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sample t-test, where *p<0.05, **p<0.01, ***p<0.0001. Capillary gel electrophoresis image shows 

ITGA6 alternative splicing after knocking down splicing regulation factors in the hela cell line.  

Exclusion of cassette exon appears in the lower band (246bp), while the upper band represents 

exon inclusion (377). ......................................................................................................................... 67 

Figure 3.6: Knockdown of PTBP1 in hela cell line  confirmed by  western blotting and real time pcr. A) 

depletion of endogenous ptbp1 was confirmed  in triplicate in hela cells by western blot. 

Expression of gapdh was monitored as a loading control. B) qpcr detected the expression of 

kncodown of PTBP1 in hela cell line (shown in red) compared with the control (untreated cell) in 

blue. Data for the mean three biological replicates  and statistical significance was calculated using 

an independent two-sample t-test, where *p<0.05, **p<0.01, ***p<0.0001 . ................................ 69 

Figure 3.7: Regulation factor expression in different cell lines, stem cells and fibroblasts. Qpcr was 

used to quantify expression of ptbp (ptbp1 and ptbp2), mbnl1, rbfox2 and esrp (esrp1&esrp2) in 

mcf7, stem cell, fibroblast, mda-mb231 and hela cells. Data for the three biological replicates and 

statistical significance were calculated using an independent two-sample t-test, where *p<0.05, 

**p<0.01, ***p<0.0001. .................................................................................................................... 72 

Figure 3-8: Schematic diagram explaining the  RNA map. This image was adopted and modified from 

(ule et al., 2006). ................................................................................................................................ 75 

Figure 3-9: Schematic illustration of the vegf signaling pathway in cancer stem cells ........................... 76 

Figure 4.1:  Schematic diagram to explain mutagenesis procedure using overlap pcr. The first step of 

the reaction created mutants of fragment by using specific primers designed with specific 

mutations in order to produce two overlapping dna fragments with complementary mutations. 

These were joined by overlap pcr and then cloned into the pxj41 vector. ....................................... 86 

Figure 4.2: Sequence of the human alternative exon of ITGA6 and surrounding intron sequences. The 

alternative exon is shown in red font. Rbfox binding sites are shown in red highlight (strong site) 

and pink (weak site). Mbnl sites (ygcy) are highlighted blue (strong site) green (medium) and 

yellow (weak site). ............................................................................................................................. 91 

Figure 4.3. Establishment of a minigene system to study regulation of the ITGA6 alternative exon to 

test if the ITGA6 alternative exon is repressed by ptb, i made a minigene  construct  for the itga6 

alternative exon along  with the surrounding introns   and transfected this  into  different cancer 

cell lines. After rt-pcr and gel electrophoresis, the lower band represented short mrna isoform 

(excluded exon) whereas, upper band represented the long isoform (inclusion exon). .................. 92 

Figure 4.5: Analysis of ITGA6 minigene constructs. The agarose gel shows pcr products made from of 

cDNA of hela, mda-mb231 and mcf7 cells transfected with itga6 4kb , ITGA6 1.3kb and itga6short 

minigenes. The upper band represents the inclusion ITGA6 alternative exon (318 bp), which 

appears only in itga61.3kb and itga64kb. The lower band represents the exclusion ITGA6 

alternative exon (vector without insertion) (188 bp). ....................................................................... 96 

Figure 4.6: Effect of knock down of splicing regulation factors on expression of the ITGA61.3kb 

minigene construct in the mcf7 cell line. A) the endogenous itga6 alternative splicing patterns after 

knocking down (ptbp1/2, mbnl1, rbfox2 and esrp1 in mcf7 cells. The upper band (377 bp) 

represents the long form (with inclusion of the alternative exon), whereas the lower band (249 bp) 

represents exclusion of the alternative exon. B) agarose gel of rt-pcr using minigene primers 

around the itga6 alternative exon. A pcr product (itga61.3kn minigene) including the alternative 

exon is shown in the upper band (inclusion exon) and the lower band (exclusion exon). ............... 99 

Figure 4.7: The ITGA6 1.3kb minigene construct responds to knock down of pbtbp1 and ptbp2 

similarly to the endogenous gene.  Agarose gel shows. A) the endogenous itga6 alternative exon 

knockdown ptb1 and ptb2. The upper band represents the exon inclusion (377 bp), whereas the 

lower band shows the exclusion of the alternative exon (247 bp). B) rt-pcr using minigene primers 
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around the alternative itga6 exon. The upper band represents exon inclusion and the lower band 

exon skipping. Double knockdown of ptb1 and ptb2 in itga6 causes a shift from the lower band to 

the upper band for both the minigene and endogenous itga6. ...................................................... 100 

Figure 4.8:  Overexpression of splicing regulation factors with ITGA61.3KB minigene construct in the 

mcf7 cell line.  Bar chart shows the percentage splicing inclusion (psi) of the itga6 minigene with 

overexpression constructs encoding ptbs & mbnl (blue) compared with itga6 wild type gfp (red). 

Mbnl has higher psi compared to gfp, whereas ptbp1 has less. Data represents the mean of three 

biological replicates in each case. Statistical significance was calculated using an independent two-

sample t-test, where *p<0.05, **p<0.01, ***p<0.0001.  Capillary gel electrophoresis shows mbnl 

drives more inclusion (‘a’ form) whereas ptb1 represses the ‘a’ exon, comparing with coexpression 

of gfp. .............................................................................................................................................. 102 

Figure 4.9: Effects of PTBP over-expression and knockdown in different cell lines on minigene. Bar 

chart shows the percentage splicing inclusion (psi) from the itga6  minigene after knockdown 

(orange) and overexpression(bright blue) of  ptbp regulator factors  comparing with wild type gfp 

(green) in a) mda-mb-231, b) mcf7 & c) hela cell lines.  Data represent the mean of three biological 

replicates in each case. Statistical significance was calculated using an independent two-sample t-

test, where *p<0.05, **p<0.01, ***p<0.0001. ................................................................................ 105 

Figure 4.10: Effect of mutating the ptb binding sites downstream of the ITGA6 exon.  A) sequence of 

the human alternative exon of ITGA6 and surrounding intron sequences with deletion for 

candidate ptb sites ( del a & del b) in downstream intron.  B) bar chart shows the psi level of the 

itga6 minigene with del a (red)  &del b (pink) giving  less inclusion  for  the alternative  exon 

compared with  wild type ITGA61.3 gfp (green). This means that even though ptb expression 

represses exon ‘a’, these binding sites are activating. .................................................................... 108 

Figure 4.11: PTB protein structure. A) schematic illustration of ptb rna binding sites including rrma1 (red) 

rrm2 (grey) rrm3 (yellow) and rrm4 (green). Each rrm motif has different binding affinity for 

pyrimidine-rich sequences on mrna. B) model of the interaction ptb four motifes with rna.  Image 

adapted from(sawicka et al., 2008a) ............................................................................................... 110 

Figur4.12: Effect of different rrm mutation upon to PTB inhibitor a) schematic illustrate  mutant  sitat 

at 4 domain ptb binding sites, and table shows the location of the mutant.b) bar chart shows 

transfecting itga6  minigenes with ptb different mutant. Data represented the mean of three 

biological replicated in each case after calculate. Statistical significance was calculated using an 

independent two-sample t-test, where *p<0.05, **p<0.01, ***p<0.0001. B) western blotting for 

ptbp different mutant expression with flag. It dos not show any expression compare with wt. ... 112 

Figure 4.13. Illustration of  the possible binding site for mbnl1 in ITGA6. The sequence represents the 

ITGA6 alternative exon (in red) with surrounding introns. Mbnl1 candidate bind sites are in yellow, 

blue and green boxes. The diagram underneath represents where mbnl1 binds in order to activate 
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Figure 4.14 Schematic illustrate the possibility binding sites regulation factors regulate ITGA6 exon. 

The sequence represents the itga6 alternative exon (in red) with around intron in black, mbnl1 

candidate bind sites represent in yellow, blue and green, ptb candatit binding site  represent in 

dark green. Diagram shows the regulations binding sites and how might they regulate itga6 

alternative exon............................................................................................................................... 118 

Figure5.1Schematic illustrate the two hypothesis  of how ITGA6 alterntive exon regulated . A)  
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List of Abbreviations 

3ʹss               3’ prime splice site  

5ʹss               5’ prime splice site  

AS                 Alternative splicing  

ASE               Alternative splice events  

BP                 Bbranch pointe  

CLIP              UV Cross-Linking and ImmunoPrecipitation 

C-terminus          Carboxy-terminus 

DMEM         Dulbecco's Modified Eagle Medium 

DMSO         dimethyl sulfoxide 

DNA             Deoxyribonucleic acid  

dNTPS         deoxynucleotide triphosphates 

EDTA        Ethylenediaminetetraacetic acid 

ESRP            Epithelial splicing regulatory protein 

ESE               Exonic splicing enhancer  

ESS               Exonic splicing silencer  

ECM             Extracellular matrix   

FBS              Fetal Bovine Serum 

GFP        Green Fluorescent Protein 

HeLa            human cervical carcinoma cell line 

iCLIP        individual nucleotide resolution CLIP 

hnRNP         Heterogeneous nuclear ribonucleoprotein  

ISE                Intronic splicing enhancer  

ISS               Intronic splicing silencer  

KH               K homology  

mRNA          Messenger ribonucleic acid  

MBNL          Muscleblind-like  

MIDAS         Metal ion-dependent adhesion site  

MCF-7         Michigan Cancer Foundation-7 human breast cancer cell line 

MBNL1         Muscle-blind like protein  1  

MDA-MB231       MD Anderson human invasive breast cancer cell line 

NMR        Nuclear Magnetic Resonance 



miRNA         micro RNA 

PBS        Phophate Buffered Saline 

PCR              Polymerase chain reaction  

RGD             Arginine-glycine-aspartic acid  

PPT        Polypyrimidine Tract 

PSI        Percentage Splicing Inclusion 

PTB        Polypyrimidine Tract Binding protein 

PPT              Polypyrimidine tract  

qPCR        quantitative real-time PCR 

QKI               Quaking 

RBFOX2      RNA binding protein, fox-1 homolog 

RGD             Arginine-glycine-aspartic acid  

RNA             Ribonucleic acid  

RNAi            Ribonucleic acid interference  

RRM            Ribonucleic acid recognition motif  

RT-PCR        Reverse transcription polymerase chain reaction  

RBP        RNA-binding protein 

RRM        RNA recognition motif 

RNAi        RNA interference 

RNA-seq     RNA sequencing 

RT-PCR         Reverse Transcriptase Polymerase Chain Reaction 

siRNA           Small interfering ribonucleic acid  

snRNP          Small nuclear ribonucleoprotein  

TBST         Tris-Buffered Saline and Tween-20 

TE         Tris/EDTA 

UTR         Untranslated region 

UCSC          University of California, Santa Cruz 

 

Definition  

Paralogues    a pair of genes that derives from the same ancestral gene. 

Orthologues     genes in different species that evolved from a common ancestral gene by   

speciation. 



Abstract 

 

Alternative splicing is an important mechanism for creating protein diversity. Integrins 

are significant in many aspects of cell biology, including cell signalling and interaction 

with the cell matrix. ITGA6 has two different cytoplasmic C-termini (a6A and a6B) that 

shift 100% between stem cells and fibroblasts. The primary aim in this thesis was to 

monitor splicing patterns during development and differentiation integrin subunit 

alpha 6 (ITGA6) to see which alternative splicing events are similarly regulated in fish 

and humans using early zebrafish development. The a6A and a6B integrins had been 

differentially implicated in the expression in the function of breast cancer and cancer 

stem cells. Therefore, the second aim was to monitor splicing patterns for ITGA6 in 

different cancer cell lines and to compare them with stem cell patterns, fibroblast, and 

zebrafish, determining which splicing regulator protein regulates the ITGA6 alternative 

exon. It was confirmed that the ITGA6 alternative exon 25 was activated by MBNL1, 

RBFOX2 and ESRP in cancer cell lines, and PTBP was discovered as a novel regulator for 

ITGA6 splicing that inhibited the exon of ITGA6 in cancer cell line. The third aim for this 

project was to identify the mechanism of splicing of this ITGA6 alternative exon, 

including identifying the PTB binding site that regulates ITGA6. A minigene system was 

established to study the regulation of the ITGA6 alternative exon. The ITGA6 1.3 

minigene positively responded to siRNA mediated depletion of splicing factors in the 

same way as the endogenous gene, indicating this minigene was a good model. The 

alternative exon of ITGA6 was activated by MBNL1 and was inhibited by PTBP, leading 

to more production of ITGA6B. Using this minigene plasmid it was confirmed that PTBP 

inhibited alternative splicing of ITGA6. The last aim of this chapter was to discover the 

PTB binding sites. Through a series of in silico analyses, a binding site for PTB was 

identified downstream of the regulated exon. Surprisingly, loss of this PTB binding site 

actually repressed this splicing event. These data suggest that PTB both activates this 

alternative splicing event through direct RNA-protein interactions, but also more 

strongly represses this exon, possibly through protein interactions with other 

regulatory   factors.                                                                                      .                                                  
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Chapter 1: Introduction 

1.1 Pre-mRNA  

1.1.1 One gene multiple protein  

 

There are approximately 23,000- 30,000 protein coding genes in the human genome 

which produce a huge variety of proteins (International Human Genome Sequencing, 

2004) (Gerstein et al., 2007). Protein-coding genes numbers are significant when we  

take into an account that the human genome is estimated to produce over one million 

different protein species (Nilsen and Graveley, 2010). This means there must be some 

method to amplify information. This occurs via a series of post-transcriptional 

mechanisms. After DNA is transcribed to precursor messenger RNA (pre-mRNA), it is 

modified by splicing, RNA editing, 3'polyadenylation, 5' capping, transcription and 

termination. These processing steps explain the protein complexity from our relatively 

modest number genes figure1.1 (Lander, 2011).  

In individual cells, gene expression is regulated at the RNA level by modification of the 

primary transcript (pre-mRNA) which produces multiple mRNA isoforms from a single 

gene (Kalsotra and Cooper, 2011). This can lead a single gene to encode multiple 

protein isoforms. mRNA variants can encode functionally and structurally different 

proteins. Proteins can also be modified via post-transcriptional modifications including 

phosphorylation, methylation, ubiquitination, glycosylation, etc.) (Wilhelm et al., 

2014). Taken together post-transcriptional modifications with subsequent post-

translational modifications to proteins leads to the massive surplus of proteins over 

protein-coding genes.  

It has been reported that roughly 95% of human genes are subjected to alternative 

splicing. Alternative splicing allows each human gene to generate two to three 

different mRNA isoforms (Djebali et al., 2012). While not all alternative splicing events 

are of functional importance, alternative spicing is a significant mechanism and key for 

posttranscriptional gene expression.  
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1.1.2 Overview of mRNA 

 

DNA-encoded information in eukaryotic under goes several steps of gene expression. 

The Initial stage of eukaryotic gene expression is the process of transcription in which 

the DNA is transcribed to mRNA by RNA polymerase II (Darnell, 2013). All pre-mRNA 

molecules are subject to a series of processing events, which all known as post-

transcriptional modifications, before they leave the nucleus. Post-transcriptional 

processing steps include capping, splicing and polyadenylation (Mandal et al., 2004). 

mRNA capping takes place after nascent RNA is produced by RNA polymerase. A 

methylated Guanine base is added to the 5’ end of the transcript. The function of the 

cap at the 5’ end is to distinguish between mRNAs and other RNA species (e.g. RNA pol 

I and III produce uncapped RNAs). Capping also protects RNA molecules from 

degradation (Mandal et al., 2004).  

Eukaryotic genes consist of introns and exons. Splicing removes introns and joins exons 

in order to produce functional mRNAs. Spliceosomes contain small nuclear 

                                

Figure 1.1:  Multiple mRNAs from a single gene.  Post transcriptional mechanism 
including A) alternative splicing  B) alternative polyadenylation C) RNA 
editing(Siomi and Dreyfuss, 1997) 
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ribonucleoproteins (snRNPs), heterogeneous nuclear ribonucleoproteins (hnRNPs) and 

a large range of auxiliary RNA-binding proteins (Cramer et al., 2001). The next and 

often final stage is of mRNA polyadenylation. Polyadenylation comprises two 

processes, including cleaving mRNA during RNA pol II elongation and adding a poly(A) 

tail to the 3’ end. The function of polyadenylation is to protect RNAs from degradation 

and provide its transfer to the cytoplasm for subsequent translation (Stewart, 2010). 

mRNA processing is thought to occur cotranscriptionally, in which transcription and 

processing are not consecutive, but simultaneous. Following the co-transcriptional 

processing including capping, splicing and polyadenylation, mRNA is exported from 

nucleus to cytoplasm where it eventually serves as templates for protein synthesis  via 

translation (Stewart, 2010). 

 

1.2 Splicing     

    

Precursor messenger RNA (pre-RNA) splicing is one of the most dynamic processes in 

eukaryotic cell biology (McManus and Graveley, 2011). Splicing plays a major role in 

gene expression. Splicing consists of the removal of introns, whilst exons are ligated 

together in order to form mature protein-coding mRNA (Will and Luhrmann, 2011). 

Splicing involves a series of reactions that are catalysed by the spliceosome. The 

spliceosome is one of the most complicated machineries in the cell. There are two type 

of spliceosome.  The major spliceosome is responsible for the removal of introns that 

harbour consensus splice site sequences. The minor spliceosome targets a less 

abundant class of non-canonical intron, which differ in splice sites from the consensus 

ones.  

The spliceosome contains approximately 150-300 proteins and five small nuclear RNAs 

within the  U1, U2, U4/U6, U5 and ribonucleoproteins (snRNPs)—all of which combine 

to create a large complex machine containing RNA and protein (Wahl et al., 2009). The 

snRNPs designated U1, U2, U4/U6 and U5 are the major spliceosome components 

required for spliceosomal formation.  The 5’ and 3’ splice sites (ss) are required for the 

assembly of the spliceosome. The snRNAs catalyse the splicing reaction, and direct 

recruitment to the 5’ and 3’ splice sites (ss) to help define intron/exon boundaries 

(McManus and Graveley, 2011) (Wahl et al., 2009). In humans, CAG/GURAGU (in which 
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R=purines and GU is invariant) is the consensus sequence for the 5’ss, whereas YAG/G 

(in which Y=pyrimidine and AG is invariant) is the consensus sequence at the 3’ss. 

There are also two other components to the 3’ ss, including an upstream 

polypyrimidine tract (PPT), which has a variable length, and a branch point sequence 

containing an adenosine which is usually located 18-40 nucleotides upstream from the 

PPT (Figure 1.2 A) (Will and Luhrmann, 2011).  

The 5’ splice site and 3’ splice site core elements are bound by specific components of 

the spliceosome. U1 snRNA hybridises with the 5ʹss whereas U2 snRNA and the two 

subunits from U2AF recognise the 3ʹss, PPT and branch point (BP) respectively. Splice 

site selection can be influenced by variations in the splice site sequence; splice sites 

which closely resemble the consensus sequence are more efficiently recognised by 

spliceosomal proteins and snRNAs than splice site which have considerable deviations 

from the consensus sequence figure 1.2B (Will and Luhrmann, 2011). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1.2: Cis elements that control pre-mRNA splicing. A) The four components of 
the splice site in an intron are the 3’ splice site, polypyrimidine tract, branch point 
and 5’ splice site.  B) Splicing complex formation by exon definition. Spliceosomal 
complexes form along the pre-mRNA during splice site recognition and enable 
commitment to splicing. U1snRNP binds at the 5’ss by base pairing, whereas U2AF 
binds at the 3’ss and polypyrimidine tract. The branch point is bound by U2 snRNA. 
Other RNA-binding proteins including ‘SR’ proteins bind to cis-acting splicing 
enhancers to further help define the correct splice sites. Image redrawn from (Wahl 
et al., 2009)  
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1.2.1 Splicing mechanism   

 

Three major processes constitue the splicing mechanism: spliceosome assembly on the 

pre-mRNA, the splicing reaction per se and ultimate intron release (Moore and Sharp, 

1993).  The splicing reaction itself occurs in two steps, both of which are trans-

esterification reactions (Will and Luhrmann, 2011). The first trans-esterification 

reaction occurs due to a nucleophilic attack by the 2’OH group of the conserved 

adenosine within the branch site, with the conserved guanine of the 5' splice site at 

the exon-intron junction (Moore and Sharp, 1993). As a result, the exon 1-intron 

junction is cleaved, and the lariat intermediate which is still linked to exon 2 is formed 

(Will and Luhrmann, 2011). The second trans-esterification occurs when the 3’OH 

group of the released upstream exon attacks the last nucleotide of the intron at the 

3ss. Consequently, the two exon sequences are ligated together, and the intron 

sequence is released as a lariat structure figure 1.3 (Moore and Sharp, 1993). 

 

 

 

 

 

 

 

 

 

        

 

 

 

 

Figure 1.3: The two steps of the splicing mechanism. Both reactions are 
nucleophilic attacks. In step one an OH group at the branch site adenosine 
attacks the (‘splice donor’) 5’ splice site. In step two the 5’ splice site attacks the 
3’ (‘acceptor’) splice site and thus the intron is removed and the two exons are 
ligated. 
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The spliceosome consist of five distinct intermediate protein complex process called H, 

E, A, B and C that assemble sequentially as in figure 1.4 (Reed, 2000, Wahl et al., 2009).  

Splicing initiates with un-spliced pre mRNA forming H complex, consisting  of pre-

mRNA bound by the non-specific association of a group of RNA-binding proteins called 

hnRNPs (Black, 2003).  After that, E complex forms in which recognition of the 5’ splice 

consensus splice site is driven by U1 snRNP in an ATP-independent manner.  Other 

RNA- binding proteins (including members of the SR protein family )  interact  with  U1 

snRNP (Soller, 2006). In addition to the U1-5’splice site interaction, splicing factor 

1/branch point bound protein (SF1/BBP)   binds to  the branch point and interacts with 

U2 the auxiliary factor (U2AF) heterodimer. U2 auxiliary factor (U2AF) heterodimer 

consists of two subunits:  a 65kDa subunit (U2AF65) which recognizes the 

polypyrimidine tract (PPT) and a 35kDa subunit (U2AF35) which recognizes the 3' splice 

site consensus sequence (Valadkhan, 2007).  

E complex is followed by A complex in which U2 snRNP interacts with the branch point.  

Subsequently, the branch point adenosine is bulged out of the U2snRNP-premRNA 

duplex and is ready to attack the 5ss. The following step involves U4/U6/U5 tri-snRNA 

binding to the spliceosome in order to form the B complex, which promotes the first 

transesterification catalytic step of splicing. Within  complex C, in which the second 

catalytic step also takes place when the upstream 5’ splice site ligates to the 3’ splice 

site in order to splice the exons and  release the intron lariat intermediate (Wahl et al., 

2009).  

Overall the U2, U5, U6 snRNPs and other splicing factors are important in splicing 

reactions as well as other supportive proteins including ATPases, helicases and 

DExD/H-box proteins which drive spliceosome assembly. When splicing is completed, 

the lariat intron is degraded, while the snRNPs are recycled and used in the 

subsequent splicing reactions (Reed, 2000, Soller, 2006, Wahl et al., 2009).  
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1.2.3 The minor spliceosome        



 Although the majority of eukaryotic introns are removed by the major spliceosome, 

there are a small number of (non-canonical) introns that are removed by a minor 

spliceosome. The minor spliceosome consist of four specific snRNPs called 

U11/U12/U4atac, U6 ATAC and U5 which the latter is the only snRNP shared by both 

types of spliceosomes (minor and major) (Patel and Steitz, 2003). In general terms, the 

function of the minor splicisome is similar to that the major spliceosome. The major 

spliceosomal splices U2-dependent introns which are recognised by U2 snRNP. These 

introns usually start with a GT nucleotide and finish with AG bases. On other hand, the 

minor splicisome recognises U12-dependent introns due to intron recognised by U12 

type. U12 introns typically start with AT and finish with AC nucleotides (Turunen et al., 

2013, Tarn and Steitz, 1996, Yu and Steitz, 1997) 

 

Figure 1.4 : Schematic  diagram showing the splicing reaction  (Wahl et al., 2009) 
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1.2.4 Alternative splicing  

 

The average gene contains approximately 10 introns which need removing from an 

average length of 120kb, to reduce the size to an average of 2kb mRNA after splicing. 

This large number of exons and surplus sequence attests to the remarkable fidelity of 

splicing and also leaves a large margin for variation. Alternative splicing is a process by 

which RNA diversity is generated by joining different combinations of splice sites from 

a single gene. Alternative splicing is now known to have a significant function in gene 

expression. It was estimated that alternative splicing affects 60% of human genes 

(Srebrow and Kornblihtt, 2006). Since then, with developments in bioinformatics 

analysis and advanced sequencing techniques, that estimated percentage figure is now 

increased, such that approximately 95% of multi-exon genes are now thought to 

undergo alternative splicing (Pan et al., 2008). However the proportion of these 

alternative events that are truly functional is not yet established.  

 

Changes to splicing patterns play a significant role in gene expression and the function 

of various proteins. In addition splicing changes can be regulated to play a significant 

role in facilitating responses to changes in external stimuli, for example in CD44, a 

transmembrane glycoprotein (Pan et al., 2008). It has been reported that growth 

factor signalling has an effect on production of CD44 isoforms, specifically inclusion or 

exclusion of variable exon V6, and that this creates a positive feedback as the V6 

containing isoform is more active as a co-receptor for growth factor (Cheng et al., 

2006). 

 

Exon skipping is one of the most prevalent patterns to occur during splicing (Figure 

1.5B) (Reddy, 2007). Like all forms of alternative splicing, exon skipping can lead to a 

change in the reading frame and a truncated protein, or the change can be an in frame 

removal/addition of a number of amino acid residues (Srebrow & Kornblihtt, 2006). 

Another kind of alternative splicing involves mutually exclusive exons; this splicing 

pattern occurs when one exon is retained and one exon is skipped, leading to the 

generation of two different isoforms (Figure 1.5 C)(A. S. Reddy, 2007). The retention of 

an intronic sequence is a relatively rare form of AS in vertebrates but it too can occur 

due to the silencing of splice sites within the intron (Srebrow & Kornblihtt, 2006). Yet 
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another pattern of alternative splicing involves alternative 5’ or 3’ splice sites. This 

leads to deletion of part of the 3’ end of the upstream exon or part the 5’ end of the 

downstream exon (Pan et al., 2008) (Figure 1.5 E,F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: The different kinds of alternative splicing events (see text for details). 
Image was redrawn from (Srebrow & Kornblihtt, 2006). 
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1.3 RNA-protein interaction:  
 

RNA-binding by RNA-binding proteins (RBPs) regulate the metabolism of RNA in 

eukaryotes (Anko and Neugebauer, 2012). RBPs contribute to all nuclear mRNA 

processing steps including capping, splicing, and polyadenylation as well as mediating 

the transport of mRNAs from the nucleus to the cytoplasm and regulation of their 

translation. RBPs form large ribonucleoprotein complexes (RNPs) on the RNA in order 

to regulate different steps of RNA metabolism. RNPs are classified according to 

whether they bind in the nucleus or in the cytoplasm and are thus called 

heterogeneous nuclear RNPs (hnRNPs) ,which also form on pre-mRNA, or messenger 

RNPs (mRNPs) respectively (Janga and Mittal, 2011).There are a variety of motifs that 

bind to RNA including RNA recognition motifs (RRMs), K homology (KH) domains and 

zinc fingers which help to facilitate and control the localization and processing of RNA. 

Figure 1.6 summarises the mechanisms controlled by RBPs in a cell (Janga & Mittal, 

2011). 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

         

Figure 1.6: RNA-binding protein processing in various post-transcriptional 
processes at different locations in eukaryotic cells. RBPs are involved in 5 major 
processes that are represented by red circles. 1) RBPs play a major role in splicing 
of mRNA in the nucleus. 2) After that mRNA export from nucleus to the cytoplasm 
by various RBPs. In cytoplasm, 3) RBPs contribute to mRNA localization in 
compartments such as the mitochondria. 4) RBPs are also responsible for RNA 
stability and lead to degradation. 5) RBPs are also involved in translational control. 
Image adapted from (Janga and Mittal, 2011).   
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1.4 The regulation of splicing 
 

 There are several factors that affect splice site choice, including cis-acting elements 

and trans-acting factors (Smith and Valcarcel, 2000). Splicing patterns are affected by 

the expression of RNA-binding proteins that can be expressed at different stages of 

development and in different tissues. Other factors which can directly affect the 

splicing outcome include the rate of transcriptional elongation, epigenetic factors and 

the formation of secondary structures within RNA. Secondary structure, which forms 

within the pre-mRNA, has a significant impact on splicing activation. It can have a 

similar effect on splicing as the way that RNA-binding proteins prevent sequence 

recognition (Warf and Berglund, 2010). Secondary structures of RNA can also exert 

effects on splicing by changing the distance between auxiliary elements and splice 

sites. Epigenetic factors, including histone modifications, can influence splicing 

decisions. Histones interact with the snRNP as a complex during co-transcriptional 

spliceosome assembly and this facilitates the correct assembly of the pre-spliceosome 

(Luco et al., 2011). 

 

Although the regulation of alternative splicing is complicated, the improvement and 

development of technology including high throughput sequencing and advances in 

bioinformatics analysis have facilitated the identification of splicing regulatory motifs 

(splicing code), which includes all binding sites for RNA-binding splicing repressors and 

activators within a pre-mRNA, as well as the splice sites themselves.  

 

1.5Cis elements: splicing enhancers and silencers 

1.5.1 Strength of splice site and position  

 

Strength of splice sites can be quantified as the degree of complementarity between 

splice sites and U1 and U2 snRNAs.  In general, constitutive exons which are always 

included into the mature mRNA transcript have strong splice sites whereas alternative 

exons are flanked by weak splice sites.  The development computer programs have 

facilitated the predication of the strength of splicing sites (Smith and Valcarcel, 2000).    
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1.5.2 Cis- elements activators and repressors 

 

Although the strength of splice sites has significant effect on splice site choice, cis-

acting sequences near regions of alternative splicing are also extremely important in 

splice site choice. These sequences can form binding sites for trans-acting factors 

(Smith and Valcarcel, 2000). Cis-acting elements include splicing enhancers, which can 

be either exonic splicing enhancers (ESE) or intronic splicing enhancer (ISE); and 

silencers, which can be either exonic splicing silencers (ESS) or intronic splicing 

silencers (ISS). Generally, enhancers support weak alternative splice sites and assist 

spliceosome and trans-acting factors. ESS and ISS recruit splicing repressor proteins. 

Both silencer and enhancer sequences play a significant role in recognising both 

constitutive and alternative exons figure 1.7 (Matlin, Clark, & Smith, 2005)(Martinez-

Contreras et al., 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.3 Trans-acting RBPs 

 

Trans-acting RNA-binding protein factors can significantly affect splicing depending on 

the concentration and localisation of the RNA-binding protein. One group of trans-

acting factors acting at cis elements are the SR protein family that play a major role in 

binding splicing enhancers (acting at ESEs) in a concentration- and phosphorylation-

 

Figure 1.7:  Sequence elements that affect splicing include both splicing 
enhancer (ESE/ISE) and splicing silencers (ESS/ISS). Image modified from 
(Srebrow & Kornblihtt, 2006) 
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dependant manner (Smith & Valcarcel, 2000). Long non-coding RNA (IncRNA) have also 

been reported to influence splicing by modulating the phosphorylation of SR-proteins 

(Tripathi et al., 2010). The two most recognised families of trans-acting factors that 

have an effect on recognition of splicing silencers or enhancers are the SR proteins and 

heterogeneous ribonucleoproteins (hnRNPs) (Tripathi et al., 2010). These proteins are 

expressed at varying levels in different tissues. In contrary to SR proteins, hnRNPs are 

mostly seen as splicing regulators that bind RNA to repress splicing (although there are 

many exceptions). HnRNP proteins can contain RRM domains, RGG (arginine-glycine-

glycine) domain and KH (hnRNP K homology) domains as well as others.  The presences 

of hnRNPs on the RNA affect the ability of the core splicing machinery to engage with 

splice sites (Martinez-Contreras et al., 2007).    

 

SR proteins have RRM regions that bind to RNA and auxiliary regions rich in RS 

(arginine-serine) dipeptides that are thought to be mostly involved in protein-protein 

interactions that assist assembly of functional splicing complexes (Tripathi et al., 2010). 

When SR proteins bind to sequences within exons, they act to recruit components of 

the spliceosome and thus to activate splicing. There is no clear distinction, however, as 

RNA-binding proteins of either class (hnRNP or SR) can act as activators or repressors 

which either inhibit assembly or activity of spliceosomal components at the splice site. 

Furthermore, an individual SR protein or hnRNP can act as a repressor or as an 

activator depending on its binding location in an alternative exon (Martinez-Contreras 

et al., 2007). 

 

 

1.6 Other factors that affect splicing 

1.6.1 Intron/exon structure 

 

There are other factors which might affect splice site recognition including the 

structure of introns and exons (Sterner et al., 1996).  Effects of Introns and exons on 

splice site recognition can be based on their size. When intron size is small, the splice 

sites are recognised across the intron. This is called intron definition. When the intron 

is long, the splice sites are recognised across the exon, this is called exon definition. 

There are a variety of intron size including eukaryotes and human cells. The average 
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exon size in the human is roughly 170 base pairs, whereas the average intron size is 

11,000 base pairs (Sakharkar et al., 2004) (Berget, 1995, Sterner et al., 1996).             

 

1.6.2 RNA secondary structure 

 

RNA structure has significantly impact on splicing. Usually RNA is single stranded; 

however it can fold back in order to adopt secondary and tertiary structures that can 

involve up to hundreds of nucleotides (Buckanovich and Darnell, 1997). RNA structure 

can affect the outcome of pre-mRNA splicing by inhibiting or activating spliceosomal 

assembly. Secondary structures forming within the pre-mRNAs, can have an effect on 

splicing similar to RNA-binding proteins so on to prevent sequence recognition (Warf & 

Berglund, 2010). RNA secondary structures also exert an effect on splicing by changing 

the distance between auxiliary elements and the splice sites such as survival  motor 

neuron 2 (SMN2)(Buckanovich and Darnell, 1997).  

1.6.3 Other factors effect on splicing  

 

Transcription is another factor  that affects splicing (Wang and Cooper, 2007).  Splicing 

is influenced by the speed of transcription, whether the elongation is rapid or slow. If 

the elongation of transcription is rapid, alternative exons will not be recognised before 

downstream competing exons are transcribed, and so will be skipped. If transcription 

is slow,  alternative exons may be recognised by spliceosomes and will be included.   

Epigenetic factors, including histone modifications, can influence splicing decisions 

through affecting transcription. Histones interact with snRNP complexes during co-

transcriptional spliceosome assembly and this facilitates the correct assembly of the 

pre-spliceosome (Luco, Allo, Schor, Kornblihtt, & Misteli, 2011). 

 

Although many RNA-binding proteins are ubiquitously expressed, a variety of tissue-

specific RNA-binding splicing regulators have been identified including neuro-

oncological ventral antigen NOVA1, polypyrimidine tract-binding protein PTBP1, FOX 

protein (RBFOX) and muscleblind (MBNL) protein (Singh et al., 2004). To add further 

complexity, most of these important splicing factors fall into multi-gene families made 

up of several paralogues. 
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1.6.3.1 PTB family proteins  

 

Polypyrimidine tract-binding protein (PTBP1) and its homologues form one of the most 

significant RNA-binding protein families that have been studied in mammals (Valcarcel 

and Gebauer, 1997a). The prototypical member is known as PTBP1 or HnRNPI, and 

generally functions as a splicing repressor. PTB proteins also function in a large number 

of diverse cellular processes including polyadenylation, mRNA stability, mRNA 

localization and translation (Sawicka et al., 2008b). PTBP binds to splicing silencers, at 

pyrimidine rich motifs such as UCUU or CUCUCU in the RNA, to mediate splicing 

repression of many alternatively spliced pre-mRNAs (Noiret et al., 2012). PTB sites are 

highly overrepresented upstream of brain-specific exons, implying that down-

regulation of PTB in brain depresses these exons and causes their brain-specific 

inclusion (Castle et al., 2008, Cheung et al., 2009). In some cases, PTB repression is 

mediated by a single silencer; however, in the majority of cases, multiple PTB binding 

sites are present. In vertebrates, PTBP1 is widely expressed and belongs to a family of 

RNA-binding proteins including two paralogs, PTBP2 and PTBP3, which are expressed 

in a more tissue-restricted manner (Noiret et al., 2012). PTBP2 (previously known as 

nPTB or brPTB) is expressed mainly in neurons, but also in testis and at lower levels in 

skeletal muscle. On the other hand, PTBP3 (also known as ROD1) is mainly expressed in 

embryonic and adult hematopoietic organs (Sawicka et al., 2008). The three PTBP 

paralogues have a >70% amino acid sequence identity and a common arrangement of 

four RRM-type domains (Noiret et al., 2012). Furthermore, they have a functional link 

in the sense that they act as repressors of at least some exons (Noiret et al., 2012). 

 

1. 6.3.2 RBFOX family proteins:  

 

Another significant RNA-binding proteins that play a major role in alternative splicing 

regulation are called RBFOX (Gallagher et al., 2011). Like the PTBP proteins, The RBFOX 

family has three members: RBFOX1, RBFOX2 and RBFOX3, that have similar RNA-

binding domains and are conserved between flies and men (Damianov and Black, 

2010). The RBFOX proteins are among the most sequence-specific RNA-binding 

proteins known, binding to the hexanucleotide UGCAUG. RBFOX proteins display the 
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classic asymmetric splicing activity of many splicing factors; alternative exons are 

repressed by RBFOX-binding directly upstream of the exon and RBFOX proteins 

enhance exon recognition when binding downstream of the exon (Venables et al., 

2009). Thus RBFOX splicing regulation can be exquisitely controlled by placement of its 

binding sites either upstream or downstream of alternative exons. RBFOX proteins 

regulate alternative splicing in a tissue-specific manner including in neurons and 

muscle where they are highly expressed. RBFOX2 has also been defined to regulate 

splicing in embryonic stem cells and embryos (Venables et al., 2013). RBFOX has been 

reported to play a significant role in disease including cancer and autism by affecting 

alternative splicing. Comparing RBFOX1 expression in normal brain tissues and autism 

samples, it was concluded that RBFOX1/2 are likely implicated in Autism (OMIM 

database *605317 and The Autism Genome Project). RBFOX also has been reported to 

have a significant role in cancers including breast and ovarian cancer where a large 

program of alternative splicing was found concomitant with down regulation of 

RBFOX2 (Venables et al., 2009) 

 

1.6.3.3 The ‘Muscleblind’ MBNL family:  

 

Muscleblind (MBNL) is another of the best characterised and most important RNA-

binding proteins (RBPs) that plays a major role in regulating alternative splicing (Ho et 

al., 2004). Like the other RBPs discussed above, the MBNL family has three members: 

MBNL1, MBNL2 and MBNL3, which have nearly identical RNA-binding domains (Ho et 

al., 2004). Like RBFOX, MBNL acts as an activator or as a repressor based on its binding 

position (downstream or upstream of the exon respectively). MBNL regulates AS in 

specific tissues including skeletal muscle, cardiac muscle and the nervous system (Han 

et al., 2013). It has also recently been shown that MBNL down regulation is essential 

for embryonic stem cell derivation and subsequent MBNL upregulation is needed for 

re-differentiation (Han et al., 2013; Venables et al., 2013). MBNL plays a significant role 

in diseases including muscular dystrophy. (Fardaei et al., 2002) appear that there was a 

connection between MBNL and Myotonic dystrophies (DM1) and (DM2). DM1 occurs 

primarily due to an expansion of CTG repeats in DMPK 3’UTR whereas DM2 results 

from an intronic CCTG expansion in another gene called ZFN9. Muscleblind has 
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significant impact in both DM1 and DM2 due to its sequestration at CUG expanded 

repeats which localise to nuclear foci in both diseases  (Fardaei et al., 2002; H. Jiang, 

Mankodi, Swanson, Moxley, & Thornton, 2004). The resulting reduction in the normal 

function of MBNL1 is thought to underlie DM1 pathology. 

 

1.6.3.4 Epithelial Splicing Regulatory Proteins (ESRPs)  

 

Epithelial Splicing Regulatory Proteins (ESRPs) are RNA-binding proteins that have 

significant roles in regulating alternative spicing events associated with epithelial cells 

(Ishii et al., 2014). The ESRP family includes ESRP1 and ESRP2 which are highly 

conserved paralogs containing three RNA Recognition Motif (RRM) domains (Warzecha 

et al., 2010a).  ESRP1 and ESRP2 are involved in epithelial-mesenchymal transition 

(EMT) by maintenance of epithelial cell-specific isoforms. ESRP1 and ESRP2 down 

regulation are essential for EMT progression in a mammary epithelial cell line. It has 

been reported that ESRPs bind to UG-rich motifs. ESRPs regulate alternative splicing 

expression in epithelial cell and cancer cells (Ishii et al., 2014).  

1.7 Alternative splicing in ITGA6 Integrins  
 

Previous results by Julian Venables  data ((Venables et al., 2013b). showed that both 

MBNL and RBFOX control ASE in 15 genes including ITGA6 during stem cell 

differentiation. My project focused on ITGA6 protein to study in depth how alternative 

splicing is regulated RNA-binding proteins. In this section I will review the latest finding 

an integrin including the alternative splicing of ITGA6.   
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1.8 Integrins  
 

Integrins are a large family of heterodimeric cell surface glycoprotein receptors that 

mediate the attachment between a cell and its surroundings including the extracellular 

matrix (ECM) (Barczyk et al., 2010). Integrin dimers are formed by the association of an 

alpha and a beta subunit. There are 18 known α subunit genes and 8 known β subunit 

genes (de Melker and Sonnenberg, 1999, van der Flier and Sonnenberg, 2001). Integrin 

heterodimers are formed by non-covalent association of α and β subunits that each 

straddles the cell membrane through a single-pass, type I, transmembrane protein 

domain (de Melker & Sonnenberg, 1999). Each integrin subunit consists of three major 

domains: the large extracellular domain, the single membrane-spanning 

transmembrane domain and the intracellular cytoplasmic tail domain (van der Flier & 

Sonnenberg, 2001). The integrin extracellular domain functions by binding proteins in 

the extracellular environment, while the intracellular cytoplasmic tail domain interacts 

with the intracellular environment. The integrin family plays a significant role in 

controlling biological and cellular functions such as cell adhesion, migration, 

proliferation, cell differentiation and apoptosis by assembling the actin cytoskeleton 

inside the cell and modulating the signal transduction pathway arriving from outside 

the cell (van der Flier & Sonnenberg, 2001).  

 

There are various ways of categorizing integrins based on either their ligand-binding 

properties or their subunit compositions. The extracellular domains of the α and β 

integrins play major roles in the specificity of integrin binding to the extracellular 

matrix (ECM) components (i.e. collagens, fibronectins and laminins) (Figure 1.8) 

(Barczyk et al., 2010). Table 1.1 shows the ligand specificity of different integrins. One 

subfamily of the integrins, which includes a1b1, a2b1, a10b1 and a11b1, are the major 

collagen receptors, whereas the integrin a3b1, a6b1, a6b4 and a7b1 subunits 

represent the primary laminin receptors (Johnson et al., 2009). The major fibronectin 

receptors are formed by integrins, a5b1, a8b1, aIIbb3, and the avb. This group binds 

the arginine-glycine-aspartic acid (RGD) cell adhesion sequence, which commonly 

appears in extracellular matrix (ECM) 15 components. Nevertheless, there are certain 

integrins that bind to the same extracellular ligands with different affinities, e.g., 

integrin α1β1, which binds to collagen and laminins (Johnson et al., 2009). 
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Figure 1.8: Schematic representing the classification of the integrin family of 
heterodimers, Image adapted from (Barczyk et al., 2010) 
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Table 1.1: Classification of integrins. From (Reddy and Mangale, 2003). 

Family β 

subunit 

α 

subunit 

αβ 

complex 

Receptor I 

domain 

Ligand RGD 

recognition 

Distribution 

VLA 

proteins 

β1 α1 α1β1 VLA-1 + – ? Ubiquitous 

  α2 α2β1 VLA-2 + L, C ? Ubiquitous 

  α3 α3β1 VLA-3 − C, Fn, 

entacin 

? Ubiquitous 

  α4 α4β1 VLA-4 − Fn, 

VCAM-1 

− Ubiquitous 

  α5 α5β1 VLA-5 − Fn + Ubiquitous 

  α6 α6β1 VLA-6 − L RGD Ubiquitous 

  α7 α7β1      

  α8 α8β1   Fn, Vn, 

Tn 

  

  α9 α9β1   Tn  Epithelial cells 

      Fn, Vn  Muscle cells 

  αv αvβ1    +  

 

Leukocytes 

proteins 

 

β2 

 

αL 

 

αLβ2 

 

LFA-1 

 

+ 

 

ICAM-1, 

-2, -3 

  

Leukocytes 

  αM αMβ2 MAC-1 + C3b, Fb, 

ICAM-1 

− Neutrophil, 

monocyte, 

LGL 

  αX αXβ2 P150, 95 + C3b, LPS − M, monocyte 

  αD αDβ2  + ICAM-3 − M 

 β7 α4 α4β7      

  αH αHβ7 LPAM-1  Fn, 

VCAM-1 

 Lymphocytes 

  αE αEβ7  + E-

cadherin, 

adhesion 

 Lymphocytes 

 

Cytoadhesin 

 

β3 

 

αv 

 

αvβ3 

 

Vitronectin 

 

− 

 

Vn, Fb, 

Fn, OPN 

 

+ 

 

Ubiquitous 

      VWF, Tn, 

Thr 

  

  αIIb αIIbβ3 GpIIb/IIIa  Fb, Fn, 

VWF, Vn 

+ Platelets 

 

Other 

combination 

 

β5 

 

αv 

 

αvβ5 

   

Vn, Fn 

 

+ 

 

Ubiquitous 

 β6 αv αvβ6   Fn, Tn ? Lung-

epithelial cells 

 β8 αv αvβ8   Vn +  

 β4 α6 α6β4   L + Epithelial cells 
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1.8.1 Integrin structure  

1.8.1.1Extracellular domains  

 

Integrin extracellular domains consist of more than 700 amino acid residues for the α 

subunit and 1000 amino acid residues in their β subunits (Reddy and Mangale, 2003). 

The subunits are organised in order to form a globular ligand-binding N-terminal head 

that ‘stands’ on two long and extended C-terminal ‘legs’ (Reddy and Mangale, 2003). 

The C-terminal legs link to the cytoplasmic and transmembrane domains of each 

subunit figure 1.9A (Barczyk et al., 2010). The extracellular domain of the α subunit 

consists of seven repeated homologous segments (of approximately 60 amino acids) 

that fold into a seven-bladed β propeller ‘head’ domain and two ‘calf’ domains (van 

der Flier & Sonnenberg, 2001). In addition, half of the α subunits have an extra 

independently folding domain termed the I ’inserted’ or ‘A’ domain, of approximately 

200 amino acids (van der Flier & Sonnenberg, 2001). The I-domain contributes to 

ligand binding, and similar domains are also found in trimeric G protein α subunits and 

in small G proteins (Reddy and Mangale, 2003).  

 

The extracellular parts of the β subunits also contain an I-like domain and these too 

play a significant role in integrin ligand binding. I-domains, which are found in both α 

and β subunits, have a conserved “metal ion-dependent adhesion site” (MIDAS). The 

MIDAS contributes to protein ligand binding with divalent metal cations (Mg2+). 

Integrin ligand binding alters the coordination of the metal ion and also shifts the I-

domains from a resting to an open and active conformation; increasing ligand affinity 

and integrin activation occurs as a result (Reddy and Mangale, 2003) figure 1.9B. 

Taking together, the divalent cations binding sites appear in the C-terminus in four or 

three repeats and these appear to mediate integrin ligand binding (van der Flier and 

Sonnenberg, 2001).  
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Figure 1.9: Integrin structure. A) Primary structure of integrin α and β 
subunits. Domains 1-7 represent the homologous repeats in the α subunit. 
Stars represent divalent cation-binding sites (Mg2 as orange star, and Ca2 as 
grey stars). Green represents the conserved domain in the β subunit. The grey 
bar represents the plasma membrane. B) Integrin secondary structure. My 
project concerns alternative splicing of the cytoplasmic portion of the alpha 
subunit that starts with the sequence GFFKR (lower case). Figure from 
(Barczyk, Carracedo et al. 2010). 
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1.8.1.2Cytoplasmic domains  

 

The integrin cytoplasmic domain is generally much shorter than the extracellular 

domain, being about 20-50 residues in the α subunits and variable in the β subunits 

between 15 to 65 amino acid residues with the exception of β4 subunits which consists 

of approximately 1000 amino acids (Calderwood et al., 2003).The crystal structure of 

the cytoplasmic domain has not been resolved at high-resolution, but the cytoplasmic 

domain structure has been determined by nuclear magnetic resonance (NMR). Integrin 

β cytoplasmic tails are highly homologous, while integrin α cytoplasmic tails are 

strikingly divergent (Berman et al., 2003). GFFKR and HDR(R/K)E are conserved 

sequences next to the transmembrane region that form a salt bridge between the α 

subunit at arginine (R) and a β subunit at aspartic acid (D) respectively to help 

assemble and stabilise the heterodimer (Sastry and Horwitz, 1993). Within β subunit 

tails, there are two well-defined motifs, including a membrane proximal NPxY and a 

membrane distal of the NxxY motif (de Melker & Sonnenberg, 1999). These motifs bind 

proteins that contain a phosphotyrosine–binding domain and they act as binding sites 

for multiple integrin binding proteins, such as talin and the kindlins figure 1.10 (de 

Melker & Sonnenberg, 1999). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10:  Domain structure of α and β subunits in cytoplasmic tail of 
integrins. β subunit binding sites for multiple integrin binding proteins including 
talin are shown in red. Image adapted from (Morgan et al., 2007). 
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1.8.3 Integrin cytoplasmic domains and cell signalling  

 

It has long been known that integrins function as receptors which form a link between 

the ECM and cytoplasm of a cell. Integrins are involved in various functions, including 

signal transduction (Sastry & Horwitz, 1993). Integrins have advantages over other cell 

receptors in that they are able to shift between high and low-affinity ligand binding 

states. Integrin cytoplasmic domains play major roles in transducing two types of 

signalling (Calderwood et al., 2003; Sastry & Horwitz, 1993). The first type, which is 

called outside–in signalling, transmits signalling from ECM to the cell. This occurs due 

to integrin binding to extracellular ligands which lead to changes in the conformation 

of the integrin. Many ligands are multivalent, this causes to Integrins to cluster (Askari 

et al., 2009). Taken together, these events combine and lead to intracellular signals. 

This has a significant impact on modulation of cellular responses, including gene 

expression, proliferation and cytoskeletal organization (Askari et al., 2009). The second 

type of signalling, which is called inside-out signalling, plays a major role in cell 

physiology. Inside-out signalling affects the specificity and affinity of integrins for their 

extracellular ligands (Sastry & Horwitz, 1993). This occurs due to conformational 

changes that are induced in the integrin heterodimer. Integrin cytoplasmic domain 

tails bind with a huge number of cytoskeletal and signalling proteins including talin and 

kindlin which play a major role in separating the cytoplasmic tails which leads to 

integrin activation(Luo, Carman, & Springer, 2007). Figure 1.11 summarises the 

mechanism of integrin signalling.  
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Figure 1.11: Modes of integrin signalling: A shows inside-out signalling.  B show 
outside-in signalling.  Image redraws from (Askari et al., 2009) 
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1.8.4 α subunits in the cytoplasmic domain:  

 

Integrins are composed of α and β subunits in a finite but large number of different 

combinations which are involved in different kinds of cell–cell and cell-matrix 

interactions (Shaw, Turner et al. 1995). The α subunit in cytoplasmic domains are 

conserved in different species with only weak overall homology between the different 

genes. Integrin α3 and α6 cytoplasmic domains are good examples which have been 

studied. It has been reported that α3 and α6 cytoplasmic domains have highest 

homology among the alpha domains (Sastry & Horwitz, 1993). The GFFKR motif just 

adjacent to the membrane is the most strikingly conserved part of the α cytoplasmic 

domains. The α7 cytoplasmic domain is the longest α cytoplasmic domain with 77 

amino acid residues. The α7 cytoplasmic has several short regions of homology with 

other protein such as tyrosine phosphatase. Taken together, α3, α6 and α7 have 

shared motifs in their cytoplasmic domains (Sastry & Horwitz, 1993) . 

1.9 Integrin α6 (ITGA6)  
 

The subject of this  project, the integrin α6 subunit gene is located on chromosome 2 

at 2q31.1 with a total length of 78870 bp (Pulkkinen et al., 1997).  Integrin α6 does not 

dimerise with all beta variants. Integrin α6 mostly combines with two specific β 

subunits α6β1 and α6β4 and both are receptors for the laminin family of extracellular 

matrix proteins (Hogervorst et al., 1993). It has been found that α6β1 is expressed in 

platelets, epithelial cells and several of other cell types. α6β1 is also involved in 

adhesion (Hogervorst et al., 1993). α6β4 integrin is present in various epithelial tissues, 

endothelia and peripheral nerves. α6β4 is also present in the hemidesmosomes of 

epidermal cells which strongly suggested a function of α6β4 in adhesion of cells to the 

extracellular matrix (Hogervorst et al., 1991). ITGA6 is implicated in cancer cells and 

serves as a signalling receptors that triggers signalling cascades that enhance survival, 

invasion and metastasis (reviewed in Mercurio et al., 2001). 
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The two forms of α6 integrin studied heavily are the α6A and α6B mRNA splice variants 

(Figure 1.12). These two isoforms have distinct cytoplasmic domains. Both α6A and 

α6B consist of a large extracellular domain (991 amino acids) and a transmembrane 

domain (23 amino acids) but they differ in their cytoplasmic domains (36 amino acids 

for alpha and 54 for beta) (Hogervorst et al., 1993). The CFFKR sequence is identical in 

both α subunits encoded by either of the α6A or α6B specific exons which then diverge 

downstream figure 1.12 (Hogervorst et al., 1991). The A and B forms are differentially 

expressed throughout the body, however a mouse deleted for the alternative exon 

expressed the  B (exon skipped)  form everywhere surprisingly was fertile and normal 

with just slight quantitative differences in ex vivo assays (Gimond et al., 1998). A role 

for ITGA6 in cancer was suggested as they serve as signalling receptors that triggers 

signalling cascades that enhance survival, invasion and metastasis (reviewed in 

Mercurio et al., 2001). ITGA6 was found to be necessary for tumorigenicity of  a stem 

cell like population within the MCF-7 cell line (Cariati et al., 2008) and it also regulated 

glioblastoma stem cells (Lathia et al., 2010). It was also found that α6 integrin high 

expression is a biomarker in breast cancer cells. α6 subunit signalling regulates the 

processes in tumourigenes including proliferation and metastasis, thus suggesting the 

two splice variants of α6 integrin have specific functions. Taking together these studies 

raise the importance of definition how alternative splicing of ITGA6 is regulated. 
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Figure 1.12: The Two alternatively spliced forms of the ITGA6 genes showing the 
last three exons and the peptide sequences of the alternative C termini 
produced.  a) ref sequences of structure of the two  for ITGA6  isoform b) The two 
alternatively spliced forms of ITGA6 , peptide in black is common between the two 
isoforms a&b.  
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 1.10 Research aims and Hypothesis  
 

The preliminary data prior to starting this thesis suggested the following hypotheses: 

 Since the original papers showed a splicing difference between fibroblasts and 

stem cells. We hypothesised that these splicing differences might be regulated 

during development in whole animals, and also modelled in other cell types.  

 The original work indicated that the ITGA6 splicing pattern was controlled by 

two nuclear RNA-binding proteins RBPs (MBNL & RBFOX). We hypothesised 

there might be other RBPs that control this splicing choice, and these RBPs 

might work by direct binding to ITGA6 mRNA. 

 Previous studies showed that RBPs binding downstream of a regulated exon 

usually activated (which include alternative exon)  ,whereas RBP binding 

upstream inhibited splicing( which exclude alternative exon) . We hypothesised 

that PTBP binding sites identified in sites downstream of the ITGA6 regulated 

exon might be inhibitory.  

 

1.10.1 Aims: 

 To monitor splicing patterns for ITGA6 in development. 

 To monitor splicing patterns for ITGA6 in different cell lines.  

 To determine which RBPs control ITGA6 alternative splicing  

 To identify the PTBP binding site which inhibits the ITGA6 alternative exon, and 

if this is downstream of the regulated exon.  
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Chapter 2:  Investigation of orthologues of stem cell 
regulated exons in zebrafish   

2.1 Introduction 
 

Alternative splicing plays an important role in the gene function and in complex 

organisms, such as mammals. Alternative splicing is implicated in germ cell 

development including stem cell and fibroblast differentiation. Recently, data by 

Venables et al (2013)  determine alternative splice events that were important for 

stem cell differentiation. It was shown that a large portion of alternative splicing 

changes during fibroblast differentiation from stem cells (Venables et al., 2013b). This 

research employed  high-throughput RT-PCR with a RefSeq database, which facilitated 

the identification of alternative splicing events that  changed in the full spectrum of 

high and low gene expression (Venables et al., 2013b). The technique started with a list 

of 81 genes including ITGA6 that had alternative splicing events in human tissue. Those 

alternative splicing events were controlled by the MBNL and RBFOX regulation factors. 

ITGA6 with nine genes, including PLOD2, CLSTN1, ATP2A1, PALM, KIF13A, FMNL3, 

PPIP5K1, MARK2 and FNIP1, which showed alternative splicing events between stem 

cells and fibroblasts, were conserved in evolution (Figure 2.1). Most of these 10 genes 

were subject to gene duplications prior to vertebrate radiation, and the alternative 

exons appeared ‘shortly’ beforehand (Venables et al., 2013b). This chapter build on 

data generated in (Venables et al., 2013)  and takes an evolutionary approach to 

further investigate these genes. 
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To conduct this study, it was important to find a good model. The zebrafish has been 

reported as an excellent vertebrate model system for investigating alternative splice 

events that are similarly regulated in both fish and man. The rationale is that 

conserved regulated alternative splicing events are likely to be extremely important for 

the differentiation and development of the body plan of all vertebrates including man; 

thus, these events will likely have medical significance.  

 

High-throughput RT-PCR is the gold standard technique for identifying alternative 

splicing changes. Based on(Venables et al., 2013) data, primers to detect orthologous 

splicing events in zebrafish were designed using sequences identified by Philippe Fort, 

from the CRBM, Montpellier, for the presence or absence of both of two predicted 

isoforms for the 10 genes. The conserved splice events (KIF13 and ITGA6) were studied 

during the first two days of zebrafish development. ITGA6 was one of the 10 ASEs that 

                          

 

Figure 2.1: A conserved regulated program of alternative splicing in germ layer 
specification (Venables, Lapasset, et al., 2013) 
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shifted from one isoform to another during stem cell differentiation and zebrafish 

embryogenesis. Thus, these isoforms are likely to be of importance for differentiation, 

development and fundamental cellular processes. 

 

 

 

2.2 Aims: 
 

 To Investigate alternative splicing events of 10 genes orthologues of the stem 

cell regulated exons in zebrafish in order to find a good model gene to 

investigate alternative splicing mechanisms. 

   To investigate an alternative splicing event of ITGA6 paralogues and 

orthologues in zebrafish development  
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2.3 Materials and Methods  

2.3.1 Zebrafish dissection method:  

 

Dissection was performed on zebrafish embryos (24 and 48 hours post-fertilisation). 

Firstly embryos were put in PBS in order to maintain osmotic balance. After that the 

embryonic shield was cut by using sharpened forceps. Next, needles (26 gauge) were 

used to dissect the zebrafish. Finally heads and tails were collected by pipet and placed 

in a new Eppendorf tube containing Trizol (Figure 2.2) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: The steps of head and tail dissection from zebrafish embryos after 24 
hours. A Zebrafish embryo is covered by shield. B. The embryonic shield is pulled 
away. C  Zebrafish embryo at 24 hours. D. head and tail after dissection.  Photos 
taken from a previous dissection by Alicia Madgwick. 
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2.3.2 RNA extraction:  

 

200 µl of Trizol (Life technology) was added to tissue or cells in an Eppendorf and 

vortexed, then incubated at room temperature for 5 minutes and 40µl chloroform was 

added. Samples were vortexed again and incubated at room temperature for 5 

minutes. Samples were then centrifuged at 13,000rpm for 15 mins at 4C. The 

supernatant was carefully transferred (approximately 100 µl, avoiding the interface) to 

a new Eppendorf tube and 100µl isopropanol was added. Next, samples were briefly 

vortexed and incubated at room temperature for 5 min. Samples were vortexed again 

and centrifuged at 13,000rpm for 15 min at 4⁰C. After that, the aqueous phase was 

removed. The pellet was washed by adding 100µl of 70% ethanol and spun for 5 min at 

4⁰C. The liquid was removed and the pellet was allowed to air dry. Finally, 10 or 20 µl 

of Diethylpyrocabonate(DEPC)-treated dH20 was added to re-suspend the pellet and 

the concentration was quantified on a ‘Nanodrop’ spectrophotometer.  

2.3.4 Geneious program 

 

‘Geneious’ is a bioinformatics program with multiple functions. It was used to align 

different paralogues and homologues of ITGA6. It was also used to interpret DNA 

sequencing results. Geneious links to NCBI and BLAST database, which it uses for 

downloading a nucleotide or protein sequence into the database used here. 

 

2.3.5 Primer design  

 
For the subsequent PCR, primers were designed to amplify both alternative splice 

forms simultaneously so the ratio of the two could be calculated. The primers were 

thus designed in adjacent exons to the alternative exon so that they would only 

amplify mRNA, because pre-mRNA and contaminating genomic DNA both contain 

introns which are sufficiently long that their products are at a disadvantage and 

therefore will not compete significantly. Primers were designed to target the same 

alternative splicing events in the orthologous genes in zebra fish by using the Primer3 

program. Homologous exon sequences, on which to design the primers, were provided 
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by Dr. Philippe Fort (Montpellier). Primers were synthesised by Integrated DNA 

Technology (IDT) (Table 2.1 ). The 10 genes in zebrafish were homologues of the 10 

alternative splice variants shown to shift between stem cell and fibroblasts (Venables 

et al., 2013b) (Table 2.2 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.6 PCR 

    Table 2.2: ITGA6 paralogues and orthologue zebrafish primers 

Primer  Sequence  

zITGA3A  (F) TATGCTGGGCGTGATTGTTA 

zITGA3A  (B) GCCTAAGCGAGACAGTTTGC 

zITGA3B  (F) AGTTCCCCTCTGGATCATC 

zITGA3B  (B) CCCAGAGTTTCTTGCTGAGG 

zITGA6A  (F) TGGCTGTGTTAGCTGGAATC 

zITGA6A  (B) ACGTGGTCATCCACTGCTTC 

zITGA6B  (F) TTGCTGGGCTTACTGGTCTT 

zITGA6B  (B) CATTTCGTCTTTGCCTGACA 

zITGA7    (F) CGCTGCTCGTGTGTTTACTG 

zITGA7    (B) ATGAGTGTGTCGTCCAGCAG 

    

 

 

 

           Table 2.1: primers for orthologues of the 10 genes 

Primer Sequence  

MARK2   (F) ACCAGCACAAATCGAAGCAG 

MARK2   (B) AGGCAACAGGGACACGCT 

PPIP5K1  (F) CCGAATCTTCAGGACTACGC 

PPIP5K1  (B) GGGCATTATGCAGTGTTTCC 

FMNL3   (F) GCGGGAATTTCTGAATGATG 

FMNL3   (B) CACTAGGCGGGAGTTCTTCA 

FNIP1      (F) GCAGCAGTATTTGTGGGAGTC 

FNIP1      (B) TCCAGGCATGTCCATTGG 

KIF13A    (F) TGCCACTTATGGTTGAAGCCA 

KIF13A    (B) TGCATCTGACCACCTCTCCCTT 

PALM      (F) ACAAGCGAGTCTCCAACACG 

PALM      (B) GTCCGCTTTGTGGATGAGTT 

ATP2A1   (F) AGTTCGTTGCTCGGAACTACC 

ATP2A1   (B) GCCTGAAGATGTGTCACTATCG 

ITGA6      (F) ATCATCCTAGTGGCTATTCTCGC 

ITGA6      (B) ACTGTCATCGTACCTAGAGCGT 

PLOD2     (F) TTTGTTCGTGATAAACTGGATCC 

PLOD2     (B) GCAGTGGATAATAGCCTTCCAA 

CLSTN1   (F) CACAGAGAACGACAACACCG 

CLSTN1   (B) CGAATGACTCCCTCACCAGT 

CTTN       (F) ACAGACAAGACAAATGTGCCC 

CTTN       (B) TATCCATCCGATCCTTCTGC 
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Standard ‘endpoint’ PCR was performed with Invitrogen ‘Platinum Taq’ hot start PCR 

enzyme following the manufacturer’s instructions. Table 2.3 shows the 5X stock buffer 

made for all PCR master mixes table 2.4. The final PCR mix used to amplify alternative 

splicing products of cDNA is shown in table 2.5.  

      

         Table 2.3 : 5xbuffer stock (1ml) 

Components volume 

Platinum Taq 10X buffer 500 µl 

25mM dNTPs 40 µl 

50mM MgCl2 150 µl 

water 310 µl 

  

        Table 2.4: PCR component for 50µlx reaction  

Component  Volume 

5Xbuffer  10µl 

H2O 34.75µl 
Primers (50µM mixed forward and reverse primers)  1µl 

cDNA  (12.5ng/ul) 4µl 

Platinum Taq polymerase  0.25µl 
 

Table 2.5: PCR procedure 

PCR steps Temperature C Time  
 

Cycle  

Initial enzyme activation and DNA denaturing step 95 2 min 1 

Denaturing 94 30 sec 35 

Annealing 55 30 sec 35 

Elongation 72 30 sec 35 

Final extension 72 2min  
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2.3.7 Gel electrophoresis  

 

PCR products (12 l) were run on 1.5% agarose for product size estimated. Gel 

preparation was done following the protocol in table 2.6 , 2.7&2.8.    

   

 

 

Table 2.6: Electrophoresis gel protocol (1.5%) 

 Component Volume 

  Water 126ml 

  10X TBE 14ml 

  Agarose 2.1g 

  Ethidium bromide 0.5 μg/ml  11μl 

 

Table 2.7: 10X TBE (1litre) components 

Component               Volume 
Tris base 108g 

 Boric acid 55g 

 0.5M EDTA (at pH8) 40ml 

 Water 960ml 

 

Table 2.8: 0.5M EDTA (at pH8) 

Component Volume 

EDTA 74.49g 

 Water 400ml 

 NaOH was added until the solution reached pH8 
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2.4 Results: 

2.4.1 Alternative splicing in 10 genes in zebrafish head and tail. 

 

Before beginning the study, 10 genes, including ITGA6,PLOD2, CLSTN1, ATP2A1, PALM, 

KIF13A, FMNL3, PPIP5K1, MARK2 and FNIP1, which showed an alternative splicing 

event in stem cell differentiation, were chosen for analysis in zebrafish. Due to the 

importance of alternative splicing in stem cells and the relevance of stem cell cultures 

to model differentiation and development, I began my PhD project with the aim of 

further investigation of these genes in order to identify a good paradigm gene which 

regulated by different proteins and has impact function in cells in order to study 

alternative splicing mechanism. To first profile the extent of alternative splicing events, 

a panel of 10 genes with alternative splicing events across zebrafish tissue 

development including a 24 hours post-fertilization were studied. 

To investigate potential alternative splicing events of orthologues in these 10 genes 

zebrafish embryogenesis, I collected zebrafish heads and tails at 24 hours post-

fertilization (the full experiment details are detailed in the methods and materials 

section). RT-PCR with specific primers designed across each alternative splicing events 

was employed to evaluate the ratio of inclusion and exclusion exons.  PPIP5K1, 

CLSTN1, PALM, FNIP and PLOD2 express only the short form (exclusion exon) in both 

head and tails of zebrafish.   ATP2A1 expresses two isoforms (inclusion and exclusion) 

in only tail, whereas FMNL3 express two forms (inclusion and exclusion) in only head of 

zebrafish. MARK2 was not expressed at all in head and tail of zebrafish. The  

interestingly, KIF13A and ITGA6, out of the 10 exons tested, showed specific 

alternative splicing between the heads and tails. KIF13A and ITGA6 showed both mRNA 

isoforms (exon inclusion and exclusion) in tails; however, only the short form 

(exclusion exon) was visible in heads (Figure 2.3).  

Because KIF13A and ITGA6 were the only genes that showed specific alternative 

splicing between heads and tails at 24 hours post-fertilization, it was decided to look at 

these ASEs in different stages of zebrafish development to find exactly when splicing 

patterns shifted. Samples were taken from the zebrafish at different stages in the first 

two days post-fertilization (2, 4, 5, 11, 15, 28 and 48 hours). Here, Interestingly, ITGA6 

mRNA isoforms gradually shifted towards increasing inclusion (long form), from two 
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hours to 15 hours, and towards full reversion to exon skipping at 48 hours. KIF13 

gradually shifted towards increasing inclusion (long form) from 15 hours to 48 hours 

(Figure 2.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Developmentally regulated alternative splicing in zebrafish. Agarose 
gel illustrating changes in ASEs in zebrafish embryogenesis:  Alternative splicing 
in 10 genes in zebrafish head and tail (see materials and methods) 24 hours post-
fertilization. KIF13A and ITGA6, in the third column, out of 10 genes show 
alternative splicing events between head and tail. The lower band represents the 
short form (exon exclusion) and upper form represents the long form (exon 
inclusion). 
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Figure 2.4:  Developmentally regulated alternative splicing in zebrafish. Agarose 
gel illustrating changes of ASEs in zebrafish embryogenesis.  Agarose gel showing 
the two ASEs that shift in their inclusion ratios during embryogenic development 
from 2 to 48 hours. 
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2.4.2 Investigation of ITGA6 alternative splicing in vertebrates   

 

Since ITGA6 splicing shifts most strongly in zebrafish embryogenesis out of the 

previously identified conserved stem cell splicing events (Venables et al., 2013b) we 

decided to concentrate our efforts on investigation of this gene. Therefore Dr Philippe 

Fort (CRBM Montpellier, France) launched a deeper investigation into the evolution of 

this alternative splice in the ITGA6 C-terminus and its paralogues in different species. 

By mining EST and genomic sequences ITGA3, ITGA6 and ITGA7 each show two 

different forms due to alternative splicing in all vertebrate species. Furthermore, in 

zebrafish, there are two paralogous ITGA6 genes and two paralogues of the ITGA3 

gene, so there is homologous alternative splicing of 5 genes in zebrafish (Figure 2.5). 

By alignment of the sequence of all C-termini in different species, Dr. Fort showed that 

the two alternative C-termini produced by alternative splicing (a and b) cluster 

together for ITGA3, ITGA6 and ITGA7. The similarity in amino acid of the ‘a’ forms of 

ITGA6 and ITGA3 are extremely strong as are the similarity between the ‘b’ forms of 

these genes across the three different genes and across different vertebrate species. 

The a and b forms of ITGA7 also cluster with the respective a and b forms of the other 

genes although with slightly less similarity (Figure 2.6). Overall these amazing results 

provide the unprecedented conclusion that alternative splice forms in C-termini of 

ITGA3, 6 and 7 are more fundamentally different (and likely more functionally 

important) than any distinction between the 3 genes (or 5 genes in zebrafish) 

themselves. This observation led us to investigate the function and regulation of this 

conserved alternative splice choice in ITGA6. 
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Figure 2.5: Paralogues and orthologous of ITGA6. Genetic tree for ITGA3, ITGA6 
and ITGA7 is shown for both the ‘a’ and ‘b’ alternatively spliced isoform in different 
species.  
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2.4.3 Investigation of paralogues and orthologues of ITGA6 in Zebrafish Head 

and Tail after Post- Fertilization.     

 

The previous bioinformatics and RT-PCR for ITGA6 revealed that there are 5 

homologues and paralogues of ITGA6 with regulated splicing in their downstream 

regions. To investigate alternative splice events, the regulated splicing of these ITGA6 

homologues and paralogues were tested in head and tail of 24 hours post-fertilization 

zebrafish by RT-PCR. 2 genes (ITGA6A and ITGA6B) showed alternative splicing 

patterns between head and tail. The other homologues, ITGA3A and ITGA3B and 

ITGA7, appear to be expressed at very low levels such that they were barely detected 

by RT-PCR.  ITGA6A showed long form (exon inclusion) in tail, whereas the short form 

(exon exclusion) appears in both head and tails. ITG6B also expresses the long form in 

tail while the short form is present in both head and tail (Figure 2.7). 

Although ITGA6A and ITGA6B showed alternative splicing event differences between 

head and tail, it was important to define them in zebrafish development, as each stage 

might show a dynamic pattern over this time frame. The original PCR I had done on 

zebrafish development was just for the ITGA6A gene. Therefore I re-performed the 

analysis for both ITGA6A and ITGA6B genes individually. The cDNA from different 

stages in embryogenesis was investigated by using RT-PCR and agarose gel 

electrophoresis. For ITGA6A, the smaller band (292bp), which represents the short 

form (exon exclusion), is visible in all development stages from 4.5 up to 48 hours, 

whereas the upper long form (exon inclusion) appears gradually from 11 hours up to 

15 hours, before starting to disappear again from 15  to 48 hours (Figure 2.8 A).  On 

the other hand the ITGA6B gene is also regulated, but in a completely different way. 

For ITGA6B, the major lower band (137bp), representing the short form (exon 

exclusion), is present in all stages, while the long form (186bp) appeared only from 24 

hours post fertilization (Figure 2.8B) 
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Figure 2.7: Alternative splicing of 5 zebrafish paralogues of ITGA6 in head and tail, 
24 hours post-fertilization. Upper band represents long form (exon inclusion) and 
lower band represents short form (exon exclusion). ITGA3A, ITG3B and ITGA7 did 
not produce any RT-PCR product 

                                                          

 

Figure 2.8 : Alternative splicing for ITGA6A and ITGA6B in development stages 
from 2 hours to 48 hours post-fertilization in zebrafish. A) Agarose gel 
illustrating alternative splicing for ITGA6A and ITGA6B in zebrafish development. 
The long form (292bp) clearly appears at 15 hours whereas the short form 
(195bp) is visible at all stages from 11 to 48 hours in ITGA6A.  In ITGA6B, the 
long form (186bp) is visible just at 28 and 48 hours, whereas the short form 
(137bp) clearly shows in all stages. B) The chart shows different of alternative 
splicing event between ITGA6A and ITGA6B during zebrafish development 
stages.  
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2.5 Discussion 
 

2.5.1 Validation of a novel alternative splicing event from Zebrafish 

development:  

 

Interest in alternative splicing is gaining momentum and now widely considered as an 

important mechanism for controlling gene expression. During cell differentiation, it is 

known that gene expression can be changed at different levels including alternative 

splicing  (Han et al., 2013, Venables et al., 2013b). The purpose of this study was to 

investigate alternative splicing during cell differentiation more deeply than has been 

done before. As conservation of regulated alternative splicing events has been 

reported across evolution (especially across vertebrate radiation) (Merkin et al., 2012), 

there is clearly a potential to investigate vertebrate alternative splicing by using the 

tractable genetics of the zebrafish model organism.  

The Zebrafish model has several advantages, which allow for an understanding of the 

functions of alternative splicing in development. One advantage of using the Zebrafish 

embryonic model is that development occurs rapidly until 72 hours post-fertilisation 

and all major organs appear after 36 hours and hatching occurs from 12 -36 hours. 

Between 2 hours post fertilization (hpf) and 48hpf, zebrafish embryos develop rapidly 

through many stages (Figure 2.9). In the first 2 hours post fertilisation, cells multiply to 

reach the 64-cell stage. The epiblast forms from around 5hpf. Between 10-24hpf the 

segmentation period occurs and organogenesis commences and somite development 

takes place after 24hpf until 48hpf (Kimmel et al., 1995).  

 We hypothesised that alternative splicing may play a significant role in embryonic 

development in zebra fish. Therefore I investigated the orthologues of 10 genes in 

zebrafish development, for which alternative splicing events have been documented in 

stem cell differentiation (Venables, et al., 2013). ITGA6 and KIF13 had specific 

alternative splicing changes between head and tail after 24 hours of development. 

Exon exclusion was seen just in in both head and tail; however exon inclusion was just 

seen in tail which might give a clue that both isoforms of mRNA have an important role 

in embryonic devolvement of zebrafish tail (which is mostly composed of muscle).  

Since ITGA6 and KIF13 had specific alternative splicing differences between head and 
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tail, I went on to observe their splicing patterns during a time course of zebra fish 

embryonic development. Interestingly, the ITGA6 long form peaked at 15hps, which 

may suggest that the longer form plays a significant role in forming the epiblast, and 

more generally has an impact on cellular function during embryonic development of 

vertebrates.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure19: Stages of embryonic development of the zebrafish. Image adopted  from (Kimmel, 

Ballard, Kimmel, Ullmann, & Schilling, 1995) 
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2.5.2  ITGA6 alternative splicing pattern in zebrafish  

 

ITGA6 belongs to the integrin family, which are dimeric cell-surface proteins composed 

of an alpha chain and a beta chain (Sastry and Horwitz, 1993). It has been reported 

that there are three paralogues in mammals for ITGA6, including ITGA3 and ITGA7, 

which have a close evolutionary relationship (Sastry & Horwitz, 1993). Interestingly, we 

found that there are five close paralogues of ITGA6 in zebrafish, compared with the 

three close genes in ITGA3, ITGA6 and ITGA7 in mammals. This is caused by the ancient 

duplication of the ITGA6 and ITGA3 genes. Amazingly, two C-terminal isoforms of all 

these proteins are conserved even in zebrafish. The two C-terminal isoforms including , 

the ‘a’ and ‘b’ forms are more closely related between paralogues and orthologues 

than the orthologues and paralogues themselves. In other words, the The two C-

terminal isoforms ( a and b ) has more conserved between paralogues and orthologues 

, whereas the two C-terminal isoforms ( a and b ) has less conserved between the 

paralogues genes or orthologues. 

 

Alternative splicing  of ITGA6 has been reported during stem cell differentiation 

(Venables et al., 2013). Alternative splicing ITGA3 and ITGA7 have been reported in 

mouse embryogenesis. In this study, the five paralogues of ITGA6 in the head and tail 

24 hours post-fertilization and in the embryogenesis developmental stages of zebrafish 

were observed. ITGA6A and ITGA6B had similar specific alternative splicing, with the 

long form appearing only in tail.  

 

Do both ITGA6 A and B have the same alternative splicing events and functions? Some 

studies have reported that ITGA6 A and B have the same function in mouse 

embryogenesis (Gimond et al., 1998). However, they showed different timings of these 

splicing events during embryogenesis, which suggested that splicing control of both 

ITGA6 genes also might play a major role during zebrafish embryonic development. 

There is some evidence showing that ITGA6 isoforms A and B are involved in different 

functions of cancer stem cells (Gimond et al., 1998). 
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ITGA3 and ITGA6 show alternative splicing patterns in mouse embryos during 

development. Interestingly, I found that ITGA3 and ITGA7 have low expression in 

zebrafish embryogenesis. It is tempting to speculate that the major functional alpha 

integrins in embryogenesis in zebrafish are provided by ITGA6A, ITGA6B and their four 

respective alternatively spliced isoforms (ITGA6Aa, ITGA6Ab, ITGA6Ba and ITGA6Bb). 

However, in other organisms, the important functions might be provided by a different 

combination of the ITGA3, ITGA6 and ITGA7 genes, albeit with essential functions for 

the a and b isoforms. 

 

 

 

 

2.6 Chapter Summary 
 

In this chapter, the different pattern  splicing for ITGA6,  PLOD2, CLSTN1, ATP2A1, 

PALM , KIF13A, FMNL3, PPIP5K1, MARK2 and FNIP1 have been shown these an 

alternative splicing event in stem cell differentiation in zebrafish. ITGA6 and KIF13A 

were the only genes that had different patterns of splicing between head and in tail 

after 48 hours post-fertilization in zebrafish. It was found that ITGA6 has a different 

pattern of splicing during the development stage of the zebrafish.  

We identified thatITGA6 has five paralogs in zebrafish. These have   interestingly 

conserved two C-terminal isoforms. Only ITGA6 a and b of the five paralogues has a 

different expression pattern between head and tail after 24 hours of development. 

They also showed different timings of these splicing events during embryogenesis.  
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Chapter 3: Identification of PTBP as a novel regulator of 
the ITGA6 splicing switch 

 

3.1 Introduction 
 

ITGA6 plays an important role in many aspects of a cell’s biology, including cell 

signalling and interactions with the cell matrix. It has been reported that ITGA6 was 

one of 15 ASEs that shift from one isoform to another during stem cell differentiation 

(Venables et al., 2013b). Both isoforms (ITGA6A and ITGA6B) are involved in regulating 

tumorigenesis, including proliferation and metastasis (Goel et al., 2014). It has been 

suggested that the two splicing variants of α6 integrin have a specific function in 

tumorigenesis (Goel et al., 2014). These studies raise the importance of knowing how 

alterative splicing of ITGA6 is regulated. In this chapter, the aim was to investigate how 

ITGA6 splicing is regulated.  

 

The alternative exon 25 of ITGA6 has been reported to be controlled by two separate 

splicing factors, Muscleblind-like (MBNL1) and Forkhead transcription factors 

(RBFOX2), which also involved in cellular differentiation (Venables et al., 2013b). Both 

MBNL1 and RBFOX2 proteins can act as repressors or activators of alternative exons 

based on binding site location. MBNL1 and RBFOX2 proteins bind downstream of the 

exon to enhance inclusion and upstream to inhibit inclusion. Venables et al. (2013) 

showed that MBNL1 and RBFOX2 regulated the enhanced splicing inclusion of the 

ITGA6 exon during stem cell differentiation.   

 

(Goel et al., 2014) showed that there is a third regulation factor, epithelial splicing 

regulator protein (ESRP1), which also regulates ITGA6 alternative exon.   ESRP1 is part 

of a positive feedback loop downstream of vascular endothelial growth factor VEGF. It 

has been reported that ESRP binds downstream of the ITGA6 alternative exon to act as 

an activator in breast cancer cell lines (Warzecha et al., 2010b). Thus there are three 

splicing factors which enhance the ITGA6 alternative exon: MBNL1, RBFOX2 and 

ESRP1. 
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Although it has been reported that the ITGA6 alternative exon is regulated, or 

activated, by MBNL, RBFOX and ESRPs, other important splicing factors are poly 

pyrimidine tract-binding proteins PTBP1 and PTBP2, which are expressed in all cells 

except mature neurons.  PTBP1 and 2 are part of a family of three splicing factors that 

have largely redundant functions and which auto-regulate each other’s expression. The 

homologues of PTBP form one of the most significant RBP families that have been 

studied in mammals (Valcarcel and Gebauer, 1997b). The prototypical member PTBP, 

or HnRNPI, generally functions as a splicing repressors. PTBP also functions in a 

number of diverse cellular processes, including polyadenylation, mRNA stability, mRNA 

localisation and translation (Sawicka et al., 2008a). PTBP binds to splicing silencers at 

pyrimidine-rich motifs, such as UCUU or CUCUCU in the RNA, to mediate splicing 

repression in a long list of alternatively spliced pre-mRNAs (Noiret et al., 2012b). In this 

chapter, I aimed to investigate whether PTBP regulates alternative splicing of ITGA6.    

 

3.2 Aims 
 

- To investigate splicing pattern of ITGA6 in different cancer cell lines. 

- To confirm that RBFOX, MBNL1, ESRPs activate ITGA6 alternative exon in 

cancer cell lines.  

- To test if PTBP acts as a potential novel regulator for the ITGA6 alternative 

exon, and investigate whether PTBP acts as an activator or inhibitor.   
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3.3 Materials and Methods 

3.3.1 Quantitative real time PCR (qPCR) 

 

Quantitative real time PCR was used to determine gene expression using a SYBR green 

PCR master mix kit (applied Biosystems) and an applied for Biosystems fast real time 

PCR machine. In this chapter, qPCR was used to determine gene expression of the 

splicing regulation factors inclusion PTBPs and MBNL1 in cancer cell lines. RNA samples 

were collected from HeLa and MCF7 cells 72 hours after of siRNA transfection. After 

RNA extraction, Maxima Reverse Transcriptase First strand cDNA synthesis kit (Thermo 

Scientific) including enzyme mix and 5x buffer mix was used in order to make cDNA. 

RT-PCR was performed following the manufacturer’s instructions (Table 3.1 &3.2). 

cDNA was diluted in 1/20 using RNase-free water (Ambion) and used for PCR. After 

that the 9 ul of PCR master mix was added per well to a 96 well qPCR plate containing 

1ul diluted cDNA per well. qPCRs were performed using a minimum of 3 replicate 

samples per sample. A control was used for each master mix which had no template. 

The plate was loaded into the instrument and standard cycling conditions were 

performed (Table 3.3 &3.4). After that, gene expression was calculated using software 

(Applied Biosystems) which calculated ct value and CSDS using the average of three 

reference genes, GAPDH, Tubulin and Actin. All primers used for quantitative real-time 

PCR (qPCR) are provided in Table 3.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

Table 3.1: components of reverse transcription 

components Volume 

RNA sample (variable volume) 3µg 

5x mix 4µl 

Enzyme mix 2µl 

water To complement RNA to 14 µl 

 

Table 3.2:  Temperature sequence of RT reaction 

steps Temperature (C) Time(min) 

annealing 25 10 

elongation 50 30 

Termination  85 5 

cold 4 ∞ 

 



Chapter 3:                          Identification of PTBP as a novel regulator of the ITGA6 splicing switch 

53 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Table 3.3: components of qPCR 

Components    Volume  

2X SYBR Green PCR Master Mix 5μl 

Forward primer (10μM) 1μl 

Reverse primer (10μM) 1μl 

RNase-free water 2μl 

Total  9μl 

 

           Table 3.4 : steps of qPCR  reaction  

Steps  Temperature (C) Time Cycles  

Heat activation  50 2min  

Initial denaturation   95 10 min  

Denaturation  95 15 second   

Annealing/elongation  60 1 min Cycling to step 3  45  

 

           Table 3.5: Primers designed to targeted regulatory proteins for qPCR 

Primers  Sequences  

PTBP1variable exon3 F  GCCTGACCAAGGACTACGG 

PTBP1 variable exon 3 Rev CCCCATTGCTGGAAAACA 

PTBP2variable exon3 F  GTGGCTCGGTTCTTGTGA 

PTBP2 variable exon 3 Rev TGCCTGAGAGTAGTTCGTCA 

RBFOX2 variable exon3 F  TCATCTATCCGTTTGGTTTAT 

RBFOX2 variable exon 3 Rev TGGCGTCAGGAGTTGTTGTC 

ESRP1 variable exon3 F  AGCACTACAGAGGCACAAACA 

ESRP1 variable exon 3 Rev TGGAGAGAAACTGGGCTACC 

ESRP2 variable exon3 F  GGGAGTTCGCCACAGATATTC 

ESRP2 variable exon 3 Rev AGCCATAAATGCTCTGTCCG 

MBNL1 variable exon F  GCTGTTAGTGTCACACCAATTCG 

MBNL1 variable exon Rev  AGGCGATTACTCGTCCATTTTC 

ACTB For (reference gene 1) CATCGAGCACGGCATCGTCA 

ACTB Rev (reference gene 1) TAGCACAGCCTGGATAGCAAC 

GAPDH For (reference gene 2) ATCATCCCTGCCTCTACTGG 

GAPDH Rev (reference gene 2) GTCAGGTCCACCACTGACAC 

α6A f CCACATATCACAAGGCTGAG 

α6A Rev CACTGTCATCGTACCTAGAG 

ITGA6  constitutive f CTGGGATCTTGATGCTTGCT 

ITGA6  constitutive Rev GCAGTTTGGGTACTGTGAAGC 
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3.3.2 Cell culture 

3.3.2.1 Cell lines  

 

In this chapter, three human cancer cell lines including:  MCF7 (catalogue number: 

ATCC-HTB-22), MDA-MB-231 (catalogue number: ATCC-HTB-26) and HeLa (catalogue 

number:  ATCC-CCL-2) were used. All this cell lines were purchased from the American 

type Culture collection (ATCC) and LGC stander, Europe 

 

3.3.2.2 MCF-7  

 

The human cell line MCF7 was originally established from pleural effusion of a 69 years 

old caucasian female patient with breast adenocarcinoma (Soule et al., 1973). MCF7 is 

a tumorigenic breast cancer cell line but less invasive than MDA-MB231 (below), early 

staged and ER and PR positive. 

 

3.3.2.3 MDA-MB231 

 

The human cell line MDA-MB231 was originally established from pleural effusion of a 

51 year old female patient with breast cancer adenocarcinoma (Cailleau et al., 1978). It 

is tumorigenic breast epithelia with invasive characteristics in early stage. ER and PR 

are negative in this cell line.  

 

3.3.2.4 Hela  

 

HeLa is a tumorigenic cervix epithelia cell line originally derived from a 31 years old 

black female patient with cervical cancer. This cell line is often used in splicing assays 

due to high efficiency observed for transfection.  
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3.3.2.5 Cell culture condition   

 

Cell culture was performed in a class 11 laminar flow microbiological safety cabinet. All 

cell line were grown in (25cm2 and 75cm2) flask in a 37°C incubator containing 5% CO2. 

DMEM (Dulbecco’s Modified Eagle’s Media) without phenol red (purchased from PAA) 

with 10% FBS and 1% penicillin streptomycin added (purchased from Sigma-Aldrich) 

was used as a culture medium for all cell lines including MDA-MB231, MCF-7 and HeLa.  

 

 

3.3.2.1 .6 Cell line maintenance  

 

Every 3 to 5 days on average, cells were passaged at roughly 70-80% confluency in 

flasks. To do passaging, growth on media (DMEM) was removed and the cells were 

washed with sterile 1x phosphate buffered saline (PBS) (Sigma-Aldrich). 2mM trypsin-

EDTA (Sigma-Aldrich) was added to the cell and incubated for 5 min at 37°C.  Growth media 

was added in order to stop the effect of trypsin. This was followed by centrifugation of the 

cells at 200xg for 5 min in order to collect detached cells. The supernatant was removed and 

the pellet was suspended in complete growth media and placed in new flask at a ratio 1:5 

(diluted cells to new culture media). 

 

3.3.2.1.7 Cryopreservation of cells  

 

To generate a continuous stock of cells, cells were routinely frozen at early passage 

number. After cells reached roughly a confluency of 70-80% in flasks, the cells were 

passaged and aliquots placed in cryoprotective media, which consists of 95% FBS with 

5% dimethl sulphoxide (DMSO) (Sigma- Aldrich). This was frozen and stored at -80°C. 

When required, frozen cells were thawed. Thawing was performed rapidly at 37°C in a 

water bath, and media removed by centrifugation at 200xg for 5 min. Cells were 

resuspended in complete growth media and plated in new tissue culture flasks. 

 

 

 



Chapter 3:                          Identification of PTBP as a novel regulator of the ITGA6 splicing switch 

56 
 

 

3.3.2.1.8 Capillary gel electrophoresis (Qiaxcell) 

 

Capillary gel electrophoresis (Qiaxcell) is advanced fully automates sensitive system 

replaces traditional labor-intensive gel analysis of DNA and RNA using ready gel 

cartridges. It   was performed using 5 µl of RT-PCR samples diluted with 5 µl Qiaxcell 

dilution buffer (Qiagen). This was followed by loading samples in the multi-capillary 

electrophoresis system. Qiaxcell biocalculator software was used to determine the size 

and concentration of each PCR product.  

 

3.3.3 Calculation of percentage splicing inclusion (PSI %) 

 

In this chapter, the percentage of splicing inclusion was calculated using following 

formula figure 3.1  

 

 

 

3.3.4 Gel electrophoresis  

In this chapter, gel electrophoresis was used following the protocol described in 

chapter 2. 

 

3.3.5 Western immunoblotting  

 

Western immunoblotting was used to determine protein expression levels. PTBP1 and 

MBNL1 proteins were detected by western blotting using rabbit monoclonal PTBP1 

antibody (Abcam, ab63697) and rabbit polyclonal MBNL1 antibody (Abcam, ab45889).  

This was followed by secondary α-rabbit HRP (all antibodies 1:1000 dilution). Efficiency 

of loading and transfer were measured using actin immunoblotting and GAPDH.  In 

brief, after harvesting cells, cell pellets were lysed in 2X SDS loading buffer. This was 

followed by boiling at 100C for 5 min. Proteins were separated by 10 % SDS-PAGE, 

followed by transfer to Hybond-P membranes (GE). Membranes were blocked for one 
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hour in block solution (Tris Buffer Saline (TBST) 5% with non-fat dry milk). The 

membrane was washed three times for 5 minutes each in TBST and then probed with 

primary antibody overnight at 4C. Following this, membranes were washed three 

times for 5 minutes with TBST, and further probed with secondary antibody for one 

hour. Finally membranes were washed three times using TBST for 5 minutes. This was 

followed ECL detection using ECL western blotting detection reagent (Amersham). 

Excess ECL was then removed and filters were exposed on photographic film (Kodak).  

Films were developed in a Compact X4 developer (Xograph Imaging Systems). 

 

3.3.6 siRNA Transfection: 

Knockdown for the endogenous PTBP1, PTBP2, MBNL1, RBFOX2, ESRPS1 and ESRPS2 

was achieved by transfecting MCF-7 and HeLa cell lines with silencer selected pre-

designed siRNA (Integrated DNA Technologies (IDT)). SiRNA PTBP1 

(NM_031990)(hs.Ri.PTBP1.13.1) PTBP2 (hs.Ri.PTBP2.13.2) (NM_021190),  MBNL1 

(hs.Ri.MBNL1.13.2)(NM_021038), RBFOX2 (hs.Ri.RBFOX2.13.2) (NM_001082578), 

ESRP1 (hs.Ri.ESRP1.13.3) (NM_001122827) and ESRP2 (hs.Ri.ESRP2.13.2)( NM_024939)  

were transfected using Lipofectamine RNAiMAX™  reagent (Thermofisher). Control 

(untreated) cells were treated with transfection reagent only. Transfection was 

performed following the manufacturers instructions (Table 3.6).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.6: Transfection protocol 

Transfection 

protocol 

Reaction mix 

Components volume Incubation 

time 

Mix 1 Opti-MEM® Medium 150μL 
 

5minutes 

Lipofectamine RNAiMAX reagent 9 μL 

Mix2 Opti-MEM® Medium 150 μL 5minutes 

siRNA (10 μM) 3 μL(30pmol 

Mix 3 Mix 1 160 μL 20 minutes 

Mix 2 155 μL 

Short Centrifugation 
Add 250 μL to each well in 6 well plate  and incubate at 37c  overnight 
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3.4 Results  
 

3.4.1 Splicing pattern of ITGA6 in different cell lines (HeLa, MCF7 and MDA-

MB231), stem cells and fibroblasts 

 

The alternative splicing of ITGA6 has been reported to have a different patterns 

between stem cells and fibroblasts (Venables et al., 2013). I sought to confirm this 

result, and to also test the splicing pattern in cancer cell lines. I performed RT-PCR 

using primers that were designed to match the constitutive exons that flanked the 

alternative exon of ITGA6. This assay used RNA from the HeLa, MCF7 and MDA-MB231  

cancer cell lines, as well as pre-existing cDNA from stem cells and fibroblasts as 

described by Venables et al. (2013). The details of the cancer cell lines, stem cells and 

fibroblasts are explained in the methodology chapter. The splicing pattern of the RNA 

expressed in each cell line was analysed using capillary gel electrophoresis. Two bands, 

one for exon inclusion and one for exon exclusion, could be detected by gel 

electrophoresis. The concentration between the isoforms was calculated using a multi-

capillary Qiaxcell gel electrophoresis system (Figure 3.1).  

 

The ITGA6 inclusion percentage was calculated and plotted on a barchart (Figure3. 1a). 

The pattern of splicing ITGA6 inclusion (long form) is predominant in fibroblast and 

breast cancer cell lines, including MCF7 and MDA-MB231. However, the exclusion 

pattern of the ITGA6 (short form) is the predominantly form in stem cells and the HeLa 

cancer cells line. Taken together, the breast cancer cell lines proved to be a good 

model to study how the alternative exon of ITGA6 can be activated as they roughly 

express the same levels of both isoforms of ITGA6, whereas the HeLa cancer cell line 

proved to be a good model to study how the ITGA6 alternative exon can be inhibited 

as they have less exon inclusion.  
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Figure 3-1: Investigation of ITGA6 alternative splicing control in different cancer 
cell lines. RT-PCR was performed using specific primers across the alternative 
exon of ITGA6 using RNA from different cancer cells. a) Graphs show the 
percentage of splicing inclusion (PSI%) in different cell lines , stem cells and 
fibroblasts. It illustrates changes in ASEs of ITGA6 in different cancer cell lines. 
Exclusion of the cassette exon is represented by the lower band (247bp), while the 
upper band represents exon inclusion (377bp). This experiment showed that exon 
25 is skipped in HeLa and stem cells, but included in MDA-MB231, MCF7 and 
fibroblasts 
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3.4.3 SiRNA knockdown of MBNL1, RBFOX2, and PTBPs in HeLa, MCF7 and 

MDA-MB231 cell lines  

 
The ITGA6 alternative exon is regulated by MBNL and RBFOX1 during stem cell 

differentiation (Venables et al., 2013). Since ITGA6 alternative splicing showed 

different patterns in different cancer cell lines, The knockdowns of the endogenous 

regulation factors, including MBNL1, RBFOX2, PTBPs and ESRPs, were tested to see if 

these   would affect the splicing patterns of ITGA6.  

  

To begin this study, siRNA targeted against these splicing factors were transfected into 

HeLa, MCF7 and MDA-MB231 cell lines. After 72 h, the cells were harvested, and a RT-

PCR was performed using specific primers located on the flanking constitutive exon 

followed by gel electrophoresis in order to analyse any alternative splicing changes 

(Figure 3.2). As expected, the ITGA6 splicing shifted towards the short form (exclusion 

of the alternative exon) upon knockdown of either MBNL1 or RBFOX2 in MCF7 and 

MDA-MB231 cells compared with the control (with no siRNA) (Figure 3.2a,b). 

However, the ITGA6 shifted from the long form (inclusion of the alternative exon) to 

the short form (exclusion of the exon) upon knockdown of RBFOX2 in HeLa cell line 

compared with the control (Figure 3.2c).. On other hand, the ITGA6 splicing shifted 

towards the long form (inclusion of the alternative exon) upon double knockdown of 

PTBP1 and PTBP2 in MDA-MB231, MCF7 and HeLa cells compared with the control.  

 

Overall, these results confirmed that the ITGA6 alternative spliced exon is enhanced by 

MBNL1 and RBFOX2. The results also showed for the first time that PTBP inhibits this 

exon. The ITGA6 alternative exon is thus under the control of three major splicing 

factors.  
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Figure 3-2. ITGA6 alternative splicing pattern after knocking down splicing 
regulation factors in the MDA-MB231, MCF7 and HeLa cell lines. Agarose gel 
shows ITGA6 splicing after knocking down PTBP1/2, MBNL1 and RBFOX2, 
respectively, in the MDA-MB-231 , MCF7 and HeLa cell lines. Exclusion of cassette 
exon appears as the lower band, while the upper band represents the inclusion.  
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3.4.3.1 Confirmation that splicing regulatory factors affect (activate) the 

alternative exon of ITGA6 in MCF7 cell lines 

 

The ITGA6 alternative exon has different splicing patterns in different cancer cell lines. 

Splicing regulatory factors, including  MBNL1, RBFOX2 and PTBPs have been shown to 

regulate the exon. The ITGA6 alternative exon has also been reported to be enhanced 

by ESRP1, which is part of the positive feedback loop downstream of VEGF. I decided 

to confirm this result using the MCF7 cell line due to the clearly of splicing events in 

pervious results. 

 

To begin this test, the siRNAs specific for MBNL1, RBFOX, PTBP and ESRP were 

transfected (in triplicate) into the MCF7 cell line. After 72 h, the cells were harvested 

and RNA purified. Reverse transcription of the RNA was then performed. The splicing 

pattern of the endogenous RNA was analysed using capillary gel electrophoresis. ITGA6 

showed two bands on the gel: a long form (inclusion of the exon) and a short form 

(exclusion of the exon). Ratios of the two bands were determined using a multi-

capillary Qiaxcell gel electrophoresis system in order to calculate the expression of 

both isoforms of ITGA6 splicing. The percentages of the alternative splicing pattern 

were calculated and plotted on a graph (Figure 3.3). The method of calculation is 

described in method section 3.3.3.  

 

As expected, the ITGA6 alternative exon had shifted from the long form (inclusion) to 

the short form (exclusion) upon knockdown of MBNL1 and RBFOX2 compared with the 

control (untreated or negative siRNA) cell. Double knockdown of ESRP1 and ESRPS2 did 

not show any change in the splicing pattern of ITGA6 compared with the control cells. 

This result confirms that the ITGA6 alternative exon is enhanced by MBNL1 and 

RBFOX2 but suggests ESRP proteins are not involved.  

 

In contrast, the ITGA6 alternative exon shifted from the short form (exclusion) to the 

long form (inclusion), with a double knockdown of PTBP1 and PTPB2 compared with 

the negative siRNA treated cell. This result confirms that ITGA6 alternative splicing is 

repressed by PTBPs.  
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Overall, these results confirmed that the ITGA6 alternative splicing exon is enhanced 

by MBNL and RBFOX, and inhibited by PTBPs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.3: The percentage splicing inclusion (PSI) of ITGA6 after knockdown of 
splicing regulation factors in the MCF7 cell line. Graphs show the percentage of 
splicing inclusion of the ITGA6 alternative exon which was compared between 
controls (without siRNA) (orange) and cells with knockdown of splicing regulation 
factors (PTBP, MBNL1, RBFOX2 and ESRP) (green). Data is represented as the 
mean of three biological replicates in each case. Statistical significance was 
calculated using an independent two-sample t-test, where *p<0.05, **p<0.01, 
***p<0.0001. Capillary gel electrophoresis image shows ITGA6 alternative 
splicing after knocking down regulatory factors in the MCF7 cell line.  Exclusion 
of the cassette exon appears in the lower band (246bp), while the upper band 
represents the exon inclusion (377).  
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3.4.3.1.1 Monitoring   MBNL knockdown in MCF7 cell lines 

 
As previously described result (3.4.3.1), ITGA6 splicing is activated by MBNL1 and 

RBFOX2 in the MCF7 cell lines. Because the knockdown of MBNL1 in MDA-MB231, 

MCF7 and HeLa cancer cell lines showed a clear shift from the long form to the short 

form compared with knockdown of RBFOX2, studied was focused on MBNL1 as a 

strong repressor factor. While the knockdown of MBNL1 was shown to enhance 

splicing the ITGA6 alternative exon via quantitative RT-PCR, it was important to 

confirm the efficiency of the knockdown of this protein.  

 

The siRNA specific to MBNL1 was transfected into the MCF7 cell line, and levels of this 

protein analysed via Western immunoblotting using a rabbit polyclonal antibody 

against MBNL and a rabbit monoclonal antibody against GAPDH as a control. 72 h after 

of transfection, efficient depletion of MBNL1 was observed in the transfected cells and 

compared with the negative control siRNA transfected cells (Figure 3.4A).  

 

Although the MBNL knockdown efficiency was confirmed by Western immunoblotting, 

this was also confirmed by qPCR as well. MBNL1 siRNAs were transfected into MCF7 

cells. After 72 hours, cells were harvested and cDNA was made from each cell. Using 

specific primers for MBNL1 (see Section 3.3.1), qPCR was performed to determine the 

MBNL expression. After the fold change was calculated (refer to method Section 3.3.3), 

the efficiency of MBNL depletion had significantly changed compared with the 

untreated cells (Figure 3.4B).  
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Figure 3.4 : Knockdown of MBNL1 in MCF7 cell  tested by western blotting 
and real time PCR. A) Depletion of endogenous MBNL1 was confirmed  in 
trplicate in MCF7 cells by Western blot. Expression of GAPDH was monitored 
as a loading control. B) qPCR detected the knockdown of MBNL1  in MCF7 cell 
line (represented in red) compared with the control (untreated cell) 
represented in blue. Data for the three biological replicates  and statistical 
significance was calculated using an independent two-sample t-test, where 
*p<0.05, **p<0.01, ***p<0.0001 . 
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3.4.3.2 Investigating the regulatory factors that inhibit the alternative exon 

of ITGA6 in the HeLa cell line  

 
Previous experiments in different cell lines identified that the splicing regulatory 

factors, MBNL, RBFOX and ESRPs, activated the alternative exon of ITGA6, and showed 

that PTBP acted as an inhibitor for the exon (refer to Section 3.4.3). The PTBP1 and 

PTBP2 double knockdown showed significant changes in the splicing pattern of ITGA6 

which inhibit alternative exon (more inclusion exon) in the MCF7 cell line (Figure 3. 3). 

However, it was important to test what happened in other cell lines that might have a 

different pattern of splicing control.    

 

I investigated the splicing pattern of ITGA6 using the HeLa cancer cell line, which had 

more exclusion for the alternative exon of ITGA6. siRNAs specific for MBNL1, RBFOX, 

PTBP (PTBP1&PTBP2), ESRP (ESRP1&ESRP2) were transfected in triplicate to the HeLa 

cell line. After 72 h, the cells were harvested and RNA was reverse transcribed. The 

splicing pattern of the endogenous RNA was analysed using capillary gel 

electrophoresis and the concentration for each form (long form and short form) was 

calculated using a multi-capillary QIAxcel gel electrophoresis system. The percentages 

of the alternative splicing pattern were calculated and plotted on a barchart.  

 

As expected, the ITGA6 alternative exon shifted from the long form (inclusion of the 

exon) to the short form (exclusion of the exon) upon the double knockdown of PTBP1 

and PTBP2 compared with untreated cells. In other words, the double knockdown of 

PTBP1 and PTBP2 resulted in a significant decrease in percent splicing in (PSI) of the 

ITGA6 exon from 68% to 41%. This result confirmed that PTBP (PTBP1 and PTBP2) act 

as repressors of the ITGA6 alternative exon (Figure3.5).  

 

The knockdown of MBNL1 resulted in a significant decrease in PSI from 68% to 82% in 

the ITGA6 exon as it shifted from the long form to the short form. However, the 

knockdown of RBFOX2 and ESRPs (ESRPs1 and ESRPS2 together) did not show an effect 

on the ITGA6 alternative exon compared with untreated cells. This result confirmed 

that the ITGA6 alternative exon was activated mainly by MBNL1.  
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Figure 3.5: The percentage splicing inclusion (PSI) of ITGA6 with knockdown of 
the splicing regulatory factors in the HeLa cells.  Graphs show the percentage of 
splicing inclusion of ITGA6 alternative exon compared between controls (without 
siRNA) with GFP (beige) and knockdown of regulation factors (PTBPs, MBNL1, 
RBFOS2 and ESRPs) green. Data represents the mean of three biological 
replicated in each case. Statistical significance was calculated using an 
independent two-sample t-test, where *p<0.05, **p<0.01, ***p<0.0001. Capillary 
gel electrophoresis image shows ITGA6 alternative splicing after knocking down 
splicing regulation factors in the HeLa cell line.  Exclusion of cassette exon 
appears in the lower band (246bp), while the upper band represents exon 
inclusion (377).  
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3.4.3.2.1 Monitoring PTBP knockdown in HeLa cell lines 

 
 
It is important to confirm the previous experiment (section 3.4.3.2) that indicated that 

the depletion of PTBP1 and PTBP2 repressed the ITGA6 alternative exon in cancer cell 

lines. siRNAs for PTBP1 were transfected into the HeLa cell line and PTBP1 analyzed 

using Western immunoblotting with a rabbit polyclonal antibody against PTBP1 and a 

rabbit monoclonal antibody against actin as a control. The expression of PTBP1 protein 

was detected on the Western immunoblot, and corresponded to the expected size of 

57 kDa for the full length of PTBP1 in the control (untreated cells). However, this band 

was significantly reduced after knockdown of PTBP1, which indicated that this band 

was specific for PTBP1 compared with the control (Figure 3.6a).  

 

Although the PTBPs knockdown efficiency was confirmed by Western immunoblotting, 

I wanted to confirm this result by doing qPCR. The PTBP1 and PTBP2 double siRNAs 

were transfected to the HeLa cell line. After 72 h, the cells were harvested and cDNA 

was made from each cell. Using specific primers for PTBP1, qPCR was performed to 

determine PTBP1 expression. The levels of PTBP1 significantly changed compared with 

the untreated cells after depletion (Figure 3.6b).  
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Figure 3.6: Knockdown of PTBP1 in Hela cell line  confirmed by  western blotting 
and real time PCR. A) Depletion of endogenous PTBP1 was confirmed  in triplicate 
in Hela cells by Western blot. Expression of GAPDH was monitored as a loading 
control. B) qPCR detected the expression of kncodown of PTBP1 in Hela cell line 
(shown in red) compared with the control (untreated cell) in blue. Data for the 
mean three biological replicates  and statistical significance was calculated using 
an independent two-sample t-test, where *p<0.05, **p<0.01, ***p<0.0001 . 
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3.4.2 Measurement of the relative levels of factors that regulate ITGA6 

alternative splicing 

 
I have demonstrated the ITGA6 alternative splicing pattern in cancer cell lines, stem 

cells and fibroblasts and also shown that an alternative exon of ITGA6 was activated by 

RBFOX2, MBNL1 and ESRP and inhibited by PTBPs in the cancer cell line. Since these 

regulatory factors have significant implications for the alternative splicing pattern, it 

was important to investigate the level of protein regulatory factors, including PTBP, 

RBFOX2, MBNL1 and ESRP, in the different cell lines.     

 

I analysed the expression of splicing regulation factors (the PTBP, RBFOX2, MBNL1 and 

ESRP isoforms) in different cell lines, including MCF7, MDA-MB231 and HeLa. I also 

used pre-existing cDNA for the stem cells and fibroblast, as demonstrated by Venables 

et al. (2013), and performed real-time quantitative PCR (qPCR) using the specific 

primers for the regulation factors (see primers, table 3.5, in the Methods section). 

To determine the expression of regulation factors that control ITGA6 alternative exon 

in different cell lines, I compared expression levels in cell types that have variant ITGA6 

isoform expression. MCF7 breast cancer cell lines were previously shown to have 

roughly the same level of expression for both the ITGA6 isoforms (inclusion and 

exclusion for alternative exon) (see Section 3.4.1). I compared MCF7 cell line with 

MDA-MB231 and HeLa cell lines as well as fibroblast and stem cells for the expression 

of the splicing factors PTB, RBFOX2, MBNL1 and ESRP.  

 

After calculating the fold change, the expression of PTBP1 was found to be highest in 

the HeLa cell lines, whereas the expression of PTBP2 was extremely high in the HeLa 

cell lines compared with the other cell lines. The expression of MBNL1 had roughly the 

same range of expression level in the different cancer cell lines, but was expressed at 

an extremely low levels in stem cells. RBFOX2 was expressed at a high level in MCF7 

compared with the other cancer cell lines, stem cells and fibroblasts. ESRP1 exhibited 

roughly the same level of expression in the different cell lines; however, it had an 

extremely low expression in fibroblast. Finally, ESRP2 was expressed at a significantly 

high level in the Hela cell lines.  
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Overall, PTB (PTBP1 and PTBP2) were found to be expressed significantly higher in 

HeLa cell lines, which suggests that a differential expression of PTB might explain the 

splicing pattern of ITGA6 in HeLa cells. On other hand, PTB, RBFOX, MBNL and ESRP 

were expressed at roughly the same levels in MCF7 and MDA-MB231. This suggests 

that the roughly equivalent expression of two isoforms of ITGA6 might explain the 

splicing pattern of ITGA6 in the MCF7 and MDA-MB231 cell lines. PTB, MBNL, RBFOX 

and ESRP1 were expressed at low levels for fibroblast and stem cells, while ESRP1 was 

expressed at a high level in the stem cells (Figure 3.7). 
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Figure 3.7:  Regulation factor expression in different cell lines, stem cells and 
fibroblasts. qPCR was used to quantify expression of PTBP (PTBP1 and PTBP2), 
MBNL1, RBFOX2 and ESRP (ESRP1&ESRP2) in MCF7, stem cell, fibroblast, MDA-
MB231 and Hela cells. Data for the three biological replicates and statistical 
significance were calculated using an independent two-sample t-test, where 
*p<0.05, **p<0.01, ***p<0.0001. 
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3.5 Discussion  

3.5.1Investigation of ITGA6 alternative splicing in different cancer cell lines 

 

In this chapter, I describe an in-depth investigation of the mechanism and regulation of 

endogenous integrin α6 (ITGA6) alternative splicing. Cancer cell lines were selected for 

this study because they are easy to grow and induce to express most genes and 

transcripts. The MDA-MB231 and MCF7 breast cancer cell lines were selected since 

ITGA6 may be expressed in breast carcinoma cells under stress conditions through the 

upregulation of vascular endothelial growth factor (VEGF) expression, either at the 

level of transcription or translation. MDA-MB231 and MCF7 were both originally 

isolated from metastatic breast cancer cell lines; however, MCF7 is less aggressive than 

MDA-MB231 (Chung et al., 2002; Chung et al., 2004a). We also used the HeLa cervical 

cancer cell line since other researchers have used it successfully for studying 

alternative splicing mechanisms. 

 

We started by investigating different cancer cell lines in order to determine the 

differences in their ITGA6 alternative splicing patterns. During differentiation of stem 

cells into fibroblasts, the ITGA6 splicing mechanism switches from inclusion to 

exclusion of the alternative exon (Venables et al., 2013a). In the previous chapter, we 

identified different ITGA6 splicing patterns between the head and tail of a zebrafish 

embryos as well as changes in these patterns during development. In order to 

determine whether different ITGA6 splicing patterns exist in different cell lines, reverse 

transcription polymerase chain reaction (RT-PCR) was performed with a primers 

flanking alternative exon 25 of ITGA6. We found that both ITGA6 splicing patterns 

(inclusion and exclusion) occur for the alternative exon 25, with roughly the same 

percentages of each pattern in both breast cancer cell lines. This suggests that breast 

cancer cell lines are good models to study ITGA6 alternative splicing since, like the 

zebrafish tail, they express two forms of ITGA6. Both isoforms of mRNA may play an 

important role in breast cancer, which is supported by findings that ITGA6a and 

ITGA6b have different functions in cancer stem cells (Goel et al., 2014). The HeLa cell 

line, on other hand, exhibited more exclusion than inclusion of the alternative exon, 

indicating that the shorter form of ITGA6 may be more important in cervical cancer. 
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The HeLa cell line, therefore, might be a good model to study the repression of ITGA6 

alternative splicing.  

 

To summarise, we confirmed that ITGA6 exhibits both alternative splicing patterns in 

the breast cancer cell lines MCF7 and MDA-MB231, and showed for the first time that 

a particular splicing pattern is established in the HeLa cell line. These results confirm 

that cancer cell lines are good models to investigate alternative splicing mechanisms 

controlling ITGA6.  

 

3.5.2 How is ITGA6 alternative splicing regulated? 

 

ITGA6 splicing is regulated by MBNL1 and RBFOX during differentiation of stem cells 

into fibroblasts (Venables et al., 2013). Epithelial splicing regulatory proteins (ESRPs) 

regulate ITGA6 alternative exon splicing in breast cancer cell lines (Chang et al., 2007). 

Therefore, we screened the effects of these known splicing regulatory proteins by 

transfection of siRNA with knockdown of the MBNL1, RBFOX2 and ESRP into cancer 

cell lines. ITGA6 alternative exon 25 was then strongly excluded in the MCF7 and MDA-

MB231 breast cancer cell lines, confirming the previous finding that the ITGA6 

alternative splicing pattern is positively regulated by MBNL1 and RBFOX2 during cell 

differentiation (Venables et al., 2013). Chang et al. (2007) also confirmed that the 

inclusion of the ITGA6 alternative exon is activated by ESRP in breast cancer cell lines.  

 

MBNL1 is involved in myotonic dystrophy and modulates splicing during muscle and 

heart development. RBFOX is a splicing factor that is implicated in the epithelial-to-

mesenchymal transition. ESRP1 and ESRP2 are known to regulate alternative splicing 

during epithelial and mesenchymal differentiation. The splicing activity of RNA-binding 

proteins (RBPs), such as MBNL1, RBFOX and ESRP, are flexible according to their 

binding site (Dredge et al., 2005; Zhang et al., 2008a; Goers et al., 2010; Llorian et al., 

2010). MBNL1, RBFOX and ESRP enhance exon inclusion when they bind downstream 

of the exon but inhibit it when they bind upstream (Figure 3.8). 
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3.5.3 Identification of PTBP as a novel regulator  
 

To fully understand the ITGA6 alternative splicing mechanism, it was important to find 

other regulatory factors which perform opposite functions to ESRP, MBNL1 and 

RBFOX2. Polypyrimidine tract-binding protein (PTBP) is widely known as a repressor. 

Therefore, we performed transfection of siRNA with knockdown of PTBP in breast 

cancer cell lines. Surprisingly, knockdown of PTBP strongly reduced the exclusion of 

exon 25 from ITGA6 in the breast cancer cell lines, which indicates that PTBP inhibits 

the alternative splicing of ITGA6 exon 25. Knockdown of PTBP caused an even greater 

degree of exon inclusion in the HeLa cell line. PTBP1 is widely expressed and belongs to 

a family of RBPs that includes two other paralogs, PTBP2 and PTBP3, which are 

expressed in a more tissue-restricted manner (Noiret et al., 2012). PTBP binds to 

pyrimidine-rich upstream elements in the RNA, which usually act as repressors for the 

alternative splicing of pre-mRNA. However, there are also indications that PTBP can be 

involved in splicing modulation through the binding of downstream pyrimidine-rich 

elements.  

 

 

Figure 3.8: Schematic diagram explaining the  RNA map. This image was adapted 
and modified from (Ule et al., 2006).  

 

Position of enhancers

Position of silencers
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We have observed the ITGA6 alternative splicing patterns after knockdown of the 

regulation factors MBNL1, RBFOX, ESRP and PTBP in triplicate experiments in both the 

HeLa and MCF7 cell lines. The results showed clearly that ITGA6 alternative splicing is 

activated by MBNL1 and inhibited by PTBP in both cell lines; the protein expression 

was tested and confirmed using western blotting. These findings will contribute to the 

understanding the mechanisms of ITGA6 alternative splicing, following the discovery of 

combinatorial control of alternative splicing which describes how proteins can interact 

with each other in order to regulate alternative exon splicing (Smith & Valcarcel, 2000).  

 

The PTBP and MBN1 regulatory factors can also affect gene function via splicing. 

ITGA6a is involved in the proliferation of colon cancer cells (Groulx et al., 2014), and 

ITGA6b is involved in cancer stem cell function by means of the VEGF loop (Goel et al., 

2014). In the VEGF loop, ITGA6b expression is repressed by the ESRP1 factor and 

associated with the VEGF signalling pathway, which represses ITGA6a expression and 

sustains ITGA6b expression in breast cancer (Figure 3.9). Our results thus suggest there 

might be other factors, including PTBP and MBNL1, involved in the splicing of different 

ITGA6 variants. 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Schematic illustration of the VEGF signalling pathway in cancer stem 
cells  
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The last purpose of this chapter is to describe our investigation of the expression of 

different regulation factors which might affect ITGA6 splicing. We performed 

quantitative polymerase chain reaction (qPCR) to quantitate expression of  

 

PTBP1, PTBP2, MBNL1, RBFOX2, ESRP1 and ESRP2 in the different cell lines. ESRP2, 

PTBP1 and PTBP2 were significantly expressed in the HeLa line. PTBP1 was not 

expressed in fibroblasts nor in stem cells. MBNL1 was expressed in roughly the same 

amounts in the different cell lines, while RBFOX was expressed in greater amounts in 

MCF7. In summary, PTBPs had the highest expression in the HeLa cell line, whereas 

MBNL and RBFOX were expressed at roughly the same levels in HeLa and MCF7. These 

experiments suggested that the expression level of PTBP may be the factor that 

differentiates these cell lines in respect to ITGA6 splicing patterns.  

 

Our overall findings show that ITGA6 exhibits different alternative splicing patterns in 

cancer cell lines, just as in zebrafish fibroblasts and stem cells. The ITGA6 alternative 

exon is activated by the three regulatory proteins MBNL1, RBFOX and ESRP and 

repressed by PTBP regulatory factors. PTBP may also be involved in cell differentiation, 

as it was highly expressed in all cancer cell lines.  
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Chapter 4: Establishment of a minigene system to study 
regulation of the ITGA6 alternative exon  

 
4.1Introduction 
 
In the previous chapter, it was demonstrated that ITGA6 alternative splicing produces 

two isoforms, with exon 25 included or excluded in different cancer cell lines. It was 

also shown that splicing factors, including MBNL1, RBFOX2, ESRPs and PTBPs, 

regulated the ITGA6 endogenous alternative exon. In this chapter, using a minigene 

system, I carried out an in-depth investigation of how the ITGA6 alternative splicing 

mechanism occurs. I hypothesised that establishing a minigene model could help me 

to investigate how ITGA6 alternative exons can be regulated and to identify the 

regulation factors’ binding sites.   

 

The minigene system is the gold standard  method for exploring RNA splicing 

mechanisms (Cooper, 2005). This approach includes the generation of plasmid 

constructs containing parts of genes or entire genes. These constructs are used to 

investigate the process of splicing and the related control mechanisms. Minigene 

constructs were prepared by digesting both the insert (template amplified target 

region) and the vector plasmid with a restriction enzyme (usually selected based on 

making compatible sticky ends); these were then ligated together to obtain the 

constructs. These constructs have the ability to be introduced into different cell lines 

to study the splicing mechanisms. The advantages of minigenes include that they can 

help to test for cell-, tissue- or species-specific splicing effects (Cooper, 2005). The 

minigene method can also test the function of sequences of variable size, from 10 

nucleotides up to several kilobases. Although the minigene method is used to test the 

splicing effect of nucleotide changes on exon inclusion/exclusion, it also can be used to 

test the effect of splicing site alterations, ESE/ESS sites and even in-treatment trials 

(Cooper, 2005).   
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Previously (Venables et al., 2013b), it was found that RBFOX1 and MBNL1 regulate the 

splicing of genes, including ITGA6, in embryonic stem cells and embryos. The RBFOX 

proteins are among the most sequence-specific RNA-binding proteins; and bind to the 

hexanucleotide UGCAUG. The MBNL protein also exhibits high affinity in binding to 

YGCY sites, which are likely to be found approximately every 256 bases. Both RBFOX 

and MBNL1 have been observed to act as repressors for exons when binding 

downstream, whereas they act as activators when binding upstream of the exons. 

ESRPs have also been reported to regulate alternative splicing of ITGA6 in breast 

cancer cell lines. ESRPs have been reported to activate ITGA6 alternative exons 

through binding to UGG-rich motifs downstream of the ITGA6 alternative exon (Goel et 

al., 2014).  

 

In this Chapter, based on the data from the previous Chapter, I aimed to establish an 

ITGA6 minigene, consider the candidate binding sites to investigate the relationship 

between the splicing regulator proteins and assess how they regulate ITGA6 in cancer 

cell lines. Our novel findings in chapter 2 showed that the ITGA6 alternative exon was 

inhibited by PTBPs. PTBP proteins, which generally function as repressors, have an 

affinity for binding at pyrimidine-rich motifs, such as UCUU or CUCUCU, to mediate 

splicing repression in a long list of alternatively spliced pre-mRNAs (Noiret et al., 

2012a). I aimed to identify the PTBP binding site that regulates ITGA6 alternative 

splicing. PTBPs binding upstream of the alternative exon generally repress splicing. In 

the final part of this chapter, I investigate the possibility that PTBPs binding 

downstream of the ITGA6 exon might control splicing patterns of ITGA6 by analysing a 

mutant PTBP binding site in the minigene system. The ITGA6 minigene was 

investigated using cancer cell lines, including Hela, MDA-MB231 and MCF7.  
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4.2 Aims 
The aims of this chapter were to:  

- To establish minigene construct for ITGA6 that would mimic the endogenous 

gene. 

- To investigate how alternative splicing regulators control this ITGA6 minigene   

- To identify the binding site of PTBP downstream of the ITGA6 alternative exon 

and investigate the mechanism of splicing regulation.  
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4.3 Methodology  

4.3.1 ITGA6 Minigene essay: 

4.3.1.1 Primer design   

 
The ITGA6 alternative exon and roughly 332 nucleotides of flanking upstream intron 

and 900 nucleotides of downstream intron sequence were selected for cloning into the 

pXJ41 vector. Primers were designed using Primer3 program in the following link:  

http://bioinfo.ut.ee/primer3-0.4.0/primer3/ . Mfe1 restriction sites were included at 

the 5’ end of each primer. The same procedure was also followed using  different 

different primers to clone different sizes of ITGA6. Primers are listed in Table 4.1.    

 

 
 
 
 
 
 
 
 
 
 
 

4.2.1.2PCR amplification 

 

PCR was performed with a PCR Phusion Kit from Thermo Scientific, following the 

manufacturer’s instructions for 50μl reactions (Table 4.2). Amplification was carried 

out in SensoQuest thermo cyclers by the program shown in Table 4.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.1: Primers designed to clone different size of ITAG6 regulatory  

Primer  Sequence 

ITGA61.3Kb F TAGCTAGCACAATTGTGCAGGAAGAAACTACCCAAA 

ITGA61.3Kb B TAGCTAGCACAATTGCCCACGTAAATGGTGAAAGG 

ITGA6ShortB TAGCTAGCACAATTGAAAAGCCCATCATGCTGATAA 

ITGA64Kb F TAGCTAGCACAATTGAAGTTGGAGGCAGGACCAG 

ITGA64Kb B TAGCTAGCACAATTGGGGATCAACGGAAGAGAACA 

ITGA6minigeneScreener GCCACTGCATTGTTTCATTG 

  

 

 

 

 

Table 4.2: Components of cloning PCR  

Reagent   Volume μl 

5xCG buffer 10.0 

dNPs 1.0 

10μM Forward Primer 2.5 

10μM Reverse Primer 2.5 

DMSO 1.0 

Template(Human genomic DNA) 1.0 

Phusion DNA Polymerase 0.5 

H2O 31.5 

 

 

 

http://bioinfo.ut.ee/primer3-0.4.0/primer3/
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4.3.1.3 Gel electrophoresis   

 

PCR products were run on 1.1% agarose gels. The correct product size was cut out and 

purified from the gel using QIAquick Gel Extraction Kit according to manufacturer’s 

instruction (Qiagen). 

 

 

4.3.1.4 Restriction digests  

 

Restriction digests were performed using EcoRI (New England Biolabs) restriction 

enzyme in order to digest the PXJ41 vector. Samples were digested using Mfe1 

restriction enzyme (New England Biolabs) following the manufacturer’s instructions 

(Table 4.4 and 4.5). Digestions were incubated for 3 hours at 37 C. After that, digested 

vector and constructed were ligated following the manufacturer’s instructions table 

and incubated at room temperature overnight (Table 4.6). 

 

 

 

 

 

 

 

Table 4.3: Steps of PCR reaction for cloning  

Program Step Temperature (C) Time(min) Cycle Number 

Heat activation 98 30 seconds 1 

Denaturation 98 10 seconds 32 

Annealing 60 20 seconds 32 

Extension  72 45 seconds 32 

End Stage Extension 72 4 minutes 1 

Cooling 15 ∞  
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4.3.1.5 Molecular cloning  

 

Competent DH5α E.coli and ligation mixes (Inserting DNA and cut Vector pXJ41) were 

mixed, and transformation was achieved using a heat shock protocol.  This protocol 

was done by sequential different incubations on ice, 42°C and ice for 10, 1 and 10 min 

respectively. After that, 1 ml of Luria-Bertani (LB) was added and cells were incubated 

at 37°C for 1 hour. Next bacteria were spread on to a plate of LB agar with 50μg/ml 

ampicillin and incubated at 37°C overnight. Next day, single colonies were picked 

Table 4.4: Constructs Restriction Digest  

DNA 26 μl  

NEBuffer 5μl  

BSA (X10) 5μl 

MfeI restriction enzyme 2μl  

Total 50μl 

 

Table 4.5: Vector Restriction Digest 

DNA 26 μl  

EcoRI buffer 5μl  

BSA (X10) 5μl 

EcoRI restriction enzyme 2μl  

Total 50μl 

 

 

 

 

 

Table 4.6: Component for ligation   

Insert ( digested and clean PCR) 37.9μl  

Vector (PXJ41) 2μl  

T4 DNA Ligase 2μl  

10XT4 Buffer 5μl  

H2O 3.1μl 

TOTAL 50μl 
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individually and screened using primers binding to the vector (Table 4.7) and one 

cloning primer from insert in order to confirm that bacteria contained a correct 

plasmid (Table 4.8 for PCR conditions). Plasmid were picked into 5 ml LB broth plus 

50μg/ml ampicillin and incubated at 37°C overnight in a shaker. The next day, tubes 

were centrifuged at 5,000rpm for 2 minutes in order to get a pellet of cells. Finally a 

QIAprep Mini-prep Kit was used following manufacturer’s instructions in order to 

extract supercoiled plasmid DNA from cells. Plasmid DNA was sequenced using vector 

primers (pXJ41F and pXJ41F, Table 4.7) by Source Bioscience, Oxford. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Table 4.7: pXJ41 vector primers for colony screening and for sequencing 

Primer Sequence 

PXJ41F GCTCCGGATCGATCCTGAGAACT 

PXJ41B GCTGCAATAAACAAGTTCTGCT 

 

Table 4.8: Steps for cloning screening PCR  

Step Temperature(C) Time Cycle Number 

Heat activation 95 2 mint 1 

Denaturation 95 1 mint  35 

Annealing 58 1 mint  35 

Extension 72 1 mint  35 

End Stage Extension 72 5 min  1 

Cooling 15 ∞ 1 
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4.3.1.6 Site- directed mutagenesis of the ITGA6 minigenes  

 

Site-directed mutagenesis was conducted in order to mutate the PTBP downstream 

binding site using the wildtype ITGA6 minigene. As a template, primers designed in 

order to delete the PTBP binding site are shown (Table 4.12 and 4.13). Site-directed 

mutagenesis was conducted in two PCR reactions (PCR1 and PCR2) in order to create 

two fragments which overlap desired complementary mutations on opposite strands. 

A third reaction PCR3 was then performed using the fragments from PCR1 and PCR2 as 

template in order to create a full-length insert with the mutation. Finally, the fragment 

containing the mutant on both strands was cloned into empty pXJ41 vector. A figure 

4.1 showing principle of  site-directed mutagenesis  

 

A 50μl reaction was performed for each PCR (PCR1, PCR2 and PCR3) using Phusion Kit 

from Thermo Scientific. The PCR master mix and conditions used are shown in tables 

4.9 , 4.10 and 4.11. Amplifications were carried out in SensoQuest thermo cyclers by 

the program shown in (Table 4.3). A QIAquick PCR Purification Kit was used to purify all 

PCR products following the standard manufacturer’s protocol.  
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Figure 4.1:  Schematic diagram to explain mutagenesis procedure using 
overlap PCR. The first step of the reaction created mutants of fragment by 
using specific primers designed with specific mutations in order to produce two 
overlapping DNA fragments with complementary mutations. These were joined 
by overlap PCR and then cloned into the pXJ41 vector.  
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Table 4.9: PCR1  

  Reagent   Volume μl 

5xCG buffer 10.0 

dNPs 1.0 

Pxj41F   2.5 

Mutant Reverse   2.5 

DMSO 1.0 

Template (wildtype minigene, 20ng/μl) 1.0 

Phusion DNA Polymerase 0.5 

H2O 31.5 

     

Table 4.10: PCR2  

Reagent   Volume μl 

5xCG buffer 10.0 

dNPs 1.0 

pXJ 41B  2.5 

Mutant Forward primer  2.5 

DMSO 1.0 

Template (wildtype minigene, 20ng/μl) 1.0 

Phusion DNA Polymerase 0.5 

H2O 31.5 

 

Table 4.11:PCR3 

Reagent   Volume μl 

5xCG buffer 10.0 

dNPs 1.0 

pXJ 41F  2.5 

pXJ 41B 2.5 

DMSO 1.0 

Template 1 – (PCR 1)  1.0 

Template 2 – (PCR 2)  1.0 

Phusion DNA Polymerase 0.5 

H2O 30.5 
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4.3.2 siRNA transfection 

SiRNA transfections in this chapter  were used to knockdown  PTBP1/2 and MBNL1 

proteins in MCF7 and Hela cells. The protocol of siRNA transfection was described 

previously in chapter 2, methods section.  

 

4.3.3 Western blot 

In this chapter Western immunoblotting was used to confirm PTBP expression after 

transfection with the flag epitope. These used mouse monoclonal antibodies against 

flag (F3165) (1:1000 dilution) as followed by Secondary anti-mouse antibody 

(antibodies at 1:1000 dilution). This was performed following the protocol which was 

described in chapter 2, method section.  

 

 

 

Table 4.12: Primers was used for overlapping PCR (mutagenesis) Del PTBPA 

Primer  Sequence 

PXJ41 F GCTCCGGATCGATCCTGAGAACT 

DelPTBPA B CAA GCC TTCCCC ATC ACTTTA TAG CA CCT CAC CAA GAG AAACAC 

AAC ATTTCC 

DelPTBPA F TGC TAT AAA GTG ATG GGG AAG GCT TG 

PXJ41 B GCTGCAATAAACAAGTTCTGCT 

 

Table 4.13: primers was used for overlapping PCR (mutagenesis) Del PTBPB 

Primer  Sequence 

PXJ41 F GCTCCGGATCGATCCTGAGAACT 

DelPTBPB B TCC CTG TTC AGG GTATTT TTT GTA CTA GTAA CTTTGG TAA GGG ATC 

ATC TTC TGA AGT 

DelPTBPB F CTAGTACAA AAA ATA CCCTGA ACAGGG A 

PXJ41 B GCTGCAATAAACAAGTTCTGCT 
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4.3.4 Transfection 

A variety of plasmids including mutant plasmids and wild type were transfected into 

the MCF7 breast cancer cell line. Transfection was performed using Lipofectamine® 

2000 (Thermofisher). The transfection was performed following the manufacturer’s 

instruction. Table 4.14 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

After 24 hours incubation, we checked for transfection efficiency for cell that accepted 

GFP-linked constructs using a fluorescent microscope. Next, cells were washed and 

aliquots pelleted in order to do RNA extractions. 

 

 

 
 
 
 

 Table 4.14: Transfection protocol for ITGA6 minigene: first we mixed (Mix1) and 
(Mix2) together  and incubated for 10-20 min. after that, we spin it for short time 
and then transfected to cell.  

 

Transfection protocol 

Reaction mix 

Components volume Incubation 

time 

Mix 1           Opti-MEM® Medium 80μL 
 

5minutes 

Lipofectamine® 2000reagent 4 μL 

Mix2 Opti-MEM® Medium 80 μL 5minutes 

Plasmid 1 μg 3 μL 

Mix 3 Mix 1 85μL 20 minutes 

Mix 2 83 μL 

Short Centrifugation 

Add 250 μL to each well in 6 well plate  and incubate at 37C overnight 

 

 

 

 

 

 

 

 

 

 



Chapter 4                                     Establishment of a minigene system to study regulation of the 
ITGA6 alternative exon 

90 
 

 

4.4 Results 

4.3.1 ITGA6 alternative exon minigenes respond to splicing control similarly 

to the endogenous ITGA6 alternative exon  

 

Minigene constructs are tools used for the identification of the regulatory factors that 

control splicing and regulate alternative splicing. In the previous chapter, the 

endogenous ITGA6 alternative exon (exon 25) was shown to be regulated by factors 

like MBNL, RFOX, PTB1 and PTB2. I began the work in this chapter with the aim of 

establishing a minigene construct for the ITGA6 alternative exon that could be used to 

investigate regulatory factors.   

Based on preliminary data from (Venables et al., 2013b) the splicing inclusion of the 

ITGA6 exon was enhanced by MBNL1 and RBFOX2; moreover, as (Goel et al., 2014) 

reported, the GU-rich binding site for ESRP protein enhances splicing of the ITGA6 

alternative exon. Given these results, I cloned the alternative exon with the 

surrounding 300 bp upstream and 700 bp flanking downstream intron from genomic 

DNA. The exon and conserved flanking intron sequence was inserted between two 

exons in the pXJ41 plasmid vector to create the minigene construct labelled 

ITGA61.3Kb. This genomic region contains several candidates splicing factor binding 

sites (MBNL1, RBFOX2, ESRPs) that were analysed by Dr Venables (Newcastle 

University; Figure 4.2).  

Subsequently, I transfected the ITGA6 minigene into several cancer cell lines, including 

MDA-MB231, MCF7, and HeLa with plasmid expressing splicing factors in or empty 

vectors as control. RT-PCR was performed using the appropriate primers, which were 

designed to distinguish the minigene transcript from the endogenous one. Each 

transfection was performed in triplicate to observe any changes, and the mRNA 

splicing patterns were analysed using gel electrophoresis. This produced 2 products. 

The upper band included the ITGA6 exon, whereas the lower band represented the 

PCR product without ITGA6 exon 25 (Figure 4.3). This experiment showed that this 

exon is indeed recognised and spliced within the context of the minigene in different 

cell lines with good efficiency compared to the endogenous gene. 
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CTGCAGGAAGAAACTACCCAAAGCTACAATCAGCAATGTATATACGTTTTCCCTATTAGAATGATTTTTGTCCACAAGATTTCTGTTACAAAGA

GAAAAATCAATGAGCTGACTAGTGTCATCCATATAAATATTTGACCAGAGATGTATGGTGAAGGGTGTATTGAATATGACAATGAAACAATG

CAGTGGCTGTTCATTGTTGGTTGACTGAAAGTGGTCTGTTTGTAAACAAGCCACTAGTAGAAGGCAGATTAAAATTTGAGATGTTCTGTTGTT

TGGCTCTTATACACAAAACTGTAAAATTGACTAAATACCTTGCTTCCTTGTAG 

TG    TGGTTTCTTCAAGAGAAATAAGAAAGATCATTATGATGCCACATATCACAAGGCTGAGATCCATGCTCAGCCATCTGATAAAGAGAGGC 
               TTACTTCTGATGCATAGTATTGATCTACTTCTGTAATTG 
 

GTAATTGATCAATGTTTTTTAATTGCTAGCTGTGGGACCCGCTATGGTTGTGGTGGCTAACTTTAAGAACAACAGCTTGCTATGTGTGTCCCAT

TAACAGATGTTTCCAAATGTCCACACTGGCTTGCCTTGCTTGGATTTGTTTTATTTTATTTCACTTGAAAGCTCAGTTTTTGTTTTTTTTAATGCA

CAGTCTTTCGTTGCAGGTGAGTTATTTTATGTTCTTGTTAAATATCTACCACAGCAATGAAGAAAATTTGCAATATTTGTACACACAAAAAGAG

ACTTTTAGCCCTCCATAGTAGCCCAGTTTGCAATGTGTTATTAATTCGGTATGTAGCATTCCACTAGGGAATTCAAAGATGCATAAGAAATCAT

TCTAGATTTCTTGTCCATTTTGGAATTTTCCACAGATAGAAGCTGTGTCGACCGCCTAATTAACCTGTTGCATGTTGGAAATGTTGTGTTTCTCT

TGGTGAGGCTTCCTCACTGTCATCTTTTTGTTCTCTTTGCTATAAAGTGATGGGGAAGGCTTGGAATGCTTTTTACTGTTGCTCAGGAATCGTTT

TATGCTAGCTAAGCATGCAACTTCCATTTCCTGCATGTCTCCTACAGGTCAAAGACCATTACAACAAACTGATTATCAGCATGATGGGCTTTTA

TGGCCAACTTCAGAAGATGATCCCTTACCAAAGTTACCTTCCATCTACAAAATTCTAGTACAAAAAATACCCTGAACAGTTTTTATTGCAATAT

GTTGTGATGGAGTTTGACCATATTTCATGTATCCAGAGATTTTATCCAACCTTGGATCTCAGTTGATTTTAAATTCAAGTTTCTCTTATTTGGAA

ATACATGGAAATAGGAATTGCTAGTGATCCCTTTCACCATTTACGTGGG 

AGCATG         FOX weak site   

TGCATG         FOX   strong site 

TGCT              Strong MBNL site 

TGCC              Medium MBNL site 

CGCC              Weak MBNL site 

TG                    ESRPs site 

 

Figure 4.2: Sequence of the human alternative exon of ITGA6 and surrounding 
intron sequences. The alternative exon is shown in red font. RBFOX binding sites 
are shown in red highlight (strong site) and pink (weak site). MBNL sites (YGCY) are 
highlighted blue (strong site) green (medium) and yellow (weak site).  
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Figure 4.3. Establishment of a minigene system to study regulation of the ITGA6 
alternative exon. To test if the ITGA6 alternative exon is repressed by PTB, I made 
a minigene  construct  for the ITGA6 alternative exon along  with the surrounding 
introns   and transfected this  into  different cancer cell lines. After RT-PCR and gel 
electrophoresis, the lower band represented short mRNA isoform (excluded exon) 
whereas, upper band represented the long isoform (inclusion exon).    
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4.4.1.1 A ITGA61.3Kb is an appropriate minigene to study the regulatory 

factors that control ITGA6 alternative exon 25  

 
The pervious result indicate that the ITGA6 minigene mimics the endogenous ITGA6 

alternative exon. Given these results, I sought to further identify a good minigene that 

would define the response regions that are bound by the splicing factors. 

Subsequently, with help from Dr Venables, a strategy was established to clone 

different sizes of the ITGA6 alternative exon with variable lengths of surrounding 

introns to obtain the ITGA6 minigene that would best facilitate investigation of the 

splicing mechanism. 

  

Based on bioinformatics data from Dr Venables, I decided to clone the ITGA6 

alternative exon with different sizes of surrounding introns, whether upstream or 

downstream of the alternative exon. I cloned a larger minigene containing a greater 

amount of the intronic sequence to determine whether this contained further 

regulatory sequences; in addition, I cloned short minigenes in the hope that they 

would be as useful to allow a more precise definition of the control regions. For the 

longer clone, I amplified the exon with 1500 bp upstream and 2300 bp downstream 

intron from the genomic DNA, and cloned  this into a pXJ41 exon trap plasmid, to 

create the minigene called ITGA64Kb (Figure 4.4). I also cloned ITGA6short, an ITGA6 

alternative exon with deletions removing the expected binding sites for RBFOX and 

MBNL, with 300 bp upstream and 225 bp downstream flanking intron (Figure 4.4).  

 

Following this, the two minigenes ITGA64Kb and ITGA6short were transfected in 

cancer cell lines, including Hela, MDA-MB231 and MCF7. RT-PCR was performed using 

appropriate primers designed on the β globin exons of the pXJ41 plasmid vector to 

discriminate the minigene transcript from the endogenous context. Each transfection 

was performed in triplicate to observe any change in splicing pattern, and the mRNA 

splicing patterns were analysed using gel electrophoresis. The upper band included 

ITGA6 exon), whereas the lower band represented the PCR product without ITGA6 
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exon (Figure 4.5). The ITGA64kb showed variable exon inclusion between the cell lines, 

whereas ITGA6short did not show exon inclusion in any cell lines. Overall the original  

ITGA61.3kb minigene showed the best exon inclusion when compared with the two 

other ITGA6 minigenes, and showed similar patterns of splicing compared to the 

endogenous ITGA6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Chapter 4                                     Establishment of a minigene system to study regulation of the 
ITGA6 alternative exon 

95 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.4: Cloning a series of constructs of different lengths containing 
the ITGA6 alternative exon and surrounding intron sequences. a) A 
sequence of ITGA6 alternative exons (red font) and surrounding intron 
sequences (black font). The yellow line represents ITGA6short region 
cloning. The ITGA61.3Kb cloning region is shown in blue, while the ITGA64kb 
cloning region is shown in red. b) A diagram showing the different cloning 
regions of the ITGA6 alternative exon.  
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Figure 4.5: Analysis of ITGA6 minigene constructs. The agarose gel shows PCR 
products made from of cDNA of HeLa, MDA-MB231 and MCF7 cells transfected 
with ITGA6 4Kb , ITGA6 1.3kb and ITGA6short minigenes. The upper band 
represents the inclusion ITGA6 alternative exon (318 bp), which appears only in 
ITGA61.3kb and ITGA64Kb. The lower band represents the exclusion ITGA6 
alternative exon (vector without insertion) (188 bp). 
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4.4.2 The ITGA6 alternative exon encoded with a minigene response to 

changes in regulation factors similarly to the endogenous ITGA6 alternative 

exon . 

 
The ITGA61.3kb minigene construct showed strong inclusion for the alternative ITGA6 

exon in the MCF7 and MDA-MB-231 cancer cell lines compared to HeLa cells. To 

determine the factors that regulate the ITGA6 alternative exon in endogenous, I used 

the ITGA61.3kb minigene construct. This also had the advantage of being smaller than 

the ITGA64kb minigene insert, so there was less sequence to consider binding sites 

within. 

 

Based on our findings in chapter 3, where it was shown that the ITGA6 alternative exon 

is activated by RBFOX2, MBNL1, ESRPs and repressed by PTBPs, I sought to determine 

whether these potential splicing factors regulate the ITGA61.3Kb minigene in the cell 

lines. The MCF7 cell line, in which ITGA6 can be expressed, was shown to be a good 

model for studying endogenous alternative splicing of ITGA6 since it expresses both of 

the two mRNA isoforms. The MCF7 cell lines also showed successful expression for the 

ITGA6 minigene. Subsequently, the ITGA6 minigene was transfected into MCF7 cells 

the same time as these same cells were co-transfected with PTBP, MBNL1, RBFOX2 

and ESRP siRNAs to knock down these endogenous proteins. RT-PCR was performed 

using the appropriate primers, which were designed to distinguish the minigene 

transcript from the endogenous. In the upper band, the minigene-derived transcripts 

contain the alternative exon, whereas the lower band represented the PCR product 

without exon insertion. Pattern of splicing from the minigene ITGA61.3Kb alternative 

exon shifted clearly from inclusion to more exon exclusion with the knockdown of 

MBNL1, while the knockdowns of ESRPs and RBFOX2 did not show an effect. Similar 

results were obtained for the endogenous mRNA. In addition, siRNA of PTBPs did not 

show a clear effect for either the minigene or endogenous gene. Overall, the 

knockdown of MBNL1 alone showed a clear shift in alternative exons compared to the 

non-siRNA control (Figure 4.6). 
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Based on novel findings presented in the previous chapter, it was predicted that PTBPs 

act as repressors for the endogenous ITGA6 alternative exon. The PTBP knockdown 

removed all inhibition of ITGA6 exon inclusion in MCF7; however, the splicing shift was 

small due to the high baseline level of exon inclusion in the cell line. To observe a 

greater shift, I turned to the HeLa cell line, which exhibits a low level of exon inclusion. 

Since PTBs were shown to clearly inhibit the endogenous ITGA6 alternative exon in the 

HeLa cell line, I sought to determine whether I could also observe the same inhibition 

using the ITGA6 minigene. Thus, I co-transfected the ITGA6 minigene into HeLa cells 

with double knockdown of PTB1 and PTB2. RT-PCR was performed using primers 

designed across the alternative exons for endogenous ITGA6, and to detect mRNAs 

from the minigene respectively. As expected, ITGA6 splicing shifted towards the long 

form with double knockdown of PTB1 and PTB2. Moreover, as anticipated, PTB1 and 

PTB2 shifted splicing to the short form in the ITGA6 minigene (Figure 4.7). 
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Figure 4.6: Effect of knock down of splicing regulation factors on expression of 
the ITGA61.3Kb minigene construct in the MCF7 cell line. a) The endogenous 
ITGA6 alternative splicing patterns after knocking down (PTBP1/2, MBNL1, 
RBFOX2 and ESRP1 in MCF7 cells. The upper band (377 bp) represents the long 
form (with inclusion of the alternative exon), whereas the lower band (249 bp) 
represents exclusion of the alternative exon. b) Agarose gel of RT-PCR using 
minigene primers around the ITGA6 alternative exon. A PCR product (ITGA61.3Kn 
minigene) including the alternative exon is shown in the upper band (inclusion 
exon) and the lower band (exclusion exon).  
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Figure 4.7: The ITGA6 1.3kb minigene construct responds to knock down of 
PBTBP1 and PTBP2 similarly to the endogenous gene.  Agarose gel shows. a) The 
endogenous ITGA6 alternative exon knockdown PTB1 and PTB2. The upper band 
represents the exon inclusion (377 bp), whereas the lower band shows the 
exclusion of the alternative exon (247 bp). b) RT-PCR using minigene primers 
around the alternative ITGA6 exon. The upper band represents exon inclusion 
and the lower band exon skipping. Double knockdown of PTB1 and PTB2 in ITGA6 
causes a shift from the lower band to the upper band for both the minigene and 
endogenous ITGA6. 
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4.4.2.1 Confirmation of PTB as a novel regulator of the ITGA6 alternative 

exon 

 
The ITGA6 1.3kb minigene construct showed a response to two regulatory factors, 

namely MBNL1 and PTBP1, in the MCF7 and HeLa cell lines, respectively. PTBP acted as 

a repressor of the ITGA6 alternative exon, whereas MBNL1 acted as an activator for 

both the minigene and endogenous mRNA. Therefore, these proteins contributed to 

the inclusion or exclusion of ITGA6 exon 25.  

 

The prediction that the knockdowns for these proteins cause inclusion or skipping for 

exon 25 of the ITGA6 minigene was previously considered in this work (4.4.2). In this 

section, complementary experiments on the overexpression of these regulatory 

factors, including PTBP and MBNL1, was carried in the MCF7 cell line out to confirm 

the functional role of these proteins. I performed co-transfection of the ITGA6 

minigene (ITGA61.3Kb) and expression vectors encoding PTBPs (PTBP1, PTBP2) and 

MBNL1 in triplicate in a breast cancer cell line. RT-PCR was performed by using specific 

primers across flanking exons for the minigene. The upper band includes the ITGA6 

exon, whereas the lower band represented the PCR product without ITGA6 exon. 

Multicapillary QIAxcel electrophoresis was used to calculate the concentration ratio 

between the two forms of ITGA6 splicing. The percentages of alternative splicing 

patterns were calculated and plotted on a graph. 

 

The overexpression of PTBP1 co-transfected with the ITGA6 minigene (ITGA61.3Kb)  

showed a significant decrease in per cent splicing in (PSI) of the ITGA6 minigene exon 

25 from 14 to 4%, compared with the ITGA61.3Kb minigene alone (Figure 4.8 ). The 

overexpression of PTBP2 co-transfected with the ITGA6 minigene did not show a 

change. As expected, overexpression of MBNL1 with the ITGA61.3Kb minigene showed 

a significant increase in PSI for the ITGA6 minigene alternative exon, changing from 14 

to 30% inclusion, compared with the minigene alone. Overall, these results confirm 

that the ITGA6 minigene is activated by MBNL1 and inhibited by PTBP1.    
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Figure 4.8:  Overexpression of splicing regulation factors with ITGA61.3Kb 
minigene construct in the MCF7 cell line.  Bar chart shows the percentage splicing 
inclusion (PSI) of the ITGA6 minigene with overexpression constructs encoding 
PTBs & MBNL (blue) compared with ITGA6 wild type GFP (red). MBNL has higher 
PSI compared to GFP, whereas PTBP1 has less. Data represents the mean of three 
biological replicates in each case. Statistical significance was calculated using an 
independent two-sample t-test, where *p<0.05, **p<0.01, ***p<0.0001.  
Capillary gel electrophoresis shows MBNL drives more inclusion (‘a’ form) 
whereas PTB1 represses the ‘a’ exon, comparing with coexpression of GFP. 
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4.4.3 Effects of PTBP overexpression/KD in different cell lines on splicing 

pattern from the minigene  

 
In previous experiments, I investigated the splicing regulators for the ITGA6 alternative 

exon in cancer cell lines. MBNL1, RBFOX2, ESRPs and PTBPs regulated the ITGA6 

alternative exon. Following on from that work, MBNL1 and PTBPs were shown to 

regulate the splicing of both the minigene-encoded and endogenous ITGA6. Since 

PTBPs represent novel, not previously reported regulators for the ITGA6 alternative 

exon, I sought to investigate alternative splicing regulation in more detail  and identify 

the binding sites of the PTBP regulatory factor.    

 

To test the hypothesis that an RNA binding site for PTBP proteins caused skipping of 

the exon, it was important to find a good cell line for more investigation. Experiments 

on silencing and overexpression of PTBP proteins were conducted on cancer cell lines 

to identify the binding sites for PTBPs. In the MCF7, MDA-MB237 and HeLa cell lines, I 

performed co-transfection of the ITGA6 minigene (ITGA61.3Kb) and expression vectors 

encoding PTBPs (PTBP1, PTBP2); at the same time, the ITGA6 minigene was co-

transfected with PTBP siRNAs to knockdown protein. Following this, RT-PCR was 

performed using specific primers across the flanking exons. Different patterns between 

two RT-PCR bands were observed using multicapillary QIAxcel gel. The percentages of 

the alternative splicing patterns were calculated and plotted on a graph (The method 

of calculation is described in the method results 3.3.3).     

 

By observing the knockdown and overexpression of PTB proteins, it was found that the 

ITGA6 minigene showed a significant increase in included exon after knockdown of 

PTBPs and a significant decrease in the alternative exon with overexpressed PTBPs 

compared with the ITGA6 minigene alone in the MCF7 cell line (Figure 4.9a). In the 

HeLa cell line, inclusion the alternative exon of the ITGA6 minigene was significantly 

decreased with overexpression of PTPBs, compared with the ITGA6 minigene alone. 

However, knockdown of PTBPs with the ITGA6 minigene did not show significant 
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difference for the alternative exon compared with the ITGA6 minigene transfected 

alone (Figure 4.9b). As expected, in MDA-MB-231 cells the alternative exon of the 

ITGA6 minigene was significantly decreased with the overexpression of PTBPs, whereas 

it showed no change with knockdown PTBPs compare with the ITGA6 minigene 

alone(Figure 4.9c). Hence, overall, MCF7 was the only cell line that showed a 

significant alternative exon of ITGA6 with overexpression and silencing of the PTBP 

regulatory factor 
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4.4.4 The downstream binding site for PTB represses splicing of the ‘a’ exon 

through RNA protein interactions 

 
Since the alternative exon of the ITGA6 minigene successfully exhibited a significant 

response to knockdown and overexpression of PTBPs in the MCF7 breast cancer cell 

line, I decided to investigate whether PTBP proteins could bind directly to ITGA6. To 

investigate the binding site, it was important first to identify candidate binding sites 

using bioinformatics. It has been reported in several studies that PTBPs binding 

upstream or within the alternative exon act as a splicing repressor (Amir-Ahmady et 

al., 2005). However, an analysis of PTBP binding sites at the ITGA6 alternative exon 

using a CLIP experiment, which was performed by Dr C.W. Smith (Cambridge 

University), identified two candidate binding sites for PTBPs downstream of the ITGA6 

alternative exon (Figure 4.10 a).     

 

To investigate whether these putative binding sites for PTB were required for splicing 

repression of the ITGA6 alternative exon, PTBP candidate binding sites 

(CTTCCTCACTGTCATCTTTTTGTTCTCTT and TCCATCTACAAAATT) were mutated within 

the wildtype ITGA6 minigene. To do this, I used overlapping PCR with specific primers 

to delete the first PTBP binding site (Del PTBPA). For deletion of the second PTBP 

binding site (Del PTBPB), I used gblock to synthesise the sequence after the PTBP 

binding site (TCCATCTACAAAATT) and directly overlap it with the upstream product. 

Overlapping PCR and gblock cloning are explained in the methodology section.  

 

After generating minigenes with deletions for the PTBP binding sites, each minigene 

was transfected into the MCF7 breast cancer cell line. After 48 hours, the cells were 

harvested and the RNA was reverse transcribed. Following this, RT-PCR was performed 

using specific primers across the flanking exon. Splicing patterns were observed by gel 

electrophoreses, and the concentration of inclusion of the ITGA6 minigene alternative 

exon was calculated using a multicapillary QIAxcel gel electrophoresis device. The 

concentration of inclusion was calculated and presented as a graph (Figure 4.10b).    
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The results of the mutant minigene transfection are shown in Figure 10b. 

Unexpectedly, mutants removing the downstream binding site for PTBPs, whether Del 

PTBPA or Del PTBPB, showed less inclusion for the alternative exon from minigene 

compared with wildtype ITGA61.3kb. In other words, there was a small reduction in 

splicing activation by PTBPs in mutants A and B. This means that although PTB overall 

expression represses the alternative exon of ITGA6, these actual binding sites activate 

alternative exon as well . 
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Figure 4.10: effect of mutating the PTB binding sites downstream of the ITGA6 
exon.  a) Sequence of the human alternative exon of ITGA6 and surrounding 
intron sequences with deletion for candidate PTB sites ( Del A & Del B) in 
downstream intron.  b) Bar chart shows the PSI level of the ITGA6 minigene with 
del A (red)  &del B (pink) giving  less inclusion  for  the alternative  exon compared 
with  wild type ITGA61.3 GFP (green). This means that even though PTB 
expression represses exon ‘a’ ( exon 25), these binding sites are activating. 
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4.4.4.1 PTBP may function in ITGA6 splicing by sequestering other splicing 

regulators 

 

PTBPs usually controls alternative splicing based on its binding site location. While 

PTBPs act as a repressor when binding upstream or within the exon, they function to 

activate splicing from downstream binding sites (Amir Ahmed et al., 2005)(Boutz et al., 

2007, Llorian et al., 2010, Xue et al., 2009) . Since deletion of PTB binding sites 

downstream of the ITGA61.3kb alternative exon showed the opposite response (less 

inclusion for alternative exon), we predict that these sites normally activate the ITGA6 

exon, but that protein interactions of PTB may act to repress the ITGA6 alternative 

exon by impacting other splicing regulators. 

 

PTBPs have four RNA recognitions motifs (RRMs), which recognise pyrimidine-rich 

RNAs and allow splicing regulation. It has been reported that all PTBP RRMs can 

specifically recognise a CUCUCU ligand based on the NMR structure (Mickleburgh et al., 

2014). RRM1 and RRM3 recognise the motif YCU, whereas RRM2 recognises core CU. 

RRM4 is the least specific motif, with recognition of 5-YC-3 (Mickleburgh et al., 2014). 

PTBs can also bind to other splicing regulators and perhaps inhibit their function 

(Figure 4.11).  
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To find out what part of PTB protein is responsible for responsible for repressing the 

ITGA6 exon, PTBPs with several mutant motifs, including RRM1, RRM2, RRM3 and 

RRM4, were generously provided by Dr C.W.J. Smith. All constructs were cloned within 

the MluI/AvrII sites of the FLAG-NLS-MS2-ABM vector, which originates from the 

pCINeo and contains a FLAG tag in the 5’ end of the gene and a NLS signal at the 3’ end. 

The ITGA61.3kb minigene alternative exon, which was previously shown to be 

inhibited by PTBPs, was co transfected with expression vectors encoding PTBPs in the 

MCF7 breast cancer cell line (figure 4.12a). These expression vectors encoded different 

RRM mutants in the following order: WT; mutant 1, 2, mutant3, 4; mutant 1, 2, 3, 4; 

RRM12L (N-term half); and RRM34 (C-term half).  The transfection approach is 

explained in the methods section.  

 

Figure 4.11: PTB protein structure. a) Schematic illustration of PTB RNA binding 
sites including RRMA1 (red) RRM2 (grey) RRM3 (yellow) and RRM4 (green). Each 
RRM motif has different binding affinity for pyrimidine-rich sequences on 
mRNA. b) Model of the interaction PTB four motifs with RNA.  Image adapted 
from(Sawicka et al., 2008b) 
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It was Important to confirm that at the protein level, PTBS RRM1,2, RRM3,4 and 

RRM1234 were generated with Flag. To accomplish this, western immunoblotting was 

performed using mouse monoclonal antibody against Flag and rabbit monoclonal 

against Actin as the control. On western blotting, the expression of the flag protein 

was only detected and corresponded to the expected size of 55 kDa in the WT. 

However, the RRM mutants (RRM1,2 RRM3,4 and RRM1234) did not show any bands 

(Figure 4.12b).    

.   
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Figur4.12: Effect of different RRM mutation upon to PTB inhibitor a) schematic 
illustrate  mutant  site at 4 domain PTB binding sites, and table shows the location 
of the mutant. b) ITGA6 minigene with different PTB motifs bind mutant was 
confirmed in MCF7 cell lines. PTB with different mutants has not expressed their 
compared with the wild type WT control.) Western blotting for PTBP different 
mutant expression with flag. It does not show any expression compare with WT.  
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4.5 Discussion  
 
In this chapter, I explained the design, assembly and validation of the ITGA6 minigene 

to study the mechanism of ITGA6 alternative splicing and its use to identify a binding 

site for the splicing regulator PTBP. The use of a minigene assay provided the flexibility 

to identify information about the protein-RNA interaction via mutating and rearranging 

the gene sequence. Many studies have used minigene assays for splicing, such as 

(Steffensen et al., 2014) for the BRCA1 gene,  (Ulzi et al., 2014) for the CLCN1 gene and  

(Grellscheid et al., 2011)  for Tra2β target HIPK3. 

 

This chapter’s first aim was to establish an ITGA6 minigene that mimics the 

endogenous ITGA6 alternative exon. To test this aim, the minigene was created using a 

genomic DNA fragment including the ITGA6 alternative exon and surrounding intron, 

which included cloning RNA-binding proteins’ candidate sites. This construct 

transfected into standard cancer cell lines like MCF7, MDA-MB237 and HeLa cells. In 

vitro expression and alternative splicing of minigene mRNA transcripts were confirmed 

and found to have a similar splicing pattern to the endogenous gene. This provides 

strong evidence that the ITGA6 minigene represents a good model for a splicing study, 

due to showing roughly the same percentage of ITGA6 alternative exon inclusion as 

the endogenous gene after transfection into three different cancer cell lines. 

 

Therefore, to get a good minigene to investigate the ITGA6 alternative exon, I made 

two additional ITGA6 minigene constructs with variable intronic lengths (ITGA64K.B 

and ITGA6 short). These two minigenes were transfected to standard cancer cell lines 

as well as to the original ITGA6 minigene (called ITGA61.3KB). ITGA61.3K.B was still the 

best model in the three cancer cell lines due to the consistency and high efficiency of 

minigene expression in multiple independent transfections of the exon inclusion 

expression compared with the ITGA64Kb and the ITGA6 short construct. ITGA64k.b 

expression was not consistent in all cell lines, and this might be due to the intron 

length, which is 1413 nucleotides upstream and 1081 nucleotides downstream. The 

Houston Departments of Pathology and Molecular and Cellular Biology (2005) reported 

that the primary elements for regulating alternative splicing are typically within 200–
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300 nucleotides upstream and/or downstream of the regulated exon. Furthermore, 

ITGA6 short did not show any exon inclusion. This could be due to the short length of 

downstream alternative exon, which is 198 nucleotides. 

 

This chapter’s second aim was to investigate factors that regulate the ITGA6 

alternative exon. MBNL1, RBFOX2 and ESRPs activated the endogenous ITGA6 

alternative exon, whereas PTBP was a repressor for ITGA6 alternative exon. Therefore, 

I performed a co-transfection siRNA knockdown for PTBP, MBNL1, RBFOX2 and ESRP 

regulation factors with the ITGA6 minigene in MCF7 and HeLa cell lines. MBNL1 and 

PTBP regulated the ITGA6 minigene alternative exon just like the endogenous one. 

MBNL1 activated ITGA6 minigene alternative exon, whereas PTBP repressed the ITGA6 

minigene alternative exon. This result was confirmed by transfected ITGA6 minigene 

with overexpression constructs for PTBs and MBNL in MCF7. This demonstrated that 

MBNL drives more inclusion exon 25  (‘a’ form), whereas PTBP2 represses the  exon25 

when compared with the co-expression of GFP.  

 

These results showed that ITGA61.3kb minigene is a potential paradigm for the 

concept of combinatorial control of alternative splicing (Smith & Valcarcel, 2000). The 

MBNL protein has a high affinity in binding to YGCY sites (TGCT Strong MBNL site, TGCC 

Medium MBNL site, CGCC Medium MBNL site). The alternative exon of ITGA6 minigene 

was activated by MBNL1, consistent with MBNL1 being bound downstream of the 

alternative exon. The study supports MBNL1 acting as an activator when it is bound 

downstream of the alternative exon. (Figure 4.13 suggestions the possible binding site 

for MBNL1 in ITGA6 ) 
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However, PTBPs were also confirmed as novel regulators (repressors) of the ITGA6 

alternative exon after their overexpression. Since PTBP is a novel regulator for ITGA6, I 

used the end of this chapter to investigate PTBP binding and how it can regulate the 

ITGA6 alternative exon. PTB overexpression and knockdown was combined with ITGA6 

minigene co-transfection into three standard cancer cell lines, including MCF7, MDA-

MB231 and HeLa cell lines. Of these, the MCF7 breast cancer cell line was the best cell 

line for studying PTBP regulation for the ITGA6 minigene due to the high-quality 

response to both PTBP overexpression and depletion. In other words, MCF7 cell lines 

were the only cell lines that responded to both PTBP overexpression and depletion.  

 

 

Figure 4.13. Illustration of the possible binding site for MBNL1 in ITGA6. The 
sequence represents the ITGA6 alternative exon (in red) with surrounding introns. 
MBNL1 candidate bind sites are in yellow, blue and green boxes. The diagram 
underneath represents where MBNL1 binds in order to activate ITGA6 alternative 
exon. 

CTGCAGGAAGAAACTACCCAAAGCTACAATCAGCAATGTATATACGTTTTCCCTATTAGAATGATTTTTGTCCACA

AGATTTCTGTTACAAAGAGAAAAATCAATGAGCTGACTAGTGTCATCCATATAAATATTTGACCAGAGATGTATGG

TGAAGGGTGTATTGAATATGACAATGAAACAATGCAGTGGCTGTTCATTGTTGGTTGACTGAAAGTGGTCTGTTTG

TAAACAAGCCACTAGTAGAAGGCAGATTAAAATTTGAGATGTTCTGTTGTTTGGCTCTTATACACAAAACTGTAAA

ATTGACTAAATACCTTGCTTCCTTGTAG 
 

      TGTGGTTTCTTCAAGAGAAATAAGAAAGATCATTATGATGCCACATATCACAAGGCTGAGATCCATGCTCAGCCATCTGATAAAGAGAGGC 
               TTACTTCTGATGCATAGTATTGATCTACTTCTGTAATTG 
 

GTAATTGATCAATGTTTTTTAATTGCTAGCTGTGGGACCCGCTATGGTTGTGGTGGCTAACTTTAAGAACAACAGC

TTGCTATGTGTGTCCCATTAACAGATGTTTCCAAATGTCCACACTGGCTTGCCTTGCTTGGATTTGTTTTATTTTATT

TCACTTGAAAGCTCAGTTTTTGTTTTTTTTAATGCACAGTCTTTCGTTGCAGGTGAGTTATTTTATGTTCTTGTTAAA
TATCTACCACAGCAATGAAGAAAATTTGCAATATTTGTACACACAAAAAGAGACTTTTAGCCCTCCATAGTAGCCC

AGTTTGCAATGTGTTATTAATTCGGTATGTAGCATTCCACTAGGGAATTCAAAGATGCATAAGAAATCATTCTAGA

TTTCTTGTCCATTTTGGAATTTTCCACAGATAGAAGCTGTGTCGACCGCCTAATTAACCTGTTGCATGTTGGAAATG
TTGTGTTTCTCTTGGTGAGGCTTCCTCACTGTCATCTTTTTGTTCTCTTTGCTATAAAGTGATGGGGAAGGCTTGGA

ATGCTTTTTACTGTTGCTCAGGAATCGTTTTATGCTAGCTAAGCATGCAACTTCCATTTCCTGCATGTCTCCTACAG

GTCAAAGACCATTACAACAAACTGATTATCAGCATGATGGGCTTTTATGGCCAACTTCAGAAGATGATCCCTTACC

AAAGTTACCTTCCATCTACAAAATTCTAGTACAAAAAATACCCTGAACAG 

ITGA6  
25

MBNL1

downstreamupstream

YCGY 
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This might be due to the high expression of PTBP in MCF7. Thus, MCF7 was shown to 

be a good cell line for studying splicing in minigenes.  

 

PTBP is well characterised as a splicing suppressor for alternative exons, particularly in 

muscles and neuron tissues in which PTB is high. The same studies also reported that 

PTB acts as a repressor (Smith & Valcarcel, 2000) for exon 3 of the ITM gene. Other 

studies (Smith & Valcarcel, 2000) showed that PTB represses alternative exons in 

different genes. PTB usually binds at pyrimidine-rich motifs, such as UCUU or CUCUCU, 

in the RNA at upstream (near to the 3’ splice site) alternative exon in brain and neuro 

tissues. To test and identify the PTB-binding sites, we used CLIP-seq results that 

identified the direct RNA targets for PTB-binding sites in ITGA6 minigene sequences 

from our collaboration with Dr Smith’s lab at Cambridge University. They had shown 

that PTB candidate-binding sites were in downstream alternative exon from ITGA6, 

with the intronic regions near the 5’ splice site (Figure4.15). Also downstream of the 

alternative exon are PTB consensus binding sites. However, according to current rules, 

these would be predicted to activate the 25 alternative exon, not repress it. To test 

whether these downstream sites could repress 25 exon, we mutated them by deleting 

downstream PTBP candidate sites (Del A & Del B) from an ITGA6 minigene and 

transfected it into MCF7 cells. The ITGA6 alternative exon had less inclusion than with 

the wild-type minigene.  

 

From our siRNA and over-expression data for PTBP proteins, we expected to see more 

inclusion for the alternative exon after binding site mutation; however, with mutated 

PTB-binding sites, we saw less inclusion for the alternative exon. This means that even 

though PTB expression represses the alternative exon overall, these downstream 

binding sites are activating.  

 

Several different mechanisms have been proposed for how PTB represses splicing, 

including PTB interaction with other regulatory proteins. We hypothesise that PTB 

might interact with other proteins to repress the ITGA6 alternative exon, and 

specifically to titrate away splicing activator proteins needed for this activation. This 

would be due therefore to protein-protein interactions, not protein-RNA interactions.  
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PTB binds to RNA on four RNA-recognition motifs, which recognise pyrimidine-rich 

RNAs. To determine what part of PTB proteins was responsible for repressing ITGA6 

exon, we transfected PTB with a mutant in different RRM (RRM1.RRM2, RRM3 and 

RRM4, which were generated and provided by Dr C. W. Smith) in MCF7 cancer cell 

lines. However the confirmation test for those mutations in protein levels did not show 

expression. 

 

Taken as a whole, these results indicate that PTB might interact with other regulatory 

proteins to repress the ITGA6 alterative exon. Other studies have shown that PTBP can 

repress alternative exon splicing via interaction with other regulatory factors, including 

Nova-1 and Nova-2 (Polydorides et al., 2000), Raver1 (Gromak et al., 2003) and MRG15 

(Luco et al., 2010). PTB-binding sites are located downstream of the ITGA6 alternative 

exon within a cluster of binding sites for other proteins, including MBNL1, RBFOX and 

ESRPs. As a result, PTB might also follow the mechanism that suggests MBNL1 and PTB 

cooperate to repress alternative exon during splicing. (Gooding et al., 2013) conducted 

a study that showed MBNL1 interacts with PTB to repress the splicing of TPM1 exon 3. 

Combining our findings with those of other studies, such as (Gooding et al., 2013), we 

predict that PTB might interact with other regulatory proteins, likely MBNL1 or RBFOX, 

to repress the ITGA6 alternative exon as a complex (Figure 4.14). 
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Figure 4.14 Schematic to illustrate the how splicing regulator proteins and 
their binding sites regulate the ITGA6 exon. The ITGA6 alternative exon  is in 
black, and the diagram shows the binding sites and protein interactions, and 
how might they regulate ITGA6 alternative exon. In this model, PTBP inhibits 
the function of MBLN. 
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To summarise, this chapter established the gold model of an ITGA6 minigene, which 

allowed us to investigate how the ITGA6 alternative exon can be regulated. MBNL1 

and PTB were the factors that regulated ITGA6 alternative exon both endogenously 

and in the minigene. Furthermore, PTB, which is a novel regulatory factor for the 

ITGA6 alternative exon, was identified to bind downstream of the alternative exon and 

yet to repress the alternative exon. By deleting the candidate-binding sites, PTB was 

shown to activate the alternative exon through these downstream sites. The exact 

mechanism through which PTB can repress ITGA6 alternative exon was not identified; 

however, several hypotheses exist for how PTB can regulate alternative splicing, 

including through binding to specific individual binding sites to control exon inclusion, 

or through the indirect repression via interaction with other regulatory proteins, of 

which our data would support the latter model. We predict that PTB interacts with 

other regulatory proteins, whether MBNL1 or RBFOX2, to indirectly regulate ITGA6 

alternative exon, as well as through direct binding to the downstream binding sites. 
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Chapter 5  General discussion and conclusion 

 

Alternative splicing is now widely considered an important mechanism for controlling gene 

expression in the eukaryotic cells.  During cell differentiation, gene expression can be 

changed in different ways, including alternative splicing.  Recently, abnormal alternative 

splicing has been reported to play a major role in causing some serious conditions, including 

cancer, infertility, muscular and neurological disease.  Alternative splicing occurs via 

regulatory proteins, each of which has a specific mechanism.  In this thesis, I have focused 

on studying alternative splicing mechanisms in depth.   

 

To enable investigation of fundamentally important alternative splicing mechanisms, it is 

important to find a gene which has an important function in development and has been 

conserved across many species during evolution.  I started my project by using data from 

(Venables et al., 2013b), who discovered alternative splicing events conserved across the 

evolutionary tree for 10 genes, including PLOD2, CLSTN1, ATP2A1, PALM, KIF13A, FMNL3, 

PPIP5K1, MARK2, FNIP1 and ITGA6, which are all important in stem cell biology.  As these 

alternative splicing events have been conserved, they are likely to be extremely important in 

the cell differentiation and body plan development of all vertebrates, including humans; 

thus, these events probably also have medical significance.  I investigated the above genes 

in early zebrafish development to find alternative splicing events with regulation 

mechanisms that have been conserved between fish and humans.  I found that zebrafish 

integrin α6 (ITGA6) and kinesin family member 13A (KIF13A) had alternative splicing 

mechanisms that differed between the head and tail after fertilization of the egg.  However, 

in my research, ITGA6 was the only gene which changed its splicing pattern during the 

course of embryonic development.  This result suggested that ITGA6 was an appropriate 

gene on which to focus the majority of my study of alternative splicing mechanisms.  
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ITGA6 belongs to the integrin family, which is a group of dimeric cell surface proteins that 

are each composed of an alpha and a beta chain.  Due to ancient gene duplication, ITGA6 

has three mammalian paralogues, including ITGA3 and ITGA7.  I found that ITGA6 has five 

paralogues in zebrafish.  The presences of two alternative C-terminals isoforms of ITGA6 are 

conserved among all vertebrate, even in zebrafish.  Five paralogues of ITGA6 were seen in 

the zebrafish head and tail during development after fertilization; only ITGA6A and ITGA6B 

showed similar alternative splicing patterns, suggesting that they may have similar functions.   

 

ITGA6 splicing patterns in human cancer cell lines were determined to see if they were 

similar to the different splicing profiles observed in zebrafish and stem cell development. 

These studies indicated important differences in splicing profiles between HeLa, MCF7 and 

MDA-MB-231 cells. These might be important. Some studies have reported that ITGA6A and 

ITGA6B have the same function in mouse embryogenesis.  However, there is evidence that 

the ITGA6 A and B isoforms have different functions in cancer stem cells.  In cancer, ITGA6 

may be necessary for the tumorigenicity of a stem cell–like population within the MCF-7 cell 

line (Cariati et al., 2008), and ITGA6 may also regulate glioblastoma stem cell differentiation 

(Lathia et al. 2010).  High ITGA6 expression is a biomarker in breast cancer cells.  

 

Alternative splicing mechanisms of ITGA6 within cancer cell lines was also studied to 

understand how they are regulated.  Alternative splicing of ITGA6 creates two different 

cytoplasmic C-termini in fibroblasts and stem cells (Cooper et al., 1991, Tamura et al., 1991).  

It has already been shown that ITGA6 exon 25 is under the control of three separate splicing 

factors.  In two parallel studies of alternative splicing during stem cell differentiation, Ben 

Blencowe’s laboratory showed that the knockdown of the splicing regulatory factor MBNL1 

increases the efficiency of stem cell differentiation (Han et al., 2013), and Venables et al. 

showed that the MBNL1 and RBFOX2 splicing regulatory factors enhance the inclusion of the 

ITGA6 exon 25 in fibroblasts (Venables et al., 2013) . A recent study showed that the 

epithelial splicing regulatory protein (ESRP) enhances the inclusion of this exon as well (Goel 

et al., 2014).  
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We aimed to examine these regulation factors and try to identify others using cancer cell 

lines.  We confirmed that the MBNL1, RBFOX2 and ESRP regulatory factors activate the 

inclusion of the alternative exon 25 of ITGA6 in breast and cervical cancer cell lines. 

Normally, the splicing activities of these factors are controlled according to their binding 

sites (Dredge et al., 2005; Zhang et al., 2008a; Goers et al., 2010; Llorian et al., 2010).  

MBNL1, RBFOX and ESRP enhance exon inclusion when they bind downstream of the exon 

but inhibit it when they bind upstream.  ITGA6a is involved in the proliferation of colon 

cancer cells, and ITGA6b is involved in cancer stem cell function by means of a feedback 

loop involving VEGF.  If ITGA6 is repressed by the ESRP factor, it might also be repressed by 

MBNL1, RBFOX or PTBP, which could affect VEGF signalling.  

 

After confirming the activating effects of the above splicing factors in cancer cell lines, we 

hoped to identify a novel regulation factor that represses the ITGA6 alternative exon 25. We 

identified PTB as a novel regulator of this splicing event.  Polypyrimidine tract-binding 

protein (PTBP) is known to be a repressive splicing factor.  Experiments involving the siRNA 

knockdown of PTBP in breast cancer cell lines strongly reduced the skipping of exon 25 from 

ITGA6, indicating that PTBP is inhibitory.  This is in direct contrast to ITGA6 alternative exon 

25 being activated by MBNL1, RBFOX and ESRP.   

 

It was important to understand how these RNA splicing regulators regulate alternative 

splicing of ITGA6.  Consequently, we aimed to identify the PTBP binding site and examine 

how it can regulate the inclusion of the ITGA6 alternative exon 25.  PTBP usually binds at 

pyrimidine-rich motifs in the RNA, such as UCUU or CUCUCU, and binds upstream of the 

alternative exon (near the 3’ splice site) to act as a repressor.  The hypothesis was that if 

PTBP binds downstream, it may still function as a repressor of the ITGA6 alternative exon 25, 

perhaps by interacting with other regulatory factors.  To test this hypothesis, I established a 

minigene for the ITGA6 alternative exon 25 with introns surrounding it upstream and 

downstream.  This 1.3-kb ITGA6 minigene behaved as if it were endogenous in terms of 

splicing control, showing inhibition by PTBP and activation by MBNL1.  Two candidate 

binding sites for PTBP were identified, both downstream. However, mutagenesis of these 
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PTBP candidate binding sites reduced the inclusion of the ITGA6 alternative exon 25. This 

means that PTBP is actually activating this exon through direct RNA binding, even though it 

has an overall repressive effect.  Studies have shown that PTBP can repress alternative exon 

splicing via interaction with other regulatory factors, including RAVER1 (Gromak et al., 2003), 

MRG15 (Luco et al., 2010) and NOVA1 and NOVA2 (Polydorides et al., 2000). PTB might thus 

be indirectly repressing splicing of the ITGA6 exon through protein-protein interactions, 

possibly with MBLN or RBFOX, to inhibit the splicing activity of these proteins. 

 

Given the finding that the PTBP binding sites are located downstream of the ITGA6 

alternative exon 25 within a cluster of binding sites for other proteins, including MBNL1, 

RBFOX, ESRP and PTB suggested in two hypotheses. One hypothesis is that PTB   binding 

downstream of the alternative exon can repress alternative exon splicing via direct binding 

to RNA. This was proven not to be the case. In fact, PTB binding downstream of the 

regulated exon seemed to weakly enhance this exon, similarly to other examples of PTB 

splicing regulation. The alternative hypothesis was that PTB might repress ITGA6 splicing 

through indirect interactions. In this case and we suggest PTB interacts with regulatory 

proteins such as MBNL1 that normally activate the inclusion of the alternative exon 25, and 

this interaction prevents MBLN from functioning properly (Figure 5.1). Supporting this 

hypothesis, MBNL1 protein interactions with PTBP have been reported (Gooding et al., 

2013).   
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To conclude, the research has demonstrated the principle of combinatorial regulation of alternative 

splicing in ITGA6. We found that the ITGA6 alternative splicing mechanism is conserved across 

evolutionary history.  I confirmed that the ITGA6 alternative exon 25 is activated by RBFOX, MBNL1 

and ESRP in cancer cell lines as well as stem cells and fibroblasts.  PTBP was identified as a novel 

regulatory factor for ITGA6 and also found the sequence in ITGA6 through which the repression of 

alternative splicing by PTBP occurs.  I also developed a hypothesis for how ITGA6 may be regulated 

by PTBP and MBNL1 in cancer cell lines. The findings regarding PTBP regulation of alternative splicing 

by interacting with other proteins will prove an exciting basis for further research.   

 

 

 

 Figure 5.1 Schematic illustrate the two hypotheses of how ITGA6 alterntive exon  25 
regulated . a)  Possible mechanism for splicing regulation factors to control the ITGA6 
exon (blue box). In this model, PTB ( bright violet) interact with MBNL ( green)  and 
prevents MBLN from activating the alternative exon. b) A further possibility is that PTB   
binding downstream of the alternative exon could repress its splicing via direct binding 
to RNA. 
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