIs are areas, designated by Natural England in England, which are 'of 

special interest by reason of any of its flora, fauna, or geological or physiographical 

features' (JNCC, 2015b). When a site is designated, the reasons for designation are 
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specified (e.g. which flora, fauna, etc. are important), and risks to these are listed. 

The owner or occupier of land within the SSSI must not permit or cause any of the 

listed risk activities, unless with permission from Natural England (JNCC, 2015b). An 

important amendment to the WCA, is the Countryside and Rights of Way Act 2000 

(CRoW). CRoW improves measures for SSSI management, providing increased 

powers for site protection and threatened species (JNCC, 2010b).  

The Marine and Coastal Access Act 2009 (MACAA) provides the outlines for a 

system for management and protection of the marine and coastal environment 

(JNCC, 2010c). This Act modernised inshore fisheries management, creating Inshore 

Fisheries and Conservation Authorities (IFCAs), with the aim of conserving marine 

ecosystems, whilst still enabling profitable and sustainable inshore fisheries (JNCC, 

2010c). Under this legislation, IFCAs can develop and implement byelaws to protect 

fisheries and the marine environment (DEFRA, 2011). The Northumberland IFCA 

(NIFCA) is responsible for fulfilling inshore management within the study area. 

MACAA is additionally responsible for the designation of Marine Conservation Zones 

(MCZs), which protect a range of nationally important wildlife and habitats within 

English and Welsh territorial and UK offshore waters (JNCC, 2016).  

The EU Habitats Directive is transposed into UK law by The Conservation of Habitats 

and Species Regulations 2010, also known as the Habitat Regulations. These 

regulations allow for the designation and protection of ‘European sites’ within the UK, 

with special provisions for EMSs (JNCC, 2010a). The BNNC EMS, the study site of 

this thesis, is designated and protected under both UK and EU law combined, and 

therefore appropriate management of such sites is very important to meet 

conservation obligations.  

1.4.4 Northumberland – International, EU, and UK legislation combined  

There are many different conservation designations in Northumberland, stemming 

from international, European, and UK legislation. There are RAMSAR sites at the 

international level, SACs and SPAs at the European level, and SSSIs and MCZs at 

the UK level. The areas often overlap and act together to protect a variety of habitats 

and species, forming a conservation network. The marine and intertidal conservation 

designations within Northumberland can be seen in Table 1:1, along with the main 

designated features of interest for each site (i.e. why it was designated / what is 

protected). The locations of each designation type can be seen in in Figure 1:1. 
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Table 1:1: Coastal and intertidal conservation areas within Northumberland, and their main designation/protection features, including Sites of Special 
Scientific Interest (SSSI), Special Areas of Conservation (SAC), Special Protection Areas (SPA), RAMSAR, and Marine Conservation Zones (MCZ) 
sites.  

Designation 
Type 

Site Name Features 

SSSI 

Northumberland Shore Bird aggregations – Golden plover, Purple sandpiper, Redshank, Ringed plover, Sanderling, and 
Turnstone 
 

Lindisfarne - Bird aggregations  - Little tern, Roseate tern, Bar-tailed godwit, Brent Goose, Common Socter, Curlew, 
Dunlin, Eider, Golden plover, Grey plover, Greylag goose, Redshank, Ringed plover, Sanderling, 
Shelduck, Whooper swan, and Wigeon 
- Supporting habitats and communities, e.g. saltmarsh, dunes, grassland, and seagrass beds 
- Geological designations 
 

Bamburgh Coast and Hills - Geological – Permian Igneous rock 
- Habitat – Grassland of Festuca Ovina, Agrostis Capillaris, and Rumex Acetosella 
 

Bamburgh Dunes - Invertebrate assemblage 
- Dune plant communities – 8 features 
 

Farne Islands - Breeding bird aggregations – Arctic tern, Common tern, Cormorant, Eider, Guillemot, Kittiwake, Puffin, 
Roseate tern, Sandwhich tern, Shag 
- Grey seals 
 

Howick to Seaton Point - Bird aggregations – Golden plover aggregations 
- Geological – Namurian 
 

Castle Point to Cullernose 
Point 

- Breeding bird aggregations – Kittiwake  
- Habitat – Grassland of Festuca Ovina, Agrostis Capillaris, and Rumex Acetosella, and Reefs  
- Geological – Permian Igneous rock 
 

Alnmouth Saltmarsh and 
Dunes 

Saltmarsh and dune communities and associated species – 12 features 
 

Newton Links - Breeding bird aggregations – Little tern 
- Habitats – Dune and saltmarsh plant species – 11 features  
 

Cresswell and Newbiggin 
Shores 

Geological designation for Westphalian and Quaternary studies 
 

MCZ 

Coquet to St. Mary’s Habitats – Low, moderate, and high energy intertidal rock, Intertidal coarse and mixed sediments, 
Intertidal mud, sand, and muddy sand, Intertidal underboulder communities, Moderate and high energy 
infralittoral rock, Moderate energy circalittoral rock, Subtidal coarse and mixed sediments 
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Designation 
Type 

Site Name Features 

SAC 

Berwickshire and North 
Northumberland Coast 

- Habitats – Mudflats and sandflats not covered by seawater at low tide, Large shallow inlets and bays, 
Reefs, and Submerged or partially submerged sea caves 
- Species – Grey seals 
 

North Northumberland Dunes Embryonic shifting dunes, White dunes, Grey dunes, Dunes with Salix repens ssp. argentea, Humid dune 
slacks, and Petalwort (Petalophyllum ralfsii) 
 

SPA 

Lindisfarne  - Birds – Golden plover, Whooper swan, Little tern, Greylag goose, Light-bellied brent goose, Wigeon, 
Ringed plover, Bartailed godwit, Redshank, Shelduck, Eider, Dunlin, Long-tailed duck, Roseate tern, 
Common Scoter, Red-breasted merganser, Grey plover, Sanderling.  
- Supporting habitats: intertidal sand and mud flats, salt marsh, seagrass beds, and rocky shores 
 

Northumbria Coast Birds – Turnstone, Purple sandpiper, Little tern  
 

Farne Islands Birds – Common tern, Arctic tern, Sandwhich tern  
 

St Abbs to Fast Castle Head 
 

Birds – Razorbill, Herring gull, Shag, Kittiwake, and Guillemot 
 

Ramsar 

Lindisfarne  - Internationally important Birds – Waterfowl, Light-bellied brent goose, Ringed plover, Common redshank, 
Greylag goose, Bar-tailed godwit 
- Nationally important assemblages of 11 other bird species  
- Plants – Petalwort 
 

Northumbria Coast - Internationally important bird assemblages – Little tern, Purple sandpiper, Ruddy turnstone.  
- Nationally important bird assemblages of 5 other species 
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Figure 1:1: Conservation designations within Northumberland.  

 

Many of the habitats listed in Table 1:1 are relevant to bait collection and foraging 

activities. Saltmarsh, sand dunes, grassland, and seagrass beds are all areas which 

surround or overlap with intertidal sand, mud, and rock, the source habitats of 

lugworms and periwinkles. As such, they are all at risk from trampling during access 

to collection (e.g. Hylgaard and Liddle, 1981; Andersen, 1995; Eckrich and 

Holmquist, 2000; Kerbiriou et al., 2008; Santoro et al., 2012). Within the Lindisfarne 

SPA, seagrass beds co-occur with lugworm beds (small patches of seagrass 

scattered around the sandflat – personal observation), and as such are at a 

significant risk of disturbance from sediment turnover directly, not only trampling. The 

collection habitats themselves, intertidal rock, sand, and mud (also referred to as 

rocky reef, under boulder communities, mudflats, sandflats, etc. in Table 1:1), and 

associated communities are directly relevant, with impacts from bait collection and 

foraging covered in detail in sections 1.6 and 1.7.  

¯

0 7.5 153.75 Kilometres

Ramsar

SPA

SSSI

SAC

MCZ



Chapter 1: Introduction 

 

15 
 

Of the many bird species listed as designated features in Table 1:1, some are more 

relevant to intertidal collection activities than others. People in close proximity to 

birds, whatever their activity on the shore, have the potential to cause disturbance, 

with different species being affected in various ways and to differing degrees 

(Davidson and Rothwell, 1993). Impacts of bait collection and foraging on birds is 

discussed in more detail in sections 1.6 and 1.7 respectively. Here, potential impacts 

which are relevant to each designated species are summarised in Table 1:2, based 

on the general feeding and habitat preferences of each bird species (IUCN, 2017).  

Loss of prey refers to the alteration of communities from collection, not just the target 

species (lugworms and periwinkles) – see sections 1.6 and 1.7 for details. 
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Table 1:2: Potential impacts on each designated bird species within Northumberland from bait collection on sediment shores (including estuaries and 
mudflats), and foraging on rocky shores.  

Bird Species 

Bait Digging Potential Impacts Foraging Potential Impacts 

Breeding 
Disturbance 

Feeding Disturbance Loss of Prey 
Breeding 

Disturbance 
Feeding Disturbance Loss of Prey 

Little Tern          
Purple sandpiper         
Turnstone           
Roseate Tern          
Bar-tailed Godwit         
Common Scoter       
Dunlin         
Eider       
Golden Plover           
Grey Plover         
Greylag Goose        
Light-bellied Brent Goose        
Long-tailed Duck       
Red-breasted Merganser       
Redshank           
Ringed Plover         
Sanderling           
Sanderling         
Whooper Swan       
Wigeon        
Curlew         
Oystercatcher           
Lapwing       
Knot         
Guillemot        
Cormorant        
Puffin       
Shag       
Kittiwake       
Razorbill       
Sandwhich Tern          
Herring Gull       
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1.4.5 Berwickshire and North Northumberland Coast European Marine Site 

The BNNC EMS is made up of the BNNC SAC, and the intertidal area of the 

Lindisfarne SPA (NCAONB, 2009; NIFCA, 2013b) (Figure 1:2). The BNNC SAC was 

designated in 2000, encompassing 635 square km of shore and sea, stretching along 

115km of coastline from Alnmouth up to Fast Castle Head (NCAONB, 2009). There 

are several interest features within the SAC (Table 1:1), however mudflats and rocky 

reefs, specifically intertidal rocky shores, are the most relevant to this study, being 

the habitats of the target species studied. Birds are also important within the BBNC 

EMS, being interest features of the Lindisfarne SPA (Table 1:1), which supports 

internationally important assemblages of rare birds and waterfowl, and high numbers 

of migratory species (NIFCA, 2013b).  

EMS are not statutory designated areas, like SACs and SPAs; they are management 

units of these areas. Within the BNNC EMS boundary, there are other SPAs, which 

are not included under the BNNC EMS management unit, but can be seen in Table 

1:1 and Figure 1:1, along with all other Northumberland marine and intertidal 

conservation designations.  

 
Figure 1:2: a) Special Protection Area and Special Area of Conservation which make up the 
BNNC EMS, and the locations of bait digging byelaws – Lindisfarne, Newton, and Boulmer 
from north to south.  b) The location and extent of the BNNC EMS within the UK. 
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1.4.6 Current Regulations and Management of Intertidal Fisheries in the UK and 

Northumberland 

 

Bait Collection  

A. marina and A. defodiens collection is not regulated by fisheries legislation 

(Watson, 2014). There is a common law right to dig for bait as an ancillary to the right 

to fish, as upheld by the case of Anderson vs Alnwick DC (1992). However, this legal 

case further stated that the right to take bait is not unrestricted, and taking worms 

must be directly related to an actual or intended exercise of the public right to fish. 

Therefore, there is no right to take bait for commercial purposes (Watson, 2014). 

Personal collection of A. marina and A. defodiens can be regulated to some extent by 

a variety of byelaws (Watson, 2014) - competent and public bodies can exercise 

statutory powers to protect a habitat from potentially damaging activities within a 

designated site.  

Bait digging within the Berwickshire and Northumberland coast EMS is currently 

managed with byelaws and education (NCAONB, 2009). Byelaws are present at 

Lindisfarne National Nature Reserve (NNR), Newton Haven and Boulmer Haven, 

since in the past there was significant environmental disturbance and safety 

problems caused by commercial bait collection in these areas (NCAONB, 2009). In 

the Lindisfarne NNR, Budle Bay is closed to bait digging, and has been since 1986, 

except for a short period in 1993 when the byelaws were challenged. Bait can be 

collected within a specific ‘digging’ zone at the Fenham Flats in the Lindisfarne NNR 

(UK Marine SACs Project, 2001a). At Boulmer Haven, digging has been prohibited in 

the area used for launching boats since 1985; however it is allowed elsewhere on the 

shore (UK Marine SACs Project, 2001a). At Newton Haven, a ban of bait digging was 

enforced by a National Trust byelaw in 1983 to protect the SSSI at the lower shore 

(UK Marine SACs Project, 2001a). Adherence to these byelaws has not been studied 

to date. It is important to study current management success before planning 

additional measures, to make informed decisions.  

NIFCA has recently (2013) introduced a “Seagrass Protection” byelaw. Seagrasses 

are a sub feature of the BNNC SAC (relating to the feature of ‘sandflats and mudflats 

not covered by water at low tide’), which are at risk from the gathering of sea fisheries 
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resources. The byelaw protects seagrass within the BNNC SAC to hand and 

mechanical gathering activities. This byelaw was introduced as part of the Defra 

Revised Approach to Management of Commercial Fisheries in European Marine 

Sites, after seagrass was identified as highly sensitive to intertidal collection activities 

in risk assessments, a red risk feature/fishery interaction  (NIFCA, 2013a). This 

implies that there is scope for similar management methods to minimise other 

impacts associated with collection in the future, if sufficient evidence becomes 

available.  

One education method used to influence bait digging nationally is the voluntary code 

of conduct created by the Angling Trust, which sets a list of rules intended to 

minimise the impacts of bait digging, for example back-filling holes. However, a study 

in the Solent showed that a code of conduct had little positive impacts on changing 

diggers behaviour (NIFCA, 2013a), suggesting that codes of conduct may not be a 

successful management tool at present.  

Food Collection 

Unlike the situation for marine worms, there is a public right to collect L. littorea both 

personally and commercially, as they are classified as a ‘seafish’ (Cummins et al., 

2002). As a ‘seafish’, commercial collection of L. littorea is controlled under fisheries 

legislation; however, currently anybody can collect them from any shore within 

Northumberland. There are no regulations in place to control the amount of 

periwinkles harvested per year, and harvesting L. littorea is considered a ‘free for all’ 

practice (Cummins et al., 2002). The periwinkle is one of 80 non-ICES assessed 

stocks identified. There is inadequate information to support a harvest strategy and 

control rules being developed (Seafish, 2013), which has the potential to allow for 

over exploitation and diminished stocks without the quest for further information and 

details of the fishery.  

However, byelaws can regulate the public right to fish. Northumberland has no 

periwinkle harvesting regulations or management in place currently, however, some 

other parts of the UK do. These are detailed in Table 1:3. Even those management 

measures are regarded as limited when compared to the regulation of other intertidal 

species such as cockles or whelks (Stranford Lough & Lecale Partnership, 2013). 

There is the potential for NIFCA to introduce similar periwinkle byelaws within the 

BNNC EMS if required.  
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Table 1:3: Periwinkle collection regulations in the UK (Stranford Lough & Lecale Partnership, 
2013) 

Region/Area Regulation 

Eastern IFCA Minimum harvesting size of 16mm 

Cornwall IFCA Minimum harvesting size of 16mm 

Devon and Severn IFCA Minimum harvesting size of 16mm 

North West IFCA Minimum harvesting size of 16mm 

Southern IFCA Only hand gathering allowed, and closed season from 15th May 
to 15th September 
 

Cumbria Sea Fisheries 
Committee Byelaws 
 

Only hand gathering allowed, and 16mm minimum size  

Dorset Wildlife Trust  Closed season from 15th May to 15th September 

 

1.4.7 Potential Management of Intertidal Fisheries in Northumberland 

The public right to fish is a significant issue for intertidal fisheries management, and 

is often considered an outdated view on modern fisheries and their environmental 

impacts (Boye et al., 2006). There is very little formal regulation of intertidal fisheries 

currently (AFBI, 2013). However there are numerous possible management methods 

and these include voluntary guidelines and codes of conduct, byelaws for closed 

areas, several orders, regulating orders, licencing, weight or bag limits, size limits, 

and closed seasons (Underwood, 1993; UK Marine SACs Project, 2001c; Harthill et 

al., 2005; Boye et al., 2006; DEFRA, 2012; AFBI, 2013). The advantages and 

disadvantages and some key examples of each of those methods can be seen in 

Table 1:4.  
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Table 1:4: Advantages and disadvantages, and examples of each possible management method applied to intertidal fisheries 

Management Method  Advantages  Disadvantages  Key Example References 

Voluntary Guidelines 
and Codes of 
Conduct  

- Often secure local support 
- Flexible to changing conditions  

- Limited success – not everyone 
made aware 
- Reliance on volunteers to police  
- Not great for commercial fisheries  

- Bait digging in Poole 
Harbour and the Solent EMS 
- Crab Tiling in the Exe 
Estuary  

Boye et al. (2006) 

Byelaws / Closed 
Areas 

- Clear basis for enforcement  
- Policing concentrated in small areas 
– easier  
- Easy to understand rules 

- Can be difficult to enforce 
- Not flexible to changing conditions 
- Slow to establish byelaws 
- Displacement of activity elsewhere 

- Budle Bay and Boulmer 
byelaws in the BNNC EMS 

Boye et al. (2006), 
UK Marine SACs 
Project (2001b), 
Underwood (1993) 

Several Orders 

- Severs the public right to fish 
-Offence to remove the species listed 
without permission  
- Can set harvesting methods used  

- Only for shellfish, not worms  
- Usually only last 10-20 years 
- Slow – up to 2 years to establish  

- Poole Fishery Order 2015 
(Southern IFCA) 
 

(DEFRA (2012); 
AFBI (2013)), Boye 
et al. (2006) 

Regulating Order 
- Restricts fishing within an area 
- Allows licenses to be issued 
- Can set harvesting methods used 

- Only for shellfish, not worms 
- Usually only last 20-30 years  
- Slow – up to 2 years to establish  

- Proposed Firth of Clyde 
Regulating Order – prawns 
(Nephrops), and scallops  

(DEFRA (2012); 
AFBI (2013)), Boye 
et al. (2006) 

Licensing / Permits  

- Monetary gain – can be used for 
enforcement  
- Can attach further conditions  
- Creates contact for education   

- Likely cause conflict 
- Need high policing and education 

- NWIFCA byelaw 3 – 
permits needed to harvest 
cockles or mussels. 
Additional minimum sizes  

Boye et al. (2006), 
UK Marine SACs 
Project (2001c), 
NWIFCA (2016 ) 

Weight or Bag Limits 
- Limits the biomass removal  
- Acceptable for recreational 
collectors  

- No constraint on collection effort  
- Difficult to enforce and educate 
- Difficult to set informed limit 
- Does not stop habitat destruction 

- Eastern and North Western 
IFCA - 5kg of cockles and/or 
mussels per 24 hours  

UK Marine SACs 
Project (2001c), 
Underwood (1993), 
Harthill et al. (2005) 

Size Limits  
-Allows all individuals to reach sexual 
maturity before harvesting  
 

- Large individuals with biggest 
reproductive output are harvested  
- Policing is time consuming  

- 16mm minimum periwinkle 
size in 5 IFCAs  

Underwood (1993), 
Harthill et al. (2005) 

Closed Seasons 
-Prevents damage at vulnerable 
times, e.g. breeding  

- Breeding often occurs at peak 
demand times, especially for 
lugworms  

- Southern IFCA have a 
closed season in summer for 
periwinkles  

UK Marine SACs 
Project (2001c), 
AFBI (2013) 
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1.5 Biology and Ecology of the Target Species  

It is important to know the biology and ecology of the target species of fisheries to 

fully understand the impacts associated with their collection and their potential 

resilience and recoverability from harvesting. Both lugworms and periwinkles have 

been well studied, and their biology and ecology are generally well understood.  

1.5.1 Lugworm Biology  

A.marina and A. defodiens are closely related (Pires et al., 2015) and were once 

considered a single species. A. defodiens was only described separately in 1990 

(Cadman and Nelson-Smith, 1990), despite fishermen claiming their distinction from 

as early as 1911 (Minchin, 1911).  

Distribution 

A. marina is found throughout Europe (Watson et al., 2000; Kristensen, 2001; 

Nielsen et al., 2003; Tyler-Walters and Arnold, 2008). Within the eastern North Sea, 

where the largest sediment flats in the world are found, A. marina is one of the most 

dominant species (Volkenborn et al., 2007a). Within the UK, A. marina is found on all 

coasts (Tyler-Walters, 2008). 

Due to its relatively recent description, A. defodiens distribution has not been well 

studied (Watson et al., 1998). However, it  has been recorded in the western Wadden 

Sea, North Sea, the Skagerrak, the Westerschelde, Belgium, the Ria de Aveiro 

lagoon in northwest Portugal, and the North of France (Luttikhuizen and Dekker, 

2010; F. Kerckhof, pers. comm., Sistermans et al., 2006, and Muller, 2004 as cited 

by Pires et al., 2015). Within the UK they have been recorded in multiple locations in 

Wales (Cadman and Nelson-Smith, 1990; Cadman and Nelson-Smith, 1993), as well 

as several sites in Northumberland (Watson et al., 1998). The actual distribution 

could be wider than this due to the misidentification before A. defodiens was 

described.  

Description  

The lugworms A. marina and A. defodiens are large, common, burrowing 

polychaetes (Volkenborn et al., 2007a). A. marina, commonly referred to as blow 

lugworms (Watson et al., 2000), usually grow to 10-25 cm in length (Riisgard & 

Banta, 1998 as cited in Cadman and Nelson-Smith, 1993; Kristensen, 2001). 
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Colouration is variable, including dark brown, red, green, black, and pink (Cadman 

and Nelson-Smith, 1993).  

A.defodiens, commonly referred to as the black lugworm (Cadman and Nelson-

Smith, 1993), are larger than A. marina (Cadman and Nelson-Smith, 1993). They are 

characteristically black, hence the common name, however they can occasionally be 

yellow and very rarely light brown (Cadman and Nelson-Smith, 1993; Chausson et 

al., 2004).  

Further morphological differences between the two lugworm species include: the gills 

(A. defodiens being pinnate rather than dendritic branching, longer stems, and a 

palmar membrane present), and the annulation pattern at the anterior end (Cadman, 

1992).  

Habitat  

Lugworms are sedentary, inhabiting subtidal and intertidal sandy sediments (Schroer 

et al., 2011). A. marina is commonly found in fine sand and muddy sand, and 

scarcely, or not found at all, in fine mud, gravel, and coarse sand (Callame, 1961; 

Bruce et al., 1963; Longbottom, 1970a). A. marina occupy semi-permanent burrows 

within the upper sediment layer (Thamdrup, 1935; Flach, 1992). The burrows are 10-

40cm deep and described as U-shaped (Rijken, 1979; Retraubun et al., 1996a; 

Kristensen, 2001; Reise, 2002; Nielsen et al., 2003; Volkenborn et al., 2007a). The 

funnel at the top of the head-shaft is formed by the ingestion of sediment further 

down, which causes the surface sediment to sink down into the shaft (Cadée, 1976; 

Flach, 1992). To defecate, the lugworm moves up the burrow into the tail-shaft until 

the tail reaches the exit. Here the lugworm ejects its characteristic casts made up of 

coiled faecal strings on top of the sediment surface (Cadée, 1976). The number of 

casts on the sediment surface can vary with the feeding activity of the lugworms. 

However, it can be used as a proxy measure to record the abundance of A. marina 

(Flach and Beukema, 1994) if timed correctly. 

A. defodiens burrows are deeper (up to a meter) than A. marina, and no feeding 

depressions are observed at the surface (Cadman and Nelson-Smith, 1990; Cadman 

1992, as cited by Cadman and Nelson-Smith, 1993). Burrows are J-shaped, but 

A.defodiens usually lies horizontally in the burrow, rather than vertically (Fowler, 

1999). The faecal cast shape is also different; A. defodiens’ cast is smaller, neater, 

and spiral in shape (Cadman and Nelson-Smith, 1993). Additionally, the distribution 
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of A. defodiens within a shore is different to A. marina. A. defodiens are found further 

down the shore than A. marina, only being exposed at low spring tides (Cadman and 

Nelson-Smith, 1993). When A. defodiens and A. marina are found on the same 

shores, they each occupy distinct zones, with the black lugworm occurring lower on 

the shore (Cadman and Nelson-Smith, 1993). A. defodiens also cannot tolerate lower 

salinities so are absent in estuaries (Luttikhuizen and Dekker, 2010). Managers 

needs to consider both the differences and similarities between the two species if 

plans are to protect both stocks together.  

Density  

The densities of lugworms vary substantially, but typical densities range from 3-80 

individuals per m2 (Cadée, 1976; Jones and Jago, 1993; Volkenborn and Reise, 

2006), however extremes of 150 individuals per m2 have been observed in Northern 

Europe (Nielsen et al., 2003). Within the UK, density has been recorded in the 

literature as low as 1 and as high as 38 per m2 (Newell, 1948; Chapman and Newell, 

1949; Cryer et al., 1987; Olive and Cadnam, 1990). Although densities vary widely 

between locations, within a location the densities are relatively stable over time when 

compared to other infaunal species (Beukema and De Vlas, 1979; Flach and 

Beukema, 1994). Densities observed in lugworm populations are determined by food 

availability (e.g. organic matter content) and environmental factors such as sediment 

characteristics (Longbottom, 1970a; Flach and Beukema, 1994). Additionally, small 

density oscillations may occur from reproduction, predation, and migration (Reise et 

al., 2001; Riisgard & Banta, 1998 as cited by Valdemarsen et al., 2011).  

Reproduction 

Lugworms are gonochoristic, annual iteroparous polychaetes (Watson et al., 2000). 

They reproduce via broadcast spawning, with quite a high dispersive potential, of 

around 1 to 10km (Günther, 1992; Tyler-Walters, 2008). A. marina is an ‘epidemic 

spawner’, which describes a local population of a single species spawning together at 

the same time (Watson et al., 2000). The sperm is released onto the sediment surface 

appearing as milky white “puddles”, whilst the eggs are retained in the females burrows 

(Duncan, 1960). The fecundity of A. marina is 100,000 – 1,000,000 eggs (Tyler-

Walters, 2008). The eggs and young larvae develop inside the female burrow, and post 

larvae are capable of active migration from swimming and crawling, as well as passive 

movement from currents (Günther, 1992). A. marina reproduces from the age of 1-2 
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years depending on conditions and size (Newell, 1948; Duncan, 1960; De Wilde and 

Berghuis, 1979), and lives for approximately 5-6 years (Beukema and De Vlas, 1979), 

reaching maximum biomass at age 3 (Beukema, 1982).   

For most British populations of A. marina spawning generally occurs over a few days 

in autumn (Duncan, 1960; Watson et al., 2000). However, spawning has also been 

recorded in early spring (Pacey, 2000 as cited by Tyler-Walters, 2008). It is thought 

that lugworms need a combination of both a drop in temperature and weather 

conditions such as high pressure and spring tides to permit spawning (Watson et al., 

2000). Spawning times of A. marina can vary considerably, even between 

geographically close populations (Dillon and Howie, 1997; Watson et al., 2000). A. 

defodiens reproduction is largely similar to that described for A. marina. However, 

differences include smaller oocytes, lower fecundity, and later spawning in late 

December to early January (Watson et al., 1998; Watson et al., 2008).  

Feeding  

A. marina is described as a sessile, head-down, subduction and conveyer-belt feeder 

(Kristensen, 2001; Volkenborn and Reise, 2006), and A.defodiens as a sand-

swallowing deposit feeder (Cadman and Nelson-Smith, 1993). They are both non-

selective feeders (Riisgard & Banta, 1998 as cited by Riisgård et al., 1996; 

Papaspyrou et al., 2007), assimilating ciliates, microalgae, detritus, diatoms, 

planktonic organisms, bacteria, and larger organisms found in the sediment and 

overlying water (Rijken, 1979; Andresen and Kristensen, 2002; Grossi et al., 2006; 

Schroer et al., 2011). They ingest large volumes (Longbottom, 1970a; Cadée, 1976; 

Kristensen, 2001; Andresen and Kristensen, 2002; Riisgard & Banta, 1998 as cited 

by Casado-Martinez et al., 2009) of nutritionally-poor food (sediment) (Cadée, 1976; 

Retraubun et al., 1996a; Kristensen, 2001). The consumption and following excretion 

of sediment displaces sediment at a rate higher than sedimentation from the water 

column (Cadée, 1976).  

1.5.2 Lugworm Ecology  

Lugworms are a major prey species for fish (Pocklington and Wells, 1992) and 

shorebirds (Evans et al., 1979), as well as being used as bait by anglers to catch fish 

such as cod, whiting, haddock and flatfish (Bat, 1998; Tyler-Walters, 2008). A. marina 

and A. defodiens are termed habitat engineers or ecosystem engineers, meaning they 

alter the physical state of the habitat, and therefore affect other species (Lawton, 1994; 
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Wright and Jones, 2006; Volkenborn et al., 2007a; Volkenborn and Reise, 2007). It is 

well known that biogenic habitat transformations structure benthic assemblages, 

possibly extending over wide spatial scales (Reise, 2002; Volkenborn and Reise, 

2007). A. marina inflicts substantial impact on the sediment by reworking it (Retraubun 

et al., 1996a). It is estimated that A. marina mixes the upper 6-33cm of the sediment 

in the Dutch Wadden Sea per year, which is similar to many other estimates from 

different areas (1-18cm per year) (Cadée, 1976; Retraubun et al., 1996b; Risgard & 

Banta, 1998 as cited by Valdemarsen et al., 2011). This substantial reworking 

destabilises the sediment, which has negative effects on some macrobenthic species 

abundance, primarily sedentary species (Woodin, 1985; Brey, 1991; Flach, 1992; 

Volkenborn et al., 2007a; Volkenborn and Reise, 2007).  

However, lugworms also have positive effects on other organisms. The burrows form 

biogenic structures, doubling the sediment-water interface area, transporting particles, 

dissolved metabolites and oxygen through the sediment like veins (Reise, 2002). Due 

to the ventilation, the inside of the burrow  wall is oxidised compared to the surrounding 

sediment, forming a unique microhabitat (Banta et al., 1999; Nielsen et al., 2003). This 

process also extends the Redox Potential Discontinuity layer deep into the otherwise 

anoxic sediment, aerating the environment for other subsurface species (Baumfalk, 

1979; Retraubun et al., 1996a; Schroer et al., 2011). Many species live inside lugworm 

burrows, as well as in the casts and funnels at the surface, forming different species 

assemblages to those in the surrounding sediment (e.g., Reise, 1981; Reise, 1987; 

Brey, 1991; Flach and Beukema, 1994; Reise, 2002). Therefore, lugworms play a key 

role in developing the benthic community structure (Brey, 1991).  

Lugworm sediment reworking and burrows have both negative and positive impacts 

upon other sediment dwelling species, some examples of which can be seen in Table 

1:5. However, it is believed that lugworms may have a diversifying effect on the marine 

benthos overall (Reise, 2002). This important role must be considered in management 

plans for intertidal collection, as overexploitation of lugworms has the potential to not 

only impact upon the target species populations, but also the overall biodiversity of 

sediment shores and mudflats. 
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Table 1:5: Organisms impacted by lugworm burrows and reworking: positive (e.g. increased 
abundance or distribution, habitat creation, increased oxygen levels, etc.) or negative 
(destabilised sediment, less food availability, etc.).  

 Organisms References 

Positively impacted  Multiple species of flatworm, 
Bathyporeia sp, nematodes  

(Reise (1987); Brey (1991); 
Wetzel et al. (1995)) 
 

Negatively impacted  Corophium volutator, Eelgrass, juvenile 
Scoloplos armiger, Pygospio elegans, 
Capitella capitate, Cerastoderma edule, 
Macoma balthica 

(Flach (1992); Philippart 
(1994); Valdemarsen et al. 
(2011)) 

 

1.5.3 Periwinkle Biology  

Distribution 

Littorinids are common throughout the world (Geller, 1991; Mill and Mcquaid, 1995). 

L. littorea are common inhabitants of the intertidal zone of the North Atlantic (Perez et 

al., 2009; Storey et al., 2013), and are found frequently on coasts of Western Europe 

and Northeast America (Barnes and Hughes, 2009). The overall distribution ranges 

from Northern Spain to the White Sea in Europe  (Fretter & Graham, 1980, Bequaert, 

1943 as cited in Johannesson, 1988; Jackson, 2008b), and New Jersey to Labrador 

in Northern America (Fretter & Graham, 1980 as cited in Johannesson, 1988). In 

Britain, L. littorea are found on all coasts, apart from the Channel Isles and Isles of 

Scilly (Jackson, 2008b).  

Description  

The marine gastropod Littorina littorea (Linnaeus, 1758), also known as the common 

or edible periwinkle, is the largest British Periwinkle species, reaching a maximum 

shell height of 52mm (Jackson, 2008b). They are coiled mesogastropods (Geller, 

1991), occurring in a range of colours, but are usually grey-brown or black, with 

lighter shades towards the apex (Jackson, 2008b). They are one of the most 

abundant gastropods on UK shores (Moore, 1937). 

Habitat  

A variety of habitats are inhabited by L. littorina within the intertidal zone - rocks, 

stones, gravel, soft mud, and sand (Moore, 1937; Jackson, 2008b). However, it is 

usually absent or rare on unstable substrate such as shingle and unconsolidated sand 

(Evans, 1947). L. littorea is one of the only littorinid species which is found commonly 

on both soft bottom and hard substrate environments (Bandel, 1974). Despite this 
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variety, they are most abundantly found on rocky and stone shores (Smith and Newell, 

1955; Storey et al., 2013), within which they are widely distributed in all but extremely 

exposed areas (Jackson, 2008b). L. Littorina  has a characteristic intertidal distribution, 

being more abundant in the littoral zone, and scarce in the subtidal (Perez et al., 2009). 

Within the intertidal zone, L. littorea occur at all shore levels, however preferentially at 

low shore levels (Norton et al., 1990; Perez et al., 2009) 

Density 

L. littorea can reach densities of several hundred (Janke, 1990; Wilhelmsen and Reise, 

1994; Carlson et al., 2006), or even thousands (Vadas, 1992; Buschbaum, 2000; 

Eschweiler et al., 2008) of individuals per square meter. In the UK, densities are usually 

below 200 per square meter (Norton et al., 1990), with higher densities generally found 

in North America (Petraitis, 1987) due to lower levels of competition (Brenchley and 

Carlton, 1983). Within a shore type, biological and environmental influences affect the 

abundance, distribution and size of periwinkles on a shore. L. littorea exhibit highly 

variable zonation patterns, displaying complex size gradients (Smith and Newell, 1955; 

Williams, 1964; Vermeij, 1972), with larger individuals often found further down the 

shore and into the subtidal (Perez et al., 2009). On rocky shores, L. littorea distribution 

positively correlates with the bare rock percentage cover and rugosity (Carlson et al., 

2006). More rugose sites are thought to be favoured because of the refuge they provide 

from predators and the availability of damp, shaded areas to minimize desiccation and 

thermal stress when exposed at low tide (Carlson et al., 2006). L. littorea tend to form 

clusters, aggregating in areas with more favourable conditions such as rock pools 

(Newell, 1958). 

Reproduction 

L. littorea live for 5-10 years, with an age of maturity of around 2-3 (Jackson, 2008b), 

or 3-4 years (Fish, 1972) depending on conditions such as food availability . The size 

at sexual maturity differs geographically, with shell heights ranging from 12mm 

observed in Wales (Williams, 1964; Fish, 1972) to 17mm in Plymouth (Moore, 1937). 

Fecundity of L. littorea increases with size, and therefore age (Hughes and Answer, 

1982). However, parasite infection reduces fecundity in L. littorea, by converting them 

from iteroparous to semelparous organisms (Hughes and Answer, 1982). Infection 

incidence increases with L. littorea age (Hughes and Answer, 1982), and therefore in 
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heavily parasitized populations, young snails may produce the most eggs (Robson 

and Williams, 1971). 

L. littorea are annual episodic spawners (Jackson, 2008b), and the majority of 

spawning occurs in March and April (Grahame, 1975). However, there are 

geographical differences in spawning months (Fish, 1972). L. littorea are planktonic 

spawners, with a dispersal potential of more than 10km (Jackson, 2008b), with a 

maximum distance of 300km predicted (Johannesson, 1988). Therefore recruitment 

may not be from the local population, and considerable gene flow can occur between 

separated populations (Berger, 1973). However, gene flow between populations can 

be reduced in certain conditions, such as areas with dense vegetation trapping eggs 

(Fish, 1972). This means that some populations under certain conditions may not 

recruit from any other populations, only their own. These populations may be more 

susceptible to over exploitation, and as such may require more management.  

Feeding  

The common periwinkle is a generalist intertidal herbivore (Imrie et al., 1989), using a 

taenioglossan radula to feed on a variety of food items, from macroalgae including 

filamentous and foliose algae, to microalgae including non-siliceous microalgae and 

diatoms (Steneck and Watling, 1982; Sommer, 1999b). L. littorea preferentially 

consume early successional and ephemeral algae, such as Ulva lactuca (Lubchenco, 

1983; Watson and Norton, 1985; Barker and Chapman, 1990; Norton et al., 1990). 

They are thought to generally avoid mature leathery macrophytes such as Fucus sps, 

even under conditions of nutritional duress (Steneck and Watling, 1982; Watson and 

Norton, 1985). 

1.5.4 Periwinkle Ecology    

Herbivores play a key role in marine ecosystems, affecting the composition, diversity 

and biomass of primary producers, with large potential impacts on ecosystem 

functioning (Griffin et al., 2010). On rocky shores, grazers are fundamental in 

controlling abundance and distribution of algae (Lubchenco and Gaines, 1981; 

Hawkins and Hartnoll, 1983; Vadas, 1992; Anderson and Underwood, 1997). In 

particular, periwinkles influence benthic community structure and the recruitment 

success of seaweeds that are structurally important in the habitat (Janke, 1990; 

Wilhelmsen and Reise, 1994; Buschbaum, 2000). 
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It is widely accepted that disturbance at intermediate levels can enhance diversity as 

dominant competitors are removed, and competition relaxed by reducing biomass 

(Paine and Vadas, 1969; Osman, 1977; Connell, 1978; Aronson and Precht, 1995; 

Sommer, 1999a; Shea et al., 2004). When grazing is considered a disturbance, 

primary producer diversity can be maximised with intermediate grazing activity, as 

observed for L. littorea grazing by Sommer (1999a). In the absence of grazing, 

competitive exclusion is thought to diminish diversity, making L. littorea presence a key 

factor contributing to biodiversity preservation on rocky shores. L. littorea grazing may 

also help to control the dominance of opportunistic macroalgae from increased nutrient 

levels (Diaz et al., 2012), and invasive species such as Codium fragile, via the grazing 

of new recruits (Scheibling et al., 2008). This could protect coastal habitats by buffering 

eutrophication effects and controlling the spread of invasive algal species by exerting 

top-down control (Scheibling et al., 2008; Diaz et al., 2012). 

L. littorea grazing can also impact upon other organisms in the community. The 

removal of algae by grazing has been seen to cause both direct and indirect impacts 

on sessile organisms (Petraitis, 1983; Bertness, 1984; Petraitis, 1987; Vadas, 1992; 

Anderson and Underwood, 1997; Buschbaum, 2000). Also, direct damage of sessile 

organisms can be caused by the physical disturbance that grazing inflicts (Dayton, 

1971; Denley and Underwood, 1979; Hawkins and Hartnoll, 1983; Petraitis, 1983; 

Underwood et al., 1983; Farrell, 1988; Buschbaum, 2000). Examples of both algae 

and sessile organisms impacted by periwinkle grazing can be seen in Table 1:6.  

Body size of grazers influences the affect they have on the community: grazing rates 

and habitat selection are size-dependant (Geller, 1991; Saier, 2000). Consequently, 

factors which influence size distribution of periwinkles are important for community 

dynamics (Eschweiler et al., 2009). It is important to consider the wider ecosystem 

impacts of periwinkles and their grazing activity in intertidal collection management 

plans, as overexploitation and depletion of target species stocks has the potential to 

indirectly influence biodiversity.  
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Table 1:6: Organisms impacted by periwinkle grazing: positive (e.g. reduced competition, 
more open space, etc.) or negative (bulldozing effects, reduced settlement, competition for 
food, etc.).  

 Organisms References 

Positively impacted  Mature fucoids, fucoid dependent 
communities 
 

Lubchenco (1983)  

Negatively impacted  Ephemeral algae, Codium fragile, 
barnacles  

(Petraitis (1987); Janke (1990); 
Albrecht (1998); Buschbaum 
(2000); Scheibling et al. (2008)) 

 

1.5.4 Implications for management   

Biology  

The population biology of both lugworms and periwinkles make them relatively 

resilient to harvesting and place them low on the conservation radar. Both are very 

common and widely distributed throughout the UK and Europe (Geller, 1991; Nielsen 

et al., 2003; Storey et al., 2013). Their conservation and management appears less 

critical than for rarer or endangered species, due to conservation priorities often 

focussing on measures of ‘irreplaceability’ (Brooks et al., 2006). This may explain 

why regulations and management have largely overlooked both fisheries to date. 

Both lugworms and periwinkles produce a high number of offspring, have relatively 

short life cycles, mature quickly, and have high offspring dispersal potential 

(Johannesson, 1988; Günther, 1992; Watson et al., 2000; Jackson, 2008b); all the 

population parameters of an r-selected species (Adams, 1980). This implies that they 

may be fairly resilient to harvesting and disturbance compared to K-selected fishery 

species, which are highly sensitive to overfishing and recover more slowly (Adams, 

1980). Despite these positive biological parameters, over exploitation of lugworms 

and periwinkles at a local scale has the potential to harm or threaten stocks (Shahid, 

1982; Beukema, 1995; Berthelon et al., 2004), and they should be considered in 

management plans alongside other fisheries.  

Disturbance could have the largest impact upon a population’s reproduction during 

times of spawning. For this reason, fishery closures during spawning seasons are 

commonplace (van Overzee and Rijnsdorp, 2014). Since the exact spawning times of 

individual populations vary for all three species, it is important that management 

aimed at protecting spawning populations (e.g. closed seasons) is either broad 

enough to cover all possibilities, or individual populations are studied in depth to gain 

accurate spawning dates for effective protection. Similarly, accurate localised age of 



Chapter 1: Introduction 

 

32 
 

maturity data needs to be established for both fisheries within Northumberland, for 

management methods such as minimum harvest sizes to be established most 

effectively (McIntyre et al., 2015).  

Ecology  

The impacts of periwinkles as grazers, and lugworms as bioengineers are significant 

in the rocky and sediment shore habitats and communities (e.g. Lubchenco, 1983; 

Janke, 1990; Flach, 1992; Volkenborn et al., 2007a; Griffin et al., 2010). These 

effects are ephemeral and require renewal to be effective (Reise, 2002), meaning 

that if over exploited, the habitats and communities would undergo changes as well 

as the target stock. Similarly, predators could experience the effects of fishing, such 

as birds and fish (generally better recognised in termed of conservation importance) 

which rely on healthy populations of lugworm and periwinkles as important prey 

species (Evans et al., 1979; Pocklington and Wells, 1992; Masero et al., 2008). 

Management plans must consider the indirect impacts of intertidal harvesting also, 

and those occurring locally within the BNNC EMS require assessment.  
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1.6 Impacts of Lugworm Collection  

The majority of reports suggest that the collection of bait has significant detrimental 

effects on wildlife (Berthelon et al., 2004). 

1.6.1 Impacts of bait collection on Lugworms  

Bait digging can act as a form of selective predation, as diggers preferentially take A. 

marina and A. defodiens over other worm species, and remove the largest individuals 

(Shahid, 1982). Some collectors do not limit the size or number of worms they take, 

and sometimes exploit nursery grounds (Fowler, 1999). Bait digging causes mortality 

in lugworm populations, which can lead to reduced abundance and stock declines 

(Blake, 1979a; Beukema, 1995). Additionally, the size structure of lugworm populations 

can be altered (Shahid, 1982). Some details of the impacts observed in previous 

studies are summarised in Table 1:7. The severity of impacts upon the target species 

appears to be correlated to the digging intensity.  

Lugworms are generally considered to be fairly resilient to bait collection activities, with 

life strategies allowing for high recoverability (Olive, 1993; Spikes, 1993). Despite this, 

lugworm recovery rates vary considerably between studies (as seen in Table 1:7), 

influenced by collection intensity and environmental differences between shores. For 

example, stocks may be more seriously impacted by digging if they are isolated (e.g. 

small pocket beaches), as recruitment and migration of nearby stocks may not be 

possible (Fowler, 1999). A. defodiens may be more resilient to bait collection than A. 

marina because of its’ subtidally extending distribution. This subtidal part of the 

population is not accessible to harvesters (Fowler, 1999), and therefore could act as a 

refuge, allowing continued recruitment, and the migration of adult worms into disturbed 

areas (Rees and Eleftheriou, 1989; Spikes, 1993).  

Overall, lugworm abundance and size structure can be impacted by bait collection, 

however, recoverability can be high and fast under the right circumstances, where the 

collection intensity is low, the population is not isolated, and refuge stocks are 

available. Van den Heiligenberg (1987) suggests that the extinction of lugworm stocks 

seems impossible if the digging activity is localised (i.e. on just one shore or area of 

shore).  
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Table 1:7: The impacts and recovery observed for Arenicola marina and Arenicola defodiens in previous lugworm exploitation studies  
Intensity of Collection Method Impacts Recovery Reference 

High Mechanical Doubled mortality rate and stock decline Slow – 3 years to reach original ratios 
 

Beukema (1995) 

High Digging Population crash – reduced abundance Medium – Increased abundance after 
a 2 year ban  
 

Olive (1993) 

High Digging Reduced average and max size N/A 
 

Shahid (1982) 

Medium Digging Reduced lugworm abundance inside dug 
areas 

Medium/Slow – No repopulation within 
6 months study (whilst continued 
monthly disturbance 
 

Cryer et al. (1987) 

Low-Medium Digging No significant reduction in lugworm 
abundance and spawning population not 
impacted 

Fast – Within 1 month  Blake (1979a) 

 

 
Table 1:8: The impacts and recovery observed for sediment communities in previous bait collection studies. Direct = disturbance, Indirect = consequences of reduced 
lugworms 

Direct or Indirect 
Impact 

Taxa Impacts Described Reference 

Direct 
 

Littorina littorea Negative - Burial under sediment piles with high fatality Chandrasekara and Frid (1998) 

Hydrobia ulvae Negative - Burial under sediment piles with medium 

fatality 

Chandrasekara and Frid (1998) 

Cerastoderma edule Negative - Population crash from deep burial  Jackson and James (1979) 

Sabella worms Negative - Beds uprooted by digging Dyrynda (1995) 

Zostera sp Negative - Beds uprooted by digging Dyrynda (1995), Mieszkowska (2010) 

Small surface dwelling polychaetes Negative – reduced abundance Brown and Wilson (1997) 

Euphausia brevis Negative – increased heavy metal content inside them  Howell (1985) 

Mya arenaria Negative – almost locally extinct Beukema (1995) 

Indirect 

Predacious and tube-building 
worms 

Positive – increased abundance Volkenborn and Reise (2007) 

Sub-surface deposit feeders Negative – reduced abundance Volkenborn and Reise (2007) 

Juvenile Scoloplos armiger Negative – loss of lugworm tail shafts where they gather Volkenborn and Reise (2007) 

Nereis diversicolor  Positive – increased abundance from more stable and 
nutritious sediment 

Volkenborn and Reise (2006) 
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1.6.2 Impacts of bait collection on non-target species  

Non-target species are often affected by the activities of bait diggers, impacting 

sediment communities on an ecosystem level. In 2006, a Defra report stated that bait 

digging was a high threat to marine biodiversity (AFBI, 2009). The physical 

disturbance of the sediments is a direct impact, and the removal of lugworms and 

their ecosystem engineering effects is an indirect impact. 

Direct Impacts – Sediment Turnover and Trampling 

Physical disturbance from sediment turnover can directly damage and kill infauna, or 

bury them within the sediment to depths were they may be incapable of surviving 

(Chandrasekara and Frid, 1998). Additionally, sediment turnover can disrupt the 

sediment layers, releasing pollutants from the anoxic layer, and increasing the heavy 

metal content (Howell, 1985). Digging can also reduce the amount of organic matter 

within the sediment (Watson et al., 2017b), diminishing food availability for many 

species. The total biomass of infauna has been seen to reduce substantially after 

digging events; up to a 40% reduction from hand digging (Van den Heiligenberg, 

1987; Brown and Wilson, 1997), with impacts being cumulative over time, and even 

observed at low digging intensities (Brown and Wilson, 1997). Lower variability in 

macrofaunal species compositional structure, and increased β diversity (variation) 

have also been observed in dug areas (Watson et al., 2017b). Some species are 

more sensitive to bait digging disturbance than others. For example, species with 

limited burrowing (Chandrasekara and Frid, 1998), and delicate species (Beukema, 

1995). Diverse examples of taxa observed to be directly impacted by bait worm 

collection disturbance can be seen in Table 1:8.   

The method of collection can alter the severity of direct impacts. Using a bait pump to 

harvest A. defodiens rather than the traditional digging method creates less sediment 

disturbance and turnover. The disturbance is concentrated in a small column of 

sediment directly around the lugworm (Fowler, 1999) rather than over a large area, 

meaning that a smaller volume of sediment is disturbed, and no spoil heaps are 

produced to bury organisms. Therefore bait pumps appear to cause minimal direct 

impacts compared to digging. Mechanical harvesting of lugworms is the most 

destructive method, causing substantially more deaths of benthic fauna per lugworm 

harvested, than hand gathering methods (Van den Heiligenberg, 1987). Within hand 

digging, the smaller details of the method are also important to consider. Some 
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experienced hand diggers make trenches which they back-fill as they go, whilst less-

informed bait diggers tend to dig scattered holes which are left open (Fowler, 1999). 

Back-filling of dug areas minimises the disturbance and therefore has a lower impact 

(Kaiser et al., 2001). Additionally, the intensity of collection can also influence the 

severity of impacts, with the impact being proportional to the intensity of digging, i.e. 

commercial gathering resulting in larger impacts than casual gathering of bait (Anon, 

1992 as cited by JNCC and Natural England, 2011).  

Trampling of sediment shores by bait diggers can also directly impact upon the 

sediment community, even in areas that are not dug. Trampling can kill and bury 

infauna, as well as altering sediment properties (Rossi et al., 2007). However, since 

trampling is inflicted on the sediment communities by many different shore users, not 

just bait collectors, the impacts are not explored further here, or in this thesis as a 

whole.  

Indirect Impacts – Reduced Lugworm Abundance 

If lugworm stocks were to be reduced or extinct locally by overexploitation, there would 

be knock-on changes to the ecosystem as a whole. These indirect impacts of bait 

removal can be considerable and far-reaching (Cryer et al., 1987). The sediment 

community structure has been seen to alter, with various species reacting differently 

to the altered sediment characteristics without the presence of lugworms and their 

bioengineering. Some species abundances increase, whilst others decrease in 

response to the removal of lugworms from a shore (Volkenborn and Reise, 2007). 

Some examples of these indirect impacts upon different taxa can be seen in  

Table 1:8. The habitat alterations causing the community shifts include the 

accumulation of: microphytobenthic biomass, inorganic nutrients, organic matter and 

fine particles, and ammonium, silicate, sulphide, and phosphate concentrations in the 

pore water when lugworms are no longer present (Volkenborn et al., 2007a; 

Volkenborn and Reise, 2007).  

Recovery of the sediment community usually occurs within 1 year, from recruitment 

of juveniles into disturbed areas. However it can be a lot faster (Van den 

Heiligenberg, 1987), or a lot slower (Beukema, 1995), depending on the method and 

the intensity. Slower growing species such as large bivalves and burrowing 

echinoderms are the slowest to recover (Beukema, 1995), whilst other species can 

recolonize relatively quickly (Van den Heiligenberg, 1987).    
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Impacts on Birds 

Birds are also susceptible to the effects of bait digging (Masero et al., 2008). Bird 

disturbance is considered one of the most serious impacts of bait collection in British 

estuaries over winter (see Davidson and Rothwell, 1993 for a detailed review). 

Unfortunately peak bait worm demand in winter coincides with the presence of over-

wintering and migrating populations of wildfowl and waders with international 

importance (Townshend and O'Connor, 1993). Migratory birds are particularly 

vulnerable to disturbance due to their reliance on a few coastal areas during their 

journey (Skagen and Knopf, 1993; Masero et al., 2008). The presence of bait diggers 

can drive off roosting or feeding birds from the shore (Evans and Clark, 1993; Watson 

et al., 2017b), and the most frequently used shores can be almost permanently 

unsuitable for birds, as diggers can disturb the feeding activities of birds over many 

thousands of meters (Van den Heiligenberg, 1987). The disturbance of birds can lead 

to them searching for new feeding areas, increasing energy expenditure and food 

competition, and ultimately leading to increased winter mortality rates in some cases 

(West et al., 2002; Masero et al., 2008). The habitat loss impacts for birds can last 

longer than the time the diggers are present, as trenches left behind can remain 

flooded and unsuitable for foraging activities (Fowler, 1999).  

As well as impacting birds through disturbance, bait diggers can also reduce the 

abundance of the birds prey species, through the reduction in invertebrate biomass or 

size after sediment turnover / digging (Van den Heiligenberg, 1987; Bowgen et al., 

2015). How much birds are impacted by these alterations in food supply will depend 

upon the ability to switch prey and/or foraging area, as well as environmental factors 

and the intensity of harvesting (Masero et al., 2008). Alternatively, a positive impact 

from sediment turnover is that it can bring infauna to the surface where it is more 

vulnerable to predators including birds, making prey species more accessible after the 

bait digging has ceased. For example, oystercatchers have been observed to be 

attracted to recently dug areas, where they can eat cockles off the surface (Jackson 

and James, 1979). 

Within Northumberland, birds have been considerably impacted by bait digging in the 

past. When Budle Bay (within the Lindisfarne SPA) was closed to bait collection as a 

trial, bird numbers increased, and later decreased significantly when the ban was 

reversed (Fowler, 1999). Subsequently, after the lasting ban in 1986, bird populations 
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have recovered considerably. Within the Lindisfarne SPA, the presence of bait diggers 

has been recorded to greatly reduce shore use by waterfowl, particularly wigeon 

(Townshend and O'Connor, 1993).  

1.6.3 Summary and Implications for Management 

Lugworms, the sediment community as a whole, and birds can be negatively 

impacted by bait worm collection, with impact intensity and subsequent recovery 

rates dependent upon various factors such as: extraction method, collection intensity, 

and shore condition and features (e.g. Van den Heiligenberg, 1987; Rees and 

Eleftheriou, 1989; Beukema, 1995).  

The habitats subject to bait digging, sand flats and mud flats, are a feature of the 

BNNC SAC, and as such, activities which negatively impact upon the interest feature 

need to be managed (MMO, 2014b).  This is especially true for birds, being the 

interest features for the Lindisfarne SPA, and other SPAs falling within the BNNC 

EMS boundary (NCAONB, 2009). Since the sediment ecosystem as a whole has 

been observed to be impacted by bait collection elsewhere (Volkenborn and Reise, 

2006; Volkenborn et al., 2007a; Volkenborn and Reise, 2007), it is important to 

research these impacts locally, and introduce management measures where 

appropriate.  

Within sediment shores, invertebrates appear to be most at risk from bait digging 

impacts, experiencing high death rates, and for certain species, slow recovery (Van 

den Heiligenberg, 1987; Beukema, 1995). In terms of management, this creates the 

difficulty of the major impacts being invisible to collectors. Conservation success is 

often founded on local support, which is strongly influenced by perceptions of the 

impacts (Bennett and Dearden, 2014). If collectors cannot directly observe and 

appreciate the impacts claimed by scientists and managers, local support and 

compliance of management measures may suffer as a result.  

The contrasting lugworm harvesting methods should be considered in management 

plans. Bait digging is more destructive than bait pumping (Fowler, 1999), and so 

management measures could direct more collectors towards bait pumps. However, 

this would be difficult since A. defodiens is not as common as A. marina (Cadman 

and Nelson-Smith, 1993). Increased harvesting focus on A. defodiens could lead to 

overexploitation of the target species. Alternatively, more focus on promoting back-

filling with a code of conduct and education could help to reduce impacts of digging 
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and increase recovery rates, although the effectiveness of this management method 

is questionable (Watson et al., 2015). Distinction between commercial and 

recreational lugworm collection would be useful for management, but remains a 

challenge and topic of debate within the industry (Watson et al., 2017a). Since only 

personal collection is allowed by law, being able to distinguish and subsequently 

control commercial collection would reduce the intensity of lugworm collection, with 

the aim of reducing the severity of impacts (Anon, 1992 as cited by JNCC and 

Natural England, 2011). 

Management plans also have the potential to focus protection on particularly 

sensitive species. For example, larger, slow recovering species, such as burrowing 

heart-urchins and bivalves (Jackson and James, 1979; Beukema, 1995), could be 

protected from digging disturbance by restricting bait collection to areas where these 

species primarily do not occur. This method of management has already been used 

for seagrass within the BNNC EMS, with areas covered by seagrass closed to the 

exploitation of fisheries resources, including bait digging (NIFCA, 2013a), suggesting 

that it is achievable for other sensitive species locally.  

In summary, there is considerable potential for management to reduce the impacts 

observed from lugworm collection, however, further study is required to fully inform 

management plans. Currently, knowledge gaps remain within the BNNC EMS, with 

data lacking on the direct and indirect impacts occurring at present local harvesting 

levels. Research is needed with regard to the target species as well as the 

associated sediment communities.  
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1.7 Impacts of Periwinkle Collection  

1.7.1 Impacts of collection on Periwinkles  

Exploitation of rocky shore organisms can have major impacts on the target species, 

with declining populations observed in previous studies (Thompson et al., 2002). 

Harvesting can affect the density of target species; by over-collection, removal of the 

most fecund individuals, or habitat damage (Berthelon et al., 2004). However, many 

studies have failed to observe reduced periwinkle abundance related to present 

exploitation levels (see Table 1:9 for examples). When density effects are not 

observed, this is not evidence that there is no effect upon that population, as 

reductions in the reproductive fitness of one population may be masked by the larval 

supply of other healthy populations (Berthelon et al., 2004).  

Collection of periwinkles can be regarded as selective predation (Sharpe and 

Keough, 1998), being capable of  causing a shift in the modal size of populations 

(Berthelon et al., 2004). When recruitment is high, and large individuals are removed 

preferentially, the average size of individuals can decrease leading to growth 

overfishing (Thompson et al., 2002). This has been observed for both periwinkles 

and similar rocky shore molluscs (Table 1:9). However, size impacts can be masked 

by collectors choosing to harvest from shores with the largest periwinkles present, 

which could explain why Berthelon et al. (2004) observed larger periwinkles on 

collected shores (Table 1:9). A reduction in periwinkle size may have less severe 

effects on the reproductive fitness of a population than in other species, due to the 

highest reproductive output coming from smaller individuals in parasitized 

populations (McKay et al., 1997).  

Periwinkles are abundant and mobile, so populations are unlikely to be significantly 

impacted by short-term, localised collection (Crossthwaite, 2012). Large differences 

in the intensity of impacts observed between studies (Table 1:9) suggests that local 

differences between shores, including the intensity of collection, influences the 

impacts harvesting of periwinkles has on the target species. The resilience of a 

population is influenced by the availability of refuge populations, age of maturity, and 

the size of a population (Berthelon et al., 2004).
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Table 1:9: The impacts and recovery observed for the target species in previous periwinkle or mollusc exploitation studies  

Impact Category  Impacts Described Reference 

Abundance 

Current abundances impacted by historical/background collection  Quigley (1999), Crossthwaite (2012) 

No impacts on abundance between collected and non-collected sites Berthelon et al. (2004) 

No impacts on abundance with 12 weeks simulated collection  Crossthwaite (2012) 

Size 

Smaller mean size on collected shores Quigley (1999) 

Highest intensity harvested shores contained the smallest winkles and bimodal body size distribution Crossthwaite (2012) 

Most rocky shore mollusc target species had larger sizes inside protected areas Keough et al. (1993b) 

No impacts observed on mollusc size between collected and non-collected shores  Keough and King (1991) 

Largest periwinkles at harvested shores, but fewer juvenile periwinkles present  Berthelon et al. (2004) 

 
Table 1:10: The impacts and recovery observed for rocky shore communities in previous intertidal harvesting studies. Direct = disturbance, Indirect = 
consequences of reduced periwinkles 

Direct or Indirect Taxa Impacts Described Reference 

Direct 
 

Community  No impact – community remained the same after 12 weeks  
Negative – altered community structure from long term background 
harvesting – lower species richness  

Crossthwaite (2012) 

Community  Negative – different community structure at collected shores Quigley (1999) 

Semibalanus balanoides Negative - Lower abundances on exploited shores Berthelon et al. (2004) 

Fucoids and Foliose algae Negative – reduced abundance from trampling Berthelon et al. (2004) 

Mussels and barnacles  Negative – dislodged or crushed by trampling  Fowler (1999) 

Indirect 

Acophyllum nodosum  Positive – lower periwinkle densities increased germling survival Cervin and Aberg (1997), Cervin et 
al. (2004) 

Notoacmea testudinalis Positive – increased growth and survival when periwinkles excluded Petraitis (1989) 

Algae Positive – increased cover 
No impact – no change due to increase in other grazers  

AFBI (2009), Buschbaum (2000) 
Lindberg et al. (1998) 

Semibalanus balanoides Positive – increased survival of recruits  
Negative – reduced growth rates due to increase in algae 

Buschbaum (2000) 

Ascophyllum nodosum and 
Porcellana platycheles 

Positive – most abundant on shores with low periwinkle abundance 
Crossthwaite (2012) 

Patella vulgata  Positive – increased abundance from less competition  Quigley (1999) 
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1.7.2 Impacts of collection on non-target species    

Rocky shore harvesting impacts can be significant, being highly species dependent 

(Crowe et al., 2000). On harvested rocky shores, due to selective predation, 

communities tend to converge towards a common state of abundance and diversity 

(Philip and Bosman, 1986), reducing the diversity between regions (Sharpe and 

Keough, 1998). There are both direct and indirect impacts on non-target species from 

periwinkle collection.  

Direct Impacts – Boulder Turning and Trampling 

Direct impacts of periwinkle collection on the rocky shore community are due to the 

disturbance created when harvesting occurs, causing physical damage to both plants 

and animals (Berthelon et al., 2004). This includes boulder turning and trampling. 

Some harvesters turn the rocks over to look for periwinkles, often leaving them 

upturned (AFBI, 2009). Boulder or stone turning damages the diverse under-boulder 

communities which require stable boulder habitats, relying on the shelter the 

boulders provide, whilst other organisms depend on the upper rock surfaces, such as 

seaweeds (Liddiard et al., 1989). Turning boulders reduces habitat stability, can 

directly crush and kill fauna, smother algae, and leaves under-boulder communities 

exposed to desiccation, predation, and wave action when left upturned (Berthelon et 

al., 2004). If rocks are turned frequently, and not returned to their original positions, 

the habitat stability and biodiversity can be reduced (Davenport and Davenport, 

2006). 

Trampling over rocky shores to collect intertidal species has been shown to affect 

species composition due to the physical contact and wear it creates (Tyler-Walters 

and Arnold, 2008). Trampling can reduce biodiversity, abundance, and biomass 

(JNCC and Natural England, 2011), creating paths with low algal cover and a higher 

percentage of bare rock (Berthelon et al., 2004; Tyler-Walters and Arnold, 2008). The 

effects of trampling can be seen even at low trampling intensities and impacts can 

persist for several years (Povey and Keough, 1991). However, results of trampling 

can be very variable, and the impacts appear to depend on the intensity, duration, 

and frequency of the trampling, as well as the nature of the receiving habitat, and 

even the type of footwear used (Tyler-Walters and Arnold, 2008; JNCC and Natural 

England, 2011). 
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These disturbances by intertidal harvesters can negatively alter the abundances of 

species and overall community structure present on a shore, key examples of which 

can be seen in Table 1:10. Although previous studies show direct impacts of rocky 

shore disturbance, the impacts can be difficult to predict locally, as the responses of 

non-target species have spatial and temporal variation (Berthelon et al., 2004). 

However, the species which are most impacted by physical damage are those which 

are long lived, sedentary, and slow to reproduce (Berthelon et al., 2004). 

Indirect Impacts – Reduced Periwinkle Abundances 

Indirect impacts of periwinkle harvesting occur from knock-on impacts of the removal 

of periwinkles and their activities. Harvesting can alter community interactions, with 

the impacts dependant on the connection with the non-target species, i.e. the 

predator, prey, or competitor of L. littorea (Quigley, 1999; Berthelon et al., 2004). As 

a key grazer, as well as prey for birds and crabs, the removal of periwinkles could 

have large impacts on the whole rocky shore community (Buschbaum, 2000). If 

periwinkle stocks are impacted by collection, be it reduced abundance or size 

(Quigley, 1999), the effects of periwinkle grazing and their role as a prey species 

would be altered. When periwinkles are experimentally excluded from an area of 

rocky shore, other species have been seen to alter in their abundances (Petraitis, 

1989; Cervin and Aberg, 1997; Buschbaum, 2000). Other grazers which compete 

with L. littorea, as well as the algae that periwinkles graze, may benefit from 

periwinkle overexploitation. Examples of these indirect impacts observed in previous 

studies can be seen in Table 1:10. Although most of the indirect impacts on non-

target species in Table 1:10 appear to be positive if periwinkles were reduced from 

harvesting, any alterations in a community are not natural when influenced by human 

activities. Even when impacts are positive for an individual species, the ecosystem as 

a whole is altered, which goes against the biological conservation ethos of protecting 

communities from change (Young, 2000).  

Impacts on Birds 

The effects on shorebirds from intertidal harvesting has been most studied with 

respect to bait digging. However, many shorebirds utilise the rocky shore as feeding 

habitats also. The mechanisms of disturbance leading to habitat loss, and reduction 

in prey species are similar to those described for lugworm collection, only occurring 

on rocky shores instead. Quigley (1999) observed no effect of periwinkle harvesting 
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on the three most common bird species on Northumberland rocky shores (Dunlins, 

Turnstones, and Grey Plover), with higher abundances generally at the collected 

sites. However, data from the Wetland Bird Survey showed there was lower total 

abundances of birds at the most visited shore, suggesting that effects are greater on 

the more ephemeral species (Quigley, 1999).  

1.7.3 Summary and Implications for Management 

Periwinkles, the rocky shore community as a whole, and birds can be negatively 

impacted by intertidal harvesting, with impact intensity dependent upon various 

factors such as: frequency of collection, duration of collection, collection intensity, 

and nature of the habitat.  

Intertidal rocky reefs, where periwinkle collection occurs, are a feature of the BNNC 

SAC, and as such are protected from degradation (NCAONB, 2009). Activities which 

negatively impact upon the interest feature need to be managed (MMO, 2014b). This 

is especially true for birds, being the interest features for the Lindisfarne SPA, and 

other SPAs falling within the BNNC EMS boundary (many covering rocky shores) 

(NIFCA, 2013b). Since the overall rocky shore ecosystem has been observed to be 

impacted by periwinkle collection in previous studies (e.g. Quigley, 1999; 

Buschbaum, 2000; Berthelon et al., 2004; Crossthwaite, 2012), it is important to 

research impacts locally within individual protected areas further, and introduce 

management measures to protect the interest features where appropriate.  

The most commonly observed impact of harvesting on periwinkle populations 

appears to be a reduced average size of individuals (Quigley, 1999; Crossthwaite, 

2012). The most appropriate method of management for this impact may be to 

introduce a minimum harvesting size, which would allow intermediate sizes to thrive 

(Underwood, 1993), with the aim of maintaining or increasing the average size. Five 

of the IFCA’s currently have a minimum harvesting size regulation in place (Table 

1:3), so the potential for NIFCA to do the same within the BNNC EMS is high. 

However, this method should be tested before further implementation, as it also has 

the potential to perpetuate the problem with increased targeting of the very largest 

individuals leading to a smaller average size. Furthermore, in parasitized populations, 

reduced average size may have a positive effect, as reproductive potential can 

decrease with increased body size (Robson and Williams, 1970), which should be 

considered in local management plans.  
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Overall, periwinkle stocks appear to be relatively resilient to harvesting. The biggest 

and most worrying potential impacts appear to be those for non-target rocky shore 

dwelling plants and animals which experience physical disturbance (Berthelon et al., 

2004; Crossthwaite, 2012). Since the impacts of boulder turning are more severe 

when boulders are left upturned (Davenport and Davenport, 2006; AFBI, 2009), 

management could aim to ensure that collectors return all boulders to their original 

positions after use, or minimise boulder turning all together. This could be done using 

education and codes of conduct (Boye et al., 2006). Trampling may be too difficult to 

manage due to the free access of rocky shores to the public. Many other types of 

shore users also trample rocky shores, such as rock poolers, anglers, walkers, etc. 

(JNCC and Natural England, 2011), and so management could not target only 

intertidal harvesters.  

Distinction between commercial and recreational periwinkle collection would be 

useful for management. Although commercial collection of periwinkles is allowed, 

being able to manage commercial collection separately could help to reduce the 

intensity of collection throughout the study area, reducing the severity of impacts. 

Permitting of commercial collectors could prove a useful management tool (Boye et 

al., 2006) to limit commercial activity, as could bag or weight limits (Harthill et al., 

2005) to control the intensity of commercial harvests.  

Overall, there does appear to be potential to reduce the impacts of hand gathering on 

rocky shores using various management measures. However, more information is 

needed on the specific impacts within the BNNC EMS to inform managers on the 

most appropriate methods locally. Data are required on the direct and indirect 

impacts on both the target species and the associated rocky shore communities 

within the BNNC EMS.  
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1.8 Brief Summary and Gaps in Knowledge  

The details of intertidal collection activities, such as scale, locale, and intensity, have 

been little studied to date, the majority of recent studies conducted outside the UK. 

Within the UK, work has been focussed to the South of England for lugworms 

(Watson et al., 2015) and Scotland and Ireland for periwinkles (McKay et al., 1997; 

Cummins et al., 2002). Research in Northern England is lacking. In addition, most 

studies to date either focus primarily on the ecological impacts, or the social aspect 

of collection (e.g. how much collection is occurring, when, and where).  

Overall, intertidal collection activities are shown within the literature to have negative 

ecological impacts (e.g., Van den Heiligenberg, 1987; Keough et al., 1993b; 

Beukema, 1995; Quigley, 1999; Volkenborn and Reise, 2006; Volkenborn et al., 

2007a; Volkenborn and Reise, 2007; Hidalgo et al., 2008; Crossthwaite, 2012). This 

is true for both sandy/muddy and rocky habitat types, and both the target species and 

associated communities. However the impacts and recovery times depend on many 

factors, including the intensity of disturbance caused, the length of disturbance, the 

method of harvesting, and the local habitat and geography (e.g., Blake, 1979a; Cryer 

et al., 1987; Keough and King, 1991; Keough et al., 1993b; Olive, 1993; Beukema, 

1995; Sharpe and Keough, 1998; Berthelon et al., 2004). Inference of impacts of 

local collection activities based on research conducted in other locations could lead 

to over or underestimates. Since the details of collection activities vary between 

geographic locations, the impacts of these activities are also variable. The habitats, 

conditions, social drivers, and actual harvesting amounts are unique locally, and 

therefore site specific data is required for effective management. To assess the 

impacts within the BNNC EMS, local data is required.  

There is a shortage of studies which look at both the details of collection (where, 

when, and how much) and impacts combined, using interdisciplinary methods. An 

interdisciplinary approach is needed to fully assess intertidal collection activities 

within the BNNC EMS, gathering data on the activities occurring as well as the 

impacts they cause.  
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1.9 Thesis Aims, Objectives, and Structure 

This thesis aims to investigate the scale, locale and ecological impacts of the 

collection of A. marina, A. defodiens, and L. littorea from shores within the BNNC 

EMS, using social and ecological research to provide interdisciplinary evidence to 

inform management. It will achieve this via the following objectives:  

1. Quantify the scale and intensity of collection of A. marina, A. defodiens, and L. 

littorea within the BNNC EMS 

2. Map collection of these species within the BNNC EMS, highlighting hotspots 

3. Investigate the current adherence to byelaws/management/rules 

4. Investigate the ecological impacts and implications of bait digging for A. 

marina and A. defodiens on sandy/muddy shores within the BNNC EMS 

5. Investigate the ecological impacts and implications of hand gathering of L. 

littorea from rocky shores within the BNNC EMS  

6. Identify areas to prioritise for management and/or monitoring   

Table 1:11 and Figure 1:3 show the connections between the objectives and the 

relevant thesis data chapters, the data used to answer each objective, as well as the 

order of chapters and the target species each applies to.  

Chapter 2 aims to reveal the scale, locale and intensity of both bait digging for 

lugworms and hand gathering of periwinkles within the BNNC EMS. Annual biomass 

removal will be estimated, and adherence to byelaws evaluated. 

Chapter 3 aims to identify the areas of the BNNC EMS which are most suitable for, 

sensitive, and vulnerable to lugworm collection activities using spatial modelling 

techniques.  

Chapter 4 aims to investigate the ecological impacts of bait digging for lugworms 

within the BNNC EMS, by comparing ecological data gathered from shores with a 

gradient of collection pressures, and by manipulative field experiments.  

Chapter 5 aims to investigate the ecological implications of hand gathering of 

periwinkles within the BNNC EMS, comparing the ecology of shores with differing 

collection intensities. 

Chapter 6 aims to synthesise and discuss the previous chapters’ findings in light of 

management and existing literature.  
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Table 1:11: Connections between data sources, the objectives they answer, and the chapters they 
appear in.  

 

 

 

 

 

 

 

 

 

 

 

 

Lugworm

Chapter 2: Investigation of the Scale, 
Locale, and Intensity of Lugworm and 

Periwinkle Collection Activities within the 
BNNC EMS

Chapter 4: Investigation of the Impacts of 
Lugworm Collection within the BNNC 

EMS

Chapter 5: Investigation of the Impacts of 
Periwinkle Collection within the BNNC 

EMS 

Periwinkle

Chapter 3: Modelling the Suitability, 
Sensitivity, and Vulnerability of the BNNC 

EMS to Lugworm Collection  

Chapter Objective(s) Data Sources 
  

 

2 1, 2, 3, 6  Interviews/questionnaires, shore observations 
 

3 2, 6 Lugworm distribution, literature review, expert opinion 

4 4 Sandy shore gradient ecology,  simulated digging, lugworm exclusion 
 

5 5 Rocky shore gradient ecology 
 

Figure 1:3: Visual summary of data chapters and the target species to which they apply. 
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Chapter 2 : Investigation of the Scale, Locale, and Intensity of Lugworm 
and Periwinkle Collection Activities within the Berwickshire and North 

Northumberland Coast European Marine Site   
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2.1 Introduction and Rational  

Marine fisheries are still extensively and intensively studied for a wide variety of 

species and habitats globally (e.g. Couce-Montero et al., 2015; Koslow and Davison, 

2016; Mangi et al., 2016; De Wysiecki et al., 2017; Humber et al., 2017; Pauly and 

Zeller, 2017; Szostek et al., 2017; Thomas et al., 2017; Tiller and Nyman, 2017; 

Zgliczynski and Sandin, 2017). A significant driver of continued research is the 

increased recognition of the importance of marine and fisheries conservation in 

recent years (Soulé et al., 2005; Worm and Branch, 2012). In order to protect marine 

biodiversity, a global aim (Boonzaier and Pauly, 2016), the details of fishery activities 

need to be unravelled and understood.  

The majority of fisheries stocks exploited globally are classified as data poor 

(Costello et al., 2012), leading to difficulties in assessing and managing these 

fisheries (Dowling et al., 2015a). Generally, the statuses of data poor fisheries are 

thought to be worse than those which are well studied (Worm and Branch, 2012), 

highlighting the importance of fisheries data for marine conservation. Interest in the 

development of harvest strategies and fisheries management more generally is 

increasing, for which fisheries data is essential (Dowling et al., 2015b).  

Within the Berwickshire and North Northumberland Coast European Marine Site 

(BNNC EMS), the need for increased data and understanding of local fishing 

activities is evident (MMO, 2014b). Intertidal collection from sandflats, mudflats, and 

rocky shores has been identified as requiring additional information to inform 

management decisions (MMO, 2014b). This study focusses on two major intertidal 

fisheries: lugworm and periwinkle.  

The understanding of the impacts associated with fisheries are important for 

management, and as such are well studied (e.g. Auster et al., 1996; Thrush et al., 

1998; Turner et al., 1999; Collie et al., 2000; Roy et al., 2003; Masero et al., 2008; 

Williams et al., 2008; Constantino et al., 2009; Erlandson et al., 2011; Smith et al., 

2011; Clarke and Tully, 2014; Hughes et al., 2014; Couce-Montero et al., 2015; 

Manríquez et al., 2016; Toupoint et al., 2016). However, information on more than 

impacts alone is needed for successful management and protection, such as 

knowledge of the harvest effort and estimated catch (Dowling et al., 2015a). Useful 

empirical indicators for fisheries management include: biomass estimates, catch 
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rates, and mean size of catch (Dowling et al., 2015a). No such data exists currently 

for periwinkle or lugworm fisheries within the BNNC EMS.  

Over the last 30 years the focus of fisheries management has moved away from top-

down, bureaucratic, and science only based approaches, and more onto the 

importance of involving resource users in the management process (Jentoft et al., 

1998). Such newer management approaches include adaptive management (e.g. 

McLain and Lee, 1996; Berkes et al., 2000; Walters, 2007), ecosystem management 

(e.g. Link, 2002; Pikitch et al., 2004), and responsible fisheries (e.g. Chakalall and 

Cochrane, 1996; Cochrane and Chakalall, 2002; Sinclair et al., 2002). Resource 

users possess knowledge based on experience which can add to fisheries science 

and improve management (e.g. Jentoft et al., 1998; Berkes et al., 2000; Olsson and 

Folke, 2001; Wilson et al., 2006; Berkes et al., 2008; Silvano and Valbo-Jørgensen, 

2008). Therefore, social methods to gather resource user knowledge and information 

can be integral in assessing fisheries details.  

Spatial information is also important when studying fisheries (Léopold et al., 2014), 

and spatial management methods are encouraged for marine resources (Hughes et 

al., 2005; Halpern et al., 2012b). Mapping fisheries can be difficult due to the 

complex and unstable nature of fisheries over time and space (Stewart et al., 2010), 

nevertheless distribution data on fishing activity are essential to establish estimates 

of fishing pressure, understand fishery patterns, and inform management (Stewart et 

al., 2010; Turner et al., 2015). Despite the importance, quantitative assessment of 

non-commercial harvests is rare, as the scales of the fisheries do not usually warrant 

extensive research (Hartill et al., 2005). This often leads to management being 

based on a scarcity of information, which can lead to inappropriate management 

measures being implemented (Hartill et al., 2005). Anecdotally, both lugworms and 

periwinkles are widely collected throughout the BNNC EMS, however, there are no 

spatial data available on the distribution of collectors.  

The majority of existing fisheries studies investigating factors such as fisher 

distribution, biomass removal, etc. focus on inshore or offshore fisheries, and most 

often finfish or crustacea (e.g. Gillis et al., 1993; Friedlander et al., 1999; Drinkwater 

et al., 2006; Stelzenmüller et al., 2008; Bastardie et al., 2010; Bearzi et al., 2010; 

Cahalan et al., 2015; Natale et al., 2015; Turner et al., 2015). Comparatively few 
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intertidal fishery studies exist. However, those that do typically use shore 

observations (both land-based and aerial) and questionnaires or interviews to gather 

data (e.g. Blake, 1979a; Underwood and Kennelly, 1990; Keough et al., 1993a; 

McKay et al., 1997; Murray et al., 1999; Cummins et al., 2002; Cunha et al., 2005; 

Hartill et al., 2005; Carter and Hill, 2007; Sypitkowski et al., 2010; Smallwood et al., 

2011; Smallwood and Beckley, 2012; Watson et al., 2015). The often ‘black 

economy’ nature of both lugworm and periwinkle collection activities can make 

gathering fisheries data more difficult, as collectors and wholesalers can be reluctant 

to communicate with researchers, and there are no official or reliable landings data 

to refer to (McKay et al., 1997; Cummins et al., 2002). No recent assessments of the 

details (e.g. scale and intensity) of periwinkle or lugworm harvesting have been 

undertaken in Northumberland. 

Although both lugworm and periwinkle collection is largely unmanaged and 

unregulated within the BNNC EMS, there are some rules and regulations to 

consider. Commercial harvesting of lugworms is prohibited (Fowler, 1999), and 

recreational collection within the BBNC EMS is managed with byelaws at: Boulmer, 

Newton Haven, and the Lindisfarne National Nature Reserve (NNR) (NCAONB, 

2009), as well as a more recent byelaw protecting areas containing seagrass from 

digging activity (NIFCA, 2013a). Within the Lindisfarne NNR there is a small strip of 

sandflat either side of the causeway where bait digging is acceptable (UK Marine 

SACs Project, 2001c). At Boulmer, the northern half of the shore is a no digging 

zone, whilst no digging at all is allowed at Newton Haven (UK Marine SACs Project, 

2001c). Commercial harvesting of periwinkles is allowed (Fowler, 1999), and there 

are no regulations in place to control the amount harvested (Cummins et al., 2002). 

Collection can be controlled by fisheries byelaws, such as minimum landing size or 

closed seasons (Fowler, 1999), however there are currently no byelaws for 

periwinkle collection within the BNNC EMS.  

Commercial fisheries have been repeatedly identified as a major cause of stock 

declines (e.g. Smith, 2002; Christensen et al., 2003; Pauly et al., 2003), and more 

recently recreational fisheries have been considered a significant contributor (e.g. 

Post et al., 2002; Coleman et al., 2004; Cooke and Cowx, 2006). Recreational 

fisheries are those where fishing is carried out for sport, leisure, or personal 

consumption (FAO, 1997), whilst commercial fisheries are those where harvests are 
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for sale (Smith, 2002). Commercial fisheries are often thought to have low effort and 

high catchability compared to recreational fisheries with high effort and low 

catchability (Cooke and Cowx, 2006). However, this does not necessarily apply to 

intertidal fisheries, where the same collection tools and methods are used by both 

sectors (Fowler, 1999), such as lugworm and periwinkle gathering in 

Northumberland. Due to high accessibility and limited available space, intertidal 

commercial and recreational fishers can overlap significantly in both space and time. 

The direct competition between recreational and commercial fisheries can lead to an 

increased risk of overharvest (Pereira and Hansen, 2003), and it can be difficult to 

ascertain the relative contributions of each fishing sector (Griffin, 1988). Therefore, 

the importance of evaluating commercial versus recreational collection is high if 

management is to be targeted and successful. Currently, the differentiation between 

commercial and recreational lugworm and periwinkle collectors is challenging 

(Watson et al., 2015), which leads to difficulty in assessing and managing the 

fisheries independently (Watson et al., 2017a).   

Compliance of fishery rules is an important issue in marine management, and has 

been well studied in many fisheries (e.g. Burger et al., 1999; Gezelius, 2002; 

Crawford et al., 2004; Hatcher and Gordon, 2005; Blank and Gavin, 2009; Bloomfield 

et al., 2012; Haggarty et al., 2016). Compliance levels can be impacted by various 

factors, including: the economic gains of non-compliance, deterrence, suitability of 

the rules, morals of individual fishers, and efficacy of the regulations (Nielsen and 

Mathiesen, 2003). Bait worm harvesting compliance has been investigated in the 

Solent, where mixed adherence was observed, varying with location and regulation 

type (Watson et al., 2015). A lack of enforcement was suggested as the cause of 

observed non-compliance. The level of compliance or adherence to existing intertidal 

fisheries rules and regulations within the BNNC EMS is currently unknown, due to 

the lack of study in this area.   

The aim of this chapter is to investigate the scale, locale, and intensity of both 

commercial and recreational lugworm and periwinkle harvesting within the BNNC 

EMS. Both spatial and social methods are combined, to explore patterns of collection 

(including collection method, seasonality, and distribution), and estimate annual 

biomass removal. Harvesting effort and catch is determined at four rocky (periwinkle) 

and four sandy (lugworm) shores within the study area over a full annual cycle, and 
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subsequently extrapolated for the BNNC EMS as a whole. Harvester distribution is 

mapped across the BNNC EMS, with focus on broad scale positions within the EMS. 

Additionally, the adherence to current rules and regulations and details of 

commercial vs recreational collection is explored.   
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2.2 Methods 

Shore observations and questionnaires were used to assess lugworm and periwinkle 

collection activity within the BNNC EMS, combining two common social 

methodologies in intertidal fisheries research (e.g. Blake, 1979a; Underwood and 

Kennelly, 1990; Fairweather, 1991; Kingsford et al., 1991; Keough et al., 1993a; 

McKay et al., 1997; Murray et al., 1999; Cummins et al., 2002; Cunha et al., 2005; 

Harthill et al., 2005; Léopold et al., 2014; Watson et al., 2015). Regular observations 

at selected shores supplied detailed estimates of annual collection activity, whilst 

single observations from all shores (broad scale observations) were used to 

extrapolate the estimates over the entire study area. The questionnaires added 

additional detail to the assessment, and allowed the estimation of annual biomass 

removal, and differentiation of commercial and recreational collection (Fairweather, 

1991).  

2.2.1 Regular Shore Observations – Site Selection 

Over twenty sediment and rocky shores lie within the BNNC EMS boundaries, of 

which four were selected for regular observation. These four shores were identified 

via pilot observations and expert knowledge from collectors and local managers 

(NIFCA) as sites where either lugworms or periwinkles were collected or were 

suitable for collection. Both rocky and sandy components were required within a 

single site so that observations for both target species could be conducted 

simultaneously. Sites were well spaced throughout the south of the BNNC EMS, 

driven by suitability and practicality, but allowing for geographical differences 

between shores. The selected shores were Alnmouth, Boulmer, Newton, and 

Beadnell (Figure 2:1).  
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 Figure 2:1: Locations of the observation shores in relation to the BNNC EMS as a whole.  

 

Alnmouth beach and estuary (grid reference NU252105) is a large sandy bay joined 

to the river Aln estuary. Alnmouth rocky shore (grid reference NU258761) is a large 

outcrop to the north of the beach (Figure 2:2). Collection activity for both target 

species were unknown for this site.  

Boulmer sediment shore (grid reference NU268135) is a medium sized bay 

composed of muddy sand. Digging is prohibited at the north side of the beach only. 

To the north lies the substantial Boulmer rocky shore (grid reference NU269101) 

(Figure 2:3). Both lugworm and periwinkle collection were known to occur here 

anecdotally.  

The sediment shore at Newton (grid reference NU241245) is a large sandy, 

sheltered bay, were digging is prohibited. The rocky shore component (grid 
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reference NU244312) was small outcrops split either side of the sandy bay (Figure 

2:4). Lugworm collection was known to occur here anecdotally, whilst periwinkle 

activity was unknown.  

Beadnell sediment shore (grid reference NU233283) is very large and sheltered. The 

rocky shore (grid reference NU233432) to the north is equally large, stretching along 

a significant length of the coast (Figure 2:5). Periwinkle collection was known to 

occur here anecdotally, whilst lugworm activity was unknown.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:2: Alnmouth A) Aerial image showing both rocky and sandy shore elements (Map data 
@2018 Google). B) Photograph of rocky shore. C) Photograph of sandy shore. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:3: Boulmer A) Aerial image showing both rocky and sandy shore elements (Map data @2018 
Google). B) Photograph of rocky shore. C) Photograph of sandy shore.  
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Figure 2:4: Newton A) Aerial image showing both rocky and sandy shore elements (Map data @2018 
Google). B) Photograph of rocky shore. C) Photograph of sandy shore.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:5: Beadnell A) Aerial image showing both rocky and sandy shore elements (Map data 
@2018 Google). B) Photograph of rocky shore. C) Photograph of sandy shore.  

 

2.2.2 Regular Shore Observations 

Observation methods were piloted in October and November 2014. Shores were 

visited for four hours (two before low water, two after low water) on a mixture of 

spring and neap tides, day and night hours, and weekdays and weekends. The pilot 

visits revealed that night time observations were necessary for lugworm collection, 
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but only on spring tides, when the lugworm beds were exposed enough to warrant 

more difficult night time collection (no night time collection observed on neap tides). 

Additionally, it was concluded that a shorter observation time close to low water was 

sufficient to record the number of collectors, due to all collectors observed being 

present at low water despite varying collecting times and patterns.  

Regular shore observations began in December 2014, and ran for twelve months, to 

capture seasonal differences (Fowler, 1999). Each of the four sites (eight shores – 

one rocky and one sandy at each site) were observed at low water six times each 

month, totalling 288 observations per habitat type and target species. Each of the six 

monthly observations were categorised as: Spring Day Weekday, Spring Day 

Weekend, Spring Night Weekday, Spring Night Weekend, Neap Day Weekday, and 

Neap Day Weekend. These categories were designed to capture variation, 

standardise observations between shores, and allow subsequent extrapolation of 

results over unobserved days (Cunha et al., 2005). The differentiation between 

spring and neap tides was required due to the belief that more collection would occur 

on spring tides when more of the target species are exposed (Fowler, 1999). 

Weekends and weekdays were separated to account for working patterns of non-

commercial collectors, and day and night tides split on the recommendation of 

Underwood and Kennelly (1990).   

At each observation visit the number of collectors present on each shore was 

recorded at the time of low water. Binoculars were used to observe from a distance, 

with the purpose of recording natural behaviour. Day time observations also 

recorded the method of collection for lugworm harvesting (fork or bait pump (Fowler, 

1999)), the adherence to byelaws, and for September, October, and November 2015 

the positions of collectors within the sediment shores (Kingsford et al., 1991). Night 

observations recorded the number of head torch lights visible on the shore.  

2.2.3 Broad Scale Observations 

To relate the detailed observations of four shores described above to the BNNC 

EMS as a whole, one-off broad scale observations were conducted for each of the 

target species. On selected days multiple volunteers aimed to observe as many 

shores as possible at low water. This allowed comparisons between the four 

targeted shores and others across the BNNC EMS.  
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Observations were conducted on the 24th January 2015 for lugworms, and 2nd 

August 2015 for periwinkles. Dates were selected to maximise the number of 

collectors observed. The lugworm date was at a weekend in peak winter bait digging 

season (Fowler, 1999), one day before a major local fishing competition (Amble 

open), with a spring low tide falling in late morning. The periwinkle date was at a 

weekend in summer (when more collection was observed), with a spring low tide late 

morning. Fifteen sediment shores were observed at the same time (low water) on 

each date. The observation sites were spread along the entire BNNC EMS coastline, 

with sites at both the northern and southern boundaries, and an even spread 

throughout. The observed shores are shown in Figure 2:6.  

 

  

Figure 2:6: Locations of the broad scale observation shores within the BNNC EMS, with the regular 
observation shores bold-underlined. Sediment shores (black and green circles) were observed for 
lugworm collection on 24th January 2015. Rocky shores (black and blue circles) were observed for 
periwinkle collection on 2nd August 2015. 
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Volunteer pairs made the observations so that low water could be observed 

accurately at each location (requiring a lot of people spaced along the coast). For 

stretches of shores (for example Longhoughton and Howick) where sediment or 

rocky shores continued intermittently over long distances, volunteers cycled the 

length of the shore, observing from coastal paths. Methods were the same as regular 

shore observations, so results are comparable. Volunteers were trained for 

consistency prior to observations. This included identifying collectors, and 

recognising the collection methods for lugworms. The observation details for both 

days can be seen in Table 2:1.  

 
Table 2:1: Details of the broad scale observations days.  

 

Target 

Species and 

Date 

 

Shore 
 

Observer 

Pair ID 

 

Transport 

Method 

Between Sites 

 

Time of Low 

Water 

 

Approx. 

Observation 

Start Time 

Lugworm -  

24th January 

2015 

Alnmouth A  Walking 11:50am  11:45am 

Foxton A  Walking 11:50am 12:00pm 

Boulmer B  Cycling 11:50am 11:40am 

Longhouton B  Cycling 11:45am 11:50am 

Howick B Cycling 11:45am 12:05pm 

Newton C Driving 11:25am 11:40am 

Beadnell D  Driving 11:10am 11:00am 

Seahouses D  Driving 11:10am 11:20am 

Bamburgh E  Driving 11:05am 11:15am 

Budle Bay E  Driving 11:05am 11:00am 

Holy Island F N/A 11:00am 10:50am 

Scremerston C Driving 11:00am 11:00am 

Berwick C Driving 11:00am 10:45am 

Eyemouth H Driving 11:00am 10:55am 

St Abbs H Driving 11:00am 11:10am 

Periwinkle – 

2nd August 

2015 

Alnmouth I Walking 11:30am 11:20am 

Foxton I Walking 11:30am 11:35am 

Boulmer J Cycling 11:30am 11:20am 

Longhouton J Cycling 11:25am 11:35am 

Embleton K Walking 11:10am 11:15am 

Newton K Walking 11:10am 11:00am 

Beadnell L N/A 10:50am 10:50am 

Seahouses M Driving 10:50am 11:00am 

Bamburgh M Driving 10:50am 10:40am 

Holy Island N N/A 10:45am 10:45am 

Scremerston O Driving 10:45am 10:55am 

Berwick O Driving 10:45am 10:40am 

Burnmouth P Driving 10:45am 10:35am 

Eyemouth P Driving 10:45am 10:45am 

St Abbs P Driving 10:45am 11:00am 
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2.2.4 Questionnaires 

A social survey was designed to gather more detailed information on the intensity 

and nature of collection activities, including exploring differences in commercial and 

recreational activities. Questions were intended to determine factors such as 

collection hotspots, frequency and duration of collecting trips, seasonal collection 

patterns, and the number or mass of the target species removed per trip.  

Surveys were administered face to face, during shore observation trips. This method 

involves synchronous communication, allowing social cues to be recognised, and 

resulting in spontaneous and non-reflective responses (Opdenakker, 2006). To 

increase responses, the lugworm collection questionnaire was also available online 

using ‘smartsurvey.co.uk’, and distributed via a link which was shared on relevant 

social media pages, and a well-known angling forum (NESA). The periwinkle 

questionnaire was not promoted online, due to the lack of a central base to make 

contact. Mixed results were obtained online, where negative responses from anglers 

and bait diggers became evident. The response from face to face surveys was more 

positive, with the majority of lugworm collectors approached willing to participate. 

Periwinkle collectors were more reluctant to talk, which together with fewer 

encounters on shore observations, resulted in significantly less responses. Negative 

responses, and unwillingness to participate were to be expected due to the black 

market nature of intertidal collection, as has been reported in previous studies (e.g. 

Cummins et al., 2002).  

Issues of questionnaire methods are well recognised, especially in relation to the 

fidelity of answers for sensitive or threatening topics and questions (Bradburn et al., 

1979; Rasinski et al., 1999; Tourangeau and Yan, 2007). Despite the secrecy often 

involved in intertidal collection activities, this studies questionnaire does not ask any 

extremely sensitive questions, and respects the respondents privacy by not asking 

for personal details (e.g. name, age, gender, home town, etc.), an important 

consideration of survey design (Rasinski et al., 1999). Additionally, respondents 

were not asked directly if they were commercial collectors, with the topic only 

discussed if voluntarily brought up, as this is a sensitive question for many collectors. 

It is reported that in-depth interviews generally have more honest answers given 

than self-completion questionnaires and face to face questionnaires in social studies 
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with sensitive topics (Plummer et al., 2004). However, this in-depth method was not 

deemed necessary for use within this study, and resources were better suited to 

gathering a higher number of shorter and focused questionnaire responses.  

For further analysis of commercial vs recreational collection details, the responses 

were separated into expected commercial and expected recreational categories 

based on similarities or differences with several self-confessed commercial 

collectors.  

2.2.5 Estimating Biomass Removal 

Total annual harvests of lugworms and periwinkles (kg) were calculated using 

separate estimates of harvesting effort and harvest rate (Cunha et al., 2005). 

Harvesting effort was ascertained via shore observations, and harvesting rate via 

social survey (both described above). The regular shore observations provided the 

number of collectors for each designed category (month, neap/spring, 

week/weekend, and day/night – e.g. January Neap Day Weekend). Categories were 

based on knowledge that seasonality, tidal state, day of the week, and time of 

day/night could all influence harvesting effort (Cunha et al., 2005). The 

questionnaires provided the mean number of lugworms and the mean mass of 

periwinkles removed per collector per trip. For lugworms, the mean mass harvested 

per collector per trip was subsequently calculated using the mean mass of 50 

lugworms collected from Boulmer (6g).  

Once mean mass of lugworms and periwinkles removed per observation was 

calculated (product of mean mass harvested per collector per trip and number of 

collectors observed), totals for each category as a whole could be estimated. For 

this, the number of low tides falling within each category needed to be known (Table 

2:2), so that the mean mass for a single observation could be multiplied by the 

number of similar low tides, resulting in the extrapolation of data over all non-

observed low tides, giving the mean mass removed per observation category. This 

was calculated for all 72 categories (6 per month).  
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Table 2:2: The number of low tides in each category per month. Neap ≥ 1.0m low tide (or ≥ 1.15m in 
Nov & Dec). Night = hours of darkness.  

Number of low tides in each observation grouping 
 

J F M A M J J A S O N D 

Neap Day Weekend 7 6 5 5 8 5 4 4 4 7 6 6 

Neap Day Week 18 16 17 15 11 13 14 12 13 11 14 17 

Spring Day Weekend 2 2 4 3 2 3 4 6 4 2 3 2 

Spring Day Week 4 4 5 7 10 9 10 9 9 11 7 5 

Spring Night Weekend 2 3 4 4 3 3 3 2 1 3 4 4 

Spring Night Week 6 10 10 11 9 7 4 7 6 5 7 9 

 

The estimates of mean mass removed per category were summed to give the total 

annual removal estimate from the observed shores. Ratios gained from the broad 

scale shore observations (described above) were used to extrapolate the data 

further to include harvesting from the unobserved shores within the BNNC EMS. 

Resulting in an estimate of annual biomass removal for the BNNC EMS as a whole. 

Visualisation of the order of calculations and the data required for each step of the 

biomass estimate can be seen in Figure 2:7. Biomass estimates were subsequently 

converted to economic value using average retail prices from the literature and 

shellfish wholesalers (The Fish Society, 2017; Watson et al., 2017a).  
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2.2.6 Data Analysis 

Minitab version 17 was used to analyse differences in collection observed between 

shores and observation categories. Data were zero inflated and did not conform to 

normal distribution (Kolmogorov Smirnov, P < 0.05), so non-parametric analyses 

were used – Kruskal-Wallis and Mann-Whitney (Underwood, 1997; Dytham, 2011). 

Questionnaire data were also analysed using non-parametric tests due to non-

Multiply together 

Multiply by number of low tides in observation category 

(from Table 1) 

Sum all categories together 

Extrapolate using broad scale observation derived ratios 

Mean mass 

harvested per 

collector per trip 

Number of 

collectors 

observed 

Mean mass harvested 

per shore observation 

 

 

Mean mass per 

observation category  

 

Mean mass harvested 

annually from observed 

shores  

 

Mean mass harvested 

annually from all 

shores  

Figure 2:7: Flow chart showing the order of calculations used to estimate the annual biomass 
removal from the BNNC EMS for both periwinkle and lugworm harvesting, and the data required 
for each stage.  
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normal distribution and unequal sample sizes between groupings. ArcMap GIS 

software was used for mapping collector distributions and densities.   
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2.3 Results 

2.3.1 Regular Shore Observations 

Over 12 months of regular shore observations, a total of 241 lugworm and 62 

periwinkle collectors were witnessed on the shores. The majority of both lugworm 

and periwinkle collectors were observed at Boulmer. A high number of lugworm 

collectors were also observed at Newton, with a single sighting at Alnmouth, and 

none at Beadnell. For periwinkles, Beadnell was a popular collection shore, while 

Newton and Alnmouth had a lower level of collection. The total number of collectors 

observed at each shore can be seen in Figure 2:8. The average number of collectors 

recorded per observation were statistically different between shores for both 

lugworm and periwinkle collectors (Kruskal-Wallis, H = 97.91, 13.35, df = 3, 3, P < 

0.001, 0.01), demonstrating clear shore preferences for both target species.  

Figure 2:8: Total number of collectors observed per shore during 12 months of regular observations. 
A) Lugworm collectors on sediment shores. B) Periwinkle collectors on rocky shores. n = total number 
of collectors recorded.  

A) B) 
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Seasonal effects are strong for both fisheries, but patterns are opposite. Lugworm 

collection occurred mainly in winter, with peak numbers observed in January and 

February (Figure 2:9 A). Periwinkle collectors were most active in summer, with 

August being the most collected month (Figure 2:9 B). These seasonal patterns were 

consistent over all observed shores.  

 

Figure 2:9: Total number of collectors observed each month at each regularly observed shore. A) 
Lugworm collectors on sediment shores. B) Periwinkle collectors on rocky shores.  

 

Tidal state also affected the number of collectors observed. Spring tides attracted 

more lugworm and periwinkle collectors than neap tides, with 92% of daytime 

lugworm collectors observed on spring tides, and 69% of periwinkle collectors. The 

average number of collectors recorded per observation was statistically different 

between spring and neap tides for both lugworm and periwinkle fisheries (Mann-

Whitney U-test, U = 10317.5, 9836, n spring, neap = 96, p < 0.0001, 0.02), 

demonstrating a preference for spring tide collection.  

No periwinkle collection was recorded during night observations. Lugworm collection 

was considerable during night observations at both Boulmer and Newton. Overall, 

the number of collectors observed at day and night observations were similar. 

However, the prevalence of night collection varied between shores. Within spring 

tide observations, 36% of Boulmer and 81% of Newton collector recordings fell within 

night observations. Collectors at Newton clearly have a stronger preference for night 

tides (Mann-Whitney U-test, U = 1662.5, n day, night = 48, 24, p < 0.052). Both digging 
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fork and bait pump collection methods were used by lugworm collectors during 

observations. The fork method proved to be significantly more popular (Mann-

Whitney U-test, U = 39363.5, n fork, pump = 192, p < 0.0005), with 85% of day time 

collectors using this method.  

Byelaw adherence varied between locations. All lugworm collectors at Newton were 

in breach of the ‘no digging’ byelaw which covers the entire lower shore. Boulmer 

byelaw was in contrast relatively well adhered to. Collectors were regularly close to 

the boundary of the ‘no digging zone’, but overall only 9 were observed fully inside 

the prohibited area during daytime observations (5% of collectors). Of this, only 2% 

of total collectors were actually digging in this zone, with the others using bait pumps 

(which can be argued are not covered by the legislation).  

Within shore lugworm collector distribution was recorded for 3 months (September, 

October, and November 2015) at Boulmer to identify small scale hotspots and further 

examine byelaw adherence. Figure 2:10 displays the locations of each collector 

observed during daytime observations during this period. The majority of collectors 

were situated within the southern half of the shore and close to low water, whilst only 

four collectors (all using bait pumps) were recorded within the ‘no digging zone’.  
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Figure 2:10: Within shore lugworm collector distribution at Boulmer. Different colours represent the 
three observation months – September, October, and November 2015.  

 

2.3.2 Broad Scale Observations 

The regularly observed shores contained a significant amount of the collection 

activity recorded during the broad scale observations, suggesting they were 

appropriate choices for the regular shore observations. The presence of lugworm 

collectors at Alnmouth and periwinkle collectors at Newton on the broad scale 

observation days (despite no recordings on other regular observations) confirmed 

that the chosen observation dates maximised the sightings as planned.  

New collection hotspots identified include Berwick for lugworm collection, and 

Berwick, Bamburgh, and Seahouses for periwinkle collection (Figure 2:11 B). The 

most popular collection shore was Boulmer for lugworms, and Seahouses for 

periwinkles (Figure 2:11 A). Periwinkle collection was distributed more widely over 

the study area than lugworm collection. Only five of the fifteen observed shores 

contained lugworm collectors, compared to nine for periwinkle collectors, suggesting 
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that shore selection or suitability is more important when harvesting lugworms. In 

both cases, collector distribution was skewed to the south of the BNNC EMS.  

 

Figure 2:11: Number of collectors observed per shore during the broad scale observation days. A) 
Lugworm collectors on sediment shores (24th January 2015). B) Periwinkle collectors on rocky shores 
(2nd August 2015). Regularly observed shores in bold underlined. n = total number of collectors.  

 

Ratios were developed for newly identified collection sites compared to regularly 

observed shores, for subsequent use in BNNC EMS wide biomass estimates. 

Boulmer was chosen as the standard for regularly observed shores (ratio of one), 

due to the popularity for both target species collection. All regularly observed shores 

were not given a ratio due to more detailed and accurate data being available. 

Shores with no collectors recorded on the broad scale observation days were 

assumed to generally have no collection, and are given a ratio of zero. The resulting 

ratios for all shores can be seen in Table 2:3.  

 

 

A) B) 
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Table 2:3: Ratios (1 d.p) of collector numbers for the broad scale collection day shores when 
compared to Boulmer collection levels.  
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Lugworm - 0.1 1 0 0 0 - - 0 0 0 0 0 0.2 0 0 0 

Periwinkle - 0 1 0 0 0 - - 1.6 0.4 0 0.1 0.1 0.6 0 0 0 

 

2.3.3 Questionnaires – Collection Details 

A total of 66 questionnaire responses were received from lugworm collectors, of 

which 27 were online, and 39 face to face. Periwinkle collection responses totalled 

11, all face to face.  

Lugworm Collection questionnaire responses supported the patterns observed 

during regular and broad scale shore observations. The most popular collection 

shores were Boulmer, Berwick, and Newton. All other shores included in the 

questionnaire had at least one respondent declaring that collection occurs there, with 

one stating that “collection occurs everywhere there are lugworms”. Collection is 

likely to occur on most shores within the BNNC EMS where lugworm density is high 

enough for effective collection, whilst higher collection intensity appears to occur at a 

few main shores. Seasonality of collection supported that recorded from shore 

observations. The majority of collectors (78%) only harvest lugworms in winter, 

namely September through February. However, several collectors harvest year 

round, presumably related to commercial collectors maintaining a regular income.  

Weekends were the preferred collection day, with 88% of respondents collecting on 

Saturdays and Sundays compared to 56% on weekdays. The low tide height (i.e. 

spring vs neap tides) was a consideration for 83% of respondents when deciding 

when to harvest lugworms, with spring tides being the preferred condition. Around 

half the respondents collect lugworms in hours of darkness, be that early mornings, 

late evenings, or middle of the night. Digging with a fork was the most popular 

harvesting method, with 70% of people using this method either alone or combined 

with a bait pump. The details of collection trips varied substantially between 

respondents. Harvesting frequency ranged from every other day to every few 
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months. Respondents spent between less than an hour and four hours collecting per 

tide, and harvested between less than 50 and more than 700 worms each time. The 

majority of collectors harvested less than 200 worms per trip (82%), with a mean of 

135.22 (±143.78 SD) worms.  

Choosing a harvesting location was mainly based on lugworm size and density for 

the majority of collectors. 93% selected lugworm density as an important factor, and 

71% consider lugworm size important. Other popular consideration factors included 

travel distance from home (37%), sediment type (27%), and parking availability 

(15%).  

Several rocky shores were identified as harvesting locations for periwinkles by the 

questionnaire respondents: Boulmer, Alnmouth, Newton, Howick, Beadnell, Berwick, 

and Eyemouth. Summer months were the preferred collection period (May, June, 

July, and August), and none of the respondents collect periwinkles in hours of 

darkness. Collection details varied greatly between respondents. Frequency of 

collection ranged from daily to every few months. Collection periods last between 1 

and 5 hours, and respondents harvest between a few pounds and 7 stone per trip. 

Most collectors harvested less than 20 pounds per trip (55%), with a mean value of 

30.59 (±25.24) pounds.  

2.3.4 Questionnaires - Commercial vs Recreational  

There were clear differences in the questionnaire responses between expected 

commercial collectors and recreational collectors. Commercial collectors for both 

lugworms and periwinkles generally harvested larger amounts per trip, spent longer 

collecting per trip, and collected more often (Table 2:4 and Table 2:5). The 

differences between commercial and recreational lugworm harvester responses 

were statistically significant for the number of trips per month (Mann-Whitney U-test, 

U = 472.5, n commercial, recreational = 9, 57, P < 0.001), hours spent collecting per trip 

(Mann-Whitney U-test, U = 501.5, n commercial, recreational = 9, 57, P < 0.001), and the 

number of worms harvested per trip (Mann-Whitney U-test, U = 538.0, n commercial, 

recreational = 9, 57, P < 0.001). The differences between commercial and recreational 

periwinkle harvester responses were also statistically significant for the number of 

trips per month (Mann-Whitney U-test, U = 41.0, n commercial, recreational = 5, 6, P < 0.05), 

hours spent collecting per trip (Mann-Whitney U-test, U = 41.5, n commercial, recreational = 
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5, 6, P < 0.05), and the mass of periwinkles harvested per trip (Mann-Whitney U-test, 

U = 45.0, n commercial, recreational = 5, 6, P < 0.05).   

 
Table 2:4: Lugworm collection details (means ± SD) for all collectors combined (n = 66), commercial 
only (n = 9), and recreational only (n = 57).  

 No. of Trips per 
Month 

Hours Spent per 
Trip 

No. of Worms per 
Trip 

Combined 3.15 (±3.61) 2.17 (±0.85) 135.22 (±143.78) 
Commercial  8.67 (±6.28) 3.28 (±0.67) 400.00 (±196.85) 
Recreational  2.28 (±1.95) 1.99 (±0.73) 94.30 (±71.81) 

 

Table 2:5: Periwinkle collection details (means ± SD) for all collectors combined (n = 11), commercial 
only (n = 5), and recreational only (n = 6).  

 No. of Trips per 
Month 

Hours Spent per 
Trip 

Mass Collected per 
Trip (lbs) 

Combined 4.78 (±8.68) 2.86 (±1.12) 30.59 (±25.24) 
Commercial  9.00 (±12.04) 3.50 (±0.71) 51.80 (±23.00) 
Recreational  1.27 (±1.38) 2.17 (±0.82) 12.92 (±5.10) 

 

Using the means from  Table 2:4 and Table 2:5 to calculate the average amount 

collected per person per month results in 215 worms per recreational lugworm 

collector, 3,468 worms per commercial lugworm collector, 16.41 lbs per recreational 

periwinkle collector, and 466.20 lbs per commercial periwinkle collector. The average 

amount collected monthly by individual commercial collectors for both lugworm and 

periwinkle collection is far higher than that of recreational collectors, as much as 16 

and 28 times higher respectively. If ratios of commercial to recreational collectors 

from the questionnaire respondents are assumed to be representative of the 

industries within the BNNC EMS as a whole, then commercial lugworm collectors are 

estimated to take 72.8% of the harvested worms, and commercial periwinkle 

collectors 95.9% of the harvested periwinkles.  

2.3.5 Biomass Removal Estimates 

Annual biomass estimates were calculated using the number of collectors per shore 

from regular shore observations and the mean mass harvested per collector per trip 

from questionnaires. The mean number of worms collected per trip was 135.22, with 

an average worm mass 0f 6.0g, resulting in an estimated average biomass of 0.81 

kg of lugworms harvested per collector per trip. High and low scenarios were also 

considered using 95% CIs of the number of worms collected, resulting in an 

estimated 0.60 – 1.02 kg. The average mass of periwinkles collected per person per 
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trip was 13.87 kg. High and low scenarios for periwinkle harvesting mass are 7.11 – 

20.64 kg.  

Data were extrapolated over all unobserved days using the number of days in each 

observation category (see 2.2.3 Estimating Biomass Removal – Table 2:2) and 

further extrapolated onto all unobserved shores using broad scale observation ratios 

(see 2.3.2 Broad Scale Observations - Table 2:3). The annual biomass removal 

estimates for each identified collection site and the BNNC EMS as a whole can be 

seen in Table 2:6 for lugworms and Table 2:7 for periwinkles, with average, high, 

and low scenarios for each. The average estimates are 1.24 tonnes of lugworms and 

13.40 tonnes periwinkles removed annually from shores lying within the BNNC EMS 

boundaries. However, low and high scenarios (95% CIs) suggest values could lie 

between 0.92 and 1.56 tonnes for lugworm, and between 6.86 and 19.93 tonnes for 

periwinkle harvests.  

Based on the average bait worm UK retail value of £42 per Kg (Watson et al., 

2017a), the lugworm fishery in the BNNC EMS is estimated to be worth £52,128, 

with low and high scenarios of  £38,747 and  £65,509. The periwinkle fishery is 

estimated at £133,982, based on an average retail value of £10 per Kg (Berwick 

Shellfish Company, 2017; The Fish Society, 2017), with low and high scenarios of  

£68,633 and   £199,330.  

 
Table 2:6: Total annual number of lugworm collectors (rounded to whole numbers when using ratios) 
visiting each sediment shore, and corresponding biomass removal estimate (kg, 2 d.p) for each 
collected shore within the BNNC EMS, and the area as a whole.  

Shore No. of Collectors 
Average Biomass 

Removed (kg) 

Low Scenario 
Biomass Removed 

(kg) 

High Scenario 
Biomass Removed 

(kg) 

Alnmouth 4 3.25 2.41 4.08 
Boulmer 876 710.72 528.28 893.15 
Foxton 88 71.07 52.83 89.32 
Newton  387 313.98 233.38 394.58 
Berwick 175 142.14 105.66 178.63 

BNNC EMS 1,530 1,241.16 922.56 1,559.75 
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Table 2:7: Total annual number of periwinkle collectors (rounded to whole numbers when using ratios) 
visiting each rocky shore, and corresponding biomass removal estimate (kg, 2 d.p) for each collected 
shore within the BNNC EMS, and the area as a whole.  

Shore No. of Collectors 
Average Biomass 

Removed (kg) 

Low Scenario 
Biomass Removed 

(kg) 

High Scenario 
Biomass Removed 

(kg) 

Alnmouth 24 333.01 170.59 495.43 
Boulmer 191 2,650.20 1,357.59 3,942.81 
Newton  36 499.51 255.88 743.15 
Beadnell 139 1,928.68 987.98 2,869.37 
Seahouses 310 4,306.57 2,206.08 6,407.06 
Bamburgh 116 1,614.96 827.28 2,402.65 
Holy Island 15 207.05 106.06 308.03 
Scremerston 15 201.87 103.41 300.33 
Berwick 119 1,656.37 848.49 2,464.25 

BNNC EMS 1,530 13,398.22 6,863.36 19,933.09 
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2.4 Discussion 

2.4.1 Shore Observations  

Lugworm collectors were observed more frequently than periwinkle collectors during 

regular shore observations, likely due to the large, sustained, angling community 

which both drives and carries out lugworm collection (Angling Trust, 2013), and the 

decreasing, aging, population of periwinkle collectors observed in other locations 

(Cummins et al., 2002).  

There were clear site preferences for both lugworm and periwinkle collection 

activities during regular shore observations. Broadscale observations revealed that 

site selectivity was greater for lugworm than periwinkle collection, with fewer 

collection sites identified. Many factors play a role in deciding how suitable and 

therefore popular a site is for certain activities (Phillips and House, 2009; Paudel et 

al., 2011; MMO, 2012). Key considerations include: ease of access, travel distance, 

safety, target species abundance, etc. (e.g. Phillips and House, 2009; Paudel et al., 

2011; Villamagna et al., 2014). It is thought that personal taste, as well as site 

characteristics can play a part (Paudel et al., 2011).  

Boulmer and Newton reamained popular lugworm collection shores despite 

legislative restrictions (NCAONB, 2009), possibly because they cointain both 

Arenicola marina and the scarcer Arenicola defodiens (personal observation) which 

is often favoured by anglers (Fowler, 1999). Broad scale observations identified 

Seahouses as a very popular periwinkle collection site, which is a recognised 

commercial location (Northumberland County Northumberland County Council, 

2014a). Berwick was also popular, which was expected due to the close proximity of 

a major shellfish wholesaler (Berwick Shellfish Company) for fast and convenient 

sales.  

There was a southerly skew to the collection sites identified during broad scale 

observations for both collection activities. This skew can be explained by human 

population distribution within the study area. North Northumberland has a population 

density of 26.3 people per km2, compared to South East Northumberland with 737 

people per km2 (Northumberland County Northumberland County Council, 2014b). 

South East Northumberland’s northern border lies just below the BNNC EMS. It is 

possible that many of the collectors in the south of the EMS travel from the densely 
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populated South East Northumberland. Informal interviews around questionnaires 

confirmed this, with many collectors regularly travelling from as far south as 

Sunderland to collect lugworms from Boulmer.  

Seasonality was strong for both collection activities. The majority of lugworm 

harvesting occurred in winter, which was expected due to higher bait demand from 

the winter fishing season - specifically Cod fishing (Townshend and O'Connor, 

1993). In contrast, summer was the peak periwinkle collection season. This was 

once the low season for periwinkle sales, however the introduction of exporting to 

Europe has since increased the summer demands (Cummins et al., 2002), allowing 

summer commercial collection to thrive.  

Spring tides were favoured by both collection activities, which is in line with previous 

studies (Cummins et al., 2002). During spring tides a larger area of shore is exposed 

and available for harvesting. In addition to more stock available, the body size of 

both target species are generally thought to increase lower down the shore 

(Chapman and Newell, 1949; Bruce et al., 1963; Perez et al., 2009), allowing for 

better quality and higher value harvests (Cummins et al., 2002). Additionally, A. 

defodiens is only exposed by the lowest tides (Fowler, 1999), so bait pumping can 

only occur at these times. Neap tide collection did occur, but with a much lower 

frequency and intensity. Some of these lugworm collectors were known commercial 

operators whom collected at all tidal states despite conditions not being ideal.  

Digging was likely more popular than pumping because it is more flexible - capable 

of harvesting both A. marina and A. defodiens, at a variety of tidal states. 

Conversations with collectors revealed that pumps can be difficult to use and require 

a specific technique, which many stated they gave up on after unsuccessful 

collection attempts: “bait pumps can save your back, but they are faffy and I can’t get 

the knack, so I don’t use mine anymore” (questionnaire respondent, personal 

communication, 2015). The flexibility as well as ease of use may explain the 

popularity of the traditional digging fork. Bait pumps create far less sediment 

disturbance during collection, and are thought to have a lower impact on other 

infaunal invertebrates (Fowler, 1999). If bait pump proportional use was to increase 

in the future, some of the negative impacts of lugworm collection (e.g. reduction in 
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infaunal invertebrate abundance and species richness (e.g. Van den Heiligenberg, 

1987; Beukema, 1995; Brown and Wilson, 1997)) may be reduced.  

Night collection was only recorded for lugworms, with substantial collection occurring 

at both Boulmer and Newton during hours of darkness. This is in contrast to 

observations of bait digging activity in the Solent, where night collections were less 

common (Watson et al., 2015). Many of the lowest spring tides occurred at night 

during the observation period, which explains the willingness of many collectors to 

harvest in these conditions. The vast majority of Newton collection occurred in hours 

of darkness, with a lower but still significant proportion at Boulmer. The higher night 

collection at Newton is likely due to collectors avoiding enforcement of the bait 

digging legislation in place there. National Trust rangers or wardens ask bait diggers 

to leave the shore when observed (personal communication). No patrols occur at 

night, leaving the shore open for collection without enforcement. When detection 

probability is low, illegal fishing is more likely to occur (Nielsen and Mathiesen, 

1999). Increased illegal activity at night is a classic avoidance strategy, which has 

been observed in many previous fishery studies (e.g. Anderson, 1989; Crawford et 

al., 2004; Ganapathiraju, 2012).  

The adherence to spatial rules and regulations more generally was variable. Byelaw 

compliance was high at Boulmer, but low at Newton. The Boulmer byelaw is in place 

to protect local fishermen and their equipment when launching boats from the shore, 

whereas Newton is restricted for conservation reasons (UK Marine SACs Project, 

2001a; NCAONB, 2009). Rules to protect structures (such as jetties and moorings) 

have also been observed to have higher compliance than those for conservation 

reasons in previous bait digging studies, perhaps due to the clarity of what is allowed 

and why, the associated shore user safety, and the additional deterrent of property 

damage litigation (Watson et al., 2015). A conversation with one collector revealed 

that they only adhere to the Boulmer byelaw out of respect for the fishermen: “some 

people ignore the rules here, but I respect the fishermen and what they do too much 

to interfere around the boats” (questionnaire respondent, personal communication, 

2015), suggesting conservation would be a lower driver of adherence for some 

individuals. Enforcement at both collection sites is low when both day and night are 

considered. NIFCA officers patrol the shores occasionally, and were observed at 

Boulmer a couple of times during daytime observations, whereas Newton has less 
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official enforcement from National Trust rangers or wardens on a day to day basis 

(but not night). Other unobserved restricted areas within Northumberland include 

Budle Bay, which is enforced by Natural England rangers from the Lindisfarne 

National Nature Reserve. Compliance is generally thought to be high in this area 

(Andrew Craggs, personal communication, 2015). However, again, night 

enforcement is lacking, and the occurrence or level of night time exploitation is 

unknown. Effective enforcement is critical to achieve a high level of compliance 

(Ceccherelli et al., 2011; Cooke et al., 2013; Watson et al., 2015). Methods need to 

be face-to-face, as passive approaches such as signage, education, and codes of 

conduct alone have been ineffective in the past (Watson et al., 2015). Increased 

enforcement of existing byelaws in the BNNC EMS is required to further reduce non-

compliance, especially during the night.  

2.4.2 Questionnaires – Collection Details 

Participation of periwinkle collectors was low (11 individuals), a difficulty also 

encountered in other intertidal fisheries studies (e.g. Cummins et al., 2002; Diogo et 

al., 2016), as it can be difficult to openly study black economy industries due to the 

secrecy involved (McKay et al., 1997; Cummins et al., 2002). Lugworm collector 

participation was higher (66 individuals), and interviewers encountered mostly 

previous respondents or refusals towards the end of the observation period, 

suggesting that a representative sample of local collectors was achieved.  

Questions which overlapped observable behaviours such as seasonality, collection 

method, and collection hotspots, agreed well with the patterns recorded from shore 

observations. This commonality validates the questionnaire data, an essential aspect 

of questionnaire design (Tashakkori and Teddlie, 2003), and suggests that generally, 

the questionnaire data can be considered reliable and reasonably representative. 

There was a high degree of variability between respondents on aspects such as 

frequency of collection, duration of collection trips, and harvest quantity per trip. This 

is likely due to the high diversity of collectors for both activities – e.g. commercial vs 

recreational, competitive sport fishers vs casual leisure fishers, and full-time 

commercial collectors vs supplementary income commercial collectors 

(questionnaire respondents, personal communications, 2015). Individual collectors 
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have various motivations for harvesting lugworms and/or periwinkles, resulting in 

contrasting harvesting regimes and results (Fowler, 1999).  

The average mass taken per collector per trip was 0.85 kg for lugworms, and 12.14 

kg for periwinkles. Ragworm collection in the Solent appears to have higher catch 

rates than lugworms within Northumberland, with collectors harvesting an average 

1.4 kg per hour at popular sites, equating to over 4 kg per tide (Watson et al., 

2017a). Bait digging bag limits elsewhere within the Solent (Pagham Harbour) are 

set at 0.5 kg per collector per visit (Watson et al., 2015), resulting in lower harvest 

quantities per trip than those recorded in this study due to management. Periwinkle 

collectors clearly tend to harvest larger amounts each time than lugworm collectors. 

Although this collection activity appeared less popular in shore observations, the 

total harvest amounts are substantial due to these larger harvest quantities. This 

finding was also observed on shore, as periwinkle collectors often filled several large 

sacks (onion sacks (Crowley, 1975)), whereas lugworm collectors worked with much 

smaller capacity buckets (personal observation). Periwinkle fisheries in other parts of 

the world have substantially higher catch rates. In Tasmania, Australia, where 

harvesting is carried out by divers, a single days harvest (5 hours per day) can be 

100-300 kg per fisher (Keane et al., 2014).  

Lugworm collectors showed strong preferences for sites with high quality lugworm 

stocks (large size and high density) over more practical considerations such as 

distance from home, ease of access, and parking availability. Conversations with 

collectors further confirmed this, as several stated that they travelled considerable 

distances to reach the best bait beds, with one stating that they travelled to Scotland 

(from South Northumberland) on occasion to maximise their harvest: “Edinburgh on 

a big tide is a good place to go, I collect there a couple of times a month” 

(questionnaire respondent, personal communications, 2015). Factors other than 

lugworm quality play a stronger role for some collectors than others, presumably 

linked with collection motivations. Site selection factors are important to consider, 

and can be used to map or model likely collector distribution (e.g. Bello-Pineda et al., 

2006; MMO, 2012; Villamagna et al., 2014), which can be useful for spatial 

management (Jorgensen, 2011). Models trying to predict or represent lugworm 

collector ‘habitat suitability’ (Ortigosa et al., 2000) (i.e. site selection) must consider 
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lugworm quality as a very influential factor (see Chapter 5 for an example model 

using lugworm quality as a significant indicator of collection intensity or probability).  

2.4.3 Questionnaires – Commercial vs Recreational 

There was a definite presence of commercial collectors within both fisheries. 

Commercial collectors seemed to be proportionally higher within the periwinkle 

industry (45% of respondents, compared to 14% lugworm respondents), likely due to 

the legitimacy of the activity and ease of sales direct to shellfish wholesalers 

(Cummins et al., 2002). In comparison, commercial lugworm collection is not 

allowed, with no central buyer, which can explain the lower prevalence of 

commercial collectors within the fishery.  Some commercial lugworm collectors 

appeared to be unaware that commercial collection was forbidden “as long as I don’t 

dig in the no-digging zone I can collect and sell as much as I like” (questionnaire 

respondents, personal communications, 2015). Perhaps increased education of the 

rules and regulations is needed. One such commercial collector openly admitted to 

supplying local fishing tackle shops, which even contributed to collection expenses 

such as mileage: “the tackle shop gives me half my petrol money to get to Edinburgh 

on big tides” (questionnaire respondent, personal communications, 2015). Another 

popular sales avenue for commercial lugworm collection appears to be online using 

fishing related pages on popular social media sites (personal observation).  

There were substantial differences in collection details (harvest quantities, time spent 

collecting per trip, and how often they collect) between recreational and suspected 

commercial collectors in both fisheries. Commercial collectors harvest more 

intensively – higher quantities, longer durations, and with greater frequency. Similar 

observations over collection durations have been inferred in previous studies 

(Watson et al., 2015). The difficulties in proving commercial lugworm collection is 

well recognised (Watson et al., 2015). Due to the use of the same collection 

methods, the two groups can be impossible to differentiate on the shore. With the 

added difficulty of personal bait storage systems increasing harvested worm 

longevity (e.g. Eguchi, 2001; Watson et al., 2017a), it is difficult to ascertain a 

realistic harvesting quantity threshold to differentiate personal use from commercial 

sale. However, for management purposes it is critical to attempt to categorize the 

collection details of the two contrasting collector groups (commercial and 
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recreational) (Watson et al., 2017a). This questionnaire data gives some useful 

discrimination between the two groups. With an average of 94 worms per 

recreational collector and 400 per commercial, a conservative estimate would be that 

an individual harvesting more than 200 worms per trip can be considered likely 

commercial. It is possible that some overlap will exist within this broad 

categorisation, such as recreational individuals whom fish very frequently (Armstrong 

et al., 2013), and/or use long-term (weeks) storage solutions (Watson et al., 2017a) 

exceeding the 200 worm threshold. A similar categorization can be done for 

periwinkle collection, with harvest quantities over 20 lbs broadly considered a 

commercial quantity.  

Even with the lower proportion of commercial lugworm collectors compared to the 

periwinkle industry, the harvest amounts per individual are so much higher that 

overall, commercial collectors are estimated to harvest over 70% the total lugworms 

harvested within the BNNC EMS. For periwinkles this is extraordinarily high at over 

95%. This highlights the importance of recognising the differences between 

commercial and recreational collection in future management plans, if commercial 

collection is having a disproportionately high impact.  

2.4.4 Biomass Removal Estimates  

Overall, a significantly higher biomass of periwinkles was harvested than lugworms 

(13.40 and 1.24 tonnes respectively). In terms of individuals, it is estimated that over 

3 million periwinkles (estimated average periwinkle mass of 4 g based on quantities 

per kg from shellfish wholesalers (Yerseke, 2017)) and just over 200,000 lugworms 

are removed from BNNC EMS rocky and sandy shores each year.  

 

It was previously estimated that 1,000 tonnes of bait worms are used in the UK each 

year (Fowler, 1999). If based on population size (National Office for Statistics, 2012), 

this would equate to approximately 5 tonnes within Northumberland, and if based on 

coastline length (The British Cartographic Society, 2008; NCAONB, 2009) 3.7 tonnes 

within the BNNC EMS. This would include other popular species such as ragworms 

(Fowler, 1999), and non-wild derived bait.  An estimated lugworm harvest of 1.24 

tonnes within the BNNC EMS seems relatively well matched with these previous UK 

wide estimates. However, more recent estimates of 3,400 tonnes of polychaetes 
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harvested annually from the UK (Watson et al., 2017a) far exceed those observed in 

the BNNC EMS if averaged over the area or population. This suggests that baitworm 

collection within Northumberland may not be as significant as in other locations in 

the UK. For example, Watson et al. (2017a) estimated that 4.9 tonnes of ragworms 

are removed from Dell Quay in the Solent each year. Similarly, the annual harvest 

estimates for D. neapolitana in the Canal de Mira, Portugal, are vast, with 45 tonnes 

removed each year (Cunha et al., 2005). These fisheries both translate to around 30 

g harvested per m2 (Watson et al., 2017a). If the 1.24 tonnes of lugworms removed 

from the BNNC EMS was spread evenly over all sediment shores (29.04 km2) the 

production value lies at around 43 mg per m2. However, when Boulmer alone is 

considered (744.60 kg over 0.16 km2) this figure rises to over 4 g per m2   and close 

to 10 g per m2   when only the legally harvestable area (high compliance) is 

considered. This higher production value is still three times lower than recorded for 

Dell Quay and Canal de Mira, however, is similar to those observed for ragworm 

collection at Fareham Creek (5 g per m2) in the Solent, and the G. dibranchiata 

fishery (9 g per m2) in Maine, USA (Watson et al., 2017a). At the most intensively 

harvested shore, the production value per m2 rivals those of other major bait worm 

fisheries both in the UK and abroad.  

 

Annual periwinkle harvest estimates for Ireland and Scotland are both 4,000 tonnes 

(McKay et al., 1997; Cummins et al., 2002). Based on the McKay et al. (1997) 

estimate for Scotland, the BNNC EMS would have an estimated 25 tonnes when 

equated by coastline length (Scottish NCAONB, 2009; Government, 2011). This is 

around double the current estimate for the BNNC EMS (13.40 tonnes). However, 

Scotland is regarded as having a very large periwinkle industry, being the 6th most 

important fishery by mass, and 7th by value (McKay et al., 1997), so this finding is not 

surprising. Additionally, Scotland’s harvest may have reduced over the last 20 years 

since this estimate was made, as periwinkle collection was predicted to decrease 

over time by Cummins et al. (2002) based on an aging collector profile.  

 

When the average estimated economic values of the BNNC EMS periwinkle and 

lugworm fisheries (£133,982 and £52,128 respectively) are compared to a value of 

£2.9 million for the Northumberland lobster fishery (Turner et al., 2009), it is easy to 

see how the collection of lugworms and periwinkles can be overlooked in terms of 
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management, legislation, and research (McKay et al., 1997). However, on a UK wide 

scale, the polychaete fishery is estimated to be worth £142 million per year, 

exceeding the lobster fishery by almost £40 million (MMO, 2013; Watson et al., 

2017a). The global polychaete fishery has recently been estimated at £5.9 billion 

(Watson et al., 2017a). The acknowledgement of the high value of bait worm 

fisheries in recent years may lead to increased attention in the future regarding 

sustainability and management.  

 

Many assumptions underpin these biomass removal estimates. Each component of 

the estimate (regular observations, broad scale observations, questionnaires) has 

associated uncertainty. Despite this, they are currently the only available biomass 

removal estimates for the BNNC EMS, and if used appropriately and conservatively, 

with acknowledgment of the weaknesses, they have the potential to help and support 

the creation of management plans. High and low scenarios of biomass and 

economic value are provided for this reason.  

The contrasting harvest quantities of lugworms and periwinkles cannot be interpreted 

into impact levels, as the collection activities are very different, create different levels 

of associated disturbance, and the target species play very different roles within their 

ecosystems (e.g. Blake, 1979a; Janke, 1990; Townshend and O'Connor, 1993; 

Beukema, 1995; McKay et al., 1997; Sharpe and Keough, 1998; Buschbaum, 2000; 

Berthelon et al., 2004; Volkenborn and Reise, 2006; Volkenborn et al., 2007b; 

Hidalgo et al., 2008; Crossthwaite, 2012). Similarly, no assessments of sustainability 

can be attached to these estimates, as key aspects of fishery stock assessment 

remain unknown, for example: stock size, stock status, and spawning biomass 

(Smith et al., 1993; Pitcher and Preikshot, 2001).   
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2.5 Conclusions 

The need to assess intertidal fisheries has been acknowledged for many years 

(Olive, 1994; McKay et al., 1997), yet they remain data poor, with inadequate 

information to support a harvest strategy or the implementation of control rules 

(Seafish, 2013). The lack of local and national fishery estimates creates challenges 

for managers (Watson et al., 2017a). The common overlap with protected areas 

means that the lack of data makes the conservation of habitats, as well as fisheries 

management, difficult to implement with confidence (Watson et al., 2017a).This 

chapter assesses the lugworm and periwinkle fisheries within the BNNC EMS, 

providing further evidence that intertidal fisheries can be significant, and should be 

assessed and considered in terms of management alongside other fisheries. The 

findings within this chapter supply localised fisheries data to managers, with the 

hope of informing future management plans under the requirement of the revised 

approach to commercial fisheries management in EMSs (MMO, 2014b). 

This study has unravelled details of both the periwinkle and lugworm fishery within 

the BNNC EMS, despite the difficulties associated with such secretive and 

unreported industries (e.g. McKay et al., 1997). Evidence of where, when, and at 

what intensity intertidal fisheries occur was previously lacking for both species 

(Moffat, 2015). The first quantitative (biomass and economic value) and spatial 

(broad scale collector distribution) assessments of the two fisheries are supplied, 

providing the best available evidence to managers. Future study could focus on finer 

scale collector distribution to inform ‘within shore’ management concepts, and 

continued monitoring is imperative for capturing changes over time.  
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Chapter 3 : Modelling the Suitability, Sensitivity, and Vulnerability of the 

BNNC EMS to Lugworm Collection 
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3.1 Introduction and Rational  

The growth of marine activities over time, including fishing, has led to the 

amplification and diversification of human pressures on the marine environment 

(DEFRA, 2015), resulting in increasingly complex uses of marine space, and 

necessitating marine habitat and species protection worldwide (Douvere and Ehler, 

2007). Marine managers aim to ensure sustainability, whilst minimising conflicts over 

resources and space (Jennings and Lee, 2012). Marine spatial planning (MSP), an 

emerging place-based management method stemming from the drive towards 

ecosystem-based management (Crowder and Norse, 2008), is implemented to help 

meet such aims (Douvere and Ehler, 2007; Douvere, 2008; Qiu and Jones, 2013). 

MSP is an integrated planning framework informing on the spatial distribution of a 

variety of marine activities, supporting current and future uses of marine ecosystems, 

whilst maintaining valuable ecosystem services for future generations (Douvere, 

2008).  

Fisheries management has an inherent spatial dimension (Douvere, 2008) well 

suited to MSP, with the definition of fishing grounds an important aspect to consider 

(Jennings and Lee, 2012). The management of fisheries applies to the resource 

users as much as the resource itself, as such there is a strong case for 

understanding the spatial dynamics of fishers (Turner, 2010), with the patchiness of 

fishing activities being an important consideration in the design of spatial marine 

management plans (Stelzenmüller et al., 2008). Recent years have seen an 

increased focus on the ability of spatial management methods, for example marine 

reserves, to benefit fisheries (e.g. Gell and Roberts, 2003; Halpern, 2003; Sweeting 

and Polunin, 2005; Green et al., 2014a; Lester et al., 2017). Increased 

understanding of the distribution of fishers has the potential to further improve spatial 

management success, allowing for example: the prioritisation of protecting areas 

with lower fishing levels, the closure of areas with high fishing pressure for stock 

protection (Stelzenmüller et al., 2008), the design of marine reserve networks 

(DEFRA, 2006), the identification of areas of economic importance to the fishing 

industry (Valcic, 2009), the assessment of fishery impacts, and the evaluation of 

resource management options (e.g. Pet-Soede et al., 2001; Turner et al., 2015) such 

as predicting responses of fishers to management (Valcic, 2009).  
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Within the field of marine fisheries management, large-scale and high-catch fisheries 

have received the most attention historically, with small-scale fisheries often lost in 

the market-based push towards sustainability (Jacquet and Pauly, 2008). There has 

been increased attention on small-scale fisheries in recent years (Berkes, 2003), but 

significant knowledge gaps remain. High resolution spatially accurate data are 

required to inform spatial management decisions (Eastwood et al., 2007; Halpern et 

al., 2012a; DEFRA, 2015), and the lack of such data in many small-scale fisheries 

raises both socio-economic and scientific concerns about the foundations of current 

spatial management decisions (Campbell et al., 2014). Within the Berwickshire and 

North Northumberland Coast European Marine Site (BNNC EMS), information on the 

distribution of small-scale, especially intertidal fisheries, is lacking. Multiple fisheries 

within the BNNC EMS have been identified by Natural England and NIFCA, under 

requirements from Defra’s revised approach (aka Fishing in MPAs project), as 

requiring further study to assess the impacts and inform management plans (MMO, 

2014b). Lugworm collection from sandflats and mudflats has been identified as one 

area where data are lacking. Anecdotally, lugworms are collected widely throughout 

the BNNC EMS, however, there is currently no data available on the distribution of 

collectors, and it is unknown if the fishery is damaging the interest features of the 

conservation designations (Berwick and North Northumberland SAC and various 

SPA supporting habitats in the area) at current harvesting levels. To analyse the 

potential conflict between the nature conservation targets and the lugworm fishery, 

more data are required at the appropriate spatial scales (Pedersen et al., 2009).  

Common methodologies for mapping fishers distribution, or fishing pressure for 

inshore and offshore fisheries include the utilisation of existing spatial data in the 

form of fishery logbooks, plotters, enforcement and patrol surveys, or vessel tracking 

(Jennings and Lee, 2012). Vessel monitoring systems are considered a valuable 

data source for assessing fisheries spatially (Pedersen et al., 2009). Within 

European seas, larger fishing vessels must operate a vessel monitoring system 

which transmits detailed information on the vessel location via satellites (O’Shea and 

Thompson, 2006). However, for smaller vessels without these systems (Turner, 

2010), and intertidal fisheries not utilising vessels (such as collecting bait worms), 

this data is not available. Other Northumberland fisheries (e.g. lobster) have been 

mapped using Northumberland Inshore Fisheries Conservation Authority (NIFCA) 
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patrol sighting data in recent years (Turner, 2010; Turner et al., 2015). However, this 

data does not exist for intertidal activities currently. NIFCA as part of the Fishing in 

MPAs project (MMO, 2014b) have been recording various activities along the coast 

and some lugworm collection data (anonymised) land-based patrols are becoming 

increasingly available but in low density and patchy distribution. With continued 

recordings, and an extended range, it is possible that NIFCA sightings data may be 

utilised in the future for mapping lugworm collection, using similar methods to those 

of Stephenson et al. (2017) for pot-fishing in Northumberland, accounting for patrol 

effort bias. However, until intertidal patrol sighting data are increased spatially and 

temporally, an alternate approach is required to map the lugworm fishery for which 

there is a lack of existing spatial data.  

Spatial modelling techniques provide a cost effective and practical means of 

informing management decisions when data are lacking (e.g Sala et al., 2002; Gritti 

et al., 2006; Adams-Hosking et al., 2011; Molloy, 2013). Fishing grounds or fisher 

distribution reflects choices by fishers, based on various factors such as: costs, past 

catch rates, agreements between fishers, hazard avoidance, and regulations (e.g. 

Gillis et al., 1993; Babcock and Pikitch, 2000; Rijnsdorp et al., 2000; Poos and 

Rijnsdorp, 2007). Similarly, coastal recreation distribution can be dependent on: 

ease of access, environmental quality, safety, and travel distance (Paudel et al., 

2011). Such choices or preferences can be used in models to predict where fishing 

is likely to occur for a particular fishing method. This is a land-use suitability model 

(Malczewski, 2004), an adapted habitat suitability model (Ortigosa et al., 2000), 

which is used to predict areas of human activity based on environmental variables. 

Spatial models have been used to successfully map fishing and recreational 

activities in previous studies (e.g. Bello-Pineda et al., 2006; MMO, 2012; Villamagna 

et al., 2014; McIntyre et al., 2015), and there is potential for lugworm fisheries to be 

modelled in similar ways, overcoming the current data gaps.   

To fully inform potential management, it is important to relate the fishery distribution 

to the protected features or the sensitivity of the study site, identifying conflicts 

between the fishery and conservation aims (Young et al., 2005). Describing the 

spatial distribution of fishing pressure alone can be useful for high-level 

management, but an understanding of the sensitivity of the targeted habitats makes 

the findings more meaningful at a local level (Bremner et al., 2005; Stelzenmüller et 
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al., 2008; Tyler‐Walters et al., 2009). Sensitivity is a combined measure of how 

intolerant a species or habitat is to damage, and how long the subsequent recovery 

takes (MarLIN, 2010). A high fishing pressure does not result in a large impact if the 

habitat is not sensitive to that particular activity (Stelzenmüller et al., 2008). This 

habitat sensitivity can also be modelled spatially. This has been done extensively for 

oil pollution using the Environmental Sensitivity Index (ESI), with the aim of 

prioritising clean-up efforts onto the most sensitive areas of the coast (Jensen et al., 

1998). For example, areas containing endangered species or high biodiversity are 

classed as more sensitive to oil spills (IPIECA et al., 2012). Broad scale habitat 

sensitivity to fisheries has been modelled and mapped for inshore areas of both 

Ireland (Roberts et al., 2010) and the Welsh part of the Irish Sea (Eno et al., 2013) to 

inform site-specific fishery management plans. Modelling the sensitivity of the 

intertidal area of Northumberland to lugworm collection activities at a finer scale is 

possible, revealing the most sensitive areas of the coast to managers.   

Sensitivity maps alone are not fully informative for marine management and planning 

(Roberts et al., 2010), however when combined with details of fishing pressure 

distribution, they can demonstrate vulnerability of the habitat to the fishing activity. 

Vulnerability assessment is an increasingly popular method in various sectors, and 

provides a better understanding of interactions and threats, as a basis for targeted 

management strategies (Mamauag et al., 2013). Vulnerability is a measure that 

combines information on sensitivity and exposure to an impact, for example, a 

habitat only becomes vulnerable when is it both sensitive to the activity and the 

activity is likely to occur there (Zacharias and Gregr, 2005; Roberts et al., 2010). A 

vulnerability model can be produced by combining measures of suitability and 

sensitivity, which can be used by managers to target protection methods to the most 

vulnerable locations. Vulnerability assessments combining sensitivity and exposure 

level are used for pressure assessments for OSPAR sites (Roberts et al., 2010), and 

similar theory can be applied to any combination of stressors and ecological features 

(Zacharias and Gregr, 2005). If both suitability and sensitivity are modelled for 

lugworm collection within the BNNC EMS, measures of vulnerability can be 

ascertained for each location, ultimately identifying specific areas for conservation 

purposes (Zacharias and Gregr, 2005).  
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Lugworm collection suitability and sensitivity have multiple factors within them, 

making it necessary to carry out multivariate analysis (Calenge, 2006), often termed 

multi-criteria evaluation (MCE) (Store and Kangas, 2001). In a management context 

this is also referred to as multi-criteria decision-making, were weights of preference 

are used to make better decisions, often using data layering processes to combine 

various criteria (Malczewski, 2004). Within this layering process there are two 

different methods commonly used, the Boolean overlay and weighted linear 

combination (WLC). Boolean overlay layers with ‘and’ and ‘or’ operations, whilst the 

WLC method standardises the suitability maps, assigning weights of importance to 

the various criterions (Malczewski, 2004), allowing for more complex relationships 

and a higher degree of detail to be included. There is no single accepted method for 

deciding criterion weights within WLC models. When empirical data is scarce, 

models can be built from the best available knowledge at the time, including patterns 

from previous studies (e.g. literature review), and expert knowledge (knowledge 

gained through training, education, or experience (Kuhnert et al., 2010b), e.g. 

ecologists and fishermen) (Jorgensen, 2011). Using expert knowledge in fields 

where there is little published data is a cost-effective way to make more confident 

predictions (Martin et al., 2005). Many studies have successfully incorporated expert 

knowledge into various types of ecological models (e.g. Store and Kangas, 2001; 

Martin et al., 2005; Murray et al., 2009, etc.). Regardless of the evidence source, it 

can be used and included in management decision making if it is judged to be 

relevant and trustworthy (Barends et al., 2014). Where empirical data are lacking for 

lugworm fisheries within the BNNC EMS, expert knowledge appears to be a useful 

tool to inform spatial models.  

This chapter aims to predict and describe the spatial patterns of lugworm fishing 

pressure within the BNNC EMS, relate the observed patterns to measures of 

sensitivity, and ultimately map the vulnerability of the study area to lugworm 

collection. Three spatial models are produced (suitability, sensitivity, and 

vulnerability), utilising data collected in the field (target species distribution), from 

literature review (impacts and sensitivities), and from expert knowledge (prioritising 

model criteria). Land-use suitability for lugworm collection is modelled using collector 

site preferences (e.g. target species quality, travel distance, etc.), sensitivity is 

modelled using recognised impacts associated with bait digging (e.g. especially 
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sensitive species or habitats), and finally both measures are combined to infer the 

environmental vulnerability. It is hoped that the models can be used to inform 

management plans for intertidal fisheries.   
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3.2 Methods  

Lugworm collection suitability, habitat sensitivity to lugworm collection, and ultimately 

environmental vulnerability to collection are modelled spatially for all sediment 

shores falling within the BNNC EMS boundaries, using a WLC method in ESRI Arc 

GIS 10.4 software. 

3.2.1 Model Requirements and Design 

The literature on lugworm collection, site selection/preferences, and habitat and 

species sensitivities were first reviewed to identify key model criteria, along with 

author knowledge gained from encounters with collectors during questionnaires 

(Chapter 2), and key informant advice. The selected criteria for the suitability and 

sensitivity models, and the rationale and evidence base for each, can be seen in 

Table 3:1 and Table 3:2 respectively.  

Based on a review of the spatial modelling literature, and the criteria identified, multi-

criteria evaluation (MCE) was required (Store and Kangas, 2001; Malczewski, 2004). 

The Weighted Linear Combination (WLC) modelling method was selected for use in 

this study because of the standardisation of the output maps, due to weightings 

which allow multiple criteria to be combined effectively (Malczewski, 2004). 
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Table 3:1: Suitability model criteria, rationale, and evidence sources.  

Criterion Rationale  Evidence Source  

Lugworm 
Abundance 

Anglers generally target shores with a higher 
abundance of worms, as it makes the collection 
easier/more efficient.  
 

Key Informant, 
Questionnaires 

Lugworm Size Anglers prefer larger worms and preferentially target 
them, therefore they would preferentially target 
shores which have larger worms available. 
 

Fowler (1999), 
Key Informant  

Black Lugworm 
Presence 

Black lugworms are often a preferred choice for 
anglers. Additionally, bait pumps can only target 
black lug, so bait pumpers would only target shores 
with black lugworm present. Commercial collectors 
also get a higher price for black lugs.  
 

Personal observations,  
Key Informant,  
Fowler (1999) 

Sediment Type Muddy sand appears to be the preferred sediment 
type by lugworm collectors. Mud is very difficult to 
work in, and sand is difficult to maintain trenches.  
 

Key Informant, 
Personal observations  

Distance to 
Parking 

Access to parking is important for collectors, as they 
carry relatively heavy equipment and the lugworms in 
buckets.  
 

Personal observations, 
Questionnaire  

Distance to 
Home 

Some commercial collectors are willing to travel long 
distances to harvest the best bait beds, however 
recreational anglers collecting for themselves are 
less likely want to travel too far since there is no 
financial gain to make it worth the extra distance. It is 
unlikely that they would travel further than a closer 
very suitable shore. Travel distance has been seen to 
influence beach choice for recreation.  
 

Questionnaire, , 
Paudel et al. (2011) 

Regulations  Areas without bait collection regulations are more 
suitable.  

Personal observations, 
Key Informant 
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Table 3:2: Sensitivity model criteria, rationale, and evidence sources. 

Criterion Rationale  Evidence Source  

Bird 
Importance  

Bait digging is known to disturb birds from feeding on 
sandy shores. Shores which are important to birds may 
be the most sensitive to bird disturbance from bait 
digging. 
 

Masero et al. (2008), 
Fowler (1999), Evans 
and Clark (1993) 
 
 

Eelgrass 
Presence  

Eelgrass species are sensitive to sediment disturbance, 
as uprooting damages it and it recovers very slowly. 
Therefore shores containing eelgrass beds are more 
sensitive to bait collection than those with none. It is 
also a very rare and important habitat. 
 

Cabaço et al. (2005), 
Roberts et al. (2010), 
Mieszkowska (2010) 
 

Sediment 
Type 

Mud is more sensitive to physical disturbance since it is 
naturally more stable than sand and has less natural 
disturbance and movement. Since mud is more stable it 
also contains longer lived species which tend to recover 
more slowly. Therefore muddy shores are generally 
more sensitive than sandy shores to bait digging 
disturbance. 
 

UK Marine SACs 
Project (2001a), 
MacDonald et al. 
(1996), Ferns et al. 
(2000), Roberts et al. 
(2010) 

Lugworm 
Abundance 

If the target species is already at a low abundance due 
to less suitable habitat or other environmental factors, 
that population will be more sensitive to exploitation, 
due to lower and slower recoverability.  
 

Cunningham (2014), 
Cryer et al. (1987), 
Blake (1979a) 

Lugworm Size Larger lugworms have a higher reproductive output, 
and so better recoverability.  
 
 

Pedersen et al. (2009), 
Watson et al. (1998) 

Shore 
Isolation  

Isolated shores such as pocket beaches surrounded by 
vast rocky shores would likely have poor recoverability. 
There would be no availability of close-by adult 
populations to migrate into disturbed patches and 
recruitment may be smaller. This is true for both the 
target species and the infaunal community as a whole.  
 

Fowler (1999) 

 

 

3.2.2 Data Collection  

Spatial Data 

Much of the spatial data required to inform the models were freely available from a 

variety of sources displayed in Table 3:3.  
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Table 3:3: Data Requirements to populate the models and the data sources used or identified.   

Criterion Data Source  

Sediment Type Biotope data from EMOD.net and sediment type data from OS Maps 
(accessed viahttps://digimap.edina.ac.uk/). Accessed May 2016.  
 

Distance to Parking Remote sensing using Google Maps (https://www.google.co.uk/maps/) 
satellite imagery and author knowledge of local parking sites. Accessed 
May 2016.  
 

Distance to Home ‘Large urban areas’ identified from OS maps (accessed via 
https://digimap.edina.ac.uk/). Accessed May 2016.  
 

Regulations Literature and documented byelaw maps. Accessed May 2016.  
 

Bird Importance SPA designation boundaries from Natural England correspondence. 
Accessed May 2016.  
 

Eelgrass Presence  Seagrass data from Environment Agency surveys. Accessed September 
2016.  
 

Shore Isolation Remote sensing using Google Maps (https://www.google.co.uk/maps/) 
satellite imagery. Accessed May 2016.  
 

Lugworm Abundance No data available – field collection needed 
 

Lugworm Size No data available – field collection needed 
 

Black Lugworm 
Presence  

No data available – field collection needed 

 
 

Most criteria were directly measurable or discrete, for example Regulations (there is 

either regulations in place, or not), and Distance to Parking (easily measured in 

spatial analysis software from satellite imagery). However, Bird Importance is not so 

easily defined. Bird sensitivity to disturbances such as bait collection is species 

specific (Davidson and Rothwell, 1993) (see Chapter 1, Table 1.2 for more detail on 

individual species potential impacts), and as such, species specific shore use data 

would be preferred for model accuracy. WeBS was considered as a data source, but 

proved unsuitable at the scale of the EMS as a whole. Therefore, SPA designation 

was chosen as a proxy measure for bird importance, assuming that areas chosen for 

bird protection would be highly sensitive to activities which cause bird disturbance, 

despite the lack of species specific impact data available.   

Data on lugworm species presence, density, and body size were not available, so 

field data collection was required. Data collection points were generated using GIS to 

evenly distribute sampling across the EMS. Fishnet grids were randomly laid over 

the sediment shores on OS maps. The GPS of centroids of each grid square were 
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recorded for visitation in the field. Grids of 100m repetition were used for the majority 

of the study area, whilst 300m was used for more extensive areas of sediment 

(Budle Bay, Fenham Flats, and Goswick Sands (Figure 3:1) where a finer resolution 

was not appropriate for sampling (due to time and resource constraints with a 

substantially higher number of sample points at a finer resolution). Within these 

larger areas, not all identified coordinates could be visited in the field due to time and 

safety constraints. Areas that were sampled can be seen in Figure 3:1. All other 

shores within the BNNC EMS were sampled in their entirety at the 100m resolution.  

 

 

 
Figure 3:1: Sampled areas of Budle Bay, Fenham Flats, and Goswick Sands, where sampling was not 
able to cover the entire sediment area. Density of sample points corresponds to either 100m or 300m 

sampling resolution.  

At each sample point the lugworm species were identified, and density and body size 

were recorded. Four replicate quadrats (1m2) were randomly placed within 5 meters 

of the GPS point, to obtain averages for each grid square. Species identity was 

inferred from the faecal cast characteristics (Cadman and Nelson-Smith, 1993). 
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Lugworm density was recorded by counting the number of casts within the quadrat. 

Cast strand diameter was used as a proxy for lugworm size (Retraubun et al., 

1996b), which was recorded with callipers to the nearest millimetre for ten randomly 

chosen casts per quadrat. At coordinates where lugworms were present in low 

abundances but not recorded within quadrats, a mean density of 0.1 per m2 was 

assigned within the model, to give the most representative lugworm 

distribution/density maps possible (no grid squares recorded as containing no 

lugworms when they were present in low density).  

Non-Spatial Data 

The weightings for model criteria were determined by interviews with experts. 

Experts were sought from a variety of backgrounds (conservationists, land 

managers, academics, and angling) to reduce bias. The consulting experts or their 

organisations can be seen in Table 3:4.  

Table 3:4: Experts/Organisations consulted for opinions on the importance of each criteria within each 
model 

Authority/Employer Suitability  Sensitivity  

Author -  Personal Observations and Key 
Informants 
 

    

Natural England      

NIFCA     

Northumberland Wildlife Trust     

Angling Trust     

Academic – Newcastle University     

 

 

Expert interviews were conducted face to face where possible, with participants 

asked to rank the model criteria in order of importance. The resulting rankings were 

subsequently averaged to aggregate the multiple responses (Kuhnert et al., 2010b) 

and converted into model weights (highest weight = most important), which can be 

seen in Table 3:5 and Table 3:6. An adapted Delphi approach was used for 

elicitation (Kuhnert et al., 2010b), ensuring all experts were satisfied with the 
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combined results, and allowing for adequate feedback prior to incorporation within 

the models.  

 
Table 3:5: Mean and resulting criterion ranked scores for the suitability of lugworm collection 
(averaged from 4 experts), with corresponding model weights 

Criterion Lugworm 
Abundance 

Lugworm 
Size 

Black 
Lugworm 
Presence 

Sediment 
Type 

Distance 
to Parking 

Distance 
to Home 

Regulation 

Average 
Ranking 
 

1.75 2.5 2.5 4 5.25 6 6 

Resulting 
Ranking 
 

1 2 2 3 4 5 5 

Weighting 5 4 4 3 2 1 1 

 

Table 3:6: Mean and resulting criterion ranked scores for the sensitivity of lugworm collection 
(averaged from 5 experts), with corresponding model weights 

Criterion Bird Importance Zostera spp 
Presence 

Sediment 
Type 

Lugworm 
Abundance 

Lugworm 
Size 

Shore 
Isolation 

Average 
Ranking  
 

2.6 2.8 2.2 4 4.6 4.8 

Resulting  
Ranking 
 

2 3 1 4 5 6 

Weighting  
 

5 4 6 3 2 1 

 
 

Weightings allow the most important factors to have more influence over the model 

outputs (Malczewski, 2004). Within the suitability model criteria, lugworm abundance 

was the selected as the most influential factor for collectors selecting where to 

harvest. This is due to bait diggers preferentially targeting shores with high numbers 

of lugworm, with the aim of exerting less effort (amount of sediment overturned) for 

the same return (number of worms harvested) (expert interviews, personal 

communications, 2016). Bait digging regulations were assigned the lowest weighting 

by experts for the suitability model because collection is known to occur illegally 

despite regulations, and although they may deter some collectors, it does not make 

the site unsuitable overall (expert interviews, personal communication, 2016). Non-

compliance with these regulations has been observed within the BNNC EMS 

(Chapter 2), and the UK more widely (Watson et al., 2017a). The suitability model 

aims to map where collection likely occurs, rather than where it should or should not 

occur. Therefore, the model outputs may show areas with bait digging restrictions as 

highly suitable, despite the obvious unsuitability for managers.  
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For the sensitivity model, sediment type was considered the most influential factor by 

experts due to bait digging and pumping being better suited to certain sediment 

conditions (expert interviews, personal communications, 2016). Bird importance was 

also considered highly influential, as birds are a major classified feature of many of 

the conservation designations within the BNNC EMS, and are known to be sensitive 

to the disturbance associated with bait collection (Masero et al., 2008; NCAONB, 

2009; experts interviews, personal communications, 2016). Shore isolation was 

considered the least influential factor of environmental sensitivity, due to experts 

prioritising factors which directly affect sensitivity via the intolerance level of the 

habitat or species to disturbance, rather than the rate of recovery if impacts were 

significant (expert interviews, personal communications, 2016).  

 

3.2.3 Model Building  

ESRI Arc GIS 10.4 software was used to manipulate the spatial data and build the 

models.  

Model Contents  

Separate models were constructed for suitability and sensitivity, which were 

subsequently combined to provide a measure of vulnerability (Zacharias and Gregr, 

2005; Roberts et al., 2010), seen in Figure 3:2.  

All data, existing and field collected, needed some manipulation and reclassification 

to create thematic data layers. The criteria were standardised using a scoring system 

for the sub-categories within (e.g. size classes of lugworm within the lugworm size 

criterion), which is required for MCE (comparable units) (Hossain and Das, 2010). A 

scale of 0-6 was used for both models, with a score of 6 signifying the most suitable 

or sensitive category. The numerical definitions of each sub-category with 

continuous data were calculated in Arc GIS using Jenks natural breaks optimization 

to cluster the data appropriately, minimising each classes average deviation from the 

class mean, and maximising that between classes (Jenks, 1967). The sub-

categories within non-continuous data criteria were selected based on discrete, more 

descriptive classes, e.g. mud or sand. The class direction of scoring within 

categories was decided using expert opinion gained during the expert interviews for 

weightings, questionnaire responses and key informant conversations with bait 
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collectors (see Chapter 2 for more details), and literature research. The criteria, sub-

categories, descriptions, scores, and justifications can all be seen in Table 3:7 and 

Table 3:8 for the suitability and sensitivity models respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:2: Conceptual model diagram. Far left are the model criteria and input data layers, middle is 
the two major model outputs, and far right is the final model output.  
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Table 3:7: Suitability model criteria scoring: sub-categories, definitions, scores, and justifications.  

Criterion Sub-categories Definition Score Justification and Evidence 

Lugworm 
Abundance 

Absent 
Very Low 
Low 
Moderate 
High 
Very High  
Extremely High  

0 
0 – 9.75 per m2  

9.75 – 16.25 per m2 
16.25 – 22.75 per m2 
22.75 – 43.75 per m2 
43.75 – 81.75 per m2 
81.75 – 160 per m2 

0 
1 
2 
3 
4 
5 
6 

The more lugworms present, the easier collection becomes (less effort per 
worm), and as such densely populated shores are most popular with 
collectors (Expert opinion interviews, personal communications, 2016; 
Collector questionnaires, personal communications, 2015). More worms = 
higher suitability.  
Groupings selected by Jenks breaks optimization from field data spread.  

Lugworm Size Absent 
Very Small 
Small 
Moderate 
Large 
Very Large   
Extremely Large 

0 
0 – 1.7 mm  
1.7 – 2.3 mm 
2.3 – 2.8 mm 
2.8 – 3.2 mm 
3.2 – 3.75 mm 
3.75 – 4.6 mm 

0 
1 
2 
3 
4 
5 
6 

Anglers prefer larger worms (Fowler, 1999), as such, shores with the 
biggest worms present are favoured by collectors (Expert opinion 
interviews, personal communications, 2016; Collector questionnaires, 
personal communications, 2015).  
Bigger worms present = higher suitability.  
Groupings selected by Jenks breaks optimization from field data spread. 

Black Lugworm 
Presence 

Absent 
Present  

N/A 0 
6 

Black lugworms are often preferred by anglers, commercial collectors are 
paid more for them, and bait pumpers can only target them (Fowler, 1999). 
Black lugworms present = highly suitable.  

Sediment Type Mud  
Sand 
Muddy sand or 
sandy mud 

N/A 2 
4 
6 

Muddy sand is the preferred sediment type targeted by collectors, with 
sand being less suitable due to the texture not maintaining trench structure 
when digging, and mud even less so due to the challenges of moving 
around and digging in sticky mud (Expert opinion interviews, personal 
communications, 2016; Collector questionnaires, personal 
communications, 2015). 

Distance to 
Parking 

Very Far  
Far 
Medium 
Close 
Very Close 
Extremely Close 

1616 – 2344 m 
1144 – 1616 m 
773 – 1144 m 
446 – 773 m 
229 – 466 m 
0 – 229 m 

1 
2 
3 
4 
5 
6 

Parking proximity can be important for some collectors, especially older 
individuals. Close parking is more convenient when carrying digging forks 
and buckets full of seawater and lugworms (Collector questionnaires, 
personal communications, 2015). 
Closer parking = more suitable.  
Groupings selected by Jenks breaks optimization from distance data 
spread. 

Distance to 
Home 

Very Far  
Far 
Medium 
Close 

18789 – 21611 m  
16196 - 18789 m  
13513 – 16196 m  
9827 – 13513 m  

1 
2 
3 
4 

Although some collectors are willing to travel extremely far to access to the 
best bait beds, many regular local anglers prefer to collect close to home 
for convenience and cost savings (Collector questionnaires, personal 
communications, 2015). 
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Table 3:8: Sensitivity model criteria scoring: sub-categories, definitions, scores, and justifications. 

 Criterion Sub-categories Definition Score Justification and Evidence 

Bird Importance  No bird designation  
Northumbria Coast 
SPA 
Lindisfarne SPA 

N/A 2 
4 
 
6 

Birds can be negatively affected by bait digging (Masero et al., 2008). 
Areas which are protected for birds (SPAs) contain sediment shores where 
bird disturbance may be particularly harmful due to higher bird abundance 
or rare bird refuges (Expert opinion interviews, personal communications, 
2016). Lindisfarne SPA has the most protected species designations 
(NCAONB, 2009), and as such was given the highest sensitivity score. 
Areas outside of SPAs are still sensitive, and as such are given a lower 
score of 2.  

Zostera spp 
Presence  

Absent 
Present  

N/A 0 
6 

Eelgrass is sensitive to physical disturbance from bait digging 
(Mieszkowska, 2010), and are protected by a no digging byelaw in the 
BNNC EMS. Only areas containing Eelgrass are sensitive to eelgrass 
disturbance, and as such are given the highest score of 6, with all other 
areas not sensitive with a score of 0.  

Sediment Type Sand 
Muddy sand or 
sandy mud 
Mud  

N/A 2 
4 
 
6 

Mud is most sensitive to digging disturbance due to the stable nature, and 
presence of longer lived, slower recovering species. Sand is mobile in 
nature and recovers faster from disturbance, making it the least sensitive to 
bait digging (Ferns et al., 2000; Roberts et al., 2010).  

Lugworm 
Abundance 

Extremely High  
Very High  
High 
Moderate 
Low 
Very Low 

81.75 – 160 per m2 
43.75 – 81.75 per m2 
22.75 – 43.75 per m2 
16.25 – 22.75 per m2 
9.75 – 16.25 per m2 
0 – 9.75 per m2  

1 
2 
3 
4 
5 
6 

Larger/more dense populations are less sensitive to over exploitation, as 
smaller proportions of the populations are harvested, and recovery will be 
faster with more reproductive contributions (Cryer et al., 1987; 
Cunningham, 2014).  
The more worms, the less likely the population can be overexploited, and 
the less sensitive they are.  

Very Close 
Extremely Close 

4267 – 9827 m 
0 – 4267 m  

5 
6 

Closer to home = more suitable (if bait quality the same).  

Regulations  Enforced  
Not well enforced  
No Regulations  

Holy Island and Budle Bay 
Newton and Boulmer South  
Rest of EMS 

2 
4 
6 

Despite non-compliance of some individuals, overall, bait digging byelaws 
do deter most collectors, reducing the suitability for collection (Collector 
questionnaires, personal communications, 2015). More enforcement is a 
greater deterrence (Nielsen and Mathiesen, 1999), as such, Holy Island 
and Budle Bay are given the lowest suitability score since rangers patrol 
the areas regularly, compared to little enforcement at Newton and Boulmer.  
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Absent 0 0 Areas with no lugworms are not sensitive at all (score of 0), since they will 
not be harvested.  

Lugworm Size Extremely Large  
Very Large   
Large 
Moderate 
Small 
Very Small 
Absent 

3.75 – 4.5 mm 
3.2 – 3.75 mm 
2.8 – 3.2 mm 
2.3 – 2.8 mm 
1.7 – 2.3 mm 
0 – 1.7 mm 
0 

1 
2 
3 
4 
5 
6 
0 

Larger worms have a greater reproductive output with more eggs produced 
per individual (Watson et al., 1998). Shores with larger individuals present 
will have a higher reproductive output, and therefore higher recoverability. 
Larger average worm size = less sensitive to overexploitation.  

Shore Isolation  Not Isolated 
Isolated 
 

>3000m2, <500m apart 
<3000m2, >500m apart 

0 
6 

Small and isolated beaches have lower recoverability due to lower 
recruitment rates from adjacent shores (Fowler, 1999). Most sediment 
shores within the BNNC EMS are relatively close to each other, so a 
distance between shores of more than 500m was chosen to differentiate a 
few more isolated shores from the rest. Similarly, many of the shores are 
large, so an area of less than 3000m2 was considered small based on the 
measurements from all shores. A shore which was both less than 3000m2 

and separated by more than 500m of rocky shore or cliffs was considered a 
‘pocket beach’ and regarded as a small isolated shore with high sensitivity.  
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Constructing the Models 

The shape file of the sediment shores within the study area was converted to a grid 

with 100m cell size. The geospatial data for each criterion were imported into 

replicated grids, retaining the same geographic extent and resolution as the base 

layer, standardising the individual criteria layers. The criteria grid layers were 

reclassified based on the suitability or sensitivity scores assigned from Table 3:7 and 

Table 3:8, totalling 3808 squares filled with the relevant scores per layer. Where no 

data were available for a particular grid square (e.g. no field data available either 

from no samples in an area or a lower resolution of 300m sampling on larger 

shores), interpolation methods were used to fill all squares, assuming conditions 

were similar in close proximity. Once all grid squares contained standardised scores, 

a requirement of MCE (Hossain and Das, 2010), each data layer was multiplied by 

the appropriate weightings in Table 3:5 and Table 3:6. Within each model (suitability 

and sensitivity), all criteria data layers were combined into a single layer with a 

summed total score. The combined suitability scores were further multiplied by 0 if 

no lugworms were present within the grid square (density recorded as 0 in the 

model), and 1 if lugworms were present, to control for areas without lugworms being 

categorised as suitable for collection due to other high scoring criteria. The suitability 

and sensitivity models were finally combined to produce the vulnerability model 

(product of both suitability and sensitivity scores). The final scores for suitability, 

sensitivity, and vulnerability were split equally into 6 groupings using Jenks natural 

breaks optimization (Jenks, 1967), which can be seen in Table 3:9. The GIS 

analytical steps can be seen in more detail in Figure 3:3.  

 
Table 3:9: Final suitability, sensitivity, and vulnerability scores and classes.  

Suitability 
Score 

Suitability 
Class 

Sensitivity 
Score 

Sensitivity 
Class 

Vulnerability 
Score 

Vulnerability 
Class 

0 Unsuitable 22-47 Very Low 0 Very Low 

1-46 Low 48-62 Low 1-2940 Low 

47-56 Moderate 63-77 Moderate 2941-3760 Moderate 

57-67 High 78-90 High 3761-4623 High 

68-84 Very High 91-102 Very High 4624-5504 Very High 

85-106 Extremely High 103-118 Extremely High 5505-6474 Extremely High 
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Figure 3:3: Methods of GIS analytic steps used in creating the models. Software = ESRI Arc GIS 10.4.  

  

Model 

Set-up

•Shapefile of study area imported (OS map at 1:50K)

•Polygons created for all sediment shores (tracing the OS map)

•Fishnet tool to create 100m and grid overlay

•Geoprocessing clip tool to join grids onto the shore polygons, and exported into new data 
layer

•GPS coordinates of grid centroids calculated (calculate geometry tool)

•Sample points named in attribute tables 

Importing 
Data

•Exsisting spatial data imported and transformed to standardised coordinate system (BNG) 
- e.g. SPA shapefiles. Subsequently transferred into duplicated grid shapefile, so that 
each grid sqaure contained data on the criteria

•Shapefiles created for criteria which need manipulation of exsisitng data - e.g. distance 
from home

•Data maipulated spatially - e.g. near (analysis) tool used to find distance to parking or 
population centres from each grid square 

•Shapefiles created for field collected data (e.g. lugworm density) and data imported from 
excel into each grid square via the attribute table. 

•Data interpolated into unsampled squares using nearest neighbour tool

•Resulting in each criterion as a separate data layer, all with the same base grid within 
shore polygons - spatially standardised

Model 
Building

•Criteria split into relavant sub-categories using jenks natural breaks optimization tool for 
continuous data - e.g. distance to parking

•Scores assigned to each sub-category for each criteria within the attribute tables (scores 
of 0-6, see Tables 3.7 and 3.8). 

•Weighted overlay tool uses rasta layers only, so manual overlay used to maintain detail 
and editability

•Each grid square score multiplied by the relavant weighting (Tables 3.5 and 3.6) using 
the field calculator within the attribute table for each criteria data layer

•All criteria data layers joined for each model (suitabilty and sensitivity) to give a single 
data layer for each model containing all criteria within the attribute table

Running 
the 

Models

•Within each combined model data layer, the final score for each grid square is calculated 
using the field calulator by summing the previously weighted scores for each criteria in 
the attribute table

•Final scores are split into classes of suitability and sensitivity using jenks natural breaks 
optimization (Table 3.9)

•Colour gradients are applied to the classes to display the final scores visually

•Finally, both models (suitability and sensitivity) are joined into a new data layer, with the 
scores of each multplied together (using field calculator) to give an overall score 
representing vulnerability, which were similarly split into classes (Jenks) and displayed
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3.3 Results 

3.3.1 Model Inputs – Suitability and Sensitivity to Lugworm Collection 

Figure 3:4 and Figure 3:5 show the individual data layers created to populate the 

sensitivity and suitability models respectively. These maps display the most diverse 

section of the study area between Budle Bay and Beadnell only, as clear depiction at 

the appropriate resolution is not possible for the entire BNNC EMS due to the large 

size (NCAONB, 2009).  

 
Figure 3:4: Input criteria data layers to populate the lugworm collection sensitivity model:  a) Bird 
importance, b) Eelgrass Presence, c) Sediment type, d) Lugworm abundance, e) Lugworm size, f) 
Shore Isolation. Red is the highest sensitivity, green the lowest sensitivity. Displaying Budle Bay to 
Beadnell Bay. See Appendix B for aerial images of the aspect shown here.  
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Figure 3:5: Input criteria data layers to populate the lugworm collection suitability model: a) Lugworm 
abundance, b) Lugworm size, c) Black lugworm presence, d) Sediment type, e) Distance to parking, f) 
Distance to home, g) Regulations. Red is the lowest suitability, green the highest suitability. 
Displaying Budle Bay to Beadnell Bay. See Appendix B for aerial images of the aspect shown here. 
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The field collected data maps (lugworm density, size, and species) are the first 

lugworm distribution and population maps available for the study area. The highest 

mean lugworm density was 156 lugworms per m2, which was recorded at Holy Island 

on the northern coves. There was much variation in lugworm distribution and density 

both between and within shores Figure 3:6. 

 

Figure 3:6: Lugworm abundance maps in more detail, displaying variation between shores (a – 
Killiedraught Bay and Coldingham Bay) and within shores (b – Holy Island, Fenham Flats, and Budle 
Bay). See Appendix B for aerial images of the aspects shown here.  
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which can be seen in more detail in Figure 3:7 (b,c, and d). These zones included 

parts of the sediment shores at Berwick, Newton, and Boulmer.  

If the suitability model outputs are to be regarded as a valid predictor of lugworm 

collection activity, they need to be validated (Jorgensen, 2011). The most suitable 

areas (i.e. the most likely collected) were compared to actual collection activity 

previously recorded in Chapter 2 using shore observations. There is high similarity 

between the zones categorized as having extremely high suitability, and those with 

the highest recorded collection and biomass removal in Chapter 2. Both the between 

shore and within shore zones match well with observations of collector distribution 

and collection intensity, suggesting that the model successfully predicts the most 

suitable areas for collection, which does in turn translate into collection pressure.  

Other suitable areas are likely collected at a lower intensity. High suitability and very 

high suitability areas identified by the model include: the far north of Foxton, the 

North of Boulmer, a small patch of Longhoughton, Newton central shore, Football 

Hole, far north and south of Beadnell Bay, patches of Seahouses and North 

Sunderland, small areas of Bamburgh, Budle Bay inland, Fenham Flats, Holy Island 

north shores, Berwick north shores, and Eyemouth. It is predicted that these areas 

are also targeted for lugworm collection to some degree (sometimes illegally).  
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Figure 3:7: Suitability model output for the BNNC EMS (a), with the most suitable areas shown in 
greater detail: (b) Berwick, (c) Newton, (d) Boulmer. See Appendix B for aerial images of the aspects 
shown here.  
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3.3.3 Model Output – Sensitivity to Lugworm Collection 

The sensitivity of sediment areas to lugworm harvesting were estimated for the 

whole of the BNNC EMS, acting as a predictor of the level of impacts associated with 

lugworm collection activity. The more sensitive an area, the more severe the 

associated impacts are likely to be there. The model output map Figure 3:8 (a) 

depicts the sediment shores as varying levels of sensitivity, ranging from very low 

sensitivity to extremely high sensitivity.  

Just under 14% of the sediment area was classified as having extremely high 

sensitivity, the locations of which can be seen in more detail in Figure 3:8 (b and c). 

These zones included parts of the sediment at Fenham Flats and Budle Bay, 

suggesting that the habitats and species within parts of the Lindisfarne National 

Nature Reserve would be the most sensitive to lugworm collection – i.e. the largest 

and longest lasting negative impacts (Roberts et al., 2010(MarLIN, 2010)). These 

areas are generally muddy, important to birds (SPA area), and form sea grass 

habitats.  

Other areas classified as having high or very high sensitivity include further areas of 

Budle Bay and Fenham Flats, as well as Holy Island southern and northern shores. 

The remaining areas of sediment within the BNNC EMS have lower measures of 

sensitivity, but it is important to acknowledge that damage/impacts on designated 

and classified features from bait digging is still possible in all locations.  

Unlike the suitability model, the outputs from the sensitivity model cannot be 

validated externally, due to no similar but independent data cohort to make 

comparisons against (Salciccioli et al., 2016). Sensitivity is not measurable in the 

field, and therefore this model could not be validated using experimental data 

(Trucano et al., 2006). It is important to note that these areas have been previously 

identified as being sensitive to bait digging (and other activities) and there is extant 

management in place (e.g. NNR byelaws and NIFCA byelaws) to protect the 

designated and classified features.  
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Figure 3:8: Sensitivity model output for the BNNC EMS (a), with the most sensitive areas shown in 
greater detail: (b) Fenham Flats, (c) Budle Bay. See Appendix B for aerial images of the aspects 
shown here.  
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3.3.4 Model Output – Vulnerability to Lugworm Collection  

The vulnerability of sediment areas to lugworm harvesting were estimated for the 

whole of the BNNC EMS, acting as a predictor for areas where impacts are most 

likely to occur. The more vulnerable an area, the more likely negative impacts from 

lugworm collection will occur. The most vulnerable zones are areas which have been 

previously identified as suitable for collection, and additionally sensitive to harvesting 

disturbance. The model output map (Figure 3:9 a) depicts the sediment shores as 

varying levels of vulnerability, ranging from very low vulnerability to extremely high 

vulnerability.  

Just over 5% of the sediment area was classified as having extremely high 

vulnerability, the locations of which can be seen in Figure 3:9 (b, c, d, and e). These 

zones included parts of Fenham Flats, Budle Bay, Newton Haven, and Boulmer. The 

most vulnerable sediment patches within Fenham Flats and Budle Bay ranged from 

very high to moderate suitability, and extremely high to high sensitivity. The most 

vulnerable sediment patches within Newton and Boulmer shores were classified as 

having extremely high suitability and low sensitivity. Within Fenham Flats and Budle 

Bay it is likely that individual collection events could cause greater and longer lasting 

impacts, but they are likely to occur less often. At Newton and Boulmer the impacts 

from each collection event may be smaller with faster recovery, but they are likely to 

occur more often, leading to a larger cumulative impact (Brown and Wilson, 1997).  

Other areas with high or very high vulnerability classifications include: north and 

upper shore Boulmer, patches of Longhoughton, Newton lower shore, stretches of 

Seahouses, more of Budle Bay and Fenham Flats, Holy Island north shores, Berwick 

shores north of the pier, and the east side of the Eyemouth shore. Many of these 

identified vulnerable areas are currently protected by extant management e.g. the 

Lindisfarne NNR byelaws and other byelaws.  
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Figure 3:9: Vulnerability model output for the BNNC EMS (a), with the most vulnerable areas shown in 
greater detail: (b) Fenham Flats, (c) Budle Bay, (d) Newton, and (e) Boulmer. See Appendix B for 
aerial images of the aspects shown here.  

Vulnerability

Very Low

Low 

Moderate 

High

Very High

Extremely High

BNNC EMS ±0 7.5 153.75 Km

0 1.5 30.75 Km 0 1.5 30.75 Km 0 0.5 10.25 Km 0 0.5 10.25 Km

A

B C D E



Chapter 3: Impacts of Periwinkle Collection 

117 
 

3.4 Discussion 

3.4.1 Lugworm Population Data  

Field collected data for lugworm density, size, and species distribution, are the first 

broad scale data available on lugworm populations for the BNNC EMS, and appear 

to be the only lugworm population maps at such a large scale anywhere. The 

resulting maps for each lugworm criteria (especially species distribution and density) 

provide an extremely useful snapshot of the current lugworm populations within the 

BNNC EMS, with potential uses as part of future biodiversity assessments, resource 

management, biological reserve design, habitat management, species and habitat 

conservation planning, environmental risk assessments, population viability analysis, 

and community and ecosystem modelling (Franklin, 2010). Most importantly with 

regard to the aim of this thesis, the lugworm maps produced in this chapter have 

enormous potential to be used as a baseline for which to assess future change 

against, forming the basis for effective lugworm population monitoring, which may 

inform stock management in the future. The lack of historic lugworm population data 

locally was a major challenge in assessing the impacts of bait digging on the target 

species within the BNNC EMS (see Chapter 2). The supply of a broad scale baseline 

allows for the evidencing of change over time if overexploitation of stocks occurs in 

the future.  

Lugworm distribution was patchy, with large variations both between and within 

shores, a common trait due to specific and complex habitat selection (e.g. 

Longbottom, 1970a; Flach and Beukema, 1994). The highest average density 

recorded (156 per m2) was very high. Over 150 per m2 has been recorded in 

previous studies (Nielsen et al., 2003), but is considered an extreme when compared 

to the typical range of between 3 and 80 worms per m2 (Volkenborn and Reise, 

2006, Cadée, 1976, Jones and Jago, 1993). In the Wadden Sea, where lugworm 

biomass is considered high, density is usually less than 50 per m2 (Dankers and 

Beukema, 1983). Only 2.5% of the BNNC EMS data points contained an average 

lugworm density of over 50m2, suggesting there are areas extremely well populated, 

but covering a relatively small area of the coast. The BNNC EMS appears to hold a 

considerable lugworm population.  
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Due to the use of the faecal cast size proxy to represent lugworm size, the data 

cannot be used to compare against directly measured lugworm sizes in other 

studies. However, it remains a useful tool for comparing sizes over time and position 

within the BNNC EMS. Black lugworm distribution was very patchy, with only a few 

shores recorded to hold this species (Eyemouth, Berwick, Boulmer, Newton, and 

North Sunderland), and logged at only 20 data points (0.5%). This suggests that for 

the vast majority of sediment area, lugworm collection can and will only occur via the 

traditional digging method, and not the less damaging bait pumping method (Fowler, 

1999). It can be assumed that most of the harvesting falling within the BNNC EMS 

boundaries will be carried out by digging, and as such management planning should 

reflect this.  

3.4.2 Model Outputs – Suitability, Sensitivity, and Vulnerability to Lugworm 

Collection 

The most suitable shores for lugworm collection identified by the model agreed well 

with those previously identified as highly collected in shore observations (Chapter 2), 

suggesting that the measures of suitability can translate into actual shore use, and 

confirms chosen criteria and weightings were appropriate (Jorgensen, 2011). The 

more suitable an area is for collection within the model output, the higher the 

collection intensity is likely to be in reality. The most suitable score possible from the 

model design would be an area of sediment which has: high lugworm density, large 

lugworm size, black lugworm present, muddy sand or sandy mud, parking and 

population centres in close proximity, and no bait digging regulations in place. The 

most suitable zones identified for lugworm collection were areas of sediment shore 

at Berwick, Newton, and Boulmer. Of these, two shores (Boulmer and Newton) 

already have some level of bait digging legislation in place (UK Marine SACs Project, 

2001a; NCAONB, 2009). Both remain popular collection shores despite regulation 

due to zoning allowing collection in some areas (Boulmer) or non-compliance 

(Newton – see Chapter 2).  

The sensitivity model identifies the zones that would be most sensitive (larger and 

longer lasting impacts) to the disturbance created by lugworm collection (i.e. bird 

disturbance, eelgrass uprooting, infauna mortality, etc. (e.g. Evans and Clark, 1993; 

Ferns et al., 2000; Mieszkowska, 2010)). The most sensitive score possible would be 
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an area of sediment which has: SPA designation, eelgrass present, mud, low 

lugworm density, small lugworm size, and a high degree of shore isolation. The most 

sensitive zones were areas of Budle Bay and Fenham Flats, where bait digging is 

banned outside of a small, less sensitive, section of Fenham Flats – known as the 

‘Voluntary Bait Digging Zone’ (UK Marine SACs Project, 2001a; NCAONB, 2009). It 

appears that the most sensitive areas of the coast are protected from lugworm 

collection disturbance impacts under existing management plans as long as 

enforcement is adequate. Other slightly less sensitive areas (moderate sensitivity 

classification) are not similarly protected from bait digging, such as areas within: 

Fenham Flats digging zone, Seahouses, Beadnell, Howick, and southern Boulmer. 

Although identified as less sensitive, these areas can still suffer from bait digging 

impacts. In the future, management may be required to expand into these areas to 

protect sediment shores over a larger and more diverse geographic area.  

The final model identifies the zones which would be most vulnerable to lugworm 

collection impacts, areas which are both suitable and sensitive to some degree 

(Roberts et al., 2010). The most vulnerable zones identified included parts of 

Boulmer, Newton, Budle Bay, and Fenham Flats. The only extremely vulnerable area 

without bait digging legislation currently in place is at Boulmer, where the most 

vulnerable patch of sediment falls outside of the no-digging zone. Management plans 

may wish to consider extending the no-digging zone at Boulmer to cover the entire 

shore, protecting the most vulnerable areas of the coastline fully. The additional most 

vulnerable areas of Newton, Budle Bay and Fenham Flats are all no-digging areas in 

existing management plans including various byelaws (UK Marine SACs Project, 

2001a; NCAONB, 2009). However, enforcement and compliance remain issues in 

some areas (Chapter 2 & NCAONB (2009)). 
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3.5 Conclusions  

The models produced within this study supply local fisheries data to managers, with 

the aim of informing future management plans, and helping to evaluate current 

management measures. The modelling methods used were cost effective (Martin et 

al., 2005), primarily utilising valuable existing data, literature review, and local expert 

knowledge, with a small amount of supplementary field data collection. There is 

scope for the models to be utilised and developed further for a variety of local 

intertidal fisheries in the BNNC EMS and beyond, supplying affordable data to 

marine managers. Model derived information, such as the outputs of this chapter, 

unquestionably contain a level of uncertainty (Cressie et al., 2009), based on 

multiple assumptions, such as: existing data accuracy (e.g. habitat maps), expert 

opinion representativeness (e.g. suitability weightings), field data interpolation, and 

generalisation of the literature, etc. Resemblance of the suitability model outputs to 

the shore observation results from Chapter 2 alleviate some of the uncertainty and 

doubt, however, assumptions must be acknowledged by managers when analysing 

the model outputs.  

Overall, this chapter has further revealed the spatial patterns of lugworm collection 

within the BNNC EMS, building on the shore observations in Chapter 2, and proving 

that simple and cost-effective modelling techniques can be extremely useful to 

managers. Designing the models has unravelled the motivations behind fishers 

selecting a target shore for lugworm harvesting, increasing the understanding of the 

fishery as a whole. Spatial modelling has proved an effective method to study 

intertidal collection, especially for unreported and relatively secretive fisheries where 

it can be difficult to obtain spatial data from more traditional methods such as 

interviews (e.g. McKay et al., 1997), or vessel monitoring systems (e.g. Pedersen et 

al., 2009). The models within this study have spatially defined the most suitable, 

sensitive, and vulnerable zones to lugworm collection within the study area, having 

the potential to direct management. It appears that existing management of lugworm 

collection spatially encompasses a good proportion of the most suitable, sensitive, 

and vulnerable areas identified by the spatial models. Berwick and south Boulmer 

are the major exceptions, where extremely and highly vulnerable areas are not 

currently protected from harvesting.   
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4.1 Introduction 

Impacts of fishing on marine ecosystems are well recognised and documented for 

fishing activities globally (e.g. Dayton et al., 1995; Auster et al., 1996; Thrush et al., 

1998; Turner et al., 1999; Collie et al., 2000; Coleman and Williams, 2002; Kaiser et 

al., 2006b; Williams et al., 2008; Smith et al., 2011). However, intertidal fishing 

activities have received considerably less attention to date. The impacts of all fishing 

activities need to be understood if the global drive for biodiversity conservation is to 

be realised (Boonzaier and Pauly, 2016).  

UK fisheries management requires the use of an evidence based method (Marine and 

Coastal Access Act, 2009); the approach to the management of commercial fisheries 

within European Marine Sites (EMS) was revised accordingly by DEFRA (MMO, 

2014b, now referred to as the 'fishing in MPAs project'). The potential impacts of fishing 

activities are considered by conducting Habitats Regulations Assessments for each 

fishery-interest feature interaction within protected sites (MMO, 2014b). Fishing 

activities which are deemed to unfavourably affect site integrity are disallowed without 

adequate management measures. The impacts of intertidal collection activities on 

sand and mud flats were considered largely unknown in preliminary assessments, 

being identified as an area where additional empirical evidence is needed (MMO, 

2014b). Management actions have already been taken for some fishing activities 

known to adversely impact interest features. Northumberland IFCA has for example, 

introduced two new byelaws within the BNNC SAC (NIFCA, 2016), to minimise 

impacts of mobile fishing gear on rocky reefs (e.g. Kaiser and Spencer, 1996; Kaiser 

et al., 1998; Kaiser et al., 2000; Hughes et al., 2014), and bait digging on seagrass 

beds (e.g. Cabaço et al., 2005; Mieszkowska, 2010; McCloskey and Unsworth, 2015; 

Silberberger et al., 2016). Further management measures are possible as and when 

new evidence becomes available for fishery-interest feature interactions, an evidence 

base which this project hopes to contribute to. There is a need for site specific studies, 

relative to the local intensity and frequency of a fishing activity, to adequately inform 

managers whether fishing activities are compatible with the conservation objectives or 

designated features of MPAs, such as the BNNC EMS (Clarke and Tully, 2014).  

Interest in intertidal fisheries impacts has increased in recent years, resulting in a 

growing body of literature (e.g. Ferns et al., 2000; Kaiser et al., 2001; Sheehan et al., 
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2010; Erlandson et al., 2011; Bertocci et al., 2014; Clarke and Tully, 2014; Manríquez 

et al., 2016; Toupoint et al., 2016). Bivalve harvesting within soft sediment intertidal 

environments has received much attention (e.g. Ferns et al., 2000; Dias et al., 2008; 

Constantino et al., 2009; Van Alstyne et al., 2011; Ortega et al., 2012; Lewis et al., 

2013; Boldina and Beninger, 2014; García-García et al., 2015; O’Connell-Milne et al., 

2015), and our knowledge of bait digging for marine worms is not far behind (e.g. 

Blake, 1979b; Jackson and James, 1979; Shepherd and Boates, 1999; Skilleter et al., 

2006; Watson et al., 2007; Mieszkowska, 2010; Pires et al., 2012; Carvalho et al., 

2013; Mosbahi et al., 2015; Watson et al., 2017a; Watson et al., 2017b). Within bait 

digging studies, lugworms are commonly studied in European contexts (e.g. Blake, 

1979a; Shahid, 1982; Howell, 1985; Cryer et al., 1987; Van den Heiligenberg, 1987; 

Beukema, 1995; Volkenborn and Reise, 2006; Volkenborn and Reise, 2007), with 

recent focus on large-scale or mechanical harvesting in vast areas such as the 

Wadden Sea (e.g. Van den Heiligenberg, 1987; Beukema, 1995; Volkenborn and 

Reise, 2007), In the UK, lugworm collection is primarily small scale, the effects of which 

have been investigated on the target species populations (Blake, 1979a; Shahid, 

1982; Howell, 1985; Olive, 1993). Recent evaluations of small scale lugworm 

collection across the UK, specifically evidence of the effects on sediment communities 

as a whole, is lacking.  

Both lugworm size and abundance can be altered by harvesting. Lugworm population 

structures can be altered by collectors preferentially removing the largest individuals 

(Shahid, 1982), and abundance can decrease substantially, from both removal and 

increased mortality of uncollected individuals (Beukema, 1995; Volkenborn and Reise, 

2007). Where impacts are observed, recovery rates are variable between studies, 

ranging from one month to several years (Blake, 1979a; Cryer et al., 1987; Beukema, 

1995). 

The physical disturbance of the sediment created by bait diggers can kill or damage 

infaunal species directly, or indirectly by creating conditions in which the organisms 

can no longer survive (Chandrasekara and Frid, 1998). Total infaunal biomass is often 

reduced after digging, with altered community structures due to the varying 

sensitivities of different species (Jackson and James, 1979; Van den Heiligenberg, 

1987; Brown and Wilson, 1997; Watson et al., 2017b). Digging disrupts sediment 

layering and alters the chemical concentrations in the sediment surface layer (Howell, 
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1985; Fowler, 1999), which can impact the organisms living within. The reduction of 

the target species after harvesting can also impact the infauna, especially when they 

are important in structuring the community (Cryer et al., 1987; Lawton, 1994; Wright 

and Jones, 2006; Volkenborn et al., 2007a; Volkenborn and Reise, 2007). There is 

evidence that removing lugworms and their bioengineering effects alters the sediment 

community structure, with different species reacting either positively or negatively to 

the altered habitat (Volkenborn and Reise, 2006; Volkenborn and Reise, 2007; 

Petrowski et al., 2016; Whitton et al., 2016; Sousa et al., 2017). Recovery rates of 

infaunal communities after bait digging range from several months, up to 5 years for 

the most vulnerable species (Van den Heiligenberg, 1987; Beukema, 1995; Fowler, 

1999). 

The severity of impacts associated with bait worm collection is linked to the method 

and intensity of harvesting. Mechanical harvesting, which mainly occurs in the Wadden 

Sea, is the most disruptive method, with the most severe impacts observed (Van den 

Heiligenberg, 1987; Beukema, 1995). Bait dragging is another very disruptive method, 

primarily used for the collection of ragworms in Poole Harbour (Dyrynda, 1995; 

Underhill-Day, 2008; Birchenough, 2013). There is evidence that the intensity of hand 

collection, the most common collection method, is an important factor in determining 

the level of impacts upon the target species, with implications for management 

measures: low intensity collection resulted in no observable changes in abundance of 

A. marina (Blake, 1979a), whilst elsewhere on the same Northumberland coastline, 

overexploitation lead to a population crash (Olive, 1993). It is therefore important that 

the method and intensity of collection within studies are representative of the actual 

collection activities occurring in the areas where evidence is required. Impact strength 

is also site specific (Watson et al., 2017b), leading to the requirement of localised 

assessments to accurately inform management.  

There are two main methods used in fishing impact studies in the scientific literature: 

comparative and experimental (FAO, 2005). Both methods have their own advantages 

and limitations. Comparative studies compare sites of differing fishing intensities, with 

the state of the community indicating the impact of actual fishing events  (FAO, 2005). 

However, it can be difficult to reliably quantify the fishing intensity at the scale of 

sampling, which can result in local heterogeneity or patchiness of fishing effort causing 

bias in results (Hughes et al., 2014). Experimental studies measure the characteristics 
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of a site before and after controlled fishing events (FAO, 2005). This method is useful 

to observe the direct impacts from a known fishing intensity, however, the 

experimental study areas are usually unrepresentative of the scale of the fisheries – 

both spatially and temporally (Hughes et al., 2014). Experimental studies of bait worm 

collection impacts use either simulated digging (e.g., Brown and Wilson, 1997; Griffiths 

et al., 2006; Watson et al., 2007; Carvalho et al., 2013), or lugworm exclusion 

methodologies (e.g., Volkenborn and Reise, 2006; Volkenborn et al., 2007a; 

Volkenborn and Reise, 2007; O'Brien et al., 2009; Kuhnert et al., 2010a; Lei et al., 

2010; Petrowski et al., 2016). Simulated digging emulates the initial disturbance, whilst 

exclusion of lugworms explores the secondary impacts of the reduction in lugworms 

and their ecosystem engineering effects.  

The aim of this chapter is to explore the impacts of lugworm harvesting within the 

BNNC EMS on the population size and structure of the target species, Arenicola 

marina and Arenicola defodiens, and the associated sediment community effects. Both 

comparative and experimental methodologies are used, to study both the direct 

impacts from known harvesting intensities, and observable impacts from actual fishing 

pressures, and how these relate to each other within the EMS. Density and mean size 

of the target species are determined at three shores of varying harvesting intensities, 

along with the overall sediment community structure, taxonomic richness, and 

abundances of individual infaunal species. Simulated digging and lugworm exclusion 

experiments are conducted within a single recently undisturbed site (within a protected 

area), with before, after, and subsequent recovery conditions explored for both the 

target species and the associated sediment community.  
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4.2 Methods 

4.2.1 Comparative study  

Site Selection 

Three shores were required for comparison, each with a different level of collection 

pressure: no collection, low collection, and high collection (Figure 4:1). Shores within 

the BNNC EMS with appropriate collection pressures were identified on the basis of 

preliminary shore visits combined with advice from expert authorities (Angling Trust, 

Natural England, and the Northumberland Inshore Fisheries Conservation Authority) 

to establish known bait-digging activity. The selected shores were observed regularly 

from December 2013 to July 2014. Each site was visited at low tide 1-2 times per 

month throughout the monitoring period to estimate the intensity of lugworm collection 

occurring at each, validating the assumed collection pressure classifications. The 

observations were made on a mix of both weekdays and weekends, and under various 

environmental conditions (e.g. weather and seasons), to remove confounding effects 

presumed to influence bait digging behaviour (Fowler, 1999). At each visit, the number 

of collectors present at each site was recorded.  

A section of Fenham Flats, Holy Island (O.S. Grid Reference NU121424), outside of 

the bait digging zone, was selected as the ‘no collection’ site (Figure 4:2), being a 

protected and actively enforced area. Newton Haven (O.S. Grid Reference 

NU243243) was chosen as the ‘low collection’ shore, due to anecdotal collection 

despite protection, and occasional enforcement. The southern half of Boulmer (O.S. 

Grid Reference NU267136) was selected as the ‘high collection’ shore, with intensive 

bait collection occurring, and no protection. All sites are rural with only small 

settlements or no settlements close by, and no obvious pollution sources. The main 

difference between sites is the slope, with Boulmer and Newton having a shallow 

sloping aspect towards the low water mark, compared to Fenham Flats which is more 

level.  

The locations of each site in relation to the position within the BNNC EMS are shown 

in Figure 4:1, with aerial images of each site shown in Figure 4:3, depicting the habitat 

types and sampling areas more clearly.  
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Figure 4:1: Locations of sample sites: Boulmer (high collection pressure), 
Newton (low collection pressure), and Holy Island (no collection), within the 

BNNC EMS. 

 

Figure 4:2: The location of the bait digging zone at Holy Island (where bait 
digging is allowed), in relation to the sampling site selected as ‘no collection’ 
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Figure 4:3: Aerial images of each study site (Map data @2018 Google). A = Boulmer, B = Newton, C 
= Holy Island. Approximate sampling areas are shaded in grey.  

 

Sampling  

Sampling was carried out in March 2014, at low spring tides. At each shore, ten 

quadrats (1m2) were placed randomly (random number sampling, with numbers 

generated equalling steps along the shore until the next sample) along the lower shore 

where bait digging primarily occurs (Fowler, 1999). Within each quadrat, Arenicola 

casts were counted and randomly selected subsamples of five casts per quadrat were 

measured for cast diameter, to the closest millimetre. A. marina and A. defodiens casts 

were grouped to give a single count or size measurement of ‘lugworm casts’. Number 

A B 

C 
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of casts can be used as a proxy for abundance (Flach and Beukema, 1994), and 

diameter of the individual cast strands can be used as a proxy for worm size 

(Retraubun et al., 1996b). The use of these proxies allowed for effective and efficient 

sampling of lugworm populations whilst minimising sediment disturbance. Counting 

casts rather than individual worms is acknowledged to have an undercount issue, 

which was found to be 6% by Farke et al. (1979). However, no correction was 

performed in this study, as the aim is not to compare the lugworm populations to 

elsewhere in the world where actual counts have been conducted, but to compare 

different sites within this study, and to act as baseline data for future measurements 

locally, which should also use the cast count method to minimise disturbance.  

Additionally, ten sediment cores (approximately 4,500 cm3) were collected, using a 

post hole auger. This was screwed into the sediment to the required depth (30cm) 

before being extracted, retaining the sediment on the device. This method was 

efficient, especially in more muddy, or waterlogged areas, where box corers were 

unsuitable. The nature of Arenicola burrows, and the depth of bait digging trenches, 

required 30cm deep cores to permit observation of effects beyond the most populated 

surface sediment, including changes in species which live at depth, or preferentially in 

the lugworm burrows (e.g. flatworms (Reise, 1987; Reise, 2002)). Although standard 

intertidal sediment sampling procedure, smaller sample volumes/sizes are not best 

suited for collecting larger macrofauna (Eleftheriou and McIntyre, 2008). It is possible 

that the corer diameter of 15cm used in this study may underestimate the abundance 

of larger species, such as large bivalves, etc. which also happen to be some of the 

most vulnerable species to damage from bait digging (Jackson and James, 1979; 

Beukema, 1995). This limitation is acknowledged, but larger sample areas were not 

suitable for use within this study, especially within small experimental plots.  

Sediment samples were immediately sieved onsite through 0.5mm mesh sieve bags. 

Material retained were transferred into screw top plastic bottles (800ml) with enough 

70% ethanol to cover the samples for preservation. A further two sediment cores were 

collected at each site for Particle Size Analysis (PSA), which was carried out off site. 

PSA samples were dried overnight in a low temperature oven (approx. 100°C) (Poppe 

et al., 2000), the particles gently separated, and 100g per sample passed through a 

series of sieves of decreasing mesh sizes using a sieve-shaker. The sieve sizes used 
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in micrometres were: 63, 125, 250, 500, 1000, and 2000. The resulting material 

retained in each sieve was weighed and recorded.  

Faunal samples were stained using Rose Bengal solution in 70% ethanol, to 

distinguish biota from the inorganic material and accelerate sorting (Tagliapietra and 

Sigovini, 2010). After 3 days staining, samples were added to trays containing clean 

water. Organisms were sorted by eye, using fine metal forceps and pipettes, and 

transferred to 70% ethanol for further storage. Fixing in formalin was deemed 

unnecessary. Organisms were identified to species level where possible using a 

compound microscope. Exceptions were taxa such as Nematodes and Capitella spp., 

where separation to species level could not be justified due to the additional time 

resources required. 

 

4.2.2 Experimental study  

Site Selection 

The site for simulated digging and exclusion experiments was required to be 

undisturbed within medium to long term time frames. Fenham Flats, at Holy Island 

(outside of the bait digging zone) was selected (Figure 4:4), as this area is protected 

and actively enforced by the Lindisfarne NNR wardens and manager, therefore was 

assumed to be largely undisturbed in recent years. Within Fenham Flats, possible 

sampling sites were further screened for suitability of field sampling (proximity to a 

water body for sieving on site, adequate distance from the bait digging zone, proximity 

to the causeway for accessibility and safety, isolation from walkers etc. for minimal 

experimental disturbance (Figure 4:5). An aerial image of the area can be seen in 

Figure 4:6, showing the habitat types more clearly.  
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Figure 4:4: Location of the experimental site at Fenham Flats, within 
the BNNC EMS. 

Figure 4:5: Experimental plot position at Fenham Flats, Holy Island, in 
relation to the causeway, water body, and bait digging zones. 
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Figure 4:6: Aerial image of the experimental study site (Map data @2018 Google). Approximate 
sampling area shaded in grey. 

 

Experimental set-up 

Sediment disturbance and associated reduction in lugworm abundance created by bait 

digging (e.g. Beukema, 1995; Fowler, 1999) was simulated within 25 4m2 experimental 

plots, spaced 5m apart. These were marked out in two parallel lines with wooden posts 

marking each corner (Figure 4:7). Each plot was randomly assigned a treatment using 

a random number generator, and labelled accordingly. There were five different 

treatments, with five replicates of each. 

Figure 4:7: Experimental plot layout within the study site at Fenham Flats, Holy Island. Each plot is 
4m2, and spaced 5m apart (not drawn to scale – represents order of treatments only).  
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Ambient plots were left untouched as a control. Exclusion plots used 1mm mesh 

polyethylene nets, inserted horizontally, approximately 10cm deep into the sediment, 

to remove lugworms without disturbing the other fauna (a method previously used by: 

Volkenborn and Reise, 2006; Volkenborn et al., 2007a; Volkenborn and Reise, 2007; 

O'Brien et al., 2009; Kuhnert et al., 2010a; Lei et al., 2010). Exclusion control plots 

were similarly dug to 10cm, with no net inserted, controlling for the sediment 

disturbance caused when inserting an exclusion net. Low digging intensity plots were 

completely dug over to a minimum depth of 30cm once every three weeks, and plots 

backfilled, with no lugworms removed. The same digging methods were used for the 

high digging intensity plots, but with an increased frequency of once per week. All 

treatments ran for ten weeks (from 18th April 2014), with a subsequent recovery period 

left untouched for eleven weeks.  

Sampling 

All plots were sampled before treatments began, after 10 weeks of treatments, and 

again after recovery period of 11 weeks. Recovery sampling occurred for the control 

and simulated digging treatments only, the exclusion plots were not sampled again 

due to recovery requiring the removal of nets, which would have introduced a new 

disturbance.  

Within each plot, Arenicola and the sediment communities were sampled using the 

same methodologies as described for the comparative study (for details see 2.2.1 

Comparative Study – Sampling). Arenicola casts were recorded for the whole plot area 

(4m2) rather than using quadrats, and three sediments cores were taken randomly 

within each plot. Sorting and identifying infaunal organisms within the sediment 

samples also followed the same methodology as previously described, as well as PSA 

of two further sediment samples (see 2.2.1 Comparative Study – Sampling).  

Sediment conditions were recorded throughout the treatment and sampling regime. 

Changes in the surface sediment colouration were recorded at each site visit. 

Sediment penetrability was measured in each plot after the treatment period, by 

measuring the penetration depth (cm) of a garden fork dropped from 1m above the 

surface (adapted from Johnson et al. (2007)). Exclusion plots were not included in this 

analysis, due to the net affecting the depth the fork could penetrate.  
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4.2.3 Data Analysis   

Univariate statistics were analysed using Minitab version 17, and multivariate with 

PRIMER software. Differences between sites, treatments, and times (before/after) 

were tested using ANOVA or Paired T-tests where parametric assumptions were met 

(normal distribution (or normalized using log or square-root transformations) and 

similar variances). Kruskal-Wallis or Mann-Whitney were used where normality 

assumptions could not be met (Underwood, 1997; Dytham, 2011). Subsequent 

pairwise comparisons were made where necessary for ANOVA tests (Tukey).  PSA 

was graphically plotted, and each site classified into existing sediment type categories 

using granulometric types (EUNIS and Folk (1954)). Diversity was measured using the 

Shannon Wiener function (H), which was calculated for each sample and averaged for 

sites or treatments. Community structure was analysed using Bray Curtis Similarity 

(on square root transformed averaged data), with results expressed in 

Multidimensional scaling (MDS) plots. SIMPER analysis was used to determine the 

species responsible for the differences observed, which were subsequently plotted 

graphically.  
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4.3 Results 

4.3.1 Collection Pressure and Sediment Characteristics 

Bait collection observations at each comparative site (Boulmer, Newton, and Holy 

Island) validated the assumptions made from preliminary visits and expert advice. It 

was confirmed that Boulmer has a high collection pressure, Newton low collection, 

and Holy Island no collection (Table 4:1) occurring on observed dates.  

Table 4:1: Validation of the collection pressure classifications assigned to each shore from 
observations recording the number of lugworm collectors present per shore visit (visited regularly 
between December 2013 and July 2014). Averages of collectors presented as means with standard 
deviation. Boulmer n=16, Newton n=7, Holy Island n=9.  

Location Collection Pressure  Average no. 

collectors per visit 

S.D 

Boulmer  High 6.56 9.76 

Newton  Low 0.29 0.76 

Holy Island  Not Collected 0 0 

 

Sediment Particle Size Analysis (PSA) showed that overall, the sediment 

characteristics of the four sample sites (comparative and experimental studies) were 

largely similar to each other. Boulmer has the largest amount of fine particles (silt/clay), 

with 13% finer than 63 micrometres, and 54% finer than 125 micrometres, compared 

to less than 2% and 12% respectively at the other sites. Cumulative percentage 

sediment particle size data can be seen in Figure 4:8 for all sites. The PSA data were 

categorized further into three standard granulometric types (Folk, 1954): silt/clay (,63 

micrometres), sand (63-2000 micrometres), and gravel/cobbles (>2000 micrometres), 

with the data shown in Table 4:2. All sites are predominantly sand, with all sites 

containing over 86% of this granulometric type (63-2000 micrometres).  Despite this, 

Boulmer would narrowly classify as ‘muddy sand’ (being over 10% silt/clay), and all 

other sites as ‘sand’ in the common classification system designed by Folk (1954). 

These classifications would both be reclassified as ‘sand and muddy sand’ in the 

simplified EUNIS habitat classification system (Long, 2006).   

Organic content of the three sites can be inferred from established relationships 

between organic content and particle size. There is a negative correlation between 

grain size and organic matter, due to the greater sorptive capacity of finer sediments 

(Dale, 1974; DeFlaun and Mayer, 1983; Mayer, 1993; Boudreau et al., 2001). 
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Therefore it can be assumed that Boulmer has a higher organic matter content than 

Newton or Holy Island.  

 

Figure 4:8: Average cumulative percentage (mean +/- SD) of the particle size in micrometres for all 
four study sites (comparative study = solid lines: Boulmer (high collection pressure), Newton (low 
collection pressure), and Holy Island (no collection); experimental study = dashed line: Holy Island). 
Samples were collected during March 2014 for the comparative sites, and April 2014 for the 
experimental site, using a core measuring 30cm deep and 15cm diameter ( n=2 for all sites).  

 

Table 4:2: Average percentage (mean ± SD) of the sediment samples made up of the three 
granulometric types (silt and clay = <63 micrometres; sand = 63-2000 micrometres; gravel and 
cobbles = >2000 micrometres), at each site (comparative study: Boulmer (high collection pressure), 
Newton (low collection pressure), and Holy Island (no collection); experimental study: Holy Island 
Experimental). Samples were collected during March 2014 for the comparative sites, and April 2014 
for the experimental site, using a core measuring 30cm deep and 15cm diameter ( n=2 for all sites).   

Granulometric 

Type 

Boulmer Newton  Holy Island Holy Island 

Experimental  

Silt/Clay 13.04 (± 8.91) 0.23 (± 0.28) 2.05 (± 1.17) 0.32 (± 0.10) 

Sand 86.18 (± 8.56) 99.57 (± 0.01) 97.92 (± 1.36) 99.68 (± 1.37) 

Gravel/cobbles 0.77 (± 0.40) 0.20 (± 0.17) 0.03 (± 0.01) 0 (± 0) 
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4.3.2 Comparisons between sites with differing collection pressures 

Target species   

The mean densities of Arenicola spp. per quadrat (1m2) are significantly different 

between sites (ANOVA, F = 9.78, df = 2, 27, P <0.001). It was revealed by post hoc 

Tukey pairwise comparison (P = 0.05) that lugworm density was significantly lower at 

the uncollected site, Holy Island (mean = 13.4 ± 5.27 SD), whilst Boulmer and Newton 

(collected sites) had statistically similar densities. The mean densities for all sites can 

be seen in Figure 4:9. Figure 4:10 shows the median lugworm cast diameters at each 

site, which do not statistically differ between shores (Kruskal-Wallis, H = 1.32, df = 2, 

P > 0.5).  
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Figure 4:9: Mean (± SD) number of lugworms per m2 from three sites of varying collection 
pressure (Boulmer = high collection pressure, Newton = low collection pressure, Holy 

Island = no collection), sampled March 2014, using quadrats (1m2) to count casts on the 
surface; n = 10 for all sites. 

 

Figure 4:10: Median (± range) cast diameters (mm) of lugworms from three sites of varying 
collection pressure (Boulmer = high collection pressure, Newton = low collection pressure, Holy 
Island = no collection), sampled March 2014, with 5 casts measured from each 1m2 quadrat (10 

per site); n = 50 for all sites. 
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Infaunal Community  

The total abundance of the infaunal species and taxa recorded at each site for all 

samples combined is seen in Table 4:3. Annelids dominate at all three sites, with 

crustaceans also occurring in high numbers. The three most abundant taxa recorded 

were: Notomastus latericeus, Tubificoides sp., and Urothoe poseidonis. Both N. 

latericeus and Tubificoides were only present in high numbers at Holy Island, whilst 

U. poseidonis were much more abundant at Newton.  

Some key prey species for wading birds include Cerastoderma edule, Limecola 

balthica, Peringia ulvae, Corophium volutator, Alitta virens, and Lanice conchilega, 

along with smaller oligochaetes, polychaetes and molluscs (Smith and Evans, 1973; 

Goss-Custard et al., 1977; Hicklin and Smith, 1984). Most of these also happen to be 

some of the largest size taxa recorded within the study sites. The mean abundances 

of these important infaunal species at each site can be seen in Figure 4:11. Holy Island 

contains the highest average and total abundance of most of these species, apart from 

Lanice conchilega which was far more abundant at Boulmer (Figure 4:11 and Table 

4:3).  
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Table 4:3: Total number of infaunal species and taxa within sediment samples (4,500 cm3) collected 
from three shores of differing collection pressures (Boulmer = high collection pressure, Newton = low 
collection pressure, Holy Island = no collection). Samples were collected in March 2014 on low water 
spring tides (n=10 for all shores). 

 

Species/Taxa Boulmer Newton Holy Island 

ANNELIDA    
Arenicola sp.  10 7 8 
Capitella sp.  6 0 13 
Enchytraeidae indet. 0 0 5 
Eteone longa  2 2 7 
Eumida sp.  0 3 0 
Harmothoe sp.  1 0 0 
Lanice conchilega  40 1 0 
Magelona sp. 1 4 1 
Malmgrenia sp.  2 0 1 
Nephtys sp.  1 1 0 
Alitta virens 0 0 3 
Notomastus latericeus 1 0 141 
Paraonis fulgens 0 43 70 
Phyllodoce mucosa 29 3 1 
Pygospio elegans 25 0 6 
Scolelepis foliosa 0 1 1 
Scolelepis squamata 0 1 1 
Scoloplos armiger 36 8 33 
Spio martinensis 7 74 3 
Spiophanes bombyx 1 1 7 
Tubificoides benedii 0 0 13 
Tubificoides sp.  0 1 150 

CRUSTACEA    
Allomelita pellucida  2 0 1 
Ampelisca brevicornis  3 0 0 
Bathyporeia sp. 0 2 1 
Bathyporeia elegans  0 8 0 
Urothoe poseidonis 30 194 8 
Dexamine sp. 0 1 0 
Corophium volutator 0 0 2 
Idotea balthica 1 0 0 
Ostracoda indet.  0 1 0 
Pontocrates arenarius 0 1 0 
Monopseudocuma gilsoni 0 5 0 
Tanaissus lilljeborgi 0 17 0 
Carcinus maenas  1 0 0 

MOLLUSCA    
Cerastoderma edule 0 0 2 
Limecola balthica 1 0 4 
Scrobicularia plana 0 0 4 
Fabulina fabula 6 9 0 
Ensis siliqua 0 1 0 
Peringia ulvae 0 0 7 

NEMERTEA    
Unidentified  0 0 1 

NEMATODA    
Unidentified  5 1 58 

PREAPULA    
Priapulus caudatus  1 0 0 
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Figure 4:11: Mean (+/- SD) abundances of important wading bird prey species at each study 
site (Boulmer, Newton, and Holy Island). n = 10 for all sites.  

 

The mean taxonomic richness is significantly different between shores (ANOVA, F = 

3.53, df = 2, 28, P < 0.05). Holy Island, the uncollected site, had the highest mean 

taxonomic richness (mean= 11.4 ± 3.43 SD), whilst the lowest was Newton, the low 

collection pressure site (mean= 7.9 ± 2.60 SD) (Table 4:4). The median infaunal 

abundances were significantly different between sites (Kruskal-Wallis, H = 6.40, df = 

4, P < 0.05) (Table 4:4), with decreasing abundances with increasing collection 

pressure. Boulmer, the high collection pressure site, had considerably lower average 

infaunal abundance (median = 20.0 ± 33.0 range), less than half the other sites. 

Despite the reduction in infaunal abundance with bait digging pressure, the diversity, 

as estimated by Shannon’s diversity index, is not negatively impacted (Table 4:4).  

Table 4:4: Median (± range) infaunal abundance, and mean (± SD) taxonomic richness and 
Shannon’s diversity for each site with differing collection pressures (Boulmer = high collection 
pressure, Newton = low collection pressure, Holy Island = no collection), sampled March 2014 (n=10).  

 Boulmer Newton  Holy Island 

Abundance 20.0 (± 33.0) 42.5 (± 54.0) 49.0 (± 77.0) 

Taxonomic richness 9.0 (± 2.92) 7.9 (± 2.60) 11.4 (± 3.43) 

Diversity 1.8 (± 0.39) 1.4 (± 0.23) 1.8 (± 0.33) 
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The community structure of the infaunal organisisms between sites is significantly 

different (ANOSIM: Global R=0.906, p=0.1%). Bray Curtis similarity shows that all 

shores have a comparable similarity level at around 40%. The Multi-Dimensional 

Scaling (MDS) plot of the Bray Curtis similarity (Figure 4:12) for the infaunal 

communities showed good discrimination between communities from each site, with 

the 25% similarity grouping overlay revealing higher similarity between the two 

collected sites (Boulmer and Newton) than the uncollected site (Holy Island). SIMPER 

analysis shows that the main species (greatest % contribution) responsible for the 

significant differences observed in community structure between the three sites are: 

Urothoe poseidonis, Tubificoides sp., Spio martinensis, and Notomastus latericeus; 

which are also some of the most dominant species recorded. The total abundances of 

each species from the SIMPER analysis is displayed in Figure 4:13. The uncollected 

site (Holy Island) contained the vast majority of Notomastus latericeus and 

Tubificoides sp. specimens, whilst Urothoe poseidonis and Spio martinensis were 

most abundant at the low collection pressure site (Newton). 

 

 

 

 

 

Figure 4:12: Non-metric multidimensional scaling (MDS) ordination of the Bray Curtis similarity 
based on square root-transformed averaged abundance data of the infaunal community from 

sites with differing collection pressures (Boulmer = high collection pressure, Newton = low 
collection pressure, Holy Island = no collection), sampled March 2014. 2D Stress: 0.12. 

Overlays of Bray Curtis similarity groupings at 25 and 40%. 
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4.3.3 Simulated Digging and Exclusion Experiments  

The experimental study at Fenham Flats revealed significant effects of simulated bait 

collection activities, both between treatments, and over time (before, after, and 

recovery).  

Target Species 

Lugworm density was significantly different between treatments after ten weeks 

(ANOVA, F = 64.24, df = 4, 24, P < 0.001).  Post hoc Tukey pairwise comparison (P = 

0.05) showed that lugworm density was significantly lower for all treatments when 

compared to the ambient plots (Figure 4:14). Exclusion plots were designed to remove 

the majority of lugworms, however they only reduced the mean density to 65% of the 

ambient levels. High digging intensity plots had the lowest density, with just 13% of 

the ambient levels (despite no worms being removed in the treatment design).  
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Figure 4:13: Total abundances of the four species most responsible for the difference 
in community structure per site (Boulmer = high collection pressure, Newton = low 

collection pressure, Holy Island = no collection), sampled March 2014 (n = 10 
sediment samples each 4,500 cm3). 
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After a recovery period of eleven weeks, lugworm density remained significantly 

different between treatments (ANOVA, F =7.04, df = 2, 12, P < 0.01). Tukey pairwise 

comparison (P = 0.05) showed that average lugworm density was only significantly 

lower in the high digging intensity plots (mean = 21.94 +/- 10.97 SD) when compared 

to the ambient conditions (mean = 28.12 +/- 14.06 SD) (Figure 4:15).  
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Figure 4:14: Mean (± SD) number of lugworms per plot (4m2) from each of five treatments 
(ambient, exclusion control, exclusion, low digging intensity, and high digging intensity), sampled 

after 10 weeks of treatment (June 2014) by surface cast counts; n = 5 for all treatments. 

Figure 4:15: Mean (± SD) number of lugworms per plot (4m2) from each of three 
treatments (ambient, low digging intensity, and high digging intensity), sampled after 11 

weeks of recovery (September 2014) by surface cast counts; n = 5 for all treatments. 
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Infaunal Community  

Table 4:5 displays the total abundance of the infaunal species and taxa recorded 

after ten weeks of treatments, within plots of each treatment, for all samples 

combined. The two most abundant taxa recorded were Nematoda, and Pygospio 

elegans, both of which decreased in abundance with the presence of digging.  The 

response from P. elegans was more severe, decreasing from a total of 748 in the 

ambient treatments, to just 32 in the high digging intensity plots (Table 4:5), just 4% 

the unimpacted abundance.  

Key wading bird prey species (Cerastoderma edule, Limecola balthica, Peringia ulvae, 

Corophium volutator, Alitta virens, and Lanice conchilega) also differ between 

treatments. The mean abundances of these important infaunal species at each site 

can be seen in Figure 4:16. These species had low total and mean abundances in all 

treatments, but were generally lowest in the digging treatment plots (Figure 4:16).  
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Table 4:5: Total abundance of infaunal species and taxa within sediment samples (4,500 cm3) 
collected from plots after 10 weeks of five different treatments (ambient, exclusion control, exclusion, 
low digging intensity, and high digging intensity). Samples were collected in June 2014 on low water 
spring tides (n=15 for all treatments). 

Species/Taxa Ambient  Exclusion 

Control 

Exclusion  Low  

Digging  

High 

Digging 

ANNELIDA      
Arenicola sp.  16 19 16 16 6 
Capitella sp.  31 35 16 28 9 
Enchytraeidae indet. 30 34 43 49 5 
Eteone longa  10 15 6 2 0 
Alitta virens 17 19 19 11 4 
Notomastus latericeus 1 0 0 0 0 
Ophelia rathkei 15 31 25 20 4 
Paraonis fulgens 6 6 1 0 1 
Psammodrilus balanoglossoides 1 0 0 0 0 
Pygospio elegans 748 570 333 80 32 
Scolelepis squamata 2 1 0 1 0 
Scoloplos armiger 8 2 4 2 1 
Sphaeropsis sp.  0 1 0 0 0 
Spiophanes bombyx 1 0 2 0 0 
Tubificoides sp.  23 22 18 22 9 

CRUSTACEA      
Bathyporeia pilosa 1 0 0 0 0 
Bathyporeia sarsi 3 6 2 9 2 
Urothoe poseidonis 31 13 6 1 0 
Corophium volutator 4 3 24 0 0 

MOLLUSCA      
Cerastoderma edule 3 1 3 1 0 
Limecola balthica 7 4 5 2 3 
Scrobicularia plana 10 8 16 2 6 
Fabulina fabula 1 1 1 2 0 
Mytilus edulis 1 0 1 1 0 
Peringia ulvae 0 1 0 0 2 
Retusa truncatula 1 1 0 3 1 

NEMERTEA      
Unidentified  9 13 7 9 2 

NEMATODA      
Unidentified  405 324 408 396 100 
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Figure 4:16: Mean (+/- SD) abundances of important wading bird prey species after 10 weeks for 
each experimental treatment (Ambient, Exclusion Control, Exclusion, Low Digging, and High Digging). 
n = 15 for all treatments.  

 

The average taxonomic richness significantly differs between the treatments 

(Kruskal-Wallis, H = 38.49, df = 4, P < 0.001), with average taxonomic richness 

reduced in the exclusion, low digging intensity, and high digging intensity plots 

(Table 4:6). Mean infaunal abundance was also affected by treatment (ANOVA, F = 

22.65, df = 4, 70, P < 0.001), with Tukey analysis revealing that only simulated 

digging treatments (low and high digging intensities) were significantly different from 

ambient, supporting significantly lower infaunal abundances (Table 4:6). Despite a 

reduction in taxonomic richness and infaunal abundance observed for the simulated 

digging treatments, diversity (Shannon’s index) was not similarly effected by the 

presence of disturbance (Kruskal-Wallis, H =4.92, df = 4, 4 P > 0.1) (Table 4:6). 

Table 4:6: Mean (± SD) infaunal abundance, and median (± range) taxonomic richness and 
Shannon’s diversity for each treatment after 10 weeks of simulated disturbance (ambient, exclusion 
control, exclusion, low digging intensity, and high digging intensity), sampled June 2014 (n=15).  

 Ambient Exclusion 

Control 

Exclusion  Low 

Digging  

High 

Digging 

Abundance 92.3 (±54.9) 75.5 (±44.7) 63.8 (±30.7) 43.8 (±23.4) 12.6 (±7.9) 

Taxonomic richness 11 (±6) 12 (±8) 8 (±9) 9 (±7) 5 (±6) 

Diversity 1.4 (±1.0) 1.5 (±1.0) 1.4 (±0.8) 1.4 (±1.2) 1.3 (±1.8) 
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Community structure also differed between treatments after ten week. MDS plot of the 

Bray Curtis similarity for the infaunal communities shows good visual discrimination 

between some experimental treatments, with the high digging intensity treatment well 

distinct from the others (Figure 4:17). ANOSIM (at 9999 permutations) reveals that 

community assemblages are statistically different between all treatments apart from 

exclusion control and ambient (R=0.364; p<0.01). The data for the high digging 

intensity treatment was analysed further to reveal which taxa were most responsible 

for the differences before and after. SIMPER analysis showed the taxa which 

contributed most to the differences were: Pygospio elegans, Nematoda, and 

Tubificoides sp. which were also dominant. The mean abundances of these taxa can 

be seen in Figure 4:18. The reductions for Pygospio elegans (paired t-test, t = 5.39, df 

= 14, P < 0.0001) and Tubificoides sp. (Mann-Whitney U-test, U = 288, n1,2 = 15, P < 

0.015) were significant, whilst Nematoda (paired t-test, t = -1.35, df = 14, P > 0.15) 

was statistically similar. SIMPER analysis was repeated to take into account the rarer 

taxa/species (using presence/absence data); the main contributing species were 

Ophelia rathkei, Urothoe poseidonis, and Paraonis fulgens, which were all markedly 

reduced. Out of a total of 28 taxa recorded in the high digging intensity plots, 23 were 

reduced after the disturbance period. The dominant taxonomic group by abundance 

was altered, from Annelids (71% before, 33% after), to Nematoda (17% before, 53% 

after). 

  

 

 

Figure 4:17: Non-metric multidimensional scaling (MDS) ordination of the Bray 
Curtis similarity based on square root-transformed averaged abundance data of 
the infaunal community from plots with differing treatments (ambient, exclusion 

control, exclusion, low digging intensity, and high digging intensity), sampled June 
2014. 2D Stress: 0.19. Overlay of Bray Curtis similarity grouping of 40%. 
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After eleven weeks of no further disturbance, the infaunal community recovered well. 

Mean abundances of infaunal organisms for the ambient and simulated digging 

treatments can be seen in Figure 4:19 for all three sample periods: before, after, and 

after recovery period. Differences were no longer significant after the recovery period 

(ANOVA, F =0.28, df = 2, 42, P > 0.7). The mean taxonomic richness was also 

similar between treatments after the recovery period, with the high digging intensity 

plots having the highest average richness. Community structure also recovered; 

ANOSIM (at 999 permutations) reveals that community assemblages were no longer 

statistically different between treatments (R=0.098; p>0.1), and Bray Curtis similarity 

revealed a similarity level of >85%. MDS of the Bray Curtis similarity can be seen in 

Figure 4:20, with all treatments falling within the 40% similarity grouping overlay 

(apart from one outlier).  
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Figure 4:18: Mean (± SD) number (in 4,500 cm3 sediment samples) of the three 
taxa most responsible for the difference in community structure per treatment 
(ambient, exclusion control, exclusion, low digging intensity, and high digging 

intensity), before and after 10 weeks of treatment.  Sampled June 2014 (n = 15). 
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Habitat Alterations  

Sediment characteristics were noticeably altered during treatments. Simulated digging 

plots were darker from the redistribution of anoxic sediment to the surface. These 

alterations were still visible until the next disturbance (three weeks for low digging 

intensity). Sediment penetrability and softness was altered by digging, with fork 

penetration depths being significantly different between treatments (Kruskal-Wallis, H 

= 29.75, df = 2, P < 0.001), increasing with the presence of digging.   

  

Figure 4:19: Mean (± SD) number of organisms (in 4,500 cm3 sediment samples) for 3 
treatments (ambient, low digging intensity, and high digging intensity) before the simulated 
disturbance began, after 10 weeks of disturbance, and after a recovery period of 10 weeks 

(no further disturbance). n = 15 for all. 

Figure 4:20: Non-metric multidimensional scaling (MDS) ordination of the Bray Curtis similarity based 
on square root-transformed averaged abundance data of the infaunal community from different 

treatments (ambient, low digging intensity, and high digging intensity) after a recovery period of 11 
weeks. 2D stress = 0.22. Overlay of Bray Curtis similarity groupings at 40% and 60%. 
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4.4 Discussion  

Lugworm populations are maintained at current lugworm harvesting levels within the 

BNNC EMS. There is no evidence of reduced abundance or size at heavily collected 

sites, with populations sustained at harvestable levels despite long-term collection. 

Negative secondary impacts were observed, with the sediment communities altered 

by the presence of digging. Infaunal abundance was markedly reduced by the 

sediment disturbance associated with digging (in both comparative and experimental 

studies), the severity of such impacts linked to the intensity of collection. Recovery of 

experimental plots was rapid, suggesting that recovery on heavily exploited BNNC 

EMS shores may be possible if sufficient and well-timed no-take periods occurred. 

Managers must consider whether the level of impact observed is important at the 

EMS scale, which is discussed.  

4.4.1 Impacts upon the target species – Lugworms 

Neither lugworm density nor size appear to be correlated to long term bait digging 

pressures at current BNNC EMS exploitation levels, with high lugworm densities 

recorded at the intensively collected site, and no significant differences in size. In 

contrast, short term impacts were observed in disturbance experiments, with 

significantly reduced lugworm abundance recorded in the simulated digging plots.  

The distinct scales, both spatially and temporally, of each study is the likely cause of 

dissimilarities, with the importance of representative scales highlighted in previous 

studies (Thrush et al., 1996; Reise et al., 2001; Watson et al., 2017b). The small 

scale and short term experiments at Fenham Flats may have shown exaggerated 

impacts compared to the comparative study due to the nature of the disturbance and 

study site. Untouched sediment patches between and around experimental plots 

allowed for areas of ‘undisturbed’ sediment in close proximity. It is well known that 

lugworms have particular sediment requirements (Callame, 1961; Bruce et al., 1963; 

Longbottom, 1970b), and it is possible that lugworms which did not suffer mortality 

from the digging disturbance (Hall, 1994; Beukema, 1995; Brown and Wilson, 1997) 

migrated out of disturbed plots with less suitable habitat (e.g. higher penetrability, 

restricted oxygen contact (Longbottom, 1970a), and reduced organic matter (Watson 

et al., 2017b)) into the undisturbed areas. These substantial undisturbed areas would 

unlikely occur on fished sites, such as Boulmer, resulting in less lugworm migration 
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from collected areas, and maintained densities in dug zones. Additionally, the 

observable sediment alterations from digging (e.g. uneven surfaces, or 

discolouration of surface sediments (Watson et al., 2017b)) were more severe and 

long lasting at the experimental site (personal observation: >3weeks vs 1 tide at 

Boulmer), due to lower wave energy slowing sediment recovery (Fowler, 1999; 

Reise, 2001; Watson et al., 2017b), which could have further exaggerated the 

lugworm response to digging events.  

Targeting digging within small experimental plots surrounded by large ‘refuge’ areas 

is not representative of the lugworm fishery within the BNNC EMS as a whole, but 

was important to consider and investigate to alleviate the interference of natural and 

other anthropogenic derived variability between sites in the comparative study.  

Lugworm densities can vary considerabley between locations (Cadée, 1976; Jones 

and Jago, 1993; Nielsen et al., 2003; Volkenborn and Reise, 2006), with a lot of 

variation even within a geographically close area (Dankers and Beukema, 1983), 

often dependant on environmental factors such as food availability or sediment 

characteristics (Callame, 1961; Longbottom, 1970b; Groenendaal, 1979; Flach and 

Beukema, 1994; Kristensen, 2001; Reise et al., 2001).  Anthropogenic factors 

capable of influencing lugworm populations other than harvesting include trampling 

(Rossi et al., 2007) and pollution (Matthiessen and Thain, 1989; Browne et al., 

2013). Small sediment differences between comparatvie sites (Boulmer being 

muddier and having higher orgainc content), and possible other unidentified 

anthropogenic impacts, could be capable of masking low level impacts of harvesting 

on lugworm populations. It is possible that lugworm populations have been 

negatively impacted within the BNNC EMS, but at levels which are not significant 

over natural and anthropogenic variability between sites.   

Boulmer has maintained a high abundance and large average size of lugworm despite 

long term high intensity harvesting, suggesting little impact on the target species at 

current levels. This maintenance is likely due to Arenicola spp. ability to recolonise 

rapidly from both adult migration and larval recruitment (e.g. Blake, 1979a; Rees and 

Eleftheriou, 1989; Olive, 1993). Long-term population stability is enhanced by the long 

life-span of lugworms, and the inverse relationship between the rate of recruitment 

and adult density (Beukema and De Vlas, 1979; Farke et al., 1979). Lugworm larvae’s 

high dispersive potential (Günther, 1992; Tyler-Walters and Arnold, 2008) could be 
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masking local overexploitation, with recruitment from surrounding undisturbed areas 

helping to keep exploited populations stable in the long term. As long as larval supply 

is high, it appears that heavily exploited stocks can be sustained at harvestable levels 

over many decades.  

Earlier studies have revealed reduced lugworm abundance due to harvesting 

(Beukema, 1995; Volkenborn and Reise, 2007), however these studies generally had 

a higher level of collection than that at Boulmer, with either simulated digging (more 

targeted disturbance), or mechanical harvesting (more disruptive). Shahid (1982) 

found no change in lugworm abundance with the presence of bait collection, but did 

record a reduction in size. Contrasting results in various studies reiterates the 

importance of resident studies to appropriately inform managers of the impacts at the 

relavant local scales and fishing intensites.  

Limitations in the findings of this study include the lack of historical lugworm size or 

abundance data to observe the changes over time from fishing pressure. Comparative 

and experimental studies were designed to infer impacts, but variability between sites, 

and scale dependance of impacts limits the ability of these methods to accuratley 

observe lasting fisheries impacts. Anecdotal reports have suggested reduced density 

at Boulmer over time, with one collector stating that “it takes twice as long to collect 

half the worms” (personal communication with collectors). In the absence of historical 

lugworm data, these claims cannot be investigated further unless ongoing monitoring 

data is established to observe ongoing changes.  

A further limitation within the experimental study was the inefficency of the exclusion 

nets to exlcude all lugworms from plots. The exclusion treatment was designed to 

remove the majority, if not all, lugworms. The nets should have removed the ability of 

lugworms to maintain a burrow (Volkenborn and Reise, 2007), however this was not 

the case, with many lugworms remaining within the plots. The exclusion nets stayed 

in place throughout the treatments, remaining in the original positions upon removal 

after several months, therefore net movement is not responsible for the method failure. 

The method of a 1mm mesh inserted at a depth of 10cm has effectively excluded 

lugworms in previous studies (Volkenborn and Reise, 2006; Volkenborn et al., 2007a; 

Volkenborn and Reise, 2007; O'Brien et al., 2009; Kuhnert et al., 2010a; Lei et al., 

2010), all of which were carried out on the island of Sylt, in the Wadden Sea. The size 
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of lugworms could be responsible for the failure of this method here; lugworms can 

reach a mass of 30g in some locations (Schroer et al., 2011), but only 10g maximum 

in the North of England (Fowler, 1999), with a mean mass of 6g recorded within the 

BNNC EMS (Chapter 4). This smaller size may mean that lugworms in this study area 

are capable of maintaining a shallower burrow depth above the exclusion net. 

Shallower exclusion depths of 5cm and 7cm have been used in other studies (Van 

Wesenbeeck et al., 2007; Rossi et al., 2013), which may have proved more successful 

in this study. The unintended smaller reduction in lugworm density (by 35%) with 

exclusion nets in fact emulated a more realistic fishery impact, as lugworm populations 

are more likely to be reduced than locally extinct with overexploitation (Van den 

Heiligenberg, 1987). A slightly reduced lugworm abundance without disturbance has 

not been achieved in previous studies, as such this study is the first to investigate the 

effects of a marginally lower lugworm density on the associated community (discussed 

in section 2.4.2).  

Overall, lugworm harvesting at current intensities within the EMS is not resulting in 

long term discernible impacts on the target species over natural variability. Short term 

impacts appear to stabilise over longer time scales and larger spatial scales, with larval 

recruitment capable of maintaining exploited populations at harvestable levels for 

many decades. There is no direct evidence of declining lugworm populations, and as 

such lugworm harvesting within the BNNC EMS appears to not significantly impact 

upon the target species currently. 

4.4.2 Impacts upon the sediment community  

Negative impacts upon the meso- and macrofaunal sediment communities were 

evident in both the comparative and experimental studies. Substantially lower 

infaunal abundance with the presence of digging was the most significant finding, 

along with signs of reduced species richness, and altered community structure. No 

negative impacts upon the diversity were observed in either study. 

Within the comparative study, Boulmer, being the muddier site, with higher organic 

content, would be expected to contain a more abundant and diverse infaunal 

community without disturbance, but be less resilient to disturbance than communities 

in more mobile sand conditions (e.g. MacDonald et al., 1996; Schratzberger and 

Warwick, 1998; Ferns et al., 2000; Kaiser et al., 2006a; Roberts et al., 2010). 



Chapter 4: Impacts of Lugworm Collection 

154 
 

Boulmer contained the lowest infaunal abundance, less than half those of Newton 

and Holy Island, suggesting that disturbance has reduced the community. A number 

of different disturbances could lead to the differences observed between sites, with 

the heterogeneity of infaunal community structure along a coastline well documented 

(e.g. Morrisey et al., 1992; Norén and Lindegarth, 2005). Natural variation from 

habitat (e.g. Thorson, 1950; Gray, 1974; Beukema, 1976; Holland and Dean, 1977; 

Probert, 1984; Elliot et al., 1998; Ysebaert et al., 2002) and environmental conditions 

(e.g. Levin et al., 2003; Van Hoey et al., 2004; Green et al., 2014b; Gerwing et al., 

2015), anthropogenic impacts such as contamination (e.g. Morris and Keough, 2003; 

Ruso et al., 2007), or both combined (Mucha et al., 2003; Stark et al., 2005), can 

influence infaunal communities. Fishing activities can also lead to spatial 

heterogeneity of sediment communities (e.g. Kaiser et al., 2001; Kaiser et al., 

2006a), with bait digging suggested as the cause of Boulmer’s low meso- and 

macrofaunal abundance within this study. This assumption is further supported by 

both the experimental digging study results (reducing infaunal abundance with 

increasing digging intensity), and the existing bait digging literature (e.g. Van den 

Heiligenberg, 1987; Beukema, 1995; Brown and Wilson, 1997). For example, Van 

den Heiligenberg (1987) found hand digging removed 1.9g of non-target benthic 

animals from the sediment for every 1g of lugworm harvested, reducing the infaunal 

biomass by 40%.  

Important wading bird prey species were present in relatively low abundances at all 

sites compared to smaller species. This may be a result of the small core size 

limitations (discussed in the methods section 4.2.1). Holy Island was the site with the 

highest mean and total abundances of these species, which is also the most 

important conservation area for birds out of the study sites (SSSI, Ramsar, and 

SPA), including many waders which feed on the expansive sand and mud flats there 

(see Chapter 1, Table 1.1 for further detail and designated species lists). However, 

Boulmer also appears to remain a good feeding site for birds despite a high level of 

collection activities, with L. conchilega most abundant here. In the experimental 

study, these important prey species appeared to decrease with the presence of 

digging, indicating that under certain conditions and high digging intensities, bait 

digging has the ability to alter preferential prey availability for birds, as seen 

elsewhere (Van den Heiligenberg, 1987; Masero et al., 2008; Bowgen et al., 2015).  
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Community structure was directly altered in experimental plots, with reduced 

taxonomic richness, and a shift in dominance from Annelids to Nematodes. Impacts 

increased with digging intensity. Communities were also significantly different in the 

comparative study, but it is less clear how much is due to digging disturbance versus 

other environmental differences. Some species are more vulnerable to sediment 

disturbance than others (e.g. Jackson and James, 1979; Chandrasekara and Frid, 

1998), which can result in altered communities as opportunistic species increase, 

and sensitive species decline (Beukema, 1995; Reise, 2001). Nematodes were 

among the few taxa which did not decline in the experimental plots, similar to the 

findings of other studies (Watson et al., 2017b). Nematodes are thought to be more 

resilient to physical disturbance than larger organisms such as macro- or megafauna 

because they are less likely to be killed by the disturbance, have a relatively high 

tolerance to low oxygen levels (e.g. burial conditions), and fast recovery rates 

(Schmidt-Rhaesa, 2014), culminating in the dominance of this taxa post disturbance. 

In contrast, Tubificoides sp. was significantly reduced from disturbance at the 

experimental site, and was rare or absent at the two collected comparative sites. 

Tubificoides sp. inhabit both muddy and sandy sediments (Genis Trait Handbook, 

2015), therefore habitat differences are unlikely to be responsible for the differences 

observed. They have  limited mobility and as a result has been referred to as 

‘vulnerable’, especially to sediment deposition (Genis Trait Handbook, 2015), 

suggesting that digging disturbances are likely responsible for the reduced 

abundances at Boulmer, Newton, and the experimental site, with similar negative 

impacts also observed for Tubificoides benedii from bait digging in midshore areas of 

the Solent (Watson et al., 2017b).  

The reduction of lugworm density by 35% (rather than total exclusion) revealed that 

even marginally reduced lugworm populations can have significant detrimental 

impacts on the associated sediment community, with lower taxonomic richness 

observed in exclusion plots. Lugworms are habitat engineers, altering the state of the 

habitat, affecting other infaunal species (Lawton, 1994; Wright and Jones, 2006; 

Volkenborn et al., 2007a; Volkenborn and Reise, 2007; Passarelli et al., 2014). They 

rework the sediment (Retraubun et al., 1996b; Passarelli et al., 2014), mixing the 

upper layer (Cadée, 1976; Retraubun et al., 1996b; Risgard & Banta, 1998 as cited 

by Valdemarsen et al., 2011), in turn destabilising the sediment (Woodin, 1985; Brey, 
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1991; Flach, 1992), whilst their burrows transport particles and oxygen through the 

sediment (Reise, 2002), forming unique microhabitats (Banta et al., 1999; Nielsen et 

al., 2003), and aerating the sediment for other infaunal species (Baumfalk, 1979; 

Retraubun et al., 1996a; Schroer et al., 2011). Lugworms have both positive and 

negative impacts upon different species, playing an important role in structuring 

benthic communities (Brey, 1991; Petrowski et al., 2016). Removing lugworms, and 

their bioengineering effects, from a shore via bait digging (or experimental exclusion) 

can result in substantial indirect impacts (Cryer et al., 1987). This has been seen in 

many lugworm exclusion experiments, with different species effected in various 

ways, both positively or negatively (Volkenborn and Reise, 2007; Petrowski et al., 

2016; Whitton et al., 2016; Sousa et al., 2017). This study is the first to demonstrate 

that even slightly reduced lugworm abundance (a much more realistic scenario from 

lugworm overexploitation) can have detrimental community scale impacts.  

Currently it appears that lugworm abundance is not reduced within the BNNC EMS 

in the long term (see section 2.4.1) and therefore these indirect effects are not a 

priority concern for management at this time. The direct habitat disturbance impacts 

should be the main concern in conservation plans for lugworm collection. Bait 

digging disrupts the sediment layering, releases toxins and pollutants (Howell, 1985; 

Fowler, 1999), reduces organic matter (Watson et al., 2017b), and directly damages 

and kills infauna (Chandrasekara and Frid, 1998). Bait pumping creates substantially 

less sediment disturbance during the collection of A. defodiens, with much smaller 

amounts of disturbed sediment and no spoil heaps produced (Fowler, 1999). It 

appears that bait pumping in Northumberland would have a lower level of impact 

upon infaunal communities if both methods removed the same number of lugworms. 

Promotion of this collection method over digging has been considered, but overall 

seems unsuitable due to the fact that bait pumping can only target A. defodiens 

(Fowler, 1999), which is much scarcer within the BNNC EMS than A. marina (see 

species distribution maps in Chapter 5), providing much lower target stocks and a 

higher chance of overexploitation.  

The lowered infaunal abundance or biomass observed in this study can result in 

reduced benthic food supply for birds, and the altered community structure could 

cause food shortages for species with strong prey preferences (Van den 

Heiligenberg, 1987; Masero et al., 2008; Bowgen et al., 2015), forcing birds to switch 
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to other prey types or use alternate feeding areas (Beukema et al., 1993). Migratory 

birds are especially vulnerable to prey decline, relying on a few specific coastal 

areas during their journey (Skagen and Knopf, 1993; Masero et al., 2008). The 

BNNC EMS contains multiple SPA designations which are key sites for the 

protection of important bird populations (NCAONB, 2009), as such activities which 

may hinder bird populations should be minimised. In the scale of the BNNC EMS, 

lugworm collection occurs over a small area, leaving vast areas of sediment with 

natural infaunal biomass for successful bird feeding. None of the highest intensity 

lugworm collection sites (see Chapter 4 and 5) are located within SPAs currently, 

and as such effects on birds from reduced prey may not be a major concern for 

managers.  

The changes in the infaunal communities observed from bait digging in this study 

could also be altering the functional diversity of communities, with the ability to 

modify ecosystem functioning (Dıaz and Cabido, 2001; Solan et al., 2004; Tillin et 

al., 2006). Species within a community play various roles, with contrasting 

interactions and processes. A high diversity of functional traits has been shown to 

maintain ecosystem processes (Dıaz and Cabido, 2001), with extinctions predicted 

to reduce bioturbation in marine benthos (Solan et al., 2004).  Further study into the 

functional trait effects of bait digging is needed to see how the altered communities 

observed here may have wider reaching consequences on the ecosystem.  

Overall, there are negative impacts occurring, but whether they are significant at the 

larger EMS ecosystem scale remains unknown. Further study on wider ecosystem 

effects (other than birds) of observed community impacts (reduced abundance, 

altered community structure, and functional diversity) are needed to fully inform 

management decisions.  

4.4.3 Recovery of the target species and associated sediment communities 

after digging disturbance  

Both the target species and infaunal communities recovered well after the 

experimental disturbances ended, but it is important to consider whether the high 

recoverability observed translates into larger scales both spatially and temporally 

within the BNNC EMS.  
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Recovery rate of infaunal communities is dependent on many factors, such as 

season (Zajac and Whitlatch, 1982a; Zajac and Whitlatch, 1982b; Alongi, 1990; Ford 

et al., 1999), scale of disturbance (Reise, 2001), sediment characteristics (Dernie et 

al., 2003), structure of the original community (Jackson and James, 1979; Beukema, 

1995; Fowler, 1999; Watson et al., 2007), and the method of recolonization (i.e. 

migration or recruitment) (Reise, 2001). As such, there is high variability in the 

recovery rates observed between previous bait digging studies, ranging from one 

month to 3 years for the target species (Blake, 1979a; Cryer et al., 1987; Beukema, 

1995), and 140 days to 5 years for infaunal communities (Van den Heiligenberg, 

1987; Beukema, 1995).  

This study’s findings suggesting full infaunal recovery within 77 days is very fast, 

likely due to a combination of various beneficial artefacts of the study site and 

experimental design. The timing for the recovery period (during summer) may have 

accelerated the recovery rate, as recolonization of infauna is usually faster in the 

spring and summer (Zajac and Whitlatch, 1982a; Zajac and Whitlatch, 1982b; Alongi, 

1990; Ford et al., 1999). Recovery from current collection within the BNNC EMS may 

be slower after digging intensity reduces in late winter/early spring. Additionally some 

insensitively collected sites (e.g. Boulmer) experience bait digging almost year round 

(see Chapter 4 for details), with very little ‘undisturbed’ time for recovery to take 

place. The experimental plots were also small scale disturbance compared to bait 

digging activity, surrounded by undisturbed refuge areas, allowing for maximum 

migration of infauna into previously disturbed plots, rather than having to rely on 

planktonic larvae or post larval drifters to recolonize plots on a larger scale (Reise et 

al., 2001). The short time scale of the experimental study does not allow for the 

examination of long term cumulative impacts, and the effects on subsequent 

recovery (Brown and Wilson, 1997). The macrofaunal community at Fenham Flats, 

the experimental site, did not have a high proportion of sensitive species such as 

large bivalves or burrowing echinoderms, which would be expected to recover more 

slowly (Jackson and James, 1979; Beukema, 1995; Fowler, 1999; Watson et al., 

2007).  

Harvested sites around the BNNC EMS vary widely in many of the aspects 

discussed above, and as such the recovery rate observed in this experimental study 

is very unlikely to relate to those elsewhere. Recovery after large scale, ongoing, 
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disturbances from fishers is likely to be slower than that observed at Fenham Flats. 

However, the experimental study shows that recovery is likely under the right 

conditions, and suggests that no-take periods on collected shores may be adequate 

to allow full recovery of the infaunal communities.   
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4.5 Conclusions  

This chapter presents evidence which provides baseline information to help inform 

management plans for the BNNC EMS and other protected areas within the UK. The 

use of both comparative and experimental studies combined provides two separate 

evidence bases which can be compared to support individual findings, elucidating 

potential (short-term) and actual (long-term) impacts of lugworm collection activities 

within the BNNC EMS.   

Lugworms play an important role in intertidal communities (Lawton, 1994; Wright and 

Jones, 2006; Volkenborn et al., 2007a; Volkenborn and Reise, 2007) and are an 

important prey species to both birds and fish (Evans et al., 1979; Pocklington and 

Wells, 1992). Results from this research suggest that impacts on lugworms are not 

discernible against natural background variability, and that at current, local collection 

levels, lugworm collection appears be having no impact at the target species level, 

with stable lugworm communities throughout the study area. However, cumulative 

impacts over longer timescales may change this, especially if harvesting intensity 

increases in the future. 

Bait digging in Northumberland is however causing substantial negative impacts at 

the infaunal community level, which is important because infaunal communities are a 

key sub-feature of the BNNC SAC (European Union Council Directive. 92/43EEC, 

1992), and as such should be maintained/protected. The effects of these reduced 

and altered infaunal communities and the role that plays in the ecosystem and 

overall site integrity needs to be explored further.  
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5.1 Introduction and Rational 

Fisheries impacts are well studied globally (e.g. Dayton et al., 1995; Auster et al., 1996; 

Thrush et al., 1998; Turner et al., 1999; Collie et al., 2000; Coleman and Williams, 

2002; Kaiser et al., 2006b; Williams et al., 2008; Smith et al., 2011), with the 

investigation of intertidal fisheries gaining more traction in recent years (e.g. Kaiser et 

al., 2001; Thompson et al., 2002; Berthelon et al., 2004; Masero et al., 2008; Sheehan 

et al., 2010; Erlandson et al., 2011; Crossthwaite, 2012; Bertocci et al., 2014; Clarke 

and Tully, 2014; Manríquez et al., 2016). However, evidence on the potential effects 

of fisheries on protected species and habitats is still lacking in many areas, which is 

why UK conservation authorities (Natural England, Defra, IFCAs, the MMO, Cefas, 

and JNCC) are looking to gather additional evidence to determine where and why 

management is needed (Moffat, 2015). The revised approach to commercial fisheries 

management in EMSs (the main driver of the push for increased evidence) is currently 

being implemented, with the aim of producing well-managed fisheries (MMO, 2014b; 

Moffat, 2015). By June 2014, seventeen MMO or IFCA byelaws were in place to 

protect sensitive features (Moffat, 2015), yet many fisheries-feature interactions 

remain unassessed. One of the key areas identified as requiring additional evidence 

is the impacts of hand gathering on intertidal rocky reefs (MMO, 2014b).  

Hand gathering impacts on rocky shores have been studied around the world (e.g. 

Kingsford et al., 1991; Keough et al., 1993a; Fanelli et al., 1994; Siegfried et al., 1994; 

Fletcher and Frid, 1996; Lindberg et al., 1998; Sharpe and Keough, 1998; Murray et 

al., 1999; Quigley, 1999), with an emphasis on areas with well-established reserves 

and no-take zones, such as those of Australia and South-Africa (Underwood and 

Kennelly, 1990; Keough and King, 1991; Kingsford et al., 1991; Keough et al., 1993a; 

Underwood, 1993; Siegfried et al., 1994; Sharpe and Keough, 1998; Thompson et al., 

2002). Within Europe, the target species of multiple studies is the periwinkle, Littorina 

littorea (e.g. Quigley, 1999; Berthelon et al., 2004; Crossthwaite, 2012), likely due to 

their widespread distribution (Jackson, 2008b) and popularity of collection (Fowler, 

1999; Cummins et al., 2002). Yet uncertainties remain, especially in relation to local, 

measured, and realistic collection intensities.  

Rocky shore exploitation can have major impacts upon the target species (reveiwed 

by Thompson et al., 2002). Abundance reductions from harvesting are commonly 
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observed (Quigley, 1999; Berthelon et al., 2004). However, alterations are cumulative, 

and do not appear in the short term, with historical collection playing a large role 

(Crossthwaite, 2012). Harvesting often targets the largest individuals of a population, 

resulting in altered size structures (e.g. Castilla and Duran, 1985; Lindberg et al., 1998; 

Thompson et al., 2002; Roy et al., 2003; Berthelon et al., 2004), with mean or modal 

sizes reduced by 10-20% in most studies (summarised in Keough et al., 1993a).  

Removing organisms from a shore can alter community interactions (Berthelon et al., 

2004), which in turn can modify community structure. Removal of L. littorea has the 

potential to reduce grazing pressure, increase algal cover, enhance sedimentation, 

and control the recruitment of sessile organisms (e.g. Petraitis, 1989; Cervin and 

Aberg, 1997; Buschbaum, 2000; Crossthwaite, 2012). Physical disturbance of the 

habitat and organisms can also have negative effects, from trampling and stone-

turning (Fowler, 1999; Berthelon et al., 2004; Tyler-Walters and Arnold, 2008; JNCC 

and Natural England, 2011).  

Comparative and experimental methodologies are used to investigate fishing impacts 

throughout the scientific literature (FAO, 2005). Within comparative studies, the 

community state indicates the impacts, whilst before and after measurements are used 

in experimental methods (FAO, 2005; Hughes et al., 2014). Comparative studies are 

commonly used to investigate rocky shore impacts from fishing – often comparing 

communities inside and outside of protected areas with long standing no-take zones 

(e.g. Keough and King, 1991; Keough et al., 1993a; reveiwed in Thompson et al., 

2002). Periwinkle collection impacts have mostly been studied with experimental 

methodologies to date, predominantly exclusion cages (e.g. Petraitis, 1989; Cervin 

and Aberg, 1997; Quigley, 1999; Buschbaum, 2000; Hancock and Petraitis, 2001; 

Cervin et al., 2004), with few studies using comparative methods (Quigley, 1999; 

Berthelon et al., 2004). Using exclusion experiments to examine the indirect effects of 

periwinkle collection on a community (rather than simply exploring community 

interactions) assumes that periwinkle fisheries are reducing the target species stocks, 

which may not be the case in some areas (Berthelon et al., 2004). The conditions of 

experimental studies need to be representative of actual fishing impacts for the 

findings to be useful to conservation bodies and policy makers.  
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The aim of this chapter is to investigate differences in the population size and structure 

of the target species, L. littorea, and how any observed differences relate to the 

gradient of fishing pressure within the BNNC EMS. Associated macroalgal and 

macroinvertebrate assemblages are described, and comparative methods used to 

explore observable impacts from actual fishing pressure, notwithstanding the 

limitations of such an approach. The decision to forego experimental methodologies 

is discussed.  
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5.2 Methods 

5.2.1 Comparative study  

Site Selection  

Three shores were required for comparison, each with a different level of collection 

pressure: no collection, low collection, and high collection. Shores within the BNNC 

EMS with appropriate collection pressures were identified on the basis of preliminary 

shore visits combined with advice from expert authorities (Natural England and the 

Northumberland Inshore Fisheries Conservation Authority) to establish known 

periwinkle harvesting activity. The selected shores were observed regularly from 

December 2013 to July 2014. Each site was visited at low tide 1-2 times per month 

throughout the monitoring period to estimate the intensity of periwinkle collection 

occurring at each, validating the assumed collection pressure classifications. The 

observations were made on a mix of both weekdays and weekends, and under various 

environmental conditions (e.g. weather and seasons), to remove confounding effects 

presumed to influence harvesting behaviour (Fowler, 1999; Cummins et al., 2002). At 

each visit, the number of periwinkle collectors present at each site was recorded.  

Marshall Meadows Bay (O.S. Grid Reference NT982568) was selected as the ‘no 

collection’ site, being a remote and difficult to access shore (single access route down 

the 50ft cliffs via a disused subterranean tunnel constructed in the 1800s, with a 

concealed entrance located on private gated land). A rocky stretch on the south-west 

corner of Holy Island (O.S. Grid Reference NU124416) was chosen as the ‘low 

collection’ shore, due to anecdotal collection despite the remote location. Boulmer 

rocky shore (O.S. Grid Reference NU270148) was selected as the ‘high collection’ 

shore, with considerable collection observed in preliminary visits. 

The locations of each site in relation to the position within the BNNC EMS are shown 

in Figure 5:1.  
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Figure 5:1: Locations of sample sites: Boulmer (high 
collection pressure), Holy Island (low collection pressure), 
and Marshall Meadows (no collection), within the BNNC 

EMS. 
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Figure 5:2: Aerial images of each study site (Map data @2018 Google). A = Marshall Meadows, B = 
Holy Island, C = Boulmer. Approximate transect locations for high, mid, and low shore are displayed 
by light grey lines. 

 

Sampling 

Sampling was carried out in March 2014, at low spring tides. Preliminary observations 

revealed periwinkle collection occurs at any shore height at which periwinkles are 

present. At each shore, ten quadrats (50 x 50 cm) were placed randomly along 3 shore 

height transects at the lowest, middle, and highest levels of the zone where periwinkles 

are found locally (the heights of which can be seen in Table 5:1). Within each quadrat, 

all L. littorea were counted and shell height measured using Vernier callipers.   
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Table 5:1: Shore heights (meters above chart datum) of low, mid, and high vertical zones of 
periwinkle distribution, at the three rocky shore study sites.  

Shore Low Mid High  

Boulmer 0.88 m 2.88 m 4.88 m  

Holy Island  0.72 m 3.82 m 1.82 m 

Marshall Meadows 0.80 m 1.80 m  2.70 m 

 

Within the same thirty quadrats, abundance of all other macroalgae and 

macroinvertebrate taxa were recorded to species level where possible. Count data 

was recorded for most fauna, whilst percentage cover was used for seaweeds, 

sessile organisms, and encrustations. 

5.2.3 Experimental study  

Experimental methods within the scientific literature were explored and assessed for 

suitability within Northumberland, including time and budget constraints. The logistics 

and requirements for cage exclusion/manipulation experiments are displayed and 

discussed. Requirements for experimental set-up were gained from a variety of 

studies (for e.g. average replicates completed, average run time), and instructions 

for manufacturing cages from Miller (2006). Costing for equipment was taken from 

McMaster-Carr Supply Company website (www.mcmaster.com), as recommended 

for sourcing cage supplies by Miller (2006) (dollars were converted to pounds using 

the current exchange rate at time of viewing). SWOT (strengths, weaknesses, 

opportunities, and threats) analysis was also conducted, to consider important 

factors of the study parameters, and highlight pros and cons of conducting the 

proposed experiments.  

Ultimately, it was decided that experimental study was unsuitable and unnecessary 

for this study site under the constraints. The evidence used to reach this decision is 

presented in the results section.  

5.2.4 Data Analysis  

Univariate statistics were analysed using Minitab version 17, and multivariate with 

Primer software. Differences between sites were tested using ANOVA where 

parametric assumptions were met (normal distribution (or normalized using log or 

square-root transformations) and similar variances). Kruskal-Wallis was used where 

normality assumptions could not be met (Underwood, 1997; Dytham, 2011). Diversity 
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was measured using the Shannon Wiener function (H), which was calculated for each 

sample and averaged for sites. Community structure was analysed using Bray Curtis 

Similarity (on square root transformed averaged data), with results expressed in 

Multidimensional scaling (MDS) plots. SIMPER analysis was used to determine the 

species responsible for the differences observed, which were subsequently plotted 

graphically. 
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5.3 Results 

5.3.1 Collection Pressure and Habitat characteristics  

Observations of periwinkle collection at the comparative sites (Boulmer, Holy Island, 

and Marshall Meadows) validated the assumptions made from expert advice and 

preliminary visits. It was confirmed that Boulmer has the highest collection pressure, 

Holy Island low collection, and Marshall Meadows no collection (Table 4:1) occurring 

on observed dates.  

Table 5:2: Validation of the collection pressure classifications assigned to each shore from 
observations recording the number of periwinkle collectors present per shore visit (visited regularly 
between December 2013 and July 2014). Averages of collectors presented as means with standard 
deviation. Boulmer n=13, Holy Island n=6, Marshall Meadows n=4.  

Location Collection Pressure  Average no. 

collectors per visit 

S.D 

Boulmer  High 1.38 1.04 

Holy Island  Low 0.17 0.41 

Marshall Meadows  Not Collected 0 0 

 

All three shores are moderately exposed, and dominated by boulders and bedrock, 

resulting in largely similar habitat characteristics. However, Holy Island was the most 

dissimilar site, with an unusual shore gradient (highest at mid shore), and the 

presence of shingle and pebbles at the high shore.  

5.3.2 Comparisons between sites with differing collection pressures 

Target species   

The median densities of Littorina littorea per quadrat (0.25m2) are significantly 

different between sites (Kruskal-Wallis, H = 17.75, df = 2, P < 0.001). The lowest 

average density was recorded at Marshall Meadows, the uncollected site (median = 

1 ± 52 range). The median densities for all sites can be seen in Figure 4:9. Figure 

4:10 shows the median periwinkle shell heights at each site, which are significantly 

different between sites (Kruskal-Wallis, H = 113.01, df = 2, P < 0.001). The largest 

average periwinkle shell height was observed at Marshall Meadows, the uncollected 

shore (median = 26 ± 28 range), which also had the largest proportion of large 

periwinkles (over 30mm). The maximum shell height was 33mm, which was 

recorded at both Marshall Meadows and Boulmer.  
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Figure 5:3: Median (± range) number of periwinkles per 
0.25m2 from three sites of varying collection pressure 
(Boulmer = high collection pressure, Holy Island = low 

collection pressure, Marshall Meadows = no collection), 
sampled March 2014; n = 30 for all sites. 

Figure 5:4: Median (± range) shell heights (mm) of periwinkles 
from three sites of varying collection pressure (Boulmer = high 

collection pressure, Holy Island = low collection pressure, 
Marshall Meadows = no collection), sampled March 2014, with 
all shells measured from each quadrat (30 per site). Boulmer n 

= 280, Holy Island n = 714, Marshall Meadows n = 127. 
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Rocky Shore Community  

The occurrence and abundances of taxa recorded at each site for all quadrats 

combined can be seen in Table 5:3. Crustacea and Mollusca dominate the faunal 

communities’ at all three sites, whilst algal taxonomic richness is highest at Boulmer 

and Marshall Meadows. Overall, the communities present at Boulmer and Marshall 

Meadows appear more similar than those at Holy Island (Table 5:3). The three most 

abundant faunal community species (excluding periwinkles) were Patella vulgata, 

Gibbula cineraria, and Pagurus bernhardus. The mean (+/- SD) for each of these 

species at each site can be seen in Figure 5:5. Holy Island was the most distinct site, 

with no P. bernhardus present, and much lower abundances of G. cineraria 

compared to Marshall Meadows and Boulmer.  

The average taxonomic richness is significantly different between shores (Kruskal-

Wallis, H = 30.88, df = 2, P < 0.001), with the highest richness recorded at Marshall 

Meadows (median = 8 ± 11 range), and the lowest at Holy Island (median = 4 ± 9 

range) (Table 5:4). The average floral and faunal abundances were statistically 

similar between sites for both percentage cover and individual count taxa (Kruskal-

Wallis, H = 4.48, 1.83, df = 2, 2, P > 0.1) (Table 5:4). Diversity (average Shannon’s 

diversity) was statistically different between shores (ANOVA, F = 15.45, df = 2, 89, P 

< 0.001), with the highest recorded at Marshall Meadows (mean = 1.53 ± 0.31 SD), 

and lowest at Holy Island (mean = 0.94 ± 0.42 SD) (Table 5:4). 
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Table 5:3: Total abundance of count data for faunal taxa and presence (+) and absence (left blank) of 
taxa recorded as percentage cover, within quadrats (50x50cm) collected from three shores of differing 
collection pressures (Boulmer = high collection pressure, Holy Island = low collection pressure, 
Marshall Meadows = no collection). Samples were collected in March 2014 on low water spring tides 
(n=30 for all shores). 

Species/Taxa Boulmer Holy Island Marshall Meadows 

ALGAE    

Ahnfeltia plicata +   
Ascophyllum nodosum  + + + 
Cladophora rupestris  +  + 
Corallina officinalis  +  + 
Fucus serratus  + + + 
Fucus spiralis  +   
Fucus vesiculosus   +  
Laminaria digitata    + 
Mastocarpus stellatus  +  + 
Palmaria palmata   + 
Ulva intestinalis  +  + 
Ulva lactuca  +  + 
Unidentified encrusting coralline +  + 
Unidentified red turf + + + 

CRUSTACEA    
Cancer pagurus  4 0 5 
Carcinus maenas  0 1 1 
Galathea squamifera 4 1 5 
Pagurus bernhardus  79 0 69 
Porcellana platycheles 1 0 0 
Semibalanus balanoides  + + + 
Unidentified isopod  2 1 3 

PORIFERA     
Unidentified sponge    + + 

ANNELIDA     
Polynoidae sp.  2 0 1 
Pomatoceros sp.  3 0 2 
Spirorbis spirorbis  + + + 

MOLLUSCA     
Anomia ephippium 15 25 0 
Gibbula cineraria 71 2 138 
Lepidochitona cinerea 5 0 1 
Littorina littorea  284 714 130 
Littorina obtusata  48 21 11 
Mytilus edulis  +  
Nucella lapillus 31 1 21 
Patella vulgata  84 58 111 
Unidentified nudibranch  0 1 0 

ECHINODERMATA     
Asterias rubens  0 1 0 
Henricia oculata 1 0 1 
Ophiothrix fragilis 4 0 0 

CNIDARIA     
Actinia equina  3 0 12 

ASCIDIACEA    
Botryllus schlosseri 0 0 1 
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Figure 5:5: Mean (+/- SD) abundances the three most abundant faunal species present at each study 
site (Boulmer, Holy Island, and Marshall Meadows). n = 30 for all sites.  

 

Table 5:4: Median (± range) faunal abundance (count data only) and taxonomic richness, and mean 
(± SD) Shannon’s diversity for each site with differing collection pressures (Boulmer = high collection 
pressure, Holy Island = low collection pressure, Marshall Meadows = no collection), sampled March 
2014 (n=30).  

 Boulmer Holy Island Marshall Meadows 

Abundance 14.5 (± 72.0) 22.5 (± 81.0) 10.5 (± 79.0) 

Taxonomic richness 7.0 (± 16.0) 4.0 (± 9.0) 8.0 (± 11.0) 

Diversity 1.22 (± 0.05) 0.94 (± 0.42) 1.53 (± 0.31) 

 

The community structure of the rocky shore organisisms between sites is 

significantly different (ANOSIM: Global R=0.312, p=0.1%). Bray Curtis similarity 

shows that Boulmer and Marshall Meadows have a higher similarity level of around 

70%, whilst Holy Island is the most distinct community, with only 45% similarity to 

either site. The Multi-Dimensional Scaling (MDS) plot of the Bray Curtis similarity 

(Figure 4:12) for the rocky shore communities showed some discrimination between 

sites, with a lot of overlap occurring. The similarity grouping overlays at 20 and 30% 

show that samples from different sites are often more similar than those from within 

a single sample site; the similarity groupings do not clearly distinguish between sites. 

SIMPER analysis shows that the main faunal species (greatest % contribution) 

responsible for the significant differences observed in community structure between 

the three sites (excluding Littorina littorea) are: Mytilus edulis, Patella vulgata, and 
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Gibbula cineraria, which are also some of the most dominant species recorded. The 

main floral species responsible are: Fucus serratus, Corallina officinalis, and 

unidentified encrusting coralline. The total abundances of each faunal species from 

the SIMPER analysis is displayed in Figure 4:13. Mytilus edulis was only present at 

Holy Island, whilst Patella vulgata and Gibbula cineraria were present at all sites, 

both being most abundant at Marshall Meadows.  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5:6: Non-metric multidimensional scaling (MDS) ordination of the 
Bray Curtis similarity based on square root-transformed averaged 

abundance data of the rocky shore community from sites with differing 
collection pressures (Boulmer = high collection pressure, Holy Island = 
low collection pressure, Marshall Meadows = no collection), sampled 

March 2014. 2D Stress: 0.22. Overlays of Bray Curtis similarity 
groupings at 25 and 40%. 
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5.3.4 Experimental study  

Cage exclusion or manipulation experiments were considered for use in this study, to 

provide empirical evidence on the effects of varying Littorina littorea density and 

grazing pressure on the associated community, evaluating the indirect effects of 

harvesting. Grazer exclusion experiments have previously been used to elucidate 

many grazer interactions and their influences on communities (e.g. Menge and 

Lubchenco, 1981; Menge et al., 1985; Petraitis, 1989; Geller, 1991; Williams, 1993; 

Williams, 1994; Cervin and Aberg, 1997; Buschbaum, 2000; Fong et al., 2000; 

Hancock and Petraitis, 2001; Bazterrica et al., 2007; Scheibling et al., 2008; Perez et 

al., 2009; Mrowicki et al., 2014; Guerry and Menge, 2017), the vast majority of which 

use cages to alter the natural abundances of grazers. Using cages to manipulate 

periwinkle density and/or size could be used to infer the response of local rocky 

shore communities to altered periwinkle stocks from unsustainable harvesting. The 

logistics and requirements in terms of equipment, time, and cost were considered for 

this type of experimental set-up, the outcomes of which can be seen in Table 5:5 and 

Table 5:6. A total time estimate of 35 days is conservative given the need to monitor, 

replace, and repair storm damaged or vandalised cages.  
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Figure 5:7: Total abundances of the three species most responsible for 
the difference in community structure per site (Boulmer = high collection 
pressure, Holy Island = low collection pressure, Marshall Meadows = no 

collection), sampled March 2014 (n = 30 quadrats per site = 7.5m2). 
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Table 5:5: Considerations and requirements for a cage exclusion/manipulation experiment to 
investigate the impacts of periwinkle harvesting on rocky shore communities.  

Considerations  Requirements  

Treatments 

6 treatments: 

 Natural Density, Natural Size 

 Natural Density, Reduced Size 

 Reduced Density, Natural Size 

 Reduced Density, Reduced Size 

 Cage Control 

 Open Control 

Replicates 6 replicates per treatment 
Total number of plots 36 plots (30 cages or partial cages, 6 open) 
Experimental run time  12 months 

Equipment for set-up 

 Stainless steel woven wire mesh  

 Vise-grips 

 Tin snips  

 C-clamps  

 Hammer 

 Hammer drill (masonry)  

 Plastic masonry anchors  

 Stainless steel lag bolts (¼”) 

 Washers 

Time for cage production 6 days  
Time for installation and set-up 5 days  
Time for sampling and maintenance 24 days (2 days per month) 
Total time investment  35 days  

 

The equipment requirements for this type of experimental set-up are large, and the 

run time is long (Table 5:5). An experimental run time of 12 months was chosen as 

an average based on other cage studies. It can take as long as three years to see 

full dominance shifts (Menge et al., 1985), but community alterations have also been 

observed in much shorter timescales (e.g. Petraitis, 1989; Buschbaum, 2000; 

Hancock and Petraitis, 2001; Scheibling et al., 2008). Around 12 months is a 

common run time for gastropod inclusion/exclusion studies (e.g. Williams, 1993; 

Mrowicki et al., 2014; Guerry and Menge, 2017), being enough time to observe 

changes, and allowing seasonal variability to be considered. Six treatments is 

deemed adequate to investigate both size and density alterations in periwinkle 

stocks. Around six replicates of each treatment seems common in previous studies 

(e.g. Geller, 1991; Williams, 1993; Williams, 1994; Fong et al., 2000; Bazterrica et 

al., 2007; Scheibling et al., 2008; Guerry and Menge, 2017).  
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Running a periwinkle manipulative cage study is extremely costly compared to that 

of lugworm exclusion (Chapter 4). The total estimated cost of £4,277.43 is more than 

this study can accommodate (Table 5:6).  

 
Table 5:6: Example costs of the equipment, time, and travel required to set up, maintain, and sample 
cage experiments. 

Category  Item Specifics  Price 

Equipment for 
set-up 

30 x Corrosion resistant stainless steel woven wire sheets 
(4x4 mesh, 0.54” wire diameter, 24x24”)  

£1,368.60 

1 x Vise-grip locking pliers, long nose £9.97 

1 x Smooth-edge high-force sheet metal cutter (snips) £23.45 

2 x Iron C-clamp, 6" Maximum - 0" min opening £40.16 

1 x Hammer for sheet metal forming, 4” head length  £28.31 

1x Cordless hammer drill, 18 volt £303.20 
120 x Tri-lobe anchor for concrete, ¼” screw size, 1.5” long £9.02 
120 x Hex head stainless steel screws, 1¼” long £20.75  
120 x Stainless steel oversized washer for ¼” screw  £33.35 

Total set-up equipment costs  £1,836.81 

Potential cage 
replacements 

5 spare cages for timely replacement if damaged  £238.62 

Field assistant  
Need two people for all stages – pay 1 field assistant for 35 
days (6 hours per day, £8 per hour) 

£1,680.00 

Travel  
Travel distance depends on chosen site, but approx. 120 
miles round trip per site visit (29 visits at 15p per mile)  

£522.00 

Total Costs   £4,277.43  

 

SWOT (strengths, weaknesses, opportunities, and threats) analysis was used to 

summarise and compare the pros and cons of the cage exclusion/manipulation 

method for use in this study (Table 5:7). The weaknesses and threats of using this 

experimental method appear to significantly outweigh the strengths and opportunities 

(Table 5:7). One major, and overwhelming weakness is that it can only investigate 

the indirect impacts associated with unsustainable harvesting. If periwinkle collection 

within the BNNC EMS reduced periwinkle densities or sizes, then this method would 

elucidate the associated community alterations from these changes. However, there 

is currently no evidence of these changes in periwinkle stocks. Although it can be 

useful to know the risks of collection activities if they were to be unsustainable in the 

future, it is most important for management consideration to know the impacts 

associated with the current stock state, leading to management which is appropriate 

for actual harvesting intensities.  
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Table 5:7: SWOT analysis of the cage exclusion/manipulation experimental method.  

 Cage Exclusion/Manipulation Experiments 

Strengths    Can be used show effects of reduced periwinkle abundance 

 Can be used show effects of reduced periwinkle size  

Weaknesses   Only investigates indirect impacts of harvesting on community 

 Very costly 

 Experimental set-up difficult and timely  

 Maintenance requirements high 

 Long experimental run time required to observe changes 

 Difficult to locate a suitable site 

 Cages can influence effects, by altering water flow, etc.  

Opportunities  Could be used in combination with experiments to test direct 
impacts, e.g. trampling or boulder turning  

Threats   Cages damaged or removed by people 

 Cages lost in strong seas  
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5.4 Discussion 

Periwinkle collection at current intensity levels within the BNNC EMS does not 

appear to be negatively impacting neither the target species nor rocky shore faunal 

and floral communities. Periwinkle populations are maintained at harvestable levels 

at highly collected shores, and communities likely vary from natural variation, rather 

than harvesting effects.  

5.4.2 Impacts upon the target species - Periwinkles 

Neither periwinkle size nor density appear to be correlated to harvesting pressures at 

current exploitation levels, with Boulmer, the heavily collected site, having a relatively 

high density and large sizes. Periwinkle densities can differ considerably between 

locations (e.g. Janke, 1990; Vadas, 1992; Wilhelmsen and Reise, 1994; Buschbaum, 

2000; Carlson et al., 2006). Natural density variation between shores plays a 

stronger role here than the impact of harvesting, likely due to other factors such as 

habitat selection (e.g. Moore, 1937; Newell, 1958; Vermeij, 1972; Gendron, 1977; 

Carlson et al., 2006; Storey et al., 2013). For example, the presence of rock pools 

and high rugosity are known to appeal to periwinkles (Newell, 1958; Carlson et al., 

2006). Periwinkles were most abundant, but smallest, at Holy Island, where a low 

level of collection occurs. This suggests that recruitment at this location is high, but 

growth is slow, possibly due to the low availability of ephemeral algae (a key food 

source (Lubchenco, 1983; Watson and Norton, 1985; Barker and Chapman, 1990; 

Norton et al., 1990)) compared to the other sites.  

If Boulmer, the high collection pressure shore, was being negatively impacted by the 

current harvesting levels, it would be expected that the periwinkle stock would be 

reduced (e.g. Quigley, 1999; Roy et al., 2003; Berthelon et al., 2004) and/or 

overfishing would have resulted in a smaller average size and altered population 

dynamics as seen in previous harvesting impact studies (e.g. Castilla and Duran, 

1985; Lindberg et al., 1998; Jackson and Sala, 2001; Dayton et al., 2002; Thompson 

et al., 2002; Roy et al., 2003; Berthelon et al., 2004). In both measurements 

(average density and size), Boulmer had intermediate results; although it is possible 

that Boulmer had naturally higher density and body size periwinkle populations and 

has been altered by collection, densities or shell height are not depleted much 

beyond those of a largely uncollected site. The largest shell height recorded in this 
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study was 33mm, which was observed at both Marshall Meadows and Boulmer. 

Previous studies at Boulmer have recorded the largest shell height to be 28mm 

(Quigley, 1999) and 30mm (Morrell, 1976). This suggests that continued harvesting 

of periwinkles at Boulmer in the medium term (over the last 50 years) has not lead to 

a reduction in maximum shell height.  

The sustained relatively high densities and shell heights observed at Boulmer 

despite high collection levels may be due to L. littorea ability to recolonise from high 

dispersive larval recruitment originating from uncollected shores (Berger, 1973; 

Johannesson, 1988; Jackson, 2008b). Additionally, Boulmer is a very large rocky 

shore, so refuge populations will remain in areas not frequented by collectors. 

Smaller, more isolated shores elsewhere in the BNNC EMS may not be as resistant 

to periwinkle harvesting as those observed in this study. 

With the recent craze for ‘foraging’ (Wright, 2009; Mabey, 2012), there are concerns 

that small scale recreational collection of periwinkles may increase further in the near 

future, and as such impacts should be monitored going forward.  

5.4.2 Impacts upon the rocky shore community  

Previous studies have observed impacts from harvesting occurring at the rocky 

shore community level, from either physical damage to the habitat such as boulder 

turning (Morris et al., 2011; Crossthwaite, 2012) and trampling (Brosnan and 

Crumrine, 1994; Ferreira and Rosso, 2009), or secondary effects of altered target 

species abundance and size via food web interactions (Castilla et al., 1985; Branch 

and Moreno, 1994; Cervin and Aberg, 1997; Sharpe and Keough, 1998; Lirman, 

2001; Keuskamp, 2004). Since no effect on periwinkle size nor abundance has been 

recorded at these study sites, any community differences between the sites in this 

study cannot be due to the secondary effects of hand gathering activities.  

The community data from this study does not reveal any patterns to infer a 

significant negative impact from periwinkle collection. Despite the contrasting 

harvesting regimes, the communities at Boulmer and Marshall Meadows were highly 

similar when both species/taxa presence/abundance and community structure were 

compared.  Marshall Meadows had the highest average taxonomic richness, and 

diversity, however, there is no evidence that this is due to the lack of periwinkle 

harvesting. Although the community structure differed slightly between shores, it 
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does not appear that the main species responsible differ due to periwinkle harvesting 

occurrence.  

Large variation in rocky shore communities is common within the study area (Big 

Sea Survey data, personal communications). The three most abundant faunal 

species recorded in this study (P. vulgata, G. cineraria, and P. bernhardus) also 

varied widely in recorded abundances in the Big Sea Survey data, where many 

shores were sampled within the North-East of England. For example, in this study, 

G. cineraria was most abundant at Boulmer and Marshall Meadows, with very low 

abundances recorded at Holy Island. Within the Big Sea Survey data, G. cineraria 

abundance also varied significantly between shores, being absent or present in very 

low abundance at some sites (e.g. Beadnell, Howick, Craster, Whitburn, Colywell 

Bay, Seaton Sluice, Seaham Harbour, St Mary’s Island, etc.) and numerous at 

others (e.g. Low Newton, Cresswell, Eyemouth, Alnmouth, Boulmer, Seahouses, 

Hauxley, etc.). Similar large differences between shores are present for many of the 

species recorded in the Big Sea Survey, highlighting the large degree of community 

variation within the region and the BNNC EMS.  

A caveat of comparative methodologies for assessing impacts is the presence of 

variability between sites due to both natural differences and other anthropogenic 

stressors (Thompson et al., 2002). Rocky shore communities are spatially and 

temporally heterogeneous, making defining an ‘unimpacted’ condition challenging, 

and complicating the detection of change from anthropogenic activities (Hartnoll and 

Hawkins, 1980).  

Natural variation between shores can be due to various environmental factors such 

as: wave action/exposure (e.g. Bustamante and Branch, 1996; McQuaid and 

Lindsay, 2007; Blamey and Branch, 2009), biogeography and hydrology (e.g. Menge 

et al., 2003; Cole and McQuaid, 2010), nutrient supply (e.g. Menge, 2000), 

climate/temperature (e.g. Menge et al., 2008), and habitat complexity and structure 

(e.g. Seapy and Littler, 1978; Beck, 2000; Kelaher and Carlos Castilla, 2005; 

Kostylev et al., 2005). The similarity of all study sites being classified as moderately 

exposed should minimise observable community differences from wave action. 

However, there are clear differences in habitat structure between sites, with Holy 

Island having the most distinct structure of the three study sites (containing pebbles, 
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and few rock pools, etc.). Similarly, there are likely small differences in the average 

sea temperatures between sites, with the more northern sites experiencing lower 

average temperatures (e.g. Berwick August average of just 14.4 degrees Celsius 

versus Blyth August average of 15.3 (seatemperature.org)). Natural variation needs 

to be considered in the analysis and interpretation of findings. For example, Gibbula 

cineraria favour seaweed, stones, and rock pools as habitat (Hayward and Ryland, 

1995), which can explain the higher occurrence at Marshall Meadows and Boulmer 

compared to Holy Island. 

Additional anthropogenic effects (other than periwinkle harvesting) must also be 

considered in impact studies. Anthropogenic stressors which have the ability to 

impact upon rocky shore communities include: trampling (e.g. Povey and Keough, 

1991; Brosnan and Crumrine, 1994; Fowler, 1999; Berthelon et al., 2004; Tyler-

Walters and Arnold, 2008; Ferreira and Rosso, 2009; JNCC and Natural England, 

2011), mining (Pulfrich et al., 2003a; Pulfrich et al., 2003b), eutrophication (e.g. 

Kraufvelin et al., 2006; Worm and Lotze, 2006; Arévalo et al., 2007; Kraufvelin, 

2007), and of course intertidal harvesting (e.g. Sharpe and Keough, 1998; Moreno, 

2001; Berthelon et al., 2004; Davenport and Davenport, 2006). A key difference 

between the study sites is the amount of trampling and disturbance to the sites on a 

regular basis. Holy Island rocky shore experiences high foot traffic despite having a 

low periwinkle collection pressure (personal observation). It is located on a tourism 

hotspot, which is very popular with walkers and sightseers, and therefore it is 

possible that trampling associated with activities other than periwinkle harvesting is 

causing the lower richness and diversity observed at Holy Island. 

Natural and additional human-induced variation between rocky shores has the 

potential to mask impacts of intertidal harvesting, and when differences are detected 

it is challenging to separate the observed impacts caused by harvesting from all 

other co-existing coastal activities. To confidently detect changes from 

anthropogenic impacts, rocky shore communities need to be recorded multiple times 

a year to account for seasonal differences, and also over decades to see longer term 

trends (Hartnoll and Hawkins, 1980). Even then the risk remains that the provenance 

of major changes may be confused (Hartnoll and Hawkins, 1980).  
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5.4.4 Experimental study consideration 

Ultimately, the experimental method of cage manipulations of periwinkles was not 

suitable within this study. The costs were too high, and the lack of relevancy for 

management if periwinkle stocks are not currently reduced was important.  

Additionally, the effects of grazer exclusion have already been well studied on rocky 

shores (e.g. Petraitis, 1989; Cervin and Aberg, 1997; Lindberg et al., 1998; 

Buschbaum, 2000; Cervin et al., 2004) and other marine ecosystems (e.g. Hillebrand 

et al., 2000; Lirman, 2001; Paine, 2002; Silliman and Bertness, 2002; Keuskamp, 

2004; Poore et al., 2012). Previous studies show a variety of impacts on rocky shore 

communities from reduced or extinguished grazer populations, such as: increased 

macroalgal germling survival (Cervin and Aberg, 1997), enhanced growth of grazer 

competitors (Petraitis, 1989), increased recruitment of sessile organisms 

(Buschbaum, 2000), and increased algal cover (AFBI, 2013).  

These impacts are all possible for the Northumberland rocky shore communities if 

periwinkles were over-exploited to a level where their abundances were dramatically 

reduced. However, within Northumberland, there are at least two other common 

dominant grazers present on most shores: top shells (Gibbula spp.) and limpets 

(Patella vulgata), which may be capable of buffering the effects of reduced grazing 

pressure from Littorina littorea. This is a form of functional redundancy, whereby a 

species with an overlapping functional niche and distribution can be a substitute for 

the reduced species, ultimately maintaining ecosystem functioning and processes 

(Lawton and Brown, 1994; Rosenfeld, 2002). It is possible that in the long-term, 

reduced periwinkle density would have little impact on the community due to grazing 

competitors increased contribution. Several studies have observed dramatic 

alterations after short-term grazer exclusion, which have disappeared or changed in 

the long-term once other species alterations compensate (e.g. Lindberg et al., 1998; 

Buschbaum, 2000). Therefore, lengthy exclusion studies are required to see realistic 

lasting effects over multiple seasons and years, which the scope of this thesis would 

not allow.  

A study of direct effects could have also been considered, e.g. trampling or boulder 

turning. However, previously studies have found no changes using the simulated 

harvesting method for periwinkles, with background long-term harvesting levels 
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having the largest impact on communities (Crossthwaite, 2012). Therefore, it was 

decided that experimental methods were not required nor suitable within this study 

for periwinkle harvesting impacts. If in the future, evidence showed that periwinkle 

stocks were effected by harvesting, then manipulative field experiments may be 

more appropriate to infer community wide implications.  
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5.5 Conclusions 

This chapter presents evidence which provides a baseline to help inform 

management plans for the BNNC EMS, as well as other protected areas throughout 

the UK. The evidence base provided is based on local, current harvesting levels, 

revealing actual impact (or lack thereof) of periwinkle collection activities within the 

BNNC EMS.  

Periwinkles are important grazers and prey, with the ability to shape intertidal 

communities (e.g. Lubchenco and Gaines, 1981; Lubchenco, 1983; Watson and 

Norton, 1985; Petraitis, 1987; Janke, 1990; Vadas, 1992; Mill and Mcquaid, 1995; 

Anderson and Underwood, 1997; Sommer, 1999b; Buschbaum, 2000; Scheibling et 

al., 2008; Griffin et al., 2010; Diaz et al., 2012). Results from this research suggest 

that impacts on periwinkles are not discernible against natural variability, and that at 

current, local collection intensities, periwinkle harvesting appears not to alter the 

periwinkle density or size beyond naturally occurring levels on sites with no collection 

pressure. However, it is possible that cumulative impacts over long timescales, or 

increased harvesting intensity in the future, could lead to negative impacts on 

periwinkle stocks in the future.  

Similarly, it appears that at current levels, periwinkle collection is not causing 

observable negative impacts upon the rocky shore communities. The communities 

appear to be variable due to habitat differences and possibly alternative 

anthropogenic pressures, such as trampling (e.g. Povey and Keough, 1991; Brosnan 

and Crumrine, 1994; Fowler, 1999; Berthelon et al., 2004; Tyler-Walters and Arnold, 

2008; Ferreira and Rosso, 2009; JNCC and Natural England, 2011), rather than the 

occurrence or intensity of periwinkle harvesting.  

Neither the target species nor rocky shore communities are clearly suffering in areas 

befalling harvesting. Similar to Boyes et al. (2006) review of threats from unlicensed 

marine activities, including hand gathering, there is insufficient evidence of 

detrimental impacts, despite the clear dangers. 
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Chapter 6. Synthesis, Discussion, and Management Implications 

6.1 Synthesis 

Management of fisheries, with the aim of ensuring sustainable exploitation, requires 

knowledge and understanding of the fishery itself (e.g. distribution of fishing 

pressure, exploitation level, etc.), and the potential and actual impacts incurred. A 

literature review of intertidal fisheries (Chapter 1), especially related to Littorina 

littorea and Arenicola sps, highlighted the importance of studying intertidal fisheries 

worldwide, and revealed many specific questions that remain concerning the scale, 

locale, and ecological impacts of these fisheries, both locally within Northumberland 

and nationally. This thesis aimed to explore details of the Northumberland periwinkle 

and lugworm fisheries. It has examined the scale, intensity, spatial distribution, 

drivers of fisher distribution, economic value, and associated impacts of both 

fisheries, using the BNNC EMS as a case study area. Social science and natural 

science methodologies have been combined to produce an integrated approach to 

the investigation, informing the current state of knowledge, and providing the first 

large scale fishery assessments for periwinkles and lugworms within England.  

This chapter reviews the thesis, summarising the key findings in context of the 

literature, discussing the implications and potential uses for both local and wider 

management, recommending management actions, and finally highlighting 

outstanding research questions and priorities for future investigation.  
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6.2 Key Findings and Knowledge Contributions 

6.2.1 Scale, Locale, Intensity, and Value 

Growing concern for the exploitation of marine resources is leading to an increased 

demand for data on the distribution and intensity of fishing activities, including 

intertidal collection. Despite requirements for rigorous data to inform management 

(Dowling et al., 2015a; Dowling et al., 2015b), many fisheries remain data poor 

(Costello et al., 2012), and to date, little research has been carried out for intertidal 

fisheries within England. Intertidal fisheries in general have received little attention 

compared to larger marine fisheries occurring in offshore and inshore environments 

(e.g. Phillips et al., 2000; Arcos et al., 2001; Drinkwater et al., 2006; Stelzenmüller et 

al., 2008; Abbott et al., 2010; Bearzi et al., 2010; Williams and Terawasi, 2011), 

including locally within Northumberland, where crab and lobster inshore fisheries 

have received significant recent attention (Turner et al., 2009; Turner, 2010; Skerritt, 

2014; Turner et al., 2015; Stephenson, 2016). With very little data available on the 

spatial extent of the lugworm and periwinkle fisheries within Northumberland 

specifically, methodologies were developed to gather new data to assess the scale, 

locale, collection intensity, and economic value of both fisheries within the BNNC 

EMS (Chapters 2 and 3). The novelty of these investigations lies in the methods 

used, the local scale within a Marine Protected Area (MPA) setting, and the direct 

applicability to future management plans requiring evidence. Lugworm collection 

scale and intensity has been little studied within the UK, with only individual shores 

considered (Blake, 1979a), whilst periwinkle fishery studies have focussed on 

Scotland and Ireland in their entireties, resulting in less detailed analysis of larger 

areas (McKay et al., 1997; Cummins et al., 2002). This study bridged the gap of 

scales, combining the detail gained through studying individual shores with the 

‘bigger picture’ approach of an entire coastline and EMS, providing large-scale, 

locally relevant data direct to conservation and fishery managers.  

Chapter 2 combined spatial (shore observations/mapping) and social (fisher 

questionnaires) methods to explore patterns of lugworm collection on sediment 

shores, and periwinkle collection on rocky shores. Biomass removal was estimated 

and fisher distribution mapped for both target taxa. Clear collection hotspots were 

identified, with Boulmer being a key harvesting locale for both taxa, and a southern 
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skew of collection intensity within the BNNC EMS boundaries likely due to larger 

population centres occurring below the southern boundary (Northumberland County 

Northumberland County Council, 2014b). Seasonal patterns were revealed, with a 

winter peak in lugworm collection in line with the cod fishing season (Townshend and 

O'Connor, 1993; Fowler, 1999), and a summer peak for periwinkles due to a high 

demand for export (Cummins et al., 2002). Biomass levels were significant for both 

fisheries, with a conservative estimate of 1.24 tonnes of lugworms, and 13.37 tonnes 

of periwinkles removed from the BNNC EMS each year, equating to economic 

values of £54,560 and £133,749 respectively. Lugworm biomass removal per 

standardised area of habitat was similar to other major bait fisheries around the 

world (ragworm at Dell Quay, Solent, and G. dibranchiata  in Maine, USA) when the 

most popular shore (Boulmer) only was considered (Watson et al., 2017a), providing 

evidence that the Northumberland lugworm fishery can be considered intensive in 

certain locations. The Northumberland periwinkle fishery appears to be less intensive 

than the Scottish or Irish counterparts (McKay et al., 1997; Cummins et al., 2002). 

The methods used and insights gained within this chapter have high applicability to 

other intertidal fisheries sharing the same habitats, with lugworms and periwinkles 

providing a case study for other species such as crabs, mussels, land lobster on the 

rocky shore, and ragworm, clams, and cockles on the sediment shores.  

Adherence to existing lugworm management byelaws was found to vary 

considerably between location and designation reasons (i.e. practical vs 

conservation drivers), as has been seen before (Watson et al., 2015), and 

suggesting that previously identified concerns about compliance and enforcement 

locally (NCAONB, 2009) are justified. Collection effort was further allocated into 

recreational and suspected commercial categories using key trends recorded in 

collection behaviour. Commercial collection appears to make up an overwhelming 

majority of both fisheries in terms of biomass, with 71% of lugworms and 95% 

periwinkles removed from the shores by suspected commercial fishers, providing 

further evidence that commercial intertidal collection must be assessed for 

management (Fowler, 1999; Watson et al., 2017a), and providing a methodology to 

crudely separate recreational and commercial collection activities in a quantitative 

way.  
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Chapter 3 used spatial modelling methods to predict and describe the spatial 

patterns of lugworm fishing pressure, and the habitat and species sensitivities and 

vulnerabilities to bait digging. Two separate models were produced for lugworm 

collection suitability and sensitivity, which were combined to provide measures of 

vulnerability. This thesis is the first to use suitability modelling as a base for intertidal 

fisheries mapping and assessment. Data gathered to populate the model with 

lugworm density and size information is the first large scale assessment of lugworm 

populations within the UK, providing valuable lugworm population maps for the 

BNNC EMS. Output maps of lugworm collection suitability translated well into actual 

collection pressure (validated with shore observations from Chapter 2), providing a 

map of the Northumberland lugworm fishing grounds, an important aspect of Marine 

Spatial Planning (MSP) (Stelzenmüller et al., 2008; Jennings and Lee, 2012), and 

increasing the understanding of the fishers and their choices, another important 

aspect of fishery assessment (Turner, 2010). Sensitivity maps highlighted key areas 

which would be most impacted if collection were to occur there. The vulnerability 

model relates the fishery pressure (suitability) to species and habitat sensitivity, 

highlighting key areas of conflict between the fishery and conservation aims. The 

areas with the biggest conflicts, and therefore likely the largest impacts, were 

identified as Fenham Flats, Budle Bay, Newton, and Boulmer. Current lugworm 

management (no-digging zones) spatially encompasses most of the areas identified 

as most suitable, sensitive, and vulnerable (UK Marine SACs Project, 2001a; 

NCAONB, 2009), with some spatial expansion recommended for improved coverage 

of vulnerable areas. This positive finding is dulled by the issue of enforcement; if 

areas are protected on paper only, they will have little helpful conservation effect.  

6.2.2 Ecological Impacts 

The main driver behind this thesis was to investigate the ecological impacts of the 

Northumberland lugworm and periwinkle fisheries. The policy shift behind this was 

DEFRAs ‘Revised Approach to the Management of Commercial Fisheries in 

European Marine Sites’ (MMO, 2014b). This insisted on an enhanced evidence base 

of the impacts of all fishery-interest feature interactions within protected sites, such 

as the BNNC EMS. Evidence of the impacts associated with intertidal fisheries are 

required for management decisions, as activities which unfavourably affect site 

integrity are not allowed without suitable management measures in place to protect 
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the interest features (MMO, 2014b), and impacts need to be known if they are to be 

minimised by conservation and management. Intertidal hand gathering activities on 

both rocky reefs and sand and mud flats were among the interactions identified as 

lacking an evidence base within the BNNC EMS (MMO, 2014b). Chapters 4 and 5 of 

this thesis addressed this evidence gap, using both comparative and experimental 

methodologies to explore the ecological impacts associated with the Northumberland 

lugworm and periwinkle fisheries, inferring whether these fisheries are compatible 

with the conservation objectives or the designated features of the BNNC EMS. The 

novel achievement of these investigations lies in their local, site-specific nature 

relative to the local fishing pressure and frequency, and the direct applicability of the 

findings to local marine management plans.  

Chapter 4 investigated the impacts of the local lugworm fishery. Previous studies 

have revealed that possible impacts of bait collection include altered density and size 

structure of the target species populations (Shahid, 1982; Beukema, 1995; 

Volkenborn and Reise, 2007), and reduced biomass and altered community 

structures of associated infaunal organisms (Jackson and James, 1979; Van den 

Heiligenberg, 1987; Brown and Wilson, 1997). Methods were developed to detect 

similar changes within the BNNC EMS, where no historical data was available to 

observe the changes over time with the presence of harvesting. The target species 

populations and the associated sediment communities were compared both between 

sites experiencing contrasting lugworm harvesting pressures (actual fishing 

pressure), and within a single site before and after experimental bait digging 

disturbance events and lugworm exclusion/reduction (simulated fishing pressure).  

The comparisons between sites revealed that the target species populations were 

relatively similar, and there was no evidence that populations were suffering at sites 

befalling heavy collection. This does not mean that changes have not occurred over 

time which are undetectable against natural variation between sites. In contrast, 

there was strong evidence that the sediment community was impacted by the 

occurrence of lugworm collection, especially at Boulmer, the high fishing pressure 

site, where average infaunal abundance was less than half that of the other sites. 

Despite the observed decreased infaunal community with increased collection 

pressure, the diversity was not negatively impacted.  
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Simulated digging within a previously undisturbed site revealed that bait digging for 

lugworms within Northumberland sediment shores has the potential to dramatically 

impact the infaunal community, with reduced abundance, taxonomic richness, and 

altered community structure, providing further evidence in support of the differences 

observed between sites being due to the lugworm fishing pressure. The higher the 

digging frequency/intensity the larger the impacts observed, which has been 

suggested previously (Van den Heiligenberg, 1987; Beukema, 1995). Alterations to 

the habitat were also recorded, with the sediment penetrability severely increased 

after digging. Reducing lugworm abundance marginally with exclusion nets was seen 

to impact indirectly on the sediment community, reducing the taxonomic richness. 

Previous lugworm exclusion studies have excluded all lugworms from an area (e.g., 

Volkenborn and Reise, 2006; Volkenborn et al., 2007a; Volkenborn and Reise, 2007; 

O'Brien et al., 2009; Kuhnert et al., 2010a; Lei et al., 2010), and as such this is the 

first study to show that even a slightly reduced lugworm abundance can affect 

communities, due to the important ecological role of lugworms as ecosystem 

engineers (Lawton, 1994; Wright and Jones, 2006; Volkenborn et al., 2007a; 

Volkenborn and Reise, 2007).  

Experimental plots recovered rapidly, with full infaunal recovery occurring within 11 

weeks (previous studies range from 140 days to 5 years (Van den Heiligenberg, 

1987; Beukema, 1995). It is unlikely that recovery would be as complete and as fast 

at sites experiencing significant fishing pressure. Unique conditions at Fenham Flats 

allow optimal recovery, for example, large expanse of proximate undisturbed 

sediment for adult migration, small scale of disturbance, few long-lived and slow-

recovery species present, recovery period in summer when recruitment peaks, etc. 

(Jackson and James, 1979; Zajac and Whitlatch, 1982a; Zajac and Whitlatch, 1982b; 

Beukema, 1995; Ford et al., 1999; Fowler, 1999; Reise et al., 2001; Watson et al., 

2007)). Although a positive sign, the fast recovery rate observed in this study should 

not be applied to all other sites within the BNNC EMS for which recovery could be 

significantly slower depending on the local conditions. Marginal sites such as the bait 

digging zone within Fenham Flats can be assumed to have similar recovery potential 

if digging effort is spread out, however, other sites must be considered on an 

individual basis.  



Chapter 6: Synthesis, Discussion, Management Implications, and Recommendations  

 

194 
 

Chapter 5 explored the impacts associated with the Northumberland periwinkle 

fishery. Previously identified impacts of rocky shore gastropod harvesting are similar 

to those of bait digging, with possible impacts including a reduced stock and body 

size of the target species, and altered community interactions and structure 

(Petraitis, 1989; Cervin and Aberg, 1997; Quigley, 1999; Buschbaum, 2000; 

Thompson et al., 2002; Berthelon et al., 2004; Crossthwaite, 2012). A comparative 

methodology was used to identify any observable impacts of these kinds between 

rocky shores within the BNNC EMS which are subject to a gradient of periwinkle 

harvesting intensities. There was no evidence that the target species is negatively 

impacted at current harvesting intensity, with higher average abundances observed 

at collected sites, and body size patterns not corresponding to collection pressure. 

The rocky shore community showed a similar lack of impacts, with Holy Island, the 

low intensity collection site, having the most distinct community and lowest species 

richness and diversity. Previous research has suggested that impacts upon rocky 

shore target species and communities are cumulative, requiring long timescales to 

see the effects, with historic collection patterns capable of masking the present 

impacts (Crossthwaite, 2012). Therefore, although this study did not observe any 

impacts, they could be masked by natural variation between sites, unknown historic 

collection patterns, and other disturbance events. Unfortunately no historic data is 

available to explore changes over time.  

Overall, it appears that at current harvesting intensities the Northumberland lugworm 

fishery is not damaging target species populations, but having significant negative 

impacts upon the infaunal community at high harvesting intensities. The 

Northumberland periwinkle fishery in creating no observable negative impacts on 

either the target species or the rocky shore communities. Impacts of this nature are 

often cumulative and may begin to appear with continued or increased collection in 

the future, so ongoing monitoring is recommended for both fisheries.  
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6.3 Implications for management 

6.3.1 BNNC EMS 

Despite the requirement for mudflats, sandflats, and rocky reefs within SACs to be 

maintained in a favourable condition (European Union Council Directive. 92/43EEC, 

1992), intertidal fisheries management remains an issue for regulatory bodies. 

Management concerns over the severe lack of impact evidence of intertidal fisheries 

was the driver of this research (MMO, 2014b), and as a result the findings are aimed 

to be directly applicable to NIFCA and Natural England marine management plans, 

increasing the knowledge base on lugworm and periwinkle intertidal fisheries within 

the BNNC EMS. Current trends towards the decentralisation of fisheries monitoring 

and management, and increasing regional responsibility (Gavaris, 1996; McCay and 

Jentoft, 1996; Jentoft et al., 1998; Lewins et al., 2014; Eliasen et al., 2015) require 

regionally specific data, which this thesis provides.  

This research has successfully developed methodologies to map the distribution of 

intertidal fishing activities (either modelling in Chapter 3, or shore observations in 

Chapter 2), and to estimate the fishing intensity in terms of biomass and economic 

value (Chapter 2), which were previously lacking within Northumberland. These 

methods can be used and repeated by managers responsible for assessing other 

local intertidal fisheries, and will continue to be used by NIFCA and Natural England 

to monitor periwinkle and lugworm fisheries distribution and scale over time.  

Collection observations in Chapter 2 suggest that both lugworm and periwinkle 

collection are spatially patchy, which could be considered ‘self-limiting’, creating 

natural no-take zones. The lack of collection observed in some areas could create 

refuges for unexploited populations, which if large enough, could help to sustain 

exploited populations (Carr and Reed, 1993). Both target species larval stages have 

high dispersive potential (Johannesson, 1988; Günther, 1992; Jackson, 2008a; 

Tyler-Walters, 2008), making it possible for refuge populations to supply new recruits 

to harvested areas (Carr and Reed, 1993). This is a positive for managers if refuge 

populations exist naturally without the need for further management. However, it is 

essential to determine the effectiveness of such refuges, ensuring that they have the 

ability to maintain high larval production and replenish stocks at a level higher than 

the established harvesting rate (Carr and Reed, 1993).  
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Compliance of fishers to bait digging byelaws was observed to be low in some areas, 

such as Newton, where night time collection was high in order for fishers to evade 

enforcement (and Regulations were scored to be of low importance by experts within 

the suitability model weightings). The prevalence of night time collection and its 

associated darkness poses a major difficulty for management, creating additional 

practical challenges compared to day time collection (Cooke et al., 2016). It is 

important for resource management agencies to decide if and how they manage 

night fisheries (Cooke et al., 2016). A major management implication of these 

fisheries is the requirement to observe and enforce at night, when logistics can be 

challenging – safety, staffing effort, etc. (Cooke et al., 2016). Effective enforcement 

is critical to achieve a high level of compliance (Ceccherelli et al., 2011; Cooke et al., 

2013; Watson et al., 2015), an important issue in marine management (e.g. Burger 

et al., 1999; Gezelius, 2002; Crawford et al., 2004; Hatcher and Gordon, 2005; Blank 

and Gavin, 2009; Bloomfield et al., 2012; Haggarty et al., 2016). Strong, consistent, 

face-to-face enforcement is imperative, with passive methods such as education, 

codes of conduct, and signage largely ineffective (Watson et al., 2015). For the 

Northumberland bait worm fishery, this would require significant additional resources 

to enable enforcement a night. However, this studies collection pattern findings could 

help to direct limited enforcement resources to maximise effectiveness – collection 

hotspots, seasons, and tidal states. To increase compliance of current spatial 

management, it is recommended that enforcement is increased, particularly at night 

when a high amount of illegal fishing activity often occurs (e.g. Anderson, 1989; 

Crawford et al., 2004; Ganapathiraju, 2012). The observed southern skew of 

collection hotspots could aid enforcement bodies such as NIFCA, based in South-

East Northumberland, reducing travel time and costs.  

The distinction of commercial from recreational intertidal fishers is a challenge 

(Griffin, 1988; Fowler, 1999), and remains a topic of debate (Watson et al., 2017a). 

In this study, commercial collection appears to dominate both fisheries in terms of 

biomass. For management to focus solely on commercial collection, which is often 

the case for bait fisheries (Watson et al., 2017a), the identification of commercial 

collectors needs to be achievable on-site. This remains difficult, unless commercial 

collection is given an agreed definition based on observable characteristics, such as 

harvest amount (recommended at over 200 lugworms and 20 lbs periwinkles per 
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collector per trip from this study).  Watson et al. (2017a) argues that management 

targeting commercial collection only will fail due to the uncertainties with identifying 

commercials, resulting in ineffective management. A possible solution would be to 

invoke management for both sectors, focussed on reducing the high intensity 

collection most commonly associated with commercial collection. 

Monitoring is the action of intermittently recording the condition of a feature to 

measure or detect compliance with a predetermined standard (Hellawell, 1991). It is 

an essential element of management (Day, 2008), which is used to: inform 

conservationists when the system departs from the desired state, detect the effects 

of impacts and disturbances, and measure the success of management actions 

(Legg and Nagy, 2006). Baseline data is required to measure against to detect 

change (Goldsmith, 2012). This study provides the first BNNC EMS wide dataset of 

lugworm populations, which can now be used as a baseline to measure future stock 

changes, with either continued collection impacts, or altered management 

(Stelzenmüller et al., 2008). Lugworm density is generally stable over time (long-

term) in unexploited stocks compared to other infaunal organisms (Beukema, 1982), 

which should make detecting human induced changes easier. There is seasonal 

variation, with the highest densities in spring/summer (Brey, 1991), and therefore 

monitoring should take place at the same time each year to avoid natural variation 

between seasons influencing the data-set (Hewitt and Thrush, 2007). Ongoing 

monitoring should fall within April/May to coincide with the baseline data provided in 

this study, whilst also avoiding possible interference during the peak bait digging 

season in winter (Fowler, 1999).  

Monitoring and research design are often a compromise between the scientific ideal, 

and financial and logical constraints (Warwick, 1993; Gerber et al., 2005). Good 

value monitoring methods are important to consider in management plans, reaching 

a reasonable balance between cost and the quality of knowledge gained, leading to 

better management (Gerber et al., 2005). One such compromise for monitoring 

lugworm populations could be to reduce the spatial extent of monitoring, whilst 

maximising the ability to detect changes (Manley et al., 2004; Nichols and Williams, 

2006). Monitoring could be directed spatially using the model output maps produced 

in this study, for example to areas where collection activities are likely to have the 

largest impacts (high vulnerability), or areas where collection pressure is highest 
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(high suitability), since bait digging impacts are known to increase with collection 

intensity (Anon, 1992 as cited by JNCC and Natural England, 2011). Additionally, 

areas of sediment with low suitability (likely largely uncollected) could be used as 

controls, observing the natural variation in lugworms and the associated species and 

habitats (Block et al., 2001).  

Current spatial management of bait digging covers the majority of the most suitable,  

sensitive, and vulnerable sites to lugworm collection identified by the models in 

Chapter 3, suggesting that existing management within the BNNC EMS is well 

placed to protect the interest features from potential lugworm harvesting impacts. 

Berwick north of the pier, a very suitable shore, and Boulmer north of the no digging 

zone, a very vulnerable area are the two exceptions, and would both benefit from 

additional management measures, such as spatial closure, to further improve the 

management coverage of areas highlighted within the models. Fisheries 

displacement if all collection was disallowed and well enforced at Boulmer and 

Berwick would likely effect shores with the highest suitability close by (Underwood, 

1993; Boye et al., 2006; Abbott and Haynie, 2012; Lédée et al., 2012), such as parts 

of Foxton, Howick, Newton, Eyemouth, and Fenham Flats bait digging zone. Failure 

to consider fishers behaviour, such as relocation, within management policies is an 

error, and can undermine the success of the measures implemented (Rosenberg 

and Restrepo, 1994; Wilen et al., 2002). Models can be used to predict fisher 

relocation patterns and costs (Dowling et al., 2012). The suitability model from this 

study has potential to be used as a dynamic management tool, by testing spatial 

management scenarios for collection displacement, providing a method for 

‘management strategy evaluation’ (Smith et al., 2007). Potential spatial closure areas 

could be removed from the model, leading to an altered spread of suitability scores 

across the BNNC EMS.  

The impact study findings (Chapter 4 & 5) reveal to managers that the 

Northumberland lugworm fishery is currently having a negative impact upon the 

sediment community only. Infaunal communities are an important sub-feature of the 

BNNC EMS (European Union Council Directive. 92/43EEC, 1992), and as such 

should be protected from damage. Local management to reduce the impacts on the 

infaunal communities may be required. No impacts were recorded from the 

periwinkle fishery, suggesting that current collection levels are not damaging to the 
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rocky reef interest features of the BNNC EMS, and as such are unlikely to require 

further management measures, although ongoing monitoring is recommended.  

 

6.3.2 Wider Implications 

Although regional specificity was the intention and a novelty of this thesis, the 

findings are nevertheless pertinent to the wider management of intertidal fisheries. 

Some of the insights gained and the methods used in this study have wider 

relevance and some generalisation is possible; the BNNC EMS acts as a case study 

for lugworm and periwinkle fisheries nationally, and intertidal fisheries in an 

international context.  

Marine managers strive to ensure sustainable resource use, and evade conflicts 

over space and limited resources (Jennings and Lee, 2012). Marine Spatial Planning 

(MSP), an emerging place-based method of ecosystem based management 

(Crowder and Norse, 2008), often utilises Geographical Information Systems (GIS) 

to study complex interactions in marine and coastal areas (Douvere, 2008). If 

intertidal fisheries are to be incorporated into MSP, they need to be spatially 

represented in a suitable format. This study has successfully developed and tested 

combined approaches of shore observations and suitability modelling to spatially 

define intertidal fishing grounds, the outputs of which are suitable for incorporation 

into MSP projects.  

There has been an emphasis on ecosystem approaches to management in recent 

years (Douvere and Ehler, 2007), whereby multiple pressures are considered 

together. However, individual activities and impacts require assessment before data 

can be combined into ecosystem wide outlooks (Purcell et al., 2010). This study 

explores and models lugworm collection, within a discreet area. However, the 

findings from this study have the potential to be incorporated into larger MSP 

projects (Shucksmith et al., 2014), alongside other fisheries (e.g. Nereis spp) or 

shore use and activity data, providing a more complete spatial picture of intertidal 

exploitation in the light of shore use complexity. For example, the MMO recently 

produced a marine recreation model, incorporating maps of multiple activities to 

produce an overall picture of recreational marine use (MMO, 2012). The modelling 

methods used within Chapter 3 can also be adapted and applied to multiple other 



Chapter 6: Synthesis, Discussion, Management Implications, and Recommendations  

 

200 
 

intertidal target species, as well as lugworms in other localities. Lugworms were an 

ideal test organism due to the ease and non-intrusive nature of counting and 

measuring casts on the sediment surface (Flach and Beukema, 1994) compared to 

sediment sampling and sorting (e.g. for ragworms (Watson et al., 2007)). Multiple 

detailed individual species fishery distribution models could be combined to inform a 

multispecies management approach (May et al., 1979).  

The spatial methods used in this thesis can be easily and effectively adapted to 

include alternate target species, and repeated in various geographic locations. The 

suitability modelling method used in Chapter 3 is a cost effective way to map fishing 

grounds for fisheries which are data poor, especially for intertidal fisheries where no 

formal recording methods are practiced (e.g. logbooks and vessel tracking systems, 

which are common place in inshore and offshore fisheries (Jennings and Lee, 

2012)).  

Methods developed in this study to assess fisheries impacts in areas lacking 

baseline data also have great applicability to other fisheries and localities. The 

methods used to compare collected and uncollected areas are similar to those used 

in numerous studies in managed marine reserves or no-take zones versus 

unprotected areas (e.g. Keough and King, 1991; Keough et al., 1993a; Shears et al., 

2006; Lester et al., 2009). However, here they are adapted for a region where less 

clear distinctions can be made, for example no binary designation of ‘harvested’ or 

‘not harvested’, leading to the assignment of a collection pressure gradient. This 

adaptation of a common comparative methodology (FAO, 2005) allows assessments 

to be made in areas lacking clearly defined and adhered to protected areas, and 

scarce baseline data, which is often the case for intertidal fisheries. Comparative 

methods are imperative to study ‘actual’ impacts from realistic harvesting intensities 

and scales (FAO, 2005) where data over time is not available, and are valuable not 

just within highly protected marine reserves.  

This thesis has further demonstrated that spatial and social aspects of fisheries are 

complex and two intertidal fisheries within the same area can have very different 

characteristics. For example, the Northumberland periwinkle fishery is well spread 

throughout the study area, whereas the Northumberland lugworm fishery is more 

spatially focussed, and the seasonality contrasting. The need to increase 
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understanding of the cumulative and interactive effects of multiple environmental 

stressors, such as fisheries, is well documented and acknowledged (Crain et al., 

2008), however the large contrasts between these two intertidal fisheries highlights 

the requirement to study all fisheries individually and fully before incorporating 

intertidal fishing more generally into management plans and MSP. The data 

requirements for ecosystem-based fisheries management are large, requiring 

individual fishery data for multiple species before interactions are considered (Latour 

et al., 2003). Fisheries around the world must be studied in more detail to fully 

understand the patterns, drivers, and impacts, if they are to be managed 

successfully.  

One general lesson derives from the issues observed with adherence to byelaws, 

and the associated requirement for effective enforcement. Compliance has been 

studied for many fisheries (e.g. Burger et al., 1999; Gezelius, 2002; Crawford et al., 

2004; Hatcher and Gordon, 2005; Blank and Gavin, 2009; Bloomfield et al., 2012; 

Haggarty et al., 2016), and effective enforcement is already widely acknowledged as 

imperative for successful marine management. This study adds to the evidence base 

that increased enforcement effort may be key to tackle issues of non-compliance, 

with additional face to face contact a possible improvement (Watson et al., 2015).  It 

particularly highlights the requirement of night time enforcement for intertidal worm 

fisheries, if designated areas are to be fully protected from bait digging.  

The background research of this thesis presented in Chapter 1 exposes and 

highlights the lack of control and regulations in intertidal fisheries generally. The 

difficulty in evaluating intertidal fisheries such as those covered in this study, is the 

severe lack of data currently available. Landings data is not required by law (Fowler, 

1999; Cummins et al., 2002) and when it is available, it is often unreliable due to the 

unregulated nature (McKay et al., 1997; Cummins et al., 2002). Many inshore and 

offshore fisheries are subject to stricter regulation, such as logbooks and landings 

declarations (MMO, 2014a). This thesis has provided evidence that local 

Northumberland harvests are significant for two intertidal species, suggesting that 

fisheries data recording is important for intertidal fisheries in general, not just inshore 

and offshore variants. Intertidal fisheries would benefit from more regulated 

recording, with commercial harvest quantities and locations legally required.   
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6.4 Management Options, Recommendations, and Responsibility  

Both periwinkle and lugworm fisheries are currently minimally managed and largely 

unassessed when compared to other, often higher value fisheries (e.g. McKay et al., 

1997; Fowler, 1999; Cummins et al., 2002; Watson et al., 2017a). The public right to 

collect bait for personal use is often seen as a major obstacle in marine 

management, only fully diminishable by an Act of Parliament. However, public rights 

can be justifiably controlled by statutory bodies or competent authorities under a 

range of legislation (Bean and Appleby, 2014) to prevent ecological damage to 

designated features. Possible management methods include: voluntary guidelines 

and codes of conduct, byelaws for closed areas, several orders, regulating orders, 

licencing, weight or bag limits, size limits, and closed seasons (Underwood, 1993; 

UK Marine SACs Project, 2001c; Harthill et al., 2005; Boye et al., 2006; DEFRA, 

2012; AFBI, 2013). All methods have advantages and disadvantages (discussed in 

Chapter 1), and it is suggested that these are considered on a case by case basis, 

looking at the relevant scientific evidence to fully inform management decisions 

(Bean and Appleby, 2014).  

6.4.1 Management Recommendations – Improving Existing Management 

Currently within the BNNC EMS, the periwinkle fishery is completely unmanaged, 

whilst the lugworm fishery is controlled with ‘no digging byelaws’ located at Holy 

Island, Newton, and Boulmer.  

Overall, the current spatial management appears well placed to protect the most 

vulnerable habitats and communities from lugworm collection. Modelling lugworm 

collection in Chapter 3 highlighted just two key shores which were either highly 

suitable or highly vulnerable, which are not currently encompassed by regulations. 

Berwick (north of the pier) and Boulmer (south half of the shore) are areas which 

could benefit from the expansion of current spatial regulations. It is recommended 

that Berwick be considered for no take regulations in the future. A zonation pattern 

such as that seen at Boulmer (where only half the shore is a no digging zone) may 

be the best option, allowing collection to continue, whilst also protecting the local 

habitat, infaunal community, and lugworm population from overexploitation.  

Enforcement of current lugworm management is split between three separate 

bodies. Natural England Lindisfarne NNR manager is responsible for enforcing at 
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Holy Island, National Trust wardens enforce the no digging byelaw at Newton, and 

NIFCA observe the no digging area at Boulmer. Non-compliance with these 

regulations is a serious issue identified within this study (especially at Newton). 

Improved enforcement methods generally (more regular face-to-face presence and 

contact), and the addition of night time observations is recommended if conservation 

managers want to ensure and enhance the effects of current management methods. 

To make the most of limited resources, enforcement effort should be directed 

towards spring low tides in January and February, both day and night where 

possible. To enable more thorough enforcement with limited resources, remote 

electronic monitoring techniques such as closed circuit television or drones could be 

considered (Mangi et al., 2015; Wright, 2015; Lord, 2017), enabling managers to 

view collection activities on a larger, less targeted scale (both spatially and 

temporally).  

6.4.2 Management Recommendations – Exploring New Management Options 

The main impacts observed in this thesis were on the infaunal sediment communities 

and the habitat, rather than the target species (lugworms and periwinkles), and as a 

result the recommendations made here reflect this.  

Table 6:1 shows the various management options with reasoning and rationale as to 

what is recommended or not recommended for each fishery, in light of the results of 

this study. For the lugworm fishery, the highest recommended management method 

is closed areas, both continued and new additions. Additionally, closed seasons to 

enhance community recovery, and bag limits to control commercial collection are 

considered appropriate, as is a bait digging code of conduct as long as education 

and enforcement are prioritised. For the periwinkle fishery, only size limits are 

recommended as a precautionary approach to management.  

The management discussed could help to reduce the observed impacts and limit 

future damage, however, management methods need to be scientifically tested for 

effectiveness before they are fully recommended or implemented, taking into 

account both social and economic issues as well as ecological benefits (Watson et 

al., 2007). 
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Table 6:1: Management Recommendations for both the Northumberland lugworm and periwinkle fisheries with reasoning based on the findings of this thesis. 
Recommendation scores range from 0-10, with 0 being ‘not recommended’ and 10 being ‘strongly recommended’. 

Management Method 
Lugworm Fishery 
Recommendation 

Score? 

Periwinkle Fishery 
Recommendation 

Score? 
Reasoning 

Voluntary Guidelines 
and Codes of Conduct  

6 0 

 Lugworm - Codes of conduct ensuring back-filling practices could reduce the 
severity of infaunal mortalities if followed (Fowler, 1999). However, code of 
conduct compliance issues have been observed in other fisheries (Watson, 
2014; Watson et al., 2015), and as such this avenue is only worth pursuing if 
education and enforcement is active.  

 Periwinkle – No impacts observed to have codes for. If in the future impacts 
on the rocky shore communities were observed, codes of conduct ensuring 
the repositioning of boulders after turning could be advantageous (Davenport 
and Davenport, 2006).  

Byelaws / Closed 
Areas 

10 0 

 Lugworm – 3 areas already covered by byelaws, with more recommended to 
extend coverage to include Berwick. Areas which are less suitable but highly 
sensitive to lugworm collection activities (model outputs from Chapter 3) 
could also be closed to protect more ‘pristine’ sediment communities from 
occasional or opportunistic digging (with little backlash from collectors and 
anglers since they are not popular shores), resulting in pockets of natural 
infaunal communities available to restock impacted shores (Di Lorenzo et al., 
2016). Shores could be chosen for closure if they are especially diverse and 
important examples of high biodiversity.  

 Periwinkle – No impacts observed to close areas for.  

Licensing / Permits  3 0 

 Lugworm – The main advantage of this method is the monetary gain which 
would allow for better enforcement of current and new management 
regulations, and the ability to attach further conditions, such as limit the 
number of collection days, etc. (Boye et al., 2006). However, this would 
require high policing to ensure permit use was adhered to. May be 
unnecessary when no target species impacts have been observed.   

 Periwinkle – No impacts observed to require permitting 

Weight or Bag Limits 7 0 

 Lugworm – Although no lugworm abundance impacts were observed at 
current harvesting intensities, limiting the amount each individual is allowed 
to collect could help with limiting illegal commercial collection (stopping 
commercial collectors harvesting over 500 worms regularly). However, from a 
conservation perspective, it would not stop habitat destruction and 
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disturbance for the infaunal community (Underwood, 1993), so would need to 
be combined with other conservation aimed management measures.   

 Periwinkle -  No Impacts observed on target species abundance related to 
over harvesting 

Size Limits  0 5 

 Lugworm – No Impacts seen on lugworm size from collection, and don’t stop 
physical disturbance. Also collectors already preferentially take the larger 
individuals (personal communication), and nursery beds are located 
separately so juveniles are not usually disturbed (Fowler, 1999). Would also 
be very difficult to police – would need measurements to be taken on site.  

 Periwinkle – Despite the lack of impacts observed on periwinkle size in this 
study, many other regions already have minimum landing sizes for local 
periwinkle fisheries, which is always 16mm shell height (Stranford Lough & 
Lecale Partnership, 2013). This would be easier to police for the periwinkle 
fishery, where most of the sales go through wholesalers who could be 
responsible for enforcing the regulations (no money for undersized 
individuals). This could act more as a preventative conservation measure 
within the BNNC EMS.   

Closed Seasons 7  0  

 Lugworm – Appropriately timed closed seasons could help to improve the 
recoverability of infaunal communities. Ceasing continued sediment 
disturbance during key reproductive periods (spring) could enhance recovery 
(AFBI, 2013). Closing popular shores to collection in spring would allow 
maximum community recovery to occur, whilst minimally impacting collectors 
compared to winter closures (less popular collection period).  

 Periwinkle – No impacts observed to require closure.  
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6.4.2 Management Responsibility  

Responsibility for implementation and enforcement of marine management plans is 

often debated. Bean and Appleby (2014) reviewed the potential regulators and 

regulation options in relation to the relevant legislations in detail for the Welsh bait 

and seaweed fisheries, of which most is applicable to the BNNC EMS intertidal worm 

and shellfish fisheries. The most obvious regulators are: the Inshore Fisheries and 

Conservation Authorities (IFCA’s) under the legislation of the Marine and Coastal 

Access Act 2009, Natural England under the legislation of the Wildlife and 

Countryside Act 1981, or the local County Council under the legislation of the Public 

Health Acts Amendment Act 1907 (Bean and Appleby, 2014). It is important that the 

responsible authorities are widely accepted and acknowledged to allow for 

appropriate management to be put in place in a timely fashion.  

Northumberland Inshore Fisheries Conservation Authority (NIFCA), Natural England, 

and Northumberland County Council have all already implemented bait digging 

regulations within the BNNC EMS, in the form of byelaws (Natural England no 

digging zone at Budle Bay and Fenham Flats, NIFCA seagrass protection byelaw, 

and Northumberland County Council no digging zone at Boulmer) (UK Marine SACs 

Project, 2001a; NCAONB, 2009; NIFCA, 2013a), suggesting that all three regulators 

are appropriate options for further management measures if required. There are 

currently no regulations in place for periwinkle collection within Northumberland, 

however, in other areas of the UK, collection regulations for periwinkles (e.g. 

minimum landing sizes and closed seasons) have been set by multiple IFCA’s 

(Stranford Lough & Lecale Partnership, 2013), suggesting that NIFCA may be best 

suited to regulate periwinkle collection within the BNNC EMS.  
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6.5 Limitations and Future Research 

The lack of local baseline data for the target species stocks and the associated 

communities led to difficulties in assessing fisheries impacts over time. To overcome 

this, comparative methods of collected and uncollected sites were used, but this 

method came with additional limitations: the presence of natural spatial variation 

between sites, potentially masking observable impacts (Borcard et al., 1992). 

Regional variation between intertidal communities and habitats (e.g. Fraschetti et al., 

2001; Ysebaert and Herman, 2002; Fraschetti et al., 2005) also means that results 

are not directly applicable to other localities, even if collection pressures are very 

similar elsewhere. This study provides in depth and large scale baseline data, so that 

future studies within the BNNC EMS can monitor changes in the target species and 

the communities over time (Spellerberg, 2005; Goldsmith, 2012), without the caveat 

of spatial variation.  

The extent of data collection, both temporally and spatially, is a further limitation of 

this thesis. Data collection were limited by time, finances, and logistics for several 

chapters, common limitations of short-term PhD research. Biomass removal, 

collection hotspots, and byelaw compliance estimates were limited temporally, with 

twelve months of data collection being adequate to observe seasonal but not inter-

annual patterns and variation (Lynch, 2014), resulting in a 2014-2015 snap-shot of 

fishing effort. Inter-annual patterns of lugworm and periwinkle collection should be 

explored in future studies, to further improve the knowledge base of the fisheries. 

The spatial confinement of this study within the BNNC EMS administrative 

boundaries was critical to answer local management questions, however, 

understanding the wider fishing effort and impacts is important (Piet and Quirijns, 

2009) and may help to interpret relationships. Repetition of some of the methods 

outside of the EMS is desirable, especially South Northumberland and Tyne and 

Wear where collection effort is high anecdotally, and could help to inform future 

management designations (Kelleher and Kenchington, 1991). A further spatial 

limitation occurred during the collection of lugworm distribution and size data for the 

spatial model, with less accessible areas missing, which could be added to the 

model at a future date to improve the accuracy of the output for those areas. The 

whole modelling process could also be repeated for the periwinkle fishery in the 

future.  
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An ecosystems based approach to marine management is becoming a widely 

accepted tactic, whereby numerous pressures are considered together (Douvere and 

Ehler, 2007; Douvere, 2008). This thesis examines the local lugworm and periwinkle 

fisheries only, overlooking all other intertidal fisheries, such as ragworms, shore 

crabs, etc. (Fowler, 1999), which overlap spatially within the BNNC EMS (personal 

observations).  The findings of this study can be combined with those of other such 

fisheries as they become available, and the methods used within this thesis can be 

adapted for those target species. Incorporating data from multiple intertidal fisheries, 

accounting for shore-use complexity, is recommended for future research, as it is 

difficult to isolate and separate the impacts from fisheries with similar community 

wide impacts (e.g. rocky shore trampling (Berthelon et al., 2004; Tyler-Walters and 

Arnold, 2008) from periwinkle and crab collectors).   

Additional data for robust stock assessment and evaluations of sustainability are still 

lacking for all intertidal fisheries within the BNNC EMS. Stock identification (Begg et 

al., 1999), stock size and spawning stock size (Hilborn and Walters, 2013), current 

and optimum fishing mortality rates (Walters and Martell, 2002), maximum 

sustainable yield (Mace, 2001), and stock-recruitment relationships (Lee et al., 

2012), could all be investigated for intertidal fisheries towards the creation of stock 

assessment models, with the aim of maximising fishery sustainability.   

Data gaps remain for local lugworm and periwinkle fisheries, as well as other 

intertidal fisheries occurring within the BNNC EMS, as discussed, but this thesis has 

made a major contribution to the knowledge base of both fisheries. It demonstrates 

that intertidal fisheries should and can be studied effectively with limited resources, 

and provides methods to roll out fisheries assessments for other species and 

localities.  

  



Chapter 6: Synthesis, Discussion, Management Implications, and Recommendations 

209 
 

6.6 Summary 

Previous Northumberland fishery research has focussed on the larger and more 

valuable inshore and offshore fisheries such as shellfish (e.g. Turner et al., 2009; 

Turner, 2010; Skerritt, 2014; Turner et al., 2015; Stephenson, 2016), with significant 

knowledge gaps within the intertidal fisheries sector. The Northumberland periwinkle 

and lugworm fisheries have never before been studied in detail at a regional scale, 

and data was severely lacking to inform management bodies. This thesis provides 

the first large scale assessment of two Northumberland intertidal fisheries, 

accounting for both spatial patterns relevant to MSP and impact assessments 

relevant to management questions. It offers fresh, regionally specific insights into the 

collection of periwinkles and lugworms within the BNNC EMS, with scope for future 

methods application for various target species and other regions or MPAs. Despite 

the scope for transferability of methods or insights nationally or even internationally, 

the main use of the data presented in this thesis should be to inform current local 

management questions raised by the recent ‘Revised Approach to the Management 

of Commercial Fisheries in European Marine Sites’ (MMO, 2014b), and aid future 

management by providing a comprehensive baseline and methods for monitoring, 

allowing changes to be assessed over time.  

Results from this research suggest that the periwinkle and lugworm fisheries 

occurring within the BNNC EMS are having little impact on the target species density 

at current harvesting intensities, at the sites within the short window of the study. 

However, it has been demonstrated that lugworm collection appears to be damaging 

the habitat and associated infaunal communities to some degree (Chapter 4 & 5). 

Natural spatial variability in the target species populations and communities may be 

masking additional impacts, such as reduced target species size classes, and 

focussed monitoring over time is recommended to observe changes in populations 

with continued collection pressure. Although lugworm and periwinkle populations 

appear equally robust at all sample sites, with average densities greater than 13 

lugworms and 4 periwinkles per meter square at all shores regardless of harvesting 

intensities, no conclusions are made with regard to the overall sustainability of the 

fisheries. The presentation of fishing grounds and biomass and economic value 

estimates (Chapters 2 & 3) provides marine managers with spatial data at a relevant 

local scale for incorporation into complex MSP, and highlights the importance of both 
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fisheries locally, and in turn the need for appropriate regionally specific resource 

management to sustain harvests long-term.  

In light of the findings of this thesis, recommended management for the 

Northumberland lugworm fishery includes: increased patrolling and enforcement 

effort of current regulations (especially at night), monitoring of the target species and 

habitats over time (using baselines provided), maintenance of current closed areas 

with increased spatial coverage, closed season in spring to aid recovery at popular 

sites, bag limits to counter illegal commercial activity, and a bait digging code of 

conduct to minimise damage. Recommended management for the Northumberland 

periwinkle fishery includes: monitoring of the target species and habitats over time 

(using baselines provided), and size limits as a precautionary approach.  

Overall, despite many areas of research remaining, this thesis has made a 

contribution to the study of intertidal fisheries, using a mixed methods approach to 

reach an interdisciplinary understanding. It is recommended that the approaches 

used are developed further, and with continued use, increase understanding of local 

intertidal fisheries beyond the scope of this thesis, enabling the development of fully 

informed regionally appropriate management plans.  
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Lugworm Collection Questionnaire  

 

Date: 

Location: 

 

1. Which shores within North Northumberland do you collect lugworms from? 

 Boulmer 

 Newton 

 Alnmouth 

 Howick 

 Beadnell 

 Embleton 

 Seahouses 

 Bamburgh 

 Holy Island 

 Scremerston 

 Other:  

 

2. Which other shores that you know of are collected in the area? 

 Boulmer 

 Newton 

 Alnmouth 

 Howick 

 Beadnell 

 Embleton 

 Seahouses 

 Bamburgh 

 Holy Island 

 Scremerston 

 Other:  

 

3. How often do you collect? 

 Daily 

 Every other day 

 Twice a week 

 Weekly 

 Fortnightly 

 Monthly 

 Every few months 

 

4. How long per tide do you collect for? 

 Less than 1 hour 

 1-2 hours 

 2-3 hours 
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 3-4 hours 

 4-5 hours 

 More than 5 hours 

 

5. How many lugworms do you collect in this time? 

 0-50 

 50-100 

 100-150 

 150-200 

 200-250 

 250-300 

 300-350 

 350-400 

 400-450 

 450-500 

 500-550 

 550-600 

 600-650 

 650-700 

 More than 700 

 

6. What months do you collect in? 

 January 

 February 

 March 

 April 

 May 

 June 

 July 

 August 

 September 

 October 

 November 

 December 

 

7. Which days do you collect? 

 Weekends 

 Bank holidays 

 Weekdays 

 

8. Does the low tide height effect when you collect (e.g. spring or neap tide)? 

 Yes – I only collect at the lowest tide heights (e.g. spring tides) 

 No – I collect at any height of low tide 

 Yes/No – I try to collect at the lowest tide heights, but I also collect at 

higher low tide heights as needed 
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9. Do you collect in the dark? 

 Yes – But just early mornings and winter evenings 

 Yes – Including the middle of the night (after midnight and before 4am) 

 No – I only collect in daylight hours 

 

10. What tool do you use to collect lugworms?  

 Fork 

 Pump 

 

11. Will you still be collecting in 5 years’ time? 

 Yes 

 No 

 

12. Which factors are important to you in choosing a collection shore? (Please 

select up to 3) 

 Distance from parking 

 Distance from home 

 Distance from main road 

 Ease of access to the sand 

 Amount of lugworms present 

 Size of lugworms present 

 Type of sand (e.g. texture) 
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Periwinkle Collection Questionnaire  

 

Date: 

Location:  

 

1. Which shores within North Northumberland do you collect periwinkles from? 

 Boulmer 

 Newton 

 Alnmouth 

 Howick 

 Beadnell 

 Craster 

 Seahouses 

 Burnmouth 

 Holy Island 

 Scremerston 

 Other:  

 

2. Which other shores that you know of are collected in the area? 

 Boulmer 

 Newton 

 Alnmouth 

 Howick 

 Beadnell 

 Craster 

 Seahouses 

 Burnmouth 

 Holy Island 

 Scremerston 

 Other:  

 

3. How often do you collect? 

 Daily 

 Every other day 

 Twice a week 

 Weekly 

 Fortnightly 

 Monthly 

 Every few months 

 

4. How long per tide do you collect for? 

 Less than 1 hour 

 1-2 hours 

 2-3 hours 
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 3-4 hours 

 4-5 hours 

 More than 5 hours 

 

5. How many periwinkles do you collect in this time (weight)? 

 0-10kg 

 10-20kg 

 20-30kg 

 30-40kg 

 40-50kg 

 More than 50kg 

 

or  

 

 0-5 pounds 

 5-10 pounds 

 10-20 pounds (1 stone) 

 2-3 stone 

 3-4 stone 

 5-6 stone 

 6-7 stone 

 More than 7 stone 

 

6. What months do you collect in? 

 January 

 February 

 March 

 April 

 May 

 June 

 July 

 August 

 September 

 October 

 November 

 December 

 

7. Which days do you collect? 

 Weekends 

 Bank holidays 

 Weekdays 

 

8. Do you only collect at low tide?  

 Yes 

 No 
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9. Does the low tide height effect when you collect (e.g. spring or neap tide)? 

 Yes – I only collect at the lowest tide heights (e.g. spring tides) 

 No – I collect at any height of low tide 

 Yes/No – I try to collect at the lowest tide heights, but I also collect at 

higher low tide heights as needed 

 

10. Do you collect in the dark? 

 Yes – But just early mornings and winter evenings 

 Yes – Including the middle of the night (after midnight and before 4am) 

 No – I only collect in daylight hours 

 

 

11. Will you still be collecting in 5 years’ time? 

 Yes 

 No 

 

12. Which factors are important to you in choosing a collection shore? (Please 

select up to 3) 

 Distance from parking 

 Distance from home 

 Distance from main road 

 Ease of access to the rocks 

 Amount of periwinkles present 

 Size of periwinkles present 

 Type of rock (e.g. flat, boulders, pools) 
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Appendix B: Aerial Imagery of Modelling Result Aspects 
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Figure A:1: Budle Bay to Beadnell Bay – Aspect seen in Figures 3.4 and 3.5. 

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,

CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User
Community
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Figure A:2: Killiedraught Bay and Coldingham Bay – Aspect seen in Figure 3.6 A. 

 

 

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,

CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User
Community
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Figure A:3: Holy Island, Fenham Flats, and Budle Bay – Aspect seen in Figure 3.6 B. 

 

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,

CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User
Community
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Figure A:4: BNNC EMS – Aspect seen in Figures 3.7 A, 3.8 A, and 3.9 A. 

 

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,

CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User
Community
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Figure A:5: Berwick – Aspect seen in Figure 3.7 B. 

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,

CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User
Community
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Figure A:6: Newton – Aspect seen in Figures 3.7 C and 3.9 D. 

 

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,

CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User
Community
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Figure A:7: Boulmer – Aspect seen in Figures 3.7 D and 3.9 E. 

 

 

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,

CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User
Community
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Figure A:8: Fenham Flats – Aspect seen in Figures 3.8 B and 3.9 B. 

 

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,

CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User
Community
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Figure A:9: Budle Bay – Aspect seen in Figures 3.8 C and 3.9 C. 

 

 

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,

CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User
Community
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