
Mechanisms for Improving
ZooKeeper Atomic Broadcast

Performance

Ibrahim EL-Sanosi

School of Computing
Newcastle University

This dissertation is submitted for the degree of
Doctor of Philosophy

Computing Science June 2018

Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
University. This dissertation is the result of my own work and includes nothing which
is the outcome of work done in collaboration, except where specifically indicated in
the text. This dissertation contains less than 55,000 words including appendices,
bibliography, footnotes, tables and equations and has less than 40 figures.

This thesis includes some works that have been published in peer-reviewed publica-
tions. These publications are as follows:

1. EL-Sanosi, I. and Ezhilchelvan, P. (2017). Improving zookeeper atomic broadcast
performance by coin tossing. In European Workshop on Performance Engineering,
pages 249–265. Springer.

2. EL-Sanosi, I. and Ezhilchelvan, P. (2017). Improving the Latency and Throughput
of ZooKeeper Atomic Broadcast. In Proceeding of 6th Imperial College Computing
Student Workshop (ICCSW 2017). OpenAccess Series in Informatics (OASIcs).

Ibrahim EL-Sanosi
June 2018

Acknowledgements

I would like to thank everyone who has offered me support and advice during my
Ph.D., especially my supervisor Dr. Paul Ezhilchelvan. Words cannot even come close
to expressing my gratitude to my family who deserve the credit for whatever positive
that I have achieved in my life. They have always supported me in all my endeavors
and have patiently waited for the completion of my doctorate. Last but not the least,
my wife, Aishah, has been very supportive and encouraging while I have been trying
to finish up my thesis.

Abstract

Coordination services are essential for building higher-level primitives that are often
used in today’s data-center infrastructures, as they greatly facilitate the operation of
distributed client applications. Examples of typical functionalities offered by coordina-
tion services include the provision of group membership, support for leader election,
distributed synchronization, as well as reliable low-volume storage and naming.

To provide reliable services to the client applications, coordination services in general
are replicated for fault tolerance and should deliver high performance to ensure that
they do not become bottlenecks for dependent applications. Apache ZooKeeper, for
example, is a well-known coordination service and applies a primary-backup approach
in which the leader server processes all state-modifying requests and then forwards
the corresponding state updates to a set of follower servers using an atomic broadcast
protocol called Zab.

Having analyzed state-of-the-art coordination services, we identified two main
limitations that prevent existing systems such as Apache ZooKeeper from achieving a
higher write performance: First, while this approach prevents the data stored by client
applications from being lost as a result of server crashes, it also comes at the cost of a
performance penalty. In particular, the fact that it relies on a leader-based protocol,
means that its performance becomes bottlenecked when the leader server has to handle
an increased message traffic as the number of client requests and replicas increases.
Second, Zab requires significant communication between instances (as it entails three
communication steps). This can potentially lead to performance overhead and uses up
more computer resources, resulting in less guarantees for users who must then build
more complex applications to handle these issues.

To this end, the work makes four contributions. First, we implement ZooKeeper
atomic broadcast, extracting from ZooKeeper in order to make it easier for other
developers to build their applications on top of Zab without the complexity of integrating
the entire ZooKeeper codebase. Second, we propose three variations of Zab, which
are all capable of reaching an agreement in fewer communication steps than Zab. The

v

variations are built with restriction assumptions that server crashes are independent
and a server quorum remains operative at all times. The first variation offers excellent
performance but can only be used for 3-server systems; the other two are built without
this limitation. Then, we redesigned the latest two Zab variations to operate under the
least-restricted Zab fault assumptions. Third, we design and implement a ZooKeeper
coin-tossing protocol, called ZabCT which addresses the above concerns by having the
other, non-leader server replicas toss a coin and broadcast their acknowledgment of a
leader’s proposal only if the toss results in an outcome of Head. We model the ZabCT
process and derive analytical expressions for estimating the coin-tossing probability
of Head for a given arrival rate of service requests such that the dual objectives of
performance gains and traffic reduction can be accomplished. If a coin-tossing protocol,
ZabCT is judged not to offer performance benefits over Zab, processes should be able to
switch autonomously to Zab. We design protocol switching by letting processes switch
between ZabCT and Zab without stopping message delivery. Finally, an extensive
performance evaluation is provided for Zab and Zab-variant protocols.

Glossary

FIFO First-In-First-Out is a method for organizing and manipulating a network
channel where messages sent from a primary replica to a backup are received and
read in the order in which they are sent.

API Application Programming Interface, is a set of subroutine definitions, protocols,
and tools for building application software. In general terms, it is a set of clearly
defined methods of communication between various software components.

N Ensemble of servers N , N ≥ 3 that are fail-independent and fully-connected.

n The number of followers, where n = N −1.

⌈ ⌉ Mathematical notations, ceiling brackets, which rounds number to upper integer.

Π Set of ZooKeeper processes, one process in each server.

m Message in which ZooKeeper clients can send to ZooKeeper servers, it can be either
of type write or read operations.

abcast(m) Atomic broadcasting of message m (state-modifying request).

abdeliver(m) Event when Zab execution for a message m terminates: both the leader
and followers deliver m locally.

zxid In ZooKeeper, zxid represents the order in which each message m is delivered
on all processes (for the sake of simplicity, zxid is referred as m.c in proposed
protocols.

c It is an integer acting as a counter.

m.c A message assigns a counter c. The counter is incremented every time a new
abcast(m) is issued by the leader.

vii

e Epoch number that each new leader is associated with (e is unique for different
primary instances.

Q Quorum of processes.

f Number of crashed servers which can be tolerated in ZooKeeper, f = ⌈N−1
2 ⌉.

Hi(t) The ordered sequence of messages delivered by a server until (real) time t.

pi ZooKeeper process.

FLE Fast Leader Election protoocl.

sid Server identifier (id).

GFS Google File System.

RPC Remote Procedure Call.

LAN Local Area Network.

WAN Wide Area Network.

UDP User Datagram Protocol.

UNCAST3 Unicast Communcation protocol.

FD_SOCK Failure Detection Protocol.

GMS Group Membership Service.

CR Chain Replication Protocol.

L Leader replica.

F Follower replica.

Qℓ Set of all quorums that contain leader l.

Q̄ℓ The complement of Qℓ.

pℓ Leader process.

p The probability of ⌈N−1
2 ⌉ followers getting Head.

viii

B(n, f) The Binomial probability that n
2 of these n (independent) coin tosses are

heads.

prob(Head) The probability of coin-toss outcome being Head.

prob(Tail) The probability of coin-toss outcome being Tail.

W(p) The average number of abcasts required subsequent to m for leader replica to
abdeliver any m over all possible coin-toss outcomes for a given probability p.

λ The average rate at which a leader makes abcasts.

timer(D) Every time a follower receives a proposal, it sets a timer for duration D.

d The average transmission delay for commit messages of Zab to reach the followers.

θ The rate of ack arrivals at a follower.

P1 The smallest estimated probability that satisfies Equation 4.1.

P2 The largest estimated probability that satisfies Equation 4.2.

Pe
1 A reasonably accurate estimate of P1.

δ A small value (e.g. 10−2) which is used for accurate estimation of P e
1 .

P∗ Set of all optimal probabilities.

Si The system state in which i followers have broadcast ack(m).

qij The probability that the system transits from Si to Sj , j ≥ i, when one more abcast
is made.

WR The probability that a request generated by a client is of type write.

ZabCTu A type of experiment when p is chosen from the upper bound by subtracting
a very small δ (e.g., δ = 10−2) from the RHS of Equation 4.2.

ZabCTa A type of experiment when p is selected as an average of the upper and
lower bound a = P1+P2

2 .

ZabCTaa A type of experiment when p is calculated as aa = a+P1
2 .

Contents

Glossary vi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Problem Statement . 3
1.2 Our Approach . 4
1.3 Thesis Contribution . 5
1.4 Thesis Structure . 6

2 Background and Related Works 8
2.1 Distributed Systems Replication . 8

2.1.1 State Machine Replication . 8
2.1.2 Primary Backup Replication . 9

2.2 Coordination Services . 10
2.2.1 Apache ZooKeeper . 11
2.2.2 Chubby . 22
2.2.3 Etcd . 25
2.2.4 Differences among Zab, Paxos and Raft Protocols 27

2.3 JGroups . 28
2.3.1 Application API . 29
2.3.2 Channel . 30
2.3.3 Protocol Stack . 30

2.4 Related Works . 32
2.4.1 Paxos Optimization . 32
2.4.2 ZooKeeper Optimization . 38

Contents x

2.5 Summary . 42

3 Mechanisms for Improving ZooKeeper Atomic Broadcast Performance
When a Server Quorum Never Crashes 43
3.1 Rationale . 44
3.2 Design Objective . 45
3.3 Assumptions . 45
3.4 Definitions and Lemma . 47
3.5 Design Approach . 48

3.5.1 Implicit Acknowledgements . 48
3.5.2 Commit Messages . 49
3.5.3 Invariants on abdeliver . 49
3.5.4 Switch to/from Zab . 49

3.6 Protocol Details . 50
3.6.1 Protocol 1: ZabAc and ZabAa 50
3.6.2 Protocol 2: ZabCt . 53
3.6.3 Protocol 3: ZabCT . 56
3.6.4 Protocol 4: ZabAA with p = 1 57

3.7 ZabCT Adaptation Solution is Required 57
3.8 Summary . 58

4 Coin-Tossing ZooKeeper Atomic Broadcast Protocol 60
4.1 Rationale . 60
4.2 Coin-Tossing Zab (ZabCT) . 62

4.2.1 Design Objectives . 62
4.2.2 Coin Toss Challenges . 63
4.2.3 Enforced Coin Tossing . 66

4.3 Computing the Coin’s Probability . 66
4.3.1 Optimal Probabilities for Specific Toss Outcomes 71
4.3.2 Computing W (p): Expected number of subsequent abcasts required 73
4.3.3 Protocol Switching . 75

4.4 Failures in Proposed Protocols . 75
4.4.1 Protocols with Restrictive Assumption 76
4.4.2 Protocols with Zab Assumption 77

4.5 Summary . 78

Contents xi

5 Performance Evaluation 79
5.1 Zab vs Zab Variations . 80

5.1.1 Experimentation . 80
5.1.2 Evaluation . 83
5.1.3 Summary . 89

5.2 Zab and ZabCT . 89
5.2.1 Experimentation . 90
5.2.2 Evaluation . 91
5.2.3 Summary . 101

5.3 High-Load Conditions . 102
5.3.1 Experimentation . 102
5.3.2 Evaluation . 103
5.3.3 Summary . 106

5.4 Summary . 107

6 Conclusion 109
6.1 Thesis Summary . 110
6.2 Recommendations . 112
6.3 Limitations . 112
6.4 Future Work . 113

6.4.1 Utilising ZabAc/ZabCT in ZooKeeper 113
6.4.2 Crash-Tolerance Evaluation . 114

References 115

Appendix A Implementing ZooKeeper Atomic Broadcast Using JGroups
Framework 121
A.1 Rationale . 121
A.2 System Components . 122

A.2.1 JGroups . 123
A.2.2 Zab Protocol . 124

A.3 Summary . 127

Appendix B Proof of Equations Used for Modeling ZabCT Protocol 128
B.1 Proof of Optimal Probabilities for Specific Coin-tossing Outcomes . . . 128

B.1.1 Proof (1) . 128

Contents xii

B.1.2 Proof (2) . 129

Appendix C Expected Number of Subsequent abcasts Required W(p) 131
C.1 Expected Number of Subsequent abcasts Required W(p) for N 131

C.1.1 Compute W(p) for N=3 . 131
C.1.2 Compute W(p) for N=5 . 132
C.1.3 Compute W(p) for N=7 . 133
C.1.4 Compute W(p) for N=9 . 134

C.2 W(p): Non-increasing Function . 135

Appendix D Performance Evaluation of ZabCT Protocol for Optimal
Probabilities for Specific Toss Outcomes and Large θ 140
D.1 Experimentation . 140
D.2 Evaluation . 141

Appendix E Performance Evaluation 147
E.1 Zab vs Zab-variant Protocols . 147

E.1.1 Performance Improvement . 147
E.2 Zab vs ZabCT . 150

E.2.1 Zab vs ZabCTu . 150
E.2.2 Zab vs ZabCTa . 153
E.2.3 Zab vs ZabCTaa . 156

Appendix F Calculation Summary of Coin-Tossing Probability 160
F.1 Coin-Tossing Probability of ZabCTu Protocol 160
F.2 Coin-Tossing Probability of ZabCTa Protocol 165
F.3 Coin-Tossing Probability of ZabCTaa Protocol 169

List of Figures

2.1 Zookeeper coordination service’s handling read/write requests 12
2.2 Zab server states [36] . 16
2.3 An example of fast leader election (FLE) 18
2.4 Synchronisation phase . 19
2.5 Zab broadcast phase . 21
2.6 Chubby write and read at master replica 23
2.7 Paxos broadcast phase . 24
2.8 Raft broadcast phase . 27
2.9 Overview of JGroups architecture . 29
2.10 Chain replication protocol . 34
2.11 CRAQ replication protocol . 35
2.12 Architecture overview of AGORA . 39
2.13 Architecture overview of Consensus in Box [35] 40

3.1 Leader election scenarios in A1.1 . 47
3.2 ZabAc sequence diagram . 51
3.3 ZabAa sequence diagram . 52
3.4 ZabCt sequence diagram . 54
3.5 Scenarios: ZabCT adaptation requires 58

4.1 a. Coin toss instances; b. Scenario 1; c. Scenario 2 64
4.2 Competing requirements on p. 68
4.3 Optimal probabilities for specific toss outcomes 71
4.4 Possible state transitions . 74

5.1 Clients and protocol servers communication 81
5.2 Latency comparison . 85
5.3 Throughput comparison . 87

List of Figures xiv

5.4 Choosing p . 90
5.5 Latency comparison for zero client wait-time 94
5.6 Latency comparison for client wait-time on (25, 75) ms 96
5.7 Comparison of performance of 90th and 95th percentile latencies for

client wait-time on (25, 75) ms . 97
5.8 Throughput comparison for zero client wait-time 98
5.9 Throughput comparison for client wait-time on (25, 75) ms 100
5.10 Comparison of performance of 90th and 95th percentile throughput for

client wait-time on (25, 75) ms . 101
5.11 Performance comparison for high-load experiment, WR=100 and N = 3 104

A.1 The architecture of Zab within a JGroups 122

C.1 Expected number of subsequent abcasts required W (p) for N = 3 and
n = 2 with respect to coin-tossing probabilities 136

C.2 Expected number of subsequent abcasts required W (p) for N = 5 and
n = 4 with respect to coin-tossing probabilities 137

C.3 Expected number of subsequent abcasts required W (p) for N = 7 and
n = 6 with respect to coin-tossing probabilities 138

C.4 Expected number of subsequent abcasts required W (p) for N = 9 and
n = 8 with respect to coin-tossing probabilities 139

D.1 Performance comparison for N = 5 and zero client wait-time 141
D.2 Performance comparison for N = 5 and client wait-time on (25, 75) ms 143
D.3 Comparison of performance of 90th and 95th percentile latencies for Zab

vs. ZabCT for N = 7,9. The client wait time is uniformly distributed
on (25, 75) millisecond (ms), with an average of 50 ms. 145

D.4 Comparison of performance of 90th and 95th percentile throughput for
Zab vs. ZabCT for N = 7,9. The client wait time is uniformly distributed
on (25, 75) millisecond (ms), with an average of 50 ms. 146

List of Tables

5.1 Performance improvement for N = 3 88
5.2 ZabCTu for zero client wait-time . 92
5.3 ZabCTa for zero client wait-time . 92
5.4 Performance improvement of ZabAc and Zab for high-load experiment,

WR=100 and N = 3 . 104
5.5 Performance improvement for ZabCTu experiment 105
5.6 Performance improvement for ZabCTa experiment 106
5.7 Performance improvement for ZabCTaa experiment 107

A.1 Summary of messages . 124

D.1 Zero client wait-time . 142
D.2 Client wait time in (25, 75) ms . 144
D.3 Latency improvement . 144

E.1 Performance improvement for Zab and ZabAa 148
E.2 Performance improvement for Zab and ZabCt 148
E.3 Performance improvement for Zab and ZabAA 149
E.4 Performance improvement for Zab and ZabCT 149
E.5 Performance improvement for ZabCTu and zero client wait-time experi-

ment. 150
E.6 Performance improvement for ZabCTu and client wait-time on (25, 75)

ms experiment. 151
E.7 Number of acks and coin-tossing probabilities for ZabCTu and client

wait-time on (25, 75) ms experiment. 152
E.8 Performance improvement for ZabCTa and Zero client wait-time experi-

ment. 153

List of Tables xvi

E.9 Performance improvement for ZabCTa and client wait-time on (25, 75)
ms experiment. 154

E.10 Number of acks and coin-tossing probabilities for ZabCTa and client
wait-time on (25, 75) ms experiment. 155

E.11 Performance improvement for ZabCTaa and Zero client wait-time and
experiment. 156

E.12 Performance improvement for ZabCTaa and client wait-time on (25, 75)
ms experiment. 157

E.13 Number of acks and coin-tossing probabilities for ZabCTaa and zero
client wait-time experiment. 158

E.14 Number of acks and coin-tossing probabilities for ZabCTaa and client
wait-time on (25, 75) ms experiment. 159

F.1 Average follower statistics for calculated coin probability for ZabCTu,
zero client wait-time and N = 3 experiment 160

F.2 Average follower statistics for calculated coin probability for ZabCTu,
zero client wait-time and N = 5 experiment 161

F.3 Average follower statistics for calculated coin probability for ZabCTu,
zero client wait-time and N = 7 experiment 161

F.4 Average follower statistics for calculated coin probability for ZabCTu,
zero client wait-time and N = 9 experiment 162

F.5 Average follower statistics for calculated coin probability for ZabCTu,
client wait-time on (25, 75) ms and N = 3 162

F.6 Average follower statistics for calculated coin probability for ZabCTu,
client wait-time on (25, 75) ms and N = 5 163

F.7 Average follower statistics for calculated coin probability for ZabCTu,
client wait-time on (25, 75) ms and N = 7 163

F.8 Average follower statistics for calculated coin probability for ZabCTu,
client wait-time on (25, 75) ms and N = 9 164

F.9 Average follower statistics for calculated coin probability for ZabCTa,
Zero client wait-time and N = 3 experiment 165

F.10 Average follower statistics for calculated coin probability for ZabCTa,
Zero client wait-time and N = 5 experiment 165

F.11 Average follower statistics for calculated coin probability for ZabCTa,
Zero client wait-time and N = 7 experiment 166

List of Tables xvii

F.12 Average follower statistics for calculated coin probability for ZabCTa,
Zero client wait-time and N = 9 experiment 166

F.13 Average follower statistics for calculated coin probability for ZabCTa,
client wait-time on (25, 75) ms and N = 3 167

F.14 Average follower statistics for calculated coin probability for ZabCTa,
client wait-time on (25, 75) ms and N = 5 167

F.15 Average follower statistics for calculated coin probability for ZabCTa,
client wait-time on (25, 75) ms and N = 7 168

F.16 Average follower statistics for calculated coin probability for ZabCTa,
client wait-time on (25, 75) ms and N = 9 168

F.17 Average follower statistics for calculated coin probability for ZabCTaa,
Zero client wait-time and N = 3 experiment 169

F.18 Average follower statistics for calculated coin probability for ZabCTaa,
Zero client wait-time and N = 5 experiment 169

F.19 Average follower statistics for calculated coin probability for ZabCTaa,
Zero client wait-time and N = 7 experiment 170

F.20 Average follower statistics for calculated coin probability for ZabCTaa,
Zero client wait-time and N = 9 experiment 170

F.21 Average follower statistics for calculated coin probability for ZabCTaa,
client wait-time on (25, 75) ms and N = 3 171

F.22 Average follower statistics for calculated coin probability for ZabCTaa,
client wait-time on (25, 75) ms and N = 5 171

F.23 Average follower statistics for calculated coin probability for ZabCTaa,
client wait-time on (25, 75) ms and N = 7 172

F.24 Average follower statistics for calculated coin probability for ZabCTaa,
client wait-time on (25, 75) ms and N = 9 172

Chapter 1

Introduction

Distributed data applications comprise a range of processors, from two to thousands.
Processors require several machines to work together to achieve a common goal, so
they must be able to coordinate with each other. Some distributed applications require
more sophisticated coordination primitives such as leader election, group membership
and rendezvous. Furthermore, application developers are usually much more interested
in focusing on application logic rather than the coordination that the logic depends
on. There are several cases of applications have coordination primitives that were
buggy, oversimplified, a single point of failure or poorly performing; in some cases the
applications suffered from all of the above.

Nowadays, the emergence of coordination services has offered fundamental func-
tionalities for distributed applications that would otherwise have to be integrated
into each application individually, thereby reducing the development and hosting
of the latter. Examples of typical services offered by coordination services include
distributed synchronization, leader election, message ordering and storing important
system configuration.

Coordination services such as Apache ZooKeeper [34] and Google Chubby [12] are
widely used in today’s data center infrastructures. Apache Hadoop [63], for example,
uses ZooKeeper to appoint a master node, Apache HBase [28] uses ZooKeeper for
failure-detection and group membership configuration and Storm in Twitter [66] utilises
ZooKeeper for reliable and update information storage. Google File System [29],GFS,
uses Chubby to elect a new GFS master server and Bigtable [15] uses Chubby in several
ways to: elect a new master, help the master to discover the servers it manipulates,
and allow clients to find the master.

2

To provide such functionality, coordination services often comprise built-in storage
capabilities designed for handling small volumes of data on behalf of clients (i.e.
application processes) to implement their coordination tasks. For this purpose, different
coordination services rely on different abstractions, however, they all support common
operations such as creating, reading, updating and deleting data nodes. In addition,
several coordination services allow clients to receive timely notifications of changes
(e.g. the creation, modification, or deletion of a particular data node) by registering a
corresponding watch [34].

Distributed data-intensive applications serve millions of users across the globe
simultaneously and are required to handle increasingly large numbers of read and write
operations on data. Therefore, coordination services must (i) be fault tolerant (ii)
provide a consistent and highly-available data store to avoid any single point of failure,
and (iii) meet the production demands of the web-scale and offer high performance
(low latency and high throughput) to ensure that they do not become a bottleneck
for the applications utilising them. As coordination services are essential for today’s
data-center infrastructures, they have been an active area of research in recent years,
resulting in systems with improved availability [25], consistency [35], composability
[48, 62], and resilience [6, 8, 16].

Apache ZooKeeper [37] is open-source, general-purpose coordination software re-
leased under the Apache Software License Version 2.0. It is designed to offer a variety
of essential services, such as replicated state storage, leader election, failure detection,
maintaining group configuration and so on, to large-scale distributed applications that
are thereby relieved from having to build these services themselves. Hosts executing
these applications thus constitute ZooKeeper clients and the ZooKeeper server system
typically serves a very large client base and is potentially subject to heavy workloads.

ZooKeeper itself is a replicated system made up of N,N ≥ 3, servers that can
crash at any moment and recover after an arbitrary downtime with pre-crash state in
stable storage. Server crashes may even be correlated and all servers may crash at
the same time. Despite the possibility of failure, ZooKeeper is guaranteed to provide
uninterrupted services, as long as at least ⌈N+1

2 ⌉ servers are operative and connected.
ZooKeeper clients can submit their requests to any one of N servers. Requests may be
broadly categorised as read or write; the latter seek state modification while the former
do not and are serviced only by the server receiving it. Write requests are first subject
to total ordering through an execution of the ZooKeeper atomic broadcast protocol
and are then carried out by all servers as per the order decided. As a consequence,

1.1 Problem Statement 3

both fault tolerance and read performance is subject to scaling through servers being
added to the ZooKeeper. Write performance, however, does not scale by adding servers;
instead it is limited by the ZooKeeper atomic broadcast protocol.

At the heart of ZooKeeper is the ZooKeeper atomic broadcast protocol, Zab for
short, which ensures that the service state is kept mutually consistent across all
operative servers. One of the Zab servers is designated as the leader and the rest
as followers. As in the Two-phase commit protocol [7], only the leader can initiate
atomic broadcasting of message m, abcast(m) for short, and the followers execute
Zab by responding to what they receive. So, when a follower receives a write request
m for ordering, it forwards m to the leader for initiating abcast(m). When the Zab
execution for m terminates, both leader and followers deliver m, and this delivery event
is denoted as abdeliver(m).

1.1 Problem Statement

Primary-backup [11] is replicated protocol for providing availability and fault tolerance.
In primary-backup approach, a leader (master node) must process all state-modifying
operations and then broadcasts the state updates to replicas using leader-based atomic
broadcast protocol. Thus, the atomic broadcast protocol is critical for distributed-
applications performance in which the former is utilised.

However, while primary-backup approach prevents data from being lost in the
presence of server crashes, it leads to performance deterioration. Several leader-based
protocols have problems associated with overload, weak writes, client scaling and a
performance bottleneck that occur as the degree of fault-tolerance and the demand
for write-throughput performance increase [9, 39, 67]. In primary-backup approach,
write requests always take longer to process, as write requests must go through the
atomic broadcast protocol, which requires extra tasks to propagate the requests to all
replicas by performing mostly three communication steps to accomplish one execution.
Consequently, this can add more latency to the requests and decreases performance.

Furthermore, there is always the potential for a bottleneck to occur because
the leader replica in atomic broadcast protocol has to process all messages such as
acknowledgements and commits messages for the majority, if not all replicas. These
aspects of atomic broadcast protocol tend to slow down the leader’s performance,
especially when write requests are sent frequently to distributed applications, which
leads to worsen atomic broadcast protocol performance.

1.2 Our Approach 4

In addition, efficient atomic broadcast protocols have far wider applications, for
example, in coordinating transactions particularly in large-scale in-memory database
systems [24, 58]. In such applications, the atomic broadcast protocol typically operates
under heavy load conditions and is expected to offer low latencies even during such
extreme loads. Hunt et al. (2010) reveal that ZooKeeper throughput decreases gradually
as the number of write requests increases in a cluster of any size. Thus, it remains a
practical research problem to explore ways of improving atomic broadcast protocol’s
performance particularly under heavy loads.

The research reported here modifies atomic broadcast protocol in two significant
ways by reducing message traffic, both inbound and outbound, at the leader and an
enhanced overall performance.

1.2 Our Approach

In this thesis we explore ways of improving ZooKeeper atomic broadcast performance,
particularly under high work loads, by primarily shifting some of the leader load onto
other servers (followers). As such, this research targets scenarios in which the Zab
protocol is potentially a performance bottleneck. This can occur for some reasons: (1)
write-intensive workload; (2) the number of clients is large enough; or (3) the large
number of an ensemble size N , N > 3, as discussed above in §1.1. In other words, we
reduce message traffic, both inbound and outbound, at the leader. To achieve this
we require modifying the behaviour of followers in two simple but important ways,
while at the same time maintaining the well-understood and implementation-friendly
structure of Zab itself. This way, we can reduce the costs associated with reaching an
agreement, lower overhead costs and delivers better performance.

In Zab, followers respond to the leader through unicast (1-to-1) communication
which are turned into broadcasts. This allows followers to make decisions autonomously,
relieving the leader from being the sole decision-maker and, more importantly, from
having to broadcast its decisions to followers (a follower sends an acknowledgment to
all replica in the cluster). This, in turn, reduces the leader’s outbound traffic.

To this end, we first consider a set of restricted fault assumptions on which our
solution is based: servers crash independently of each other and at least ⌈N+1

2 ⌉
servers remain operative and connected at all times. Secondly, we let non-leader
servers broadcast acknowledgements and thereby deliver atomic broadcasts with less
involvement from the leader. Under these restrictive, yet practical, assumptions,

1.3 Thesis Contribution 5

we propose three variants of the Zab protocol. Under the first variant, followers
respond to the leader through unicast communication (similar to Zab) but dispense
with broadcasting commit messages. This protocol is expected to offer excellent
performance but it can only be used for N = 3. The other two protocols do not have
this limitation and can be used for any N , N ≥ 3. One of the protocols implements
a novel concept of coin-tossing and is used to reduce the leader overhead further by
conditioning the sending of acknowledgements on the basis of the outcome of coin
tosses.

Next, the above protocols are re-designed to operate under the least-restricted Zab
fault assumptions, and thus provide a genuine alternative to Zab itself.

Finally, the coin-tossing protocol is then upgraded to introduce many design
challenges. The principal one is in choosing the coin’s probability p of a toss outcome
being Head in such a way that enough followers broadcast in favour of reaching a
decision swiftly, thus keeping latencies small, but not to allow too many followers
to broadcast at the same time. That is, determining p involves a trade-off between
competing requirements. We model the coin-tossing process and derive analytical
expressions for this trade-off to be made. However, if the coin-tossing protocol is judged
not to offer performance benefits over Zab or follower crashes, processes should be able
to switch autonomously to Zab.

In the coin-tossing protocol, a follower does not transmit an acknowledgment,
ack(m), for every message, m, it receives from the leader, and may at times omit such
transmissions (if the coin’s probability p of a toss outcome is Tail) in an attempt to
reduce the traffic at the leader. When ack transmissions are skipped, an ack(m) from a
given follower not only acknowledges m (with the sequence number m.c), but will also
indicate an implicit acknowledgement (see §3.5.1) for all m′ sent by the same leader
with m′.c < m.c. Thus, inbound traffic at the leader is reduced by the use of implicit
acknowledgments and coin-tossing by followers.

It is important to note that the new protocols we propose here differ from Zab only
in the latter’s normal (fail-free) part and are shown to preserve all invariants necessary
to make use of the crash-recovery part of Zab unchanged.

1.3 Thesis Contribution

The research presented in this thesis makes several key contributions:

1.4 Thesis Structure 6

(i) An extensive background section that provides the prerequisite information
required to understand the problem domain. Of particular significance is the de-
tailed breakdown of the coordination services, Apache ZooKeeper and ZooKeeper
atomic broadcast protocol, Zab. Also, related works are provided in this section.

(ii) New approaches, ZabAc, ZabAa, ZabCt and ZabAA, for optimising the latency
and throughput of the Zab protocol.

(iii) A new system model, ZabCT, for reducing inbound and outbound traffic at the
leader and potentially improving Zab’s performance. We model the coin-tossing
process and derive analytical expressions for estimating the coin’s probability of
Head for a given arrival rate of service requests such that the dual objectives of
enhancing performance and reducing network traffic can be accomplished.

(iv) Designs and implements protocol switching by letting processes switch between
ZabCT and Zab without stopping abdelivery. If the coin-tossing protocol, ZabCT
is judged not to offer performance benefits over Zab, processes should be able to
switch autonomously to Zab.

(v) An extensive performance evaluation of Zab, ZabAc, ZabAa, ZabCt, ZabAA and
ZabCT protocols.

1.4 Thesis Structure

Chapter 2 - Background
Presents key information required to understand the problem domain.

Chapter 3 - ZabAc, ZabAa, ZabCt and ZabAA
Presents the rationale, design assumptions and important implementation details
of our approaches through ZabAc, ZabAa, ZabCt and ZabAA to optimise the
latency and throughput of the Zab protocol.

Chapter 4 - ZabCT
Presents the main contributions of this thesis. It presents the rationale, design as-
sumptions and important implementation details of the Zab coin-tossing protocol,
ZabCT.

1.4 Thesis Structure 7

Chapter 5 - Performance Evaluation
Provides a thorough performance evaluation of the ZabAc, ZabAa, ZabCt, ZabAA
and ZabCT protocols compared to the existing Zab protocol.

Chapter 6 - Conclusion
Provides a summary of the findings presented throughout this thesis and specu-
lates on potential future research that could be conducted on the basis of our
findings.

Chapter 2

Background and Related Works

Solutions to large-scale distributed management problems are commonly associated
with coordination services. At the heart of a coordination service lies a consensus
protocol that can have benefits and drawbacks to the overall performance depending
on a system’s design. This chapter provides a background on the most widely used
coordination services and their consensus protocols which is central to our research.
Furthermore, a quick overview of the JGroups architecture is given which is used
together with Java to implement our solutions. The second part of this chapter is a
survey of the related works on consensus protocols, presenting different methods for
achieving high performance.

2.1 Distributed Systems Replication

Distributed systems are designed as a set of service, implemented by servers processes
and invoked by clients processes, built in commodity machines. Thus, process failures
are common in such systems. In order to tolerate faults, services are implemented
by multiple server processes or replicas, and system developers adopt the replication
principle to gain data reliability and high availability. There are two main approaches
for building replication system: state machine replication [61] and primary-backup
approach [11].

2.1.1 State Machine Replication

State machine replication, also known as active replication, is a decentralised replication
technique where client requests are received and processed by all servers to ensure data

2.1 Distributed Systems Replication 9

are replicated across all machines. The active replication is deterministic in the scene
that given the same initial state and a request sequence, all servers will produce the
same order and end up in the same final state.

Clients send state-modifying requests to all servers, not one server in particular. In
order for servers to receive the same input in the same order, client requests can be
propagated to servers using an atomic broadcast.

The following abstraction steps are involved in the processing of an update request
in the active replication protocol.

(i) The client broadcasts the request to the servers using an atomic broadcast.

(ii) All replicas execute the request in the order in which they are decided upon.

(iii) All replicas replay their results to the client, and the client typically only waits
for the first answer.

The main advantage of active replication is its simplicity, for example replicas have
identical behaviour and the same codes are used everywhere. Moreover, failures are
transparent in the sense that a faulty replica are fully hidden from clients, since if a
replica fails, requests are still processed by the other replicas. The major drawback of
this approach is that having all replicas process a request consumes a lot of resources.
Furthermore, it causes high network traffic as all replicas respond to the client when a
request is executed.

2.1.2 Primary Backup Replication

The Primary-backup approach, also called Passive Replication, is where one server,
called primary, handles and processes all state-modifying requests issued by clients. To
bring the other servers, backup, up to speed, an atomic broadcast protocol is used to
consistently forward state updates to backups by carrying the resulting state changes.
Upon receiving acknowledgements from backups, primary sends the response back to
the client. If the primary replica crashes, another replica takes over as a new primary.
To ensure atomicity, primary cannot inform the commit request until it receives the
acknowledgement from all backup processes. However, in passive replication, only
primary executes the state-modifying requests and backups simply obtain the result
execution and apply the changes produced by the primary.

In primary-backup approach, communications between servers must guarantee that
state-modifying requests are processed in the same order in which they are received,

2.2 Coordination Services 10

which is the case if primary-backup communication is based on First-In-First-Out
(FIFO) manner1.

The steps for the primary-backup approach are as the following:

(i) The client sends an update request to the primary replica.

(ii) The primary replica handles and executes the request.

(iii) The primary replica communicates with the other backups utilising an atomic
broadcast to ensure atomicity.

(iv) The primary responds to the client.

Passive replication can tolerate non-deterministic servers (e.g., multi-threaded
servers) and uses little processing power when compared to other replication techniques.
However, passive replication suffers from a high reconfiguration cost when the primary
fails.

The research report here, including background, related works and contributions,
focuses on the primary-backup approach rather than state machine replication as
the former has been widely adopted in today’s distributed systems and coordination
services. The next section shows a well-known example of how the primary-backup
approach can be used.

2.2 Coordination Services

In recent years, several coordination services have been proposed [1, 8, 12, 18, 21,
31, 34, 50]. Coordination service is a system that can be utilised by Internet-scale
distributed applications to facilitate the implementation of coordination tasks such as
locking, leader election, message ordering and storing configuration data (metadata).
System developers can implement these services without using a coordination service,
however these services are very complex due to their distributed nature. A coordination
service hides this complexity, enabling application developers to focus on the core
functionality of their system and just react to events sent to them by the coordination
service. Furthermore, incorporating a coordination service into an existing system only

1First-In-First-Out (FIFO) is a method for organizing and manipulating a network channel where
messages sent from a primary replica to a backup are received and read in the order in which they are
sent, thus, message ordering is preserved.

2.2 Coordination Services 11

requires calls to the service’s API (Application Programming Interfaces), which are
usually intuitive even for developers who are not experts in distributed computing.

A coordination service is a stateful service accessed through a set of operations
that read or modify its state. These operations define the API of the coordination
service. If an operation can change the state (depending on its parameters) it is called
an update or write, otherwise it is called a read.

The key feature of coordination services that explains their success is the fact
that they provide a trust anchor for a much larger distributed system by utilising
primary-backup approach in which a primary process executes clients’ requests and
uses atomic broadcast [37, 43, 55] to propagate the corresponding state-modifying
requests to backup processes in order to achieve data consistency. This means that
most operations performed in distributed applications directly depend on the speed at
which the coordination service can answer requests.

This section will describe in-depth three well-known examples of coordination
services, focusing on their atomic broadcast protocols which are central to our research.

2.2.1 Apache ZooKeeper

Apache ZooKeeper [34] is open-source, general-purpose coordination software released
under the Apache Software License Version 2.0. It is designed to offer a variety of
essential services, such as replicated state storage, group membership, leader election,
failure detection, distributed synchronization and maintaining group configuration to
large-scale distributed applications that are thereby relieved from having to build these
services themselves. ZooKeeper is widely in use at Yahoo! for crucial tasks such as
failure recovery and master election [36], at Apache Kafka [27] to detect crashes and
for metadata storage and at Apache Solr [64] to store metadata about the cluster and
coordinate the updates to this metadata. Given the reliance of large-scale distributed
applications on ZooKeeper, the service must be able to mask and recover from crashes.

ZooKeeper clients can send either write or read operations. The primary executes
all write operations and broadcasts state changes that correspond to the result of the
execution to the backups using an atomic broadcast protocol [37]. ZooKeeper executes
the write requests of every client with respect to the FIFO constraint. ZooKeeper
replicas process read requests locally bypassing the atomic broadcast logic completely,
resulting in fast data access, scale read throughput and fault-tolerance by adding
servers to ZooKeeper ensemble. Furthermore, enabling ZooKeeper to employ a system

2.2 Coordination Services 12

architecture in which reads can be processed by any server, offers the possibility to
load-balance reads across servers.

uest

est

Fig. 2.1: Zookeeper coordination service’s handling read/write requests

Figure 2.1 depicts how requests and events requiring state modification are handled
by ZooKeeper. When a replica (referred to in the diagram as Follower1 and Follower2)
receives a write request from a client (shown in Figure 2.1 as a blue arrow), it is
forwarded it to the primary2 (referred as Leader in Figure 2.1). Whenever the primary
receives a write request that has been forwarded by a follower or sent directly by a
client (shown in blue in Figure 2.1), it initiates a Zab execution for that request. The
execution ensures that the request is delivered to all servers in the same order in which
it has been received (ZooKeeper guarantees are listed in §2.2.1.) and only the server
that received the request directly from the client returns a response.

The ZooKeeper service implements an hierarchical namespace of data nodes, called
znode that clients use to implement their coordination tasks. Each znode is located
in-memory and can store a maximum of 1MB of data by default.

A critical part of ZooKeeper is the ZooKeeper atomic broadcast, which is the
protocol that handles the atomic updates to be broadcast to the replicas. It is
responsible for agreeing on a leader in the ensemble, synchronising the followers state
and recovering from a crashed state to a valid state. Zab is studied in detail in next
section.

2In the context of ZooKeeper and Zab, the term “leader” is used for “primary” and “follower” for
“backup” with no difference in meaning.

2.2 Coordination Services 13

ZooKeeper Atomic Broadcast Protocol

At the heart of ZooKeeper is the ZooKeeper atomic broadcast protocol [37], Zab for
short, which ensures that all replicas apply the same sequence of write requests, thus
guaranteeing a consistent state across all replicas. Zab consists of an ensemble of
servers N , N ≥ 3 that are fail-independent and fully-connected, typically made up of
3-7 servers [34].

Servers are replicas of each other and each maintains a copy of the application
state to achieve fault-tolerance, high availability as well as high read performance.
Zookeeper clients can submit their requests to any one of the N servers. Requests may
be broadly categorised as read or write; the latter seek state modification while the
former do not. Read requests are serviced by the receiving server itself. Write requests,
as illustrated in Figure 2.1, are first subject to total ordering through an execution of
the Zab protocol and are then carried out by all servers in the order that was decided
upon. If a request (read or write) requires a response in return, then only the server
that received the request directly from the client responds.

Note that because the write requests are carried out at each server in the same
order, the application state after each write will be identical at all servers. Thus, Zab
is crucial for replicated the state of ZooKeeper for maintaining the abstraction of a
single, crash-tolerant server for clients.

Let Π ={p1,p2,,pN } denotes the set of Zab processes, one in each server. Zab is
an asymmetric protocol in its structure: one Zab process is designated as the leader
and the rest as followers. As in Two-phase commit protocol [7], only the leader initiates
atomic broadcasting of message m (state-modifying request), abcast(m) for short, and
followers respond individually to each request received. So, when a follower receives
a write request m for ordering, it forwards m to the leader for initiating abcast(m).
When Zab execution for m terminates, both the leader and followers deliver m locally
for ordered processing, and this event is denoted as abdeliver(m).

The m in abcast(m) has two fields: a value v, which is the payload of m, the content
of which is specified by clients and zxid which represents the order in which each
m is delivered on all processes (for the sake of simplicity, zxid is referred as m.c in
Subsection Broadcast Phase, Chapters 3 and 4). Each zxid is crucial for implementing
the total order property G2 in Subsection Zab Guarantees. The zxid is a pair ⟨e,c⟩
where e is an epoch number that each new leader is associated with (e is unique for
different primary instances) and c is an integer acting as a counter. The counter c is
incremented every time a new abcast(m) is issued by the leader. When a new epoch

2.2 Coordination Services 14

starts, e is incremented by one (up from the number of the epoch held previously
⟨e+1, c⟩) and c is set to zero. Each epoch begins with a new election, goes into normal
operation mode, called broadcast phase and ends with a leader failure. Since both e

and c are increasing, abcasts(m) can be ordered by their zxids. For two zxids, zxid and
zxid′, we write m.zxid < m.zxid′ if e < e′ or e = e′ and c < c′ [37].

Assumptions

The following assumptions are made by Zab protocol [37, 53]:

A1 - Server Crashes
A server can crash at any time and recover after a downtime of arbitrary duration.
Leader and followers maintain stable storage or log3 and the log contents survive
a crash. When the leader sends proposal(m) to the servers, Zab requires at
least a majority, quorum (Q for short), of servers recording m on their log.
Upon recovering from a crash, the server reads the local logged proposals from
stable storage and replays all the logs in-memory (server recovery is detailed in
Subsection Zab Details).

In order to provide resilience against up to f , f = ⌈N−1
2 ⌉ server crashes are

tolerated and at least ⌈N+1
2 ⌉ servers are operational at any time (the ZooKeeper

server comprises N replicas). A server that remains operative during a period of
interest is said to be correct during that period.

Each client is connected to a single replica, to which the client sends all of its
requests and from which it also receives corresponding replies. If, however, a
client’s replica crashes, the client connection is redirected to another replica.

A2 - Server Communication
Servers are connected by a reliable communication subsystem in which messages
are never lost and are received in the order in which they are sent. More precisely,
if a leader sends m then all operative followers receive m within some finite time;
if a leader sends m1 followed by m2, any common follower for m1 and m2 will
receive m1 before m2.

Zab utilises FIFO channels for all communications. Messages are delivered in
order through FIFO channels. As long as messages are processed in the order in

3Log is a file on the local disk of the server to which each m is appended in order.

2.2 Coordination Services 15

which they are received, the correct ordering is preserved.

Zab Guarantees

Zab foregoes locks and instead implements lock-free shared data objects with strong
guarantees on the order of write requests over these objects.

Let history Hi(t) denote the ordered sequence of messages abdelivered by pi until
(real) time t (the sequence order is the order in which messages in Hi(t) were abdelivered
by pi). Zab guarantees the following which ensure that the service state remains
mutually consistent across all correct replicas:

G1 - Integrity: If m ∈Hi(t) for any pi, abcast(m) occurred at some t′ < t.

G2 - Total Order : If processes pi and pj both abdeliver m′ and m, then pi abdelivers
m′ before m if and only if pj abdelivers m′ before m.

G3 - Agreement: At any time t and for any two pi and pj ∈ Π: either Hi(t) = Hj(t)
or one is a prefix of the other.

G1 and G2 guarantee that no proposal is created spontaneously or corrupted and
that processes that abdeliver messages must abdeliver them according to a decided
order. Furthermore, G3 guarantees that the state of two processes do not diverge.
Therefore, the three safety guarantees above ensure that processes are consistent.

Zab Details

Zab provides a model that deals with failure detection. To detect server crashes, Zab
uses a timeout mechanism to determine which replica is down. Leader and followers
exchange periodic heartbeats. A follower stays connected to its leader as long as it
receives heartbeats within a given timeout interval, otherwise the leader closes the
channel with the follower to prevent any future broadcast. As previously stated, Zab
allows f followers to crash. As long as the majority of replicas are operational, Zab
can make progress. Zab deals with different server crashes; some crashes leads to
ZooKeeper stops serving clients and requires crash-recovery mechanism to handle such
server crash:

SC1 - Leader Crash: If the leader crashes, the ZooKeeper stops serving clients. In this
case, a new leader process needs to be elected. Since abcasts are totally ordered,
Zab requires at most one leader to be active at any one time.

2.2 Coordination Services 16

SC2 - Lack of Quorum: If a leader does not receive heartbeats from a quorum of
servers within a given timeout, it abandons its leadership. If such a scenario
occurs, all correct replicas go to the leader election stage to find a new quorum
and elect a new leader.

SC3 - Follower Crash: As previously stated, Zab can tolerate up to f followers to
crash when f +1 servers out of 2f +1 are correct. Upon rejoining the existing
quorum, follower pi connects to the leader and sends its last zxid, so the leader
can decide how to synchronise the followers’ history. To bring pi up to date,
leader sends the current epoch and the follower’ missing proposals. Finally, upon
receiving an acknowledgement from pi, leader sends a commit message and adds
pi to the existing quorum Q, making Q←Q∪pi.

Figure 2.2 shows the possible state of the ZooKeeper’s processes. In the imple-
mentation of Zab, a Zab process can be in one of three states: Looking or Election;
Following; or Leading. When a process starts, it enters the Looking state. While in
this state the process tries to elect a new leader or become the leader. If the process
finds the elected leader, it moves to the Following state and begins to follow the leader.
Processes in the Following state are followers. If the process is the elected leader, it
moves to the Leading state and becomes the leader. A follower transitions to election
if it detects that SC1 or SC2 has occurred. This means that the leader has failed or
relinquished leadership.

Fig. 2.2: Zab server states [36]

2.2 Coordination Services 17

Upon SC1 or SC2 occurring, a quorum of processes has to execute the following
phases to both elect a new leader and agree upon a common consistent state before the
new leader abcasts new messages. Executing these phases guarantee that all messages
that have been abcast in previous epochs will be seen in the initial history of messages
abdelivered in the new epoch. Regardless of whether a server is a follower or a leader,
it executes three Zab phases: discovery, synchronization, and broadcast, in this order.
Discovery and synchronization are important for bringing the ensemble to a mutually
consistent state, particularly when SC1 or SC2 occurs. Broadcast phase entails the
existence of a sole leader that has a quorum of servers (including itself) supports its
leadership. The broadcast phase allows the ZooKeeper application to send new state
changes which leader processes and abcasts to ZooKeeper’s servers. The three phases
of the Zab protocol are now described.

Discovery Phase

Zab uses a protocol called Fast Leader Election (FLE) to elect a leader. By the
liveness arguments in [37] (see Claim 7), one process gets elected as the new leader
when the current leader crashes, as long as a quorum of processes are correct and can
communicate in a timely manner.

Let history H denote the ordered sequence of messages abdelivered by the ZooKeeper’s
processes, abdelivery(m) ∈H. In FLE, all processes vote for a server that has the latest
state last.zxid in H.

On SC1 or SC2 occurring, all correct processes transition to the Looking state
where at least Q must communicate and exchange messages to elect an ideal process to
be the leader. In FLE, processes exchange notification about their votes (where each
vote contains the latest state before SC1 or SC2 occurring) and they update their own
vote when a process with more a recent state is discovered.

When a process enters the Looking state, it first proposes itself as the leader for the
subsequent epoch by abcasting a voting message to other processes. A voting message
contains last.zxid and a server identifier, sid. For the sake of simplicity, in the election
algorithm, epoch is omitted from last.zxid and ⟨sid,m.c⟩ is used instead to denote
a vote sent by the server sid and its most recent zxid of c. For example, a message
⟨2,10⟩ is a vote sent by the server with the sid of 2 and the most recent zxid of 10.
Finally, the server either becomes the leader after receiving votes from a quorum (itself
included) or another server is elected as the leader and the server becomes a follower.

2.2 Coordination Services 18

Figure 2.3 shows an example of leader election where a process is elected as the new
leader. In this example, for the sake of simplicity, we assume processes are well-behaved
and that there is not any network delays as a result of the servers electing one common
server as the leader.

Received votes

(2,5) and (3,5)
process s

ss

Process pe

fdff

Process p1

 (1,6)

Process p2

 (2,5)

Process p3

 (3,5)

Received votes

(3,5) and (1,6)

Received votes

(2,5) and (1,6)

Don't change

 vote

Change vote to

 (1,6)

Change vote to

(1,6)

Elect p1

Elect p1

Elect p1

Elect p1

Fig. 2.3: An example of fast leader election (FLE)

The FLE algorithm is explained in more detail in the following example:

(1) Process p1 starts with vote ⟨1,6⟩ and votes ⟨2,5⟩ and ⟨3,5⟩ are for p2 and p3

respectively.

(2) p2 and p3 change their vote to ⟨1,6⟩ and send a new batch of notifications to all
servers.

(3) All three processes receive the same vote from Q and elect p1.

A local execution of FLE will terminate returning a vote for a single process and
then transition to the synchronisation phase. Any subsequent failures will cause the
server to go back to the discovery state and restart FLE [53].

Synchronisation Phase

Synchronisation phase is the process of ensuring that all followers in Q synchronise
their states with the leader, so that all followers are consistent before entering the next
phase, when regular operation is resumed and the elected leader broadcasts the new
state changes. Consequently, the synchronisation phase is important for bringing the
ensemble to a mutually consistent state, particularly when recovering from crashes.

Figure 2.4 shows the events for both the leader and followers when synchronizing
the followers states using the leader’s history from the previous epoch.

Synchronisation phase consists of the following steps.

2.2 Coordination Services 19

process s

ss

Process pe

fdff

Follower

Leader

Follower

FOLLOWERINFO

FOLLOWERINFO NEWLEADER

NEWLEADER ACKNEWLEADER

COMMIT-NEWLEADER

COMMIT-NEWLEADER

ACKNEWLEADER

Fig. 2.4: Synchronisation phase

F1 : A Follower sends FOLLOWERINFO(m) message to the leader informing on its
latest state, epoch m.e and m.c, so the leader can decide how to synchronise the
followers’ histories;

L1 : Leader, on receiving FOLLOWERINFO(m) from Q, sends NEWLEADER(m)
to the followers. NEWLEADER(m) contains m.e′ and m.H: m.e′ where is an
epoch number which is later than any m.e received in a FOLLOWERINFO(m),
and m.H carries followers’ missing proposals from the previous m.e, where
m.e < m.e′;

F2 : A follower, on receiving NEWLEADER(m), logs all m in H in order of zxids
and sends an acknowledgement, ACKNEWLEADER(m), to the leader, informing
the leader that it has accepted the proposals in m.H;

L2 : Leader, on receiving ACKNEWLEADER(m) from Q, issues a commit message,
commit(m), to followers;

F1 : A follower, on receiving commit(m), abdelivers all m, m ∈H, in order of zxids.
At this point, the leader and followers complete the crash-recovery part of Zab
protocol, which ensures that replicas are in mutually consistent state.

Once followers receives commit(m) from the new leader, the leader and followers
have completed the synchronisation phase. At this point, a quorum of replicas is
expected to be consistent, and able to proceed to the next phase.
The author refers the reader to [37] for more information on discovery and synchro-
nisation phases, and will focus on aspects of the Zab protocol during crash-free runs,
known as the broadcast phase, in next section.

2.2 Coordination Services 20

Broadcast Phase

Once a server becomes the leader and has the support of at least majority of servers
(including itself), Zab servers start the normal operation mode, the broadcast phase.
This phase must ensure that the state across all of ZooKeeper’s replicas is consistent.
Thus, on receiving a new state change, the leader replicates it on a quorum of servers
with the intention to commit in order to ensure consistency. If SC1 and SC2 do not
occur, replicas stay in this phase indefinitely, performing an abcast of the state change
as soon as a ZooKeeper client issues a write request.

The key stages of the broadcast phase are detailed below:

L1 : Leader initiates abcast(m) by proposing a sequence number m.c for m and by
broadcasting its proposal(m) (to all processes, including itself);

F1 : A follower, on receiving proposal(m), logs m and then sends an acknowledgement,
ack(m), to the leader;

L2 : Leader sends ack(m) to itself after logging m. On receiving ack(m) from a
quorum of servers, it broadcasts commit(m) before commit(m′: m′.c = m.c+1)
is broadcast; (shown in 2.5 as a green square)

F2 : A follower, on receiving commit(m), executes abdeliver(m).

L3 : Leader, on receiving commit(m) (from itself), executes abdeliver(m).

Figure 2.5 shows the flow of messages and sequence of actions carried out during
an execution of the broadcast phase.

Note that processes receive commit(m) in increasing order of m.c and hence observe
an identical abdelivery order. Also, the protocol steps need not be sequential: the leader
can use concurrent threads to execute L1, L2 and L3, and so can followers to execute
F1 and F2. Furthermore, Zab is handling multiple outstanding client requests4. For
high-performance, ZooKeeper can handle multiple outstanding state changes requested
by the client and a prefix of requests submitted concurrently are abdelivered according
to FIFO order.

The above activities correspond to the normal operation mode of Zab and are central
to the research reported in this thesis. Although the discovery and synchronisation
phases are not directly relevant to our contributions, it is important to note that they

4An outstanding request is a request that has been abcasted but not yet abdelivered.

2.2 Coordination Services 21

Leader (L) Follower (F1) Follower (F2)

Write Reqest (m)

abcast(m)

log(m)
log(m)

ack(m)

ack(m)

commit(m)

majority loged m

abdeliver(m)

abdeliver(m)

abdeliver(m)

ack(m)

log(m)

Fig. 2.5: Zab broadcast phase

impose an additional requirement that must be met during the broadcast phase which
is essential for guaranteeing the proposed protocols’ correctness. The requirement
is referred to as Crash-Tolerance Invariant since with any attempt to improve the
broadcast phase, Zab must preserve this requirement so that crash-tolerance phases
remain valid.

Crash-Tolerance Invariant

Let Q be the set of all quorums in Π: Q = {Q : Q ⊆ Π∧ |Q| ≥ ⌈N+1
2 ⌉}. ∀Q,Q′ ∈

Q : Q∩Q′ ̸= { }; e.g., when N = 3, Q = {{p1,p2},{p2,p3},{p3,p1},{p1,p2,p3}}.
The invariant is as follows: If any server executes abdeliver(m), then all servers in
some Q ∈Q have logged m locally. As a consequence, any two quorums subset of Π
must have a non-empty intersection.

2.2 Coordination Services 22

To see informally that this invariant is a requirement for crash-tolerance provisions,
suppose that the leader delivers mi and then crashes, possibly before broadcasting
commit(mi). Some quorum of servers, say Q′, will elect the new leader and inform it of
all messages proposed by the leader that crashed. Suppose that the invariant holds
and there is a quorum Q of servers that have logged mi. By definition, Q and Q′ must
intersect. Thus, Q and Q′ must have at least one server in common which will instruct
the new leader of the existence of mi and also of the need to complete the delivery of
mi by all followers.

This invariant is necessary and sufficient for correct replacement of a crashed leader:
any m that might have been abdelivered under the old leader is guaranteed to be
abdelivered by the new leader since (i) the latter synchronises itself with a quorum that
elects it, and (ii) any two quorums ought to intersect. All proposed protocols in this
thesis are designed to preserve this invariant. Leader crash and subsequent replacement
can therefore be dealt with using Zab crash-recovery mechanism and hence are not
addressed here.

2.2.2 Chubby

Chubby [12] is a coordination service that implements a lock mechanism for distributed
systems. The purpose of Chubby is to allow its clients to synchronise their events
and to agree on storing configuration data. Chubby is developed by Google and is
applicable to Google applications such as Google File System (GFS) [29] for electing a
GFS master server, and Bigtable [15] for allowing the master to discover the servers
it controls. Chubby typically consists of five servers, known as replicas. The replicas
maintain copies of a simple database, however only one replica is able to initiate a
client’s read and write requests at any one time; this replica is called master. The
role of the master replica is to serve client read/write requests and to ensure that the
state of all Chubby replicas is synchronised when a write request is issued. All other
replicas simply copy the state changes (write requests) from the master, sent using
the Paxos [14, 46] protocol, with a client request being completed when a quorum of
replicas have confirmed the write request. In contrast to ZooKeeper, not only writes
but also all read requests have to be executed at the master, causing this replica to
become a bottleneck. This, however, permits ZooKeeper to provide higher throughput
compared to Chubby, especially in read-dominant workloads.

Figure 2.6 shows the basic steps involved when a write/read request is received
by the Chubby master replica; the master receives the client write request (Step 1),

2.2 Coordination Services 23

A

Fig. 2.6: Chubby write and read at master replica

abcasts it to all replica (Step 2), before returning a response back to the client (Step 3).
However, unlike in ZooKeeper, read requests are only handled by the master replica.
Steps A and B in Figure 2.6 show how a Chubby service handles read requests that are
received by the master replica; with a request being received by a master node (Step
A), and a response containing the latest version of the requested data object being
returned to the client node (Step B).

Paxos

Paxos [14, 46] is arguably the most widely deployed and commonly taught consensus
algorithm. Its consensus protocol provides total ordering and fault-tolerance services.
The most famous example of which is its use in the distributed locks system Chubby
[12]. Paxos ensures safety and liveness5, and its correctness has been proven [40].

Paxos consists of multiple replicas which apply the role of proposer, acceptor and
learner (the proposer has a similar role to the leader in ZooKeeper, and the acceptor
and learner are similar to ZooKeeper’s followers). Clients send requests to the proposer;
the latter begins the protocol by communicating with the acceptors to achieve the
ordering services. It makes sufficient progress by relying on a proposer replica that
brokers communication with clients and other replicas.

Unfortunately, Paxos has two significant drawbacks. The first disadvantage is
that Paxos has a reputation for being difficult to understand; few people succeed in
understanding it, and only with great effort [55]. The second problem with Paxos is that

5Informally, a safety property expresses that "something (bad) will not happen" during a system
execution. A liveness property expresses that eventually "something (good) must happen" during an
execution.

2.2 Coordination Services 24

it does not provide a good foundation for building practical implementations. Despite
to its drawbacks, there are many variations of Paxos that allow the protocol to cater
for different application demands, such as: handling byzantine failures [45], reducing
protocol overhead [42], reducing latency [47] and increasing throughput [52, 59].

Figure 2.7 depicts Paxos broadcast phase and shows the events for both the proposer
and acceptors when agreeing on state change. The following is a brief overview of how
the basic Paxos algorithm can work during the broadcast phase.

P1 : Proposer initiates abcast(m) and sends proposal(m) to acceptors and itself,
with a sequence number m.c and waits x amount of time for a quorum of replicas
to respond.

A1 : An acceptor, on receiving a proposal, compares its sequence m.c with the
highest sequence that the acceptor has currently agreed to, m.c′. If m.c > m.c′,
it sends accept(m.c), otherwise it sends reject(m.c,m.c′) to the proposer.

P2 : Proposer, on expiring x, when a quorum cannot be reached, aborts and starts
a new proposal. If a quorum decides to reject m.c, the proposer then records the
largest sequence number m.c′, updates the local sequence number to be greater
than m.c′ and starts a new proposal. If, however, a quorum is reached in favour
of accepting m.c, the proposer then sends a commit(m) to all acceptors and itself.

P3 : Proposer, on receiving commit(m), executes abdeliver(m).

A2 : An acceptor, on receiving commit(m), executes abdeliver(m).

process s

ss

Process pe

fdff

Proposer

Acceptor

proposal

Acceptor

accept

or reject

commit

 decide

if majority accept

Fig. 2.7: Paxos broadcast phase

Paxos has apparent limitations, the most obvious being that it is heavily leader-
centric, with the proposer doing a disproportionate amount of work compared to the

2.2 Coordination Services 25

other replicas. With N replicas, for each request, the proposer receives N messages,
whereas the non-leader replicas receive only two messages. Thus, the proposer is
likely to experience bottlenecks. As a result, the proposer will appear to be the first
replica which becomes overloaded and runs out of resources. More precisely, there
are three types of resources namely network bandwidth, CPU utilization and network
subsystems that can cause bottlenecks when the system experiences a high workload
[9]. Hence, significant research efforts have focused on alternative designs for enhancing
performance and reducing the load on the proposer replica see §2.4.

In the case of coordination services, ZooKeeper allows clients to connect and
send write/read requests to any available replicas. Furthermore, read requests can be
processed by any replicas. This permits ZooKeeper to achieve a higher read performance
than Chubby. This is partly due to the fact that Chubby focuses on high availability
and reliability, with production instances reported to have been executed for over a
year, thus, in Chubby, unlike in ZooKeeper, performance is considered secondary.

2.2.3 Etcd

Etcd [18] is a coordination service that provides reliability and high availability for
a distributed key-value store across a cluster of machines. Etcd is used by Google
Kubernetes [41], CloudFoundry [17], and Fleet [26] for cluster management such as
naming, shared configuration and group membership.

Etcd uses Raft consensus protocol [55] at its core to provide strong consistency
semantics among its replicas. At any given time, one replica is designated as the leader
and all other replicas are followers. A client write request is replicated to all Etcd
replicas through the Raft protocol, while a read request is performed directly from the
Etcd leader replica.

Raft

Raft [32, 33, 54, 55] is a leader-based protocol used for managing a replicated log.
Raft’s structure, however, looks different from Paxos and Zab protocols; it is designed
to enhance understandability and provide a better foundation for building practical
systems. Raft has two primary goals: to enhance understandability in a way that make
it easier to learn and to provide enough description to meet the needs of developers
implementing a consensus protocol. As a result, Raft has become widely accepted
because it is easier to understand than Paxos.

2.2 Coordination Services 26

A Raft cluster consists of several servers which communicate using a remote
procedure call RPC 6. It uses five servers as a typical number which can tolerate up
to two failures. Like Zab, there are three states that Raft servers can have at any
given time: leader, follower, or candidate (it is identical to the Looking state in Zab
protocol). In the broadcast phase, there is only one leader and all the other servers are
followers. Followers cannot issue any RPCs but they can respond to the leader and
candidates. The leader receives all client requests (read and writes) and propagates
write requests to followers.

Raft has two major features: leader election which means a new leader is elected
when a current leader fails, and log replication where the leader serves clients’ requests
and replicates them across the cluster members. Raft uses a heartbeat technique to
trigger leader election. Thus, the leader sends periodic heartbeats to all followers to
maintain its leadership. Each follower immediately transfers to the candidate state
when no heartbeats has been received for a given a period of time, so it is assumed
that the leader has crashed and candidates start an election to choose a new leader.

Raft uses a terminology called terms (it called epoch in Zab) for each an election,
meaning that each term begin with an election. Therefore, Raft elects a new leader on
the basis of the server that contains all of the requests committed in previous terms,
that is, the server with the latest state updates. At beginning of an election, each
follower increments its current term by one and transitions to the candidate state. It
then sends a vote to itself and issues RequestVote RPC, to each server in the cluster.
Eventually, one of two things happen: (a) it becomes the leader or (b) another server
wins the leadership if it receives votes from a majority of servers.

Once the leader has been elected and a quorum of servers is operational, Raft is
considered to be in normal operation mode, known as the broadcast phase, and it
begins servicing client requests. The key stages of the broadcast phase are detailed
below:

L1 : Leader proposes an entry that contains a write request, term and a sequence
number index; it then appends the entry to its log and sends AppendEntries
RPCs to all other followers to replicate the entry.

F1 : A follower, on receiving AppendEntries RPCs, logs the entry and sends an
acknowledgment to the leader.

6Remote procedure calls (RPC) is a useful paradigm for accessing network services. It is used to
request a service from an application located on another computer on a network, without needing to
understand the network’s details.

2.2 Coordination Services 27

L2 : Leader, on receiving acknowledgments from a quorum of servers, issues a commit
command to all servers, including itself.

L3 : Leader, on receiving the commit command for the entry, delivers the entry to
its state machine in index order and returns the result of that execution to the
client.

F2 : A follower, on receiving a commit command, delivers the entry to its local state
machine in index order.

process s

ss

Process pe

fdff

Leader

Follower

Follower

RPCs replay

 AppendEntries RPCs

Includes state updates, term and index

 AppendEntries RPCs

Includes committed index

Fig. 2.8: Raft broadcast phase

Figure 2.8 shows the flow of RPCs calls and a sequence of actions carried out during
an execution of the Raft Broadcast phase.

2.2.4 Differences among Zab, Paxos and Raft Protocols

In this section, we show the differences between Zab, Paxos and Raft protocols with
respect to leader election, the communication mechanism, the number of outstanding
requests and number of phases. These aspects are important to this research, particu-
larly in terms of the communication that takes place between a leader and followers in
broadcast phase.

Leader election: Zab and Raft protocols differ from Paxos in the sense that they
divide execution into phases. The phases are sequential because of the additional
safety/liveness property that is provided by Zab and Raft [37, 55]. This strong safe-
ty/liveness property ensures that at any given time there can be at most only one
leader. In contrast, Paxos does not provide such a strong leader property and as a

2.3 JGroups 28

result it leads to multiple leaders coexisting simultaneously.

Communication with the replicas: Zab and Paxos utilise a messaging model to
communicate with replicas, where each state update requires at least three messages: for
example in Zab, there are three types of message proposal(m), ack(m) and commit(m)
as shown in Figure 2.5. In contrast, Raft adopts RPC to communicate with replicas
for replicating the state update. However, Raft reduces RPC call overhead by reusing
a few techniques repeatedly. For example, the leader can initiate AppendEntries RPCs
for both replicating the entry and sending heartbeats, whereas in Zab a heartbeat
message is always sent separately without being piggybacked on abcast.

Multiple outstanding requests: Zab allows multiple outstanding abcasts to be
executed at any given time and such abcasts are committed according to the FIFO
order. However, Paxos does not enable such a feature directly. If a proposer sends
abcasts individually, then the order in which abcasts are committed might not satisfy
the order dependencies and consequently Paxos replicas could end up in an inconsistent
state. One known solution to this problem is bundling multiple abcasts into a single
Paxos abcast and allowing only one outstanding abcast to be processed at any given
time. This solution affects either throughput or latency negatively depending on the
choice of the bundling size.

Number of phases: The Zab protocol has three phases: discovery, synchronisation
and broadcast phases. Compared to Zab, there is no separate synchronisation phase in
Paxos and Raft. Instead followers stay synchronised with the leader in the broadcast
phase by comparing the log index and term values of each entry. Although the absence
of the synchronisation phase simplifies implementation of the Raft algorithm, it may
lead to a deterioration in terms of the performance if it has to deal with a long
inconsistent replication log.

2.3 JGroups

JGroups [3, 4] is a network framework developed entirely in Java for reliable group
communication. It provides implementations of a large number of network protocols
that can be utilised on their own, or as part of a JGroups network stack. Furthermore,
one of the most powerful features of JGroups is that it allows developers to create

2.3 JGroups 29

their own protocols that can be integrated within the JGroups protocols stack. With
JGroups, users can create a cluster of nodes distributed across a LAN (local area
network) or WAN (wide area network) which communicate by sending/receiving
messages to all (or individual) members and notifying them when members join or
leave the cluster. Several atomic broadcast protocols, including Raft [5], implement
and use the JGroups framework for all communication patterns and consequently all of
the protocols presented in this thesis have also been implemented using the JGroups
framework.

Fig. 2.9: Overview of JGroups architecture

Figure 2.9 depicts the overview of the JGroups architecture which is divided into
three parts: application API, channel and protocol stacks.

2.3.1 Application API

Application API is the highest abstraction level of the JGroups architecture which
provides sophisticated APIs to client applications that enables them to perform a wider

2.3 JGroups 30

range of operations (read, create, delete, update and so on), saving developers spending
time implementation such features.

2.3.2 Channel

A JGroups channel can be considered as a group communication socket that the client
application uses to send/receive messages to/from a cluster of nodes. Each channel
has a unique name and nodes with the same channel name form a cluster, this way,
messages sent by a node will be received by all cluster members (nodes) that hold the
same sender channel name. Channel offers basic facilities to members of a cluster such
as connect to cluster, send/receive messages, get the cluster view7 and send notification
when members join or leave the cluster.

2.3.3 Protocol Stack

As illustrated in Figure 2.9, protocol stack consists of a set of protocol layers that
handles and processes every message sent or received up and down the stack. Each
layer represents a different network protocol which can handle, update, reorder, pass,
drop and add headers to messages. Layers are connected by channels and each channel
in a layer has two buffers, one for storing messages to be sent down the stack, and
the other is used for messages that need to be passed up the stack, which guarantees
FIFO ordering for message delivery between layers. Two members of the same cluster
exchange a message when a message is passed to the network by the bottom-most layer.
On receiving a message, the bottom-most layer of a different protocol stack handles
the message from the network and passes the message on to the layer above it. The
message passes up the stack until it is received by the destination (a layer or client
application).

As previously stated, JGroups provides implementations of various network proto-
cols. Of particular interest to this project are UDP, UNICAST3 and the protocols upon
which they depend, thus, it is useful to describe these protocols in order to understand
the design decisions discussed in Chapters 3, 4, Appendix A and the experiments
conducted in Chapter 5.

7A view is a local representation of the current members of a cluster and contains a list of addresses
for all active members.

2.3 JGroups 31

UDP

User Datagram Protocol (UDP) represents a transport layer that implements IP-
multicast and unicast communications; the former is used for sending messages to all
or a subset of cluster members, whereas the latter sends a message to a single member.
In our implementation of proposed protocols, UDP unicast communication has been
utilised since the Zab protocol requires point-to-point communication between the
leader and followers most of the time. Therefore, communication pattern has been left
unchanged in our design and implementation of proposed protocols.

FD_SOCK

Failure detection (FD) is a mechanism used to discover whether the members of a
cluster are alive and avoid false suspicions, that is, where a slow member is incorrectly
suspected of having failed. FD_SOCK protocol is based on a ring of TCP sockets. With
this protocol, each member connects to its neighbour (the last member connects to the
first). If the member detects that neighbour’s TCP socket is closed, it considers the
neighbour a suspect and issues a SUSPECT message8.

FD_ALL

JGroups FD_ALL is failure detection protocol that utilises a simple heartbeat protocol
[2] to allow a member to periodically issue a heartbeat message to all other members
in the cluster. Each member of the cluster holds a table of all members. When a
member receives a heartbeat message from another member, it resets the timestamps
of that member. However, if a member heartbeat message has not been received
after a determined period of time, it is considered a suspect. In the default JGroups
configuration, FD_ALL uses a timeout value equal to 40 seconds and each heartbeat
message is sent every 8 seconds.

VERIFY_SUSPECT

The VERIFY_SUSPECT protocol minimises the possibility of a member being falsely
suspected. A JGroups member, on receiving a SUSPECT message from either the
FD_SOCK or FD_ALL protocol, pings a suspected member for a final time. If no
replay is received within 1.5 seconds, then the suspected member will be excluded from

8All of the experiments detailed in this thesis utilise UDP protocol for sending unicast messages.
The TCP protocol is a part of the FD_SOCK protocol which is present mainly for failure detection.

2.4 Related Works 32

the cluster, otherwise, the original SUSPECT message is discarded since it is assumed
that the suspected member must be alive if it was able to replay a ping message to
this protocol.

UNICAST3

The UNICAST3 protocol provides reliable delivery and a FIFO property for UDP
unicast messages between a sender and a receiver. The protocol ensures lossless
transmission of unicast messages which means all unicast messages sent by a protocol
higher up in the network stack arrive at their destinations when member crashes do
not occur. In addition to reliable UDP unicasts, the UNICAST3 protocol provides
point-to-point ordering as the default for each message sent, thus all unicast messages
from a given sender are received in the order in which they have been sent. In the
protocols presented in this thesis, the FIFO property is necessary to ensure that abcasts
sent by the leader are received in the order in which they are sent, so that the proposed
protocols meet Zab’s total order guarantee G2 (see Subsection Zab Guarantees).

Group Membership Service

Group Membership Service (GMS) maintains the current view of cluster members. It
issues a new view to all operative members when a member joins, leaves or crashes.
However, GMS does not detect crashes itself but instead relies on FD_SOCK, FD_ALL
and VERIFY_SUSPECT to detect and announce members that have crashed in order
to act upon updating the cluster view.

2.4 Related Works

Our research focuses on exploring ways to improve the performance of the internal
workings of the Apache ZooKeeper, Zab. As per [19], Zab belongs to the group of
fixed sequencer protocols because the leader is responsible for establishing the order on
abcast messages. The widely studied Paxos §2.2.2 is the intellectual ancestor of Zab.

2.4.1 Paxos Optimization

A considerable amount of literature has been published by researchers on optimising
Paxos’ performance [9, 44, 51, 52, 65, 67], consequently several authors have sought to
remedy the drawbacks, the most obvious being that it is heavily leader-centric, with

2.4 Related Works 33

the proposer (the leader in Zab) doing a disproportionate amount of work compared
to the other replicas [9].

S-Paxos

S-Paxos [9] seeks to improve the performance of Paxos by balancing the load of the
network protocol across all replicas, instead of it being concentrating solely on the
leader. Each process directly abcasts client requests to others replicas (instead of
forwarding them to the leader) and request ordering is done through Paxos executions
using only request identifiers.

S-Paxos relieves the leader from abcasting client requests by separating the abcast
and the ordering of requests into two different layers: the dissemination layer and the
ordering layer. In the dissemination layer, upon receiving a write request from a client,
a replica directly abcasts the request and its identifiers (id) to all other replicas. A
request is only committed once it has been acknowledged by a quorum of replicas. Upon
receiving acknowledgements from a quorum of replicas, the leader passes the request
id to the ordering layer, which uses the Paxos protocol to determine its order. Unlike
Paxos, S-Paxos only orders ids instead of full requests. Finally, replicas immediately
abdeliver a request as soon as it is committed by the ordering layer. After abdelivering
the request, replica that originally received the request sends the corresponding reply
to the client.

Unlike the leader in Zab and our proposed protocols, the Paxos leader is now very
light-weight as it performs ordering based on the request id rather than the request
itself. In the Zab and Zab-variant protocols, as the average request size gets larger
enough, it may cause the outbound channel at the leader to reach saturation point
which can lead to an unbalanced communication pattern that limits the utilisation of
the available bandwidth on all of the network links connecting the servers. Thus, Zab
and our proposed protocols utilise a request size that is small, typically 1000 bytes.

Although S-Paxos offloads work at the leader, this is not entirely cost-free. Com-
pared to the Zab and Zab-variant protocols, S-Paxos requires more communication
steps to abdeliver a write request (at least four communication steps are needed before
a request can be abdelivered) which can lead to delays in response time, whereas the
Zab-variant protocols require only two communication delays.

In the S-Paxos dissemination layer, an acknowledgement is broadcast to all repli-
cas. While this helps to avoid the S-Paxos replica broadcasting commit messages,
the amount of network traffic at the leader and followers inevitably increases as a

2.4 Related Works 34

result. Broadcasting an acknowledgement is common in symmetric (leaderless) atomic
broadcast protocols such as [58]. That it helps to avoid the leader broadcasting commit
messages has been hinted by Zab authors themselves (e.g., [37, 57]). In this thesis, we
explored this idea with coin-tossing approach to reduce the number of acknowledge-
ments being broadcast: it is made if the outcome is Head; otherwise, not (see Chapter
3) .

Chain Replication

Chain replication (CR) [67] is a form of fixed sequencer protocol that aims to coordinate
a cluster of fail-stop storage services. The protocol provides four main aims which
are supporting large-scale storage systems, strong consistency, high throughput and
availability. Unlike Paxos and Zab, chain replication distributes the role of the primary
between two replicas called head and tail replicas.

Fig. 2.10: Chain replication protocol

Figure 2.10 shows an example of CR with a chain length of four replicas. The
head replica handles the write requests, initiates abcast(m) and provides m.c for each
write which it passes down the chain sequentially until it is received by tail. Once
abcast(m) reaches the tail replica, it has been applied to all replicas in the chain, and
is considered committed and a reply is then sent to the client. In addition, the tail
replica handles all read requests, processes the reads from its local state and sends
responses back to the clients (shown in red in Figure 2.10).

Distributing the roles between two replicas reduces the overhead and consumes fewer
resources. The simulation results [67] show that CR has equal or superior throughput
to primary/backup approach for all proportions of update requests. This is expected
because the head and the tail in CR share a load, where as in the primary/backup

2.4 Related Works 35

approach, the load is handled solely by the primary replica. Moreover, unlike Zab,
CR tends to achieve strong consistency as all reads go to the tail, and all writes are
committed only when they are received by the tail. However, this comes at the cost of
lower read throughput due to all read requests direct to a single node, instead of being
able to scale out with all replicas in the chain, leading to potential hotspots. Another
possible drawback of CR is that it tends to increase abdelivery write latencies when N

is large by applying sequential transmission through the entire chain.
In contrast to the chain replication protocol, increasing N does not impact the

performance of the coin-tossing approach since abdelivery latency relies on the coin’s
probability of Head being correctly estimated rather than on a sequential transmission
through the entire chain.

CRAQ

Chain Replication with Apportioned Queries (CRAQ) [65] improves CR throughput
for read-mostly workloads while maintaining strong consistency. CRAQ increases read
throughput by allowing any replica in the chain to process read requests.

Fig. 2.11: CRAQ replication protocol

Figure 2.11 shows a CRAQ chain performing key-value read and write requests
on the data objects. It shows a write request in the middle of abcast (shown by the
dashed green line). The head replica receives a client request to write a new version
V 2 of the object, so the head’s object is dirty (having multiple versions [V 1,V 2] for a
single object key K in Figure 2.11). It then passes the write down the chain to the
next replica which has also marked itself as dirty for K. If a read request is sent to
one of the clean replicas i.e. that contain a single version V 1 (shown in grey nodes),
the clean replica returns the old version of the object V 1 because the new version

2.4 Related Works 36

V 2 has yet to be committed at the tail. If a read request is received by either of the
dirty replicas, however, they send a version query request to the tail, asking for latest
committed version of K (shown in the figure by the dashed red arrow) which returns
its known version number for the requested object 1. The dirty replica then returns the
old object value V 1. Upon receiving a write request for [K : V 2], the tail accepts the
request and sends an acknowledgment message containing this write’s version number
V 2 back up the chain. Once a predecessor receives the acknowledgment, it marks the
version V 2 as clean (deleting all older versions, V 1).

The experiment results show that CRAQ performance demonstrates a significant
improvement over CR, in particular for read-heavy workloads. In contrast to CR,
CRAQ appears to add almost no latency to read requests when no writes are involved in
the workload, as read requests can be processed locally. CR latency, on the other hand,
remains permanently high as all read requests always go to same replica, the tail, which
can affect scalability. Like Zab and the proposed protocols, CRAQ read throughput
scales linearly with N . On the flip side, unlike Zab and the proposed protocols, as
writes saturate the chain, version requests need to be increasingly dispatched to the
tail for dirty objects. Since the tail is a critical replica in CRAQ (performing version
requests and committing the writes), it is a potential source of bottlenecks as writes
increase, and possibly leads to deterioration in overall performance.

Fast Paxos

In classic Paxos, one of the cost criteria that has received some attention is the number
of communication steps that are needed to reach a consensus in the broadcast phase.
Fast Paxos [44] is designed to reduce the number of communication steps compared
to classic Paxos. It saves one communication step by having clients send a request
directly to the acceptors and reaching a consensus is achieved in two communication
steps, whereas classic Paxos takes three communication steps to reach an agreement
on a single proposal (see §2.2.2).

However, Fast Paxos has some disadvantages over the proposed protocols. First, to
ensure safety, a larger quorum of acceptors is needed. Assuming a threshold model that
f server replicas can fail, Fast Paxos replicas need to know that 2f + 1 acceptors have
accepted the proposal in order to reach a consensus, whereas the proposed protocols
only require a quorum size of f +1 replicas. In addition to a quorum size, Fast Paxos
suffers from collisions which lead to a significantly higher latency, particularly, when
simultaneous proposal messages occur. Collisions are more likely to occur when the

2.4 Related Works 37

request rate is high, for example, when two or more clients send proposals at nearly
the same time, and acceptors receive these proposals in a different order.

In contrast, Zab and the proposed protocols permit a single leader replica and allow
multiple outstanding abcasts to be processed at any given time and more importantly,
such abcasts are committed according to FIFO order. Thus, collisions are unlikely to
occur in Zab and the proposed protocols.

Mencius

Mencius [51] designs an alternative approach to prevent the leader from becoming
a bottleneck. It distributes the load evenly across servers by rotating the sequence
of consensus instances m.c for every client request such that abcasts from all servers
are uniquely and continuously numbered. Thus, Mencius amortises the load and
increases the bandwidth available at the leader. It thus achieves increasing throughput
particularly when the system is CPU bound reducing the likelihood of any one single
server becoming a potential bottleneck.

The drawback of Mencius, however, is that every server must hear from all the other
replicas before committing m.c, because otherwise another abcast m.c′, m.c′ > m.c,
that depends on m.c may be committed before the current instance m.c. This can
occurs when some of the other replicas reply either that they are also committing
the abcast for their instances, or that they are skipping their turn. This has two
consequences: (i) Mencius runs at the same speed as the idle or slow server, and (ii)
it can result in reduced availability, because if any replica crashes, that replica stops
progress until a failure is detected and another replica commits on behalf of the failed
replica. Therefore, idle and slow replicas can diminish overall performance.

Ring Paxos

Ring Paxos [52] is another example of a high-throughput total order protocol. This is
one of the variants of Paxos and arranges processes on a ring topology to maximize
the utilisation to the network and to achieve a high throughput. Like S-Paxos, Ring
Paxos decouples message dissemination from ordering. It achieves dissemination phase
by relying on the efficient use of IP-Multicast and orders messages by executing a
sequence of Paxos consensus instances. Utilising a ring topology enables for balanced
use of networking resources and makes it a very efficient protocol particularly when the
outgoing channel of the leader is causing a bottleneck, resulting in high throughput.

2.4 Related Works 38

However, abcasting through ring topology may lead to higher latency and message
complexity because at least N −1 communication steps are needed for all replicas to
abddeliver a write request.

All aforementioned Paxos optimisations share the same shortcoming: At a certain
point, the system encounters a bottleneck and message overhead. Moreover, compared
to the proposed protocols, none of the variants of Paxos study the possibility of
minimising the inbound messages on the leader replica during the execution of abcasts.

2.4.2 ZooKeeper Optimization

Several works [20, 25, 35, 38, 60] have presented modifications and additions to
ZooKeeper, but (almost) none of them deals with ZooKeeper atomic broadcast protocol,
Zab. The present study, however, explores ways to optimise Zab’s performance by
reducing network traffic at the leader and in some cases followers as well as reducing
latency and improving throughput. In addition, our design objectives for improving
Zab consider only modification of the broadcast phase, only normal-case operations
and can be applied to existing Zab without the need to change the discovery and
synchronisation phases (see §2.2.1). One reason for this is that Zab’s crash-recovery
solution is powerful and efficient as it takes less than 200 millisecond (ms) to elect a
new leader. This is a reasonable amount of time as the clients may not observe a delay
of a fraction of second for serving requests [34].

AGORA

AGORA [60] is a high-performance coordination service that is designed to optimise
ZooKeeper for effectively and efficiently utilising multi-core machines and available
server resources without losing data consistency. To increase parallelism on system
operations, as illustrated in Figure 2.12, AGORA creates a replication architecture that
divides the ZooKeeper state into several partitions on each server, and executes each
partition on a dedicated thread. Each thread utilises separate network connections
and, however, runs its own Zab instance for each partition. Thus, AGORA needs to
order the writes within each partition, and in addition respect causal dependencies
[56] between writes on different partitions, thereby providing the client with a causally
consistent view of the ZooKeeper’s state across partitions.

2.4 Related Works 39

Clients connect to AGORA by selecting one server (a follower or leader) and
submitting all subsequent requests to the same partition, this way, AGORA prevents
partitions from having to compete against each other for the same network connection.

Fig. 2.12: Architecture overview of AGORA

The simulation results [60] show that AGORA scales with the number of cores on
a server and therefore has more leverage over utilising the network resources available,
thereby resulting in high throughput and low latency write requests.

However, our work reduces the overhead on the Zab leader, thus, replacing Zab
with our Zab-variant protocols (see §6.2) can provide additional benefits to AGORA’s
performance in terms of latency and throughput, especially in high-load scenarios when
writes outnumber read requests.

Consensus in Box

The paper [35] studies the possibility of ensuring consistency without affecting ZooKeeper’s
performance. ZooKeeper maintains consistency by relying on Zab which requires a
significant number of communication steps between replicas, possibly taking away
server power and also diverting of resources from main tasks (group memberships,

2.4 Related Works 40

state synchronisation and configuration data storage). Such utilisation of resources
often results in performance bottlenecks and fewer guarantees for users who need high
performance coordination services. The authors in [35] explore ways to remove the
execution of the Zab protocol from the critical path of ZooKeeper to reduce overall
overhead and boost ZooKeeper’s performance. Figure 2.13 illustrates Consensus in Box
architecture. The system composes of three parts: network (TCP/IP), Zab protocol
and ZooKeeper logic. Each component is implemented in separate hardware chips and
deployed in field-programmable gate arrays, FPGA9.

Z
o
o
K
e
e
p
e
r

 D
a
ta

b
a
s
e

FPGA

Z
a
b

N
e
tw

o
rk

DRAM (8GB)

Fig. 2.13: Architecture overview of Consensus in Box [35]

To achieve fault-tolerance, the system runs in three FPGA nodes that communicate
either through TCP or the specialised network (direct connections). The simulation
results show that Consensus in Box demonstrates significantly higher performance than
ZooKeeper (when it runs on three machines); at 100% writes and 128 bytes of message
payload size, with a maximum difference of about 1 million operations per second
and with a response time that Consensus in Box is at least an order of magnitude
lower than ZooKeeper (300-400µs). However, FPGA implementation does not provide
an application-level API. This limitation forces a constraint on any application that
wishes to use ZooKeeper in that it must also be implemented inside the FPGA unit,
which is possibly too daunting a task.

9Field-Programmable Gate Array (FPGA) is an integrated circuit that can be programmed to
implement a potential application to provide leverage from FPGA high-speed transceivers [30].

2.4 Related Works 41

Scalable Agreement Protocol

The paper [39] studies a problem associated with a performance bottleneck that occurs
due to the degree of fault-tolerance increases in leader-based consensus protocol, such
as Paxos and Zab protocols. It proposes a scalable agreement protocol that utilises
additional resources to achieve higher performance gains, while guaranteeing total
order of client requests. The scalable agreement protocol separates ordering layer from
the execution layer as in [69]. By doing so, write requests are sent to an ordering
layer to establish a total order for the write requests. Upon ordering, the requests are
passed to the execution layer to be executed, and responses are returned directly to the
clients. The protocol architecture utilises multiple clusters N , N ≥ 2f +1 processes (N
clusters of 2f + 1 processes, deployed on N machines), each cluster has a single leader
process and provides a total order on only a fraction of the requests, these clusters are
overlapped to fully utilise the available resources. The virtual slot scheme [39] is used
at the execution layer to combine all partially ordered requests into a single total order
of all client requests. This means that the replica in the execution layer must execute
requests in the order that is determined by the virtual slot sequence.

By distributing the role of the leader across multiple machines, the scalable agree-
ment protocol balances the load of the system more evenly, and as a result obtains
a higher performance compared to the approach that utilises a single ensemble. The
performance improvement is observed in two scenarios (1) as extra machines are added
to the system, and (2) when multiple overlapping clusters are deployed.

However, the scalable agreement protocol is only discusses in form of an initial
prototype and preliminary results. In other words, it has not been incorporated into
real applications. Therefore, further investigation is necessary to gain more insight
into the solution.

In contract to the proposed protocols, in the context of ZooKeeper, fine-tuning
implementations of the Zab protocol is less complex than (1) separating the ordering
from the execution layer, (2) overlapping processes in different clusters and (3) having
multiple Zab instances running in one system. We therefore believe that the scalable
agreement approach is more complex and requires major modifications to be able to
accommodate the ZooKeeper.

2.5 Summary 42

2.5 Summary

This chapter provides a background on atomic broadcast protocols for recent coordi-
nation services and refers to related literature for optimising the consensus protocols.
Next chapter we propose several optimizations to the Zab protocol. First, we consider
a set of restricted fault assumptions: servers crash independent of each other and
at least ⌈N+1

2 ⌉ servers remain operative and connected at all time. Secondly, we let
non-leader servers broadcast acknowledgements and thereby deliver atomic broadcasts
with less involvement from the leader; a novel concept of coin-tossing is used to limit
the broadcast traffic, particularly the incoming traffic at the leader. Thirdly, the coin-
tossing protocol is then upgraded to operate with Zab fault assumptions, providing
thus a genuine alternative to Zab itself.

Chapter 3

Mechanisms for Improving
ZooKeeper Atomic Broadcast
Performance When a Server
Quorum Never Crashes

This chapter investigates different mechanisms to improve ZooKeeper atomic broadcast
performance in presence of a server quorum (at least ⌈N+1

2 ⌉ servers must be live). It
seeks to reduce the communication steps of Zab to minimise the load at the leader
replica, gain high throughput and low-latency message abdeliveries.

The remainder of this chapter is structured as follows: first the rationale behind
our design approach for Zab-variants is introduced, followed by a description of the
system requirements and assumptions upon which the proposed protocols are based.
This is followed by in-depth look at the restrictive fault-tolerance assumptions and
development of three new protocols. The first protocol is suited only when N = 3, the
second uses acknowledgement broadcasting and the last reduces the network traffic
through a coin toss mechanism. We then upgrade the coin-tossing approach to original
Zab crash-tolerant invariant §2.2.1; we also derive a version without coin-tossing.
Finally, we discuss the limitations of coin-tossing protocols, and propose a solution for
optimising the coin-toss approaches.

3.1 Rationale 44

3.1 Rationale

At the heart of ZooKeeper is the ZooKeeper atomic broadcast protocol, Zab, which
ensures that a consistent state is maintained across all correct servers. ZooKeeper’s
performance is thereby directly affected by the efficiency of Zab. Enhancing the
efficiency of atomic broadcast protocols have far wider applications, for example,
in coordinating transactions particularly in large-scale in-memory database systems
[24, 58]. In such applications, the atomic broadcast protocol typically operates under
heavy load conditions and is expected to offer low latencies even at such extreme loads.

In Zab, as more servers are added to the cluster of replicas to increase its the
degree of fault-tolerance, the message complexity of the Zab protocol increases and the
throughput deteriorates. As the number of tolerated faults increases more than f = 1,
the Zab protocol becomes performance bottlenecks [34, 37]. Thus, we believe that
improving the Zab protocol is critical for overall performance of ZooKeeper system.

Furthermore, as with many other leader-based protocols, Zab tends to offer wors-
ening performance when the load on the leader increases. For example, Hunt et al.
(2010) reveals that ZooKeeper throughput steadily decreases as the number of write
requests outnumber the read requests in a cluster of any size. This is due to the fact
that read requests can be processed without involving Zab while write requests cannot
proceed until Zab execution is completed, when leader replica processes the majority
of the protocol executions.

Although bottlenecks at the leader are inevitable, in this chapter it is argued that
communication steps and volume of traffic at the leader can be reduced whilst still
guaranteeing the safety, liveness properties and correctness of the protocol.

The most efficient alternative to Zab, in terms of balancing the load and latency,
would be to use decentralised replication approach, knowns as active replication §2.1.1.
The key concept in active replication is that the replicas behave independently: each
replica handles every request it receives from the client and sends a reply back. The
drawback of this approach is that it necessarily entails high resource usage and it is
likely to lead to bottlenecks, especially under heavy load conditions. However, in the
primary-backup approach, like Zab, requests are processed by one replica only, the
leader, and it transmits the state changes to the other replicas. It may therefore be
less complex and more beneficial to investigate how to optimise, namely the leader
replica, in order to reduce the inbound and outbound traffic.

3.2 Design Objective 45

This chapter explores ways of improving Zab’s performance without modifying its
easy-to-implement structure. To this end, five new protocols in total which are based
on Zab have been redesigned and developed and their performances are compared with
Zab’s in Chapter 5. The next section of this chapter provides a detailed description of
these protocols.

3.2 Design Objective

The aim of this chapter is to explore ways of improving Zab performance by primarily
shifting some of the leader load onto other followers, while at the same time maintaining
the well-understood and implementation-friendly structure Zab itself. We accomplish
our aim in three ways.

First, we consider a set of restricted fault assumptions: servers crash independent
of each other and at least ⌈N+1

2 ⌉ servers remain operative and connected at all time.
Secondly, we let followers broadcast acknowledgements and thereby deliver abcasts

with less involvement from the leader; a novel concept of coin-tossing is used to limit
the broadcast traffic, particularly the incoming traffic at the leader.

Thirdly, the coin-tossing protocol is then upgraded to operate with Zab fault
assumptions, providing thus a genuine alternative to Zab itself. This way, leader crash
and subsequent replacement can therefore be dealt with using Zab crash-recovery
mechanism and hence are not addressed here.

It is important to note that the new protocols we propose here differ from Zab
only in the latter’s broadcast (fail-free) phase and are shown to preserve all invariants
necessary to make use of the crash-recovery phases of Zab unchanged. Hence they can
be easily implemented using existing Zab implementations.

3.3 Assumptions

This section first defines the three key assumptions made when designing the proposed
protocols. Zab assumption A2 is retained, A1 modified into A1.1 and A1.2, and A3
additionally made.

A1.1 - Leader Crash and Recovery
When the leader server crashes and recovers subsequently, it does not attempt

to join the system until its successor has been installed, i.e. the recovery from its
crashing is complete.

3.3 Assumptions 46

Note that Zab tracks leadership changes through epoch numbers §2.2.1. Thus,
when a process logs the epoch number in which it acts as a leader, it can, on
recovery, suspend joining the system until the current epoch number is larger.

Figure 3.1 illustrates that A1.1 can block leader election. Assume N = 3 and at
time t1 L is the leader, F1 and F2 are followers, all are operative replicas in epoch
e. At t2, following the crash of L, F2 also crashes. As a consequence, one of three
scenarios can occur in the leader election, at t3: (1) L wakes up, even though
a quorum {L , F2} is now correct, leader cannot be elected because L cannot
take part (due to A1.1) in the election, and (2) F2 recovers while L remains in a
faulty state, in this case {F1 , F2} form a quorum Q and F1 elects as the new
leader. Note that scenarios (2) and (3) result in F1 becoming a leader because of
the FLE requirement which states that a process can elect new leader if it has
the latest states from previous epochs (see §2.2.1) among the current Q, hence
F1 becomes a new leader.

For performing the synchronisation phase, discovery phase (FLE) assumes A1.1
holds. If, however, A1.1 does not hold, a new Q might exclude the committed
proposal that is abdelivered by F1 at t2. When this assumption holds, a committed
proposal cannot be lost and will be included in ZooKeeper initial-state for epoch
e′, where e′ > e.

A1.2 - Server Crashes
No process can fail when exactly ⌈N+1

2 ⌉ processes in Π are executing the protocol.
Thus, a quorum remains operative always, allowing a new leader to be elected
when a leader crashes and abdeliver to continue when a follower crashes.

A2 - Server Communication
This assumption is inherent in Zab Assumption A2 described in §2.2.1. Again,
when a leader abcasts m to all servers, all operative servers will eventually receive
m. Futhermore, messages are received in the order in which they are sent; if a
server sends m1 followed by m2, any common destination for m1 and m2 will
receive m1 before m2.

A reliable JGroups protocol, UNICAST3 protocol, is used to guarantee lossless
transmission of messages and FIFO order which is necessary to ensure that abcasts
sent by the leader are received in the order in which they are sent, thus Zab
guarantees G2 are met. The UNICAST3 protocol is explored in detail in §2.3.3.

3.4 Definitions and Lemma 47

A3 - Follower Crash Suspicions
Followers monitor each other’s operative status and can thereby suspect a follower
crash. This requires followers to periodically exchange heartbeat messages with
each other.

Assumption A3 is met through utilising JGroups FD_ALL and GMS protocols
as described in §2.3.3. The first protocol is used to detect a server crash while
GMS announces the crash and accordingly sends a new view to all operative
servers, hence each server (leader and followers) becomes aware of other server
crashes which it can act upon.

Therefore, we assume that a server crash will eventually be announced by the
GM protocol and an updated view of the current ensemble will be received by all
operative servers; hence all servers within the current ensemble will eventually
know of a crash.

L

F1 F2

proposal(m)

L

F1 F2

t1 t2 t3

Fig. 3.1: Leader election scenarios in A1.1

3.4 Definitions and Lemma

For ℓ, 1≤ ℓ≤N , let Qℓ denote the set of all quorums that contain pℓ and Q̄ℓ be its
complement: Qℓ = {Q : Q ∈Q∧pℓ ∈Q}, and Q̄ℓ = Q−Qℓ.

For example, when N = 3, Q1 = {{p1,p2},{p3,p1},{p1,p2,p3}}, and Q̄1 = {{p2,p3}}.
Let q ℓ̄ = {Qℓ−{pℓ} : Qℓ ∈Qℓ}. Again, with N = 3 as an example, q 1̄ = {{p2},{p3},

{p2,p3}}.
Note that qℓ̄ ∈ q ℓ̄ need not be a quorum and |qℓ̄| ≥ ⌈

N−1
2 ⌉.

3.5 Design Approach 48

Lemma: Any qℓ̄ ∈ q ℓ̄ and any Q′ ∈ Q̄ℓ must intersect.

Proof : By definition, qℓ̄

⋃{pℓ} and Q′ are quorums which must intersect. The common
process p cannot be pℓ since pℓ ̸∈Q′. Therefore, p ∈ qℓ̄ must hold and hence the lemma.

3.5 Design Approach

3.5.1 Implicit Acknowledgements

Implicit acknowledgements, called Cumulative acknowledgments in TCP protocol, refers
to the receiver node acknowledges that it correctly received message which implicitly
informs the sender that the previous messages were received correctly, piggybacking
acknowledgment on the next outgoing message.

In one proposed protocol, a follower does not transmit ack(m) for every proposal(m)
it receives from the leader, and may at times omit such transmissions in an attempt
to reduce the inbound traffic at the leader. When ack transmissions are skipped, an
ack(m) from a given follower not only acknowledges m (with sequence number m.c),
but also will indicate an implicit acknowledgement for all m′ sent by the same leader
with m′.c < m.c.

The leader will abdeliver(m) once it receives a quorum of either implicit or explicit
acknowledgements for m. Note that a given m′ is implicitly acknowledged multiple
times, i.e., whenever an ack(m), m.c > m′.c, is received. Any one of them from a given
process suffices to build the necessary quorum.

Consider N = 3 and a follower that has received m.c or the leader that has transmit-
ted m.c. A proposal m.c to a follower is uncommittable if that follower has chosen not
to ack m.c, got Tail, and it has not yet received an ACK for m.c from the other follower.
A proposal m.c to the leader is uncommittable if the leader has not yet received an
ACK for m.c from any of the followers. Since it is possible for both followers to choose
not to ack m.c, got Tails, a proposal can remain uncommittable for an infinite time.
To avoid this shortcoming, when a follower chooses to ack m.ci, it also implicitly acks
all earlier m.cj , j < i (if any) which they have not acked yet.

The implementation of ZabCT works efficiently when arrival client requests is fast
and frequent. In other words, in high load scenario when the request arrival rate is
fast and frequent, the implicit acknowledgement is expected to be effective and reduce
inbound traffic in leader replica.

3.5 Design Approach 49

Use of implicit acknowledgements does not undermine the correctness due to A2
(reliable communication and sent-ordered message reception) but can delay abdelivery.

3.5.2 Commit Messages

Leader does not send commit messages to followers which decide on abdelivery by
themselves.

3.5.3 Invariants on abdeliver

Leader Invariant on Abdelivery

The Zab invariant stated earlier §2.2.1 only holds when the leader abdelivers m: if
a leader executes abdeliver(m), then all servers in some Q ∈Q have logged m. For
followers:

Follower Invariant on Abdelivery

If a follower process abdelivers m that was abcast by leader pℓ, then all followers in
some qℓ̄ ∈ q ℓ̄ have logged m.

Recall that |qℓ̄| ≥ ⌈
N−1

2 ⌉. This means that a follower can abdeliver m as soon as at
least ⌈N−1

2 ⌉ followers are known to have logged m; in particular, it is not conditional
on pℓ logging m. When pℓ does log m, the original Zab invariant holds since qℓ̄

⋃{pℓ}
is a quorum.

Thus, the follower invariant eventually leads to Zab invariant, if pℓ does not crash.
If pℓ does crash, it cannot, by A1.1, take part in the subsequent leader election; by
A1.2, a quorum Q′ ∈ Q̄ℓ must exist to elect the new leader. By lemma, qℓ̄ and Q′

intersect; so, the new leader is guaranteed to abdeliver any m that could have been
abdelivered when pℓ was the leader. We note that Zab mechanisms for recovering from
leader crashes can be used unchanged in all variants proposed.

3.5.4 Switch to/from Zab

One of the protocols proposed in this section is designed to perform well when all N−1
followers are correct. It is also designed to switch to Zab whenever a follower crash is
observed, and back to itself when the crashed follower joins the system (see §3.6.2 for
more details). Assumption A3 is used for this purpose.

3.6 Protocol Details 50

3.6 Protocol Details

Next steps are executed by the leader which are the same in all variations proposed
here. They are as follows.

L1 : Leader initiates abcast(m) by proposing a sequence number m.c for m and by
broadcasting proposal(m) to all processes (including itself);

L2 : On receiving proposal(m) (with m.c) from itself, leader logs m and then sends
an acknowledgement, ack(m), to itself;

L3 : Upon receiving ack(m) or an implicit acknowledgement for proposal(m) from a
quorum, it sends commit(m) to itself;

L4 : On receiving commit(m), abdeliver(m) before abdeliver(m′), m′.c > m.c;.

3.6.1 Protocol 1: ZabAc and ZabAa

Protocol 1.1: ZabAc

ZabAc works only when N = 3 and allows a follower to ’Ack and commit’ without
waiting for a commit from the leader nor having any interaction with the other follower.
(Hence the name ZabAc, Zab appended with ’Ac’ for ack and commit.) The protocol
steps for a follower are as follows.

F1 : A follower, on receiving proposal(m) (with m.c) from the leader, logs m;

F2 : Follower then sends ack(m) to the leader and to itself;

F3 : After receiving ack(m), follower executes abdeliver(m).

Figure 3.2 shows all of the sequences involved in ZabAc based upon the example
scenario and assumes N = 3. Leader L abcasts(m) to followers F1 and F2. When each
follower acknowledges m, each forms qℓ̄; so, the followers invariant holds (shown by a
small yellow square) which results in m abdelivers. Leader, however, holds an invariant
upon receiving ack(m) from F1 and itself and results in m abdelivers, thus the Zab
invariant eventually holds on m at all followers (shown by thick green line).

ZabAc is thus a simple protocol: it involves no switch to or from Zab nor uses
implicit acknowledgements. Message complexity is 4 unicasts per abcast and abdelivery

3.6 Protocol Details 51

Leader (L) Follower (F1) Follower (F2)

 Write Reqest (m)

abcast(m)

log(m) log(m)

commit(m)

abdeliver(m)

abdeliver(m)

abdeliver(m)

ack(m)

log(m)

ack(m) ack(m)

Fig. 3.2: ZabAc sequence diagram

at followers is faster compared to Zab as follower does not have to wait for an explicit
commit message from the leader.

As stated earlier, read requests are serviced from the local replica of each Zab server.
This allows the ZooKeeper service to scale linearly as servers are added to the system.
Unfortunately, as ZabAc only works with three-nodes ensemble, this may not meet the
customer needs, scaling read throughput.

To circumvent this limitation, a new protocol is developed, called ZabAa. It re-
designs ZabAc in such a way that it can work with any ensemble size, N ≥ 3. We
detail ZabAa protocol in the following section.

Protocol 1.2: ZabAa

ZabAa is an extension of ZabAc for N > 3. Instead of unicasting ack(m) only to the
leader, ack(m) is broadcast to all. (Hence the name ZabAa: Zab appended with ’Aa’
for ack-all.) A follower abdelivers(m) once at least f = ⌈N−1

2 ⌉ followers are known to
have logged m. Its protocol steps are as follows.

3.6 Protocol Details 52

F1 : A follower, on receiving proposal(m) (with m.c) from the leader, logs m;

F2 : Follower then sends ack(m) to the leader and to followers (including itself);

F3 : On receiving ack(m) from f followers, follower sends a commit(m) to itself.

F4 : On receiving commit(m), follower executes abdeliver(m).

 Write Reqest (m)
abcast(m)

log(m) log(m)

commit(m)

abdeliver(m)

abdeliver(m)

abdeliver(m)

ack(m)

log(m)

ack(m) ack(m)

Fig. 3.3: ZabAa sequence diagram

Message complexity is N(N −1) unicasts per abcast and increases quadratically
with N . Though abdelivery at followers can be expected to be faster, increased message
handling may slow down their responses. These will be analysed in Chapter 5 where
we consider up to N = 9.

Figure 3.3 shows the communication stages required for ZabAa to abddeliver a write
request. As we can see, ack(m) sent by follower F2 is overlooked by the leader L and
follower F1. This is because the overlooked ack(m) was received after L and F1 had
been decided (because L received ack(m) from a quorum and F1 formed qℓ̄). In practice,
the number of overlooked ack(m) messages increases when a new server is added to

3.6 Protocol Details 53

the system; so in an N servers ensemble there are ⌈N−1
2 ⌉ overlooked ack(m) messages

received at the leader and follower, possibly leading to the incoming channel of the
leader and followers saturates which in turn can negatively affect protocol performance.

Next protocol ZabCt seeks to reduce message complexity by conditioning the
sending of acknowledgements by followers to outcomes of coin tosses.

3.6.2 Protocol 2: ZabCt

Each follower has a coin with probability prob(Head) = p. After logging m, it sends an
ack(m) to itself and tosses the coin; if the outcome is Head, the follower behaves as
in ZabAa, ack(m) is broadcast; otherwise, it does nothing. It makes use of implicit
acknowledgements for deciding on abdelivery and the steps are as follows.

F1 : A follower, on receiving proposal(m) from the leader, logs m;

F2 : Follower sends ack(m) only to itself and tosses the coin;

F3 : If (coin = Head) then follower broadcasts ack(m) to leader and all other
followers;

F4 : On receiving ack(m) or an implicit ack for proposal(m) from f = ⌈N−1
2 ⌉ followers,

follower sends a commit(m) to itself.

F5 : On receiving commit(m), follower executes abdeliver(m).

Figure 3.4 shows the sequences involved in abcast(m) that utilises the ZabCt protocol.
In this figure we have assumed that the outcome for follower F1 is Head, thus ack(m)
is broadcast, and the outcome for follower F2 is Tail, so ack(m) is sent only to itself.
Leader L and follower F2 receive a total of ⌈N−1

2 ⌉ ack(m) and F1 receives ack(m)
only from itself. It results in L holding the Zab invariant and F1 and F2 the follower
invariant, so all servers commit the state change and execute abddeliver(m).

Probabilistic Justification for Using Optimal Value for p as 0.5

Ideally, we would prefer exactly f followers to get Head, when they toss their coins for
every given m sent by the leader. This will ensure that the leader has (f +1) ack(m)
and each follower gets at least f ack(m), and all processes abdeliver m without relying
on implicit acknowledgements which will only delay abdelivery of m.

3.6 Protocol Details 54

 Write Reqest (m)
abcast(m)

log(m)
log(m)

commit(m)

abdeliver(m)

abdeliver(m)

abdeliver(m)

ack(m)

log(m)
ack(m)

ack(m)

Fig. 3.4: ZabCt sequence diagram

For simplicity, assume that N is odd and all servers are correct. Thus, n = N −1 is
the number of followers that toss the coin on receiving proposal(m); f = ⌈N−1

2 ⌉= n
2

when N is odd. Thus, n = 2f and (n− f) = f . The Binomial probability that f of
these n (independent) coin tosses are heads, is given by:

B(n,f) =
(

n

f

)
pf (1−p)n−f =

(
n

f

)
pf (1−p)f

B(n,f) is a concave function of p, with B(n,f) = 0 for p = 0 and p = 1, and has its
maxima for some 0 < p < 1.

Ḃ(n,f) = 0⇒ (p

1−p
)f = (p

1−p
)(f−1)

When p = 0.5, Ḃ(n,f) = 0 and B̈(n,f) < 0,∀f ≥ 1. Thus, B(n,f) is at its maximum
when the coin is fair.

3.6 Protocol Details 55

Remarks

Remark 1: Total Message Cost.
The expected number of Heads from n independent coin tosses is np. Thus, the
expected message complexity per abcast is (N −1)+(N −1)p(N −1). When p = 0.5,
it becomes (N −1)+0.5(N −1)2 which is now quadratic only on (N −1). Note that it
is the same as the message cost in ZabAc when N = 3.

Remark 2: Incoming Traffic at the Leader.
Note also that the leader in ZabCt, irrespective of N , is expected to receive 0.5×(N−1)
follower acks per abcast, which is just half of those it receives in ZabAc and ZabAa.
For example, the leader in ZabCt with N = 3 is expected to receive one follower ack
per abcast, while it receives 2 follower acks in ZabAc. Of course, this reduction in
incoming traffic at the leader is at the cost of any additional waiting to receive implicit
acknowledgements when more than f followers get Tail outcomes for a given abcast.

Remark 3: Role of abcasting Rate.
When a follower tosses its coin on successive abcast receptions, the expected number of
Tail outcomes before the first Head is 1−p

p = 1. Thus, if a follower skips transmitting
an ack once, it is expected that it would transmit ack(m) for the next abcast(m) it
receives. This means that the more frequently the leader abcasts, the less would be the
extra abdelivery delay imposed by implicit acknowledgements (see §3.7).

Protocol Switching

A follower may wish to switch to executing Zab on occasion when another follower
crashes, resulting in the value of n changes (number of followers). In this case, the
value of p being used may be inappropriate and abcasts can remain uncommitted for
too long. JGroups protocols (FD_ALL, VERIFY_SUSPECT and GMS) are utilised
to detect follower failure, (true) crash suspicion and notify all servers of the follower
crashes.

Protocol switching is organised in a similar way to the Two-Phase commit protocol:
even one follower’s vote to quit ZabCt is enough for all to switch to Zab, and all
followers must vote for ZabCt in order to switch from Zab to ZabCt; moreover, the
leader decides on the basis of the followers’ votes and informs them of its decision.

3.6 Protocol Details 56

Followers use a message field prot in their acks to indicate their votes, and the leader
uses prot in its commit message to inform followers of its decision.

If a follower, while executing ZabCt, receives notification that a follower has crashed,
it unicasts its ack (as in Zab) to the leader with prot set to Zab. Whenever the leader
receives an ack(m) with prot=Zab, it broadcasts commit(m) with prot=Zab to all
followers, when it sends, or if it has already sent, commit(m) to itself. When a follower
executing ZabCt receives commit(m) with prot=Zab, it starts executing Zab.

When a follower is informed by the JGroups GMS protocol that none of N − 1
followers have crashed, a follower votes for ZabCt using prot. If the leader receives
votes for ZabCt from all N −1 followers, it broadcasts its commit with prot=ZabCt
and thus instructs the followers to switch to ZabCt. A follower, on receiving commit
with prot=ZabCt, resets p = 0.5 and reverts to ZabCt.

3.6.3 Protocol 3: ZabCT

Encouraged by the observations that coin-tossing and use of implicit acks do not
seriously undermine abdelivery latencies, we consider upgrading ZabCt under original
Zab crash-recovery assumptions. More precisely, we restore Zab Assumption A1 (see
§2.2.1), discard its restricted alternatives A1.1 and A1.2 (see §3.3), retain A2 and A3.
Thus, A3 is the only additional assumption made compared to Zab protocol. The
upgraded version of ZabCt is denoted as ZabCT (with the upper-case T implying least
restrictive assumptions). It involves minor changes in steps F4 of ZabCt. The key
stages of the ZabCT protocol are detailed below:

F1-F3 : As in ZabCt (see §3.6.2);

F4 : On receiving ack(m) or an implicit ack for proposal(m) from f+1 followers, it
sends a commit(m) to itself.

F5 : As in ZabCt.

A follower pi commits proposal(m) after it knows that f +1 processes have logged
m. Thus, ZabCT preserves the original Zab Invariant on abdelivery for followers as
well. Therefore, it operates under Assumption A1.

Compared to ZabCt, a follower waiting for 1 more ack(m) before doing commit(m),
additionally prolongs abdelivery latencies. Furthermore, m is not committable whenever

3.7 ZabCT Adaptation Solution is Required 57

fewer than f other followers get a Head outcome when tossing for a given abcast(m).
A follower relies much more on (i) implicit acks and (ii) a different set of followers
getting the Head outcome while tossing the coin for abcast(m′), m′ > m.

Change in Step F4 also requires a follower to send acks to all followers (on
coin=Head) irrespective of N . This is reflected in Step F3 above.

3.6.4 Protocol 4: ZabAA with p = 1

An interesting variation of ZabCT is when p is fixed at 1, i.e., (coin = Head) in Step
F4 returns true for every abcast(m), N −1 ack(m) broadcast for each abcast(m). This
is similar to ZabAa, but operates under A1 and hence it is denoted as ZabAA. Also, it,
unlike ZabAa, must switch to Zab when more than f−1 follower crashes are suspected
(followers receive view change notification sent by JGroups GMS protocol).

Observe that the total message cost per abcast(m) in ZabAA is 6 when N = 3
which is the same as in Zab. However, message complexity is N(N − 1) , increases
quadratically with N , and abdelivery latencies at followers can be expected to be faster.
Interestingly, it is also worth to have ZabAA among Zab-variants to examine the
trad-off between low-latency communications and higher message cost.

3.7 ZabCT Adaptation Solution is Required

ZabCT uses a fixed value of p = 0.5 for the probability of a follower f getting Head for
each abcast m §3.6.2. Using a fixed value for p may acceptable when abcasting rates is
unchangeable (fixed at not very fast or slow). This rate leads ZabCT servers to meet
their invariance for committing m when the coin is fair, otherwise, m is likely to be
committed in subsequent abcast(m′), m′.c > m.c.

Figure 3.5 depicts three possible scenarios, each showing different abcasting rates
when N = 3. Scenario (1) shows ZabCT with p = 0.5 that can abdeliver latencies in
a reasonable amount of time. As shown in the figure, leader L abcasts(m1) followed
by abcasts(m2) to followers F1 and F2. Both followers get Tail (shown T for short in
the figure) for abcast(m1) and Head (shown H for short) for abcast(m2), this is due to
Remark 3 §3.6.2. This leads the followers explicitly broadcast ack(m2) and thereby
implicitly ack m1, resulting in m1 and m2 being delivered in 1 millisecond (ms) which
is a reasonable response time (in Scenario (1), two ticks in time line represent 1 ms).

3.8 Summary 58

Leader L

Follower F1

Follower F2

T

T

m1

ack
H

H {
m2

m2

 Scenario (3)

 (Time= Hour)

abcast(m1)

abdeliver (m1m2)

Time

T

m3

m3

m12

m12

H

H

{

ack

ack

ack

abcast(m3)

abdeliver (m3-m11)

T

{

 Scenario (1)

(Time= Millisecond)

m13

m13

T H

H

m14

m14

ack

ack

 Scenario (2)

(Time= Millisecond)

abcast(m1)

abdeliver (m12m13)

m1

{ {T

Fig. 3.5: Scenarios: ZabCT adaptation requires

However, fixing p = 0.5 may prevent the coin-tossing protocol from leveraging
reducing the traffic considerably at the leader and followers. Scenario (2) demonstrates
that ZabCT can benefit from a high abcasting rate. Assuming L broadcasts m3-m12

to F1 and F2, at a fast rate, say 10 abcasts per 1 ms. Supposing the outcome Tail
is obtained for abcasts m3-m11 in both followers but they get Head in abcast(m12).
This leads to both followers broadcasting ack(m12) and implicitly ack m3-m11, hence
ZabCT meets its invariance, resulting in lower abdelivery latencies, for m3-m12 being
achieved in not more than 1 ms. By doing so, the leader receives 2 follower acks per
10 abcasts, where as leader receives about 10 follower acks in ZabCT with p = 0.5.

Furthermore, ZabCT can lead to higher latencies when the abcasting rate arrives
infrequently. Scenario (3) shows the situation when the arrival rate is one abcast per 30
minutes. Using p = 0.5, both followers may possibly get Tail for abcast(m13) and Head
for abcast(m14), resulting in abdelivery m13 is delayed by at least 30 minutes which is
considered to be a very higher latency.

In order to maximise the performance of the ZabCT protocol, system adaptation is
required. Coin probability p can be altered in relation to the abcasting rate, so that
the dual objectives of traffic reduction and performance gains can be accomplished.

3.8 Summary

In this chapter we have extended the well-known Zab protocol under its original
fault-tolerance assumptions as well as under a restricted fault-tolerance assumptions

3.8 Summary 59

which are yet practical. Five variants of the Zab protocol have been derived: some of
which use ack broadcasting which is not a new idea and others utilise a coin-tossing
mechanism to reduce traffic at the leader. The latter is novel and, to the best of our
knowledge, coin-tossing protocols are new. Coin-tossing is one instance of the general
concept of using only a subset of randomly selected nodes to engage in communication
at any given time in order to reduce traffic, particularly at bottleneck nodes. While
coin-toss reduces leader traffic, it also delays abdelivery which requires future abcasts
to be made or coin-tossing to be forced.

Next chapter we continue to model the coin-tossing process and derive analytical
expressions for estimating the coin’s probability p of Head based on the abcast rate such
that the dual objectives of performance gains and traffic reduction can be accomplished.
We also address processes switch between ZabCT and Zab, if ZabCT is judged not to
offer performance benefits over Zab, without stopping abdelivery messages.

Chapter 4

Coin-Tossing ZooKeeper Atomic
Broadcast Protocol

This chapter pursues the coin-tossing approach, ZabCT, to improve Zab performance
in the light of Remarks made in §3.6.2 and §3.7: p needs to be adaptively chosen based
on the abcasting rates observed by follower replicas.

The remainder of this chapter is structured as follows: first we introduce the
rationale behind upgrading ZabCT. This is followed by describing its design objectives
and challenges; in particular, it elaborates on the constraints that need to be met
in estimating the coin’s probability so that ZabCT is used only when it can offer
performance gains over Zab. We then present analytical expressions and an algorithm
for selecting the coin’s probability, together with a complete set of solutions.

4.1 Rationale

In the previous chapter we introduce ZabCT §3.6.3, a protocol that aims to improve
Zab performance by reducing message traffic, both inbound and outbound, at the
leader. This protocol requires modifying the behaviour of followers in two simple
but important ways. First, in Zab, followers respond to the leader through unicast
(1-to-1) communication which are changed to broadcasts. This allows followers to
decide autonomously and relieves the leader from being the sole decision maker and,
importantly, from having to broadcast its decisions to followers. This, in turn, reduces
the leader’s outbound traffic. Secondly, a follower’s broadcast is conditioned on
the outcome of a coin toss: it is made if the outcome is Head; otherwise, not. This
conditional broadcasting allows the inbound traffic at the leader to be reduced. However,

4.1 Rationale 61

ZabCT uses a fixed coin’s probability with p = 0.5 to ideally have f followers to get
Head, when they toss their coins for every given abcast(m) sent by the leader. Doing
so, all processes can reach decisions and abdeliver m, if not, they can rely on implicit
acknowledgements §3.5.1 which will only delay abdelivery of m.

For ZabCT protocol to be viable it is vital that instead of p being fixed at 0.5, it
is adaptively chosen according to abcasting rate (§3.7). This introduces many design
challenges. The principal is that when choosing the coin’s probability p of a toss taking
into account that the average abdelivery latency by ZabCT is to be smaller than that
by Zab, but not to allow too many to broadcast at the same time to avoid overloading
the leader and followers. That is, determining p involves a trade-off between competing
requirements. We model the coin-tossing process and derive analytical expressions for
making this trade-off.

Extensions use ack broadcasting - not an unknown idea. An alternative approach
to explicit acknowledgment1 is an implicit acknowledgment which refers to one ac-
knowledgment can be sufficient to confirm the sender that all previous transmitted
messages are received, piggy-back acknowledgment on the next outgoing message.
Implicit acknowledgments have been used in wireless sensor networks (WSNs), for
example by Woo and Culler [68]. There, it is primarily used to reduce the message
overhead, by saving the bandwidth for the explicit acknowledgment. A general problem
with piggybacked acknowledgment approach is that it requires messages to be sent
frequently by the sender in order to implement implicit acknowledgment. If messages
are sent infrequently, in low-load conditions for example, the acks may be sent too late
which in turn leads to the sender ends up retransmitting messages that were actually
received intact. However, this problem does not exist in ZabCT when an implicit
acknowledgment approach is utilised because we assume that the coin-tossing approach
are implemented under high-load conditions where abcasts are frequently sent by the
leader node.

Acknowledgment based on a sliding-window [13, 10] is another schema for reducing
the network traffic and achieving high throughput. If the sender node has more than
one unacknowledged message to transmit, it can transmit as many as a window size
W cyclically, i.e. in every transmission it will send a different message from the
first unacknowledged message i with the following sequence i, i + 1, ..., i + W −i, i,
i+1. When a message reaches the receiving node, this message will be stored and an

1A receiver node sends back the acknowledgment immediately after receiving message from the
sender, one ack for every message received.

4.2 Coin-Tossing Zab (ZabCT) 62

acknowledgment of the last ordered message will be send. For example, if the collecting
point has received messages 1, 2, 3, 5 and 7, it will send an acknowledgment of message
3 until it receives message 4. If message 4 is received but message 6 has not arrived, it
will send acknowledge of message 5. However, the sliding-window approach reduces
network throughput once a message is sent but remains unacknowledged (since the
sender message only send up to its window size once a message is unacknowledged)
[49]. As previously stated, a notable distinction of our work is that the coin-tossing
protocol reduces traffic when the network is highly loaded. Thus, abcasts cannot remain
unacknowledged for long period.

To the best of our knowledge, coin tossing to reduce traffic at the leader is novel
and coin-tossing protocols are new. In addition, the impact of coin-toss on reducing
acknowledgments has not been evaluated.

4.2 Coin-Tossing Zab (ZabCT)

In presenting ZabCT design objectives and details, we will initially assume that no
follower crashes, there are n, ⌈N+1

2 ⌉ ≤ n ≤ N −1, operative followers, and that n is
known to followers via a membership view management service such as GMS JGroups
protocol §2.3; also that the leader starts its abcasting epoch with initial sequence
number m.c0.

4.2.1 Design Objectives

They are primarily two-fold: to reduce inbound and outbound traffic at the leader with
no overall performance loss and an increased inbound traffic at followers.

The leader reduces its outbound traffic by not broadcasting commit at all, but
leaving it to the followers to decide locally when a given m is to be committed. The
latter requires that (i) followers broadcast their acks (not just unicast to the leader)
and (ii) n ≥ ⌈N+1

2 ⌉ which makes ZabCT less crash-resilient than Zab; e.g. ZabCT
is not viable if a follower crashes in a system of N = 3 processes. We later address
this restriction by letting processes switch between ZabCT and Zab without stopping
abdelivery.

Inbound traffic at the leader is reduced by the use of implicit acknowledgments
and coin-tossing by followers. When a follower has logged m and is ready to broadcast
ack(m), it tosses a coin: if the outcome is Head, ack(m) is broadcast; if Tail, ack(m) is

4.2 Coin-Tossing Zab (ZabCT) 63

sent only to itself. Further, whenever ack(m) is broadcast, it indicates to recipients that
the broadcaster has locally logged all proposal(m′), m.c0 ≤m′.c < m.c, and every such
proposal(m′) is thereby being implicitly acknowledged. Recall that the Zab Assumption
A2 guarantees that proposal(m′), m′.c < m.c, is received before proposal(m) and hence
that m′ is logged no later than m.

The lines of pseudo-code executed (possibly by concurrent threads) at the leader
are as follows.

L1 : Leader initiates abcast(m) by broadcasting proposal(m) to all processes;

L2 : On receiving (from itself) proposal(m): log m; send ack(m) to itself;

L3 : Upon receiving either ack(m) or implicit ack for m from a quorum: send
commit(m) to itself;

L4 : On receiving commit(m): abdeliver(m) before abdeliver(m′), m′.c > m.c;

Those executed at a follower are:

F1 : On receiving proposal(m) from the leader: log m; send ack(m) to itself; toss the
coin; if (coin = Head) then broadcast ack(m) to leader and all other followers;

F2 : On receiving ack(m) or an implicit ack for m from a quorum of followers, send
commit(m) to itself.

F3 : On receiving commit(m): abdeliver(m) before abdeliver(m′), m′.c > m.c;

Let committable(m) be a stable predicate that becomes true at a process if the
process has received either ack(m) or implicit ack for m from a quorum. At any pi,
committable(m) ⇒ committable(m′), ∀m′ : m.c0 ≤m′.c≤m.c; also, ¬ committable(m′)
⇒ ¬ committable(m). Note that these properties also hold true in Zab and the use of
implicit acks does not invalidate them. Coin-tossing, however, brings in challenges not
present in Zab.

4.2.2 Coin Toss Challenges

Let us focus on committable(m) becoming true for a given m that the leader abcast at,
say, time t0. Subsequent to m, let the leader abcast mi, i≥ 1, at time ti, ti−1 < ti < ti+1.
Assume for brevity that time taken for message processing and transmission is zero.
Thus, followers toss their coins at t0 for m and at ti for mi as shown in Figure 4.1a.

4.2 Coin-Tossing Zab (ZabCT) 64

t0 t1 t2 tk

time a)

b)

c)

(H2, H3)

(H2)(H2) (H2) (H4)

(H4, H5)

Fig. 4.1: a. Coin toss instances; b. Scenario 1; c. Scenario 2

Figure 4.1 illustrates coin-toss challenges using different scenarios.
Let p denotes the probability that a coin-toss results in Head; so, prob(Tail) =

1−p. Let N = 5 and the leader of this 5-process system be p1 also denoted as pℓ, ℓ = 1
for simplicity.

In Scenario 1, at time t0, the followers p2 and p3 are assumed to get Head and others
a Tail outcome. This outcome is abbreviated in Figure 4.1b as (H2,H3) with subscripts
indicating followers 2 and 3 obtained Head where Tail outcomes not explicitly shown
for followers 4 and 5. committable(m) becomes true for {pℓ,p4,p5} and not for {p2,p3}
which have only two ack(m): p2 receives one ack from itself and p3 and p3 gets acks
from itself and from p2. When the coin-toss outcome at t1 is (H4,H5), p4 and p5

broadcast ack(m1) and thereby implicitly ack m. Thus, committable(m) becomes true
for {p2,p3} at t1. Note that, also at t1, committable(m1) becomes true for {pℓ,p2,p3}
(but not for {p4,p5}).

Thus, we observe that coin-toss outcomes determine when processes abdeliver a
given m and that pℓ is always in the first wave of abdelivering processes.

If committable(m) becomes true for a follower at t, then committable(m) becomes
true for pℓ at t or earlier (when zero message transmission time is assumed). In addition
if committable(m) becomes true for pℓ at t then there exists at least one follower for
which committable(m) becomes true also at t. Thus, the earliest time a follower can
abdeliver m is when pℓ abdelivers m.

Scenario 2 in Figure 4.1c assumes that p is smaller and illustrates ZabCT reliance
on subsequent abcasts for abdelivering m: only p2 gets Head until tk−1, for some k > 1,

4.2 Coin-Tossing Zab (ZabCT) 65

and at tk only p4 gets Head. Only at tk, pℓ can abdeliver m together with followers p3

and p5; {pℓ,p3,p5} can also abdeliver m1,m2, . . . ,mk−1 at tk due to acks broadcast by
p2 and implicit ack from ack(mk) broadcast by p4.

Observe that pℓ requires 0 and k abcasts subsequent to m in order to abdeliver m

in Scenarios 1 and 2 respectively. For a given p, let W (p) be the average number of
abcasts required subsequent to m for pℓ to abdeliver any m over all possible coin-toss
outcomes for a given p.

Note also that W (p) = 0 when p = 1 and W (p)→∞ as p→ 0. We thus observe
that abdelivery latencies depend on W (p) and the intervals between successive abcasts.
Let λ be the average rate at which pℓ makes abcasts. Therefore, we have:

Challenge 1: p must be chosen by taking into account the prevailing value of λ if the
average abdelivery latency by ZabCT is to be smaller than that by Zab.

It is possible that the value of λ drops suddenly; if that happens, (ti+1− ti) for
some i < k in Scenario 2, for example, can be too long and abdelivery of m is delayed
considerably. In these circumstances, followers are forced to carry out coin-tossing.

Challenge 2: Enforce coin-tossing by followers, when necessary, so that the average
abdelivery latency by ZabCT does not exceed that by Zab.

Suppose that followers are forced to coin-toss quite frequently. This obviously tends
to reduce ZabCT latencies but also increases the rate at which followers generate acks
(for any given p > 0). The latter has two implications: first, our design objective of
reducing inbound traffic at the leader is undermined; secondly, a follower, due to an
increased inbound traffic of acks, cannot speedily respond to read requests.

Challenge 3: The rate of ack arrivals at a follower is bounded by θ ≤ λ.
A follower receives commit messages in Zab at the rate of λ, i.e., one commit(m)

for every abcast(m) and hence commit messages arrive at a follower at rate λ in steady
state. There are no commit messages in ZabCT but followers’ acks are broadcast. So,
θ = λ ensures that followers handle the same inbound traffic in both protocols.

Let us note that when followers toss coins more frequently or use larger value of p,
ZabCT latencies tend to be smaller and the rate at which acks are broadcast tends
to be larger. This means that addressing the first two challenges can at times make
addressing the third one impossible and vice versa. That is, it may not always be

4.3 Computing the Coin’s Probability 66

possible to have ZabCT out-performing Zab; this observation leads to:

Challenge 4: If ZabCT is judged not to offer performance benefits over Zab, processes
should be able to switch autonomously to Zab.

We next address Challenge 2 and the rest in §4.3.

4.2.3 Enforced Coin Tossing

Since coin-tossing is done only by followers, enforcing it causes no change in the
pseudo-code of the leader in §4.2.1. For followers, Steps F2 and F3 are unchanged,
Steps F1 is modified and F4 is added:

F1 : On receiving proposal(m) from the leader: log m; send ack(m) to itself; reset
timer(D); toss coin; if (coin = Head) then broadcast ack(m);

F2 : As same as in F2 §4.2.1;

F3 : As same as in F3 §4.2.1;

F4 : On timer(D) expiry: reset timer(D); if (∃m′: not implicitly acked ∧ ack(m′) not
broadcast ∧ ¬ committable(m′)) then {select m, m.c≥m′c; toss coin; if (coin =
Head) then broadcast ack(m)};

Every time a follower receives a proposal, it sets a timer for duration D (in Step F1).
When the timer expires (in Step F4), the follower resets it and looks for proposal(m′)
whose m′ has been neither implicitly nor explicitly acked and not committed as well. If
it has such a proposal(m′), then it selects the proposal(m) with the largest m.c≥m′.c.
Note that if m ̸= m′, m would also not have been committed nor acked implicitly or
explicitly. The follower broadcasts ack(m), if the outcome of coin toss is Head. Thus,
a follower’s coin tossing rate is maximum

{
λ, 1

D

}
which is no smaller than 1

D .

4.3 Computing the Coin’s Probability

We will continue to retain for now the simplifying assumptions that n is known, fixed
and is at least ⌈N+1

2 ⌉, which will be removed in §4.3.3. Let us also assume (for now)
that W (p) can be computed for any p, 0 < p < 1, and for given n and N , and that
W (p) is a continuous, non-increasing function that asymptotically reaches 0 and ∞

4.3 Computing the Coin’s Probability 67

as p approaches 1(−) and 0(+) respectively. (Computing W (p) and its property are
discussed in §4.3.2.)

The value of p used by followers must satisfy two (competing) requirements:
R1: p must be large enough so that the average abdelivery latency in Zab is maintained
in ZabCT as well; and,

R2: p must be small enough so that the average rate at which followers broadcast acks
is bounded by θ ≤ λ.

Let L denotes the average abdelivery latency for the Zab leader and d the average
transmission delay for commit messages of Zab to reach the followers. Thus, the
average follower latency in Zab is L+d.

Suppose that ZabCT is run with p = 1; i.e., followers broadcast their acks (instead
of unicasting them to the leader as in the equivalent Zab runs). If the broadcasting
overheads are ignored, L is also the average ZabCT latency for all pi ∈ Π. However,
when p < 1, leader requires an average of W (p) follow-up abcasts for abdelivery, and
each of these abcasts is separated by an average duration of min

{
1
λ ,D

}
. Thus, the

average leader latency in ZabCT is L+W (p)×min
{

1
λ ,D

}
. As previously stated §4.2.2,

a follower can abdeliver as early as the leader. So, a necessary condition for R1 is:

L+W (p)×min
{1

λ
,D
}

< L+d ⇒ W (p) < d×max
{
λ,

1
D

}
(4.1)

Followers toss coins at the average rate of max
{
λ, 1

D

}
and the expected number of

heads in each of these tosses is np. Thus, R2 requires np×max
{
λ, 1

D

}
< θ; so,

p <

(
θ

n

)
×min

{1
λ

,D
}

(4.2)

With D fixed at the start, each follower periodically measures λ ‘and computes
prob(Head) as follows.

E1 Estimate P1 as the smallest probability that satisfies Equation 4.1; and,

E2 Estimate P2 as the largest probability that satisfies Equation 4.2.

Since W (p) is non-increasing and has (0,∞) as its range, unique P1 must exist.
Similarly, a unique P2, P2 > 0, exists, so long as the RHS of Equation 4.2 is larger than
0; i.e., so long as λ is finite and θ and D are chosen to be larger than zero. Given that
the RHS of Equation 4.2 is larger than 0, if θ

nλ ≤ 1⇒ θ ≤ nλ holds, then P2 ∈ (0,1]

4.3 Computing the Coin’s Probability 68

P
1

W(p)= � W(p)=0

p=0

p=0 p=1

p=1

np=n np=0

P
2

Fig. 4.2: Competing requirements on p.

irrespective of any positive value chosen for D. Since n > 1, 0 < θ ≤ λ is sufficient to
ensure the existence of a unique P2 ∈ (0,1] even if D > 0 is arbitrarily chosen.

The green intervals in Figure 4.2 indicate the range of p values for which the
Equations 4.1 and 4.2 are separately met: Equation 4.1 is met for all p≥ P1 in Figure
4.2 and Equation 4.2 is met for all p≤ P2. When P1 ≤ P2, as shown in the figure, any
p, P1 ≤ p ≤ P2, may be chosen. If, on the other hand, P1 > P2, then ZabCT is not
feasible and a switch to Zab is needed.

On the tasks of computing P1 and P2, the latter can be easily found by subtracting a
very small δ (e.g., δ = 10−2) from the RHS of Equation 4.2: P2 = (θ

n)×min
{

1
λ ,D

}
− δ.

Computing P1, on the other hand, requires finding the inverse function of W (p):
W (P1) = d×max

{
1
D ,λ

}
− δ, i.e., P1 = W −1(d×max

{
1
D ,λ

}
− δ).

The expression for W (p) in Equation 4.9 of §4.3.2 would suggest that computing
W −1(.) is not trivial. So, we propose a computationally-easier method that involves
performing an iterative search over a sub-interval that contains P1. We select a set
P of R, R > 2, probabilities, that include both 0 and 1, to divide the interval [0,1]
into R−1 contiguous sub-intervals such that the first one begins with 0, the last one
ends with 1 and each probability point in P−{0,1} marks the end of one distinct
sub-interval and the start of another. One simpler way to construct P would be to
choose R−1 as some multiple of 10 and have all sub-intervals equal in size:

4.3 Computing the Coin’s Probability 69

P = {pr : p0 = 0∧pR−1 = 1∧∀r,0 < r < R−1 : pr−pr−1 = 1
R−1}.

Definitions: Let P1u be the smallest pr ∈P that satisfies Equation 4.1, and P1l be
the largest pr ∈P that does not satisfy Equation 4.1.

W (P1u) <

(
d×max

{ 1
D

,λ
})

, W (P1l)≥
(

d×max
{ 1

D
,λ
})

(4.3)

Since W (1 ∈ P) = 0 and W (0 ∈ P) =∞ (see Figure 4.2), W (P1u) and W (P1l)
must exist. Moreover, due to non-increasing nature of W (p), we have unique P1l and
P1u: P1l < P1u. Since (d×max

{
1
D ,λ

}
) is finite, non-zero and positive, 0 < P1u ≤ 1

(irrespective of value chosen for R > 2). By definitions, P1l < P1 ≤ P1u and for some
0 < r ≤R−1, P1u = pr and P1l = pr−1.

Recall that when P1 ≤ P2, P1 and P2 impose the lower and upper bounds respec-
tively on the range of p that satisfies both Equations 4.1 and 4.2. With P1 not being
computed directly, we define:

Definition: Let P e
1 be a reasonably accurate estimate of P1.

If an attempt to estimate P e
1 were to definitely indicate P e

1 > P2, then it can be
decided that ZabCT is not viable and the estimation can be halted. Therefore, the
estimation procedure proposed below would return a safe, default value of P e

1 = 1
ZabCT is certainly found to be infeasible. (P1 > P2 ⇒ P2 < 1, the default value
returned for P e

1 which is therefore safe.)
On the other hand, if there are indications that P e

1 ≤ P2 would or even might
hold, then P e

1 is computed as accurately as possible as it would form the lower bound,
denoted as pl, on the range of p that satisfies both Equations 4.1 and 4.2. Thus, pl = P e

1
when P e

1 ≤ P2. Our procedure for estimating P e
1 assumes a small δ and accomplishes

the following:

P1 ≤ P2: return (pl = P e
1 : P1 ≤ P e

1 < P1 + δ); and,

P1 > P2: return (P e
1 = 1).

The rationale for our estimation procedure comes from (i) the restriction we impose
on P e

1 : like P1, P e
1 ∈ (P1l,P1u] be satisfied, and (ii) the observation that P2 can be related

to the interval (P1l,P1u] in three possible ways, namely, outside of the interval but on
the lower or the higher side and within the interval. These three possibilities confirm
the definite absence, the definite presence and the potential presence of pl = P e

1 ≤ P2,

4.3 Computing the Coin’s Probability 70

respectively. (Figure 4.2 shows the third possibility where P e
1 , P1l < P e

1 ≤ P2 can be
found.)

(i) (P2 ≤ P1l): P e
1 = 1 and pl does not exist because P2 < P1 holds;

(ii) (P2 ≥ P1u): pl does exist and pl ∈ (P1l,P1u], because P1 ≤ P1u ≤ P2; and,

(iii) (P1l < P2 < P1u): pl may exist; if it does, pl ∈ (P1l,P2].

Algorithm 1 Compute P e
1

Require: P2, P1u, P1l and δ;
1: if (P2 ≤ P1l) then
2: return P e

1 = 1;
3: else
4: double pl = minimum {P2,P1u};
5: while (W (pl) < d×max

{
1
D ,λ

}
∧pl > P1l) do

6: pl = pl− δ;
7: end while
8: pl = pl + δ;
9: return P e

1 = pl;
10: end if

Algorithm 1 presents the pseudo-code for finding P e
1 . If P1 ≤ P2, the returned value

pl will be larger than P1 by at most δ: pl ∈ [P1,P1 + δ) (see Observation below). If
P1 > P2, P e

1 = 1 is returned which would signal having to switch to Zab.

Observation: pl ∈ [P1,P1 + δ) when P1 ≤ P2.
When P2 > P1l, the execution enters the while loop with pl being set to minimum{P2,P1u}

(line 4). The first evaluation of the while condition would be true and hence the decre-
ment of pl within the while loop must occur at least once; in other words, the evaluation
of while condition must occur at least twice in that execution.

Suppose that the ith evaluation of the while condition fails and let pli denote the
value of pl in this ith evaluation. Note that i≥ 2. Obviously, pli < P1; otherwise, ith

evaluation would not have failed the while condition. Since the condition was found
to be true in the (i−1)th evaluation, pl(i−1) ≥ P1 must hold and pl(i−1) = pli + δ; i.e.,
pli ≥ P1− δ. Thus, pli ∈ [P1− δ,P1)⇒ pli + δ ∈ [P1,P1 + δ). Note that pli + δ is the
value returned as pl = P e

1 after the post-exit increment at line 8.
Suppose that P1 ≤ P2 holds. pl = P e

1 returned should ideally be P1; thus, the
method can only over-estimate pl and the error is bounded by δ. Hence, the value of δ

4.3 Computing the Coin’s Probability 71

used must be small (e.g., 10−2) for accurate estimation. However, irrespective of the δ

value used, any pl returned is guaranteed to satisfy P1l < pl = P e
1 ≤minimum{P2,P1u}.

4.3.1 Optimal Probabilities for Specific Toss Outcomes

When P1 ≤ P2, it is possible select p to have an optimal value that maximises certain
desirable coin-toss outcomes. Let P∗ = {p∗(o)} denote set of all such optimal probabil-
ities where p∗(o) maximises a specific system-wide coin-toss outcome o [22]. Figure 4.3
assumes five such outcomes and depicts the corresponding optimal probabilities p∗(o).
We will assume for now that these specific coin-toss outcomes of interest are finite in
number for any finite n and hence P∗ is a finite set of discrete probabilities.

p*(o1) p*(o2) p*(o3) p*(o4) p*(o5)

p*(o1) p*(o2) p*(o3) p*(o4) p*(o5)

P
1

W(p)= � W(p)=0

p=0

p=0 p=1

p=1

np=n np=0

P
1
*

P
2

P2*

(a) P1 and P1* for W(p) < d

× max{1/D, �}

(b) P2 and P2* for np < � × min{1/�, D}

Fig. 4.3: Optimal probabilities for specific toss outcomes

Let α and b be integers such that α≥ 1, b≥ 0 and α + b < n; let B(α : α + b,n,p)
denote the Binomial Probability that h, α ≤ h ≤ α + b, heads occur when a coin
with prob(Head) = p is tossed n times. p∗(α : α + b,n) is the value of p at which
B(α : α + b,n,p) is at its maximum.

For brevity, we will omit mentioning n and p when it is obvious from the context
and write B(α : α + b,n,p) as B(α : α + b) and p∗(α : α + b,n) as p∗(α : α + b). We use
Ḃ(α : α+ b) and B̈(α : α+ b) to denote respectively the first and the second derivatives
of B(α : α + b) with respect to p.

4.3 Computing the Coin’s Probability 72

Observe that when α = 0 and α + b = n, B(α : α + b) = 1 and Ḃ(α : α + b) = 0 for
all n and p∗(α : α + b) does not exist. Moreover, for any α + b < n, p∗(α : α + b) = 0 if
α = 0, and for any α > 0, p∗(α : α + b) = 1 if α + b = n. These observations motivate
the bounds imposed earlier on α and α + b: 1 ≤ α ≤ α + b < n. Finally, when b = 0,
p∗(α : α) gives the probability at which the chances of getting exactly α heads are
maximum.

B(α : α + b) =
b∑

j=0

(
n

α + j

)
pα+j(1−p)β−j , where β = n−α

Ḃ(α : α + b) =
b∑

j=0

d
dp

(n

α + j

)
pα+j(1−p)β−j


Consider any two consecutive terms in Ḃ(α : α + b); i.e., for j, 0≤ j < b,

Ḃ(α + j : α + j +1) = d
dp

(n

α + j

)
pα+j(1−p)β−j


+ d

dp

(n

α + j +1

)
pα+j+1(1−p)β−j−1

 (4.4)

The negative term that results in differentiating the first term in (4.4) is the same as
the positive term in differentiating the second in (4.4). Consequently, for j, 0≤ j < b:

Ḃ(α + j : α + j +1) =
(

n

α + j

)
(α + j)pα+j−1(1−p)β−j

−
(

n

α + j +1

)
(β− j−1)pα+j+1(1−p)β−j−2

∴ Ḃ(α : α + b) =
(

n

α

)
(α)pα−1(1−p)β−

(
n

α + b

)
(β− b)pα+b(1−p)β−b−1

Let K0 = n!
(α−1)!(β−b−1)! .

Let us note that
(

n
α

)
(α) = n!

(α−1)!β! and
(

n
α+b

)
(β− b) = n!

(α+b)!(β−b−1)! .

∴ Ḃ(α : α + b) = K0

pα−1(1−p)β

b∏
j=0

(β− j)
− pα+b(1−p)β−b−1

b∏
j=0

(α + j)

 (4.5)

4.3 Computing the Coin’s Probability 73

Since K0 ̸= 0, Ḃ(α : α + b) = 0⇒

pα−1(1−p)β

b∏
j=0

(β− j)
= pα+b(1−p)β−b−1

b∏
j=0

(α + j)
⇒

1−p

p

b+1

=
b∏

j=0

β− j

α + j

⇒
1

p
−1

=
 b∏

j=0

β− j

α + j


1

b+1

(4.6)

Ḃ(α : α + b) = 0 at p = p∗(α : α + b).

∴
1

p∗(α : α + b) = 1+
 b∏

j=0

β− j

α + j


1

b+1

(4.7)

Appendix E proves that B̈(α : α + b) < 0 at p = p∗(α : α + b), if p∗(α : α + b) ̸= 0 and
p∗(α : α + b) ̸= 1. Thus, B(α : α + b) is maximum when p∗(α : α + b) of Equation (4.7)
is neither 1 nor 0.
When n = 4, for example, p∗(0 : b) = 0,∀b < 4; p∗(α : 4) = 1,∀α≥ 1; and,

P ∗ =
{
p∗(α : α + b) : 1≤ α≤ α + b < n

}
=
{
p∗(1 : 1),p∗(1 : 2),p∗(1 : 3),p∗(2 : 2),p∗(2 : 3),p∗(3 : 3)

}
4.3.2 Computing W (p): Expected number of subsequent ab-

casts required

Let us assume that message transmission and processing times are zero and focus on
abdelivery of m that was abcast at t0 as depicted in Figure 4.1a). Let Si, 0 ≤ i ≤ n,
refers to the system state in which i followers have broadcast either ack(m) or ack(m′ :
m′.c > m.c). f(h;g) =

(
g
h

)
ph(1−p)(g−h) is the binomial probability that h heads occur

when g followers toss their coins. Thus, Si is reached at t0 with probability f(i;n)
when all n followers toss their coins for m at t0.

When i ≥ a = ⌈N−1
2 ⌉, the leader abdelivers m, and hence Sa, Sa+1, Sn are

called absorption states which, if reached, require no further abcasts for m to be
abdelivered by the leader. Let Wi(p) be the expected number of abcasts required for
leader to abdeliver m, given that system is in Si at t0; note that Wi(p) = 0,∀i≥ a.

Let qij be the probability that the system transits from Si to Sj , j ≥ i, when one
more abcast is made. It is the probability that (j− i) followers, out of those (n− i)

4.3 Computing the Coin’s Probability 74

Si

Sa-1Si

time

t0 t1

Si+1

Sa

Sn

Fig. 4.4: Possible state transitions

followers that have not yet got Head since receiving m, get Head for the latest abcast.
So, qij =

(
n−i
j−i

)
p(j−i)(1−p)(n−j).

Let us hypothesize that Si prevails at t0 and Sj at t1, as shown in Figure 4.4 where
absorption states are shown in green. Under this hypothesis, Wi(p) = (1 + Wj(p)),
where 1 accounts for the abcast at t1 and Wj(p), by definition, is the expected number
of abcasts required for leader to abdeliver m, if that system were to be in Sj at t0.
Any Sj , i≤ j ≤ n, is possible at t1 with probability qij . Note that Si at t1 is possible
if none of those (n− i) followers that got Tail outcome at t0, get Head outcome at t1

which occurs with probability qii = (1−p)(n−i). Further, Wj(p) = 0,∀j ≥ a. So,

Wi(p) =
n∑

j=i

qij(1+Wj(p)) =
n∑

j=i

qij +
a−1∑
j=i

qijWj(p) = 1+
a−1∑
j=i

qijWj(p) (4.8)

∴ W (p) =
n∑

i=0
f(i;n)Wi(p) =

a−1∑
i=0

f(i;n)Wi(p) (4.9)

For example, when N = 5 and n = 4, W4(p) = W3(p) = W2(p) = 0; from Equation
4.8, W1(p) = 1

1−q11
and W0(p) = 1+q01×W1(p)

1−q00
. W (p) = f(0;4)W0(p)+f(1;4)W1(p).

4.4 Failures in Proposed Protocols 75

4.3.3 Protocol Switching

A follower may wish to switch to executing Zab on two occasions: (i) p could not
be computed as per Equations 4.1 and 4.2; and, (ii) another follower crashes, value
of n changes and the membership service is yet to update the new membership. In
the latter case, the value of p being used may be inappropriate and abcasts can
remain uncommitted for too long. This is deduced by setting timer(Cm) on receiving
proposal(m).

Protocol switching is organised similar to 2-Phase commit: even one follower’s
vote to quit ZabCT is enough for all to switch to Zab, and all followers must vote
for ZabCT for switching from Zab to ZabCT; moreover, the leader decides based on
followers’ votes and informs them of its decision. Followers use a message field prot in
their acks to indicate their votes, and the leader uses prot in its commit messages to
inform followers of its decision.

If a follower, while executing ZabCT, experiences timer(Cm) or cannot find p, it
unicasts its ack (as in Zab) to the leader with prot set to Zab. Whenever the leader
receives an ack(m) with prot=Zab, it broadcasts commit(m) with prot=Zab to all
followers, when it sends, or if it has already sent, commit(m) to itself. When a follower
executing ZabCT receives commit(m) with prot=Zab, it starts executing Zab.

A follower that executes Zab still measures λ and attempts to compute p; if p can
be computed successfully on several consecutive iterations and membership remains
unchanged for a prolonged period, a follower votes for ZabCT using prot. If the leader
receives votes for ZabCT from all n, n ≥ ⌈N+1

2 ⌉, followers, it broadcasts its commit
with prot=ZabCT and thus instructs the followers to switch to ZabCT.

4.4 Failures in Proposed Protocols

This section considers the consequences of the leader or follower failures when performing
the broadcast phase. We consider three scenarios SC1, SC2 and SC3 (see §2.2.1) that
may occur when servers perform the broadcast phase. For the sake of simplicity, this
section is divided into two parts. The first part analyses server crashes when the
protocol is operating under the restrictive assumptions (hence ZabAc, ZabAa and
ZabCt) and the second, looks at what happens when the server crashes while it is
executing a protocol operating under Zab’s original fault assumptions (hence ZabAA
and ZabCT).

4.4 Failures in Proposed Protocols 76

4.4.1 Protocols with Restrictive Assumption

ZabAc and ZabAa

If the leader crashes (Scenario SC1) or no quorum of servers supports its leadership
(Scenario SC2), all operative followers stop serving client requests and proceed to the
discovery phase. Servers entering this phase execute steps as in Zab §2.2.1 to elect
a new leader. However, as previously stated, if the leader server crashes and then
subsequently recovers, it cannot take part (due to A1.1) in the election. This is to avoid
inconsistency between the state of the servers (see an example in §3.3). Therefore,
protocols operating under such restrictive assumptions require f + 1 servers, Q′, in
order to operate during the discovery phase. If the leader crashes, the ZooKeeper stops
serving clients. In this case, a new leader process needs to be elected. Since abcasts
are totally ordered, Zab requires at most one leader to be active at any one time. As
previously stated, in Zab, if SC1 occurs, all correct replicas go to the leader election
stage to find a new quorum and elect a new leader. In

Basically, to elect new leader, the discovery phase requires either f + 1 servers
excluding the previous leader or at least f + 2 servers. Upon electing a new leader,
the servers proceed to the synchronisation phase and the same steps as in Zab’s
synchronisation phase §2.2.1 are executed to ensure that all servers are consistent
before entering the next phase, the broadcast phase.

ZabAc and ZabAa protocols allow up to f followers to crash whilst there is still a
quorum. Therefore, when Scenario SC3 occurs (i.e. when a follower crashes whilst there
is still a quorum), upon rejoining the ensemble, it must connect to the current leader
in order to synchronise its state before entering the broadcast phase. Consequently,
a follower performs identical steps to Zab when recovering from crashes, through
executing Zab’s synchronisation phase.

ZabCt

If ZabCt’s leader crashes, N servers must exist to execute the discovery phase due to
its design requirement for coin probability p = 0.5, otherwise all servers must behave
as Zab servers, executing the discovery, synchronisation and broadcast phases as in the
Zab protocol. Unlike ZabAc and ZabAa, ZabCt does not allow any server to crash, if
it does, all correct servers switch to the Zab protocol in case the value of p = 0.5 being
used inappropriate causing abcasts to remain uncommitted for too long (see §3.6.2 for
more details about protocol switching).

4.4 Failures in Proposed Protocols 77

4.4.2 Protocols with Zab Assumption

The ZabAA and ZabCT protocols operate under the Zab assumption and invariant
that states if any server executes abdeliver(m), then all servers in some Q have logged
m locally.

ZabAA

If SC1 occurs, servers in the ZabAA protocol can execute Zab’s discovery and synchro-
nisation phases and then proceed to ZabAA’s broadcast phase when they synchronise
their state with the new leader. Unlike Zab, ZabAA can only tolerate f−1 followers to
crash simultaneously. If, however, more than f −1 followers crash, all correct servers
proceed to the discovery phase looking for at least f +2 servers to elect a new leader.
If the discovery phase does not find at least f +2 servers, the protocol operates as in
Zab when f +1 is enough to elect a new leader and run Zab’s broadcast phase after
the servers have synchronised their state with the new leader. Unlike ZabCT, if SC3
occurs while at the same time f + 1 followers are operational, ZabAA will tolerate the
crash. When the follower that crashed rejoins the ensemble, it recovers its state using
Zab’s synchronisation phase §2.2.1.

ZabCT

ZabCT does not tolerate any server crashes. Thus, it must operate for all N . This
is due to the fact that the value of n changes, leading to probability p being used
inappropriate and abcasts can remain uncommitted for too long. For example, when
N = 3 we have two followers n = 2. Assuming that one follower crashes, this would lead
to there being only one follower remaining for tossing coin. This means the likelihood
of getting f + 1 followers to obtain the outcome of Head reduces. This not only delays
abddelivery at the followers but also the leader is expected to have a higher latency in
abdelivery. ZabCT deals with any crash by switching to the Zab protocol §3.6.2 and
then back to itself when N servers join the system. Assumption A3 is used for this
purpose.

As previously stated §2.2.1, in Zab, if the leader crashes, the ZooKeeper stops
serving clients. In this case, a new leader process needs to be elected. Since abcasts
are totally ordered, Zab requires at most one leader to be active at any one time. In
addition, if SC2 occurs (a leader does not receive heartbeats from a quorum of servers
within a given timeout, it abandons its leadership.), all correct Zab replicas go to

4.5 Summary 78

the leader election stage to find a new quorum and elect a new leader. Furthermore,
when a scenario SC3 occurs, unlike ZabCT, Zab can tolerate up to f followers to crash
when f + 1 servers out of 2f + 1 are correct. Upon rejoining the existing quorum,
follower F connects to the leader and sends its last m.c, so the leader can decide how to
synchronise the followers’ history. To bring follower up to date, leader sends the current
epoch and the follower’ missing proposals. Finally, upon receiving an acknowledgement
from follower, leader sends a commit message and adds follower to the existing quorum
Q, making Q←Q∪F .

4.5 Summary

This chapter demonstrates that the effect of leader traffic reduction is so overwhelming
that much smaller in latency can be obtained when the coin-toss probability is appro-
priately chosen. This is our principal contribution and, to the best of our knowledge,
improving Zab performance through coin-toss guided ack broadcasting has not been
investigated. Followers broadcasting their acks to eliminate commit phase in Zab has
been deemed impractical in [57]; here, we demonstrate that it is indeed a practical
approach to improve Zab performance when it is combined with coin-tossing.

The next chapter is devoted to empirically comparing the performance of Zab
and all Zab-variants presented in this thesis using message complexity, latency and
throughput as metrics.

Chapter 5

Performance Evaluation

This chapter provides a comprehensive performance evaluation of the key concepts
introduced in this thesis. The evaluation focuses on three issues:

i A performance comparison between Zab and the Zab variants (ZabAc, ZabAa,
ZabCt, ZabAA and ZabCT) described in Chapter 3, where ZabCt and ZabCT
protocols utilise fixed coin-tossing probability, p = 0.5.

ii A performance comparison between Zab and ZabCT that adaptively chooses
coin’s probability p as explained in Chapter 4.

iii The performance of Zab, ZabAc and ZabCT (where the coin-tossing probability
is adaptively chosen) under high-load conditions.

The remainder of this chapter is structured as follows: the first section details
the experiments and evaluation (i) under varying the ratio of reads to writes that
imposes on servers §5.1. In §5.2 we introduce an experiment that evaluates (ii) under
different client wait times which varies the client requests rate λ as this is important
for evaluating ZabCT for generating a range of coin probabilities p. Finally, in §5.3
an experiment is presented that evaluates (iii) what happens when all requests are
write-only and number of clients increases in order to evaluate the protocols under
high-load scenarios.

5.1 Zab vs Zab Variations 80

5.1 Zab vs Zab Variations

This section describes the experimentation and gives a performance comparison between
Zab and the five variants (ZabAc, ZabAa, ZabCt, ZabAA and ZabCT) introduced in
Chapter 3. A fixed coin probability p = 0.5 is chosen for ZabCt and ZabCT.

To test our hypothesis that the Zab-variant approaches improve the performance of
Zab, an experiment was developed to emulate the workflow of ZooKeeper operations
sent by the client. This experiment does not utilise ZooKeeper coordination primitives
(such as watches, locks and so on), rather it focuses purely on replicating the state
changes and underlying communication stages required by Zab and Zab variants.

Since the Zab implementation is rather entangled with the Apache ZooKeeper code
base, we implement Zab and each Zab variant as an independent atomic broadcast
protocol, separate from ZooKeeper. By doing so, the comparison focuses purely on
atomic broadcast which is central to the research report in this thesis (see Appendix A
for more details on the Zab implementation).

In our experiments, if the Zab-variant approaches can demonstrably increase
throughput and reduce the latency caused by state change requests, abcasts, while
operating under different read/write loads and number of servers N , then it can
be inferred that the performance of ZooKeeper will be improved by adopting these
protocols. Zab lies at the core of ZooKeeper. Thus, if any of the Zab variants performs
better than Zab in terms of throughput and latency, it is assumed that replacing Zab
with the Zab-variants resulted in boosting ZooKeeper performance. Therefore, if our
experiments show that the Zab variant approaches consistently outperform Zab, then
our hypothesis is assumed to be true.

Utilising the same structure and workloads for the experiments across the protocols
under evaluation allows us to compare the performance of the different approaches
across a consistent environment.

5.1.1 Experimentation

Each experiment uses 250 concurrent clients distributed equally on 10 identical machines;
each machine thus hosts 25 clients. At most 9 machines were dedicated to running the
protocols, thus covering N = 3,5,7,9. ZooKeeper installations typically have 3-7 servers,
so 9 is larger than the typical setting [37]. The machines used in the experiments were
commodity PCs of 2.80GHz Intel Core i7 CPU and 8GB of RAM, running Fedora
21 and communicating over 100 Mbps Switched Ethernet as depicted in Figure 5.1

5.1 Zab vs Zab Variations 81

for N = 3. Connections between machines were established at the beginning of the
experiment.

100 Mbps Switched Ethernet

Clients Servers

Fig. 5.1: Clients and protocol servers communication

The protocols were implemented in Java (JDK 1.8.0) on top of the JGroups
framework (version 3.6.8). The protocol stack that contains the following protocols was
used: UDP, PING1, FD_SOCK, FD_ALL, VERIFY_SUSPECT, UNICAST3 and
GMS. Messages were transmitted using JGroups’ FIFO reliable UDP, more precisely,
by using the UNICAST3 protocol in the JGroups suite which is functionally identical
to TCP (see §2.3).

Each client generates a type read or write request with a payload of 1Kbyte (a
typical operation size [37]) and sends the request to one of N servers. If the request is
of read type, then the server simply reads the data from its local database (in memory)
and returns the requested data as the response; if the request is of type write, the server
(if not the leader) forwards it for abcasting; when a server abdelivers a request it had
received directly from a client, it sends the request back to the client as the response.
On receiving the response, the client repeats its action and selects the destination
server in a round-robin manner. Thus, there are at most 250 client requests being
handled by the servers.

A write-ratio, WR, 0 < WR ≤ 1, was used for clients in order to vary the load
imposed on servers. For every write request that a given client generates, 1−W R

W R read
1Ping protocol is used for discovery of members. Used to detect the coordinator (oldest member),

by mcasting PING requests to an IP multicast address. Each member responds with a packet C, A,
where C=coordinator’s address and A=own address. After N milliseconds or M replies, the joiner
determines the coordinator from the responses, and sends a JOIN request to it (handled by GMS). If
nobody responds, we assume we are the first member of a group [4].

5.1 Zab vs Zab Variations 82

requests are generated; in other words, WR > 0 is the probability that a request
generated by a client is of type write. The experiments reported here considered WR

values ranging from 10% to 100% in steps of 10%.
In an experiment, where the protocol, WR and N are fixed, clients send and receive

responses for a total of 10000 write requests after the warm-up phase. For example, if
WR = 50%, the server system will process 10000

0.5 = 20000 read/write requests, i.e., each
of the 250 clients will issue 80 requests. Note that servers handle at most 250×WR

abcasts at any moment.

Performance Metrics

Three performance metrics are used to evaluate proposed protocols message complexity,
latency and throughout. We believe that these type of performance metrics can help
promote meaningful comparisons and assessments of protocols performance. The
definition of performance metrics, including how they are computed are as follow:

Message Complexity As this research focuses on reducing the leader’s inbound
and outbound traffic, it would be advantageous to compare message overhead in order
to evaluate the effect of protocol optimization on original Zab. Theoretically, we
compare the total number of unicasts per abcast for each protocol. Thus, protocol with
minimum number of unicasts is considered to have less message cost.

Latency Let t0 and t1 be the instances when a server receives a request from a client
and abdelivers that request respectively; t1− t0 defines the abdelivery latency for that
request. The average of 10000 such latencies was computed and the experiment was
repeated 20 times for a confidence interval of 95%.

Throughput Throughput is defined as the number of abdeliveries (abds) made by
all servers per unit time and is computed, like latencies, with a 95% confidence interval.
Furthermore, we report latency/throughput improvements offered by the proposed
protocols over Zab and were computed as follows: Let X and Xv be metrics for Zab
and Zab-variant approaches respectively; improvement in latency (L) is L−Lv

L and that
in throughput (T) is Tv−T

T . (Thus, a positive value implies that the proposed protocol
is better.)

Experiments were run in failure-free scenarios and concentrated on message flow,
quorum size, varying the read/write workloads and the replication degrees. Furthermore,

5.1 Zab vs Zab Variations 83

servers do not log m to the disk (as ideally required) but only record m in main-memory.
Thus the performance figures presented here do not include disk write delays, but
only network delays. This kind of evaluation corresponds to the ’Net-Only’ category
of the evaluations in [37] where several ways of logging have been considered. Since
both protocols require the logging of m to take place at exactly the same point in the
execution for every abcast(m), ignoring delays due to disk writes should not invalidate
the integrity of the observations made and conclusions drawn from the performance
figures.

All experiments reported in this chapter were conducted in isolation in order to
prevent any side effects caused by concurrently executing multiple experiments on the
same cluster, however, we ran each of the experiment over approximately the same time
period to ensure that the network was placed under similar loads for all experiments.
Furthermore, the same cluster of machines were used for conducting the experiments
to ensure a fair comparison between protocols.

5.1.2 Evaluation

This section is split into three distinct subsections. The first section compares the
performance of the Zab protocol and the Zab-variant approaches in term of message
complexity. The next section evaluates the performance by focusing on latency. The
final section evaluates the performance by focusing on throughput.

Message Complexity

Theoretically, ZabAc has a message complexity of 4 unicasts per abcast whereas Zab
has 6, when N = 3. ZabAa and ZabAA have identical message cost. Compared to
Zab, for example, in an N cluster size, Zab has 3(N −1) and ZabAa or ZabAA get
N(N −1) unicasts per abcast and message complexity increases quadratically with N .

In ZabCt or ZabCT protocols, the expected message complexity per abcast is
(N −1)+(N −1)p(N −1). When p = 0.5, it becomes (N −1)+0.5(N −1)2 which is
now quadratic only on (N−1). Furthermore, the leader in ZabCt or ZabCT, regardless
of N , is expected to receive 0.5× (N −1) follower acks per abcast, which is just half of
the number received in Zab, ZabAc and ZabAa or ZabAA. For example, the leader in
ZabCt or ZabCT with N = 3 is expected to receive one follower ack per abcast, while
it receives 2 follower acks in Zab, ZabAc and ZabAa or ZabAA.

5.1 Zab vs Zab Variations 84

Latency

Figure 5.2 shows a latency comparison between Zab and the different Zab-variants for
all N and WR. From the figure, it can be seen that Zab-variant protocols abdelivers
faster than Zab for all N and WR as followers need not wait for commit messages
from the leader.

Let us first focus on latency depicted in Figure 5.2a. It is apparent from this figure
that ZabAc offers shorter latencies compared to Zab and the other protocols for all
WR. Another important finding is that the difference between Zab and the Zab-variant
protocols increases as the number of write requests outnumber read requests. The
difference between Zab and ZabAc is about 7 millisecond (ms) at WR = 10% and
10 ms at WR = 100%. This can be attributed to the absence of commit message
transmissions in ZabAc, and Zab followers having to handle increased incoming traffic
at higher loads.

It is interesting to note that the performance of ZabCt is nearly level with that of
ZabAc when the figure approaches WR = 100%. Frequent abcasting leads to frequent
coin-tosses which in turn reduces delays due to the leader having to commit by receiving
implicit acks from followers; moreover, the incoming traffic at the leader halves (Remark
2 in §3.6.2) when followers toss coins which have the effect of reducing latencies at the
leader.

In contrast to ZabCt, ZabCT has slightly higher abdelivery latencies particularly at
WR = 10%−60%. This result may be explained by the fact that followers in ZabCt
only wait for f acks to abdeliver the request whereas in ZabCT f + 1 are required
which means a follower waiting for one more ack(m) before issuing commit(m) further
prolongs abdelivery latencies.

Note that followers in ZabCt do not rely on each other’s acks for abdelivery and
are therefore not disadvantaged by having to wait for a implicit acks. However, this
advantage disappears in ZabCt for N = 5,7,9 (see Figures 5.2b, 5.2c and 5.2d) where
a follower must wait for at least one ack from another follower and as a result the
abdelivery latencies become almost equal between ZabCt and ZabCT.

Furthermore, from Figure 5.2a, ZabAa is seen to demonstrate a latency comparable
to that of ZabCT. A possible explanation for this is that a follower in ZabAa waits less
time than a follower in ZabCT to abdeliver a request (f and f +1 follower acks are
required by ZabAa and ZabCT respectively) although, the downside is that in ZabAa,
message complexity is higher, being N(N − 1) in ZabAa and (N − 1) + 0.5(N − 1)2

unicasts per abcast in ZabCT which is quadratic only on (N −1).

5.1 Zab vs Zab Variations 85

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

Zab

ZabCt

ZabAc

ZabAA

ZabAa

ZabCT

(a) Ensemble size N = 3

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab ZabAa ZabCt ZabAA ZabCT

(b) Ensemble size N = 5

70

80

90

100

110

120

130

140

150

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab ZabAa ZabCt ZabAA ZabCT

(c) Ensemble size N = 7

100

110

120

130

140

150

160

170

180

190

200

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab ZabAa ZabCt ZabAA ZabCT

(d) Ensemble size N = 9

Fig. 5.2: Latency comparison

5.1 Zab vs Zab Variations 86

The ZabAA protocol appears to have lower latency than Zab and however but it
is higher than all the other protocols. This can also be observed in all of the other
graphs in Figure 5.2 where N > 3 (see Figures 5.2b, 5.2c and 5.2d). This result was
expected since the protocol has a message complexity of N(N −1), which increases
quadratically with N and there are delays in abdelivery at the followers which require
f +1 acks in order to issue a commit message.

Finally, considering the latency figures for N = 5,7,9, there is a marked difference
in the behaviour of ZabCT compared to ZabAa, ZabCt and ZabAA, which are very
close at all WR and this closeness tights as N increases. This leads us to conclude that
ZabCT is a desirable alternative to ZabAa, ZabCt and ZabAA from the perspective
of traffic reduction, abdelivery latencies and more importantly, the same assumptions
apply in ZabCT as in Zab protocol, hence the same crash-recovery mechanism can be
used.

Throughput

Figure 5.3 depicts the throughput results of our experiments for all N and WR.
As shown in Figure 5.3a, ZabAc outperforms the other protocols but is closely

followed by the two coin-tossing protocols, ZabCt and ZabCT. From the figure, it
can be seen that the difference between ZabAc and Zab increases as WR increases:
about 108 abds/sec at WR = 50% to 577 abds/sec at WR = 100%. Furthermore,
the differences between ZabAc and Zab are also highlighted in terms of performance
improvements as can be seen in Table 5.1. The table shows that the throughput of
ZabAc outperforms Zab for almost all WR.

Analysing the throughput results for N = 5,7,9, the proposed protocols perform
at least as well as, if not better than, Zab. Furthermore, as for latency, there were
no significant differences in throughput between the Zab-variants as N increased but
the difference becomes more apparent with Zab protocol. Two probable causes for
improvement in the throughput in the Zab-variant protocols when compared to Zab
are: (i) the absence of commit message transmissions in ZabAc, and (ii) Zab followers
having to handle increased incoming traffic at higher loads.

5.1 Zab vs Zab Variations 87

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

5000

5200

5400

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

Zab

ZabCt

ZabAc

ZabAA

ZabAa

ZabCT

(a) Ensemble size N = 3

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab ZabAa ZabCt ZabAA ZabCT

(b) Ensemble size N = 5

1200

1300

1400

1500

1600

1700

1800

1900

2000

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab ZabAa ZabCt ZabAA ZabCT

(c) Ensemble size N = 7

1000

1100

1200

1300

1400

1500

1600

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab ZabAa ZabCt ZabAA ZabCT

(d) Ensemble size N = 9

Fig. 5.3: Throughput comparison

5.1 Zab vs Zab Variations 88

WR Latency Improvement Throughput Improvement
10 22% -3%
20 21% 4%
30 24% 4%
40 21% 7%
50 19% 3%
60 20% 9%
70 25% 15%
80 23% 16%
90 22% 14%
100 20% 14%

Table 5.1: Performance improvement for N = 3

5.2 Zab and ZabCT 89

5.1.3 Summary

These results provide two important insights: restrictive fault assumptions do bring
performance benefits when N = 3, in the form of ZabAc; secondly, coin-tossing is an
effective alternative to naively broadcasting acks, irrespective of WR and N , in both
the restricted and the Zab fault assumptions.

As shown in Figures 5.2 and 5.3, the performance of all evaluated protocols de-
teriorates as the number of servers in a quorum increases. This behavior is due to
as Zab and proposed protocols are using primary-backup approach §2.1.2: only the
leader can manage write requests, then broadcast atomically to the followers; the more
followers, the greater the time to complete the broadcast. Thus, adding more servers
into the ensemble, on one hand, improve read throughput and number of tolerable
server crashes. But on the other hand, it consumes more compute resources and
decreases the write throughput.

5.2 Zab and ZabCT

In the previous section, the performance of the Zab-variants was tested by varying
the number of servers in the ensemble N and the number of write/read requests WR.
The results showed that ZabAc performance enhances when N = 3, closely followed
by both of coin-tossing protocols. This leads us to conclude that ZabCt and ZabCT
are a desirable alternative to Zab, ZabAc, ZabAa and ZabAA from the perspective
of the number of communication steps, different replication degrees N and overhead
respectively as well as performance improvements. Thus, this section and the next
consider the performance evaluation of ZabCT under the same assumption as Zab
with an adaptive coin-tossing probability p which works for any N . Note that Chapter
4 considers upgrading ZabCT, with original Zab crash-recovery assumptions, under
appropriately chosen coin-tossing probability p rather than utilising a fixed p = 0.5
which was deemed impractical in §3.7.

Therefore, in order to test the performance of ZabCT under an adaptively-chosen
coin-tossing probability p, it was necessary to update the experiment. The purpose
of these experiments are two-fold. First, they allow us to generate different abcast
rates under which p will be chosen. Secondly, they allow us to monitor the values
calculated by the ZabCT (for example, probability p, λ, number of acks per abcast)
during changes in the abcast rate and determine their effect on the results.

5.2 Zab and ZabCT 90

5.2.1 Experimentation

In addition to the experiment explained in §5.1.1, we consider two values for client
wait-time: zero and a random value that is uniformly distributed (u.d. for short) on
(25, 75) millisecond (ms), with an average of 50 ms. In the former, the client does
not wait between receiving a response and issuing its next request, hence as in §5.1.1,
whereas in the latter the client waits for an average of 50 ms. Thus, the arrival rate of
abcasts, λ, measured by followers every second, will be different for different values of
wait-time and WR used.

Furthermore, θ in Equation 4.2 satisfies θ ≤ λ (see Challenge 3 in §4.2.2). Thus,
when we measure λ every second, θ is assigned as λ, θ = λ.

Each follower continually measures d as the communication delay (one-way trans-
mission) from the leader to itself (see §4.3), without clock synchronisation. This is
performed by a follower selectively timestamping its ack and the leader incorporating
the duration elapsed between receiving a timestamped ack and broadcasting its next
timestamped abcast.

P
1

W(p)= � W(p)=0

p=0

p=0 p=1

p=1

np=n np=0
P

2

Fig. 5.4: Choosing p

As previously stated in §4.3, if Equations 4.1 and 4.2 are met, a range of p values
may exist particularly when P1 < P2. In Figure 5.4, P1 and P2 impose the lower and
upper bounds respectively on the range of p and any value located between the two
dash lines can be chosen for p. For the purpose of the experiment, ZabCT was run
separately using three different p values p ∈ [P1,P2]. In the first experiment, p was
chosen from the upper bound by subtracting a very small δ (e.g., δ = 10−2) from
the RHS of Equation 4.2: P2 = (θ

n)×min
{

1
λ ,D

}
− δ, which is referred to as ZabCTu

(Hence the name ZabCTu: ZabCT appended with subscript ’u’ for upper bound.).

5.2 Zab and ZabCT 91

Second, p was selected as an average of the upper and lower bound a = P1+P2
2 , which is

referred to ZabCTa (Hence the name ZabCTa: ZabCT appended with subscript ’a’ for
average.). Finally, p was calculated as aa = a+P1

2 , which refers to as ZabCTaa (Hence
the name ZabCTaa: ZabCT appended with subscript ’aa’ for an average of average.).

5.2.2 Evaluation

In this section, the performance of Zab and ZabCT is compared for a range of p values.
Atomic broadcast message complexity, latency and throughput are the three metrics
used for comparison.

Message Complexity

This section compares message cost between Zab and ZabCT. Comparing the difference
in overall message cost, the expected message complexity per abcast is (N −1) +(N −
1)p(N −1) in ZabCT whereas in Zab it is 3(N −1) messages.

Furthermore, since the reserach focuses on reducing inbound and outbound traffic
at the leader, it is important to compare message cost in relation to the leader replica.
It is interesting to note that all three experiments illustrate that when p < 1 there is a
reduction in inbound traffic at the leader regardless of where the value of p is within
the range P1 ≤ p ≤ P2. Table 5.2 shows the number of acks received by the leader
per commit message and the coin-tossing probabilities computed for the experiment
with zero client wait-time and within the upper bound p, ZabCTu. An important
observation to be drawn from Table 5.2a is that, in all N , the ZabCT leader receives
less incoming traffic compared to the Zab leader. For example, when N = 5 and at
WR = 10%,100%, the ZabCT leader receives an average of 1.010 and 0.992 acks per
commit respectively whereas in Zab, the leader would receive N −1 = 4 acks. This
reduction in ack messages for the ZabCT leader corresponds to a small coin-tossing
probability of 0.249 chosen for WR = 10 and 100.

In contrast to the ZabCTu experiment, the number of acks received by the leader
is reduced as p becomes closer to P1, small coin-tossing probability are chosen, (as in
ZabCTa and ZabCTaa experiments). Table 5.3 shows the number of acks received by
the leader per commit message and the coin-tossing probabilities computed for the
experiment with a zero client wait-time and the ZabCTa experiment. It is interesting
to note from Table 5.3a that in all N , the leader in ZabCTa receives less incoming
traffic than the leader in the ZabCTu experiment. For example, when N = 5 and at

5.2 Zab and ZabCT 92

❍❍
❍❍❍❍WR

N 3 5 7 9

10 1.012 1.010 1.034 0.952
20 1.013 1.004 1.038 0.958
30 1.016 1.018 1.016 1.005
40 1.017 1.032 0.973 0.980
50 1.014 1.002 1.015 1.012
60 1.004 1.010 1.020 1.001
70 1.004 1.006 1.019 0.995
80 1.009 1.005 0.989 0.996
90 1.004 1.001 1.008 0.984
100 1.008 0.992 0.990 0.993

(a) Number of acks per commit

❍❍
❍❍❍❍WR

N 3 5 7 9

10 0.499 0.249 0.166 0.124
20 0.499 0.249 0.166 0.124
30 0.499 0.249 0.166 0.124
40 0.499 0.249 0.166 0.124
50 0.499 0.249 0.166 0.124
60 0.499 0.249 0.166 0.124
70 0.499 0.249 0.166 0.124
80 0.499 0.249 0.166 0.124
90 0.499 0.249 0.166 0.124
100 0.499 0.249 0.166 0.124

(b) Coin-toss probabilities

Table 5.2: ZabCTu for zero client wait-time

❍❍
❍❍❍❍WR

N 3 5 7 9

10 0.536 0.565 0.621 0.627
20 0.560 0.593 0.621 0.617
30 0.539 0.599 0.615 0.592
40 0.540 0.554 0.590 0.620
50 0.542 0.540 0.615 0.595
60 0.519 0.548 0.564 0.584
70 0.516 0.523 0.608 0.591
80 0.525 0.565 0.550 0.599
90 0.520 0.520 0.582 0.597
100 0.516 0.544 0.587 0.607

(a) Number of acks per commit

❍❍
❍❍❍❍WR

N 3 5 7 9

10 0.259 0.133 0.09 0.067
20 0.256 0.131 0.088 0.065
30 0.254 0.129 0.087 0.065
40 0.254 0.129 0.087 0.065
50 0.253 0.129 0.087 0.065
60 0.254 0.128 0.087 0.065
70 0.253 0.128 0.087 0.065
80 0.253 0.128 0.087 0.065
90 0.253 0.128 0.087 0.065
100 0.253 0.128 0.086 0.065

(b) Coin-toss probabilities

Table 5.3: ZabCTa for zero client wait-time

WR = 10% and 100%, the leader in the ZabCTa experiment receives 0.565 and 0.544
acks per commit respectively whereas in the ZabCTu experiment, the leader received
about 1.010 acks, the reduction in message cost is almost doubled. This is because, as
shown in Table 5.3b, in ZabCTa, the p values are smaller than that of the ZabCTu

experiment, as indicated in Table 5.2b.

5.2 Zab and ZabCT 93

Note that, as shown in Table 5.3, the coin-tossing probability is decreasing as N

increases. This is attributed to the fact that the coin-tossing probability must be
less than 1

n , where n = N − 1 (see §4.3). For example, when N = 3,5,7 and 9, the
coin-tossing probability must be less than 0.500, 0.200 ,0.143 and 0.111 respectively.
Thus, the coin-tossing probability decreases as the cluster size increases. This leads to
a reduced likelihood of Prob(Head), resulting in fewer acks being sent which in turn
reduces incoming traffic at leader in the coin-tossing protocol compared to the leader
in the Zab protocol.

Note that Appendix D shows more results on the number of acks received by the
leader and the coin-tossing probabilities computed for each experiment, in particular
for the ZabCTaa experiment where a further reduction is shown for inbound traffic at
the leader replica.

Latency

Figure 5.5 presents the average latency comparison for a zero client wait time. As can
be seen from the results, ZabCT seems to offer lower latencies compared to Zab for all
N , WR and a range of p values.

Let us first focus on the difference in latency for ZabCTu, ZabCTa and Zab. It is
apparent from Figure 5.5 that ZabCTu and ZabCTa report similar latencies, but both
protocols demonstrate lower latencies than that of Zab for all N and WR values. The
maximum difference being 11 ms at N = 3, 12 ms at N = 5, 20 ms at N = 7 and 24
ms at N = 9. This difference in latency is because, in Zab, the leader always receives
N −1 acks per commit whereas in ZabCTu and ZabCTa, the number of acks reduces
to approximately 1 and 0.5 respectively in all N . This reduction in ack messages for
the leader in ZabCTu and ZabCTa corresponds to the small coin-tossing probability of
0.499, 0.249, 0.166 and 0.124 at N = 3,5,7 and 9 respectively in ZabCTu and 0.254,
0.128, 0.087 and 0.065 when N = 3,5,7 and 9 respectively in ZabCTa.

Considering the experiment for ZabCTaa, the latency in ZabCTaa is only slightly
better than in Zab and, moreover, the difference becomes marginal as N increases.
In contrast to ZabCTu and ZabCTa, although ZabCTaa reduces the number of acks
per commit at the leader (because small coin-tossing probabilities are chosen), it has
high abdelivery latencies. For example, the difference between ZabCTu and ZabCTaa

varies between 9 ms and 19 ms at WR = 20%−100% and N = 9. This difference in
the behaviour of ZabCTaa is due to the cost of the small coin-tossing probabilities
chosen (0.209 0.086 0.052 0.037 for N = 3,5,7 and 9 respectively) and thus the followers

5.2 Zab and ZabCT 94

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab ZabCTu ZabCTa ZabCTaa

(a) Ensemble size N = 3

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab ZabCTu ZabCTa ZabCTaa

(b) Ensemble size N = 5

60

70

80

90

100

110

120

130

140

150

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab ZabCTu ZabCTa ZabCTaa

(c) Ensemble size N = 7

90

100

110

120

130

140

150

160

170

180

190

200

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab ZabCTu ZabCTa ZabCTaa

(d) Ensemble size N = 9

Fig. 5.5: Latency comparison for zero client wait-time

frequency get Tails which means acks are not sent. This results in abcast(m) being
uncommittable for potentiality a long period and caused delays in abdelivery latency
at the leader and followers.

However, an interesting finding is that in Figure 5.5d the difference in latency
between ZabCTaa and ZabCTu or ZabCTa reduces from 19 ms at WR = 20% to 11 ms

5.2 Zab and ZabCT 95

at WR = 100%. One possible explanation for these results may be that λ is high (due
to zero client wait-time and writes far out-numbering reads) which leads to frequent
coin-tossing which in turn reduces the latency, due to the leader and followers having
to commit through receiving implicit acks, irrespective of how small the p value is for
the coin-tossing probabilities chosen.

Figure 5.6 shows a latency comparison using an average of 50 ms for client wait-
times (u.d. on (25, 75)). Again the coin-tossing protocol offers a reduction in latency
in the ZabCTu and ZabCTa experiments except for N = 3 at WR = 10%−70% where
no significant reduction in latency was found when compared with Zab (see Figure
5.6a). This inconsistency may be explained by the fact that λ is low (due to there
being non-zero client wait-time and in most cases reads far out-numbering writes, and
the probability of Head, Prob(Head) decreases, hence the likelihood of sending an
ack decreases resulting in a delay abdelivery latency, especially for the ZabCTa and
ZabCTaa experiments. No significant reduction in latency may also be linked to a
correlation between there being fewer followers in N = 3 and reads outnumbering writes.
These factors can cause low scalability (due to there being only three replicas handling
reads) which may lead to their buffer space being filled up with read requests. This can
result in ack message receiving slower at destinations and a delay in abdelivery latency
which becomes worse when Prob(Head) decreases. However, such degradation in
performance disappears when the number of write requests far outweighs read requests
at WR = 80%,90% and N = 3 offering better reduction in latency at WR = 100%.

Correspondingly, at N = 5 (see Figure 5.6b), it is possible to observe that the
coin-tossing protocol offers even better results than Zab in comparison to the coin-
tossing protocol for N = 3 experiment. This improvement in performance seems to be
directly attributable to the coin-tossing approach being more effective as the number
of replicas increases from 3 to 5. For example, regardless of the coin-tossing probability
value, when N = 5, the system as a whole become more scalable (reads are handled
by being spread across more replicas) which results in the leader and followers having
fewer read messages in their buffer, compared to N = 3, which in turn results in ack
messages being received faster at destinations and in fewer delays in abdelivery latency.
Furthermore, it also seems possible that this improvement in latency is due to more
followers being toss coins as N increases, possibly increasing the chance of broadcasting
acks and reducing delays due to the leader and followers having to commit through
receiving implicit acks, irrespective of how small the coin-tossing probabilities are.

5.2 Zab and ZabCT 96

0

10

20

30

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab ZabCTu ZabCTa ZabCTaa

(a) Ensemble size N = 3

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab ZabCTu ZabCTa ZabCTaa

(b) Ensemble size N = 5

0

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab ZabCTu ZabCTa ZabCTaa

(c) Ensemble size N = 7

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab ZabCTu ZabCTa ZabCTaa

(d) Ensemble size N = 9

Fig. 5.6: Latency comparison for client wait-time on (25, 75) ms

Interestingly, Figures 5.6c and 5.6d show that the latency results of the coin-tossing
protocol for both ZabCTu and ZabCTa experiments almost the same, if not better,
than Zab. This performance improvement can be attributed to a combination of two
factors: the number of acks is reduced at the leader and the absence of commit message
transmissions by the leader. Another interesting finding is that in Figures 5.6b, 5.6c and

5.2 Zab and ZabCT 97

5.6d at WR = 10%,20%, the latency becomes nearly equal for the coin-tossing protocols
and Zab. This could be explained by the followers in the coin-tossing experiments
being unable to compute p as P1 > P2 and thereby having to switch to the Zab protocol,
thus no differences were found between the coin-tossing approach and Zab when N = 7
and 9.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab90th Zab95th ZabCT90th ZabCT95th

(a) Ensemble size N = 7

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab90th Zab95th ZabCT90th ZabCT95th

(b) Ensemble size N = 9

Fig. 5.7: Comparison of performance of 90th and 95th percentile latencies for client
wait-time on (25, 75) ms

Figure 5.7 shows comparison of performance of 90th and 95th percentile latencies
for Zab vs. ZabCTu for N = 7,9. The client wait time is uniformly distributed on
(25, 75) millisecond (ms), with an average of 50 ms. Latencies follow a similar pattern
to the average latencies shown in Figure 5.6 and 90th and 95th percentile latencies
are slightly an order of magnitude higher than averages. Overall, the latency results
of the coin-tossing protocol ZabCTu is sightly better than Zab. This performance
improvement can be attributed to a combination of two factors: the number of acks is
reduced at the leader and the absence of commit message transmissions by the leader.

Throughput

Figure 5.8 compares throughput for zero client wait-time. The throughput for ZabCTu

and ZabCTa experiments are at least as good as, if not better, than Zab. Comparing

5.2 Zab and ZabCT 98

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

5000

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab ZabCTu ZabCTa ZabCTaa

(a) Ensemble size N = 3

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab ZabCTu ZabCTa ZabCTaa

(b) Ensemble size N = 5

1200

1300

1400

1500

1600

1700

1800

1900

2000

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab ZabCTu ZabCTa ZabCTaa

(c) Ensemble size N = 7

1000

1100

1200

1300

1400

1500

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab ZabCTu ZabCTa ZabCTaa

(d) Ensemble size N = 9

Fig. 5.8: Throughput comparison for zero client wait-time

ZabCTu and Zab, when WR = 100%, the maximum difference is at about 248 abds/sec
for N = 3, 95 abds/sec for N = 5, 40 abds/sec for N = 7 and 49 abds/sec for N = 9.
An important observation to be drawn from these experiments is that in Table 5.2a,
in all N and WR, the leader in the ZabCTu experiment receives less incoming traffic
compared to the Zab leader; with a steady reduction observed approximately 1.000

5.2 Zab and ZabCT 99

acks per commit whereas in Zab, the leader would receive N−1 acks. This reduction in
ack messages for the ZabCTu leader is attributable to small coin-tossing probabilities
of 0.499, 0.249, 0.166 and 0.124 being chosen for N = 3,5,7 and 9 respectively. This is
the main reason for the relatively high throughput.

Considering the ZabCTa experiment, a similar level of throughput is maintained
to that achieved in the ZabCTu experiment and in comparison to Zab throughput is
higher for all N , particularly when WR > 50%. Conversely, the throughput of the
ZabCTaa experiment follows a very similar pattern to that observed when analysing its
latencies (see Figure 5.5). This is not surprising as the average abdelivery latency has
a direct impact on the average rate of throughput. This reveals that in the ZabCTaa

experiment, if choosing coin-tossing probability p which is closer to the lower bound,
P1, there is no significant impact on the performance of the coin-tossing protocol but
it may lead to deterioration in its performance especially when the load varies.

Figure 5.9 compares throughput for client wait-time on (25, 75) ms. The throughput
for the ZabCTu and ZabCTa experiments are at least as good as, if not better, than the
Zab protocol for all N and WR. Consider the throughput of the ZabCTu experiment,
when WR = 100% and N = 3,5,7 and 9, the difference varies between 10 and 153
abds/sec.

Furthermore, the ZabCTu and ZabCTa experiments clearly demonstrate a slightly
higher throughput than Zab for N = 5,7 and 9 and at WR = 70%,80%,90%,100%; for
example, the maximum difference is at about 83 abds/sec at WR = 100%, N = 5 for
both the ZabCTu and ZabCTa experiments. Recall that the coin-tossing probability
values chosen in the ZabCTu and ZabCTa experiments were particularly effective at
reducing incoming traffic at the leader, hence the throughput increased.

As expected, the throughput of ZabCTaa remains lower than Zab for all N and at
WR > 30% even when writes outnumber reads and λ becomes high. As the coin-tossing
probability values chosen were closer towards P1 and non-zero wait-time experiment
was utilised, these lead to a reduced likelihood of Prob(Head), resulting in fewer acks
being sent which delays the abdelivery latencies which in turn decreases on throughput.

Figure 5.10 shows comparison of performance of 90th and 95th percentile throughput
for Zab vs. ZabCTu for N = 7,9. The client wait time is uniformly distributed on (25,
75) millisecond (ms), with an average of 50 ms. Throughput follow a similar pattern to
the average latencies presented in Figure 5.9 and 90th and 95th percentile throughput
are slightly higher than averages. As shown in Figures 5.10a and 5.10b, the throughput
results of the coin-tossing protocol ZabCTu is almost the same, if not better, than Zab.

5.2 Zab and ZabCT 100

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab ZabCTu ZabCTa ZabCTaa

(a) Ensemble size N = 3

100

300

500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

2700

2900

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab ZabCTu ZabCTa ZabCTaa

(b) Ensemble size N = 5

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab ZabCTu ZabCTa ZabCTaa

(c) Ensemble size N = 7

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab ZabCTu ZabCTa ZabCTaa

(d) Ensemble size N = 9

Fig. 5.9: Throughput comparison for client wait-time on (25, 75) ms

Recall that the coin-tossing probability values chosen in the ZabCTu experiments were
particularly effective at reducing incoming traffic at the leader, hence the throughput
increased.

5.2 Zab and ZabCT 101

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab90th Zab95th ZabCT90th ZabCT95th

(a) Ensemble size N = 7

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab90th Zab95th ZabCT90th ZabCT95th

(b) Ensemble size N = 9

Fig. 5.10: Comparison of performance of 90th and 95th percentile throughput for client
wait-time on (25, 75) ms

5.2.3 Summary

The experimental results reveal that when P1 < P2, if a p value is chosen that is closer
to P1 (as depicted by arrow ’aa’ in Figure 5.4), the performance of ZabCT may become
worse, as shown in Figures 5.5, 5.6, 5.8 and 5.9.

Furthermore, the findings suggest that there are no significant differences in latency
and throughput between the coin-tossing and Zab protocols or the difference is only
slight. While the overall performance of the coin-tossing approach and Zab is observed
to be small, the former provides a lower message overhead by removing the abcasting
of the commit message, as well as reducing the inbound load at the leader.

Although these experiments are well-suited to proving that the coin-tossing protocol
has a low protocol-message overhead, particularly at the leader replica, they cannot be
relied upon for making realistic predictions about improving the performance of the
Zab protocol, in terms of latency and throughput.

However, for most N in Figure 5.5 and 5.6 the latency of the coin-tossing approach
improves at WR = 100%. This observation encourages the authors to increase the load
on the protocols under evaluation (by keeping all requests write-only and increasing
the number of clients) in order to gather more information to compare the performance

5.3 High-Load Conditions 102

of the protocols. Furthermore, for practical reason, it is worth considering the system
under both low and heavy-load conditions to gain more insight into the protocols under
investigations. Thus, the next section investigates ZabCT performance at heavier loads
that saturate the Zab leader to an extent that Zab throughput starts deteriorating.

5.3 High-Load Conditions

In the previous section, we tested the performance of the coin-tossing approach whilst
utilising different WR and a maximum of 250 clients. The results showed that the
coin-tossing protocol performed slightly better than Zab in some cases (particularly at
WR = 80%,90%,100% and in the ZabCTu/ZabCTa experiments). More importantly,
despite the fact that these findings are rather disappointing in terms of latency and
throughput, there are great reductions in inbound traffic at the leader replica when
utilising the coin-tossing approach in all experiments (ZabCTu, ZabCTa and ZabCTaa).

Furthermore, committing abcast depends on the abcast rate being received by
followers and the probability, Prob(Head). Due to the number of clients being relatively
small (up to 250) and reads sometimes outnumbering write requests, it is probable that
at any given time, all followers will get the outcome of Tail for a current abcast(m)
and that the next abcast(m′), m′c > m.c, takes a long time to arrive. This results in no
acks being broadcast and abcast(m) stays uncommittable for a long time which leads
to a delay in abdelivery(m) latency and possibly has a negative impact on the overall
throughput.

Therefore, the previous observations reveal the need for further investigation and
for a new experiment to be developed to further examine the coin-tossing approach.
Thus, the purpose of this experiment is to test the performance of the coin-tossing
protocol under an extremely heavy load and determine its effect on the results.

5.3.1 Experimentation

These experiments are the same as the experiments described in §5.2.1, and they utilise
the same computer cluster and specification of machine as in our previous experiments.

In order to test the performance of the coin-tossing protocol under heavy loads,
we increase number of clients, #client, from 250 to 1250 steps of 250. Moreover, the
experiments reported here consider only a WR value of 100%, a scenario that favours

5.3 High-Load Conditions 103

the use of implicit acks and coin-tossing. Finally, to maintain a fast abcast rate, we
consider only the zero client wait-time scenario.

5.3.2 Evaluation

This section is split into two parts: the first compares ZabAc with the Zab protocol using
N = 3 and the second evaluates the coin-tossing protocol and compares it performance
with Zab for N = 3,5,7,9.

Zab vs ZabAc

Figure 5.11 depicts the latency and throughput results under a high load scenario, at
WR = 100% and N = 3.

It is clear that the absence of commit message has a direct impact on latency and
throughput. As shown in Figure 5.11a, the latency of ZabAc is considerably decreased
compared to Zab. The difference between Zab and ZabAc increases as the number of
clients increases: about 86 ms at #client= 500 to 928 ms at #client= 1250. This is
probably due to followers not having to wait for commit messages from the leader, and
the Zab leader having to handle increased outgoing traffic at higher loads resulting in
performance bottlenecks.

Figure 5.11b presents the average throughput encountered by ZabAc and Zab.
There was a significant difference between the two protocols. Zab throughput drops
sharply from 4046 abds/sec at #client= 250 to 976 abds/sec at #client= 1250 whereas
in ZabAc, throughput reduces more steadily from 4727 abds/sec at #client= 250 to
2754 abds/sec at #client= 1250 keeping the maximum difference varies between 682
abds/sec and 1779 abds/sec. The observed improvement in throughput could be
attributed to the message complexity in ZabAc is 4 per abcast compared to 6 in Zab,
and ZabAc leader being less overloaded than the Zab leader due to the absence of
commit message.

Table 5.4 shows latency and throughput improvements under high-load conditions.
Overall, it is interesting to note that the performance of ZabAc outweighs that of Zab
for all number of clients and however, the improvement increases as the number of
clients increases and the systems are saturated.

5.3 High-Load Conditions 104

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

250 500 750 1000 1250

Number of clients

L
a

te
n

c
y
 (

m
s
)

 Zab ZabAc

(a) Latency comparison

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

250 500 750 1000 1250

Number of clients

T
h

ro
u

g
h

p
u

t
(a

b
d

s
/s

e
c
)

 Zab ZabAc

(b) Throughput comparison

Fig. 5.11: Performance comparison for high-load experiment, WR=100 and N = 3

#clients Latency Throughput
250 20% 17%
500 18% 16%
750 48% 161%
1000 58% 161%
1250 64% 182%

Table 5.4: Performance improvement of ZabAc and Zab for high-load experiment,
WR=100 and N = 3

Zab vs ZabCT

For the sake of simplicity, latency/throughput is presented in the form of performance
improvements.

Tables 5.5, 5.6 and 5.7 show the performance results for all N , WR = 100%, and
for client numbers #client, varying from 250 to 1250. As the tables show, there is no
significant improvement in the coin-tossing approach for all N and clients numbers
#client=250,500: the improvements in performance does not exceed 11% and 6%
for latency and throughput respectively. Furthermore, the ZabCTaa experiment
indicates the worst performance compared to Zab especially for throughput when
#client=250,500, reaching −11% when N = 3. It is difficult to explain this result,

5.3 High-Load Conditions 105

PPPPPPPPP# clients
N 3 5 7 9

250 11% 10% 8% 10%
500 13% 9% 10% 8%
750 50% 85% 82% X
1000 49% X X X
1250 27% X X X

(a) Latency improvement
PPPPPPPPP# clients

N 3 5 7 9

250 6% 4% 2% 2%
500 5% 0% 6% 4%
750 94% 494% 414% X
1000 95% X X X
1250 37% X X X

(b) Throughput improvement

Table 5.5: Performance improvement for ZabCTu experiment

although as previously stated, it could be related to the small coin-tossing probability
values chosen which, in combination with a low-load scenario, could mean that followers
are prevented from sending acks which in turn leads to a delay in abdelivery latencies
and reducing average throughput.

The results presented in these tables are interesting in that they demonstrate that
there is a significant improvement as the number of clients increases from 500 to 1250
for the majority of experiments (ZabCTu, ZabCTa and ZabCTaa). For example, when
N = 5,7, the improvement in performance varies from 79% and 85% in latency, and
352% and 494% in throughput. This superior performance can be attributed to frequent
abcasting which leads to frequent coin-tosses, regardless of the coin-tossing probability
chosen for Prob(Head), which in turn reduces the delays caused by the leader having to
commit by receiving implicit acks from followers; moreover, the incoming traffic at the
leader reduces remarkably. Another possible explanation for this is that the Zab leader
encounters increasing traffic as the number of clients increases causing a high latency
of up to 2066 ms and a low throughput of 341 abds/sec when N = 7 and #client= 750.

As expected, Zab becomes unresponsive (referred to as ’X’ in Tables 5.5, 5.6 and
5.7) as the number of clients increases to more than 750 whereas the coin-tossing

5.3 High-Load Conditions 106

PPPPPPPPP# clients
N 3 5 7 9

250 11% 11% 10% 11%
500 10% 9% 13% 9%
750 48% 84% 80% X
1000 43% X X X
1250 36% X X X

(a) Latency improvement
PPPPPPPPP# clients

N 3 5 7 9

250 0% 0% 2% 3%
500 1% 1% 6% 3%
750 83% 473% 389% X
1000 79% X X X
1250 47% X X X

(b) Throughput improvement

Table 5.6: Performance improvement for ZabCTa experiment

protocol continues to make progress. The results clearly show that an increase in the
number of clients and state change requests has a direct impact on Zab’s performance
which leads to system bottleneck.

Conversely, when N = 3, Zab does not encounter unresponsiveness but its perfor-
mance shows a significant deterioration when compared with the coin-tossing protocol.
Furthermore, considering N = 3, the results show that the ZabCTaa experiment per-
forms better than both the ZabCTu and ZabCTa experiments but it it does not
outperform ZabAc. Thus, the results of the experiments seem to indicate that ZabAc
is best at providing an atomic broadcast when N = 3.

5.3.3 Summary

When running the protocols being investigated under heavy-load conditions, higher
throughout and lower latency can be achieved by utilising the coin-tossing protocol,
ZabCT. Furthermore, the ZabCT protocol continues to provide services to clients
where Zab is unable to especially when the number of clients increases to over 500 for
N = 5,7 and 9.

5.4 Summary 107

PPPPPPPPP# clients
N 3 5 7 9

250 11% 5% 5% 3%
500 -6% -5% -2% 2%
750 55% 79% 79% X
1000 54% X X X
1250 60% X X X

(a) Latency improvement
PPPPPPPPP# clients

N 3 5 7 9

250 -3% -4% -4% -6%
500 -11% -8% -5% -2%
750 110% 366% 352% X
1000 127% X X X
1250 138% X X X

(b) Throughput improvement

Table 5.7: Performance improvement for ZabCTaa experiment

When N = 3, the ZabCT protocol runs towards the lower bound p, hence ZabCTaa

is capable of providing a lower latency and higher throughput than the ZabCTu and
ZabCTa experiments when the number of clients varies from 750,1000 and 1250; this
suggests that the improvement in performance may be due to the effect of implicit acks
which reduces message traffic and it could also be due to the coin-tossing probability
values being very small which in turn reduces incoming traffic at leader in ZabCTaa

experiment compared to the leader in the ZabCTu and ZabCTa experiments.
The results also reveal that, in contrast to ZabCT, ZabAc not only offers better

performance under low-load conditions but also demonstrates superior performance
under heavy-load conditions.

5.4 Summary

This chapter presents a thorough performance evaluation of the proposed protocols
(ZabAc, ZabAa, ZabCt, ZabAA and ZabCT) and the Zab protocol. The results
of the experiments seem to show that if the load at the leader and the number of
communication steps involved in a abcasting is reduced, Zab can improve the average

5.4 Summary 108

latency and throughput of abcasts especially in the scenario where writes outnumber
reads.

Additionally, we have shown that the ZabAc protocol can offer a better performance
over all other protocols when N = 3 under both low and high-load conditions. Moreover,
utilising the coin-tossing approach can play a decisive role in the reduction of inbound
traffic at the leader, and such an optimisation has a positive effect on the performance
of the Zab protocol especially under high-load conditions.

Furthermore, our results seem to suggest that with the correct chosen of Prob(Head),
it is possible to (1) avoid delays in committing an abcast and (2) obtain leverage from
the benefit of implicit ack even when abcasts arrive infrequently.

Finally, our results seem to show that under an extremely high-load scenario, Zab
encounters performance bottleneck and becomes less and less responsive as the number
of clients increases whilst ZabCT continues to provide services to the clients.

Chapter 6

Conclusion

ZooKeeper [34] is a centralised system that provides coordination services to large-scale
distributed applications. In ZooKeeper, any node can handle read requests, thus
read performance and scalability improves as new servers are added to the system.
However, write requests are coordinated by the ZooKeeper atomic broadcast protocol
to ensure that the requests are replicated in at least a quorum of servers and that
the service state is kept mutually consistent across all correct servers. Therefore,
ZooKeeper’s performance is directly dependent on the performance of the underlying
Zab protocol, especially when writes outnumber read requests; as it is the Zab protocol
that ultimately determines the rate at which write requests are committed. As
a consequence, ZooKeeper is much more preferable for read than write-intensive
operations.

The data presented in this thesis suggests that the performance of the existing Zab
protocol starts to deteriorate as the number of followers, clients and write requests
increases. This degradation occurs because the existing Zab protocol is leader-based and
requires three communication steps to accomplish one write request. To overcome the
limitations of the Zab approach, we reduced the outbound traffic at the Zab leader by
allowing a follower to ack and commit without waiting for a commit message from the
leader. The key advantage of this approach is that the number of communication steps
required to reach a consensus is reduced which also leads to reduce the outbound traffic
at the leader replica, hence the latency is reduced. Performance evaluations have shown
that the absence of commit message transmissions, in ZabAc for example, provides
significant performance improvements, in terms of both latency and throughput.

In addition to reducing the outbound traffic at the Zab leader, another key contri-
bution of our work has been the development of a coin-tossing protocol, called ZabCT,

6.1 Thesis Summary 110

which has been specifically designed to reduce inbound traffic at Zab leader replica. The
development of the ZabCT approach was necessary to reduce the number of acknowl-
edgements being broadcast and to fully realise the benefits of an implicit ack. Without
such a coin-tossing approach, the network characteristics of the optimisation (in the
ZabAa and ZabAA protocols) would be poor due to the followers broadcasting the acks
to each other which leads to the amount of network traffic increasing quadratically
with N .

The remainder of this chapter is structured as follows: Section 6.1 provides a
summary of the content and key findings of each chapter in this thesis. This is then
followed by Section 6.2 which discusses our recommendations for future implementations.
Section 6.3 highlights the limitations of our work. Lastly, we explore potential avenues
for future research in Section 6.4.

6.1 Thesis Summary

Chapter 2 provides the necessary background to the field of replication methods,
coordination services and atomic broadcast protocols that are utilised for coordination
services, as well as providing an in-depth analysis of Apache’s open source coordination
service, ZooKeeper and its atomic broadcast protocol, Zab. An analysis of Zab is
essential for understanding our work, as all of our proposed solutions have been designed
within the context of the Zab protocol, and consequently our performance evaluation
was also based upon its semantics. The analysis is followed by examining related works
on existing atomic broadcast protocols such as the Paxos protocol and Zab.

In Chapter 3, we propose a set of consensus protocols, ZabAc, ZabAa, ZabCt,
ZabAA, and ZabCT which can be used as an alternative to the ZooKeeper atomic
broadcast protocol, Zab, operating under its original fault assumptions (hence ZabAA
and ZabCT) as well as a restricted fault assumptions (hence ZabAc, ZabAa and ZabCt)
which are yet practical. The alternative protocols use ack broadcasting which is not
an unknown idea [37, 57] but we have introduced subject a coin-tossing protocol to
reduce network traffic and also traffic at the leader. Followers broadcasting their acks
to eliminate the commit phase in Zab has been deemed impractical in [57]; here, we
demonstrate that when combined with a coin-tossing algorithms (ZabCt and ZabCT), it
is indeed a practical approach to improve Zab performance. The coin-tossing approach
is novel and, to the best of our knowledge, coin-tossing protocol is new. Coin-tossing is
one instance of the general concept of using only a subset of randomly selected nodes

6.1 Thesis Summary 111

to engage in communication at any given time in order to reduce traffic, particularly
at bottleneck nodes. Examples of this application are for instance controlling ack
implosion at multicasting nodes and information dissemination through gossiping in
large systems. While coin-tossing reduces traffic at the leader, it also delays abdelivery
which requires future abcasts to be made or appropriately chosen for coin-tossing
probability.

Performance comparisons have been carried out without disk-based logging but the
results still hold as logging is common to all protocols being compared. Two important
conclusions emerge: restrictive fault assumptions do bring performance benefits when
N = 3, in the form of ZabAc, in both low and high-load conditions; secondly, coin-
tossing is an effective alternative to naively broadcasting acks, irrespective of WR and
N , under both restricted and Zab-based fault assumptions.

In Chapter 4, we have extended the coin-tossing protocol (ZabCT) to operate under
Zab’s original fault assumptions. Furthermore, we introduce several design challenges.
The principal one is in choosing the coin-tossing probability p of a toss outcome being
Head in such a way that enough followers broadcast for reaching decisions swiftly and
thus keeping latencies small, whilst not allowing too many to broadcast at the same
time to avoid overwhelming the leader and followers. In other words, determining
p involves a trade-off between competing requirements. We model the coin-tossing
process and derive analytical expressions for estimating the coin’s probability of Head
for a given arrival rate of service requests in order to make this trade-off. This is our
principal contribution and, to the best of our knowledge, improving Zab performance
through a coin-tossing guided ack broadcast has not been investigated. Moreover,
ZabCT meets all the requirements essential for crash-tolerance provisions within Zab
which can therefore be adopted in ZabCT implementation.

Finally, Chapter 5 presents the results of our extensive performance evaluation and
shows that the ZabAc protocol is able to maintain low-latency and high-throughput
compared to Zab and other protocols (presented in this thesis) when N = 3 under
both lighter and heavier loads. Furthermore, performance evaluation demonstrates
that the effect of leader traffic reduction is so significant that much smaller latencies
can be obtained, particularly during heavy loads when coin-tossing probability is
appropriately chosen. We have also compared the performance of our coin-tossing Zab
variant (ZabCT) with Zab’s performance and confirm that the dual objectives of low
latency and high throughput are demonstrably met under heavy workload conditions

6.2 Recommendations 112

whereas Zab protocol cannot deliver the needed latency and throughput for future
large-scale systems.

6.2 Recommendations

Based on observations drawn from our results, a number of important recommendations
can be made about which Zab-variant should be utilised, depending on the environment.
First, the findings of this study suggest that for ensemble size of 3 replicas, ZabAc gains
a performance advantage over all other Zab-variants, thus we recommend ZabAc is
used even when the system is saturated, irrespective of WR. While ZabAc is restricted
to N = 3 servers, ZabCT can admit any permissible value for N > 3, the results seem
to suggest that the use of the coin-tossing protocol, ZabCT (when a coin-tossing
probability value is appropriately chosen, as in the ZabCTu and ZabCTa experiments)
can bring more benefits to the Zab protocol in terms of overhead at the leader, latency
and throughput particularly under high-load conditions.

6.3 Limitations

In our performance evaluation we have shown that the ZabAc and ZabCT protocols
are effective protocols for improving the performance of ZooKeeper atomic broadcast,
however, our performance evaluation only considers a case where there is a maximum
of 1250 clients that can issue requests to the system at any one time. It is inevitable
that any leader-based system will have an upper limit on the number of state-modelling
requests that it can accommodate at any one time. Therefore, a limitation of the
ZabAc/ZabCT approach is that the protocols will eventually experience performance
bottlenecks and possibly unresponsiveness to client requests as the number of client
requests becomes greater than the service’s throughput capabilities. This is an inherent
limitation of using a centralised approach and is an acknowledged limitation of other
leader-based approaches such as Paxos [9, 14, 46].

Another key limitation of the ZabCT protocol is that the need for additional logic to
choose a sufficient coin probability from range of probabilities, Prob(Heads) that satisfies
the ZabCT requirements (Equations 4.1 and 4.2) are available. For example, in the
ZabCTaa experiment (see §5.2.2), we showed that choosing a Prob(Head) closer to the
lower bound P1 may lead to a deterioration in the performance of ZabCT particularly
at low load conditions. Instead, selecting a Prob(Head) near the upper bound P2,

6.4 Future Work 113

as in the ZabCTu experiment, for example, demonstrated better performance under
such low load conditions. The existing ZabCT protocol statically chooses Prob(Head)
among an available range of coin probabilities in the configuration stage. This means,
before executing the ZabCT protocol, we configure the protocol in such way that if
P1 < P2 (in this case there may be a range of Prob(Heads) available), Prob(Head) can
be chosen in the form shown in the ZabCTu, ZabCTa or ZabCTaa experiments (see
§5.2.1). Therefore, from this example it is clear to see that there is a need for an
additional logic to sufficiently and dynamically choose appropriate Prob(Head) when a
set of Prob(Heads) are available.

Furthermore, although the ZabCT protocol has successfully demonstrated high
performance compared to Zab protocol, it has certain limitation in terms of being
intolerant when a follower crash occurs resulting in requiring to switch to the Zab
protocol. This is due to the fact that when the follower crashes, the value of n changes
and the membership service has yet to update the new membership. In this case, the
value of p being used may be inappropriate and abcasts can remain uncommitted for too
long. The existing ZabCT protocol is required to tolerate up to f servers (in order to
make ZabCT a crash-tolerant system as in the Zab protocol). This requires redesigning
the existing coin probability process §4.3 in order to adaptively and effectively compute
the coin-tossing probability for a new value of n when a follower crash occurs.

6.4 Future Work

This section presents potential future research problems that have arisen from the work
documented in this thesis.

6.4.1 Utilising ZabAc/ZabCT in ZooKeeper

At present, the ZabAc and ZabCT protocols presented in Chapters 3 and 4 respectively
have only been utilised as a proof-of-concept implementation. Having established that
ZabAc and ZabCT are effective, the existing Zab protocol used by ZooKeeper for state
machine replication could be replaced with ZabAc when N = 3 and ZabCT for N > 3
(if N changes, switching between ZabAc and ZabCT can be accomplished dynamically).
Different use cases and more evaluations could be then conducted. It could also enable
existing applications that depend on ZooKeeper to utilise the new optimization as the
ZooKeeper API would remain the same. Furthermore, it is out of the scope of this

6.4 Future Work 114

thesis to discuss how to incorporate our the ZabAc and ZabCT protocols into real
ZooKeeper applications. This is subject of future work.

6.4.2 Crash-Tolerance Evaluation

As previously stated, ZabAc can only work when N = 3 and tolerates up to 1 follower
to crash. Further research should be done to investigate the performance of ZabAc
with a follower being allowed to crash. Furthermore, another important experiment
when ZabCT is turned into a crash tolerant system 6.3, would be to examine the
effects of follower crashes on the performance metrics. This experiment may add more
positive/negative observations about the ZabAc and ZabCT protocols.

In addition, in future investigations, it might be possible to relax the assumptions
in §3.3 which means that the restricted Assumptions A1.1 and A1.2 can be discarded,
and retained A1 as in Zab protocol (§2.2.1). So that when ZabAc leader crashes and
recovers subsequently, it can join the cluster, i.e. the recovery from its crashing is
complete. Doing so, however, a new Q might exclude the committed proposals from
previous epoch (see a scenario in §3.3). To tackle this limitation, it requires to modify
leader election protocol in way that the previous leader can on recovery, suspend joining
the system until the current epoch number is larger (other process is elected as a new
leader). Thus, when this modification holds, committed proposals cannot be lost and
will be included in ZabAc initial-state for epoch e′, where e′ > e.

References

[1] Aguilera, M. K., Merchant, A., Shah, M., Veitch, A., and Karamanolis, C. (2007).
Sinfonia: a new paradigm for building scalable distributed systems. In ACM SIGOPS
Operating Systems Review, volume 41, pages 159–174. ACM.

[2] Attiya, H. and Welch, J. (2004). Distributed computing: fundamentals, simulations,
and advanced topics, volume 19. John Wiley & Sons.

[3] Ban, B. (1998). Design and implementation of a reliable group communication
toolkit for java. Cornell University.

[4] Ban, B. (2014). The jgroups project. http://www.jgroups.org/. [Accessed: 15-July-
2017].

[5] Ban, B. (2017). Implementation of the raft consensus protocol in jgroups. http:
//belaban.github.io/jgroups-raft/. [Accessed: 29-August-2017].

[6] Behl, J., Distler, T., and Kapitza, R. (2015). Consensus-oriented parallelization:
How to earn your first million. In Proceedings of the 16th Annual Middleware
Conference, pages 173–184. ACM.

[7] Bernstein, P. and Newcomer, E. (1997). Principles of Transaction Processing: For
the Systems Professional. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[8] Bessani, A. N., Alchieri, E. P., Correia, M., and Fraga, J. S. (2008). Depspace: a
byzantine fault-tolerant coordination service. In ACM SIGOPS Operating Systems
Review, volume 42, pages 163–176. ACM.

[9] Biely, M., Milosevic, Z., Santos, N., and Schiper, A. (2012). S-paxos: Offloading
the leader for high throughput state machine replication. In Reliable Distributed
Systems (SRDS), 2012 IEEE 31st Symposium on, pages 111–120. IEEE.

[10] Brown, G. M., Gouda, M. G., and Miller, R. E. (1991). Block acknowledgment:
Redesigning the window protocol. IEEE Transactions on Communications, 39(4):524–
532.

[11] Budhiraja, N., Marzullo, K., Schneider, F. B., and Toueg, S. (1993). The primary-
backup approach. Distributed Systems, 2:199–216.

[12] Burrows, M. (2006). The chubby lock service for loosely-coupled distributed
systems. In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation, pages 335–350. USENIX Association.

http://www.jgroups.org/
http://belaban.github.io/jgroups-raft/
http://belaban.github.io/jgroups-raft/

References 116

[13] Cerf, V. and Kahn, R. (1974). A protocol for packet network intercommunication.
IEEE Transactions on communications, 22(5):637–648.

[14] Chandra, T. D., Griesemer, R., and Redstone, J. (2007). Paxos made live: an
engineering perspective. In Proceedings of the Twenty-sixth Annual ACM Symposium
on Principles of Distributed Computing, pages 398–407. ACM.

[15] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M.,
Chandra, T., Fikes, A., and Gruber, R. E. (2008). Bigtable: A distributed storage
system for structured data. ACM Transactions on Computer Systems (TOCS),
26(2):4.

[16] Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., and Riche,
T. (2009). Upright cluster services. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, pages 277–290. ACM.

[17] Cloud-Foundry (2017). Cloud foundry. https://www.cloudfoundry.org/. [Accessed:
01-August-2017].

[18] CoreOS (2017). etcd - a distributed, reliable key-value store for the most critical
data of a distributed system. http://www.coreos.com/etcd/. [Accessed: 05-July-
2017].

[19] Défago, X., Schiper, A., and Urbán, P. (2004). Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Computing Surveys (CSUR), 36(4):372–421.

[20] Distler, T., Bahn, C., Bessani, A., Fischer, F., and Junqueira, F. (2015). Extensible
distributed coordination. In Proceedings of the Tenth European Conference on
Computer Systems, page 10. ACM.

[21] Doozer (2017). Doozer, a highly-available, completely consistent store for small
amounts of extremely important data. https://github.com/ha/doozerd. [Accessed:
04-May-2017].

[22] EL-Sanosi, I. and Ezhilchelvan, P. (2017). Improving zookeeper atomic broadcast
performance by coin tossing. In European Workshop on Performance Engineering,
pages 249–265. Springer.

[23] EL-Sanosi, I. and Ezhilchelvan, P. (2018). Improving zoo keeper atomic broadcast
performance when a server quorum never crashes. EAI Endorsed Transactions on
Energy Web and Information Technologies, 18(17).

[24] Emerson, R. and Ezhilchelvan, P. (2014). An atomic-multicast service for scal-
able in-memory transaction systems. In Cloud Computing Technology and Science
(CloudCom), 2014 IEEE 6th International Conference on, pages 743–746. IEEE.

[25] Ferguson, A. D., Guha, A., Liang, C., Fonseca, R., and Krishnamurthi, S. (2012).
Hierarchical policies for software defined networks. In Proceedings of the First
Workshop on Hot Topics in Software Defined Networks, pages 37–42. ACM.

[26] Fleet (2017). Using fleet with coreos. https://github.com/coreos/fleet/. [Accessed:
29-July-2017].

https://www.cloudfoundry.org/
http://www.coreos.com/etcd/
https://github.com/ha/doozerd
https://github.com/coreos/fleet/

References 117

[27] Garg, N. (2013). Apache Kafka. Packt Publishing Ltd.

[28] George, L. (2011). HBase: the definitive guide. " O’Reilly Media, Inc.".

[29] Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The google file system. In
ACM SIGOPS Operating Systems Review, volume 37, pages 29–43. ACM.

[30] Haldar, M., Nayak, A., Shenoy, N., Choudhary, A., and Banerjee, P. (2001). Fpga
hardware synthesis from matlab. In VLSI Design, 2001. Fourteenth International
Conference on, pages 299–304. IEEE.

[31] Hashicorp (2017). Consul, service discovery and configuration made easy. https:
//hashicorp.com/blog/consul.html/. [Accessed: 01-June-2017].

[32] Howard, H. (2014). Arc: analysis of raft consensus. Technical report, University
of Cambridge, Computer Laboratory.

[33] Howard, H., Schwarzkopf, M., Madhavapeddy, A., and Crowcroft, J. (2015).
Raft refloated: do we have consensus? ACM SIGOPS Operating Systems Review,
49(1):12–21.

[34] Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. (2010). Zookeeper: Wait-free
coordination for internet-scale systems. In USENIX Annual Technical Conference,
volume 8, page 9. Boston, MA, USA.

[35] István, Z., Sidler, D., Alonso, G., and Vukolic, M. (2016). Consensus in a box:
Inexpensive coordination in hardware. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages 425–438.

[36] Junqueira, F. and Reed, B. (2013). ZooKeeper: distributed process coordination.
"O’Reilly Media, Inc.".

[37] Junqueira, F. P., Reed, B. C., and Serafini, M. (2011). Zab: High-performance
broadcast for primary-backup systems. In Dependable Systems and Networks (DSN),
2011 IEEE/IFIP 41st International Conference on, pages 245–256. IEEE.

[38] Kalantari, B. and Schiper, A. (2013). Addressing the zookeeper synchronization
inefficiency. In ICDCN, pages 434–438. Springer.

[39] Kapritsos, M. and Junqueira, F. P. (2010). Scalable agreement: Toward ordering
as a service. In HotDep.

[40] Kindler, E. (1994). Safety and liveness properties: A survey. Bulletin of the
European Association for Theoretical Computer Science, 53:268–272.

[41] Kubernetes (2017). Kubernetes by google. https://www.kubernetes.io/. [Accessed:
01-August-2017].

[42] Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565.

[43] Lamport, L. (1998). The part-time parliament. ACM Transactions on Computer
Systems (TOCS), 16(2):133–169.

https://hashicorp.com/blog/consul.html/
https://hashicorp.com/blog/consul.html/
https://www.kubernetes.io/

References 118

[44] Lamport, L. (2006). Fast paxos. Distributed Computing, 19(2):79–103.

[45] Lamport, L. (2011). Byzantizing paxos by refinement. In DISC, volume 6950,
pages 211–224. Springer.

[46] Lamport, L. et al. (2001). Paxos made simple. ACM Sigact News, 32(4):18–25.

[47] Lamport, L. and Massa, M. (2004). Cheap paxos. In Dependable Systems and
Networks, 2004 International Conference on, pages 307–314. IEEE.

[48] Lev-Ari, K., Bortnikov, E., Keidar, I., and Shraer, A. (2016). Modular composition
of coordination services. In USENIX Annual Technical Conference, pages 251–264.

[49] Lucani, D. E., Médard, M., and Stojanovic, M. (2007). Network coding schemes
for underwater networks: the benefits of implicit acknowledgement. In Proceedings
of the second workshop on Underwater networks, pages 25–32. ACM.

[50] MacCormick, J., Murphy, N., Najork, M., Thekkath, C. A., and Zhou, L. (2004).
Boxwood: Abstractions as the foundation for storage infrastructure. In OSDI,
volume 4, pages 8–8.

[51] Mao, Y., Junqueira, F. P., and Marzullo, K. (2008). Mencius: building efficient
replicated state machines for wans. In OSDI, volume 8, pages 369–384.

[52] Marandi, P. J., Primi, M., Schiper, N., and Pedone, F. (2010). Ring paxos: A
high-throughput atomic broadcast protocol. In Dependable Systems and Networks
(DSN), 2010 IEEE/IFIP International Conference on, pages 527–536. IEEE.

[53] Medeiros, A. (2012). Zookeeper’s atomic broadcast protocol: Theory and practice.
Technical Report.

[54] Ongaro, D. (2014). Consensus: Bridging theory and practice. PhD thesis, Stanford
University.

[55] Ongaro, D. and Ousterhout, J. K. (2014). In search of an understandable consensus
algorithm. In USENIX Annual Technical Conference, pages 305–319.

[56] Raynal, M., Thia-Kime, G., and Ahamad, M. (1997). From serializable to causal
transactions for collaborative applications. In EUROMICRO 97. New Frontiers of
Information Technology., Proceedings of the 23rd EUROMICRO Conference, pages
314–321. IEEE.

[57] Reed, B. and Junqueira, F. P. (2008). A simple totally ordered broadcast proto-
col. In Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and
Middleware (LADIS), pages 1–6. ACM.

[58] Ruivo, P., Couceiro, M., Romano, P., and Rodrigues, L. (2011). Exploiting total
order multicast in weakly consistent transactional caches. In Dependable Computing
(PRDC), 2011 IEEE 17th Pacific Rim International Symposium on, pages 99–108.
IEEE.

[59] Santos, N. and Schiper, A. (2012). Tuning paxos for high-throughput with batching
and pipelining. In ICDCN, pages 153–167. Springer.

References 119

[60] Schiekofer, R., Behl, J., and Distler, T. (2017). Agora: A dependable high-
performance coordination service for multi-cores. In Dependable Systems and Net-
works (DSN), 2017 47th Annual IEEE/IFIP International Conference on, pages
333–344. IEEE.

[61] Schneider, F. B. (1990). Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319.

[62] Shakimov, A., Lim, H., Cáceres, R., Cox, L. P., Li, K., Liu, D., and Varshavsky, A.
(2011). Vis-a-vis: Privacy-preserving online social networking via virtual individual
servers. In Communication Systems and Networks (COMSNETS), 2011 Third
International Conference on, pages 1–10. IEEE.

[63] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010). The hadoop
distributed file system. In Mass Storage Systems and Technologies (MSST), 2010
IEEE 26th Symposium on, pages 1–10. IEEE.

[64] Smiley, D., Pugh, E., Parisa, K., and Mitchell, M. (2015). Apache Solr enterprise
search server. Packt Publishing Ltd.

[65] Terrace, J. and Freedman, M. J. (2009). Object storage on craq: High-throughput
chain replication for read-mostly workloads. In USENIX Annual Technical Conference.
San Diego, CA.

[66] Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M., Kulkarni,
S., Jackson, J., Gade, K., Fu, M., Donham, J., et al. (2014). Storm@ twitter. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data, pages 147–156. ACM.

[67] Van Renesse, R. and Schneider, F. B. (2004). Chain replication for supporting
high throughput and availability. In OSDI, volume 4, pages 91–104.

[68] Woo, A. and Culler, D. E. (2001). A transmission control scheme for media access
in sensor networks. In Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking, MobiCom ’01, pages 221–235, New York, NY,
USA. ACM.

[69] Yin, J., Martin, J.-P., Venkataramani, A., Alvisi, L., and Dahlin, M. (2003).
Separating agreement from execution for byzantine fault tolerant services. ACM
SIGOPS Operating Systems Review, 37(5):253–267.

References 120

**

Appendix A

Implementing ZooKeeper Atomic
Broadcast Using JGroups
Framework

This Appendix introduces the implementation of ZooKeeper atomic broadcast that
utilises JGroups framework to provide underlying network protocols.

First we describe the rationale behind an independent ZooKeeper atomic broadcast.
This is followed by introducing the communication pattern between Zab and JGroups
protocol stack. Finally, we discuss the design and the implementation of Zab within
the framework of JGroups.

A.1 Rationale

Zab implementation is rather packaged with the ZooKeeper code base. This tightly
coupled structure of ZooKeeper prevents developers from building applications on top
of Zab, for example, replicating state change of the database consistently using Zab.
Furthermore, until recently, Zab, unlike Paxos, has not received much attention that
focuses on optimising its structure and performance due to it being rather entangled
with the ZooKeeper code base (as a result it is difficult to use) and unavailable as
an independent protocol. This indicates a need to implement the Zab protocol as a
standalone system.

Therefore, Zab is implemented in JGroups in order to hide the complexities of the
underlying Zab protocol and provide an easy-to-use user interface for developers. The

A.2 System Components 122

implementation of Zab in JGroups also helps to demonstrate our approaches that seek
for exploring ways to improve Zab’s performance.

We advocate the use of JGroups to provide several network protocols (namely
a transmission protocol, failure detection and reliable protocols). Furthermore, the
framework provides a level of abstraction that allows developers to implement their own
protocols which can then be utilised within the network stack alongside the existing
JGroups protocols. As a result, all of the protocols presented in this thesis have also
been implemented using the JGroups framework. This has enabled the authors to
focus only on implementing and optimising Zab without having to build every single
network component from scratch. Furthermore, by extracting Zab from ZooKeeper, we
were able to independently rule out problems that were directly due to Zab and avoid
any subproblems connected with the implementation of the ZooKeeper coordination
logic. By doing so, our aim is that Zab and our optimisations in JGroups will make
consensus available to a larger number of developers who may be able to develop a
wider variety of high-quality consensus-based systems than are available today.

A.2 System Components

In this section we detail the individual components required when implementing Zab
in JGroups. For each component, we describe its objective and design; with important
implementation details highlighted where appropriate. Java and JGroups are utilised
to implement all of the protocols presented in this thesis.

Fig. A.1: The architecture of Zab within a JGroups

A.2 System Components 123

As shown in Figure A.1, the architecture of Zab in JGroups consists of two main
parts: (1) the JGroups: it provides several network protocols that are utilised by Zab
(2) Zab: it is the implementation of the ZooKeeper atomic broadcast protocol.

A.2.1 JGroups

With the JGroups protocol stack previously described §2.3.3, it is possible to provide
the reliability and FIFO communication of the unicast messages, more precisely, by
using the UNICAST3 protocol in the JGroups suite which is functionally identical to
TCP (hence preserving G2 §2.2.1). With JGroups, Zab becomes a failure detection
system (thanks to the FD_ALL, FD_SOCK and VERIFY_SUSPECT protocols) and
provides a group membership service that handles members joining, leaving the cluster
and sending new views of the Zab servers.

Additionally, one of the most powerful features of JGroups is that it allows developers
to write their own protocol and combine the new protocol with the existing JGroups
protocol stack. This flexibility has encouraged the authors to adopt JGroups in order
to implement and use with the Zab protocol within the JGroups protocol stack, just
by reconfiguring JGroups’s underlying protocol stack. Figure A.1 shows the protocol
stack for two Zab servers, but the other Zab servers have the same configuration (the
Zab protocol combines with the JGroups protocols). For the sake of simplicity, we do
not show the JGroups protocols that are utilised by Zab in Figure A.1, although this
is explained in more detail in §2.3.

Each protocol in the stack, including Zab, is connected by two queues, one for
storing messages to be sent down the stack, and the other for messages that are sent
up the stack. A message sent by Zab (for example, when the leader sends proposal(m)
message to followers) is simply passed down to the protocol stack. Each protocol in
the stack performs some computation (possibly reordering, passing or adding headers
1) and then forwards the message to the protocol below it, until it is received by the
bottom-most protocol which in turn sends the message to the network where it is
broadcast to the appropriate destination (followers). In the other direction, a follower,
the bottom-most protocol, receives the message from the network and then passes it
back up the stack. The message travels up the stack until it is received by the Zab
protocol which stores it in a queue for further processing.

1Headers are used by the JGroups protocol, to provide additional information about corresponding
protocol.

A.2 System Components 124

proposal(m)
Proposal message for a state change request which contains
the payload of the update request and a sequence number m.c
that uniquely identifies the proposal.

ack(m) Acknowledgement of persisting the proposal(m) in local disk
which includes m.c.

commit(m) Commit for proposal, proposal(m).
abdelivery(m) Deliver the committed proposal by applying the state change in

the local memory.

Table A.1: Summary of messages

The next section explains the Zab implementation by focusing only on the Zab
protocol. Note that the JGroups protocols are described in more detail in §2.3.

A.2.2 Zab Protocol

Message Specification

Message is simply a Java class that contains four fields: destination, source address,
header and payload of the message. The Message header describes the protocol from
which it is created. For example, the Zab protocol generates a message header tagged
with the name Zab, header.name = Zab (all protocol names in the stack have to be
unique). On receiving a message, a protocol checks if the header.name matches its
own name, if this is the case, the received message will be processed by the current
protocol, otherwise it will be forwarded to the next protocol in the stack. In addition to
header.name, header has a message-type attribute, header.MegType, which describes
the message type interchange between the Zab leader and its followers. For example,
when a leader is initiating a proposal to be abcasted to servers, it tags header.MegType

with a proposal, header.MegType = proposal. Upon receiving a message, a follower
examines the message header.MegType field, if it is proposal, the follower performs
the steps that correspond to the proposal. In Zab, three type of messages are defined:
proposal, ack and commit. These message types are detailed in §2.2.1 and will be
highlighted in context of the Zab protocol overview, in the next section.

For the sake of simplicity and in order to hide some of the complexities in the
implementation, a message is referred to by its type, for example, proposal(m), ack(m),
commit(m) and abdelivery(m). The m in proposal(m) for example, contains the payload
of the message, header attributes and the source and destination addresses. The above
table defines each message type of Zab.

A.2 System Components 125

Protocol Overview

Stage 1 of the Zab protocol starts when a write request is received by a leader. Each
write request can be forwarded to the leader by a follower or sent to it directly by a
client. It is anticipated that each leader or followers will handle many client requests
simultaneously, however for the sake of brevity, our explanations assume that the
service is only handling a single request at a given time. The key stages of the Zab
protocol from the perspective of the leader and followers are detailed below:

L1 : Leader initiates abcast(m) by proposing a sequence number m.c for m and by
broadcasting its proposal(m) (to all processes, including itself);

F1 : A follower, on receiving proposal(m), logs m and then sends an acknowledgement,
ack(m), to the leader;

L2 : Leader sends ack(m) to itself after logging m. On receiving ack(m) from a
quorum of servers, it broadcasts commit(m) before commit(m′: m′.c = m.c+1)
is broadcast;

F2 : A follower, on receiving commit(m), executes abdeliver(m).

L3 : Leader, on receiving commit(m) (from itself), executes abdeliver(m).

Protocol Details

This section explores the inner workings of each stage of the Zab protocol described in
A.2.2. We describe each of the stages in the order in which they are executed by the
protocol. For the sake of clarity, each stage of the protocol utilises the same naming
scheme as in §A.2.2.

(i) L1 - Proposal Stage
Prior to commencing the broadcast, a leader places a write request in its Broadcast
Request Pool (BRP), which holds all client write requests until they are broadcast.
Once BRP contains requests, a single thread, called the send thread, is utilised
for retrieving requests from the BRP and broadcast them to all servers in the
ensemble, Π. Requests are retrieved from the BRP in the order in which they
were originally received (FIFO). Upon retrieving the request, the leader initiates
a proposal message, proposal(m), and abcasts it to all processes, including itself -
proposal(m) −> Π; where m contains a sequence number m.c for m that uniquely

A.2 System Components 126

identifies the proposal and the payload of the write request, m.d. Hence, m =
{m.c,m.d}. Note that, on receiving the proposal message, proposal(m) from itself,
the send thread places it in a pending list 2 until it receives acknowledgements
from a quorum Q of processes. The pending list contains proposals, each waits
for a quorum of processes to send acknowledgements to the leader. In parallel,
the send thread stores the proposal in a logging list and periodically logs the
list’s contents in persistent storage for recovery purpose.

However, a leader is a part of Q which means it needs to send an acknowledge-
ment to itself after placing the received proposal in the logging list and it also
periodically logs the list’s contents on the disk.

Leader waits for acks from a majority of servers . . .

(ii) F1 - Acknowledgement Stage
Upon receiving proposal(m), each follower first places the proposal in the logging
list, further persisting it on the disk. Directly after, the follower must certify that
the proposal has the highest m.c that has been seen and that it precedes the last
committed m.c. Since Zab uses FIFO communication when sending messages
and the leader sends each proposal in the order of its sequence number m.c, the
proposal can always be certified, unless an SC1 or SC2 crash scenario occurs before
the proposal has been certified [37]. Once the proposal has been certified, the
follower, sends an ack(m) to the leader. Note that the m in ack(m) contains only
the m.c in order to optimise the network traffic and since m.c uniquely identifies
the proposal, the leader can easily link m.c with a corresponding proposal.

Followers wait for commit(m) from the leader . . .

(iii) L2 - Commit Stage
Upon receiving ack(m) from a quorum of servers, the leader abcasts commit(m)
to all processes, including itself. The m in the commit(m) message carries m.c to
match it with its respective proposal.

2A list is Java collection framework that stores and manipulates the group of objects.

A.3 Summary 127

Leader and followers wait for commit(m) from the leader . . .

(iv) F2-L3 - Delivery Stage
Upon receiving commit(m), the leader and followers, execute abdeliver(m) by
storing the proposal in their local memory. Note that each server has a delivered
list which stores all abdelivery proposals. Following this, the server that receives
the client request responds to the client as soon as it abdelivers the corresponding
proposal.

As stated earlier, read requests are serviced from the local replica of each Zab process.
This allows the service to scale linearly as processes are added to the system.

A.3 Summary

This Appendix considers implementing the Zab protocol utilising the JGroups frame-
work. As Zab is embedded in the ZooKeeper implementation, it remained obscure to
developers and did not get adopted as a generic Paxos consensus component. Thus, we
have decoupled Zab from ZooKeeper to enable other developers to build coordination
primitives upon it with ease.

Appendix B

Proof of Equations Used for
Modeling ZabCT Protocol

B.1 Proof of Optimal Probabilities for Specific Coin-
tossing Outcomes

B.1.1 Proof (1)

This section provides a proof that the negative term that results in differentiating
the first term in Equation (4.4) is the same as the positive term in differentiating the
second term in Equation (4.4) (see §4.3.1). Consequently, for j, 0≤ j < b:

Ḃ(α + j : α + j +1) =
(

n

α

)
(α)pα−1(i−p)β−

(
n

α + b

)
(β− b)pα+b(1−p)β−b−1;

Ḃ(α + j : α + j +1) = d
dp

((
n

α + j

)
pα+j(1−p)β−j +

(
n

α + j +1

)
pα+j+1(1−p)β−j−1

)

=
(

n

α + j

)
(α + j)pα+j−1(1−p)β−j

−
(

n

α + j

)
(β− j)pα+j(1−p)β−j−1

+
(

n

α + j +1

)
(α + j +1)pα+j(1−p)β−j−1

−
(

n

α + j +1

)
(β− j−1)pα+j+1(1−p)β−j−2

(B.1)

B.1 Proof of Optimal Probabilities for Specific Coin-tossing Outcomes 129

Consider the magnitude of the co-efficient of the second term in Equation (B.1),

(
n

α + j

)
(β− j) = n!

(α + j)!(n−α− j)!(β− j)

= n!
(α + j)!(β− j)!(β− j)

= n!
(α + j +1)!(β− j)!(β− j)(α + j +1)

= n!
(α + j +1)!(β− j−1)!(α + j +1)

= magnitude of the co-efficient of the third term in Equation (B.1)

B.1.2 Proof (2)

This section shows that B̈(α : α+b) is negative, and hence B(α : α+b) at its maximum,
when p∗(α : α + b) as computed by Equation 4.7 of (§4.3.1) is neither 0 nor 1.

Let K1 =
b∏

j=0
(β− j) and K2 =

b∏
j=0

(α + j). So, Equation 4.5 in (§4.3.1) can be written
as:

Ḃ(α : α + b) = K0

[
pα−1(1−p)β

K1
− pα+b(1−p)β−b−1

K2

]

K2
K0

(Ḃ(α : α + b)) = K2
K1

pα−1(1−p)β−pα+b(1−p)β−b−1

B̈(α : α + b) = d
dp(Ḃ(α : α + b))⇒

K2
K0

B̈(α : α + b) =K2
K1

(α−1)pα−2(1−p)β−K2
K1

βpα−1(1−p)β−1

− (α + b)pα+b−1(1−p)β−b−1 +(β− b−1)pα+b(1−p)β−b−2

B.1 Proof of Optimal Probabilities for Specific Coin-tossing Outcomes 130

Rearranging the terms and grouping them together lead to:

K2
K0

B̈(α : α + b) =(β− b−1)pα+b(1−p)β−b−2−K2
K1

βpα−1(1−p)β−1

+ K2
K1

(α−1)pα−2(1−p)β− (α + b)pα+b−1(1−p)β−b−1

=pα+b(1−p)β−b−2
[
(β− b−1)−

(
K2
K1

)
β

(1−p)b+1

pb+1

]

+pα+b−1(1−p)β−b−1
[
K2
K1

(α−1)
((1−p)b+1

pb+1

)
− (α + b)

]
(B.2)

Recall that when p = p∗(α : α + b), Ḃ(α : α + b) = 0. From Equation 4.6 and definitions
of K1 and K2 we have:

1−p

p

b+1

=
b∏

j=0

β− j

α + j


= K1

K2

Substituting K2
K1

= pb+1

(1−p)b+1 in Equation (B.2), we have:

When p = p∗(α : α + b),(
K2
K0

)
B̈(α : α + b) = pα+b(1−p)β−b−2

[
(β− b−1)−β

]
+pα+b−1(1−p)β−b−1

[
(α−1)− (α + b)

]
=− (b+1)

[
pα+b(1−p)β−b−2 +pα+b−1(1−p)β−b−1

]

Since (b+1) > 0, we have B̈(α : α+b,n,p∗(α : α+b,n)) < 0, provided that p∗(α : α+b,n)
is neither 0 nor 1. Thus, B(α : α + b,n,p∗(α : α + b,n)) is at its maximum for
p∗(α : α + b,n) ∈ (0,1).

Appendix C

Expected Number of Subsequent
abcasts Required W(p)

This section shows the expected number of subsequent abcasts W (p) required for
N = 3,5,7 and 9 is computed. As the value of p used by followers must satisfy two
(competing) requirements R1 and R2 (see §4.3). So, a necessary condition for R1 is:

L+W (p)×min
{1

λ
,D
}

< L+d ⇒ W (p) < d×max
{
λ,

1
D

}
All the parameters in the equation above, and their computation are defined in

§4.3 and the experiments described in §5.2.1, except that for W (p). Therefore, this
section shows the computation of W (p) for all N that are utilised in the experiments.

C.1 Expected Number of Subsequent abcasts Re-
quired W(p) for N

C.1.1 Compute W(p) for N=3

When N = 3 and n = 2 ⇒ a = ⌈N−1
2 ⌉= 1 and W2(p) = W1(p) = 0.

So, from Equation Wi(p) = 1+
a−1∑
j=i

qijWj(p) (see Equation 4.8),

Wi(p) = 1+
0∑

j=i

qijWj(p)

W0(p) = 1+ q00W0(p)

C.1 Expected Number of Subsequent abcasts Required W(p) for N 132

W0(p) = 1
1− q00

W (p) = f(0;2)W0(p)

Note: q00 = f(0;2)
∴ W (p) = q00W0(p)

W (p) = q00
1− q00

(C.1)

where q00 = f(0;2) = (1−p)2.

C.1.2 Compute W(p) for N=5

When N = 5 and n = 4 ⇒ a = 2 and W4(p) = W3(p) = W2(p) = 0.

So, from Equation 4.8,

Wi(p) = 1+
1∑

j=i

qijWj(p)

W1(p) = 1+ q11W1(p)⇒W1(p) = 1
1− q11

W0(p) = 1+ q00W0(p)+ q01W1(p)

(1− q00)W0(p) = 1+ q01
1− q11

W0(p) = 1
1− q00

+ q01
(1− q00)(1− q11)

W (p) = f(0;4)W0(p)+f(1;4)W1(p)

Note: q00 = f(0;4) and q01 = f(1;4)

C.1 Expected Number of Subsequent abcasts Required W(p) for N 133

W (p) = q00W0(p)+ q01W1(p)

= q00

[
1

1− q00
+ q01

(1− q00)(1− q11)

]
+ q01

1− q11

= q00
1− q00

+ q00 ∗ q01
(1− q00)(1− q11) + q01

1− q11

= q00
1− q00

+ q01
1− q11

[
q00

1− q00
+1

]

W (p) = q00
1− q00

+ q01
(1− q00)(1− q11) (C.2)

q00 = (1−p)4; q01 = 4p(1−p)3; q11 = (1−p)3.

C.1.3 Compute W(p) for N=7

When N = 7 and n = 6 ⇒ a = 3 and W6(p) = W5(p) = W4(p) = W3(p) = 0.

So, from Equation 4.8,

Wi(p) = 1+
2∑

j=i

qijWj(p)

Wi(p) = 1+
2∑

j=i

qijWj(p)

W2(p) = 1+ q22W2(p)⇒W2 = 1
1− q22

W1(p) = 1+ q11W1(p)+ q12W2(p)⇒W1(p) = 1
1− q11

+ q12
(1− q11)(1− q22)

W0(p) = 1+ q00W0(p)+ q01W1(p)+ q02W2(p)

C.1 Expected Number of Subsequent abcasts Required W(p) for N 134

W0(p) = 1
1− q00

+ q01
(1− q00)(1− q11) + q01q12

(1− q00)(1− q11)(1− q22) + q02
(1− q00)(1− q22)

W (p) = f(0;6)W0(p)+f(1;6)W1(p)+f(2;6)W2(p)

= q00W0(p)+ q01W1(p)+ q02W2(p)

W (p) = q00
1− q00

+ q01
(1− q00)(1− q11) + q01q12

(1− q00)(1− q11)(1− q22)
+ q02

(1− q00)(1− q22)
(C.3)

q00 = (1−p)6; q01 = 6p(1−p)5; q02 = 15p2(1−p)4;
q11 = (1−p)5; q12 = 5p(1−p)4; q22 = (1−p)4.

C.1.4 Compute W(p) for N=9

When N = 9 and n = 8 ⇒ a = 4 and W8(p) = W7(p) = W6(p) = W5(p) = W4(p) = 0.

So, from Equation 4.8,

Wi(p) = 1+
3∑

j=i

qijWj(p)

Wi(p) = 1+
2∑

j=i

qijWj(p)

W3(p) = 1+ q33W3(p)⇒W3(p) = 1
1− q33

W2(p) = 1+ q22W2(p)+ q23W3(p)⇒W2(p) = 1
1− q22

+ q23
(1− q22)(1− q33)

C.2 W(p): Non-increasing Function 135

W1(p) = 1+ q11W1(p)+ q12W2(p)+ q13W3(p)

W1(p) = 1
1− q11

+ q12
(1− q11)(1− q22) + q12q23

(1− q11)(1− q22)(1− q33)

W0(p) = 1+ q00W0(p)+ q01W1(p)+ q02W2(p)+ q03W3(p)

W0(p) = 1
1− q00

+ q01
(1− q00)(1− q11) + q01q12

(1− q00)(1− q11)(1− q22)
+ q01q12q23

(1− q00)(1− q11)(1− q22)(1− q33) + q02
(1− q00)(1− q22)

+ q02q23
(1− q00)(1− q22)(1− q33) + q03

(1− q00)(1− q33)

W (p) = f(0;8)W0(p)+f(1;8)W1(p)+f(2;8)W2(p)+f(3;8)W3(p)

= q00W0(p)+ q01W1(p)+ q02W2(p)+ q03W3(p)

W (p) = q00
1− q00

+ q01
(1− q00)(1− q11) + q01q12

(1− q00)(1− q11)(1− q22)
+ q01q12q13

(1− q00)(1− q11)(1− q22)(1− q33) + q02
(1− q00)(1− q22)

+ q02q23
(1− q00)(1− q22)(1− q33) + q03

(1− q00)(1− q33)

(C.4)

q00 = (1−p)8; q01 = 8p(1−p)7; q02 = 28p2(1−p)6; q03 = 56p3(1−p)5;
q11 = (1−p)7; q12 = 7p(1−p)6; q13 = 21p2(1−p)5; q22 = (1−p)6;
q23 = 6p(1−p)5; q33 = (1−p)5.

C.2 W(p): Non-increasing Function

This section provides a proof that W (p) is a continuous, non-increasing function that
asymptotically reaches 0 and ∞ as the coin-tossing probability p approaches 1(−) and

C.2 W(p): Non-increasing Function 136

0(+) respectively. The figures depict that the expected number of subsequent abcasts
required W (p) is of a non-increasing nature with respect to coin-tossing probability p.

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

W
(p

)

Fig. C.1: Expected number of subsequent abcasts required W (p) for N = 3 and n = 2
with respect to coin-tossing probabilities

C.2 W(p): Non-increasing Function 137

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

W
(p

)

Fig. C.2: Expected number of subsequent abcasts required W (p) for N = 5 and n = 4
with respect to coin-tossing probabilities

C.2 W(p): Non-increasing Function 138

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

W
(p

)

Fig. C.3: Expected number of subsequent abcasts required W (p) for N = 7 and n = 6
with respect to coin-tossing probabilities

C.2 W(p): Non-increasing Function 139

0

5

10

15

20

25

30

35

40

45

50

55

60

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

W
(p

)

Fig. C.4: Expected number of subsequent abcasts required W (p) for N = 9 and n = 8
with respect to coin-tossing probabilities

Appendix D

Performance Evaluation of ZabCT
Protocol for Optimal Probabilities
for Specific Toss Outcomes and
Large θ

The appendix shows that performance compression of Zab and ZabCT protocol for
optimal probabilities for specific toss outcomes §4.3.1.

D.1 Experimentation

We utilised the same experiment as in §5.2.1. Ideally, θ in Equation 4.2 must satisfy
θ ≤ λ, see Challenge 3 in §4.2.2. To avoid followers being unable to compute p and
thereby having to switch to Zab in experiments, we set θ = λ when WR = 1 when Zab
was run. That is, we measured the average value of λ encountered when Zab was run
for WR = 1, and used that values to fix θ in ZabCT for all values of WR (including
WR = 1).

Thus, with zero client wait-time, the θ values used in ZabCT are: 3967, 2351, 1639,
1332 when N = 3,5,7,9 respectively; similarly, for wait-time u.d. on (25, 75), θ values
for ZabCT are: 3597, 2236, 1597, 1302 when N = 3,5,7,9 respectively [22].

D.2 Evaluation 141

D.2 Evaluation

Figure D.1 presents the average latency and throughput comparison for N = 5 and
zero client wait time. Let us first focus on latency comparison depicted in Figure D.1a.
As we can observe, ZabCT offers lower latencies compared to Zab for all WR values.

0

10

20

30

40

50

60

70

80

90

100

110

120

10 20 30 40 50 60 70 80 90 100
Write Ratio

La
te

nc
y

(m
s)

 Zab ZabCT

(a) Latency comparison

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

10 20 30 40 50 60 70 80 90 100
Write Ratio

T
hr

ou
gh

pu
t (

ab
ds

/s
ec

)

 Zab ZabCT

(b) Throughput comparison

Fig. D.1: Performance comparison for N = 5 and zero client wait-time

The difference between Zab and ZabCT varies between 7 and 11 ms. This can be
attributed to (i) absence of commit message transmissions in ZabCT and (ii) ZabCT
leader receiving fewer acks compared to Zab leader, see column N = 5 in Table D.1a.
(Recall that number of acks received by the Zab leader per commit is N −1.) Due to
(i) and (ii), the leader and followers have fewer messages in their buffer, which results
in messages being received faster at destinations and in reduced abdelivery latency.

Figure D.1b compares throughput with zero client wait-time. The throughput of
ZabCT is at least as good as, if not better than, Zab; when WR = 100%, the difference
is maximum at about 70 abds/sec.

Table D.1 shows the number of acks received by the leader per commit and the coin-
toss probabilities computed for experiments with zero client wait-time. An important
observation to be drawn from the Table D.1a that, in all N , the ZabCT leader receives
less incoming traffic compared to the Zab leader. For example, when N = 5 and at
WR = 10%,100%, ZabCT leader receives 1.319 and 0.599 acks per commit respectively

D.2 Evaluation 142

❍❍
❍❍❍❍WR

N 3 5 7 9

10 1.607 1.319 1.041 1.036
20 1.177 1.118 0.959 1.038
30 0.996 0.628 0.934 1.045
40 0.773 0.602 0.932 1.044
50 0.766 0.568 0.938 1.027
60 0.758 0.596 0.925 0.662
70 0.669 0.587 0.923 0.543
80 0.718 0.598 0.926 0.544
90 0.732 0.592 0.935 0.519
100 0.788 0.599 0.924 0.547

(a) Number of acks per commit

❍❍
❍❍❍❍WR

N 3 5 7 9

10 0.800 0.338 0.171 0.132
20 0.594 0.289 0.154 0.129
30 0.505 0.160 0.149 0.126
40 0.388 0.148 0.150 0.128
50 0.387 0.137 0.154 0.123
60 0.380 0.156 0.152 0.085
70 0.353 0.156 0.156 0.073
80 0.359 0.155 0.156 0.072
90 0.373 0.154 0.158 0.071
100 0.403 0.156 0.151 0.071

(b) Coin-toss probabilities

Table D.1: Zero client wait-time

whereas in Zab, the leader would receive N−1 = 4 acks. This reduction in ack messages
for ZabCT leader corresponds to the small coin-toss probabilities of 0.338 chosen for
WR = 10 and 0.156 for WR = 100. This is the main reason we observe lower latency
and relatively high throughput as shown in Figure D.1.

Figure D.2 shows latency and throughput comparison using an average of 50 ms
client wait-times (u.d. on (25, 75)). An interesting finding is that in Figure D.2a at
WR = 10%,20%,30%, the latency becomes nearly equal for ZabCT and Zab. A possible
explanation for these results may be λ is low (due to (1) non-zero client wait-time and
(2) reads far out-numbering writes) which leads to high coin-toss probabilities 0.750,
0.561 and 0.381 respectively (see Table D.2b column N = 5). This results in increasing
incoming traffic for leader and followers (increasing the number of acks per commit) to
3.253, 2.688 and 2.046 respectively (see Table D.2a column N = 5). However, as WR

increases, λ becomes high. This leads to less incoming traffic on the leader and followers,
resulting in ZabCT latency being smaller than Zab, with a maximum difference of 1
ms at WR = 40% and increasing to about 5 ms at WR = 100%.

Figure D.2b compares throughput for N = 5. It is obvious that ZabCT demonstrates
high throughput. With WR = 70%,80%,90%,100% the difference is about 130 abds/sec.

Table D.2 indicates the number of acks received by ZabCT leader per commit
and coin-toss probabilities for an average of 50 ms client wait-time. Consider Table
D.2a; it is significant to notice that the number of acks per commit is higher than that

D.2 Evaluation 143

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100
Write Ratio

La
te

nc
y

(m
s)

 Zab ZabCT

(a) Latency comparison

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

10 20 30 40 50 60 70 80 90 100
Write Ratio

T
hr

ou
gh

pu
t (

ab
ds

/s
ec

)
 Zab ZabCT

(b) Throughput comparison

Fig. D.2: Performance comparison for N = 5 and client wait-time on (25, 75) ms

shown in Table D.1a. This is explained by the fact that λ decreases for all N and WR

(due to non-zero wait-times), resulted in probability, Prob(Head) increases, hence the
likelihood of sending an ack increases as well (see Table D.2b).

Table D.3a shows latency improvements for all N and WR, and for both zero and
50 ms client wait-time experiments. Overall, what is interesting to note is that the
performance of ZabCT nearly outweighs that of Zab for all N and WR. Frequent
abcasting leads to frequent coin-tosses which in turn reduce the delays due to the leader
having to commit by receiving implicit acks from followers; moreover, the incoming
traffic at the leader reduces remarkably (see Tables D.1a and D.2a) when followers toss
coins which will have the effect of reducing latencies at the leader.

D.2 Evaluation 144

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 1.600 3.007 3.757 5.783
20 1.601 2.250 2.374 1.439
30 1.603 1.526 1.731 1.052
40 1.600 1.113 1.590 1.045
50 1.537 0.885 0.949 1.038
60 1.101 0.814 0.941 0.762
70 1.116 0.699 0.934 0.550
80 1.014 0.650 0.921 0.549
90 0.742 0.626 0.942 0.540
100 0.793 0.668 0.930 0.544

(a) Number of acks per commit

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 0.800 0.750 0.552 0.667
20 0.800 0.560 0.275 0.400
30 0.800 0.383 0.180 0.129
40 0.801 0.284 0.165 0.130
50 0.771 0.233 0.155 0.126
60 0.553 0.186 0.155 0.090
70 0.564 0.186 0.160 0.067
80 0.534 0.174 0.154 0.071
90 0.402 0.165 0.158 0.066
100 0.429 0.183 0.159 0.071

(b) Coin-toss probabilities

Table D.2: Client wait time in (25, 75) ms

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 25% 15% 18% 17%
20 10% 16% 14% 18%
30 11% 12% 16% 15%
40 13% 13% 13% 12%
50 9% 13% 11% 11%
60 8% 11% 11% 10%
70 12% 11% 11% 9%
80 12% 8% 9% 8%
90 13% 8% 8% 8%
100 10% 9% 8% 9%

(a) Zero client wait-time

❍❍
❍❍❍❍WR

N 3 5 7 9

10 4% 5% 6% 17%
20 2% 4% 4% 15%
30 3% 6% 4% 23%
40 7% 18% 15% 12%
50 8% 19% 14% 11%
60 3% 19% 12% 10%
70 10% 23% 10% 9%
80 14% 15% 10% 8%
90 27% 12% 8% 8%
100 50% 10% 8% 9%

(b) Client wait-time on (25, 75) ms

Table D.3: Latency improvement

D.2 Evaluation 145

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab90th Zab95th ZabCT90th ZabCT95th

(a) Ensemble size N = 3

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab90th Zab95th ZabCT90th ZabCT95th

(b) Ensemble size N = 5

0

10

20

30

40

50

60

70

80

90

100

110

120

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab90th Zab95th ZabCT90th ZabCT95th

(c) Ensemble size N = 7

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

10 20 30 40 50 60 70 80 90 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

 Zab90th Zab95th ZabCT90th ZabCT95th

(d) Ensemble size N = 9

Fig. D.3: Comparison of performance of 90th and 95th percentile latencies for Zab
vs. ZabCT for N = 7,9. The client wait time is uniformly distributed on (25, 75)
millisecond (ms), with an average of 50 ms.

D.2 Evaluation 146

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

5000

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab90th Zab95th ZabCT90th ZabCT95th

(a) Ensemble size N = 3

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab90th Zab95th ZabCT90th ZabCT95th

(b) Ensemble size N = 5

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab90th Zab95th ZabCT90th ZabCT95th

(c) Ensemble size N = 7

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50 60 70 80 90 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(a

b
d
s
/s

e
c
)

 Zab90th Zab95th ZabCT90th ZabCT95th

(d) Ensemble size N = 9

Fig. D.4: Comparison of performance of 90th and 95th percentile throughput for Zab
vs. ZabCT for N = 7,9. The client wait time is uniformly distributed on (25, 75)
millisecond (ms), with an average of 50 ms.

Appendix E

Performance Evaluation

This appendix shows the performance compression of Zab and proposed protocols.

E.1 Zab vs Zab-variant Protocols

This section provides performance improvement for Zab-variant protocols (ZabAa,
ZabCt, ZabAA and ZabCT) which are presented in Chapter 3. Note that the results
shown in the below tables are collected from the same experiments as detailed in
§5.1.1 but the results here are reported in form of latency/throughput improvements
offered by Zab-variant Protocols (ZabAa, ZabCt, ZabAA and ZabCT, for coin-tossing
protocols, p is fixed at p = 0.5) over Zab.

E.1.1 Performance Improvement

E.1 Zab vs Zab-variant Protocols 148

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 16% 6% 1% 4%
20 9% 10% 9% 17%
30 15% 4% 13% 15%
40 13% 6% 15% 11%
50 10% 14% 15% 11%
60 12% 15% 13% 9%
70 16% 12% 11% 9%
80 16% 11% 10% 7%
90 15% 10% 10% 7%
100 16% 12% 8% 11%

(a) Latency improvement

❍❍
❍❍❍❍WR

N 3 5 7 9

10 -5% -1% 1% 5%
20 0% 1% 4% 5%
30 2% -3% 4% 6%
40 0% -1% 4% 5%
50 -1% 4% 5% 7%
60 4% 4% 5% 5%
70 9% 3% 4% 6%
80 10% 3% 5% 6%
90 8% 2% 5% 6%
100 9% 6% 3% 8%

(b) Throughput improvement

Table E.1: Performance improvement for Zab and ZabAa

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 23% -5% 2% 6%
20 13% 13% 10% 17%
30 16% 9% 14% 16%
40 17% 12% 16% 12%
50 16% 13% 14% 12%
60 18% 12% 13% 10%
70 20% 11% 13% 9%
80 19% 11% 11% 8%
90 18% 7% 10% 8%
100 18% 6% 10% 11%

(a) Latency improvement

❍❍
❍❍❍❍WR

N 3 5 7 9

10 0% 4% 4% 5%
20 5% 2% 5% 5%
30 3% -1% 5% 6%
40 4% 2% 4% 6%
50 1% -1% 4% 7%
60 3% 1% 5% 6%
70 11% 0% 6% 6%
80 10% 1% 4% 7%
90 8% -1% 5% 7%
100 11% 0% 5% 8%

(b) Throughput improvement

Table E.2: Performance improvement for Zab and ZabCt

E.1 Zab vs Zab-variant Protocols 149

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 9% 12% -1% 3%
20 1% 5% 9% 17%
30 2% 3% 13% 11%
40 8% 7% 13% 9%
50 5% 12% 15% 15%
60 4% 12% 15% 12%
70 15% 11% 11% 9%
80 11% 10% 10% 8%
90 9% 9% 8% 7%
100 7% 10% 7% 10%

(a) Latency improvement

❍❍
❍❍❍❍WR

N 3 5 7 9

10 -5% -1% 2% 4%
20 0% -2% 3% 5%
30 -2% -1% 5% 6%
40 -1% 1% 4% 6%
50 0% 2% 3% 7%
60 4% 3% 5% 5%
70 9% 2% 4% 6%
80 8% 0% 4% 6%
90 6% -1% 3% 6%
100 5% 6% 3% 7%

(b) Throughput improvement

Table E.3: Performance improvement for Zab and ZabAA

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 12% 0% 4% 6%
20 4% 10% 12% 17%
30 10% 8% 14% 15%
40 13% 12% 17% 12%
50 6% 15% 15% 11%
60 10% 14% 14% 9%
70 18% 13% 13% 9%
80 15% 13% 12% 8%
90 16% 12% 11% 7%
100 7% 13% 11% 11%

(a) Latency improvement

❍❍
❍❍❍❍WR

N 3 5 7 9

10 -4% 2% 3% 5%
20 1% 1% 5% 6%
30 2% 1% 5% 6%
40 5% 5% 6% 6%
50 4% 5% 5% 7%
60 8% 4% 6% 6%
70 15% 3% 7% 6%
80 15% 4% 6% 6%
90 13% 5% 6% 6%
100 4% 8% 7% 8%

(b) Throughput improvement

Table E.4: Performance improvement for Zab and ZabCT

E.2 Zab vs ZabCT 150

E.2 Zab vs ZabCT

This section shows the performance results for Zab and ZabCT, operating under the
original Zab assumptions with an appropriately chosen coin-tossing probability as
described in Chapter 4. Note that the results shown in the tables below are collected
from the same experiments as detailed in §5.2.1.

E.2.1 Zab vs ZabCTu

The following reports the results of the performance comparison for the Zab and
ZabCTu experiment. In the ZabCTu experiment, the coin-tossing probability p is
chosen to be closer to the upper bound, P2, p = P2− δ.

Performance Improvement

❍❍
❍❍❍❍WR

N 3 5 7 9

10 29% 13% 16% 17%
20 11% 15% 18% 15%
30 8% 12% 11% 14%
40 13% 12% 13% 11%
50 4% 16% 11% 10%
60 13% 15% 11% 9%
70 15% 10% 11% 8%
80 18% 9% 12% 7%
90 11% 7% 9% 7%
100 11% 10% 8% 10%

(a) Latency improvement

❍❍
❍❍❍❍WR

N 3 5 7 9

10 6% 2% 1% 2%
20 0% 1% 2% 2%
30 -2% 0% 1% 2%
40 -2% 2% 1% 2%
50 1% -1% 1% 2%
60 1% -2% 3% 1%
70 5% 1% 3% 3%
80 3% 0% 2% 3%
90 1% -1% 3% 3%
100 6% 4% 2% 4%

(b) Throughput improvement

Table E.5: Performance improvement for ZabCTu and zero client wait-time experiment.

E.2 Zab vs ZabCT 151

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 -71% 1% 2% 6%
20 -33% 2% 2% 7%
30 -39% 2% 0% 18%
40 -15% 2% 19% 12%
50 -36% 34% 12% 10%
60 -16% 23% 11% 10%
70 -39% 26% 5% 9%
80 -6% 10% 10% 12%
90 -5% 9% 9% 8%
100 23% 10% 8% 11%

(a) Latency improvement

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 0% 0% 0% 5%
20 -1% -3% -1% -1%
30 -2% -2% -4% 1%
40 -1% -4% 1% 2%
50 -1% 4% -1% 2%
60 -1% 3% 1% 1%
70 -1% 6% 1% 0%
80 -1% 1% 1% 1%
90 -4% 4% 2% 3%
100 5% 0% 2% 1%

(b) Throughput improvement

Table E.6: Performance improvement for ZabCTu and client wait-time on (25, 75) ms
experiment.

E.2 Zab vs ZabCT 152

Number of ACK vs Coin-Tossing Probability

Table E.7 shows the number of acks received by the leader per commit message and
the coin-tossing probabilities computed (within the upper bound p, p = P2− δ) for the
experiment with client wait-time on (25, 75) ms. Note that as shown in Table E.7a,
leader receives 4, 6 and 8 acks messages when WR = 10,20 and N = 5,7,9 respectively.
This can be attributed to the value of p becomes 1, p = 1 which refers to the ZabCT is
found to be infeasible, hence the Zab protocol is executed and as a results all followers
in N send acks to the leader.
❍
❍❍❍

❍❍WR
N 3 5 7 9

10 0.993 4.002 5.948 8.007
20 0.998 3.988 5.995 8.023
30 1.005 4.003 5.950 1.037
40 1.005 2.928 1.016 1.035
50 1.010 0.957 1.040 1.037
60 1.010 1.018 1.027 1.036
70 1.015 1.006 1.001 1.015
80 1.003 1.003 0.994 1.013
90 1.006 1.002 0.997 1.005
100 1.002 1.004 0.990 1.004

(a) Number of acks per commit

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 0.499 1 1 1
20 0.499 1 1 1
30 0.499 1 0.166 0.124
40 0.499 0.249 0.166 0.124
50 0.499 0.249 0.166 0.124
60 0.499 0.249 0.166 0.124
70 0.499 0.249 0.166 0.124
80 0.499 0.249 0.166 0.124
90 0.499 0.249 0.166 0.124
100 0.499 0.249 0.166 0.124

(b) Coin-tossing probabilities

Table E.7: Number of acks and coin-tossing probabilities for ZabCTu and client
wait-time on (25, 75) ms experiment.

E.2 Zab vs ZabCT 153

E.2.2 Zab vs ZabCTa

The following reports the results of the performance comparison for the Zab and
ZabCTa experiment. In the ZabCTa experiment, the coin-tossing probability p is
chosen to be an average of P1 and P2, p = P1+P2

2 .

Performance Improvement

❍❍❍
❍❍❍WR

N 3 5 7 9

10 29% 14% 15% 12%
20 15% 17% 16% 13%
30 12% 13% 12% 11%
40 15% 12% 13% 10%
50 14% 14% 12% 11%
60 13% 12% 10% 9%
70 16% 10% 10% 9%
80 14% 9% 9% 8%
90 10% 8% 8% 9%
100 11% 11% 10% 11%

(a) Latency improvement

❍❍❍
❍❍❍WR

N 3 5 7 9

10 10% 3% 2% 0%
20 4% 2% 2% 2%
30 -3% 1% 2% 2%
40 2% 1% 2% 2%
50 5% 2% 3% 2%
60 5% 1% 3% 3%
70 9% 0% 3% 1%
80 7% 0% 2% 3%
90 5% 0% 2% 3%
100 1% 0% 2% 4%

(b) Throughput improvement

Table E.8: Performance improvement for ZabCTa and Zero client wait-time experiment.

E.2 Zab vs ZabCT 154

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 -81% 1% 1% 6%
20 -53% 4% 4% 2%
30 -83% 2% 2% 18%
40 -89% 12% 22% 8%
50 -49% 28% 13% 7%
60 -41% 28% 12% 7%
70 -35% 24% 6% 5%
80 4% 14% 10% 9%
90 -8% 15% 9% 4%
100 30% 13% 8% 10%

(a) Latency improvement

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 0% 0% 0% 5%
20 -1% -2% -2% -1%
30 -2% -3% -1% 1%
40 -4% -2% 1% 2%
50 -4% 4% 2% 1%
60 -3% 4% 2% 1%
70 1% 5% 2% 1%
80 0% 2% 2% 3%
90 -1% 8% 2% 3%
100 8% 3% 2% 4%

(b) Throughput improvement

Table E.9: Performance improvement for ZabCTa and client wait-time on (25, 75) ms
experiment.

E.2 Zab vs ZabCT 155

Number of acks vs Coin-Tossing Probability

Table E.10 shows the number of acks received by the leader per commit message and
the coin-tossing probabilities computed for the experiment with client wait-time on
(25, 75) ms. The coin-tossing probability p is chosen to be an average of P1 and P2,
p = P1+P2

2 .

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 0.933 4.003 6.018 8.007
20 0.805 4.001 5.989 7.999
30 0.738 3.979 3.371 0.750
40 0.700 1.079 0.708 0.609
50 0.674 0.918 0.618 0.588
60 0.656 0.615 0.591 0.581
70 0.635 0.565 0.548 0.550
80 0.608 0.557 0.556 0.546
90 0.598 0.544 0.583 0.541
100 0.585 0.577 0.592 0.536

(a) Number of acks per commit

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 0.467 1 1 1
20 0.401 1 1 1
30 0.367 1 0.16 0.084
40 0.346 0.233 0.11 0.07
50 0.332 0.218 0.095 0.068
60 0.321 0.151 0.091 0.067
70 0.332 0.14 0.09 0.066
80 0.306 0.135 0.089 0.066
90 0.3 0.133 0.089 0.066
100 0.296 0.132 0.088 0.065

(b) Coin-tossing probabilities

Table E.10: Number of acks and coin-tossing probabilities for ZabCTa and client
wait-time on (25, 75) ms experiment.

E.2 Zab vs ZabCT 156

E.2.3 Zab vs ZabCTaa

The following reports the results of the performance comparison for the Zab and
ZabCTaa experiment, the coin-tossing probability is chosen to be an average of P1 and
a, p = a+P1

2 , where a = P1+P2
2 .

Performance Improvement

❍❍❍
❍❍❍WR

N 3 5 7 9

10 8% 14% 16% 16%
20 6% 14% 9% 3%
30 13% 9% 6% 2%
40 14% 10% 9% 2%
50 4% 11% 7% 3%
60 8% 8% 3% 2%
70 9% 5% 4% 2%
80 6% 3% 1% 2%
90 5% 2% 2% 2%
100 5% 5% 5% 3%

(a) Latency improvement

❍❍❍
❍❍❍WR

N 3 5 7 9

10 -13% -6% -4% 0%
20 -5% -7% -6% -2%
30 -4% -7% -4% -5%
40 -1% -3% -3% -6%
50 -6% -8% -2% -3%
60 -5% -4% -6% -6%
70 0% -5% -5% -3%
80 3% -4% -6% -3%
90 -6% -7% -7% -5%
100 -3% -4% -4% -5%

(b) Throughput improvement

Table E.11: Performance improvement for ZabCTaa and Zero client wait-time and
experiment.

E.2 Zab vs ZabCT 157

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 -88% -1% -2% 6%
20 -196% -7% 10% -18%
30 -250% -10% -105% 13%
40 -149% -3% -25% -11%
50 -120% 20% -4% -2%
60 -103% 20% 1% -6%
70 -57% 2% -1% -4%
80 -18% 9% 0% 3%
90 9% 1% -1% -5%
100 29% 4% -12% 4%

(a) Latency improvement

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 0% 0% 0% 5%
20 -3% 0% -1% -1%
30 -7% -3% -8% -11%
40 -10% -10% -5% -5%
50 -8% 1% -7% -2%
60 -5% -5% -3% -3%
70 -4% 0% -2% -3%
80 -5% -4% -7% -3%
90 -1% -2% -7% -3%
100 6% -1% -7% -2%

(b) Throughput improvement

Table E.12: Performance improvement for ZabCTaa and client wait-time on (25, 75)
ms experiment.

E.2 Zab vs ZabCT 158

Number of acks vs Coin-Tossing Probability

Tables E.13 and E.14 show the number of acks received by the leader per commit
message and the coin-tossing probabilities computed for the experiment with zero and
non-zero client wait-time. The coin-tossing probability p is chosen to be an average of
P1 and a, p = a+P1

2 .

❍
❍❍❍

❍❍WR
N 3 5 7 9

‘ 10 0.316 0.487 0.483 0.397
20 0.309 0.433 0.424 0.388
30 0.320 0.405 0.492 0.391
40 0.298 0.409 0.389 0.437
50 0.292 0.356 0.384 0.470
60 0.276 0.345 0.475 0.597
70 0.277 0.336 0.381 0.392
80 0.276 0.371 0.453 0.437
90 0.277 0.342 0.344 0.414
100 0.278 0.321 0.430 0.379

(a) Number of acks per commit

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 0.138 0.074 0.051 0.037
20 0.134 0.071 0.049 0.036
30 0.132 0.071 0.048 0.036
40 0.131 0.068 0.047 0.035
50 0.131 0.068 0.047 0.035
60 0.13 0.068 0.047 0.035
70 0.13 0.068 0.047 0.035
80 0.13 0.068 0.048 0.035
90 0.129 0.067 0.047 0.035
100 0.129 0.068 0.046 0.035

(b) Coin-tossing probabilities

Table E.13: Number of acks and coin-tossing probabilities for ZabCTaa and zero client
wait-time experiment.

E.2 Zab vs ZabCT 159

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 0.902 4.002 5.948 8.007
20 0.710 3.988 5.995 8.023
30 0.611 4.003 5.950 1.037
40 0.578 2.928 0.841 0.601
50 0.497 0.805 0.601 0.416
60 0.473 0.637 0.555 0.564
70 0.448 0.469 0.483 0.458
80 0.421 0.410 0.371 0.495
90 0.399 0.374 0.480 0.451
100 0.376 0.468 0.337 0.336

(a) Number of acks per commit

❍
❍❍❍

❍❍WR
N 3 5 7 9

10 0.441 1 1 1
20 0.344 1 1 1
30 0.298 1 0.152 0.101
40 0.265 0.22 0.077 0.044
50 0.248 0.144 0.059 0.04
60 0.232 0.103 0.053 0.038
70 0.218 0.086 0.052 0.037
80 0.209 0.077 0.051 0.036
90 0.202 0.075 0.05 0.036
100 0.196 0.074 0.049 0.036

(b) Coin-toss probabilities

Table E.14: Number of acks and coin-tossing probabilities for ZabCTaa and client
wait-time on (25, 75) ms experiment.

Appendix F

Calculation Summary of
Coin-Tossing Probability

This appendix shows a calculation summary of the coin-tossing probability p for zero
and non-zero client wait-time, and for all N . All of the average values reported in the
tables below are calculated from the statistics recorded by each follower during the
experiments. Note that the results shown in the tables below are collected from the
same experiments as detailed in §5.2.1.

F.1 Coin-Tossing Probability of ZabCTu Protocol

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.013 2094 27.222 24.253 27.03 0.02 0.018 0.499 0.499
20 0.014 3128 43.792 24.253 40.918 0.02 0.012 0.499 0.499
30 0.014 3805 53.27 49.251 49.251 0.01 0.01 0.499 0.499
40 0.015 4238 63.57 49.251 61.751 0.01 0.008 0.499 0.499
50 0.016 4563 73.008 49.251 70.679 0.01 0.007 0.499 0.499
60 0.015 4825 72.375 49.251 70.679 0.01 0.007 0.499 0.499
70 0.014 5026 70.364 49.251 61.751 0.01 0.008 0.499 0.499
80 0.016 5122 81.952 49.251 70.679 0.01 0.007 0.499 0.499
90 0.017 5255 89.335 49.251 82.584 0.01 0.006 0.499 0.499
100 0.018 5347 96.246 49.251 82.584 0.01 0.006 0.499 0.499

Table F.1: Average follower statistics for calculated coin probability for ZabCTu, zero
client wait-time and N = 3 experiment

F.1 Coin-Tossing Probability of ZabCTu Protocol 161

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.02 1846 36.92 28.374 31.615 0.02 0.016 0.249 0.249
20 0.023 2245 51.635 28.374 47.819 0.02 0.012 0.249 0.249
30 0.027 2437 65.799 57.541 57.541 0.01 0.009 0.249 0.249
40 0.031 2536 78.616 57.541 72.125 0.01 0.008 0.249 0.249
50 0.033 2582 85.206 57.541 82.541 0.01 0.007 0.249 0.249
60 0.033 2618 86.394 57.541 82.541 0.01 0.007 0.249 0.249
70 0.036 2643 95.148 57.541 72.125 0.01 0.007 0.249 0.249
80 0.035 2661 93.135 57.541 82.541 0.01 0.007 0.249 0.249
90 0.037 2684 99.308 57.541 96.43 0.01 0.006 0.249 0.249
100 0.038 2706 102.828 57.541 96.43 0.01 0.006 0.249 0.249

Table F.2: Average follower statistics for calculated coin probability for ZabCTu, zero
client wait-time and N = 5 experiment

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.031 1491 46.221 29.403 46.004 0.02 0.013 0.166 0.166
20 0.04 1650 66 60.234 60.234 0.01 0.01 0.166 0.166
30 0.048 1703 81.744 60.234 75.65 0.01 0.008 0.166 0.166
40 0.052 1744 90.688 60.234 86.662 0.01 0.007 0.166 0.166
50 0.054 1760 95.04 60.234 86.662 0.01 0.007 0.166 0.166
60 0.056 1778 99.568 60.234 86.662 0.01 0.007 0.166 0.166
70 0.056 1786 100.016 60.234 86.662 0.01 0.007 0.166 0.166
80 0.056 1791 100.296 60.234 86.662 0.01 0.007 0.166 0.166
90 0.058 1792 103.936 60.234 101.345 0.01 0.006 0.166 0.166
100 0.058 1811 105.038 60.234 101.345 0.01 0.006 0.166 0.166

Table F.3: Average follower statistics for calculated coin probability for ZabCTu, zero
client wait-time and N = 7 experiment

F.1 Coin-Tossing Probability of ZabCTu Protocol 162

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.039 1206 47.034 44.08 44.08 0.01 0.01 0.124 0.124
20 0.063 1289 81.207 44.08 73.07 0.01 0.006 0.124 0.124
30 0.072 1306 94.032 44.08 87.56 0.01 0.005 0.124 0.124
40 0.072 1319 94.968 44.08 87.56 0.01 0.005 0.124 0.124
50 0.076 1328 100.928 44.08 87.56 0.01 0.005 0.124 0.124
60 0.076 1335 101.46 44.08 87.56 0.01 0.005 0.124 0.124
70 0.078 1336 104.208 44.08 87.56 0.01 0.005 0.124 0.124
80 0.08 1338 107.04 44.08 87.56 0.01 0.005 0.124 0.124
90 0.081 1343 108.783 44.08 87.56 0.01 0.005 0.124 0.124
100 0.081 1352 109.512 44.08 109.291 0.01 0.004 0.124 0.124

Table F.4: Average follower statistics for calculated coin probability for ZabCTu, zero
client wait-time and N = 9 experiment

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.001 999 0.999 0.961 0.994 0.3 0.294 0.499 0.499
20 0.001 999 0.999 0.961 0.994 0.3 0.294 0.499 0.499
30 0.001 1479 1.479 1.456 1.475 0.23 0.228 0.499 0.499
40 0.001 1967 1.967 1.908 1.964 0.19 0.186 0.499 0.499
50 0.001 2445 2.445 2.397 2.436 0.16 0.158 0.499 0.499
60 0.001 2907 2.907 2.84 2.892 0.14 0.138 0.499 0.499
70 0.001 3329 3.329 3.114 3.299 0.13 0.124 0.499 0.499
80 0.001 3808 3.808 3.433 3.769 0.12 0.111 0.499 0.499
90 0.001 4222 4.222 3.81 4.214 0.11 0.101 0.499 0.499
100 0.001 4555 4.555 4.263 4.526 0.1 0.095 0.499 0.499

Table F.5: Average follower statistics for calculated coin probability for ZabCTu, client
wait-time on (25, 75) ms and N = 3

F.1 Coin-Tossing Probability of ZabCTu Protocol 163

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.001 488 0.488 0.469 0.485 0.46 0.454 0.249 1
20 0.001 995 0.995 0.963 0.991 0.33 0.325 0.249 1
30 0.001 1418 1.418 1.357 1.415 0.27 0.263 0.249 1
40 0.002 1964 3.928 3.689 3.906 0.13 0.124 0.249 0.249
50 0.002 2336 4.672 4.506 4.655 0.11 0.107 0.249 0.249
60 0.005 2537 12.685 10.873 12.464 0.05 0.044 0.249 0.249
70 0.008 2649 21.192 18.651 20.812 0.03 0.027 0.249 0.249
80 0.012 2676 32.112 28.374 31.615 0.02 0.018 0.249 0.249
90 0.014 2699 37.786 28.374 35.666 0.02 0.016 0.249 0.249
100 0.016 2713 43.408 28.374 40.874 0.02 0.014 0.249 0.249

Table F.6: Average follower statistics for calculated coin probability for ZabCTu, client
wait-time on (25, 75) ms and N = 5

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.001 490 0.49 0.469 0.489 0.45 0.442 0.166 1
20 0.001 939 0.939 0.916 0.936 0.32 0.316 0.166 1
30 0.002 1373 2.746 2.597 2.737 0.16 0.154 0.166 0.166
40 0.007 1709 11.963 10.922 11.707 0.05 0.047 0.166 0.166
50 0.016 1762 28.192 19.13 27.935 0.03 0.021 0.166 0.166
60 0.023 1779 40.917 29.403 39.679 0.02 0.015 0.166 0.166
70 0.027 1787 48.249 29.403 46.004 0.02 0.013 0.166 0.166
80 0.031 1790 55.49 29.403 54.628 0.02 0.011 0.166 0.166
90 0.034 1798 61.132 60.234 60.234 0.01 0.01 0.166 0.166
100 0.038 1808 68.704 60.234 67.086 0.01 0.009 0.166 0.166

Table F.7: Average follower statistics for calculated coin probability for ZabCTu, client
wait-time on (25, 75) ms and N = 7

F.1 Coin-Tossing Probability of ZabCTu Protocol 164

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.001 479 0.479 0.469 0.478 0.47 0.467 0.124 1
20 0.002 937 1.874 1.85 1.872 0.22 0.218 0.124 1
30 0.009 1280 11.52 11.335 11.335 0.04 0.04 0.124 0.124
40 0.024 1318 31.632 22.3 29.568 0.02 0.015 0.124 0.124
50 0.035 1328 46.48 44.08 44.08 0.01 0.01 0.124 0.124
60 0.042 1335 56.07 44.08 54.954 0.01 0.008 0.124 0.124
70 0.048 1336 64.128 44.08 62.719 0.01 0.007 0.124 0.124
80 0.053 1342 71.126 44.08 62.719 0.01 0.007 0.124 0.124
90 0.056 1349 75.544 44.08 73.07 0.01 0.006 0.124 0.124
100 0.058 1350 78.3 44.08 73.07 0.01 0.006 0.124 0.124

Table F.8: Average follower statistics for calculated coin probability for ZabCTu, client
wait-time on (25, 75) ms and N = 9

F.2 Coin-Tossing Probability of ZabCTa Protocol 165

F.2 Coin-Tossing Probability of ZabCTa Protocol

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.013 2030 26.39 24.253 25.568 0.02 0.019 0.499 0.259
20 0.014 3157 44.198 24.253 40.918 0.02 0.012 0.499 0.256
30 0.015 3779 56.685 49.251 54.807 0.01 0.009 0.499 0.254
40 0.015 4047 60.705 49.251 54.807 0.01 0.009 0.499 0.254
50 0.016 4597 73.552 49.251 70.679 0.01 0.007 0.499 0.253
60 0.014 4804 67.256 49.251 61.751 0.01 0.008 0.499 0.254
70 0.016 4954 79.264 49.251 70.679 0.01 0.007 0.499 0.253
80 0.016 5125 82 49.251 70.679 0.01 0.007 0.499 0.253
90 0.017 5232 88.944 49.251 82.584 0.01 0.006 0.499 0.253
100 0.017 5344 90.848 49.251 82.584 0.01 0.006 0.499 0.253

Table F.9: Average follower statistics for calculated coin probability for ZabCTa, Zero
client wait-time and N = 3 experiment

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.019 1807 34.333 28.374 33.521 0.02 0.017 0.249 0.133
20 0.023 2231 51.313 28.374 47.819 0.02 0.012 0.249 0.131
30 0.028 2388 66.864 57.541 64.023 0.01 0.009 0.249 0.129
40 0.031 2509 77.779 57.541 72.125 0.01 0.008 0.249 0.129
50 0.031 2561 79.391 57.541 72.125 0.01 0.008 0.249 0.129
60 0.033 2620 86.46 57.541 82.541 0.01 0.007 0.249 0.128
70 0.034 2648 90.032 57.541 82.541 0.01 0.007 0.249 0.128
80 0.035 2665 93.275 57.541 82.541 0.01 0.007 0.249 0.128
90 0.037 2671 98.827 57.541 96.43 0.01 0.006 0.249 0.128
100 0.037 2704 100.048 57.541 96.43 0.01 0.006 0.249 0.128

Table F.10: Average follower statistics for calculated coin probability for ZabCTa, Zero
client wait-time and N = 5 experiment

F.2 Coin-Tossing Probability of ZabCTa Protocol 166

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.028 1452 40.656 29.403 39.679 0.02 0.015 0.166 0.09
20 0.044 1662 73.128 60.234 67.086 0.01 0.009 0.166 0.088
30 0.045 1713 77.085 60.234 75.65 0.01 0.008 0.166 0.087
40 0.051 1742 88.842 60.234 86.662 0.01 0.007 0.166 0.087
50 0.054 1765 95.31 60.234 86.662 0.01 0.007 0.166 0.087
60 0.055 1782 98.01 60.234 86.662 0.01 0.007 0.166 0.087
70 0.055 1792 98.56 60.234 86.662 0.01 0.007 0.166 0.087
80 0.056 1795 100.52 60.234 86.662 0.01 0.007 0.166 0.087
90 0.056 1802 100.912 60.234 86.662 0.01 0.007 0.166 0.087
100 0.057 1812 103.284 60.234 101.345 0.01 0.006 0.166 0.086

Table F.11: Average follower statistics for calculated coin probability for ZabCTa, Zero
client wait-time and N = 7 experiment

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.045 1189 53.505 44.08 48.913 0.01 0.009 0.124 0.067
20 0.062 1285 79.67 44.08 73.07 0.01 0.006 0.124 0.065
30 0.067 1303 87.301 44.08 73.07 0.01 0.006 0.124 0.065
40 0.07 1314 91.98 44.08 87.56 0.01 0.005 0.124 0.065
50 0.074 1330 98.42 44.08 87.56 0.01 0.005 0.124 0.065
60 0.076 1336 101.536 44.08 87.56 0.01 0.005 0.124 0.065
70 0.078 1345 104.91 44.08 87.56 0.01 0.005 0.124 0.065
80 0.077 1347 103.719 44.08 87.56 0.01 0.005 0.124 0.065
90 0.078 1349 105.222 44.08 87.56 0.01 0.005 0.124 0.065
100 0.077 1356 104.412 44.08 87.56 0.01 0.005 0.124 0.065

Table F.12: Average follower statistics for calculated coin probability for ZabCTa, Zero
client wait-time and N = 9 experiment

F.2 Coin-Tossing Probability of ZabCTa Protocol 167

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.001 471 0.471 0.457 0.469 0.44 0.435 0.449 0.467
20 0.001 942 0.942 0.909 0.94 0.31 0.304 0.449 0.401
30 0.001 1411 1.411 1.367 1.402 0.24 0.236 0.449 0.367
40 0.001 1889 1.889 1.778 1.881 0.2 0.192 0.449 0.346
50 0.001 2306 2.306 2.214 2.303 0.17 0.165 0.449 0.332
60 0.001 2811 2.811 2.604 2.79 0.15 0.142 0.449 0.321
70 0.001 2321 2.321 2.214 2.303 0.17 0.165 0.449 0.332
80 0.001 3715 3.715 3.433 3.69 0.12 0.113 0.449 0.306
90 0.001 4183 4.183 3.81 4.165 0.11 0.102 0.449 0.3
100 0.001 4592 4.592 4.263 4.581 0.1 0.094 0.449 0.296

Table F.13: Average follower statistics for calculated coin probability for ZabCTa,
client wait-time on (25, 75) ms and N = 3

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.001 487 0.487 0.469 0.485 0.46 0.454 0.249 1
20 0.001 957 0.957 0.911 0.953 0.34 0.332 0.249 1
30 0.001 1464 1.464 1.44 1.458 0.26 0.258 0.249 1
40 0.001 1888 1.888 1.85 1.886 0.22 0.217 0.249 0.233
50 0.001 2310 2.31 2.269 2.302 0.19 0.188 0.249 0.218
60 0.004 2511 10.044 8.928 10.008 0.06 0.054 0.249 0.151
70 0.007 2609 18.263 13.79 18.024 0.04 0.031 0.249 0.14
80 0.011 2661 29.271 28.374 28.374 0.02 0.02 0.249 0.135
90 0.014 2688 37.632 28.374 35.666 0.02 0.016 0.249 0.133
100 0.016 2696 43.136 28.374 40.874 0.02 0.014 0.249 0.132

Table F.14: Average follower statistics for calculated coin probability for ZabCTa,
client wait-time on (25, 75) ms and N = 5

F.2 Coin-Tossing Probability of ZabCTa Protocol 168

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.001 453 0.453 0.444 0.451 0.46 0.457 0.166 1
20 0.001 968 0.968 0.966 0.966 0.31 0.31 0.166 1
30 0.002 1376 2.752 2.597 2.737 0.16 0.154 0.166 0.16
40 0.006 1683 10.098 8.876 10.012 0.06 0.054 0.166 0.11
50 0.015 1762 26.43 19.13 25.383 0.03 0.023 0.166 0.095
60 0.021 1765 37.065 29.403 34.843 0.02 0.017 0.166 0.091
70 0.026 1783 46.358 29.403 46.004 0.02 0.013 0.166 0.09
80 0.032 1792 57.344 29.403 54.628 0.02 0.011 0.166 0.089
90 0.032 1799 57.568 29.403 54.628 0.02 0.011 0.166 0.089
100 0.037 1801 66.637 60.234 60.234 0.01 0.01 0.166 0.088

Table F.15: Average follower statistics for calculated coin probability for ZabCTa,
client wait-time on (25, 75) ms and N = 7

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.001 486 0.486 0.469 0.484 0.47 0.465 0.124 1
20 0.002 972 1.944 1.85 1.941 0.22 0.212 0.124 1
30 0.008 1277 10.216 9.114 10.104 0.05 0.045 0.124 0.084
40 0.022 1322 29.084 22.3 27.753 0.02 0.016 0.124 0.07
50 0.031 1322 40.982 22.3 40.124 0.02 0.011 0.124 0.068
60 0.039 1337 52.143 44.08 48.913 0.01 0.009 0.124 0.067
70 0.046 1338 61.548 44.08 54.954 0.01 0.008 0.124 0.066
80 0.05 1345 67.25 44.08 62.719 0.01 0.007 0.124 0.066
90 0.052 1346 69.992 44.08 62.719 0.01 0.007 0.124 0.066
100 0.056 1348 75.488 44.08 73.07 0.01 0.006 0.124 0.065

Table F.16: Average follower statistics for calculated coin probability for ZabCTa,
client wait-time on (25, 75) ms and N = 9

F.3 Coin-Tossing Probability of ZabCTaa Protocol 169

F.3 Coin-Tossing Probability of ZabCTaa Protocol

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.013 2156 28.028 24.253 27.03 0.02 0.018 0.449 0.138
20 0.014 3134 43.876 24.253 40.918 0.02 0.012 0.449 0.134
30 0.014 3789 53.046 49.251 49.251 0.01 0.01 0.449 0.132
40 0.015 4251 63.765 49.251 61.751 0.01 0.008 0.449 0.131
50 0.014 4533 63.462 49.251 61.751 0.01 0.008 0.449 0.131
60 0.015 4815 72.225 49.251 70.679 0.01 0.007 0.449 0.13
70 0.015 5018 75.27 49.251 70.679 0.01 0.007 0.449 0.13
80 0.016 5155 82.48 49.251 70.679 0.01 0.007 0.449 0.13
90 0.016 5253 84.048 49.251 82.584 0.01 0.006 0.449 0.129
100 0.016 5335 85.36 49.251 82.584 0.01 0.006 0.449 0.129

Table F.17: Average follower statistics for calculated coin probability for ZabCTaa,
Zero client wait-time and N = 3 experiment

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.02 1825 36.5 28.374 35.666 0.02 0.016 0.249 0.074
20 0.024 2231 53.544 28.374 52.238 0.02 0.011 0.249 0.071
30 0.022 2425 53.35 28.374 52.238 0.02 0.011 0.249 0.071
40 0.029 2516 72.964 57.541 72.125 0.01 0.008 0.249 0.068
50 0.034 2578 87.652 57.541 82.541 0.01 0.007 0.249 0.068
60 0.034 2619 89.046 57.541 82.541 0.01 0.007 0.249 0.068
70 0.034 2644 89.896 57.541 82.541 0.01 0.007 0.249 0.068
80 0.036 2667 96.012 57.541 82.541 0.01 0.007 0.249 0.068
90 0.036 2690 96.84 57.541 96.43 0.01 0.006 0.249 0.067
100 0.035 2707 94.745 57.541 82.541 0.01 0.007 0.249 0.068

Table F.18: Average follower statistics for calculated coin probability for ZabCTaa,
Zero client wait-time and N = 5 experiment

F.3 Coin-Tossing Probability of ZabCTaa Protocol 170

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.032 1476 47.232 29.403 46.004 0.02 0.013 0.166 0.051
20 0.038 1658 63.004 60.234 60.234 0.01 0.01 0.166 0.049
30 0.046 1718 79.028 60.234 75.65 0.01 0.008 0.166 0.048
40 0.051 1737 88.587 60.234 86.662 0.01 0.007 0.166 0.047
50 0.051 1766 90.066 60.234 86.662 0.01 0.007 0.166 0.047
60 0.052 1775 92.3 60.234 86.662 0.01 0.007 0.166 0.047
70 0.053 1785 94.605 60.234 86.662 0.01 0.007 0.166 0.047
80 0.041 1786 73.226 60.234 67.086 0.01 0.009 0.166 0.048
90 0.054 1805 97.47 60.234 86.662 0.01 0.007 0.166 0.047
100 0.057 1807 102.999 60.234 101.345 0.01 0.006 0.166 0.046

Table F.19: Average follower statistics for calculated coin probability for ZabCTaa,
Zero client wait-time and N = 7 experiment

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.046 1208 55.568 44.08 54.954 0.01 0.008 0.124 0.037
20 0.061 1276 77.836 44.08 73.07 0.01 0.006 0.124 0.036
30 0.066 1304 86.064 44.08 73.07 0.01 0.006 0.124 0.036
40 0.071 1322 93.862 44.08 87.56 0.01 0.005 0.124 0.035
50 0.071 1329 94.359 44.08 87.56 0.01 0.005 0.124 0.035
60 0.073 1336 97.528 44.08 87.56 0.01 0.005 0.124 0.035
70 0.075 1340 100.5 44.08 87.56 0.01 0.005 0.124 0.035
80 0.076 1348 102.448 44.08 87.56 0.01 0.005 0.124 0.035
90 0.076 1348 102.448 44.08 87.56 0.01 0.005 0.124 0.035
100 0.076 1352 102.752 44.08 87.56 0.01 0.005 0.124 0.035

Table F.20: Average follower statistics for calculated coin probability for ZabCTaa,
Zero client wait-time and N = 9 experiment

F.3 Coin-Tossing Probability of ZabCTaa Protocol 171

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.001 506 0.506 0.481 0.504 0.43 0.421 0.449 0.441
20 0.001 1008 1.008 0.961 1.005 0.3 0.292 0.449 0.344
30 0.001 1452 1.452 1.367 1.447 0.24 0.231 0.449 0.298
40 0.001 1956 1.956 1.908 1.95 0.19 0.187 0.449 0.265
50 0.001 2339 2.339 2.214 2.321 0.17 0.164 0.449 0.248
60 0.001 2772 2.772 2.604 2.766 0.15 0.143 0.449 0.232
70 0.001 3301 3.301 3.114 3.299 0.13 0.124 0.449 0.218
80 0.001 3749 3.749 3.433 3.729 0.12 0.112 0.449 0.209
90 0.001 4159 4.159 3.81 4.118 0.11 0.103 0.449 0.202
100 0.001 4527 4.527 4.263 4.526 0.1 0.095 0.449 0.196

Table F.21: Average follower statistics for calculated coin probability for ZabCTaa,
client wait-time on (25, 75) ms and N = 3

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.001 495 0.495 0.469 0.493 0.46 0.451 0.249 1
20 0.001 939 0.939 0.911 0.937 0.34 0.335 0.249 1
30 0.001 1441 1.441 1.44 1.44 0.26 0.26 0.249 1
40 0.001 1969 1.969 1.85 1.963 0.22 0.211 0.249 0.22
50 0.002 2298 4.596 4.506 4.555 0.11 0.109 0.249 0.144
60 0.004 2497 9.988 8.928 9.812 0.06 0.055 0.249 0.103
70 0.007 2614 18.298 13.79 18.024 0.04 0.031 0.249 0.086
80 0.011 2671 29.381 28.374 28.374 0.02 0.02 0.249 0.077
90 0.013 2689 34.957 28.374 33.521 0.02 0.017 0.249 0.075
100 0.015 2700 40.5 28.374 38.096 0.02 0.015 0.249 0.074

Table F.22: Average follower statistics for calculated coin probability for ZabCTaa,
client wait-time on (25, 75) ms and N = 5

F.3 Coin-Tossing Probability of ZabCTaa Protocol 172

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.001 500 0.5 0.494 0.497 0.44 0.439 0.166 1
20 0.001 960 0.96 0.916 0.956 0.312 0.312 0.166 1
30 0.002 1447 2.894 2.837 2.889 0.15 0.148 0.166 0.152
40 0.007 1697 11.879 10.922 11.707 0.05 0.047 0.166 0.077
50 0.014 1761 24.654 19.13 24.266 0.03 0.024 0.166 0.059
60 0.021 1776 37.296 29.403 37.11 0.02 0.016 0.166 0.053
70 0.024 1785 42.84 29.403 42.616 0.02 0.014 0.166 0.052
80 0.029 1793 51.997 29.403 49.957 0.02 0.012 0.166 0.051
90 0.031 1801 55.831 29.403 54.628 0.02 0.011 0.166 0.05
100 0.034 1804 61.336 60.234 60.234 0.01 0.01 0.166 0.049

Table F.23: Average follower statistics for calculated coin probability for ZabCTaa,
client wait-time on (25, 75) ms and N = 7

WR d λ RHS Eq(4.1) W(P1u) W(P1) P1u P1 P2 p
10 0.001 503 0.503 0.499 0.502 0.46 0.459 0.124 1
20 0.002 950 1.9 1.85 1.894 0.22 0.216 0.124 1
30 0.004 1231 4.924 4.557 4.911 0.1 0.093 0.124 0.101
40 0.02 1323 26.46 22.3 26.15 0.02 0.017 0.124 0.044
50 0.029 1329 38.541 22.3 36.827 0.02 0.012 0.124 0.04
60 0.039 1335 52.065 44.08 48.913 0.01 0.009 0.124 0.038
70 0.044 1340 58.96 44.08 54.954 0.01 0.008 0.124 0.037
80 0.049 1348 66.052 44.08 62.719 0.01 0.007 0.124 0.036
90 0.05 1347 67.35 44.08 62.719 0.01 0.007 0.124 0.036
100 0.052 1355 70.46 44.08 62.719 0.01 0.007 0.124 0.036

Table F.24: Average follower statistics for calculated coin probability for ZabCTaa,
client wait-time on (25, 75) ms and N = 9

	Glossary
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Our Approach
	1.3 Thesis Contribution
	1.4 Thesis Structure

	2 Background and Related Works
	2.1 Distributed Systems Replication
	2.1.1 State Machine Replication
	2.1.2 Primary Backup Replication

	2.2 Coordination Services
	2.2.1 Apache ZooKeeper
	2.2.2 Chubby
	2.2.3 Etcd
	2.2.4 Differences among Zab, Paxos and Raft Protocols

	2.3 JGroups
	2.3.1 Application API
	2.3.2 Channel
	2.3.3 Protocol Stack

	2.4 Related Works
	2.4.1 Paxos Optimization
	2.4.2 ZooKeeper Optimization

	2.5 Summary

	3 Mechanisms for Improving ZooKeeper Atomic Broadcast Performance When a Server Quorum Never Crashes
	3.1 Rationale
	3.2 Design Objective
	3.3 Assumptions
	3.4 Definitions and Lemma
	3.5 Design Approach
	3.5.1 Implicit Acknowledgements
	3.5.2 Commit Messages
	3.5.3 Invariants on abdeliver
	3.5.4 Switch to/from Zab

	3.6 Protocol Details
	3.6.1 Protocol 1: ZabAc and ZabAa
	3.6.2 Protocol 2: ZabCt
	3.6.3 Protocol 3: ZabCT
	3.6.4 Protocol 4: ZabAA with p = 1

	3.7 ZabCT Adaptation Solution is Required
	3.8 Summary

	4 Coin-Tossing ZooKeeper Atomic Broadcast Protocol
	4.1 Rationale
	4.2 Coin-Tossing Zab (ZabCT)
	4.2.1 Design Objectives
	4.2.2 Coin Toss Challenges
	4.2.3 Enforced Coin Tossing

	4.3 Computing the Coin's Probability
	4.3.1 Optimal Probabilities for Specific Toss Outcomes
	4.3.2 Computing W(p): Expected number of subsequent abcasts required
	4.3.3 Protocol Switching

	4.4 Failures in Proposed Protocols
	4.4.1 Protocols with Restrictive Assumption
	4.4.2 Protocols with Zab Assumption

	4.5 Summary

	5 Performance Evaluation
	5.1 Zab vs Zab Variations
	5.1.1 Experimentation
	5.1.2 Evaluation
	5.1.3 Summary

	5.2 Zab and ZabCT
	5.2.1 Experimentation
	5.2.2 Evaluation
	5.2.3 Summary

	5.3 High-Load Conditions
	5.3.1 Experimentation
	5.3.2 Evaluation
	5.3.3 Summary

	5.4 Summary

	6 Conclusion
	6.1 Thesis Summary
	6.2 Recommendations
	6.3 Limitations
	6.4 Future Work
	6.4.1 Utilising ZabAc/ZabCT in ZooKeeper
	6.4.2 Crash-Tolerance Evaluation

	References
	Appendix A Implementing ZooKeeper Atomic Broadcast Using JGroups Framework
	A.1 Rationale
	A.2 System Components
	A.2.1 JGroups
	A.2.2 Zab Protocol

	A.3 Summary

	Appendix B Proof of Equations Used for Modeling ZabCT Protocol
	B.1 Proof of Optimal Probabilities for Specific Coin-tossing Outcomes
	B.1.1 Proof (1)
	B.1.2 Proof (2)

	Appendix C Expected Number of Subsequent abcasts Required W(p)
	C.1 Expected Number of Subsequent abcasts Required W(p) for N
	C.1.1 Compute W(p) for N=3
	C.1.2 Compute W(p) for N=5
	C.1.3 Compute W(p) for N=7
	C.1.4 Compute W(p) for N=9

	C.2 W(p): Non-increasing Function

	Appendix D Performance Evaluation of ZabCT Protocol for Optimal Probabilities for Specific Toss Outcomes and Large
	D.1 Experimentation
	D.2 Evaluation

	Appendix E Performance Evaluation
	E.1 Zab vs Zab-variant Protocols
	E.1.1 Performance Improvement

	E.2 Zab vs ZabCT
	E.2.1 Zab vs ZabCTu
	E.2.2 Zab vs ZabCTa
	E.2.3 Zab vs ZabCTaa

	Appendix F Calculation Summary of Coin-Tossing Probability
	F.1 Coin-Tossing Probability of ZabCTu Protocol
	F.2 Coin-Tossing Probability of ZabCTa Protocol
	F.3 Coin-Tossing Probability of ZabCTaa Protocol

