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Abstract

Diamond is well known for its superlative properties and, with the advent of improved

growing techniques, electronic and optical grade synthetic diamond can be realised.

Although this is a major step forward for the use of diamond in technological

applications, the production of high quality synthetics brings new challenges to the

gem trade: it is crucial to be able to confidently distinguish between natural,

man-made and treated diamonds.

In both natural and synthetic diamond, nitrogen is commonly the dominant

impurity, identified in experiment in different forms. Nitrogen substitutes for carbon,

and building upon the isolated single nitrogen centre, a series of complexes in

progressively aggregated forms, sometimes combined with a vacancy and hydrogen,

have been identified. For example hydrogen has been found in both natural and

synthetic diamonds in the form of the 3107 cm−1, N3VH centre.

This Thesis presents a systematic quantum-chemical study of point defects in

diamond that incorporate a combination of nitrogen, hydrogen and a vacancy (V ).

Focusing on the set NnVHm where n + m ≤ 4, the work is broken down further into

isoelectronic defects (n + m = 1, 2...). The hydrogen atom(s) saturate the carbon

radical(s) that are produced when the vacancy is formed and the nitrogen(s) replace a

carbon radical. Ab initio calculations are used to model the structure of the defects,

the electrical properties, electronic structure, magnetic interactions, relative thermal

stability and infrared vibrational properties.

As a key reference state of nitrogen, the hyperfine interactions of the simplest

nitrogen containing defect, the single substitutional nitrogen defect labelled the P1
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centre are also investigated further. The P1 centre is a paramagnetic centre and the

unpaired electron spin interacts with nearby 13C nuclei; understanding this hyperfine

coupling is important, it can be used to identify structure and is of technological

importance, such as in the main decoherence mechanism for NV centres. It is found

that the experimentally derived model for the 13C sites detected is mainly correct, but

as a consequence of the detailed calculations one of the carbon sites is reassigned.

Some outcomes from reviewing the expanse of data associated with the NnVHm,

n + m ≤ 4 set are as follows.

Where radicals remain around the vacancy, different charges are possible, until

the carbon radicals are converted to lone-pairs by negatively charging the defects, or

removed in positively charged defects. The VH defect has three carbon radials, and is

found to be able to adopt multiple charge states.

VH0, which is isoelectronic to NV 0, is determined to have S = 3/2 and S = 1/2

states that are indistinguishable in energy. Indeed, low lying excited spin states are

found for a number of the complexes that contain radicals. A specific consequence of

the possibility of a S = 3/2 ground state or experimentally accessible excited state for

VH0 is that this would surprisingly render it without any internal electronic transitions,

so might not be visible in experiments such as optical absorption.

There are also pronounced effects of charge upon the vibrational modes. For N2VH

the C–H stretch mode is predicted to shift from 3040 to 2630 cm−1 when it becomes

negatively charged. Such a change might represent a critical factor in its identification

from experiment.

A potential assignment of vibrational modes, amongst others, to the NVH+ defect

has also been identified. The calculated stretch mode is within 1% of a mode found in

boron and nitrogen doped CVD diamond. A corresponding bend mode is also found to

be within 5% of the calculated value.

Finally, the thermal stability of the defects were compared. The stability increased

as radicals were removed from the carbons surrounding the vacancy. This is in line

with the high thermal stability of the 3107 cm−1 centre.
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Glossaries

Glossary of mathematical notation

a1,2,3 Unit vectors of reciprocal space.
A Attempt frequency.
A j Hyperfine tensor for the j th nucleus.
Ap Anisotropic hyperfine coupling constant.
A‖ Eigenvalue of the hyperfine tensor that aligns along the axis

of the defect.
A⊥ Eigenvalues of the hyperfine tensor that are perpendicular

to the defect.
ARMS Calculated root-mean-square magnitude of the principal

values.
As Isotropic hyperfine coupling constant.
A1,2,3 Principal values of the hyperfine matrices defined by (θ,ϕ).
B External magnetic field.
BR Resonant absorption occurs when the external magnetic

field is at this point.
B0 Variable external magnetic field.
c Speed of light in a vacuum.
c0 A constant for each plane wave function.
d Distance from the centre point between the G1 and the N

site in units of a0.
D Zero field tensor.
e Elementary charge.
E Energy.
Ea Activation energy.
Eb Binding energy.
Ec Conduction band minimum.
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Glossary of mathematical notation

Ecut off Energy that defines the confinement of the reciprocal lattice
vectors of the supercell.

Ediff Energy difference calculated from the initial and ‘new’
charge density in the self consistency cycle.

Ef Formation energy.
E [n(r)] Ground state energy dependent on the electronic density.
Etot Calculated total energy of the system.
Ev Valance band maximum.
EXC Exchange and correlation energy functional.
EGGA

XC [n(r)] Exchange and correlation energy functional due to the GGA
approximation.

ELDA
XC [n(r)] Exchange and correlation energy functional due to the LDA

approximation.
E0 Equilibrium energy.
εelectron Total energy of the electrons.
εi Total energy of the system i th state.
εnucleus Total energy of the nuclei.
ǫXC Exchange and correlation energy per particle of a

homogeneous electron gas.
f (k) A function of k across the first Brillouin zone.
F [n(r)] Universal function that depends on the electronic density.
g Reciprocal lattice vectors of the supercell.
gcut off Confined reciprocal lattice vectors of the supercell.
ge Zeeman splitting constant.
gNj Is the nuclear g value.
γ A constant for each Gaussian function.
h Plank constant.
Ĥ Hamiltonian operator.
~ Reduced Planck constant.
H Effective spin-Hamiltonian.
Hp Anisotropic hyperfine Hamiltonian.
I Nuclear spin.
Îj Nuclear spin operator for the j th nucleus.
I, J, K Integers used to define MP mesh.
KB Boltzmann’s constant.
K0 Bulk modulus.
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Glossary of mathematical notation

K ′
0 Bulk modulus first derivative with respect to pressure.

l Orbital angular momentum quantum number.
me Rest mass of an electron.
ml Magnetic quantum number.
mp Rest mass of a proton.
MI Nuclei masses.
Mi ,j Masses of two different atoms.
µa Chemical potential of the atoms.
µB Bohr magneton.
µe Chemical potential of the electrons.
µN Nuclear magneton.
µ0 Magnetic permeability in a vacuum.
n Number of equivalent sites.
ni Integer used to define the symmetry of the Gaussian type

orbital.
n(r) Ground state charge density as a function of electron

position.
n0 Energy density of a homogeneous electron gas.
N A set of N electron coordinates.
ν Frequency of electromagnetic radiation.
ΩBrillouin zone Volume of the Brillouin zone.
Ωsupercell Volume of the real space supercell.
P A set of P nuclei coordinates.
Pj Quadrupole interaction term for the j th nucleus.
φi Gaussian type orbital.
Ψ Wave function.
Ψi Wave function in the i th state.
Ψelectron Wave function as a consequence of the electrons.
ΨHF Hartree-Fock wave function.
ΨN(xN ) Wave functions of a single-electrons, where x represents a

single electron’s spin state and position..
Ψnucleus Wave function as a consequence of the nuclei.
Ψpseudo Wave function of an atom when pseudopotentials are used.
Ψtotal Total wave function of a system.
Ψ∗ Complex conjugate of the wave function.
|ψ(0)|2 Spin density at the nucleus.
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Glossary of mathematical notation

q Charge state of the modelled system.
r Radius of an atom.
rc Cut-off radius.
r Positions of the electrons.
Ri ,j Position of two different atoms.
R Positions of the nuclei.
RBravis Bravis lattice vectors.
S Electron spin.
Ŝ Effective electron spin operator.
T Temperature.
T̂ Kinetic energy of the particle operator.
T̂electron Kinetic energy operator of the electrons.
T̂nucleus Kinetic energy operator of the nuclei.
T Anisotropic hyperfine matrix.
(θ,ϕ) Direction taken as the principal value of the hyperfines

matrices where θ is the angle with [001] and ϕ the angle
of the projection of the direction onto the (110) plane
measured from [100] towards [010].

u(r) A periodic function with the same periodicity as the lattice.
V Potential.
V̂ Potential energy of the particle operator.
V̂electron—electron Potential energy operator associated with the electrons

interacting with each other.
V̂electron—nucleus Potential energy operator associated with the interacting

electrons and nucleus.
V̂ext Fixed external potential operator.
V̂nucleus—nucleus Potential energy operator associated with the nuclei

interacting with each other.
Vol Total volume.
Vol0 Equilibrium volume.
Vpseudo Potential of an atom when pseudopotentials are used.
V (rBravis) Potential as a function of position within the Bravis lattice.
ξ A correction for the periodic boundary condition.
Y Modelled system.
ZI Nuclei numbers.

Symmetry of the defects are labelled using the Schoenflies notation.
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Acronyms and abbreviations

Acronyms and abbreviations

.
AIMPRO Ab-Initio Modelling PROgram.
ASEA Allm änna Svenska Elektriska Aktiebolaget.
CVD Chemical vapour deposition.
DFT Density functional theory.
ENDOR Electron double nuclear resonance.
EPR Electron paramagnetic resonance.
FCC Face-centred cubic.
FTIR Fourier transform infrared.
GGA Generalised gradient approximation.
GIA Gemological Institute of America.
HF Hartree-Fock.
HGH Hartwigsen, Goedecker and Hutter.
HPHT High pressure high temperature.
IR Infrared.
LDA Local density approximation.
LSDA Local spin density approximation.
LVM Local vibrational mode.
MP Monkhorst-Pack.
NEB Nudged elastic band.
PBE Perdew, Burke and Ernzerhof.
Pl Photo-luminescence.
ppb Parts per billion.
ppm Parts per million.
Ref. Reference.
RMS Root-mean-square.
Sym. Symmetry.
Trig. Trigonal.
UV Ultraviolet.
Vis. Visible.
ZPL Zero phonon line.
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Defect notation

Defect notation

A-centre Two substitutional nitrogen nearest neighbours.
B-centre Four substitutional nitrogen atoms surrounding a vacancy.

N4V .
C-centre Substitutional nitrogen defect, also known as the P1 centre

in EPR.
Centre Used interchangeably with defect, i.e. NVH centre.
Defecti Interstitial defect.
Defects Substituional defect.
GR1 Optical absorption peak labelled ‘general radiation’ defect.

It is is the V 0 defect.
H1 Proposed EPR label for VH0.
H2 Optical label for N2V−.
H3 Optical label for N2V 0.
KUL2 Proposed EPR label for V2H−.
KUL9 Proposed EPR label for V2H0.
M2 EPR label for a di-nitrogen centre, where the second

nitrogen in relation to the first is in the fourth shell of
carbons.

M3 EPR label for a di-nitrogen centre, where the second
nitrogen in relation to the first is in the sixth shell of carbons.

NnVHm A set of defects containing nitrogen(s) and hydrogen(s)
surrounding a single vacancy where m and n are positive
integers and m + n ≤ 4.

N1 EPR label for the di-nitrogen centre in diamond (N-C-N+),
similar to the P1 in structure with an additional nitrogen
replacing a carbon bonded to the carbon radical. (Also
termed second-shell pairs).

N2 Optical label associated with N3V .
N3 Optical label for N3V , the ‘N’ refers to natural line.
N4 Optical label associated with N3V .
N4 EPR label for a di-nitrogen centre, where the second

nitrogen in relation to the first is in the fifth shell of carbons.
ND1 Optical absorption peak. It is is the V− defect.
P1 EPR label for substitutional nitrogen also known as a C-

centre.
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Defect notation

P2 EPR label for N3V 0, S = 1/2.
V An atom in a crystal that has been removed leaving a

vacancy.
W15 Proposed EPR label for NV−.
W24 EPR label for the ionised A-centre.
W26 EPR label for N2V 0.
W7 EPR label for a di-nitrogen centre, where the second

nitrogen in relation to the first is in the third shell of carbons.
WAR13 EPR label for N2VH0.

.
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Chapter 1. Introduction

‘Diamond is the most valuable, not only of precious stones, but of all things

in this world.’

— Roman naturalist Pliny, first century AD [1].

Diamond is certainly of value to this Thesis.

1.1 The history of diamond

Diamond’s etymology is from the Greek word adamas, which translates directly as

‘invincible’ [2]. This is testament to our enduring attraction to the gemstone: it is

considered to be beautiful, durable and indestructible [3].

First found in India in alluvial deposits around the fourth century BC, the limited

supply were destined for only the wealthiest of Indian classes [1]. They were adorned

by males to provide them with courage and used in religious icons [3]. But supply soon

grew and trade spread this exotic rarity to Western Europe, whereby the 1400s, cutting

and polishing had been developed and diamonds became fashionable jewels for the

European elite [1]. The first recorded use of an engagement ring was in 1477, in the

marriage of Maximillian I to Mary of Burgundy [4].

As Indian supplies began to dwindle in the early 18th century, fresh sources of

diamonds emerged from the jungles of Brazil, an accidental find, discovered by gold

miners as they sifted through river deposits [1]. Despite this continuous supply, political

upheavals in the late 1700s lead to a decline in the market of luxury items as the

distribution of wealth shifted [1].
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This changed in the 1800s, affluence returned to Western Europe and the United

States of America, demand broadened, and the first diamond deposits were discovered

in Kimberley, South Africa in 1866 [1]. 22 years later De Beers Consolidated Mines

Limited were established by Cecil Rhodes and due to the majority control of the mines

in South Africa, De Beers became the world leading diamond consortium [1].

As diamond deposits became harder to extract, developments came in mining

techniques, cutting and polishing, and marketing strategies [1]. All to increase

efficiency in the diamond industry. De Beers success arose as it controlled demand,

through orchestrated advertising campaigns, as well as supply, by controlling the

majority of the market. This left the general public an insatiable desire to own a piece

of luxury: a diamond.

De Beers’s successful advertising campaign famously coined the saying ‘a diamond

is forever’ [5], creating a luxurious idea that a lasting diamond engagement ring is

synonymous with a loving and eternal relationship. Making diamonds once again a

coveted status symbol. Emphasising the idea that the bigger the better and therefore

more loving. This renowned marketing campaign successfully added to the $62 billion

a year gemstone industry [6, 7] and by 1951, eight out of ten brides in the America

received a diamond engagement ring [5].

With the advent of smaller diamonds flooding the market from Russia it had the

possibility of undermining the persistent marketing campaign De Beers had

launched [1]. To tackle this, the campaign shifted to promote the idea of perfection

regardless of size. Capitalising on the ‘four Cs’: cut, clarity, colour and carat, a grading

system established by the Gemological Institute of America (GIA) to set the standard

for evaluating diamond quality [8]. A diamond suitable for any budget could therefore

be found using a combination of these attributes.

Another development in the diamond industry came when the Argyle mine in

Australia was discovered in the 1980s as a source of rare pink diamonds [9]. They

were marketed as fancy coloured diamonds, a term used to describe any diamond

that was not graded as colourless and due to their rarity and desirability they fetched a
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considerably higher price [9]. The mine was also a source for previously

unfashionable brown diamonds destined for industrial uses but they were successfully

promoted as Champagne and Cognac gemstones, adding to their value [9].

Historically, diamond’s hardness was also noted since its discovery and this has

been exploited in the mining industry but the material has lesser known more

technologically attractive properties that have come to light more recently and since

the ability to grow synthetic diamond has become available these properties are now

more accessible. But this creates a new challenge in the diamond gemstone market:

naturally formed diamonds need to be distinguished from synthetically grown and

treated diamonds.

1.2 What is diamond?

Diamond is composed of carbon, the sixth element in the periodic table; it therefore

has the ground state electronic configuration of 1s22s22p2. In the case of diamond, the

valence electrons in the second ‘shell’ (2s22p2) hybridise to form sp3 orbitals, creating

four strong bonds tetrahedrally arranged, with a length of 1.54 Å and angle of 109.47◦.

The resultant diamond structure has a face-centred cubic (FCC) crystal structure,

with a basis of two atoms Figure 1.1 [11].

Although diamond is a very hard material it is less stable than graphite at room

temperature and pressure. Graphite is an sp2 hybridised form of carbon and it is the

most common allotrope. Under atmospheric conditions diamond is a kinetically stable

form of carbon, and graphite is a thermodynamically stable form [13]. Despite this,

diamonds are still found naturally as they are created under suitable conditions in the

Earth’s mantle and once they are brought to the surface the conversion barrier at

standard conditions is very high so carbon is locked in this form [13]. Figure 1.2

indications when diamond can form under equilibrium, for varying pressures and

temperatures.
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Figure 1.1: The crystal structure of diamond’s conventional unit cell, where a0 =
3.567 Å at 300 K [10] is the length of the cubic cell. The shaded carbon atoms represent
one carbon atom in the basis, the lighter carbons represent the other carbon in the
basis that is offset by a0

4 [1, 1, 1]. (Image after [11]).
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Figure 1.2: The phase diagram for carbon for varying temperatures and pressures.
(Image after [12, p. 12]).
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1.3 Why diamond?

The assembly of the atoms in perfect diamond are responsible for its superlative

properties, some of which are summarised in Table 1.1.

Table 1.1: Select diamond properties compared to other semiconductors (adapted from
[14,15]) with an explanation of the properties included.

Property Diamond Si 4H-SiC GaN Notes

Hardness (Mohs
scale)

10 6–7 9–9.5 6 Diamond was used to define the Mohs scale
as the highest on the scale. Its hardness is a
direct consequence of the strong covalent
bonds.

Band-gap (eV) 5.45 1.12 3.26 3.45 There is a large separation between the
bonding and anti-bonding orbitals and a very
high phonon propagation frequency.

Electron mobility
(cm2V−1s−1)

2200 1500 1000 1250
As a result of weak phonon scattering the
carrier mobilities are high.Hole mobility

(cm2V−1s−1)
850 600 115 850

Thermal
conductivity
(Wcm−1K−1)

22 1.5 4.9 1.3 It is very high as a consequence of strong
covalent bonds and low phonon scattering. In
diamond heat is propagated by phonons as
opposed to electrons (in metals) and it is a
very efficient process.

Because of the strong covalent bonding, diamond is also radiation hard and

chemically inert. Diamond is also biologically stable.

These superlative properties can be modified with the addition of defects into the

diamond structure as they alter the local symmetry. The addition can be beneficial but

can also be detrimental to some properties.

1.4 Defects in diamond

Defects incorporated into the bulk of a crystal are categorised as either extended or

point defects and come from extrinsic or intrinsic sources. Extended defects are

classified as a defect that is dimensional (i.e. extended through the lattice). They
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include dislocations: a linear defect where a lattice mismatch is created, voids: an

area where several atoms are removed leaving an three dimensional gap in the

crystal, and grain boundaries: seen in polycrystalline material where each grain is a

single crystal and each one is orientated differently to its neighbour. If the

misorientation between two grains is small then the boundary can be described as an

edge dislocation. Point defects describe defects that do not extend throughout the

crystal. Point defects are of interest to this Thesis and in this case they are on the

scale of the unit cell described in Figure 1.1. They can be the result of the following

three components:

1. Substitutional defect: A different impurity atom at a host atom site.

2. Interstitial: An impurity atom not at an atom site.

3. Vacancy: Removal of a host atom from an atom site.

Defects in diamond my be introduced into the lattice during growth of the diamond

they may be intentionally doped during synthetic growth or they can also be

accidentally introduced through the process. Both natural and synthetic diamonds

may also undergo radiation and heat treatments or a combination post-growth to alter

the form of the defects in the material.

Point defects with concentrations as low as parts per billion (ppb) may significantly

affect the properties of diamonds. Some properties like the colour can be visibly

detected by incorporation of point defects even at low concentrations and some

colours are more sought after in the gemstone market than others. Specific elements

or defects are linked to specific colourations. For example the inclusion of nitrogen

can result in fancy coloured canary yellow diamonds. Rare natural blue diamonds are

the result of the inclusion of boron. And vacancy clusters and plastic deformation can

lead to a less desirable brown colour [16].

Nitrogen, the seventh element in the periodic table, is the most common defect in

diamond due to its comparable size to carbon, natural abundance and accessibility
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during growth; it therefore forms the basis of the diamond classification discussed in

the next Section [17,18].

1.5 Classification

As well as classifying the types of defects in diamond, diamond itself is classified into

categories based on the impurities or lack thereof. By examining infrared (IR)

absorption spectra Robertson et. al. in 1934 realised that diamonds can be separated

into two groups [17]. Those that include a set of IR absorption peaks, labelled Type I

and those that do not, labelled Type II. It was later realised that these peaks were

associated with the incorporation of nitrogen within the diamond with Type I diamonds

containing >1–2 parts per million (ppm) of nitrogen and Type II containing less than

that. The labels are still in use today but further subcategories have been added and

a breakdown of the labels are given below [18].

1. Type I diamond : These make up approximately 98% of natural diamonds. They

contain relatively large amounts of nitrogen (>1–2 ppm and up to ∼ 1000 ppm).

Varying gradients of yellow colouring are produced depending on the

concentration of the nitrogen.

• Type Ia diamond : Contains nitrogen in an aggregated or clustered form;

depending on the form of aggregation leads to further specification.

– Type IaA diamond : Contains nitrogen in A-centre form (Figure 1.3a)

[18].

– Type IaB diamond : Contains nitrogen in B-centre form (Figure 1.3b)

[19,20].

– Type IaAB diamond : Some diamonds contain a mixture of both A- and

B-centres and their label reflects this.

• Type Ib diamond : Contains nitrogen as isolated impurities which are

sometimes labelled as C-centres or the P1 centre. (Figure 1.3c). Natural

diamonds contains less than 0.1% of this type.
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(a) (b)

(c)

Figure 1.3: The nitrogen atoms are light blue and slightly larger, the carbon atoms are
smaller grey atoms. (a) is the A-centre which is two substitutional nitrogen nearest
neighbours, (b) is the B-centre which is four substitutional nitrogen atoms surrounding
a vacancy and (c) is a single substitutional nitrogen.

Nitrogen can also aggregate in the form of a three atoms adjacent to a vacancy, this is

an optical centre labelled N3; although it is not part of the classification system it does

affect the colour of the diamond [21].

2. Type II diamond : Contains nitrogen below detectable concentrations by IR

8
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absorption (<1–2 ppm) [22].

• Type IIa diamond : Contains neither nitrogen nor boron defects. They have

enhanced thermal and optical properties as they are relatively free from

defects; they are generally colourless.

• Type IIb diamond : Contains only single substitutional boron [23]. As boron

is the fifth element in the periodic table it has one fewer electron than carbon.

It therefore can act as an acceptor in diamond to produce p-type conductors,

with a defect state in the 0.37 eV above the valance band top [24]. The

addition of boron to the diamond gives the diamond a blue/grey colouring.

Depending on the doping concentration of the boron diamond can become

metallic [25].

Different growth conditions of diamond and/or treatments leads to a different

‘fingerprint’ of defects; understanding the processes and environments of growth or

treatments is essential to the analysis of the formation of defects.

1.6 Synthesis

Natural diamonds are considered to be the most valuable to the gemstone industry so it

is therefore important to be able to distinguish between different them and synthetically

grown and/or treated diamonds.

Natural diamonds are formed in the Earth’s upper mantle at depths greater than

150 km over a period of millions of years [26]. The high temperature and pressure

forms diamond which is the most stable form of carbon under these conditions. The

environment slowly crystallises carbonaceous deposits into single crystal diamonds

which are eventually brought to the surface in volcanic eruptions.

Contrary to the media, high quality synthetic diamonds can be realised and because

of their commercial value as gemstones attempts to grow diamonds started in the

1800s. Currently there are two main procedures that are used; high pressure and

high temperature (HPHT) synthesis and chemical vapour deposition (CVD). They are

9
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discussed in the following Sections and both methods of growth are indicated on the

phase diagram in Figure 1.4.
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Figure 1.4: A phase diagram of carbon indicating the areas where HPHT catalytic
synthesis occurs (red block near the centre) and CVD occurs (blue rectangle at low
pressure). Note that the CVD is a non-equilibrium process. (Image after [12, p. 12]).

1.6.1 High pressure high temperature

HPHT method was pioneered by General Electric [27] in 1955 and ASEA (Allmänna

Svenska Elektriska Aktiebolaget) [28] and Diamond Research Laboratory [29] in 1958.

The process attempts to mimic the conditions in the Earth’s mantle. It uses pressures

of ∼5 GPa, a temperature of ∼2000◦C and a metal solvent catalyst generally nickel

or cobalt to convert graphite into diamond [30]. The choice of temperature, pressure

and catalyst may be varied. The metal solvent acts to lower the temperature needed

[30] and it stabilises the molten carbon as the mix rains down through a decreasing

temperature gradient onto a diamond seed, where the carbon can condense and grow

more diamond around the seed [10]. Figure 1.5 is an illustration of a typical setup used.
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Figure 1.5: A schematic of HPHT apparatus. (Image after [31, p. 9]).

1.6.2 Chemical vapour deposition

Eversole and Kenmore first filed for a patent for this growth method in 1958 [32, 33].

CVD differs from HPHT as it is a non-equilibrium growth process from an activated gas-

phase that is grown at low temperatures (800–1000◦C at the substrate). Under these

conditions the kinetic product is formed as opposed to the thermodynamical product in

HPHT [34]. The source gas usually contains hydrogen (H2) and methane (CH4). The

methane is the source of carbon and the hydrogen is used to prevent non-sp3 bonded

carbon forming around the substrate [34] . Microwaves [35] or a hot filament can be

used to create a plasma that decomposes the source gases and creates the correct

environment for diamond to be formed, a hot filament though is prone to incorporate

defects [36]. Figure 1.6 is a schematic of a typical experimental setup of hot filament

CVD.

CVD can produce very pure diamond but by controlling the growth temperature

and source gases, tailored defects may be incorporated. A choice of substrate can

also control the type of crystal produced, from single crystal, when diamond is the
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Figure 1.6: Hot filament CVD apparatus setup. (Image after [37]).

substrate to polycrystalline when the substrate is made from an alternative like silicon

or tungsten.

Other defects can be introduced such as nitrogen, which is found to increase

growth rates [38, 39], however this produces a brown colouration due to the increased

incorporation of vacancies [40]. Silicon which is from the silica windows used in the

growth environment may also be incorporated [38, 41]. CVD can produce both bulk

and thin-film diamond.

1.7 Treatments

A combination of both or either heat and irradiation treatments can have a dramatic

impact on the defects in diamond, consequently changing the colour of the diamonds

and therefore their value.

1.7.1 Heat treatments

The process of applying heat to a diamond provides energy to defect structures; if this

is sufficiently high it can cause defects to migrate through the lattice, aggregate into

more stable products or dissociate. Aggregation is seen in natural diamonds as over

time heat and pressure from the surrounding environment results in forming diamonds
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with predominantly aggregated forms of nitrogen.

This process can be replicated and during the process of HPHT annealing it was

found to turn natural brown diamonds that are less desirable in the gemstone market

into near-colourless diamonds [42]. Although to the naked eye they look deceivingly

indistinguishable from naturally colourless diamonds it is possible to distinguish

between them [43].

Heat treatments can also be applied to synthetic CVD diamonds and this results in

a colour change from brown to near-colourless [44] although the origin of the brown

colour is thought not to be the same in natural diamonds [45].

If the temperature applied is lower than annealing temperatures, charge transfer

between defects may occur. Charge transfer processes may be temporary and

reversible but may result in a defect changing from being visible in electron

paramagnetic spectroscopy (Section 4.6) to not and vice versa. Thermochromism

may also occur when low temperatures (∼150◦C) are applied [46]. This property of a

colour change with the application of heat is seen in chameleon diamonds which are

amongst the rarest of gem diamonds [46]. The colour change is due to a defect

containing hydrogen and nitrogen [46]; a possible defect that has been attributed to

this colour change is the a hydrogenated substitutional nitrogen pair [47]. This defect

in its metastable neutral charge state absorbs in the 600 nm–near-IR range, therefore

contributing to the colour. But when it becomes negatively charged, the structure

changes and it absorbs at a higher energy, therefore lending the diamond a different

colour [47].

1.7.2 Irradiation treatments

By bombarding diamond with radiation of enough energy it has the potential to

displace the carbon atoms from a regular lattice site; this in turn creates vacancies

and interstitials. Irradiating diamonds creates the GR1 (general radiation) defect. This

is the V 0 defect and it is responsible for a blue/green colour seen in diamonds as it

adsorbs at 741 and 744 nm [48].
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By using a combination of treatments heat can aggregate defects and newly created

vacancies and impurities can act as a catalyst to speed the process of aggregation

further once heat is applied again. Pink diamonds can be produced via a process of

HPHT annealing, subsequent electron irradiation and then further annealing [49]. A

tell-tale sign of heat treatments that have ‘gone too far’ are vivid fancy colours that are

too bright and look unnatural.

1.8 Possible diamond applications

Now that high quality synthetic diamond can be realised with the potential to control

impurities, the superlative properties of diamond can be exploited beyond the

gemstone market and diamond can be used in technical applications, some of which

are listed below:

• Coatings and abrasives : Historically diamond was used to cut and polish other

hard materials as mentioned above (Section 1.1) and we still take advantage

of diamonds hardness and wear resistance to this day, using diamond as an

abrasive and also as coatings for drill bits and cutting tools.

• Optical windows : Due to its wide band gap and high refractive index of 2.417,

diamond can be used as an optical window [50] as it remains transparent over a

broad range (227 nm–2.5 µm [48]).

• Biological applications : As diamond is chemically and biologically inert it has

the potential to be used in medical applications such as drug transport, long

lasting contact lenses and also as artificial joints.

• Radiation detector : Due to its rigid structure diamond is radiation hard. Making

it suitable for harsh environments like outer space and also in the large hadron

collider at CERN [51].

• Magnetometry and nanoscale nuclear magnetic resonance : Can be made
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possible by taking advantage of the properties produced by the nitrogen-vacancy

centre [52,53].

• Semiconductor : As seen in Table 1.1, it out ranks common semiconductor

materials like silicon making it a promising candidate for high power and

frequency applications. But this is problematic as n-type diamond is difficult to

manufacture.

Although boron acts as an acceptor in diamond creating p-type diamond and

nitrogen acts as a donor because they have one less and one more electron than

carbon respectively. The donor level produced by the introduction of nitrogen is too

deep (1.7 eV below the bottom of the conduction band [54]) to be useful in

technological applications. Possible donors such as those containing phosphorus do

produce n-type diamond but the donor level at 0.6 eV is still relatively deep.

1.9 Motivation

The principal aim is to help identify defects by comparing density functional theory

calculations with experimental evidence. To use this combined information to predict

defects available in different starting materials and see how they could aggregate and

change due to the applications of subsequent treatments.

The motivation of this work can be separated in to three sections:

1. It is necessary to track changes and identify the starting material to protect

consumer confidence in the natural diamond gemstone market and to therefore

accurately determine the value of the diamond.

2. Modelling the defects in diamond may also identify new defects that could be

taken advantage of in technical applications like the famed nitrogen-vacancy

centre.

3. If diamond is to be used in extreme environments, understanding how defects in

diamond change under radiation exposure and heat is imperative to understand
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how this affects defects within the diamond.

1.10 Thesis outline

A glossary of mathematical notation and a list of acronyms and abbreviations are

included in the preamble to aid clarification of terms used. A description of defect

notation is also included as notation is not universally used in the diamond community

and the labels are not always intuitive or meaningful.

• Chapter 1: An introduction into diamond, starting with its history, properties,

growth, treatments and applications.

Part I: Is broken down into three Chapters. Comprising of the fundamental theory,

method and derived quantities.

• Chapter 2: The fundamental theory Chapter introduces the quantum mechanical

problem that needs to be solved and the approximations used to do so.

• Chapter 3: Introduces the AIMPRO software package and the approximations

and methods used.

• Chapter 4: The methods used to calculate specific properties.

Part II: Applications.

• Chapter 5: An introduction into the defects investigated, explaining the notation

used and justifying how the following Chapters within the applications part are

broken down. The method used for the following Chapters is described. In the

case of Chapter 6 an alternative method was used which is discussed in the

relevant Chapter. For the NnVHm set, the following were analysed: the structure,

the electronic levels, the electrical levels, the hyperfine interactions and the

vibrational modes.

• Chapter 6: A detailed look at the hyperfine interaction of the simplest nitrogen

containing defect: the substituional nitrogen.
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• Chapter 7: NnVHm, where n + m = 1.

• Chapter 8: NnVHm, where n + m = 2.

• Chapter 9: NnVHm, where n + m = 3.

• Chapter 10: NnVHm, where n + m = 4.

• Chapter 11: A Chapter comparing the thermal stability of the defects previously

mentioned, as well as additional defects.

Part III: Conclusions.

• Chapter 12: A summary of results presented in this Thesis and a comparison

between defect sets as well as suggestions for possible extensions to this work.

• References

• Appendix 12.2: The Hohenberg and Kohn proof.
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Chapter 2. Fundamental theory

‘If you think you understand quantum mechanics, you don’t understand

quantum mechanics.’

— Commonly attributed to Richard Feynman.

2.1 Introduction

To investigate complex atomic interactions and to determine the structure of an

assembly of atoms density functional theory (DFT) is used. DFT uses a quantum

mechanical approach as opposed to a classical method as the experimental

observables that this Thesis models depend on the movement of the atoms and

electrons: the problem is therefore a quantum mechanical one. These particles obey

quantum mechanics and can not be modelled accurately using simplified methods

that only consider classical interactions. This Chapter discusses the underpinning

theory used in DFT.

2.2 The many-body problem

In quantum mechanics, the solution to time-independent Schrödinger equation [55]

describes a system of interacting nuclei and electrons. It is the fundamental task behind

DFT to solve this equation (Equation 2.1).

In general, the time-independent Schrödinger equation can be expressed as an
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Eigenvalue problem,

ĤΨi = εiΨi , (2.1)

where Ĥ is the Hamiltonian operator, Ψi is the wave function and εi is the total energy

of the system in the i th state.

The Hamiltonian operator for a single particle can be expressed as

Ĥ = T̂ + V̂ , (2.2)

where T̂ is the kinetic energy of the particle and V̂ is the potential energy of the particle.

More complex systems that are of interest to this Thesis contain numerous

interacting particles and is therefore a many-body problem. In a many-body system

the wave function (Ψ) will depend on the position of the electrons (r) and nuclei (R);

the many-body Hamiltonian operator is the kinetic energy (T̂ ) and the potential energy

(V̂ ) of the interacting electrons and the nuclei which can be described below,

Ĥ = T̂electron + T̂nucleus + V̂electron—nucleus + V̂nucleus—nucleus + V̂electron—electron. (2.3)

By expanding Equation 2.3, it becomes:

Ĥ = −
N∑

i=1

~
2

2me
∇2

i

︸ ︷︷ ︸

T̂electron

−
P∑

I=1

~
2

2MI
∇2

I

︸ ︷︷ ︸

T̂nucleus

−e2
N∑

i=1

P∑

I=1

ZI

| RI − ri |
︸ ︷︷ ︸

V̂electron—nucleus

+
e2

2

P∑

I=1

P∑

J 6=I

ZIZJ

| RI − RJ |
︸ ︷︷ ︸

V̂nucleus—nucleus

+
e2

2

N∑

i=1

N∑

j 6=i

1
| ri − rj |

︸ ︷︷ ︸

V̂electron—electron

. (2.4)

r = {r i , i = 1, ..., N} is a set of N electronic coordinates, and R = {RI , I = 1, ..., P} is

a set of P nuclei coordinates. ~ is the reduced Planck constant, me and e is the rest

mass and charge of an electron, respectively and MI and ZI are the nuclei masses and

numbers respectively.
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The many-body Schrödinger equation described above is complicated, it is

completely parameter free but it does not have an analytical solution when N + P > 3.

This necessitates a series of approximations to make progress.

2.3 The Born-Oppenheimer approximation

An approximation to tackle the complexity of the many-body Schrödinger equation is

the Born-Oppenheimer approximation [56]. The approximation effectively simplifies the

motion of a many-body system by separating the wave function (Ψtotal) into the nuclear

(Ψnucleus) and electronic (Ψelectron) contributions. The total wave function can therefore

be described as,

Ψtotal = ΨnucleusΨelectron. (2.5)

This is possible to do as the mass of the nucleus is much greater than the mass of an

electron and the motion of the nucleus and electron can be decoupled.

The many-body Schrödinger equation (Equation 2.1) can therefore be split

accordingly, into its electronic and nuclear parts:

[T̂electron + V̂ext + V̂electron—electron]Ψelectron = εelectronΨelectron, (2.6)

and

ĤnucleusΨnuclear = εnucleusΨnucleus, (2.7)

where the Coulomb potential (V̂electron—nucleus) is treated as a fixed external potential of

the nuclei (V̂ext(RI)). These simplified Schrödinger equations that include the

many-body Hamiltonian and wave function still cannot be solved exactly because of

the electron–electron Coulombic interaction term (V̂electron—electron): The Schrödinger

equation can not be split further into one-electron equations as their movement is not

independent of each other.

Additionally it is worth noting that the Born-Oppenheimer approximation (Equation

2.5), fails for systems that are subject to the Jahn-Teller effect, (a geometrical

21



Chapter 2. Fundamental theory

distortion to break the degeneracy of the electronic ground state to lower the overall

energy of the system), this occurs when degenerate electronic modes couple with

degenerate nuclear states. Such systems are described as non–adiabatic as there is

correlation between the electron and nucleus, and therefore the motion can no longer

be separated.

2.4 Solution of the many-body wave function

It is not advisable to neglect V̂electron—electron in its entirety but to include it requires further

understanding of the term. The electron–electron interaction can be described in two

parts:

1. Exchange interaction : a quantum mechanical term that reflects the

anti-symmetry of the wave function with respect to the exchange of two

electrons, i.e. the wave function changes sign when two electrons are

exchanged.

2. Correlation interaction : an affect of one electron’s electrostatic potential on the

other electron’s position.

In order to continue, two principal methods have attempted to account for this

interaction: Hartree-Fock (HF) and density functional theory (DFT). These methods

are discussed in the following Sections.

2.4.1 Hartree-Fock approximation

The many-body wave function in the case of the HF method is replaced with a simpler

wave function that enables the Schrödinger equation to be solved numerically.

The fundamental variable of the HF approximation is an anti–symmetrised many-

electron wave function (ΨHF). This is a requirement of the Pauli exclusion principle that

states that two fermions (for example electrons) can not occupy the same quantum
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state. The anti–symmetrised many-electron wave function is:

ΨHF(x1, x2, ..., xN ) =
1√
N!

∣
∣
∣
∣
∣
∣
∣
∣
∣

Ψ1(x1) ... Ψ1(xN)
...

. . .
...

ΨN (x1) ... ΨN(xN)

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.8)

This is a Slater determinant of single-electron wave functions ΨN (xN), where x

represents a single electron’s spin state and position, i.e. an orbital. A consequence

of the Slater determinant is that the electrons are indistinguishable from each other:

every electron is associated with every orbital. This is consistent with the rules of

quantum mechanics [57].

The HF approximation is a type of Mean Field Approximation as the effects of the

other electrons on the wave function are taken into account as an average (i.e. the

mean). Each electron feels an effective potential caused by the attraction to the nucleus

and the other electrons; the electrons are considered to be ‘smeared out’ and ‘static’:

the correlation interaction is an average effect [58]. To solve this numerically an iterative

process is commonly used.

HF provides a reasonable model of atoms and simple molecules, it includes

exchange exactly but correlation is included as an averaging effect. HF is

computationally demanding and in practice this method has been superseded by DFT.

2.4.2 Density functional theory

DFT is a quantum mechanical method used to successfully describe the ground state

properties of many-body systems. DFT is a versatile approach and in principle can be

used to study a variety of materials of any level of dimensionality. DFT avoids the use

of the all-electron wave function and instead uses the electronic charge density as the

fundamental variable.
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2.4.3 The theorems of Hohenberg and Kohn

The theorems of Hohenberg and Kohn form the mathematical basis of DFT [59].

The first Hohenberg-Kohn theorem attempts to solve the Hamiltonian and it states

that:

The ground state electron density uniquely determines the external potential.

This means that two systems with the same ground state charge density n(r), will

have the same external potential unless they differ by a trivial additive constant. This

can be proved by reductio ad absurdum (Appendix 12.2).

The second Hohenberg-Kohn theorem states that:

The functional (F [n(r)]) that determines the ground state energy (E [n(r)]) is the

same for all electronic structure problems which does not depend explicitly on the

external potential only on the electronic density.

E [n(r)] = F [n(r)] +
∫

n(r)V̂ext(r)d
3r, (2.9)

where F [n(r)] is a universal functional. It is a so called universal function as it does not

depend on the external potential explicitly but on the electronic density, which has the

formula:

F [n(r)] =
∫

Ψ∗(T̂ + V̂ )Ψd3r. (2.10)

A problem arises though, as the functional F [n(r)] is unknown, and for any practical

system, its solution is a significant challenge; Kohn and Sham [60] resolved this.

2.4.4 Kohn-Sham equations

The explicit form of F [n(r)] in Equation 2.9 and the correct ground state density are

unknown. The Kohn-Sham method [60] attempts to find an approximation to F [n(r)].

The approximation is a sum of component energies that reproduces F [n(r)]. Each

component energy has a physical origin but approximations are needed for some

components that are difficult to evaluate.

The Kohn-Sham approach states that:
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A system of interacting particles is replaced with non-interacting electrons that sum

to the same charge density (n(r)).

This is illustrated in Figure 2.1.

one to one 

mapping

  
nteracting

have an external potential so 

the charge density is the same

(three spaitial variables)

Interacting particles create 

a potential in which the 

particles move (3N variables)

Figure 2.1: Illustration of the effect of the Kohn-Sham equations on a system of
interacting electrons.

For a given system, when the energy is minimised and the number of electrons

remains constant, using the approach above results in a set of one-electron Kohn-

Sham equations,

[

−1
2

▽2 −
∑

α

Zα

r − Rα

+
∫

n(r2)
|r1 − r2|

dr2 +
∂Exc[n(r)]

∂n(r)

]

ψKS(r) = ǫKSψKS(r) (2.11)

and the electronic density is found by summing the density over all the occupied states:

n(r) =
N∑

KS=1

|ψKS(r)|2. (2.12)

The Eigenvalues and Eigenfunctions of Equation 2.11 which are the Kohn-Sham

states are often quoted as one-electron energies and wave functions [61]. To

calculate the Kohn-Sham states which can be interpreted as a band structure, an

iterative process (Section 3.2) is needed as both Equations 2.11 and 2.12 are

dependent on the unknown charge density.

The Kohn-Sham Hamiltonian described in square brackets in Equation 2.11

includes the sum of the kinetic energy of the electrons, the external potential, the
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Hartree energy due to the electrostatic electron–electron interaction and the

exchange and correlation term. The final term is the only unknown that combines the

remaining quantum effects. If the exchange and correlation functional was known, the

Kohn-Sham Equations would be exact. Approximate forms of the exchange and

correlation functional are described in Section 2.4.5.

2.4.5 The exchange and correlation functional in DFT

The exchange and correlation energy functional (EXC) has many approximation forms:

1. Non-empirical approximations are defined from results of first principles

calculations.

2. Empirical and semi-empirical approximations use some experimental results as

a basis.

The simplest approximation used in DFT is called the local density approximation

(LDA). Essentially LDA replaces the exact EXC with the energy density of a

homogeneous electron gas that has the same electron density, n0 = n(r). For a

spin-unpolarised system ELDA
XC is as follows:

ELDA
XC [n(r)] =

∫

n(r)ǫXC[n(r)]dr, (2.13)

where n(r) is the electron density and ǫXC is the exchange and correlation energy per

particle of a homogeneous electron gas of charge density n(r). LDA can be modified

to include the effects of spin in an approximation called local spin density

approximation (LSDA), or to account for the magnitude and gradient of the charge

density in an approximation termed generalised gradient approximation (GGA).

Mathematically GGA can be written as,

EGGA
XC [n(r)] =

∫

n(r)ǫXC[n(r)]∇n(r)dr. (2.14)
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LDA and GGA approximations produce similar results for observables in diamond;

LDA is known to underestimate bond lengths and GGA is known to overestimate them.

A further summary of some diamond parameters are provided in Table 2.1.

Table 2.1: Comparison of LDA and GGA calculations of the lattice constant (Å) and the
band gap energy (eV) (taken from the conduction band minimum to the valance band
maximum).

Method Lattice constant (Å) Band gap energy (eV)
LDA 3.53 4.22
GGA 3.57 4.15

The results presented in this Thesis use the Perdew, Burke and Ernzerhof (PBE)

formulation [62] of the GGA approximation.

2.5 Summary

The theoretical framework that attempts to solve the Schrödinger equation has been

discussed above and is summarised in Figure 2.2. Converting these mathematical

principles into a usable computer program requires further approximations which are

implemented in the AIMPRO code. The details of which are discussed in the following

Chapter.
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Time-independent

Schrödinger equation

Provides information of stationary states/orbitals.

Can not be solved analytically for systems other than

simple ones, i.e. H.

Born-Oppenheimer

approximation

Separates the motion of the nuclei and electrons,

therefore splitting the time independent Schrödinger

equation into nuclear and electronic parts.

Variable is the anti-symmetrised many-electron wave

function.

Includes exchange exactly and correlation as an

averaging effect.

It is relatively computationally demanding.

Approximate solution.

Density

functional theory

Uses electron density as the variable to find the

energy.

Computationally cheaper than Hartree-Fock.

Used for large structures.

Exact theory solved with approximations.

Hohenberg-

Kohn theorems

Mathematical basis to DFT.

1. The same ground state charge density will have

the same external potential.

2. Functional determines the ground state energy is

the same for all electronic structure problems.

It does not depend explicitly on the external potential

only on the electronic density.

Kohn-Sham equations
A set of one particle equations that have the same

charge density as the interacting system.

Exchange and

correlation functional

An unknown in the Kohn-Sham sum that has

different approximate forms (LDA or GGA e.g.).

Hartree-

Fock

Figure 2.2: Summary of the theory used in AIMPRO.
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3.1 The AIMPRO software package

The fundamental methodologies that underpin DFT have previously been discussed

but more approximations and methodologies are needed to create a usable code. In

this case, DFT is implemented in AIMPRO: a software package that was developed by

Briddon and Jones [63, 64]. AIMPRO stands for Ab Initio Modelling PROgram and the

choices of parameters and algorithms used in the package although not specific to it

are described in this Chapter.

3.2 Self-consistency cycle

In a system of non-interacting particles, the particles experience a potential; this

potential can be determined if the charge density is known. The charge density can

also be expressed as a sum of the squares of the Kohn-Sham functions, summed

over the filled bands.

AIMPRO needs to solve the Kohn-Sham Equations described in Section 2.4.4; to

do so it uses a self-consistency cycle (Figure 3.1) which is an iterative procedure that

constructs an effective external potential. The process starts from an initial value of

the charge density, (a value taken from the density of a previously optimised structure

or from the density of a neutral atom) and this creates a potential. Using this

preliminary potential a ‘new’ charge density is obtained from the squares of the wave

functions which is generated by solving the Kohn-Sham equations. The initial and

‘new’ charge density generally differ but the process repeats itself until they are
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considered self-consistent. Self-consistency is taken to have been achieved when the

energy difference (Ediff) calculated from the initial and ‘new’ charge density is less than

10−5 au.

Start

Initial charge density

Use to form potential in KS Hamiltonian Update charge density

Solve the KS equation

Calculate ‘new’ charge density

from KS wave functions

Is it

converged?

End

No, if Ediff ≥ 10−5 au

Yes, if Ediff ≤ 10−5 au

Figure 3.1: Flow chart describing the self-consistency cycle.

3.3 Pseudopotential approximation

Electrons are localised on the atom, for example the carbon has the electronic

structure of 1s22s22p2. The core electrons in this case are the 1s2 electrons, these

are highly localised around the nucleus and are therefore considered not to take part

in bonding, the remaining electrons are valence electrons (2s22p2), they

predominantly contribute to bonding. The treatment of the core states has its

disadvantages and advantages. Core states are difficult to describe as they vary

rapidly, require relativistic treatment and contribute a lot to final energies due to the

fact they are tightly bound to the nucleus, inclusion is also computationally demanding
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so including them may be more detrimental than helpful. Pseudopotentials are

therefore used to describe the electron–nuclear interaction term so the Kohn-Sham

equation can be solved. A pseudopotential simplifies the wave function of the core

electrons making it much weaker and mimics the wave function produced by the

valence electrons if the core and nucleus were there, this effective Coulombic

potential is illustrated in Figure 3.2. Pseudopotentials of Hartwigsen, Goedecker and

Hutter (HGH) [65] were implemented in this Thesis.

 

Vpseudo

V 

ectrons ce electrons

 

 

pseudo

 

rc r

Figure 3.2: Schematic illustration of the Coulombic potential (V ) and wave function (Ψ)
of an atom (dashed line) and the comparative pseudopotential (Vpseudo) and pseudo-
wave function (Ψpseudo) (solid line), where rc indicates the cut-off radius where the
potentials must match. Image after [66, p. 28].
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Although core states are strictly not involved in bonding they do have a role in

hyperfine interactions for example, and the negligence of this must be treated with

care. In these cases the core electron wave functions are reconstructed.

3.4 Supercell

As discussed earlier in Chapter 1, this Thesis focuses on the properties of point

defects in diamond which could have the concentration as low as parts per billion. It is

unrealistic to model a billion atoms to reproduce the effects on the properties of

diamond so the supercell method is used to circumvent this.

The supercell method exploits periodic boundary conditions that satisfy Bloch’s

theorem of electrons. In an ideal crystal of pure diamond, carbon atoms are arranged

periodically according to a face-centred cubic Bravis lattice, defined by Bravis lattice

vectors RBravis, the system is infinite and each repeated Bravis lattice is identical. It

follows that the potential as a function of position V (rBravis) is also periodic with respect

to the Bravis lattice vectors R so

V (rBravis) = V (rBravis + RBravis). (3.1)

Bloch’s theorem states that the solutions to the Schrödinger equation in a periodic

potential have the form:

ψ(rBravis) = eik·rBravisu(rBravis), (3.2)

where ψ(rBravis) is the wave function, i is the imaginary unit, k is the wave vectors and

u(rBravis) is a periodic function with the same periodicity of the diamond lattice in this

case, i.e.

u(rBravis) = u(rBravis + RBravis). (3.3)

The supercell is effectively an infinitely repeated unit cell to give an artificial

periodic crystal, the cell is effectively surrounded by and bonded to identical cells. The

calculations are performed in a single unit cell although with infinite possible values of
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k. Periodic boundary conditions are imposed on the wave function that restricts the

values of k and makes the calculation manageable. Under these circumstances the

unit cell can be represented in reciprocal space. Which is discussed further in the next

Section.

When a defect is introduced in to the supercell, the cell must be chosen so that it

continuously fills the space and is large enough so it does not introduce defect–defect

interactions, whereby the defect of interest in each cell detrimentally interacts with its

repeated image in adjacent cells, an artefact of repeated cell calculations. Figure 3.3

compares a small unit cell with a larger cell.

Figure 3.3: An eight atom unit cell (left) and 64 atom unit cell (right) represented by
darkened carbon atoms in which the calulations are performed. They are surrounded
by repeated cells represented by ligther carbon atoms, these repeat infinitley but only
some are shown.

3.5 Brillouin zone sampling

Using a supercell with boundary conditions imposed means that all the properties of

an electron have the periodicity of the reciprocal lattice. Therefore it is only necessary

to do calculations in a primitive unit cell in reciprocal space.
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The reciprocal space is related to real space by Fourier transforms. In reciprocal

space the Wigner-Seitz primative unit cell is called the Brillouin zone. The first Brillouin

zone therfore contains all unique information about the wavefunction and as per in real

space.

In order to calculate physical quantities such as the total energy of the system

AIMPRO integrates for each allowed f (k) across the first Brillouin zone. This function

does not have a known analytical form so a numerical approximation is made, similar to

the ‘trapezium rule’. These AIMPRO calculations use a Monkhorst-Pack (MP) [67, 68]

sampling mesh to approximate this integration.

The MP mesh of k -points is defined by I, J and K ; three integers that are each more

than or equal to 1. They define a grid of I × J ×K (equally spaced) points in reciprocal

space as follows,

k(i , j , k ) =
2i − I − 1

2I
a1 +

2j − J − 1
2J

a2 +
2k − K − 1

2K
a3, (3.4)

where

i = 1, ..., I, j = 1, ..., J, k = 1, ..., K , (3.5)

and a1, a2 and a3 are unit vectors of reciprocal space. If I, J and K are equal the

sampling scheme is labelled as MP-I3.

The more k -points defined in the MP mesh the more accurate the numerical integral

will be but as the number of k -points increase so does computational time. This effect

is demonstrated in Figure 3.4. It is imperative to find a balance between accuracy and

time to choose the density of the mesh accordingly. The sampling was chosen to be

sufficiently dense to converge the total energy to 10 meV.

As the volume of the real space supercell Ωsupercell is related to the volume of the

reciprocal space Brillouin zone ΩBrillouin zone via the relation,

ΩBrillouin zone =
(2π)3

Ωsupercell
. (3.6)
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Figure 3.4: Fractional deviation (defined as the difference between the most converged
result divided by the least converged result) from the lattice constant (a0) (circles) and
time (s) (squares) as a function of the number of k -points.

The larger the supercell the smaller the Brillouin zone so less k -points are needed to

describe the Brillouin zone accurately.

3.6 Basis sets

As described previously in Section 3.3, the pseudopotential is used to ‘smoothe’ the

potential of the core electrons, a consequence of this is the valence states that feel this

weaker potential do not need to be orthogonal to the core states. Therefore, rather than

using an all-electron state, they can be represented accurately using a much smaller

set of basis functions.

A basis function is a set of functions which do have an analytical form and is used to

represent the wave function that does not have an analytical form. A Taylor expansion

of the sine function can be viewed as an example of using a basis set of polynominals
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to descirbe the function. To solve the Eigenvalue problem and proceed, a mathematical

representation for the one-electron wavefunction is still required. The wavefunction is

expanded mathematically and is labelled a basis set.

There are two popular choices when it comes to basis sets for electron structure

calculations: plane waves (periodic) and Gaussian. Gaussian orbitals are a compact

basis requiring a small number of functions. It produces integrals that are analytical.

Each Gaussian orbital is centred on an atomic site, Ri and it has the form

φi (r − Ri ) = (x − Ri ,x)n1(y − Ri ,y )n2(z − Ri ,z)n3e−γ(r−Ri )2
, (3.7)

where γ is a real parameter and n1 + n2 + n3 = ni where
∑

ni ≥ 0∀i . As they are

centered on the atom and decay rapidly away they represent localised orbitals very

well. Different orbital symmetries can be constructed using the values of ni . The more

Gaussians used the more accurate the result, this is demonstrated in Figure 3.5.

The labels of the basis sets used in Figure 3.5, refer to the material it was

optimised for: either diamond, graphite or beryllium carbide (Be2C). In the case of

Be2C and graphite, although not optimised to model diamond the associated basis

sets provide reasonable results. The letters following the material refer to the number

of exponents, the first being the smallest increasing in size to the largest. ‘ddpp’ for

example means that the first exponent d has 10 s/p/d functions, the next d exponent

also has 10 and the following p exponents has four s/p functions each. ‘graphie-ddpp’

and ‘diamond-ddpp’ have the same number of basis functions but they are optimised

for different materials therefore they produce different results. The letter ‘C’ after the

material means contracted. This is where the number of functions are reduced to

maintain accuracy, it is done by combining s-functions into a single combination and

the p-fuctions into another. This combines to give four (‘4’) contracted Gaussian (‘G’)

orbitals, i.e ‘C4G’. ‘C44G’ includes two different s/p combinations so they have eight

functions per atom and ‘C44G*’ includes d-type functions so there are 13 functions

per atom. ‘a0.exp’ refers to a basis that has been optimised to the experimental value
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of the lattice constant of diamond in this case and ‘a0.44g*’ optimised to the

theoretical value of the lattice constant produced by using ‘44g*’ basis.
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Figure 3.5: Lattice constant as a function of the number of Gaussians used to describe
carbon in diamond.

An alternative are plane wave basis sets, which is a Fourier Series expansion of

the wave function. This choice requires a huge number of basis coefficients, it has

difficulties when the wave function varies rapidly and the treatment of a vacuum in a

cell is just as computationally expensive as it is for atoms. Plane waves are used in

crystalline systems as they are the solution to Bloch’s theorem. We recall from Section

3.4 that Bloch’s theorem states that:

ψ(rBravis) = eik·rBravis

︸ ︷︷ ︸

wave-
like

u(rBravis)
︸ ︷︷ ︸

periodic
lattice

, (3.8)

where ψ(rBravis) is the wave function, i is the imaginary unit, k is the wave vectors and

u(rBravis) is a periodic function with the same periodicity of the real diamond lattice in
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this case, i.e.

u(rBravis) = u(rBravis + RBravis). (3.9)

Because of this periodicity u(rBravis) can be expanded in terms of plane waves.

u(rBravis) =
∑

k

c0eik·rBravis. (3.10)

Where c0 is a complex constant. Therefore Bloch’s theorem can be written as:

ψ(rBravis) =
∑

g

ei(k+g)·rBraviscg, (3.11)

where g is the reciprocal lattice vectors of the supercell. In Equation 3.11 g must be

infinite. However it is confined and the gcut off value is represented as a cut off energy

(Ecut off) (Equation 3.12), k on the other hand covers the entire reciprocal space.

Ecut off =
~

2g2
cut off

2me
, (3.12)

where ~ is the reduced Planck’s constant and me is the mass of an electron.

3.7 Summary

This Chapter describes the technical terms applied in computational methods such as

in the AIMPRO software package. The terms are summarised in Figure 3.6.

The only information necessary as input for AIMPRO are:

1. the positions of the atoms in cell choice;

2. the identities of the atoms which are to be relaxed;

3. the basis to be used for the wave function and charge density;

4. the electronic configuration.
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With this information AIMPRO can provide the energy of the system, the electronic

levels, and the equilibrium positions of the atoms. More specialised output is available

and the methods associated with these are discussed in the next Chapter.

Self-consistency

cycle
Iterative process to solve the Kohn-Sham equations.

Pseudopotential

approximation

Describes the electron-nuclear interaction.

Simplifies the wave function of the core electrons.

HGH pseudopotentials are used.

Supercell

Uses periodic boundary conditions.

Restricts the values of k .

All properties of the electron have the periodicty of the

reciprocal lattice.

Brillouin zone

sampling

First Brillouin zone contains all unique and accessible

information about the wave function.

MP mesh defines sampling grid that is used to approximate

the integration.

Basis sets
Main choice of plane waves or Gaussian type orbitals.

Mathematical representation of one-electron wave function.

Figure 3.6: Summary of approximations and methodologies used in AIMPRO.
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4.1 Modelling physical quantities

DFT is a powerful tool as it has the capability to model a wide range of experimental

observables. But before AIMPRO can calculate specific properties of the diamond

structure it first needs to find the minimum energy of the system. The methods

associated with this process are discussed below, with further derived experimental

observables that can be calculated to a reasonable accuracy to follow: these include

the electronic levels [69], vibrational modes [70,71], hyperfine parameters [72] electrical

levels [73,74] and energetic processes [75,76,77].

4.2 Lattice constant and bulk modulus

Lattice parameters are fundamental properties of any crystal structure; they define the

dimensions of a unit cell in a crystal lattice. In order to optimise a crystal structure the

dimensions of the lattice must be known. Lattice parameters are found theoretically

by optimising atomic positions for a sample of a0 values that are in the range of ±5%

of an approximate equilibrium value. The resultant energies are fitted to the Birch-

Murnaghan equation (Equation 4.1). The equilibrium lattice parameters and also the

bulk modulus are determined from the fit. The Birch-Murnaghan equation of state is:

E(Vol) = E0 +

[

(Vol0
Vol )K ′

0

K ′
0 − 1

+ 1

]

K0Vol
K ′

0

− K0Vol0
K ′

0 − 1
, (4.1)
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where E is the total energy and Vol the the total volume and E0 and Vol0 is the

equilibrium energy and volume. K0 and K ′
0 is the bulk modulus and its first derivative

with pressure.
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Figure 4.1: Total energy (eV) as a function of unit cell volume (Å
3
), with the Birch-

Murnaghan equation of state fitted to the data.

In GGA calculations a0 is typically overestimated and the bulk modulus is

underestimated, whereas the reverse is true for LDA calculations. Despite this,

agreement with experiment in both cases is acceptable, a comparison of results are

listed in Table 4.1.

Table 4.1: Comparison of both the calculated bulk modulus and lattice constant with
experiment, using a GGA functional.

Theory Experiment
Lattice constant (Å) 3.57 3.567 [78]
Bulk modules (GPa) 440 442 [79]
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4.3 Structural optimisation

Once the lattice constant is known the system can be optimised to find its equilibrium

structure. This is the system that corresponds to the minimum free energy of the

structure and this is generally a necessary starting point for further analysis.

Structural optimisation in AIMPRO is calculated using the conjugate gradient algorithm.

To reduce the total energy, the conjugate gradient method defines the direction the

atoms should be moved based on the forces within a conjugate gradients scheme.

The minimum energy in this search direction is found in AIMPRO by calculating total

energies and gradients in this direction and a cubic polynomial fitted, to interpolate

the minimum. The structure is normally taken to be optimised when the forces on the

atoms is < 10−3 au, if this is not the case, in the next step, the atoms are moved in

a direction conjugate to all previous search directions and a minimum is found again.

Apart from the first step, the direction moved is not the direction of the forces.

It is worth heeding that this may not be the ground state energy and rather a local

minimum energy of the system. To ascertain the plausibility of the global minimum for

the system, different chemically feasible initial structures are considered; if the initial

structure possess any symmetry operations AIMPRO will apply these as constraints

during the optimisation.

LDA functionals tend to underestimate bond lengths because it overestimates the bond

strength. GGA functionals however tend to underestimate the bond strength and thus

overestimate bond lengths. However, DFT (as an exact theory) would give you the

correct answer if you did not have to use an approximate functional.

The optimised structure can then be used in deriving further quantities, as well as

providing information about the bond lengths and angles.

4.4 Electronic levels

The band structure of a crystal provides information about its electronic properties. The

Kohn-Sham Eigenvalues as a function of the wave vector (k) are plotted to create the
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band structure; the band gap is taken as the energy difference between the conduction

band minimum and the valance band maximum.

In standard DFT, it is a well known short coming that theoretical values of the band

gap do not agree well with that of experiment [80,81]. An example of a band structure
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Figure 4.2: Band structure of bulk diamond reproduced using a two atom unit cell,
calculated along high symmetry directions in the cubic Brillouin zone in the vicinity of
the band gap. The red Kohn-Sham levels indicate unoccupied bands and the blue
bands represent levels occupied by two electrons in each.

of diamond is represented in Figure 4.2. The band gap of diamond is indirect and

43



Chapter 4. Derived quantities

the experimental value at room temperature is 5.47 eV [82]. The theoretical values

given by GGA and LDA calculations underestimate the band gap due to an error in

the calculation of the excited states. The calculated band gap for GGA and LDA

calculations is 4.98 eV and 5.01 eV respectively for an indirect band gap for a two

atom cell.

Defects introduced in to diamond alter and add states, and a direct comparison can

be made between a bulk diamond’s band structure and that which includes a defect

(Figure 4.3a). The electronic levels due to the defect can give an indication of

possible spin or charge states available and if optical transitions between levels can

be accessible.

An optical transition is where an electron is excited (absorption of a photon equal or

larger than the transition) from an occupied state to an unoccupied state; when an

electron de-excites and drops down to an equilibrium state a photon corresponding to

the energy transition may be emitted. For an electron to be excited, selection rules

apply: spin needs to be conserved, the orbital angular momentum quantum number

l must change (i.e. s-orbital–s-orbital transitions are forbidden) and the magnetic

quantum number ml can only differ by one unit (i.e ∆ml = 0,±1). These electronic

transitions between states due to the defect and surrounding bulk or another defect can

be detected in optical absorption/emission experiments. When the electronic transition

due to a defect involves no change in k, it is commonly referred to as a zero phonon

line (ZPL). ZPLs are narrow and often easier to detect in experiment when compared

to defect to band-edge transitions, they tend to be broad and more difficult to detect.

ZPL are used to characterise defects but transitions may be obscured by others.

When a larger supercell (Section 3.4) is used the defect-defect interaction reduces,

consequently reducing the dispersion of the states. Defect-defect interactions are an

artifact of supercell calculations, it is where the defect detrimentally interacts with its

infinitely repeated images of itself. The dispersion of the states refers to change in

energy as k changes, there is more dispersion of the defect states in smaller cells

as there is overlap between the defect state wave functions and the ‘image’s’ wave
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Figure 4.3: An example of defect states introduced into the band gap, calculations were
done in a 54 atom cell: (a). And 1000 atom cell: (b), calculated along high symmetry
directions in the cubic Brillouin zone in the vicinity of the band gap. Again the red levels
are unoccupied and the blue occupied. The shaded red and blue areas represent
defect-free bulk 54 or 1000 atom calculations overlaid for comparison respectively. The
band structure is split in half, the left representing spin up for example and the right
spin down, each band contains one electron. Note that the degeneracy of the levels
obscures the occupation in the 1000 atom cell when compared with the 54 atom cell.
The top left band of the defect state is two bands, one occupied and one empty. Both
band structures are of the vacancy hydrogen neutral defect with S = 1/2.

functions. Figure 4.3b is the same defect in Figure 4.3a but is modelled in a cell

of a 1000 atoms as opposed to a 54 atom cell. The states introduced into the gap

due to the defect in Figure 4.3b have very little dispersion (i.e. the energy is constant

when k changes) therefore transitions between states can be assessed more reliably.

The defect in the larger cell also has very little effect on the bulk surrounding it,

the underlying bulk calculation used for comparison lies directly on top of the defect

calculation unlike the smaller cell where the bulk states do not directly correspond to
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bulk bands in the defect calculation.

Optical spectroscopy includes techniques like Fourier transform infrared absorption

(FTIR) and UV-Vis absorption, they can be used as a tool to ‘track defect

concentrations’ through different treatments by measuring the absorption of different

wavelengths at different stages of the process.

Absorption of a photon from IR or UV ranges of light can excite an electron into a higher

energy state if the electric field part of the light can interact with the electric dipole of the

system. The band structure provides information about possible transitions between

different electronic states. Absorption of a photon, can also cause vibronic transitions

and can be seen experimentally as side-bands to optical transitions. Vibrational modes

are discussed in Section 4.5.

Photo-luminescence (PL) is typically more sensitive than optical absorption (i.e. smaller

concentrations of luminescing centres may be detectable than is usually the case

for optical absorption), but because emission is a competitive process (the fastest

recombination routes dominate), PL is not quantitative (i.e. it is not routinely possible to

determine the concentration of emitting defects). PL involves the detection of emitted,

as opposed to absorbed, photons; the experiment typically involves the illumination

of the sample with above band gap laser light, which generates electron-hole pairs,

that recombine via a combination of radiative and non-radiative mechanisms. It is

the detection of the former that allows for the PL characterisation of point defects in

diamond, as the emitted photon energy is highly characteristic of the localised states

introduced to the band gap when defects are formed.

4.5 Vibrational modes

Vibrational modes can be obtained using AIMPRO and compared with Raman

scattering and infrared absorption spectroscopy. A mode is Raman active if there is a

change in the polarisability and it is infrared active if there is a change in the electronic

dipole.

Localised vibrational modes are localised around the defect and have a higher
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frequency than the surrounding diamond. The maximum phonon frequency

permissible in diamond is the Raman frequency at 1332 cm−1 [83].

The vibrational modes are found by AIMPRO using a simple harmonic approximation.

The dynamical matrix is derived from the second derivative of the total energy E with

respect to the displacements of pairs of atoms Ri and Rj with the masses Mi and Mj

respectively. The dynamical matrix of the terms is given as:

d2E
dRidRj
√

MiMj
. (4.2)

The Eigenvalues of the dynamical matrix are the squares of the oscillator frequencies.

Some terms generated using this method produce anharmonic terms (negative

Eigenvalues/imaginary oscillator frequencies) due to the finite displacement of the

atoms. An anharmonic frequency is where the overtone frequencies are not multiples

of the fundamental frequency. Others are termed quasi-harmonic as the harmonic

approximation breaks down the further the bond is stretched away from equilibrium.

As the amplitude of hydrogen oscillations that are of particular interest to this Thesis

are often large, the contribution from anharmonicity can be of the order of tens of cm−1.

As bond lengths calculated using GGA functionals within DFT tend to be

overestimated, a 3% error in a carbon–hydrogen bond length can give rise to a 10%

error in hydrogen stretch mode, therefore it is feasible to expect calculated vibrational

modes to be underestimated.

The oscillator strength, which is the probability of an electromagnetic transition

associated with the calculated frequencies is unknown. The time the transition takes

is called the lifetime and is also unknown, electronic transitions generally have a

much shorter lifetime typically around nano seconds compared to a vibrational mode

that could last seconds. The lifetime of the mode determines the line width in the

spectra. The longer the lifetime the sharper the spectral line. To increase the lifetime

of a vibrational mode experimentally, the temperature of the material can be reduced
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effectively slowing the modes.

Despite the fact that the frequencies can be obtained through AIMPRO, they might

be difficult to see experimentally as it is unclear what the oscillator strength and the

lifetime of the state is. They may also be enveloped by other peaks. It can be

investigated further by looking at isotopic shifts, the effects of stress and strain on

the mode, comparing different crystals that may have different effective charges and

performing the experiment at lower temperatures to increase the lifetime of the mode.

4.6 Hyperfine parameters

Hyperfine interaction is a measure of the interaction between an electron spin and a

nuclear spin. This interaction is therefore only seen in defects with a non-zero nuclear

and electron spin. For example 13C has a nuclear spin of I = 1/2 and any defect with

an unpaired electron will posses a non-zero spin, as each electron is S = ±1/2.

This interaction can be probed using electron paramagnetic resonance (EPR): a

major spectroscopic technique used to identify defects in diamond but is inactive in

the case of S = 0, for example in pure diamond where all electrons are involved

in chemical bonding. EPR is non-destructive, very sensitive (can detect defects

with concentrations less than parts per billion (ppb)) and can provide information

about chemical composition and symmetry of the defect, providing that the hyperfine

interaction is large enough.

In explaining the calculation of the hyperfine parameters, it is important to first outline

the theory of EPR. In its simplest form, when a magnetic field is applied to a sample

with an unpaired electron, the unpaired electron’s spin may align with the direction of

the external field or in the opposite direction of it. The applied magnetic field removes

the degeneracy of the ±1/2 electron spins and splits them into two different discrete

energies (Figure 4.4). The electron energy levels created by this splitting means that

absorption of quantised electromagnetic radiation is possible, stimulating a magnetic

dipole transition between the states. The energy difference between the states is given
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by

E = hν = µBgeB, (4.3)

where E is the energy of the transition, h is the Plank constant, ν is the frequency

of the electromagnetic radiation, µB is the Bohr magneton, ge is the Zeeman splitting

constant [84] and B is the external magnetic field.

Ms=-1/2

Ms=+1/2

B0

h   = µBgeBR

B0BR

In
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n
s
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�  g
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Figure 4.4: An example of a variable external magnetic field (B0) applied to a system
with one unpaired electron (S = 1/2), shown as a red half arrow. When the applied
constant frequency microwave beam matches the energy of the splitting (hν = µBge BR)
absorption occurs.

In EPR experiments the sample is placed in a microwave cavity with a variable applied

magnetic field orthogonal to applied electromagnetic radiation. When resonant (R)

absorption occurs at BR, an EPR signal is observed (Figure 4.4).

In addition to the energy term in Equation 4.3. The interactions between spins can be

described by the effective spin-Hamiltonian (H ) [84]:

H = µBŜ · g · B
︸ ︷︷ ︸

1

+ Ŝ · D · Ŝ
︸ ︷︷ ︸

2

+
∑

j

[

Ŝ · A j · Îj
︸ ︷︷ ︸

3

−µNgNj Îj · B
︸ ︷︷ ︸

4

+ Îj · Pj · Îj
︸ ︷︷ ︸

5

]

+ higher order terms.

(4.4)

Ŝ is the effective electron spin operator, Îj is the nuclear spin operator for the j th nucleus.

gNj is the nuclear g value and µN is the nuclear magneton defined by µN =
e~

2mpc
, where

e is the elementary charge, ~ is the reduced Planck constant, mp is the proton rest

mass and c is the speed of light. Pj is the quadrupole interaction term. D is the zero

field tensor and A j is the hyperfine tensor.
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The effective spin-Hamiltonian is split in to the following and are labelled 1–5 in

Equation 4.4, plus higher order terms that are not considered here:

1. The electronic Zeeman interaction.

2. The zero-field interaction (when S ≥ 1).

3. The hyperfine interaction.

4. The nuclear Zeeman interaction.

5. Nuclear quadrupole interaction (when I ≥ 1).

Hyperfine interactions are calculated by AIMPRO. The hyperfine interaction occurs for

every non-zero nuclear spin that interacts with the effective spin of the electrons, so

the hyperfine interaction of bulk material is:

H =
∑

j

ŜT · A j · Îj (4.5)

The hyperfine parameter can further be thought of as being comprised of an isotropic

and anisotropic part.

The isotropic interaction is also known as the contact or Fermi interaction and as the

name suggests it originates from s-state electrons interacting with the nuclei. I.e.

states that are spherical and node-less. The isotropic hyperfine coupling constant is

described by:

As =
2
3
µ0geµBgNµN|ψ(0)|2, (4.6)

µ0 is the value of magnetic permeability in a vacuum and |ψ(0)|2 is the spin density at

the nucleus.

The anisotropic hyperfine interaction is also known as the dipolar interaction because it

depends on the relative orientation of the magnetic moments. It takes into account the

interaction between the nuclei and electrons that have zero spin density at the nucleus,

i.e. p, d , f . . . -orbitals. These orbitals do not contribute to the isotropic hyperfine
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interaction as |ψ(0)|2 in Equation 4.6 is equal to zero. The anisotropic hyperfine

interaction can be described as:

Hp = ŜT · T · Î, (4.7)

where T is the anisotropic hyperfine matrix which is a traceless 3 × 3 term.

The hyperfine parameter A is a 3 × 3 matrix and can be expressed in full as:

A = T + As1, (4.8)

where As is the trace of A/3 and 1 is a unit matrix.

Calculated hyperfine parameters are the Eigenvalues of A. An Eigenvalue that

aligns along the axis of a defect that is axially symmetric is labelled as A‖, and two

Eigenvalues that are perpendicular to the defect are labelled A⊥; these have the same

value as one another. These are related to isotopic and anisotropic coupling constant

As and Ap respectively via,

As =
A‖ + 2A⊥

3
(4.9)

and

Ap =
A‖ − A⊥

3
. (4.10)

These are labelled as such, as As originates from the s-states and Ap depends on

p-states (as well as states where l > 1).

As the hyperfine interaction involves spin density close to the nucleus, pseudopotential

wave functions are not suitable and instead a true wave function should be used.

As most calculations are performed with the use of pseudopotentials, an all–electron

wave function is then reconstructed [85,86], in the case of hydrogen there are no core

electrons so core reconstruction is not necessary.

GGA has a tendency to overestimate bond lengths. A large change of +10% in C–H

bond length, leads to a difference of 13 MHz in calculated As hyperfine constant and

1 MHz in Ap for the hydrogen in the NVH0, S = 1 defect for example. For the nitrogen,
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the Ap differs by 0.4 MHz but the As term differs by ∼3 MHz.

4.7 Electrical levels

States that are introduced into the band gap (Section 4.4) when defects are placed

into the crystal can give an indication of which charge state the defect can adopt and

whether acceptor (become more negative) or donor (become more positive) levels can

be found.

Donor and acceptor levels may be found using the formation energy (Ef) method. It

compares the energy of the optimised systems in different charge states and the levels

are derived using Equation 4.11. The formation method is also used to determine the

heats of formation associated with the formation of a defects. The formation energy is

determined as follows:

Ef(µe(Y , q)) = Etot(Y , q) −
∑

µa + q(Ev(Y , q) + µe) + ξ(Y , q), (4.11)

where Etot is the calculated total energy of the system Y in a charge state q. µa and

µe are the chemical potential of the atoms and electrons, respectively. µa may be

calculated from a reference state for each element in Y , it is typically taken from their

most common structure in diamond, or a range of values may also be taken. The

number of types of atoms is constant for electrical level calculations so µa can be set

to any value without loss of generality; when comparing the formation of defects, if

the types of elements do not balance the choice of µa is important. For example with a

defect containing nitrogen, a reasonable reference state to take could be the P1 centre,

a common nitrogen defect in diamond that would be available to aggregate further. Ev is

the energy of the valance band top and ξ is a correction for the periodic boundary. ξ is

dependent on the charge of the system, particularly the Madelung correction (charge–

charge interaction) which scales as q2, therefore there is a greater error in electrical

levels that involve higher charge states [87]. The larger the cell the smaller ξ is. In a

1000 atom cell for the (+/0) transition, the correction is about 0.1 eV, and approximately
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0.2 eV for the (−/ − 2) transition.

The electrical levels that correspond to the defect are found when the electron chemical

potential corresponds to the same energy for two charge states of the defect, these are

labelled as (+/0) (donor level) and (0/−) (acceptor level) in Figure 4.5. The donor levels

will move towards the valence band, and acceptor levels toward the conduction band

when ξ is included.

In Figure 4.5 for example, if the electron chemical potential of the diamond is midgap

(or below the donor level at 3 eV) then the illustrated defect will be in its positive charge

state when in equilibrium. If the electron chemical potential lies between the donor

and acceptor level the defect will be neutral and above the acceptor level the defect in

equilibrium will be negatively charged.

As previously mentioned in Section 4.4, electrons in defect states introduced into

the band gap may be thermally or optically excited into the conduction band and

this transition can be quantised in optical absorption experiments for example. The

loss of the electron from the defect to the surrounding bulk means that the defect

is now ionised, i.e the charge of the defect has changed. The added electron in

the conduction band increases the conductivity of material and this change can be

detected in photoconduction spectra, whereby light optically excites an occupied defect

state into the conduction band inducing a current change. By comparing optical

absorption and photoconduction spectra donor levels can be detected. Investigating

the resistance of the diamond as temperature changes, quantifies the energy when

the defect is thermally excited and this can be used to further confirm the donor level.

The electron that is ionised from the defect into the conduction band may relax into

another state associated with another defect. This is a charge transfer process and is

generally driven by illuminating the sample with UV light. Conversely charge transfer

may also occur via electrons excited into acceptor states creating holes that can move

through the valence band and that can then be filled by an electron associated with

another defect, this charge transfer process is generally driven by the application of

heat (enough to excite electrons but not enough to breakdown the defect).
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Figure 4.5: Schematic of the formation energy for each possible charge state for a
defect as a function of the electron chemical potential, ranging from the valence band
maximum Ev to conduction band minimum Ec. The donor level is labelled as (+/0)
and an acceptor level labelled as (0/−), they occur when the formation energy of
the coresponding charges equal. In equilibrium the charge formed is that with the
lowest formation energy, the equilibrium charge is labelled either side of the donor and
acceptor levels.

Charge transfer is an important process as it changes the charge of the defect and

not the composition of atoms in the defect. Consequently the defect that may be

unobservable using one technique may become observable once the charge has

changed, for example in EPR spectroscopy (Section 4.6) the defect may become

paramagnetic and therefore it may be possible to detect.

4.8 Binding energy

The binding energy (Eb) of a defect refers to the energy difference between the defect

(i.e. the product) and its possible constituents (i.e. the reactants). It is calculated as

the difference in formation energies (Section 4.7) of the reactants and products and in
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general is given by,

Eb(reactants)(µe) =
∑

Ef(reactants) −
∑

Ef(products). (4.12)

If charge and atomic composition is conserved in Equation 4.12 then the result is a

constant. Nevertheless, all possible combinations of reactants whether the charge is

conserved or not can be taken into account when the binding energy is plotted as a

function of electron chemical potential. This results in something similar to Figure 4.5

seen in Section 4.7. But instead of the formation energy of each charge for a defect

plotted as a function of electron chemical potential, the binding energy for each possible

reaction is plotted as a function of electron chemical potential.

Figure 4.6 is an example of the reaction ‘N2V+Hi = N2VH’, in this example only three

reactions of varying charge have been included for clarity. As previously discussed,

the level of the electron chemical potential determines in which charge the relevant

components of the reaction will be found, therefore as you move through the band gap

the availability of the products and reactants changes. The reaction which corresponds

to the minimum binding energy as the electron chemical potential varies will occur in

equilibrium and it is this line that is plotted in further calculations. Each corresponding

reaction is labelled in each section through the band gap in Figure 4.6 and each

section range is determined by the donor or acceptor levels of the defects involved

in the reaction. When charge is conserved in the reaction the binding energy remains

a constant when the electron chemical potential changes (Eqn 2 in Figure 4.6). A

change in gradient is determined by the change in charge in a reaction, for example

Eqn 1 in Figure 4.6: N2V 0+H+
i =N2VH0, has an imbalance of one more electron in the

product, therefore there is a positive gradient.

The binding energy provides some information about the relative stability of the defects

involved, it can be used to infer the temperature dependence of the defects as it

can give an indication when the defect would dissociate or remain stable during heat

treatments or during growth.
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Figure 4.6: Schematic of the binding energy of N2VH0 formed by the addition of N2V to
Hi in their corresponding equilibrium charge states as the electron chemical potential
varies from the valence band maximum Ev to conduction band minimum Ec. The
lowest binding energies as the electron chemical potential varies are highlighted and
it is this line that is plotted in Section 11 (magenta dashed line), the corresponding
Equation that will occur in equilibrium is also labelled. Eqn 1: N2V 0+H+

i =N2VH0, Eqn
2: N2V 0+H0

i =N2VH0 and Eqn 3: N2V−+H0
i =N2VH0.

The binding energy quantifies the difference in energy between the products and

reactants (Figure 4.7), it does not however give an indication about the reaction

mechanism. This includes an energy barrier associated with the diffusion of the

reactants and the binding mechanism of the reactants combining to form the products.

Consequently it is unknown whether the products formed are the thermodynamic or

kinetic products (Figure 4.7).

The thermodynamic products are formed when the reaction mechanism has a higher

activation energy (this is the largest energy barrier in the reaction process, in Figure

4.7 the activation energy for both reactions under thermodynamic and kinetic control is

shown to occur in the binding mechanism but it is not forced to be). The thermodynamic
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Figure 4.7: A reaction diagram depicting a reaction that can proceed under kinetic
control (red and to the left of the centre) or under thermodynamic control (blue and to
the right of the centre). The reaction process is broken down into a diffusion barrier
and a binding mechanism. The activation energy and binding energy associated with
each reaction process is labelled.

products also have the largest binding energy associated with them. Adversely the

kinetic product has a smaller activation energy and smaller binding energy. Both

reactions shown in Figure 4.7 are exothermic as the products are lower in energy than

the reactants. The introduction of a catalysis (something that is not consumed during

the reaction) lowers the activation energy in each reaction process.

In general a reaction may proceed to result in the kinetic products if enough time is

available and if the energy provided is more or equal to the activation energy but less

than then activation energy associated with the thermodynamic products. Even with the

kinetic products formed, if enough energy is provided to exceed the activation energy

associated with the thermodynamic products it is possible for a reaction to reverse and
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proceed to ultimately form the thermodynamic products.

The rate the reaction proceeds is determined by the rate-limiting step. In general the

rate can not be inferred from a chemical equation for the reaction but it is established

experimentally. The concentrations of the reactants, the proximity to each other and

the size of the activation energy may also contribute to rate-limiting step. An increase

in temperature will generally increase the rate of the reaction. There is also an

entropic contribution when considering the rate of the reaction which becomes larger

as temperature is increased.

4.9 Diffusion barrier

To find minimum energy pathways between different orientations of defects or migration

of a defect as a whole, the nudged elastic band (NEB) technique may be used [88,89].

The minimum energy of the initial and final structures are first found. The saddle point

is then the structure with the highest energy along the reaction path. The minimum

energy path between each structure is found by linearly interpolating a number of

structures called ‘images’ along a path and optimising each structure/image. The

number of images is chosen to be odd to capture the saddle point. Each image is

connected by spring forces to ensure equal spacing along the reaction path, hence the

term NEB. A variant of the NEB process is where the saddle point can ‘climb’ during

the optimisation; this can lead to a geometry that is closer to the transition state.

The resulting energy barrier (Figure 4.8) provides information about the likelihood of

the reaction and it can give an indication as to whether the reaction occurs classically

or as a result of quantum tunnelling.

The energy barrier in Figure 4.8 is considered symmetrical as the initial and final image

are different orientations of the same defect structure. The barrier height can therefore

be taken as the energy of the saddle point structure in Figure 4.8. The barrier width is

difficult to quantify as all atoms move. In the case of a hydrogen orientating between

equivalent carbon sites in examples seen in Chapter 11 a reasonable estimate taken

is the difference between the position of the hydrogen in the initial and final structure
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Figure 4.8: An illustration of a minimum reaction pathway from the initial structure to
the transition point at the saddle point to the final structure. The energy of the initial
and final structure in this are the same and chosen to be at zero.

as the surrounding carbons are not greatly influenced by the transition.

An estimation of the classical hopping rate can be calculated by:

rate = Ae−Ea/kBT , (4.13)

where A is the attempt frequency (chosen as the phonon frequency of diamond in this

case), Ea is the activation barrier, in this case it is the barrier height, kB is Boltzman’s

constant and T is the temperature.

In the theoretical framework already discussed the motion of the atoms are taken to

be classical. However hydrogen, as it is the lightest element in the periodic table has

the potential to behave according to quantum mechanics. The zero-point motion of

the proton (H+) is not included in these calculations but it has an effect on migration

barriers. Although it is important to note the migration barriers are relatively small [61].

59



Chapter 4. Derived quantities

Quantum-mechanical interactions are important in cases like the nitrogen-vacancy-

hydrogen defect, as the rate at which the hydrogen moves between the available

symmetric carbon radicals can alter the perceived symmetry viewed in experiments

like EPR (Section 4.6), from C1h if it remains static to C3v if an average of the hydrogen

on each carbon is taken.

4.10 Summary

This Chapter discussed the methods that AIMPRO uses to calculate quantities that can

be directly compared to experimental results. DFT, has proven high accuracy, in terms

of comparison to the experimental observables and with the identification of defects

but it is important to take into account all evidence both theoretical and experimental to

exploit the full plethora of information prior to identifying the defect. The next Chapter

applies these methods above to a series of point defects in diamond.
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5.1 Introduction

Defects introduced into the diamond may modify the material’s properties either

beneficially, for example in the case of the addition of boron to create p-type

diamond, or deleteriously, for example in the case of donors in n-type material being

compensated by impurity-vacancy complexes [90]. It is therefore necessary to know

what defects are contained within a diamond and how they can affect the properties of

the diamond.

The following Chapters focus on point defects that contain nitrogen, and those

comprised from nitrogen combined with hydrogen and a vacancy. As previously

mentioned, nitrogen is the most abundant defect found in diamond, so much so that its

presence or lack of is used to classify them (Section 1.5).

Hydrogen is generally the most abundant element in the gas phase during CVD

growth and it is thought to be generally found in external growth surfaces and grain

boundaries [91, 92]. Under certain growth conditions hydrogen has also been found

to be incorporated into the bulk [93]. Although it is present during growth of CVD

diamonds, the concentration of hydrogen incorporated can vary from very low in high

quality films [91] to 2000 ppm in polycrystalline diamond [92] which consequently has

poor optical and electronic properties. Compared to nitrogen few defect centres involve

hydrogen, although assignments have been made to centres that involve a lattice

vacancy a hydrogen and another impurity like nitrogen [94,95,86] or silicon [96,97].

The defects belonging to the group NnVHm, where n + m ≤ 4 (Figure 5.1a) have been

62



Chapter 5. Investigated defects

investigated and are referred to as a set of defects throughout this Thesis. A set may

also refer to a group of the defects in the following Chapters, for example the set where

n + m = 4 is discussed in Chapter 10. Figure 5.1b is the NVH defect, an example of

where n+m = 2. As a nitrogen is added in the set, it replaces a carbon surrounding the

vacancy. As a hydrogen is added to the set it terminates a carbon’s radical surrounding

the vacancy. The set is limited to n + m ≤ 4 as additional nitrogens or hydrogens

are relatively chemically unstable. As you move horizontally and vertically across

in Figure 5.1a, the number of unstable radicals localised on the carbon around the

vacancy decreases until no radicals remain and the defect is considered fully saturated

(n + m = 4). The shaded diagonals (from top right to bottom left) indicate defects

that are isoelectronic with each other i.e. n + m = 1, 2, 3 and 4. They are considered

isoelectronic as they have the same number of radicals; the nitrogen has a stable lone

pair which is similar to the saturated carbon radical via the addition of a hydrogen.

All of the top row of Figure 5.1a have been uncontentiously identified both

experimentally and theoretically. The second row in Figure 5.1a have also been

investigated. The more saturated the defect the more stable it is thought to be and

consequently is formed at higher temperatures but although defects containing multiple

nitrogens (column 3–5 in Figure 5.1a) have been found, multi-hydrogen containing

defects (row 3–5 in Figure 5.1a) have avoided detection and only N2VH2 is thought to

have been recently identified experimentally [12]. Experimental and theoretical details

pertaining to each defect in the set are discussed further in the following Chapters.

Chapters 7–10 discusses the structural properties of the defects, electronic properties,

potential electrical levels, hyperfine interactions and the vibrational modes. Chapter 6

focuses on the hyperfine interaction in detail for the P1 centre, the simplest nitrogen

containing defect: the substitutional nitrogen in the neutral charge state.

Natural and synthetic HPHT diamonds have similar aggregation process where

substitutional nitrogen anneals out to form A-centres. B-centres (N4V ) are then formed

at higher temperatures and are considered fully saturated. CVD diamond generally

has a higher concentration of hydrogen due to the growth environment and the role

63



Chapter 5. Investigated defects

V NV N2V N3V N4V

VH NVH N2VH N3VH

VH2 NVH2 N2VH2

VH3 NVH3

VH4

(a) (b)

Figure 5.1: (a) A diagram of the set investigated, including the isolated vacancy. The
highlighted diagonals going from top right to bottom left represent the combinations
possible when m + n = 0, 1, 2, 3 and 4 in NnVHm. (b) A schematic of the NVH defect.
The nitrogen is the slightly larger blue atom, the hydrogen is white and remaining
carbons surrounding the vacancy are dark grey and slightly larger than the surrounding
carbons.

of hydrogen in the aggregation process is unknown. Energetic processes within and

between the defects are discussed in Chapter 11 where additional defects to those in

Figure 5.1a (including the vacancy) are taken into consideration. Also included are the

A-centre, nitrogen and hydrogen interstitial (Ni and Hi respectively) and substitutional

nitrogen and hydrogen (Ns and Hs) respectively.

5.2 Method

The method used in the following Chapters unless otherwise stated is below.

DFT was implemented within AIMPRO. The PBE formulation [62] of the GGA was

used [64, 63]. HGH [65] norm-conserving separable pseudopotentials were used to

model the atoms and the Kohn-Sham Eigen-functions were expanded using atom

centred Gaussian basis sets [98]. The basis set for carbon consists of eight fixed

linear combinations of s and p-orbitals and a set of five d-orbitals for polarisations. The

hydrogen basis set has 12 functions in total constituting of three sets of independent s
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and p functions. The nitrogen basis sets constituted of four sets of s, p and d functions.

The computational parameters chosen underestimates the bulk modulus by 0.7% and

overestimates the lattice constant by 0.2%. The band gap is also underestimated at 4.2

eV, an inherent underestimation corresponding to the underpinning methodology [99].

This is in agreement to previous similar calculations.

Exceptionally large cubic simulation supercells of 1000 host atoms before the defect

was introduced were used (i.e. a simulation cell containing the NVH2 defect will contain

1001 atoms in total). The large simulation cell allows for the reciprocal space to be

sampled using only the gamma-point.

The conjugate gradient method was used to iteratively obtain the equilibrium structures.

The structure is taken to be in equilibrium when the energy change between each step

is less than 1 meV and the forces are less than 10−3 au.

Electrical levels have been obtained using the standard formation energy method

(Section 4.7), and vibrational frequencies are calculated in accordance to Section 4.5.

The hyperfine calculations were calculated in accordance to Section 4.6. The

reconstructed atoms were limited to the first nearest neighbour carbon atoms, so

for example in the VH3 defect, the carbons surrounding the vacancy plus their first

carbon neighbour and totalling 16 reconstructed carbon atoms and three hydrogen

atoms. Reconstruction allows the hyperfine calculation to be calculated without the

computational difficulties associated with a full all-electron calculation.

The calculation of the formation of the defects followed the method discussed in

Section 4.7. As the choice of µa and µe determines the formation energy calculated

the chemical potential of the atoms are taken from reasonable reference states. For

example the chemical potential for a carbon atom was calculated from the bulk value,

the nitrogen from the substitutional nitrogen (commonly found in diamond) and the µH

taken from the interstitial complex, so that Ef(Hi) = 0 for example.

The binding energies were calculated using the method in Section 4.8 and diffusion

processes where calculated in accordance to Section 4.9.

65



Chapter 6. Assignment of 13C hyperfine interactions in

the P1-centre
1

6.1 The P1 centre

Nitrogen is a dominant impurity in both natural and synthetic diamond and it forms

the basis of the diamond classification system. The simplest nitrogen containing

defect in diamond is the P1 centre (an EPR label), is also known as the C-centre

which was was introduced in Section 1.5. The P1 centre consists of a nitrogen atom

substituting a carbon atom in a neutral charge state. The nitrogen bonds with three

carbon neighbours, leaving the remaining nearest neighbour carbon with a localised

unpaired electron (Figure 6.1). Consequently the neutral defect (N0
s) is EPR-active and

is observed with C3v symmetry with an effective spin of S = 1/2 [101]. This extended

bond between the nitrogen and carbon is due to the electronic repulsion of the nitrogen

lone pair and radical localised on the unique carbon, this bond has been calculated

to be 24–32% longer than a carbon-carbon bond in the host lattice [70, 102, 103, 104].

This repulsion also shortens the remaining three carbon-nitrogen bonds [105].

The electronic structure of the centre reflects this chemical description of the bonding.

There is an energy level just above the valance band which is a consequence of the

stable lone pair on the nitrogen and there is band in the upper half of the band gap

occupied by one electron which can be attributed to the carbon’s radical. This electronic

structure creates a deep donor level at 1.7–2.2 eV below the conduction band minimum

[54,106].

1Results in this Chapter have also been published in [100].
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Figure 6.1: The P1 centre. The larger blue atom is the nitrogen and the smaller grey
atoms are carbon.

With the removal of the carbon radical, creating a positive defect (N+
s). The repulsion

seen in the neutral defect is lost and the defect has Td symmetry. Although as the

only unpaired electron is removed, it is no longer detectable in EPR. The negatively

charged defect (N−
s ) [107, 108, 109], also removes the unpaired electron rendering it

EPR inactive but it increases the repulsion between the nitrogen and carbon resulting

in a similar to structure to the neutral defect.

The P1 defect has also been detected in absorption spectroscopy. N0
s gives rise to

a yellow colouration in diamonds. Three broad bands at 376, 318 and 270 nm (3.3,
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3.9 and 4.6 eV) [110] attributed to N0
s are responsible for this. Ns is also observed via

FTIR spectroscopy, with peaks at 1130 cm−1 and a local mode at 1344 cm−1 (sharp)

[111, 112]. N+
s is responsible for peaks at 1332 cm−1 [113] and weaker peaks at 1095,

1050 and 950 cm−1 [114].

This Chapter focuses on the experimental details of the hyperfine interactions relating

to the P1 defect, it has been examined experimentally via ENDOR [115,116] and EPR

[101,117], details of which are discussed below.

Hyperfine interactions between electron and nuclear spins gives an indication of the

defect structure but they also play an important technological role, for example in

the main decoherence mechanism for NV centres: a closely related defect that has

recently been the focus as a development of quantum computing. The defect has

the potential to be used as a quantum bit, based on it long spin coherence times

at room temperature [118]. The NV centre can be optically spin polarised [119] but

the coherence time is limited by 13C nuclear spins. In order to control and exploit this

mechanism it is imperative to understand the hyperfine interaction between the electron

spin and the nearby 13C nuclei.

Table 6.1: Hyperfine interactions assigned to seven 13C sites that are associated with
the P1 centre [117, 116]. Labels used previously are shown in parentheses to aid
comparison. Site symmetries (sym.) and degeneracies (n) inferred from experiment
are also listed.

Site assignment
Hyperfine Ref. [117] Ref. [116] n Sym.

C1 G1(a) G1(a) 1 C3v

C2 G8(d) G8(d) 3 Cs

C3 G2(c) or G3(b) G2(c) 3 Cs

C4 G2(c) or G3(b) G3(b) 3 Cs

C5 G4(e) or G5(g) G4(e) or G5(g) 5.7 ± 0.6 C1

C6 G9(f) 3.6 ± 0.6 -
C7 G4(e) or G5(g) 8.4 ± 1.8 -

As previously mentioned the P1 centre has been experimentally identified via EPR

68



Chapter 6. Assignment of 13C hyperfine interactions in the P1-centre

[101, 117] and ENDOR [115, 116]; Table 6.1 lists the assignments and labelling used

from the experimental literature [117, 116] and Figure 6.2 is a visual aid showing sites

that are in the vicinity of the defect. Sites were assigned based on the underlying

geometry of the defect, proximity to the centre and degeneracy of the sites. More

distant sites that have lower symmetries and uncertainties in the degeneracies means

that these assignments should be viewed cautiously.

Seven carbon groups were assigned from experiment. Principal values and directions

were determined for C1–C5. More distant carbons: C6 and C7 were only assigned using

an isotropic value and it is unclear whether the anisotropy has not been resolved or

they are purely isotropic interactions. There is also an uncertainty in site degeneracies

for sets C5–C7, resultant from the small interactions making quantification difficult or

possibly from the combination of two or more similar groups of 13C to produce the

spectra.

This Chapter compares experimental data for 14N and 13C hyperfine interactions to

density functional theory calculations. On the whole the theory agrees with the

experimental site assignments but some sites need reconsidering. The P1 centre also

follows the trend seen in other paramagnetic defects [120], whereby the magnitude of

the hyperfine interaction is related to not only the distance from the defect but is also

dependent on the chemical bonding connecting the site to the defect.

6.2 Computational method

The AIMPRO code [63, 64] was used to perform GGA calculations [62]. The Kohn-

Sham Eigen-functions were expanded using a Gaussian basis [98]. The Kohn-Sham

potential and density used a plain wave expansion [121] to calculate the matrix

elements of the Hamiltonian. To achieve well converged total energies a cut off

of 175 Ha was used. The atoms were modelled using norm-conserving, separable

pseudopotentials [65]. 40 functions per atom made up of independent sets of s, p and

d-orbitals with four widths were used. The cell was optimised using the conjugate

gradient method, with the forces on the atoms less than 10−3 au in the optimised
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Figure 6.2: A schematic to show the carbon sites in the vicinity of the P1 centre. The
carbon radical is labelled G1, with G2–G18 labelling sites that are progressively more
distant from the centre of the C–N broken bond. The labels show sites with a calculated
RMS hyperfine value of > 1 MHz. Other sites that are indicated with smaller spheres,
have also had their hyperfine values calculated. The horizontal and vertical axes are
[112] and [111], respectively, with a slight tilt applied so all sites can be seen.

structure. The last step in optimisation the change in the total energy was less than

10−5 Ha. In this case the calculated lattice constant and bulk modulus of pure diamond

was 0.2% overestimated and 0.5% underestimated respectively. The band gap was
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calculated to be 4.2 eV which is close to previous calculations [99]. Periodic boundary

conditions were applied to a cell of 512 atoms. The Brillouin zone was sampled using

an MP 23 grid [67], which results in a total energy converged to less than 1 µeV/atom.

A systematic polynomial basis [122] was used to model the hyperfine interactions of

the 14N and 13C. This method has been shown to quantitatively accurate for similar

defects in diamond [123,124,125], including Ns pairs [104].

The hyperfine calculations combine pseudopotentials and reconstructed all-electron

wave functions in the core region [85, 126]. This method removes the computational

difficulties associated with a full all-electron calculation [86] whilst maintaining a

rigorous approach as the reconstruction of the core allows the calculation of the

hyperfine tensor element within a frozen-core all-electron wave function approximation.

Nitrogen pairs are related to the P1 centre as they can be described as perturbed

P1 defects. Nitrogen sites have been experimentally resolved for EPR centres: W24,

N1, W7, M2, N4 and M3. For N1 the 13C hyperfine has also been experimentally

resolved. Values calculated for the nitrogen sites and carbon sites in the case of N1 in

reference [104] are in good agreement with experiment. In the case of N4, not only is

it quantitatively accurate but the calculations predicts the dynamical motion of the site.

It is important to note that generally in EPR only relative signs of the hyperfine

principal values are resolved not the actual sign. For the N1 defect, the sign was

resolved experimentally using electron double nuclear resonance (ENDOR) [127]. The

results matched theoretical calculations of hyperfine principal values in both sign and

magnitude for the ionised nitrogen site in the N1 defect [104]. The ionised nitrogen in

the N1 defect is equivalent to the G2 site in Figure 6.2.

Hyperfine calculations have several independent sources of error. For example in the

choice of functional and core reconstruction [128]. However this approach yields similar

levels of accuracy found in an all electron Green’s function methodology [72] when used

to model point defects in diamond [120]. All plane wave calculations [129] also achieve

a similar level of accuracy for calculate 13C hyperfine values.

We conclude that our method adopted is of comparable accuracy to similar studies
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on defects in diamond and it can successfully predict magnitude, sign and direction as

shown in theoretical studies of nitrogen pair defects for 13C sites near by to the nitrogen.

6.3 Results

The optimised structure of N0
s is trigonal with a single broken C–N bond (Figure 6.1).

This bond is calculated to be 31% longer than surrounding C–C bonds. Hyperfine

interactions were calculated at the 14N site and at 13C sites that are in the vicinity of

approximately 10 Å from the defect centre. The results are broken down into sites that

are progressively more distant from the centre.

Spin density is localised in orbitals in the lone pair on the nitrogen and an sp3 radical on

G1 (Figure 6.2). In the neutral defect, this creates relatively large hyperfine interactions

on the 14N and G1 atoms. For the 14N and G1 sites the calculated parameters

(Table 6.2) are in reasonable agreement with experiment [115], observing that the

principal directions are defined by symmetry of the defect so no nuisance can be

picked out from this aspect. It is however noted that the the RMS value for 14N is

underestimated by 7% and the value for G1 is overestimated by approximately 11%.

The C2 system has been assigned to the G8 sites. They have the correct mirror

symmetry and the calculated principal values (Table 6.2) agree. The angle is not

defined by symmetry and it is found to be within 3◦ of experiment. The calculations

therefore confirm the assignment.

The analysis used above can be similarly applied to C3, assigning it to the G2 site.

Again the details are listed in Table 6.2. The calculated symmetry is correct, the

magnitude of the principal values agree and the directions are within 7◦ of experiment.

The sign difference seen in Table 6.2 is not problematic, as mentioned previously the

signs of the principal values in experiment are not resolved. This is in poorer agreement

when compared to previous sites but it is believed to be confidently assigned.

It is likely that the current assignment of C4 to G3, which labels the three carbons

adjacent to the nitrogen is incorrect. Although the symmetry is correct we are lead to

believe this is so as the calculated results of the principal values are much smaller
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Table 6.2: A comparison of calculated hyperfine tensors (MHz) for the P1 centre in
diamond to experimental values taken from references [115, 117, 116]. Listed are the
values for the 14N and C1–C4 systems in accordance to labelling in Figure 6.2. The
direction taken as the principal value of the hyperfines matrices are given as (θ,ϕ). θ
is the angle with [001] and ϕ is the angle of the projection of the direction onto the (110)
plane measure from [100] towards [010]. The relative intensity in experiment [117] and
the number of equivalent sites is given by n. d is the distances from the centre point
between the G1 and the N site in units of a0.

Experiment Calculation
n Sym A (θ,ϕ) n Sym. A (θ,ϕ) d

14N 1 C3v
A‖ = 114.032
A⊥ = 81.318

14N 1 C3v
104
68

0.284

C1 1 C3v
A‖ = 340.8
A⊥ = 141.8

G1 1 C3v
379
173

0.284

C2 3 Cs

A1 = 30.92
A2 = 40.29
A3 = 31.66

(90, 315)
(58.66, 45)

(31.34, 225)

G8 3 Cs

29
38
29

(90, 315)
(56, 45)
(34, 225)

0.899

C3 3 Cs

A1 = 26.49
A2 = 22.77
A3 = 25.32

(90, 315)
(52.36, 45)

(37.64, 225)

G2 3 Cs

−23
−20
−22

(90, 315)
(58, 45)
(32, 225)

0.545

C4 3 Cs

A1 = 10.64
A2 = 14.5
A3 = 10.62

(90, 315)
(59.19, 45)

(30.81, 225)

G3 3 Cs

−5
−2
−4

(90, 315)
(77, 225)
(13, 45)

0.553

C4 3 Cs

A1 = 10.64
A2 = 14.5
A3 = 10.62

(90, 315)
(59.19, 45)

(30.81, 225)

G14 3 Cs

11
14
11

(90, 315)
(58, 225)
(32, 45)

1.246

(being −5, −2 and −5 MHz) than the experimental results for C4 at 10.62, 10.64

and 14.5 MHz. The disagreement in assignment is again confirmed when looking at

the principal directions: they deviate significantly from those of C4 (Table 6.2). An

alternative site for the C4 group must therefore be sought.

It is proposed that C4 is instead assigned to G14. As G14 has the correct magnitude and

direction of the principal values (Table 6.2). It is noted that in the experimental literature
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the calculated directions are not expressed definitively but instead are reflected in the

(110)-plane. Therefore it is likely that the orientation of the C4 published is different to

the core sites. The directions in the calculations listed in Table 6.2 are consistent with

the orientation of the structure detailed in Figure 6.2.

Assigning C4 to G14 may seem surprising as G14 is comparatively further away from

the defect. G14 is approximately 35% further away from the defect center and therefore

the paramagnetic carbon radical (the main component of the interaction) than G3.

Nevertheless, the G14 site is considered to be more connected to the carbon radical

than the G3 site, via the G1–G2–G8–G14 chain of bonded sites that all lie in the same

mirror plane.

Table 6.3: Sites (with labelling shown in Figure 6.2) that have no site-symmetry in the
P1-centre are listed with corresponding hyperfine tensors (MHz). The experimental
data is taken from [116]. The symbols are defined in Table 6.2. The G†

4 and G†
5

directions relate to defect orientation which yields the best fit to the experimental data,
being along [111] and [110] respectively.

Site n A1 θ1 ϕ1 A2 θ2 ϕ2 A3 θ3 ϕ3 d
C5 5.7 ± 0.6 11.76 71.5 33.2 8.58 138.6 101.0 8.12 55.0 137.0 -
G4

G†
4

6 11
62
68

155
30

8
44

133
279
98

8
59
51

47
139

0.735

G5

G†
5

6 3
65
85

185
25

1
139
126

244
111

1
59
37

291
120

0.735

Site C5 has no symmetry in contrast to the sites C1–C4 previously discussed but it does

have resolved directions. C5 has been assigned in reference [116] to either G4 or G5.

To decipher which assignment is correct Table 6.3 lists the experimental data for C5

alongside calculated values for all sites reviewed that have matching symmetry. It is

clear that G4 is the best fit as it is the only site examined with C1 symmetry that has the

correct order of magnitude for the principal values and the directions are also in good

agreement. Therefore site C5 assigned to G4 is correct.

The remaining sites C6 and C7 only have the isotropic values reported. There are

several possible candidates that are potential matches based on the RMS principal
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Table 6.4: Remaining calculated hyperfine tensors (MHz) for carbon sites in the
vicinity of the P1 centre that have not been previously assigned to C1–C5, are listed
in decreasing magnitude of hyperfine values. The labelling used is shown in Figure 6.2
and the symbols have the same meaning as in Table 6.2. Additionally to the symbols
used previously ARMS is the calculated root-mean-square magnitude of the principal
values. These results are to be compared to the experimental values from [116] for
sites C6 and C7 at 4.1 and 2.7 MHz, respectively.

Site n sym Arms A1 θ1 ϕ1 A2 θ2 ϕ2 A3 θ3 ϕ3 d
G15 3 Cs 4.8 4.3 90 135 4.3 29 45 5.6 61 225 1.252
G6 3 Cs 4.5 3.7 90 315 3.9 59 45 5.8 31 225 0.894
G3 3 Cs 4.0 −5.0 90 315 −4.4 13 45 −1.8 77 225 0.553
G9 3 Cs 3.9 3.2 90 135 3.5 23 225 4.8 67 45 0.906
G10 3 Cs 3.5 2.7 71 224 2.7 90 315 4.8 19 45 1.024
G7 3 Cs 3.1 2.5 90 135 2.7 75 45 3.8 15 225 0.894
G11 3 Cs 2.7 2.3 90 315 2.4 68 225 3.4 22 45 1.033
G17 3 Cs 1.9 1.5 90 135 1.5 29 225 2.6 61 45 1.596
G5 6 C1 1.9 1.0 54 21 1.1 37 211 2.8 85 115 0.735
G13 3 Cs 1.8 1.5 90 135 1.6 64 45 2.2 26 225 1.242
G18 3 Cs 1.4 1.2 28 45 1.3 90 135 1.8 62 225 1.947
G12 3 Cs 1.3 1.0 90 315 1.0 52 45 1.7 38 225 1.242
G16 1 C3v 1.0 0.8 35 225 0.8 90 315 1.4 55 45 1.514

values for these sites listed in Table 6.4. Figure 6.3 highlights the possibilities by plotting

the RMS principal value as a function of distance from the point half-way between the

nitrogen and G1 sites. As a comparison the experimental assignments for the 13C sites

in [116] are shown to demonstrate the level of quantitative agreement in these cases.

G15 down to G10 carbon sites shown in Table 6.4 are close in magnitude to site C6

that has an isotropic principal value of 4.1 MHz. These sites collectively amount to 15

carbon atoms. The relative intensity is 3.6±0.6 for the C6 system [117]. This may mean

that a single site containing three carbons is responsible for the C6 system, consistent

with the first five sites listed in Table 6.4, which includes the experimental proposal of

G9. Despite this agreement of hyperfine magnitude and the number of sites, G15, G6,

G3 and G10 also remain plausible assignments.
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Figure 6.3: (a) The RMS principal values of the hyperfine tensors for 14N and 13C as
a function of the distance from the carbon radical (Figure 6.2). The red plus symbols
are sites above the (111) plane bisecting the N–C bond. The blues crosses are sites
below the plane. The RMS values from experiment [116] for the nitrogen site and
carbon systems from C1–C7 are labelled as the horizontal grid lines. (b) Is the same
data visualised on the structure where the volume of the spheres on the atoms are
representative of the RMS hyperfine interaction.

Potential sites that match C7 have also been assessed. Sites G10 down to G5 in

Table 6.4 have RMS values within approximately 30% of experiment. It was suggested

76



Chapter 6. Assignment of 13C hyperfine interactions in the P1-centre

[117] that G5 is a match to one of two sites for C7, the other site proposed was G4 but

this is believed to be C5. Nonetheless, the relative intensity of C7 to C1 at 8.4 ± 1.8

suggests that C7 is in fact a superposition of more than one group and a conclusive

assignment would require experimental data, specifically the determination of principal

directions and site degeneracy.

6.4 Summary and conclusions

The hyperfine interactions for 14N and 13C at 438 sites in the vicinity of P1 centre in

diamond have been calculated and compared to experimental results. The majority of

assigned sites agree with experiment apart from three sites that require revision:

1. The C4 system arises from G14 (Figure 6.2) a more distant set from the carbon

radical but with higher connectivity to it. As opposed to the three neighbours (G3)

to the nitrogen atom previously suggested.

2. The C5 system had two sites proposed for the assignment: either G4 or G5. It is

ascertained that of the two, G4 is the correct assignment.

3. The C6 and C7 sites had only the isotropic component of the hyperfine interaction

resolved experimentally therefore numerous sites could possibly assigned to

them. It is proposed that experimental features arise from combinations of

unresolved sites. This could explain the difficulties found in determining their

anisotropic components and also the number of equivalent sites [117].

Of a more general significance, which is in line with previous observations, is that the

hyperfine interaction does not follow a simple relationship with the distance from the

centre of the defect [120]. Instead it is correlated with the connectivity to the carbon

radical. Consequently this lead to site G14 assigned to C4 despite it being 0.98 Å more

distant from the carbon radical than site G3. Nevertheless, it has greater connectivity to

the carbon radical. This pattern determined by the bonding can be seen in Figure 6.3,

where the size of the sphere indicates the RMS value.
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Experimental sites have been redefined using the calculations presented, this

consequently emphasises the vital contribution that computational analysis of hyperfine

interactions can play and that the method used can quantitatively predict both the

principal values and directions, this is particularly important to those centres that are

being exploited for quantum information systems.
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The defects focused on in this Chapter are highlighted in Figure 7.1a and schematics

of both are included in Figure 7.1b and 7.1c.

V NV N2V N3V N4V

VH NVH N2VH N3VH

VH2 NVH2 N2VH2

VH3 NVH3

VH4

(a)

(b) (c)

Figure 7.1: (a) Group of possible aggregates that involve nitrogen, a single vacancy
and hydrogen. The highlighted defects are those studied in this Chapter. (b) The
VH defect. (c) The NV defect. The structure of the defects are fully described in
Figure 5.1b.

1Some results pertaining to the VH defect are similar to those published in reference [130].
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7.1 VH

As hydrogen is the most abundant species in the gas phase during the CVD growth

process and is found to play a key role in the gas-phase chemistry as it stabilies the

growth surface. It therefore may be speculated that it can be included into the diamond

in the forms of the investigated set.

Defects of a similar nature are found in silicon for example but unlike in silicon the VH

defect in diamond does not undergo symmetry lowering reconstruction to form a C1h

defect, whereby due to Jahn-Teller distortions the neutral defect preferentially forms

an extended Si–Si bond. This form of reconstruction is not seen in this case and it

instead has been potentially identified by Glover et al [131] using EPR, to have trigonal

symmetry. The VH defect is believed to be found in its negative charge state with S = 1,

it has also been tentatively assigned to the 3323cm−1 C–H stretch mode [132, 133].

Based on this it has also been suggested that VH0 may be present in diamond that is

grown without nitrogen doping.

There is speculation around the assignment of the VH defect due to the unknown

nature of the dynamics of the hydrogen involved in the centre, further analysis of the

EPR assignment [131] is presented in Section 7.3.5.

7.2 NV

As discussed previously, nitrogen is readily incorporated in as-grown CVD as the P1

centre [134] and also as the NV centre [135]. Both of these defects can be seen

simultaneously in the same sample in the neutral and negatively charged state.

Compared to the VH defect, NV has been extensively studied due to possible sensor

and qubit applications for example that take advantage of its luminescence and optical

spin polarisation properties. But the concentration in natural Type Ib and as-grown

CVD is generally too low for application. The concentration however can be increased

by irradiation to form vacancies which are consequently trapped by the P1 centre when

heated, assuming a sufficient reservoir of P1 centres [136,19].
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Individual centers can be detected via photoluminescence and the NV− is

characterised by an energy difference between a 3A to 3E state of 1.945 eV (637 nm).

The presence of NV + has been inferred experimentally from photoconversion [137] and

electrical biasing [138], whereby they see the NV 0 defect become optically inactive. It

has been suggested that by co-doping the diamond to include boron and nitrogen the

electron chemical potential is such that the positive charge state becomes accessible

due to the boron acting as an electron acceptor [139].

7.3 Results

7.3.1 Structural analysis

VH in all charge and spin states has C3v ground state symmetry (Figure 7.1b), it has

equivalent symmetry to the isoelectric defect NV (Figure 7.1c). Whereby the trigonal

axis of rotation lies along the C–H bond or from the nitrogen towards the vacancy

respectively, perturbations from symmetry in either case do not result in lowering the

energy.

The remaining carbon radicals surrounding the vacancy are therefore equivalent,

allowing the hydrogen in the case of the VH defect to potentially quantum-mechanically

tunnel between carbon radical sites. Tunnelling rates have been previously estimated

of the order of a few picoseconds [86, 140]; depending on the process observed

depends on the symmetry observed, from a static structure with C3v symmetry or

dynamic structure with perceived Td symmetry. For example the rate of a C–H vibration

has the order of 10−14 s, therefore a vibrational mode is expected to happen many times

before tunnelling occurs.

In the case of the VH defect the bond length of the C–H depends on charge and

spin state of the defect (Figure 7.2). The C–H bond length ranges from 1.07–1.13 Å.

Interestingly the VH0 neutral defect spin 1/2 and 3/2 are found to be indistinguishable

in energy (difference of less than 0.08 eV) but the bond lengths associated with each

define the range of bond lengths associated with the VH defect. In fact the spin 3/2
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defect with the 1.13 Å bond length is the longest of all C–H bonds in the full set of

defects investigated.

Barring the high-spin anomaly, as charge is added to the VH defect the C–H bond

length increases in length (Figure 7.2). Explained simply, as the hydrogen when

bonded to the more electronegative carbon becomes slightly positive, this in turn is

attracted to the carbon radicals and this Coulombic attraction increases as charge is

added.

The high-spin case sees a dramatic jump in corresponding bond length, this may be

due to the energy of the orbitals introduced into the band gap, these are discussed

further in Section 7.3.3. Like transition metal octahedral complexes that exist in high

and low spin states, there can be a dramatic shift in structure due to spin preference.

The change in spin changes the ionic radii (although from a quantum mechanical

viewpoint the radius of an individual ion has no precise physical significance it is

informative in understanding this difference in this instance), in high spin cases the

ionic radii is larger, more proximal to the hydrogen and therefore much more attractive,

this therefore increases the C–H bond length.

The C–C bonds directly surrounding the vacancy in each case, as well as the N–

C bonds in the NV defects do not produce an obvious trend when the charge or

spin of the defect is changed. There is however a slight difference of 0.04 Å in the

average immediate three C–C bond lengths adjacent to the C–H bond in the VH

defects investigated and the three N–C bond lengths surrounding the vacancy in the

NV defects investigated. Insinuating that the nitrogen introduces more strain into the

immediate lattice surrounding the nitrogen than the lattice surrounding the C–H bond.

However, on average all C–C or N–C bonds surrounding the vacancy of each set of

defects investigated only differ by 0.01 Å.

7.3.2 Electrical properties

In the VH and NV defects there is the presence of empty gap states (Section 7.3.3)

suggesting that multiple charge and spin states are possible depending on the location

82



Chapter 7. NnVHm, where n + m = 1

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

−3 −2 −1  0  1

B
on

d 
le

ng
th

/Å

Charge

S=3/2

S=1/2

VH

Figure 7.2: C–H bond length as a function of charge for the VH defect (red crosses).
The bond lengths associated with different spins for the neutral defect are labelled.

of the electron chemical potential, which is defined by the presence of other donors or

acceptors in the material.

Donor and acceptor levels of the VH and NV defect are compared in Figure 7.3.

All levels associated with the nitrogen containing defect are higher in energy when

compared to the VH defect. The experimental acceptor level (0/−) of NV is situated

mid-gap at EC −2.583 eV [141,142] and although this differs with the calculated values

here, the trend is expected to hold.

Consistently lower levels associated with the VH defect means that they will

preferentially trap electrons compared with the NV defect.

The results suggests that it is harder to add electrons to the NV centre when compared

to the VH centre. This is primarily due to the inherent nature of the nitrogen lone

pair: it is large, diffuse and extends into the vacancy much more than the comparably

constrained C–H sigma bond. This wider distribution of charge introduces a larger
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repulsive effect between charge as it is introduced to the defect.
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Figure 7.3: The donor level at (+/0) and acceptor levels between neutral and negatively
charged states, for the VH (red crosses) and NV (and pink x’s). The conduction band
minimum EC and valence band maximum EV are labelled with EV set to zero.

If the NV + centre has been identified [139] there is potential for the VH defect to exist in

the positive charge but the NV will preferentially loose its electron over the VH defect.

The positive charge state in both the NV and VH defect most favoured spin is S = 0

and therefore will not be detectable in EPR.

On the other hand, the NV−1 and VH−1 preferential spin state is S = 1 as opposed to

S = 0.

The higher charge states (−2 and −3) in both the VH and NV defect occur above the

donor level of substitutional nitrogen at EC−1.7 eV [54] and therefore would be difficult

to access, as it is likely that this prominent defect would be present. Additionally NV−3

and VH−3 would be S = 0 and therefore undetectable in EPR.
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7.3.3 Electronic structure

The band structures of each possible charge and spin state have been calculated for

the VH and the NV defect for comparison and key results presented in Figures 7.4 and

7.5. The states introduced into the band gap can be understood by reviewing the linear

combinations of the three radicals in the neutral state and their corresponding orbitals

labelled a, b and c. The lowest energy state associated with the radicals will have no

nodes and can therefore be described as a + b + c, this correlates with an a1 irreducible

representation in the C3v symmetry point group. A higher energy state is described by

a linear combination of states with one node, i.e. a + b − c and a − b + c. This forms a

degenerate e irreducible representation. The electrons predominately associated with

the C–H sigma bond and the nitrogen lone pair are lower in energy than the carbon

radicals and the levels are situated within the valance band. Assuming that no other

orbitals are involved, like the corresponding C–H anti-bonding sigma orbital, it can be

deduced that three electrons associated with the carbon radicals in the neutral charge

state occupy the a1 and e levels.

In the case of VH neutral, there are two possible ground state spin configurations that

are very close in energy, with the S = 1/2 (a2
1e1) (Figure 7.4a) only lower than the S =

3/2 (a1
1↑e

2
↑a0

1↓e
0
↓ , the relative spins are indicated by up and down arrows) (Figure 7.4b)

by 0.08 eV. If it is similar to the NV defect the ground state is expected to have a

S = 1/2 (a2
1e1) ground state spin [143] but unlike NV the difference between the high

and low spin states is acute enough that the high spin state should be visible during

experiment.

In the S = 3/2 (a1
1↑e

2
↑a0

1↓e
0
↓) defect, the electronic configuration satisfies Hund’s rules

as all electron spins are parallel. This occurs as the spin-down states are much higher

in energy than the corresponding spin-up states, with the largest difference between e↓

and e↑ states around 2 eV. The electrons therefore preferentially fill the states parallel

to each other.

Due to this electronic configuration only spin to conduction band electronic transitions

are allowed, with spin-flip transitions forbidden, this is in contrast to the S = 1/2 (a2
1e1)
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Figure 7.4: These band structures are calculated along high symmetry directions in
the cubic Brillouin zone in the vicinity of the band gap. (a) Is the VH0, S = 1/2
(a1

1↑e
1
↑a1

1↓e
0
↓) and (b) S = 3/2 (a1

1↑e
2
↑a0

1↓e
0
↓). Again the red levels are unoccupied and the

blue occupied. The shaded red and blue areas represent bulk 1000 atom calculations
overlaid for comparison. The left represents spin up (↑) for example and the right spin
down (↓), each band therefore contains one electron. The degeneracy of the gap levels
obscures the occupation so occupation or emptiness is indicated by filled and empty
circles respectively.

configuration where transitions between gap states are allowed due to the conservation

of spin and therefore the S = 3/2 is not expected to luminesce.

The optical transition available to the VH0, S = 1/2 defect can be estimated by applying

an empirical correction based on the known optical transition in the NV−1 defect,

although there are several possible excited states the correction is based on the one

electron picture from the a1
1↓–e1

↓ states (Figure 7.5a). Therefore the transition energy

can be estimated to occur at 1.4 eV.

When an electron is added to the VH defect it becomes negatively charged and now

four electrons are available to fill the gap states. The corresponding band structure

of the VH−1, S = 1 defect is shown in Figure 7.5a and there are striking similarities
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between that and the NV−1, S = 1 band structure (Figure 7.5b) despite there being

no lone pairs on the former; it is necessary to develop this comparison further by also

viewing the wave function distribution in Figure 7.6.
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Figure 7.5: (a) VH−1 and (b) NV−1 band structures along high symmetry points in the
cubic Brillouin zone, in the vicinity of the band gap. Notation is defined in Figure 7.4.

The band structure gap states were justified by referring to linear combinations of

orbitals that belong to the three carbon radicals. They are the dominating contribution

to these states but there is also a contribution from the electrons associated with the

C–H sigma bond and the nitrogen lone pair where applicable. Despite the a1 gap state

lying above the valance band in similar positions in the VH−1 and NV−1 defect band

structures, the origin of this state is drastically different and this is highlighted in the

wave function distribution in Figure 7.6. In the NV−1 defect the the a1 state has a

contribution from the lone pair orbital on the nitrogen atom. The lone pair is inherently

diffuse and extends into the vacancy, repelling the carbon radicals and hence reducing

the component of the wave function associated with them. This is in contrast to the

more contained sigma bond associated with the C–H bond that is also in anti-phase
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with the radicals on the carbon atoms surrounding the vacancy. The NV−1, a1 gap state

is slightly higher in energy than the VH−1, a1 gap state, this is highlighted in Figure 7.6

as there is an additional node between the nitrogen and the carbons directly behind it

and away from the vacancy.

(a) (b)

Figure 7.6: (a) VH−1 and (b) NV−1, S = 1 isosurfaces of the a1↑ states. Red and
blue surfaces indicate the same amplitude but opposite phase. The [110] direction is
perpendicular to the page.

Optical transitions between gap states are accessible in the VH−1, S = 1 defect (Figure

7.5a) and can be estimated by comparing it to the known optical transition of the NV−1

defect at 1.945 eV (3A–3E). Assuming that the errors are largely systematic and that

the ground state band structure is sufficient to describe optical transitions an empirical

correction can be applied. The transition in the NV−1 defect is scaled to match the

experimental value, this is then in turn applied to the gap states in the VH−1 defect and

the resultant a1 to e transition is 1.67 eV.

When an electron is removed from either defect making it positively charged, it leaves

two remaining electrons to occupy the gap states. If the splitting between the a1 and

e states is large the electronic configuration will be a2
1e0 (Figure 7.7a) and therefore

S = 0 or conversely if it is small it will be a1
1e1, which has both spin singlet (S = 0) and

spin triplet (S = 1) forms. The spin singlet state of the VH defect however is calculated
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at 0.5 eV lower than the spin triplet configuration and in the case of the NV centre

the spin singlet is 0.6 eV lower (Figure 7.7b). The electronic transition between the a1

and e state in the one electron picture of the NV + defect is 0.81 eV, the VH+ defect is

expected to have a transition of similar magnitude.
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Figure 7.7: The band structures are calculated along high symmetry directions in the
cubic Brillouin zone in the vicinity of the band gap, a full description of notation used
is listed in Figure 7.4. (a) Is the VH+ defect and (b) is the NV + defect. Both are S = 0
(a2

1↑↓e
0
↑↓). Black circles like the blue circles indicate occupation of one electron, they are

darker for clarification as they sit close to the valance band top.

7.3.4 Vibrational properties

As discussed in Section 7.3.1, there is a strong correlation between charge of the

system and associated C–H bond length: in general as charge increases so does

the bond length. And in turn an increase in bond length leads to a decrease in

vibrational frequency. The vibration of the C–H stretch mode associated with the

possible variations of the VH defect are listed in Table 7.1; they all lie in the expected

region, ranging from 2450 to 3100 cm−1. Bend modes below 1332 cm−1 have been

omitted as this is below the Raman frequency of diamond.
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Table 7.1: A comparison of bond lengths and C–H stretch modes as the charge and
spin state of VH varies.

Charge 1 0 −1 −2 −3
Spin 0 3/2 1/2 1 1/2 0
Stretch mode (cm−1) 3310 2450 3130 3010 2750 2470
Bend mode (cm−1) 1370 - - 1350 - -
C–H bond length (Å) 1.07 1.13 1.07 1.09 1.10 1.11

The NVH defect is known to tunnel [94] but the theoretical vibrational modes calculated

using a similar approach adopted here are in close accord with experimental values

[144], so it is expected that the methodology chosen here is sufficient to describe the

VH defect.

The high spin neutral VH defect has a much larger bond length and the correlation

remains between the C–H bond length and the stretch mode. As the bond length is

much longer than expected when compared to the doublet with the same charge there

is a corresponding jump in stretch modes from 3130 cm−1 for the quartet to 2450 cm−1

for the doublet. Depending on the ground state spin state there is also a measurable

shift between the neutral and negative charge state of 120 cm−1 or 560 cm−1.

7.3.5 Hyperfine interaction

Table 7.2 conveniently summarises the hydrogen and nitrogen hyperfine tensors for the

VH and NV defects, the V2H defect has also been included for comparison.

In the VH defect the hydrogen has the potential to tunnel between carbon radical sites,

if the tunnelling rate is faster than the experimental timescale, then an average of

the hydrogen is seen on each available carbon, this therefore changes the symmetry

observed. The dynamic nature of the hydrogen is indicated in Table 7.2, along with the

resulting symmetry and hyperfine tensors. The number of equivalent sites is apparent

in the chemical formula of the defect listed in Table 7.2.

In an earlier publication [145] a hyperfine interaction was speculated to be single
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Table 7.2: (Table overleaf). A comparison of calculated hydrogen (1H) and
nitrogen (14N) hyperfine tensors for the VH, V2H and NV centres where applicable.
They are compared to experimental values taken from references (ref.) listed in
the Table. The principal values (A1−3) are measured in MHz and the direction
taken as the principal value of the hyperfines matrices are given as (θ,ϕ), if the
symmetry permits, A⊥ and A‖ along the 〈111〉 direction is used as an alternate
description. θ is the angle with [001] and ϕ is the angle of the projection of
the direction onto the (110) plane measured from [100] towards [010] measured
in degrees. res measured in Å is the distance between the hydrogen and carbon
radical sites surrounding the vacancy. Calculated results may be listed with a
greater number of significant figures to avoid ambiguity. Sites are described below.
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Table 7.2: Full caption on previous page.
Label Assignment/

calculated
Site Dynamic Sym. A1 (θ1,ϕ1) A2/ A⊥ (θ2,ϕ2) A3/ A‖ (θ3 or‖,ϕ3 or‖) res Ref.

-
VH0, S = 3/2

1 ✗ C3v - - −4 - 17 (55,−135) 1.94
- ✓ Td 3 (90,0) 3 (90,90) 3 (0,-)

-
VH0, S = 1/2

1 ✗ C3v - - 1 - 0.4 (−55,45) 1.98
- ✓ Td 0.8 (90,0) 0.8 (90,90) 0.8 (0,-)

H1 H–V 0, S = 1/2 - axial - - −6 - 27 (55,45) 1.7 [145]

-
VH−, S = 1

1 ✗ C3v - - 0.3 - −1 (−55,45) 1.94
- ✓ Td −0.2 (90,0) −0.2 (90,90) −0.2 (0,-)
- ✗ C3v - - 1.95(5) - 1.10(5) (55,45) [131]

-

V2H0, S = 1/2

3 (V at 4) ✗ C1h −6 (62,148) 6 (58,38) 2 (−45,90) 1.97/2.57/3.01
- ✓ C3v - - −2 - 5 (55,45)
- ✓ D3d - - −2 - 5 (55,45)

KUL9 ✓ trig. - - −2.1 - 4.6 (55,45) 3.0 [147]

-

V2H−, S = 1

3 (V at 4) ✗ C1h 1.6 (−45,90) 1.8 (45,95) 0.1 (88,2) 1.95/2.55/3.01
- ✓ C3v - - 1.2 - 1.1 (55,45)
- ✓ D3d - - 1.2 - 1.1 (55,45)

KUL2 ✓ trig. - - 2.8 - 1.1 (55,45) 3.2 [147]

- NV 0, S = 3/2 4 - C3v - - 17 - 27 (55,45) 2.71

- NV 0, S = 1/2 4 - C3v - - −2.1 - −1.7 (55,45) 2.74

-

NV−, S = 1

4 - C3v - - −2.2 - −1.7 (55,45) 2.73
W15 - C3v - - −2.70(7) - −2.14(7) (55,45) 2.51 [148]
W15 - C3v - - 2.10(10) - 2.30(2) (55,45) 2.5 [149]
W15 - C3v - - 2.32 - 2.25 (55,45) 2.5 [150]
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hydrogen atom entering a stretched bond at a grain boundary; due to the symmetry

and the calculated distance between the hydrogen and the electron density, it was later

asserted that this was the VH0 defect. However the model of VH0 for H1 was deemed

incorrect in reference [146] due to its symmetry variation. We can confidently confirm

that H1 is not the VH0, S = 1/2 defect as the difference in calculated and experimental

values is too large, therefore in Table 7.2 this defect is labelled as H–V 0.

Previous experimental results had identified an S = 1 defect, with trigonal symmetry,

that had similar zero field splitting to the NV− centre. From the experimental evidence

it was deduced from this that it was the VH− defect [131]. If this was the case the

hydrogen in the VH− defect would be static, or appear to be static, as the rate of

tunnelling would be slower than EPR timescales. As hydrogen is small, light, and

averaged symmetry is seen in similar defects like the NVH centre, it might be expected

that the VH defect would exhibit similar behaviour. Tunnelling rates, however, for the

VH defect have been calculated to be larger than the NVH defect and on the upper

limit of EPR timescales [86]. Based on this and further theoretical calculations [86] a

reassignment was proposed, that the trigonal defect was in fact a V2H−, S = 1 defect.

When static this defect has C1h symmetry but when dynamic the symmetry changes

to either C3v or D3d symmetry, the latter two are indistinguishable in experiment and

theory. This reassignment however, was based on theoretical results that differ to

those calculated in Table 7.2 by several orders of magnitude. The experimental results

[131] are however closer in magnitude, direction and they have the same symmetry

as a V2H− defect when the hydrogen is in motion. They are also comparable to the

experimental results for the KUL2 centre which is assigned to the V2H− defect. This

was assigned based partly on the point dipole approximation that calculates a distance

that would only be feasible in a defect with two vacancies. Perhaps if this information

was available for the defect in question an assignment may be more definitive. KUL2

and KUL9 were also recorded in the same sample so KUL9 may be identifiable in the

samples used by Glover et al.

There is little difference between the nitrogen hyperfine low spin neutral case and the
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negatively charged defect but the higher spin neutral case has a dramatic difference in

magnitudes. This is a consequence of more unpaired electron density interacting with

the nucleus. This is also seen in VH defect.

The signs have only been calculated experimentally in Reference [148]. All

experimental results [148, 149, 150] however, regarding the NV−, S = 1 case are in

good agreement with the magnitude and direction calculated.

In Table 7.3 the carbon hyperfines are listed for the unique carbon bonded to the

hydrogen and also the remaining group of three carbons surrounding the vacancy in

both the VH and NV cases. If the hydrogen is in motion where feasible an average

of the hyperfine parameters is taken, increasing the number of equivalent sites and

altering the perceived symmetry.

The unique carbon involved in the C–H bond in a static view always has the lowest

hyperfine parameter in Table 7.3, the largest hyperfine interaction occurs where there

is more unpaired electron density on the remaining carbon radicals.

The calculated hyperfine values are in good agreement with both experiments listed

in Table 7.3 for the NV− defect. Although, only A⊥ and A‖ values are described in

experiment the calculated values of A1 and A2 are within 1 MHz.

In general carbon hyperfine interactions are much larger than hydrogen and nitrogen

hyperfine parameters due to the localisation of the unpaired electron density. The

neutral and negative defects have similar hyperfine parameters for all types of hyperfine

interactions in Tables 7.2 and 7.3, whereas in the higher spin neutral cases there is

a dramatic decrease in carbon hyperfine values and an increase in corresponding

hydrogen and nitrogen hyperfine parameters.
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Table 7.3: A comparison of calculated carbon (13C) hyperfine tensors for the VH and NV centres, compared to
experimental values taken from references (ref.) listed in the Table. n indicates the number of equivalent sites. A
breakdown of terms is described in the previous Table.

Label Assignment/
calculated

n Site Dynamic Sym. A1 (θ1,ϕ1) A2/ A⊥ (θ2,ϕ2) A3/ A‖ (θ3 or‖,ϕ3 or‖) Ref.

-
VH0, S = 3/2

3 3 ✗ C1h 58.0 (−66,26) 58.1 (45,90) 134 (55,−45)
- 1 1 ✗ C3v - - 26 - 47 (55,−135)
- 4 ✓ C3v - - 50 - 112 (55,135)

-
VH0, S = 1/2

3 3 ✗ C1h 90.8 (−65,28) 91.1 (45,90) 182 (56,−43)
- 1 1 ✗ C3v - - −8 - −7 (−55,45)
- 4 ✓ C3v - - 75 - 148 (55,135)

-
VH−, S = 1

3 3 ✗ C1h 98 (−65,28) 98 (45,90) 182 (55,−43)
- 1 1 ✗ C3v - - −7.3 - −6.7 (−55,45)
- 4 ✓ C3v - - 71 - 135 (55,135)
- NV 0, S = 3/2 3 1 - C1h 68.1 (35,45) 68.2 (90,−45) 145 (55,−135)

- NV 0, S = 1/2 3 1 - C1h 112.7 (37,45) 113.0 (90,−45) 204 (53,−135)

-
NV−, S = 1

3 1 - C1h 116 (36,45) 117 (90,−45) 202 (54,−135)
W15 3 - - - - 120.3(2) 199.7(2) (125.2(3),45) [148]
W15 3 - - - - 123 205 (141.2,0)* [151]

*3.5◦ from 〈111〉, directions described in [151].
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V NV N2V N3V N4V

VH NVH N2VH N3VH

VH2 NVH2 N2VH2

VH3 NVH3

VH4

(a) (b)

(c) (d)

Figure 8.1: (a) Highlighted defects where n + m = 2. (b) The VH2 defect. (c) The NVH
defect. (d) The N2V defect. Description of the structure remains the same as described
in Figure 5.1b.
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8.1 VH2

It is well known that hydrogen readily forms complexes with vacancies in silicon;

infrared absorption experiments [152] have shown that VHn, n = 1, 2, 3 and 4, defects

are present in ion-implanted samples. However multiple hydrogen containing defects

have not been specifically identified in diamond, as hydrogen and carbon can form

strong covalent C–H bonds it is surprising that more hydrogen related defects have not

been recognised.

8.2 NVH

The NVH centre has been thought to have been grown in CVD diamond in the neutral

charge state due to it being grown under a non-equilibrium environment. Once heated

the electron distribution can equilibriate, resulting in NVH−. The negative defect has

been observed in EPR [153,94] and in IR absorption experiments [154,155]. NVH0 is

also thought to be associated with the optical band at 2.38 eV (520 nm).

The hydrogen in the NVH defect is known to tunnel, resulting in a perceived C3v

symmetry when the hydrogen reorientates between the equivalent carbon radicals

in the defect. It is the motionally averaged dynamic mode that is seen in EPR. The

static description of vibrational modes however successfully describes the centres

properties [144].

8.3 N2V

The N2V 0 has been assigned the H3 optical line (2.463 eV) and the H2 (1.26 eV) line

is N2V− [156]. The neutral S = 1 defect has been identified in EPR experiments and

labelled W26 [157]. It has recently been suggested that as the H3 optical centre has a

long photoluminescence lifetime (17.5 ns) and a quantum yield of 0.95, it has a possible

application as a long-living quantum memory [158,159]. The structure of N2V has been

confirmed by uniaxial stress measurements to conform to C2V symmetry [156].
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8.4 Results

8.4.1 Structural analysis

Both the VH2 and the N2V have the same C2v ground state symmetry (Figure 8.1b and

Figure 8.1d respectively), the C–H bonds in VH2 are in the same plane and stretch

towards the carbon radicals. The NVH defect on the other hand has C1h ground state

symmetry (Figure 8.1c), as although the nitrogen and associated lone pair and C–H

bond may be considered to be isoelectric with each other they are not equivalent and

therefore it reduces the symmetry in the defect accordingly.

The VH2 defect contains two equivalent carbon radicals when viewed statically,

meaning that both hydrogens have the potential to quantum-mechanically tunnel

between them. This is a more complex problem compared with the VH defect as

there is another hydrogen involved in the process: one hydrogen will effect the other. If

tunnelling is observable the symmetry will change from C2v to Td .

The NVH defect also has two remaining equivalent carbon radicals and quantum-

mechanical tunnelling of the hydrogen has been observed at a rate which can alter

the perceived symmetry in EPR.

C–H bond lengths associated with varying charges for the VH2 and NVH defect are

illustrated in Figure 8.2. Similar to the VH defect discussed in Chapter 7 there are

two spin states of indistinguishable energy (< 0.1 eV) associated with the neutral VH2

and the NVH defect. Once again the different spin states correspond to different C–H

bond lengths, although the difference is much more acute, between 1.07 Å in the high

S = 1 case and 1.05 Å in the low spin S = 0 VH2 defect. This is also seen in the

NVH defect, the neutral S = 1 and S = 0 defects have a difference of 0.03 Å in the

C–H bond length. In both cases the higher spin results in a longer C–H bond length.

The longer C–H bond length in the VH2 and NVH neutral S = 1 cases are second

longest in each corresponding set only beaten by −2 charged defect in each case. As

these defects contain an additional hydrogen or an nitrogen when compared to VH, a

combination of electronic interactions and sterical considerations will define the bond

98



Chapter 8. NnVHm, where n + m = 2

length. The smaller difference in bond length due to spin when compared with the

VH defect may be due to the increased steric hindrance within the defect caused by

the additional hydrogen or nitrogen reducing the space available for extended bonds.

When two electrons are added however the Coulombic attraction is strong and C–H

bond does preferentially increases.
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Figure 8.2: C–H bond length as a function of charge for the VH2 defect (red crosses)
and the NVH defect (pink x’s). The bond lengths associated with different spins for the
neutral defect are labelled in their corresponding colour.

When comparing like spins and charges of the VH2 and NVH defects the

corresponding VH2 C–H bonds are consistently shorter than the NVH C–H bonds.

The C–H bonds in the VH2 defect range from 1.05–1.09 Å and from 1.07–1.12 Å in

the NVH defects. The nitrogen lone pair and the C–H bond are attracted to each other

due to the presence of intermolecular hydrogen bonding. Whereas the like C–H bonds

repel each other as the H is slightly positively charged due to the fact they are bonded

to a more electronegative atom.
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In both defects the positive charge has the same C–H bond length as its corresponding

negatively charged counterpart, suggesting that any further reduction in bond length is

unfavourable.

With regards to the C–C bonds directly surrounding the VH2 defect, on average there is

0.02 Å difference with that of the shorter N–C/C–C bonds surrounding the N2V defect.

Similarly to Chapter 7, there is not an obvious trend between the surrounding bonds

and the charge and spin of the defect.

8.4.2 Electrical properties

All defects where m+n = 2 have two carbon radicals available to be removed or ‘paired’

with two additional electrons. The removal of two electrons is not thermodynamically

stable and is not considered further.
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Figure 8.3: The donor level at (+/0) and acceptor levels between neutral and negatively
charged states up to −2, for the VH2 (red crosses), NVH (pink x’s) and N2V (blue
asterisks). The conduction band minimum EC and valence band maximum EV set to
0 eV are labelled.
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Consistent with the VH and NV defects, nitrogen containing defects have donor and

acceptor levels higher than hydrogen only containing defects. Following that, the N2V

defect contains the maximum number of nitrogens permitted in this set and therefore

has the highest donor and acceptor levels of the three defects considered here.

When comparing these results with Chapter 7 the trends (or lack of) becomes more

complicated, a brief discussion is presented below but all sets are reviewed in

Chapter 12.

All three donor levels in Figure 8.3 are lower in energy than those corresponding to the

VH and NV defects, suggesting it is easier to remove electrons from the latter rather

than from this set.

On the other hand the (0/−) level of the VH2 sits in between the VH and NV defects

corresponding (0/−) level, meaning it is easier to add an electron to the VH2 defect

as opposed to the NV defect. Reinforcing the idea that nitrogen lone pairs are more

repulsive to other electrons than C–H sigma bonds.

The NVH acceptor level lies at a higher energy than the NV defect, suggesting that the

addition of hydrogen also has some effect on the ease of adding electrons.

Adding two electrons though is easier in the VH2 and NVH defect as their (−/ − 2)

acceptor level resulting in a S = 0 defect is lower in energy than the n + m = 1 set

where the spin of a −2 defect is S = 1/2. But adding two electrons to the N2V although

making it S = 0 defect the repulsion of the nitrogen lone pairs is too high.

It is speculated that the VH2 can exist in both the neutral if it is grown in and the

negative once it has achieved thermal equilibrium similar to the NVH.

8.4.3 Electronic structure

Once again the band structure, focusing on the states introduced into the gap, can be

understood by looking at linear combinations of orbitals a and b as there are two carbon

radicals. a+b is nodeless and relates to the a1 one-electron state. a−b introduces one

node and corresponds to a b1 state. This describes the gap states due to the VH2

defect in Figures 8.4a and 8.4b.
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Although N2V has the same symmetry as the VH2 defect, a more comprehensive view

is necessary to understand the band gap states, this includes all the electrons in the

defect and can be derived from the neutral vacancy with Td symmetry. By lowering it

to the C2v symmetry point group it splits the triply degenerate t2 state to introduce a b2

state and the previously mentioned a1 and b1 states which lie higher in energy. The

singly degenerate a1 state can not split but is lowered in energy. This process is fully

described in Lowther [160]. The VH2 defect has the same states but all are only visible

in the gap when in its negative charge state (Figure 8.5a), the NVH on the other hand

has C1h symmetry and the gap levels are labelled a′ and a′′.

Confirming a previous study [161], our calculations predict that NVH0, S = 1 defect is

lower in energy than the S = 0 defect. The difference is 0.02 eV, therefore we can not

definitively say what the ground state spin state would be. The states are thought to

be degenerate and both states should be accessible experimentally; the S = 1 state

could be visible in EPR whereas the S = 0 state would not be. The S = 1 state

for the VH2 is the lowest in energy but as the energy difference is only 0.09 eV it is

difficult to confirm, on the other hand the difference in energy for the N2V defect is less

than 0.1 eV but the lowest electronic configuration is the S = 0 state. The previous

study [161] suggests that they all have S = 0 ground state but with the possibility to

access higher spin states. Both associated band structures for each defect have been

included in Figure 8.4.
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Figure 8.4: Band structures calculated along high symmetry directions in the cubic
Brilloin zone in the vicinity of the band gap. The band structure notation is described
fully in Figure 7.4. Black circles like the blue circles indicate occupation of one electron,
they are darker for clarification as they sit close to the valance band top.
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Figure 8.5: Band structures calculated along high symmetry directions in the cubic
Brillouin zone in the vicinity of the band gap. The band structure notation is described
fully in Figure 7.4, only visible band states are labelled. Black circles like the blue
circles indicate occupation of one electron, they are darker for clarification as they sit
close to the valance band top.
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In all neutral S = 0 defects, it is possible for an a1–b1 optical transition (or a′–a′′ in the

case of NVH). As hydrogen decreases and nitrogen increases in this set, both these

levels increase in energy and the transition itself also slightly increases in energy, as

seen down the left side of Figure 8.4. The a1 and b1 states are primarily due to bonding

and anti-bonding orbitals respectively from the carbon radicals. The b2 state is primarily

due to the C–H sigma bonds in VH2 and it is situated in the valence band, but as

nitrogen is added and hydrogen removed the b2/a′ state rises out of the valence band

as the state is now primarily as a consequence of the nitrogen(s) lone pair(s). The

b2–b1 internal transition is dipole forbidden but where b2 is above the valence band,

b2–Ec and b1–Ec are possible.

In the higher spin state of the neutral defect (seen on the right of Figure 8.4), the states

follow a similar pattern described above. Although internal transitions in VH2 are spin-

flip forbidden. Only in the NVH and N2V defect where the a′ or b2 state is above the

valence band have allowed internal transitions of around 2 eV. The NVH0, S = 1 has

an additional allowed transition between a′ and a′′ states.

The band structures in Figure 8.5 illustrates the defects in this set in the negative and

positive charge state. Like in the neutral S = 0 case a1–b1 (or a′–a′′ in the case of

NVH) internal transitions are allowed and they increase in magnitude as hydrogen is

removed in both charge states. The a1–b1 transitions (or a′–a′′ transitions in the case of

NVH) associated with the negative band structure all have a larger magnitudes when

compared to their neutral S = 0 and positive counterparts. Interestingly in the VH−
2

band structure (Figure 8.5a) the b2 state now becomes visible on top of the valence

band.

1.26 eV is the optical H2 line and is associated with the N2V− defect, this in reasonable

agreement with the calculated transition of 1.33 eV. It has been suggested that the

1.37 eV optical band is related to the NVH− defect, this is surprising as although all a1–

b1 or a′–a′′ transitions in the negative charge states of this set are of similar magnitude,

there is a clear and persistent trend that the transitions are reduced when hydrogen

is added. One therefore might expect the optical transition of the NVH− defect to be
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smaller in magnitude than the N2V− defect, this trend becomes clearer when reviewing

the optical peaks below.

The H3 optical line at 2.46 eV on the other hand is associated with the N2V 0 defect,

although closer in magnitude to the transition associated with the S = 1 defect (1.94 eV)

it is associated with the S = 0 defect that has a transition of 1.06 eV. The calculated

ground state is the S = 0 but the excited paramagnetic state has been detected in

EPR; the calculated difference in energy between the S = 1 and S = 0 state is less

than 0.1 eV. The difference in magnitude is down to a DFT implementation issue and a

full many-body approach where the excited states are treated correctly, would yield a

result in better agreement.

The broad 2.38 eV optical band is associated with the NVH0 defect, conversely to the

N2V 0 defect, the S = 1 is the calculated ground state spin but the difference in energy

between this and S = 0 is around 0.02 eV. Interestingly, the magnitude of this transition

is 0.08 eV lower when compared to the N2V 0 defect (H3 optical line) and the calculated

difference when comparing the S = 0 defects in both cases is 0.1 eV. This transition is

also described as broad which could imply that it is a transition between valence band

states and the defect but the a′ state is calculated to sit around the valance band top.

The transition between the a′ and a′′ is calculated as 1.76 eV which is within 0.62 eV

of the experimental value of 2.38 eV.

8.4.4 Vibrational properties

The stretch and bend modes for feasible charge and spin states for the VH2 and NVH

defects are listed in Table 8.1.

Once again there is a strong correlation between bond length and the stretch modes,

there is however more variation in the bend modes. As the higher spin state for the

neutral case in both defects has a larger bond length the corresponding frequencies

are lower by a sizable difference of hundreds of wave numbers.

The peak at 3123 cm−1 is seen experimentally, it was initially thought to be the NVH−

defect but then was reassigned to be the neutral defect [155]. This is in good agreement

106



Chapter 8. NnVHm, where n + m = 2

Table 8.1: A comparison of bond lengths and C–H stretch modes as the charge and
spin state varies for defects in the n + m = 2 set.

Defect VH2 NVH
Charge 1 0 −1 −2 1 0 −1 −2
Spin 1/2 0 1 1/2 0 1/2 0 1 1/2 0
Symmetric
stretch
(cm−1)

3370 3520 3310 3330 3050 2950 3180 2850 2930 2550

Anti-
symmetric
stretch
(cm−1)

3100 3350 3040 3120 2770 - - - - -

Bend
mode
(cm−1)

1520 1540/
1350

1550 1590 1680 1330 1430 1310 1340 1400

C–H bond
length (Å)

1.07 1.05 1.07 1.07 1.09 1.09 1.07 1.10 1.09 1.12

with the NVH defect but in the S = 0 spin state, although not the calculated ground

state, the spin states are within 0.02 eV.

It is also suggested that the VH2 is assigned to the 1353 cm−1 peak based on

symmetry arguments [155]. The VH2, S = 0 defect is within 3 cm−1 of this assignment,

this is astonishingly close but S = 0 is not the calculated ground state spin state. The

lowest energy for the VH2 is S = 1 but with a difference of 0.09 eV it is too small to

ascertain the ground state. Despite this the VH2, S = 1 defect also has a bend mode

within 90 cm−1 calculated at 1260 cm−1. If this assignment is correct this peak has

been seen in as-grown material and is persistent at high temperature anneals [162].

Recent investigations into co-doped CVD diamonds with boron and nitrogen, reveal a

stretch mode at 2976 cm−1 and a potentially related bend mode at 1394 cm−1 [163].

The NVH defect in the positive charge state is within 1% of the stretch mode and the

bend mode is within 5%. As there is a high boron content if the NVH is formed during

this particular growth process and the boron is also incorporated, the positive charge

state may be accessible. If this is the case it gives extra rigour to the potential NV +
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identification in similar material [139].

8.4.5 Hyperfine interaction

The hyperfine parameters corresponding to the defects in this Chapter are listed in

Tables 8.2, 8.3 and 8.4.

Once again, for the hyperfine parameters due to the 1H, the magnitude of the principal

hyperfine values are are similar in both the negative and neutral charge state, when

viewed statically. The positively charged VH2 and NVH defects have a much larger

magnitude of hyperfine interaction than either the neutral or positively charged defect.

When the hydrogen is in motion in the VH2 defect the treatment of the hydrogens

becomes problematic as their interaction with each other is unknown. The hyperfine

tensors for the dynamic view were taken, like before, as an average of the possible

positions each hydrogen can occupy. The resulting symmetry is Td .

For the positively charged defect the magnitude of the tensor is 11 MHz but in the

neutral and negatively charged states the magnitude of the hyperfine tensor is much

lower: −0.09 and −0.06 respectively. This small hyperfine interaction might be difficult

to resolve from the mainline and hope of identifying this defect in EPR may be more

likely if the defect is in the positive charge state.

The hydrogen hyperfine parameters for the NVH defect have been identified in EPR

[94]. It was initially thought that due to the perceived symmetry of C3v , the hydrogen

had to be bonded to the nitrogen but it was later found that the hydrogen is in

fact tunnelling between the carbon radicals, consequently changing the perceived

symmetry viewed in EPR. The calculated results for the motionally averaged NVH−

defect are in reasonable agreement with the experimental results [94].

The hyperfine tensors due to 14N for the NVH and N2V defects are listed in Table 8.3.

There is a greater variation of hyperfine tensors between the charge states due to the
14N when compared to the results previously discussed results due to 1H.

The NVH− is thought to be dynamic and attempts to make it static have failed. If it

was possible however, the hyperfine parameters for the static NVH− although relate
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Table 8.2: A comparison of calculated hydrogen (1H) hyperfine tensors for the VH2 and NVH centres where
applicable. A full breakdown of terms used are described in Table 7.2.

Label Defect Site Dynamic Sym. A1 (θ1,ϕ1) A2/ A⊥ (θ2,ϕ2) A3 /A‖ (θ3 or‖,ϕ3 or‖) res Ref.
-

VH+
2, S = 1/2

3 ✗ C1h −5 (54,135) 7 (90,45) 32 (36,−45) 1.97
- ✓ Td 11 (90,0) 11 (90,90) 11 (0,-)

-
VH0

2, S = 1
3 ✗ C1h −15 (55,135) 1 (90,45) 14 (−35,135) 1.95

- ✓ Td −0.09 (90,0) −0.09 (90,90) −0.09 (0,-)

-
VH−

2 , S = 1/2
3 ✗ C1h −15 (57,135) 12 (90,45) 3 (1−33,45) 1.91

- ✓ Td −0.06 (90,0) −0.06 (90,90) −0.06 (0,-)
-

NVH+, S = 1/2
3 ✗ C1h 5 (53,135) 12 (90,45) 37 (37,−45) 1.99

- ✓ C3v - - 24 - 5 (−55,−45)

-
NVH0, S = 1

3 ✗ C1h −14 (57,135) 2 (90,45) 16 (33,−45) 1.95
- ✓ C3v - - 9 - −14 (55,135)

-
NVH−, S = 1/2

3 ✗ C1h −17 (67,135) 3 (−23,135) 11 (90,45) 1.91
- ✓ C3v - - 6 - −16 (−55,−45)
- C3v - - −9.05(20) - 13.69(20) (55,45) 2.2 [94]
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to C1h symmetry the magnitudes are very similar so the symmetry may be difficult to

resolve experimentally. For the dynamic view there is a greater variation of 0.6 MHz

but this is still rather small. The calculated results are comparable with those found

experimentally and reinforce the identification of a dynamic hydrogen at a rate that

changes the perceived symmetry in EPR.

W26 has been identified experimentally as the N2V 0, S = 1 defect, and although only

A⊥ and A‖ are listed, the difference in symmetry is down to the close magnitudes of

the calculated A1 and A2 principal values. Despite this the results are in reasonable

agreement with each other.

The experimental results are in good agreement with the calculated principal values

and directions for the N2V−, S = 1/2 defect.

Results pertaining to hyperfine parameters due to 13C are listed in Table 8.4.

Only the N2V−, S = 1/2 defect’s hyperfine parameters due to 13C have been identified

experimentally and the calculated results are in reasonable agreement. There is a

similar issue to the nitrogen hyperfine interaction mentioned above, as the difference

in calculated magnitude of the principal values A1 and A2 is very small: only 0.5 MHz.

So experimentally, this small difference was not resolved in this case.

Both the VH2 and NVH have smaller hyperfine principal values when compared to the

N2V defect of like charges. There is also a marked difference between the hyperfine

parameters when it is viewed as static and dynamic; it is much more prominent that the

difference seen in the hyperfine parameters due to hydrogen or nitrogen. Therefore

determining the effects of tunnelling may be easier if experimental evidence was

available 13C material, especially in light of the small hyperfine interaction of the VH2

defect in either its negative or positive charge state.

110



Table 8.3: A comparison of calculated hydrogen (14N) hyperfine tensors for the NVH and N2V centres. A full
breakdown of terms used are described in Table 7.2.

Label Defect Site Dynamic Sym. A1 (θ1,ϕ1) A2/ A⊥ (θ2,ϕ2) A3 /A‖ (θ3 or‖,ϕ3 or‖) res Ref.
-

NVH+, S = 1/2
2 ✗ C1h 13.1 (90,45) 13.3 (−43,135) 26 (47,135) 2.77

- ✓ C3v - - 19 - 14 (55,−45)

-
NVH0, S = 1

2 ✗ C1h 5.7 (−43,135) 5.8 (90,45) 10 (47,135) 2.75
- ✓ C3v - - 8 - 5.9 (55,−45)

-
NVH−, S = 1/2

2 ✗ C1h −2.4 (−54,135) −2.0 (90,45) −1.7 (−36,−45) 2.74
- ✓ C3v - - −1.8 - −2.4 (55,−45)
- C3v - - ±3.10(10) - ±2.94(10) (55,45) - [94]

- N2V +, S = 1/2 1 - C1h 19.7 (90,−45) 19.9 (41,45) 37 (49,−135) 2.73

-
N2V 0, S = 1

1 - C1h 9.8 (−41,−135) 9.9 (90,−45) 16 (−49,45) 2.71
W26 - - - 10.25 - 21.5(5) (90±25(3)◦,45)* [157]

-
N2V−, S = 1/2

1 - C1h −2.9 (−51,−135) −2.5 (90,135) −2.0 (40,−135) 2.71
- - C1h 3.47(2) (145,45)† 4.51(2) (55,45)‡ 4.09(2) (90,−45) ∼2.1 [164]

*Directions described further in [157]. ‡Defined as −3.5(5)◦from [112]. ‡Defined as −3.5(5)◦from [111]. Further description of
directions is provided in reference [164].



Table 8.4: A comparison of calculated carbon (13C) hyperfine tensors for the VH2, NVH and N2V centres. A full
breakdown of notation used is described in Table 7.2. C–H indicates if the carbon is bonded to the hydrogen in
a static view and n indicates the number of equivalent sites.

Label Assignment/
calculated

n Site Dynamic Sym. A1 (θ1,ϕ1) A2 (θ2,ϕ2) A3 (θ3,ϕ3) Ref.

-
VH+

2, S = 1/2
2 (C–H) 3 ✗ C1h 15.7 (90,45) 16.2 (46,135) 38 (44,−45)

- 2 1 ✗ C1h 67.6 (90,−45) 68.2 (38,45) 192 (52,−135)
- 4 ✓ C1h 44 (−49,82) 44 (61,21) 106 (55,135)

-
VH0

2, S = 1
2 (C–H) 3 ✗ C1h 11.8 (−44,−45) 12.3 (90,45) 25 (−46,135)

- 2 1 ✗ C1h 76 (90,−45) 77 (36,45) 187 (55,-135)
- 4 ✓ C1h 44 (−49,92) 44 (61,21) 106 (55,135)

-
VH−

2 , S = 1/2
2 (C–H) 3 ✗ C1h −7.2 (19,−45) −7.1 (90,−45) −9 (−71,−45)

- 2 1 ✗ C1h 137 (33,45) 136 (90,−45) 261 (57,−135)
- 4 ✓ C1h 64 (90,45) 64 (35,−45) 127 (55,135)

-
NVH+, S = 1/2

1 (C–H) 3 ✗ C1h 20.6 (90,45) 21.2 (45,135) 43 (45,−45)
- 2 1 ✗ C1h 68.7 (89,−44) 69.2 (38,48) 182 (52,−135)
- 3 ✓ C1h 36 (65,−28) 41 (46,90) 86 (−55,43)

-
NVH0, S = 1

1 (C–H) 3 ✗ C1h 19.1 (−42,−45) 19.5 (90,45) 34 (−48,135)
- 2 1 ✗ C1h 89 (−88,−46) 90 (35,42) 203 (55,−135)
- 3 ✓ C1h 42 (66,−29) 45 (44,89) 89 (−56,43)

-
NVH−, S = 1/2

1 (C–H) 3 ✗ C1h −9 (62,135) −8 (90,45) −7 (−28,135)
- 2 1 ✗ C1h 156.9 (34,59) 157.3 (84,−41) 282 (57,−135)
- 3 ✓ C1h 47.7 (66,−29) 47.0 (44,−89) 89 (−56,43)

- N2V +, S = 1/2 2 3 - C1h 72 (90,45) 73 (39,135) 171 (51,−45)

W26 N2V 0, S = 1 2 3 - C1h 105 (90,45) 106 (35,135) 221 (55,−45)

-
N2V−, S = 1/2

2 3 - C1h 184.8 (−33,−45) 185.3 (90,45) 311 (−57,135)
- 2 - 202.3(5) 317.5(5) * [164]

*Defined as 2.0(5)◦from [111]. Further description of directions is provided in reference [164].
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1

V NV N2V N3V N4V

VH NVH N2VH N3VH

VH2 NVH2 N2VH2

VH3 NVH3

VH4

(a) (b)

(c) (d) (e)

Figure 9.1: (a) Highlighted defects, where n + m = 3. (b) The VH3 defect. (c) The
NVH2 defect. (d) The N2VH defect. (e) The N3V defect. The description of the atomic
models are described in Figure 5.1b.

1Some results pertaining to the N2VH defect have been published in reference [165].
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9.1 VH3 and NVH2

Both VH3 and NVH2 have yet to be observed in diamond but other defects in this set

have been and are discussed below.

9.2 N2VH

N2VH was recently identified via EPR and labelled WAR13 [12]. When viewed in EPR

the defect has C2v symmetry as it reorientates quicker than Q-band EPR at 34 GHz

[12], a similar effect is also seen in the NVH defect.

It is suggested that this defect correlates with a LVM (local vibrational mode) of 1375

and 1378 cm−1 but a corresponding stretch mode has not been observed, suggesting

that it is possibly obscured in a broad feature at 2750–2900 cm−1 [12].

9.3 N3V

The N3V defect was briefly mentioned in the Introduction as an aggregated form of

nitrogen seen in diamond but not used in the classification process, it is generally found

in smaller concentrations than the A- and B-centre. The N3V defect is responsible

for the optical centre labelled N3 (natural line three), it is an 2A1 to 2E transition that

occurs at 415 nm/2.985 eV [166,167,168,169]. This gives the diamond a yellow colour

characteristic of Cape Yellow diamond gemstones. It also has associated weak broad

transitions labelled N2 at 2.596 eV [166, 167] and N4 at 3.603 eV. In EPR the S = 1/2

neutral defect has been identified and labelled the P2 centre.

9.4 Results

9.4.1 Structural analysis

Both the VH3 and N3V are trigonal defects with C3v symmetry with the axis of rotation

through the remaining carbon radical towards the centre of the vacancy. The NVH2

and N2VH have C1h ground state symmetry.
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As all defects in this set have a free carbon radical and hydrogens where applicable

there is a possibility of the hydrogens tunnelling between each of the carbons

surrounding the vacancy.
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Figure 9.2: The VH3 (red crosses) NVH2 (pink x’s) and N2VH (blue asterisks) C–H
bond length(s) as a function of charge.

Unlike the previous defects discussed in Chapter 7 and 8, as there is only one carbon

radical only S = 1/2 is accessible and it is considered the ground state spin of all

neutral defects in this set.

The C–H bond lengths as a function of charge are displayed in Figure 9.2. The

hydrogen bond lengths increase as the defect becomes negatively charged but the

change in length due to the NVH2 is less so, for this defect the bond length decreases

for the positively charge defect but for the VH3 and N2VH they remain the same as the

neutrally charged defect.

The C–H bonds are defined by a balance between the electronic and steric interaction

with the defect components. Hydrogen bonds between the C–H bond and the nitrogen
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extend the C–H bond but sterically when another hydrogen is included the extension

is limited in NVH2. When there are three hydrogens but no nitrogens, the steric

interaction between the C–H bonds reduces the bond lengths making them the shortest

studied in this set. However, when the VH3 is charged the Coulombic attraction

overcomes the steric hindrance and extends the C–H bond.

The C–N bonds surrounding the N3V defect are 1.48 Å, which is 0.03 Å shorter than the

C–C bonds surrounding the VH3 at 1.51 Å. Suggesting that the nitrogen has a greater

influence on the surrounding diamond than the introduction of hydrogen, despite more

strain introduced within the defect when hydrogen is incorporated into a vacancy.

9.4.2 Electrical properties

Again the (+/0) and (0/−) lie in the expected region and the lowest–highest donor

and acceptor levels respectively are ordered like previously discussed sets: from zero

nitrogens to the max number of nitrogens permitted in this case. Consistent with the

view that it is harder to add electrons to nitrogen containing defects but easier to remove

them.

When comparing these levels to the n +m = 1 and 2 sets it becomes more complicated

and the order is no longer separated by sets. The data is summarised in the Summary.
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Figure 9.3: The donor and acceptor levels for the VH3 (red crosses), NVH2 (pink
x’s), N2VH (blue asterisk’s) and N3V (magenta squares). The energy range has been
reduced and extended to separate the data points when compared to Figure 7.3 and
8.3, the full band gap is therefore not visible, the valence band top (EV) is set to 0 eV.
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9.4.3 Electronic structure

The VH3 and N3V both have the same symmetry as the VH and NV defects. But

the e states are not visible in the band gap in the neutral (Figure 9.4a) and positive

(not pictured) VH3 defect and barely visible in the negative defect’s band structure

(Figure 9.4b), there are therefore no internal transitions in the VH3 defect, in either the

neutral and negative or positive charge state.

The N3V defect however in the neutral charge state has an internal transition as the e

state is located in the band gap in Figure 9.4c. The transition between the e and the a1

state is 2.47 eV which is 0.5 eV within the experimental transition of 2.985 eV. There

are no internal transitions in the negative charge state (Figure 9.4d) and only defect to

band edge transitions.

The band structures for the NVH2 and N2VH are described by different states in the

band gap when compared to the VH3 and N3V defects; they are instead described by

the states in the previous Chapter.

There are no internal transitions in the negatively charged defects in Figure 9.5b and

9.5d but the Figures are included as a comparison to highlight the hidden states seen

in the neutral charge state that lie just above the valance band, they also demonstrate

that the splitting between the a′′–a′ or a′–a′ states increases as hydrogen is removed.

In the neutral charge states of the NVH2 and N2VH defects there is an allowed

transition between the a1 and b1 states, this increases in magnitude from NVH2 and

N2VH.

Interestingly there appears to be an anti-bonding orbital that appears on the edge of

the conduction band minimum in the case of the NVH0
2 (Figure 9.5b).

Only the calculated donor levels of the N3V and N2VH defects in this set lie above the

experimental acceptor level of boron doped diamond at EV + 0.37 eV (this level was

previously attributed to aluminium acceptors [24]), therefore these may be the only

defects with an accessible positive charge state. The band structures of N3V + and

N2VH+ are included in Figure 9.6.

The N2VH+ band structure (Figure 9.6a) appears to have an occupied band associated
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Figure 9.4: Band structures calculated along high symmetry directions in the cubic
Brillouin zone in the vicinity of the band gap. The band structure notation is described
fully in Figure 7.4. Black circles like the blue circles indicate occupation of one electron,
they are darker for clarification as they sit close to the valance band top.
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Figure 9.5: Band structures calculated along high symmetry directions in the cubic
Brillouin zone in the vicinity of the band gap. The band structure notation is described
fully in Figure 7.4. Black circles like the blue circles indicate occupation of one electron,
they are darker for clarification as they sit close to the valance band top.
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Figure 9.6: Band structures calculated along high symmetry directions in the cubic
Brillouin zone in the vicinity of the band gap. The band structure notation is described
fully in Figure 7.4. Black circles like the blue circles indicate occupation of one electron,
they are darker for clarification as they sit close to the valance band top.

with the defect just above the valence band and an unoccupied band within and also

just below the conduction band, using this information in Figure 9.6a it is difficult to

assert this but as charge is removed in all cases in this set the defect bands reduce in

energy.

In the N3V + defect’s band structure (Figure 9.6b) the evidence of a band above the

valance band is clearer, although this is a doubly degenerate e band as opposed to the

a′′ state in the N2VH+ band structure (Figure 9.6a).

There is e to a transition in the case of the N3V + defect with a magnitude of around

0.6 eV, if the VH+
3 defect was accessible the e state is not visible in the band gap so

only band edge to the a state transitions would be available with a smaller magnitude

of around 0.3 eV.

In the N2VH+ band structure (Figure 9.6a) an a′′ to a′ transition may be possible and
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the magnitude will less than the N3V + transition discussed above. As these bands

however lie along the valance band top the transition will likely be broad as the band

takes a range of values. If the NVH+
2 is accessible it will have a similar transition to the

N2VH+ defect but it will be smaller in magnitude.
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9.4.4 Vibrational properties

Table 9.1: A comparison of bond lengths and C–H vibrational modes as the charge
and spin state varies for defects in the n + m = 3 set.

Defect VH3 NVH2 N2VH
Charge 1 0 −1 1 0 −1 1 0 −1
Spin 0 1/2 0 0 1/2 0 0 1/2 0
Symmetric
stretch
(cm−1)

3700 3710 3430 3410 3420 3100 3050 3040 2630

Anti-
symmetric
stretch
(cm−1)

3450/
3420

3460/
3450

3120/
3090

3200 3230 2850 - - -

Bend
mode
(cm−1)

1440/
1430/
1400

1450/
1410

1560/
1520

1550 1580 1680/
1330

1350/
1310

1340/
1330

1470

C–H bond
length (Å)

1.04 1.04 1.07 1.06 1.07 1.09 1.08 1.08 1.12

A summary of vibrational modes are shown in Table 9.1, symmetric and anti-symmetric

bend modes associated with this set are included where applicable. Bend modes close

to the Raman frequency are also included.

As defects containing hydrogen correspond to shorter C–H bonds, generally the

vibrational mode occurs at a higher wave number and therefore a higher frequency.

The bend modes however are more variable due to the influence of their surroundings.

There is no experimental evidence pointing to vibrational modes corresponding to the

VH3 defect but they are expected to be larger than the corresponding NVH2 and N2VH

defects.

The 3234 cm−1 peak has been observed in diamonds treated be hot transition metals

and it becomes particularly strong after treatment in a hydrogen-containing atmosphere

[83]. Previously it was tentatively attributed to C–H vibrations within graphite inclusions
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[83] but as it correlates to a band at 1617 cm−1 a potential assignment could be to the

NVH0
2 defect. The calculated anti-symmetric mode is within 4 cm−1 and the bend mode

is within 2%.

The N2VH0 defect is thought to have been recently identified via EPR [12] and a bend

mode doublet at 1375/1378 cm−1 has been correlated with this find. This is within

around 3% of the calculated bend modes at 1340/1330 cm−1. It is suggested that the

associated bend mode would be obscured by a broad feature from 2750–2900 cm−1,

the calculated bend mode is within 5% of this upper limit, making the signal difficult to

isolate experimentally.

9.4.5 Hyperfine interaction

The calculated hyperfine parameters due to the hydrogen and nitrogen are listed in

Table 9.2.

Once again multiple hydrogen defects when viewed dynamically are problematic as the

interaction between the mobile hydrogens is unknown but an average of each possible

orientation is taken.

There is a large difference between the hyperfine parameters when the VH3 is static

when compared to when the hydrogens are treated as dynamic. The symmetry as a

consequence also changes.

All the static hydrogen hyperfine parameters listed in Table 9.2 are of a similar

magnitude. Whereas the magnitude of the hyperfine tensors when the hydrogen is

dynamic is more variable.

The hyperfine parameters due to the nitrogen are of a similar magnitude in both static

and dynamic views where possible.

In the case of the N2VH defect that was recently identified [12], both the calculated

hydrogen and nitrogen principal hyperfine values and directions are in reasonable

agreement. The identification also confirms the dynamic nature of the hydrogen in

this case.

The calculated hyperfine principal values associated with N3V defect listed in Table 9.2
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Table 9.2: A comparison of calculated hydrogen (1H) and nitrogen (14N) hyperfine tensors for the VH3, NVH2,
N2VH and N3V centres where applicable. A full breakdown is given in Table 7.2.
Label Assignment/

calculated

1H/14N Site Dynamic Sym. A1 (θ1,ϕ1) A2/ A⊥ (θ2,ϕ2) A3 /A‖ (θ3 or‖,ϕ3 or‖) res Ref.

-
VH0

3, S = 1/2 1H
3 ✗ C1h −19 (45,−179) −16 (87,−86) 27 (45,−6) 1.93

- ✓ Td −3 (90,0) −3 (90,90) −3 (0,-)

-

NVH0
2, S = 1/2

1H
1 ✗ C1 −17 (−78,136) −14 (14,165) 27 (−83,−133) 1.95

- ✓ C3v - - 6 - −15 (55,135)

- 14N
2 ✗ C1h 2.47 (78,12) 2.48 (−45,90) 5 (47,113) 2.77

- ✓ C3v - - 3 - 5 (55,135)

-

N2VH0, S = 1/2

1H
2 ✗ C1h −12 (−9,−45) −16 (90,45) 29 (−81,135) 1.95

- ✓ C2v −11 (0,90) −16 (90,45) 28 (90,−45)
WAR13 ✓ C2v −16.07(9) (0,45) −20.68(6) (90,45) 27.41(4) (90,135) [12]

-
14N

1 ✗ C1 4.31 (48,25) 4.33 (−70,−46) 8 (49,−117) 2.75
- ✓ C1h 4 (43,45) 5 (90,−45) 8 (47,−135)

WAR13 ✓ C1h 3.91(2) (43.2(1), 225) 4.24(2) (90.0, 135) 6.51(2) (47.2(1), 45) [12]

-
N3V 0, S = 1/2 14N

1 - C1h 7.1795 (90,−45) 7.1815 (23,45) 12 (67,−135) 2.72

P2
- C1h 7.44(4) 7.46(4) 11.30(4) 157.8(2)* [170]
- C1h 7.4(1) 7.4(1) 11.2(1) 158(1)* [171]

*°from [110] toward [001]
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are within 0.8 MHz of the experimental results.

The carbon hyperfine parameters are listed in Table 9.3.

When hydrogen is removed in this set of defects, the magnitude of the principal value

in each case, (either the carbon radicals or the carbon bonded to the hydrogen in the

static view or the averaged dynamic view) increases.

As before, the hyperfine values associated with the carbon in the C–H bond has a

much smaller value as there is little localisation of unpaired electron density, whereas,

the unique radical in the static view has values that are much larger.

The experimental results associated with the P2 defect, although there is a difference

of ten’s of MHz, they are taken to be in good agreement of the calculated values.
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Table 9.3: A comparison of calculated carbon (13C) hyperfine tensors for the VH3, NVH2, N2VH and N3V centres.
A full breakdown of notation used is described in Table 7.2. C–H indicates if the carbon is bonded to the hydrogen
in a static view and n indicates the number of equivalent sites.

Label Assignment/
calculated

n Site Dynamic Sym. A1 (θ1,ϕ1) A2/ A⊥ (θ2,ϕ2) A3/ A‖ (θ3 or‖,ϕ3 or‖) Ref.

VH0
3, S = 1/2

3 (C–H) 1 ✗ C1h 7.090 (45,180) 7.095 (77,77) 19 (48,−25)
1 4 ✗ C3v - - 129 - 339 (55,45)
4 ✓ C3v - - 38 - 98 (55,135)

NVH0
2, S = 1/2

2 (C–H) 1 ✗ C1h 10.53 (−88,−46) 10.58 (20,37) 22 (70,−135)
1 4 ✗ C1h 156.07 (−45,90) 156.09 (−66,−27) 378 (55,45)
3 ✓ C1h 108 (45,91) 158 (88,−1) 208 (−45,87)

N2VH0, S = 1/2
1 (C–H) 2 ✗ C1h 15.98 (90,45) 16.05 (−22,135) 29 (68,135)
1 3 ✗ C1h 184.45 (−35,−45) 184.50 (90,45) 413 (−55,135)
2 ✓ C1h 100 (90,45) 101 (35,−45) 220 (−55,−45)

N3V 0, S = 1/2
1 4 - C3v - - 220 - 451 (55,45)

P2 1 - C3v - - 186(6) - 432(6) * [171]

*Directions described in reference [171].
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V NV N2V N3V N4V
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VH3 NVH3
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Figure 10.1: (a) Highlighted defects, where n + m = 4. (b) The VH4 defect. (c) The
NVH3 defect. (d) The N2VH2 defect. (e) The N3VH defect. (f) The N4V defect. The
schematics of the defect structure are the same as those described in Figure 5.1b.
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10.1 VH4, NVH3 and N2VH2

Only two defects of the those highlighted in Figure 10.1a have been identified

experimentally and are discussed below; any defects with multiple hydrogens (VH4,

NVH3 and N2VH2) have not been previously detected in diamond but multi-hydrogen

defects have been identified in silicon.

10.2 N3VH

N3VH C–H stretch mode has been recently confirmed by theory to belong to the

3107 cm−1 peak seen in IR absorption [144]. This peak is also accompanied with a

bend mode at 1405 cm−1 which has also been attributed to the N3VH defect. The

3107 cm−1 is found in natural type-Ia diamond and can be introduced by in CVD

diamonds when annealed above 1700 ◦C [44, 172, 173]. HPHT annealing of natural

diamonds is also found to increase the concentration of N3VH. The defect is found to

be trigonal, with the C–H bond being the axis of rotation, Figure 10.1e is a schematic

of the defect.

10.3 N4V

The N4V defect is also known as the B-centre, it was briefly discussed in Chapter 1 as

it is used in the classification of diamonds. It is a tetrahedral defect (Figure 10.1f). They

are formed in natural diamonds type IaB and can be formed in synthetics after extended

annealing. The B-centre is responsible for the IR absorption bands at 1332 cm−1

(sharp) and at 1280 cm−1 (broad).

10.4 Results

10.4.1 Structural analysis

Both the VH4 and N4V are tetrahedral defects with Td symmetry (Figure 10.1b and

10.1f respectively), they therefore have the same symmetry as the surrounding bulk
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diamond. NVH3 and N3VH have C3v symmetry and the axis of rotation goes through

either the single nitrogen or hydrogen respectively towards the centre of the vacancy

(Figure 10.1c and 10.1e respectively). The N2VH2 has C2v ground state symmetry

(Figure 10.1d).

Varying charges apart from neutral are not accessible due to the absence of unstable

carbon radicals. Effectively removing charge from either a C–H bond or from a nitrogen

lone pair costs energy and adding charge to either a C–H bond or to a nitrogen lone

pair is also unfavoured. All the defects in this set are therefore neutral and S = 0; the

C–H bond lengths where applicable vary according to Table 10.1.

The addition of a hydrogen (from one–four) or alternatively the removal of a nitrogen

(from three–zero) in this set of defects reduces the C–H bond length by 0.02 Å each

time. This suggests that intermolecular hydrogen bonding between the disperse

nitrogen lone pair and the hydrogen(s), extends and weakens the C–H bond(s).

Conversely, as the carbon is slightly negative when bonded to a hydrogen it makes

the hydrogen slightly positive, as the hydrogens are equivalent in the defect the like

slightly positive charges on the hydrogens repel each other, consequently shortening

the C–H bonds. The VH4 has the smallest hydrogen bond length of 1.02 Å of all defects

investigated.

Table 10.1: The C–H bond length associated with the m + n = 4 set of defects. All
defects are in their neutral charge state.

Defect VH4 NVH3 N2VH2 N3VH
C–H bond length (Å) 1.02 1.04 1.06 1.08

Although, where there are hydrogens available in this set, there are no radicals so

therefore there is no possibility of tunnelling within this set of defects; the structure will

therefore be the symmetry described above.

The C–N bonds surrounding the vacancy in the N4V defect are around 1.48 Å

compared to the C–C bonds extending out from the vacancy in the VH4 where they are
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around 1.52 Å. Suggesting that nitrogen adds more strain around the defect compared

to when hydrogen is introduced.

10.4.2 Electrical properties

As they are spin zero defects all gap states are occupied leaving no allowed transitions

between them, so they are not expected to luminesce. Despite this the band structures

reveal some interesting features (Figure 10.2).
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Figure 10.2: The band structures of (a) the VH4 and (b) the N4V defects, follow the
same nomenclature as briefed in Figure 7.4 Both are neutral, S = 0 defects.

Both the VH4 and the N4V defects have Td symmetry. Following the logic before,

this time including four orbitals: a, b c and d . It leads to the lowest energy nodeless

combination of a + b + c + d , which is an a1 irreducible set. The next highest energy
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set will form one node and yields a triply degenerate t2 set consisting of: a − b − c + d ,

a − b + c − d and a + b − c − d . This is also the symmetry of the neutral vacancy.

In Figure 10.2a all four occupied states introduced by the defect are occupied and lie

within the valance band. Interestingly there is also a possible anti-bonding sigma orbital

visible on the edge of the conduction band.

At the other end of the spectrum in the n + m = 4 set, where there are four nitrogens,

the band structure is visibly different as seen in Figure 10.2b. The triply degenerate t2

lies above the valence band top by approximately 0.3 eV and is fully occupied. The a1

state also occupied lies within the valance band. In this case here are no anti-bonding

orbital visible.

The differences seen in the two band structures in Figure 10.2 suggests that the C–H

bonds are lower in energy and more stable when compared to the nitrogen lone pair in

this case.

The band structures of the remaining defects in this set are not included as they look

similar to the band structures in Figure 10.2, they are however described below.

The NVH3 and N3VH have C3v symmetry like the VH, NV , VH3 and N3V defects.

The irreducible representation therefore corresponds to two a1 states and a doubly

degenerate e state. In the case of N3VH, the doubly degenerate e state lies around

0.1eV above the valance band top and one a1 state is just visible along the top of the

valance band, the other lies within it. All states introduced by the defect are occupied.

The NVH3 has a barely visible e state just above the valance band top and there is

also a slightly visible anti-bonding sigma orbital on the edge of the conduction band.

N2VH2 has C2v symmetry, the band structure has one a1 and one b2 state that in the

valance band and one b1 and the remaining a1 state lie just above it.

10.4.3 Vibrational properties

The VH4, NVH3 and N2VH2 defect will not be detectable in EPR as they have paired

electrons so observations should be directed towards infrared absorption experiments.

It is known that where hydrogen bonding is present in a defect the observed vibration
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Table 10.2: A comparison of bond lengths and C–H stretch modes for the defects in
the n + m = 4 set.

Defect VH4 NVH3 N2VH2 N3VH
Symmetric stretch (cm−1) 4120 3790 3490 3120
Anti-symmetric stretch (cm−1) 3830 3570 3320 -
Bend mode (cm−1) 1390/1380 1480/1460 1620 1360
C–H bond length (Å) 1.02 1.04 1.06 1.08

occurs at a higher wave number [174, p. 273], as seen in Table 10.2 however the stretch

modes are higher when less nitrogen is present. In fact the highest wave number found

in the full set of defects occurs at 4120 cm−1 for the VH4 defect. This breathing mode

however, would be IR inactive and it would be the second degenerate mode at around

3830 cm−1 that would be observed.

The 3107 cm−1 has been recently assigned to the N3VH defect by using a similar

method here, in this case our result is within 0.5% of the experimental value and is

considered an excellent agreement, the associated bend mode assigned to 1405 cm−1

is within approximately 4% aggrement.

Although there is a strong correlation between C–H bond lengths and the frequency of

stretching vibration (and therefore an indication if nitrogen is involved), there seems to

be little correlation between bond lengths and bend modes.

The 1371 cm−1 bend mode has been suggested based on symmetry grounds to belong

the VH4 defect [155] and our results are within 9–11 cm−1 of this suggestion. No

stretch mode has been associated with the bend mode as it has been suggested that

it would be obscured by a broad band from 2850–3000 cm−1 but the calculated bend

mode is outside this region at 3830 cm−1. If this assignment is correct, according to

reference [162] it is also found to be grown in and persists to 1800 ◦C.

A peak at 3310 cm−1 has been observed previously as a weak broad feature in natural

diamonds exhibiting type 1b character [175]. But information provided from De Beers

[162] sees a strong peak at 3310 cm−1 annealing in at 1500 ◦C that remains until 1800

133



Chapter 10. NnVHm, where n + m = 4

◦C in a nitrogen doped CVD diamond. The N2VH2 anti-symmetric stretch is a potential

for this stretch as it is within 10 cm−1 of 3310 cm−1. But there is no mention of other

potential experimental candidates for stretch or bend modes associated with N2VH2

that correlate with those calculated in Table 10.2.

There is a strong correlation between the bond length and the frequency of the local

vibrational stretch modes. The shortest C–H bond length modelled in the full set

covered corresponds to the VH4 defect at 1.02 Å and this defect has the largest

symmetric stretch at 4120 cm−1. According to reference [162], a peak at 4677 cm−1 is

found to anneal in at 1500 ◦C. By extrapolating the correlation between the C–H bond

length and stretch modes, 4677 cm−1 would correspond to a bond length of around

0.99 Å. An sp3 bonded hydrocarbon is approximately 1.9 Å so a reduction of 0.9 Å

would result in a highly strained defect. Therefore this mode in particular is more likely

associated to an overtone of a stretch mode or possibly a combination of stretch and

bend modes.

10.4.4 Hyperfine interaction

As there is no possibility for the defects in this set to adopt a non-zero spin there is no

hyperfine interactions and therefore they will not be detectable in EPR.
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11.1 Quantum tunnelling

In the defects reviewed where there is at least one hydrogen and a carbon radical

(listed in Figure 11.1), tunnelling of the hydrogen between radical sites is possible as

hydrogen is a light element and the distance between sites is inherently small due to

the size of the vacancy.

V NV N2V N3V N4V

VH NVH N2VH N3VH

VH2 NVH2 N2VH2

VH3 NVH3

VH4

Figure 11.1: The defects highlighted have the potential for the hydrogen(s) to tunnel
between carbon radical sites.

Tunnelling of hydrogen is also seen in silicon, where the VH0 defect, when stationary

has C1h symmetry: the hydrogen is bonded to one silicon atom and two silicons

adjacent to vacancy form a bond perpendicular to a {110} mirror plane [176]. When

tunnelling occurs above 100 K the geometry is averaged and the defect becomes

C3v symmetry as the bond Reconstruction and the Si–H bond occupy each possible

position around the vacancy.

Tunnelling has also been seen in defects in diamond. The NVH and N2VH all show

averaged symmetry when viewed in EPR due to the comparatively long timescales of
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the experiment. The P1 centre is also known to tunnel [177].

The possibility of the hydrogen tunnelling depends on the barrier width and height of

the energy profile of the hydrogen migrating between each carbon site. As the width

and height increases the probability of tunnelling decreases. At higher temperatures,

reorientation will be a thermally activated process but at lower temperatures if the

barrier permits the rate will be determined by quantum effects.

There is little correlation between the width and height of the barrier for the defects

discussed in Table 11.1 and little correlation between the contents or charge of the

defect and the energy profile of the hopping.

Table 11.1: The barrier height (eV) and width (Å) associated with the migration of the
hydrogen between available carbon sites in each charge and spin state listed.

Defect Barrier width (Å) Barrier height (eV)
VH+, S = 0 1.0 1.1

VH0, S = 3/2 0.8 0.3
VH0, S = 1/2 1.0 0.6

VH−, S = 1 0.9 0.8
NVH+, S = 1/2 0.9 0.6

NVH0, S = 1 0.9 0.5
NVH0, S = 0 1.0 1.1

NVH−, S = 1/2 0.9 0.5
N2VH+, S = 0 0.9 0.5

N2VH0, S = 1/2 0.6 0.9

N2VH−, S = 0 0.7 0.1

There is a greater variation with the barrier height: this varies between 0.1–1.1 eV.

N2VH0, S = 1/2 is observed in Q- (30–50 GHz) and X- (8–12 GHz) band EPR with an
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averaged symmetry, therefore hydrogen is hopping between carbon sites faster than

the rate of experiment at room temperature for this defect. An approximation of a

classical rate, based on the energy barrier of 0.9 eV, the hydrogen hopping between

carbon radicals at room temperature equates to the hydrogen associated with each

carbon for around 300 s, this means at room temperature if the motion of the hydrogen

was purely classical the symmetry seen in EPR would be static.

At higher temperatures the likelihood of hoping increases and the time the hydrogen is

associated with each carbon is reduced. At an extremely high temperature of 2300 K,

(at which point defects may migrate themselves) the calculated time the hydrogen is

associated with a carbon is around ×10−12 s, at this rate the symmetry seen in Q-

band (30–50 GHz) EPR would now be the average view (if the defect remains intact).

Therefore it is apparent that for this energy profile associated with the NVH2 defect,

quantum tunnelling rather than classical activation is occurring at room temperature

and therefore the prominent determining property would be the barrier width.

The barrier widths show little variation between 0.6–1.0 Å due to the constrained

structure around the vacancy (the width is difficult to define as all atoms move when the

hydrogen hops, the width in this case is taken to be the distance between the hydrogen

in its start and end position). The NVH−, S = 1/2 has a barrier width of 0.9 Å which

is close to the upper boundary of this range, at room temperature the barrier height

corresponds to a classical residence time of approximately 4×10−5 s, long enough for

a static structure to be seen in EPR. As this defect tunnels at room temperature the

barrier must allow this to happen sufficiently fast enough, suggesting that even the

larger width does not allow the hydrogen wave function to exponentially decay to zero

as it penetrates through this classically forbidden zone, therefore tunnelling may occur

for this associated energy profile.

The rates of quantum tunnelling, which will be the deciding factor in what symmetry is

seen in EPR is not perused in the Thesis. It was however suggested in reference [86]

and [140] that the tunnelling period for VH− is 50 ps an upper limit of EPR time

resolution and the NVH a rate of 8.1 ps. Based on the information presented in
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Table 11.1, the widths of both the VH− and NVH− defects are the same and the barrier

height differs by 0.3 eV, it seems surprising that this difference in height only, changes

the rate of tunnelling this dramatically.

Ultimately, due to no clear correlation between the contents of the defect and the barrier

height and also the limited distance due to the constrained vacancy, it is suggested

that all defects that contain hydrogen and an available radical in the sets previously

discussed will tunnel.

11.2 Binding energies

The defects highlighted in Figure 11.2 have been uncontentionally identified in diamond

but binding energies associated with all the defects mentioned are discussed below.

V NV N2V N3V N4V

VH NVH N2VH N3VH

VH2 NVH2 N2VH2

VH3 NVH3

VH4

Figure 11.2: The defects highlighted have been uncontentionally identified in diamond,
the VH defect however has been researched but the identification is uncertain.

The difference in the binding energies between each defect via the addition of a (Ns)

and (Hi) are listed in Figure 11.3. In Figure 11.3 there is no dependence on the

electron chemical potential as only neutral defects are being considered, there is also

no dependence on the choice of atomic chemical potential as there is no imbalance

of elements. The difference in binding energies between the defects either side of the

number in Figure 11.3 is defined by: E(NnVHm) + E(Ns) − E(Nn+1VHm) − E(pure) for

the addition of nitrogen and E(NnVHm)+E(Hi)−E(NnVHm+1)−E(pure) for the addition

of hydrogen. E(pure) is the total energy of a defect free cell. Note that the V has not

been corrected here or in the following calculations [178].
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V 4.3 NV 4.6 N2V 4.5 N3V 4.5 N4V

5.8 6.1 6.2 6.3

VH 4.7 NVH 4.7 N2VH 4.6 N3VH

5.6 5.6 5.7

VH2 4.7 NVH2 4.7 N2VH2

5.1 5.1

VH3 4.7 NVH3

4.6

VH4

Figure 11.3: The defects are highlighted. Nitrogen (Ns) is added as you move
horizontally across the figure from left to right and hydrogen (Hi) is added as you move
down the defects. The number is the difference in binding energy between the defects
either side.

In general, as the vacancy’s radical sites become saturated, providing there is an

excess of hydrogen and nitrogen the more thermodynamically stable the defect

becomes; the addition of a Hi or an Ns is exothermic in all cases in Figure 11.3.

The addition of hydrogen to a hydrogen containing defect introduces an unfavorable

sterical hindrance between the C–H bonds as well as a repulsive Coulombic interaction

between the hydrogens as they both are slightly positive. Whereas the addition of

hydrogen to a nitrogen containing defect introduces an attractive Coulombic force

between the C–H bond and the nitrogen lone pair. This balance between the attractive

and repulsive forces as the vacancy becomes saturated is highlighted below when

viewing the trends seen in Figure 11.3.

There is less variation when nitrogen is added in each transition when compared to the

addition of hydrogen.

As you move horizontally between defects in Figure 11.3 the energy released reduces

but when you compare the energy released when nitrogen is added to a hydrogen

containing defect there is more energy released the more hydrogen is in the defect.
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As you move vertically in Figure 11.3 when hydrogen is added, less energy is released

in each subsequent transition and the difference between transitions is larger when

compared to the addition of nitrogen.

Adding hydrogen to a defect containing more nitrogen releases more energy when

compared to the addition of a hydrogen to a defect saturated with solely hydrogen.

11.3 VH

The H1 defect, seen in polycrystalline CVD diamond, was thought to be a VH-like

defect found in samples that have a low N0 content [145]. It was later suggested [146]

that this was the VH defect, but the calculated EPR results presented in this Thesis

are at odds with this assignment.

The VH defect was also thought to have been identified in CVD samples grown in

a nitrogen rich atmosphere by Glover et al. [131]. Although the calculated hyperfine

interactions are in broad agreement with experiment, a firm assignment can not made

based on the information in this Thesis. Indeed, based upon tunnelling rates and

previous hyperfine calculations [86] a viable alternative explanation for the experimental

observation is a V2H centre.

Nevertheless, it seems reasonable to expect hydrogen to be found as the VH defect

in as-grown CVD material: as the vacancy is a suitable trap for the hydrogen making

it more thermodynamically stable as strong C–H bonds are formed in the process; the

addition of hydrogen to a vacancy increases the migration energy when compared to

an isolated vacancy so the defect may be stable at growth temperatures; similar defects

like the NV and the NVH are found in as-grown material; there is hydrogen available

in the source gases in the CVD growth process; hydrogen is readily incorporated in

polycrystalline CVD diamond films in grain boundaries or in inter-granular material.

Alternatively, the defect might be created by ion implantation, as is the case in silicon

[176]. Such an approach might be suitable for determining whether the grown in defects

are mono- or di-vacancy based.

The calculated binding energy of a vacancy and a hydrogen interstitial to form VH as
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Figure 11.4: The binding energy (Eb) as a function of electron chemical potential µe

through the theoretical band gap range (valance band maximum EV to conduction band
minimum EC) for the reaction between a V and Hi to form the VH centre.

a function of the electron chemical potential is pictured in Figure 11.4.

The binding energies shown in Figure 11.4 range from approximately 4.7–6.0 eV. As

the binding energy is always above 4 eV, the calculated value of diffusion of the VH

defect, the VH defect will diffuse before it dissociates. The VH defect therefore has the

potential to diffuse through diamond and be involved in further aggregation processes

before it breaks down.

The mechanism of binding will change as the reactants are mobile at different

temperatures, therefore the properties of the vacancy and hydrogen need to be

considered.

Irradiation of diamond introduces vacancies into the structure and after irradiation all

vacancies are found to be in either their neutral or negative charge state [179]. The

migration energy associated with V 0 is 2.3 eV and the V− is found to be immobile as

they are first converted to neutral centres [179].
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For the hydrogen interstitial defect, the bond centred defect is the lowest energy site

[180] and the positively charged defect has a migration barrier around 0.1 eV and the

neutral charge state a barrier of 1.9 eV [181]. So when the electron chemical potential

is below around 3.0 eV above the valance band maximum, the hydrogen will migrate

before the vacancy. Above this level the migration of reactants will also primarily be the

hydrogen as the negatively charged vacancy is immobile but the barrier to migration of

the hydrogen is higher at 2.5 eV [181].

11.4 NV

The NV defect is found in low concentrations in as-grown and natural diamonds, it is

also readily incorporated in single crystal CVD. In fact when nitrogen is included in the

source gases during CVD growth the growth rate increases [39,182].

Only a small (< 0.5%) amount of nitrogen is typically incorporated as NV during CVD

homoepitaxial diamond growth but both the neutral and negatively charged defects

have been identified in the same samples. Studies show that the NV centre is grown

in preferentially orientated along the [111] and [111] direction rather than individual

reactants migrating together to form the centre [183].

However the concentration of the NV centre may be increased as it is formed by the P1

centre trapping a mobile vacancy, via a process of irradiation to form vacancies followed

by annealing with temperatures of more than 600 ◦C to make them migrate [184].

The binding energies associated with the reaction between a vacancy and a

substitutional nitrogen to form the NV centre are illustrated in (Figure 11.5).

As previously mentioned the V 0 defect has a migration energy of 2.3 eV and the V−

is thought to be immobile [179]. The barrier for migration of a substitutional nitrogen

defect was previously calculated as 8 eV [185] but it has been suggested that assisted

migration, either via a vacancy or an carbon interstitial, or with the addition of a

transition metal catalyst, will lower the barrier, sufficiently.

At all possible values the electron chemical potential can take in diamond the NV

centre is more thermodynamically stable than a separate vacancy and a Ns defect
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Figure 11.5: The reaction between a V and Ns to form the NV centre, further details
are listed in Figure 11.4.

(Figure 11.5) with a Eb ranging from around 1.5–4.3 eV.

As the V 0 is the defect that migrates to the Ns as opposed to the other available charge

states the Eb for possible reactions involving the V 0 defect ranges from 2.40–2.75 eV.

It is suggested that the NV centre will remain immobile up to around 1700 ◦C, as the

barrier for migration is calculated at 4.5 [186]–5 eV [187], unless self-interstitials which

may assist diffusion are released from larger aggregates, this will lower the barrier for

migration.

The dissociation barrier can be approximated as the binding energy plus the migration

energy of the vacancy at 2.3 eV, therefore any reaction that results in a binding energy

of more than approximately 2.2 eV will result in a defect that will remain stable before

it dissociates.

As it is unlikely that higher charged states beyond −1 are accessible for the NV defect,

the Eb of a V− and either a N+
s or N0

s defect ranges from 2.75–4.00 eV.
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11.5 VH2

The VH2 has not been identified in diamond and it was previously calculated that it is

2.7 eV less stable that the VH defect, justified by the rigidity of the diamond lattice and

the Pauli repulsion between the C–H bonds [145].

8.5

9.0

9.5

10.0

10.5

11.0

 0  1  2  3  4

Ev Ec

E
b/

eV

µe/eV

V
+ +H

2∗0
→
V

H
2+

V
+ +H

2∗0
→
V

H
20

V
0 +H

2∗0
→
V

H
20

V
− +H

2∗0
→
V

H
20

V
− +H

2∗0
→
V

H
2−

V
− +H

2∗0
→
V

H
22−

Figure 11.6: The reaction between a V and H∗
2 defect to form the VH2 centre, further

details are listed in Figure 11.4.

In the results presented here the addition of a hydrogen to a VH centre does in fact form

a more thermodynamically stable defect. Also, a potential vibrational mode assignment

previously alluded to in Chapter 8 means that the VH2 is seen is as-grown material and

is persistent to at least 1800 ◦C [155, 162]. This does not seem entirely unreasonable

as the NVH defect is also seen in as-grown CVD material.

The defect may also be formed via the addition of a vacancy to the H∗
2 defect

(Figure 11.6) or alternatively of a hydrogen combining to the VH defect (Figure 11.7).

The H∗
2 defect consists of a bond-centred hydrogen with a proximal anti-bonded

hydrogen forming an axially symmetric defect [188]. The defect is fully saturated. It
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Figure 11.7: The reaction between VH and Hi defect to form the VH2 centre, further
details are listed in Figure 11.4.

is considered here because it is a stable form of a hydrogen dimer when compared

to a H2 molecule in diamond. This defect has been previously calculated to be 2.1–

3.32 eV higher in energy than the H∗
2 defect [180, 189]. The migration barrier for the

H∗
2 defect has been estimated to be 3.5 eV [180, 190], therefore the vacancy would

preferentially migrate towards the more stable H∗
2 defect.

In the full range of the band gap the ‘H∗
2+V=VH2’ binding energy is much larger at 8.6–

10.1 eV than the ‘Hi +VH=VH2’ at 3.5–5.6 eV, this is due to the formation energy of the

H∗
2 defect being much higher than any of the other components of the reactants.

As the addition of hydrogen to a vacancy progressively reduces the mobility of the

resulting defect, under the reaction of a VH and a hydrogen interstitial, it would be the

hydrogen that migrates to the VH defect. The increased stability due to the addition of

hydrogen means that the migration of the VH2 as a whole will be higher than either the

vacancy (2.3 eV) or the VH defect (4 eV). Therefore, it may be possible for the VH2 to

migrate before it dissociates.
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11.6 NVH

Like the NV defect, the NVH is grown into CVD diamond with a preferential orientation

[94], it is also thought that the NV− can trap a mobile hydrogen to form the NVH

defect [94]. The NVH− although seen in CVD it has yet to be detected in natural or

HPHT. Suggesting it either is not formed initially in the diamond or once formed it is not

stable at the temperatures or pressures subjected in either natural or HPHT growth.

The NVH may be formed via the process of an NV capturing a Hi, this reaction has a

calculated binding energy ranging from 4.4–6.1 eV (Figure 11.8).
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Figure 11.8: The reaction between a NV and Hi defect to form the NVH centre, further
details are listed in Figure 11.4.

An alternative route is the VH defect binding with a substitutional nitrogen. The binding

energy associated with this process ranges from 1.3–4.2 eV (Figure 11.9).

As the hydrogen is the most mobile species in the defects discussed in these reactions,

it may be speculated that it is more likely for the NV centre to trap a hydrogen interstitial,

when compared to a VH defect trapping a substitutional nitrogen.
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Figure 11.9: The reaction between a VH and Ns defect to form the NVH centre, further
details are listed in Figure 11.4.

11.7 N2V

The N2V defect is thought to be formed via an A-centre trapping a mobile vacancy

in HPHT diamonds. It is present in treated synthetics and is also commonly found in

irradiated natural type IaA diamonds.

The defect is less thermodynamically stable than the N3V defect but both are found in

HPHT diamonds that have been treated above 1900 ◦C. Although when compared

to the concentrations of A- and B- centres the concentrations are comparatively

small. Due to this, is was suggested that either the N2V or N3V defect were not

directly involved in the aggregation process to create B-centres or that the stages of

aggregation were not long-lived under annealing conditions [12].

An A-centre is two neighbouring substitutional nitrogen defects and is considered to be

more stable than two separate substitutional nitrogen defects. It is considered here in

the formation of N2V as the A-centre can trap a comparatively more mobile vacancy.
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The binding energy for this reaction ranges from around 4.0–5.2 eV (Figure 11.10).

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

 0  1  2  3  4

Ev Ec

E
b/

eV

µe/eV

V
+ +N

2+ →
N

2V
+

V
+ +N

2+ →
N

2V
0

V
0 +N

2+ →
N

2V
0

V
0 +N

20 →
N

2V
0

V
− +N

20 →
N

2V
0

V
− +N

20 →
N

2V
−

V
− +N

20 →
N

2V
2−

Figure 11.10: The reaction between a V and N2 defect to form the N2V centre, further
details are listed in Figure 11.4.

An alternative reaction considered is a NV capturing an substitutional nitrogen. The

binding energies corresponding to this reaction range from 1.3–4.0 eV (Figure 11.11).
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Figure 11.11: The reaction between a NV and Ns defect to form the N2V centre, further
details are listed in Figure 11.4.

11.8 VH3

There is no experimental evidence that suggests that the VH3 defect has been

identified in diamond as of yet.

Here two reactions have been considered as possible pathways to formation. The VH2

plus the hydrogen interstitial (Figure 11.12a) or alternatively the VH defect plus the H∗
2

defect (Figure 11.12b).

The binding energy ranges from around 3.75 eV to 5.2 eV for the reaction between

VH2 plus Hi (Figure 11.12a), whereas the associated binding energy when the H∗
2 is

involved is always much higher (Figure 11.12b).
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Figure 11.12: a) The reaction between a VH2 and Hi defect and b) the reaction between
a VH and H∗

2 defect, both form the VH3 centre, further details are listed in Figure 11.4.
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If the precursors are available and not used in competing reaction processes, in the

case of the reaction between the VH2 defect and the Hi the interstitial hydrogen will

more likely to be mobile first whereas the VH defect will become mobile before the

more stable H∗
2 defect.

11.9 NVH2

The NVH2 defect is a multiple hydrogen containing defect that has not been identified

in diamond as of yet. Possible routes to its formation include the addition of NV and

H∗
2 defect (Figure 11.13) or a reaction between VH2 and Ns defects (Figure 11.14). As

this defect only has one remaining radical, it is unlikely that a defect this saturated is

grown in to CVD diamond.
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Figure 11.13: The reaction between a NV and H∗
2 defect to form the NVH2 centre,

further details are listed in Figure 11.4.

The binding energies associated with the reaction between a NV and H∗
2 defect range

from around 8.6 eV to 9.4 eV. This high binding energy is mainly due to the stability of
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the H∗
2 defect.

This reaction (Figure 11.13) involves defects that have been previously identified in

diamond, whereas the reaction between VH2 and Ns defect involves the elusive VH2

defect. The binding energies associated with this reaction is much lower, ranging from

approximately 1.5–4.4 eV.
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Figure 11.14: The reaction between a VH2 and Ns defect to form the NVH2 centre,
further details are listed in Figure 11.4.

11.10 N2VH

As the N2VH defect, which was recently identified via EPR experiments [12] has only

one radical it is more thermodynamically stable when compared to the NVH defect for

example, it was deduced however, that the NVH defect was not directly converted to

N2VH but that there was an intermediate stage between the conversion.

The N2VH defect was produced in multiple CVD samples after annealing at 1800 ◦C.

Three possible routes to formation were considered: ‘N2V + Hi’ (Figure 11.15a),
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‘NVH + Ns’ (Figure 11.15b) and ‘VH + N2’ (Figure 11.16).

In CVD samples A-centres are not formed, so the reaction between the VH and N2

defect will not be available in the diamond used in the experimental observation. The

reaction between the NVH and Ns was also suggested not to occur directly and that

an intermediate state would be involved, perhaps if the migration of the nitrogen is

assisted via an interstital of vacancy the intermediate would a combination of that and

the NVH defect. The binding energy associated with this reaction in Figure 11.15b

ranges from 1.5–4.1 eV.

An alternative reaction between the N2V and Hi produces a range of binding energies

from 4.1–5.6 eV.
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Figure 11.15: a) The reaction between a N2V and Hi defect and b) the reaction
between a NVH and Ns defect, both form the N2VH centre, further details are listed in
Figure 11.4.
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Figure 11.16: The reaction between a VH and N2 defect to form the N2VH centre,
further details are listed in Figure 11.4.
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11.11 N3V

The N3V defect is found in diamond in much smaller concentrations than A- and B-

centres but at a comparable level to N2V defects, although the N3V defect is more

thermodynamically stable when compared to the N2V defect. Due to this it was

suggested that the N3V defect was not involved directly with the aggregation process

to form the B-centres or that the formation of N3V is only formed intermittently under

annealing conditions [12].
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Figure 11.17: The reaction between a N2V and Ns defect to form the N3V centre,
further details are listed in Figure 11.4.

Potential reactions to form the N3V centre include those between the N2V and Ns

defect (Figure 11.17) or NV and N2 defect (Figure 11.18). As the defect is seen in

CVD material the A-centre will not be available to aggregate so therefore the reaction

between the N2V and Ns defect will be preferable in this case. The binding energy for

this reaction ranges from 1.5 eV to 3.9 eV. The defect is also seen in HPHT diamond

after annealing, so in this case NV may bind with the N2 defect.
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Figure 11.18: The reaction between a NV and N2 defect to form the N3V centre, further
details are listed in Figure 11.4.

11.12 VH4

The 1371 cm−1 bend mode has been suggested based on symmetry grounds to belong

the VH4 defect [155] and our results are within 9–11 cm−1 of this suggestion. No

stretch mode has been associated with the bend mode as it has been suggested that

it would be obscured by a broad band from 2850–3000 cm−1 but the calculated bend

mode is outside this region at by 830 cm−1 at 3830 cm−1. If this assignment is correct,

according to reference [162] it is also found to be grown in and persists to 1800 ◦C.

As VH4 is a fully saturated defect it is not a surprise that this potential confirmation

of identification persists at high anneals, it is however surprising that a fully saturated

defect is initially grown into CVD diamond as no other fully saturated defects in the set

where n + m = 4 are.
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Figure 11.19: a) The reaction between a VH2 and H∗
2 defect and b) the reaction

between a VH3 and Hi defect, both form the VH4 centre, further details are listed
in Figure 11.4.
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Potential methods of formation include a reaction between VH2 and the H∗
2 defect

(Figure 11.19a) or between VH3 and Hi (Figure 11.19b), both of these however contain

defects that have not previously identified in diamond.

The binding energies associated with VH2 and the H∗
2 defect visualised in

Figure 11.19a, range from 4.6–7.4 eV. And the binding energy associated with the

reaction ‘VH3 + Hi’ range from 2.4–4.5 eV.
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11.13 NVH3

The NVH3 defect has yet to be identified in any type of diamond. Nevertheless,

potential reactions that produce NVH3 have been considered.
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Figure 11.20: The reaction between a VH3 and Ns defect to form the NVH3 centre,
further details are listed in Figure 11.4.

The binding energies associated with the reaction between the VH3 and Ns defect

(Figure 11.20) has a range of binding energies from 1.5–3.4 eV. The binding energies

associated with the NVH2 and Hi reaction (Figure 11.21a) range from 3.8–5.2 eV. And

for the final reaction between NVH and H∗
2 (Figure 11.21b), the binding energies range

from 5.2 eV to 8.5eV.
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Figure 11.21: a) The reaction between a NVH2 and Hi defect and b) the reaction
between a NVH and H∗

2 defect, both form the NVH3 centre, further details are listed in
Figure 11.4.
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11.14 N2VH2

The N2VH2 defect has also not been identified in diamond of any form but potential

reaction pathways include: N2V and H∗
2 defect (Figure 11.22a), N2VH and Hi defect

(Figure 11.22b), the NVH2 and Ns (Figure 11.23a), and VH2 and N2 (Figure 11.23b).

Perhaps now the N2VH defect has been identified, if there was a source of hydrogen

made available there is potential to form the more thermodynamically stable N3VH

defect. The binding energy associated with this reaction between N2VH and Hi ranges

from 2.5 eV to 5.6 eV (Figure 11.22b).

The reaction between N2V and the H∗
2 defect has a corresponding binding energy of

7.2–9.6 eV. The reaction between NVH2 and Ns defect has a range of 1.2–3.8 eV. And

the reaction between VH2 and N2 has a range of 1.6–5.8 eV.
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Figure 11.22: a) The reaction between a N2V and H∗
2 defect and b) the reaction

between a N2VH and Hi defect, both form the N2VH2 centre, further details are listed
in Figure 11.4.
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Figure 11.23: a) The reaction between a NVH2 and Ns defect and b) the reaction
between a VH2 and N2 defect, both form the N2VH2 centre, further details are listed in
Figure 11.4.
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11.15 N3VH

The N3VH defect was recently identified as the 3107 cm−1 optical peak but has been

seen in natural diamond samples previously. The defect has also been identified in

HPHT and CVD grown diamonds that have then been subsequently annealed. This

defect is fully saturated and is seen to persist at high temperature anneals of 2200 ◦C.

It was suggested that the NVH defect is not directly involved in the aggregation to

form the N3VH defect similar to the formation process associated with the N2VH.

The reaction considered here that involves NVH also involves the A-centre that is

not available in CVD diamond, where multiple hydrogen defects are more likely to be

formed.

The reaction processes considered here consist of a reaction between N2VH and Ns

(Figure 11.24a), N3V and Hi (Figure 11.21b) or NVH and N2 defect (Figure 11.20).

The binding energies associated with the N2VH and Ns reaction range from 1.2–4.0 eV.

For the reaction between N3V and Hi, the binding energies range from 3.8 eV to 6.3eV.

And the final reaction considered here, between NVH and N2 defect has a range of

binding energies from 2.2–5.6 eV.
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Figure 11.24: a) The reaction between a N2VH and Ns defect and b) between a N3V
and Hi defect to form the N3VH defect, further details are listed in Figure 11.4.
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Figure 11.25: The reaction between a NVH and N2 defect to form the N3VH centre,
further details are listed in Figure 11.4.
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11.16 N4V

The B-centre has been identified in natural and synthetic diamonds after annealing

at 2500 ◦C. It is considered an end-point of nitrogen aggregation processes as it

is a stable, fully saturated defect. In natural diamonds this high temperature is

not achieved in growth but over geological timescales the defects aggregate to this

thermodynamically stable form.

The details of B-centre formation is unknown but two reactions are considered here. A

reaction between the N2V and N2 defect (Figure 11.26a) and a reaction between the

N3V and Ns defect (Figure 11.26b). The former, as it involves the A-centre it is not

feasible in CVD diamond, the latter involves the N3V defect and it has been suggested

that this is not involved in B-centre aggregation [12].

The binding energy associated with Figure 11.26a ranges from 2.7–5.4 eV and 0.9 eV

to 4.2 eV for the reaction between N3V and Ns in Figure 11.26b.
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Figure 11.26: a) The reaction between a N2V and N2 defect and b) the reaction
between a N3V and Ns defect, both form the N4V centre, further details are listed
in Figure 11.4.
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Chapter 12. Summary

‘Don’t Believe the Truth’.

— Studio album by Oasis, 30th May 2005.

A reminder to view things critically.

The information presented in this Thesis can be used to aid the identification of point

defects in diamond by combining the results with experimental evidence.

The identification of point defects is essential: it can help identify the origin of the

diamond and also if treatments have been subsequently applied, this contributes to the

value and it is necessary to protect consumer confidence in the gemstone; modelling

defects is an important tool that can be used to help identify potential defects that

can be exploited in technical applications; it is also important to understand how

defects react under different conditions if the diamond is destined for use in an extreme

environment.

The results presented are a systematic quantum-chemical study of point defects that

incorporate a combination of nitrogen, hydrogen and a single vacancy. All of which

are found in varying combinations and concentrations in both natural and synthetic

diamond. The results focus on the set NnVHm where n + m ≤ 4, and related defects

such as the single substitutional nitrogen.

In regards to the set of defects studied, DFT calculations modelled each plausible

charge and spin state of each defect. The structure extracted, donor and acceptor

levels analysed where possible and the energetics between defects inspected. The

electronic structure, magnetic interactions and infrared vibrational properties were also
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calculated. The hyperfine interactions due to the P1 centre have also been investigated

further.

12.1 Conclusions

Results pertaining to the hyperfine interactions due to the P1 centre confirm the general

trend: hyperfine interactions reduce in magnitude as connectivity is reduced rather

than direct distance from the centre. The results also revealed that although in the

main, assignments from experiment are confirmed some site assignments should be

reassigned (C4 and C5).

With regards to the set investigated, structurally, when a hydrogen is introduced into

the set it will preferentially bond to the unstable carbon as it has a radical. When a

nitrogen is added in the set it will replace a carbon, due to its stable lone pair it is

unfavourable for the hydrogen to bond. Charge and spin does not affect the symmetry

of the defects only the bond lengths, particularly the C–H ones where applicable.

The C–H bond length is determined by steric and electronic interactions; when

considering each set where m + n = 2, 3 and 4 separately, the defects containing

nitrogen always have longer bond C–H bond lengths. The C–H bond length generally

increases with the addition of charge. There are however exceptions: in the cases

where there are spin states of indistinguishable energy, the higher spin of the two has

a much larger than expected bond length; a similar change is seen in transition metal

octahedral complexes and is attributed to a change in ionic radii of differing spin states.

The reduction of C–H bond length is also not as marked with the removal of charge

from the defect.

The surrounding immediate bond lengths compress due to the presence of nitrogen

compared to carbon radical or a C–H bond which as little affect on the C–C bonds

surrounding the centre. There is a preference to alter the C–H bond length as opposed

to the rigid structure surrounding the defect, the nitrogen’s lone pair does not deform

like the C–H bond and instead the structure compensates for the inclusion of nitrogen

by relaxing backwards.
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Indistinguishable spin states from a theoretical perspective are seen in the VH0 defect,

with S = 3/2 and S = 1/2 spin states. They have a marked difference in optical

properties: whereby no internal electronic transitions are feasible in the S = 3/2 spin

state but they are possible in the S = 1/2 spin state, there is also a corresponding

marked difference in the vibration of the C–H stretch mode, inline with the change

in bond length seen between the two defects but unusual due to charge remaining

constant.

Indistinct spin states, S = 1 and S = 0 associated with VH2
0 and NVH0 defect also

have a difference of tenths of angstroms in bond length. In this case the S = 0 defects

would have no hyperfine interactions whereas the S = 1 would.

Table 12.1: A summary of the donor and acceptor levels associated with defects
studied in the set.

(+/0) (0/−) (−/−2) (−2/−3)
VH 0.89 1.37 3.23 3.74
NV 1.08 1.68 3.63 4.02
VH2 0.35 1.60 3.01
NVH 0.52 1.87 3.39
N2V 0.67 2.23 3.80
VH3 0.16 1.63
NVH2 0.26 2.07
N2VH 0.40 2.47
N3V 0.61 2.87

When considering each set individually, defects containing hydrogen have lower

donor/acceptor levels than those containing nitrogen. This is a consequence of

the nitrogen’s lone pair, it is inherently diffuse when compared to a C–H bond and

the Coulombic repulsion introduced as electrons are added is more unfavourable.

Therefore hydrogen containing defects will preferentially trap electrons. However when

all defects are viewed collectively in Table 12.1 there is no longer a distinct order of

electrical levels.

Electronic transitions between defect states tend to be sharp as opposed to transitions
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Table 12.2: Allowed electronic transitions between highest occupied and lowest
unoccupied states. Transitions between states that lie close to the valance band
top have not been included. The magnitudes are included in eV and nm for ease
of comparison with experimental results. The many body defect states are included.

Defect Charge Spin Many-body
transition
sym.

Transition
magnitude
(eV)

Transition
magnitude
(nm)

Experimental
transition
magnitude(nm)

VH
0 1/2 2E–* 1.41/0.98 879/1265
−1 1 3A2–3E 1.63 761

NV
+1 0 1A1–1E 0.81 1531
0 1/2 2E–2A 1.48/0.93 838/1333 575 [191]
−1 1 3A2–3E 1.91 649 637 [191]

VH2

+1 1/2 2A1–2B1 0.23 5391
0 0 1A1–1B1 0.86 1442
−1 1/2 2B1–2A1 0.97 1278

NVH

+1 1/2 2A′–2A′/
2A′–2A′′

0.36 3444

0 0 1A′–1A′′ 0.96 1292
0 1 3A′–3A′ 1.76 704
−1 1/2 2A′–2A′′ 1.16 1069

N2V

+1 1/2 1A1–2B1 0.49 2530
0 0 1A1–1B1 1.06 1170 503 [191]
0 1 3B2–3A1 1.94 639
−1 1/2 2B1–2A1 1.33 932 982 [192]

N3V 0 1/2 2E–2A1 2.47 502 415 [191]

*2E ground state, but several possible excited states.

between the bulk and the defect, due to the variable energies of the valance band and

conduction band. Defect–defect transitions are summarised in Table 12.2, transitions

between defect–defect states that involve states that lie close to the valance band top

have been omitted due to the dispersion in the states. Assuming that the excited state

is described adequately enough using the band structure, the difference in energy of
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the states can describe the electronic transitions.

Only N3V is included from the set where n + m = 3, as the VH3 defect has no allowed

electronic transitions between the highest occupied and lowest unoccupied states, and

the N2VH and NVH2 only have allowed transitions with defect states that lie atop of the

valance band therefore one can not definitively assert their position in the band gap.

In general, when comparing like to like transitions and charge states, the magnitude

and position in the band gap increases as hydrogen is removed from the defect. Also

when comparing like to like transitions, as charge increases, the magnitude of the

transitions and position of the defect states also increase.

The vibrational modes associated with the C–H stretch mode increases as bond length

decreases (and therefore the more hydrogen involved in the defect in each set the

higher the stretch mode). There is however no clear trend with the bend modes as

sterical hindrance/repulsion from surrounding components has a greater influence.

Some potential assignments of vibrational modes have been mentioned in the previous

Chapters but further corroboration would be necessary to be confident. However, one

assignment stands out: the NVH+ defect, it has a calculated stretch and bend mode

which are within 1% and 5% respectively of experiment [163]. If this is the case, it gives

extra rigour to the potential NV + identification in similarly grown material.

There is often a large shift in vibrational modes when charge or spin is changed, in

the case of the N2VH for example when the defect changes charge from neutral to

negative there is a predicted shift of 350cm−1 in C–H stretch mode.

Tunnelling rates are undetermined so static and dynamic hyperfine tensors have been

included for comparison.

In general, larger spin densities of defects of the same charge have larger hyperfine

principal values.

Nitrogen has larger hyperfine interactions compared to hydrogen, the carbons in

nitrogen containing defects also have larger principal values when compared to those

containing hydrogen.

Carbon bonded to the hydrogen has a small hyperfine interaction when compared to
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unsaturated carbon radicals. As the carbon radicals is where the majority of unpaired

electrons is located the largest hyperfine interactions are seen here. When a motional

average is calculated the hyperfine values are reduced.

The experimental hyperfine principal values for the VH−, S = 1/2 defect are close to

the calculated values for the static value but are even closer to the motional averaged

value for the V2H−, S = 1/2 defect.

If there are carbon radical(s) available and a hydrogen available in the set tunnelling of

the hydrogen between equivalent sites is possible. When more than one hydrogen is

involved the problem becomes more difficult as the hydrogens can interact with each

other.

The rate of tunnelling is determined by the energy profile and there is little correlation

between the defect’s contents and the corresponding barrier width and height. The rate

will also determine the symmetry seen in experiment. As tunnelling effects are seen in

silicon and within other defects in diamond, it is speculated that the VH− will tunnel at

a rate comparable to the NVH−. This is because the NVH− centre which is known to

tunnel has an averaged symmetry is seen in EPR, and the barrier width is the same to

one decimal place. However, previous rate calculations suggests that the VH− tunnels

at a rate of 50 ps, which is the upper limit of EPR experiment’s time resolution.

Thermal stability of defects was found to increase as radicals are removed from the

set, either by saturation of dangling bond with a hydrogen or by replacing it with an

nitrogen that as an extra electron compared to carbon.

The binding energies associated with the formation of the defects discussed in the

full set were presented and where migration data was available potential reaction

processes were proposed.

12.2 Further work

To definitely assign C6 and C7 sites in regards to the P1 centre which is discussed in

Chapter 6, further experimental results are necessary to differentiate between the two.

Although this will not alter the general observation of the hyperfine interaction closely
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related to the connectivity of the sites as opposed to purely distance from the centre, it

will add completeness to the results presented.

Furthermore, in regards to the set of defects investigated in Chapters 7 through to 10,

in order to get a more detailed picture of the properties presented further calculations

may be pursued.

Experiment may also focus on areas where differing spin states are sufficiently close in

energy so that changes in spin may be induced by changes in temperature for example

and therefore changes in associated properties can be tracked. Changes in charge

may also be forced experimentally and associated properties monitored.

To clarify potential vibrational modes associated with the defects, further calculations

can be done to reveal the oscillator strengths and the lifetimes of the modes. Stress

and strain responses and isotopic changes may also be calculated. Further correlation

between experiments can also aid the identification of the defect responsible. For

example different isotopes can be grown in, stresses or strains can be manually applied

and the temperature at which the experiments are carried out can be lowered.

Although potential electronic transitions may be seen by analysing the band structure,

when the electron is excited the positions of the states can change. Excited states are

difficult to model using the current method therefore an alternative is necessary.

The energetics of the defects discussed in Chapters 11 can be split into two parts:

processes within the defect (like tunnelling) and processes that involve the mobility or

dissociation of the whole defect. In both cases further calculations are possible. First,

approximations to tunnelling rates for defects where the hydrogen has the potential

to tunnel between equivalent carbon radical sites may be pursued. This will give

vital information in the perceived symmetry of defects when viewed experimentally.

Secondly, mobilities associated with the migration of defects through the diamond

crystal lattice may be calculated. This information will provide an added level of detail

and may be used to determine the likelihood of reaction processes.

Samples grown with a high hydrogen content and with no added nitrogen may result in

illusive multiple hydrogen containing defects, diamonds with boron incorporated within
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may form defects in the positive charge state and may create the more mobile H+ that

could aggregate further in multiple hydrogen containing defects.
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The Hohenberg and Kohn proof

Assume two different systems (1 and 2) have different potentials (V ), Hamiltonians (Ĥ)
and wave functions (Ψ). But they have the same charge density (n(r)). The energy of
the two different systems are therefore:

E1 = 〈Ψ1|Ĥ1|Ψ1〉 (1)

and
E2 = 〈Ψ2|Ĥ2|Ψ2〉. (2)

Applying the variational principle to Equations 1 and 2 yields,

E1 = 〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉. (3)

Rearranging the above leads to:

E1 < 〈Ψ2|Ĥ2|Ψ2〉 + 〈Ψ2|Ĥ1 − Ĥ2|Ψ2〉, (4)

E1 < E2 + 〈Ψ2|V1 − V2|Ψ2〉, (5)

E1 < E2 +
∫

(V1 − V2)n(r)d3r. (6)

The same can process can be applied again to the other system, resulting in,

E2 < E1 +
∫

(V2 − V1)n(r)d3r. (7)

Adding the Equations 6 and 7 gives a contradictory result,

E2 + E1 < E1 + E2. (8)

Therefore proving the first Hohenberg-Kohn theorem via reductio ad absurdum: two
systems that have the same ground state charge density will have the same external
potential.
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