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Abstract 

 

Ageing and disease can be understood in terms of a loss in biological homeostasis. This 

will often manifest as a constitutive elevation in the basal levels of biological entities. 

Examples include chronic inflammation, hormonal imbalances and oxidative stress. The 

ability of reactive oxygen species (ROS) to cause molecular damage has meant that 

chronic oxidative stress has been mostly studied from the point of view of being a 

source of toxicity to the cell. However, the known duality of ROS molecules as both 

damaging agents and cellular redox signals implies another perspective in the study of 

sustained oxidative stress. This is a perspective of studying oxidative stress as a 

constitutive signal within the cell. In this work a computational modelling approach is 

undertaken to examine how chronic oxidative stress can interfere with signal processing 

by redox signalling pathways in the cell. A primary outcome of this study is that 

constitutive signals can give rise to a ómolecular habituationô effect that can prime for a 

gradual loss of biological function. Experimental results obtained highlight the 

difficulties in testing for this effect in cell lines exposed to oxidative stress. However, 

further analysis suggests this phenomenon is likely to occur in different signalling 

pathways exposed to persistent signals and potentially at different levels of biological 

organisation. 
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Chapter 1 

 

 Introduction  

 

1.1 Biogerontology: What is biological ageing? 

 

What is ageing? A widely accepted definition for the óageingô phenomenon that takes 

place in most living organisms is  

óthe progressive loss of function accompanied by decreasing fertility and increasing 

mortality with advancing ageô (Kirkwood and Austad, 2000).  

This definition reflects the state of knowledge in the field that aims to elucidate the 

underlying molecular causes of ageing, that is, the field of biogerontology. This 

definition reflects the current state of the field of biogerontology in both what the 

definition says and what it does not say. As stated in the definition, ageing occurs over 

time and is therefore a process. Although this remark may seem trivial, it does imply a 

few features worth of note. Namely the fact that there is a time window to observe and 

probe the phenomenon and secondly, the fact that the phenomenon involves changes 

which are recognisable from a reference point. Related to this is the fact that ageing is 

currently understood as a continuous process. As implicitly stated by the word 

progressive in the definition, the fact that ageing is viewed as a continuous process 

means there is no defined boundary at which an organism starts to age.    

Within this setting, the definition talks about a loss of function. This is the very core of 

the definition and the understanding of the ageing process. The abstract nature of this 

phrase reflects the scope that is necessary to encompass the diverse observations that 

have been made on the ageing process. This is illustrated by the lack of a gold-standard 

ageing biomarker (Martin-Ruiz et al., 2011, Bürkle et al., 2015). The lack of 

specification regarding what function entails is a reflection of first of all the generality 

of the process. Secondly, this phrase states consequence, where the effect of the ageing 

process is an interference with the end purpose of a given biological system. Whatever a 

biological system has evolved to do to, it is somewhat less able to do it as the ageing 

process progresses. The effects of ageing could thus be viewed as a general dissipation 

of evolutionary strategies that ensure organism survival. 
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In an attempt to further contextualise the loss of function statement, two robust 

observations of the ageing process are more specifically defined. There is a decreased 

fertility and increased mortality. Note that the incorporation of these two specifications 

in the definition aims to make the ageing process measurable and quantifiable more than 

attempting to distinguish the ageing process from diseases and pathologies. It is the 

generality of the definition of ageing what makes this process distinguishable from 

diseases which may also increase mortality or decrease fertility with age. Indeed, 

diseases are distinguishable processes because they involve the loss of a specific set of 

functions. All humans will age, but not all humans will develop a particular disease. 

The last two important points to make are on the use of the words óaccompaniedô and 

óadvancingô. The former implies uncertainty regarding the underlying causality of the 

recurrent observations of loss of fertility and increased mortality and furthermore the 

relative timing of such events. It is well established that the ageing process is highly 

heterogeneous in, firstly, the specific functional losses that may be observed and 

secondly, the timing at which such dysfunctionalities may occur (Kirkwood, 2005, 

Passos et al., 2008, Partridge, 2010, Bürkle et al., 2015). The use of the word 

óadvancingô follows from the aforementioned principle of time-dependency of the 

process. However, there is a reason why the word óincreasingô may not be deemed a 

better choice.  The reason is the fact that mortality correlates better with óbiological ageô 

than chronological age (Bürkle et al., 2015). The ageing process may not significantly 

óadvanceô even though time may óincreaseô. 

The current definition of ageing has classed some organisms as being ñimmortalò since 

they show no loss in functional markers, reproductive ability or any increase in 

mortality with chronological time (Archer and Hosken, 2016). Questions have been 

raised on whether the ageing process actually still occurs in these organisms, albeit 

really slowly, and whether this apparent immortality is an artefact of the current 

definition of ageing (Khokhlov, 2014,  Archer and Hosken, 2016,  Singer, 2016). In any 

case, the current dogmas on which the field of biogerontology rests state the dynamic 

nature of ageing, the overall generality of the process and the heterogeneity of 

underlying observations. Within this framework the field of biogerontology has 

attempted to shed light into the underlying process behind the ageing phenomenon by 

asking both why we age and how we age. 
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1.2 Theories of biological ageing 

 

To understand the historical and current development of the field of biogerontology, it 

is useful to understand how biological problems are addressed in the life sciences. 

Tinbergenôs four questions (Bateson and Laland, 2013), which are as pragmatic as they 

are logical, establish four facets to the investigation of a given biological problem (See 

Figure 1.1). Whilst a discussion on the universality of this paradigm (Bateson & Laland 

2013) is beyond the scope of this work, Tinbergenôs four questions provide a useful 

starting point to understand how evolutionary and mechanistic theories of ageing 

overlap with each other.  

 

 

 

 

 

 

 

 

Figure 1.1 Tinbergenôs four questions. A researcher can ask how a given biological 

phenomenon occurs (proximate) or alternatively the researcher may be interested in 

the end purpose of the biological phenomenon, that is, why it takes place (ultimate). 

Proximate questions are associated with enquiries on the nature of mechanistic 

causations in themselves, whether it is an acute response, or a developmental response 

taking place over an organismôs life. Ultimate questions are associated with enquiries 

on a broader (higher order) context, whether that context is a current context or part of 

a life history. Whilst a shift to the right on the table involves the contextualisation of the 

biological phenomenon in the context of time, a shift downwards involves the 

contextualisation of the phenomenon in the context of the environment. It goes without 

saying that the boundaries between the four questions are fuzzy and the questions, non-

exclusive. However, they provide a pragmatic approach to understand biogerontology.  
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1.2.1 Evolutionary theories of ageing 

 

Asking why implies a higher order question regarding the level of abstraction, and 

therefore a higher order (ultimate) answer, than asking how (proximate answer) 

(Bateson and Laland, 2013). In biology, the ultimate higher level entered when seeking 

an explanation to observed phenomena is evolution. In trying to understand why most 

living organisms age, biogerontologists therefore developed evolutionary frameworks to 

make sense of the experimental observations available at the time.  

Ageing was first expressed within an evolutionary framework by August Weismann in 

1882. Weismann viewed ageing as a process selected for by natural selection which 

would remove the old individuals from a population to free resources for the newer 

generations (Weismann et al., 1891). Within this context, ageing is the result of natural 

selection on the population scale rather than at the level of the individual and implies a 

óprogrammed ageingô process. 

The next major breakthroughs in the evolutionary thinking on ageing came in the mid 

twentieth century with Peter Medawarôs Mutation Accumulation (MA) theory of ageing 

(Medawar, 1952) and George Williamôs Antagonistic Pleiotropy (AP) theory of ageing 

(Williams, 1957). Later on, in 1977, Tom Kirkwood would propose the Disposable 

Soma theory (DST) of ageing (Kirkwood, 1977). These are the three main evolutionary 

theories of ageing within the field of biogerontology. Central to the development of all 

theories was the óSelection shadowô concept put forward by John Haldane in 

1941(Haldane, 1941).  

The óselection shadowô concept refers to the decline in evolutionary selection pressure 

with age once an organism has passed its reproductive window. In other words, the 

inability of evolution to select against late-onset, deleterious, traits that do not 

significantly affect an organismôs reproductive ability. The classical example for this 

phenomenon is Huntingtonôs Disease (HD). This disease is caused by a dominant 

negative mutation and so it would be expected that natural selection would have 

selected against individuals with such mutations, yet the disease prevalence in the 

population is relatively high (Bates et al., 2014). However the first symptoms of HD 

commonly start at the age of 40, giving the individual ample time to reproduce and pass 

down the HD alleles. Thus, natural selection is very weak against genotypic changes 

that result in adverse effects later on in organismal life. 
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Mutation accumulation theory is based on the óselection shadowô concept in that 

because germline mutations with late-onset detrimental effects cannot be removed by 

natural selection, a mutational load would be established on the germline which would 

drive the development of a variety of dysfunctionalities at older age.  

Antagonistic pleiotropy theory more specifically builds from the abstract nature of the 

mutation accumulation theory. Williams proposed that natural selection against late-

onset traits is strong enough to provide a selection pressure. This is because more subtle 

phenotypic changes associated with senescence, like a slightly slower pace or slightly 

worse immune system, can occur earlier in the decline of physiological function and 

affect organism survival at a much earlier age than that at which the detrimental 

phenotype is established. Therefore, traits with late-onset detrimental effects must have 

a previous beneficial effect that associates with increased reproductive ability if they are 

to remain within the gene pool of the population.  

The Disposable Soma theory is the least abstract of all the theories in the sense that it 

narrows the causative molecular players to defined functional classifications. This 

theory argues that because organisms evolve in environments with a limited number of 

resources, evolution shapes a trade-off in the resource (energy) allocation between 

reproduction and maintenance and repair processes. The basic premise is that whilst 

reproduction is the ultimate goal of the evolutionary process, the organism has first to 

survive to the reproductive age, and perhaps a little beyond, to care for the new 

offspring until they become autonomous. The result of this evolved trade-off is damage 

accumulation throughout life history as determined by the evolved energy-allocation to 

maintenance and repair processes. The DST can be said to be an instance Life History 

Theory (Selman et al., 2012). 

These three main evolutionary theories of ageing view the ageing process as an 

epiphenomenon, whether arising from a weaker selection past the reproductive period or 

from the selection of traits which maximise reproductive fitness. This is in contrast to 

Weismannôs original view of ageing as a programmed process.   
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1.2.2 Mechanistic theories of ageing 

 

In the 90s, more than 300 theories of ageing had been identified (Medvedev, 1990) but 

only a handful have acquired a critical weight within the field of biogerontology. In the 

late 1950s a number of authors related somatic mutational load to lifespan (Failla, 1958, 

Szilard, 1959). This somatic mutation theory (Morley, 1995) gained strength from the 

observed correlations between DNA repair rates and lifespan, as well as from the aged-

like phenotypes of some strains of mutator mice (Promislow, 1994, Kennedy et al., 

2012).  

In the late 1960s the cross-linking theory of ageing (Bjorksten, 1968) proposed protein 

aggregation as the driving mechanism of loss of functional homeostasis with age. This 

theory would later be further generalised (Terman and Brunk, 2004). Around this time, 

Leonard Hayflickôs discovery of a limited capacity for cells to undergo division 

(Hayflick, 1965) led to the formulation of the telomere loss theory of ageing (Kim Sh et 

al., 2002) out of which would stem the idea that the gradual accumulation of senescent 

cells in tissues can drive a progressive functional loss (Campisi, 2003). Both the somatic 

mutation theory and the telomere loss theory placed the concept of genomic instability 

at the centre of the ageing process. 

By the turn of the century, the immune system and the dysregulation of inflammatory 

factors were introduced as the potential drivers of the ageing phenotype in the inflamm-

ageing theory of ageing (Franceschi et al., 2000). Shortly after, Mikhail Blagoskonny 

argues for a hypertrophy theory of ageing (Blagosklonny, 2006) where the ageing 

process arises as an epiphenomenon of organism developmental programs which 

continue to be  active in old age. The oldest and arguably the most influential theory of 

ageing, however, is the free radical theory of ageing. 

The free radical theory of ageing (FRTA) proposed by Denham Harman (Harman, 

1955) has arguably been the most influential mechanistic theory of ageing. His theory 

suggested that increased production of reactive oxygen species with age would drive the 

ageing process through increased molecular damage, with the end result of a loss of 

functional and structural integrity. This theory displayed the attractiveness of being 

based on a fundamental and irrefutable physical property of ROS molecules, their high 

reactivity, and the fact that they are unavoidably produced endogenously by metabolic 

processes. The concept that random molecular damage would drive the ageing process 
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intuitively fitted the observations on the variability of the ageing process and the 

required gradual loss of homeostasis of biological mechanisms.  

The discovery of superoxide dismutases in the late 1960s by Irwin Fridovich (McCord 

and Fridovich, 1969) proved the evolution of mechanisms against ROS molecules. The 

discovery of antioxidant proteins established a paradigm on the detrimental nature of 

ROS and gave momentum to the FRTA. However, the eventual discovery of the 

physiological functions of ROS and the establishment of the field of óRedox Biologyô 

broke the paradigm of ROS molecules being solely a detrimental by-product of 

metabolism. Since the conception of the FRTA, a wealth of correlative evidence has 

been established in various organisms between molecular oxidative damage and 

lifespan, although some strong criticism of this theory has also been established 

(Kirkwood and Kowald, 2012, Barja, 2013, Vina et al., 2013, Liochev, 2015, Sanz, 

2016). 

Returning to Tinbergenôs four questions, it is apparent that theories on the proximate 

causes of ageing are primarily concerned with mechanisms which may cause a systemic 

interference with cellular functions over a lifetime (Figure 1.2). Such theories originally 

arose as extrapolations of how lower-scale cellular observations could be relevant 

within a whole organism over a whole life time. Meanwhile, whilst the mutation 

accumulation and antagonistic pleiotropy theories arose from higher-scale observations 

of animal populations, the disposable soma theory emerged after a number of the main 

mechanistic theories of ageing had been put forwards. Consequently, DST seems more 

specific and refined regarding the cellular processes relevant to ageing and thus much 

easier to relate to experiments addressing how ageing occurs at the cellular scale.  
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Figure 1.2. A pragmatic classification of the main theories of ageing according to 

Tinbergenôs four questions. Most proximal theories of ageing refer to specific 

mechanisms occurring and being affected over a time scale of an individual life time, 

but only the Hypertrophy theory is an explicitly developmental theory. The most 

abstract evolutionary theories can explain why ageing occurs but are not explicit about 

the mechanism behind the homeostatic decline observed with age. Disposable soma 

theory predicts both why and how ageing occurs without explicitly necessitating a 

specific mechanistic theory since all of them except the Hypertrophy- theories of ageing 

are centred around the concept of random molecular damage. The Programmed theory 

is the only evolutionary theory that views ageing as an acute adaptive response but 

makes no predictions on what the mechanism might be. Notice that the rest of the 

theories account for the arrow of time in some way, consistent with the notion of ageing 

being a continuous dynamic process. Physical theories of ageing are the most abstract 

and encompass all classifications.  
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Whilst these are arguably the mechanistic theories of ageing that gained the most 

momentum, the list is by no means exhaustive (Medvedev, 1990, Tosato et al., 2007). 

The acknowledgement that no single mechanistic theory of ageing convincingly 

explained the plethora of available experimental observations led to the formulation of 

ageing as a network-scale phenomenon (Franceschi, 1989, Kowald and Kirkwood, 

1996, Kirkwood, 2005, Mitnitski et al., 2017). The network theory of ageing arose as a 

prediction from the DST which places random molecular damage as the driver of the 

ageing process and thus would be expected to affect multiple mechanisms 

heterogeneously.  Further attempts at the abstraction and unification of the theories of 

ageing materialised in the form of physical theories of ageing. The most notable 

examples are loss of complexity theory of ageing (Lipsitz and Goldberger, 1992), the 

entropic theory of ageing (Bortz, 1986) and the reliability theory of ageing (Gavrilov 

and Gavrilova, 2001). 

The different mechanistic theories argue for different drivers of the ageing process. 

However, none of these argued drivers of the ageing process has been unequivocally 

resolved into being causal or consequential of the ageing process. Indeed, each theory 

argues that the time-dependent change in the proposed ageing-driver underlies the 

progression of the ageing process. However, the only explanation as to why the ageing-

driver starts changing in the first place is the core concept behind both the MA and 

DST, which argue that random molecular damage can cause stochastic disruptions to 

the homeostatic organisms operating in cells. Reactive oxygen species, as argued by the 

FRTA, are the main molecular players with the physical properties required to cause 

molecular damage. Thus, exploring the mechanisms that underlie cellular redox 

homeostasis seems an intuitive way to understand how damage may accumulate in cells 

to potentially cause a functional decline.  

 

1.3 Understanding biological ageing as a network of hallmarks 

 

It is evident that the ageing phenomenon manifests at both the macroscopic (tissues, 

organ systems, life style, demographicsé) and the microscopic levels (molecules and 

cells). All of the ageing theories explain macroscopic age-related changes in terms of 

microscopic age-related changes. This effectively means that the ageing phenomenon is 

best understood from a bottom-up approach. This does not at all dismiss the utility of 

top-down approaches, since these can direct and constrain research efforts directed at 
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the microscopic level. As a phenomenon, ageing displays a series of hallmarks that span 

multiple levels of biological organisation (Lopez-Otin et al., 2013). Therefore, any 

bottom-up approach to the study of biological ageing must eventually span multiple 

biological scales. 

The proposed hallmarks of ageing at the microscopic level, despite being arguably 

mammalian-centred, provide a good starting point to understand the causal 

interrelations between age-related phenomena observed at the molecular and cellular 

level. The currently proposed nine hallmarks of ageing can be organised into a 

hierarchical causation scheme where primary hallmarks will cause damage, antagonistic 

hallmarks arise as an initial biological response to the effect of primary hallmarks and 

integrative hallmarks are a phenotypic manifestation of chronic changes in antagonistic 

hallmarks. In this scheme, primary hallmarks are exclusively pathological in nature and 

include genomic instability, telomere attrition, epigenetic alterations and loss of 

proteostasis. Antagonistic hallmarks arise as an initial compensatory response to the 

accumulation of damage driven by the primary hallmarks. However, antagonistic 

hallmarks end up contributing to the ageing process when they remain active beyond a 

threshold magnitude and/or time.  Antagonistic hallmarks include deregulated nutrient 

signalling, mitochondrial dysfunction and cellular senescence. The sustained, 

deleterious state of antagonistic hallmarks over time translates into a loss of tissue 

homeostasis and function in the form of integrative hallmarks like stem cell exhaustion 

or altered intercellular communication. 

This framework for understanding the ageing process is undoubtedly useful to map and 

contextualise experimental results. However, it is an oversimplification which seems 

excessively centred in a unidirectional feeding of damage through the levels of 

biological organisation: from individual molecules to cellular pathways, to cellular 

states and up to tissue properties. As the authors themselves point out  (Lopez-Otin et 

al., 2013), the ageing hallmarks are better understood as an integrated interaction 

network across levels of biological organisation (Figure 1.3). With damage placed at the 

centre of any network perturbation in accordance with the current theories of ageing 

(Gladyshev, 2014). 
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Figure 1.3. Biological ageing as a network of hallmarks. The stochastic events of 

molecular damage have the potential to result in a transient or sustained network 

perturbation. In the case of a transient perturbation, the effect of molecular damage is 

diluted out by molecular turnover or cellular repair mechanisms. This perturbation will 

not contribute to the development of the ageing hallmarks. However, some effects of 

molecular damage may become permanent in the system if they are not repaired 

(genomic instability and telomere attrition). The robustness of the genomic structure 

and function allows for the effects of molecular damage to accumulate over time and 

gradually start feeding through the network in the form of altered protein and cellular 

function. When a threshold cell population becomes dysfunctional, this will become 

visible at the level of tissue structure, function and integrity. The interactions amongst 

hallmarks can be complex and self-amplifying/self-stabilisingé(continues next page) 
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éFor example, mutations or an altered local genomic structure can result in proteins 

being unable to perform epigenetic modifications which in turn increases genomic 

instability and promotes aberrant gene expression. Mitochondrial dysfunction can drive 

the cells into a senescent state which is stabilised through the constitutive generation of 

DNA damage foci by increased ROS production. Furthermore, interactions are not 

exclusively bottom-up. Altered tissue structure/function can result in an altered cell 

niche which can interfere with intercellular communication or stem cell differentiation. 

Another example could be an altered hormone secretion within an organ system which 

results in a deficient activation of the necessary responses within tissues of distal 

organs.   

 

But where do ROS and oxidative stress fit in this framework? As previously mentioned, 

ROS have the capacity to cause molecular damage due to their intrinsic reactivity. 

Therefore, oxidative stress would feed into the network at two levels: i) A transient 

stochastic occurrence (acute network perturbation) corresponding to the óMolecular 

Damageô classification. ii)  As a sustained input (chronic network perturbation) through 

self-amplifying or self-stabilising loops (Figure 1.3). Examples of the latter could be the 

ROS-mediated stabilisation of the senescent state or the promotion of mitochondrial 

damage by ROS generated by dysfunctional mitochondria.  The nature of both of these 

types of homeostatic interference are fundamentally different and indeed assume a role 

for ROS and oxidative stress to be as a primary causative agent (i) or a as a secondary 

consequence (ii). In any case, ROS molecules are not the only entity which can promote 

a self-feeding within the network (Figure 1.3). In fact, ROS molecules are not the only 

potential source of stochastic molecular damage (e.g. advanced glycation end-products, 

unfolded proteins, infections, toxic metabolites, radiationé). However, current thinking 

within the field of biogerontology do place ROS as the most plausible source for the 

majority of molecular damage associated with the progression of the ageing process. 
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1.4 Redox signalling 
 

Reduction/Oxidation (redox) reactions involve an electron transfer from a donor 

molecule to a recipient molecule resulting in the oxidation of the donor and the 

reduction of the recipient. In biological organisms there are few molecules that are 

nucleophilic enough to autonomously trigger a redox reaction. These molecules 

typically contain an oxygen atom which may have an unpaired electron (free radical) or 

may have a non-uniform distribution of paired electrons which results in partial changes 

within the molecule (Lushchak, 2014). The general term reactive oxygen species (ROS) 

encompasses small molecules that are autonomously involved in redox reactions 

mediated by the electronegative properties of the oxygen atom within them 

(Winterbourn, 2008).  

The main free radicals (FR) present in biological systems are the superoxide- (O2
.), 

nitric oxide- (NO.) , hydroxyl- (OH.) and peroxynitrite-  (ONOO.) radicals 

(Winterbourn, 2008, Marengo et al., 2016, Wang and Hai, 2016). Of these, only the first 

two are actively produced by the cell. OH. is produced as the accidental by-product of 

the reaction of free cellular iron with hydrogen peroxide (H2O2) and ONOO. is 

generated as an accidental by-product of the reaction of NO. with O2
. (Schieber and 

Chandel, 2014, Wang and Hai, 2016). H2O2 is the main non-FR ROS found within cells 

and is involved in two-electron transfer reactions as opposed to the single-electron 

transfer reactions of FRs (Winterbourn, 2008,Veal and Day, 2011, Marengo et al., 

2016). Due to the lack of an unpaired electron, H2O2 is less reactive than FRs and 

consequently has a longer half-live and diffusion distance (Winterbourn, 2008). These 

physical properties lie behind the association of FRs with unspecific molecular damage 

and the association of non-FR ROS molecules with physiological signalling functions.  

ROS have been long-known to be constitutively produced by the electron transport 

chain (ETC) during respiration as a result of an electron leak from the ETC to the high 

oxygen environment of the mitochondrial matrix ( Lushchak, 2014, Marengo et al., 

2016, Wang and Hai, 2016) .  However, the discovery of the ubiquity of NADPH 

oxidases across cell types and the evolutionary tree established that cells contain 

enzymes dedicated exclusively to the production of ROS, namely superoxide and 

hydrogen peroxide (Jiang et al., 2011, Holmstrom and Finkel, 2014). A paradigm shift 

occurred where ROS stopped being viewed as an inevitable and unwanted by-product of 

respiration (Veal and Day, 2011, Lushchak, 2014, Schieber and Chandel, 2014). It 
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became apparent that cells had evolved to use ROS as signalling molecules which can 

activate pathways and trigger cellular responses through the chemical modification of 

amino acid residues within target proteins. It is commonly cysteine residues within 

proteins which will react with ROS in the cellular environment, with a nucleophilic 

attack to the thiol/thiolate group resulting in the formation of a short-lived sulfenic 

group which will then resolve into a chemical bond (Holmstrom and Finkel, 2014, 

Schieber and Chandel, 2014). 

Despite the currently accepted role of ROS as signalling molecules, it is still established 

that excessive levels of these molecules can cause cellular damage and death  

(Lushchak, 2014, Wang and Hai, 2016,). This is in accordance with the observation that 

cells contain many families of abundant antioxidant proteins (Marengo et al., 2016, 

Wang and Hai, 2016). Catalase scavenges hydrogen peroxide as so do peroxidase 

enzymes such as peroxiredoxin isoforms and glutathione peroxidase isoforms. 

Peroxidases are electron donors that rely on their subsequent reduction by the concerted 

action of cellular reducing systems involving glutathione and NADPH molecules as 

well as thioredoxin and reductase proteins. Superoxide dismutase isoforms convert 

superoxide into the less reactive hydrogen peroxide molecule.  There are, additionally, 

non-enzymatic antioxidant compounds like Vitamins C/E or Coenzyme Q or uric acid. 

The variety of antioxidant protein families that have evolved within cells and the 

abundance at which they have evolved to be expressed reflects the importance of 

maintaining low basal ROS levels to maintain cellular function and survival.  Also 

emphasising this is the observation that a common downstream consequence of a redox 

signalling event is the overexpression of antioxidant proteins (Espinosa-Diez et al., 

2015, Marengo et al., 2016) . 

The double-edged nature of ROS molecules is reflected by both the number of 

processes these molecules regulate and the number of pathologies that are associated 

with deleteriously-elevated levels of these molecules (Holmstrom and Finkel, 2014), a 

state loosely referred to as oxidative stress (Sies, 2015).Whilst redox signalling 

modulates a wide variety of physiological processes including insulin signalling (Rains 

and Jain, 2011), the inflammatory response (Lei et al., 2015), apoptosis (Sinha et al., 

2013), vasodilation (Madamanchi and Runge, 2013), proliferation (Truong and Carroll, 

2012), migration (Schroder, 2014), the stress response (Jiang et al., 2011)é high basal 

ROS levels are associated with cancer (Manda et al., 2015), diabetes (Wang et al., 
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2013), cardiovascular disease (Madamanchi and Runge, 2013), neurodegenerative 

diseases (McBean et al., 2015), and ageing (Sanz, 2016). 

 

1.5 Redox signalling pathways in mammalian cells 

 

In mammalian cells, there are a variety of signalling pathways that have been shown to 

respond to changes in the intracellular levels of ROS. However, in most cases, the redox 

sensor molecule that acts as the starting point of the signal transduction process is not 

yet identified (Winterbourn, 2015). This is significant since the identification of the 

upstream ROS sensor clarifies whether the pathway in itself senses ROS molecules in 

the environment, and is therefore a redox signalling pathway, or alternatively if it is 

activated via crosstalk with other redox signalling pathways.  

Within pathways that directly sense changes in intracellular ROS levels through the 

direct oxidation of signalling molecules, a further distinction can be made between 

pathways that are redox-modulated and pathways that are redox-activated (Oliveira-

Marques et al., 2009).  In redox-activated pathways, changes in intracellular ROS levels 

are a sufficient stimulus to activate the pathway and trigger a response. In redox 

modulated pathways this same stimulus is not in itself enough to cause pathway 

activation but may facilitate or enhance signalling caused by a second stimulus. 

Changes in ROS levels are thus an insufficient requisite for signalling to occur in redox-

modulated pathways. 

In some cases, the redox sensor molecule is a signalling node, a protein which cannot be 

assigned to any one particular signalling pathway according to current knowledge but 

rather lies at the intersection of multiple signalling axes. Such would be the example of 

Ref-1 (Thakur et al., 2014). Without any canonical regulatory structure to associate 

these proteins to, it is not always feasible to investigate systemic properties involving 

signal processing and homeostatic disruption. 

The main redox signalling pathways in mammalian cells which are arguably redox 

activated and related to canonical structures with identified redox sensors can be said to 

be the ASK1-, NFəB-, HIF1- and Nrf2- signalling pathways. 
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1.5.1 ASK1 signalling pathway 

 

Apoptosis signal-regulating kinase 1 (ASK1) is a MAPKKK family cytosolic protein 

involved in cell-survival signalling (Hayakawa et al., 2012, Soga et al., 2012). ASK1 is 

able to homo-oligomerize into high molecular mass structures through homophilic 

binding between its C-terminal coiled-coil (CCC) domains and homophilic binding 

between N-terminal coiled-coil (NCC) domains to form the ASK1 signalosome.  

Although ASK1 is able to oligomerize constitutively, it can only do so through its CCC 

domains since the binding of thioredoxin molecules to the NCC domains prevents the 

alignment and oligomerisation at the N-terminal of the protein. Such binding provides 

steric hindrance to the activatory phosphorylation required to activate the ASK1 

signalosome.  

Upon a rise in intracellular oxidant levels, two active cysteines in the thioredoxin 

molecules will undergo oxidation to form a disulphide bond. The formation of this 

disulphide bond promotes the detachment of the thioredoxin molecules from the ASK1 

NCC domains which will now become free to align and homo-oligomerize. This 

activatory homo-oligomerisation event will promote further oligomerisation of ASK1 

molecules into more stable higher-mass signalosomes and furthermore result in the 

autocatalytic phosphorylation at the NCC domain throughout the ASK1 signalosome.  

This active signalosome can then recruit a variety of proteins depending on the cellular 

context of the oxidative signal. For example, whether the oxidative stress is part of an 

inflammatory response or occurs in conjunction with calcium signalling. The outcome 

of ASK1 activation is the subsequent phosphorylation of stress-associated protein 

kinases (SAPKs) like JNK or p38 which then feed the signal through integrated kinase 

networks that ultimately result in a cell decision process of whether the cell survives or 

undergoes apoptosis.  

Once the oxidative stress disappears from the cellular environment through antioxidant 

scavenging, reduced thioredoxin molecules will be replenished by the action of 

reductases and will be able to bind the NCC domains to destabilise and disrupt the 

ASK1 signalosome so that it is no longer active. Additionally, a negative feedback loop 

has been identified where ASK1 activation by an oxidant stimulus results in a 

subsequent increase in protein phosphatase 5 (PP5) levels which actively 

dephosphorylates the activatory phosphor/threonine residue in the ASK1 NCC domain 

to destabilise and render the signalosome inactive (Morita et al., 2001). 
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1.5.2 NFəB signalling pathway 

 

The combinatorial binding between the members of the nuclear factor kappa-light-

chain-enhancer of activated B cells (NFəB) family of proteins gives rise to a variety of 

multi-protein complexes referred to as NFəB transcription factors. These transcription 

factors are involved in cellular responses to stress and inflammation (Hoesel and 

Schmid, 2013, Cildir et al., 2016). At rest, these transcription factors are kept inactive 

in the cytosol by the binding of members of the IəB protein family. Such binding event 

will not only sequester the nuclear localisation sequence (NLS) of the transcription 

factor but will also promote its ubiquitination and subsequent proteosomal degradation.  

Whilst the signalling pathway can be activated by a variety of stimuli through various 

growth factor and inflammatory receptors, activation signals will converge on the 

activation of the IKK protein complex in the canonical pathway of NFəB. The IKK 

complex is an IəB kinase which promotes the ubiquitination and subsequent 

degradation of its IəB substrate. The phosphorylation of IəB proteins will lead to the 

release of NFəB allowing the recognition of the NLS and its import into the nucleus. 

Amongst the transcriptional targets of NFəB are genes that encode IəB proteins, which 

become upregulated. The transcriptional upregulation of IəB genes by NFəB creates a 

negative feedback loop through the ability of IəB proteins to bind nuclear NFəB and 

sequester it back into the cytosol to reset the signalling system. The transcription of 

other proteins like A20 will also contribute to the strength of the negative feedback 

loop. 

This negative feedback produces NFəB oscillations which allows the pathway to 

encode information in the frequency domain as well as in the magnitude domain (Wang 

et al., 2012b). Whilst a non-canonical mechanism of NFəB signalling has been 

identified, it is comparatively less-well characterised (Cildir et al., 2016). 

There is abundant evidence in the literature that the NFəB pathway can be affected by 

H2O2 treatment. It is unclear, or at least context-dependent, whether increased oxidant 

levels have an inhibitory or activatory effect on the pathway (Morgan and Liu, 2011). 

Some authors argue the pathway not to be redox-activated but redox-modulated 

(Oliveira-Marques et al., 2009). ROS have been proven to be able to affect the 

phosphorylation status of IKK and IəB in addition to the binding affinity of the NFəB 

transcription factor to its target genes. It is thus apparent there remains substantial 
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uncertainty on how the oxidant signal feeds into the NFəB signalling network and what 

is the resulting outcome.  

 

1.5.3 Nrf2 signalling pathway 

 

The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) protein is a basic leucine zipper 

domain transcription factor considered to be the master-regulator of the cellular 

detoxification response (Tebay et al., 2015, Loboda et al., 2016). In its basal state, it is 

bound by Keap1 molecules in the cytosol to form a protein complex which promotes the 

ubiquitination and proteosomal degradation of Nrf2. The Keap1 molecule has a high 

number of cysteine residues along the length of the protein that are prone to oxidation 

by intracellular ROS. 

An oxidation event causes a change in the conformation of the Nrf2-Keap1 complex so 

that Keap1 can no longer detach from Nrf2 after its ubiquitination. Consequently, under 

conditions of elevated oxidant levels in the cellular environment there is a lesser 

abundance of free Keap1 inhibitors to bind the constitutively ï synthesized Nrf2 

protein. This will result in a greater proportion of free Nrf2 molecules in the cytosol 

which will be translocated into the nucleus through the recognition of the NLS sequence 

which has been argued to be facilitated by a prior phosphorylation event. Within the 

nucleus it will transcribe a plethora of genes coding for proteins with antioxidant and 

detoxifying functionalities.  

GSK3ɓ has been established to be a negative regulator of nuclear Nrf2 levels via 

promoting its recognition and degradation by the TrCP protein (Hayes et al., 2015). It is 

still unclear, however, if this negative regulation via TrCP is mediated by GSK3ɓ 

directly or through an intermediate molecule like Fyn (Cuadrado, 2015). Under 

conditions of oxidative stress, GSK3ɓ is temporarily inhibited by a phosphorylation in 

its serine 9/serine 21 residues by activated Akt. It is hypothesized this inhibition may 

occur through the deactivation of PTEN by ROS (Cuadrado, 2015). This temporal 

deactivation facilitates the accumulation of Nrf2 in the nucleus. The eventual relief in 

the inhibition of GSK3ɓ, presumably through a delayed phosphorylation in its tyrosine 

216 residue (Zhang et al., 2013), promotes the degradation of free Nrf2 through TrCP.  

Whilst Nrf2 has been reported to be able to increase the expression of Keap1 (Kaspar 

and Jaiswal, 2010), which in turn has been reported to translocate to the nucleus and 
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extract Nrf2 back into the cytosol (Niture and Jaiswal, 2009), the cell- and stimulus- 

specificity of these observations are still unclear. It is thus apparent that whilst the 

activation of the Nrf2 pathway is relatively well-characterised, there is still considerable 

uncertainty regarding the molecular basis and relative importance of the negative 

regulatory loops in this pathway. 

 

1.5.4 HIF1 signalling pathway 

 

Heat Inducible Factor 1 (HIF-1) is a transcription factor involved in the cellular 

response to hypoxia (Masoud and Li, 2015, Balamurugan, 2016). Under normal oxygen 

conditions (normoxia), the HIF1 alpha subunit is actively hydroxylated in its proline-

564 residue by prolyl-4-hydroxylase (PHD) protein isoforms 2 and 3. This post-

translational modification will be recognised by VHL proteins which will bind to HIF1a 

and promote its ubiquitination and subsequent proteosomal degradation. Furthermore, 

there is a second regulatory layer involving the hydroxylation of the TAD domain in 

HIF1a by FIH which prevents the binding of cofactors CBP and p300 to the HIF1 

protein. 

Both FIH and PHD2/3 are hydroxylase enzymes that contain a catalytic iron centre that 

reacts with the oxygen substrate. Under oxygen-limiting conditions (hypoxia), these 

reactions are believed to become substrate-limited to the point where HIF1a 

hydroxylation is relieved. It has additionally been suggested that the ROS generated by 

mitochondria under hypoxic conditions can react with the iron catalytic centres of the 

hydroxylase proteins to inhibit their activity (Chandel et al., 2000). Indeed, ROS 

generation by NOX proteins can be a positive feedback mechanism in HIF activation 

through the inhibition of the iron catalytic centres of hydroxylase proteins (Nanduri et 

al., 2015, Balamurugan, 2016). The reduced hydroxylation allows HIF1a proteins to 

escape VHL-binding and translocate to the nucleus. There, HIF1a will form a 

transcriptional complex with HIF1b, CBP and p300 and transcribe target genes. 

Amongst the genes transcribed by HIF1 are those coding for PHD2/3 proteins, thus 

creating a negative feedback loop (Bagnall et al., 2014). Additionally, HIF1 activation 

has been reported to increase the expression of a range of micro-RNAs which reduce the 

translation of HIF1 protein (Bartoszewska et al., 2015). Although a large number of 

positive and negative feedback loops have been reported in this pathway (Prabhakar and 
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Semenza, 2012), most of them remain to be established as conserved, canonical 

mechanisms which apply across cell lines and experimental contexts. Additional 

complexity arises from the observation that HIF1 may be activated in the absence of 

hypoxia through the mTOR pathway (Masoud and Li, 2015), which in itself can be 

modulated by ROS. This activation occurs through increased HIF1 protein expression 

by elF-4E which may also be induced through the MAPK pathway. 

 

1.5.5 Common features  

 

An apparent feature of all of the main redox signalling pathways (Figure 1.4) is that the 

oxidant signal results in the disruption of an inhibitor-activator complex that would 

otherwise result in the degradation of the activator molecule. The result of this 

disruption is an increased abundance of free activator which needs to be stabilised by a 

subsequent posttranslational modification and/or molecule binding. In most cases the 

executed function results in a delayed negative feedback loop through the increased 

transcription of the inhibitory molecule. In the case of Nrf2 signalling however, the 

main negative regulator acts through post-translational modification and is activated 

independently of Nrf2, in a negative feedforward loop (Figure 1.4a).  

It is useful to stress at this point that multiple post-translational feedback mechanisms 

have been reported for all pathways. Indeed, it has been argued that stress signalling 

pathways require both fast-acting post-translational feedback loops and late-acting 

transcriptional feedback loops for successful adaptation to the environmental conditions 

experienced by cells (Zhang et al., 2015b). However, these reported mechanisms have 

still not been established as part of the canonical signalling axis of these pathways. 

The fact that the signalling systems need to reset to pre-stimulus conditions in order to 

allow for the next signalling event in the cell requires that the inhibitor-activator 

complex is restored to basal levels. This can require the modification of the activator 

into a form that can be identified by the inhibitor (HIF1) or the regeneration of the 

inhibitor (ASK1, NFəB, Keap1). 

It is of interest to note that the HSF1 pathway which responds to cellular stress through 

the sensing of misfolded proteins or through its activation by other upstream pathways, 

follows similar conserved principles to the redox signalling pathways in Figure 1.4 

(Jiang et al., 2015b, Masoud and Li, 2015). Under unstimulated conditions HSF1 is also 
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kept within an inhibitory complex with HSP70/90 which promotes its degradation. 

Under the presence of unfolded proteins in the cellular environment, HSP70/90 

molecules will preferentially bind to them making HSF1 escape the HSP70/90-mediated 

degradation. After a subsequent phosphorylation, HSF1 translocates to the nucleus and 

will increase the expression of HSP70/90 inhibitor proteins. 
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Figure 1.4. (Previous page). Canonical interaction networks for four major redox 

signalling pathways in mammalian cells. AOX = Antioxidant. a) Nrf2 signalling 

pathway. b) NFəB signalling pathway. Note that asterisk indicates activated form of a 

molecule. c) HIF1 signalling pathway. Note that O = oxygen.  d) ASK1 signalling 

pathway.  

 

1.6 Redox homeostasis and ageing 

 

Whilst the loss of redox homeostasis manifested as oxidative stress has been proven to 

occur with age in a variety of tissues (Dai et al., 2014, Cunningham et al., 2015), the 

functionality of redox signalling within an ageing context has received scarce attention. 

Redox signalling, at least through some pathways, can be seen to become dysfunctional 

in multiple tissues with age (Zhang et al., 2015a). However, the most comprehensive 

investigations seem to have been performed in aged skeletal muscle tissue in the context 

of exercise and sarcopenia. 

 

1.6.1 ROS in exercise and skeletal muscle ageing 

 

A good physiological example of the complex role of ROS in health and ageing is seen 

in skeletal muscle during exercise and the process of sarcopenia. Physical exercise is a 

powerful, positive lifestyle intervention where ROS are thought to play a pivotal role in 

the resulting beneficial effects (Radak et al., 2008). Skeletal muscle produces ROS and 

reactive nitrogen species (RNS) during contraction (Powers and Jackson, 2008, Jackson, 

2015, Ji, 2015) which are not only necessary for force generation (Reid et al., 1993, 

Jackson, 2015) but also mediate an adaptive response involving the upregulation of 

antioxidants and heat shock proteins via redox-sensitive transcription factors (McArdle 

et al., 2001, Vasilaki et al., 2006b, Jackson and McArdle, 2011, Jackson, 2015).  The 

observation that elevated ROS have also been associated with muscle wasting during 

inactivity (Kondo et al., 1993, Powers et al., 2012) and ageing (Aoi and Sakuma, 2011), 

illustrates the recurring paradigm in redox biology regarding the double-edged nature of 

these molecules.  

The characterization of this behaviour is of special relevance to sarcopenia, a condition 

defined as the loss of muscle mass and function with age, which affects a very 
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significant proportion of the older population (Fielding et al., 2011). Such pathology is 

associated with several comorbidities and resulting high healthcare costs (Janssen et al., 

2004). Whilst on the one hand chronic oxidative stress is a hallmark of sarcopenia 

(Fulle et al., 2004), physical exercise is the only available intervention which to some 

degree ameliorates this condition (Fielding et al., 2011, Cobley et al., 2015, Joseph et 

al., 2016).  

Previous work on the redox-mediated adaptive responses during exercise in skeletal 

muscle revealed such signalling axes became aberrant with age in mice (Vasilaki et al., 

2006b, Jackson and McArdle, 2011, McDonagh et al., 2014b,  Ji, 2015) and humans 

(Cobley et al., 2015, Done et al., 2016). Although redox signalling dysfunctionality in 

skeletal muscle is well-established, the underlying mechanistic basis remains to be 

elucidated (Jackson, 2016). The reported redox signalling aberrancies in aged skeletal 

muscle and indeed many other tissues can be classed as a lack of response activation, 

reduced response activation or a constitutive response activation. However, the 

resolution provided by these observations is very limited since readings of redox 

activation are almost exclusively single time-point measurements. Thus, if a redox 

response is triggered more slowly but to the same magnitude, this will translate into a 

no-response or reduced-response conclusion if a single time-point measurement is taken 

(Figure 1.5). Conversely, studies reporting no change in response activation based on 

single time-point measurements could be misreporting an underlying stronger and faster 

activation that has decayed substantially by the time of measurement. In fact, the time of 

measurement itself is often arbitrarily chosen. Alas, there is a substantial uncertainty 

over the exact nature of the age-related redox dysfunctionalities.      
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Figure 1.5. Misleading conclusion derived from single time-point measurements. Redox 

activation in many aged tissues has been reported to be dampened or altogether 

abolished. However these readings are taken from single time-point measurements that 

could actually be reporting a fundamentally different behaviour, in this case, no change 

in activation magnitude but a delayed activation. Thus, current resolution into the 

nature of redox dysfunctionality is very limited. 

 

1.6.2 Redox homeostasis in cellular senescence 

 

Cells are the basic units of life, the most fundamental level at which life arises as a 

phenomenon (Mazzarello, 1999). It follows from this that the simplest model of the 

ageing phenomenon is the óageing cellô. Cellular senescence, a state of irreversible cell-

cycle arrest induced under conditions of cellular stress, has been recurrently employed 

as a model of cellular ageing (Campisi, 2013, Bhatia-Dey et al., 2016, Lujambio, 2016). 

Not only have senescent cell populations been proven to display a gradual accumulation 

of damaging molecules and molecular damage (Lawless et al., 2012, Dalle Pezze et al., 

2014), but they have also been shown to display an increased heterogeneity in a variety 

of functional markers (Passos et al., 2007) . Cellular senescence has been linked to a 

number of age-related dysfunctionalities in a variety of tissues (Childs et al., 2015). 

However it was only recently that the accumulation of senescent cells was explicitly 

proven to actively promote the decline of physiological function and limit organism 
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life-span (Baker et al., 2011, Baker et al., 2016). As with any model, the question 

remains as to how representative it is of the process under study. It is important to note 

that non-dividing post-mitotic cells like neurons also undergo cellular ageing without 

entering a senescent state. Indeed, one can find in the literature references to a 

ósenescent-like stateô of post-mitotic cells (van Deursen, 2014).  

Being a stress-induced response, entry into cellular senescence can be promoted by 

elevated levels of ROS or DNA damage, amongst others (Campisi, 2013, Correia-Melo 

and Passos, 2015) . Thus, understanding cellular senescence as a simple model of 

cellular ageing requires a perspective that includes the maintenance and disruption of 

redox homeostasis (Correia-Melo and Passos, 2015, Chandrasekaran et al., 2016). 

Indeed, elevated ROS levels have been shown to be key drivers of the state of cellular 

senescence within a cell and the inter-cellular induction of senescence (Correia-Melo et 

al., 2014). In the former case, ROS can form a positive feedback loop through the 

constitutive induction of DNA damage that stabilises the senescent state of the cell. 

ROS are also part of the senescence-associated-secretory-phenotype (SASP) which can 

also form a positive feedback loop at the cellular scale through the senescence-induced 

senescence of bystander cells. Like with many aged tissues (Maher, 2005), senescent 

cells display a disrupted redox state (Correia-Melo and Passos, 2015, Chandrasekaran et 

al., 2016). However, how the cell transitions into a state of redox imbalance is unclear. 

Recent efforts to back-track this homeostatic disruption point towards mitochondria 

being the causal agents (Correia-Melo et al., 2016). Although the underlying question 

remains as to how mitochondria lose their functionality over time.  

In any case, cellular senescence is a consistent model of gradual homeostatic disruption, 

of relevance to the ageing process, which can be understood through the dysregulation 

of ROS levels. Unfortunately, the mechanistic resolution provided by experimental data 

so far does not allow the untangling of the chicken-or-egg conundrum of whether ROS 

are the driver or the result of the age-related loss or cellular homeostasis.  
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1.7 Understanding ageing through systems biology 

 

1.7.1 Systems biology 

 

Systems biology is a discipline that evolved around the concept that certain biological 

observations can only be explained by considering the interactions between the 

elements of the biological system. This is as opposed to the so-called reductionist 

approach that has predominated in biological research, involving the explanation of 

biological phenomena in terms of the activity of single molecular players. Systems 

biology is thus a contrasting holistic approach which arose when the reductionist 

approach had generated enough knowledge on the elements of biological systems to 

start linking them together into networks. Such networks were revealed to be able to 

display new properties that none of the individual constituent molecular entities 

displayed alone (Kitano, 2002b, ElKalaawy and Wassal, 2015). 

Biological systems tend to be intrinsically complex, involving a myriad of molecular 

interactions that ensure that a biological response occurs with the right strength, at the 

right place, the right time and with the right duration. Thus, the complexity of biological 

systems does not come exclusively from a complicated topology of interactions but also 

from a complicated behaviour of these interactions in time and space (Kholodenko, 

2006, Ganesan and  Zhang, 2012). Although there has been a long-standing appreciation 

of the necessity of studying biological systems holistically, it was not until 

computational methods evolved that systems biology was able to address this level of 

complexity as a discipline (Janes and Lauffenburger, 2013).  

The development of network inference algorithms allowed the analysis of medium- and 

high- throughput experimental data to establish statistical relationships between 

measured biological entities and shed light on the underlying interaction topology of 

biological systems (de Silva and Stumpf, 2005, Kirk et al., 2015). For the first time, a 

biological response could be studied comprehensively through óOmicô technologies. To 

account for the dynamic properties of the system in addition to the underlying topology, 

a different type of methodology is required. Namely, one that allows the simulation of 

the biological system in time and space (Mast et al., 2014). Within systems biology, the 

adoption of these techniques is referred to as systems modelling (Aldridge et al., 2006, 

Ganesan  and  Zhang, 2012).   
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1.7.2 Systems modelling 

 

Systems modelling aims to reproduce the behaviour of the biological system being 

studied in an abstracted computational framework. This computational framework can 

be mathematical, where simulation involves solving the equations that model the 

biological system;  algorithmic, where simulation involves the execution of a set of 

rules aiming to represent causal elements of the biological system;  or a hybrid 

framework involving both of such approaches (Fisher and Henzinger, 2007). Within 

these classifications, there are a wide variety of modelling frameworks, each with 

specific conveniences and drawbacks (Machado et al., 2011, ElKalaawy and Wassal, 

2015). The evolution of both simulation platforms and computational performance has 

allowed for the simulation of increasingly complex biological systems, a notable 

example being simulation across levels of biological organisation in what is termed 

multi-scale modelling (Dada and Mendes, 2011).  

Any model, be it computational or not, is an abstraction of the real system under study 

and as such relies on a number of assumptions. In systems modelling these assumptions 

often abstract uncertainty on parameter values, topological arrangements or spatial 

distributions (Kirk et al., 2015). Whilst the first requirement for a computational model 

is that it reproduces the available experimental observations relevant to the biological 

system under study, it should additionally aim to provide an explanation for the data and 

ultimately generate novel predictions to be further tested experimentally. This iteration 

between experiments informing computer models which generate new predictions to be 

tested experimentally has been referred to as the systems biology cycle (Kitano, 2002b).  

 

1.7.3 Network motifs 

 

Pioneering work led by Uri Alon uncovered specific interaction patterns amongst 

network components which occurred at a much higher frequency than observed in 

randomly-generated networks (Milo et al., 2002, Alon, 2007). These ónetwork motifsô 

were not only seen in the E.coli transcriptional regulation map (Shen-Orr et al., 2002), 

but also in other biological and non-biological networks (Milo et al., 2002). This work 

shed light into the convergent evolution of ñdesign principlesò which mapped 

directional interaction topologies to specific dynamic, information-processing, 

properties. It furthermore suggested the possibility that the intricately complex 
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biological networks could be dissected and understood in terms of simple interaction 

circuits coupled together (Beber et al., 2012). 

Networks motifs were originally identified from the analysis of bacterial transcriptional 

networks and comprised simple regulations (SRs), feedforward loops (FFLs), single 

input modules (SIMs) and dense overlapping regulons (DORs). Simple regulations refer 

to auto-regulatory loops, i.e. self-activation or self-inhibition. This would be the case of 

a transcription factor that activates or inhibits its own transcription. Feedforward loops 

were identified as three-node motifs with an upstream network element which has a 

time-separated dual interaction with a downstream network element (Figure 1.6). 

Because of the each of the node-interactions in this network topology can either be 

activatory or inhibitory, eight-classes of FFLs can arise. Different types of FFL have 

been attributed different information-processing properties such as response 

acceleration, pulse generation and delay introduction to confer memory. SIMs and 

DORs refer to the regulation of a group of functionally-related target genes by a single 

transcription factor or a combinatorial set of transcription factors respectively. 

Because the initial analysis of network motifs took place in the transcriptional 

regulation network of E.coli, FFLs were formalised as three-node motifs. This is 

because interaction distance between gene regulatory elements in prokaryotes tends to 

be small. However, theoretical and experimental analysis has demonstrated such 

structures can still display the same information-processing properties when elongated 

to include more nodes (Sauro and Kholodenko, 2004, Alon, 2007, Ferrell, 2013, O'Hara 

et al., 2016). This is of particular relevance to protein-modification based signalling 

networks in cells (Cloutier and Wang, 2011, Kolch et al., 2015). Coupled motif 

structures (CMS) have also been identified to be overrepresented in biological networks 

and furthermore associated with biological status in case of cancer (Hsieh et al., 2015). 
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Figure 1.6. Types of feedforward loop (FFL) motifs. Adapted from Alon (2007). 

 

Whilst the work undertaken by Uri Alon was the first systematic identification of 

network motifs in biological networks, and it introduced the concept of FFLs, it was not 

the first identification of simple circuits underlying the functional dynamics observed in 

biological systems. Indeed, previous theoretical work on understanding biological 

systems as self-regulating cybernetic systems led to the prediction and subsequent 

validation of interaction circuits, the most notable example being the repressilator 

(Elowitz and Leibler, 2000). These types of circuits are based on the concept of 

feedback, a sequential and directional interaction of a downstream network element 

with the upstream input network element. Again, this interaction can be activatory 

(positive feedback) or inhibitory (negative feedback) and can give rise to a number of 

dynamic properties like oscillations, pulses, accelerators, amplifiers and bistability 

(Brandman and Meyer, 2008). Feedback loops underlie higher order network properties 

such as robustness, adaptive behaviour and memory (Brandman and Meyer, 2008, 

Ferrell, 2013, Kolch et al., 2015). 
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The concept of network motifs can be criticized for establishing an a priori causal 

relationship between topological structure and function based on an insulated network 

representation (Ingram et al., 2006, Beber et al., 2012). In this context, "insulated" refers 

to the fact that network motifs do not exist in isolation but as part of dense interaction 

networks with cross talk at multiple levels and timescales in addition to intrinsic and 

extrinsic noise in the signalling systems. Indeed, some of the functionalities attributed to 

some network motif structures depend on the underlying parameters (Ingram et al., 

2006), which are a significant source of uncertainty in themselves. In this context, the 

functionality attributed to a network motif, ex. response accelerator, can be altered or 

non-existent within the context of a larger network with multiple signals and noise 

(Ingram et al., 2006, Hsieh et al., 2015).  

It seems apparent that insights can be gained by abstracting complex processes into 

network motifs or motif-like structures despite their underlying uncertainties. An 

example is the abstraction of the entire mTOR network into a simple topology that 

retained the relevant dynamic observables (Dalle Pezze et al., 2014). Their employment 

is useful from a theoretical perspective in that they provide a good exploratory starting 

point to begin to answer questions which remain unaddressed due to the limited 

resolution of current experimental methodologies.   

 

1.7.4 Systems modelling of ageing processes 

 

The acknowledgement of the multi- factorial nature of the ageing process (Kirkwood, 

2011, Lopez-Otin et al., 2013, Gems, 2015) calls for methods that address this level of 

complexity. Namely, those that fall within the field of Systems Biology (Kitano, 2002a, 

Kirkwood, 2011, Kriete et al., 2011). Indeed, concepts like health, disease and ageing 

refer to homeostatic states which by definition encompass an interaction network. As 

previously discussed, ageing can only be understood as a time-evolving process, 

pointing to systems modelling as a potential approach to further our understanding of 

the homeostatic dysfunctionalities observed to develop with age. 

There are a number of methodological advantages on adopting a systems modelling 

approach. The development of a computational model requires the researcher to be 

rigorous in the formalisation of the underlying biological knowledge and this often 

allows the identification of knowledge-gaps in the literature. By accounting for multiple 
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factors and making qualitative as well as quantitative predictions, computer models can 

potentially also inform experimental design and additionally provide a quick and low-

cost óexploratory-platformô as an alternative to doing so through more costly and 

lengthy experimental protocols. Furthermore, some emergent system behaviours, such 

as oscillations, hysteresis or robustness, can only be explained through modelling 

formalisms (Janes and Lauffenburger, 2013, Mast et al., 2014).  

The main argument, however, for the employment of computational models is that there 

is no other methodological alternative that explicitly accounts for the complexity of 

system-level biological interactions in time and space. Indeed, it is notoriously difficult 

to keep track of so many molecular interactions and operating feedback mechanisms 

over time and space through experimental protocols or the human mind alone. 

Computer models provide a standardized and extendable method for formalising 

existing knowledge or mapping new information onto. Moreover, computational models 

do not only provide comprehensive simulation platforms to further our mechanistic 

understanding of biological systems, but can also advance our conceptual understanding 

of the biological problems and observations of interest (Mast et al., 2014, Mc Auley and 

Mooney, 2015, Mc Auley et al., 2017). The range of computational models of ageing 

processes developed to date reflects how systems modelling has found its place within 

biogerontological research (Kirkwood, 2011, Kriete et al., 2011, Mc Auley and 

Mooney, 2015, Mooney et al., 2016, Mc Auley et al., 2017).  

 

1.7.5 Computational models of redox signalling 

 

There are a number of computational models in the literature which explicitly model 

redox signalling processes in a variety of biological contexts (Pillay et al., 2013). The 

majority of these are kinetic models. These models represent reactions as a series of 

mathematical relationships between parameters like molecule abundances and kinetic 

constants (Km, Vmax, Kforwards, Kbackwardsé). The mathematical relationships are usually 

established kinetic equations, or mathematical derivations thereof, of which the most 

known examples are the Michaelis Menten equation and the mass action equation 

(Sauro, 2011).  

Redox signalling models in the literature can be broadly divided into Ordinary 

Differential Equation (ODE) -based models (Adimora et al., 2010,Gauthier et al., 2013, 
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Benfeitas et al., 2014, Tomalin et al., 2016), which are the majority , and Partial 

Differential Equation (PDE) -based models (Sobotta et al., 2013, Lim et al., 2016), 

which are a substantial minority. Indeed, available computational models of the main 

mammalian redox signalling pathways are based on coupled ODEs (Bagnall et al., 

2014, Pronk et al., 2014, Williams et al., 2014, Khalil et al., 2015). This methodological 

bias is likely to reflect the computational limitations arising from the higher 

dimensionality of coupled PDEs as opposed to coupled ODEs (Materi and Wishart, 

2007).  

Computational models of redox signalling have benefited from the conserved kinetic 

properties of antioxidant enzymes across eukaryotes (Netto and Antunes, 2016), which 

allows for the cross-applicability of the computational models in different biological 

settings. Parameters derived from the work of Adimora et al (Adimora et al., 2010) have 

been used in almost a dozen redox signalling models. It is worth noting, however, that 

the abundances, interactions and rate constants of redox sensors are mostly unknown 

and likely to have a much higher variation between species and cell lines (Brito and 

Antunes, 2014, Netto and Antunes, 2016). Indeed, the kinetic rate constants of the 

oxidation of transcription factors and phosphatase enzymes are only crudely estimated 

(Brito and Antunes, 2014, Marinho et al., 2014).  

In fact, the oxidation rate constants of redox effectors by physiological oxidants is 

surprisingly low, most being within a range of 10-200 M/s (Brito and Antunes, 2014, 

Marinho et al., 2014, Winterbourn, 2015). If the calculated rate constants of redox 

effector oxidation hold true, then the question is immediately raised of how can an 

oxidant ever reach its redox effector target if it must survive scavenging by a much 

more abundant and faster-reacting antioxidant system. In other words, how can a redox 

effector activation reaction by an oxidant compete with oxidant scavenging reactions by 

an antioxidant system which is 102 ï104 times more abundant and reacts 103 ï106 times 

faster? (Marinho et al., 2014, Winterbourn, 2015, Pillay et al., 2016). 

Although it has been argued that effective redox signalling can still occur despite the 

competition with the antioxidant system (Marinho et al., 2014), from a kinetic 

perspective, this ócompetitive oxidationô paradox seems difficult to reconcile as a 

generic signalling strategy by the cell.  Looking at redox computational models, it is 

evident that estimated redox effector oxidation parameters are likely to be an 

overestimation arising from the parameter estimation procedure. The fitting of 

simulation output to experimental data means that the estimated rate constant is 
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phenomenologically accurate but at the expense of losing mechanistic resolution. The 

underlying real reaction processes become encoded in an estimated rate constant which 

although models one reaction within the model, it does so at a rate which corresponds to 

multiple reactions in the real biological system. 

The literature has proposed as a solution to this ñlow reactivity paradoxò two possible, 

but not mutually exclusive, explanations. The first one proposes the targeting of redox 

effector proteins to the vicinity of ROS generation sites (Winterbourn, 2015). The 

consequence of this is that at small cellular locations (for example the vicinity of 

NADPH Oxidases) there is a higher local concentration of reactants. Under these 

conditions, the reaction for the activation of the redox effector becomes more significant 

and can compete with oxidant scavenging. Whilst there is ample evidence of this 

localised redox signalling (Fisher, 2009, Woo et al., 2010) there are numerous proteins 

which are redox-regulated and yet show no sign of specific localisation within the cell.  

Another mechanism put forward as an explanation for this apparent paradox is the 

existence of redox-relays (Sobotta et al., 2015, Netto and Antunes, 2016) where 

peroxidases will oxidize a redox effector upon becoming oxidized themselves. In this 

case, these scavenging systems do not compete with redox effectors for a reaction with 

oxidants but rather facilitate these reactions. This is since such scavenging molecules 

are more abundant and more reactive with ROS and so act as better ROS sensors. This 

elegant mechanism has been known to occur in prokaryotes and recently proved to 

occur in mammalian cells (Sobotta et al., 2015). However, there is yet no proof for 

redox relays being responsible for the oxidation of most of mammalian transcription 

factors. This may be due to the experimental difficulty of stabilising and isolating 

unstable oxidation intermediates which are involved in such redox relays. 

It is thus evident that redox signalling models encode a substantial uncertainty regarding 

both the parameter values and the topological structure of the network. Although this 

uncertainty can be reduced through the use of parameter estimation procedures, in both 

parameter calibration and model structure selection, it does render the models specific 

to the experimental setup the data was derived from. In this context, there are no 

published models of redox signalling that explicitly deal with an ageing system.  
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1.8 Aims 
 

It is evident that within the field of biogerontology, available experimental data does not 

provide a high enough resolution to separate many observations into primary or 

secondary causality and break the chicken-and-egg conundrum.  At the very limit of 

experimental resolution, computational simulation can be used as an explanatory and 

exploratory tool of rational scientific enquiry that draws on available knowledge to 

provide new insights.  

A theoretical effort could provide a means to educate our intuition on the ageing process 

and make sense of current experimental data, as well as potentially direct new 

experimental efforts. The critical question at the cornerstone of ageing research 

concerns why do biological homeostatic systems fail with age. Current ageing theories 

point towards the abstract concept of stochastic damage as the cause, but this 

generalisation may prove too vague to understand ageing at a higher mechanistic 

resolution (Gladyshev, 2014). 

Oxidative stress has the potential to drive a loss of system homeostasis, whether as a 

primary cause or as a secondary consequence of the ageing process. It is the main line 

of enquiry of this work to theoretically examine mechanisms in which oxidative stress 

might interfere with the regulatory machinery of cells. Further to this, an examination of 

the ability of any identified molecular dysregulations to percolate through levels of 

biological organisation would provide an important contextualisation. Furthermore, it is 

an aim of this work to test, once interferences with homeostatic function have been 

characterised, whether such dysfunctionalities can be fully or partially reversed in 

principle. The objectives of this work are thus as follows: 

i)  Investigate how oxidative stress can feed into biological networks to disrupt 

homeostatic function. 

 

ii)  Investigate how such loss of homeostatic function could percolate across 

biological scales (molecules to pathways to cells to tissue). 

 

iii)  Investigate whether such homeostatic disruptions could be, to some degree, 

reversed. 
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The work undertaken as part of this thesis has been organised into the following 

structure. After the introductory Chapter 1, Chapter 2 presents the Materials and 

Methods used and developed to perform the research presented in the thesis. Chapter 3 

presents the main theoretical observation from which all other work in the thesis stems 

from. Chapter 4 presents work that theoretically aims to test for the generality of the 

observation. Chapter 5 presents work that aims to experimentally validate the 

observation. Chapter 6 presents work that aims to theoretically contextualise the 

observation in the complexity of in vivo biology. Chapter 7 and Chapter 8 are a 

discussion and conclusion, respectively, on all of the presented work. The entirety of the 

work presented in this thesis, both experimental and theoretical, has been carried out by 

the author although there is once instance of published work being used in this thesis as 

indicated in the supplementary text  (Section 9.3). 
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2 . Chapter 2 

 

  Materials and Methods 

 

2.1 Computational Methods  

 

2.1.1 Cellular Automaton (CA) framework  

3 .  

4 . When modelling the interactions between biological entities, be it molecules or cells, it 

is often informative to capture the inherent stochasticity in the system. This uncertainty 

at a given point in time often arises from the probabilistic nature of the interaction 

between system components in a spatial context. For example, there is stochasticity in 

reactant A and reactant B colliding together due to random motion and there is a 

separate source of stochasticity on whether they will react together once they collide. At 

the cellular level, a cell might undergo a state-change with differing probabilities 

depending on its spatial position within a lattice or depending on the nature of 

neighbouring cells. Cellular automata have been successfully used in the past to 

stochastically model both molecular and cellular interactions (Schnell and Turner, 2004, 

Dada and Mendes, 2011). Furthermore, this methodology is intuitive to couple to a 

system of differential equations in order to create a multi-scale model (Dada and 

Mendes, 2011). 

5 .  

Molecular simulations were carried out in a purpose-built simulator named CASSMI 

(Cellular Automaton ï based Spatial Simulator of Molecular Interactions). However, 

both the molecular dynamics simulations and the cellular population simulations were 

modelled through the use of a core cellular automaton framework. Such framework is 

implemented as follows. 

Grid definition. An initial grid of three dimensions is specified as a three-dimensional 

matrix of zeroes with each dimension defined by vectors of length N where the number 

of total cells in the grid corresponds to N3. This three dimensional matrix is the grid 

structure of the cell automaton (CA matrix). In CASSMI, the N-value is derived so that 

a user-defined spatial occupancy is reached by the total number of molecules to be 

simulated. In the multi-scale model, N is manually assigned. 
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Cell assignation. When the modelled entities are to be distributed uniformly across the 

CA grid, they are encoded as vectors of a length corresponding to their initial amount, 

with all entries in each vector being the corresponding unique entity identifier. In all 

cases an identifier of zero corresponds to empty space. Random seeding of entities into 

the N3 zeroes matrix is performed via Matlabôs  randperm  function which allows the 

random permutation of a target matrix A using the elements of a given matrix B in the 

following form: 

A(randperm(numel(A), numel(B))) = B 

The localised assignation of entities within the CA grid requires the definition of a 

constraining factor C, where C<N , to define the spatial constraint in the seeding to  

over one dimension. This results in a localisation defined by  corresponding to the 

fraction of the total space in the CA grid where the entity can be found at generation = 

0. CASSMI automatically derives C from the user-defined percentage localisation for 

the relevant species. It is important to note that in all cases of localised assignation, the 

randomly selected matrix coordinate has to be unoccupied. Thus, no explicit 

overwriting is allowed within the initial cell assignation steps.  

The main loops. Once the starting grid structure of the CA has been defined, the 

simulation proceeds to enter the main loop (termed óGeneration loopô) which defines the 

rule-updating iterations in the model. The generation loop models time implicitly. In 

CASSMI, each iteration corresponds to one movement (rule-defined update) for all 

molecules in the grid. In the multi-scale model, the generation loop corresponds to days. 

The generation loop contains in its structure a second loop which allows for the 

selection of each individual cell to apply the update rules. At the end of each generation 

loop, a complete scan of the whole CA grid is performed and the counters for each 

identifier updated and stored. 

Neighbour selection. As in all CA models, the update of the state of each individual 

cell is dependent, in one way or another, on neighbouring cells. With regards to the 

definition of which cells are classed as being óneighboursô, Mooreôs neighbourhood 

with an ὶ ρ distance was adopted in the CA, where any neighbouring cell in touch 

with the reference cell is considered a neighbour. In a two dimensional matrix 

represented as a grid this would mean a given selected cell would have 8 neighbours as 

shown in Figure 2.1. This number would be 26 in a 3D matrix (See Figure 2.2). 
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Figure 2.1. 2D representation of cell neighbourhoods most commonly employed in Cell 

Automaton models. Left Panel shows the von Neumann neighbourhood which defines as 

neighbours (blue) the cells with significant contact with the reference cell (pink). Right 

panel shows the Moore neighbourhood which defines as neighbours any cell which is in 

contact with the reference cell.  

 

The Moore neighbourhood was adopted over the von Neumann neighbourhood to allow 

for a wider range of potential interactions between individual entities and their 

surroundings. The greater degree of interaction freedom makes the simulation of the 

random motion of particles more realistic in CASSMI. Furthermore, with regards to the 

multi-scale model, cells in such close proximity should be expected to influence each 

other despite having a minimal surface-surface contact.  

If a given cell in a 3D CA is defined by coordinates CA(h, i, j) any neighbour will be 

defined by CA(h ° s, i ° s, j ° s) where s is a coordinate translation that can be a 0 or a 

1. This geometric relation arises because a neighbour cell has to be in contact with the 

reference cell so it can only have a maximal coordinate separation of 1 coordinate unit 

in any given dimension. Because the neighbour cell may be on the same plane as the 

reference cell, the coordinate shift in a given dimension can be 0. The plus and minus 

signs of s represent any two opposite arbitrary planes in which a neighbour cell can be 

located with respect to a reference cell. These geometrical relations are illustrated in 

Figure 2.2. 
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On every iteration of CASSMIôs generation loop, after a random cell is selected, a 

random neighbour of the selected reference cell is then chosen. This is achieved by 

creating an array with all possible coordinate updates, CA(h ° s, i ° s, j ° s)  which 

define the neighbour coordinates as a translation from the coordinates of the reference 

cell (as shown in Figure 2.2). Such matrix would contain 26 coordinate updates that 

define Mooreôs neighbourhood in a 3D space and thus be as follows: 

 

Neighbour=  [-1 -1 -1;  0 -1 -1;   1 -1 -1;  1 0 -1  ; 1 1 -1;  

                        0 1 -1;  -1 1 -1;   -1 0 -1;   0 0 -1;  -1 -1 0;  

   0 -1 0;  1 -1 0;    1 0 0;     1 1 0;     0 1 0; 

 -1 1 0; - 1 0 0;   -1 -1 1;   0 -1 1;   1 -1 1;  

  1 0 1;  1 1 1;    0 1 1;    -1 1 1;   -1 0 1;  0 0 1]; 

 

The selection of a random neighbour thus simply involves selecting a random set of 

coordinate updates (±s ±s ±s) from the Neighbour matrix and transforming the reference 

cell coordinates by the s translation values contained within. The selection of a random 

neighbour simulates the random movement of a randomly selected molecule in 

CASSMI. Once the neighbour is known then a set of rules are applied to update the 

state of the reference cell and/or the neighbour cell depending on their respective states 

(identifiers). In the multi-scale model, each cell has the potential to affect all of its 

neighbours and so instead of selecting a single neighbour coordinate at random, all 

coordinates are iterated through. 
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Figure 2.2. Moore Neighbourhood defined in 3D space. The translation of the reference 

cell (pink) into any of the 26 neighbouring (white) cells is defined by a fixed set of 

coordinate updates (s s s) specified in the individual grids. Hence, a cell movement 

would be modelled as the random selection of one of the 26 possible coordinate 

transformations to then update the reference cell location from CA(h ,i , j) to CA(h±s 

,i±s , j±s).  
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Neighbour-dependent rules. These rules are commonly applied as a function of the 

states of neighbouring cells after a specific cell has been randomly selected. In 

CASSMI, which simulates Brownian motion of particles, there are three general rules 

that can be applied once a reference cell and a neighbouring cell have been randomly 

selected.  

i)  If the neighbour cell is empty, the molecule moves into neighbour cell. This 

rule is executed by the swapping of identifiers between the neighbouring cell 

and the reference cell. This models molecule movement in space. 

 

ii)  If the neighbouring cell is not a reactant, there will be a 180o collision כ 

 

iii)  If the neighbouring cell is a reactant, a reaction will occur with a probability 

defined by the corresponding rate constant.  

 
 This collision is modelled through a 180° change in direction by multiplying the כ

selected neighbour update coordinates s by -1. This can be readily seen by choosing any 

set of coordinate updates (±s ±s ±s) from Figure 2.2 and multiplying them by -1. The 

resulting coordinate updates will correspond to a neighbouring cell on the opposite side 

of the 3D square. A collision thus  results in the selection of another neighbouring cell, 

non-randomly this time, and applying the same set of rules with the only change that 

should the new neighbour cell still be a non-reactant, the reference cell would retain its 

identifier (i.e. the selected molecule would not change position) for that generation. 

Because the distance moved by a particle is always 1 grid, there is a perfect momentum 

conservation upon collision. 
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Neighbour-independent rules. These rules are applied independently of the states of 

neighbouring cells. In CASSMI, there are three main general rules which fall under this 

category. 

 

i)  Zero-order reactions. Involve the seeding of new molecules into empty 

spaces of the CA grid every iteration with a user-defined probability. These 

rules are executed at the start of the generation loop.  

 

ii)  First order reactions. Executed after a cell has been randomly selected. 

Involve the conversion of the selected cell into a single, multiple or no 

products with a given probability.  

 

iii)  Events. The alteration of molecular abundances or reaction rate constants 

(probability of occurrence) to model an acute perturbation of the system at a 

user-defined generation. 

 

Note that for any reaction that produces products, these can take the place of the 

neighbouring cell, the reference cell, both or alternatively a randomly chosen empty 

space in the CA grid in the case of zero-order reactions or Events. If no products result 

from a reaction then the reactant cell(s) are assigned a state of 0 (empty space). The 

rules of the multi-scale model are manually specified (see Section 6.2.2).  

 

Other rules. It is important to note that CASSMI models molecules in a closed system. 

That is, upon reaching the edges of the ὔ space that defines the CA grid, if a molecule 

moves outside the grid, it will undergo a 180o collision. Molecular simulations in 

CASSMI are thus simulated as an ideal gas enclosed in a container. In the multi-scale 

model, cells outside the CA grid are simply ignored as neighbours.  

 

 

 

 

 

 

 



44 

 

Random selection.  There are five main settings in which CASSMI will perform a 

random selection: 

  

1. To select the indices of a reference cell. 

 

2. To select a random neighbour of a given reference cell.           

 

3. To select the random indices for the seeding of new molecules produced by 

zero-order reactions and Events.        .    

 

4. To establish whether a molecule moves at any given iteration. 

 

5. To establish whether two neighbouring cells will affect each other (i.e. 

whether molecules react at any given collision). 

 

Settings 1, 2 and 5 also apply to the multi-scale model.  

 

In setting number 1) a óReference Matrixô of ascending numbers with the same 

dimensions as the CA (N3) is created and permutated with a zeroes matrix of the same 

dimensions using Matlabôs  randperm  function  as described. The objective of this was 

to create a matrix of unique, randomly distributed, integers. On a further step Matlabôs  

datasample  function would be used to randomly select numbers, without replacement, 

from the óRandom Matrixô created and the  find  and  ind2sub  functions used to retrieve 

the indices of the selected number from the original óReference Matrixô. This last test 

was iterated in a loop to generate a matrix of randomly selected indices that would 

encompass all the coordinates of the CA and not repeat. The resulting óRandom Indicesô 

matrix is generated inside the generation loop of the CA and thus changes in each 

simulation iteration. The secondary, cell-selection loop just involved iterating through 

the elements of this generated matrix of random indices. This method was also 

employed to randomly select seeding indices within constrained regions of the CA grid. 

In setting number 2), Matlabôs  rand  function is used to allow for a uniform probability 

of selection amongst all possibilities. A random number q would be generated between 

0 and 1.  Because there are 26 different neighbours in a Moore neighbourhood, different 

conditions are specified: 
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Where the value for the neigh  parameter is the array entry of the aforementioned 

Neighbourhood  matrix. 

For setting number 3) if the molecules were being seeded uniformly this would simply 

involve performing a random permutation of the already generated óRandom Indicesô 

matrix and sampling from the resulting permuted matrix. Such a permutation would be 

performed every iteration of the main generation loop to vary the location of the ROS 

seeding. Otherwise, the same method as setting 1) is used. 

In CASSMI, settings number 4 and 5 aim to model the relative mobility and reactivity 

of the molecules involved in the simulation. The upper reference value for mobility is 

one movement with probability ὴ ρ every generation iteration. The upper reference 

value for reactivity is instantaneous reaction (rule-update) with probability ὴ ρ upon 

collision between reactant molecules. Relative probabilities for molecule mobility Pm 

and reactivity Pk  are derived from the normalisation of user-defined rate constants. 

Thus, for any given molecule, at any particular iteration, a movement or a reaction upon 

molecule encounter in space is modelled through a uniform random number generator 

function rand producing a number ὓ such that a movement event or a reaction event 

will occur if: 

 

 π ὓ ὖ  

 π ὓ ὖ 
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In the case of the multi-scale model, this format of uniform random number generation 

will also determine the occurrence of interactions (the execution of rules) between cells 

(if neighbour dependent) or within cells (if neighbour- independent). 

 

2.1.2 CASSMI ï Cellular Automaton based Spatial Simulator of Molecular 

Interactions 

CASSMI is a 3D Lattice Gas Cellular Automaton (LGCA) simulator developed in 

Matlab (MathWorks Inc., Natick, MA, 2016) which simulates biochemical reactions as 

the result of the Brownian motion of reactant species. Equal-sized molecules are 

simulated by a single-unit step-size random walk in a Moore neighbourhood under 

perfect elasticity within closed boundaries. Upon encounter in space molecules react 

with a probability derived from the normalisation of rate constants. Encounter of non-

substrate molecules results in 180o
 collision. Input arguments allow for the individual or 

combined simulation of relative movement speed, percentage overcrowding, and 

percentage spatial localisation. 

 

CASSMI Input  

CASSMI is called as a seven-argument function from the Matlab command window 

(Figure 2.3). Following this, further interfacing is required with CASSMI through the 

command window to specify the number of molecular movements to be run in each 

simulation and whether visualisation of the simulated molecules is desired (Figure 2.4). 

The simulator requires a template excel file as an input specifying: 

Mandatory information (columns A to J) 

i)  Molecule names 

ii)  Initial abundances 

iii)  Diffusion constant 

iv) Diffusion normalisation 

v) Reactants ( max: 2) 

vi) Rate constant 

vii) Rate constant normalisation 

viii)  Products (max: 2) 
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óMolecule namesô must be consistent throughout the simulation information template. 

CASSMI is case-sensitive to this input and errors may arise from the presence of blank 

spaces. óInitial abundancesô refers to particle numbers and so must be zero-inclusive 

integers. Diffusion normalisation intakes a numerical input [1|2|3] where [1] will 

normalise the values by the diffusion rate of an ñaverage proteinò, 10ɛm2/s (Schnell and 

Turner, 2004), [2] will normalise the values to the highest diffusion constant provided 

and [3] will intake the provided values directly without any normalisation. The resulting 

diffusion constants become the probabilities that the specified molecules will move on a 

particular generation. Rate constant normalisation has the same normalisation format as 

the diffusion normalisation with the sole difference that for input [1], the provided rate 

constant values are normalised by a diffusion- limited rate (108 M-1 s-1).  Note that to 

employ normalisation type [1] the defined constants should be of the same units as 

specified. A maximum of two reactants and two products are allowed, with first and 

zeroth order reactions requiring empty cells to be defined as 0 (See Figure 2.5 for an 

example). 

Optional information (columns K to P) 

i)  Localised species 

ii)  Percentage localisation 

iii)  Spatial end (max: 2) 

iv) Events  

v) New Value for Event 

vi) Generation of Event 

 

The percentage localisation of the defined localised species refers to an axial percentage 

so that the initial position of such molecules will be randomly assigned to indices within 

the grid enclosed by (C·N)3 ; where C is the user-defined percentage localisation and N 

is the axial length of the entire grid. Note that the default setting involves molecules 

having a random uniform distribution across the entire CA grid. óSpatial Endô requires a 

numerical input [1|2] which correspond to opposite but symmetrical ends of the lattice. 

The last three columns correspond to information on óEventsô within the simulation 

settings. CASSMI only supports Events in the format of an addition of molecules of a 

given species into the grid or the alteration of a rate constant value. The alteration of a 
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rate constant value in an Event must be referenced through the reaction number  (Figure 

2.6), where the reaction number is the row number in the excel sheet minus one.  

Note that even if information is provided within the input excel template on relative 

diffusion speeds, localised molecules or Events, these will not be incorporated into the 

simulation settings unless the corresponding input arguments on calling the CASSMI 

function activate these settings (ie; are defined as 1). By default, the probability of a 

one-step movement for a molecule in any given generation is 1 and molecules are 

seeded with uniform probability across all the possible sites within the entire grid. 

 

 

Figure 2.3. CASSMI input arguments. óFilenameô must be a string referring to the 

name of the template excel file containing information on all the reactions to be 

simulated. This file must be located in the same directory. óPercentageOccupancyô 

intakes a numerical input in the range [0< x Ò100] and determines the size of the 3D 

lattice relative to the total number of molecules to be simulated. 

óPercentageOvercrowdingô intakes a numerical input in the range [0 Ò x < 100] and 

determines what percentage of the resulting 3D lattice will be occupied by non-reactant 

(overcrowding) molecules. óRelativeMovementô intakes a numerical input [0|1] for the 

respective deactivation/activation of heterogenous probabilities of molecule movement 

every generation. óLocalisationô intakes a numerical input [0|1] for the respective 

deactivation/activation of constrained initial molecule distributions as defined in the 

input file. óSimulationsô intakes a non-zero integer as a numerical input to set the 

number of repeats of each simulation to be run. óEventsô intakes a numerical input [0|1] 

for the respective deactivation/activation of generation-dependent changes defined in 

the input file.  
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 Figure 2.4. An example of a 

CASSMI run. In this case, 

CASSMI will read the 

reactions specified in the 

template excel file 

óGenericRedoxô and simulate 

them100 times with each 

individual molecule 

undergoing 100 random movements at a 25% percentage occupancy, 50% molecular 

overcrowding, no relative diffusion, accounting for initial spatial localisation defined in 

the input file without taking into account any Events.  

 

Figure 2.5. Example of mandatory input required for a simulation in CASSMI. 

 

 

 

 

 

 

Figure 2.6. Example of optional input required for a simulation in CASSMI. 

 






































































































































































































































































































































































































