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Abstract

Ageing and disease can be understood in terms of a loss in biological homeostasis. This
wil often manifest as a constitutive elevation in the basal levels of biological entities.
Examples include chronic inlammation, hormonal imbalances and oxidative stress. The
abilty of reactive oxygen species (ROS) to cause molecular damage has meant that
chronic oxidave stress has been mostly studied from the point of view of being a
source of toxicity to the cell. However, the known dualty of ROS molecules as both
damaging agents and cellular redox signals implies another perspective in the study of
sustained oxidate stress. This is a perspective of studying oxidative stress as a
constitutive signal within the cell. In this work a computational modeling approach is
undertaken to examine how chronic oxidative stress can interfere with signal processing
by redox sigalling pathways in the cell. A primary outcome of this study is that
constitutive signals can give rise to a
gradual loss of biological function. Experimental results obtained highlight the

difficulties in testing for this effect in cell lines exposed to oxidative stress. However,
further analysis suggests this phenomenon is likely to occur in different signalling
pathways exposed to persistent signals and potentially at different levels of biological
organisation.
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Chapter 1

Introduction

1.1 Biogerontology: What is biological ageing?

Wh a't is ageing? A widely accepted definit

place in most living organisms is

dhe progressive loss of function accompanied dgrehsing fertility and increasing

mortality with advancing ag€Kirkwood and Austad, 2000

This definition relects the state of knowledge in the field that aims to elucidate the
underlying molecular causes of ageing, that is, the field of biogerontology. This
definition reflects the current state of the field of biogerontology in both what the
definition says andvhat it does not say. As stated in the definition, ageing occurs over
time and is therefore a process. Although this remark may seem trivial, it does imply a
few features worth of note. Namely the fact that there is a time window to observe and
probe thephenomenon and secondly, the fact that the phenomenon involves changes
which are recognisable from a reference point. Related to this is the fact that ageing is
currently understood as a continuous process. As implicitly stated by the word
progressivan the definition, the fact that ageing is viewed as a continuous process

means there is no defined boundary at which an organism starts to age.

Within this setting, the definition talks aboutogs of functionThis is the very core of

the defintion andhe understanding of the ageing process. The abstract nature of this
phrase reflects the scope that is necessary to encompass the diverse observations that
have been made on the ageing process. This is ilustrated by the lack eftagdad

ageing biorarker (Martin-Ruiz et al., 2011Burkle et al., 201p The lack of

specification regarding whdtinctionentails is a reflection of first of all the generality

of the process. Secondly, this phrase states consequence, where the effect of the ageing
process is an interference with the end purpose of a given biological system. Whatever a
biological system has elved to do to, it is somewhat less able to do it as the ageing
process progresses. The effects of ageing could thus be viewed as a general dissipation

of evolutionary strategies that ensure organism survival.
1



In an attempt to further contextualise tbes of functiorstatement, two robust
observations of the ageing process are more specifically defined. Thededseased
fertility andincreased mortalityNote that the incorporation of these two specifications
in the definition aims to make the ageipgocess measurable and quantifiable more than
attempting to distinguish the ageing process from diseases and pathologies. It is the
generality of the definition of ageing what makes this process distinguishable from
diseases which may also increase moytadir decrease fertilty with age. Indeed,
diseases are distinguishable processes because they involve the lepsaifi@sebdf

functions. All humans wil age, but not all humans wil develop a particular disease.

The last two important points tomaker e on t he wscempanied tded wor ds 0
@dvancing. The for mer i mplies uncertainty regardi
recurrent observations of loss of fertiity and increased mortality and furthermore the

relative timing of such events. ift well established that the ageing process is highly

heterogeneous in, firstly, the specific functional losses that may be observed and

secondly, the timing at which such dysfunctionalities may o@¢tkwood, 2005

Passos et al., 200Bartridge, 2010Burkle et al., 201% The use of the word

@dvancing foll ows from t he af-dependaecy dfthe ned princip
process. However, t h eincreasings may emactonbevhyg e @ hed w
better choice. The reason is the fact that mortalitg r r el at es better with &b
than chronological agiBurkle et al.,, 201p The ageing process may not significantly

6advanced even eheoedh time may Oincr

The current definition of ageing has classed
they show no loss in functional markers, reproductive abiity or any increase in

mortality with chronological time(Archer and Hosken, 2016Questions have been

raised on whether the ageing process actually stil occurs in these organisms, albeit

realy slowly, and whether this apparent immortality is an artefact of the current

definition of agang (Khokhlov, 2014 Archer and Hosken, 2016&inger, 201% In any

case, the current dogmas on which the field of biogerontology rests staimntmic

nature of ageing, the overagleneralityof the process and theeterogeneityof

underlying observations. Within this framework the field of biogerontology ha

attempted to shed light into the underlying process behind the ageing phenomenon by

asking bothwhywe age andhowwe age.



1.2 Theories of biological ageing

To understand the historical and current development of the field of biogerontology, it

is useful b understand how biological problems are addressed in the life sciences.
Tinber geno6s (Batesonranddalaads 2O vhitls are as pragmatic as they

are logical, establish four facets to the investigation of a given biological problem (See
Figure 1.1). Whilst a discussion on the universality of this paradigm (Bateson & Laland
2013)isbeyondth scope of this work, Tinbergenods
starting point to understand how evolutionary and mechanistic theories of ageing

overlap with each other.

Response Life History
Mechanistic Developmental
How . .
causation causation
Adaptive Evolutionar
Why p Y
context context

Figure1.1Ti nbergends four questionsologéal resear
phenomenon occurs (proximate) or alternatively the researcher may be interested in

the end purpose of the biological phenomenon, that is, why it takes place (ultimate).
Proximate questions are associated with enquiries on the nature of mechanistic
causations in themselves, whether it is an acute response, or a developmental response
taking place over an organismos |ife. Ul
on a broader (higher order) context, whether that context is a current contpattoof

a life history. Whilst a shift to the right on the table involves the contextualisation of the
biological phenomenon in the context of time, a shift downwards involves the
contextualisation of the phenomenon in the context of the environmesgslivghout

saying that the boundaries between the four questions are fuzzy and the questions, non

exclusive. However, they provide a pragmatic approach to understand biogerontology.



1.2.1 Evolutionary theories of ageing

Asking whyimplies a higher order quis regarding the level of abstraction, and
therefore a higher order (ultimate) answer, than adkiw (proximate answer)

(Bateson and Laland, 20113n biology, the ultimate higher level entered when seeking
an explanation to observed phenomena is evolution. In trying to understand why most
Iving organisms age, biogerontologists therefore developetlitienary frameworks to

make sense of the experimental observations avaiable at the time.

Ageing was first expressed within an evolutionary framework by August Weismann in
1882. Weismann viewed ageing as a process selected for by natural selection whic
would remove the old individuals from a population to free resources for the newer
generations(Weismann et al.,, 1891Within this context, ageing is the result of natural
selection on the population scale rather than at thé déviee individual and implies a

Oprogrammed ageingd process.

The next major breakthroughs in the evolutionary thinking on ageing came in the mid

t wentieth cent ur yMutatiort AccurRubatiogMA) thdeydoh ageing 0 s

(Medawar, 195pa nd Ge o r g éAntayonistic iPlaiatr6pgAP) theory of ageing

(Wiliams, 1957%. Later on, in 1977, Tom Kirkwood would propose isposable

Somatheory (DST) of ageindKirkwood, 1977. These ar¢he three main evolutionary

theories of ageing within the field of biogerontology. Central to the development of all
theories was the 6Selection shadowd <concept p
1941(Haldane, 1941

The Oselection shadowd concepttonrpedseee s t o t he
with age once an organism has passed its reproductive window. In other words, the

inability of evolution to select against labmset, deleterious, traits that do not
significantly affect an organi@enidtis reproduct i
phenomenon is Huntingtonos Disease (HD). This
negative mutation and so it would be expected that natural selection would have

selected against individuals with such mutations, yet the disease prevalence in the

population is relatively higi(Bates et al., 20)4However tle first symptoms of HD

commonly start at the age of 40, gving the individual ample time to reproduce and pass

down the HD aleles. Thus, natural selection is very weak against genotypic changes

that result in adverse effects later on in organismal life.
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Mut ation accumulation theory is based on
because germine mutations with laeset detrimental effects cannot be removed by
natural selection, a mutational load would be established on the germline which would

drive he development of a variety of dysfunctionalities at older age.

Antagonistic pleiotropy theory more specifically builds from the abstract nature of the
mutation accumulation theory. Wiliams proposed that natural selection against late
onset traits is sbng enough to provide a selection pressure. This is because more subtle
phenotypic changes associated with senescence, like a slightly slower pace or slightly
worse immune system, can occur earlier in the decline of physiological function and
affect orgasm survival ata much earlier age than that at which the detrimental
phenotype is established. Therefore, traits with-daiget detrimental effects must have

a previous beneficial effect that associates with increased reproductive abilty if they are

to remain within the gene pool of the population.

The Disposable Soma theory is the least abstract of all the theories in the sense that it
narrows the causative molecular players to defined functional classifications. This
theory argues that because orgasisevolve in environments with a limited number of
resources, evolution shapes a tradfein the resource (energy) allocation between
reproduction and maintenance and repair processes. The basic premise is that whilst
reproduction is the ultimate goal dit evolutionary process, the organism has first to
survive to the reproductive age, and perhaps a lttle beyond, to care for the new
offspring until they become autonomous. The result of this evolved-afde damage
accumulation throughout life historgs determined by the evolved eneadjgcation to
maintenance and repair processes. The DST can be said to be an instance Life History
Theory (Selman et al., 2032

These three main evolutionary theories of ageing view the ageing process as an
epiphenomenon, whether arisingprh a weaker selection past the reproductive period or
from the selection of traits which maximise reproductive fitness. This is in contrast to

Wei smannés original view of ageing as a



1.2.2 Mechanistic theories of ageing

In the 90s, mee than 300 theories of ageing had been identiffdedvedev, 1990but

only a handful have acquired a cdi weight within the field of biogerontology. In the
late 1950s a number of authors related somatic mutational load to lif¢Spii 1958
Sziard, 195% This somatic mutation theoMorley, 1995 gained strength from the
observed correlatonbetween DNA repair rates and lfespan, as wel as from the aged
ke phenotypes of some strains of mutator nfieeomislow, 1994Kennedy et al.,

2012.

In the late 1960s the crefisking theory of ageingBjorksten, 1968proposed protein

aggregation as the driving mechanism of loss of functional homeostasis with age. This

theory would later be further generalis¢tierman and Brunk, 2004Around this time,

Leonard Hayflickds discovery of a |imted <cap
(Hayflick, 19695 led to the formulation of the telomere loss theory of agéitigh Sh et

al., 2002 out of which would stem the idea that the gradual accumulation of senescent

cells n tissues can drive a progressive functional (@mmpisi, 2003 Both the somatic

mutation theory and the telomere loss theory placed theepb of genomic instability

at the centre of the ageing process.

By the turn of the century, the immune system and the dysregulation of inlammatory
factors were introduced as the potential drivers of the ageing phenotype in the inflamm
ageing theory ofgeing (Franceschi et al., 20D0Shortly after,Mikhail Blagoskonny

argues for aypertrophytheory of ageing(Blagosklonny, 200bwhere the ageing

process arises as an epiphenomenon of organism developmental programs which
continue to be active in old age. The oldest agdadnly the most influential theory of

ageing, however, is the free radical theory of ageing.

The free radical theory of ageing (FRTA) proposed by Denham Ha(if@man,

1955 has arguably been the most influential mechanistic theory of ageing. His theory
suggested that increased production of reactive oxygen species with age would drive the
ageing process through increased molecular damatie thei end result of a loss of
functional and structural integrity. This theory displayed the attractiveness of being
based on a fundamental and irrefutable physical property of ROS molecules, their high
reactivity, and the fact that they are unavoidabigdpced endogenously by metabolic

processes. The concept that random molecular damage would drive the ageing process



intuitively fitted the observations on the variability of the ageing process and the

required gradual loss of homeostasis of biological hamis ms.

The discovery of superoxide dismutases in the late 1960s by Irwin Frid@wicGord

and Fridovich 1969 proved the evolution of mechanisms against ROS molecules. The
discovery of antioxidant proteins established a paradigm on the detrimental nature of
ROS and gave momentum to the FRTA. However, the eventual discovery of the
physiological functonso f ROS and the establishment of
broke the paradigm of ROS molecules being solely a detrimentprdoluct of

metabolsm. Since the conception of the FRTA, a wealth of correlative evidence has
been established in various orgams between molecular oxidative damage and
ifespan, although some strong criticism of this theory has also been established
(Kirkwood and Kowald, 2012Barja, 2013Vina et al., 2013Liochev, 2015Sanz,

2016.

Returning to Tinbergenédés four questions,
causes of ageing are primarily concerned with mechanisms which may cause a systemic
interference with cellular functions over a lifetime (Figure 1.2). Such theoriesadyig

arose as extrapolations of how lovgmale celular observations could be relevant

within a whole organism over a whole life time. Meanwhile, whilst the mutation
accumulation and antagonistic pleiotropy theories arose from {sghde observations

of animal populations, the disposable soma theory emerged after a number of the main
mechanistic theories of ageing had been put forwards. Consequently, DST seems more
specific and refined regarding the celular processes relevant to ageing and thus much

easier to relate to experiments addressing how ageing occurs at the celular scale.



Response

Life History

Telomere loss

Inflammageing

Network theory

How Somatic mutation
Altered proteostasis

l Physical l

' theories

Why

Programmed

Disposable soma

Hypertrophy

Antagonistic pleiotropy

Mutation accumulation

Figure 1.2.A pragmatic classification of the main theories of ageing according to

Tinbergends four

guestions.

o e afit

proxi mal

mechanisms occurring and being affected over a time scale of an individual life time,

but only the Hypertrophy theory is an explicitly developmental theory. The most

abstract evolutionary theories can explain why ageing occurs but are notieaphwt

the mechanism behind the homeostatic decline observed with age. Disposable soma

theory predicts both why and how ageing occurs without explicitly necessitating a

specific mechanistic theory since all of them except the Hypertropbgries of ageg

are centred around the concept of random molecular damage. The Programmed theory

is the only evolutionary theory that views ageing as an acute adaptive response but

makes no predictions on what the mechanism might be. Notice that the rest of the

theories account for the arrow of time in some way, consistent with the notion of ageing

being a continuous dynamic process. Physical theories of ageing are the most abstract

and encompass all classifications.

t
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Whist these are arguably the mechanistic theaviesgeing that gained the most
momentum, the list is by no means exhaustiviedvedev, 1990Tosato et al., @07).

The acknowledgement that no single mechanistic theory of ageing convincingly
explained the plethora of avaiable experimental observations led to the formulation of
ageing as a networkcale phenomeno(Franceschi, 198¥Kowald and Kirkwood,

1996 Kirkwood, 2005 Mitnitski et al., 2017. The network theory of ageing arose as a
prediction from the DST which places random molecular damage as the driver of the
ageing process and thus would be expected to affect multiple mechanisms
heterogeneously.Further attempts at the abstraction and unification of the theories of
ageing materialised in the form of physical theories of ageing. The most notable
examples aréoss of complexittheory of ageing(Lipsitz and Goldberger, 1992the
entropictheory of ageingBortz, 1986 and thereliability theory of ageing(Gavriov

and Gavriova, 2001

The different mechanistic theories argue for different drivers of the ageing process.
However, none of these argued drivers of the ageing process has been unequivocally
resolved into being causal or consequential ofiheing process. Indeed, each theory
argues that the timdependent change in the proposed agdinger underlies the

progression of the ageing process. However, the only explanation as to why the ageing
driver starts changing in the first place is theeamoncept behind both the MA and

DST, which argue that random molecular damage can cause stochastic disruptions to
the homeostatic organisms operating in cells. Reactive oxygen species, as argued by the
FRTA, are the main molecular players with the plalsiproperties required to cause
molecular damage. Thus, exploring the mechanisms that underlie celular redox
homeostasis seems an intutive way to understand how damage may accumulate in cells

to potentially cause a functional decline.

1.3 Understanding biological ageing as a network of hallmarks

It is evident that the ageing phenomenon manifests at both the macroscopic (tissues,
organ systems, life style, demographicsé)
cells). All of the ageing theories explain erascopic ageelated changes in terms of
microscopic ageelated changes. This effectively means that the ageing phenomenon is
best understood from a botteup approach. This does not at all dismiss the utility of

top-down approaches, since these carctliend constrain research efforts directed at
9



the microscopic level. As a phenomenon, ageing displays a series of hallmarks that span
multiple levels of biological organisatio(LopezOtin et al., 2013 Therefore, any
bottomup approach to the study of biological ageingstreventually span mutiple

biological scales.

The proposed halmarks of ageing at the microscopic level, despite being arguably
mammaliancentred, provide a good starting point to understand the causal
interrelations between agelated phenomena obseivat the molecular and cellular

level. The currently proposed nine halmarks of ageing can be organised into a
hierarchical causation scheme where primary halmarks wil cause damage, antagonistic
halmarks arise as an initial biological response to tleetedf primary halmarks and
integrative halmarks are a phenotypic manifestation of chronic changes in antagonistic
halmarks. In this scheme, primary halmarks are exclusively pathological in nature and
include genomic instabilitytelomere attrition epigenetic alterationgndloss of
proteostasisAntagonistic halmarks arise as an intial compensatory response to the
accumulation of damage driven by the primary hallmarks. However, antagonistic
halmarks end up contributing to the ageing process wienremain active beyond a
threshold magnitude and/or time. Antagonistic halmarks inclddeegulated nutrient
signalling mitochondrial dysfunctioandcellular senescencerhe sustained,

deleterious state of antagonistic hallmarks over time trandlatesa loss of tissue
homeostasis and function in the form of integrative hallmarks slikeen cell exhaustion

or altered intercellular communication

This framework for understanding the ageing process is undoubtedly useful to map and
contextualise experiemtal results. However, it is an oversimplification which seems
excessively centred in a unidirectional feeding of damage through the levels of
biological organisation: from individual molecules to celular pathways, to cellular

states and up to tissue pesties. As the authors themselves point (ldpezOtin et

al., 2013, the ageing hallmarks are better understood as an integrated interaction
network across levels of biological organisation (Figure 1.3). With damage placed at the
centre of any network perturbation iccardance with the current theories of ageing
(Gladyshev, 2014
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Figure 1.3.Biological ageing as a network of hallmarks. The stochastic events of
moleculardamage have the potential to result in a transient or sustained network
perturbation. In the case of a transient perturbation, the effect of molecular damage is
diluted out by molecular turnover or cellular repair mechanisms. This perturbation will
not cantribute to the development of the ageing hallmarks. However, some effects of
molecular damage may become permanent in the system if they are not repaired
(genomic instability and telomere attrition). The robustness of the genomic structure
and function dbws for the effects of molecular damage to accumulate over time and
gradually start feeding through the network in the form of altered protein and cellular
function. When a threshold cell population becomes dysfunctional, this will become
visible at theevel of tissue structure, function and integrity. The interactions amongst

hallmarks can be complex and sathplifying/sefis t abi | i si ngé(conti nu
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eFor example, mutations or an altered | ocal g
being unabldgo perform epigenetic modifications which in turn increases genomic

instability and promotes aberrant gene expression. Mitochondrial dysfunction can drive

the cells into a senescent state which is stabilised through the constitutive generation of

DNA damae foci by increased ROS production. Furthermore, interactions are not

exclusively bottorup. Altered tissue structure/function can result in an altered cell

niche which can interfere with intercellular communication or stem cell differentiation.

Another gample could be an altered hormone secretion within an organ system which

results in a deficient activation of the necessary responses within tissues of distal

organs.

But where do ROS and oxidative stress fit in this framework? As previously mentioned,

ROS have the capacity to cause molecular damage due to their intrinsic reactity.

Therefore, oxidative stress would feed into the network at two leyefstransient

stochastic occurrence (acute network perturba
Damage 6 c | aig Adafsustaied inputn(chronic network perturbation) through

selfamplifying or seffstabilising loops (Figure 1.3). Examples of the latter could be the

ROSmediated stabilisation of the senescent state or the promotion of mitoahond

damage by ROS generated by dysfunctional mitochondria. The nature of both of these

types of homeostatic interference are fundamentally diferent and indeed assume a role

for ROS and oxidative stress to be as a primary causative agent (i) or aasdage

consequence (i). In any case, ROS molecules are not the only entity which can promote

a selffeeding within the network (Figure 1.3). In fact, ROS molecules are not the only

potential source of stochastic molecular damage (e.g. advanced glyeatigmoducts,

unfol ded proteins, i nfections, toxic metaboli:?
within the field of biogerontology do place ROS as the most plausible source for the

majority of molecular damage associated with the progression afjtieg process.

12



1.4 Redox signalling

Reduction/Oxidation (redox) reactions involve an electron transfer from a donor
molecule to a recipient molecule resulting in the oxidation of the donor and the
reduction of the recipient. In biological organisms themefew molecules that are
nucleophilic enough to autonomously trigger a redox reaction. These molecules
typically contain an oxygen atom which may have an unpaired electron (free radical) or
may have a nenniform distribution of paired electrons whicksuits in partial changes
within the molecule(Lushchak, 201} The general term reactive oxygen species (ROS)
encompasses small molecules that are autonomously involved in redox reactions
mediated by the electronegative pedjes of the oxygen atom within them

(Winterbourn, 2008

The main free radicals (FR) present in biological systems are the super@ide

nitric oxide (NO’), hydroxyt (OH) and peroxynitrite (ONOO) radicals
(Winterbourn, 2008Marengo et al., 2016Vang and Hai, 200)60f these, only the first
two are actively produced by the cel. Ggdproduced as the accidental-jpduct of
the reaction of free cellular iron with hydrogen peroxideQ}) and ONOOis
generated as an accidentalfnpduct of the reaction of N@ith O, (Schieber and
Chandel, 201AVang and Hai, 20)6H,0,is the main notrR ROS found within cells
and is involed in tweelectron transfer reactions as opposed to the -sgitron
transfer reactions of FRSVinterbourn, 2008/eal and Day, 201,IMMarengo et al.,
2016. Due to the lack of an unpaired electron,Oglis less reactive than FRs and
consequently has a longer Hale and difusion distancéWinterbourn, 2008 These
physical properties lie behind the association of FRs with unspecific molecular damage

and the association of ndtR ROS molecules with physiological signalling functions.

ROS have been lofighown to be constitutively rpduced by the electron transport
chain (ETC) during respiration as a result of an electron leak from the ETC to the high
oxygen environment of the mitochondrial matfikushchak, 2014Marengo et al.,
2016 Wang and Hai, 2006 However, the discovery of the ubiquity of NADPH
oxidases across cell types ahd evolutionary tree established that cells contain
enzymes dedicated exclusively to the production of ROS, namely superoxide and
hydrogen peroxiddJiang et al., 201, Holmstrom and Finkel, 20)4A paradigm shift
occurred where ROS stopped being viewed as an inevitable and unwaspeodbgt of
respiration (Veal and Day, 2011 ushchak, 2014Schieber and Chandel, 2014
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became apparent that cells had evoledise ROS as signalling molecules which can
activate pathways and trigger cellular responses through the chemical modification of
amino acid residues within target proteins. It is commonly cysteine residues within
proteins which wil react with ROS indicelular environment, with a nucleophilic

attack to the thiolthiolate group resuliing in the formation of adked sulfenic

group which will then resolve into a chemical bghtbimstrom and Finkel, 2014
Schieber and Chandel, 2014

Despite the currently accepted role of ROS as signalling molecules, it is stil established
that excessive levels ofedbe molecules can cause celular damage and death

(Lushchak, 201AWang and Hai, 201% This is in accordamcwith the observation that

cells contain many families of abundant antioxidant protgvisrengo et al., 2016

Wang and Hai, 2006 Catalase scavenges hydrogen peroxide as so do peroxidase
enzymes such as peroxiredoxin isoforms and glutathione peroxidase isoforms.
Peroxidases are electron donors that rely on their subsequent reduction by the concerted
action of elular reducing systems involving glutathione and NADPH molecules as

well as thioredoxin and reductase proteins. Superoxide dismutase isoforms convert
superoxide into the less reactive hydrogen peroxide molecule. There are, additionally,
nonenzymatic atioxidant compounds like Vitamins C/E or Coenzyme Q or uric acid.

The variety of antioxidant protein families that have evolved within cells and the
abundance at which they have evolved to be expressed reflects the importance of
maintaining low basal RO®\els to maintain cellular function and survival. Also
emphasising this is the observation that a common downstream consequence of a redox
signalling event is the overexpression of antioxidant protispinosaDiez et al.,

2015 Marengo et al., 2016

The doubleedged nature of ROS molecules is refiected by both the number of

processes these molecule=gulate and the number of pathologies that are associated

with deleterioushelevated levels of these molecul@dolmstrom and Finkel20149, a

state loosely referred to as oxidative strges, 201hWhilst redox signalling

modulates a wide variety of physiological processes including insulin signdlains

and Jain, 2011 the inlammatory responggei et al., 201} apoptosis(Sinha et al.,

2013, vasodilation(Madamanchi and Rige, 2013 proliferation (Truong and Carroll,

2012, migration (Schroder, 201y the stress respongdang etal, 2008 hi gh bas al
ROS levels are associated with can@danda et al., 20)5diabeteg(Wang et al.,
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2013, cardiovascular diseagMadamanchi and Runge, 2Q1Beurodegenerative
diseasegMcBean et al.,, 200)5and ageingSanz, 201p

1.5 Redox signalling pathways in mammalian cells

In mammalian cells, there are a variety of signalling pathways that have been shown to
respond to changes in the intracellular levels of ROS. However, in most casexidk
sensor molecule that acts as the starting point of the signal transduction process is not
yet identified (Winterbourn, 201p This is significant since the identification of the
upstream ROS seor clarifies whether the pathway in itself senses ROS molecules in
the environment, and is therefore a redox signalling pathway, or alternatively if it is

activated via crosstalk with other redox signalling pathways.

Within pathways that directly sensbanges in intracellular ROS levels through the

direct oxidation of signalling molecules, a further distinction can be made between
pathways that are redorodulated and pathways that are redotvated (Olveira-

Marques et al., 2009 In redoxactivated pathways, changes in intracellular ROS levels
are a sufficient stimulus to activate the pathway and trigger a response. In redox
modulated pathwaythis same stimulus is not in itself enough to cause pathway
activation but may facilitate or enhance signalling caused by a second stimulus.
Changes in ROS levels are thus an insufficient requisite for signalling to occur in redox

modulated pathways.

In some cases, the redox sensor molecule is a signalling node, a protein which cannot be
assigned to any one particular signalling pathway according to current knowledge but
rather lies at the intersection of multiple signalling axes. Such would be the exafmpl

Retfl (Thakur et al., 2014 Without any canonical regulatory structure to associate

these proteins to, it is not always feasible to investigate systeoerges involving

signal processing and homeostatic disruption.

The main redox signalling pathways in mammalian cells which are arguably redox
activated and related to canonical structures with identified redox sensors can be said to
be the ASK1, N £ HKIBL- and Nrf2 signalling pathways.
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1.5.1 ASK1 signalling pathway

Apoptosis signategulating kinase 1 (ASK1) is a MAPKKK family cytosolic protein
involved in cellsurvival signalling(Hayakawa et al., 2018o0ga et al., 20)2ASK1 is

able to homeoligomerize into high molecular mass structures through homophilic
binding between its @erminal coiledcoil (CCC) dmains and homophilic binding
between Nterminal coiledcoil (NCC) domains to form the ASK1 signalosome.

Although ASK1 is able to oligomerize constitutively, it can only do so through its CCC
domains since the binding of thioredoxin molecules to the N@fGaehs prevents the
alignment and olgomerisation at thetdfminal of the protein. Such binding provides
steric hindrance to the activatory phosphorylation required to activate the ASK1

signalosome.

Upon arise in intracellular oxidant levels, two actesteines in the thioredoxin

molecules wil undergo oxidation to form a disulphide bond. The formation of this
disulphide bond promotes the detachment of the thioredoxin molecules from the ASK1
NCC domains which wil now become free to align and haigomerize. This

activatory homeoligomerisation event wil promote further oligomerisation of ASK1
molecules into more stable higheiass signalosomes and furthermore result in the
autocatalytic phosphorylation atthe NCC domain throughout the ASK1 sigmeoso

This active signalosome can then recruit a variety of proteins depending on the cellular
context of the oxidative signal. For example, whether the oxidative stress is part of an
inlammatory response or occurs in conjunction with calcium signallifg olitcome

of ASK1 activation is the subsequent phosphorylation of sasssciated protein

kinases (SAPKS) like JNK or p38 which then feed the signal through integrated kinase
networks that uttimately result in a cell decision process of whether theunalles or

undergoes apoptosis.

Once the oxidative stress disappears from the cellular environment through antioxidant
scavenging, reduced thioredoxin molecules wil be replenished by the action of
reductases and wil be able to bind the NCC domairdestabiise and disrupt the

ASK1 signalosome so that it is no longer active. Additionally, a negative feedback loop
has been identified where ASK1 activation by an oxidant stimulus results in a
subsequent increase in protein phosphatase 5 (PP5) levels adticely

dephosphorylates the activatory phosphor/threonine residue in the ASK1 NCC domain

to destabilise and render the signalosome inag¢iwerita et al., 20Q).
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152 NFaB signalling pathway

The combinatorial binding between the members of the nuclear factor-lgipa
chanrenhancer of activated B cells (NFaB) f
mutkpr ot ein complexes r e fndactore dhese¢ toanserigtionN F a B
factors are involved in cellular responses to stress and inlammgiioesel and

Schmid, 2013Cildir et al., 2018. At rest, these transcription factors are kept inactive

in the cytosol by the binding of members
wil not only sequester the nuclear localisation sequence (NLS) of tisetiion

factor but wil also promote its ubiquitination and subsequent proteosomal degradation.

Whilst the signalling pathway can be activated by a variety of stimuli through various

growth factor and inlammatory receptors, activation signals wilvexe on the

activation of the | KK protein complex 1in
complex is an |1 8B kinase which promotes

degradation of its | 8B substrate. The ph
rd ease of NFaB allowing the recognition
Amongst the transcriptional targets of N
become upregulated. The transcriptional

ne@ti ve feedback | oop through the ability

sequester it back into the cytosol to reset the signalling system. The transcription of
other proteins lke A20 wil also contribute to the strength of the negative feedback

loop.

This negative feedback produces NFaB osc
encode information in the frequency domain as well as in the magnitude d@Weigy
et al, 2012ph Whist anorc anoni c a |l mechanism of NFaB s

identified, it is comparatively lessell characterisedCildir et al., 201§.

There is abundant e®d ence in the I|literature that th
H.O, treatment. It is unclear, or at least contgependent, whether increased oxidant

levels have an inhibitory or activatory effect on the path{#dgrgan and Liu, 20111

Some authors argue the pathway not to be redtixated but rederodulated

(Oliveira-Marques et al., 2009ROS have been proven to be able to affect the
phosphorylation status onfdilnkgK afnfdi nlistBy i af

transcription factor to its target genes. Itis thus apparent there remains substantial
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uncertainty on how the oxidant signal feeds i

is the resulting outcome.

1.5.3 Nrf2 signalling pathway

The nuclear factor (erythroiderived 2)like 2 (Nrf2) protein is a basic leucine zipper
domain transcription factor considered to be the mastgriator of the celular

detoxification respons€Tebay et al., 2013.oboda et al.,, 2006In its basal state, it is

bound by Keapl molecules in the cytosol to form a protein complex which promotes the
ubiquitination andoroteosomal degradation of Nrf2. The Keapl molecule has a high
number of cysteine residues along the length of the protein that are prone to oxidation

by intracellular ROS.

An oxidation event causes a change in the conformation of thekidpl complex &

that Keapl can no longer detach from Nrf2 after its ubiquitination. Consequently, under
conditions of elevated oxidant levels in the celular environment there is a lesser
abundance of free Keapl inhibitors to bind the constitutivesynthesized Nrf2

protein. This wil result in a greater proportion of free Nrf2 molecules in the cytosol
which wil be translocated into the nucleus through the recognition of the NLS sequence
which has been argued to be faciitated by a prior phosphorylation event. Yhihin

nucleus it wil transcribe a plethora of genes coding for proteins with antioxidant and

detoxifying functionalities.

GSK3b has been established to be a negative r
promoting its recognition and degradation by the TrCP prdkédyes et al., 20)51t is

still uncl ear, however, if this negative regu
directly or through an intermediate molecule lke F§@uadrado, 2015 Under

conditons of oxidatve strs s |, GSK3b is temporarily inhibited
its serine 9/serine 21 residues by activated Akt. It is hypothesized this inhibition may

occur through the deactivation of PTEN by R(@siadrado, 2015 This temporal

deactivation facilitates the accumulation of Nrf2 in the nucleus. Testwl relief in

the inhibition of GSK3b, presumably through a
216 residue(Zhang et al., 203 promotes the degradation of free Nrf2 through TrCP.

Whist Nrf2 has been reported to be able to increase the expression of(Keapar

and Jaiswal, 20)0which in turn has been reported to translocate to the nucleus and
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extract Nrf2 back into the cytos@Niture and Jaiswal, 2009the cell and stimulus
specificity of these observations are stil unclear. It is thus apparent that whist the
activation of the Nrf2 pathway is relatively welharacterised, there is stil considerable
uncertainty regarding the molecular basis and relative tapoe of the negative

regulatory loops in this pathway.

1.5.4 HIF1 signalling pathway

Heat Inducible Factor 1 (HiR) is a transcription factor involved in the cellular

response to hypoxigMasoud and Li, 2018Balamurugan, 20)6Under normal oxygen
conditons (normoxia), the HIF1 alpha subunit is actively hydroxylated in its proline
564 residue by prob-hydroxylase (PHD) protein isoforms 2 and 3. This post
translational modification wil be recognised by VHL proteins which wil bind to HIF1a
and promote its ubiquitination and subsequent proteosomal degradation. Furthermore,
there is a second regulatory layevolving the hydroxylation of the TAD domain in
HIF1a by FIH which prevents the binding of cofactors CBP and p300 to the HIF1

protein.

Both FIH and PHD2/3 are hydroxylase enzymes that contain a catalytic iron centre that
reacts with the oxygen substraténder oxygerlimiting conditions (hypoxia), these
reactions are beleved to become subsiiaieed to the point where HIFla

hydroxylation is relieved. It has additonally been suggested that the ROS generated by
mitochondria under hypoxic conditons caact with the iron catalytic centres of the
hydroxylase proteins to inhibit their activitfChandel et al., 20Q0Indeed, ROS

generation by NOX proteins can bgositive feedback mechanism in HIF activation
through the inhibition of the iron catalytic centres of hydroxylase pro{@liaduri et

al., 2015 Balamurugan, 201)6The reduced hydroxylation allows HIF1la proteins to
escape VHtbinding and translocate to the nucleus. There, HIF1la wil form a

transcriptional complex with HIF1b, CBP and p300 and transdabget genes.

Amongst the genes transcribed by HIF1 are those coding for PHD2/3 proteins, thus
creating a negative feedback lot@agnall et al., 2014 Addtionally, HIF1 activation
has been reported to increase the expression of a range oRNé® which reduce the
translation of HIF1 proteifBartoszewska et al2015. Atthough a large number of

positive and negative feedback loops have been reported in this pathway (Prabhakar and
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Semenza, 2012), most of them remain to be established as conserved, canonical
mechanisms which apply across cell ines and expetahecontexts. Additional
complexity arises from the observation that HIF1 may be activated in the absence of
hypoxia through the mTOR pathwgiasoud and Li, 2005 which in itself can be
modulated by ROS. This activation occurs through increased plidtein expression

by el~4E which may also be induced through the MAPK pathway.

1.5.5 Common features

An apparent feature of all of the main redox signalling pathways (Figure 1.4) is that the
oxidant signal results in the disruption of an inhibigmtivabr complex that would

otherwise result in the degradation of the activator molecule. The result of this
disruption is an increased abundance of free activator which needs to be stabiised by a
subsequent posttranslational modification and/or moleculengindh most cases the
executed function results in a delayed negative feedback loop through the increased
transcription of the inhibitory molecule. In the case of Nrf2 signalling however, the

main negative regulator acts through piabslational modificaon and is activated

independently of Nrf2, in a negative feedforward loop (Figure 1.4a).

It is useful to stress at this point that multiple ptosbslational feedback mechanisms

have been reported for all pathways. Indeed, it has been argued tlsasigtiating

pathways require both fagtting postiransiational feedback loops and {aieting
transcriptional feedback loops for successful adaptation to the environmental conditions
experienced by cel§Zhang et al., 2015bHowever, these reported mechanisms have

stil not been established as part of the canonical signalling axis of these pathways.

The fact that the signalling systems need to reset tstpmalus conditions in order to
alow for the next signalling event in the cell requires that the inhi@tbivator

complex is restored to basal levels. This can require the modification of the activator
into a form that can be identified by the inhibitddlE1) or the regeneration of the
inhibitor (ASK1, NFaB, Keapl).

It is of interest to note that the HSF1 pathway which responds to cellular stress through
the sensing of misfolded proteins or through its activation by other upstream pathways,
follows similar conserved principles to the redox signalling pathways in Figure 1.4
(Jiang et al., 2015Masoud and Li, 2015 Under unstimulated conditions HSF1 is also
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kept within an inhibitory complex with HSP70/90 which promotes its degradation.

Under the presence of unfolded proteins in the cellular environment, HSP70/90
molecules will preferentially bind to them makingSH1 escape the HSP70/8@diated
degradation. After a subsequent phosphorylation, HSF1 translocates to the nucleus and

will increase the expression of HSP70/90 inhibitor proteins.
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Figure 1.4.(Previous page). Canonical interaction networks fmurfmajor redox

signalling pathways in mammalian cells. AOX = AntioxidaptNrf2 signalling
pathwayb)NFe B signalling pat hway. Note that :
molecule.c) HIF1 signalling pathway. Note that O = oxygea) ASK1 signalling

pathway.

1.6 Redox homeostasis and ageing

Whist the loss of redox homeostasis manifested as oxidstiess has been proven to

occur with age in a variety of tissuéBai et al., 2014Cunningham et al., 20)5the
functionality of redox signalling within an ageing context has received scarce attention.
Redox signalling, at least through some pathways, can be seen to become dysfunctional
in multiple tissues with ag&Zhang et al., 2015aHowever, the most comprehensive
investigations seem to have been performed in aged skeletal muscle tissue in the context

of exercise and sarcopenia.

1.6.1 ROS in exercise and skeletal muselageing

A good physiological example of the complex role of ROS in health and ageing is seen
in skeletal muscle during exercise and the process of sarcopenia. Physical exercise is a
powerful, postive lifestyle intervention where ROS are thought to glayotal role in

the resulting benefcial effecidkadak et al., 2008Skeletal muscle produces ROS and
reactive nitrogen species (RNS) during contractBowers and Jackson, 2Q@&ckson,
2015 Ji, 2015 which are not only necessary for force generat®eid et al., 1993
Jackson, 200%ut also mediate an adaptive response involving the upregulation of
antioxidants and heat shock proteins via resemsive transcription factorgMcArdle

et al, 2001Vasiaki et al., 2006jaJackson and McArdle, 201Jackson, 2015 The
observation that elevated ROS have also been associated with muscle wasting during
inactivity (Kondo et al., 1993Powers et al., 20)2nd ageing(Aoi and Sakuma, 20}.1
llustrates the recurring paradigm in redox biology regarding the dedged nature of

these molecules.

The chaacterization of this behaviour is of special relevance to sarcopenia, a condition

defined as the loss of muscle mass and function with age, which affects a very
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significant proportion of the older populatiqfrielding et al., 201)1 Such pathology is
associated with several comorbidities and resulting high healthcare (Xassen et al.,
2004). Whilst on the one hand chronic oxidative s$rés a halmark of sarcopenia
(Fulle et al., 2004 physical exercise is the only available intervention which to some
degree ameliorates this conditigRielding et al., 201,1Cobley et al., 201,5]Joseph et

al., 2016.

Previous work on the redaxediated adaptive responses during exercise in skeletal
muscle revealed such signalliraxes became aberrant with age in nfigasilaki et al.,
2006k Jackson and McArdle, 201McDonagh et al.,, 2014hJi, 2015 and humans

(Cobley et al.,, 201 3one et al., 2016 Athough redox signalling dysfunctionality in
skeletal muscle is wedtstablished, the underlying mechanistic basis remains to be
elucidated (Jackson, 2016 The reported redox signalling aberrancies in aged skeletal
muscle and indeed many other tissues can be classed as a lack of response activation,
reduced response activation or a constéu response activation. However, the

resolution provided by these observations is very limited since readings of redox
activation are almost exclusively single tipeint measurements. Thus, if a redox
response is triggered more slowly but to the sangnitoae, this wil translate into a
no-response or reducaesponse conclusion if a single tipeint measurement is taken
(Figure 1.5). Conversely, studies reporting no change in response activation based on
single timepoint measurements could be misngjpg an underlying stronger and faster
activation that has decayed substantially by the time of measurement. In fact, the time of
measurement itself is often arbitrarily chosen. Alas, there is a substantial uncertainty

over the exact nature of the agdated redox dysfunctionalities.
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Figure 1.5.Misleading conclusion derived from single tip@nt measurements. Redox
activation in many aged tissues has been reported to be dampened or altogether
abolished. However these readings are taken simgle timepoint measurements that
could actually be reporting a fundamentally different behaviour, in this case, no change
in activation magnitude but a delayed activation. Thus, current resolution into the

nature of redox dysfunctionality is very lindte

1.6.2 Redox homeostasisin cellular senescence

Cels are the basic units of life, the most fundamental level atwhich lfe arises as a
phenomenon(Mazzarello, 1999 It follows from this that the simplest model of the
ageing phenomenon is the Oageienegsblecall | 6.
cycle arrest induced under conditions of cellular stress, has been recurrently employed
as a model of celular agein@ampisi, 2013BhatiaDey et al., 2016L.ujambio, 2016.

Not only have senescent cell populatons been proven to display a gradual accumulation
of damaging molecules and lexular damagdLawless et al., 201Dale Pezze et al.,
2014, but they have also been shown to digphn increased heterogeneity in a variety

of functional markergPassos et al., 20p7Celular senescence has been linked to a
number of ageelated dysfunctinalities in a variety of tissuegChilds et al., 2016

However it was only recently that the accumulation of senescent cels was explicitly

proven to actively promote the decline of physiological function and limit organism
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life-span (Baker et al., 201,1Baker et al., 2016 As with any model, the question
remains as to how representative it is of the process under stynpiortant to note
that nondividing postmitotic cells lke neurons also undergo celular ageing without
entering a senescent state. Indeed, one can find in the literature references to a
0sends kent st antoticocelo(an Pearsen, 2034

Being a stressxduced response, entry into cellular senescence can be promoted by
elevated levels of ROS or DNdamage, amongst othef@ampisi, 2013CorreiaMelo

and Passos, 2015Thus, understanding celulaenescence as a simple model of

celular ageing requires a perspective that includes the maintenance and disruption of
redox homeostasig¢CorreiaMelo and Pasos, 2015Chandrasekaran et al., 2016

Indeed, elevated ROS levels have been shown to be key drivers of the state of celular
senescence within a cell and the intellular induction of senesnce(CorreiaMelo et

al., 2014. In the former case, ROS can form a positive feedback loop through the
constitdive induction of DNA damage that stabiises the senescent state of the cell.
ROS are also part of the senesceassociatedsecretoryphenotype (SASP) which can
also form a positive feedback loop at the celular scale through the senesdeneel
senesence of bystander cels. Like with many aged tisgivsher, 200}, senescent

cells display a disrupted redox sté@orreiaMelo and Passos, 2016Ghandrasekaran et
al., 2016. However, how the cell transitons into a state of redox imbalance is unclear.
Ree@nt efforts to bachkrack this homeostatic disruption point towards mitochondria
being the causal agent€orreiaMelo et al., 201p Although the underlyip question

remains as to how mitochondria lose their functionality over time.

In any case, celular senescence is a consistent model of gradual homeostatic disruption,
of relevance to the ageing process, which can be understood through the dysregulation
of ROS levels. Unfortunately, the mechanistic resolution provided by experimental data
so far does not allow the untangling of the chickeregg conundrum of whether ROS

are the driver or the result of the agdated loss or cellular homeostasis.
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1.7 Understanding ageing through systems biology

1.7.1 Systems biology

Systems biology is a discipline that evolved around the concept that certain biological
observations can only be explained by considering the interactions between the
elements of the biologicalystem. This is as opposed to thecadled reductionist
approach that has predominated in biological research, involving the explanation of
biological phenomena in terms of the activity of single molecular players. Systems
biology is thus a contrasting Bbc approach which arose when the reductionist
approach had generated enough knowledge on the elements of biological systems to
start linking them together into networks. Such networks were revealed to be able to
display new properties that none of thdiidual constituent molecular entities

displayed alongKitano, 2002hEIKalaawy and Wassal, 2015

Biological systems tend to be intrinsically complex, involving a myriad of molecular
interactions that ensure that a biological response occurs with the right strength, at the
right place, the right time and with the right duration. Thus, the complexity logb®l
systems does not come exclusively from a complicated topology of interactions but also
from a complicated behaviour of these interactions in time and $idho®denko,

2006 Ganesan and Zhang, 20Q12khough there has been a lesijgnding appreciation

of the necessity of studying biological systems holistically, it was not until

computational mébds evolved that systems biology was able to address this level of

complexity as a disciplindJanes and Lauffenburger, 2013

The development of network inference algorithms allowed the analysis of meaian

high- throughput experimental data to establish statistical relationships between

measured biological entities and shed ligini the underlying interaction topology of

biological systemqde Siva and Stumpf, 200Kirk et al., 2013. For the first time, a
biological response could be studied comy
account for the dynamic properties of the system in addition to the underlying topology,

a different type of methodology is required. Namely, onedlaws the simulation of

the biological system in time and spdbéast et al.2014). Within systems biology, the

adoption of these techniques is referred to as systems mod@lioiifige et al., 2006

Ganesan and Zhang, 2012
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1.7.2 Systems modelling

Systems modelling aims to reproduce the behaviour of the biological system being
studied in an abstracted computational framework. This computational framework can
be mathematical, wheraérgilation involves soling the equations that model the
biological system; algorithmic, where simulation involves the execution of a set of
rules aiming to represent causal elements of the biological system; or a hybrid
framework involving both of suchpproachegFisher and Henzinger, 200 &Vithin
these classifications, there are a wide variety of modeling frameworks, each with
specific conveniences and drawba¢ktachado et al., 201 ElKalaawy and Wassal,
2015. The evolution of both simulation platiorms and comjutal performance has
alowed for the simulation of increasingly complex biological systems, a notable
example being simulation across levels of biological organisation in what is termed

multi-scale modeling(Dada and Mendes, 2011

Any model, be it computational or not, is an abstraction of the real system under study
and as such relies on a number of assumptionsystems modelling these assumptions
often abstract uncertainty on parameter values, topological arrangements or spatial
distributions (Kirk et al., 2019. Whilst the first requirement for a computational niode

is that it reproduces the available experimental observations relevant to the biological
system under study, it should additionally aim to provide an explanation for the data and
utimately generate novel predictions to be further tested experime ntdity.iteration
between experiments informing computer models which generate new predictions to be
tested experimentally has been referred to as the systems biologyKagoie, 20@b).

1.7.3 Network motifs

Pioneering work led by Uri Alon uncovered specific interaction patterns amongst

network components which occurred at a much higher frequency than observed in
randomlygenerated network@Viilo et al., 2002 Alon, 2007. These o6énetwork moti
were not only seen in tHe.coli transcriptional regulation mai@henOrr et al., 200%,

but also in other biological and ndmological networks(Milo et al., 2003. This work

shed |ight into the convergent evolution of i
directional interaction topologies to specifilynamic, informatiofprocessing,

properties. It furthermore suggested the possibility that the intricately complex
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biological networks could be dissected and understood in terms of simple interaction

circuits coupled togethgiBeber et al.,, 2012

Networks motifs were originally identified from the analysis of bacterial transcriptional
networks and comprised simptegulations (SRs), feedforward loops (FFLs), single
input modules (SIMs) and dense overlapping regulons (DORs). Simple regulations refer
to auteregulatory loops, i.e. sedfctivation or selinhibition. This would be the case of

a transcription factor #t activates or inhibits its own transcription. Feedforward loops
were identified as threeode motifs with an upstream network element which has a
time-separated dual interaction with a downstream network element (Figure 1.6).
Because of the each of thede interactions in this network topology can either be
activatory or inhibitory, eightlasses of FFLs can arise. Different types of FFL have
been attributed different informatiggrocessing properties such as response
acceleration, pulse generation araag introduction to confer memory. SIMs and
DORs refer to the regulation of a group of functionaiated target genes by a single

transcription factor or a combinatorial set of transcription factors respectively.

Because the initial analysis of netwamkotifs took place in the transcriptional

regulation network oE.coli, FFLs were formalised as threede motifs. This is

because interaction distance between gene regulatory elements in prokaryotes tends to
be smal. However, theoretical and experimeraahlysis has demonstrated such

structures can still display the same informafiyocessing properties when elongated

to include more nodeSauro and Kholodenkd@004 Alon, 2007 Ferrell, 2013 O'Hara

et al, 201% This is of particular relevance to protemdification based signalling

networks in cels(Cloutier and Wang, 201Kolch et al., 201» Coupled motif

structures (CMS) have also been identified to be overrepresented in biological networks

and furthermore associated with biological status in case of cgdgieh et al., 2015
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Figure 1.6.Types of feedforward loop (FFL) motifsd@pted from Alon (2007).

Whilst the work undertaken by Uri Alon was the frst systematic identification of
network motifs in biological networks, and it introduced the concept of FFLs, it was not
the first identification of simple circuits underlying thenctional dynamics observed in
biological systems. Indeed, previous theoretical work on understanding biological
systems as sefegulating cybernetic systems led to the prediction and subsequent
validation of interaction circuits, the most notable exanipting the repressiator

(Elowitz and Leibler, 2000 These types of circuits are based on the concept of
feedback, a sequential and directional interactioa @dwnstream network element

with the upstream input network element. Again, this interaction can be activatory
(positive feedback) or inhibitory (negative feedback) and can give rise to a number of
dynamic properties like oscilations, pulses, accelesatamplifiers and bistability
(Brandman and Meyer, 20p8eedback loops underlie higher order network properties
such as robustness, adaptive behaviour and me(Bompndman and Meyer,008

Ferrel, 2013Kolch et al.,, 201k
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The concept of network motifs can be criticized for establishing pmori causal
relationship between tofpgical structure and function based on an insulated network
representation(lngram et al., 2008Beber et al.2012. In this context, "insulated” refers
to the fact that network motifs do not exist in isolation but as part of dense interaction
networks with cross talk at multiple levels and timescales in addition to intrinsic and
extrinsic noise in the signallyg systems. Indeed, some of the functionalities attributed to
some network motif structures depend on the underlying parangéigram et al.,

2006, which are a significant source of uncertainty in themselves. In this context, the
functionality attributed to a network motif, ex. response accelerator, can be altered or
nonexistent within the context of a larger network with multiple signals and noise
(Ingram et al., 200@Hsieh et al., 2016

It seems apparent that insights can be gained by abstracting complex processes into
network motifs or motilike structures despite their underlying eriainties. An

example is the abstraction of the entre mTOR network into a simple topology that
retained the relevant dynamic observalfbale Pezze et al2014. Their employment

is useful from a theoretical perspective in that they provide a good explostwting

point to begin to answer questions which remain unaddressed theelitoited

resolution of current experimental methodologies.

1.7.4 Systemsmodelling of ageing processes

The acknowledgement of the mutictorial nature of the ageing procéBirkwood,

2011, LopezOtin et al.,, 2013Gems, 201pcals for methods that address this level of
complexity. Namely, those that fall within the field of Systems Biolg¢gyano, 2002a
Kirkwood, 2011 Kriete et al., 201} Indeed, concepts like health, disease ageing

refer to homeostatic states which by defintion encompass an interaction network. As
previously discussed, ageing can only be understood as-evish@ng process,

pointing to systems modeling as a potential approach to further our undergtarid

the homeostatic dysfunctionalities observed to develop with age.

There are a number of methodological advantages on adopting a systems modelling
approach. The development of a computational model requires the researcher to be
rigorous in the formadiation of the underlying biological knowledge and this often

allows the identification of knowledggaps in the literature. By accounting for muktiple
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factors and making qualtative as well as quantitative predictions, computer models can

potentially alsoinform experimental design and additionally provide a quick and low

cost Oepphofatromby as an alternative to doing s
lengthy experimental protocols. Furthermore, some emergent system behaviours, such

as oscilations, hystesis or robustness, can only be explained through modeling

formalisms (Janes and Lauffenburger, 20Mast et al 2014.

The main argument, however, for the employment of computational models is that there
is no other methodological alternative that explicitly accounts for the complexity of
systerrlevel biological interactions in time and space. Indeed, ittsroosly difficult

to keep track of so many molecular interactions and operating feedback mechanisms
over time and space through experimental protocols or the human mind alone.
Computer models provide a standardized and extendable method for formalising
existing knowledge or mapping new information onto. Moreover, computational models
do not only provide comprehensive simulation platforms to further our mechanistic
understanding of biological systems, but can also advance our conceptual understanding
of the biological problems and observations of inte(@sast et al., 2014Mc Auley and
Mooney, 2015Mc Auley et al.,, 201y The range of computational models of ageing
processes developed to date reflects how systems modeling has found its place within
biogerontological researdiKirkwood, 2011 Kriete et al., 2011Mc Auley and

Mooney, 2015Mooney et al., 201,6Mc Auley et al., 201}

1.7.5 Computational models of redox signalling

There are a number of computational models in the literature which expiadttiel

redox signalling processes in a variety of biological cont@Riay et al., 2018 The

majority of these are kinetic models. These models represent reactions as a series of

mathematical relationships between parameters like molecule abundances and kinetic

constants (s, Vimax Krorwards Kbackward€ ) - The mat hemat i cayl relations
established kinetic equations, or mathematical derivations thereof, of which the most

known examples are the Michaelis Menten equation and the mass action equation

(Sauro, 2011

Redox signalling models in the literature can be broadly divided into Ordinary
Differential Equation (ODE)}based model¢Adimora et al., 201@Gauthier et al., 2013
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Benfeitas et al., 2014omalin et al., 2016 which are the majority , and Partial
Differential Equation (PDE}based model§Sobotta et al., 201&im et al., 2018,

which are a substantial minority. Indeed, available computational models of the main
mammalian redox signalling pathways are based on coupled (Hagsall et al,,

2014 Pronk et al., 201AViliams et al., 2014Khalil et al., 201%. This methodological
bias is likely to reflect the computational lmitations arising from the higher
dimensionality of coupled PDEs as opposed to coupled GMBateri and Wishart,

2007).

Computational models of redox signalling have benefted from the conserved kinetic
properties of antioxidant enzymesr@ss eukaryotegNetto and Antunes, 20),6which

allows for the crosspplicability of the computational models in different bidal

settings. Parameters derived from the work of Adimetral (Adimora et al., 2010have
been usedh almost a dozen redox signalling models. It is worth noting, however, that
the abundances, interactions and rate constants of redox sensors are mostly unknown
and likely to have a much higher variation between species and cel(Hrigs and

Antunes, 2014Netto and Antunes, 20)16lndeed, the kinetic rate constants of the
oxidation of transcription factors drphosphatase enzymes are only crudely estimated
(Brito and Antunes, 201Marinho et al., 2014

In fact, e oxidation rate constants of redox effectors by physiological oxidants is
surprisingly low, most being within a range of200 M/s(Brito and Antunes, 2014
Marinho et al., 201AWinterbourn, 201} If the calculated rate constants of redox
effector oxidation hold true, then the question is immediatalyed of how can an
oxidant ever reach its redox effector target if it must survive scavenging by a much
more abundant and fasteracting antioxidant system. In other words, how can a redox
effector activation reaction by an oxidant compete with oxidaalvenging reactions by
an antioxidant system which is2010*times more abundant and reacts 1.00° times
faster?(Marinho et al., 201AWinterbourn, 2015Pilay et al., 201%

Although it has been argued that effective redox signalling can stil occur despite the
competition with the antioxidant sem(Marinho et al., 2014 from a kinetic
perspective, this O6competitive oxidationé
generic signalling strategy blye cell. Looking at redox computational models, it is

evident that estimated redox effector oxidation parameters are likely to be an
overestimation arising from the parameter estimation procedure. The fiting of

simulation output to experimental data nedat the estimated rate constant is
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phenomenologically accurate but at the expense of losing mechanistic resolution. The
underlying real reaction processes become encoded in an estimated rate constant which
although models one reaction within the modetjoes so at a rate which corresponds to

multiple reactions in the real biological system.

The I|iterature has proposed as a solution to
but not mutually exclusive, explanations. The first one proposes thengrgétredox

effector proteins to the vicinity of ROS generation sfé@anterbourn, 201p The

consequence of this is that at small cellular locations (for example the vicinity of

NADPH Oxidases) theris a higher local concentration of reactants. Under these

conditions, the reaction for the activation of the redox effector becomes more significant

and can compete with oxidant scavenging. Whist there is ample evidence of this

localised redox signallgn (Fisher, 2009Woo et al., 201pthere are numerous proteins

which are redoxegulated and yet show no sign specific localisation within the cell.

Another mechanism put forward as an explanation for this apparent paradox is the
existence of redexelays (Sobotta et gl 2015 Netto and Antunes, 20)6vhere

peroxidases wil oxidize a redox effector upon becoming oxidized themselves. In this
case, these scavenging systems do not compete with redox effectors fdioa wetc
oxidants but rather faciltate these reactions. This is since such scavenging molecules
are more abundant and more reactive with ROS and so act as better ROS sensors. This
elegant mechanism has been known to occur in prokaryotes and recentig farov

occur in mammalian cel§Sobotta et al., 20)5However, there is yet no proof for

redox relays being responsible for the oxidation of most of mamméabanscription

factors. This may be due to the experimental difficulty of stabiising and isolating

unstable oxidation intermediates which are involved in such redox relays.

It is thus evident that redox signalling models encode a substantial uncertagatging

both the parameter values and the topological structure of the network. Although this
uncertainty can be reduced through the use of parameter estimation procedures, in both
parameter calbration and model structure selection, it does render tals epdcific

to the experimental setup the data was derived from. In this context, there are no

publshed models of redox signalling that explicitly deal with an ageing system.
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1.8 Aims

It is evident that within the field of biogerontology, available erpental data does not
provide a high enough resolution to separate many observations into primary or
secondary causalty and break the chiekadegg conundrum. At the very limit of
experimental resolution, computational simulation can be used aslana¢ory and
exploratory tool of rational scientific enquiry that draws on available knowledge to

provide new insights.

A theoretical effort could provide a means to educate our intuition on the ageing process
and make sense of current experimental @egtayell as potentially direct new

experimental efforts. The critical question at the cornerstone of ageing research
concernswhy dobiological homeostatic systems fail with age. Current ageing theories
point towards the abstract concept of stochastic dareaghe cause, but this

generalisation may prove too vague to understand ageing at a higher mechanistic
resolution (Gladyshev, 201¢

Oxidative stress has the tpatial to drive a loss of system homeostasis, whether as a
primary cause or as a secondary consequence of the ageing process. It is the main line
of enquiry of this work to theoretically examine mechanisms in which oxidative stress
might interfere with th regulatory machinery of cells. Further to this, an examination of
the abilty of any identified molecular dysregulations to percolate through levels of
biological organisation would provide an important contextualisation. Furthermore, 1t is
an aim of trs work to test, once interferences with homeostatic functon have been
characterised, whether such dysfunctionalities can be fully or partially reversed in

principle. The objectives of this work are thus as follows:

1) Investigate how oxidative stress camndfeeto biological networks to disrupt

homeostatic function.

ii) Investigate how such loss of homeostatic function could percolate across

biological scales (molecules to pathways to cells to tissue).

lif) Investigate whether such homeostatic disruptions coultblmme degree,

reversed.
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The work undertaken as part of this thesis has been organised into the following
structure. Atfter the introductory Chapter 1, Chapter 2 presents the Materials and
Methods used and developed to perform the research presentecthedk. Chapter 3
presents the main theoretical observation from which all other work in the thesis stems
from. Chapter 4 presents work thibeoretically aims to test for the generality of the
observation. Chapter 5 presents work that aims to expediiye naldate the

observation. Chapter 6 presents work that aintbetoretically contextualise the

observation in the complexity of vivobiology. Chapter 7 and Chapter 8 are a

discussion and conclusion, respectively, on all of the presented worknfire¢y eof the

work presented in this thesis, both experimental and theoretical, has been carried out by
the author although there is once instance of published work being used in this thesis as

indicated in the supplementary text (Section 9.3).
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Chapter 2

Materials and Methods

2.1 Computational Methods

2.1.1 Cellular Automaton (CA) framework

When modelling the interactions between biological entities, be it molecules or cels, it
is often informative to capture the inherent stochasticitihansystem. This uncertainty

at a given point in time often arises from the probabilistic nature of the interaction
between system components in a spatial context. For example, there is stochasticity in
reactant A and reactant B coliding together dueatwlom motion and there is a

separate source of stochasticity on whether they wil react together once they colide. At
the cellular level, a cell might undergo a steltieange with differing probabilities

depending on its spatial posttion within a lattioe depending on the nature of

neighbouring cells. Celular automata have been successfully used in the past to
stochastically model both molecular and cellular interactions (Schnell and Turner, 2004,
Dada and Mendes, 2011). Furthermore, this methodologyguisve to couple to a

system of differential equations in order to create a-stétle model (Dada and

Mendes, 2011).

Molecular simulations were carried out in a purpbsédt simulator named CASSMI
(Cellular Automatoni based Spatial Simulator of Néoular Interactions). However,
both the molecular dynamics simulations and the cellular population simulations were
modelled through the use of a core cellular automaton framework. Such framework is

implemented as follows.

Grid definition. An initial grid of three dimensions is specified as a thd@esensional

matrix of zeroes with each dimension defined by vectors of length N where the number
of total cels in the grid correspondsNB. This three dimensional matrix is the grid
structure of the cell auteaton (CA matrix). In CASSMI, th&l-value is derived so that

a userdefined spatial occupancy is reached by the total number of molecules to be

simulated. In the mulscale modelN is manually assigned.
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Cell assignation.When the modelled entities arelie distributed uniformly across the

CA grid, they are encoded as vectors of a length corresponding to their intial amount,

with all entries in each vector being the corresponding unique entity identifier. In all

cases an identifier of zero correspondengpty space. Random seeding of entites into
theN>zeroes matrix i s randpermdnctoe dhichvaloavs théat | ab 6 s
random permutation of a target matéxusing the elements of a given matixin the

following form:

A(randperm(numel(A), nuai(B))) = B

The localised assignation of entities within the CA grid requires the definition of a

constraining factoC, whereC<N, to define the spatial constraint in the seeding to

over one dimension. This results in a localisation defined—toprresponding to the

fraction of the total space in the CA grid where the entity can be found at generation =
0. CASSMI automatically derives C from the usiefined percentage localisation for

the relevant species. It is important to notat th all cases of localised assignation, the
randomly selected matrix coordinate has to be unoccupied. Thus, no explicit

overwriting is allowed within the inttial cell assignation steps.

The main loops.Once the starting grid structure of the CA has lofined, the

simulation proceeds to enter the main loop (t
rule-updating iterations in the model. The generation loop models time implicitly. In

CASSMI, each tteration corresponds to one movement-defieed updte) for all

molecules in the grid. In the mudtcale model, the generation loop corresponds to days.

The generation loop contains in its structure a second loop which allows for the

selection of each individual cell to apply the update rules. At theoeadch generation

loop, a complete scan of the whole CA grid is performed and the counters for each

identifier updated and stored.

Neighbour selectionAs in al CA models, the update of the state of each individual

cell is dependent, in one way or anothen neighbouring cells. With regards to the
definition of which <cells are classed as bein
with ani  p distance was adopted in the CA, where any neighbouring cell in touch

with the reference cell is considered a rieiir. In a two dimensional matrix

represented as a grid this would mean a given selected cell would have 8 neighbours as

shown in Figure 2.1. This number would be 26 in a 3D matrix (See Figure 2.2).
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Figure 2.1.2D representation of cell neighbowbds most commonly employed in Cell
Automaton models. Left Panel shows the von Neumann neighbourhood which defines as
neighbours (blue) the cells with significant contact with the reference cell (pink). Right
panel shows the Moore neighbourhood which @sfims neighbours any cell which is in
contact with the reference cell.

The Moore neighbourhood was adopted over the von Neumann neighbourhood to allow
for a wider range of potential interactions between individual entities and their
surroundings. The gater degree of interaction freedom makes the simulation of the
random motion of particles more realistic in CASSMI. Furthermore, with regards to the
multi-scale model, cells in such close proximity should be expected to influence each

other despite having minimal surfacesurface contact.

If a given cell in a 3D CAis defined by coordinates GA(]) any neighbour wil be
defined by CAG °s,i °s, ] ° s) wheresis a coordinate translatiothat can be a O or a

1. This geometric relation arises becaasaeighbour cell has to be in contact with the
reference cell so it can only have a maximal coordinate separation of 1 coordinate unit
in any given dimension. Because the neighbour cell may be on the same plane as the
reference cell, the coordinate shit a given dimension can be 0. The plus and minus
signs ofsrepresent any two opposite arbitrary planes in which a neighbour cell can be
located with respect to a reference cel. These geometrical relations are ilustrated in
Figure 2.2.
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Oneveryterait of CASSMI 6s generation |l oop, after a
random neighbour of the selected reference cell is then chosen. This is achieved by

creating an array with all possible coordinate updateshCA{i °s,j° s) which

define the neighboucoordinates as a translaton from the coordinates of the reference

cell (as shown in Figure 2.2). Such matrix would contain 26 coordinate updates that

define Mooreds neighbour hood in a 3D space an

Neighbour= F1-1-1; 0-1-1; 1-1-1; 10-1 ;11-1;
01-1; -11-1; -10-1; 00-1; -1-10;

0-10; 1-10; 100; 110; O010;
-110;-100; -1-11; 0-11; 1-11;

101,111, 011;-111; -101; 001];

The selection of a random neighbour thus simply involves selecting a random set of
coordinate updatex$ +s+s) from the Neighbourmatrix and transforming the reference
cell coordinates by thetranslation values contained within. The selectiora eindom
neighbour simulates the random movement of a randomly selected molecule in
CASSMI. Once the neighbour is known then a set of rules are applied to update the
state of the reference cell and/or the neighbour cell depending on their respectae state
(dentifiers). In the mukscale model, each cell has the potential to affect all of its
neighbours and so instead of selecting a single neighbour coordinate at random, all

coordinates are iterated through.

40



o108 0l o | 111
'19091 09051 1,0,1
\ N\,
) AN -1,-1,1]0,-1,1 1.-1.1
\\
\ \\
Y \\
‘ \
| \\ -
\ N s
|IIX _\\
L/ /" X
.\.\ \

ﬂlx \\ |‘II —19 1 . 0 0, 1 . 0 1, 1’ 0

\ \ffs.

|l‘|l Lﬁ;:\\

\ X -1,0,0/0,0,0| 1,0,0

x]ll lll\ \\.

| i %

I‘ ’,l \

| y N,

nIl '|,l \\.\ —l, -1 ’ 0 0’ -1 » 0 1, -1 i 0

lIll '(01: "\

(8 R SRS | R

III‘] -1, 0 2 -1 0, O 2 -1 1’ 0 - —l

x'll’ -1, -19 'l 0, -1 . -1 1’ -1 . -1

Figure 2.2.Moore Neighbourhood defined 3D space. The translation of the reference
cell (pink) into any of the 26 neighbouring (white) cells is defined by a fixed set of

coordinate updatess(s $ specified in the individual grids. Hence, a cell movement

JES, jx9).

would be modelled as the random sB@tof one of the 26 possible coordinate
transformations to then update the reference cell location from CA(h ,i , j) tas€A(h
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Neighbour-dependent rules.These rules are commonly applied as a function of the
states of neighbouring cells exfta specific cell has been randomly selected. In
CASSMI, which simulates Brownian motion of particles, there are three general rules
that can be applied once a reference cell and a neighbouring cell have been randomly

selected.

i) If the neighbour cell isrepty, the molecule moves into neighbour cel. This
rule is executed by the swapping of identifiers between the neighbouring cell

and the reference cel. This models molecule movement in space.

ii) If the neighbouring cell is not a reactant, there will be@&8o | | i si on

iif) If the neighbouring cell is a reactant, a reaction wil occur with a probabilty

defined by the corresponding rate constant.

DThis collision is modelled through a 180° change in direction by multiplying the
selected neighbour update cooadéssby -1. This can be readiy seen by choosing any
set of coordinate updatess@*s+s) from Figure 2.2 and mukiplying them b$. The

resulting coordinate updates wil correspond to a neighbouring cell on the opposite side
of the 3D square. A colisn thus results in the selection of another neighbouring cel,
nonrandomly this time, and applying the same set of rules with the only change that
should the new neighbour cell stil be ameactant, the reference cell would retain its
identifier (i.e the selected molecule would not change posttion) for that generation.
Because the distance moved by a particle is always 1 grid, there is a perfect momentum

conservation upon colision.
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Neighbour-independent rules.These rules are applied indedently of the states of
neighbouring cells. In CASSMI, there are three main general rules which fall under this

category.

i) Zero-order reactions. Involve the seeding of new molecules into empty
spaces of the CA grid every iteration with a vdefined prolbiity. These

rules are executed at the start of the generation loop.

ii) First order reactions. Executed after a cell has been randomly selected.
Involve the conversion of the selected cell into a single, multiple or no

products with a given probability.

17)] Events. The alteration of molecular abundances or reaction rate constants
(probabiiity of occurrence) to model an acute perturbation of the system at a

userdefined generation.

Note that for any reaction that produces products, these can take thef place o
neighbouring cell, the reference cell, both or alternatively a randomly chosen empty
space in the CA grid in the case of zendler reactions or Events. If no products result
from a reaction then the reactant cell(s) are assigned a state of O §papdy). The

rules of the mukkscale model are manually specified (see Section 6.2.2).

Other rules. Itis important to note that CASSMI models molecules in a closed system.
That is, upon reaching the edges of thespace that defines the CA grid,afmolecule
moves outside the grid, it wil undergo a 2806lision. Molecular simulations in

CASSMI are thus simulated as an ideal gas enclosed in a container. In trecateili

model, cells outside the CA grid are simply ignored as neighbours.
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Random selection.There are five main settings in which CASSMI wil perform a

random selection:

1. To select the indices of a reference cell.

2. To select a random neighbour of a given reference cell.

3. To select the random indices for the seedihgewv molecules produced by

zerc-order reactions and Events.

4. To establsh whether a molecule moves at any given iteration.

5. To establish whether two neighbouring cells wil affect each other (i.e.

whether molecules react at any given collgion

Settings 1, 2 and 5 also apply to the nudiale model.

I n setting number 1) a O0Reference Matrixo6 of

dimensions as the CA{) is created and permutated with a zeroes matrix of the same

di mensions uandpery fundli@nt dsaldsdized. The objective of this was

to create a matrix of unique, randomly distri

datasamplefuncton would be used to randomly select numbers, without replacement,

from t he 0Raeadamd thdiad and ird@subdunctions used to retrieve

the indices of the selected number from the
was iterated in a loop to generate a matrix of randomly selected indices that would
encompass all the coodi nates of the CA and not repeat.
matrix is generated inside the generation loop of the CA and thus changes in each

simulation iteration. The secondary, <slection loop just involved iterating through

the elements of thigenerated matrix of random indices. This method was also

employed to randomly select seeding indices within constrained regions of the CA grid.

I n setting nunaddunctior? i usedNoealow dobadusiform probability
of selection amongsall possibilities. A random numbegwould be generated between
0 and 1. Because there are 26 different neighbours in a Moore neighbourhood, different

condttions are specified:
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Where the value for theeigh parameter is the array entry of the aforementioned

Neighbourhoodmatrix.

For setting number 3) if the molecules wéxeing seeded uniformly this would simply
involve performing a random permutation
matrix and sampling from the resulting permuted matrix. Such a permutation would be
performed every iteration of the main generatioap to vary the location of the ROS

seeding. Otherwise, the same method as setting 1) is used.

In CASSMI, settings number 4 and 5 aim to model the relative mobilty and reactiity

of the molecules involved in the simulation. The upper reference valumofoiity is

one movement with probabiityy p every generation iteration. The upper reference
value for reactiity is instantaneous reaction {ugelate) with probabiity) p upon
colision between reactant molecules. Relative probabilities for meletwobility P,

and reactivity P« are derived from the normalisation of usksfined rate constants.

Thus, for any given molecule, at any particular tteration, a movement or a reaction upon
molecule encounter in space is modeliadough a uniform random miber generator
function rand producing a numbeb such that a movement event or a reaction event

wil occur ff:
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In the case of the mulicale model, this format of uniform random number generation
wil also determine the occurrence of interactions (the execution of hddaken cells

(if neighbour dependent) or within cells (if neighbondependent).

2.1.2 CASSMI 1 Cellular Automaton based Spatial Simulator of Molecular
Interactions

CAS S MI is a 3D Lattice Gas Cellul ar Aut omat on
Mat !l ab ( Mantch Wo rNast i which simMiaies bi@cBefniéa) reactions as

the result of the Brownian motion of reactant spedieg. usail z e d mol ecul es ar e

simul at e du rbiyt-saiszasee pgaedom walk in a Moore neigh
perfect el asedc btownavat hes. cUpon encounter I n
with a probability derived from the normali sati

substrate mol ecwlléssiresultiaspun aB8Quments all o

combined shnenbdtitvenmovfement speed, percentage
percentage spatial |l ocalisation.
CASSMI Input

CASSMI is caled as a sevamgument function from the Matlab command window
(Figure 2.3). Folowing this, further interfacing is required with CASSMI thgb the
command window to specify the number of molecular movements to be run in each
simulation and whether visualisation of the simulated molecules is desired (Eidure

The simulator requires atemplate excel fle as an input specifying:
Mandatory iformation (columns A to J)

i) Molecule names

ii) Initial abundances

iii) Diffusion constant

iv) Diffusion normalisation

V) Reactants ( max: 2)

Vi) Rate constant

vi)  Rate constant normalisation

viii)  Products (max: 2)
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OMol ecule namesd must be consios template. t hr ot
CASSMI is casesensitive to this input and errors may arise from the presence of blank
spaces. 6l nitial abundancesd r-dlusives t o p
integers. Diffusion normalisation intakes a numerical input [1|2[&rev[1] wil
normalise the values by the d#fid@chmeliandn r at
Turner, 2004, [2] wil normalise the values to the highest diffusion constant provided

and [3] will intake the provided values directly without any raisation. The resulting

difusion constants become the probabilties that the speciied molecules wil move on a
particular generation. Rate constant normalisation has the same normalisation format as
the diffusion normalisation with the sole differend®&ttfor input [1], the provided rate

constant values are normalised by a diffusliorited rate (18M™*s?). Note that to

employ normalisation type [1] the defined constants should be of the same units as
specified. A maximum of two reactants and twodarcts are allowed, with first and

zeroth order reactions requiring empty cells to be defined (&8s Figure 2.5 for an

example)
Optional information (columns K to P)

i) Localised species

i) Percentage localisation
iii) Spatial end (max: 2)
iv) Events

V) New Value for Eent

vi) Generation of Event

The percentage localisation of the defined localised species refers to an axial percentage
so that the inttial posttion of such molecules wil be randomly assigned to indices within

the grid enclosed by (§)°; where C is the usalefined percentage localisation and N

is the axial length of the entire grid. Note that the default setting involves molecules
having a random uniform distribution acr
numerical input [1|2] which correspornd opposite but symmetrical ends of the lattice.

The |l ast three columns <correspond to infc
settings. CASSMI only supports Events in the format of an addition of molecules of a

given species into the grid or theeadition of a rate constant value. The alteration of a

47



rate constant value in an Event must be referenced through the reaction ritigber

2.6), where the reaction number is the row number in the excel sheet minus one.

Note that even if information grovided within the input excel template on relative
diffusion speeds, localsed molecules or Events, these wil not be incorporated into the
simulation settings unless the corresponding input arguments on caling the CASSMI
function activate these setthgie; are defined as 1). By default, the probability of a
onestep movement for a molecule in any given generation is 1 and molecules are

seeded with uniform probabiity across all the possible sites within the entire grid.

Warkspace
fx »» crssMI| Name
CA55MI (filename, Percentagelccupancy, PercentageOvercrowding, BelativeMovement, Localisation, similations, Eventa)

More Help..,
I

Figure 2.3 CASSMI inputarg me nt s . OFi l enamed must be a stri
name of the template excel file containing information on all the reactions to be

simulated. This file must be | ocated in the s
intakes a numerical input in theranfje0 < x and deefinjnes the size of the 3D

lattice relative to the total number of molecules to be simulated.
6PercentageOvercrowdingd inf@k@sxaak num@f i cal
determines what percentage of the resulting 3D lattice wilbdcupied by nereactant
(overcrowding) molecul es. 0 Rel @li]fontteMo Vv e ment 0
respective deactivation/activation of heterogenous probabilities of molecule movement

every generation. O0Loc al]l[D|Hfortthe cespéctive nt akes a nu
deactivation/activation of constrained initial molecule distributions as defined in the

input file. 6Si nzerd iateger asrasdnericab inpathosetthea n o n

number of repeats of e aiothkesainumericad ihpylh t o be r u
for the respective deactivation/activation of generati@pendent changes defined in

the input file.
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@

Command Window
>> CASSMI ('GenericRedox',25,50,0,1,100,0)
Number of molecular movements to be run?
100
Do you want to visualise particle movement? Y/N
N

® (=

=

Please wait. ..

Figure 2.4. An example of a
CASSMI run. In this case,
CASSMI will read the
reactions specified in the
template exddile
60Generi cRedox 6
them100 times with each

individual moleule

undergoing 100 random movents at a 25% percentage occupancy, 50% molecular

overcrowding, no relative diffusion, accounting for initial spatial localisation defined in

the inpu file without taking into account any Events.

Figure 2.5. Example of randatory input required for a simulation in CASSMI.

Figure 2.6. Example of optionahput required for a simulation in CASSMI.
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