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Abstract 

Annually, over 300 million tonnes of chemicals used globally from human activities find their 

way into the aquatic environment via poorly treated wastewater in high income countries 

(HICs) and partially/untreated wastewater in low-middle income countries (LMICs). Some of 

these chemicals have been shown to have significant adverse effects on wildlife and 

potentially humans, hence, legislative environmental quality standards are being considered in 

the EU and other developed countries. This issue comes at a time when increasing energy 

costs are driving water companies towards sustainable treatment options – which would run 

counter to the use of energy intensive tertiary treatment systems that have been advocated for 

effective micropollutant removal. Hence, this project looked into the effectiveness of low-

energy systems such as up-flow anaerobic sludge blanket reactors (UASBs) and passive-

energy waste stabilization ponds (WSPs) in comparison to the high-energy activated sludge 

systems to remove different classes of micropollutants including industrial chemicals (PAHs 

and PBDEs), personal care product (triclosan), and steroidal hormones (E1, E2, E3 and EE2).  

Effective analytical methods to measure the micropollutants were developed and validated 

(method detection limits ranging from 0.2 – 10.8 ng/L), and used to determine the occurrence 

and levels of the selected contaminants in UK and Brazil municipal wastewater. The observed 

levels of these chemicals were similar between both countries and those reported in literature- 

thereby indicating the prevalence of these chemicals in both LMICs and HICs. Wastewater 

treatment plant studies indicated that the passive-energy WSP was more effective (89 – 99 %) 

in removing all the classes of chemicals when compared to the energy-intensive activated 

sludge system (74 – 94 %) and low-energy UASB system (88 – 93 %). 

The removal of these micropollutants in WWTPs was mainly due to biodegradation and 

sorption, while photo-degradation (in WSP) and volatilization also contributed. The 

experimentally determined first-order degradation rates showed that under aerobic conditions, 

the degradation of the different groups of chemicals was significantly different, with estrogens 

degrading the fastest (0.1129 h-1 with activated sludge inocula) and high molecular weight 

PAHs the slowest (0.0033 h-1); while no degradation was observed under anaerobic 

conditions for any of the studied contaminants.  Furthermore, the predicted and measured 

effluent concentrations indicated that effluent from the studied WWTPs poses a risk when 

discharged into receiving waters- as the concentrations of some chemicals were above 

recommended environmental quality standards (EQS), though, river dilution might ensure 

compliance. 
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Chapter 1 General Introduction 

Chemical pollution of water bodies has become a global issue as over one-third of the 

accessible freshwater in the world is used for agricultural, industrial and domestics purposes, 

and these activities leads to the contamination of  water bodies with various industrial 

chemicals and consumer products (Schwarzenbach et al., 2006), which are implicated in 

human fatalities (Figure 1-1). Over 300 million tonnes of chemical compounds are used 

annually as industrial chemicals and domestic products, and the cocktail mix of these spent 

chemicals enters into wastewater treatment plants in developed countries, where they are 

poorly removed and discharged into water bodies at low concentrations (ng/L to µg/L) 

(Schwarzenbach et al., 2006). The issue is even worse in low-middle income countries 

(LMICs) with little or no wastewater treatment infrastructure, and as such these chemicals are 

deposited directly into receiving waters. Manufacturing companies are increasingly moving 

their operations from high income countries (HICs) to LMICs to cut-down costs, and this 

consequently increases the deposition of untreated/inadequately treated wastewater into the 

aquatic environment (Weiss et al., 2016).  

The ubiquitous presence of these micropollutants in the aquatic environment over the past 35 

years has attracted the attention of the scientific community and government agencies. 

However, the issue of the adverse effects associated with chemical usage has been around for 

much longer. For example, antimicrobials were used to promote growth of farm animals in 

the 1950, before antimicrobial resistance became an issue of concern in the UK in the 1960s; 

eventually leading to the ban of four antimicrobial growth promoters in the EU in 1998 

(Harremoës et al., 2001). Another historic example, was the ban in the use of 

dibromochloropropane (DBCP- a pesticide used in the 1960s) in the US in 1985 after adverse 

reproductive effects on humans was discovered (Gee et al., 2013). Today, the impact of 

chemicals on the environment and potentially human health has been established with many 

international regulations on potentially hazardous chemicals such as the Stockholm 

Convention on Persistent Organic Pollutants (POPs) and REACH coming into play. The EU 

identified in the water framework directive (WFD), and set environmental quality standards 

(EQS) that must not be exceeded in freshwater for 45 priority pollutants while also putting 15 

other compounds on the watch list (EU, 2012; EU, 2013a) . The directive mandates member 

states to establish monitoring programs until end of 2018 with view of ensuring compliance to 

the EQS by 2021.  
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With the increasing cost of fuel and electricity, conventional wastewater treatment 

technologies are becoming more expensive (Haarmeyer, 2011), and this micropollutant 

removal challenge comes at a time when the water industry needs to turn to cheaper and 

sustainable treatment options. In fact, water treatment accounts for 3 % of the total electricity 

use in the UK, with wastewater treatment using half of this operational energy (Howe, 2009; 

Water-UK, 2017). Wastewater treatment has also been reported to account for between 3 – 

5 % of the total electricity load in other developed countries (McCarty et al., 2011).  

Furthermore, legislation in the EU has got more stringent on removal of nutrients and priority 

chemicals (WFD, 2000), which means that additional treatment will be required; thereby 

further increasing energy use. Advanced treatment technologies such adsorption onto granular 

activated carbon (GAC) and advanced oxidation processes (AOP) that have been suggested 

for the complete removal of these micropollutants from wastewater are currently not 

advocated because they are cost prohibitive and energy intensive (Baynes et al., 2012; 

Gilbert, 2012).  

Hence, with a steady rise in demand of potable water and use of industrial/domestic chemicals 

(Schwarzenbach et al., 2006); and considering the ineffective micropollutant removal in the 

expensive conventional treatment plants (Baynes et al., 2012; Luo et al., 2014) and the high 

cost of advanced tertiary treatment, this study investigates and compares the limits of 

micropollutant removal in existing low energy systems to those expensive activated sludge 

systems. Knowing the limits of micropollutant removal in these low energy systems such as 

up-flow anaerobic sludge blanket reactors (UASBs) and waste stabilization ponds (WSPs), is 

the first step to develop sustainable secondary wastewater treatment technologies for the 

future capable of micropollutant removal.  
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Figure 1-1 Estimated amount of death caused by pollution worldwide between 1990 and 2015 

(Recreated from (Landrigan et al., 2017) 

 

 Aims and objectives 

The aim of this study was to investigate the limits of micropollutant removal by alternative 

low energy technologies (UASBs and WSPs) in comparison with conventional treatment 

systems (activated sludge) -towards designing sustainable micropollutant removal systems for 

the future. 

The following objectives were pursued to achieve this aim; 

1 Develop and validate analytical methods using SPE-GC-MS, SPE-GC-ECD and 

SPE-LC-MS to measure micropollutants including triclosan, PAHs, and PBDEs in 

wastewater. 

2 Investigate the occurrence and removal of micropollutants (triclosan, PAHs, PBDEs) 

from conventional UK activated sludge WWTPs. 

3 Investigate the occurrence and removal of micropollutants (triclosan, PAHs, PBDEs 

and estrogens) in low energy and high energy wastewater treatment systems in 

Brazil- considering collective system removal and the removal achieved after 

primary and secondary treatment individually. 

4 Obtain degradation rates for the micropollutants under different redox conditions 

(aerobic and anaerobic) using inocula from real wastewater plants to understand 

degradation mechanism – aerobic (e.g. oxidative metabolism of aromatics) and 
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anaerobic degradation (e.g. anaerobic reductive dehalogenation for the chlorinated 

chemicals). 

5 Investigate the relative effect of compounds structure and physio-chemical properties 

on their removal in biological wastewater treatment plants using different 

technologies. 

6 Identify the putative changes in bacterial taxa associated with the degradation of the 

chemicals in the different inocula. 
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Chapter 2 Literature review 

 Micropollutants and their concerns in the environment 

The occurrence of micropollutants in the aquatic environment has been a major public 

concern around the world for decades now. These micropollutants including industrial 

chemicals, pesticides, pharmaceuticals, personal care products and steroidal hormones are 

ubiquitous in the aquatic environment at trace concentrations (sub-ng/L to µg/L) (Luo et al., 

2014). Even at these trace concentrations, their presence in the environment has been 

associated with eco-toxicity and endocrine disrupting effects including reduction in 

reproductive fitness and psychological disorder in aquatic wildlife (Ternes et al., 2004; 

Baynes et al., 2012).  The extent of the problem is huge- there are an estimated 120,000 

chemicals in use in the EU alone (ECHA, 2017). About 3000 different chemicals is used in 

pharmaceuticals and several thousands in personal care products (Ternes et al., 2004). In the 

EU, over 500 million people use personal care products including skin care products, dental 

care products, soaps, fragrances, hair care products- amongst many others (Cosmetics-europe, 

2017). Some of these chemicals have been classed as “substances with very high concern” by 

the European Chemicals Agency (ECHA) after decades of research into their negative effects 

including toxicity, carcinogenicity,  mutagenicity and endocrine disruption to animals and 

potentially humans (ECHA, 2017). More recently, endocrine disrupting effects such as 

feminization and reduction in the fertility of male fish has been associated with steroidal 

hormones (Ternes et al., 2004; Gee et al., 2013). Furthermore, the effects of endocrine 

disruptors on humans was reviewed by (Diamanti-Kandarakis et al., 2009); and the authors 

reported the adverse effect of endocrine disruptors on reproduction in both men and women, 

breast development, neuroendocrinology, thyroid, metabolism and obesity, and prostate 

cancer.  
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Figure 2-1 Sources, transport and fate of micropollutants in the environment (Barbosa et al., 

2016) 

Utilization of these various chemicals and natural excretion of steroidal hormones by humans 

introduce them mainly into the sewage systems where they are poorly removed by wastewater 

treatment plants that were not specifically designed to remove them (Zhou et al., 2010; Luo et 

al., 2014). Moreover,  point source contamination from the chemical manufacturing industries 

and run-off from roads and agricultural lands also lead to the deposition of these 

micropollutants into the environment (Ternes et al., 2004; Wang et al., 2013c). Although high 

percentage removal of some of the micropollutants (up to 99%) have been reported in 

conventional treatment plants (Luo et al., 2014), the most important consideration is to 

achieve final effluent concentrations at recommended safety levels.   

Considering the fact that the sources of some of these micropollutants cannot be eliminated, 

and reduction in usage of the industrial chemicals and their subsequent deposition into 

wastewater is unlikely at present: emphasis has been placed on enhancing wastewater 

treatment technologies to remove these micropollutants from the system prior to releasing the 

effluents into water bodies (Dytczak et al., 2008).  Policy and science aims to attack this issue 

by (a) identifying the chemicals that are most harmful, which the REACH directive addresses 

and feeds into the Water Framework Directive (WFD) on priority pollutants (EU, 2013a), (b) 

legislating on chemicals that need to be reduced to safety levels and the regulatory authorities 

in member states put in plans to reduce inputs- thereby pressuring water companies to 

implement further treatment at wastewater treatment plants. 
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Table 2-1 Classes and sources of micropollutants in the aquatic environment (adopted from 

(Luo et al., 2014) 

Category Subclasses Main sources 

Pharmaceuticals Non steroidal anti-

inflammatory drugs, 

antibiotics, lipid regulator, 

and stimulants 

Domestic wastewater (from excretion), 

hospital effluents and run off from 

aquaculture 

Personal care 

products 

Disinfectants, insect 

repellents and fragrances 

Domestic wastewater (from bathing, 

shaving, swimming, etc) 

Steroid hormones Estrogens Domestic wastewater (from excretion), Run-

off from animal farming 

Surfactants Non-ionic surfactants Domestic wastewater (from bathing, 

laundry, dishwashing) 

Industrial 

chemicals 

Flame retardants, plasticizers Domestic wastewater (leaching out of 

materials, laundry, run-off from roads) 

Pesticides Insecticides, herbicides, 

fungicides 

Domestic wastewater (cleaning run-off from 

gardens, roads), Agricultural run-off 

 

 Selected micropollutants of interest- rationale, sources and properties 

As there are hundreds of these chemical contaminants (micropollutants) originating from 

different sources and everyday applications, it is impossible to study them all. Of the 

industrial chemicals, polyaromatic hydrocarbons- PAHs (petroleum by-products), flame 

retardants (polybrominated diphenyl ethers- PBDEs, hexabromocyclododecanes- HBCDD), 

plasticizers (bisphenol-A) and surfactants (nonylphenols, octyphenols) are among classes of 

chemicals of particular concern because of they are PBTs (persistent, bioaccumulative and 

toxic compounds), carcinogenic and endocrine disrupting (bisphenol A and nonylphenols) 

(EU, 2013a; ECHA, 2017). Among the personal care products, triclosan (disinfectant), 

galaxolide and tonalide (fragnance), benzophenone-3 (UV-screens) are of concern because of 

their known toxicity and endocrine disrupting effects in animals (UKTAG, 2013; Luo et al., 

2014).  Steroidal hormones including natural estrogens (E1, E2, E3, testosterone, 

progesterone) and synthetic estrogen (EE2) are also an important class of high concern due to 

their known endocrine disruptive effects (EU, 2012; Ebele et al., 2017).  

Therefore, this research focused on a chemical from each class (triclosan – disinfectant, 15 

PAHs and 8 PBDEs – industrial chemicals, and E1, E2, E3 and EE2 – steroidal estrogens) to 

cover a broad range of chemicals. Apart from the fact that they all pass through WWTPs and 

are ubiquitous in the environment, the rational for selecting the target compounds investigated 

in this study is; 
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1 Little is known about their distribution and fate in low to middle income countries 

(LMICs) 

2 They represent a wide range of compounds with different physio-chemical 

properties, and hydrocarbon rings with varying degrees of halogenation- which might 

affect their behaviour in different biological treatment systems. For example, 

halogenated compounds such as triclosan and PBDEs might behave differently from 

non-halogenated compounds (estrogens and PAHs) in wastewater treatment systems 

(aerobic or anaerobic). The different degree of hydrophobicity or hydrophilicity of 

these wide range of compounds might also lead to them behaving differently in 

treatment systems. 

3 Public, scientific and government interest. PAHs and PBDEs were among the 

priority substances listed in the EU Directive 2013/39/EU (replacing 2008/105/EC) 

where their environmental quality standards were stipulated (EU, 2013a). Steroidal 

estrogens E2 and EE2 were also identified and reported in a proposal for a revised 

directive on priority substances EU MEMO/12/59 in 2012 (EU, 2012). The UK 

Technical Advisory Group on the Water Framework Directive also reported 

recommended environmental quality standard for triclosan in 2013 (UKTAG, 2013). 

 

These groups of micropollutants come from different sources and their adverse effects 

including toxicity, bioaccumulation and endocrine disruption in humans and aquatic wildlife 

differ greatly (Table 2-2). Furthermore, the difference in their physio-chemical properties 

including their functional groups, molecular weight, octanol-water partition coefficient, water 

solubility amongst others, often influences their collective removal in wastewater treatment 

plants (Table 2-3). Additionally, the synergistic effect of a cocktail of compounds with the 

same or different mode of action can be more detrimental to aquatic organisms 

(Schwarzenbach et al., 2006). Hence, it is important to investigate the removal of a diverse 

range of compounds in treatment plants. 
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Table 2-2 Classification, use and negative effects of the selected micropollutants 

Micropollutant Type Use Concern 

Estrone (E1) Steroid hormone 

(Natural) 

Naturally excreted in 

human and livestock urine 

and faeces. E2 is also used 

as a pharmaceutical drug 

for hormone replacement 

therapy 

Endocrine disruptive. Long 

term effect of feminization 

of male fish which can lead 

to the collapse of fish 

population (Coleman et al., 

2010; EU, 2012) 

17 β-estradiol (E2) 

Estriol (E3) 

17 α-ethinylestradiol 

(EE2) 

Steroid hormone 

(Synthetic) 

Pharmaceutical use: is the 

main ingredient in 

contraceptive pills. 

Endocrine disruptive. Long 

term effect of feminization 

of male fish which can lead 

to the collapse of fish 

population (EU, 2012). 

PBDEs Industrial 

chemical; BFR 

Used as flame retardants 

in plastics, poly urethane 

foam and textiles. 

Persistent, bioaccumulative 

and toxic substances; 

persistent; toxic to 

reproduction in humans and 

animals (Gorga et al., 2013). 

Triclosan Industrial 

chemical 

Used as an antimicrobial 

agent in toothpaste, soaps, 

cosmetics and other 

household products 

Endocrine disruptor, toxic 
(Lozano et al., 2013). 

PAHs Industrial 

Chemical 

Product of incomplete 

combustion of organic 

materials, by-product in 

the processing of raw 

materials 

Carcinogenic and 

mutagenic compounds to 

humans and animals (Yao et 

al., 2012) 
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Table 2-3 Structure and physio-chemical properties of the selected micropollutants 

Compound           Structure Molecular 

weight 

(g/mol) 

Log Kow Water 

solubility 

(mg/l)  

Estrone (E1)a,b 

 

270.4 3.43 13 at 20 oC 

17 β-estradiol 

(E2)a,b 

 

272.4 3.94 13 at 20 oC 

Estriol (E3)a,b 

 

288.4 2.81 13 at 20 oC 

17 α-

ethinylestradiol 

(EE2)a,b 

 

296.4 4.15 4.8 at 20 oC 

Triclosanc 

 

289.5 4.80 10 at 20 oC 

Polybrominated 

diphenyl esters 

(PBDEs)d 

 

PeBDE = 485.8 

– 564.7 

OBDE = 647.3 

– 801.8 

DBDE = 880.4 

– 959.2 

PeBDE =6.57 

OBDE = 6.29 

DBDE = 6.27 

 

PeBDE = 

13.3 

OBDE = 0.5 

DBDE = 

<0.1 at 25 oC 

Polyhydric 

hydrocarbons 

(PAHs)e,f 

          Benzo(a)pyrene 

Phe = 178.2 

An = 178.2  

Bp = 252.3  

Ip = 276.2 

Phe = 4.57 

An = 4.68 

Bp = 6.13 

Ip = 6.4 

Phe = 0.82 

An = 0.093 

Bp = 0.0018  

Ip = 0.00053 

at 25oC 

A = (Racz and Goel, 2010); b = (Silva et al., 2012); c = (Sabaliunas et al., 2003); d = (EC, 2006); e = 

(De Maagd et al., 1998); f = (EC, 1994). 

PeBDE = Pentabromodiphenyl ether; OBDE = Octabromodiphenyl ether; DBDE = 

Decabromodiphenyl ether 

PHE = Phenanthrene; AN = Anthacene; BP = Benzo(a)pyrene; IP = Indeno(1,2,3,-cd)pyrene 
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 Analytical methods for the detection and quantification of these 

micropollutants 

The occurrence of these micropollutants at trace concentrations (sub-ng/L to µg/L) in 

wastewater and water bodies has posed difficulties in their detection and analysis. These low 

concentrations are close to the limit of detection of many analytical methods - leading to 

intensified method development efforts by scientists around the world. The analytical process 

to measure these compounds includes sample collection and storage, extraction, and analysis.  

Several techniques including liquid-liquid extraction (LLE), pressurized liquid extraction 

(PLE), solid phase extraction (SPE), solid phase micro-extraction (SPME) and stir-bar 

sorptive extraction (SBSE) have been employed to extract these compounds from wastewater 

(Alda and Barceló, 2001; Wenzl et al., 2006; Labadie et al., 2010; Tohidi and Cai, 2015). 

SPE is the most commonly used method today because of its selectivity, low solvent 

requirement, reproducibility and generation of extracts that does not require additional clean 

up (Alda and Barceló, 2001; Sánchez-Avila et al., 2009). Careful selection of the adsorbent 

and solvent elution protocol are usually the most important part of the SPE extraction process. 

Octadecyl (C18) bonded end-capped silica has been the most widely used SPE sorbent to 

extract organic compounds from water and wastewater because of its wide applicability (Alda 

and Barceló, 2001), although mixed mode sorbents such as the Oasis HLB are getting 

increasingly popular for the extraction of pharmaceuticals and personal care products as they 

can be used to extract a wide range of chemicals (Samaras et al., 2011).  

Determination of these micropollutants in environmental samples is commonly carried out 

with gas chromatography with mass spectrophotometry (GC-MS) and electron capture 

detector (GC-ECD), or by liquid chromatography (LC) coupled with a fluorescence, UV or 

mass spectrometric (MS) detector (Alda and Barceló, 2001; Sánchez-Brunete et al., 2007). 

The MS is the preferred detector both in GC and LC because of its superb specificity and 

sensitivity, and therefore enables unequivocal identification of different compounds in 

complex environmental samples (Busetti et al., 2006). However, the high procurement and 

maintenance costs associated with GC-MS or LC-MS equipment compared to GC/LC 

coupled with other detectors (such as UV, ECD) have prevented environmental analysis of 

these compounds in developing countries with less resources.  
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 Occurrence of micropollutants in the environment and their removal 

by WWTPs 

The selected micropollutants have been detected and reported in WWTPs around the world 

(Table 2-4). The concentrations of these compounds range from a few pg/L to µg/L, and vary 

in the influent and effluent due to the consumption rate of this chemicals in different cities, 

the fraction that enters the WWTPs and the removal rates in the different WWTPs (Luo et al., 

2014). Triclosan, PAHs and PBDEs were generally detected in relatively higher 

concentrations, as these chemicals are used in large quantities in various applications as 

mentioned above. However, the majority of wastewater goes into receiving waters untreated 

in LMICs especially. 

The removal of these different groups of chemicals varies in biological wastewater treatment 

systems around the world. This difference in removal observed in the different countries may 

be result of the difference in the technologies applied, operation conditions, variation in 

efficiency and influent concentrations (Verlicchi et al., 2012). Verlicchi et al. reviewed the 

fate of 118 pharmaceuticals in 264 wastewater treatment plants and observed that removal 

efficiencies varied due to the different physio-chemical properties of the chemicals and 

operational conditions of the WWTPs including aerobic, anaerobic and anoxic reactors, solid 

retention time, pH and water temperature (Verlicchi et al., 2012). The detection of these 

chemicals in treated effluents also shows the ineffectiveness of the treatment plants to remove 

them. The predicted no-effect concentration  (PNEC) values of E1, E2, E3 and EE2 to aquatic 

organisms was determined to be 6, 2, 60 and 0.1 ng/L respectively (Caldwell et al., 2012), 

while that of triclosan is 100 ng/L (UKTAG, 2013). The European Commission also set the 

maximum allowance concentration and environmental quality standard (MAC-EQS) for six 

PAHs including naphthalene, anthracene, fluoranthene, benzo(a)pyrene, benzo(b)fluoranthene 

and benzo(ghi)perylene to be 130,000 ng/L (13 µg/L), 100 ng/L, 120 ng/L, 270 ng/L, 17 ng/L 

and 0.82 ng/L respectively; and sum of six PBDE congeners including BDE 28, 47, 99, 100, 

153 and 154 as 140 ng/L (EU, 2013a). The concentrations of these chemicals in effluent of 

treatment plants around the world often exceed these safety levels, and therefore poses threat 

to aquatic wildlife. However, this is dependent on dilution by the receiving water body, which 

might ensure compliance to this safety levels under certain circumstances. 
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Table 2-4 The concentrations and removal of the selected compounds in WWTPs around the 

world 

Selected 

compounds 

Countries Influent 

(µg/L) 

Effluent 

(µg/L) 

Removal 

(%) 

References 

E1 China, Germany, France, US, 

Brazil, Australia 

0.01 – 

0.17 

<0.001 – 

0.08 

75 – 91 1, 2 

E2 China, Germany, France, US, 

Brazil 

0.002 – 

0.05 

<0.001 – 

0.007 

93 – 100 1, 2 

E3 China, Korea, France 0.125 – 

0.80 

ND – 

0.03 

90 – 100 1, 3 

EE2 China, Germany, Italy, 

France, US, Brazil 

0.001 – 

0.003 

<0.001 – 

0.007 

44 – 100 1, 2 

Triclosan China, UK, US, France, 

Australia 

0.03 – 

23.9 

0.01 – 

6.88 

71 – 99 1, 4 

PAHs China, Italy, Ireland 0.7 - 5.8 0.2- 2.2 67- 85 5, 6, 7 

PBDEs Canada, US, China, UK, 

Australia, Italy 

0.26 – 4.3 0.04 – 0.9 79 - 86 5, 8 

1 = (Luo et al., 2014); 2 = (Pessoa et al., 2014); 3 = (Gabet-Giraud et al., 2010); 4 = (Kookana et al., 

2011); 5 = (Wang et al., 2013c); 6 = (Fatone et al., 2011), 7 = (Jones et al., 2012); 8 = (Ratola et al., 

2012). ND = not detected 

 Micropollutant removal mechanisms 

Micropollutants are removed in WWTPs by physical, chemical and biological processes. 

Among these processes, sorption and biodegradation are the main removal mechanisms, with 

volatilization only playing a minor role (Liu et al., 2009; Verlicchi et al., 2012). Removal by 

abiotic processes (physical and chemical processes) includes adsorption, volatilization and 

photodegradation, while biotic processes (biological processes) involve biodegradation. 

Micropollutants are removed in WWTPs by sorption onto sludge during primary and 

secondary treatment. This occurs by either adsorption on the liquid fraction of the sludge, 

hydrophobic interactions between the aliphatic and aromatic groups of a compound and the 

lipophilic cell membrane of microorganisms or adsorption via electrostatic interactions 

between some positively charged compounds and negatively charged surface (microorganism, 

clays, humic substances etc.) (Karathanasis and Johnson, 2003; Ternes et al., 2004). The 

physio-chemical properties of different compounds such as polarity, solubility and 

hydrophobicity govern their adsorption removal rates, as well as the WWTPs operating 

conditions (i.e. hydraulic retention times (HRT), pH)  (Lofrano, 2012). For example, highly 

hydrophobic compounds with high octanol-water partition coefficient (Log Kow) such as 
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PBDEs would sorb better to suspended solids than more water soluble estrogens with a lower 

Log Kow (Table 2-3). The sorption potential of a compound is indicated by their Log Kow 

value. A Log Kow <  2.5 indicates low sorption potential, 2.5 < Log Kow < 4 indicates medium 

sorption potential, and Log Kow  > 4 indicates high sorption potential (Rogers, 1996). 

Adsorption potential (kd) of a compound, is reported be higher in secondary sludge (20 g/L of 

suspended solids (SS) than primary sludge (2 g/L of SS) as microorganisms constitute more 

of the SS content- hence, compounds sorb more during secondary treatment (Ternes et al., 

2004). For example, it has been suggested that between 80 – 90 % of triclosan is removed by 

adsorption in conventional WWTPs (Chen et al., 2011; Lozano et al., 2013). Furthermore, 

about 80 % for PAHs and PBDEs were reported to be partitioned onto the solid particulate 

matter, and removed by sorption in real WWTPs (Sánchez-Avila et al., 2009). 

The volatilization tendency of compounds is characterised by their Henry’s law constant (KH) 

such that compounds with KH values between 10-2 to 10-3 mol/(m3.Pa) will tend to volatilize 

during treatment (Stenstrom et al., 1989). For example, low molecular weight PAHs (i.e. 

naphthalene) with a KH value of 0.02 mol/(m3.Pa) will most likely volatilize during treatment 

(De Maagd et al., 1998). In fact, aeration during the activated sludge treatment can further 

intensify the volatilization process (Luo et al., 2014). Photodegradation aided by sunlight has 

been suggested as a removal mechanism for micropollutants (Coleman et al., 2010). 

Photodegradation of micropollutants occurs either by direct photolysis - where direct 

absorption of lights leads to the degradation of compounds or by photosensitization - where 

substances in the matrix such as humic compounds absorbs light and transfers this energy to 

degrade the compounds (Sornalingam et al., 2016).  In fact, previous studies have reported 

photodegradation of estrogens under visible light (Sornalingam et al., 2016), UV light and 

sunlight, triclosan under UV and sunlight (Buth et al., 2010; Tamura and Yamamoto, 2012), 

PAHs under mimicked sunlight (Saeed et al., 2011), and PBDEs under UV, mercury, xenon 

and sunlight (Pan et al., 2016). 

Biodegradation of micropollutants mostly occurs during secondary treatment leading to 

partial degradation (formation of by-products) or complete mineralization of the compounds. 

The mechanisms of biodegradation in treatment systems is either by cometabolism - where 

the bacteria partially or completely decomposes the micropollutants without using them as an 

energy source or mixed substrate growth occurs - where the micropollutants are used as a 

carbon and energy source by the bacteria (Ternes et al., 2004). In treatment plants, the 

hydraulic retention time and sludge age influences their micropollutant removal (Ternes et al., 

2004; Alvarino et al., 2014). As the sludge age increases, the bacterial abundance increases 
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and becomes more diverse, and therefore are more capable in degradation micropollutants - a 

sludge retention time of between 12 – 15 days in activated sludge plants has been reported to 

improve removal of estrogens and pharmaceuticals (Ternes et al., 2004; Suarez et al., 2010). 

The chemical structure of micropollutants also influences their biodegradability. For example, 

compounds with long and highly branched chains, polycyclic compounds and compounds 

characterized by functional groups such as halogens or sulfate are often harder to degrade 

(Tadkaew et al., 2011; Luo et al., 2014). 

 Biodegradation of micropollutants under different redox conditions 

The biodegradation of micropollutants also varies with different redox conditions such as 

aerobic (molecular oxygen present), anoxic (molecular oxygen absent but nitrate present) and 

anaerobic conditions (molecular oxygen and nitrate absent) (Ternes et al., 2004; Chen et al., 

2011). During aerobic catabolism of aromatic compounds, oxygen acts as the final electron 

acceptor and co-substrate for the hydroxylation and oxygenolytic ring cleavage, while 

anaerobic catabolism proceeds by reductive reactions (Figure 2-2) (Ghosal et al., 2016). Since 

wastewater treatment technologies such as activated sludge and up-flow anaerobic sludge 

blanket reactors treat wastewater under aerobic and anaerobic conditions respectively, 

understanding the fate of these compounds under both conditions is important and has been 

studied in literature. However, most studies have focused on aerobic conditions because of the 

popularity of the activated sludge systems. According to Alvarino et al. biodegradation of 

estrogens (E1, E2 and EE2) was higher under aerobic conditions (62 – 95%) than anaerobic 

conditions (38 – 60 %) in their lab scale continuous activated sludge and UASB reactors 

(Alvarino et al., 2014). Rapid transformation and high removal rate of E3, E2, E1 and EE2 

has been reported to occur under nitrifying conditions with activated sludge and ammonia 

oxidizing bacteria (Haiyan et al., 2007; Dytczak et al., 2008; Gaulke et al., 2008).  

Furthermore, Chen et al. reported degradation of triclosan under aerobic conditions with 

activated sludge in their batch studies, but observed resistance to degradation under anoxic 

and anaerobic conditions (Chen et al., 2011). There is limited information on degradation of 

PAHs in wastewater treatment systems under different redox conditions, and when available 

they have often been on sludge treatment or soil remediation rather than the main wastewater 

treatment stream. Trably et al. compared removal of PAHs during aerobic and anaerobic 

sludge treatment, and reported relatively higher removal efficiencies (up to 90 % for low 

molecular weight PAHs and 50 % for higher molecular weight PAHs) under aerobic 

conditions. They also reported that the lighter PAHs were removed to a lower extent in 
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comparison to the heaver ones (Trably et al., 2005). It has also been reported that bacteria 

generally favour aerobic degradation of PAHs over the other redox conditions (Ghosal et al., 

2016). Biodegradation of PBDEs has also been reported under aerobic and anaerobic 

conditions. Stiborova et al. reported about 62 – 78 % degradation of eight PBDE congeners 

by activated sludge under aerobic conditions (Stiborova et al., 2015). There has also been 

reports of anaerobic degradation and debromination of PBDEs in some studies (He et al., 

2006; Xia, 2013). However, PBDEs degradation is slower under anaerobic conditions 

(Gerecke et al., 2005). Anaerobic reductive dehalogenation has been suggested to be an 

important biodegradation mechanism for halogenated compounds under methanogenic and 

sulphate reducing conditions. Chemicals such as PBDEs and PCBs, have been reported to 

undergo anaerobic dehalogenation during wastewater treatment where highly halogenated 

congeners are converted less-halogenated congeners thereby increasing their biodegradability 

(Xia, 2013; Yao et al., 2014; Expertise, 2015). Reductive dechlorination of triclosan has been 

reported by bacteria during anaerobic digestion of sludge (Ogunyoku and Young, 2014; Smith 

et al., 2015b), and by algae strains (Wang et al., 2013b). Some reported degradation rates of 

all the classes of chemicals under aerobic conditions in literature are shown in Chapter 4 & 

Chapter 5. 
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Figure 2-2 Degradation pathway of naphthalene by bacteria under (1) aerobic conditions (Seo 

et al., 2009), and (2) anaerobic conditions (Foght, 2008) 

In summary, the degradation rates of these chemicals were faster under aerobic conditions 

compared to anoxic and anaerobic conditions. However, most of the studies either used 

activated sludge inocula under different redox conditions or tried to acclimatize inocula from 

river or soil sediments to anaerobic conditions. Furthermore, estrogens degraded within a few 

hours in literature while PBDEs took several days to degrade. This indicates the effect of the 

chemical structure of different groups of compounds on their degradation.  The importance of 

rates for all process is that they can be used to calculate the removal of any chemical for a 

given influent concentration and hydraulic retention time (i.e. flow and volume of the reactor) 

(Levenspiel, 1999)- which can then determine the true limits of engineering systems for 

micropollutant removal. 
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 Sustainability issues of current WWTPs 

In this age of increasing energy costs, wastewater treatment in most developed countries have 

become unsustainable ; and this is even a bigger burden in low-middle income countries with 

less resources (Liu et al., 2004; Logan, 2005; Heidrich et al., 2010; McCarty et al., 2011).  In 

the UK, wastewater treatment uses 1.5 % of the total electricity consumption and accounts for 

up to 0.5 % of the total CO2 emission (Water-UK, 2017). The UK government is committed 

to reducing the total CO2 emission by 80 % compared to 1990 levels, and produce 15 % of the 

total energy requirement from renewable energy by 2020- for which the water companies 

have agreed to a 20 % renewable energy generation by 2020 (Howe, 2009). With this 

upcoming new legislations on the removal of micropollutants by the WFD, and the pressure 

on the water companies by member states, adding proposed tertiary treatment systems will 

further increase energy use- thereby making the reduced energy and emissions target 

unachievable. These advanced treatment systems such as adsorption with granulated activated 

carbon and advanced oxidation process will increase wastewater treatment energy demand by 

30 % and would cost between £26 - 30 billion to equip over 1,300 WWTPs in the UK 

(Gilbert, 2012). Hence, the need to look at alternative technologies, such as anaerobic 

treatment technologies or passive systems (waste stabilization ponds) that have the potential 

for reducing wastewater treatment costs (no aeration requirements) and perhaps potential for 

effective micropollutant removal. 

 Microbial degradation (biodegradation) of micropollutants 

Microbial degradation is the most important process of micropollutants removal from the 

environment as it can result to complete mineralization of the chemicals in natural and 

engineered eco-systems (Rücker and Kümmerer, 2012). Intrinsically, the biodegradability of a 

chemical depends on several factors such as physio-chemical properties of the chemical, 

environmental conditions (pH, redox conditions), presence and activity of degrading 

microbial taxa, etc. (Luo et al., 2014). The presence and activity of specific degraders among 

the microbial community present in biological systems will most likely determine the 

probability and extent of chemical degradation (Martin et al., 2017). Several bacteria genera 

have been reported to degrade aromatic compounds, especially under aerobic conditions 

(Peng et al., 2008; Ghosal et al., 2016). For example, Pseudomonas and Rhodococcus have 

been identified has versatile degraders of chemical pollutants and have been associated with 

the degradation of triclosan (Lee and Chu, 2013), PAHs (Peng et al., 2008; Ghosal et al., 

2016), estrogens (Yoshimoto et al., 2004; Yu et al., 2013) and PBDEs (Robrock et al., 2009). 

However, little is known about the bacteria taxa responsible for the degradation of these 
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chemicals during wastewater treatment and their degradation pathways. Hence, this study 

explores the identification of bacteria taxa in the microbial inocula responsible for 

degradation of triclosan, PAHs, estrogens and PBDEs. 

 Research gaps 

The following research gaps have been identified;  

1 Little is known about the occurrence of these classes of micropollutants in 

wastewater streams of low-middle income countries (LMICs) despite these 

chemicals being used in similar quantities to high income countries (HICs). 

2 Little is also known about removal and fate of these classes of micropollutants in low 

energy treatment systems including UASBs and WSPs. When this information is 

available, there is little information on which part of these treatment plants the 

compounds were removed and to what extent.  

3 There is little or no information comparing degradation rates of these compounds 

under aerobic and anaerobic conditions, especially for triclosan, PAHs and PBDEs.  

4 There is lack of knowledge on the removal of these chemicals via photodegradation 

in WSPs. 
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Chapter 3 Method development and Validation  

 Quantification of triclosan and polyaromatic hydrocarbons (PAHs) in 

wastewater by gas chromatography with mass spectrophotometry 

(GC-MS) 

 Introduction 

Triclosan and PAHs are important organic contaminants because they are ubiquitous and 

persistent in the environment (Thompson et al., 2005; Wang et al., 2009). PAHs enter the 

aquatic environment mainly via anthropogenic sources, including discharge of petroleum and 

petroleum- related products and via urban storm water carrying PAHs from asphalt and car 

exhaust particles (Qi et al., 2013; Wang et al., 2013c). Sixteen PAHs were included in the EU 

and US lists of priority pollutants because of their recalcitrance, suspected carcinogenicity and 

mutagenicity (Cao et al., 2005; Jones et al., 2012; Yao et al., 2012). These PAHs are: 

naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, antracene, fluoranthene, 

pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, 

dibenzo(a,h)anthracene, benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene (Wenzl et al., 

2006).  7 of them have been included as priority substances by the EU and have EQS 

(Environmental Quality Standard) values associated with them- i.e. they can potentially cause 

harm to aquatic wildlife (EU, 2013a) 

Triclosan is a commonly used antimicrobial agent in personal care products (including hand 

wash, body soaps, toothpastes, mouthwashes etc.); as such, it enters the aquatic environment 

via discharge from households into domestic sewage (Zhao et al., 2010). These personal care 

products typically contain about 0.1 – 0.3 % (w/w) of triclosan (Sabaliunas et al., 2003; Fiss 

et al., 2007); global production exceeded 1500 t in 2002, of which 350 t was used in Europe 

(Singer et al., 2002). Triclosan is a bioaccumulative and persistent compound and its 

occurrence in the aquatic environment has been of growing concern due to its toxicity to 

aquatic organisms including algae, daphnids and fishes (Singer et al., 2002; Ying and 

Kookana, 2007; Kookana et al., 2011). This has led the UK Technical Advisory Group on the 

Water Framework Directive to provide recommendations on environmental standards of 

triclosan in surface waters (UKTAG, 2013).  

The occurrence of triclosan and PAHs in wastewater (in ng/L or µg/L) and their fate during 

wastewater treatment has been extensively reported in the literature. The majority of these 

studies focused only on the occurrence of these compounds in the aqueous phase without due 

consideration for the large proportion that partitioned onto the particulate matter.  Due to 
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incomplete removal by the wastewater treatment plants, these compounds are discharged to 

water bodies, in dissolved phase or adsorbing to particulate matter (Qi et al., 2013). Since, 

this is a major conduit of PAH and triclosan into the aquatic environment, it is imperative to 

adopt an effective analytical methodology to quantify the presence of these compounds in 

both the dissolved and particulate matter phase of wastewater.  

Several techniques including liquid-liquid extraction (LLE), solid phase extraction (SPE), 

solid phase microextraction (SPME) and  stir-bar sorptive extraction (SBSE) have been 

employed to extract triclosan and PAHs from water and wastewater (Wenzl et al., 2006; 

Tohidi and Cai, 2015). LLE using non-polar solvents and SPE are the most commonly used 

analytical method for extracting the studied compounds (Bester, 2005; Busetti et al., 2006; 

Brum and Netto, 2009; Tohidi and Cai, 2015), with the latter getting increasingly popular 

because of its selectivity, reproducibility and low solvent requirement (Busetti et al., 2006; 

Moja and Mtunzi, 2013). Determination of triclosan and PAHs in environmental samples is 

commonly carried out by gas chromatography coupled with mass spectrophotometry (GC-

MS), or by liquid chromatography coupled with a fluorescence (only PAHs), UV or mass 

spectrometric (MS) detector (Bester, 2005; Cao et al., 2005; Busetti et al., 2006; Kookana et 

al., 2011). The MS detector is to be preferred as it offers better specificity and sensitivity 

(Busetti et al., 2006; Sánchez-Brunete et al., 2007), which is particularly pertinent to 

identifying target compounds in difficult complex environmental samples such as wastewater. 

Furthermore, GC-MS combined with stable isotope quantification ensures unequivocal 

identification of PAHs and triclosan in environmental samples (Cao et al., 2005). 

Optimization of the SPE based extraction method and chromatographic separation is essential 

for better detection limits and recoveries of the compounds especially the 15 PAHs with a 

wide molecular weight and Log Kow range. Unlike most other SPE-GC-MS based methods, 

this approach enables the reliable determination of the analytes in the aqueous and particulate 

matter phase simultaneously; thereby eliminating the need for a separate analyte 

quantification in solids and as a result saving essential resources. Furthermore, a robust and 

reliable method that simultaneously measures the analytes in both phases (aqueous and 

particulate matter) is essential to our planned biodegradation studies in bio-solids.  

In this study, methods using solid phase extraction and GC-MS were optimized and validated 

for the determination of triclosan and the 15 priority PAHs in the aqueous and particulate 

matter phase of wastewater. The study also compared the effect of pH sample adjustment and 

SPE sorbent amount on the extraction efficiency of triclosan and PAHs from wastewater. 
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Analytical performance was evaluated based on detection limits, linear working range and 

repeatability. The methods were then applied to evaluate the removal of triclosan and PAHs in 

municipal wastewater treatment plants in North East England. 

Table 3-1 Names, abbreviations, physical and chemical properties of the triclosan and the 15 PAHs 

investigated in this study 

Compound Acronym Molecular 

formula 
Log Kow, 

c
 Adsorption 

potential b 

Solubility 

(mg/L) at d 

Triclosan TCS C12H7Cl3O 4.8
a
 High 10.0a 

Naphthalene Naph C10H8 3.30c Medium 31.0 

Acenaphthylene Acy C12H8 3.94 Medium 16.1 

Acenaphthene Ace C12H10 3.92 Medium 3.8 

Fluorene Flu C13H10 4.18 High 1.9 

Phenanthrene Phen C14H10 4.46 High 1.1 

Anthracene Anth C14H10 4.45 High 0.062 

Fluoranthene Flt C16H10 5.16 High 0.240 

Pyrene Pyr C16H10 4.88 High 0.132 

Benz(a) 

anthracene 

BaA C18H12 5.66 High 0.011 

Chrysene Chry C18H12 5.81 High 0.0019 

Benzo(b) 

fluoranthene 

BbF C20H12 5.78 High 0.0015 

Benzo(a)pyrene BaP C20H12 6.13 High 0.0038 

Indeno 

(1,2,3-cd)pyrene 

InPy C22H12 6.70 High 0.00019 

Dibenz(a,h) 

anthracene 

DiahA C22H12 6.75 High 0.00056 

Benzo(ghi) 

perylene 

BghiP C22H12 6.63 High 0.00083 

a
 adopted from (Kantiani et al., 2008) 

b When Log Kow < 2.5, adsorption potential is low, medium when >2.5 but < 4, high when > 4 (Rogers, 

1996) 
c adopted from (Sánchez-Avila et al., 2009)  
d solubility at 25 oC. Adopted from (Mackay et al., 2006) 
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 Experimental 

 Materials and reagents 

A certified standard solution of 15 mixed priority PAHs (including naphthalene, 

acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, 

benz(a)anthracene, chrysene, benzo(b)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene, 

dibenz(a,h)anthracene and benzo(ghi)perylene at 2 mg/ml in dichloromethane) and triclosan 

(100 mg) were purchased from Sigma, (UK). Isotope labelled 13C12-Triclosan (50 µg/ml in 

methanol) and a mix of deuterated PAHs (including acenaphthene-d10, phenanthrene-d10, 

chrysene-d12 and perylene-d12 at 2 mg/ml in dichloromethane) were purchased from 

Wellington Laboratories, (Canada, via Greyhound Chromatography, UK) and Accustandard 

(via Kinesis UK) respectively. Internal standards meclofenamic acid (MFA, 100 mg) and p-

Terphenyl-d14 (100 mg) were also purchased from Sigma Aldrich and Greyhound 

Chromatography (UK) respectively. Derivatization reagent BSTFA with 1% TCMS was also 

purchased from Sigma Aldrich (UK). 

Stock solutions were prepared by dissolving the reference and surrogate standards in 

methanol or acetone at various concentrations (1000 µg/ml for triclosan, 20 µg/ml for 13C12-

triclosan, 20 µg/ml for PAHs, and deuterated PAHs). Working solutions were then prepared 

by diluting the stock solutions in acetone or methanol and dichloromethane for sample 

fortification and instrumental analysis respectively. All solutions were stored at 4 oC and 

allowed to reach room temperature for 15 mins before use. Ultra-trace grade of methanol, 

acetone, dichloromethane and isopropanol were obtained from Sigma Aldrich (UK). 

Cartridges used for solid phase extraction were Isolute C18 (1000mg, 6 ml) and Isolute C18 

(500mg, 6 ml), and were purchased from Biotage (UK). Glass microfiber filters were 

purchased from Sartorius (MGB filters, 0.7mm thick, 1.0 µm particle retention). 

 Sample collection 

Grab samples of wastewater (raw influent and final effluent) were collected from two 

nitrifying activated sludge plants treating municipal wastewater in North East England. The 

population equivalents of WWTP A and WWTP B are 22,500 and 28,800 respectively. 

Samples were collected in cleaned and disinfected (with 1% Virkron for 24 hours, followed 

by several rinse cycles with distilled water) high density polyethylene (HDPE) containers - 

analysis of container wash water demonstrated that they were uncontaminated with the target 

compounds. Samples were stored at 4 oC upon arrival in a cold room and were used within 24 

hours. Samples were percolated directly through the SPE cartridges to allow quantification of 
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the chemicals in the combined aqueous and particulate phase (i.e. total concentration). An 

aliquot of the same samples were filtered through glass microfiber filter to estimate the 

concentration of the chemicals in the aqueous phase alone (Sartorius MGB filters, 0.7mm 

thick, 1.0 µm particle retention), before further processing, using solid phase extraction 

(SPE). The concentration of chemicals in the particulate phase were determined by 

subtracting their concentration in the aqueous phase from the total concentration. Effluent 

from WWTP A was used for the method development. PAH was surveyed only in WWTP A, 

while triclosan was investigated in both plants.  

 GC instrumentation 

Analysis was performed on an Agilent 7890A gas chromatography system equipped with an 

Agilent 5957C Mass Spectrometer and an Agilent 7683B automatic injector. A fused silica 

capillary column (DB-5MS; 60m x 0.25mm I.D. x 0.25μm film thickness) from J & W 

Scientific, USA was used for chromatographic separation for both triclosan and PAHs 

analysis. The inlet was fitted with an SGE single taper deactivated glass liner and samples 

were injected (1 µl) in pulsed splitless mode (1 min. splitless, then 30 ml/min split). The inlet 

and interface temperature was set at 280 oC and 310 °C respectively. Heluim (99.999 %) was 

used as carrier gas in constant flow mode (flow-rate 1 ml/min, initial pressure of 120 kPa, 

split at 30 ml/min, velocity 91.3 cm sec-1). The GC was temperature programmed from 50 - 

310 °C; held at 50 °C for 2 min then increased to 310 °C at 5 °C /min, then held at 310 °C for 

21 min for PAH analysis while GC program for triclosan analysis was from 50 - 310 °C; held 

at 50 °C for 1 min then increased to 310 °C at 10 °C /min, then finally held at 310 °C for 10 

min. Total run time was 75 min and 35 min for PAH and triclosan analysis respectively. The 

Mass Spectrometer was operated in electron-impact ionization (EI) mode with electron 

voltage set at 70 eV, source temperature at 230 °C, quad temperature at 150 °C, and multiplier 

voltage at 1800 V. Acquisition was initially performed in scan mode (50 – 600 amu/sec), but 

mainly in Selected Ion Monitoring (SIM- 58 ions, 0.7 cps, 20 ms dwell) mode to improve 

sensitivity and selectivity. Data was acquired and processed using a Chemstation 

Chromatographic Data System (version. 8.3). The ion corresponding to the fragmentation of 

each analyte was used for quantification and confirmation (Table 3-2). Peaks were identified 

and labelled after comparison of their mass spectra with those of the NIST05 library if > 90% 

fit or from their elution order in the literature (Qiao et al., 2013). Triclosan and PAHs were 

analysed separately, but with a similar instrumentation method that differed only by the GC 

temperature program applied. Poor sensitivity of PAHs was observed at concentration below 

20 ng/L, especially for the high molecular weight PAHs, due to high end discrimination. 
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Hence, different GC injection liners (straight liner, green liner and blue liner) were tested to 

improve the sensitivity of the GC-MS. The GC-MS was vented and ion source was cleaned 

before installing the capillary column. After 2 hours, the mass spectrophotometer was tuned 

using the 5975 Auto-tune program- this uses perfluorotributylamine (PFTBA- a tuning and 

calibration mixture) and focuses on m/z 69, 219 and 502 to system optimization. 

Table 3-2 Characterization of triclosan, 15 PAHs, relative surrogates and internal standards by 

GC-MS 

Compound(s) Molecular weight 

category 

Retention time 

(min.) 

Characteristic ion 

(m/z) 

Triclosan 

Triclosan-TMS* - 17.34 345, 347, 360, 362, 

200 
13C12-Triclosan-TMS 

(surrogate) 

- 17.34 357, 372, 374 

MFA-TMS (Internal 

standard) 

- 19.50 242, 244, 367 

    

PAHs 

Naphthalene LMW 

(2 rings) 

21.621 128 

Acenaphthylene LMW 29.091 152 

Acenaphthene LMW 29.932 153 

Fluorene LMW 

(3 rings) 

32.417 166 

Phenanthrene LMW 36.994 178 

Anthracene LMW 37.239 178 

Fluoranthene MMW 

(4 rings) 

42.684 202 

Pyrene MMW 43.744 202 

Benz(a)anthracene MMW 49.461 228 

Chrysene MMW 49.624 228 

Benzo(b)fluoranthene HMW 

(5 rings) 

54.228 252 

Benzo(a)pyrene HMW 55.627 252 

Indeno(1,2,3-cd)pyrene HMW 61.344 276 

Dibenz(a,h)anthracene HMW 61.507 278 

Benzo(ghi)perylene HMW 62.919 276 

Acenaphthene-d10 

(Surrogate) 

LMW 29.567 164 

Phenanthrene-d10 

(Surrogate) 

LMW 36.692 188 

Chrysene-d12 (Surrogate) MMW 49.354 240 

Perylene-d12 (Surrogate) HMW 55.716 264 

p-Terphenyl-d14 (Internal 

standard) 

- 43.854 244 

*TMS= derivative obtained after derivatization using BSTFA. *Underlined ions were used for 

quantification. PAHs were classified into LMW, MMW and HMW groups for easier discussion of results 
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 SPE procedure and optimization 

Isolute C18 (1000 mg, 6ml) and Isolute C18 (500 mg, 6ml) SPE columns were used for the 

extraction of the PAHs and triclosan from wastewater samples. For extraction of PAHs, a 

Biotage application note for analysing polyaromatic hydrocarbons (PAHs) in water was 

applied with some modifications (Biotage, 2016) . Briefly, isopropanol (1% v/v, added as 

modifier to minimize adsorption of high molecular weight PAHs onto glass surfaces due to 

their hydrophobicity) was added to 500 ml of filtered wastewater (influent was centrifuged at 

3846 g for 15 mins at 20 oC before filtration) without pH adjustment for the extraction of 

PAHs in the aqueous phase, followed by addition of surrogate standards (acenaphthene-d10 for 

LMW PAHs, phenanthrene-d10, for MMW PAHs, chrysene-d12 and perylene-d12  for HMW 

PAHs) at 200 ng/L before passing through the SPE. Cartridges (Isolute C18, 1000 mg, 6 ml) 

were conditioned with 5 ml of isopropanol followed by 5 ml of deionized water containing 

2 % isopropanol (v/v) at a flow rate of 5 ml/min. Samples were then percolated through the 

cartridges at a flow rate of 10 ml/min. Sample bottles were then rinsed with acetone to prevent 

loss of analytes to the glass walls, and then diluted with 90 ml of deionized water before 

passing through the cartridges - this serves as a prewash step to remove unwanted impurities 

including chlorophyll. The cartridge was finally washed with 10 % isopropanol (v/v) and 

dried under vacuum for 20 mins (cartridges were not dried longer than this to prevent loss of 

low molecular weight PAHs due to volatilization). Elution was performed by passing 3 ml of 

dichloromethane through the cartridge twice (6 ml total volume). The extract was then 

evaporated under a gentle stream of nitrogen at 30 oC using Labconco Rapidvap Evaporator to 

1000 µl before injection into the GC-MS.  

Extraction of triclosan was performed according to Kookona et al., 2011 (Kookana et al., 

2011) with some modifications. Briefly, methanol (1 % v/v) was added to 500 ml – 1000 ml 

of filtered wastewater (influent was centrifuged at 4000 rpm for 15 mins at 20 oC before 

filtration) and was adjusted to pH 2 by adding sulphuric acid for aqueous phase extraction. 

This was followed by addition of surrogate standard (13C12- Triclosan) at 100 ng/L level 

before passing through SPE. Cartridges (Isolute C18, 500 mg, 6 ml) were conditioned with 5 

ml of methanol followed by 5 ml of deionized water at a flow rate of 5 ml/min. Samples were 

then percolated through the cartridges at a flow rate of 10 ml/min. The cartridge was finally 

washed with 10 % methanol (v/v) and dried under vacuum for 30 mins. Elution was 

performed by passing 3 ml of ethyl acetate through the cartridge twice (6 ml total volume). 

The extract was then evaporated under a gentle stream of nitrogen at 30 oC using Labconco 

Rapidvap Evaporator to incipient dryness and re-dissolved in 900 µl of dichloromethane. The 
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sample was derivatized by adding BSTFA with 1% TCMS (see below for derivatization 

conditions) before analysing on the GC-MS. 

For extraction of PAHs and triclosan in combined aqueous and particulate matter (PM) 

phases, 50 ml of unfiltered influent and 100 ml of unfiltered effluent was percolated through 

the SPE cartridge as described above.  

Triclosan acidification test 

In some studies, water samples were acidified to pH 2 before extraction of triclosan with SPE 

(Lee et al., 2003; Kookana et al., 2011). The importance of this pH adjustment was evaluated 

by comparing extraction efficiencies at pH 2 and pH 6 – 7 (the pH range of wastewater prior 

to modification). Triclosan was spiked at 100 ng/L into six pre-cleaned bottles filled with 

filtered effluent (500 ml). The first three bottles were adjusted to pH 2 with the addition of 

sulphuric acid, while the other three bottles were not pH adjusted. All samples were processed 

with SPE, and the corresponding peak areas after GC-MS analysis were used to estimate 

analyte recovery. 

Optimization of triclosan derivatization 

Derivatization of triclosan before GC analysis improves response and eradicates peak tailing 

(Tohidi and Cai, 2015). Therefore, BSTFA with 1% TCMS was selected as the derivatization 

agent for triclosan because of its strong silylation strength and versatile application (Sigma, 

2011).  Three derivatization methods were investigated to determine the optimum condition, 

and they include;  

10% Derivatization concentration: 100 µl of BSTFA with 1% TCMS was added to 1ml of 

triclosan solution (100 ng/ml). Maintained at 60 oC for 30 mins in a test tube heating block 

(Sanchez-Brunete et al., 2009) 

50% Derivatization concentration: 50 µl of BSTFA with 1% TCMS (derivatization agent) 

was added to 100 µl of triclosan solution (100 ng/ml). Maintained at 60 oC for 30 mins in a 

test tube heating block (Zhang et al., 2006) 

100% Derivatization concentration: 100 µl of BSTFA with 1% TCMS was added to 100 µl of 

triclosan solution (100 ng/ml). Maintained at 60 oC for 30 mins in a test tube heating block. 

Final extracts from the three derivation methods were injected into the GC-MS system, and 

the quantification ions corresponding to parent triclosan (m/z 288, 289 and 290) and 
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derivatized triclosan (triclosan -TMS, m/z 345, 347, 360 and 200) were monitored. Complete 

derivatization was established when the ions relating to parent triclosan disappeared from the 

spectrum as a result of their conversion to triclosan-TMS. Furthermore, derivatization of pure 

analytical standard was compared to that of spiked effluent to determine the conversion 

efficiency in a matrix sample. 

 Method validation study 

Method accuracy was evaluated by performing recovery experiments in blanks (deionized 

water, n = 3) at three fortification levels (20 ng/L, 200 ng/L and 1000 ng/L) and matrix 

sample (final effluent) at 100 ng/L. A recovery experiment was carried out for PAH 

surrogates at 20 ng/L in DI water and 200 ng/L in effluent. Triclosan surrogates were spiked 

and recovered from DI water and effluent at 100 ng/L. The repeatability of the method was 

determined by the relative standard deviation (% RSD) from the recovery experiments in the 

fortified blank and matrix samples. 

To calculate the percentage recovery of the compounds during the recovery experiment 

according to the US EPA 1984 (USEPA, 1995) 

% 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =  
𝐴𝑟𝑒𝑎 𝐴−𝐴𝑟𝑒𝑎 𝐵

𝐴𝑟𝑒𝑎 𝑇
   𝑥  100                                    (1) 

Where:  Area A is the area of recovered spiked sample, Area B is the area corresponding to 

the background concentration of the analyte in the matrix, and Area T is area corresponding to 

the known concentration of the spike (reference standard). 

Instrumental limits of detection (IDL) and method detection limit (MDL) were determined as 

stated in Section 3.2.2.5. The MDL in effluent was determined using the surrogate compounds 

because the concentration of the analytes in effluent samples was ten times above the MDL in 

deionized water or five times above the instrumental detection limit, which then make its 

impracticable to determine MDL of the analytes in effluents (USEPA, 1995).  

Standard curves and estimation of concentrations 

Analytes were identified by their retention time and fragmentation ions. Multipoint calibration 

curves were generated by injecting reference PAH and triclosan standards in triplicate at five 

concentration levels: from 2 to 2000 ng/ml. Linearity was established when regression 

coefficient was > 0.99. To predict the concentration of an unknown analyte in a sample, an 

appropriate calibration model is important. Selecting an appropriate calibration model 
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involves a decision as to either allow the calibration curve pass through a point of intercept on 

the y-axis (so that y = mx + c) or force the curve to go through the origin (so that y = mx) 

(Dolan, 2009). 

Regression statistics of the calibration data on Microsoft Excel 2013 can be used to make this 

decision. This decision is based on closeness of the y-intercept to zero, and can be tested 

statistically using standard error (SE) (Dolan, 2009). The standard error of the y-intercept 

(SEy) obtained by the regression analysis is based upon the variability at the y-intercept and 

can be used to test if the curve passes through zero such that; 

When y-intercept > SEy, use intercept such that y = mx + c 

When y-intercept ≤ SEy, force curve through the origin, such that y = mx (c = 0).  

Isotope labelled internal standards (deuterated PAHs and labelled triclosan) were selected as 

surrogate standards due to their similarities with the analytes of interest and absence in 

wastewater. These surrogates were spiked in calibration solutions and wastewater samples to 

correct for extraction losses and sample matrix effect. 

Method 1 

In the early method validation stages, quantification of triclosan in WWTP A and WWTP B 

was carried out using a multipoint calibration curve at five concentration levels between 0.02 

– 10 µg/ml . Surrogate standard (13C12-Triclosan) was added at a known concentration (0.1 

µg/ml) to the wastewater samples after extraction (i.e. just before GC injection). The peak 

area thus obtained is compared to that of an analytical standard of the surrogate to quantify 

any matrix effect. A matrix effect correction factor is established (signal suppression or 

enhancement), and the final concentration in the sample is calculated according to Equation 2. 

MFA was used as instrumental standard to monitor instrumental variations across runs.  

𝐹𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛
𝑛𝑔

𝐿
= 𝐶𝐶  𝑥 𝐷 𝑥 (100 − % 𝑆𝑆)                        (2) 

Where Cc = Concentration obtained from the calibration curve, D = Dilution factor, and SS = 

Signal Suppression (due to matrix effect). 

Method 2 

This method is based on stable isotope quantification. The stable isotope quantification 

method implies spiking the isotope labelled standards (surrogates) into the calibration curve 
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solutions at a known concentration and obtaining a relative response factor (peak area of 

primary analyte divided by that of surrogate) to plot a multipoint calibration curve. The 

surrogates are also spiked into the wastewater samples before SPE extraction so that 

extraction efficiencies and matrix effect are accounted for. The relative response factors 

(RRF) obtained from the samples are used to estimate the concentration from the calibration 

curve, and the final concentration is calculated according to Equation 3.  

𝐹𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛
𝑛𝑔

𝐿
= 𝐶𝐶  𝑥 𝐷                        (3) 

Where Cc = Concentration obtained from the calibration curve, D = Dilution factor. 

This method replaced method 1 as it effectively corrects extraction inefficiencies, and was 

adopted to determine the concentration of triclosan and PAHs in WWTP A.  
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 Results and discussion 

 Chromatographic performance 

Optimization of chromatographic separation is necessary when analysing a wide a range of 

PAHs (from low to high molecular weight) as this ensures good separation of compounds of 

interest. Employing a 60 m capillary column allowed good separation of the PAHs. The result 

of the GC injection liner test showed that the blue liner increased the sensitivity of the GC-

MS equipment for all PAHs by 20 – 50 %, especially for the high molecular weight PAHs at 

low concentrations (data not shown). This helped to minimise high end discrimination 

associated with this type of analysis, and was subsequently routinely employed for the 

analysis of PAHs and triclosan throughout the study. The employed temperature program for 

PAHs allowed for the separation of the 15 PAHs in 62 mins, with naphthalene (Naph) eluting 

first at 21.0 min and benzo(ghi)perylene (BghiP) last at 61.8 min (Figure 3-1). An optimized 

temperature program for triclosan allowed its elution in 17.34 min. Optimum collision energy 

was set up at 70 eV, due to the poor fragmentation of the aromatics in EI ionization (Pitarch et 

al., 2007). 

 

Figure 3-1 GC-MS Chromatogram of 15 priority PAHs in the analytical standard at 2000 ng/ml. 

The compounds are; napthalene (Naph), acenaphthylene (Acy), Acenaphthene (Ace), fluorene 

(Flu), phenanthrene (Phe), anthracene (Ant), fluoranthene (Flt), pyrene (pyr), benz(a)anthracene 

(BaA), chrysene (Chry), benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP), indeno(1,2,3-

cd)pyrene (InPy), dibenz(a,h)anthracene (DiahA), and benzo(ghi)perylene (BghiP) 
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 Statistical analysis of calibration curve 

The result of the linear regression analysis of the calibration curve from a single run of 

triclosan and 15 PAHs (Table 3-3) shows that different calibration models should be used for 

individual analytes to achieve accurate predictions. Triclosan, Naph, Acy, BaP, InPy, DiahA 

and BghiP all required the curve to be forced through zero (such that y = mx) for accurate 

concentration estimations in an unknown sample, while the other compounds required the 

alternative calibration curve model (such that y = mx + c). These calibration curve evaluations 

were repeated several times over the course of our research and the results were consistent, 

even across long (18 months) time intervals (at the same multipoint calibration concentration 

range). Such evaluations are important. It has been reported that errors as large as 45 % can 

occur when quantifying the concentrations of compounds near the method limit of detection 

and lower limits of quantification if an incorrect calibration curve fit is applied (Dolan, 2009).  

Table 3-3 Calibration curve test results, model and equations for triclosan and 15 PAHs 

Compound R2 y-intercept Standard 

Error 

(SEy) 

Calibration 

model 

Calibration 

equation 

Triclosan 0.9989 0.152 0.191 y = mx y = 0.0104x 

Naphthalene 0.9992 0.060 0.067 y = mx y = 0.0091x 

Acenaphthylene 0.9991 0.075 0.053 y = mx + c y = 0.0066x – 

0.0746 

Acenaphthene 0.9997 0.021 0.027 y = mx y = 0.0062x 

Fluorene 0.9998 0.040 0.024 y = mx + c y = 0.0061x – 

0.0398 

Phenanthrene 0.9999 0.034 0.021 y = mx + c y = 0.0067x – 

0.0343 

Anthracene 0.9979 0.075 0.055 y = mx + c y = 0.0046x – 0.075 

Fluoranthene 0.9981 0.094 0.068 y = mx + c y = 0.0058x – 

0.0942 

Pyrene 0.9979 0.107 0.079 y = mx + c y = 0.0064x – 

0.1072 

Benz(a) 

anthracene 

0.9902 0.062 0.049 y = mx + c y = 0.0018x – 0.062 

Chrysene 0.9951 0.081 0.062 y = mx + c y = 0.0034x – 

0.0815 

Benzo(b) 

fluoranthene 

0.9983 0.039 0.029 y = mx + c y = 0.012x – 0.0388 

Benzo(a)pyrene 0.9969 0.006 0.015 y = mx y = 0.0046x 

Indeno 

(1,2,3-cd)pyrene 

0.9951 0.003 0.006 y = mx y = 0.0015x 

Dibenz(a,h) 

anthracene 

0.9972 0.001 0.005 y = mx y = 0.0018x 

Benzo(ghi) 

perylene 

0.9990 0.001 0.007 y = mx y = 0.0037x 
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 SPE optimization and method performance 

C18 SPE cartridges have been a popular choice in the literature for extraction of PAHs and 

triclosan from water samples (Ying and Kookana, 2007; Kookana et al., 2011; Jones et al., 

2012; Qiao et al., 2014). Oasis HLB is also frequently used for extraction of triclosan (Lee et 

al., 2003; Lozano et al., 2013), but is about three times more expensive than C18. Therefore, 

the Isolute C18 cartridge was selected for the extraction of PAHs and triclosan from 

wastewater. The extraction procedure was optimized by testing the C18 cartridge for its 

efficiency in analyte retention. Use of Isolute C18 (500 mg, 6ml) resulted in poor recoveries of 

high molecular weight PAHs, while Isolute C18 (1000 mg, 6ml) performed much better. 

Hence, Isolute C18 (1000 mg, 6ml) was selected to extract PAHs and Isolute (500 mg, 6 ml) 

for triclosan. The US EPA recommends an analyte recovery range of 70 – 130 % with a 

relative standard deviation (RSD) < 20% (USEPA, 2012). Hence, extraction efficiencies were 

evaluated for closeness to these recommended values. The results of recovery experiments of 

triclosan showed that good recoveries (86 – 104%) were recorded at the three fortification 

levels (1000 ng/L, 200 ng/L and 20 ng/L) tested in DI water, and at 100 ng/L in effluent 

(102 %) (Table 3-4; See chromatogram in Figure 8-18). The C18 cartridge was the best choice 

for scientific and economic reasons as the recoveries of triclosan with the cartridge was 

comparable to that achieved (86 – 88% at 100 – 1000 ng/L in DI water and wastewater) by 

the more expensive HLB cartridges in other studies (Lee et al., 2003; Lozano et al., 2013).  

Good recoveries of 101 % and 128 % were also recorded for 13C12-Triclosan in DI water and 

effluent respectively; hence this is an appropriate surrogate for triclosan analysis. RSDs were 

generally lower than 20%, thereby showing method precision.  

Table 3-4  Recoveries of triclosan and surrogate at different fortification levels in deionized water (DI) 

and effluent, and method detection limit in DI water and effluent. Surrogate standard is indicated in 

italics 

Compound Recovery in DI water 

(blank), % (RSD), n =3 

Recovery in Effluent 

(matrix), % (RSD), n = 3 

MDL in ng/L 

 1000 ng/L 

Spike 

200 ng/L 

Spike 

20 ng/L 

Spike 

100 ng/L Spike Blank Matrix 

Triclosan 86 (8.8) 94 (5.1) 104 

(8.8) 

102 (11.8) 1.7 n/a 

 100 ng/L Spike 100 ng/L Spike   
13C12-

Triclosan 

101 (17.2) 128 (6.3) 1.4 5.6 

 

 



37 

 

The 15 PAHs studied were classified according to their number of benzene rings into low 

molecular weight PAHs (LMW, 2 – 3 rings), middle molecular weight PAHs (MMW, 4 

rings), and high molecular weight PAHs (HMW, 5 rings or more) for discussion purposes 

(Table 3-2). Most of the recoveries were more than satisfactory for LMW PAHs in DI water 

(66 – 121%) and effluent (62 – 128%) at all fortification levels (Table 3-5). At the three 

fortification levels (20 ng/L, 200 ng/L and 1000 ng/L) in DI water, good recoveries (101 – 

133%) were recorded for all MMW PAHs except benz(a)anthracene and chrysene with 

recoveries of 175% and 148% respectively. However, recoveries of MMW PAHs ranged from 

124 – 179% in effluent at 100 ng/L fortification level. Recovery of HMW PAHs in DI water 

was between 83 – 98 %, 47 – 120% and 90 – 102 % at 20 ng/L, 200 ng/L and 1000 ng/L 

respectively. Recovery of HMW PAHs in effluent was between 22 – 88% at 100 ng/L 

fortification level (see chromatogram in Figure 8-19). The recovery of some HMW PAHs 

(InPy, DiahA and BghiP) was not determined at 1000 ng/L in DI water as this concentration 

was well above their solubility- which ranged from 8.3 – 38 ng/L (Table 3-1). This poor 

solubility also explains the relatively poor recovery of these chemicals in effluent spiked at 

100 ng/L. The recovery of the surrogate standards in effluent ranged from 76 – 123 % at 200 

ng/L fortification level. 

Recoveries of PAHs in effluent were corrected using the surrogate standard deuterated PAHs 

to achieve a better relative recovery (Table 3-5). Acenaphthene-d10 was used as surrogate for 

Naph, Acy, Ace and Flu; phenanthrene-d10 for Phen, Anth, Flt and Pyr; chrysene-d12 for BaA, 

Chry, BbF), and BaP; and perylene-d12 for InPy, DiahA and BghiP. Relative recoveries of 

LWM PAHs, MMW PAHs and HMW PAHs was between 82 -114 %, 110 – 160%, and 28 – 

98% respectively. This approach slightly improved analyte recovery. RSDs were generally 

lower than 20% thereby showing method precision and reproducibility.  

The MDLs were determined by a spiked concentration of 2 ng/L. As shown in Table 4, the 

MDLs of triclosan and 13C12-Triclosan were 1.7 ng/L and 1.4 ng/L in deionized water 

respectively. Since MDL of triclosan could not be determined in the effluent samples due to 

background interference, the MDL of the surrogate (13C12-Triclosan, 5.6 ng/L) was 

determined. These determined MDLs passed the acceptance criteria in Section 3.2.2.5 (i.e. 

MDL < spike concentration or ≤ 5 times spike concentration, and ≥ spiked concentration/10). 

The MDL obtained was two orders of magnitude below the average annual allowable standard 

of 100 ng/L in freshwater as recommended by UK Technical Advisory Group on the Water 

Framework Directive (UKTAG, 2013). 
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Table 3-5 Recoveries of 15 priority PAHs and surrogate at different fortification levels in 

deionized water (DI) and effluent, and method detection limit in DI water and effluent. 

Surrogate standard is indicated in italics 

Compound Absolute recovery in DI water 

(blank), Mean % (RSD), n =3 

Recovery in Effluent 

(matrix),  Mean % 

(RSD), n = 3 

MDL in 

blank 

(ng/L) 

MDL in 

matrix 

(ng/L) 

 1000ng/L 

Spike 

200ng/L 

Spike 

20ng/L 

Spike 

100 ng/L 

Spike 

Relative 

recovery* 

  

Naphthalene 66 (8.4) 79 (1.9) 118 

(3.7) 

62 (3.8) 82.4 1.2 - 

Acenaphthylene 69 (11.4) 81 (2.6) 72 (1.4) 93 (5.3) 122.1 0.4 - 

Acenaphthene 74 (9.0) 88 (5.3) 85 (3.5) 78 (6.5) 103.5 1.0 - 

Fluorene 82 (8.7) 97 (3.7) 89 (1.7) 100 (4.4) 132.4 1.5 - 

Phenanthrene 91 (8.3) 108 

(4.6) 

121 

(0.7) 

110 (4.4) 97.7 1.1 - 

Anthracene 88 (9.9) 99 (3.9) 80 (1.8) 128 (6.8) 114.4 2.7 - 

Fluoranthene 101 (6.8) 126 

(4.3) 

116 

(0.6) 

147 (7.6) 130.9 3.0 - 

Pyrene 101 (6.7) 122 

(6.1) 

112 

(0.6) 

143 (7.1) 127.7 7.2 - 

Benz(a) 

anthracene 

122 (4.5) 175 

(5.1) 

133 

(0.8) 

179 (13.7) 160.2 3.2 - 

Chrysene 102 (6.5) 148 

(6.0) 

109 

(0.4) 

124 (4.4) 109.9 3.4 - 

Benzo(b) 

fluoranthene 

100 (5.3) 137 

(3.5) 

96 (1.6) 88 (5.0) 106.7 7.4 - 

Benzo(a)pyrene 90 (8.5) 127 

(2.0) 

91 (4.1) 80 (7.3) 97.8 5.9 - 

Indeno 

(1,2,3-cd)pyrene 

-+ 120 

(2.8) 

97 (4.2) 28 (8.0) 34.1 2.7 - 

Dibenz(a,h) 

anthracene 

-+ 47 (5.7) 83 

(18.0) 

23 (2.7) 27.9 7.4 - 

Benzo(ghi) 

perylene 

-+ 78 (8.3) 98 (7.1) 23 (3.3) 28.0 2.8 - 

Surrogates 20 ng/L Spike 200 ng/L Spike   

Acenaphthene-d10 65 (3.1) 76 (6.3) 0.4 0.7 

Phenanthrene-d10 83 (3.6) 113 (4.3) 0.4 0.2 

Chrysene-d12 184 (3.6) 123 (7.5) 3.6 10 

Perylene-d12 114 (1.7) 82 (7.6) 6.7 10 

*Relative recovery obtained by correcting the recoveries of the primary analytes with that of the surrogates. + 

Recoveries were not determined at this level as the solubility of the chemicals exceeded 1000 ng/L 
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The MDLs were determined with a spike concentration of 1 – 10 ng/L from LMW – HMW 

PAHs in both DI water and effluent samples. The MDL of 15 priority PAHs in deionized 

water ranged from 0.4 – 7.4 ng/L. the MDL of isotope labelled PAHs (surrogates) ranged 

from 0.2 – 10 ng/L in effluent samples (Table 3-5) as high background concentrations 

prohibited MDL determination of the parent compounds as discussed above. These 

determined MDLs passed the acceptance criteria in Section 3.2.2.5. The method detection 

limits achieved were also below the maximum allowable concentration environmental quality 

standards (MAC-EQS) for naphthalene (130,000 ng/L), anthracene (100 ng/L), fluoranthene 

(120 ng/L), benzo(a)pyrene (27 ng/L) and  benzo(b)fluoranthene (17 ng/L) as proposed in the 

EU Water Framework Directive (EU, 2013b). Furthermore, these MDL values are well below 

the reported levels of triclosan and the investigated PAHs in wastewater around the world 

(Kookana et al., 2011; Yao et al., 2012; Qi et al., 2013), hence the method can be accurately 

used to quantify them. 

Derivatization test 

The derivatization test carried out for analysis of triclosan showed that 10 % derivatization 

was optimum to silylate all the triclosan in the sample as ions relating to parent triclosan (288, 

288, and 299) completely disappeared from the spectrum. This derivatization condition was 

further optimized by varying the reaction time (15 mins and 30 mins). 15 minutes was 

observed to be sufficient and was adopted. 50 % and 100 % derivatization also gave similar 

results.  However, 100 % derivatization showed lower peak abundance when compared to the 

standard - suggesting signal suppression at this condition.  

Acidification test 

The result of the sample acidification test (Table 3-6) showed effective triclosan recovery at 

pH 2 (95 % recovery) compared to the poor recovery (38 %) recorded in the non-acidified 

sample. This might be due to the pKa (7.9 – 8.1) of triclosan that can lead to ionization at 

environmental pH, thereby resulting in partial availability of triclosan in its neutral and 

ionized form (UKTAG, 2009). This may also have influenced the interaction of triclosan with 

the extraction sorbent (C18) during SPE. To further explain this, protonation and micro-

species distribution of triclosan at pH 1 – 14 was calculated using MarvinSketch 17. This 

showed that between pH 1 – 4, triclosan is 100 % in its neutral form. However, 83 % steady 

form triclosan (17 % in ionized form) is available at pH 7, while only 32 % is available at pH 

8 (68% in ionized form). Samaras et al. also reported low recovery of triclosan at pH 7 for 
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C18 SPE cartridge (Samaras et al., 2011). The addition of organic modifier (1% methanol 

v/v) to the water sample, increased extraction efficiency slightly by 3% (Table 3-6)  

Table 3-6 Comparing extraction of triclosan in an acidified sample to a neutral sample, and 

the effect of an organic modifier. Standard deviation in bracket 

 Area of 

standard at 100 

ng/ml 

Peak area from 

acidified sample 

(pH 2)  + modifier 

Peak area from 

acidified 

sample 

Peak area for 

non-acidified 

sample 

Triclosan 20402 (29) 19441 (153) 18353 (243) 7831 (24) 

 

 Application to real wastewater samples 

The validated methods were employed to investigate the concentrations of triclosan and 15 

priority PAHs in both the dissolved and particulate phase of the wastewater, and assess the 

mass removal rates achieved by the treatment plants.  

 Triclosan in wastewater 

Table 3-7 shows the level of triclosan in the aqueous phase of the wastewater in WWTP A and 

WWTP B (sample collected 15th of May, 2015) as determined by quantification method 1, 

which involved estimation of signal suppression or enhancement and subsequent correction of 

final concentrations. The aqueous concentration of triclosan in WWTP A was 1313 (5.5) ng/L 

in influent and 256 (4.1) ng/L in the final effluent. In WWTP B triclosan concentration was 

lower than in WWTP A in the influent (804 ng/L) but similar to WWTP A in the final effluent 

(238 ng/L).  

Table 3-7 Concentration of triclosan in the aqueous phase of influent and effluent of two different 

activated sludge WWTP in UK (WWTP A and B) - as determined by Method 1 

 WWTP A WWTP B 

 Influent Effluent % Removal Influent Effluent % Removal 

Triclosan 

concentration 

(ng/L) 

1313 ± 5.5 256 ± 4.1 80.4 ± 1.8 804 ± 8.8 238 ± 

7.8 

70.2 ± 8.8 

% Signal 

suppression 

-8 49  -18 36  

Data are expressed as mean ± SD (n=3 for WWTP A, and n = 5 for WWTP B).  

Reported final concentrations have been corrected for matrix effect using the surrogate (13C12- Triclosan) 

recovery in the matrix. 
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The total (aqueous and particulate matter) triclosan concentration was 13117 ng/L (13.1 µg/L) 

in raw influent and 1443 ng/L (1.4 µg/L) in final effluent from WWTP A (samples collected 

in November, 2015) (Table 3-8) using the method with stable isotope quantification. These 

concentrations are similar to reported levels of triclosan in unfiltered municipal wastewater 

around the world (Kumar et al., 2010; Lozano et al., 2013). The concentration of triclosan in 

the aqueous phase of influent (1391 ng/L) of WWTP A using this quantification method was 

similar to that obtained using method A (1313 ng/L) (Table 3-7) showing good agreement 

between both methods, although the sampling period was different. Triclosan final effluent 

concentrations in the aqueous phase of WWTP A (256 ng/L in May, 2015 and 142 ng/L in 

November, 2015) and WWTP B (238 ng/L in May, 2015) exceeded the annual mean 

recommended standard of 100 ng/L for triclosan in freshwater and saltwater (UKTAG, 2013),  

and were similar to reported levels in Canada (Lee et al., 2003), Australia (Kookana et al., 

2011), USA (Kumar et al., 2010), Germany (Bester, 2005) and UK (Sabaliunas et al., 2003). 

The chemicals investigation program (CIP) also reported that triclosan concentration in 

effluent in over 50 % of the 162 England WWTPs they studied was above the proposed EQS 

value (Gardner et al., 2012). This indicates the ineffectiveness of WWTPs around the world 

are ineffective at removing triclosan to environmentally safe concentrations in their current 

format. 

About 90 % of triclosan was present in the particulate phases of influent and effluent samples 

(Figure 3-2). This observation is as expected due to the high Log Kow value (Table 3-1) of 

triclosan, which results in high association with suspended solids. However, Lozano et al., 

2013 reported that 80 % and 20 % of triclosan in influent and effluent respectively is 

associated to the particulate phase (Lozano et al., 2013). This observed difference in the 

effluent partitioning might be due to the solids concentration in the sample. Triclosan removal 

rates from the aqueous phase by the WWTPs ranged from 70 – 89 %, and about 90 % in the 

total liquid phase (aqueous and particulate matter). This removal is most likely due to 

partitioning and settling out with sludge in the primary treatment tanks and biodegradation 

during secondary treatment (Lozano et al., 2013). The removal rates observed in this study are 

similar to those achieved by other activated sludge based WWTPs in the UK as reported in 

literature (90 – 95 %) (Sabaliunas et al., 2003; Thompson et al., 2005).  
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Table 3-8 Concentration of triclosan and 15 priority PAHs in influent and effluent of a UK activated 

sludge WWTP (WWTP A) - as determined by Method 2 

Compound Influent Effluent % 

Aqueous 

phase 

Removal 

% total 

Removal Total (ng/L) Aqueous 

phase 

(ng/L) 

Total 

(ng/L) 

Aqueous 

phase 

(ng/L) 

Triclosan 13117 ± 

1030 

1391 ± 58 1443 ± 43 142 ± 6.2 89.0 88.9 

Naphthalene 689.4 (44.5) 108.6 

(20.4) 

211.1 

(25.2) 

16.3 (0.5) 85.0 69.5 

Acenaphthylene 191.5 (15.7) 39.6 (2.5) 63.3 (3.0) 12.3 (0.2) 68.9 66.9 

Acenaphthene 182.9 (24.9) 45.0 (5.0) 35.1 (5.0) 4.7 (0.1) 89.6 81.0 

Fluorene 277.8 (33.0) 48.0 (3.4) 47.8 (1.4) 8.4 (0.3) 82.4 82.8 

Phenanthrene 633.7 (61.1) 77.7 (0.7) 87.7 (21.3) 10.2 (0.1) 86.9 86.2 

Anthracene 421.1 (18.2) 47.4 (1.4) 95.3 (8.3) 19.2 (1.6) 59.4 77.3 

Fluoranthene 743.1 (46.5) 75.0 (2.8) 101.4 (2.0) 18.6 (0.2) 75.2 86.4 

Pyrene 691.2 (21.9) 68.3 (1.5) 99.8 (1.0) 18.2 (0.1) 73.3 85.6 

Benz(a) 

anthracene 

754.4 (47.6) 111.1 

(1.2) 

181.3 (0.4) 36.2 (0.1) 67.4 76.0 

Chrysene 556.2 (58.5) 68.2 (1.8) 129.5 (0.6) 25.5 (0.7) 62.6 76.7 

Benzo(b) 

fluoranthene 

238.6 (58.5) 15.7 (3.1) 65.4 (11.1) 6.3 (1.1) 59.8 72.6 

Benzo(a)pyrene 355.3 (75.7) 12.9 (3.4) 266.3 

(31.2) 

4.2 (1.1) 67.5 22.9 

Indeno 

(1,2,3-cd)pyrene 

- 91.4 (4.9) - 11.6 (4.6) 87.3 - 

Dibenz(a,h) 

anthracene 

590.1 (179) 39.1 (9.1) 273.5 

(24.5) 

7.7 (2.1) 80.3 53.7 

Benzo(ghi) 

perylene 

241.8 (44.1) 11.3 (0.4) 210.2 

(35.4) 

10.0 (3.0) 11.5 13.2 

∑LMW PAHs 2396.3 366.2 539.7 71.1 80.6 77.5 

∑MMW PAHs 2744.3 322.5 511.3 98.6 69.4 81.4 

∑HMW PAHs 1425.9 170.4 822.7 39.8 76.7 42.3 

∑PAHs 6566.5 859.1 1873.7 209.4 75.6 71.5 

 

 PAHs in wastewater 

The overall concentrations of PAHs and their individual abundances in wastewater from 

WWTP A are shown in Table 8. All 15 PAHs investigated were detected in both influent and 

effluent samples. The average total (aqueous and particulate phase) concentration of PAHs in 

influent was (6566.5 ng/L), with middle molecular weight MMW PAHs (2744.3 ng/L), low 

molecular weight (LMW) PAHs (2397.3 ng/L) and high molecular weight (HMW) PAHs 

(1425.9 ng/L) accounting for 42 %, 36 % and 22 % respectively (Table 3-8). The total 

concentration of PAHs in final effluent was 1873.7 ng/L, with HMW PAHs, LMW PAHs and 

MMW PAHs representing 44 %, 29 % and 27 % respectively. MMW PAHs have been 

reported to be the most abundant PAHs in raw wastewater, while LMW PAHs were the most 

abundant in the effluent (Busetti et al., 2006).This distribution mostly depends on the source 

of the PAHs entering the WWTP. The total (aqueous and particulate phase) concentrations of 
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PAHs in influent and effluent observed in the present study are similar to reported levels in 

China (Qi et al., 2013) and Greece (Manoli and Samara, 2008), but 10 folds higher than those 

reported in Italy (Busetti et al., 2006; Fatone et al., 2011) and lower than levels reported in 

Spain (Sánchez-Avila et al., 2009). The mean concentration of PAHs in the aqueous phase 

(Table 3-8, Figure 3-3) of the influent (851.1 ng/L) and effluent (209.4 ng/l) samples was also 

similar to influent levels generally reported around the world (Cao et al., 2005; Yao et al., 

2012; Qi et al., 2013), but five to ten times lower than levels reported by Wang et al., 2013 in 

China (Wang et al., 2013c). Naph, BaA and InPy were the most abundant LWM, MMW, and 

HMW PAH respectively. 

 

 

 

 

 

 

 

 

 

The total effluent concentrations of those PAHs falling under the regulation of the EU WFD 

(Naph, Anth, Flt, BbF, BaP and BghiP; Table 8) were below the mean allowable 

concentration EQS for inland surface waters for four PAHs, Naph, Anth, Flt and BaP (MAC-

EQS values of 130, 000 ng/L, 100 ng/L, 120 ng/L,  and 270 ng/L respectively; (EU, 2013a), 

but were four to thirty times higher for two PAHs, BbF and BghiP (17 ng/L and 8.2 ng/L 

respectively).Therefore, this effluent poses risk to aquatic organisms when discharged in the 

receiving river. The concentration of BbF and BghiP in over 50 % of the 162 WWTPs 

monitored in England was higher than their proposed EQS standards as reported by the CIP 

(Gardner et al., 2012)  

Figure 3-2 Partitioning of triclosan, LMW PAHs, MMW PAHs and HMW PAHs in 

the particulate and dissolved phases of influent and effluent samples from a UK 

WWTP (WWTP A) 
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About 83%, 88% and 88% of LMW PAHs, MMW PAHs, and HMW PAHs respectively were 

present in the particulate phase of the influent sample, while 86% of LMW PAHs, 80% of 

MMW PAHs and 95% of HMW PAHs was partitioned onto the particulate phase of the 

effluent sample (Figure 3-2). This is as expected, due to the high Log Kow values of the PAHs 

(Table 3-1). The higher the Log Kow of the PAH group, the more they partition onto the 

particulate matter present in the wastewater (i.e. HMW PAHs partitioned more to the 

particulate matter than LMW PAHs) (Figure 3-2).  The WWTP achieved a total PAH removal 

rate of 72% and aqueous phase removal of 75%; this removal is most likely mainly by 

sorption onto solids in the sedimentation tanks, with volatilization and biodegradation 

contributing less (Lei et al., 2007; Liu et al., 2011). Only about 1 – 2 % of PAHs is reported 

to be removed by conventional wastewater treatment plants via volatilization (Manoli and 

Samara, 2008). 
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Figure 3-3 Concentration and distribution of triclosan and 15 priority PAHs in the 

aqueous phase of influent and effluent samples from WWTP A 
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 Conclusion 

In this study, two analytical methods based on solid phase extraction (for analyte extraction 

and sample concentration) and GC-MS analysis (for analyte identification and quantification) 

were validated for the analysis of triclosan and 15 priority PAHs in wastewater. The 

extraction procedure was optimized by evaluating optimum sample pH (for triclosan) and a 

comparison of SPE cartridge sorbents for PAHs. Extraction of triclosan was more effective at 

pH 2 than at pH 7, while PAH recovery in wastewater was optimal using a SPE C18 cartridge 

with a 1000 mg sorbent capacity and 500 ml of sample. Furthermore, chromatographic 

performance was improved by optimizing triclosan derivatization conditions, and reducing 

high end discrimination of high molecular weight PAHs by selecting an appropriate injection 

liner. The low detection limits achieved allowed for the determination of triclosan and PAHs 

at environmentally relevant levels, and, importantly, were below the proposed MAC-EQSs for 

PAHs set by the EU Water Framework Directive and below the recommended allowable 

concentration for triclosan advised by UK TAG. Hence, this method can be used to evaluate 

compliance to these standards. 

The methods were employed for the quantification of triclosan and PAHs in the influent and 

effluent of UK activated sludge based municipal wastewater treatment plant. Triclosan and 15 

PAHs were detected in the aqueous and particulate matter of both influent and effluent 

samples. The total concentration of triclosan in effluent of WWTP B was about tenfold higher 

than the UK TAG allowable concentration, despite the 89% removal achieved by the plant. 

HMW PAHs were the most abundant in effluent from this WWTP followed by LMW PAHs 

and MMW PAHs, with concentrations (total) of BaP, BbF and BghiP particularly higher than 

their MAC-EQSs. However, in the aqueous phase of the effluent, HMW PAHs were the least 

abundant suggesting they are mostly bound to the particulate matter. Removal of triclosan and 

PAHs in this WWTP was most likely due to sorption onto sludge during primary and 

secondary treatment. Despite the ineffective removal achieved by this WWTP, this issue is 

worse in urban areas with inadequate wastewater treatment as they might not be afforded the 

advantage of reduced environmental pollution by these chemicals.  
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 Quantification of polybrominated diphenyl ether (PBDE) congeners in 

wastewater by gas chromatography with electron capture detector 

(GC-ECD) 

 Introduction 

Brominated flame retardants (BFRs) are added to many household items such as furniture, 

upholstery, plastic, electronic devices and textiles; they consist of several groups of 

compounds, including polybrominated diphenyl ethers (PBDEs), hexabromoclyclododecane 

(HBCDD) and tetrabromobisphenol A (TBBPA) (Rahman et al., 2001; Xie et al., 2007; 

USEPA, 2017). PBDEs are the second most produced BFR in the world, accounting for 33% 

of global production, while TBBPA accounts for 60% (Labadie et al., 2010). According to the 

United Nations Environment Programme, the total global production of all PBDEs from 1970 

to 2005 was between 1.3 million and 1.5 million tonnes with deca-mix BDE formulation 

accounting for about 85 % of this number (UNEP, 2017). PBDEs are persistent and 

hydrophobic compounds that tend to bio-accumulate; their occurrence in the environment has 

been of growing concern due to their toxicological effects including disruption of the thyroid 

hormone function in humans and wildlife, which has led to a ban on their production and 

usage in the EU and the USA (Labadie et al., 2010; Gorga et al., 2013). In the EU, 

production, import and use of commercial PBDE formulations, including pentaBDE and 

OctaBDE, was banned in 2003 (Cristale et al., 2012; Hutzinger, 2013), and this was extended 

to a worldwide ban in 2009 at the Stockholm Convention of Persistent Organic Pollutants 

(UNEP, 2017). Despite this ban, these PBDEs are still being deposited into the environment, 

as they are not covalently bound to the applied products and are released with usage (Siddiqi 

et al., 2003; Kim et al., 2013). Deca-BDE formulation is currently being phased out in the EU 

and US, but still extensively produced in China and the resulting products are distributed 

globally (Xiang et al., 2014).  

Effluents from WWTPs have been identified as a major source of PBDE into the 

environment. WWTPs receive PBDEs through municipal wastewater (discharged during 

production, application and release from in-use domestic products) and surface runoff. (Kim 

et al., 2013; Xiang et al., 2014). Therefore, an effective analytical methodology to extract and 

quantify the presence of PDBEs in wastewater is required. 

Several methods, including conventional liquid-liquid extraction (LLE), pressurized liquid 

extraction (PLE), solid phase extraction (SPE), solid phase micro-extraction (SPME) 

ultrasound assisted extraction and cloud point extraction (CPE) have been used to extract 

PBDEs from water and semi-solids (Fontana et al., 2009; Covaci et al., 2010; Labadie et al., 
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2010). Most of these methods have limitations, including excessive use of solvents, and/or 

require further sample clean up using multilayer column chromatography or gel permeation 

chromatography to reach lower detection limits (Covaci et al., 2010; Daso et al., 2012). SPE 

is the most common extraction method used today as it offers low solvent usage and broad 

applicability. Careful selection of appropriate sorbent and an optimized elution protocol can 

produce clean extracts that require no further clean up (Sánchez-Avila et al., 2009; Cristale et 

al., 2013).  For unequivocal identification and quantification of brominated flame-retardants 

including PBDEs in environmental samples, gas chromatography coupled with mass 

spectrophotometry (GC-MS) operating in either electron ionization (EI) or electron capture 

negative ionization (ECNI) mode is often used (Mai et al., 2005; Fontana et al., 2009; Lee et 

al., 2014). However, GC-ECD (electron capture detector) has also been employed for 

quantification of PBDEs in environmental samples (De Wit, 2002; Li et al., 2009; Daso et al., 

2012). 

Determination of PBDEs in environmental samples is most commonly carried out by GC-MS 

mainly because of its selectivity, but GC-ECD is advantageous as it is cheaper, more user 

friendly and more sensitive, due to lower detection limits (Stapleton, 2006). However, the 

ECD is prone to halogenated interference, since identification and resulting quantification of 

compounds is solely based on retention time; hence ECD based methods suffer from limited 

selectivity (Stapleton, 2006). This shortcoming of the GC-ECD method can, however, be 

effectively minimised by carefully selecting GC columns and a clean-up method that 

produces high quality extracts free of interfering compounds. GC-ECD system is cheaper than 

GC-MS systems for micropollutant analysis in terms of purchasing, maintenance and costs 

per sample. A basic model GC-ECD system by Agilent Technologies costs half the price of a 

GC-MS system in both capital (about $45,000 for GC-ECD and $91,000 for GC-MS) and 

maintenance cost ($1200 for GC-ECD and $2600 for GC-MS per maintenance visit). 

Additionally, private laboratories carrying out analysis of total polychlorinated biphenyls 

(PCB) and congeners in soil and sediments reported that per sample GC-MS costs ($500 - 

$1000) are twice those of GC-ECD ($250 - $750) (Price et al., 2000).  

Only a few researchers have applied GC-ECD to analyse PBDEs in water and wastewater (Li 

et al., 2009; Daso et al., 2012), and none of them has used SPE for sample concentration and 

extraction. The authors from previous studies employed LLE, CPE or molecularly imprinted 

SPME and were unable to analyse BDE 209 (which is a major component of the decaBDE 

mix mentioned above) together with other lower molecular weight congeners in one single 

run: a separate GC capillary column and temperature program was generally required. 
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Although, analysing BDE 28 to BDE 209 in a single run has been reported using GC-MS 

based method; such feat has not been achieved with GC-ECD (Peng et al., 2009; Sánchez-

Avila et al., 2009). In this work, a cost-effective yet functional analytical technique using the 

combination of SPE and GC-ECD for the determination of selected low to high molecular 

weight PBDE congeners (BDE 28, BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, and 

BDE 209) in wastewater was developed; special attention was given to the determination of 

BDE-28 to BDE 209 in a single run. The method, which involved using a multilayer SPE 

column for extraction and analytical performance, was evaluated on the basis of its detection 

limits, linear working range and repeatability. The method was then applied to determine the 

levels and removal of PBDEs in a municipal wastewater treatment plant in Northern England.  

Table 3-9 Names, abbreviations, physical and chemical properties of PBDE congeners 

investigated in this study. 

PBDE Acronym Molecular 

formula 

Molecular 

weight 

(g/mol) b 

Solubility 

(g/L) at 25oC, 

pH 7 b 

Log 

KOW 
a 

2,4,4’-TriBDE BDE 28 C12H7Br3O 406.90 7.7 x 10-4 5.88 

2,2’,4,4’-TetraBDE BDE 47 C12H6Br4O 485.79 2.5 x 10-4 6.77 

2,2’,4,4’,5-PentaBDE BDE 99 C12H5Br5O 564.69 6.2 x 10-5 7.66 

2,2’,4,4’,6-PentaBDE BDE 100 C12H5Br5O 564.69 7.3 x 10-5 7.66 

2,2’,4,4’,5,5’-

HexaBDE 

BDE 153 C12H4Br6O 643.58 1.6 x 10-5 8.55 

2,2’,4,4’,5,6’-

HexaBDE 

BDE 154 C12H4Br6O 643.58 1.9 x 10-5 8.55 

2,2’,3,4,4’,5’,6-

HeptaBDE 

BDE 183 C12H3Br7O 722.48 5.6 x 10-6 9.44 

DecaBDE BDE 209 C12Br10O 959.17 1.4 x 10-6 12.11 
a Adopted from (Sánchez-Avila et al., 2009), b (Cristale et al., 2012) 
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 Experimental 

 Materials and reagents 

A certified standard solution mix of PBDEs (> 98% purity) containing eight primary 

congeners including BDE 28, BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, BDE 183 and 

BDE 209 was obtained from Accustandard Inc via Kinesis (UK). The concentration of the 

congeners was 2.5 µg/ml in isooctane, except BDE 209 which was present at 25 µg/ml. BDE 

77 (50 µg/ml in isooctane), PCB 209 (10 µg/ml in heptane) and 4PC-BDE-208 (50 µg/ml in 

toluene), which were used as surrogate standards, were purchased from Accustandard (via 

Kinesis UK), Sigma Aldrich (UK), and Wellington Laboratories (via Greyhound 

Chromatography UK) respectively with purities higher than 98%.  

Stock solutions were prepared by dissolving the reference and surrogate standard in acetone 

(at 500 ng/ml). Working solutions were then prepared by diluting the stock solutions in 

acetone for sample fortification and in ethyl acetate for instrumental analysis. All solutions 

were stored at 4 oC, and were allowed to reach room temperature for 15 minutes before use. 

Ultra-trace grade of acetone, ethyl acetate and isopropanol were obtained from Sigma Aldrich 

(UK). Oasis HLB cartridges (200mg, 6cc) were purchased from Waters (UK); Isolute C18 (1g, 

6 ml), ABN and Isolute PAH cartridges (1.5g, 6 ml) were from Biotage (UK). 

 Sample collection 

Wastewater samples (raw influent and final effluent) were collected from a nitrifying 

activated sludge treatment plant in North East England with a population equivalent of 

22,500.  Samples were collected in cleaned and disinfected (with 1% Virkron for 24 hours, 

then rinsed multiple times with distilled water to get rid of chlorine residues) HDPE 

containers - analysis of containers did not show any contamination with target compounds. 

Samples were stored at 4 oC upon arrival to the laboratory and were used within 24 hours. To 

account for the concentration of the chemicals in both aqueous and particulate matter, half of 

the samples were filtered through glass microfiber filter to estimate the concentration of the 

chemicals in the aqueous phase alone (Sartorius MGB filters, 0.7mm thick, 1.0 µm particle 

retention) before being passed through the SPE cartridges. The other half of the samples was 

not filtered before SPE.  
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 GC Instrumentation 

Analyses were performed on an Agilent 7890A gas chromatography system equipped with 

micro electron capture detector (µECD) and an Agilent 7683B automatic injector. A DB-5MS 

fused silica capillary column (15m x 0.25mm I.D. x 0.1μm film thickness) from J & W 

Scientific, USA was used for chromatographic separation. The inlet was fitted with an SGE 

single taper deactivated glass liner and samples were injected (1 µl) in split/splitless mode (1 

min. splitless, then 30ml/min split). The inlet and detector temperature was set at 300 oC and 

290 °C respectively. H2 (99.999%) was used as carrier gas in constant flow mode (flow-rate 

1ml/min, velocity 91.3 cm sec-1). The µECD was used with N2 (99.999%) make-up gas at a 

flow-rate of 30 ml/min. The GC oven was heated from 100 °C (initial hold time 1 min) to 

150 °C (hold time 0 min) at 50 °C/min. and then to 290 °C (final hold time 15 min) at 

12.5C/min. Data was acquired and processed using a Thermo Atlas chromatographic data 

system (version. 8.3). Analytes were identified solely by their retention time and quantified by 

their integrated peak area. 

The retention time of all eight PBDE congeners was confirmed using an Agilent 7890A GC 

split/split less injector linked to an Agilent 5975C MSD to ensure correct identification of 

analyte. This GC-MS was equipped with the same DB-5MS capillary column (15m x 0.25mm 

I.D. x 0.1μm film thickness) used above. Analysis was done in EI mode, full scan and SIM 

spectrum was acquired. Ions (m/z) corresponding to the fragmentation of each BDE 

congeners was monitored to add a level of confidence in the identification of the analytes 

(Table 3-10).    

Table 3-10 Comparison between the retention times and monitoring ions of PBDE congeners 

of interest using GC-MS and GC-ECD. 

Analyte GC-ECD tR 

(min) 

GC-MS tR 

(min) 

EI-MS/SIM (m/z) 

Ion 1 Ion 2 

BDE 28 5.26 5.35 246 246 

BDE 47 6.69 6.83 326 324 

BDE 99 7.76 7.92 405.5 403.5 

BDE 100 8.13 8.30 405.5 403.5 

BDE 153 8.98 9.17 483.5 481.5 

BDE 154 9.47 9.66 483.5 481.5 

BDE 183 10.67 10.87 563.5 561.5 

BDE 209 16.08 16.76 811.5 809.5 

tR = retention time 
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 SPE procedure and optimization 

To achieve the low detection limits required for the quantification of analytes at 

environmental levels, the performance of SPE cartridges including Oasis HLB (200mg, 6ml), 

Isolute C18 (1g, 6ml) and Isolute PAH (1.5g, 6ml) was evaluated for the extraction of PBDEs 

from wastewater samples. It was not practical to match the sorbent quantity for the cartridge 

types, as these were the maximum sorbent amount packed into the different cartridges by the 

manufacturers. The extraction procedure was modified from a Biotage application note for 

analysing polycyclic aromatic hydrocarbons (PAHs) in water (Biotage, 2016). Briefly, 

isopropanol (1% v/v) was added to 100 ml of filtered wastewater sample without pH 

adjustment for extraction of PBDEs in the aqueous phase, followed by addition of surrogate 

standards at 5 ng/L each for BDE 77, PCB 209 and 50 ng/L for 4PC-BDE-208, before passing 

through the SPE. Cartridges were conditioned with 5 ml of isopropanol followed by deionized 

water containing 2 % isopropanol (v/v) at a flow rate of 5 ml/min. Samples were then passed 

through the cartridges at a flow rate of 10 ml/min.  

Sample bottles were then rinsed with acetone to prevent loss of analyte to the glass walls, and 

then diluted with 90 ml of deionized water before passing through the cartridges - this serves 

as a prewash step to remove unwanted impurities including chlorophyll. The cartridge was 

finally washed with 10 % isopropanol (v/v) and dried under vacuum for 45 minutes. Elution 

was performed by passing 5 ml of ethyl acetate through the cartridge twice (10 ml total 

volume). The extract was then evaporated under a gentle stream of nitrogen at 30 oC using 

Labconco Rapidvap Evaporator to 500 µl before injection into the GC-ECD. Furthermore, 

between 50 ml – 200 ml of spiked water samples were tested, and 100 ml sample load 

performed better in terms of adequate analyte extraction/retention and low background noise. 

Different volumes of ethyl acetate were also tested to optimize analyte elution, and 10 ml (5 

ml twice) showed optimum result and was employed in further work. For extraction of 

PBDEs in both the aqueous and particulate matter (PM) phase, 20 ml and 50 ml of unfiltered 

influent and effluent was diluted to 100 ml with deionized water respectively, and was 

processed as the filtered samples above.  
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 Method validation study 

Analytes were identified mainly by their retention time and the calibration curves were 

generated by injecting reference PBDE standard in triplicate at five concentration levels: from 

0.5 to 10 ng/ml for all PBDEs except BDE 209 which ranged from 5 – 100 ng/ml, because of 

its lower sensitivity to the ECD detector and relatively higher environmental concentrations. 

Linearity was observed when the regression coefficient was > 0.99. PCBs have similar 

physical-chemical properties to BDEs (Tittlemier et al., 2002), therefore rare PCB congeners 

can be used as surrogates for PBDE determination. BDE 77 and PCB 209 were primarily 

selected for internal standard quantification for BDE 28 to BDE 183 because of their absence 

from wastewater; these compounds have been used for this purpose in previous studies 

(Sánchez-Avila et al., 2009; Daso et al., 2012; Deng et al., 2015). However, BDE 77 was 

dismissed as a surrogate when initial analysis of environmental samples showed its presence 

in wastewater. 4PC-BDE-208 was employed as surrogate standard for BDE 209. This 

compound was proposed by Wellington Laboratories (Canada) as the perfect surrogate for 

decaBDEs when an instrumental method without the capability to differentiate between mass-

labelled and parent compound is employed, such as a GC-ECD method (Laboratories, 2009). 

Additionally, the similarity in structure/chemical composition to BDEs, and absence in 

environmental samples supports its suitability as a surrogate standard. The effect of complex 

sample matrix on GC-ECD analysis was investigated by spiking the PBDE congeners at 10 

ng/L into deionized water (DI), influent and effluent (n = 3). The spiking was performed after 

sample extraction with SPE and prior to GC sample injection. DI water was used as 

blank/absolute recovery and this recovery was compared to recoveries recorded in the influent 

and effluent samples. 

Method accuracy was evaluated by performing recovery experiments in blanks (deionized 

water, n = 3) and matrix samples (final effluent, n = 3) at two fortification levels (3 ng/L and 

10 ng/L, 30 ng/L and 100 ng/L for BDE 209). The repeatability of the method was determined 

by the relative standard deviation (% RSD) from the recovery experiments in the fortified 

blank and matrix sample (Nácher-Mestre et al., 2010; USEPA, 2012). Furthermore, statistical 

analysis of the calibration curve models were performed as described in Section 3.1.2.5. 
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Instrumental limits of detection (IDL) were established as the lowest analyte concentration 

that gave a signal to noise ratio of three (s/n = 3) upon the injection of standard solutions, and 

was determined on the Atlas software. The method detection limit (MDL) was determined 

according to EPA method 1984 (USEPA, 1995). Briefly, analytes were spiked at a 

concentration of between one to five times of IDL in blank (n = 7) and matrix sample (n = 7), 

then analysed on the GC-ECD. The resultant standard deviation was multiplied by the 

students’ T-value that corresponds to six degrees of freedom to estimate the MDL.  

𝑀𝐷𝐿 =   𝑇(𝑛−1,1−∝=0.99) ∗ (𝑆) 

 Where:  𝑇(𝑛−1,1−∝=0.99) = students’ T value for a 99% confidence level, and a standard 

deviation estimate with n – 1 degrees of freedom. 

S = standard deviation of replicate analyses.  

The acceptance criteria is that the MDL should be < spike concentration or ≤ 5 times spike 

concentration, and ≥ spiked concentration/10 to be accepted. 

The method quantification limit (MQL) was set at three times the MDL. 
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 Results and Discussion 

 Chromatographic performance 

Split-less injection mode is preferred for PBDE analysis due to the relatively low 

environmental levels of these compounds, and a high injection temperature (300 oC and 

above) is recommended to minimise discrimination of high molecular weight congeners and 

thermal degradation (Stapleton, 2006). Chromatographic separation optimization is necessary 

when analysing a wide range of BDE congeners (from triBDEs to decaBDEs) as this ensures 

good separation of compounds of interest when using a one-column approach. Employing a 

short column (15 m) with a short internal diameter (≤ 0.25 mm) allowed the detection and 

quantification all eight BDE congeners including BDE 209 that easily degrades in GC column 

when subjected to high temperatures, without compromising separation, as reported by other 

authors (Covaci et al., 2010; Hutzinger et al., 2013). Using a relatively high carrier gas flow 

rate further helped to reduce the degradation of BDE 209 within the GC inlet and column. 

This optimization made it possible to use one GC column instead of two separate GC 

columns: one for lighter BDEs and one for BDE 209, as used in previous studies for GC-ECD 

analysis (Li et al., 2009; Daso et al., 2012). The optimized temperature program in addition to 

the capillary column applied allowed for the separation of the BDE congeners in under 16.5 

min, with BDE 28 eluting first at 5.3 min and BDE 209 at 16.4 mins (Figure 3-4; Figure 3-5).  

 

Figure 3-4 GC-ECD Chromatogram of eight primary BDE congeners in deionized water (blue 

trace) spiked at 10 ng/L (except BDE 209 spiked at 100 ng/L) over-layed by PBDE analytical 

standard (green trace). The PBDEs were spiked before SPE. 
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 Statistical analysis of calibration curve 

Appropriate calibration curve equations (Table 3-11) were used to predict the concentrations 

of individual PBDE congeners to ensure accurate concentration predictions especially at low 

concentrations as described in Section 3.1.2.5. The calibration models for PBDEs were 

consistent across runs for over 12 months. 

Table 3-11 Calibration curve test results, and equations for the 8 PBDE congeners 

Compound R2 y-intercept Standard 

Error (SEy) 

Calibration 

model 

Calibration equation 

BDE 28 0.9992 0.106 0.049 y = mx + c y = 0.1335x – 0.1065 

BDE 47 0.9991 0.150 0.078 y = mx + c y = 0.1391x – 0.1497 

BDE 99 0.9980 0.150 0.083 y = mx + c y = 0.1391x – 0.1501 

BDE 100 0.9982 0.157 0.070 y = mx + c y = 0.1242x – 0.1568 

BDE 153 0.9993 0.010 0.045 y = mx + c y = 0.0061x – 0.0398 

BDE 154 0.9988 0.122 0.053 y = mx + c y = 0.1152x – 0.1220 

BDE 183 0.9978 0.085 0.042 y = mx + c y = 0.0670x – 0.0847 

BDE 209 0.9995 0.045 0.046 y = mx + c y = 0.0058x – 0.0942 

 

 

 

Figure 3-5 GC-ECD Chromatogram of eight primary BDE congeners and two surrogate 

standards in effluent (blue trace) spiked at 10 ng/L (except BDE 209 and 4PC-BDE-209 spiked 

at 100 ng/L) over-layed by PBDE analytical standard (green trace). The PBDEs were spiked 

before SPE. 
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 SPE optimization and method performance 

The extraction procedure was optimized by testing different SPE cartridges for their 

efficiency in analyte retention. Cartridges tested include Oasis HLB (200 mg), HLB prime, 

C18 (1 g), and Isolute PAH (1.5 g). Oasis HLB and C18 have been popular choices in the 

literature for extraction of BDEs from water samples (Sánchez-Avila et al., 2009; Cristale et 

al., 2013; Deng et al., 2015). The result of preliminary recovery experiments of eight PBDE 

congeners spiked in water samples showed that Isolute PAH performed better, especially in 

filtered effluent samples (see chromatogram in Figure 3-5), as recovery of analytes was 

between 69 – 126 % with a relative standard deviation (RSD) of less than 13% (Table 3-12). 

The mean recoveries in effluent from the Isolute PAH were significantly greater in effluent 

than those from the Oasis HLB (Mann-Whitney test, P < 0.05) and greater than Isolute C18, 

though only slightly insignificantly so (Mann-Whitney Test, P = 0.06). The recoveries were 

not significantly different in DI water. Extracts from the Isolute PAH cartridge showed the 

least interference and lower background noise. The cartridge comprises of an octadecyl 

layered (1000 mg) with an amino based sorbent (500 mg) that helps remove polar 

interferences such as humic acids from the effluent according to Biotage (the cartridge 

manufacturer), thereby reducing background noise and improving analyte recovery. 

Therefore, the Isolute PAH was selected for further optimization and subsequent analysis.  

The matrix effect test showed that peak signals of the PBDE congeners were enhanced in 

influent and effluent samples, except BDE 99, which was suppressed in effluent (Figure 3-6). 

The matrix effect was about -31% (BDE 99) to 91% (BDE 209), and 3.2% (BDE 99) to 65% 

(BDE 209) in influent and effluent samples respectively. BDE 209 was affected the most by 

the matrix effect as it elutes at the end of the spectrum (Figure 3-5). The matrix effect also 

appears to be generally higher in influent than effluent, which might be expected due to the 

presence of more organic matter. This observed signal suppression or enhancement further 

echoes the necessity of surrogate standards for accurate quantification of PBDE congeners in 

wastewater. 
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Table 3-12 Recoveries and relative standard deviation (RSD) of PBDEs spiked in deionised water and 

effluent at 10 ng/L. RSD in bracket 

BDE Recoveries in DI water (%) Recoveries in effluent (%) 

Isolute  

C18 

Isolute 

PAH 

Oasis 

HLB 

Isolute  

C18 

Isolute 

PAH 

Oasis 

HLB 

BDE 28 85 (1.7) 54 (0.7) 60 (7.1) 71 (12.5) 78 (5.8) 46 (8.1) 

BDE 47 75 (8.2) 61 (13.9) 65 (7.5) 84 (10.9) 79 (0.6) 44 (13.1) 

BDE 99 76 (16.7) 73 (1.6) 70 (9.1) 63 (2.1) 82 (0.8) 52 (10.6) 

BDE 100 71 (17.8) 58 (3.3) 79 (4.5) 52 (1.0) 69 (0.2) 33 (0.6) 

BDE 153 59 (18.1) 56 (0.9) 53 (10.1) 45 (2.5) 94 (8.9) 42 (1.8) 

BDE 154 58 (19.6) 53 (1.2) 51 (6.3) 70 (27.2) 97 (12.5) 59 (8.6) 

BDE 183 59 (8.3) 60 (2.7) 62 (7.9) 53 (12.7) 126 (0.1) 35 (3.5) 

BDE 209 52 (23.8) 96 (0.1) 65 (10.2) 169 (13.3) 90 (12.8) 122 (6.2) 

AVERAGE 66.88 63.88 63.13 75.88 89.38 54.13 

SD 11.46 14.40 9.00 39.66 17.44 28.69 

 

Further recovery studies were carried out on effluents with the Isolute PAH cartridge at two 

fortification levels; 3 ng/L and 10 ng/L for all BDEs, except BDE 209, which was studied at 

30 ng/L and 100 ng/L due to its relatively higher presence in wastewater. Recoveries were 

surrogate standard-corrected using PCB 209 and 4PC-BDE-208. The US EPA method 1614 

recommends analyte recovery of 60 – 140 % for BDE 28 – 183, and 50 – 200% for BDE 209 

with an RSD less than 40 % for initial demonstration of method precision and accuracy 

(USEPA, 2007). At 3 ng/L fortification level (Table 3-13), good recoveries (78- 135%) were 

recorded for all analytes except BDE 47 (176%).  Recoveries of PBDEs at 10 ng/L were 

mostly between the acceptable ranges of 60 – 129 %, except BDE 183 with recovery of 

150 % (Table 3-13). RSDs were generally lower than 20% thereby showing method precision.  

The MDLs were determined with a spike concentration of 0.5 ng/L (5 ng/L for BDE 209 and 

surrogate- 4PC-BDE-208) and 1 ng/L (10 ng/L for BDE 209 and surrogate- 4PC-BDE-208) in 

DI water and effluent respectively. As shown in Table 3-13, the MDL of the eight PBDE 

congeners in water samples ranged from 0.14 ng/L to 10 ng/L in deionized water and 0.2 ng/L 

to 10.8 ng/L in effluent samples. These determined MDLs passed the acceptance criteria in 

Section 3.2.2.5 (i.e. MDL < spike concentration or ≤ 5 times spike concentration, and ≥ 

spiked concentration/10).  Furthermore, these values are below the reported levels of these 

chemicals in wastewater around the world (Peng et al., 2009; Kim et al., 2013; Deng et al., 

2015), hence the method can be used to quantify them accurately. The method detection limits 

achieved was also below the maximum allowable concentration environmental quality 

standards (MAC-EQSs; 140 ng/L and 14 ng/L for inland and other surface waters 
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respectively) for PBDEs (sum of congeners BDEs 28, 47, 99, 100, 153 and 154) as proposed 

in the EU Water Framework Directive (EU, 2013a). 

 

 

Figure 3-6 Observed matrix effect in the analysis of PBDEs in influent and effluent samples. 

 

Table 3-13  Surrogate corrected recovery at 3 ng/L and 10 ng/L in 

effluent, instrumental detection limit (IDL) and method detection limit 

of PBDE congeners in deionized (DI) water and effluent. Surrogate 

standards are indicated in italics. 

Chemical Corrected recovery in 

effluent (%) 

IDL 

(pg/µl) 

MDL (ng/L) 

3 ng/L 10 ng/L DI water Effluent 

BDE 28 78 (16.1) 90 (7.0) 0.2 0.68 0.66 

BDE 47 176 (11.7) 129 (15.2) 0.2 0.54 2.57 

BDE 99 74 (6.4) 116 (4.7) 0.5 0.33 2.54 

BDE 100 62 (5.1) 83 (7.3) 0.5 0.27 1.89 

BDE 153 78 (1.8) 112 (9.1) 0.5 0.14 0.20 

BDE 154 131 (7.5) 60 (6.7) 0.5 0.44 4.19 

BDE 183 86 (8.2) 150 (6.7) 1.0 0.53 1.31 

BDE 209 135 (3.4) 113 (2.3) 5.0 10.04 10.76 

PCB 209 - - 0.2 0.28 1.09 

4PC-BDE-

208 

- - 5.0 4.37 6.12 
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 Application to real wastewater samples  

The developed method was employed to investigate the concentrations of eight primary 

PBDE congeners in both the dissolved and particulate matter phase of the wastewater, and 

assess the mass removal rate achieved by the treatment plant. The PBDE congener profile in 

influent and effluent showed the presence of seven congeners; BDE 100 was not detected 

(Table 3-14). The total (aqueous and particulate matter) concentration of each PBDE was 

between 2.1 – 111 ng/L (∑PBDE = 169 ng/L) in raw influent and 1.6 – 17.4 ng/L (∑PBDE = 

43 ng/L, ∑PBDE EU WFD congeners = 19 ng/L) in final effluent (Table 3-14). These 

concentrations are an order of magnitude lower than the EU WFD MAC-EQS and are similar 

to reported levels in Canada (Kim et al., 2013) Australia (Clarke et al., 2010), and China 

(Deng et al., 2015).  Risk assessment for BDE 209 was performed as reported by Cristale et 

al., (Cristale et al., 2013). The predicted no effect concentration (PNEC) for aquatic 

organisms (including fishes, dapnids and algae was calculated as 4.82) and maximum 

measured concentration (MC) was used to obtain a risk quotient (RQ = MC/PNEC). Low to 

significant adverse effect of BDE 209 was indicated when 1.0 ≤ RQ < 10, and 10 ≤ RQ < 100 

respectively. In the present study, low potential for adverse effects on aquatic organisms was 

observed for BDE 209 in effluent of the WWTP, with an RQ of 3.7.   

Table 3-14 Concentration of BDE congeners in effluent and influent of 

a UK activated sludge WWTP. 

PBDE 

congener 

Influent 

(ng/L) 

Effluent 

(ng/L) 

% Removal 

BDE 28¶ 11.0 (1.3) 4.4 (0.2) 60.0 
BDE 47¶ 7.1 (0.2) 6.0 (0.1) 15.5 
BDE 99¶ 10.7 (0.4) 2.8 (0.8) 73.8 

BDE 100¶ < 1.89 < 1.89 - 
BDE 153¶ 7.1 (0.6) 1.6 (0.3) 77.5 
BDE 154¶ 2.1 (0.3) 4.0 (1.3) 0 
BDE 183 20.0 (0.2) 6.3 (0.5) 68.5 
BDE 209 111.3 (10.7) 17.7 (1.4) 84.1 
∑PBDE 169.4 42.9 74.7 

∑PBDE EU 

MAC-EQS 

- 18.8 29.9* 

 ¶ PBDE congeners included in the EU WFD * Average % removal 
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The concentration of BDE 209 represented 66% of the total PBDE concentration in influent 

and 40% in effluent samples (Figure 3-7). BDE 209 has been reported to dominate the total 

concentration of PBDE found in wastewater around the world (Peng et al., 2009; Kim et al., 

2013; Wang et al., 2013c). Furthermore, only BDE 209 was detected in a river receiving 

effluent from wastewater treatment plants in the United Kingdom, to a concentration of up to 

290 ng/L which were associated with significant levels of risk to aquatic wildlife (Cristale et 

al., 2013). About 82% and 49 % of PBDE was present in the particulate phases of the influent 

and effluent respectively (Figure 3-8). This observation is as expected due to the high log KOC 

values (Table 3-9) of the PBDE congeners, which give rise to a high association with 

suspended solids.  This observation is in line with previous findings that over 90% of PBDEs 

in influent tends to absorb to sludge in WWTP (North, 2004; Song et al., 2006). About 75% 

removal of total PBDE concentration was achieved by the WWTP; this removal is most likely 

due to partitioning and settling out with the sludge in the primary and secondary sedimentary 

tanks (Song et al., 2006). Concentrations in sludge are reported to vary over one order of 

magnitude (Hale et al., 2003; Lee et al., 2014), while their concentrations in anaerobically 

treated sludge are unknown. The potential risks PBDEs pose via sludge applications to soil is 

therefore also unknown. Furthermore, the difference in the distribution of PBDE between the 

dissolved and particulate matter (PM) in influent and effluent samples (Figure 3-8) indicates 

that PBDEs was mostly removed via the PM phase throughout the WWTP. It must be noted 

that wastewater treatment is the preserve of high-income countries and cities, with 80% of the 

worlds’ wastewater going untreated into receiving watercourses (UNESCO, 2012). 

Concentrations of PBDEs may be at levels that cause a risk to aquatic wildlife in highly 

populated urban centres, especially in low to middle income countries. 
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Figure 3-7 Distribution of BDE congeners in influent and effluent 

samples from a UK WWTP. 

 

 

 

Figure 3-8 Partitioning of PBDEs over particulate matter (PM) 

and dissolved phases of influent and effluent samples from a 

UK wastewater treatment plant. 
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 Conclusion 

In this study, a novel SPE-GC-ECD method was developed for the analysis of eight primary 

PBDE congeners in wastewater. The extraction procedure was optimized by testing different 

SPE cartridges including Oasis HLB, Isolute C18 and Isolute PAH. The Isolute PAH 

cartridge proved to be superior in sample clean up and extracting low and high molecular 

weight PBDEs in wastewater, perhaps due to its unique combination of a C18 and amino 

based sorbent. Furthermore, the chromatographic performance was optimized, thereby 

allowing determination of BDE 28 to BDE 209 in a single run- in contrast to previously 

reported GC-ECD methods. The detection of the PBDEs by this method was corroborated 

using GC-MS. The low detection limits obtained allowed for determination of PBDEs at 

environmentally relevant levels, and, importantly, were well below the proposed MAC-EQSs 

for PBDEs set by the EU Water Framework Directive. Although the method presented here 

may have limitations due to a lack of selectivity of the GC-ECD compared to a GC-MS/MS 

system, it is a more cost-effective solution for quantifying PBDE concentrations in 

wastewater. GC-ECD is two-fold cheaper than GC-MS in capital costs and up to four-fold 

cheaper in operational costs since all PBDE congeners can be analysed on a single run. This 

method thereby opens up PBDE analysis to more laboratories without a GC-MS system or 

can allow them to commit GC-MS systems to other functions. This will be more useful in 

developing countries with limited resources to carry out environmental analysis. Hence, if we 

rely solely on the best methods, we would miss the broader picture of a global fight against 

chemical pollution; which of-course starts with the ability to detect and measure these 

chemicals in the water. 

The novel method was employed for the quantification of PBDEs at trace levels in the 

influent and effluent of a UK conventional activated sludge WWTP. All BDEs of interest 

were detected in both influent and effluent samples at trace concentrations, that is, in the 2-20 

ng/L range, except BDE 100, which was present at about tenfold higher concentrations. BDE 

209 was the most abundant analyte, and 50 – 80% of the BDEs partitioned onto the 

particulate matter. Finally, about 75% removal of the total PBDE concentration was achieved 

by the WWTP to levels assessed to pose little risk to aquatic wildlife. However, PBDE 

removal was most likely due to adsorption onto sludge during secondary treatment. Urban 

areas with little or no wastewater treatment might not be afforded the same level of 

environmental protection against PBDEs offered by the WWTP in this study area. 
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Chapter 4 Biodegradation of triclosan, 15 priority PAHs and 

estrogens under aerobic and anaerobic wastewater treatment 

conditions (UK studies) 

 Introduction 

Emerging contaminants such as natural/synthetic estrogens (hormones), triclosan (personal 

care product) and polyaromatic hydrocarbons (industrial chemical) have received increasing 

attention within the last two decades due to their adverse effects, which includes toxicity, 

bioaccumulation and endocrine disruption (Roh et al., 2009; Combalbert and Hernandez-

Raquet, 2010; Liu et al., 2015). Aside being toxic to aquatic organisms such as algae, dapnids 

and fishes (Singer et al., 2002; Kookana et al., 2011), triclosan has also been reported to 

exhibit estrogenic activities in rats and fish (Ishibashi et al., 2004; Feng et al., 2016). 

Polyaromatic hydrocarbons (PAHs) are also a significant group suspected to exhibit 

estrogenic activities (Kummer et al., 2008), though they are best known for their mutagenic 

and carcinogenic activities (Jones et al., 2012). Strong estrogenicity has been reported for 

natural estrogens estrone (E1), 17β-estradiol, estriol (E3) and the synthetic estrogen (EE2) 

(Combalbert and Hernandez-Raquet, 2010; Liu et al., 2010). The widespread use of such 

chemicals eventually results in their introduction in wastewater either through domestic use or 

run-off into the combined sewer network in the UK. WWTPs therefore act as a conduit for 

such pollutants but could also be an important point for their control. Hence, their effective 

removal in WWTPs is imperative to protect receiving water bodies. 

A review on the occurrence of these pollutants in wastewater (Deblonde et al., 2011) has been 

published, as well as their fate and removal in WWTPs by physical, chemical and biological 

processes (Liu et al., 2009; Verlicchi et al., 2012). Sorption and biodegradation have been 

identified as the key mechanisms for the removal of these pollutants in WWTPs; and the 

extent of biodegradation is affected by key operational parameters such as temperature, 

hydraulic retention time (HRT) and solid retention time (SRT) (Alvarino et al., 2014). 

Biodegradation, either by deconjugation, cometabolism with nitrifying biomass or 

heterotrophic bacteria has been attributed to estrogen, triclosan and PAHs removal in WWTPs 

after initial sorption (Ren et al., 2007; Haritash and Kaushik, 2009; Roh et al., 2009; Racz and 

Goel, 2010).  Furthermore, removal pathways and degradation efficiencies of these chemicals 

in WWTPs is dependent on the applied redox potential- aerobic, anoxic or anaerobic (Joss et 

al., 2004; Xue et al., 2010). A review by Liu et al. shows that several studies have compared 

the fate of estrogens under relevant aerobic and anaerobic conditions  wastewater treatment- 

(Liu et al., 2015). On the other hand, while the fate of triclosan under aerobic conditions is 
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sufficiently documented, there is limited information on its fate under anaerobic conditions 

(Chen et al., 2011). Most studies on PAH biodegradation have focused on the anaerobic and 

aerobic digestion of sewage sludge rather than the main wastewater treatment processes 

(Trably et al., 2005; Cea-Barcia et al., 2013).  

The water industry is under regulatory pressure to improve the removal of such pollutants, at 

a time when the sustainability of the current energy intensive treatment systems (such as 

activated sludge) which accounts for up to 1.5 % of the UK electricity use is under scrutiny 

(Li et al., 2015; Water-UK, 2017). Consequentially, anaerobic-aerobic hybrid units are 

gaining popularity because of significant advantages including lower aeration energy 

requirement, production of methane for biogas and lower sludge generation (Buntner et al., 

2011). Knowing the extent of degradation of these compounds in aerobic and anaerobic 

systems is required to understand the limits of engineering biological systems (e.g. required 

HRT) for the removal of such chemicals (Smith et al., 2015a; Petropoulos et al., 2017b). 

From the up to date literature, it is known that current wastewater systems utilizing aerobic or 

anaerobic technologies fall short in removing these chemicals below the required limits. Since 

biodegradation has been identified as a potential major removal mechanism for 

micropollutants, it is imperative to investigate degradation of these compounds under 

different redox conditions and at operational relevant temperatures in the UK- as this critical 

information can be used to predict effluent concentrations.  

The purpose of this study was to carry out biodegradation experiments for triclosan, four 

estrogens and fifteen PAHs under aerobic and anaerobic conditions using inocula from 

different wastewater treatment processes in the UK including those using different strategies 

(aerobic activated sludge, a mesophilic low-temperature-adapted inocula, and an alpine-arctic 

low temperature-adapted anaerobic inocula) towards a sustainable wastewater treatment. 

Furthermore, the effect of chemical structure and functional groups on the degradation of 

these chemicals was investigated under different redox conditions by comparing their 

degradation kinetics. The influence of sorption on the disappearance of the chemicals was 

also evaluated. Microbiological properties of the inocula were characterized, and the change 

in bacterial taxa and genera suspected to be responsible PAHs degradation at the end of the 

biodegradation assay were identified.  
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 Experimental 

 Materials 

Details on analytical standards, solvents, filters and solid phase extraction cartridges for 

triclosan and PAH analysis are given in Section 3.1.2 & 3.2.2. Ultra-trace grade of MTBE and 

HPLC water for estrogen analysis were obtained from Sigma Aldrich (UK), while the other 

materials used were mentioned by (Coello-Garcia, 2018) (submitted).  

 Sample collection and storage 

Activated sludge grab samples for the experiments were collected from the aeration basin of a 

municipal wastewater treatment plant (WWTP) located in North East, England. The WWTP 

was a nitrifying treatment plant that receives 6751 m3/day of domestic wastewater with a 

population equivalent of 22,500 people. Samples were collected in cleaned and disinfected 

(with 1% Virkron for 24 hours, followed by several rinse cycles with distilled water) 5 litres 

high density polyethylene (HDPE) containers - analysis of the containers showed that they 

were not contaminated with any of the target compounds. Samples were stored at 4 oC upon 

arrival to the laboratory and were processed within 48 hours. The total suspended solids 

(TSS) and volatile suspended solids (VSS) content of the sludge were measured according to 

the Standard Method 2540B (Clesceri et al., 2005).The measured values of TSS and VSS 

were 3.3 g/L and 2.3 g/L respectively. Activated sludge grab samples used in the aerobic 

biodegradation experiments of estrogens were carried out by (Coello-Garcia, 2018) and were 

collected from a WWTP in North East England. This WWTP has a population equivalent of 

28,800 and the TSS and VSS content of the sludge was 1.92 g/L and 1.54 g/L respectively.  

Anaerobic sludge grab samples were collected from a pilot scale UASB plant located at 

Cranfield University, United Kingdom. This UASB reactor has a capacity of 70 L and 

operated with a daily flow and hydraulic retention time of 210 L and 8 h respectively (Garcia 

et al., 2013). The sludge was a mesophilic UASB sludge adapted to ambient domestic 

wastewater and its TSS and VSS content was 26.1 g/L and 20.4 g/L respectively. The sludge 

was collected from a fully functional UASB plant, and was immediately transported to 

Newcastle where it was stored at 4oC and processed within 48 hours. The sampling materials 

and procedures for this UASB sludge was similar to those applied for activated sludge 

samples. 

Inocula used for the low temperature anaerobic experiment was from Petropolous et al., 

(Petropoulos et al., 2017a), and was an equal mixture of cold-adapted sediment from Lake 
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Geneva ‘’N 46°23′04″, E 6°25′07″ (average temperature – 11 to - 17 °C) and soils from 

Svalbard, in the high Arctic at various sampling points situated at ‘’N78°, E11, 15,16°’’ 

(average temperature -16–6 °C) that had been adapted for the treatment of wastewater at 4 – 

15oC for 100 days . The TSS and VSS content was 26.2 g/L and 3.8 g/L respectively.  

 Experimental design of biodegradation assay 

Batch reactors were used for the degradation experiments as they have previously been used  

to mimic biotransformation reactions and kinetics in a full scale WWTP (Helbling et al., 

2012). Aerobic biodegradation experiments were carried out in 1 L amber glass bottles (test 

vessels) (Figure 4-1). 500 ml of sludge was added to the test vessels followed by addition of 

the chemicals (1000 μg/L for triclosan, 200 μg /L for PAHs ) in a solution of methanol (for 

triclosan) or acetone (for PAHs)- volume of solvent added was limited to 0.1% to minimize 

any potential effect). These solvents will not inhibit microbial action as methanol is non-toxic 

to microorganisms below 1000 mg/L (Novak et al., 1985; Brasil Bernardelli et al., 2015) and 

acetone is non-toxic below 5 % v/v in different redox conditions (González, 2006). The 

experiment for triclosan and PAHs were performed individually and in separate test vessels. 

Reactors were placed in an incubator equipped with a shaker (IKA KS 4000), and set at 140 

rpm to ensure homogenous mixing and aeration of the sludge. The experiment was performed 

at 20 oC in a temperature controlled room. Dissolved oxygen and pH were monitored 

throughout the experiment to ensure that these parameters were not limiting, and they ranged 

from 4 – 7 mg/L and pH of 5 – 7 respectively-  especially, as pH of the sludge has been 

reported to affect the adsorption of triclosan (Lindström et al., 2002). The estrogen 

experiment was carried out by (Coello-Garcia, 2018) by a slightly different procedure. The 

major difference was the incubation temperature (15 oC) and the spiking method (chemicals 

were spiked into reactor in methanol, which was then allowed to evaporate in a fume hood 

before the addition of activated sludge). All other parameters and procedures were similar. 

For extraction of the chemicals, triplicate samples (1 ml per sample) were collected in 2 ml 

Eeppendorf tubes, spiked with surrogate standards (isotope labelled triclosan, PAHs and 

estrogens standard solutions) and immediately passed through preconditioned solid phase 

extraction (SPE) cartridges. The cartridges were washed with appropriate solvents (see 

Section 3.1; Coello-Garcia, 2018), dried for 20 – 30 minutes, covered with top caps and 

stored at -20 oC. Samples were acidified to pH 2 with sulphuric acid for triclosan analysis 

only, before processing with SPE. SPE extraction of triclosan was better at pH 2 as mentioned 

in Section 3.1.3. 
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The batch test vessels were sampled at multiple points (0, 3, 24, 48, 72, 96, 120, 144, and 168 

hours) for a duration of 168 hours for triclosan and PAHs, and 72 hours (0, 0.5, 0.7, 1, 2, 4, 8, 

12, 24, 48, and 72 hours) for estrogens. After the initial addition of activated sludge, the test 

vessels were not fed with wastewater or any additional media for the duration of the 

experiment. 2 mL samples were also taken from the reactors to investigate degradation in the 

aqueous and particulate matter phase individually, and estimate any potential losses due to 

adsorption. These samples were centrifuged (16,437 x g, 2 min) and 1 mL of the supernatant 

was processed as described for the samples above.  

An inhibition and abiotic control was employed to check losses due to non-biological 

degradation; hydrolysis or volatilization. 500 ml of activated sludge in a test vessel was 

inactivated by autoclaving twice (24 hours apart) at 121 oC and 103 kPa for 20 minutes as 

described by Helbling et al., (Helbling et al., 2010). The chemicals were dissolved into 

methanol or acetone, then spiked into these control test vessels at the same concentrations as 

the live test vessels. Triplicate samples (1 ml) were taken and processed as described 

previously. All test vessels were initially sterilized by autoclaving (at 121 oC and 103 kPa for 

20 minutes) before addition of sludge and compounds.  
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Figure 4-1 Schematic diagram of aerobic biodegradation test vessel 
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Anaerobic biodegradation experiments were carried out in 500 ml clear glass serum bottles 

with 30 mm crimp tops. 250 ml of UASB or low temperature anaerobic inocula was added to 

the test vessels and spiked with 3000 µg/L of triclosan, 600 µg/L of PAHs and 300 µg/L for 

estrogens.  These compounds were spiked into the test vessels in a solution of methanol or 

acetone (limited to 0.2 % v/v of reactor). Test vessels were sealed with a 30-mm crimp cap 

with chlorobutyl vial stoppers and purged with nitrogen gas for 20 minutes to enable 

anaerobic incubation conditions. The test vessels were covered completely with aluminium 

foil to prevent photolytic degradation and were placed in an incubator at 20 oC. Samples (0.2 

ml) were taken from the reactor using a 2 ml sterile disposable syringe with a 20 G needle 

(VWR, UK) into 2 ml Eppendorf tubes. Surrogate standards were immediately added (at 100 

ng/ml, 200 ng/ml and 50 ng/ml for triclosan, PAHs and estrogens respectively to the samples 

and were transferred into preconditioned SPE cartridges for extraction and were processed 

similar to the aerobic experiments (samples for triclosan analysis were acidified to pH 2 as 

mentioned above). The experiment was incubated for 28 days and sampled at multiple points 

(sampling at day 0, and after every subsequent 3 days). After the initial addition of the UASB 

sludge, the test vessels were not fed with any media (carbon source) until the end of the 

experiment. Samples (0.3 mL) were collected to investigate biotransformation in both 

aqueous and solid phase and were processed similar to the aerobic experiment. Inactivated 

control (autoclaved sludge to check abiotic losses) were also monitored similar to the aerobic 

experiment, except 0.3 mL sample was used. 250 mL of the anaerobic sludge were inhibited 

by autoclaving twice as previously described in the aerobic experiment. The test vessels were 

also initially sterilized by autoclaving before use.  

 Extraction and instrumental analysis 

The extraction of triclosan and PAHs using SPE was previously described in Section 3.1.2, 

while the SPE based extraction of estrogens was adopted from (Coello-Garcia, 2018). Briefly, 

0.2 – 1 mL of sludge was passed through preconditioned SPE cartridges (water + methanol 

for triclosan, water + isopropanol for PAHs, water + methanol + mtbe for estrogens), washed 

with diluted organic solutions, dried and stored. Elution was performed with ethyl acetate, 

dichloromethane (DCM), and 0. 5 % ammonia in methanol for triclosan, PAHs and estrogens 

respectively. This was followed by evaporation with nitrogen, and reconstitution to 1 mL with 

DCM for triclosan and PAHs, and 5 % acetonitrile for estrogens in a 2 mL glass vial. 

Triclosan samples were derivatized with 100 µl of BSTFA with 1% TCMS before 

instrumental analysis. Instrumental methods from Section 3.1.2 using gas chromatography 

coupled with a mass spectrometer was adopted for triclosan and PAHs analysis. Isotope 
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dilution quantification was employed, and the multipoint calibration curve ranged from 20 – 

5000 ng/ml for triclosan, 2 – 500 ng/ml for methyl triclosan and PAHs. Isotope labelled 

triclosan and four PAHs were used as surrogate standards. Estrogen extracts from the sludge 

samples were analysed by liquid chromatography coupled with a triple quadrupole mass 

detector, according to method conditions reported by (Coello-Garcia, 2018). Isotope dilution 

quantification was employed, and the multipoint calibration curve ranged from 5 – 1000 

ng/ml.  

 Preliminary tests and method validation 

 Quality assurance 

Full method validation data for triclosan and PAHs were described in Section 3.2.3, while 

those for estrogens were described by (Coello-Garcia, 2018). Additionally recovery studies 

were used to validate the analysis of the chemicals from biosolids (sludge). These recovery 

studies were carried out by dosing 500 mL of activated sludge with triclosan, and PAHs at 

1000 µg/L and 200 µg/L respectively. Samples were taken following similar procedures 

described above, and the relative ratio of analyte to surrogate was compared in the samples to 

that of an analytical standard. Furthermore, to ensure homogeneity in the distribution of the 

chemicals in the bioreactor before sampling, a solubility test for triclosan and PAHs in 

wastewater was carried out. This was done by spiking 500 mL of freshly collected activated 

sludge with the chemicals at 100 µg/L in a bioreactor, sampling at 1 min, 5 min and 15 min, 

and processing these through the SPE-GC-MS system. 

 Phase partitioning test 

An experiment was carried out to determine the partitioning of the chemicals onto the 

aqueous and solid phases of sludge samples. Two methods were employed and compared for 

this test, while triclosan and activated sludge was selected as the test chemical and sludge type 

respectively. Triclosan was selected as the test chemical as volatilization at room temperature 

was highly unlikely due to its low vapour pressure of 0.00062 Pa (Bester, 2005). Therefore, it 

will exist in either the aqueous or solid phase. The first method (Method 1) involved 

centrifuging a 1.2 ml sample taken out of a test reactor (500 ml of activated sludge spiked 

with 1000 µg/L of triclosan) at 16,437 x g for 2 minutes. 1 ml of the supernatant was then 

spiked with label triclosan then passed through preconditioned C18 SPE cartridge and 

processed according to the procedures mentioned above. The relative response (RR, 

calculated by dividing the peak area of the compound by that of the surrogate) obtained was 

then compared to that of an analytical standard (at the spiked concentration), and the 
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difference was assumed to be retained in the solid phase. Labelled triclosan was also spiked 

before centrifugation to allow for surrogate standard correction. 

The second method (Method 2) involved the use of depth filter purchased from Biotage (UK). 

These depth filters are similar to the SPE cartridges, but differ in the internal packing. They 

are packed with a foam-like material to help remove solids from water samples, and are usual 

mounted on an SPE cartridge. The depth filter was conditioned with 5 ml of deionized (DI) 

water, then placed on a preconditioned C18 SPE cartridge using a column adaptor. 1 ml was 

taken from the test reactor (as above), and passed through the depth filter under vacuum. The 

depth filter was then washed with 5 ml of DI water, so that all the liquid phase samples are 

collected in the attached SPE cartridge and the solids are retained in the depth filter. The 

depth filter was detached and connected to a new SPE cartridge. Elution was performed by 

passing 8 ml (2 x 4 ml) of methanol through the depth filter. Triclosan in the liquid phase was 

also eluted with 8 ml of methanol from the previously attached SPE cartridge. The extracts 

were analysed following procedures mentioned previously. The peak area of both the liquid 

and solid samples were compared to that of an analytical standard to see the possible effect of 

matrix. Labelled triclosan was also spiked in the test reactor and processed together with 

parent triclosan. 

 Microbial analysis 

 DNA extraction 

Genomic DNA (gDNA) was extracted from the 1 ml of inoculum sampled during the 

biodegradation experiment (at the beginning and end) using FastDNA Spin Kit for Soil 

according to the manufacturer’s protocol (MPBiomedicals Santa Ana, CA, USA). The 

extracted DNA was stored at -20 oC until further use.  

 PCR amplicon library preparation 

A fusion PCR method was used to generate the amplicon library for Ion Torrent sequencing. 

The fusion primers consists of Ion Torrent adaptor sequence and primer sequence. The 

forward primer contains a unique barcode sequence that differentiates the sequence 

corresponding to each sample during analysis. The samples were labelled with a unique 12 bp 

Golay barcode, added to the 5’ end of the forward primer through a GAT spacer, and attached 

to the Ion Torrent adapter A (5’-CCATCTCATCCCTGCGTGTCTCCGACTCAG-3’). The 

reverse primers however were attached to the Ion Torrent adapter trP1 (5’- 

CCTCTCTATGGGCAGTCGGTGAT-3’).The primer set [515f (5’-
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GTGNCAGCMGCCGCGGTAA-3’) and 926r (5’-CCGYCAATTYMTTTRAGTTT-3’)] 

employed, amplified the V4 and V5 regions of 16S rRNA gene (Parada et al., 2016). The 

PCR reaction was performed using Phusion Flash High-Fidelity PCR Master Mix Kit 

(Thermo Scientific, UK) according to the manufacturer’s instructions. A 20 µL reaction 

solution containing 10 µL of Phusion Flash Master Mix, 0.5 µM of each universal primer, 1 

µL of DNA template (or sterile nuclease-free molecular grade water for negative control) and 

molecular water. The thermocycler program used for amplifications involves an initial 

denaturation cycle of 98 oC for 10 seconds followed by 35 cycles of denaturation (at 98 oC for 

1 second), annealing for 5 seconds (at 56 oC) and elongation for 15 seconds (at 72 oC). This 

was followed by a final extension step for 1 minute (at 72 oC). The PCR products were stored 

at -20oC until further use. 

The PCR products were cleaned and size selected using a double sided solid-phase reversible 

immobilisation (SPRI) beads (Agencourt AMPure XP system, Beckman Coulter, UK) 

following the manufacturer’s instructions. These PCR amplicons were then quantified using a 

Qubit® 2.0 Fluorometer according to the manufacturer’s instructions and the samples were 

pooled in equimolar concentrations. This was followed by sequencing on a Personal Genome 

Machine (PGM) using a 316 ion chip in the Environmental Engineering Labs at Newcastle 

University. This sequencing was carried out by Dan Curtis and Amy Bell. 

 Sequencing Data Analysis 

The sequences were processed using the Quantitative Insight Into Microbial Ecology (QIIME) 

1.9.1 pipeline using default parameters (Caporaso et al., 2010). The reads obtained after 

sequencing were filtered to match the sequence barcode and a minimum sequencing length of 

200 bp using QIIME Deionizer (Reeder and Knight, 2010). The QIIME pipline processing 

briefly consisted of binning sequences into Operational Taxonominc Units (OTUs) using a 

97 % identity threshold, and for each OTU, the most abundance sequence was selected to 

represent them. Taxonomy was assigned to the bacterial OTUs from a Greengenes database 

subset (http://greengenes.lbl.gov/) (DeSantis et al., 2006). UCLUST was then used to align 

representative OTU sequences. The number of bacterial 16S rRNA gene sequences per 

sample was between 19,671 – 114,361; summing up to a total number of reads of 268,753 

sequences. Sequences were pruned to an even depth (5000 per sample- based on the sample 

with the lowest number of reads) for downstream analysis as recommended for alpha and beta 

diversity comparison (Shaw et al., 2008). The Bray Curtis dissimilarity metric was calculated 



73 

 

for OTU table at genus taxanomy level  and visualized using 2 dimensional non-metric 

multidimensional scaling plot (NMDS) using R (Clarke and Warwick, 2001). 

 Statistical analysis 

Minitab, version 17 Statistical software (Minitab Inc., USA) was used to perform all statistical 

analysis. Variance analysis using one way ANOVA was used to compare the biodegradation 

rates of the investigated chemicals under the applied redox conditions and inoculum type. 

One-way ANOVA was also employed to compare the alpha diversity indices in a specific 

inoculum (activated sludge or UASB) spiked with the selected chemicals at the beginning and 

end of the biodegradation experiment. Furthermore, STAMP was used to identify the change 

in bacterial community taxonomy before and after the aerobic or anaerobic treatment (Parks et 

al., 2014). A two-sided G-test (w/ Yates’) + Fisher’s statistical test was carried in STAMP on 

each pair of sample to determine any significantly difference (p < 0.05) in the bacteria taxa.  



74 

 

 Results and discussion 

This section first discusses the results of the quality assurance test for the analysis of triclosan 

and PAHs in activated sludge. This was followed by results from the phase partitioning test 

for triclosan. Finally, the results of the degradation study under aerobic and anaerobic 

conditions were presented and discussed.  

 Quality assurance 

The recovery rate of triclosan in activated sludge was 101 % with an RSD of 2.7 % (Table 

4-1), and was similar to that obtained for wastewater effluent in Section 3.1.3. The recoveries 

of PAHs ranged from 67 – 107 % with an RSD of between 0.8 – 11 % (Table 4-1). These 

good recoveries and RSDs demonstrates method accuracy and precision. 

Table 4-1 Analytical methods and recovery of triclosan, PAHs and estrogens from sludge 

Compound 
Analytical 

method 

Quantification 

ion (m/z) 

Relative 

recovery (RR) 

(%) 

Relative 

standard 

deviation 

(RSD) 

Triclosan GC-MS 347 100.5 2.7 

Naphthalene GC-MS 128 82.1 5.0 

Acenaphthylene GC-MS 152 71.1 7.3 

Acenaphthene GC-MS 153 82.9 8.1 

Fluorene GC-MS 166 89.1 4.9 

Phenanthrene GC-MS 178 83.1 3.5 

Anthracene GC-MS 178 78.5 0.8 

Fluoranthene GC-MS 202 97.8 2.4 

Pyrene GC-MS 202 96.8 2.0 

Benz(a) 

anthracene 
GC-MS 228 83.9 1.6 

Chrysene GC-MS 228 87.7 3.7 

Benzo(b) 

fluoranthene 
GC-MS 252 82.9 4.2 

Benzo(a)pyrene GC-MS 252 86.9 5.8 

Indeno 

(1,2,3-cd)pyrene 
GC-MS 276 88.2 10.8 

Dibenz(a,h) 

anthracene 
GC-MS 278 107.2 7.0 

Benzo(ghi) 

perylene 
GC-MS 276 66.9 10.4 

 

Additionally, the result of a solubility test showed (data not shown) that the concentration of 

triclosan and PAHs remained the same from 1 min to 15 min, indicating fast homogeneity and 

solubility. Hence, the first sample from the reactor was taken after 10 minutes.  
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 Phase partitioning test 

The result of the phase partitioning test showed that triclosan partitions mostly onto solids, 

and this is expected due to its high log Kow value of 4.8 (Lindström et al., 2002; Bester, 2005). 

Results from Method 1 (centrifugation) showed that 96.5 % of triclosan was sorbed onto the 

solids, while 3.5% remained in the dissolved phase (Table 4-2). Similar result shows that 

93.3 % and 3.8 % of triclosan was present in the solid and dissolved phase respectively when 

Method 2 (depth filter) was applied (Table 4-3). These results support findings that over 90 % 

of triclosan in activated sludge was sorbed onto the solids throughout the degradation 

experiment carried out by Chen et al., (Chen et al., 2011). Since, the results of the two 

methods were similar, Method 1 (centrifugation) was adopted to monitor adsorption of 

triclosan and other investigated chemicals in the degradation experiments. This method was 

easier, less time consuming and allowed for isotope dilution quantification of the chemicals. 

Table 4-2 Partitioning of triclosan using centrifugation (Method 1) for phase separation 

RR represents relative response 

Table 4-3 Partitioning of triclosan using depth filter (Method 2) for phase separation 

 

  

Compound RR of standard RR sample with 

pre-centrifugation 

surrogate addition 

RR sample with post-

centrifugation 

surrogate addition 

Triclosan 8.5 (2.3) 9.2 (0.8) 0.3 (4.3) 

 Solid phase Dissolved phase 

% triclosan in 

phase 

96.5 3.5 

Compound Concentration of 

standard (ng/L) 

Solid phase 

concentration 

(ng/L) 

Dissolved phase 

concentration 

(ng/L) 

 100 (0.8) 93.3 (3.9) 3.8 (0.2) 

% triclosan in phase  93.3 3.8 
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 Degradation of triclosan under aerobic and anaerobic conditions 

 Biotransformation under aerobic condition 

No sign of non-biological degradation (chemical degradation or photo-degradation) or abiotic 

losses (such as volatilization and hydrolysis) was observed as the concentration of triclosan 

remained constant in the inactivated sludge control throughout the experiment (Figure 4-2). 

Hence, the losses of triclosan observed in the experiment were due to biodegradation. 

Triclosan was reduced from an initial concentration of 806 µg/L (1000 µg/L was spiked) to a 

final concentration of 234 µg/L in 168 hours (75 % removal) (Figure 4-2, Figure 4-3,Table 

4-4). Chen et al., reported a similar observation of 86 % degradation of triclosan spiked at 500 

µg/L after 168 hours (Chen et al., 2011). Furthermore, results of the analysis of triclosan in 

the aqueous phase, showed that 95 – 98 % of triclosan was sorbed to the activated sludge 

solids throughout the experiment.  

The production of methyl triclosan was observed in the bioreactors, and its concentration 

increased with decreasing triclosan concentration (Figure 4-3). Methyl triclosan is known to 

be more persistent, bio-accumulative and lipophilic than triclosan (Lindström et al., 2002; 

Balmer et al., 2004). The concentration of methyl triclosan increased from 1 µg/L to 17.3 

µg/L after 144 hours (Figure 4-3). About 1.6 % of the triclosan in this reactor was converted 

to methyl triclosan, thereby supporting reports that methylation is a possible 

biotransformation pathway for triclosan under aerobic conditions (Heidler and Halden, 2007). 

However, the 1.6 % methylation rate suggests other major primary transformation product(s) 

formed through (a) different biotransformation pathway(s) under aerobic conditions. This 

observed bio-methylation of triclosan is in line with a previous study that about 1 % of 

triclosan is transformed to methyl triclosan under aerobic conditions (Chen et al., 2011). 

However, another study reported that 42 % of triclosan was transformed into methyl triclosan 

in the biodegradation assay at 21 oC (Armstrong et al., 2018). This might be due to their 50 

fold lower starting triclosan concentration (about 20 µg/g). The initial concentration of 

triclosan and methyl triclosan measured in the reactor before spiking with triclosan was 17 

µg/L and 0.8 µg/L respectively. Therefore, the elevated concentrations of methyl triclosan (13 

µg/L after 168 hours) originated from degradation of the spiked triclosan. 
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The biodegradation of triclosan is suggested to follow first order kinetics with an estimated 

half-life (t1/2) of 98 hours (Figure 4-4, Table 4-4). However, more complex kinetics was 

observed for the formation of methyl triclosan in which a fast formation rate was observed 

until 24 hours before slowing down for the rest of the experiment (Figure 4-4).  The rate 

constant obtained for degradation of triclosan (total phase) were 0.0071 h-1. The degradation 

rate in this study was lower than those reported by (Chen et al., 2011) (Table 4-4) while the 

rate of formation of methyl triclosan was faster. This might be due to the difference in 

experimental parameters such as temperature (17 oC) and the inoculum concentration (4.0 

g/L) used in their studies. 
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Figure 4-2 Degradation of triclosan over time under aerobic conditions. Error 
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Figure 4-3 Disappearance of triclosan and formation of methyl triclosan under aerobic 

conditions over time. The error bars represents the standard deviation in triplicate 

measurements 

 

 

 

 

 

 

 

 

 

Table 4-4 Degradation rate constant of triclosan and formation rate of methyl triclosan under 

aerobic conditions. 

 Disappearance of triclosan Reference 

Cs (µg/L) Cf (µg/L) k (h-1) Sk R2 t1/2 (h) 
 

806 234 0.0071 0.0004 0.9774 98 This work 

500 55 0.0095 - 0.9961 73 Chen et al., 

2011 
Cs and Cf represents starting and final concentration respectively, k represents first order degradation rate 

constants, Sk represents standard error of the rate constant and t1/2 represents the half-life. 
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 Biotransformation under anaerobic conditions 

After 27 days of monitoring, no reduction of triclosan was observed in both the UASB 

sludge-inoculated batch test (Figure 4-5) and low temperature biomass-inoculated batch test 

(Figure 4-6). There was no significant difference between the starting and end concentrations 

of triclosan in the UASB sludge and low temperature inoculated batch tests (p-value > 0.05, 

one-way anova). Furthermore, the inactivated control (autoclaved sludge) also stayed at same 

concentration indicating no reduction of triclosan by abiotic processes. In the low temperature 

biomass inoculated experiment, triclosan concentrations in both the batch test vessels and 

inactivated controls were similar, thereby suggesting no degradation occurred. Furthermore, 

aqueous phase concentrations of triclosan indicated that about 87 – 90 % and 95 – 96 % of 

triclosan was constantly sorbed to solids in the UASB sludge and low temperature biomass 

respectively. Methylation of triclosan was not observed in both anaerobic experiments as the 

concentration of methyl triclosan remained fairly stable from the beginning to the end of the 

experiment (Figure 4-5, Figure 4-6). Hence, methylation of triclosan only occurs under 

aerobic conditions. 

 

Figure 4-5 Concentration of triclosan (circles) and methyl triclosan (triangles) in the 

anaerobic batch tests inoculated with UASB sludge. Error bars represents the standard 

deviation of triplicate measurements 
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Figure 4-6 Concentration of triclosan (circles) and methyl triclosan (triangles) in the 

anaerobic batch tests inoculated with low temperature adapted inocula. Error bars represents 

the standard deviation of triplicate measurements 
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 Degradation of PAHs under aerobic and anaerobic conditions 

 Biotransformation under aerobic conditions 

For the 15 PAHs investigated, 10 were degraded aerobically during the 168 h incubation 

period. The concentrations of six low molecular weight PAHs (naphthalene, acenaphthylene, 

acenaphthene, fluorene, anthracene and phenanthrene) (Figure 4-7), and four middle molecular 

weight PAHs (fluoranthene, pyrene, benz(a)anthracene and chrysene) (Figure 4-8) reduced 

substantially. There was no reduction in the concentrations of the five high molecular weight 

PAHs (benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene 

and benzo(g,h,i)perylene) (Appendix A- Chapter 8). There was no changes in the 

concentration of all PAHs in inactivated controls except some of the low molecular weight 

ones (naphthalene, acenaphthylene, acenaphthene and fluorene) (Appendix A- Chapter 8).  The 

reduction of these four low molecular weight PAHs in the control reactor indicates that 

volatilization played a role in their disappearance from the batch tests. This is as a result of 

specific properties of those PAHs that favours volatilization, including higher water solubility 

and lower melting point of these PAHs relative to the heavier ones (Trably et al., 2005). 

Trably et al., also reported abiotic losses of PAHs with less than three aromatic rings under 

aerobic conditions in a biodegradation experiment carried out using activated sludge inocula 

(Trably et al., 2005), which is in agreement with the results reported here.  

Reduction of low molecular weight (LMW) PAHs ranged from 76 – 95 % in the live batch 

test vessels (Figure 4-7), and between 12 – 78 % volatilization observed in the autoclaved 

killed control vessel for all LMW PAHs except phenanthrene and anthracene (Figure 4-9). 

However, these volatilization percentages were much higher than those predicted (between 

0.5 – 2 % for naphthalene, acenaphthylene, acenaphthene and fluorene- see calculation in 

Appendix C- 8.3) using the Henry’s constant of the chemicals at 25 oC and atmospheric 

pressure (Shiu and Mackay, 1997; Bamford et al., 1999). This difference might be because 

the Henry’s law volatilization estimates does not consider the effect of aeration in the test 

vessels on volatilization rates. Especially, as aeration during activated sludge treatment has 

been reported to intensify the volatilization process (Luo et al., 2014). By comparison, the 

calculated reduction of middle molecular weight PAHs in the batch tests were lower, ranging 

from 65 % for chrysene to 77 % for fluoranthene (Figure 4-8). Furthermore, the observed 

reduction was achieved over 168 hours, and was solely due to biodegradation because no 

abiotic or non-biological degradation was observed in the inactivated sludge control. These 

findings are in agreement with reports that degradation of PAHs gets slower with increasing 

molecular weight under aerobic conditions (Trably et al., 2005). 
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The half-lives and rate constants for the degradation of LMW PAHs and MMW PAHs were 

calculated from the data between 24 h to 120 h (except naphthalene, acenaphthylene and 

acenaphthene between 0 h – 72 h) and 24 h to 168 h respectively.  The data at 0 h was omitted 

in these calculations for all the degraded PAHs due to the observed adaptation phase (where 

the concentration of the PAHs increased probably due to equilibration and solubilization) in 

the degradation curve, except in the three LMW PAHs where this did not occur. Regression 

analysis showed that these omitted data points gave large residual values and its inclusion 

lead to poorer R2 values. The disappearance of low and middle molecular weight PAHs was 

assumed to follow first order kinetics and their half-lives ranged from 17 – 116 hours (Table 

4-5), although a scatter around first order kinetics and distinct multiple phases was observed. 

The half-lives and first order rate constants of LMW PAHs ranged from 11 – 53 hours 

(naphthalene to anthracene) and 0.0631 h-1 – 0.0130 h-1 (naphthalene to anthracene)  

respectively. Since volatilization was observed to contribute the removal of some LMW 

PAHs, their first order volatilization rates were estimated (Figure 8-16, Section 8.4) and they 

ranged from 0.0210 h-1 for naphthalene, 0.0029 h-1 for acenaphthylene and 0.0035 h-1 for 

acenaphthene. In comparison, slower rates and longer half-lives were observed for MMW 

PAHs with half-lives and first order rate constants ranging from 55 – 116 h (fluoranthene- 

chrysene) and 0.013 – 0.006 h-1 (fluoranthene- chrysene)  respectively (Table 4-5). This 

further suggests that degradation rates of PAHs increases from light to heavy PAH under 

aerobic conditions, and agrees with findings by several reports in literature (Ghosal et al., 

2016). Additionally, the biodegradation rate of individual PAHs are significantly different 

from each other (p-value < 0.05).  
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Figure 4-7  Degradation of low molecular weight PAHs over time under aerobic 

conditions. Error bar represents standard deviation of triplicate measurements 
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Figure 4-8 Degradation of middle molecular weight PAHs under aerobic 

conditions. Error bar represents standard deviation of triplicate measurements 
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Table 4-5 Degradation rate constants (k) of PAHs under aerobic conditions with activated 

sludge incoula 

Compound Cs (µg/L) Cf (µg/L) k (h-1) Sk R2 t1/2 (h) 

Naphthalene 120 5 0.0631 0.0220 0.8054 11.0 

Acenaphthylene 119 11 0.0238 0.0045 0.8477 29.1 

Acenaphthene 147 5 0.0291 0.0040 0.8971 23.8 

Fluorene 155 9 0.0225 0.0048 0.8153 30.8 

Phenanthrene 146 13 0.0172 0.0044 0.7563 40.3 

Anthracene 122 23 0.0130 0.0020 0.8900 53.3 

Fluoranthene 144 27 0.0126 0.0013 0.9360 55.0 

Pyrene 132 29 0.0115 0.0013 0.9332 60.3 

Benz(a)anthracene 212 70 0.0067 0.0011 0.8572 103.4 

Chrysene 214 75 0.0060 0.0010 0.8539 115.5 
Cs and Cf represents starting and final concentration respectively, k represents first order degradation rate 

constants, Sk represents standard error of the rate constant, and t1/2 represents the half-life. 

 

 

Figure 4-9 Volatilization of low molecular weight PAHs under aerobic condition in the 

inactivated control incubated at 20 oC 
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 Biotransformation under anaerobic conditions  

None of the 15 investigated PAHs (ranging from low to middle and high molecular weight 

PAHs) degraded in the anaerobic reactor inoculated with UASB sludge after 27 days of 

monitoring (Figure 4-10). Furthermore, the concentration of the 15 PAHs in the inhibition and 

abiotic control remained at the same level throughout the experiment. This indicates that none 

of the PAHs especially the low molecular weight PAHs were lost due to volatilization or non-

biological degradation.  

There are no results for the degradation experiment with low temperature sludge inocula since 

the concentrations of the PAHs across the initial sampling points were close to or below the 

method detection limits. This may be due adsorption of the PAHs onto the solids in the 

reactor that could not be extracted with the sampling syringe because of their size.  

 

Figure 4-10 Concentration of 15 priority PAHs in the anaerobic reactor inoculated with 

UASB sludge (initial plot after analysing three sampling plots showed no degradation, so 

samples between these sampling points were collected but not analysed) 
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 Degradation of estrogens under aerobic and anaerobic conditions 

 Biotransformation under aerobic conditions 

The loss of all four estrogens observed in the experiment was solely due to biodegradation as 

there was no sign of abiotic losses in the inactivated control (Figure 4-11) (this experiment 

was carried out by (Coello-Garcia, 2018), but the data was analysed and transformed 

independently). E3 was degraded rapidly within 4 hours and was degraded below the 

detection limit in 24 hours (Figure 4-11). Also, complete degradation of E2 was observed 

within 24 hours, however, this was associated with increasing E1 concentration. The 

measured concentration of E2 reduced by 78 % (from 272 to 60 µg/L) in the first two hours, 

while that of E1 simultaneously increased by 53 % (from 115 to 175 µg/L) (Figure 4-11, 

Appendix A- Chapter 8). This observation suggests rapid biotransformation of E2 to E1, and 

supports findings by several other studies that E1 is a biotransformation product of E2 

degradation under aerobic conditions (Dytczak et al., 2008; Racz and Goel, 2010). Over 

99.9 % of E1 was removed in 72 hours in the batch tests leaving a residual concentration of 

0.1 µg/L (Figure 4-11). Also, synthetic estrogen- EE2 was completely degraded within 72 

hours in the batch tests (Figure 4-11). Rapid transformation and high removal rate of E3, E2, 

E1 and EE2 has been reported to occur under nitrifying conditions with activated sludge and 

ammonia oxidizing bacteria (Haiyan et al., 2007; Dytczak et al., 2008; Gaulke et al., 2008). 

Throughout the experiment, E3 was the least adsorbed estrogen as 69 – 96 % was present in 

the aqueous phase, compared to E1 (about 82 %), EE2 (36 – 48 %) and E2 (5 – 6 %). This 

might be due to their water solubility and Log Kow (2.47 for E3, 3.13 for E1, 3.67 for EE2 

and 4.10 for E2) (Liu et al., 2009). The implication of this is that relatively highly 

hydrophobic EE2 and E2 possess higher tendency for adsorption when compared to E3 and 

E1, hence, their removal in treatment plants can be partly due to adsorption (Urase and 

Kikuta, 2005; Wang et al., 2013a).  

The biotransformation of the all four estrogens was assumed to follow first order kinetics with 

estimated half-lives of 0.8 h, 3.4 h, 5.8 h, and 7.2 h for E3, E2, E1 and EE2 respectively 

(Table 4-6), ), although a scatter around first order kinetics and distinct multiple phases 

(maybe bi/tri phasic degradation, non-degradation, sorption-desorption) was observed. 

Furthermore, the rate constants estimated for E3 (0.8941 h-1), E2 (0.2035 h-1), E1 (0.1198 h-1), 

and EE2 (0.0963 h-1) were noticeably different from each other and indicated that the 

degradation of E3 was quicker, while that of EE2 was the slowest among the four estrogens 

(E3 > E2 > E1 > EE2) (Table 4-6). This finding is in agreement with some other studies 



88 

 

(Petrie et al., 2014; Liu et al., 2015), and the recalcitrance and slow degradation of EE2 by 

activated sludge is also well reported (Combalbert and Hernandez-Raquet, 2010).  However, 

another study reported that E2 was the easiest (t1/2 of 0.9 h) to digest while EE2 was the 

hardest (t1/2 of 18.9 d) in their degradation studies with nitrifying activated sludge inoculum 

and the estrogens as the sole source of carbon (Wang et al., 2013a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-6 Degradation rate constants (k) of estrogens under aerobic conditions 

Compound Cs (µg/L) Cf (µg/L) k (h-1) Sk R2 t1/2 (h) 

EE2 97 < LOQ 0.0963 0.0088 0.9363 7.2 

E1 115 0.1 0.1198 0.1485 0.8578 5.8 

E2 272 < LOQ 0.2035 0.0233 0.9273 3.4 

E3 92 < LOQ 0.8941 0.0163 0.9006 0.8 

Cs and Cf represents starting and final concentration respectively, Sk represents standard error of the rate 

constant, and t1/2 represents the half-life. 

  

Figure 4-11 Degradation of estrogens over time under aerobic conditions. Error bars 

represents the standard deviation of replicate measurements 
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 Biotransformation under anaerobic conditions 

Quantification of E2 proved problematic by the chosen analytical method, hence results are 

only shown for E1, E3 and EE2 from the anaerobic degradation experiment. After 27 days of 

monitoring, very little or no reduction of E1, E3, and EE2 was observed in both the anaerobic 

batch tests inoculated with UASB sludge (Figure 4-12) and those inoculated with low 

temperature inocula (Figure 4-13). The levels of E1, E3 and EE2 also stayed the same for 27 

days in the inactivated control, indicating no abiotic losses. The findings of this study, 

however contrast with some previous studies that reported degradation of estrogens under 

anaerobic conditions. Andersen (Andersen et al., 2004) and Zhang (Zhang et al., 2015) 

reported slow degradation of E1, E2 and EE2 with activated sludge under anaerobic 

conditions. However, another study reported degradation of E1 and E2 but not EE2 under the 

same conditions (Joss et al., 2004). Czajka & Londry, 2006 also observed no degradation of 

EE2 but biotransformation of E1 and E2 in their anaerobic degradation study using lake 

sediment as inocula (Czajka and Londry, 2006). This present work differs from the reported 

studies, as the anaerobic batch tests were inoculated with UASB sludge or low temperature 

inocula. The difference in microbial diversity in this UASB or low temperature to the 

activated sludge inocula might have led to the contrasting observations found in this study. 

Although, there is limited or no studies on anaerobic E3 degradation in literature to compare, 

it was interesting to observe resistance of E3 to anaerobic biodegradation. 
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UASB sludge 
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 Comparing the degradation rates of the different chemicals under 

aerobic conditions 

The degradation rates of the different chemicals were compared to understand the effect of 

chemical structure and functional groups on biodegradability. For comparison, the 

degradation rates for estrogens at 20 oC were estimated using the ‘effect of temperature 

relationship’ as the experiment was carried out at 15oC. The effect of temperature relationship 

is based on the fact that temperature influences the metabolic activities of the microbial 

population and other physical processes such as gas-transfer rates in a biological process 

(Tchobanoglous et al., 2014). 

(
𝐾2

𝐾1
) =  𝜃(𝑇2−𝑇1)

 

Where K1 and K2 = rates at 15 oC and 20 oC respectively, T1 and T2 are temperatures 15 oC 

and 20oC respectively (in Celsius or Kelvin), and θ is the temperature activity coefficient.  

The temperature activity coefficient for most biological systems ranges from 1.02 to 1.10 

(Tchobanoglous et al., 2014). Hence, a θ value of 1.08 was assumed to calculate the 

degradation rates for estrogens at 20 oC (Table 4-7). 

Table 4-7 Degradation kinetics of estrogens at 15 oC and 20oC under aerobic conditions 

Compound Rate at 15 oC Rate at 20 oC* t1/2 at 20 oC 

EE2 0.0963 0.1415 4.9 

E1 0.1198 0.1760 3.9 

E2 0.2035 0.2990 2.3 

E3 0.8941 1.3137 0.5 
*Rate at 20 oC estimated assuming Q10 value of 2 

Among the different classes of chemicals investigated, estrogens degraded more rapidly with 

their average reaction rate 16, 52 and 67 times higher than those for low molecular weight 

(LWM) PAHs, middle molecular weight (MMW) PAHs and triclosan respectively (Table 

4-8). LMW PAHs degraded 4 times faster than triclosan on average. Degradation of two 

MMW PAHs (fluoranthene and pyrene) was faster than triclosan, while the benz(a)anthracene 

and chrysene were slower (Table 4-8). This difference in chemical structure and functional 

groups among the chemical classes influenced their biodegradation abilities. Under aerobic 

conditions, biotransformation of aromatics is initiated by hydroxylation (addition of 

molecular oxygen to the aromatic ring) followed by cleavage of the aromatic ring and then 

electrophilic substitution (Pitter and Chudoba, 1990). The presence of strong electron 
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withdrawing substituent groups (such as halogens, nitrogen) decreases the electron density of 

the aromatic ring and consequently reduces the biodegradation rate in comparison to weaker 

substituent groups (OH, CH3) (Pitter and Chudoba, 1990). This explains why the degradation 

of triclosan was slower than estrogens and some PAHs. Vuono et al., reported poor removal 

of chemicals with strong electron withdrawing functional groups in full scale membrane 

bioreactors in comparison to other chemicals (Vuono et al., 2016). 

Table 4-8 Comparing the degradation rates of different classes of chemicals under aerobic 

conditions with activated sludge inocula 

Compound Class of 

chemical 

First order rates (h-1) t1/2 

(h) 

Class average rate 

(h-1) 

Triclosan PCP 0.0071 97.6 0.0071 

Naphthalene LMW PAHS 0.0631 17.3 0.0281 

Acenaphthylene LMW PAHS 0.0238 18.5 

Acenaphthene LMW PAHS 0.0291 20.4 

Fluorene LMW PAHS 0.0225 19.8 

Phenanthrene LMW PAHS 0.0172 33.0 

Anthracene MMW PAHS 0.013 43.3 

Fluoranthene MMW PAHS 0.0130 53.3 0.0092 

Pyrene MMW PAHS 0.0115 60.3 

Benz(a)anthracene MMW PAHS 0.0067 103.4 

Chrysene MMW PAHS 0.0060 115.5 

EE2 Steroidal 

hormones 

0.1362 5.1 0.4645 

E1 Steroidal 

hormones 

0.1694 4.1 

E2 Steroidal 

hormones 

0.2878 2.4 

E3 Steroidal 

hormones 

1.2644 0.5 

*PCP represents personal care product; * LMW and MMW represents low molecular weight and 

middle molecular weight respectively, and are industrial chemicals 
 

 Comparing the degradation rates obtained for these chemicals to 

those reported in literature 

The degradation rates reported in literature varies largely as most of most experiments are 

conducted under different conditions such as temperature, concentration of the inocula and 

initial spiked concentration. However, an attempt was made to compare our observed rates 

with some in literature. For estrogens, the degradation rates and ability for individual 

estrogens varied largely (Table 4-9). The decreasing order of degradation in our study; E3 > 

E2 > E1 > EE2 was different from those reported by (Shi et al., 2004) (E2 > E1 > EE2 > E3), 

and (Petrie et al., 2014) (E3 = E1 > E2). These contrasting results were also observed in a 

review on degradation of estrogens by (Liu et al., 2015).  
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Table 4-9 Comparing degradation rates of estrogens under aerobic conditions in this study to 

those reported in literature 

Compound Inoculum Temp. 

(oC) 

Concentration 

spiked (µg/L) 

Rate Refs 

EE2 Activated sludge (MLSS 3.3 g/L) 15 100 0.0963 h-1 a 

Activated sludge (MLSS 2.7 g/L) 30 1000 0.0350 h-1 b 

E1 Activated sludge (MLSS 3.3 g/L) 15 100 0.1123 h-1 a 

Activated sludge (MLSS 2.7 g/L) 30 1000 0.0560 h-1 b 

Activated sludge (MLSS 1.0 g/L) 18 0.1 0.3500 h-1 c 

Soil amended with cattle manure 10 80 0.1136 d-1 d 

E2 Activated sludge (MLSS 3.3 g/L) 15 100 0.2050 h-1 a 

Activated sludge (MLSS 2.7 g/L) 30 1000 1.3000 h-1 b 

Activated sludge (MLSS 1.0 g/L) 18 0.1 0.2700 h-1 c 

Soil amended with cattle manure 10 80 0.1100 d-1 d 

E3 Activated sludge (MLSS 3.3 g/L) 15 100 0.8941 h-1 a 

Activated sludge (MLSS 2.7 g/L) 30 1000 0.0300 h-1 b 

Activated sludge (MLSS 1.0 g/L) 18 0.1 0.3300 h-1 c 

References (Refs); a = this study b = (Shi et al., 2004), c = (Petrie et al., 2014), d = (Lucas and Jones, 

2006) 

Estrogens (E1, E2, E3, EE2) have been reported to degrade slower than other ubiquitous 

steroidal hormones (such as testosterone, progesterone and androstenedione) under aerobic 

conditions (Esperanza et al., 2007; Yang et al., 2010). Yang et al. reported in their 

degradation study with manure-borne bacteria as inocula that the degradation of testosterone 

(k = 0.137 h-1) and progesterone (k = 0.120 h-1) was about five time faster than that of E2 (k = 

0.025 h-1) under aerobic conditions at 22 oC (Yang et al., 2010). This implies that WWTPs 

capable of removing estrogens will easily remove these other steroidal hormones. 

Table 4-10 Comparing first order degradation rates of triclosan under aerobic conditions in 

this study to those reported in literature 

Compound Inoculum Temp. 

(oC) 

Concentration 

spiked 

Rate Refs 

Triclosan Activated sludge (MLSS 3.3 g/L) 20 1000 µg/L 0.0071 h-1 a 

Activated sludge (MLSS 4.0 g/L) 17 500 µg/L 0.0095 h-1 b 

Activated sludge (MLSS 5.0 g/L) 21 23 µg/g 0.0170 h-1 c 

Soil amended with aerobic 

digestion sludge 

23 2000 g/kg 0.0340 d-1 d 

References (Refs); a = this study, b = (Chen et al., 2011) , c = (Armstrong et al., 2018)  d = (Wu et al., 

2009) 

For triclosan, the degradation rates found in this study were close to those reported by (Chen 

et al., 2011). However, those reported by Armstrong et al. (Armstrong et al., 2018) were two 

times higher; perhaps due to the 50 fold difference in the initial concentration of triclosan 

(Table 4-10). Compared to triclocarban (an alternative antimicrobial chemical), triclosan has 

been reported to be more biodegradable. Armstrong et al. reported elimination of triclosan but 
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resistance of triclocarban to aerobic biodegradation with activated sludge inocula in a recent 

study (Armstrong et al., 2018). Lower first-order degradation rates were also reported for 

triclocarban in agricultural soils under aerobic conditions compared to triclosan (Cha and 

Cupples, 2010). The degradation of estrogens and triclosan in a different environmental 

compartment (soil) is very slow when compared with activated sludge (Table 4-9, Table 4-10) 

possibly because of the differences in the bacterial population of the two inocula. Information 

on degradation rates of PAHs with both activated sludge and soil is scarce in the literature 

therefore, they were not included in this comparative section. 

 Predicting effluent quality and associated risks using obtained 

degradation rate constants 

The obtained biodegradation rates were used to predict effluent concentrations and assess the 

likelihood of risk when these chemicals are discharged into water bodies. In a completely 

stirred tank reactor (CSTR), effluent concentration is given by the equation below 

(Levenspiel, 1999); 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  
𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑡 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

1 + 𝑘 𝑥 𝐻𝑅𝑇
 

Where k = biodegradation constant (h-1), HRT = hydraulic retention time of the activated 

sludge plant sampled (10.58 h), and concentrations are in ng/L. 

 The following assumptions were made in these estimations; 

1. 85 % of the influent concentration was assumed be remove by sorption to solids 

during primary and secondary treatment. (Lozano et al., 2013) reported that 88% of 

triclosan was removed via adsorption during primary and secondary treatment of an 

activated sludge plant. Since, the Log Kow of triclosan (4.8) is similar to those of 

anthracene (4.6) and fluoranthene (5.2) (see Section 3.1.1), removal rate via sorption 

might be similar.   

2. Removal due to flow was not considered 
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Table 4-11 Predicted effluent concentration of the chemicals after activated sludge aerobic 

treatment 

Compound Measured 

inf conc 

(ng/L) 

Conc after 

sorption 

(ng/L) 

Rate 

(h-1) 

Predicted 

eff conc 

(ng/L) 

Measured 

eff conc 

(ng/L) 

EQS 

standard 

(ng/L) 

Triclosan 13117 1967.6 0.0071 1830.1 1443 100 

Naphthalene 689.4 103.4 0.0400 72.7 211.1 130,000 

Acenaphthylene 191.5 28.7 0.0374 20.6 63.3 - 

Acenaphthene 182.9 27.4 0.0340 20.2 35.1 - 

Fluorene 277.8 41.7 0.0350 30.4 47.8 - 

Phenanthrene 633.7 95.1 0.0210 77.8 87.7 - 

Anthracene 421.1 63.2 0.0160 54.0 95.3 100 

Flouranthene 743.1 111.5 0.0130 98.0 101.4 120 

Pyrene 691.2 103.7 0.0115 92.4 99.8 - 

Benz(a)anthracene 754.4 113.2 0.0067 105.7 181.3 - 

Chrysene 556.2 83.4 0.0060 78.4 129.5 - 

- The five high molecular PAHs were not included because no biodegradation rates were obtained for them 

- The concentration of estrogens were not determined in this plant, hence they were not included. 

- Conc represents concentration; inf and eff represents influent and final effluent respectively. 

- Concentrations of the chemicals used was previously reported in Chapter 3 

 

The predicted effluent concentration for triclosan (1830 ng/L), anthracene (54 ng/L) and 

flouranthene (98 ng/L) was close to the measured values (Table 4-11). The predicted effluent 

concentration of triclosan was well above the EQS standard while those of naphthalene, 

anthracene and flouranthene were below (Table 4-11). Hence, effluent from this treatment 

plant would pose a risk to aquatic organisms when discharged into receiving waters. To avert 

this, an HRT of 2630 h is required to reduce the concentration of triclosan below the EQS 

value (100 ng/L in freshwater), which is non-practical. However, a river dilution factor of at 

least 18 times might ensure compliance to the EQS standard. 
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 Microbial diversity and enriched bacterial taxa associated with PAH 

degradation 

 Microbial diversity and species enrichment 

Relative abundances of different bacterial families and genera increased or decreased after 

incubation with, and the biodegradation of PAHs (Figure 4-14). This is unsurprising as some 

microorganisms reportedly have the capacity to grow on PAHs containing between two to 

four rings (Jones et al., 2014). This might explain why degradation of only low-middle 

molecular weight PAHs but not high molecular weight PAHs were observed in this study. 

Some of the genera whose relative abundance increased significantly (p < 0.05, G’s test) at 

the end of the biodegradation assay included Methyloversatilis, Dechloromonas, Dokdonella, 

Mycobacterium, Zymomonas, Acidiphilium and Turicibacter (Figure 4-14).  

Among these enriched genera, Mycobacterium has been extensively associated with 

degradation of PAHs in several studies (Peng et al., 2008; Ghosal et al., 2016). (Dean‐Ross 

et al., 2002) and (Churchill et al., 2008) reported simultaneous degradation of pyrene, 

fluoranthene and phenanthrene by different Mycobacterium sp isolated from contaminated 

sediments. Mycobacterium vanbaalenii PYR-1 has also been reported to simultaneously 

degrade low to middle molecular weight PAHs including naphthalene, anthracene, 

henanthrene, fluorantene and pyrene through oxygenase-mediated metabolism (Moody et al., 

2001; Kim et al., 2005). Furthermore, a high abundance of Mycobacterium detected in 

microbial samples from a beach polluted with oil spill was associated with degradation of 

PAHs (Alonso-Gutiérrez et al., 2009). Another enriched genera Acidiphilium was reported as 

a PAH degrading bacteria under strongly acidic conditions (Stapleton et al., 1998). However, 

its enrichment in this study suggests that they might also have used the PAHs as growth 

substrate under close to neutral (5 – 6.5) pH conditions.  

On the other hand, there was also a significant reduction (p < 0.05) in some of the genera after 

the biodegradation assay (Figure 4-14). Some of those genera of note are Sphingobium and 

Novosphingobium that have been reported to possess great catabolic versatility and capability 

to degrade a wide range of xenobiotic compounds including PAHs (Peng et al., 2008; Vila et 

al., 2015). These PAH degraders along with other genera that were reduced might have 

unsuccessfully competed for available nutrients and substrate from the activated sludge 

inocula.  
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Figure 4-14 Extended error bar plot comparing the relative abundance of metagenomic profile 

for the PAHs biodegradation test using activated sludge inocula (Genus profile level to Class 

parent level). Significantly different genera (P-value < 0.05, G-test + Fisher’s) between the 

start and end of the experiment was presented 
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Additionally, a ranking of the OTUs at genus level based on their relative abundances before 

and after the PAH degradation experiments shows that there was an increase in the relative 

abundance of certain genera over others. This resulted in an increase in their rank abundance 

and vice versa, thereby showing a significantly different rank-abundance pattern (Figure 

4-15). Some known PAHs degraders; Mycobacterium and Acidiphilium were significantly 

enriched, and their resultant rank improved from 67 to 48, and 134 to 82 respectively. 

However, the rank of some other known PAHs degraders Novosphingobium and Sphingobium 

that were significantly reduced increased from 50 to 122, and 68 to 110 respectively. 

 

Figure 4-15 (a): Relative abundance of genera that significantly changed over the duration of 

the PAHs degradation assay in rank order. (b): The rank order of some known PAH degraders 

at the start and end of the assay 
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 Distribution of rare and abundant taxa in microbial community 

Figure 4-16 shows the distribution of different genera and their abundance at the start and end 

of the PAH degradation experiment. The calculated frequencies of genera were based on even 

depth of 5000 sequences per sample to accommodate samples with low reads (5000 sequences 

was the minimum). The genera above the x = y line were enriched after the degradation assay 

while those below were impoverished.  

Furthermore, the role of rare and abundant taxa in the inocula on degradation of the PAHs 

were studied as described by (Vuono et al., 2016). 1 % abundance was set as the upper 

threshold of rarity in this study such that genera at < 1 % abundance and ≥ 1 were classified 

as rare and abundant taxa respectively. In this study, most of the known PAH degraders such 

as Mycobacterium and Acidiphilium are rare taxa as their relative percentage abundance was 

< 1 % (Figure 4-16). Thereby suggesting that rare taxa plays an important roles in degradation 

of chemicals in activated sludge systems. 

 

Figure 4-16 Relationship between final and initial percentage abundances of the genera in the 

PAHs biodegradation experiment under aerobic conditions with activated sludge inocula. The 

orange line is x = y line, the dotted blue line represents the fitted trend line for the regression 

analysis and the solid vertical blue line separates the rare and abundant taxa 
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 Inter-relationship between the micro bacterial communities 

There was a shift in microbial community after degradation of PAHs as the start (R_St1 and 

R_St2) and end (R_End1 and R_End2) communities clustered separately (Figure 4-17). 

Furthermore, the microbial community in the control batch tests (not spiked with PAHs) 

clearly differed from the start community. This suggests that the microbial community 

shifted, which may be due to competition of available nutrients over time and subsequent 

enrichment or reduction of competing genera. Duplicate samples (R_St1 and R_St2) at the 

beginning of the experiment clustered together, thereby indicating very similar microbial 

communities. However, duplicate samples (R_End1 and R_End2) after degradation of PAHs 

were clustered over a wider area indicating a larger community spread even in duplicates.  

 

Figure 4-17 Multidimensional scale plot comparing the bacterial communities at genus level 

present in the aerobic batch tests before and after PAHs degradation. Clusters for duplicate 

samples and various stages are circled separately. C refers to the control (not spiked with 

PAHs) and R refers to the batch tests spiked with PAHs. St and End represents beginning and 

end of the experiment. 1 and 2 are replicates. 
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 Conclusion 

In this study, degradation of different classes of chemicals (triclosan, 15 PAHs and 4 

estrogens) from a wide range of domestic and industrial applications were studied with 

laboratory-scale batch experiments under aerobic and anaerobic conditions.  

All the investigated chemicals except high molecular weight PAHs degraded under aerobic 

conditions. The first order degradation kinetics was in the following decreasing order for the 

chemicals E3 > E2 > E1 > EE2 > triclosan > naphthalene > acenaphthylene > acenaphthene > 

fluorene > phenanthrene > anthracene > flouranthene > pyrene > benz(a)anthracene > 

chrysene, showing that estrogens (steroidal hormones) were the least persistent amongst the 

different classes of chemicals while middle molecular weight PAHs were the most persistent. 

Furthermore, the degradation of similar chemicals within the same class such as testosterone 

and progesterone (steroidal hormones) will be faster than estrogens while triclocarban 

(personal care product) will degrade much slower than triclosan in activated sludge systems. 

Additionally, the effluent concentration predicted with the obtained first order degradation 

rates showed that the concentration of triclosan was above its EQS value and would pose risk 

to aquatic organisms when discharged into receiving waters- unless the river dilutes it by at 

least 18 times. However, the synergistic effect of the cocktail of different classes of 

compounds on aquatic organisms remains unknown  

Triclosan degradation resulted in the concomitant formation of methyl triclosan, a more 

persistent and lipophilic metabolite. The molecular weight of individual PAHs influenced 

their removal in these system as their degradation was observed to reduce with increasing 

molecular weight. E1 was identified as a major metabolite of E2 degradation, as over 58 % of 

the degraded E2 was converted to E1. Volatilization was also observed to contribute majorly 

to the removal low molecular weight PAHs in this experiment. Furthermore, in real 

wastewater treatment systems, sorption will contribute to the initial removal of triclosan, 

middle molecular weight PAHs, E1, E2, and EE2 as observed in the biodegradation test. 

Additionally, amongst the degraded chemicals only the estrogens were almost completely 

degraded which means they might be degraded within the operational time frame of an 

activated sludge plant. 

A significant change in the metagenomics profile of the inocula spiked with PAHs at the end 

of the biodegradation assay was observed after taxanomic analysis of the bacterial 

communities. Furthermore, known PAHs degrading genera- Mycobacterium and Acidiphilium 

were enriched after significantly after PAH degradation and their rank abundance increased 
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resultantly when compared to the un-spiked inocula. Additionally, a shift in the microbial 

community was observed at the end of the degradation assay following fortification with 

PAHs. 

Under the two anaerobic conditions (UASB and low temperature biomass inoculated reactors) 

studied, degradation of any of the chemicals was not observed after 28 days. Therefore, in an 

operating full scale UASB treatment plant, removal of these chemicals will be most likely 

attributable to sorption unto sludge, not biodegradation.  
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Chapter 5 Investigating the fate of different classes of 

micropollutants in aerobic, anaerobic and facultative WWTPs 

in Brazil 

 Introduction 

The occurrence of steroidal hormones (such as estrogens- E1, E2, E3 and EE2), personal care 

products (such as triclosan) and industrial chemicals (such as polyaromatic hydrocarbons 

PAHs; and polybrominated diphenyl ethers PBDEs) in raw wastewater and treated effluents 

around the world has been reported in ng/L or µg/L levels (Wang et al., 2013c; Luo et al., 

2014). The adverse effects of estrogens (Combalbert and Hernandez-Raquet, 2010), triclosan 

(Singer et al., 2002), PAHs (Jones et al., 2012) and PBDEs (Cristale et al., 2013) on aquatic 

organisms have been reported, thereby intensifying research efforts over the last two decades 

on better technologies to remove such pollutants to harmless levels before their release into 

water bodies. Despite the many reports on the occurrence of these chemicals around the world 

(see literature review), there are limited studies in Brazilian wastewater and receiving waters. 

This is of urgent concern as the risk of exposure is as great or even greater since 

manufacturing in low-middle income countries (LMIC) is as high as in high income countries 

(HIC) and there are less regulatory and wastewater treatment barriers to protect wildlife and 

humans from exposure (Weiss et al., 2016). There are only few studies on the occurrence and 

removal of estrogens in Brazilian WWTPs (Froehner et al., 2010; Pessoa et al., 2014), and 

one report on the concentration levels of triclosan in surface water in Brazil (Santos et al., 

2016). To the best of the author’s knowledge, there has been no report on the levels of PAHs 

and PBDEs in Brazilian WWTPs and water bodies. The relative shortage of studies on 

micropollutants in Brazil and other LMIC might be due to the difficulties and high costs 

associated with chemical analysis – i.e. know-how and affordability (Pessoa et al., 2014). 

Therefore, one of the objectives of this study was to investigate the occurrence and removal of 

different chemical classes four estrogens (natural hormones and a pharmaceutical), triclosan 

(personal care products), fifteen PAHs (industrial chemical), and eight PBDE congeners 

(flame retardant in household products) in different types of real Brazilian wastewater 

treatment plants. 

As far as wastewater treatment technologies are concerned, activated sludge is the worlds’ 

most widely used secondary treatment process, especially in HICs and have been shown to be 

one of the better technologies for the oxidative removal of micropollutants. Hence, most of 

the worldwide studies on micropollutants removal refer to this system (Luo et al., 2014). 

However, these systems are energy intensive- they account for up to 1 % of UK electricity use 
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(Gardner et al., 2012), and yet are ineffective in reducing this emerging contaminants to 

environmentally safe levels. Whereas, in LMICs like Brazil, wastewater treatment 

technologies with relatively lower energy requirements and operational costs such as waste 

stabilization ponds (WSPs) and up-flow sludge blanket reactors (UASBs) are often used. As 

the water industry needs to move away from unsustainable energy-costly treatment systems to 

more sustainable low energy systems, studying the Brazilian systems could benchmark such 

technologies against each other since they are likely to be part of the future wastewater 

treatment technologies in temperate climates too. Froehner et al. (Froehner et al., 2010) and 

Pessoa et al. (Pessoa et al., 2014) have previously investigated the removal of estrogens in 

three Brazilian WWTPs utilizing different technologies – activated sludge, UASB and WSP. 

However, in their work, they only reported the total removal achieved by the plant without 

considering the individual contribution of the different treatment stages; and their reported 

estrogen concentrations are not realistic (see Section 5.3.2.3).  To our knowledge there have 

been no similar studies for other chemical classes and specifically for triclosan (PCP), PAHs 

(industrial chemical) and PBDEs (flame retardant in household products). Therefore, the 

second objective of this study was to investigate the behaviour and removal of four classes of 

micropollutants with different physio-chemical properties (estrogens, triclosan, PAHs and 

PBDEs) in wastewater treatment plants utilizing different technologies (conventional 

activated sludge and low energy systems- UASB and WSP); with emphasis on removal 

achieved after primary and secondary treatment individually. Comparing the effectiveness of 

these low- and high-energy technologies in removing different groups of pollutants will 

provide insights on better removal systems and potentially help to implement appropriate 

technologies for specific contaminants. 

Biodegradation and sorption are the main mechanisms of xenobiotic removal in wastewater 

treatment plants, with volatilization only playing a minor role (Verlicchi et al., 2012). During 

biological wastewater treatment, micropollutants are either sorbed onto solids or biodegraded- 

complete mineralization or incomplete degradation and formation of biotransformation 

products (Luo et al., 2014). Photodegradation has also been reported as a removal mechanism 

in waste stabilization ponds (Gomez et al., 2007). Therefore, it is important to understand the 

removal mechanisms of these emerging contaminants in WWTPs using different forms of 

biological treatment. There have been several studies on the biodegradation of estrogens, 

triclosan, PAHs and PBDEs under aerobic conditions to understand their removal in aerobic 

systems such as activated sludge (Alvarino et al., 2014). However, there are limited studies on 

their fate under anaerobic conditions (as applied in UASB systems) except for estrogens. 
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Also, there has been no previous attempt to understand the degradation of these group of 

compounds in WSPs. Hence, the final objective of this studies was to investigate the 

biodegradability of the selected group of micropollutants under different redox conditions 

(aerobic or anaerobic) employed by the surveyed activated sludge, UASB and WSP based 

WWTPs in Brazil. The photodegradation potential of the micropollutants was also 

investigated in the WSP system. This study will provide insights on the key removal 

mechanisms of these micropollutants in the different wastewater treatment systems. 

Additionally, knowing the extent of degradation (degradation rates) of these chemicals in 

aerobic and anaerobic systems is required to understand the limits of engineering biological 

systems (e.g. required HRT) for the removal of such chemicals. 

 Experimental methods 

 Materials 

Details on analytical standards, solvents, filters, solid phase extraction cartridges for all the 

compounds are given in Chapter 3 and Chapter 4. HPLC grade methanol, acetone, MTBE, 

iso-propanol were obtained from Casa Lab or Biosan (Brazil). PCB 209 (10 µg/ml in heptane) 

and 4PC-BDE-208 (50 µg/ml in toluene), which were used as surrogate standards for PBDE 

analysis were purchased from Sigma Aldrich (UK), and Wellington Laboratories (via 

Greyhound Chromatography UK) respectively with purities higher than 98%. 

 Wastewater treatment plants and sampling 

Three WWTPs in and around Belo Horizonte (Brazil) with different treatment processes 

treating domestic wastewater were selected in this study. Belo Horizonte is the third largest 

metropolitan area in Brazil with a population of over five million people covering an area of 

9,400 km2 (Travel-Guide, 2018). It is situated in the southeast region of Brazil and its main 

industries are vehicles, food products, textile, mineral processing and chemicals (Gray, 2009). 

WWTP A is the biggest wastewater treatment facility in the city and consists of preliminary 

treatment, primary treatment, and secondary treatment (activated sludge). It has an installed 

capacity to treat 290,000 m3/day (operational flow of 200,000 m3/day) of wastewater and 

serves about 2.3 million people (operational population equivalent (p.e.) of 1.6 million 

people). The plant uses activated sludge for secondary treatment with a hydraulic retention 

time (HRT) and solid retention time (SRT) of 4.2 hours and 12 days respectively. WWTP B 

also consists of preliminary treatment and secondary treatment. It is capable of treating 

wastewater at 155,000 m3/day (operational flow of 133,000 m3/day) with a population 

equivalent of 1.2 million people (operational p.e. of 1.1 million people). The secondary 
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treatment process employed here is anaerobic (UASB) with an HRT and SRT of 7.7 hours 

and 40 days (see calculation in Appendix F- 8.7) respectively. The wastewater then goes to a 

trickling filter system with a percolating time of 20 – 25 minutes followed by a sedimentation 

tank with an HRT of 6.1 hours to complete the secondary treatment process. WWTP C is the 

smallest of the selected treatment plants with an operational capacity to treat 1,600 m3/day of 

wastewater and serves about 15,000 people (installed p.e. of 30,000 people). This WWTP is a 

waste stabilization pond (WSP) system that consists of an anaerobic pond followed by a 

facultative pond with an HRT of 2 days and 20 days respectively.  

These three WWTPs were selected for two reasons. Firstly, they serve large populations that 

are therefore likely contain the compounds of interest. Secondly, they represent the three main 

treatment processes used for wastewater treatment in Brazil - from the expensive energy-

intensive activated sludge system to the cheaper less energy-intensive UASB and WSP 

systems. Sampling was carried out in summer season in Brazil (December 2016 – February 

2017). As summer in Brazil is usually wet, sampling was usually done after 2 days of dry 

weather when possible. However, this was not possible during the survey of the WSP 

(WWTP C). The flow during sampling (74 L/s) was higher than the normal flow (20 – 25 

L/s), hence, concentrations were expected to be three times lower than normal. Water samples 

were collected from various points in the treatment system in all three WWTPs (Figure 5-1). 

Influent and effluent samples were collected after preliminary and secondary treatment 

processes respectively for all WWTPs. Primary effluents were sampled after the primary 

sedimentation tank, UASB reactors and the anaerobic pond for WWTP A, WWTP B, and 

WWTP C respectively. Emphasis was placed on removal of micropollutants in the biological 

processes.  

In WWTP B, the influent was distributed into twenty-one UASB reactors operated in parallel. 

Therefore, sludge samples were collected from three of the reactors (one at the beginning, 

middle and end of the train) and mixed together for a better representation of the plant. 

Furthermore, samples were initially collected from the same reactor height (3 sampling points 

present at 0.3 m, 0.8 m and 1.3 m) to obtain comparable solids concentration from each 

reactor.  Samples were eventually collected at 0.8 m, as samples at 0.3 m and 1.3 m were too 

concentrated or too diluted respectively.  Grab liquid and solid samples were collected in 

cleaned and disinfected (with 1% Virkron for 24 hours, followed by several rinse cycles with 

distilled water) 5 L high-density polyethylene (HDPE) containers; analysis of the empty 

rinsed containers showed no contamination with any of the target compounds. Samples were 

stored at 4 oC upon arrival to the laboratory and were used within 48 hours.  
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 Wet chemistry analysis for the WWTPs 

Suspended solids (SS) and chemical oxygen demand (COD) were measured in the three 

WWTPs, which were important in assessing the general performance of the WWTPs. The 

total suspended solids (TSS) and volatile suspended solids (VSS) content of the liquid and 

solid samples were measured according to the Standard Method 2540B, while COD was 

measured according to Standard Method 5220D (Clesceri et al., 2005).  

 Analysing the micropollutants in wastewater 

The concentration of triclosan, 15 priority PAHs, 4 estrogens and 8 PBDE congeners were 

determined in the raw influent, primary effluent and secondary effluent of the three 

investigated WWTPs. Triclosan and PAHs were quantified according to methods described in 

Section 3.1.2, estrogens with methods employed by (Coello-Garcia, 2018), and PBDE 

according to methods described in Section 3.2.2. Sample extraction was carried out by solid 

phase extraction (SPE) and analysed by GC-MS for triclosan and PAHs, LC-MS/MS for 

estrogens and GC-ECD for PBDEs. To extract these compounds in the aqueous phase of the 

Figure 5-1 Schematic diagram of the three treatment process streams studied at Brazilian 

WWTPs. The sampling points for influent, primary effluent and secondary effluent collection 

is indicated by a, b and c respectively 



109 

 

samples, 500 mL of filtered (Sartorius MGB filters, 0.7mm thick, 1.0 µm particle retention) 

wastewater was processed for triclosan and PAHs, 150 – 250 mL for estrogens, and 50 – 100 

ml for BDEs to measure their concentrations in the aqueous phase only.   For all these 

compounds, except estrogens, combined aqueous and particulate matter (PM) phases were 

analysed by using 50 mL of unfiltered influent and 200 mL of unfiltered effluent percolated 

through the SPE cartridge for triclosan and PAHs (Sánchez-Avila et al., 2009). 20 mL and 50 

mL of unfiltered influent and effluent respectively were used for extraction of total PBDEs 

(i.e. particulate and aqueous phases).   

 Experimental design of biodegradation assay 

Aerobic biodegradation experiments for triclosan, PAHs and estrogens were carried out as 

described in Section 4.2.3 with few modifications. Briefly, batch tests were placed in an 

incubator equipped with a shaker (Marconi MA420), which was operated at 140 rpm for 

homogenous mixing. The experiment was carried out at room temperature (28 – 32 °C) as the 

incubator was not a cooling incubator. However, the temperature for the duration of the 

experiment was recorded with a temperature logger (Lascar Electronics, EasyLog EL-USB-2-

LCD). Dissolved oxygen (DO) and pH were monitored throughout the experiment to ensure 

that they were not limiting or excessive, respectively;  they ranged from 0.25 – 0.45 mg/L DO 

and pH of 6.6 – 7.3 respectively. This WWTP operates at a low dissolved oxygen 

concentration (0.2 – 0.3 mg/L) as they are not mandated to remove nitrogen, thereby saving 

on energy costs. The batch tests were sampled at multiple points (0, 6, 24, 48, 72, 96, 120, 

144, and 168 hours for triclosan and PAHs; 0, 0.3, 0.7, 1, 2, 4, 8, 24, 48 and 72 hours for 

estrogens) and the samples were processed as described in Section 4.2. Inactivated controls 

(autoclaved sludge) were also monitored to check abiotic losses as mentioned in Section 4.2 . 

An aerobic degradation experiment was not carried out for PBDEs due to unavailability of the 

analytical standard in Brazil.  

Anaerobic biodegradation experiments for triclosan, PAHs, and estrogens were carried out as 

described in Section 4.2.3 with the only difference being the incubation temperature and 

duration of the experiment. The experiment was not temperature controlled, but temperature 

was recorded using the same data logger employed in the aerobic experiment. The experiment 

was incubated for 15 days. Samples were processed as described in Section 4.2.4. The 

anaerobic experimental design for PBDEs proceeded differently. 25 ml of UASB sludge was 

added to a 50 ml amber glass vial and spiked at 30 µg/L of PBDEs in a solution of acetone 

(10 % v/v - this high amount was due to the poor solubility of PBDEs in acetone). Vials were 
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sealed with a 20-mm crimp cap with chlorobutyl vial stoppers and purged with nitrogen gas 

for 20 minutes to enable anaerobic conditions. Samples were processed similar to those of the 

other compounds above and analysed with the method described in Section 4.2.4. Surrogates 

for PBDE analysis were added at 10 ng/ml and 100 ng/ml for PCB-209 and 4PC-BDE-209 

respectively before sample extraction.  

Biodegradation experiments using the facultative pond inocula were carried out in 1 L 

Erlenmeyer flasks. 500 mL of sludge was added to the flasks followed by addition of 

chemicals (1000 µg/L for triclosan, 200 µg/L for PAHs and 100 µg/L for estrogens in the 

same reactor). Flasks were placed in an incubator equipped with two fluorescent tubes- 20W 

each (Marconi MA403) to study the effect of photolytic degradation. Some flasks were 

covered with aluminium, while others were exposed to the fluorescent light. Magnetic stirrers 

were used to ensure homogenous mixing and aeration of the sludge. The experiment was not 

temperature controlled but temperature was logged throughout. Dissolved oxygen (DO) and 

pH were monitored throughout the experiment to ensure those parameters were not limiting or 

extreme; they ranged from 6.1 – 7.0 mg/L DO and pH of 7.5 – 9.5 respectively. Sample 

processing and analysis was the same to that employed in the aerobic experiment. The batch 

tests were sampled at multiple points (day 1, 4, 7, 11, and 15) for 15 days.  An inactivated 

control (autoclaved sludge) was also employed to check losses due to hydrolysis or 

volatilization (abiotic losses). 

For PBDEs, sacrificial 10 ml COD tubes were used. 6 ml of facultative inocula was added to 

the reactors and PBDEs were spiked at 5 µg/L. The decision to use sacrificial tubes and the 

lower spiking concentration was due to the poor solubility of the PBDEs in water-miscible 

organic solvents (maximum solubility of the mix of PBDEs in acetone was 300 ng/ml). The 

tubes were placed in an incubator equipped with a shaker (Marconi MA420), and set at 140 

rpm to ensure homogenous mixing and aeration of the sludge. Some of the tubes were 

covered with aluminium foil to account for non-photolytic degradation; others were left 

exposed for photolytic degradation. The experiment was not temperature controlled, but the 

temperature for the duration of the experiment was recorded with a temperature logger 

(Lascar Electronics, EasyLog EL-USB-2-LCD). An inhibition and abiotic control was also 

monitored to check abiotic and non-biological degradation losses. Triplicate samples (2 ml 

per sample) were collected in 2 ml Eppendorf tubes, spiked with surrogate standards (10 

ng/ml and 100 ng/ml for PCB-209 and 4PC-BDE-209 respectively) and extracted with 

methods described in Section 3.1.2. 
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 Extraction and instrumental analysis for biodegradation experiment 

The compounds were extracted from the biosolids by SPE and were analysed by GC-MS, LC-

MS/MS or GC-ECD. The protocol for extraction and analysis of triclosan and PAHs is 

described in Section 3.1.2, estrogens in (Coello-Garcia, 2018), and PBDEs in Section 3.2.2. 

SPE cartridges were stored at -20 oC in Brazil, then transported in boxes with cooling packs to 

the UK, where elution and instrumental analysis was performed. 

 Microbial analysis 

Biosolids were stored at -20 oC immediately after sampling, and were transported to the UK a 

box with cooling packs. Samples were immediately stored back at -20 oC upon arrival in the 

UK until analysis. The detailed protocol for all the microbial analysis carried out for the 

biosolids from the biodegradation experiments was previously described in Section 4.3. In 

summary, genomic DNA (gDNA) was first extracted from the samples, generation of 

amplicon library by a fusion PCR method and finally sequenced on a Personal Genome 

Machine (PGM). Sequencing data analysis was done as described in Section 4.3.3. 

 Statistical analysis 

Minitab, version 17 Statistical software (Minitab Inc., USA) was used to perform all statistical 

analysis. Variance analysis using one-way ANOVA was used to compare the biodegradation 

rate of the investigated chemicals under the applied treatment technology. Furthermore, 

STAMP was used to identify the change in bacterial community taxonomy before and after 

the aerobic or anaerobic treatment (Parks et al., 2014). A two-sided G-test (w/ Yates’) + 

Fisher’s statistical test was carried in STAMP on each pair of sample to determine any 

significantly difference (p < 0.05) in the bacteria taxa. 
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 Results and discussion 

 Characteristics and performance of the treatment plants 

In terms of total suspended solids (TSS) removal, WWTP A was least effective, removing 

only 48 % as compared to 76 % and 75 % achieved by WWTP B and WWTP C respectively 

(Table 5-1). COD removal was also lowest in WWTP A with 42 % recorded when compared 

to 83 % and 80 % achieved by WWTP B and WWTP C respectively. Although the TSS and 

COD removal rates provided by the plant operator was 80 % and 82 % respectively. This 

discrepancy might be due to periodical variations in the loads that were not captured by grab 

sampling. 

 Assessing the fate and removal of micropollutants in the different 

WWTPs  

 Fate and extent of triclosan removal 

The total (aqueous and particulate matter) concentration of triclosan in raw influent was 49.2 

µg/L, 67.1 µg/L and 17.8 µg/L in WWTP A, WWTP B and WWTP C respectively (Table 

5-2).  The total concentration of triclosan in the final effluent was 1.5 µg/L, 3.6 µg/L and 0.9 

µg/L for WWTP A, WWTP B, and WWTP C respectively. These concentrations are similar 

to reported levels of triclosan in unfiltered municipal wastewater around the world (Table 5-3) 

(Kumar et al., 2010; Lozano et al., 2013). 

In WWTP A, the concentration of triclosan in the aqueous phase decreased from 1303 ng/L to 

893 ng/L (53 % removal) after primary treatment, then further reduced to 549 ng/L after 

secondary treatment (activated sludge treatment) (47 % removal)- thereby indicating removal 

in all phases of the treatment process (Table 5-2). Lozano et al. reported 75 % triclosan 

removal from the aqueous phase after primary treatment in an activated sludge WWTP 

(Lozano et al., 2013), while another study reported up to 40 % triclosan removal (Thomas and 

Foster, 2005). About 97 % and 58 % triclosan removal was observed from the total and 

aqueous phases respectively after secondary treatment (Figure 5-2). This removal was most 

likely due to partitioning and settling out with sludge in the primary clarifier and 

biodegradation during secondary treatment (Lozano et al., 2013).  
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Table 5-1 Characteristics of the selected WWTPs, including the concentrations of suspended solids and chemical oxygen demand across the 

different treatment stages 

WWTP Population 

(millions) 

Treatment  

type 

(secondary) 

TSS (mg/L) VSS (mg/L) COD (mg/L) 

   Sludge Influent P Eff S. Eff Sludge Influent P. Eff S. Eff Sludge Influent P. Eff S. Eff 

A 1.6 Activated 

sludge 

4290 

(210) 

196 

(25) 

105 

(12) 

102 

(12) 

3750 

(160) 

161 

(16) 

86 

(7) 

65 

(4) 

1832 

(79) 

312 

(12) 

265 

(12) 

180 

(9) 

B 1.1 UASB + 

Trickling filters 

22400 

(790) 

102 

(9) 

64 

(3) 

24 

(2) 

17640 

(920) 

100 

(9) 

55 

(4) 

24 

(1) 

997 

(11) 

252 

(12) 

112 

(9) 

43 

(1) 

C 0.015 WSP (1 AP, 1 

FP) 

75 

(6) 

208 

(18) 

121 

(9) 

52 

(4) 

73 

(8) 

103 

(7) 

109 

(3) 

50 

(3) 
111

*
 

(6) 

456 

(31) 

91 

(6) 

90 

(4) 

- n = 2 for COD measurements, n = 3 for total suspended solids (TSS) and volatile suspended solids (VSS) measurements 

- Inf = Raw wastewater, P. Eff = primary effluent, S. Eff = secondary effluent, AP = anaerobic pond, FP = facultative pond 

- * Sludge for WWTP C is wastewater taken from the top end of the facultative pond 

- Values in parentheses are standard deviations  
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In WWTP B, removal of triclosan from the aqueous phase was only observed after stage 1 

secondary treatment (UASB treatment) as the concentration of triclosan was reduced by 60 % 

(Figure 5-2, Table 5-2). This indicates that the trickling filter system did not contribute to 

triclosan removal in this WWTP. About 95 % and 39 % of triclosan was removed from the 

total and aqueous phase respectively after treatment (Table 5-2). In WWTP C, 54 % of 

triclosan was removed after stage 1 secondary treatment (anaerobic pond treatment, and a 

further 19 % after stage 2 secondary treatment (facultative pond) (Table 5-2; Figure 5-2). 

Considering the all phases, about 95 % triclosan removal was achieved by this WWTP. 

Table 5-2 Concentration of triclosan in the influent, primary effluent and secondary effluent of 

three different WWTPs in Brazil 

WWTP Influent (ng/L) Primary effluent 

(ng/L) 

Secondary 

effluent (ng/L) 

Removal (%) 

 Total Aqueous Total* Aqueous Total Aqueous Total 

removal 

Aqueous 

removal 

A 49184 

(7429) 

1303 

(223) 

n.d 893 

(37) 

1486 

(9) 

549 

(24) 

97 58 

B 67052 

(720) 

1262 

(89) 

n.d 756 

(120) 

3573 

(1352) 

775 

(47) 

95 39 

C 17797 

(2004) 

1422 

(39) 

n.d 659 

(32) 

924 

(78) 

385 

(23) 

95 73 

-Mean concentration presented with standard deviation in bracket 

-Total represents triclosan concentration in the aqueous and particulate matter while Aqueous 

represents triclosan concentration in the aqueous phase alone. 

- n.d represents not determined 

 

About 92 – 98 % and 59 – 78 % of triclosan was present in the particulate phase of the 

influent and effluent samples respectively from the three WWTPs (Figure 5-3). Some 

previous studies reported about 75 – 80 % and 10 – 20 % of triclosan in influent and effluent 

respectively (Thomas and Foster, 2005; Lozano et al., 2013). However, this partitioning 

might vary with different suspended solids concentrations especially in effluent samples 

(Thomas and Foster, 2005). Furthermore, this association with suspended solids was expected 

due to the high Log Kow value (4.8) of triclosan (Kantiani et al., 2008). Also, the relatively 

higher removal rates observed in the total liquid phase than in the aqueous phase might have 

been due to the high adsorption potential of triclosan, which promoted their adsorption to 

sludge across the treatment stream.  
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Figure 5-2 Concentration and distribution of triclosan in the aqueous phase of influent, primary 

effluent and secondary effluent for the three investigated WWTPs in Brazil 

Triclosan effluent concentrations in the aqueous phase of WWTP A (549), WWTP B (775 

ng/L and WWTP C (385 ng/L) exceeded the annual mean recommended standard of 100 ng/L 

for triclosan in freshwater and saltwater (UKTAG, 2013). The effluent concentration in these 

WWTPs was similar to reported levels in activated sludge WWTPs in Canada (Lee et al., 

2003), Australia (Kookana et al., 2011), USA (Kumar et al., 2010), Germany (Bester, 2005) 

and UK (Sabaliunas et al., 2003) (Table 5-3). Hence, the concentration of triclosan is as high 

in low-middle income countries (LMICs) as in high income countries (HICs). No previous 

study has reported the levels of triclosan in effluents of UASB or WSP WWTPs.  However, 

exceeding the recommended safety standard for triclosan indicates that WWTPs around the 

world (even with different treatment technologies) ineffective in removing triclosan in their 

current format.   
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Figure 5-3 Partitioning of triclosan in the particulate and dissolved phases of influent and 

effluent samples from the three studied Brazilian WWTPs (WWTP A, B and C) 

The concentration of methyl triclosan (a known biotransformation product of triclosan) was 

also monitored in the three WWTPs. Methyl triclosan was detected in influents, and this 

might be due to biotransformation of triclosan in the sewage network during transportation to 

the WWTPs (Figure 5-4). The concentration of methyl triclosan ranged from 138 – 468 ng/L 

in the three WWTPs. This was not surprising as methyl triclosan formation under aerobic and 

anoxic conditions has been reported, with the latter being relatively slower (Bester, 2005; 

Chen et al., 2011). Removal of methyl triclosan in the WWTPs was discussed in Appendix G- 

8.8.  

 

Figure 5-4 Concentration of methyl triclosan in the aqueous phase of influent, primary effluent 

and secondary effluent samples of the three WWTPs. P and S represents primary and secondary 

respectively. n = 3, standard deviation presented as error bars 
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Table 5-3 Concentration of triclosan and methyl triclosan in influent and effluent from 

WWTPs around the world.  

Reference Country Triclosan (µg/L) Methyl triclosan (µg/L) 

Influent Effluent Influent Effluent 

This study Brazil 17.8 – 67.1 0.9 – 3.6 n.d n.d 

1.3 – 1.4* 0.4 – 0.6* 0.2 – 0.5* 0.04 – 0.1* 

Lozano et al., 

2013 

U.S. 8.1 0.9 0.03 0.006 

Kumar et al., 

2013 

U.S 5.4 – 85.2 0.2 - 5 n.d n.d 

2.1 – 38.2* 0.2 – 4.8* n.d n.d 

Sabaliunas et 

al.,, 2013 

UK 7.5 – 21.9 0.3 – 1.1 n.d n.d 

Bester, 2005 Germany 4.8 – 7.3 0.3 – 0.6 0.002 – 0.003 0.008 – 0.015 

Kokoona et al., 

2011 

Australia n.d 0.023 – 0.4* n.d n.d 

Lee et al., 2003 Canada n.d 0.03 – 0.74* n.d n.d 

*are concentrations in the aqueous phase only; n.d stands for not determined 

 Fate and extent of PAH removal 

The overall concentration of PAHs and their individual abundances in influent, primary 

effluent and secondary effluents from the three surveyed WWTPs are shown below (Table 

5-4, Table 5-5, Table 5-6) All PAHs except indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene 

and benzo(ghi)perylene were detected in all samples. The average total (aqueous and 

particulate matter) concentration of PAHs (sum of all detected PAHs) was highest in influent 

samples of WWTP C (29.3 µg/L) (Table 5-6) compared to 20.2 µg/L (Table 5-5) and 10.2 

µg/L (Table 5-4) detected in WWTP B and WWTP A respectively. The total concentration of 

PAHs in effluent samples was higher in WWTP B (1.6 µg/L), than WWTP A (1.1 µg/L) and 

WWTP C (1.1 µg/L).  

Low molecular weight (LMW) PAHs were the most abundant group of PAHs, followed by 

middle molecular weight (MMW) and high molecular weight PAHs in both influent and 

effluent samples. MMW PAHs have previously been reported to be the most abundant PAHs 

in raw wastewater, while LMW PAHs were the most abundant in the effluent (Busetti et al., 

2006), although this distribution mostly depends on the source of the PAHs entering the 

WWTP. The total concentration of PAHs in influents of the studied WWTPs detected in this 

study were similar to those reported in Spain (Sánchez-Avila et al., 2009) and Greece (Manoli 

and Samara, 2008) , but two and ten times lower than those detected in China (Qi et al., 2013) 

and Italy (Busetti et al., 2006; Fatone et al., 2011) respectively (Table 5-7). Naphthalene 

(Naph), phenanthrene (Phen), and benzo(b)fluoranthene (BbF) were the most abundant LMW, 

MMW and HMW PAHs respectively detected in the three WWTPs, which is  in agreement 

with some other studies (Manoli and Samara, 2008; Wang et al., 2013c). 
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Table 5-4 Concentration of 15 priority PAHs in influent and effluent of a Brazilian activated 

sludge WWTP (WWTP A) 

 
Compound Influent (ng/L) Primary Effluent 

(ng/L) 

Secondary 

Effluent (ng/L) 

% total 

removal 

% 

Aqueous 

removal Total Aqueous Total Aqueous Total Aqueous 

Naph 2108.9 

(86.0) 

114.3 

(6.0) 

n.d 128.6 

(4.4) 

200.8 

(13.4) 

46.1 

(4.0) 

92.2 59.7 

Acy 258.8 

(11.3) 

20.2 

(0.7) 

n.d 20.2 

(0.5) 

55.8 

(0.5) 

23.3 

(0.9) 

86.4 0.0 

Ace 346.9 

(11.4) 

19.6 

(0.4) 

n.d 18.0 

(0.4) 

35.6 

(1.4) 

13.5 

(0.6) 

93.3 31.1 

Flu 777.5 

(15.3) 

44.2 

(0.8) 

n.d 41.8 

(1.6) 

75.2 

(9.1) 

29.6 

(2.2) 

93.8 33.0 

Phen 2118.8 

(64.0) 

65.7 

(4.5) 

n.d 63.4 

(2.1) 

140.3 

(9.9) 

43.1 

(5.3) 

95.3 34.4 

Anth 395.3 

(5.8) 

26.6 

(0.6) 

n.d 26.7 

(0.2) 

67.0 

(1.6) 

28.2 

(1.2) 

89.5 0.0 

Flt 1135.0 

(21.6) 

42.4 

(1.0) 

n.d 43.7 

(1.3) 

95.1 

(7.6) 

35.8 

(2.8) 

94.6 15.8 

Pyr 1053.7 

(10.8) 

39.9 

(1.4) 

n.d 42.4 

(1.3) 

100.5 

(6.1) 

38.0 

(2.4) 

93.8 4.6 

BaA 526.3 

(9.7) 

37.5 

(0.3) 

n.d 39.4 

(0.4) 

90.5 

(0.4) 

38.2 

(1.7) 

89.3 0.0 

Chry 458.6 

(5.0) 

32.8 

(0.3) 

n.d 34.1 

(0.6) 

81.3 

(0.5) 

34.0 

(0.9) 

88.9 0.0 

BbF 631.5 

(18.5) 

24.4 

(0.4) 

n.d 25.0 

(1.2) 

57.7 

(1.1) 

26.8 

(2.5) 

95.6 0.0 

BaP 393.0 

(10.7) 

25.8 

(0.3) 

n.d 27.0 

(0.5) 

70.9 

(3.4) 

27.6 

(3.6) 

90.1 0.0 

InPy < MDL < MDL n.d < MDL < MDL < MDL n.d n.d 

DiahA < MDL < MDL n.d < MDL < MDL < MDL n.d n.d 

BghiP < MDL < MDL n.d < MDL < MDL < MDL n.d n.d 

∑LMW 

PAHs 

6006.2 290.7 n.d 298.7 574.7 183.9 90.4 36.7 

∑MMW 

PAHs 

3173.6 152.6 n.d 159.5 367.4 146.0 88.4 4.3 

∑HMW 

PAHs 

1024.5 50.3 n.d 52.2 128.7 54.4 87.4 -8.2 

∑PAHs 10204.3 553.5 n.d 575.5 1070.7 483.7 89.5 12.6 

- PAHs abbreviation- naphthalene (Naph), acenaphthylene (Acy), acenaphthene (Ace), fluorene (Flu), phenanthrene (Phe), 

anthracene (Ant), fluoranthene (Flt), pyrene (pyr), benz(a)anthracene (BaA), chrysene (Chry), benzo(b)fluoranthene (BbF), 

benzo(a)pyrene (BaP), indeno(1,2,3-cd)pyrene (InPy), dibenz(a,h)anthracene (DiahA), and benzo(ghi)perylene (BghiP).  

-Total concentration was not determined in primary effluent. 

-n.d stands for ‘not determined’; -LOQ stands for limit of quantification 

-Mean concentration presented (n = 3) with standard deviation in bracket; -MDL represents method detection limit 
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The concentration of PAHs in the aqueous phase of the influent ranged from 554 ng/L to 1211 

ng/L in the three WWTPs, while concentrations detected in effluent ranged from 431 ng/L to 

484 ng/L. Influent concentrations were similar to those generally reported around the world 

(Cao et al., 2005; Yao et al., 2012; Qi et al., 2013), but five to ten times lower than levels 

reported by Wang et al., in China (Wang et al., 2013c) (Table 5-7).  

There was no difference between the concentration of PAHs in both HICs and LMICs. 

Furthermore, the total effluent concentration from the WWTPs of those PAHs falling under 

the regulation of the EU WFD (naphthalene-Naph, anthracene- Anth, fluoranthene- Flt, 

benzo(b)fluoranthene- BbF, benzo(a)pyrene BaP) were below the mean allowable EQS 

concentrations for inland surface waters for fours PAHs, Naph, Anth, Flt, BaP (MAC-EQS 

values of 130, 000 ng/L, 100 ng/L, 120 ng/L, and 270 ng/L respectively), but were higher for 

BbF (17 ng/L) (EU, 2013a). The risks associated with discharging this effluent into water 

bodies is assessed in Section 5.3.3.6 below.  

WWTP A achieved a total PAH removal of 90 %, and aqueous phase removal of 13 % (Table 

5-4, Figure 5-5); with reductions observed mainly after secondary treatment (except for 

HMW PAHs). 92 % of total PAH removal was achieved by WWTP B, compared to the 33 % 

removal recorded from the aqueous phase (Table 5-5, Figure 5-5). In WWTP C, 96 % of 

PAHs were removed from the total phase, while 64 % were eliminated from the aqueous 

phase (Table 5-6, Figure 5-5). Increment in the concentration of PAHs after UASB treatment 

in WWTP (LMW PAHs) B, and anaerobic pond treatment in WWTP C (MMW PAHs) was 

observed. This was perhaps due to their residual concentrations already present in these 

treatment stages. The removal of PAHs from the studied WWTPs was most likely mainly via 

sorption onto solids in the settling tanks and reactors, with volatilization and biodegradation 

contributing less (Lei et al., 2007; Liu et al., 2011). Besides, volatilization has been reported 

to contribute to only about 1 – 2 % removal of PAHs in conventional wastewater treatment 

plants (Manoli and Samara, 2008). The higher removal observed in the total phase of the 

WWTPs suggests that removal was principally through sorption. To further explain this, 

about 90 – 97 % of LMW, MMW and HMW PAHs were present in the particulate phase of 

the influent samples from the three WWTPs, while 60 – 70 % of LMW to HMW PAHs 

partitioned onto the particulate matter in effluent samples (Figure 5-6). This is expected due to 

the high Log Kow values of the PAHs that promotes their sorption onto solids (Sánchez-Avila 

et al., 2009). WWTP C (WSP) was more effective in removing PAHs from the aqueous phase 
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- achieving 64 % removal compared to 13 % removal for WWTP A (activated sludge), and 

33 % removal for WWTP B (UASB). 

Table 5-5 Concentration of 15 priority PAHs in influent and effluent of a Brazilian UASB 

WWTP (WWTP B) 
 

Compound Influent (ng/L) Primary 

Effluent (ng/L) 

Secondary Effluent 

(ng/L) 

% total 

removal 

% 

Aqueous 

removal Total Aqueous Total Aqueous Total Aqueous 

Naph 5519.1 

(186.0) 

217.5 

(49.7) 

n.d 318.6 

(16.8) 

299.0 

(50.9) 

102.8 

(5.6) 

94.6 52.7 

Acy 495.5 

(11.6) 

24.2 

(2.1) 

n.d 23.3 

(0.8) 

66.6 

(5.7) 

20.1 

(0.2) 

86.6 16.9 

Ace 1255.9 

(14.8) 

33.8 

(4.7) 

n.d 34.4 

(0.2) 

124.6 

(14.5) 

15.6 

(0.5) 

90.1 53.9 

Flu 2170.8 

(63.8) 

75.7 

(13.6) 

n.d 81.9 

(4.4) 

225.9 

(30.1) 

36.3 

(0.4) 

89.6 52.1 

Phen 4296.4 

(140.6) 

102.6 

(32.1) 

n.d 99.4 

(6.0) 

196.2 

(28.0) 

68.7 

(0.5) 

95.4 33.0 

Anth 472.1 

(56.4) 

29.6 

(3.1) 

n.d 29.1 

(0.4) 

71.5 

(2.8) 

26.7 

(0.2) 

84.9 9.9 

Flt 2115.5 

(84.8) 

49.5 

(8.7) 

n.d 47.7 

(1.9) 

111.1 

(9.7) 

43.4 

(1.4) 

94.7 12.4 

Pyr 1574.2 

(65.8) 

45.3 

(7.0) 

n.d 42.8 

(0.9) 

113.1 

(6.4) 

40.4 

(0.4) 

92.8 10.7 

BaA 545.4 

(35.2) 

37.7 

(1.2) 

n.d 38.3 

(0.2) 

113.8 

(30.3) 

36.5 

(0.1) 

79.1 3.2 

Chry 471.0 

(20.9) 

32.8 

(0.8) 

n.d 32.8 

(0.2) 

92.8 

(17.3) 

31.9 

(0.1) 

80.3 2.8 

BbF 706.7 

(56.3) 

24.5 

(1.0) 

n.d 25.5 

(0.6) 

81.2 

(14.1) 

24.6 

(0.1) 

88.5 0.0 

BaP 567.7 

(50.7) 

26.3 

(0.8) 

n.d 25.5 

(0.5) 

76.3 

(5.4) 

25.4 

(0.8) 

86.6 3.3 

InPy < MDL < MDL n.d < MDL < MDL < MDL n.d n.d 

DiahA < MDL < MDL n.d < MDL < MDL < MDL n.d n.d 

BghiP < MDL < MDL n.d < MDL < MDL < MDL n.d n.d 

∑LMW 

PAHs 

14209.8 483.5 n.d 586.6 983.9 270.3 93.1 44.1 

∑MMW 

PAHs 

4706.1 165.3 n.d 161.6 430.7 152.1 90.8 7.9 

∑HMW 

PAHs 

1274.4 50.8 n.d 51.0 157.5 50.0 87.6 1.7 

∑PAHs 20190.3 699.6 n.d 799.3 1572.0 472.4 92.2 32.5 

PAHs abbreviation- naphthalene (Naph), acenaphthylene (Acy), Acenaphthene (Ace), fluorene (Flu), 

phenanthrene (Phe), anthracene (Ant), fluoranthene (Flt), pyrene (pyr), benz(a)anthracene (BaA), chrysene 
(Chry), benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP), indeno(1,2,3-cd)pyrene (InPy), 

dibenz(a,h)anthracene (DiahA), and benzo(ghi)perylene (BghiP).  

-Total concentration was not determined in primary effluent. 
-n.d stands for ‘not determined’; - LOQ stands for limit of quantification 

-Mean concentration presented (n = 3) with standard deviation in bracket; -MDL represents method 

detection limit 
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Table 5-6 Concentration of 15 priority PAHs in influent and effluent of a Brazilian WSP 

WWTP (WWTP C) -Mean concentration presented (n = 3) with standard deviation in bracket 
 

Compound Influent Primary Effluent 

(ng/L) 

Secondary Effluent 

(ng/L) 

% total 

removal 

%  

Aqueous 

removal 
 

Total Aqueous Total Aqueous Total Aqueous 

Naph 3674.3 

(92.7) 

435.8 

(24.9) 

n.d 231.6 

(14.5) 

124.7 

(1.2) 

61.4 

(2.1) 

96.6 85.9 

Acy 1561.9 

(14.1) 

31.7 

(1.3) 

n.d 24.9 

(1.1) 

47.6 

(1.2) 

19.1 

(0.2) 

97.0 39.8 

Ace 770.8 

(11.4) 

47.8 

(3.3) 

n.d 28.9 

(2.0) 

34.6 

(1.3) 

15.6 

(0.4) 

95.5 67.3 

Flu 3987.7 

(30.0) 

232.1 

(11.7) 

n.d 140.7 

(4.6) 

68.2 

(1.4) 

36.7 

(1.9) 

98.3 84.2 

Phen 7658.8 

(73.3) 

248.6 

(16.1) 

n.d 176.3 

(9.9) 

170.6 

(6.9) 

60.1 

(1.3) 

97.8 75.8 

Anth 2073.3 

(46.7) 

38.2 

(1.3) 

n.d 33.4 

(0.2) 

71.2 

(3.9) 

26.8 

(0.3) 

96.6 30.0 

Flt 991.4 

(17.5) 

44.8 

(3.3) 

n.d 50.9 

(0.9) 

127.5 

(1.8) 

46.6 

(3.5) 

87.1 0.0 

Pyr 4073.5 

(46.2) 

62.4 

(3.1) 

n.d 67.5 

(1.5) 

113.8 

(3.5) 

41.4 

(1.6) 

97.2 33.6 

BaA 723.3 

(12.1) 

36.5 

(0.6) 

n.d 37.7 

(0.3) 

91.5 

(2.1) 

35.9 

(0.3) 

87.4 1.6 

Chry 666.3 

(31.4) 

32.9 

(0.6) 

n.d 34.0 

(0.5) 

82.8 

(4.9) 

32.4 

(0.6) 

87.6 1.4 

BbF 541.4 

(26.9) 

25.5 

(0.6) 

n.d 26.5 

(0.9) 

68.8 

(13.2) 

27.5 

(2.5) 

87.3 0.0 

BaP 573.4 

(22.7) 

25.1 

(0.4) 

n.d 28.1 

(1.3) 

66.3 

(6.0) 

27.4 

(1.8) 

88.4 0.0 

InPy < MDL < MDL n.d < MDL < MDL < MDL n.d n.d 

DiahA < MDL < MDL n.d < MDL < MDL < MDL n.d n.d 

BghiP < MDL < MDL n.d < MDL < MDL < MDL n.d n.d 

∑LMW 

PAHs 

19726.7 996.0 n.d 635.7 516.9 219.8 97.4 77.9 

∑MMW 

PAHs 

6454.5 145.4 n.d 190.1 415.6 156.3 93.6 -7.5 

∑HMW 

PAHs 

1114.8 69.4 n.d 54.6 135.1 54.9 87.9 20.8 

∑PAHs 27296.0 1210.8 n.d 880.4 1067.6 431.1 96.1 64.4 

PAHs abbreviation- naphthalene (Naph), acenaphthylene (Acy), Acenaphthene (Ace), fluorene (Flu), 
phenanthrene (Phe), anthracene (Ant), fluoranthene (Flt), pyrene (pyr), benz(a)anthracene (BaA), chrysene 

(Chry), benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP), indeno(1,2,3-cd)pyrene (InPy), 

dibenz(a,h)anthracene (DiahA), and benzo(ghi)perylene (BghiP).  
-Total concentration was not determined in primary effluent. 

-n.d stands for ‘not determined’; - LOQ stands for limit of quantification 

-Mean concentration presented (n = 3) with standard deviation in bracket; -MDL represents method 

detection limit 
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Figure 5-5 Concentration and distribution of PAHs in the aqueous phase of influent, 

primary effluent and secondary effluent of the three studied Brazilian WWTPs. P and S 

refers to primary and secondary respectively 
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Table 5-7 Concentration of PAHs in influent and effluent of WWTPs around the world 

Reference Country PAHs in total phase  

(µg/L) 

PAHs in aqueous phase 

(µg/L) 

Influent Effluent Influent Effluent 

This study Brazil 10.2 – 27.3 1.1 – 1.6 0.6 – 1.2 0.4 – 0.5 

Sanchez-Avila 

et al., 2009 

Spain 14.3 3.9 n.d n.d 

Manoli and 

Samara, 2008 

Greece 10.6 6.6 n.d n.d 

Qi et al., 2013 China 1.5 – 5.0 0.2 – 0.4 0.6 – 2.0 0.2 – 0.4 

Wang et al., 

2013 

China n.d n.d 5.8 2.2 

Cao et al., 2005 China n.d n.d n.d 0.4 

Fatone et al., 

2011 

Italy 0.1 – 1.5 0.1 – 0.2 n.d n.d 

Busetti et al., 

2006 

Italy 3.8 1.1 0.2 0.07 

-n.d stands for not determined 
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Figure 5-6 Partitioning of LMW PAHs, MMW PAHs and HMW PAHs in the particulate 

and dissolved phases of influent and effluent samples from the three Brazilian WWTPs 
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 Fate and extent of estrogen removal 

Only E1 and E3 were detected in these WWTPs, while E2 and EE2 were below the method 

detection limit (0.5 ng/L) (Table 5-8). E3 was the most abundant estrogen in the influent of all 

the WWTPs, with an aqueous phase concentration of 1234 ng/L, 1548 ng/L and 625 ng/L in 

WWTP A, WWTP B and WWTP C respectively. E3 has been reported to be the most 

abundant estrogen in wastewater around the world (Kim et al., 2007; Coleman et al., 2010) as 

they are excreted the most by humans (Ternes and Joss, 2007). However, the E3 

concentrations in influent reported in this study were relatively high compared to globally 

recorded concentrations (10 – 1100 ng/L; Table 5-9) (Kim et al., 2007; Gabet-Giraud et al., 

2010; Luo et al., 2014; Liu et al., 2015). 

The aqueous concentration of E1 in WWTP A, WWTP B and WWTP C was 78 ng/L, 107 

ng/L and 51 ng/L respectively (Table 5-8). These results differ from the reported occurrence 

and concentrations of estrogens (E1, E2 and EE2) by Pessoa et al. (Pessoa et al., 2014) in 

Brazilian WWTPs with identical technologies and process configurations to those reported in 

this study. These authors detected E1, E2 and EE2 in influent samples but did not measure E3 

concentrations. They also suggested that E1 was more frequently detected in influents due to 

partial degradation of E2 to E1, and de-conjugation of E1 conjugated compounds (E1 

sulfonide or glucuronide) in sewer systems. This assertion was further supported by E1 

concentrations in the influent that were five times higher than E2. Therefore, relatively low 

levels of E1 in this study, and the reported E2 degradation might be responsible for non-

detection of E2 in the examined WWTPs.  

Furthermore, some studies reported a five to ten times higher concentration of E1 in influents 

from Brazilian wastewater plants (Froehner et al., 2010; Pessoa et al., 2014) in comparison 

with our results. These extremely high concentrations of estrogens reported by (Froehner et 

al., 2010) and (Pessoa et al., 2014) are unlikely to be achieved in WWTPs - especially for 

EE2 (Table 5-9), unless a huge load of this chemical were discharged into this WWTP during 

this period by pharmaceutical companies post production. Considering that in 2017, there was 

56 million women within the reproductive age (15 – 49 years old) in Brazil (Indexmundi, 

2017), and 14 % of them used the contraceptive pill (UN, 2017). The maximum EE2 usage 

per head in Brazil will be 1.92 µg/d; of which 0.78 µg/d is excreted (based on 26 µg/d of EE2 

ingested even in industrialized countries (Johnson and Williams, 2004)). Therefore, using the 

information of population served and daily flow in both (Froehner et al., 2010) and (Pessoa et 

al., 2014), the maximum concentration of EE2 in both plants should be around 8.9 – 9.2 ng/L 

(assuming all the EE2 ingested by the women was excreted; see Appendix D- 8.5 for 
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calculation), and is 3 – 4 orders of magnitude lower than their reported concentration (up to 

3180 ng/L) (Table 5-9).  However, Queiroz et al. could not detect E2 and EE2 above the 

LODs (9.3 and 12.4 ng/L respectively) from influent samples from one of the same WWTPs 

(WWTP A) used in this study (Queiroz et al., 2012). Coleman et al., also reported that E2 and 

EE2 concentrations in WWTP influent in Australia was below their method detection limits 

(1 and 0.1 ng/L respectively) (Coleman et al., 2010). Also, the E1 influent concentrations in 

this study are similar to those reported around the world (Gabet-Giraud et al., 2010; Salgado 

et al., 2010) (Table 5-9). E1 is considered as one of the most environmentally important 

estrogens because of its more frequent detection at higher concentrations compared to the 

other estrogens, and can be used to measure estrogenicity in the environment despite its lower 

potency compared to E2 (Coleman et al., 2010). 

Table 5-8 Concentration of E1 and E3 in the influent, primary effluent and secondary effluent 

of the three studied Brazilian WWTP 

Compound E1 (ng/L) E3 (ng/L) 
 

Influent P. 

Effluent 

S. 

Effluent 

% 

Removal 

Influent P. 

Effluent 

S. 

Effluent 

% 

Removal 

WWTP A 77.8 

(3.3) 

65.3 

(5.4) 

16.0 

(2.0) 

79.4 1233.7 

(17.1) 

1068.7 

(51.8) 

64.3 

(9.1) 

94.8 

WWTP B 106.5 

(6.6) 

151.8 

(10.2) 

11.9 

(1.4) 

88.9 1547.9 

(148.8) 

1254.5 

(641.3) 

12.5 

(1.0) 

99.2 

WWTP C 50.5 

(5.4) 

130.2 

(29.4) 

0.1 

(0.08) 

99.7 625.1 

(26.4) 

3814 

(559.8) 

13.0 

(1.7) 

97.9 

P and S represents primary and secondary effluent; standard deviation in bracket 

The mean removal of E1 from the aqueous phase was 79 %, 89 % and 99 % in WWTP A, 

WWTP B and WWTP C respectively. Whereas, E3 removal was 95 %, 99 % and 98 % for 

WWTP A, WWTP B and WWTP C respectively. In WWTP A, 17 % and 14 % of E1 and E3 

was removed after primary treatment respectively, while secondary treatment removed 62 % 

and 81 % (Table 5-8). This confirms reports that activated sludge secondary treatment is 

effective in removing these estrogens (Leusch et al., 2006), and the removal rates achieved 

were similar those reported previously (Salgado et al., 2010; Nie et al., 2012; Pessoa et al., 

2014). However, it is the final effluent concentration, not percentage removal and how it 

compares to the PNEC values that are important for determining risk to the environment. 

In WWTP B, the concentration of E1 increased from 107 ng/L to 152 ng/L after primary 

treatment (UASB treatment), before reducing to 12 ng/L after secondary treatment (trickling 

filters). For E3, primary treatment removed 19 %, and secondary treatment removed a further 

80 %.  This increased concentration after primary treatment might be due to accumulation of 

E1 in the UASB reactor before sampling - since grab samples did not take into account the 
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hydraulic retention time and hence may not correctly represent the treatment efficiency 

achieved. Pessoa et al. (Pessoa et al., 2014) reported E1 removal below their detection limits 

(35.4 ng/L) in a WWTP utilizing UASB technology equipped with chlorine post-treatment 

(that may have also contributed to E1 removal). Froehner et al., also reported E1 removal 

below their detection limits (values not reported) from a WWTP using UASB treatment with 

an attached dissolved air flotation reactor (Froehner et al., 2010). Hence, the efficiency of the 

UASB system alone could not be determined from these previous studies. In this study, it was 

the trickling filter post-UASB treatment that removed the majority of the E1 and E3. 

Trickling filter systems have been reported to possess a similar E1 removal capacity as 

activated sludge system, with an achieved removal of 90 – 95 % (Salgado et al., 2010). 

Although some studies have shown they are ineffective (Liu et al., 2015) .There is no report 

of  E3 removal by UASB systems in literature, but up to 90 % removal has been reported in 

trickling filter systems (Gabet-Giraud et al., 2010). 

Table 5-9 Concentration of estrogens in influent and effluent of WWTPs around the world 

Reference Country E3 (ng/L) E1 (ng/L) E2 (ng/L) EE2 (ng/L) 

Influent Effluent Influent Effluent Influent Effluent Influent Effluent 

This study Brazil 625 - 

1548 

12.5 – 

64.3 

50.5 - 

107 

0.1 - 16 <MDL <MDL <MDL <MDL 

Gabet-

Giraud et 

al., 2010 

France 26.8 - 

658 

5.2 – 

47.7 

18.8 - 

170 

0.1 - 58 5.1 – 

37.9 

0.5 – 

11.9 

<10 1.6 – 

4.6 

Salgado et 

al., 2010 

Portugal n.d n.d 189 - 

2484 

25 344 <1 103 – 

106 

<1 

Liu et al., 

2015 

China 53.9 - 

470 

0.2 – 

47.5 

38.6 - 

427 

0.8 - 

116 

17.9 – 

64.8 

1.4 – 

28.1 
n.d n.d 

Liu et al., 

2015 

US 19 - 

167 

0.2 - 5 2.6 – 

66.7 

0.9 – 

22.3 
1 – 

57.6 

0.2 – 

6.4 

n.d n.d 

Liu et al., 

2015 

Italy 31 - 

129 

0.4 - 15 11 - 71 0.3 – 

44.6 
9.5 - 

25 

0.8 – 

3.7 

n.d n.d 

Coleman 

et al., 2010 

Australia 120 - 

270 

60 - 

160 

30 - 75 <1 - 10 <1 <1 <0.1 <0.1 

Pessoa et 

al., 2014 

Brazil n.d n.d <118 - 

3050 

<118 - 

2080 

<38 - 

776 

<38 - 

397 

<1 - 

3180 

<1 - 

176 

Froehner 

et al., 2011 

Brazil n.d n.d 870 - 

1380 
<MDL 1330 - 

2270 

490 - 

760 
600 - 

1260 

<MDL 

- 470 

MDL represents method detection limit 

In WWTP C that utilizes waste stabilization pond technology, the concentration of E1 and E3 

increased after anaerobic pond treatment and was removed by a high degree after facultative 

pond treatment (Table 5-8). This interesting increase in E1 and E3 concentration may be due 

to previous accumulation of these compounds in the anaerobic pond before sampling as 

explained previously. Although deconjugation of E1 and E3 conjugated compounds might 

also have contributed to this (Pessoa et al., 2014). A similar occurrence of increased E3 
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concentration after waste stabilization pond treatment was reported in another study (Coleman 

et al., 2010). WWTP C recorded the highest removal of E1 (99 %) when compared to WWTP 

A and WWTP B. This removal was consistent with those reported by Froehner et al. by WSPs 

(Froehner et al., 2010), but was higher than the 34-82 % reported by Coleman et al., 

(Coleman et al., 2010) and 31 – 62 % reported by Pessoa et al., (Pessoa et al., 2014). The 

98 % E3 removal achieved by the WWTP was also higher than the 26 – 36 % reported in 

another study (Coleman et al., 2010). The relatively poor removal reported by Pessoa et al., 

and Coleman et al., might be due the different system configuration (absence of an anaerobic 

pond and presence of a maturation pond). However, the most important quantities are the 

effluent concentrations and how they compare to PNEC values.  The better estrogen removal 

rate achieved in WWTP C compared to WWTP A and WWTP B might be due to the photo-

oxidizing effect of the WSP, which may have contributed to estrogen removal. This is due to 

increased photo-oxidative potential of the ponds because of the high oxygen concentrations 

and presence of humic substances (Davies-Colley et al., 1999). Furthermore, Coleman et al., 

reported complete photo-degradation of E1 and E3 under UV light in their studies (Coleman 

et al., 2010). 

The effluent concentration of E1 ranged from 0.1 ng/L for WWTP C to 16 ng/L for WWTP 

A. These concentrations were similar to those reported around the world (Luo et al., 2014; 

Liu et al., 2015), but were ten times lower than those reported by other studies in Brazil 

(Pessoa et al., 2014) (Table 5-9). The concentration of E3 in effluent also ranged from 13 

ng/L for WWTP C to 64 ng/L for WWTP A. These concentration were similar to those 

reported in France (Gabet-Giraud et al., 2010), but over ten times higher than those reported 

in Korea (Behera et al., 2011), China (Nie et al., 2012),  and two to five times lower than 

reported levels in another study in Brazil (Coleman et al., 2010) (Table 5-9). Caldwell et al. 

estimated the predicted no effect concentration (PNEC) values in aquatic organisms for E1 

and E3 to be 6 ng/l and 60 ng/L respectively (Caldwell et al., 2012). Only the effluent from 

WWTP C was below the PNEC value for E1 in this study. For E3, the effluent from WWTP 

B and WWTP C were below the PNEC value, while effluent from WWTP A exceeded this 

level.  Exceeding this PNEC values indicates the ineffectiveness of WWTP A and WWTP B 

to remove E1, and E3 for WWTP C in their current format, although river dilution might 

ensure compliance. 
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 Fate and extent of PBDE removal 

BDE 47, 100 and 209 were detected in influent samples of the three WWTPs, BDE 183 was 

detected in WWTP A and WWTP B, BDE 154 was detected in WWTP B and WWTP C, and 

BDE 99 was only detected in WWTP C (Table 5-10, Table 5-11, Table 5-12). Only BDE 28 

was undetected in the influent samples from all plants. The total (aqueous and particulate 

matter) concentration of each BDE was between 13 – 103.2 ng/L (∑PBDE = 194 ng/L) for 

WWTP A, 16 – 143 ng/L (∑PBDE = 222 ng/L) for WWTP B, and 18 – 251 ng/L (∑PBDE = 

270 ng/L) for WWTP C. To the best of author’s knowledge, this is the first time that PBDEs 

have been reported in Brazilian wastewater treatment plants. Furthermore, these determined 

concentrations are similar to reported levels around the world (Clarke et al., 2010; Kim et al., 

2013; Xiang et al., 2014) (Table 5-13).  

Table 5-10 Concentration of BDE congeners in the influent, primary effluent and secondary 

effluent of WWTP A 

Compound Influent (ng/L) P. Effluent (ng/L) S. Effluent  

(ng/L) 

Removal (%) 

 
Total Aqueous Total Aqueous Total Aqueous % Total 

removal 

% Aqueous 

removal 

BDE 28 <MDL <MDL <MDL <MDL <MDL <MDL - - 

BDE 47 44.0 

(6.0) 

9.3 

(0.1) 

<MDL 13.4 

(2.3) 

3.5 

(0.9) 

1.5 

(0.2) 

92.0 62.4 

BDE 99 <MDL <MDL <MDL -<MDL <MDL 0.85 

(0.1) 

- - 

BDE 100 33.5 

(4.5) 

3.9 

(0.2) 

<MDL 6.7 

(0.6) 

<MDL <MDL 100.0 100.0 

BDE 153 <MDL <MDL <MDL <MDL <MDL <MDL - - 

BDE 154 <MDL <MDL <MDL <MDL 7.5 

(0.2) 

1.2 

(0.2) 

- - 

BDE 183 13.1 

(2.4) 

<MDL <MDL <MDL <MDL <MDL 100.0 - 

BDE 209 103.2 

(22.2) 

13.2 

(0.2) 

<MDL 12.9 

(0.8) 

<MDL <MDL 100.0 100.0 

∑PBDE 193.8 26.4 <MDL 33 11.0 3.6 98.1 86.4 

∑PBDE EU 

WFD 

- - - - 11 3.6 85.8 72.7 

-P. and S. represents primary and secondary respectively; MDL represents method detection limit; standard 

deviation in bracket 

About 98 %, 86 % and 95 % PBDE (∑PBDE) removal from the total phase was achieved by 

WWTP A, WWTP B and WWTP C respectively. WWTP C achieved a higher removal of 

PBDEs (94.1 %) from the aqueous phase compared to the 73 % and 43 % achieved by 

WWTP A and WWTP B respectively. 90 % and 22 % of  PBDEs were removed after stage 1 

secondary treatment in WWTP B and WWTP C, while the concentration PBDEs increased 

after primary treatment in WWTP A. The increase in the aqueous concentration of individual 

PBDE congeners (BDE 47, 100 in WWTP A, BDE 47, 100, 183 in WWTP B, and BDE 47 in 
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WWTP C) after primary treatment may be a as result of gradual release of the particulate 

matter-bound compounds in the influent samples into the dissolved/aqueous phase. 

Furthermore, this might also be due to the accumulation of these compounds in the primary 

treatment process before grab-sampling. Hence, these post-primary treatment concentrations 

may not have been representative of the levels in the raw influent. Some other authors have 

reported increased level of BDE 47, and 100 after primary treatment (Clarke et al., 2010) and 

secondary treatment (Daso et al., 2012) in conventional wastewater treatment plants.  

Table 5-11 Concentration of BDE congeners in the influent, primary effluent and secondary 

effluent of WWTP B 

Compound Influent (ng/L) P. Effluent (ng/L) S. Effluent (ng/L) Removal (%) 
 

Total Aqueous Total Aqueous Total Aqueous % Total 

removal 

% Aqueous 

removal 

BDE 28 <MDL <MDL <MDL <MDL <MDL <MDL - - 

BDE 47 41.9 

(3.1) 

12.8 

(1.3) 

<MDL 20 

(2.0) 

4.7 

(1.4) 

4.1 

(0.4) 

88.8 68.0 

BDE 99 <MDL <MDL <MDL 1.3 

(0.1) 

<MDL 1.3 

(0.1) 

- - 

BDE 100 21.3 

(4.3) 

1.9 

(0.1) 

<MDL 2.5 

(0.1) 

<MDL <MDL 100.0 100.0 

BDE 153 16.2 

(3.9) 

<MDL <MDL <MDL 2.1 

(0.1) 

<MDL 87.0 - 

BDE 154 <MDL 4.5 

(2.0) 

<MDL 15.6 

(3.9) 

3.4 

(0.5) 

5.6 

(0.3) 

- 0.0 

BDE 183 <MDL 19.1 

(2.3) 

<MDL 15.4 

(3.5) 

9.8 

(3.7) 

3.8 

(0.2) 

- 80.1 

BDE 209 143.0 

(21.8) 

45.3 

(7.0) 

<MDL 10.0 

(1.2) 

12.1 

(0.1) 

<MDL 91.5 100.0 

∑PBDE 222.4 83.6 <MDL 64.8 32.1 14.8 85.6 82.3 

∑PBDE EU 

WFD 

- - - - 10.2 11.0 87.2 42.7 

-P. and S. represents primary and secondary respectively; MDL represents method detection limit; 

standard deviation in bracket 

The total concentration of PBDE in the effluent of the three studied WWTPs was between 11 

– 32 ng/L (∑PBDE EU WFD congeners = 10 - 13 ng/L).  These concentrations are an order of 

magnitude lower than the EU WFD MAC-EQS and are similar to reported levels in Canada 

(Kim et al., 2013), Australia (Clarke et al., 2010) and China (Xiang et al., 2014; Deng et al., 

2015) (Table 5-13). BDE 209 has been reported to dominate the total concentrations of 

PBDEs founds in wastewater around the world (Peng et al., 2009; Cristale and Lacorte, 

2015). This was also the case in Brazilian wastewaters in this studies as BDE 209 accounted 

for 53 %, 64 % and 93 % of total PBDE concentration in the influent of WWTP A, WWTP B 

and WWTP C respectively. BDE 209 was not detected in the effluent of WWTP A and 

WWTP C, but was found in the effluent of WWTP B at a concentration that will pose risk on 

aquatic organisms – estimated Risk Quotient of 2.5 according to Cristale et al. (Cristale et al., 
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2013). Due to the high Log Kow of PBDEs, sorption onto solids and subsequent removal 

during primary and secondary treatment is expected (Sánchez-Avila et al., 2009).  However, 

biodegradation can also play a major role in their removal, and their biodegradability was 

studied in Section 5.3.3. Biodegradation of PBDEs can occur under both aerobic and 

anaerobic conditions (Xia, 2013). 

Table 5-12 Concentration of PBDE congeners in the influent, primary effluent and secondary 

effluent of WWTP C 

Compound Influent (ng/L) P. Effluent (ng/L) S. Effluent (ng/L) Removal (%) 
 

Total Aqueous Total Aqueous Total Aqueous % Total 

removal 

% Aqueous 

removal 

BDE 28 <MDL <MDL <MDL <MDL <MDL <MDL - - 

BDE 47 <MDL 2.6 

(0.3) 

<MDL 9.8 

(2.8) 

3.9 

(0.7) 

2.9 
(0.5) 

- 0.0 

BDE 99 <MDL 4.0 
(0.9) 

<MDL 1.3 

(0.1) 

3.1 

(0.6) 

2.8 

(0.3) 

- 30.0 

BDE 100 18.4 

(0.1) 

<MDL <MDL <MDL 1.5 

(0.1) 

<MDL 91.8 - 

BDE 153 <MDL <MDL <MDL <MDL 2.6 

(0.2) 

1.3 - - 

BDE 154 <MDL 4.5 

(0.9) 

<MDL 1.5 

(0.2) 

1.7 

(0.4) 

1.1 

(0.3) 

- 75.6 

BDE 183 <MDL <MDL <MDL 1.7 

(0.3) 

1.0 

(0.1) 

0.7 

(0.1) 

- - 

BDE 209 251.2 

(20.4) 

136.9 <MDL <MDL <MDL <MDL - - 

∑PBDE 269.6 148.0 <MDL 14.3 13.8 8.8 94.9 94.1 

∑PBDE EU 

WFD 

- - - - 12.8 8.1 30.4 27.0 

P. and S. represents primary and secondary respectively; MDL represents method detection limit; standard 

deviation in bracket 

Table 5-13 Concentration of total PBDEs in influent and effluent of WWTPs around the 

world 

Reference Country PAHs in total phase  

(ng/L) 

PAHs in aqueous phase 

(ng/L) 

Influent Effluent Influent Effluent 

This study Brazil 198 - 269 11.1 – 32.2 26.4 - 148 3.6 – 14.8 

Clark et al., 

2009 

Australia 42 - 100 0.14 – 0.71 n.d n.d 

Kim et al., 

2013 

Canada 20 - 1000 1 - 250 n.d n.d 

Xiang et al., 

2014 

China 5.3 – 27.9 1.5 – 7.7 1.0 – 13.6 0.5 – 3.4 

Peng et al., 

2013 

China 566 4 n.d n.d 

North et al., 

2004 

U.S. n.d 29.1 n.d n.d 

Daso et al., 

2012 

South Africa 310 - 2720 102 – 9800 n.d n.d 

Busetti et al., 

2006 

Italy 3.8 1.1 0.2 0.07 

-n.d stands for not determined 
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 Biodegradation of the selected micropollutants under different redox 

conditions 

 Biodegradation of triclosan under different redox conditions and inocula 

5.3.3.1.1 Biotransformation of triclosan with activated sludge inocula under aerobic 

conditions 

Under aerobic conditions, triclosan concentration in the batch tests decreased by 74 % over 

the duration of the experiment (168 hours) (Figure 5-7). Chen et al., reported a similar 

observation of 86 % degradation of triclosan spiked at 500 µg/L after 168 hours (Chen et al., 

2011). The biodegradation of triclosan was assumed to follow first order kinetics (R2 = 0.78) 

with a rate constant of 0.0072 h-1 and an estimated half-life of 96 hours (Figure 5-7), although 

a scatter around first order kinetics and distinct multiple phases were observed. This rate is 

similar to those reported by (Chen et al., 2011) , but slower than those reported by 

(Armstrong et al., 2018) –perhaps due to the two folds lower starting concentration (Table 

5-14). 

  

Figure 5-7 Degradation of triclosan with activated sludge inocula under aerobic conditions  

Table 5-14 First order degradation rates of triclosan with activated sludge inocula in different 

studies 

Inoculum Temp. 

(oC) 

Concentration 

spiked 

Rate (k) 

(h-1) 

Sk Half-life 

(t1/2) (h) 

References 

Activated sludge 

(MLSS 3.3 g/L) 

20 1000 µg/L 0.0072 0.0015 96 This study 

Activated sludge 

(MLSS 4.0 g/L) 

17 500 µg/L 0.0095 - 73 Chen et al., 

2011 

Activated sludge 

(MLSS 5.0 g/L) 

21 23 µg/g 0.0170  - 41 Armstrong et 

al., 2018 

k represents the first order rate constant, Sk represents standard error of the rate constant, and t1/2 represents 

the half-life. 

y = -0.0072x + 7.3859
R² = 0.7762
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Methyl triclosan was produced in the batch tests, and concomitantly increased with decreasing 

triclosan concentration (Figure 5-8), thereby supporting reports that methyl triclosan is 

biotransformation product of triclosan under aerobic conditions (Heidler and Halden, 2007).  

Methyl triclosan is known to more persistent, bio-accumulative and lipophilic than triclosan 

(Lindström et al., 2002; Balmer et al., 2004). 

 

 

However, only 4.8 % of triclosan was biotransformed to methyl triclosan which suggests the 

formation of other major triclosan transformation products. Phenol, catechol and 2, 4- 

dichlorophenol have been identified as the major bio-transformation products of triclosan 

under aerobic conditions with pure bacteria strains isolated from activated sludge (Veetil et 

al., 2012). The observed methylation of triclosan in this study (4.8 %) was higher than the 

1 % reported by (Chen et al., 2011) but lower than the 42 % reported by (Armstrong et al., 

2018).  

Surprisingly, results from the inactivated control (autoclaved sludge) showed losses after 168 

hours. This was either due to incomplete inactivation of the inocula during the autoclaving 

process described by Helbing et al. (Helbling et al., 2012) or problems with the autoclave. It 

is possible that some bacteria (or their spores) were not killed by the double autoclaving and 

may have regrown at the incubation temperature (25 – 29.5 oC), which differed largely from 

the incubation temperature of 20 oC used by Helbling and in our previous work (Section 

4.2.3). The methylation of triclosan observed in the inhibition control (Figure 5-8) indicated 

incomplete inactivation of the sludge, since such a transformation is unlikely to occur without 

a biological catalyst. Therefore, associated reductions of triclosan in this control may be 

attributed to biodegradation, not abiotic losses.  
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Figure 5-8 Disappearance of triclosan and formation of methyl triclosan under aerobic 

conditions over time (a) in reactor, (b) in inactivated control 
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5.3.3.1.2 Biotransformation of triclosan with WSP (facultative) inocula under aerobic 

conditions  

Degradation of triclosan under aerobic condition using facultative inocula obtained from a 

WSP (WWTP C) was observed. The concentration of triclosan decreased by 63 % and 92 % 

under light and dark conditions respectively over the duration of the experiment (15 days) 

(Figure 5-10; Figure 5-9).  

 

 

 

 

 

 

 

The biodegradation of triclosan was assumed to follow first order kinetics under the light and 

dark conditions with a half-life of 12 days and 4 days respectively (Table 5-15; Figure 5-9), 

although a scatter around first order kinetics and distinct multiple phases were observed 

Triclosan degraded about three times faster in the dark condition with a rate constant of 

0.1752 h-1 compared to 0.0566 h-1 in light conditions. Photodegradation has been reported to 

play a role in triclosan elimination from the environment due to its degradation when 

irradiated with UV light and sunlight (Chen et al., 2008; Buth et al., 2010; Tamura and 

Yamamoto, 2012). A study reported 63 % photodegradation of triclosan (at a first order rate 

of 0.087 d-1) and formation of 2,8-Dichlorodibenzo-p-dioxin (2,8-DCDD) in fresh water after 

irradiation with white light (fluorescent lamp), and no degradation under dark conditions 

(Aranami and Readman, 2007). The reverse was the case in our study with facultative inocula 

where triclosan degraded quicker under dark conditions. This might be due to competition 

between the increasing number of autotrophic bacteria and heterotrophs for nutrients under 

light conditions leading to less degradation of triclosan. On the other hand, the death of 

autotrophs and subsequent release of nutrients might have favoured the cometabolic 

degradation of triclosan by the heterotrophs. Anaerobic conditions were not maintained in 

these experiments (this was a facultative pond inoculum), and the co-existence of aerobic and 

anaerobic conditions might have different effect on the system. 
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Figure 5-9 Degradation of triclosan with facultative inocula under aerobic 

conditions 
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Figure 5-10 Degradation of triclosan with WSP facultative inocula under light and dark aerobic 

conditions with real time temperature variations 

Similar to the aerobic experiment with activated sludge, the inactivated control (autoclaved 

inocula) also showed disappearance of triclosan, most likely as a result of higher incubation 

temperature (26 – 34.5 oC) used in this experiment compared to the 20 oC employed in most 

other studies that have inactivated their control biomass by autoclaving or failure of the 

autoclave. However, the uncontrolled temperature approach has the benefit of mimicking real-

life temperature variations in these systems. The observed triclosan degradation in this 

experiment suggests that biodegradation played an important role in triclosan removal in 

WWTP C. 

Table 5-15 First order degradation rate constant of triclosan with facultative inocula under light 

and dark aerobic conditions.  

 Disappearance of triclosan  

 Cs (µg/L) Cf (µg/L) k (d-1) Sk R2 t1/2 (d) 

Light 925 341 0.0566 0.0863 0.7116 12.2 

Dark 995 80 0.1752 0.0208 0.5789 4.0 

Cs and Cf represents starting and final concentration respectively; k represents the degradation rate; t1/2 
represents half-live; Sk represents standard error of the rate constant, and t1/2 represents the half-life. 
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5.3.3.1.3 Biotransformation of triclosan with UASB inocula under anaerobic conditions 

After 15 days of inoculation, only a slight reduction of triclosan was observed under 

anaerobic condition (Figure 5-11). The measured concentration of triclosan at the start of the 

experiment of 3397 ± 790 µg/L remained at a similar level after 15 days (2945 ± 45 µg/L). 

Also, methylation of triclosan was not observed in these anaerobic batch tests as the 

concentration of methyl triclosan remained unchanged throughout the experiment (result not 

shown). Chen et al. also reported no significant biodegradation of triclosan under anaerobic 

conditions with mixed culture inocula (Chen et al., 2011). However, 60 – 90 % degradation of 

triclosan under anaerobic conditions by pure bacteria strains inoculated from anaerobic sludge 

has been reported (Veetil et al., 2012). The lack of triclosan biodegradation under anaerobic 

condition indicates that the removal achieved by the UASB reactor in WWTP B (where the 

inocula was sourced) was solely due to sorption.  

 

 

 

 

 

 

 

 

Figure 5-11 Concentration of triclosan in anaerobic batch tests inoculated with UASB sludge. 

Control represents autoclaved inocula 
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 Biodegradation of PAHs under different redox conditions and inocula 

5.3.3.2.1 Biotransformation of PAHs with activated sludge inocula under aerobic 

conditions 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-12 Degradation of low molecular weight PAHs under aerobic conditions with 

activated sludge inocula from WWTP A. Error bars represents standard deviation of 

triplicate measurements 
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Reduction of low molecular weight (LMW) PAHs ranged from 64 % for anthracene and 97 % 

for naphthalene after 144 hours (Figure 5-12). By comparison, reduction of middle molecular 

weight (MMW) PAHs ranged from 57 % for chrysene to 61 % for fluoranthene (Figure 5-13), 

while high molecular weight PAHs ranged from 56 % for benzo(b)fluoranthene to 21 % for 

dibenz(a,h)anthracene (Figure 5-14). The inactivated control (autoclaved activated sludge) 

showed reduction of some LMW PAHs- suggesting that volatilization contributed to the 

reduction of LMW PAHs (naphthalene, acenaphthylene, acenaphthene and fluorene) as reported 

in previous experiment (Section 4.5.4). Volatilization tendency for these four chemicals were 

estimated to be between 0.5 – 2 % at 25 oC and atmospheric pressure (see calculation in 

Appendix C- 8.3), but aeration during activated sludge treatment has been reported to 

intensify volatilization rates (Luo et al., 2014). Lighter PAHs tend to volatilise as a result of 

their relatively lower melting point and higher water solubility compared to heavier PAHs (Trably 

et al., 2005).  

 

 

 

Figure 5-13 Degradation of middle molecular weight PAHs under aerobic conditions 

with activated sludge inocula from WWTP A. Error bars represent standard deviation of 

triplicate measurements 
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The half-lives and rate constants for the degradation of LMW PAHs and MMW/HMW PAHs 

were calculated from the data between 0 h - 144 h (0 h – 96 h for naphthalene), and 24 h to 

144 h respectively.  The data at 0 h was omitted in these calculations for MMW and HMW 

PAHs due to the observed adaptation phase (where the concentration of the PAHs increased 

probably due to equilibration and solubilisation) in the growth curve. Furthermore, data at 6 

hours was omitted for HMW PAHs as there appeared to be issues associated with 

measurement of these chemicals at this point. Regression analysis showed that these omitted 

data points gave large residual values and its inclusion lead to poorer R2 values. 

Figure 5-14 Degradation of high molecular weight PAHs under aerobic conditions with 

activated sludge inocula from WWTP A. Error bars represent standard deviation of triplicate 

measurements 
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Table 5-16 Degradation rate constants (k) of degraded PAHs under aerobic conditions with 

activated sludge inocula. 

Compound Cs (µg/L) Cf (µg/L) k (h-1) Sk R2 t1/2 (h) 

Naphthalene 261 7 0.0340 0.0049 0.9238 20.4 

Acenaphthylene 190 15 0.0180 0.0033 0.8585 38.5 

Acenaphthene 283 23 0.0165 0.0013 0.9684 42.0 

Fluorene 261 32 0.0134 0.0011 0.9680 51.7 

Phenanthrene 287 42 0.0126 0.0010 0.9721 55.0 

Anthracene 111 40 0.0082 0.0012 0.8984 84.5 

Fluoranthene 271 106 0.0064 0.0017 0.8229 108.3 

Pyrene 259 143 0.0039 0.0016 0.6054 177.7 

Benz(a)anthracene 286 139 0.0051 0.0013 0.9560 135.9 

Chrysene 345 149 0.0061 0.0013 0.8693 113.6 

Benzo(b)fluoranthene 306 146 0.0055 0.0014 0.7968 126.0 

Benzo(a)pyrene 240 149 0.0034 0.0013 0.6015 203.8 

Indeno(1,2,3-cd)pyrene 231 166 0.0032 0.0029 0.2227 216.6 

Dibenz(a,h)anthracene 200 158 0.0022 0.0020 0.2334 315.0 

Benzo(ghi)perylene 216 158 0.0024 0.0008 0.7084 288.8 

 Cs and Cf represents starting and final concentration respectively; k represents the degradation rate; t1/2 
represents half-live; Sk represents standard error of the rate constant, and t1/2 represents the half-life. 

 

The biodegradation of PAHs was assumed to follow first order kinetics and their half-lives 

ranged from 20 – 347 hours (Table 5-16), although a scatter around first order kinetics and 

distinct multiple phases were observed. The half-lives and first order rate constants of LMW 

PAHs ranged from 20 – 85 hours (naphthalene to anthracene) and 0.0340  – 0.0082 h-1 

(naphthalene to anthracene) respectively. Since volatilization was observed to contribute the 

removal of some LMW PAHs, their first order volatilization rates were estimated (Figure 

8-17, Section 8.4) and they ranged from 0.0291 h-1 for naphthalene, 0.0167 h-1 for 

acenaphthylene, 0.0147 h-1 for acenaphthene and 0.0063 h-1 for fluorene. .In comparison, 

slower rates and longer half-lives were observed for MMW PAHs with half-lives and rate 

constants ranging from 110 – 182 h (fluoranthene- pyrene) and 0.0063 – 0.0038 h-1 

(fluoranthene- pyrene) respectively (Table 5-16). HMW PAHs were the slowest to degrade 

with half-lives and rate constants ranging from 131 – 347 hours and 0.0053 – 0.0020 h-1. This 

further suggests that degradation rates of PAHs increases from light to heavier PAH under 

aerobic conditions, and agrees with findings by several reports in literature  (Trably et al., 

2005; Ghosal et al., 2016).   
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5.3.3.2.2 Biotransformation of PAHs with WSP (facultative) inocula under aerobic 

conditions 

Degradation of 15 PAHs under aerobic conditions with facultative inocula was observed in 

the presence and absence of white light (fluorescent bulb placed 20 cm from the reactors) 

(Figure 5-15, Figure 5-16, Figure 5-17). The inactivated control (autoclaved sludge) failed in 

this experiment, so abiotic losses could not be accounted for. The reduction of LMW PAHs 

ranged from 80 – 98 % and 79 – 99 % (anthracene to naphthalene) under light and dark 

conditions respectively (Figure 5-15). In comparison, the reduction of MMW PAHs was less, 

ranging from 30 – 74 % and 22 – 79 % (chrysene to fluoranthene) under light and dark 

conditions respectively (Figure 5-16).  

 

 

 

 

Unsurprisingly, the extent of degradation of HMW PAHs was lowest, ranging from 31 – 45 % 

and 8.2 % to 32 % (benzo(b)fluoranthene to benzo(a)pyrene) under the light and dark conditions 

respectively (Figure 5-17).  

Figure 5-15 Degradation of low molecular weight PAHs under aerobic conditions with 

facultative pond inocula (a) Light, (b) Dark (Error bars replicate standard deviation of 

triplicate measurements 
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The degradation of PAHs was assumed to follow first order kinetics with half-lives ranging 

from 2 – 34 days and 2 – 77 days under light and dark conditions (Table 5-17, Figure 5-15, 

Figure 5-16, Figure 5-17); although a scatter around first order kinetics and distinct multiple 

phases were observed. Degradation was slower with increasing molecular weight of the PAHs 

since rate constants were between 0.0863 to 0.3833 d-1, 0.0253 – 0.1024 d-1 and 0.0090 to 

0.0490 d-1 for LMW, MMW and HMW PAHs respectively (Table 5-17). Similar degradation 

rates and half-lives were observed for LWM PAHs under light (2   days) and dark (2 days) 

Figure 5-17 Degradation of high molecular weight PAHs under aerobic conditions with 

facultative pond inocula (a) Light, (b) Dark (Error bars replicate standard deviation of 

triplicate measurements. 
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Figure 5-16 Degradation of middle molecular weight PAHs under aerobic conditions 

with facultative pond inocula (a) Light, (b) Dark (Error bars replicate standard deviation 

of triplicate measurements. 
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conditions with similar rate constants, except for phenanthrene  and anthracene, where the 

reaction was relatively faster in the light (half-life = 2 and 5 days respectively in light, 3 and 8 

days in the dark) (Table 5-17). The degradation of MMW PAHs was faster under light (half-

lives ranging from 8 – 23 days) than dark conditions (half-lives ranging from 7.7 – 27 days). 

Similarly, degradation of HMW PAHs was faster in the light (half-lives between 14 – 24 

days), than dark conditions (half-lives between 18 – 77 days).  

Photolysis has been reported as major abiotic degradation process for PAHs either via direct 

photooxidation (radiation absorbed directly by PAHs) or photosensitization (transformation 

mediated by other light absorbing substances) (Bertilsson and Widenfalk, 2002; Saeed et al., 

2011). This explains the observed faster degradation under light conditions. Furthermore, 

photolytic degradation has been reported to be more rapid in higher molecular weight PAHs 

due to their lower quantum yields that leads to increased photoreactivity by a better overlap of 

their adsorption to solar spectrum (Kochany and Maguire, 1994). This explains the extent of 

high molecular weight PAHs photodegradation in presence of light compared to low and 

middle molecular weight one in this study. 

Table 5-17 Degradation rate constants (k) of degraded PAHs under aerobic conditions with 

facultative inocula in the light and dark 

  Light  Dark 

Compound k (d-1) Sk R2 t1/2 (d) k (d-1) Sk R2 t1/2 

(d) 

Naphthalene 0.2890 0.0957 0.8202 2.4 0.3046 0.1034 0.8144 2.3 

Acenaphthylene 0.3129 0.1447 0.7004 2.2 0.3337 0.1677 0.6644 2.1 

Acenaphthene 0.3443 0.0848 0.8917 2.0 0.3833 0.0839 0.9125 1.8 

Fluorene 0.2472 0.0323 0.9514 2.8 0.2641 0.0461 0.9164 2.6 

Phenanthrene 0.2995 0.0351 0.9605 2.3 0.2111 0.0336 0.9292 3.3 

Anthracene 0.1313 0.0603 0.6123 5.3 0.0904 0.0371 0.7483 7.7 

Fluoranthene 0.0863 0.0265 0.7792 8.0 0.1024 0.0258 0.8402 6.8 

Pyrene 0.0787 0.0286 0.7165 8.8 0.0947 0.0241 0.8378 7.3 

Benz(a)anthracene 0.0347 0.0150 0.6395 20.0 0.0257 0.0169 0.4343 27.0 

Chrysene 0.0305 0.0102 0.7503 22.7 0.0253 0.0143 0.5117 27.4 

Benzo(b)fluoranthene 0.0330 0.0161 0.5856 21.0 0.0173 0.0165 0.2704 40.1 

Benzo(a)pyrene 0.0490 0.0180 0.7123 14.1 0.0385 0.0143 0.7065 18.0 

Indeno(1,2,3-cd)pyrene 0.0388 0.0081 0.6831 17.9 0.0169 0.0066 0.8851 41.0 

Dibenz(a,h)anthracene 0.0322 0.0057 0.9142 21.5 0.0090 0.0038 0.6535 77.0 

Benzo(ghi)perylene 0.0291 0.0145 0.5711 23.8 0.0184 0.0126 0.4155 37.7 

 Cs and Cf represents starting and final concentration respectively; k represents the degradation rate; t1/2 

represents half-live; Sk represents standard error of the rate constant, and t1/2 represents the half-life. 

  



143 

 

5.3.3.2.3 Biotransformation of PAHs with UASB inocula under anaerobic conditions 

Biodegradation of the 15 investigated PAHs (ranging from high – middle molecular weight 

PAHs) was not observed under anaerobic condition with UASB inocula in 15 days (Figure 

5-18). Furthermore, the concentration of the 15 PAHs in the inhibition and abiotic control 

(data not shown) remained at the same level throughout the experiment. This indicates that 

none of the PAHs, especially the low molecular weight PAHs, were lost due to volatilization 

or non-biological degradation. These results suggests that removal of PAHs observed after 

UASB treatment in WWTP B was mostly due to adsorption onto solids and volatilization (for 

LMW PAHs). 

 

 

 

 

 

 

 

 

 

  

Figure 5-18 Degradation of PAHs under anaerobic conditions with UASB 

inocula from WWTP B 
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 Biodegradation of estrogens under different redox conditions and inocula 

5.3.3.3.1 Biotransformation of estrogens with activated sludge inocula under aerobic 

conditions 

The reduction of all four estrogens observed in the experiment was solely due to 

biodegradation as no sign of abiotic losses was indicated by the inactivated control 

(autoclaved sludge) (Appendix B- 8.2). The concentration of E1, E2, E3 decreased by 99 % in 

72 hours in the batch tests; with the most reduction (96 – 99 %) occurring within 24 hours 

(Figure 5-19). EE2 was also reduced by 88 % after 72 hours (Figure 5-19). Rapid 

transformation and high removal rate of E3, E2, E1 and EE2 has been reported to occur under 

nitrifying conditions with activated sludge and ammonia oxidizing bacteria (Haiyan et al., 

2007; Dytczak et al., 2008; Gaulke et al., 2008). In our study, E3 and E1 were the least 

adsorbed estrogen as 96 – 97 % and 92 – 96 % respectively was present in the aqueous phase, 

compared to EE2 (25 – 47 %) and E2 (8.2 – 8.5 %). This might be due to their water 

solubility and Log Kow (2.47 for E3, 3.13 for E1, 3.67 for EE2 and 4.10 for E2) (Liu et al., 

2009) and implies that the relatively highly hydrophobic EE2 and E2 possess higher tendency 

of adsorption when compared to E3 and E1, hence, their removal in treatment plants can be 

partly due to adsorption (Urase and Kikuta, 2005; Wang et al., 2013a). 

 

 
Figure 5-19 Degradation of estrogens under aerobic conditions with activated sludge 

inocula from WWTP A. Error bars represents standard deviation of triplicate 

measurements 
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Table 5-18 Degradation rate constants (k) of degraded estrogens under aerobic conditions with 

activated sludge inocula.  

Compound Sludge 

conc. (g/L) 

Temp. 

(oC) 

Cs (µg/L) k (h-1) Sk t1/2 (h) References 

E1 4.3 20 76.0* 0.1261 0.0163 5.5 This study 

 2.7 30 1000 0.0560 - 12.4 Shi et al., 2004 

1.0 18 0.1 0.3500 - 2.0 Petrie et al., 2014 

E2 4.3 20 42.1* 0.1496 0.0145 4.6 This study 

 2.7 30 1000 1.3000 - 0.5 Petrie et al., 2014 

 1.0 18 0.1 0.2700 - 2.6 Shi et al., 2004 

E3 4.3 20 211* 0.1426 0.0217 4.9 This study 

 2.7 30 1000 0.0300 - 23.1 Petrie et al., 2014 

 1.0 18 0.1 0.3300 - 2.1 Shi et al., 2004 

EE2 4.3 20 87.1* 0.0331 0.0030 20.9 This study 

 2.7 30 1000 0.0350 - 19.8 Petrie et al., 2014 

Cs represents spiked concentration;*measured concentration reported (spiked at 100 µg/L; k represents the 

degradation rate; Sk represents standard error of the rate constant, t1/2 represents half-live, 

  

The biotransformation of the all four estrogens was suggested to follow first order kinetics 

with estimated half-lives of 5.5 h, 4.6 h, 4.9 h, and 20.9 h for E1, E2, E3 and EE2 respectively 

(Figure 5-19, Table 5-18); although a scatter around first order kinetics and distinct multiple 

phases were observed Furthermore, the rate constants estimated for E2 (0.1496 h-1) and E3 

(0.1426 h-1), were not significantly different from each other (p-value > 0.05, one-way 

ANOVA), while E1 (0.1261 h-1), and EE2 (0.0331 h-1) were significantly different (p-value < 

0.05, one-way ANOVA). Reported degradation rates of estrogens varies greatly in the 

literature because the biodegradation assays are conducted under different temperatures, 

inocula concentration and spiked concentrations (Liu et al., 2015) (Table 5-18). The 

degradability of the estrogens in our study is E3/E2 > E1 > EE2. This observation is in 

agreement with previous studies (Petrie et al., 2014; Liu et al., 2015). However, Shi et al., 

reported that E3 was the most resistant to aerobic degradation (Shi et al., 2004) (Table 5-19). 
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5.3.3.3.2 Biotransformation of estrogens with WSP (facultative) inocula under aerobic 

conditions  

The reduction of all four estrogens was observed in the aerobic batch tests under light and 

dark conditions (Figure 5-20). Although, no other studies have used facultative inocula in 

their experiments, the degradation trend observed was similar to those reported with activated 

sludge inocula (Dytczak et al., 2008). About 99.5 % of E1, E2 and E3 were degraded after 15 

days under the light and dark conditions (Figure 5-20). Also, more EE2 was degraded under 

light conditions (99.5%), than in the dark (93.5%) after 15 days (Figure 5-20).  Most of the 

losses of E1, E2 and E3 (>95 %) occurred within 8 days and 12 days under dark and light 

conditions respectively. However, degradation of EE2 was slower, and was mostly removed 

after 12 days. 

The degradation of all four estrogens under light and dark incubation conditions was 

suggested to follow first order kinetics (Figure 5-20), although a scatter around first order 

kinetics and distinct multiple phases were observed. The reaction kinetics was similar for E1 

and E3 under both light and dark conditions with estimated rate half-lives of 1.4 days (Table 

5-19). Meanwhile the degradation reaction kinetics was faster under light conditions for E2 

and EE2. The rate constant of E2 (half-life of 1.6 days) was 0.4368 d-1 under light conditions, 

compared to 0.3888 d-1 (half-life of 1.8 days) under dark conditions. Also, the degradation 

rate almost doubled in the light (k = 0.3024 d-1, half-life = 2.3 days) for EE2 compared to the 

dark conditions (k = 0.1632 d-1, half-life = 4.2 days) (Table 5-19). 
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This enhanced degradation E2 and EE2 under light conditions was due to photolysis in which 

the compounds might have degraded directly by absorption of photons or through 

photosensitization (Zhang and Zhou, 2005; Sornalingam et al., 2016). A review of several 

publications on the photodegradation of estrogens published recently by Sornalingam et al. 

reports photodegradation of estrogens under different light sources (sunlight, visible light, UV 

light- with UV light most effective) and water matrixes (Sornalingam et al., 2016). It was 

established that the rate of photodegradation of estrogens is influenced by light source and 

intensity, and solution matrix (Sornalingam et al., 2016). In fact, the same light source was 

Figure 5-20 Degradation of estrogens under aerobic conditions with facultative inocula 

from WWTP C under (a) light and (b) dark conditions. Error bars represents standard 

deviation of triplicate measurements  
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reported to have different effects on individual estrogens, as E1, E2 and EE2 were removed at 

a similar rate under catalysis, but removal followed the order EE2 > E1 > E2 under UVA light 

(Coleman et al., 2004). This might explain the observed photodegradation of E2 and EE2, and 

not for E1 and E3 as individual chemicals can behave differently sometimes. 

Table 5-19 Degradation rate constants (k) of estrogens under aerobic conditions with facultative 

inocula in the light and dark 

  Light  Dark 

Compound k (d-1) Sk R2 t1/2 

(d) 

k (d-1) Sk R2 t1/2 

(d) 

E1 0.4920 0.1246 0.8384 1.4 0.5064 0.1661 0.7564 1.4 

E2 0.4368 0.0830 0.9024 1.6 0.3888 0.0884 0.8663 1.8 

E3 0.4872 0.1080 0.8713 1.4 0.5016 0.1318 0.8279 1.4 

EE2 0.3024 0.1304 0.6433 2.3 0.1632 0.0549 0.7491 4.2 
 k represents the degradation rate; Sk represents standard error of the rate constant, t1/2 represents half-live 

5.3.3.3.3 Biotransformation of estrogens with UASB inocula under anaerobic conditions 

After 15 days of incubation, no reduction of E1, E2, E3 and EE2 was observed in the 

anaerobic batch tests as the concentration levels remained the same (Figure 5-21). The levels 

of E1, E2, E3 and EE2 also stayed the same for 15 days in the inhibition control, indicating no 

abiotic losses or non-biological degradation (result not shown). This observation is in contrast 

with previous studies that have reported anaerobic degradation of estrogens, especially E1 and 

E2 (Andersen et al., 2004; Zhang et al., 2015). However, several other studies reported the 

resistance of EE2 to degradation under anaerobic conditions (Joss et al., 2004; Czajka and 

Londry, 2006). Furthermore, anaerobic degradation of E3 has not been reported in any study 

to my knowledge, even though it is the most easily degraded estrogen under aerobic 

conditions. Either activated sludge or lake sediment was used as inocula in the previous 

studies that reported anaerobic degradation of estrogens. UASB sludge was used as inocula in 

this study, and this might explain the lack of degradation when compared to past studies.   
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 Biodegradation of PBDEs under different redox conditions and inocula 

5.3.3.4.1 Biotransformation of PBDEs with WSP (facultative) inocula under aerobic 

conditions  

Reduction in the concentration of individual PBDE congeners ranged from 40 – 63 % and 42 

– 63 % under light and dark conditions respectively (Figure 5-22). Furthermore, degradation 

of the most abundant congener BDE 209 was 40 % and 57 % under light and dark conditions 

respectively. Similar results were reported by Stiborova et al. where degradation of BDE 28 

to BDE 209 was between 62 – 78% after 11 months of studies in aerobic reactors inoculated 

with sewage sludge and placed in the dark (Stiborova et al., 2015).  

The degradation of the PBDE congeners was assumed to follow first order kinetics with half-

lives ranging from 10.4 – 24.3 days and 10 – 11.5 days under light and dark conditions 

respectively (Table 5-20, Figure 5-22); although a scatter around first order kinetics and 

distinct multiple phases were observed. The rate constants of individual PBDE congers under 

the light and dark conditions were significantly different from each other (p < 0.05, one-way 

ANOVA). The degradation rates were relatively faster in the dark conditions with rate 

constants between 0.0599 – 0.0692 d-1 and 0.0285 – 0.0666 d-1 in dark and light conditions 

respectively. This was true for all the congeners except BDE 28, where the rate was faster 

under white light. This is surprising as photodegradation has been suggested as an important 

abiotic biotransformation process for PBDEs in the environment, with an observed 

debromination of heavily brominated congeners (such as BDE 209, BDE 183) to less 
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Figure 5-21 Degradation of estrogens under anaerobic conditions 

with UASB inocula from WWTP B 
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brominated ones (such as BDE 28, BDE 47) (Ahn et al., 2006; Davis and Stapleton, 2009; 

Pan et al., 2016).  

A recent review on photodegrdation of PBDEs by Pan et al. showed reductive debromination 

of PBDEs in different aquatic systems with a range of irradiation sources (xenon or mercury 

or UV lamps, sunlight (Pan et al., 2016). They also suggested that chemical species such as 

humic substances and ions (halides and metals) present in the aquatic systems strongly 

influences photochemical transformations.  Furthermore, the source and intensity of light 

affects photolytic degradation of pollutants (Sornalingam et al., 2016). In this study, the 

chemical species of the system and the light source (white fluorescent light) might not have 

facilitated photodegradation, and losses of PBDEs observed was biodegradation by the 

present microflora. Furthermore, the increased reaction kinetics in the dark might have been 

due to the death of autotrophs over time leading to more available nutrients for the 

heterotrophs to co-metabolically degrade the PBDEs.  
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Figure 5-22 Degradation of PBDEs under aerobic conditions with facultative inocula from 

WWTP C. Error bar represents standard deviation of triplicate measurements 
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Table 5-20 Degradation rate constants (k) of PBDEs under aerobic conditions with facultative 

inocula in the light and dark 

  Light  Dark 

Compound k (d-1) Sk R2 t1/2 

(d) 

k (d-1) Sk R2 t1/2 

(d) 

BDE 28 0.0666 0.0149 0.8829 10.4 0.0599 0.0097 0.9966 11.6 

BDE 47 0.0612 0.0217 0.7255 11.3 0.0692 0.0179 0.8323 10.0 

BDE 99 0.0626 0.0157 0.8411 11.1 0.0648 0.0131 0.8911 10.7 

BDE 100 0.0590 0.0146 0.8454 11.7 0.0677 0.0179 0.8269 10.2 

BDE 153 0.0575 0.0175 0.7832 12.1 0.0645 0.0166 0.8336 10.7 

BDE 154 0.0578 0.0203 0.7294 12.0 0.0670 0.0165 0.7584 10.3 

BDE 183 0.0479 0.0137 0.8027 14.5 0.0616 0.0133 0.8773 11.3 

BDE 209 0.0285 0.0101 0.7252 24.3 0.0604 0.0211 0.7320 11.5 
k represents the degradation rate; Sk represents standard error of the rate constant; t1/2 represents half-live 

5.3.3.4.2 Biotransformation of PBDEs with UASB inocula under anaerobic conditions 

After 15 days of incubation, no reduction of the eight PBDEs investigated was observed 

under anaerobic conditions with UASB inocula (Figure 5-23). This was surprising as there 

have been several reports of debromination of PBDEs by dehalogenating bacteria under 

anaerobic conditions (Gerecke et al., 2005; He et al., 2006; Xia, 2013). Yen et al. reported 

less than 20 % anaerobic degradation of BDE 47, BDE 99, BDE 100, BDE 153, and BDE 154 

after 70 days with mixed culture inocula sourced from river sediment (Yen et al., 2009). 

Gereke et al. also reported 30 % debromination and degradation of BDE 209 within 238 days 

with digested sewage sludge under anaerobic conditions (Gerecke et al., 2005). Both studies 

reported poor degradation of PBDEs after several months. This explains why degradation of 

PBDEs was not observed in this study, as the incubation period was comparatively low (15 

days). Consequently, these compounds will not degrade during UASB treatment of 

wastewater in real WWTPs. This explains the poor removal of PBDEs in the aqueous phase 

after UASB treatment in WWTP B.  
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Figure 5-23 Degradation of PBDEs under anaerobic conditions with UASB inocula from 

WWTP B 
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 Comparing the degradation rates of the different classes of chemicals under 

aerobic condition 

The degradation rates of the different chemicals were compared to understand the effect of 

their chemical structure and functional groups on their degradability Among the different 

classes of chemicals investigated, estrogens degraded more rapidly with their average reaction 

rate 7, 16, 21 and 34 times higher than those for low molecular weight (LWM) PAHs, 

triclosan,  middle molecular weight (MMW) PAHs and high molecular weight (HMW) PAHs 

respectively (Table 5-21). LMW PAHs degraded two times faster than triclosan on average. 

Degradation of triclosan was slightly faster (1.3 times) than MMW PAHs but was 2 times 

faster than HMW PAHs (Table 5-21). The difference in chemical; structure and functional 

groups among the chemical classes influenced their biodegradation abilities- as previously 

explained in Section 4.5.6.  

Table 5-21 Comparing the degradation rates of different classes of chemicals under aerobic 

conditions with activated sludge inocula 

Compound Class of 

chemical 

First order rates (h-1) t1/2 

(h) 

Class average rate 

(h-1) 

Triclosan PCP 0.0072 96.3 0.0072 

Naphthalene LMW PAHs 0.0340 20.4 0.0171 

Acenaphthylene LMW PAHs 0.0180 38.5 

Acenaphthene LMW PAHs 0.0165 42.0 

Fluorene LMW PAHs 0.0134 51.7 

Phenanthrene LMW PAHs 0.0126 55.0 

Anthracene LMW PAHs 0.0082 84.5 

Fluoranthene MMW PAHs 0.0063 108.3 0.0054 

Pyrene MMW PAHs 0.0038 177.7 

Benz(a)anthracene MMW PAHs 0.0050 135.9 

Chrysene MMW PAHs 0.0060 113.6 

Benzo(b)fluoranthene HMW PAHs 0.0053 126.0 0.0033 

Benzo(a)pyrene HMW PAHs 0.0032 203.8 

Indeno(1,2,3-cd)pyrene HMW PAHs 0.0028 216.6 

Dibenz(a,h)anthracene HMW PAHs 0.0020 315.0 

Benzo(g,h,i)perylene HMW PAHs 0.0023 288.8 

EE2 Steroidal 

hormones 
0.1261 

20.9 0.1129 

E1 Steroidal 

hormones 
0.1496 

5.5 

E2 Steroidal 

hormones 
0.1426 

4.6 

E3 Steroidal 

hormones 
0.0331 

4.9 

 *PCP represents personal care product; * LMW, MMW and HMW represents low molecular weight, 

middle molecular weight and high molecular weight respectively, and are industrial chemicals. BFR 

represents brominated flame retardants. 
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Table 5-22 Comparing the degradation rates of different classes of chemicals under aerobic 

conditions with facultative pond inocula 

Compound Class of 

chemical 

First order 

rates (d-1) 

Class 

average 

rate (d-1) 

First order 

rates (d-1) 

Class 

average 

rate (d-1) 

  Light Dark 

Triclosan PCP 0.0566 0.0566 0.1752 0.1752 

Naphthalene LMW PAHs 0.289 0.2707 0.3046 0.2645 

Acenaphthylene LMW PAHs 0.3129 0.3337 

Acenaphthene LMW PAHs 0.3443 0.3833 

Fluorene LMW PAHs 0.2472 0.2641 

Phenanthrene LMW PAHs 0.2995 0.2111 

Anthracene LMW PAHs 0.1313 0.0904 

Fluoranthene MMW PAHs 0.0863 0.0576 0.1024 0.0620 

Pyrene MMW PAHs 0.0787 0.0947 

Benz(a)anthracene MMW PAHs 0.0347 0.0257 

Chrysene MMW PAHs 0.0305 0.0253 

Benzo(b)fluoranthene HMW PAHs 0.033 0.0364 0.0173 0.0200 

Benzo(a)pyrene HMW PAHs 0.049 0.0385 

Indeno(1,2,3-cd)pyrene HMW PAHs 0.0388 0.0169 

Dibenz(a,h)anthracene HMW PAHs 0.0322 0.009 

Benzo(g,h,i)perylene HMW PAHs 0.0291 0.0184 

EE2 Steroidal 

hormones 
0.492 0.4296 0.5064 0.3900 

E1 Steroidal 

hormones 
0.4368 0.3888 

E2 Steroidal 

hormones 
0.4872 0.5016 

E3 Steroidal 

hormones 
0.3024 0.1632 

BDE 28 BFR 0.0666 0.0551 0.0599 0.0644 

BDE 47 BFR 0.0612 0.0692 

BDE 99 BFR 0.0626 0.0648 

BDE 100 BFR 0.059 0.0677 

BDE 153 BFR 0.0575 0.0645 

BDE 154 BFR 0.0578 0.067 

BDE 183 BFR 0.0479 0.0616 

BDE 209 BFR 0.0285 0.0604 

*PCP represents personal care product; * LMW, MMW and HMW represents low molecular weight, 

middle molecular weight and high molecular weight respectively, and are industrial chemicals. BFR 

represents brominated flame retardants. 
 

A similar trend was observed with facultative pond inocula where the degradation of 

estrogens was 2 – 3, 6 – 8, 12 – 20 and 2 – 8 times faster than LMW PAHs, MMW PAHs, 

HMW PAHs and triclosan respectively under light and dark incubation conditions. 

Furthermore, the degradation of PAHs was 3 - 4 times faster than PBDEs under both 

incubation conditions. In summary, degradation of estrogens > PAHs > triclosan > PBDEs. 
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 Predicting effluent quality and associated risks using obtained degradation rates 

The obtained biodegradation rates were used to predict effluent concentrations and assess the 

likelihood of risk when these chemicals are discharged into water bodies. The method and 

assumptions made were previously described in Section 4.5.8. In addition to these 

assumptions, both the activated sludge WWTP (WWTP A) and the waste stabilization pond 

(WSP) were assumed to behave liked continuous stirred reactors (CSTRs). Sorption to sludge 

was not considered for estrogens (E1 and E3) as their low Log Kow (3.13 and 2.47 

respectively) indicates low potential to sorb to solids; 99 % of E1 and E3 were also observed 

in the aqueous phase in the biodegradation assay. HRT for WWTP A and WWTP C is 4.2 

hours and 20 days respectively. Information on EQS and PNEC values for the chemicals were 

previously given in Section 4.5 and 5.3.2.  

Table 5-23 Predicted effluent concentration of the chemicals after activated sludge aerobic 

treatment (Brazil WWTP A) 

Compound Measured 

inf conc 

(ng/L) 

Conc after 

sorption 

(ng/L) 

Rate 

(h-1) 

Predicted 

eff conc 

(ng/L) 

Measured 

eff conc 

(ng/L) 

EQS 

standard 

(ng/L) 

Triclosan 49184 7377.6 0.0072 7161.0 1486 100 

Naphthalene 2109.1 316.3 0.0340 276.8 200.8 130,000 

Acenaphthylene 259.3 38.8 0.0180 36.1 55.8 - 

Acenaphthene 347.2 52.0 0.0165 48.7 35.6 - 

Fluorene 778.0 116.6 0.0134 110.4 75.2 - 

Phenanthrene 2119.1 317.8 0.0126 301.8 140.3 - 

Anthracene 395.2 59.3 0.0082 57.3 67.0 100 

Fluoranthene 1135.2 170.3 0.0063 165.9 95.1 120 

Pyrene 1054.5 158.1 0.0038 155.6 100.5 - 

Benz(a)anthracene 526.4 78.9 0.0050 77.3 90.5 - 

Chrysene 459.2 68.8 0.0060 67.1 81.3 - 

Benzo(b)fluoranthene 631.0 94.7 0.0053 92.7 57.7 17 

Benzo(a)pyrene 393.3 59.0 0.0032 58.2 70.9 270 

E1 78.2 n/a 0.1261 50.9 16.1 6+ 

E3 1234.2 n/a 0.1426 771.6 64.3 60+ 

-the three HMW PAHs not included were no detected in the WWTP influent 

-Degradation rates were not obtained for PBDEs, hence they were excluded 

- Conc represents concentration; inf and eff represents influent and final effluent respectively. 

- Concentrations of the chemicals used was previously reported above 

-+ are PNEC values; -n/a means not applicable 
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Table 5-24 Predicted effluent concentration of the chemicals after facultative pond treatment 

(Brazil WWTP C) 

Compound Measured 

inf conc 

(ng/L) 

Conc after 

sorption 

(ng/L) 

Rate 

(d-1) 

Predicted 

eff conc 

(ng/L) 

Measured 

eff conc 

(ng/L) 

EQS 

standard 

(ng/L) 

Triclosan 17797.0 2669.6 0.1752 592.7 924.0 100 

Naphthalene 3674.3 551.1 0.3046 77.7 124.7 130,000 

Acenaphthylene 1561.9 234.3 0.3337 30.5 47.6 - 

Acenaphthene 770.8 115.6 0.3833 13.3 34.6 - 

Fluorene 3987.7 598.1 0.2641 95.2 68.2 - 

Phenanthrene 7658.8 1148.8 0.2111 220.0 170.6 - 

Anthracene 2073.3 311.0 0.0904 110.8 71.2 100 

Fluoranthene 991.4 148.7 0.1024 48.8 127.5 120 

Pyrene 4073.5 611.0 0.0947 211.1 113.8 - 

Benz(a)anthracene 723.3 108.5 0.0257 71.7 91.5 - 

Chrysene 666.3 99.9 0.0253 66.4 82.8 - 

Benzo(b)fluoranthene 541.4 81.2 0.0173 60.3 68.8 17 

Benzo(a)pyrene 573.4 86.0 0.0385 48.6 66.3 270 

E1 50.5 n/a 0.3888 5.8 0.1 6+ 

E3 625.1 n/a 0.1632 146.6 13.0 60+ 

EU WFD PBDEs 18.4 2.8 0.0655 1.2 12.8 140 

BDE 209 251.2 37.7 0.0604 17.1 <10.8 4.8+ 

-the three HMW PAHs not included were no detected in the WWTP influent 

- Conc represents concentration; inf and eff represents influent and final effluent respectively. 

- Concentrations of the chemicals used was previously reported in Section X 

-+ are PNEC values; -n/a means not applicable 

 

As shown in Table 5-23 and Table 5-24, the predicted effluent concentration for triclosan in 

both WWTP A (7161 ng/L) and WWTP C (593 ng/L) was well above the EQS value (100 

ng/L). In both WWTP A and WWTP C, the predicted effluent concentration of naphthalene 

and benz(b)fluoranthene were below their EQS values. The predicted concentration of 

fluoranthene was below the EQS values in WWTP C but exceeded it in WWTP A. Also, the 

predicted concentration of anthracene was below the EQS in WWTP A, but exceed it in 

WWTP C. For estrogens, the predicted concentration of E1 was below its PNEC value in 

WWTP C, but exceeded it in WWTP A, while those of E3 exceeded the EQS in both WWTP 

A and WWTP C.  The summed predicted concentration of EU Water Framework Directive 

(WFD) PBDEs (BDE 28, 47, 99, 100, 153, 154) was below the EQS value in WWTP C 

(Table 5-24). Hence, effluent from these plants would pose a risk to aquatic organisms when 

discharged into receiving waters.  
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To avert this, an impractical HRT of 10,100 h and 147 days is required to ensure the 

concentration of triclosan is below in the EQS value in WWTP A and WWTP C respectively. 

However, river dilution by 6 and 72 times might ensure compliance for effluents from WWTP 

C and A respectively. For benz(b)fluoranthene, an HRT of 862 hours (in WWTP A) and 218 

days (in WWTP C) would be required to achieve concentrations below the EQS values; 

however, river dilution by 4 and 6 times will ensure compliance for effluents for WWTP A 

and C respectively. Fluoranthene would be removed below the EQS with a dilution factor of 

1.3 times from effluent of WWTP A, while anthracene just requires a dilution of 1.1 times 

from WWTP C effluent.  E3 requires an HRT of 137 hours or a river dilution factor of 1:13 to 

ensure compliance to the PNEC values in WWTP A, but requires an HRT of 58 days and 

river dilution of 1:2 to ensure compliance in WWTP C. E1 requires an HRT of 95 hours and a 

river dilution factor of 1:9 to ensure compliance for effluent from WWTP A. BDE 209 

requires an HRT of 113 days or a river dilution factor of 1:4.   
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 Microbial diversity and association of bacterial taxa to the 

biodegradation of triclosan, PAHs, estrogen and PBDEs by 

facultative inocula from a waste stabilization pond (WSP) 

This section looks into the change in microbial community after degradation of the diverse 

classes of chemicals (triclosan, PAHs, estrogen and PBDEs with facultative pond inocula 

from WWTP C. Furthermore, the enrichment and impoverishment in the abuncance of 

bacterial genera in the inocula after the biodegradation assays is discussed. Also, bacterial 

genera that were suspected to be responsible for the biodegradation of these chemicals were 

identified- spiked reactors were compared to un-spiked reactors (controls) to determine this. 

 Inter-relationship between the micro bacterial communities  

The result of the multidimensional scale plot at genus level taxonomy shows the clustering of 

the microbial community before and after degradation of the compounds over time (Figure 

5-24). A shift in the microbial community after degradation of the compounds occurred as the 

libraries at the start and end of the experiment clustered differently under both illumination 

conditions. Furthermore, the microbial community of the control (un-spiked) reactor differed 

differently at the end of the experiment from the spiked reactors. This suggests that the 

microbial community shifted maybe due to competition of available nutrients over time and 

subsequent enrichment or reduction of competing genera. Additionally, the libraries under 

light and dark illumination conditions clustered differently and shifted in opposite directions. 

This indicates enrichment or reduction of different genera under both conditions. 
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Figure 5-24 Multidimensional scale plot comparing the bacterial communities at genus level 

present in the aerobic batch tests before and after degradation of the selected chemicals. 

Clusters for duplicate samples and various stages are circled separately. C refers to the control 

reactor (not spiked with micropollutants) and R refer to spiked reactors. St and End represent 

start and end of the experiment. 1 and 2 are replicates. Light and dark represents the 

illumination conditions 
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 Microbial diversity and species enrichment 

Relative abundances of some bacteria genera in the facultative inocula were observed to have 

increased or decreased at the end of the biodegradation assay when compared to the un-spiked 

control. Some of the genera whose relative abundance increased significantly (p < 0.05, G’s 

test) under both light and dark conditions include Pseudoxanthomas, Gordonia, 

Sphingobacterium, Rhodobacter, Ralstonia, Devosia and Hydrogenophaga (Figure 5-25, 

Figure 5-26). However, genera including Leadbetterella, Areminomas, Nannocystics and 

Agrobacterium were enriched only under light conditions (Figure 5-25). Meanwhile, 

Rhodococcus, Achromobacter, Niabella, Burkholderia, Paludibacter and Methanobecterium 

were enriched only in the dark (Figure 5-26). 

Among these enriched genera, Rhodococcus has previously been identified as a versatile 

degrader of organic micropollutants as it has been associated with degradation of triclosan 

(Lee and Chu, 2013), PAHs (Peng et al., 2008; Ghosal et al., 2016), estrogens (Yoshimoto et 

al., 2004; Yu et al., 2013) and PBDEs (Robrock et al., 2009). Also, Burkholderia has been 

reported to metabolise low-middle molecular weight PAHs (Peng et al., 2008), and tri-hexa 

brominated PBDEs (Robrock et al., 2009). Gordonia (Gallego et al., 2014) and 

Agrobacterium (Ghosal et al., 2016) have also been associated with degradation of PAHs 

while Ralstonia has been reported to degrade PAHs (Seo et al., 2009) and estrogens (Weber et 

al., 2005). Furthermore, Hydrogenophaga, Niabella and the phototropic bacterium - 

Rhodobacter have also been reported with the ability to degrade PAHs (Oberoi et al., 2015; 

Jiao et al., 2016). Meanwhile, Sphingobacterium has been associated with the metabolism of 

estrogens- E1, E2, E3 and EE2 (Haiyan et al., 2007). The difference in the enriched microbial 

community under light and dark conditions might explain why certain compounds degraded 

better under each condition. For example, the high enrichment of Rhodococcus under dark 

conditions only might explain the observed better triclosan removal rate. On the other hand, 

estrogens might have degraded better under light conditions due to the enrichment of 

Sphingobacterium. 

There was also a significant difference (p < 0.05) in the reduction of the relative abundance of 

some genera after the biodegradation assay (Figure 5-25, Figure 5-26). Interestingly, among 

those with reduced abundance was Pseudomonas - a genus widely known to possess catabolic 

capability to degrade a wide range of xenobiotic compounds (Peng et al., 2008). 
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Figure 5-25 Extended error bar plot comparing the relative abundance of metagenomics profile 

for micropollutants degradation test using facultative inocula (Genus profile level to Class 

parent level). Significantly different genera (P-value < 0.05, G-test + Fisher) between the start 

and end of the experiment under light conditions were indicated. BC31 and BC33 represents 

start and end of the experiment respectively 
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Figure 5-26 Extended error bar plot comparing the relative abundance of metagenomics profile 

for micropollutants degradation test using facultative inocula (Genus profile level to Class 

parent level). Significantly different generas (P-value < 0.05, G-test + Fisher’) between the start 

and end of the experiment under dark conditions were indicated. BC31 and BC36 represents 

start and end of the experiment respectively 
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Additionally, a ranking of the OTUs at genus taxonomy level based on their relative 

abundance before and after degradation of the chemicals showed an increase in the relative 

abundance and rank of the significantly enriched genera and vice versa (Figure 5-27). Some 

known degraders of these chemicals- Rhodococcus, Gordonia, Agrobacterium and 

Rhodobacter were significantly enriched and resultantly, their rank order improved. On the 

other hand, some other known degraders- Pseudomonas and Novosphingobium reduced in 

abundance and their rank order diminished (Figure 5-27). The rank order of these 

significantly changed genera were also different under light and dark incubation conditions. 

For example, the rank order of Rhodococcus changed from 129 to 51 and 2 under light and 

dark conditions respectively. 

 

 

  

Figure 5-27 Relative abundance of significantly changed genera after the degradation of the 

selected chemicals in rank order. (b) The rank order of some known degraders of this 

chemicals at the start and end of the degradation assay under light and dark conditions 
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 Conclusion 

This study has investigated the fate of twenty-eight chemicals from four classes (biocide- 

triclosan, industrial chemical- 15 PAHs, steroidal hormones- 4 estrogens, and flame 

retardants-8 PBDEs) for the first time in Brazil. The concentrations of triclosan, PAHs, 

estrogens and PBDEs were similar to those in HIC and LMICs and there appears to be no 

pattern amongst such countries. This suggests that such chemicals are in widespread use. 

This study also aimed to investigate the fate of such pollutants in three types of WWTP that 

differ in their energy requirements and types of processes including; energy-intensive aerobic 

systems (activated sludge), low-energy anaerobic-aerobic systems (UASBs and trickling 

filters) and passive-energy facultative systems (waste stabilization ponds). In addition the 

potential mechanisms and rates were studied using degradation experiments with appropriate 

controls. In most cases, and for all the chemical classes, the least energy intensive and 

cheapest WSP system (WSP) outperformed (89 – 99 % removal) or matched the high energy 

activated sludge system (WWTP A) (79 – 94 % removal), therefore showing its potential for 

micropollutant removal. However, despite the removal achieved by these systems, the 

concentration of triclosan and estrogens were above their PNEC value, therefore might pose 

risk to aquatic organisms when discharged. 

Also, the compounds degraded faster under aerobic conditions with activated sludge, with 

first order degradation kinetics in the following decreasing order estrogens > LMW PAHs > 

triclosan > MMW PAHs > HMW PAHs (experiment for PBDEs was not carried out). 

Degradation was also observed with the facultative pond inocula under aerobic conditions, 

and the degradation kinetics generally was in the following decreasing order estrogens > 

LMW PAHs > triclosan > PBDEs > MMW PAHs > HMW PAHs. The result suggested 

biodegradation as a major removal mechanism during biological treatment in WWTP A and 

WWTP C. However, sorption of the compounds to biosolids during the experiment suggests 

that adsorption also plays an important role in their removal in this WWTP, while 

volatilization might have contributed to the removal of low molecular weight PAHs. 

Furthermore, methyl triclosan formed concomitantly with triclosan degradation, which also 

explains its detection in the WWTPs. Interestingly, the compounds behave differently in the 

photodegradation study as triclosan and estrogens degraded faster under light conditions 

(white fluorescent light) while PAHs and PBDEs degraded faster in the dark. This was due to 

their different physio-chemical properties and the competition within the microbial 

community in the inocula under the light and dark conditions. Additionally, degradation of all 
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the compounds was not observed under anaerobic conditions with UASB sludge inocula 

suggesting that their removal – if any – during UASB treatment in WWTP B was most likely 

attributed to sorption onto sludge and not biodegradation. Taxonomic analysis showed a 

significant change in the metagenomic profile in the inocula and the bacterial libraries 

clustered differently under light and dark conditions after the biodegradation assay with 

facultative inocula under aerobic conditions. Several genera known to degraders of these 

chemicals including Rhodococcus, Burkholderia, Gordonia, Ralstonia, Hydrogenophaga 

were enriched significantly after the biodegradation assay and their rank abundance increased 

when compared to the un-spiked control. 

The predicted effluent concentrations from the obtained first order degradation rates showed 

that triclosan concentration in WWTP A and WWTP C was above the EQS value and HRT 

required for removal is impractical. Hence, this effluent would pose risk to aquatic organisms 

when discharged into receiving waters- unless the river dilutes effluent from WWTP A and 

WWTP C by 72 and 6 times respectively. Benzo(b)fluoranthene will require a river dilution 

factor of 1:4 and 1:6 from effluents from WWTP A and WWTP C respectively to ensure 

compliance to the EQS values. Estrogens will require a dilution factor of 1:2 to 1:3 to ensure 

compliance from effluent of both WWTPs, while PBDEs will require a dilution factor of 1:4 

to 1:9. Although, the synergistic effect of the cocktail of different classes of compounds on 

aquatic organisms remains unknown.  
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Chapter 6 Comparing the concentration and extent of 

degradation of micropollutants between the UK and the 

Brazilian activated sludge WWTP 

 Introduction 

In activated sludge systems, microbial catabolic potential, plant configurations and operating 

conditions influence the removal of micropollutants. Parameters such as sludge retention time, 

hydraulic retention time, redox conditions, pH and temperature influence micropollutant 

removal efficiencies in biological wastewater treatment systems (Luo et al., 2014). Hence, 

this chapter compares the removal of triclosan and PAHs between a UK and Brazilian 

activated sludge plant that may contain different microbial populations, operate under 

different dissolved oxygen concentrations and are fed with wastewater with different 

temperatures. The UK plant operated under fully aerobic conditions while the Brazilian plants 

operated at low oxygen conditions. Furthermore, the average temperature of the wastewater in 

UK and Brazil is 12 – 15 oC and 25 oC respectively. Anaerobic systems were not included in 

this study as there was little or no degradation of the investigated chemicals in these systems. 

This chapter also provides insight into the potential effect of temperature on the degradation 

of triclosan, PAHs and estrogens experiments carried out in Section Chapter 4 and Chapter 5 

in the UK and Brazil respectively. The degradation experiment was carried at a controlled 

temperature of 20 oC in the UK, while in Brazil the experiment was performed at room 

temperature in the summer season (average temperature was 27 oC). Temperature greatly 

affects biological reactions in wastewater treatment (Verlicchi et al., 2012), and the rate of 

biological reactions generally increases with rising temperature until maximum rate and 

thermal independence is achieved (Bennett, 1984). According to the Arrhenius equation, the 

rate constant of a chemical reaction is strongly dependent on temperature; such that the 

reaction rate increases exponentially with temperature (Bennett, 1984). This generalised 

empirical relationship has largely represented chemical and enzyme reaction rates, but has 

also been appropriated by microbiology to compare rates of reactions in populations 

(Koutsoumanis et al., 2000; Huang et al., 2011). Hence, this study aimed to compare reaction 

rates to explore if they are in line with empirical relationships between rates and temperature 

according to the Arrhenius equation. Understanding the effect of temperature on the rate of 

micropollutant degradation will further our knowledge on parameters essential for effective 

micropollutant removal.  
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 Methodology 

 Plant characteristics 

The activated sludge grab sample used for the UK triclosan and PAH degradation experiment 

had a total suspended solids (TSS) and volatile suspended solids (VSS) content of 3.3 g/L and 

2.3 g/L respectively, while that used for estrogen degradation had a TSS and VSS content of 

1.92 g/L and 1.54 g/L respectively. Both sludge samples were collected from different 

nitrifying treatment plants in North East England with operating at dissolved oxygen 

concentration of 2 – 3 mg/L. The activated sludge samples used for the Brazil degradation 

experiments had a TSS and VSS content of 4.2 g/L and 3.8 g/L respectively. This treatment 

plant in South East, Brazil was not a nitrifying plant and operated with a dissolved oxygen 

concentration of 0.2 – 0.3 mg/L.  

 Quantification of compounds in wastewater 

The sampling, extraction and analytical method for the compounds have been presented 

earlier in Chapter 3. The concentrations of these compounds in the total phase (particulate 

matter and aqueous phase) and aqueous phase have also been presented in Chapter 3 and 

Chapter 5.  

 Rate comparison 

The average incubation temperature for the UK and Brazil degradation experiment was 20 oC 

and 27 oC respectively. To compare the reaction kinetics for the degradation of the 

compounds under these different temperatures, the rates for the UK experiment was estimated 

at 27 oC based on the assumption that the temperature influences the metabolic activities of 

microbial population, and hence the reaction kinetics (Tchobanoglous et al., 2014). 

(
𝐾2

𝐾1
) =  𝜃(𝑇2−𝑇1)

 

Where K1 and K2 = rates at 15 oC and 20 oC respectively, T1 and T2 are temperatures 15 oC 

and 20oC respectively (in Celsius or Kelvin), and θ is the temperature activity coefficient.  

The temperature activity coefficient for most biological systems ranges from 1.02 to 1.10 

(Tchobanoglous et al., 2014). Hence, a θ value of 1.08 was assumed to calculate the 

degradation rates for estrogens at 20 oC  
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 Results and discussion 

 Concentrations of triclosan and PAHs in UK and Brazilian WWTP 

The total (particulate and aqueous) concentration of triclosan in the influent of the Brazilian 

WWTP (49 µg/L) was about four times higher than those found in the UK WWTP (13 µg/L) 

(Table 6-1). However, similar concentrations were found in the aqueous phase of both plants 

(1.3 – 1.4 µg/L) (Table 6-2). The total concentration of PAHs in the influent of the Brazilian 

WWTP (10.2 µg/L) was also higher than that in the UK WWTP (6.6 µg/L). However, low 

molecular weight PAHs were the most abundant in the Brazilian influent, while middle 

molecular weight PAHs were the most abundant in the UK (Table 6-1). 

Dibenz(a,h)anthracene and benzo(ghi)perylene were only detected in the UK WWTP but 

were below the method quantification limit in the Brazilian WWTP (Table 6-1, Table 6-2). 

The total removal rate for triclosan was higher in the Brazil WWTP (97 %) compared to the 

UK WWTP (89 %) (Table 6-1). However, the aqueous phase removal was higher in the UK 

WWTP (89 %) (Table 6-2Table 6-2). Similarly for PAHs, the Brazilian WWTP removed 

more individual and total PAHs from the total phase (90 % compared to 72 %), but removed 

less in the aqueous phase when compared to the UK WWTP (13 % compared to 76 %). The 

total phase concentration of triclosan in the treated effluent of both WWTP was similar (1.4 – 

1.5 µg/L) (Table 6-1), however, the aqueous phase concentration was five times higher in the 

Brazilian WWTP (Table 6-2). For PAHs, the total phase concentration was higher in the UK 

WWTP (1.8 µg/L compared to 1.0 µg/L in Brazil) (Table 6-1), but the aqueous phase 

concentration was two times higher in the Brazilian WWTP (Table 6-2). 
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Table 6-1 Total (particulate and aqueous phase) concentrations of triclosan and 15 PAHs in 

the influent and effluent from a UK and Brazilian activated sludge WWTP.  

Compound UK WWTP Brazilian WWTP 

Influent 

(ng/L) 

Effluent 

(ng/L) 

% 

Removal 

Influent 

(ng/L) 

Effluent 

(ng/L) 

% 

Removal 

Triclosan 13117 

(1030)* 

1443 

(43) 

88.9 49184 

(7429) 

1486 (9) 97.0 

PAHs       

Naph 689.4 

(44.5) 

211.1 

(25.2) 

69.5 2108.9 

(86.0) 

200.8 

(13.4) 

90.5 

Acy 191.5 

(15.7) 

63.3 

(3.0) 

66.9 258.8 

(11.3) 

55.8 

(0.5) 

78.4 

Ace 182.9 

(24.9) 

35.1 

(5.0) 

81.0 346.9 

(11.4) 

35.6 

(1.4) 

89.7 

Flu 277.8 

(33.0) 

47.8 

(1.4) 

82.8 777.5 

(15.3) 

75.2 

(9.1) 

90.3 

Phen 633.7 

(61.1) 

87.7 

(21.3) 

86.2 2118.8 

(64.0) 

140.3 

(9.9) 

93.4 

Anth 421.1 

(18.2) 

95.3 

(8.3) 

77.3 395.3  

(5.8) 

67.0 

(1.6) 

83.1 

Flt 743.1 

(46.5) 

101.4 

(2.0) 

86.4 1135.0 

(21.6) 

95.1 

(7.6) 

91.6 

Pyr 691.2 

(21.9) 

99.8 

(1.0) 

85.6 1053.7 

(1.8) 

100.5 

(6.1) 

90.5 

BaA 754.4 

(47.6) 

181.3 

(0.4) 

76.0 526.3  

(9.7) 

90.5 

(0.4) 

82.8 

Chry 556.2 

(58.5) 

129.5 

(0.6) 

76.7 458.6  

(5.0) 

81.3 

(0.5) 

82.3 

BbF 238.6 

(58.5) 

65.4 

(11.1) 

72.6 631.5 

(18.5) 

57.7 

(1.1) 

90.9 

BaP 355.3 

(75.7) 

266.3 

(31.2) 

22.9 393.0 

(10.7) 

70.9 

(3.4) 

82.0 

InPy - - - - - - 

DiahA 590.1 (179) 273.5 

(24.5) 

53.7 - - - 

BghiP 241.8 

(44.1) 

210.2 

(35.4) 

13.2 - - - 

∑LMW PAHs 2396.3 539.7 77.5 6006.2 574.7 90.4 

∑MMW PAHs 2744.3 511.3 81.4 3173.6 367.4 88.4 

∑HMW PAHs 1425.9 822.7 42.3 1024.5 128.7 87.4 

∑PAHs 6566.5 1873.7 71.5 10204.3 1070.7 89.5 

-PAHs abbreviation- naphthalene (Naph), acenaphthylene (Acy), acenaphthene (Ace), fluorene (Flu), 

phenanthrene (Phe), anthracene (Ant), fluoranthene (Flt), pyrene (pyr), benz(a)anthracene (BaA), chrysene 

(Chry), benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP), indeno(1,2,3-cd)pyrene (InPy), 

dibenz(a,h)anthracene (DiahA), and benzo(ghi)perylene (BghiP); *Standard deviation in bracket; n = 3 
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Table 6-2 Aqueous phase concentrations of triclosan and 15 PAHs in the influent and effluent 

from a UK and Brazilian activated sludge WWTP 

Compound 

 

UK WWTP Brazilian WWTP 

Influent 

(ng/L) 

Effluent 

(ng/L) 

% 

Removal 

Influent 

(ng/L) 

Effluent 

(ng/L) 

% 

Removal 

Triclosan 1391  

(58) 

142  

(6.2) 

89.0 1303  

(223) 

549  

(24) 

58 

PAHs 

 

      

Naph 108.6  

(20.4) 

16.3  

(0.5) 

85.0 114.3  

(6.0) 

46.1  

(4.0) 

59.7 

Acy 39.6  

(2.5) 

12.3 

 (0.2) 

68.9 20.2  

(0.7) 

23.3 

 (0.9) 

0.0 

Ace 45.0  

(5.0) 

4.7  

(0.1) 

89.6 19.6  

(0.4) 

13.5  

(0.6) 

31.1 

Flu 48.0  

(3.4) 

8.4  

(0.3) 

82.4 44.2  

(0.8) 

29.6  

(2.2) 

33.0 

Phen 77.7  

(0.7) 

10.2  

(0.1) 

86.9 65.7  

(4.5) 

43.1  

(5.3) 

34.4 

Anth 47.4 

 (1.4) 

19.2  

(1.6) 

59.4 26.6  

(0.6) 

28.2  

(1.2) 

0.0 

Flt 75.0  

(2.8) 

18.6  

(0.2) 

75.2 42.4  

(1.0) 

35.8  

(2.8) 

15.8 

Pyr 68.3  

(1.5) 

18.2  

(0.1) 

73.3 39.9  

(1.4) 

38.0  

(2.4) 

4.6 

BaA 111.1  

(1.2) 

36.2  

(0.1) 

67.4 37.5  

(0.3) 

38.2  

(1.7) 

0.0 

Chry 68.2  

(1.8) 

25.5 

 (0.7) 

62.6 32.8  

(0.3) 

34.0  

(0.9) 

0.0 

BbF 15.7  

(3.1) 

6.3 

 (1.1) 

59.8 24.4  

(0.4) 

26.8  

(2.5) 

0.0 

BaP 12.9 

 (3.4) 

4.2  

(1.1) 

67.5 25.8  

(0.3) 

27.6  

(3.6) 

0.0 

InPy 91.4  

(4.9) 

11.6  

(4.6) 

87.3 - - - 

DiahA 39.1  

(9.1) 

7.7  

(2.1) 

80.3 - - - 

BghiP 11.3  

(0.4) 

10.0 

 (3.0) 

11.5 - - - 

∑LMW PAHs 366.2 71.1 80.6 290.7 183.9 36.7 

∑MMW PAHs 322.5 98.6 69.4 152.6 146.0 4.3 

∑HMW PAHs 170.4 39.8 76.7 50.3 54.4 -8.2 

∑PAHs 859.1 209.4 75.6 553.5 483.7 12.6 

PAHs abbreviation- naphthalene (Naph), acenaphthylene (Acy), Acenaphthene (Ace), fluorene (Flu), 

phenanthrene (Phe), anthracene (Ant), fluoranthene (Flt), pyrene (pyr), benz(a)anthracene (BaA), chrysene 

(Chry), benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP), indeno(1,2,3-cd)pyrene (InPy), 

dibenz(a,h)anthracene (DiahA), and benzo(ghi)perylene (BghiP).; *Standard deviation in bracket; n = 3 
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 Comparing degradation rates in the UK and Brazil experiments 

The Arrhenius relationship was not followed in this study as the disappearance rates of most 

of the chemicals were lower at a higher temperature (Table 6-3, Table 6-4). Important 

variables that might have influenced the reaction rate include; microbial taxa/catabolic 

potential present in the inocula, the dissolved oxygen (DO) concentration and the pH 

(Verlicchi et al., 2012). These parameters differed considerably between the UK and Brazil 

experiment except the pH of both systems (pH 5 – 7). It seems unlikely that the same putative 

degraders were involved in the degradation of the chemicals in both locations. The DO 

concentration was 4 – 7 mg/L and 0.3 – 0.5 mg/L respectively for the UK and Brazil. The DO 

concentrations in the UK and Brazil experiment were maintained at the same concentrations 

used in the WWTPs to replicate operating conditions. It is important to note that the 

disappearance rate of some LMW PAHs was due to biodegradation and volatilization as 

earlier discussed in Section 4.5.4.1, and 5.3.3.2.1. Volatilization was observed to contribute 

more to the removal of LMW PAHs in the Brazil experiment as the estimated volatilization 

rates were much higher (Table 6-5). This might also be due to the low DO concentration and 

higher temperature in the Brazil experiment that favoured the volatilization process. 

Table 6-3 Comparing first order degradation rates for triclosan and PAHs under aerobic 

conditions with activated sludge inocula from UK and Brazil 

Chemical UK rates 20oC (h-1) UK rates 27oC (h-1) Brazil rates (h-1) 

Triclosan 0.0071 0.0120 0.0072 

Naphthalene 0.0631 0.1080 0.0340 

Acenaphthylene 0.0238 0.0410 0.0180 

Acenaphthene 0.0291 0.0500 0.0165 

Fluorene 0.0225 0.0390 0.0134 

Phenanthrene 0.0210 0.0290 0.0126 

Anthracene 0.0172 0.0220 0.0082 

Fluoranthene 0.0130 0.0220 0.0063 

Pyrene 0.0115 0.0200 0.0038 

Benz(a)anthracene 0.0067 0.0110 0.0051 

Chrysene 0.0060 0.0100 0.0061 

Benzo(b)fluoranthene - - 0.0055 

Benzo(a)pyrene - - 0.0034 

Indeno(1,2,3-cd)pyrene - - 0.0032 

Dibenz(a,h)anthracene - - 0.0022 

Benzo(ghi)perylene - - 0.0024 

Average incubation temperature for the UK and Brazil experiment was 20 and 27 oC respectively. The last 

5 PAHs did not degrade in the UK experiment, so do not have comparative rates 
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Table 6-4 Comparing first order degradation rates for estrogens under aerobic conditions with 

activated sludge inocula from UK and Brazil 

Chemical UK rates 20 oC (h-1) UK rates 27 oC(h-1) Brazil rates (h-1)  

EE2 0.1415 0.2425 0.0331  

E1 0.1760 0.3017 0.1261  

E2 0.2990 0.5124 0.1496  

E3 1.3137 2.2515 0.1426  

Average incubation temperature for the UK and Brazil experiment was 20 and 27 oC respectively 

 

Table 6-5 Comparing volatilization rate of LMW PAHs in the UK and Brazil aerobic 

degradation experiment at 27oC 

 UK experiment Brazil Experiment 

Chemical Total (h-1) Vol (h-1) % vol Total (h-1) Vol (h-1) % vol 

Naphthalene 0.1081 0.0360 33.3 0.034 0.0291 85.6 

Acenaphthylene 0.0408 0.0050 12.2 0.018 0.0167 92.8 

Acenaphthene 0.0499 0.0060 12.0 0.0165 0.0147 89.1 

Fluorene - - - 0.0134 0.0063 47.0 

*vol represents volatilization 

 

The reaction rates in the Brazil experiment were 2 – 20 times slower than the UK experiment 

despite the higher temperature. As well as the different biology, the lower rates from the 

Brazil inocula may have been compounded by the low dissolved oxygen concentration of the 

Brazil sludge (0.3 mg/L) compared to the UK sludge (4 mg/L) as degradation of 

micropollutants has been reported to be faster under nitrifying conditions (aerobic conditions) 

than non-nitrifying conditions (Verlicchi et al., 2012). In fact, higher micropollutant removal 

efficiencies have been suggested to occur in plants with high nitrogen removal capabilities 

(Batt et al., 2006; Vieno et al., 2007). Indeed, the presence of nitrifying and ammonia 

oxidizing bacteria that have been found to possess high cometabolic capability on a wide 

range of persistent compounds (Batt et al., 2006; Haiyan et al., 2007). This also explains the 

better removal rate of triclosan and PAHs in the aqueous phase (aqueous phase removal 

mostly by biodegradation as compounds are more bio-available) by the nitrifying UK 

activated sludge WWTP compared to the non-nitrifying Brazilian plant (Table 2). 58 % and 

13 % triclosan and PAHs removal respectively was achieved in the Brazilian WWTP 

compared to 89 % and 76 % in the UK WWTP.  The theoretical oxygen demand required to 

completely oxidize triclosan, PAHs and estrogens calculated according to OECD method 301 

(Oecd, 1994); was approximately 1.3 mg/1 mg of triclosan, 0.6 mg/0.2 mg of PAHs and 0.3 

mg/0.1 mg of estrogens respectively- according to the concentrations of the chemicals spiked 
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(see calculation in Appendix E- 8.6). This shows that the DO was limiting for triclosan and 

PAHs in the Brazilian WWTP (0.3 mg/L DO), but was just enough for estrogens. 

 Conclusion 

The levels of triclosan and PAHs was higher in Brazil than in the UK, and the Brazilian 

activated sludge WWTP achieved a higher removal rate for both group of compounds in the 

total phase (particulate and aqueous phase). The UK and Brazil rates did not conform to 

empirical Arrhenius relationships due to the difference in putative degraders involved in 

degradation of the chemicals and dissolved oxygen concentrations in both locations. The 

superior removal of these compounds in the aqueous phase in the UK WWTP over the 

Brazilian WWTP is as a result of the higher UK rates. 
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Chapter 7: General Conclusion 
 

  



176 

 

Chapter 7 General conclusions 

 Method development and validation 

Analytical methods using solid phase extraction (SPE) for sample concentration and analyte 

extraction, and gas chromatography (GC) coupled with mass spectrophotometry (MS) or 

electron capture detector (ECD) for detection and quantification were developed and 

validated. A novel SPE-GC-ECD method was developed and validated to quantify eight 

PBDE congeners in wastewater in one run. The method detection limit (0.2 – 10.8 ng/L) was 

low and could quantify PBDEs below proposed environmental quality standard (EQS) values 

and is 2 – 4 times cheaper than current GC-MS methods- therefore opens up PBDEs analysis 

to low-middle income countries (LMICs) where environmental analysis is limited due to 

associated prohibitive costs. Also, SPE-GC-MS methods were developed and validated to 

quantify triclosan and 15 PAHs in both aqueous and particulate matter phase of wastewater. 

The method detection limits (5.6 ng/L for triclosan, 0.2 – 10 ng/L for PAHs) were low and 

could be used to quantify triclosan and PAHs below proposed EQS values. These SPE-GC-

ECD and SPE-GC-MS methods were employed in the quantification of these chemicals in 

UK and Brazilian WWTPs.  

 Occurrence and fate of micropollutants in low and high energy 

WWTPs in the UK and Brazil 

Triclosan, PAHs, estrogens and PBDEs were detected at similar concentrations in UK and 

Brazilian wastewater, and were similar to those reported in other countries. Hence, these 

chemicals are equally used in both high income countries (HICs) and LMICs and their 

intrusion into the environment is a global burden. Ineffective triclosan, PAHs, and estrogens 

removal was observed in all WWTPs in both countries as the concentration of triclosan, some 

PAHs (e.g. fluoranthene, benzo(b)fluoranthene), estrogens (E1 and E3), and PBDEs (BDE 

209) were above the proposed EQS values set by the EU Water Framework Directive and 

existing Predicted no-effect concentrations (PNECs- for estrogens and BDE 209). This 

implies that effluents from these WWTPs poses risk to aquatic organisms when discharged 

into receiving waters. Aside the risks posed by triclosan, PAHs, estrogens and PBDEs 

individually, the mixture effects of this cocktail of chemicals on aquatic organisms is 

unknown.  
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Furthermore, among the technologically different WWTPs, the passive-energy and cheapest 

waste stabilization pond (WSP) system interestingly showed high micropollutant removal by 

outperforming the high energy aerobic activated sludge system, while the anaerobic UASB 

with trickling filter system was the least effective. This shows the potential of WSPs for 

micropollutant removal especially in LMICs countries where sunlight, temperature and land 

availability is often not limiting. Furthermore, the difference in chemical structure and 

functional groups among the different classes of compounds was not observed to affect their 

removal in the three WWTPs as all the compounds were removed to a similar extent (about 

90 % for each class of chemical). 

 Removal mechanisms of micropollutants in UK and Brazil WWTPs, 

and risk assessment 

Under aerobic conditions, biodegradation of the chemicals was observed and the experimental 

first-order rates obtained for the different classes of chemicals with activated sludge inocula 

showed that the degradation kinetics were in the following decreasing order; 

estrogens >LMW PAHs > triclosan > MMW PAHs > HMW PAHs. A similar result was 

obtained using inocula from a facultative pond as degradation kinetics were in the following 

decreasing order; estrogens > LMW PAHs > triclosan > PBDEs > MMW PAHs > HMW 

PAHs- except for the inclusion of PBDEs that were not investigated in the activated sludge 

experiment. This observed degradation of these chemicals in the batch tests shows that 

biodegradation contributed majorly to the removal of these chemicals in both activated sludge 

and WSP systems. The physio-chemical properties (functional groups, number of aromatic 

rings, etc.) of the different classes of chemicals was observed to influence their degradation 

kinetics. Furthermore, this difference in physio-chemical properties also influenced their 

reaction kinetics in the photodegradation study; triclosan and estrogens degraded faster in the 

presence of white light, while reverse was the case for PAHs and PBDEs. Additionally, the 

importance of bacterial taxa present in the inocula and dissolved oxygen (DO) concentration 

and over temperature was established in degradation study, as the chemicals degraded much 

faster with the UK aerobic sludge compared to the Brazil low DO sludge despite a 7oC lower 

incubation temperature.  Sorption would contribute majorly to the removal of these classes of 

chemicals (less for E1 and E3) due to their observed high association with biosolids in our 

study. Volatilization was also observed to contribute to the removal of low molecular weight 

PAHs in the activated sludge experiments.  
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Additionally, all compounds were resistant to anaerobic degradation in the UK and Brazil 

experiments. Hence, there was no evidence of reductive dehalogenation for PBDEs and 

triclosan. This implies that removal of these compounds in WWTPs that use anaerobic 

processes (such as UASBs) will mostly be due to sorption to solids. Lastly, the predicted 

effluent concentrations of triclosan, some PAHs, BDE 209, and estrogens (E1 and E2) from 

the experimentally determined degradation rates (for the aerobic systems) in this study were 

above the EQS/PNEC values. It will be impossible for all the investigated treatment plants to 

comply with these standards, as the required hydraulic retention times are impractical.  

 Effect of micropollutant degradation on the bacterial taxa in the 

inocula 

Molecular analysis showed that after the aerobic degradation assay using activated sludge 

spiked with PAHs, there was a significant change in the metagenomics profile of the inocula; 

some known PAH degrading genera such as Mycobacterium and Acidiphilium were 

significantly enriched compared to the non-inoculated controls. Also, after the aerobic 

degradation assay using facultative inocula spiked with triclosan, PAHs, estrogens and 

PBDEs, a significant change in the metagenomic profile of the inocula was observed, and 

several genera known to degrade these group of compounds including Rhodococcus, 

Burrkholderia, Gordonia, Ralstonia, Hydrogenphaga were significantly enriched. 

Consequently, enriching microbial inocula with the known degrading taxa might improve 

degradation of these chemicals in the studied biological systems. 

 Broader implications of current research and outlook 

This research has contributed to knowledge by reporting the limits of micropollutant removal 

in biological wastewater treatment systems utilizing different technologies (including 

activated sludge, UASB with trickling filters and WSP). The experimentally determined rates 

(for the activated sludge and WSP systems) can be used to imply the kind of hydraulic 

retention times (HRTs) and/or river dilutions that would be required to ensure compliance to 

the recommended safety standards.  

None of the WWTPs removed triclosan, estrogens, and some PAHs below proposed safe 

levels; the low energy WSP system showed a high micropollutant removal potential by 

achieving a better removal rate of triclosan, estrogens, PAHs and PBDEs than the energy 

intensive activated sludge systems. Consequently, these low energy systems can be used 

solely to remove micropollutants in countries with a warm climate if optimized, or can be 

used in-line with an activated sludge system (where land available is not limiting) to achieve 
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effluents below proposed discharge standards. Furthermore, treatment systems that operate 

under anaerobic conditions have the least potential to biologically remove micropollutants as 

the studied compounds were resistant to anaerobic biodegradation. Hence, focus should be on 

aerobic systems to remove micropollutants via biological means.  

Hence my approach and proposal for sustainable micropollutant removal involves; (a) 

Predicting effluent concentrations using experimentally determined rates to know the true 

limits and feasibility of removal of specific chemicals in biological treatment systems. (b) 

Since most of the investigated chemicals are hydrophobic and are highly associated with 

suspended solids, less expensive tertiary treatment systems such as sand filters can be used to 

further remove these chemicals from secondary effluents. WSPs that have been shown to 

possess micropollutant removal potential can also be used in place of sand filters where land 

availability is not limiting- especially in LMICs.  

 Future work and recommendations 

Due to the costs associated with wastewater treatment, the increased pressure of removing 

potential hazardous chemicals, and the difficulty of doing so without increasing energy use- 

as currently advocated tertiary treatment technologies (e.g. advanced oxidation processes) are 

high energy and carbon intensive; other cheaper technologies such as sand filters, biochar, and 

Fenton’s reactions should be investigated for sustainable micropollutant removal. 

The sampling method used is important in assessing the fate of micropollutants in WWTPs. In 

this study, the grab sampling method employed has the limitation of not truly representing 

plant performance as it does not take into account the hydraulic retention time of the plant. 

Therefore, a 24 or 12 hours continuous sampling across the different stages of the treatment 

system will provide a more accurate indication of the fate of these compounds, and better 

assess plant performance. 

Furthermore, the biodegradation pathways for the compounds and biotransformation products 

under aerobic conditions should be studied in both lab scale experiments and full scale 

WWTPs.  This is essential to ensure complete mineralization of the compound or monitor the 

toxicity and persistence of the formed metabolites. Furthermore, in this study bacterial 

generas that were enriched after degradation of the test compounds were identified. However, 

more molecular analysis should be carried out to identify the key genes responsible for 

degradation of these compounds. This knowledge would be useful to optimize the microbial 

community in the bioreactors- thereby improving biodegradation of micropollutants. 
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Also, in waste stabilization ponds, micropollutants are also removed via photodegradation. 

This study investigated this mechanism slightly by looking at the effect of white light on the 

degradation of the compounds. However, there are different solar irradiation spectrum 

including UV-A, UV-B, UV-C and visible light. Hence, studying the degradation of these 

compounds under different irradiation spectra or sunlight directly will provide more 

comprehensive information on the effect of photodegradation.   

Lastly, based on literature and data from our study, these compounds sorb onto sludge during 

primary and secondary treatment, and their fate during anaerobic degradation of sludge is 

largely unknown. Therefore, it is important to identify the potential risks triclosan, estrogens, 

PAHs and PBDEs pose when this sludge is applied as manure in farmlands. 
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Chapter 8 Appendices 

 Appendix A: Degradation plots of the chemicals in the UK 

biodegradation experiment  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-1 Degradation of low molecular weight PAHs over time under aerobic conditions.  
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Figure 8-2 Degradation of middle molecular weight PAHs over time under aerobic 

conditions.  
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Figure 8-3 Degradation of low molecular weight PAHs over time under aerobic 

conditions. Error bars represents the standard deviation of triplicate measurements 
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Figure 8-4 Degradation of estrogens over time under aerobic conditions.  
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 Appendix B: Degradation charts for Brazil experiment 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-5 Degradation of triclosan under aerobic conditions with activated sludge inocula. 

Error bars represents the standard deviation of triplicate measurements 
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Figure 8-6 Degradation of triclosan under aerobic conditions using facultative inocula 

from waste stabilization pond (WSP) over time. (a) and (b) represents light and dark 

incubation conditions respectively 
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Figure 8-7 Degradation of low molecular weight PAHs under aerobic conditions with 

activated sludge.  
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Figure 8-8 Degradation of middle molecular weight PAHs under aerobic conditions 

with activated sludge. Error bars represents the standard deviation of triplicate 

measurements 
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Figure 8-9 Degradation of high molecular weight PAHs under aerobic conditions with 

activated sludge.  
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Figure 8-10 Degradation of low molecular weight PAHs under aerobic conditions with 

facultative pond inocula from WWTP C 
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Figure 8-11 Degradation of middle molecular weight PAHs under aerobic conditions with 

facultative pond inocula from WWTP C 
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Figure 8-12 Degradation of high molecular weight PAHs under aerobic conditions with 

facultative pond inocula from WWTP C 
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Figure 8-13 Degradation of estrogens with activated sludge under aerobic conditions. 

Error bars replicate standard deviation of triplicate measurements 
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Figure 8-14 Degradation of estrogens with facultative pond inocula under aerobic 

conditions in the (a) Light and (b) Dark 
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Figure 8-15 Degradation of PBDEs with facultaive inocula under aerobic conditions in 

the (a) light, (b) dark 
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 Appendix C: Estimating volatilization tendency of low molecular 

weight PAHs 

 

Volatilization tendency calculation 

Henry’s constant calculation is given as (Bamford et al., 1999); 

𝐻′ =  
𝐻

𝑅𝑇
                            (1)         

Where H = Henry’s constant of a chemical at 25oC in Pa m3/mol, H’ = dimensionless Henry’s 

constant, R = Ideal gas constant (8.314 Pa m3/mol K) and T is absolute temperature (273 K) 

𝐻′ =
𝐶𝑔

𝐶𝑤
                             (2) 

Cg and Cw are gaseous and dissolved phase concentration of the chemical respectively in 

mol/m3.  

H for naphthalene (naph), acenaphthylene (ace), acenaphthene (acen), and fluorene (flu) is 

44.6, 11.6, 16.2 and 9.8 Pa m3/mol respectively (Shiu and Mackay, 1997).  

Substituting this H values into equation (1) above, H’ for naph, ace, acn and flu becomes 

0.0196, 0.0056, 0.0071 and 0.0043 respectively. This equates to 1.96 %, 0.55 %, 0.71 % and 

0.43 % of naph, ace, can and flu in the gaseous phase when substituted into equation (2), 

regardless of the dissolved concentration.  
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 Appendix D: Volatilization rate calculation for low molecular weight 

PAHs 

Assuming LMW PAHs volatilize via diffusion from the test vessels. Hence, according to 

Fick’s first law, a diffusive flux will move from a region of higher concentration to a region 

of lower concentration across a concentration gradient 

i.e. Flux = + 𝐴 𝑥 𝐷 𝑥 
𝐶𝑎

𝐻𝑆−𝐶𝑎
𝑎𝑡𝑚

∆𝑋
 

Where A and D = cross sectional area of the test vessel, 𝐶𝑎
𝐻𝑆 is the concentration of the 

chemical in the headspace of the test vessel, 𝐶𝑎
𝑎𝑡𝑚 is the concentration of the chemical in the 

atmosphere (test lab), ∆𝑋 is the distance between the headspace and atmosphere 

Assuming 𝐶𝑎
𝑎𝑡𝑚 = 0, A, D and ∆𝑋 are Constants  

Flux =  + 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑥 𝐶𝑎
𝐻𝑆

  

Since  𝐻′ =
𝐶𝑎

𝐻𝑆

𝐶𝑤
 ; where 𝐶𝑤 is the concentration of chemical in the water, and 𝐻′ is the 

dimensionless Henry’s constant 

Flux = + 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑥 𝐻′ 𝑥 𝐶𝑤  

The rate of disappearance of a LMW PAH is; 

𝑑𝐶𝑤

𝑑𝑡
=  −𝐾𝑏𝑖𝑜. 𝐶𝑤 −  

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  𝐻′ 

𝑉𝑤
. 𝐶𝑤 .         Where 𝑉𝑤 is the volume of water 

Kvolatilization =  
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  𝐻′

 

𝑉𝑤
,  

Hence,  

𝑑𝐶𝑤

𝑑𝑡
=  − (𝐾𝑏𝑖𝑜 + 𝐾𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛).  𝐶𝑤  

𝑑𝐶𝑤

𝑑𝑡
=  − 𝐾.  𝐶𝑤        Where K = 𝐾𝑏𝑖𝑜 + 𝐾𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

Hence, the first order rate equation can also be used to calculate volatilization rate. The 

volatilization rate were calculated from measured concentration of the chemicals in the 

solution phase of autoclaved control and transformed below; 
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Figure 8-16 First order volatilization rate plot for LWM PAHs in the UK aerobic 

biodegradation experiment 
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Figure 8-17 First order volatilization rate plot for LWM PAHs in the Brazil 

aerobic biodegradation experiment with activated sludge inocula 
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 Appendix D: Estimating EE2 concentration in Brazil 

 

Total population of Brazil = 206 million people (2017) 

Women population in Brazil = 106 million 

Reproductive women (ages 15 – 49) = 56 million (indexmundi, 2017). 

% that takes all types of contraceptives = 80 %  

% of those contraceptive users that takes the pill only = 34.2 % (15.3 million women, and 

14.4 % of the total women population in Brazil). Hence, 7.4 % of the entire Brazil population 

takes the contraceptive pill.  

Total load of EE2 consumed in developed countries = 27 µg/d (Johnson and Williams, 2004).  

Assuming this figures are the same for Brazil,  

EE2 usage per head (load) = 27 
µ𝑔

𝑑
 ×  0.074 = 1.92

µ𝑔

𝑑
  

Also, the amount of EE2 excreted in a study was = 10.8 µg/d (Johnson and Williams, 2004). 

EE2 excreted per head (load) = 10.6 
µ𝑔

𝑑
 ×  0.074 = 0.78

µ𝑔

𝑑
  

To estimate the concentration of EE2 in the influent of the WWTP = 
𝐿𝑜𝑎𝑑 × 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑟𝑣𝑒𝑑

𝐹𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
 

Where load is in µg/d, flow rate in L/d. 

Hence, for Pessoa et al., 2014. Population equivalent of the largest plant investigated was 

23,870 and the flow was 5, 132, 000 L/d. This gives an EE2 concentration of 0.0036 µg/L 

(3.6 ng/L) and 8.9 ng/L for maximum excreted and usage concentration respectively.  

For Froehner et al., 2010. Population equivalent of the largest plant investigated was 580, 000 

and the flow was 120,900,000 L/d. This gives an EE2 concentration of 3.4 ng/L and 9.2 ng/L 

for maximum excreted and usage concentration respectively. 
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 Appendix E: Estimating the theoretical oxygen demand require to 

mineralise the chemicals 

 

Theoretical Oxygen Demand (ThOD) 

According to OECD method 301, the theoretical oxygen of a compound 

(CcHhClclNnNanaOoPpSs) can be calculated by the following equation; 

ThOD =  
16[2𝑐+0.5(ℎ−𝑐𝑙−3𝑛)+3𝑠+2.5𝑝+0.5𝑛𝑎−𝑜]𝑚𝑔/𝑚𝑔 

𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑀𝑊)
 

 

For PAHs (naphthalene); 

Molecular formula is C10H8. So every other element is 0, and MW = 128.2 g/mol 

So, ThOD =  
16[2(10)+0.5(8−0−0)]𝑚𝑔/𝑚𝑔 

128.2
 

ThoD = 3 mg of O2/mg of Naphthalene. Since I spiked PAHs at 0.2 mg/L, ThoD becomes 0.6 

mg/mg 

For triclosan;  

Molecular formula is C12H7Cl3O2. So every other element is 0, and MW = 289.5 g/mol 

ThOD =  
16[2(12)+0.5(7−3−0)+0+0+0−2]𝑚𝑔/𝑚𝑔 

289.5
 

ThoD – 1.3 mg of O2/mg of triclosan (triclosan was spiked at 1 mg/L) 

 

For estrogens (estriol-E3);  

Molecular formula is C18H24O3. So every other element is 0, and MW = 288.4 g/mol 

ThOD =  
16[2(18)+0.5(24−0−0)+0+0+0−3]𝑚𝑔/𝑚𝑔 

288.4
 

ThOD = 2.5 mg of O2/mg of E3 or 0.25 mg of O2/0.1mg of E3 (since 0.1 mg was spiked) 
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 Appendix F: Calculating the Solids Retention Time (SRT) of the UASB 

plant in Brazil 

 

Total wastewater flow into the plant = 147,384 m3/d 

Total number of UASB reactors the flow is distributed into = 21 

Hence, flow per UASB = 
147,384 

21
= 7018.32 𝑚3/𝑑 

Total suspended solids (TSS) content in UASB effluent = 112 mg/L = 0.112 kg/m3 

Hence, total TSS load = 7018.32
𝑚3

𝑑
 ×   0.112

𝑚3

𝑑
= 786.1 𝑘𝑔/𝑑 

SRT = 
𝑆𝑙𝑢𝑑𝑔𝑒 𝑚𝑎𝑠𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑈𝐴𝑆𝐵 𝑟𝑒𝑎𝑐𝑡𝑜𝑟 (𝑘𝑔)

𝑇𝑆𝑆 𝑙𝑜𝑎𝑑 𝑘𝑔 𝑑⁄
 

Sludge mass in reactor = 31,374.1 kg 

Hence SRT = 
31,374.1

786.1 
= 40 𝑑𝑎𝑦𝑠 

Typically, SRT of UASB reactors range from 30 – 50 days. 

 Appendix G: Removal of methyl triclosan in Brazilian WWTPs 

In WWTP A, methyl triclosan was majorly removed after primary treatment (85 %), and was 

similar to those reported by Lozano et al., 2013. In WWTP B, methyl triclosan was only 

removed (31 %) after stage 1 secondary treatment (UASB). While the concentration of methyl 

triclosan decreased by 40 % after stage 1 secondary treatment (anaerobic pond) in WWTP C, 

it increased by 45 % after stage 2 secondary treatment (facultative pond). This result suggests 

that methylation of triclosan occurred in the facultative pond. However, it was interesting to 

observe methylation of triclosan in the facultative pond that operates under aerobic and anoxic 

conditions (in the upper and middle layer respectively), and not in the fully aerobic secondary 

treatment of WWTP A (activated sludge). Biodegradation experiments carried out using 

inocula from this two different secondary treatment processes to further understand this 

scenario. However, this might also be due to the grab samples not equating with the hydraulic 

load (retention times) of the systems. 
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 Appendix H: Chromatogram of triclosan and PAHs in effluent 

 

Figure 8-18 Chromatogram of effluent spiked with triclosan at 100 ng/L (above). Spectrum of the m/z ion used to quantify triclosan in the method. 

Triclosan was spiked before SPE 
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Figure 8-19 Chromatogram of effluent spiked with PAHs at 200 ng/L. The PAHs were spiked before SPE. High molecular weight PAHs were mostly 

visible within their m/z spectrum 

 


