
i 
 

 

Evolution of hydrogenosomes in anaerobic ciliates 

 

William H. Lewis 

 

 

 

 

 

 

 

 

Doctor of Philosophy 

Institute for Cell and Molecular Biosciences 

 

 

 

 

 

 

March 2017  



ii 
 

Abstract 
 

Within ciliates (protozoa of the phylum Ciliophora), anaerobic species are 

widespread and typically possess organelles which produce H2 and ATP, called 

hydrogenosomes. Hydrogenosomes are mitochondrial homologues and are a 

product of evolutionary convergence, having been found in wide-ranging and 

diverse anaerobic eukaryotes. Ciliates seem to have evolved hydrogenosomes on 

multiple occasions from the mitochondria of their aerobic ancestors. The 

hydrogenosomes of the ciliate Nyctotherus ovalis were studied in detail previously 

but little is known about the hydrogenosomes from other ciliate species. In the 

present study seven species of ciliate, Cyclidium porcatum, Metopus contortus, 

Metopus es, Metopus striatus, Nyctotherus ovalis, Plagiopyla frontata and 

Trimyema sp. were cultured and their hydrogenosomes were investigated using 

genomic and transcriptomic sequencing from whole genome amplifications from 

single and small numbers of isolated cells. The data were then used to reconstruct 

putative hydrogenosome metabolic pathways. Components of these pathways are 

typically encoded by the ciliate nuclear genomes but Nyctotherus ovalis, Metopus 

contortus, Metopus es, Metopus striatus and Cyclidium porcatum have also 

retained mitochondrial (now hydrogenosomal) genomes which were sequenced 

for the first time. The most complete of these genomes were from Nyctotherus 

ovalis and Metopus contortus. These have both retained genes for proton-

pumping subunits of the electron transport chain Complex I and ribosomal 

subunits needed for their synthesis. The ciliates Plagiopyla frontata and Trimyema 

sp. appear to have completely lost the organelle genome during the conversion of 

mitochondria into hydrogenosomes.   

The ciliate hydrogenosomes for which the most data was obtained appear 

to have retained some of the enzymes needed to produce energy by substrate-

level phosphorylation but some species have also retained a partial electron 

transport chain and Cyclidium porcatum has retained nuclear encoded subunits of 

the mitochondrial F1F0 ATP synthase complex. Nuclear genes encoding enzymes 

that play a key role in H2 production, FeFe-hydrogenase, pyruvate: ferredoxin 

oxidoreductase and pyruvate: NADPH+ oxidoreductase, were also sequenced 

from the sampled ciliates and their evolutionary origins were investigated using 

phylogenies. These suggest that ciliate FeFe-hydrogenases are monophyletic and 
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have a separate bacterial origin from FeFe-hydrogenases in other eukaryotes. No 

evidence was found to support an alpha-proteobacteria or mitochondrial ancestry 

of these enzymes as predicted by the Hydrogen Hypothesis (Martin and Müller, 

1998). Each of the ciliates investigated contained methanogenic Archaea 

endosymbionts, which can consume the H2 produced by the hydrogenosomes. 

Some of these endosymbionts were identified to the species-level. The 

associations they have formed with their hosts appear to be stable over short time-

scales but not over longer evolutionary periods, as closely related ciliates like 

Nyctotherus ovalis and Metopus contortus do not have closely related 

endosymbionts, providing no evidence for long-term co-speciation. 
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Chapter 1. General introduction 

 

1.1 Eukaryote evolution and the significance of anaerobic metabolism 

 

1.1.1 The evolution of eukaryotes 

 

The chimeric nature of eukaryotes (Sagan, 1967) and their genomes (Golding and 

Gupta, 1995) suggests that they evolved as the result of a symbiosis between two 

prokaryotes. Since then eukaryotes have evolved to become more complex than 

their prokaryotic ancestors and are recognisable by their nucleus and the presence of 

double membrane-bound organelles (Margulis, 1970). Early studies attempting to 

understand how eukaryotes were related to other prokaryotic groups found that 

Archaea and eukaryotes had similar types of polymerase, distinct from the 

polymerases of Bacteria, indicating that they might be more closely related to each 

other (Huet et al., 1983). Further comparisons of ribosome structures suggested that 

eukaryotes were more closely related to a group of Archaea named eocytes, now 

named Crenarchaeota, than either were to other Archaea or Bacteria (Lake et al., 

1984). From this finding a structure of the relationships between the main domains of 

life was inferred, which became known as the eocyte tree. This suggested that 

eukaryotes emerged from within the Archaea and that these two groups form a single 

clade to the exclusion of Bacteria. In contradiction to this view, phylogenetic analyses 

by Woese (1987), based on sequences of small subunit rRNA, recovered Bacteria, 

Archaea and eukaryotes as separate clades representing three primary domains of 

life, thereby placing eukaryotes as a sister clade to the Archaea. Despite some 

further support for the eocyte tree (Rivera and Lake, 1992), evidence from molecular 

phylogenetic analyses began to accumulate in favour of the three-domain structure of 

the tree of life, leading to this hypothesis becoming preferred by a consensus of 

researchers, which lasted for three decades (Gouy and Li, 1989; Woese et al., 1990; 

Ciccarelli et al., 2006). However this consensus in opinion has once more been 

overturned by a renewal of the eocyte tree hypothesis. This is due to recent studies, 

with more sophisticated methods and greater sampling, providing stronger evidence 

that eukaryotes emerged from within the Archaea (Cox et al., 2008; Foster et al., 

2009; Williams et al., 2012; Williams et al., 2013), specifically within the Asgard 

superphylum (Zaremba-Niedzwiedzka et al., 2017), which is a recently discovered 

sister lineage to the TACK superphylum. Lokiarchaeota was the first phylum of 
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Asgard Archaea to be proposed (Guy and Ettema, 2011; Spang et al., 2015) but the 

closest related modern-day relatives to eukaryotes are now thought to be members 

of the Heimdallarchaeota (Zaremba-Niedzwiedzka et al., 2017) (Figure 1.1). Thus, 

current ideas have an archaeon related to members of the Asgard superphylum as 

the founders of the eukaryotic host lineage. 

 

Figure 1.1 A cladogram representation of the relationships between eukaryotes, the Asgard 

Superphylum of Archaea and the TACK Superphylum of Archaea. Based on data from 

Zaremba-Niedzwiedzka et al. (2017). 

  

The second prokaryotic contributor to the chimeric nature of eukaryotes is now 

thought to have been the ancestor of modern mitochondria (Embley and Martin, 

2006). Evidence suggests that an archaeal ancestor of eukaryotes acquired a 

bacterium, related to contemporary alpha-proteobacteria, which became the 

mitochondrial endosymbiont and eventually evolved to become an organelle 

(Andersson et al., 1998). Mitochondria and their derivatives (collectively referred to 

as mitochondrial homologues) are an important feature of the eukaryotic cell and 

were retained by all but at least one species (Karnkowska et al., 2016) of extant 

eukaryotes studied to date, although they appear in many diverse functional and 

morphological guises (reviewed in Embley and Martin (2006) and Stairs et al. 

(2015)). The only features known to be conserved between all mitochondrial 

homologues are their double membranes and mechanisms of protein import (Dolezal 

et al., 2006; Embley and Martin, 2006). It is generally agreed that the initial selective 

success of mitochondria could not have been the provision of ATP to its host as no 

Bacteria are known to export ATP to their external environments (Martin and Müller, 
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1998) and the ATP/ADP translocases of mitochondria are not related to those found 

in alpha-proteobacteria (Andersson et al., 1998). Instead it has been suggested that 

the initial selective advantage of the mitochondrial endosymbiont was provision of a 

steady supply of H2 needed as substrate for the metabolism of an autotrophic 

archaeon host (Martin and Müller, 1998). Mitochondria are now found in many 

metabolically diverse lineages of complex eukaryotes with both aerobic and 

anaerobic metabolisms. Mitochondrial ATP production is thought to have had an 

important role in the evolution of eukaryotic complexity, particularly driving selection 

for generally larger genomes in comparison to prokaryote genomes by providing 

energy for the expression of a larger repertoire of protein-coding genes (Lane and 

Martin, 2010). Many anaerobic eukaryotes do not have recognisable classical 

aerobic mitochondria and instead have other organelles called hydrogenosomes, 

some of which can produce ATP in the absence of O2 (Muller et al., 2012). 

 

1.1.2 The Archezoa Hypothesis 

 

One of the earliest hypotheses for mitochondrial and early eukaryote evolution was 

based on the notion that modern-day anaerobic eukaryotes are descendants of 

deeply-branching eukaryotes that evolved prior to the mitochondrial endosymbiosis 

(Cavalier-Smith, 1987). These organisms were thought to have never contained 

mitochondria and were named Archezoa (Cavalier-Smith, 1987; Cavalier-Smith, 

1989). The existence of what were thought to be contemporary Archezoa, such as 

Giardia, Trichomonas, Entamoeba and microsporidia, was the central piece of 

evidence supporting this hypothesis, which became known as the Archezoa 

Hypothesis. This provided a model for the early evolution of eukaryotes, as well as 

the existence of both aerobic and anaerobic metabolisms that are found in 

eukaryotes today. The Archezoa Hypothesis indicated that eukaryotes were already 

relatively complex and diverse, and exclusively inhabited anoxic environments, prior 

to the mitochondrial endosymbiosis (Cavalier-Smith, 1987). Following the acquisition 

of mitochondria, which therefore must have occurred relatively late in eukaryote 

evolution, following an initial period of diversification after the origin of the 

archezoans, eukaryotes then further diversified into aerobic lineages. This was also 

supported by phylogenies based on 18S rRNA gene sequences indicating that some 
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archezoan species were early branching eukaryotes (Vossbrinck et al., 1987; Sogin, 

1989). 

The Archezoa Hypothesis was challenged by improved phylogenies that no 

longer placed Archezoa species near the root of the eukaryotes (Cavalier-Smith, 

1993; Hirt et al., 1999), as well as the discovery of mitochondrial genes in Archezoa 

(Clark and Roger, 1995; Bui et al., 1996; Horner et al., 1996; Roger et al., 1996; 

Germot et al., 1997; Hirt et al., 1997; Roger et al., 1998). Additionally, evidence from 

Entamoeba histolytica suggested that it possessed mitosomes, organelles of 

mitochondrial ancestry that have lost the ability to produce ATP (Mai et al., 1999; 

Tovar et al., 1999) and experimental data from the microsporidian Trachipleistophora 

hominis (Williams et al., 2002) provided more evidence to support the existence of 

mitosomes in an archezoan. Mitosomes have since been found in a variety of 

unrelated eukaryotes that have lost the ability to produce energy via mitochondria. 

Around the same period, hydrogenosomes (discussed in sections below), energy 

producing organelles found in the archezoan Trichomonas vaginalis (Lindmark and 

Müller, 1973), were discovered to be homologues of mitochondria (Hrdy et al., 2004; 

Sutak et al., 2004). The discovery of mitochondrial homologues in archezoan species 

suggested that mitochondria existed, in one form or another, in all eukaryotes. This 

not only provided strong evidence that the Archezoa Hypothesis should be rejected, 

since no organisms are now known to be true Archezoa, but also demonstrated 

previously unrecognised flexibility in mitochondrial form and function. 

 

1.1.3 Evolutionary origins of hydrogenosomes in different eukaryotes 

 

Unidentified microbodies found in the cytosol of trichomonads that produce molecular 

H2 from protons were given the name ‘hydrogenosomes’ by their discoverers, 

Lindmark and Müller (1973). Although the true evolutionary nature and origin of these 

organelles was obscure, they were thought to have a role in the anaerobic 

metabolism and energy production of trichomonads, as they produced H2 and 

metabolised pyruvate in similar ways to anaerobic Clostridium species (Bauchop, 

1971; Lindmark and Müller, 1973). These similarities lead to the hypothesis that 

hydrogenosomes in trichomonads might have originated as a result of an 

endosymbiosis between a eukaryote and a Clostridium, similar to the endosymbioses 

known to have given rise to mitochondria and chloroplasts (Whatley et al., 1979). 
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Eventually hydrogenosomes were discovered in other anaerobic eukaryotes but 

initially the origins of these hydrogenosomes were thought to be different to those in 

Trichomonas. In the rumen fungus Neocallimastix sp. it was thought that 

hydrogenosomes were derived from peroxisomes since immunological evidence 

suggested that their hydrogenases had C-terminal peroxisomal-like targeting signals 

(Marvin-Sikkema et al., 1993). This was rejected however when later evidence 

suggested that their malic enzyme had an N-terminal mitochondrial-like targeting 

signal, and their hydrogenosomes had double membranes, mitochondrial-like 

ATP/ADP carriers and contained mitochondrial heat-shock proteins, Hsp60 and 

mtHsp70 (Van Der Giezen et al., 1997a; van der Giezen et al., 2002; van der Giezen 

et al., 2003). Finlay and Fenchel (1989) provided early evidence that 

hydrogenosomes in anaerobic ciliates had morphological features similar to 

mitochondria, suggesting that hydrogenosomes in other eukaryotic lineages had also 

evolved from mitochondria. Strong evidence for the mitochondrial origins of 

Trichomonas hydrogenosomes was provided by the discovery of mitochondrial heat-

shock proteins and the 24 kDa and 51 kDa subunits of ETC Complex I in the 

hydrogenosomes of Trichomonas vaginalis (Bui et al., 1996; Germot et al., 1996; 

Horner et al., 1996; Roger et al., 1996; Hrdy et al., 2004) and perhaps the most direct 

evidence was obtained by the discovery of a hydrogenosome with a mitochondrial 

genome, in the ciliate Nyctotherus ovalis (Akhmanova et al., 1998)(further discussed 

in section 1.2.4). 

The accumulation of evidence suggested that hydrogenosomes in all 

eukaryotic lineages had a mitochondrial ancestry (reviewed in Embley and Martin 

(2006); Hrdy et al. (2004); Gray (2005)). At the same time improved molecular 

phylogenies indicated that amitochondriate lineages did not branch near the base of 

eukaryotes but rather among mitochondria-containing eukaryotic lineages (Embley 

and Hirt, 1998; Hirt et al., 1999). This evidence allowed the Archezoa Hypothesis to 

be rejected for the groups for which it was originally proposed. Two main conclusions 

were drawn from this research: Firstly, all studied eukaryotes either contained 

mitochondria or organelles derived from mitochondria (mitosomes and 

hydrogenosomes), suggesting that the mitochondrial endosymbiosis occurred earlier 

in eukaryotic evolution than the archezoa hypothesis had predicted. Secondly, 

hydrogenosomes have convergently evolved from mitochondria in diverse, distantly 
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related eukaryotes, which suggests that the transformation of mitochondria to 

hydrogenosomes can occur with relative evolutionary ‘ease’. 

 

1.1.4 The Hydrogen Hypothesis for the origin of eukaryotes 

 

A number of hypotheses have been published to explain the origin of eukaryotes 

whilst accounting for the origins of both their aerobic and anaerobic metabolisms. 

Most also assume that eukaryotes are chimeric, based upon genomic analyses 

showing that they contain genes with archaeal and bacterial origins (Martin et al., 

1993; Golding and Gupta, 1995). One such hypothesis is the Hydrogen Hypothesis 

(Martin and Müller, 1998), which provides a detailed metabolic argument for how the 

mitochondrial endosymbiosis occurred. Unlike some other hypotheses, such as the 

syntrophy hypothesis (Moreira and López-García, 1998), the Hydrogen Hypothesis is 

relatively parsimonious in that it only requires the occurrence of a single symbiosis 

event. The Hydrogen Hypothesis describes a scenario in which a H2-producing 

facultatively anaerobic alpha-proteobacterium becomes the mitochondrial 

endosymbiont by forming a symbiosis with a H2-dependant methanogenic archaeon 

host, which utilised the waste H2, CO2 and acetate produced by the bacterium as a 

substrate for its own metabolism and ATP production. The two organisms would 

have initially met in an anaerobic environment, where the archaeon could potentially 

benefit from a stable supply of substrates provided by H2 producing Bacteria. In order 

to maximise transfer of substrates, the Hydrogen Hypothesis postulates that the 

archaeon would maximise its surface area contact with the symbiont, gradually 

encapsulating it. Being no longer exposed to the outer environment, in order for the 

symbiont to still acquire substrates for its own metabolism, it would be necessary for 

its genes encoding carbon substrate transporters to be transferred to the archaeon 

and for these transporters to be expressed and become functional in the archaeon 

outer membrane. This would enable the archaeon to import carbon-based substrates 

from the environment into its cytosol. In order to ensure the flow of these imported 

substrates from the host cytosol to the symbiont, the symbiont glycolytic pathway 

would also need to be transferred to the host cytosol, replacing the metabolic 

pathways of the host. Replacement of the host metabolic pathways would mean that 

the partnership had become irreversibly heterotrophic, both partners relying on the 

energy producing pathways that originated from the symbiont. The result of this 
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process would be a previously anaerobic archaeon with a hydrogen-producing 

organelle of bacterial ancestry which was also capable of aerobic respiration. This 

organism would have the metabolic pathways necessary to inhabit both oxic and 

anoxic environments, components of which are said to have been differentially lost or 

retained in various lineages as eukaryotes diversified (Martin and Müller, 1998). 

The Hydrogen Hypothesis does not account for the origin of the eukaryotic 

nucleus or cytoskeleton (Martin and Müller, 1998) but these are argued to be the 

result of processes occurring independently after the mitochondrial acquisition and 

were supported by it through an enhanced capacity for energy generation (Lane and 

Martin, 2010). Recently it has been suggested from genomic analyses of 

Lokiarchaeota that these organisms are H2-dependant (Sousa et al., 2016). If the last 

archaeal ancestor of eukaryotes was H2-dependant too then this would be consistent 

with the Hydrogen Hypothesis (Martin and Müller, 1998). Others however, have 

raised the possibility that Lokiarchaeota and some TACK Archaea, could be 

phagotrophic, as genomic analyses have identified homologues of eukaryotic 

cytoskeleton components in these species (Ettema et al., 2011; Koonin, 2015; Spang 

et al., 2015). This indicates that the common ancestor of eukaryotes might have been 

phagotrophic and this could have facilitated the mitochondrial endosymbiosis (Ettema 

et al., 2011; Guy and Ettema, 2011). Therefore, despite the popularity of the 

Hydrogen Hypothesis, there has been some criticism of it as a strongly supported 

model for eukaryotic evolution (discussed in section 1.1.5). 
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Figure 1.2 A schematic view of the hydrogen hypothesis for the first eukaryote (Martin and 

Müller, 1998). 

 

1.1.5 Eukaryotic anaerobic metabolism enzymes: Ancestral acquisition with 

differential loss or repeated acquisition by lateral gene transfer?  

 

Hydrogenosomes are double membrane-bound organelles with an ability to produce 

H2 (Hrdy et al., 2004) that are found in anaerobic eukaryotes such as anaerobic 

ciliates (Yarlett et al., 1981), trichomonads (Lindmark and Müller, 1973) and chytrid 

fungi (Yarlett et al., 1986). H2 production is achieved by a FeFe-hydrogenase enzyme 

(Horner et al., 2002), an Fe-S cluster protein, which transfers electrons from 

ferredoxin or NADH-dehydrogenase to protons, thereby producing molecular H2 

(Hrdy et al., 2004; van der Giezen et al., 2005). FeFe-hydrogenases are also found in 

various Bacteria (Shepard et al., 2014) and also some anaerobic eukaryotes that do 

not possess hydrogenosomes, in which their FeFe-hydrogenases are localised to the 

cytosol (Nixon et al., 2003). The successful maturation and integration of Fe-S 

clusters into the FeFe-hydrogenase active site typically requires the activity of 3 

maturases, HydE HydF and HydG. However, these enzymes have not been found in 

all eukaryotes that possess an FeFe-hydrogenase, including Giardia intestinalis and 

Entamoeba histolytica, for which whole genome data is available (Loftus et al., 2005; 

Morrison et al., 2007). In these organisms, maturation of FeFe-hydrogenase has 

been suggested to either occur by an alternative, unknown means (Pütz et al., 2006) 
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or that they are only partially matured by Fe-S cluster assembly systems (Nicolet and 

Fontecilla-Camps, 2012). 

In aerobic eukaryotes pyruvate is decarboxylated by pyruvate dehydrogenase 

(PDH), forming acetyl-CoA, which is then oxidised by the TCA cycle. However PDH 

can be inhibited by high concentrations of NADH (Bremmer, 1969), which can 

increase under anaerobic conditions due to a reduced and less efficient ETC. In the 

hydrogenosomes of some anaerobic eukaryotes, the function of pyruvate 

decarboxylation can instead be performed by pyruvate: ferredoxin oxidoreductase 

(PFO)/pyruvate: NADP+ oxidoreductase (PNO), in organisms including Trichomonas 

and Blastocystis (Lindmark et al., 1975; Gill et al., 2007) or pyruvate: formate lyase 

(PFL), in organisms including Neocallimastix (Akhmanova et al., 1999). The aerobic 

mitochondria-containing relatives of these species appear to be unable to produce H2 

because they lack the enzymes to do this.  Therefore determining the origins of 

FeFe-hydrogenases and their maturases, as well as pyruvate oxidising enzymes, is 

essential for understanding hydrogenosome evolution. 

The Hydrogen Hypothesis suggests that the mitochondrial endosymbiont 

already contained a set of genes capable of supporting hydrogenosome metabolism 

(Martin and Müller, 1998). If this were true then it could be predicted that anaerobic 

metabolic enzymes like FeFe-hydrogenase, HydE, HydF, HydG, PFO/PNO and PFL, 

found in polyphyletic anaerobic eukaryotes, should share a common origin from a 

facultatively anaerobic alpha-proteobacterium ancestor that became the 

mitochondrial endosymbiont. This would require that anaerobic enzymes were 

retained in some aerobic lineages, or perhaps more likely, in organisms that are 

facultative anaerobes. The idea that genes encoding anaerobic enzymes were 

present in the genome of the mitochondrial endosymbiont is supported by the 

presence of proteins that are divergent homologues of anaerobic metabolism 

enzymes, but have acquired novel functions, that are found in diverse aerobic 

eukaryotes (Muller et al., 2012). These include yeast sulfite reductases that seem to 

be derived from PNO (Horner et al., 1999; Rotte et al., 2001), and nuclear prelamin-A 

recognition factor (Narf/Nar1), which are homologues of FeFe-hydrogenase and are 

present in most aerobic eukaryotes (Horner et al., 2002; Freibert et al., 2017). Narf 

proteins are structurally similar to FeFe-hydrogenases but function in the maturation 

of cytosolic and nuclear iron-sulphur proteins (Vignais et al., 2001; Balk et al., 2004). 

It has been argued that these enzymes evolved from gene duplications of anaerobic 
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enzymes in the eukaryote common ancestor (Muller et al., 2012). Therefore, under 

the Hydrogen Hypothesis, it would mean that anaerobic metabolism enzymes were 

lost from all of the contemporary aerobic eukaryotes studied to date and only 

retained in the anaerobic lineages. 

Phylogenetic analyses have been used to investigate the origins of the 

enzymes that function in hydrogenosomes (Horner et al., 1999; Horner et al., 2000; 

Hug et al., 2010; Hampl et al., 2011). Although phylogenies of PFO/PNO sometimes 

recover eukaryote monophyly (Horner et al., 1999; Rotte et al., 2001), the 

relationships recovered within eukaryote clades do not typically match the species 

trees for the organisms from which they are found and their closest prokaryotic 

relatives do not appear to be alpha-proteobacteria (Horner et al., 1999; Hug et al., 

2010). Phylogenies of HydE, HydF and HydG maturases also recover eukaryotic 

monophyly but again they do not group with alpha-proteobacteria (Hug et al., 2010), 

whereas FeFe-hydrogenase phylogenies typically show eukaryotes to be 

polyphyletic, emerging from various bacterial groups but not alpha-proteobacteria 

(Horner et al., 2000; Embley et al., 2003; Nixon et al., 2003; Leger et al., 2016). 

Taken at face value, these results indicate that the key enzymes required for 

anaerobic metabolism in eukaryotes were not acquired from the mitochondrial 

endosymbiont. However to account for these patterns in a manner that can be 

reconciled with the Hydrogen Hypothesis, it has been argued (Muller et al., 2012) 

that the reasons why they group with bacterial groups other than the alpha-

proteobacteria is firstly, because the genome of the organism that became the 

mitochondrial endosymbiont probably already contained a mosaic of genes of 

different prokaryotic origins, and secondly the alpha-proteobacteria, and also other 

lineages, have continued to evolve by acquiring genes from and transferring genes to 

other prokaryotes, since the mitochondrial endosymbiosis. Both of these suggestions 

are supported by available genome data for prokaryotes. This would allow genes 

present in relatives of the mitochondrial endosymbiont to have been acquired 

laterally by other types of Bacteria, such as the lineages that eukaryotic genes now 

cluster with in phylogenies. This could also mean that the genomes of modern-day 

alpha-proteobacteria have a different gene composition compared to their ancestors 

had at the time of the mitochondrial endosymbiosis. Under these conditions it is 

argued that phylogenetic analyses are unable to falsify a mitochondrial ancestry of 

these genes (Martin, 1999; Rotte et al., 2001; Muller et al., 2012) and it would 
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therefore be difficult to disprove this hypothesis. It is true that lateral gene transfer 

appears to have occurred on a large scale in prokaryotes since the mitochondrial 

endosymbiosis (Doolittle, 1999; Ochman et al., 2000) but a key argument against the 

process having muddied our understanding of the history of anaerobic enzymes is 

that the same patterns are not usually observed for genes encoding enzymes for 

aerobic mitochondrial metabolism. For example, phylogenies of the 51 kDa subunit of 

ETC Complex I (Hrdy et al., 2004) and enzymes of the Fe-S cluster biogenesis 

pathway (Freibert et al., 2017) show a clear ancestry leading to the alpha-

proteobacteria, which is what would be expected for enzymes acquired via the 

mitochondrial endosymbiont. 

An alternative explanation for these observations is that anaerobic enzymes 

are not exclusively inherited vertically in eukaryotes but rather in some cases they 

are acquired by lateral gene transfer from prokaryotic donors. This seems to have 

happened on multiple occasions for FeFe-hydrogenases since eukaryotic sequences 

do not appear to be monophyletic (Horner et al., 2000; Embley et al., 2003). 

Additionally, it is possible that such enzymes could then be passed on to other 

unrelated eukaryotic lineages by eukaryote-to-eukaryote lateral gene transfer (Stairs 

et al., 2015). This is supported by the conflicting topologies between phylogenies of 

anaerobic metabolism enzymes and the species tree of the organisms they are found 

in (Hug et al., 2010). The difficulty with this is that unlike lateral gene transfer in 

prokaryotes, which is a well-documented and widely accepted phenomenon, there is 

disagreement in the research community of whether the same occurs in eukaryotes 

to such a degree that it is a significant evolutionary process (Ku and Martin, 2016). 

One issue is that sequenced eukaryotic genome assemblies can suffer from 

contamination of prokaryote DNA that is mistaken for a case of lateral gene transfer 

(Boothby et al., 2015; Koutsovoulos et al., 2016) and it has been argued that there is 

not enough evidence of recently occurring lateral gene transfer from prokaryotes to 

eukaryotes to indicate that the process is ongoing and important (Ku and Martin, 

2016). However numerous publications take an opposing stance, finding cases of 

lateral gene transfer to eukaryotes (Eme et al., 2017), which have been reviewed in 

detail by various authors (Andersson, 2009; Hirt et al., 2015; Soucy et al., 2015). 

These data suggest that lateral gene transfer is an occurring process in eukaryotes, 

most commonly affecting metabolic pathways (Alsmark et al., 2013). 
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1.1.6 The metabolic functions of mitochondria 

 

Mitochondria perform several functions for eukaryotic cells, including ATP synthesis, 

Fe-S cluster biogenesis, heme biosynthesis and amino acid metabolism, as well as 

playing a role in apoptosis. The only function that was previously thought to be 

conserved by all mitochondrial homologues known so far was the biogenesis of Fe-S 

clusters, cofactors that have structural and catalytic roles in various proteins and are 

essential for life (Lill et al., 1999). However in Monocercomonoides sp. (Karnkowska 

et al., 2016) this function has been replaced by a system of bacterial origin, located in 

the cytosol. Another important role of mitochondria and hydrogenosomes is the 

production of ATP. In eukaryotes both aerobes with classical mitochondria and 

anaerobes with hydrogenosomes conserve energy from the chemical breakdown of 

complex substrates, such as glucose, via series of redox reactions. In eukaryotes 

glucose is broken down via the glycolytic pathway, which produces a relatively small 

net amount of 2 moles of ATP per mole of glucose (Muller et al., 2012).  

In aerobic mitochondria pyruvate, the product of glycolysis, is transported 

across the outer and inner mitochondrial membranes via porins and mitochondrial 

pyruvate carriers, respectively (Bender et al., 2015), into the mitochondrial matrix 

where it is oxidatively decarboxylated to acetyl-CoA by PDH (Patel et al., 2014). 

Acetyl-CoA then enters the TCA cycle, where it undergoes a cycle of enzymatic steps 

producing a number of products, including NADH (Fernie et al., 2004). NADH is a 

cofactor that can readily undergo redox reactions (Fenchel and Finlay, 1995), one 

role of which is to transfer electrons to the ETC (Tielens et al., 2002). The ETC 

powers ATP synthesis by oxidative phosphorylation in aerobic mitochondria and uses 

O2 as a terminal electron acceptor, which is effective due to its high redox potential 

relative to NAD+ (Fenchel and Finlay, 1995). The ETC is formed by four Fe-S cluster-

containing multi-protein complexes embedded in the phospholipid-bilayer of the inner 

mitochondrial membrane, as well as ubiquinone and cytochrome c (Saraste, 1999). 

ETC Complex I oxidises NADH, enabling H+ to be pumped across the inner 

mitochondrial membrane into the inter-membrane space (Brandt, 2006). The 

released electrons are then transferred to ubiquinone, reducing it to ubiquinol. ETC 

Complex II, which is also a component of the TCA cycle, oxidises succinate to 

fumarate and in doing so transfers electrons to ubiquinone, reducing it to ubiquinol 

(Sun et al., 2005). Electrons from ubiquinol are transferred to ETC Complex III and 

then ETC Complex IV via cytochrome c (Xia et al., 1997). ETC Complex IV is finally 
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oxidised by O2 producing H2O (Iwata et al., 1995). As ETC Complexes III and IV 

transport electrons they also pump H+ across the inner mitochondrial membrane, 

similarly to ETC Complex I, generating a proton gradient across the inner 

mitochondrial membrane (Iwata et al., 1995; Xia et al., 1997). The F1F0-ATP 

synthase complex is also embedded in the inner mitochondrial membrane, creating a 

channel connecting the matrix to the inter-membrane space, facilitating the flow of H+ 

pumped by ETC Complexes I, III and IV back into the mitochondrial matrix and in 

doing so generates energy in the form of ATP (Boyer, 1997). There is a large 

difference in redox potential between NADH and O2, therefore the flow of electrons 

from one molecule to the other via the ETC generates a large amount of available 

free energy that can be conserved as molecules of ATP (approximately an additional 

34 moles of ATP per mole of glucose), more than is available to anaerobes that lack 

this ability (Fenchel and Finlay, 1995). 

Anaerobic eukaryotes are unable to utilize the high redox potential of O2 and 

therefore must maximise energy production by an alternative means. Anaerobes 

obtain pyruvate as an end-product of glycolysis but species such as Trichomonas 

vaginalis (Hrdý and Müller, 1995b) and Neocallimastix sp. (Van Der Giezen et al., 

1997a) are also thought to produce pyruvate from malate via malic enzyme in the 

hydrogenosome matrix. As described in section 1.1.5, instead of PDH, 

hydrogenosomes often utilise alternative enzymes for the decarboxylation of 

pyruvate, such as PFO, PNO and PFL, the origins of which in eukaryotes are 

unclear. Instead of the produced acetyl-CoA entering the TCA cycle and being 

converted to citrate by citrate synthase, like in aerobic mitochondria, its CoA moiety is 

transferred to succinate by acetate:succinate CoA transferase (ASCT) to form 

succinyl-CoA and acetate (Müller, 1993; Tielens et al., 2010). The acetate is excreted 

but succinyl-CoA, along with ADP and Pi, can be used to produce ATP and succinate 

by substrate-level phosphorylation, via succinyl-CoA synthetase, a component of the 

TCA cycle. An alternative to ATP production by ASCT and SCS is found in the 

hydrogenosomes of the anaerobic amoeba Mastigamoeba balamuthi, which instead 

uses an acetyl-CoA synthase enzyme to produce ATP directly from acetyl-CoA, 

again by substrate-level phosphorylation (Gill et al., 2007). 



14 
 

 

Figure 1.3 A generalised comparison of ATP production in aerobic mitochondria by oxidative 

phosphorylation and ATP production by substrate-level phosphorylation in a hydrogenosome 

that has lost the electron transport chain. 

 

1.1.7 Hydrogenosome metabolism and morphology 

 

Hydrogenosomes have been studied in a number of different anaerobic eukaryotes 

and although they share the phenotype of H2 and ATP production, their metabolisms 

can differ. Recent reviews of the metabolic diversity and evolution of 

hydrogenosomes were published by Muller et al. (2012) and Stairs et al. (2015). 

Typically the evolution of hydrogenosomes from mitochondria involves a reduction in 

metabolic capacity by the loss of components from the TCA cycle and ETC. The 

most reduced hydrogenosomes have lost all ETC components and have been 

described in species such as Spironucleus salmonicida, which therefore produce 

energy by substrate-level phosphorylation (Jerlström-Hultqvist et al., 2013). Other 

hydrogenosomes, like those found in Trichomonas vaginalis (Hrdy et al., 2004) and 

Sawyeria marylandensis (Barberà et al., 2010) have retained the 24kDa and 51kDa 

NADH-dehydrogenase components of ETC Complex I, which they use to oxidise 

NADH, regenerating NAD+, an essential electron carrier used in many metabolic 

pathways (Hrdy et al., 2004). Species like the anaerobic ciliate Nyctotherus ovalis 
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have more complete ETC Complexes I and II (de Graaf et al., 2011), although they 

still lack some subunits found in aerobic eukaryotes. Despite this Nyctotherus ovalis 

and other anaerobic eukaryotes have retained the main subunits of ETC Complex I 

involved in proton translocation (de Graaf et al., 2011), suggested to be homologous 

to bacterial antiporters (Mathiesen and Hägerhäll, 2002). Since these 

hydrogenosomes lack F1F0 ATP synthase, there is no need to translocate protons for 

the sake of ATP production by the F1F0 ATP synthase complex, like in aerobic 

eukaryotes. Since a membrane potential is however usually necessary for protein 

import across the inner membrane in mitochondria, this may be the reason proton 

translocation is preserved in these organisms (Chacinska et al., 2009). 

Hydrogenosomes and mitochondria that possess ETC Complex I oxidise NADH and 

produce ubiquinol. However, unlike aerobic mitochondria, many hydrogenosomes 

lack ETC Complex III, which oxidises ubiquinol in aerobic mitochondria. This would 

therefore lead to an accumulation of ubiquinol as it cannot be further oxidised by the 

ETC. In such cases it is thought that succinate is used as a sink to relinquish 

electrons from rhodoquinone (a quinone with a lower redox potential often found in 

anaerobes, replacing the role of ubiquinone in aerobes (Van Hellemond et al., 

1995)). Electrons are transferred to succinate via ETC Complex II, which functions as 

succinate dehydrogenase in the TCA cycle of aerobes but in some anaerobes 

functions in reverse as fumarate reductase. Alternatively ubiquinol could potentially 

be reoxidised by alternative oxidase (AOX) if O2 is present. 

Cristae are invaginations of the mitochondrial inner membrane that form a 

complex mitochondrial architecture that is thought to be necessary for metabolic 

function, since certain regions of cristae membranes are more enriched in some ETC 

complexes than others (Davies et al., 2011; Milenkovic and Larsson, 2015). It has 

been demonstrated in Saccharomyces cerevisiae that subunits e and g of F1F0 ATP 

synthase complex are required for its dimerisation (Arnold et al., 1998; Velours and 

Arselin, 2000) and mitochondria of Saccharomyces cerevisiae mutants devoid of 

these F1F0 ATP synthase subunits exhibit atypical cristae structures (Arselin et al., 

2004). This is because F1F0 ATP synthase dimers are directly involved in the 

formation in cristae tips, where they can be observed on the EM level organised into 

distinctive rows (Paumard et al., 2002; Minauro-Sanmiguel et al., 2005; Davies et al., 

2011). The loss of these proteins therefore would be expected to result in either 

reduced or complete loss of cristae and this is observed in most hydrogenosomes. 
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Consistent with this, treatment of mammalian cells with ethidium bromide is thought 

to disrupt translation of the mitochondrial genome, which resulted in a reduction of 

the number of cristae observed at the EM level (Soslau and Nass, 1971). 

Interestingly, the hydrogenosomes of Brevimastigamonas vehiculus, which have 

retained an F1F0 ATP synthase complex do appear to have cristae (Gawryluk et al., 

2016). This link between function and structure of mitochondrial homologues 

suggests that the presence of cristae in particular hydrogenosomes could provide an 

indication that a mitochondrial-type organelle genome is also present. The reasoning 

for this is that genes found on the mitochondrial genomes are required for the ETC, 

as well as components required for their translation. Therefore if the ETC is lost, not 

only would cristae become reduced, there would also no longer be any positive 

selection to retain an organelle genome as the genes it encodes would be no longer 

required. 

 

1.1.8 The mitochondrial proteome: Encoded by nuclear and mitochondrial genomes 

 

Some of the genes encoding proteins functioning in mitochondria are thought to have 

been acquired from the mitochondrial endosymbiont (Gabaldón and Huynen, 2003; 

Timmis et al., 2004). Modern mitochondria contain ancestral relics of this genome, 

located within the mitochondrial matrix (Taanman, 1999), which typically encodes 

ETC components and proteins involved in their transcription and translation. Many 

mitochondrial homologues, such as some hydrogenosomes and mitosomes, have 

however lost their organelle genomes by reductive evolution (Müller, 1993; Tovar et 

al., 1999) presumably due to a lack of positive selection ensuring their preservation. 

The majority of genes encoding other proteins that function in the mitochondria and 

originated from the mitochondrial endosymbiont, such as some of the mitochondrial 

ribosomal proteins and some of the core components of the ETC complexes, have 

been transferred to the nuclear genome (Karlberg et al., 2000). These proteins are 

synthesised by ribosomes in the cytosol of the cell and transported into mitochondria 

by specific targeting signals and import mechanisms. The selective forces driving this 

relocation are thought to occur due to the differences in the way these two genomes 

are reproduced (Allen and Martin, 2016). Mitochondrial genomes reproduce 

asexually, whereas nuclear genomes can reproduce sexually. In asexual populations 

deleterious mutations accumulate irreversibly in a process known as Muller’s Ratchet 
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(Muller, 1964). Conversely, in sexual populations the accumulation of deleterious 

mutations can be reversed by recombining with another genome copy (homologus 

recombination) that does not share them. Not only that but mutations have also been 

suggested to occur more frequently in mitochondrial genomes due to the high levels 

of mutagenic reactive oxygen species (Allen and Martin, 2016). Therefore from a 

selection perspective genes are better off, with regards to their fitness, being in the 

nuclear genome. This also raises the question of why mitochondria retain any 

genome at all if there is so much selection against it. Numerous hypotheses have 

been proposed to explain this. One such explanation is the need for co-location of 

gene and gene product for redox regulation, known as the CoRR hypothesis (Allen, 

1993, 2003), which suggests that an organelle genome is retained in order for the 

expression of the genes it encodes to be regulated by the current redox state of the 

organelle. This is because important energy generating ETC components, encoded 

by the organelle genome, are affected by changes in local redox conditions within the 

organelle in which they function and therefore their expression must be altered 

accordingly to be able to respond rapidly to compensate for these changes (Allen, 

2015). Another key hypothesis is that certain protein subunits encoded by 

mitochondrial genomes are too hydrophobic to import across the mitochondrial 

membranes and it is therefore more efficient to synthesise these within the organelle 

(Adams and Palmer, 2003). 

 

1.2 Ciliates 

 

1.2.1 General description of ciliates 

 

The SAR super-group (Burki et al., 2008) includes Stramenopiles, Alveolates and 

Rhizaria. Along with dinoflagelates, apicomplexa and protalveolata, ciliates (phylum 

Ciliophora) group within the Alveolates (Adl et al., 2012) and evolved approximately 

1400 Ma, during the Mesoproterozoic (Parfrey et al., 2011). A distinctive 

characteristic of ciliates is their nuclear dimorphism: they have both a germline 

micronucleus (MIC), which meiotically divides to form haploids before they are 

exchanged during sexual conjugation (Prescott, 2000; Stover and Rice, 2011), and a 

somatic macronucleus (MAC), which is transcriptionally active and derived from 

mitotic division and nuclear rearrangement of the MIC (Katz, 2001). Except for within 
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the class Karyorelictea, the MAC can also divide by a unique form of amitosis during 

asexual reproduction (Zufall et al., 2006) and the number of MIC and MAC per cell 

varies between species (Prescott, 2000). A characteristic shared by all ciliates, which 

gives the group its name, is the presence of multiple cilia during at least one stage of 

their life cycles. Cilia are membrane-bound protrusions from a cell surface that 

contain an axoneme: A cytoskeleton consisting of microtubules in organised 

arrangements. The axoneme originates from modified centrosomes called the basal 

body (Pedersen et al., 2012). Cilia can be used for a range of behaviours and 

functions, including motility, sensory reception and feeding (Verni and Gualtieri, 

1997). The cilia ultrastructure has been conserved across many eukaryotic lineages, 

both single- and multi-cellular, including humans and other mammals where they are 

found in cells of the kidneys, pancreas, respiratory tract, female reproductive tract 

and regions of the brain, amongst other organs (Satir and Christensen, 2007). This 

high level of conservation underlines the importance of cilia in eukaryotes and the 

study of cilia in ciliates has facilitated our understanding of the cilia found in other 

organisms (Pazour et al., 2005; Satir and Christensen, 2007).  

Since their discovery in the 17th century by Anthony van Leeuwenhoek, ciliates 

have traditionally been identified and grouped based on microscopic observations of 

their morphology (Lynn, 2003). Since the advent of molecular technology, like most 

organisms ciliates are now more commonly classified based on comparisons of their 

DNA by phylogenetic reconstruction, which often provide support for the original 

morphology-based groupings (Lynn, 2003). Increasingly multiple locus-based 

phylogenetic reconstructions are improving the resolution of deeply diverging ciliate 

groups (Gao and Katz, 2014). Based on such analyses, ciliates can be divided into 

two sub-phyla: Intramacronucleata, which divide their MAC by microtubules within the 

MAC, and the Postciliodesmatophora, which divide their MAC with microtubules 

external to the MAC or are unable to divide them at all (Gao and Katz, 2014). Ciliates 

inhabit a range of environments, including freshwater and marine environments, 

metazoan digestive tracts, as well as soils that are at least periodically aquatic: some 

ciliates can survive drought, as well as other environmental stresses such as 

starvation, by forming temporary cysts (Gutiérrez et al., 2001; Lynn, 2008), whereby 

cells decrease their volume and metabolic activities, dehydrating their cytosol and 

forming a protective outer barrier (Verni and Rosati, 2011). Most free-living ciliates 

are heterotrophs, and their primary method of nutrient acquisition is by engulfing and 
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digesting Bacteria (Verni and Gualtieri, 1997) and other small eukaryotes (Siqueira-

Castro et al., 2016) by phagocytosis. However, some species are mixotrophic as they 

have acquired means of phototrophic energy production either via photosynthesising 

endosymbionts or by sequestering chloroplasts from other organisms (Esteban et al., 

2009; Esteban et al., 2010; Johnson, 2011). Some ciliates are also parasites of 

aquatic animals, acquiring nutrients directly from their hosts by feeding on their 

tissues (Nigrelli et al., 1976; Morado and Small, 1995). Some of these pathogenic 

species are well studied as they are pathogens that have significant negative impacts 

on human-associated activities, such as commercial fishery and aquaculture 

industries. The best studied species is Ichthyophthirius multifiliis, a common fish 

parasite that causes white-spot disease. The MAC and mitochondrial genomes of 

this species have been sequenced in order to aid the prevention of infection and 

transmission by identification of metabolic targets for therapies and vaccines (Coyne 

et al., 2011). 

The relative ease at which some ciliates, such as species of the genera 

Tetrahymena and Paramecium, can be cultured and grown in the lab and their short 

generation times have facilitated their in-depth study and have therefore long been 

regarded as important and evidently useful eukaryotic model organisms. Cells of 

Tetrahymena can be stored long term in liquid nitrogen and there are numerous 

mutant and inbred strains available as well as strains that have been genetically 

engineered by a variety of methods (Cassidy-Hanley, 2012). In previous decades 

numerous important discoveries regarding general biological processes have been 

made from studying ciliates, such as the discovery of self-splicing RNA (Zaug and 

Cech, 1980), the discovery of ribozymes (Kruger et al., 1982) and the function of 

telomeres (Szostak and Blackburn, 1982). More recently MAC genomes from several 

model and economically relevant ciliate species have been sequenced (Aury et al., 

2006; Eisen et al., 2006; Coyne et al., 2011; Swart et al., 2013; Chen et al., 2015) 

which help further facilitate many genomics and genetics-based studies. The 

mitochondrial proteome of the ciliate Tetrahymena thermophila has also been well 

studied by a combination of comparative analysis of its genome sequence and 

tandem mass spectrometry of isolated mitochondria (Smith et al., 2007). What is 

known about these mitochondria will facilitate our investigations into 

hydrogenosomes of anaerobic ciliate species and allow us to understand how they 
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have evolved to function in the absence of O2 by identifying differences in their 

mitochondrial proteomes compared to aerobic relatives. 

 

1.2.2 Mitochondrial genomes of ciliates and other eukaryotes 

 

Large differences are observed in the architecture, gene content, size and overall 

general complexity of mitochondrial genomes in different eukaryotes (Lynch et al., 

2006). All known mitochondrial genomes consisted of a single circular DNA 

chromosome until a linear mitochondrial genome consisting of a single chromosome, 

was discovered in the ciliate Tetrahymena pyriformis (Suyama and Miura, 1968). 

Further linear genomes were subsequently discovered in other ciliate species 

(Goddard and Cummings, 1975) and eukaryotes including green algae and yeast 

(Ryan et al., 1978; Wesolowski and Fukuhara, 1981). Linear mitochondrial genomes 

thus appear to have evolved repeatedly during eukaryotic evolution and genomes of 

even closely related organisms can differ in structure. For example, a number of 

yeasts exhibit intra-species variation in mitochondrial genome structure, suggesting 

the presence of a mechanism for conversion between a linear or circular state 

(Rycovska et al., 2004). As well as single chromosomal mitochondrial genomes, 

multi-chromosomal mitochondrial genomes have been discovered in a range of 

organisms, which can consist of multiple linear or circular genomes. The 

mitochondrial genome of the ichthyosporean Amoebidium parasiticum consists of 

hundreds of relatively short linear chromosomes each encoding a single gene 

(Burger et al., 2003a) and a number of unrelated animal mitochondrial genomes 

consist of multiple circular chromosomes. The mitochondrial genome of the 

mesozoan Dicyema features a number of DNA ‘minicircles’, each encoding a single 

gene (Watanabe et al., 1999), as does, similarly, that of the human body louse 

Pediculus humanus (Shao et al., 2009). The largest mitochondrial genomes are 

found in angiosperm plants, which can be as large as 2400 kb, yet they encode 50-

60 genes, which is a fairly typical gene content compared to smaller mitochondrial 

genomes (Burger et al., 2003b; Kubo and Newton, 2008). The least reduced 

mitochondrial genomes with the greatest number of genes are believed to be those 

found in jakobid protists but even these contain only a small percentage of the genes 

that were likely present on the genome of the mitochondrial endosymbiont (Burger et 

al., 2013). 
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The genomes of mitochondria found in ciliate species studied to date consist 

of a primary linear chromosome which ranges in size from approximately 40 to 70kb. 

These genomes encode protein components of the ETC, as well as translational 

components, including ribosomal proteins, ribosomal RNAs and transfer RNAs 

(Swart et al., 2012). This linear chromosome is typically what is referred to when 

discussing the organelle genome in ciliates, although it is worth noting that the 

mitochondrial genome of the ciliate Sterkiella histriomuscorum (Swart et al., 2012) 

and some other eukaryotes (Meinhardt et al., 1990), such as the amoebezoan 

Physarum polycephalum (Kawano et al., 1991) and some plants (Handa, 2008), are 

accompanied by shorter secondary linear chromosomes that contain regions that 

have sequence similarity to the primary mitochondrial genome chromosome. 

Described as linear mitochondrial plasmids, in most cases they appear to have ORFs 

encoding unknown proteins and both RNA and DNA polymerases (Handa, 2008). 

 

1.2.3 Anaerobic ciliates and anoxic habitats 

 

Anaerobic ciliates are found inhabiting freshwater and marine sediments, as well as 

the digestive tracts of insects and mammals. These anoxic environments occur 

initially due to a redox imbalance resulting in a local reductive environment. This is 

typically caused as a result of aerobic heterotrophs, degrading organic material 

produced by phototrophic organisms, involving the conversion of O2 to CO2. Although 

these are usually balanced by the O2 -producing metabolism of phototrophs, in 

environments where heterotrophs are abundant and are metabolising at high rates, 

they can cause a depletion of O2. If the diffusion rate of O2 in this environment is also 

limited, the principle example being aquatic environments as O2 has a low diffusion 

rate through water, then this leads to anoxia and anaerobic microbial communities 

can begin to thrive. The major pathways of anaerobic communities are shown in 

Figure 1. Anoxia is further maintained due to the chemically reducing metabolic end-

products of anaerobic microbial consortia, such as sulphides and H2 (Fenchel and 

Finlay, 1995). 
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Figure 1.2 The structure of anaerobic communities with major pathways of anaerobic 

degradation of organic matter. Different metabolic processes within the pathways are fulfilled 

by diverse organisms and those within the box are fermentations. Adapted from Fenchel and 

Finlay (1995). 

 

Anaerobic ciliates can be difficult to culture as they are sensitive to O2 and therefore 

must be maintained in anoxic conditions. Anaerobic ciliates have only been 

successfully cultured xenically, with at least one species of food Bacteria present, 

which can cause a level of contamination in sequencing studies. Modern 

technologies however can help circumvent some of these issues since genomes and 

transcriptomes can now be isolated and sequenced from nucleic acids extracted from 

single purified cells (Nawy, 2014). 

The only ciliate hydrogenosomes that have been studied in any detail are 

those of Nyctotherus ovalis. All known species of the genus Nyctotherus are 

commensal organisms of animal digestive tracts, including both vertebrate and 

invertebrate hosts, with Nyctotherus ovalis inhabiting the digestive tracts of 

cockroaches. Nyctotherus forms a clade with Metopus and Clevelandella which 

together comprise the class Armophorea, all known members of which are thought to 

be anaerobic. Nyctotherus ovalis provided the first direct evidence for the 

mitochondrial ancestry of hydrogenosomes, as it contains an organelle genome, 

homologous to mitochondrial genomes found in aerobic ciliates and encoding some 

of the same genes (Akhmanova et al., 1998; Boxma et al., 2005). Initially a 

mitochondrial-type rRNA gene was sequenced by Akhmanova et al. (1998) who also 
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reported a nuclear encoded FeFe-hydrogenase enzyme. Furthermore they 

demonstrated that antisera against a Trichomonas vaginalis FeFe-hydrogenase 

localises to the hydrogenosomes in immuno-gold labelling experiments. Two studies 

published partially sequenced hydrogenosome genomes from Nyctotherus ovalis 

(Boxma et al., 2005; de Graaf et al., 2011), as well as a limited transcriptome 

analysis investigating the coding potential of Nyctotherus ovalis MAC genome and an 

inference of its hydrogenosome metabolism (de Graaf et al., 2011). Interestingly, the 

two organelle genome sequences reported from Nyctotherus ovalis in these papers 

are not identical, indicating either that they were not from the same species, that 

organelle genomes in different Nyctotherus ovalis can be highly divergent, or the 

presence of sequencing and assembly errors. 

Anaerobic species of ciliate with hydrogenosomes have been described in 

several classes of ciliates including the Oligohymenophorea, Plagiopylea, 

Armophorea and Litostomatea (Fenchel et al., 1977; Embley et al., 1995). More 

recently an anaerobic Karyorelictid ciliate has been described that appears to contain 

endosymbiotic methanogens and organelles that are purported to be 

hydrogenosomes, although this was not demonstrated directly (Edgcomb et al., 

2011). This suggests that genes needed to evolve hydrogenosomes from aerobic 

mitochondria were present in the earliest ciliates, or at least the last common 

ancestor of the known hydrogenosomes containing ciliates. However the molecular 

basis for hydrogenosome metabolism is unknown for the majority of anaerobic ciliate 

species and so it is unclear if they are making H2 in the same way. Given that 

anaerobic species with hydrogenosomes have evolved independently numerous 

times from ancestors with aerobic mitochondria in ciliates, this group of organisms 

provide an opportunity for studying how hydrogenosomes have evolved repeatedly in 

a relatively closely related group of organisms. 

 

1.3 Methanogens 

 

1.3.1 General description of methanogen Archaea 

 

Until recently methanogenesis was only known to occur within one group of Archaea 

known as methanogens, found within the clade Euryarchaeaota. It has now been 

inferred from the genome sequences of species from another archaeal clade, the 
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Bathyarchaeaota, that these Archaea also have methanogenic metabolisms (Evans 

et al., 2015). Based on homology of key enzyme-encoding genes, it is thought that 

methanogenic metabolism may have evolved in an ancestor of these two clades and 

has been retained or lost in different lineages, meaning this trait is more widespread 

in Archaea than first thought (Lever, 2016). Methanogens use a restricted set of 

substrates including CO2 and H2, formate, methanol, methylamines and acetate, 

which they can reduce to methane in order to make ATP (Thauer et al., 2008). 

Although some small amounts of ATP are produced by substrate-level 

phosphorylation occurring in the methanogenesis pathway, the majority of 

methanogens are thought to make most of their energy by creating a transmembrane 

gradient from the translocation of protons and Na+, that can be utilised by A1A0 ATP 

synthase complexes (distant homologues of the bacterial and mitochondrial F1F0ATP 

synthase complexes) to generate ATP (Deppenmeier et al., 1996). Methanogens are 

environmentally relevant, especially from an anthropogenic perspective since they 

contribute 69% of global CH4 production, significantly higher in comparison to the 

25% of CH4 production associated with anthropogenic activities such as burning of 

fossil fuels (Conrad, 2009). CH4 can escape into the atmosphere, where it is 

photochemically oxidised to CO2, the major greenhouse gas responsible for global 

warming (Thauer, 2011). Another significant source of methane emissions comes 

from the enteric methanogen communities inhabiting ruminant livestock. In ruminants 

methanogens produce a range of cellulose-digesting enzymes, which benefit the 

ruminant by aiding in food digestion (Hill et al., 2016). As the human demand for 

livestock increases, so does the production of methane from these animals. 

 

1.3.2 Detection of methanogens and their symbiosis with anaerobic ciliates 

 

Methanogens can be putatively identified based on their auto-fluorescence when 

excited with 420nm wavelength light (Edwards and McBride, 1975; Mink and Dugan, 

1977; Doddema and Vogels, 1978). The fluorescence is emitted by the oxidised form 

of the cofactor coenzyme F420 (Cheeseman et al., 1972). In methanogenic Archaea, 

oxidised coenzyme F420 is produced from the reduced form which acts as an electron 

donor to several enzymatic reactions in the methanogenesis pathway (DiMarco et al., 

1990). Coenzyme F420 is also found in some species of Bacteria (Selengut and Haft, 

2010) and therefore detection of auto-fluorescence at 420nm wavelength light does 
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not definitively identify methanogens but can be a useful preliminary screening 

method. 

Auto-fluorescence detection was initially used to determine the endosymbionts 

some anaerobic ciliates as methanogens (Fenchel et al., 1977). The excess of 

available H2 produced as a waste-product of hydrogenosome metabolism in 

anaerobic ciliates creates a niche which is occupied by hydrogenotrophic 

methanogens. The nature of these associations between ciliate host and 

methanogenic endosymbiont and whether they are transient or permanent is not fully 

understood. Likewise, whilst benefits of the symbiosis to the methanogen are likely to 

be the provision of a stable H2 source and protection from extracellular stresses, the 

benefits to the ciliate is less clear. Previously it was suggested that the consumption 

of H2 makes hydrogenosome energy production more thermodynamically favourable 

by lowering the pH2 within the cell (van Bruggen et al., 1983). It is debatable however 

whether this is significant enough to benefit the host since anaerobic ciliates live in 

environments with sufficiently low pH2 that H2 production should not be inhibited 

(Fenchel and Finlay, 1991a). Despite this, the growth rate of Plagiopyla frontata and 

Metopus contortus was shown to decrease when their methanogens were inhibited, 

using 2-bromoethanesulfonic acid, although there appeared to be no significant effect 

on growth rate when they were eliminated from Metopus palaeformis (Fenchel and 

Finlay, 1991a). 

The species of these methanogenic endosymbionts have been identified for a 

handful of anaerobic ciliates. All those identified to date come from the orders 

Methanobacteriales and Methanomicrobiales and each species is closely related to 

but distinct from free-living methanogen species (Embley and Finlay, 1994). 

Identification is commonly achieved by fluorescence in situ hybridisation (FISH) 

experiments, with fluorescently labelled DNA oligonucleotide probes designed 

specifically to target the 16S rRNA of ribosomes from specific endosymbiont species 

(Embley et al., 1992a; Embley et al., 1992b; Finlay et al., 1993b; Embley and Finlay, 

1994; Shinzato et al., 2007).  

It has been demonstrated experimentally that a strain of Trimyema 

compressum devoid of methanogen endosymbionts, acquired free-living 

Methanobacterium formicicum cells by phagocytosis when incubated together in the 

same medium and that these methanogens were transferred from food vacuoles to 

the ciliate cytosol, instating them as endosymbionts (Wagener et al., 1990). This 
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would suggest that these endosymbioses are transient rather than permanent 

associations since the strain of Methanobacterium formicicum can immediately adapt 

from a free-living lifestyle to surviving in the cytosol of an organism that can provide it 

with a steady supply of H2. Furthermore, closely related ciliate species can have 

methanogenic endosymbionts from two different lineages, which would also indicate 

that these endosymbionts do not evolve linearly with their hosts, based on 

comparisons of phylogenies for hosts and endosymbionts (Embley and Finlay, 1994) 

and since they are so similar to free-living species, both morphologically and by 

comparison of their 16S rRNA gene sequences, they must have evolved symbiotic 

lifestyles relatively recently (Fenchel and Finlay, 1995). Conversely however, there 

are some of these endosymbionts that seem to have certain phenotypes that would 

indicate a degree of stability or adaptation involved in these relationships. For 

example the endosymbionts in Metopus contortus and Trimyema sp., both closely 

related to free-living species of the genus Methanocorpusculum, show evidence from 

EM that they undergo a polymorphic transformation by degrading their cell walls and 

attaching to hydrogenosomes, forming close interactions to presumably maximise H2 

transfer (Embley et al., 1992a; Finlay et al., 1993b). Also the endosymbionts of 

Plagiopyla frontata and Cyclidium porcatum form methanogen-hydrogenosome 

complexes, the organisation of which in the cytosol appears to be distinctive in each 

organism (Esteban et al., 1993; Embley and Finlay, 1994). These fairly complex 

interactions and symbiont-hydrogenosome arrangements are perhaps more 

indicative of a stable relationship between the two and that the endosymbionts have 

evolved the ability to form the interactions due to long-term co-evolution in the 

presence of hydrogenosomes, although of course free-living methanogens may also 

form these types of interactions with H2 producing cells in extra-cellular environments. 

This study increases the sampling for species of anaerobic ciliates to identify what 

species of methanogenic endosymbionts they contain in order to infer their 

evolutionary basis for these relationships. Sequencing and analysis of genome 

sequences from some of these endosymbionts and comparison with the genomes of 

their closest free-living relatives should reveal much more regarding the nature of 

these symbiont-host interactions. The genome sequence should also provide insight 

into metabolic interdependencies between both of these partners. 
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1.4 General aims 

 

The current study had the following main aims: 

1. To investigate ciliate hydrogenosome evolution by isolating and culturing a 

taxonomically diverse sample of anaerobic ciliates with hydrogenosomes and 

using modern genomic sequencing methods to identify and characterise their 

hydrogenosome genomes. This is to test the hypothesis that ciliate 

hydrogenosomes are mitochondrial homologues and their hydrogenosome 

genomes encode components of mitochondrial ribosomes and the electron 

transport chain, like aerobic mitochondria. 

 

2. To provide evidence of core mitochondrial processes within the 

hydrogenosomes of anaerobic ciliates. To test this, the metabolisms of ciliate 

hydrogenosomes will be inferred by generating transcriptomic data for 

individual ciliates using single cell methods and in combination with nuclear 

genomic data, in order to reconstruct their metabolic pathways and proteomes 

in silico. 

 

3. To understand whether anaerobic ciliates and their endosymbiotic 

methanogens evolve in parallel, forming relatively stable associations, or 

whether they are acquired independently in different lineages. To test this, I 

will identify endosymbiont species living in anaerobic ciliates and to investigate 

the evolutionary history of both host and symbiont using a combination of 

molecular gene sequencing, phylogenetics and in situ fluorescent probing. 

 

4. To identify the key hydrogenosomal proteins involved in hydrogen production 

and to investigate their origin(s) and evolutionary histories using phylogenetic 

methods, in order to understand whether they were acquired ancestrally from 

the mitochondrial endosymbiont, and inherited vertically in ciliates, or whether 

they were acquired more recently by lateral gene transfer. 
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Chapter 2. Methods 

 

2.1 Field site sampling and culturing methods 

 

To isolate free-living anaerobic ciliates, samples containing both water and sediment 

were collected, using a 500 ml beaker attached to the end of a 2 m pole, from field 

sites in Dorset, United Kingdom: Freshwater samples were taken from a pond known 

as East Stoke Fen (GPS 50.679064, -2.191587) adjacent to and occasionally flooded 

by the River Frome. Marine samples were taken from Poole Park Lake (GPS 

50.715541, -1.971177), a brackish lake partially connected to Poole Harbour, which 

was sufficiently saline that only marine species of anaerobic ciliates were found in 

samples from this site. These samples were transferred into screw-top bottles for 

transport to the laboratory. Approximately 50 ml of liquid and suspended sediment 

from samples were transferred to 125ml glass vials to which another 50ml of medium 

was added, as well as a wheat grain and some dried cereal leaves, which were 

added in order to stimulate growth of natural food Bacteria present in the samples 

which ciliates can feed on. Ciliates were grown in SES (soil extract with added salts) 

medium and N75S (new cereal leaf 75% seawater) medium (recipes available from 

Culture Collection of Algae and Protozoa: https://www.ccap.ac.uk/), for freshwater 

and marine samples respectively. The pH of media were always adjusted to pH7 by 

addition of HCl or NaOH before sterilisation by autoclave. Soil for the production of 

SES medium was collected from a deciduous woodland close to East Stoke Fen. 

Seawater for the production of N75S:NSW medium was taken from Poole Park Lake. 

All culture vials were sealed with rubber stoppers and the gaseous headspace of 

vials were flushed using compressed N2 for 3 minutes to remove O2, creating anoxic 

conditions. Anaerobic ciliate species were identified in enriched samples by 

Genoveva Esteban (Bournemouth University) and were cultured monoxenically by 

transferring them to pre-incubated vials containing ciliate-free medium using glass 

micropipettes and were cultured as described above. All cultures were continually 

incubated at 18°C in the absence of light and subcultured every 4-6 weeks by 

dividing the culture from one vial into two, such that there were approximately 50 ml 

in each, and added another 50 ml of sterile medium to each, as well as a wheat grain 

and cereal leaves. 

https://www.ccap.ac.uk/
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The isolation of Nyctotherus ovalis and continued growth of cockroach colonies were 

performed by Anders Lind (Ettema-Lab, Uppsala University), as described below. 

Cells of Nyctotherus ovalis were obtained from cockroaches of the species Blaptica 

dubia, acquired commercially from Cricket Express (cricketexpress.se). Cockroaches 

were reared in plastic boxes and fed dried dog food and fresh fruit ad libitum. Two 

male and two female cockroaches were dissected under electromigration buffer (2.7 

mM KH2PO4, 1.8 mM KH2PO4, 21.5 mM KCl, 20 mM NaCl, 6.1 mM MgSO4.7H2O, 0.5 

mM L-cysteine, 0.5mM CaCl2.2H20, 0.5mM titanium citrate, and 1 mM NaHCO3, pH 

adjusted to 7.5 using 1M NaOH) and their hindguts extracted. The ciliates were then 

extracted by electromigration, in electromigration buffer as described by Hoek et al. 

(1999). 

 

2.2 PCR, cloning and sequencing 

 

2.2.1 DNA template preparation for PCR 

 

PCR was performed using either isolated cells or purified DNA as template. Typically 

up to 10 cells were isolated using a glass micropipette whilst being observed via a 

stereoscopic microscope and washed in sterile PBS or sterile medium. Cells were 

then transferred to microcentrifuge tubes and heated in a heat block at 90°C until all 

liquid had evaporated. These dried samples were then used directly as templates in 

PCR reactions. Purified DNA was obtained by centrifuging 200ml of ciliate cultures at 

1500 x g for 45 minutes. Supernatant was carefully removed to leave pellets intact, 

which were transferred to microcentrifuge tubes. Cells were lysed by a combination 

of vortex mixing and free-thaw cycles between -80°C or -20°C and 90°C. DNA was 

purified from these samples using a QIAamp DNA Mini Kit (QIAGEN) following the 

protocol for crude cell lysates in the kit handbook and eluted in sterile 10mM Tris 

buffer adjusted to pH8. Purified DNA not being used immediately was kept at -20°C. 
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2.2.2 PCR reagents 

 

PCRs were performed using KOD Hot Start DNA polymerase (Merck Millipore) and 

reagents were combined using concentrations and volume ratios recommended by 

the manufacturer’s protocol. Total reaction volumes ranged from 10 – 50µl. For 

reactions using dried cells as DNA template, the volume of buffer containing DNA in 

the reaction mixture was replaced with sterile H2O. All primers used in PCR 

experiments are listed in Table 2.1 and the corresponding thermal cycler conditions 

used with each primer are listed in Table 2.2. The annealing temperatures in Table 

2.2 were suboptimal for amplification in the case of some primer combinations. In 

these cases PCR replicates were performed across a gradient of annealing 

temperatures, typically ranging between 50°C and 70°C, in order to identify more 

optimal annealing temperatures that would result in increased product and clearer gel 

bands.
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Table 2.1 Primers used in PCR experiments 
 

 



32 
 

 

Table 2.2 Thermal cycler conditions used in PCR experiments 

 

 

2.2.3 Agarose gel electrophoresis 

 

PCR products were analysed and visualised by agarose gel electrophoresis. Gels 

were prepared by adding agarose, with a final concentration of 1 – 2%, according 

to the expected size of the DNA bands in the PCR product, to 1x TAE buffer 

(40mM Tris acetate, 1 mM EDTA, pH8). The agarose was dissolved by heating 

the suspension and then cooling before the addition of ethidium bromide to a final 

concentration of 0.5 µg/ml. Agarose solutions were poured into gel moulds, 

containing combs to make wells when removed, and allowed to cool at room 

temperature until the gels solidified. Solidified gels were removed from moulds, 

transferred into electrophoresis chambers and submerged in 1x TAE buffer. 5-20µl 

aliquots of PCR product, depending on expected band intensities, were mixed with 

6x DNA Gel Loading Dye (Thermo Scientific) in a ratio of 5:1, and loaded into 

wells of the gels. MassRuler DNA Ladder Mix (Thermo Scientific) was also loaded 

in wells adjacent to PCR products, for DNA band size comparison and molecular 

weight/DNA length estimation of PCR products. Electrophoresis was carried out at 

60 – 90V until loading dye was observed to have migrated into the bottom quarter 

of the gel. Migrated DNA in PCR products and markers in gels were visualised 

using a UV transilluminator. 
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2.2.4 Nested and semi-nested PCR 

 

In experiments that provided limited quantities of PCR product that were 

insufficient for downstream applications, nested and semi-nested PCRs were 

performed using purified DNA product from initial PCRs as template for second 

PCRs. DNA from the initial reaction was purified using a QIAquick PCR 

Purification Kit (QIAGEN) following the manufacturer’s recommended protocol. 

The second PCRs used a forward primer designed to bind to the target DNA 

template downstream from the forward primer used in the first reaction and/or a 

reverse primer designed to bind upstream from the reverse primer used in the first 

reaction. PCRs were performed using the same methods described in sections 

2.2.2 – 2.2.5. 

 

2.2.5 PCR product purification, plasmid ligation, cloning and sequencing 

 

Following agarose gel electrophoresis of PCR products, DNA bands of expected 

size for cloning were excised from gel using a sterile scalpel and purified using the 

QIAquick Gel Extraction Kit (QIAGEN), following the manufacturer’s 

recommended protocol to dissolve the agarose, bind DNA to the purification 

column, wash the DNA and then elute in 10mM Tris-Cl, pH 8.5. Purified DNA 

fragments were ligated into linearised pJET1.2 blunt ended plasmids using the 

CloneJET PCR Cloning Kit (Thermo Scientific) following the manufacturer’s 

recommended protocol to perform the ligation reaction. 50µl aliquots of 

Subcloning Efficiency DH5ɑ Competent Cells (Invitrogen) were thawed on ice. 5µl 

ligation reactions were added to cell suspensions and incubated on ice for 10 

minutes. Cell suspensions were then heat-shocked by transferring to a 42°C water 

bath for 40 seconds, before returning them to ice and incubating for a further 10 

minutes. 1ml LB medium was then added to each suspension and incubated at 

37°C with continual shaking at 200rpm for a 1 hour recovery period. 100µl of these 

suspensions were then spread on selective LB agar plates containing carbenicillin 

(100µg/ml) and incubated at 37°C overnight. Colonies grown on selective plates 

were cultured overnight in 5ml LB medium containing carbenicillin (100 µg/ml). 

Plasmids were purified from overnight cultures using the QIAprep Miniprep Kit 

(QIAGEN) following the manufacturer’s recommended protocol. To assess 
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whether plasmids in purified samples contained inserts of the expected size, 

aliquots of these samples were digested with the restriction enzyme BglII (Thermo 

Scientific) following the manufacturer’s recommended protocol. Digested samples 

were visualised by agarose gel as described in section 2.2.5 and samples 

observed to contain plasmids with expected inserts were selected for sequencing. 

Sanger sequencing was performed by GATC Biotech, whom were provided with 

aliquots of plasmid samples with concentrations adjusted according to GATC 

Biotech requirement guidelines. All linear DNA and plasmid concentrations were 

estimated using a NanoDrop 2000 Spectrophotometer (Thermo Scientific) and 

samples were sequenced in both directions using forward and reverse sequencing 

primers provided in the CloneJET PCR Cloning Kit. Nucleotide sequences were 

inferred from chromatogram files, which were assessed manually using the 

program FinchTV 1.4.0 (Geospiza). Reverse and forward read nucleotide 

sequences were then aligned and assembled using the program Sequencher 

4.2.2 (Gene Codes Corporation), which was also used to remove primer and 

plasmid sequences. 

 

2.3 Fluorescence in situ hybridisation 

 

2.3.1 Probe design 

 

Where available probe sequences used in other publications or from probeBase 

(Loy et al., 2003) were used to target specific organisms. In cases where no probe 

sequences were available that were specific to a particular taxonomic group, 16S 

rDNA sequences of target organisms were aligned with the most similar 16S rDNA 

sequences of non-target organisms obtained by blastn searches. Probes were 

manually designed to gene regions conserved between all target organisms and 

differed in the non-target organisms by at least 3 nucleotides. 

2.3.2 Sample fixation, hybridisation and imaging 

 

Ciliate endosymbiont species were identified by fluorescence in situ hybridisation 

(FISH) using the oligonucleotide probes in Table 2.3. All probes were synthesised 

by biomers.net GmbH and double-labelled at the 5’ and 3’- ends, in order to 
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increase the fluorescent signal, with either 6-Fam, Cy3 or Cy5 fluorescent dyes. 

Due to auto-fluorescence emitted from the sample at similar emission spectra to 6-

Fam and Cy3, only Cy5 could be used to visualise endosymbionts of Nyctotherus 

ovalis. Ciliate cells were fixed in 4% paraformaldehyde at 4°C and washed in PBS. 

All cells were attached to poly-L-lysine coated slides, except cells of Nyctotherus 

ovalis, which were attached to gelatine coated slides. Sample dehydration, probe 

hybridisation and washing were the same as in Daims et al. (2005), except when 

hybridising species of Metopus and Nyctotherus. In these experiments formamide 

was removed from the hybridisation buffer as its presence caused non-specific 

binding of probes to samples. In these cases the stringency of the hybridisation 

reactions was ensured by increasing the hybridisation temperature according to 

the estimated probe dissociation temperatures (Td), which were estimated as 

described by Stahl and Amann (1991). Probes were hybridised for 2 hours at 2°C 

lower than their respective Td. After washing, dried samples were mounted with 

ProLong Diamond antifade mountant. Z-sections were imaged using a confocal 

microscope (A1R, Nikon) with a 63x/1.4 objective lens and a Leica SP8 confocal 

gSTED microscope was used for super-resolution imaging. Vertical z-stacks were 

deconvolved using Huygens deconvolution software (Scientific Volume Imaging 

B.V.) with empirically measured point spread functions and image projections 

were reconstructed using the program Fiji (ImageJ) (Schindelin et al., 2012). 

Table 2.3 Fluorescent probes used in FISH experiments 

 

 

2.4 Organelle genome sequencing 

 

2.4.1 Organelle enrichment and DNA sequencing 

 

The workflow for sample preparation and organelle genome sequencing methods 

is described in Figure 2.1. In order to optimise the enrichment process PCR was 

used to test each fraction (pellets and supernatants) for the presence of 

https://ncl.corefacilities.org/equipment/show/263601
https://ncl.corefacilities.org/equipment/show/263601
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macronuclei, using primers targeting 18S rRNA; Bacteria, using primers targeting 

16S small-subunit rRNA; and hydrogenosomes, using primers targeting 

mitochondrial 12S small-subunit rRNA. 

 

 

Figure 2.1 Workflow of methods used for preparation of hydrogenosome DNA for 

sequencing a. & b. Reduction of prokaryotes in sample; c. Lysis of ciliates in order to 

release organelles; d. Reduction of macronuclei; e. Concentrated hydrogenosomes in 

preparation for whole-genome amplification; f. Amplification of enriched hydrogenosome 

DNA and prepare libraries for sequencing. 
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2.4.2 Organelle genome assembly and annotation 

 

All assembly of genomic datasets, from raw reads to assembled contigs, was 

performed by Anders Lind (Ettema-lab, Uppsala University), as he had more 

experience doing this for other datasets, using the following methods: Read 

quality was assessed using FastQC (Andrews, 2010) and SeqPrep 

(https://github.com/jstjohn/SeqPrep) was used to remove short reads, remove 

Illumina adapters from reads and merge overlapping paired-end reads. Low 

quality bases were removed using Trimmomatic (Bolger et al., 2014) with the 

following parameters: TRAILING:20, MINLEN:150. Paired-end reads were 

assembled into contigs using the SPAdes Genome Assembler (Bankevich et al., 

2012) with the following parameters to reduce mismatches and indels: --sc --

careful. 

The following analysis was carried out by myself, William Lewis: A dataset of the 

available ciliate mitochondria and hydrogenosome genomes was used as a query 

in blastn searches against assembled datasets, in order to identify a set of 

potential ciliate hydrogenosome genome contigs. In order to increase search 

sensitivity, the following parameters values were used in these blastn searches 

instead of their default settings: -word_size 11, -reward 2, -penalty 3, -gapopen 5, 

-gapextend 2. Potential hydrogenosome genome contigs were either identified or 

dismissed as being true ciliate hydrogenosome genome sequences based on 

further blastn searches against the NCBI nucleotide collection and blastx searches 

against the Nr database (NCBI) and their similarity to other ciliate mitochondria 

and hydrogenosome genome sequences. Hydrogenosome genome contigs were 

annotated using several methods. Firstly, FACIL (Dutilh et al., 2011) predicted the 

genetic code used by each hydrogenosome genome, using sequenced contigs as 

input, as being most similar to the protozoan mitochondrial code (NCBI genetic 

code 4). Genes were predicted from contigs and translate in silico using Prodigal 

(Hyatt et al., 2010) with either -meta or -single settings and translation table 4 

specified. rRNA genes were predicted by searching the Rfam database (Gardner 

et al., 2009) using the program cmscan, included in the Infernal software package 

(Nawrocki and Eddy, 2013). tRNA genes were predicted using tRNAscan-SE 

(Lowe and Chan, 2016). 
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2.5 RNA-Seq 

 

2.5.1 Transcriptome sequencing and assembly 

 

All cDNA libraries were produced and transcriptomic datasets assembled by 

Henning Onsbring Gustafson (Ettema-lab, Uppsala University), as he had more 

experience doing this for other datasets, using the following methods: 

Transcriptome datasets were produced from five micro-manipulated ciliate cells 

per sample as it was easier to wash this number of cells effectively and minimize 

contamination. The methods followed the Smart-Seq2 protocol (Picelli et al., 

2014), which includes all necessary steps for successful mRNA isolation, reverse 

transcription and library preparation. Nextera libraries were sequenced with an 

Illumina MiSeq using 250bp paired-end reads. Quality control and trimming of 

sequencing reads was performed as described in section 2.4.2 and assembled 

with Trinity (Grabherr et al., 2011). Reads were mapped to transcripts to quantify 

coverage for the purposes of assessing dataset quality using Rsem (Li and 

Dewey, 2011) with Bowtie2 (Langmead and Salzberg, 2012). Taxonomic diversity 

of transcript dataset was estimated using MEGAN5 (Nawrocki and Eddy, 2013) to 

assess contamination by transcripts from non-target organisms, using alignments 

from blastx searches against the Nr database as described in Section 2.5.2. 

 

2.5.2 Gene identification from transcript datasets 

 

Putative transcripts encoding genes involved in ciliate hydrogenosome 

metabolisms were identified using a combination of methods. Initial dataset 

refinement was performed using CBOrg (Gaston et al., 2009), in order to identify 

transcripts that likely function in ciliate hydrogenosomes based on sequence 

similarity to compiled hydrogenosome and mitochondria datasets from other 

organisms. Automatic gene identification was performed using the EggNOG-

mapper (Huerta-Cepas et al., 2016) with HMMER (Eddy, 1998) mapping. 

Additional gene identification was performed by searching assembled transcript 

datasets against the Nr database (NCBI) using blastx. Transcripts were translated 
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to protein sequences in silico using TransDecoder (https://transdecoder.github.io/). 

Ciliates have evolved a variety of genetic codes in different lineages (Lozupone et 

al., 2001) and in the present study, based on which code did not introduce stop 

codons within protein sequences, it was determined that Nyctotherus ovalis, 

Metopus contortus, Metopus es and Metopus striatus all use the standard genetic 

code (NCBI genetic code 1), whereas Trimyema sp., Plagiopyla frontata and 

Cyclidium porcatum use the ciliate nuclear genetic code (NCBI genetic code 6). 

These codes were selected in TransDecoder to produce protein translations. 

 

2.5.3 Prediction of N-terminal targeting signals 

 

The programs TargetP (Emanuelsson et al., 2007), MitoProt II (Claros and 

Vincens, 1996), Predotar (Small et al., 2004) and MitoFates (Fukasawa et al., 

2015), each utilise a combination of different methods to predict the presence of 

mitochondrial N-terminal targeting signals from the amino acid sequences of 

proteins. These programs were used to predict whether ciliate proteins, translated 

from transcripts, had mitochondria-like N-terminal targeting sequences. 

 

2.5.4 Codon usage analysis for transcript verification 

 

Cultures used for isolating cells for transcriptome sequencing each contained a 

single ciliate species and a diverse consortia of different prokaryotic organisms. 

Despite isolating ciliate cells by pipetting and washing in sterile buffer, prokaryotes 

still remained in the sample as undigested prey in the ciliate food vacuoles, as 

endosymbionts in the ciliate cytoplasm, as well as extracellular contaminating 

organisms carried over during washing steps. Eukaryotes, including ciliates, have 

poly-adenylated mRNA transcripts that were enriched in the Smart-seq2 (Picelli et 

al., 2014) sequencing process, using a primer that binds to the poly-adenylated 

sequence of the mRNA. This enriched the number of ciliate transcripts in the 

sequenced dataset but the samples still contained mRNA from prokaryotic 

organisms, which were also sequenced and assembled in the final dataset. Due to 

low sequence conservation of some genes and the possibility of lateral 

acquisitions of genes from other organisms, the taxonomic identification of genes 

https://transdecoder.github.io/
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can be ambiguous from blast-based sequence comparisons alone. Therefore 

when identifying genes in the transcriptomic datasets, it was necessary to 

determine a level of confidence that transcripts from other organisms are not being 

mistaken for ciliate genes. A number of methods were used to provide evidence 

that particular transcripts are true ciliate genes. For some transcripts, the poly-

adenylated tail was partially sequenced and therefore the sequence was 

terminated by a series of repetitive ‘A’s. This signature provides some evidence 

that such transcripts originate from the ciliate nuclear genome, although this is not 

completely definitive as some gene sequences may happen to contain repetitive 

‘A’-sequences. 

The codon usage of transcripts was analysed as a quantitative method to 

provide evidence of transcripts being encoded by ciliate genomes. Since the 

nucleotide composition of a gene is affected by mutational biases that apply to the 

whole genome in which it is resident, genes generally conform to a codon usage 

that is typical of that genome. This means that laterally acquired genes over time 

acquire a codon usage pattern typical of the genome of which it is resident in a 

process known as amelioration (Lawrence and Ochman, 1997). A dataset was 

assembled of all transcripts that had best hits in blastx searches with known ciliate 

genes in the Nr database. This dataset contained the transcripts that were 

considered most likely to be encoded by the macronuclear genome of each ciliate. 

Possible ORFs for these transcripts were predicted using TransDecoder 

(https://transdecoder.github.io/), which also translates ORFs to protein sequences. 

All ORFs were retained that had positive hits in a HMMER search (Eddy, 1998) to 

protein domains in the Pfam database (Finn et al., 2016), indicating that they 

encode functional proteins. From the nucleotide sequences of these ORFs a 

codon usage table was generated for the datasets from each ciliate species, using 

the program cusp (Rice et al., 2000). Using the codon usage tables, CAI (Sharp 

and Li, 1987) scores were calculated for each of the ORFs in the dataset, using 

the program cai (Rice et al., 2000), as a measure of the degree of deviation in 

codon usage of each ORF compared to what is typical for the total dataset. These 

values were then plotted as a distribution. CAI scores were also calculated from 

the most common bacterial and methanogen species present in each dataset 

using ORFs from their published complete genome sequences. The CAI scores 

https://transdecoder.github.io/


41 
 

for each of these species were plotted as distributions on the same axes as the 

ciliate scores for each dataset. 

 

2.6 Phylogenetics 

 

2.6.1 Multiple sequence alignment and phylogenetic inference 

 

Nucleotide and amino-acid sequences were automatically aligned using MUSCLE 

(Edgar, 2004). Multiple sequence alignments were checked for misaligned sites 

manually, which were realigned using the alignment viewers SEAVIEW (Galtier et 

al., 1996) and Jalview (Waterhouse et al., 2009). For phylogenetic analysis, 

alignments were trimmed using trimAl (Capella-Gutiérrez et al., 2009). As an initial  

screen of the datasets, maximum likelihood trees were inferred using RAxML 

(Stamatakis, 2014) with 100 rapid bootstrap replicates, in order to help refine the 

datasets. More in-depth analyses were then carried out using IQ-TREE (Nguyen 

et al., 2015) with 1000 ultrafast bootstrap replicates (Minh et al., 2013). Bayesian 

trees were inferred using Phylobayes MPI (Lartillot et al., 2013) running three 

independent MCMC chains until two had converged. Convergence was assessed 

using the bpcomp and tracecomp programs, which are part of the Phylobayes MPI 

package (Lartillot et al., 2013). 

 

2.6.2 Database sampling for phylogenies 

 

To assemble a taxonomically representative dataset of sequences for 

phylogenetic analyses aimed at investigating the origins of ciliate proteins, these 

ciliate protein sequences were used as queries for searches against the Nr 

database (NCBI), using blastp. These searches were restricted to the groups 

listed in Table 2.4 to ensure sampling from diverse taxonomic groups. The top 5 

best hits were saved from each blastp search and were aligned with any additional 

key proteins of interest that were manually downloaded. Redundancy was 

reduced in sequence datasets (aligned as described in section 2.6.1) by removing 

the most highly similar sequences using the program Decrease Redundancy 

(available at: http://web.expasy.org/decrease_redundancy/). 
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Table 2.4. Secondary level taxonomic groups according to the NCBI taxonomy browser. 

These groups were used to restrict blast searches in order to ensure diverse sampling for 

phylogenetic analyses. 

 

2.7 Light microscopy 

 

Living ciliate cells were imaged using an Olympus BH-2 light microscope mounted 

with a Micropublisher 3.3 RTV camera (QImaging). Methanogenic endosymbionts 

were visualised by fixing ciliates cells in 4% paraformaldehyde and transferring 

them to a black polycarbonate membrane filter, mounted on a microscope slide 

using Type FF Immersion Oil (Cargille). F420 fluorescence emission from 

methanogens was imaged using the microscope and camera described above, 

under 420nm wavelength epifluorescent illumination. Confocal microscopy was 

performed as described in section 2.3.2. 

 

2.8 Transmission electron microscopy 

 

Samples were prepared for transmission electron microscopy (TEM) by 

centrifuging 200ml of ciliate cultures at 1500 x g for 45 minutes. Supernatant was 

carefully removed to leave pellets intact, which were transferred to microcentrifuge 
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tubes. Cells were fixed in 2.5% glutaraldehyde in 0.15M HEPES-buffer at 4°C. A 

commercial service provided by Benoît Zuber and Beat Haenni (Microscopy 

Imaging Centre, Institute of Anatomy, University of Bern, Switzerland) was used 

for sample preparation and imaging of fixed samples. 
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Chapter 3. The metabolism of ciliate hydrogenosomes 

 

3.1 Introduction 

 

3.1.1 Hydrogenosomes in anaerobic ciliates 

 

Hydrogenosomes have evolved independently in diverse and often distantly 

related eukaryote lineages (Embley and Martin, 2006). On a smaller evolutionary 

scale, ciliates are a single clade of eukaryotes that appear to have evolved 

hydrogenosomes independently on multiple occasions (Embley et al., 1995). This 

provides a unique opportunity to study hydrogenosomes from a group of closely 

related organisms in order to better understand their similarities and differences, 

and from this to infer the processes that have shaped their evolution. The 

repeated evolution of hydrogenosomes in ciliates (Embley et al., 1995), suggests 

that they are in some way predisposed to evolving hydrogenosomes from aerobic 

mitochondria relative to other groups. Exactly how they have achieved this 

however, and what evolutionary processes were involved, are unknown since they 

have not been studied in sufficient detail. 

The first hydrogenosome found to contain an organelle genome, 

homologous to the genomes of mitochondria, was discovered in the anaerobic 

ciliate Nyctotherus ovalis (de Graaf et al., 2011). Organelle genomes have since 

been found in the mitochondrial homologues of other anaerobic eukaryotes, 

including the stramenopile Blastocystis sp. (Stechmann et al., 2008) and the 

rhizarian Brevimastigamonas vehiculus (Gawryluk et al., 2016). The anaerobic 

ciliate Nyctotherus ovalis belongs to the class Armophorea and lives commensally 

in the hindgut of cockroaches (Gijzen et al., 1991). The hydrogenosome 

metabolism of Nyctotherus ovalis was previously partially reconstructed by 

analysis of its hydrogenosome genome (Boxma et al., 2005; de Graaf et al., 2011) 

and by transcriptome sequencing of its macronuclear genome, from which genes 

were identified that were thought to encode hydrogenosomal proteins based on 

the presence of N-terminal targeting signals that were similar to mitochondrial 

targeting signals (de Graaf et al., 2011). These studies suggest that the 

hydrogenosomes of Nyctotherus ovalis have a partial ETC and TCA cycle, similar 

to aerobic mitochondria, and can produce energy exclusively by substrate-level 
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phosphorylation as they do not have an F1F0 ATP synthase (de Graaf et al., 

2011). It is not known however, if the hydrogenosomes of other anaerobic ciliates 

also have organelle genomes and whether their metabolisms are similar to 

Nyctotherus ovalis. 

In the present study, genomic and transcriptomic sequencing methods were 

used to investigate the hydrogenosomes of seven ciliate species, six of which 

have not been investigated with such methods previously. By inferring the 

phylogeny of ciliates it was possible to strategically sample species from diverse 

lineages, these were Metopus contortus, Metopus es, Metopus striatus, Cyclidium 

porcatum, Trimyema sp. and Plagiopyla frontata. Metopus contortus, Metopus es 

and Metopus striatus were sampled as they are closely related to Nyctotherus 

ovalis and sampling over short genetic distances allows the fine scale evolution of 

hydrogenosomes to be investigated. Cyclidium porcatum was sampled as it has a 

complex symbiosis based upon its hydrogenosomes (Esteban et al., 1993) and is 

distinct from the other ciliate groups that were sampled. Plagiopyla frontata and 

Trimyema sp. were sampled based on them being closely related members of 

another anaerobic group of ciliates and their hydrogenosomes and endosymbionts 

show unusual morphologies. Nyctotherus ovalis was also reinvestigated with 

improved methods in order to expand what is already known about the 

hydrogenosomes of this species from previous studies (Akhmanova et al., 1998; 

Boxma et al., 2005; de Graaf et al., 2011). Little is currently known about many of 

these anaerobic ciliates and the present study has provided the first molecular and 

morphological data obtained from most of them. Some key questions include how 

do the hydrogenosomes of these anaerobic ciliates produce energy, what 

enzymes do they use to make H2 and do they all contain organelle genomes like 

Nyctotherus ovalis (Akhmanova et al., 1998)? Studying these species makes it 

possible to compare the hydrogenosomes of anaerobic ciliate species within a 

single lineage and also between separate ciliate lineages that have evolved 

hydrogenosomes independently, whereas previously there has not been enough 

data available to facilitate this. Comparing the hydrogenosomes of these ciliates to 

the mitochondria of their aerobic relatives will also be crucial to understanding 

what changes occur when evolving a hydrogenosome from an aerobic 

mitochondrion. 
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3.1.2 Evolution of the electron transport chain (ETC) in hydrogenosomes 

 

In aerobic eukaryotes, ATP production via oxidative phosphorylation occurs in 

mitochondria (Kennedy and Lehninger, 1949). The transfer of electrons from 

NADH and FADH2 to O2, via the ETC, pumps protons across the inner 

mitochondrial membrane generating a membrane potential that drives ATP 

production by F1F0 ATP synthase (Hatefi, 1985). Most studied hydrogenosomes 

do not have F1F0 ATP synthase and so do not use oxidative phosphorylation to 

produce ATP (reviewed in Muller et al. (2012) and Stairs et al. (2015)). It is unclear 

therefore why hydrogenosomes belonging to species such as Nyctotherus ovalis 

(de Graaf et al., 2011) and Blastocystis (Stechmann et al., 2008) appear to have 

retained ETC Complex I, a proton-pumping component of the ETC. One possible 

explanation suggested previously is that ETC Complex I is retained as it maintains 

a membrane potential across the inner membrane which might be required for 

protein import (Stairs et al., 2015), since a membrane potential has been shown to 

be required for protein import into yeast mitochondria (Gasser et al., 1982). If this 

is the case however, it does not explain why, based on localisation data and the 

presence of mitochondria-like protein targeting signals, some hydrogenosomes, 

including those of Spironucleus salmonicida (Jerlström-Hultqvist et al., 2013), can 

import proteins yet seem to have lost ETC Complex I and other proton-pumping 

ETC Complexes III and IV. Since some mitochondrial carrier proteins co-transport 

H+, such proteins might contribute to the formation of a transmembrane H+ 

gradient. In aerobic mitochondria, the ETC typically consists of the multi-protein 

ETC Complexes I, II, III and IV, as well as ubiquinone and cytochrome c. 

The ETC Complex I has been well studied from some Bacteria and from the 

mitochondria of some aerobic eukaryotes (reviewed in Brandt (2006)). Based on 

the homology of different subunits to various hydrogenases (Tran-Betcke et al., 

1990; Pilkington et al., 1991; Albracht, 1993), ETC Complex I has been 

functionally divided into three modules that have distinct roles (Brandt, 2006). The 

N-module and the Q-module together form the hydrophilic peripheral arm, which 

extends into the mitochondrial matrix (Brandt, 2006). Electrons are transferred to 

ETC Complex I via the 51 kDa subunit of the N-module as it oxidises NADH (Yagi 
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and Dinh, 1990). Fe-S cluster protein subunits transfer electrons (Ohnishi, 1998; 

Hinchliffe and Sazanov, 2005) through the N-module to the Q-module, where the 

electrons are used to reduce ubiquinone (Magnitsky et al., 2002). The third 

module of ETC Complex I is the hydrophobic P-module that spans the inner-

mitochondrial membrane (Brandt, 2006). This module uses redox energy 

transferred from the Q-module when it reduces ubiquinone, to pump protons 

across the inner mitochondrial membrane via protein subunits that are distant 

homologues of bacterial antiporters (Mathiesen and Hägerhäll, 2002). A total of 

fourteen core protein subunits make up these three ETC Complex I modules and 

these subunits are found in both eukaryotes and prokaryotes (Brandt, 2006). In 

eukaryotes the fourteen core subunits of ETC Complex I can be encoded either by 

the nuclear or the mitochondrial genome and exactly which genes are encoded by 

each genome varies between species (Brandt, 2006). Numerous additional ETC 

Complex I accessory subunits have also been identified in different eukaryote 

lineages (Carroll et al., 2003; Marques et al., 2005). The functions of accessory 

subunits are mostly unknown but they are thought to have roles in assembly, 

stabilisation and regulation of the complex (Brandt, 2006; Hunte et al., 2010). In 

the ciliates studied so far, the majority of the ETC Complex I core subunits are 

typically encoded by the mitochondrial genome and only nad8, nad11 and the 

24 kDa and 51 kDa subunits are encoded by the nuclear genome (Smith et al., 

2007; Swart et al., 2012). 

The catalytic site of ETC Complex II typically consists of two hydrophilic 

subunits that form a heterodimer in the mitochondrial matrix, anchored to the inner 

mitochondrial membrane by up to two other peptides (Sun et al., 2005). In aerobic 

mitochondria ETC Complex II functions as succinate dehydrogenase and has a 

dual role in the TCA cycle and the ETC, oxidising succinate to fumarate whilst 

transferring electrons to ubiquinone (Yankovskaya et al., 2003). In some 

anaerobic Bacteria and the hydrogenosomes of some anaerobic eukaryotes that 

have retained ETC Complex I, however, ETC Complex II can function as a 

fumarate reductase in the malate dismutation pathway (Massey and Singer, 1957; 

Tielens, 1994; Van Hellemond and Tielens, 1994; Tielens and Van Hellemond, 

1998). This pathway transforms malate to succinate, utilising some enzymes of 

the TCA cycle but catalysing their reactions in reverse (Tielens, 1994; Tielens et 

al., 2002). In anaerobic eukaryotes, the fumarate reduction step of malate 
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dismutation requires the replacement of ubiquinone in the ETC with rhodoquinone 

(Van Hellemond and Tielens, 1994). Like ubiquinone, rhodoquinone accepts 

electrons from ETC Complex I but because it has a lower redox potential, it is 

capable of donating electrons to ETC Complex II acting as fumarate reductase, 

thereby using fumarate as a terminal electron acceptor and transforming it to 

succinate (Tielens and Van Hellemond, 1998; Lonjers et al., 2012). This process is 

thought to be required in the hydrogenosomes of anaerobic eukaryotes that use 

ETC Complex I as they are unable to use O2 as an electron sink (Van Hellemond 

and Tielens, 1994). 

3.1.3 ATP production by substrate-level phosphorylation in the hydrogenosomes of 

anaerobic eukaryotes 

How the hydrogenosomes of most anaerobic ciliates make energy is unknown. 

Generally hydrogenosomes are inferred to make energy using a form of substrate-

level phosphorylation, as was shown for Trichomonas (Steinbüchel and Müller, 

1986). For this to occur pyruvate is first transformed to acetyl-CoA and the CoA 

moiety of this molecule is then transferred by ASCT to succinate, producing 

succinyl-CoA (Müller and Lindmark, 1978). Succinyl-CoA can then be re-oxidised 

to succinate by the TCA cycle enzyme SCS and in doing so, ATP is produced 

from ADP and inorganic phosphate (Jenkins et al., 1991). Several different 

enzymes were identified in hydrogenosomes from different species that are 

potentially capable of fulfilling the steps of this pathway. In Nyctotherus ovalis 

pyruvate is thought to be oxidised to acetyl-CoA by the pyruvate dehydrogenase 

complex (de Graaf et al., 2011), which is used for the same role in aerobic 

mitochondria. In the hydrogenosomes and mitochondrial homologues of other 

anaerobic eukaryotes however, including those of Trichomonas, Blastocystis sp. 

and Mastigamoeba balamuthi, it is thought that this role can be performed by 

PFO/PNO (Lindmark and Müller, 1973; Lindmark et al., 1975; Gill et al., 2007; 

Lantsman et al., 2008), or PFL in the hydrogenosomes of some other eukaryotes, 

including the chytrid fungi Piromyces and Neocallimastix (Akhmanova et al., 

1999). Hydrogenosomes also possess FeFe-hydrogenases which enable them to 

use protons as electron acceptors (Bui and Johnson, 1996) and a variety of 

structural types have been found in anaerobic eukaryotes and species with 

hydrogenosomes (Horner et al., 2000). Three different sub-families of ASCT (sub-

families 1A, 1B and 1C) have been identified in anaerobic eukaryotes, of which 
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Nyctotherus ovalis uses an ASCT of the sub-family 1A (de Graaf et al., 2011). 

Some ASCT enzymes of the subfamilies 1B and 1C appear to have been acquired 

by lateral gene transfer in some anaerobic eukaryotes (Stairs et al., 2014), it would 

therefore be of interest to know whether these enzymes exist in anaerobic ciliates 

and if so what their origins are. Knowing which enzymes and pathways are used in 

the hydrogenosomes of different anaerobic ciliate species would provide a better 

understanding of how hydrogenosomes have evolved on numerous occasions in 

this clade. 

 

3.1.4 Organelle genomes from the mitochondria and hydrogenosomes of ciliates 

 

Mitochondrial genomes have been previously studied from several aerobic ciliates 

(Pritchard et al., 1990; Burger et al., 2000; Brunk et al., 2003; Moradian et al., 

2007; de Graaf et al., 2009; Barth and Berendonk, 2011; Coyne et al., 2011). 

Each of these genomes encode a mostly common set of genes encoding subunits 

of ETC Complexes I, II and III; a cytochrome c maturation protein, ccmF; the atp9 

subunit of F1F0 ATP synthase; LSU and SSU ribosomal proteins; tRNAs; and 

rRNAs. The hydrogenosome genome of the ciliate Nyctotherus ovalis has been 

sequenced twice previously and appears to lack genes encoding subunits of ETC 

Complexes II and III, F1F0 ATP synthase and ccmF (Boxma et al., 2005; de Graaf 

et al., 2011). Sequencing the hydrogenosome genomes of anaerobic ciliates and 

identifying what genes they encode will complement analyses of their 

macronuclear genomes. Identifying proteins encoded by each of these genomes 

and that potentially function in hydrogenosomes will enable the reconstruction of 

their metabolisms. Existing data about ciliate mitochondrial genomes will facilitate 

detailed comparisons with the hydrogenosome genomes from anaerobic ciliates 

and improve understanding of their evolution. 

 

3.1.5 The connection between cristae, the ETC and the presence of an organelle 

genome 

 

Electron microscopy data has indicated that the hydrogenosomes of some 

anaerobic eukaryotes have invaginations in their inner membranes that are likely 
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to be homologues of the cristae observed in aerobic mitochondria (Zierdt et al., 

1988; Finlay and Fenchel, 1989). Some of these species, including Nyctotherus 

ovalis (Gijzen et al., 1991; Akhmanova et al., 1998), Blastocystis hominis (Zierdt et 

al., 1988; Wawrzyniak et al., 2008) and Brevimastigamoeba motovehiculus 

(Gawryluk et al., 2016), have organelle genomes too. Interestingly the 

hydrogenosomes of Neocallimastix frontalis were reported to contain cristae-like 

structures but in this case the organelle genome appears to have been lost (van 

der Giezen et al., 1997b). In aerobic mitochondria, cristae morphology is directly 

linked to metabolic function, as cristae have been shown to be enriched in 

transmembrane protein complexes of the ETC and F1F0 ATP synthase in model 

organisms (Gilkerson et al., 2003; Wurm and Jakobs, 2006). F1F0 ATP synthase 

complexes are also thought to have a structural role in mitochondrial cristae 

biogenesis as they are located and organised in rows of dimers, along cristae 

edges in various species (Allen et al., 1989; Davies et al., 2011). Mitochondrial 

genomes encode several subunits of the ETC and F1F0 ATP synthase complexes 

and components involved in their translation (Anderson et al., 1981; Bibb et al., 

1981). In organisms that no longer require the ETC, including some anaerobic 

eukaryotes with hydrogenosomes, the organelle genome would serve no clear 

purpose and hence its retention would potentially have no selective benefit. The 

absence of cristae in hydrogenosomes could thus provide visual indication that 

both the ETC and organelle genome have been lost. For this reason, the 

morphology of hydrogenosomes from anaerobic ciliates were investigated, to 

identify those that contain evidence of cristae, as the most likely species to have 

retained an organelle genome. 

  



51 
 

3.2 Aims 

 

1. To culture strategically chosen free-living anaerobic ciliates using 

morphology and 18S rRNA gene data for identification, to infer their 

phylogeny and to use TEM to obtain data regarding their hydrogenosome 

ultrastructure, and to use these data to choose species for further in-depth 

analysis of their hydrogenosomes. 

2. To use RNA sequencing and bioinformatic analysis to identify transcripts for 

key proteins that are likely to function in the hydrogenosomes of the studied 

anaerobic ciliate species and to use these data to reconstruct their 

metabolic pathways, and investigate how they make energy and H2. 

3. To establish and use small-scale genomic sequencing methods to 

sequence and assemble hydrogenosome genomes in anaerobic ciliates, 

and to bioinformatically analyse their sequence features. 
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3.3 Results 

 

3.3.1 Isolation and morphological identification of anaerobic ciliates 

 

Six species of free-living ciliates were successfully isolated and cultured in the 

present study using the methods described in Section 2.1. Metopus contortus and 

Plagiopyla frontata are marine species and were isolated from Poole Park Lake 

brackish samples. Metopus es, Metopus striatus, Cyclidium porcatum and 

Trimyema sp. are freshwater species and were isolated from East Stoke Fen 

freshwater samples. Nyctotherus ovalis is not free-living and the cells used in the 

present study were isolated from cockroaches by Anders Lind (Ettema-Lab, 

Uppsala University). The free-living ciliate species were initially identified visually 

by Professor Genoveva Esteban (Bournemouth University), based on their 

morphological features (Figure 3.1.). The images in Figure 3.1 were generated in 

the present study. 
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Figure 3.1. The morphology of cultured free-living anaerobic ciliates, visualised whilst living, using light microscopy. Metopus contortus (a), 

Metopus es (b), Metopus striatus (c), Trimyema sp. (d), Plagiopyla frontata (e), Cyclidium porcatum (f). Scale bars represent 20µm.
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3.3.2 PCR and sequencing of 18S rRNA genes 

 

In order to confirm the identity of the isolated free-living species, attempts were 

made to sequence their 18S rRNA genes using a variety of PCR and cloning 

strategies (Figures 3.2 and 3.3). In addition to the bands corresponding to 

amplified region of the intended target genes, many PCR experiments also 

produced additional bands, corresponding to various sizes, which were probably 

due to unspecific binding of primers to alternative templates. These sequences 

obtained from these experiments were compared to reference ciliate sequences in 

the NCBI nucleotide collection. Partial 18S rRNA sequences were obtained for 

each of the species Metopus es, Metopus striatus, Metopus contortus, Cyclidium 

porcatum, Plagiopyla frontata and Trimyema sp. The 18S rRNA genes sequenced 

from these ciliates were similar to those that had been sequenced from these 

species previously and were found in the NCBI nucleotide collection. This 

supported the species identities that were assigned to them based upon 

morphology (section 3.3.1). Later in the present study, full-length 18S rRNA gene 

sequences were also sequenced and retrieved for each of these species from 

transcriptomic datasets. 
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Figure 3.2. Results of PCR targeting 18S rRNA genes 

a. PCR products from reactions using primers EMBF and EMBR, targeting 18S rRNA genes 

from dried cell samples were run on a 1% agarose gel. Red arrowheads indicate products 

that were cloned and Sanger sequenced. The species used to provide the DNA templates 

are indicated within the figure. 

b. PCR products from reactions using primers EK-555F and EK-1269R, targeting 18S rRNA 

genes from dried cell samples were run on a 1% agarose gel. Red arrowheads indicate 

products that were cloned and Sanger sequenced. The remaining bands were not 

sequenced as larger portions of these genes were amplified and sequenced using other 

primers (Figure 3.2.a. and Figure 3.3). The species used to provide the DNA templates are 

indicated within the figure. 

c. Diagram indicating positions of primer binding sites relative to each other on the 18S 

rRNA gene, demonstrates that the binding sites of primer pair EK-555F and EK-1269F are 

nested within the binding sites of EMBF and EMBR (not drawn to scale). 
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Figure 3.3. Results of nested PCR targeting 18S rRNA genes 

a. PCR products from reactions using primers EMBF and EMBR, targeting 18S rRNA genes 

from dried cell samples were run on a 1% agarose gel. Initial PCR amplified lower quantities 

of DNA from Cyclidium porcatum compared to Metopus es. In order to amplify sufficient 

quantities of DNA for cloning and sequencing the PCR product from the Cyclidium 

porcatum sample (blue arrowhead) was purified and used to provide the DNA template for 

nested and semi-nested reactions (b.). 

b. Semi-nested and nested PCR products using DNA from (a.) to provide the template. 

Products were run on a 1% agarose gel. Red arrowheads indicate products that were cloned 

and Sanger sequenced. 

c. PCR products from reactions using primers EMBF and EMBR, targeting 18S rRNA genes 

from dried cell samples were run on a 1% agarose gel. Initial PCR amplified low quantities 

of DNA from Trimyema sp. and in order to amplify sufficient quantities of DNA for cloning 

and sequencing, the PCR product from the Cyclidium porcatum sample (blue arrowhead) 

was purified and used to provide the DNA template for nested and semi-nested reactions 

(d.). 

d. Semi-nested and nested PCR products using DNA from (c.) to provide the template. 

Products run on a 1% agarose gel. Red arrowheads indicate products that were cloned and 

Sanger sequenced. 
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3.3.3 Phylogenetic inference of relationships between anaerobic ciliates 

 

In order to understand the relationships between the anaerobic ciliate species, 

their phylogeny was inferred by analysing their full-length 18S rRNA gene 

sequences using the CAT+GTR model (Lartillot and Philippe, 2004) (Figure 3.4). 

The analysis included 18S rRNA gene sequences from Metopus contortus, 

Metopus es, Metopus striatus, Nyctotherus ovalis, Cyclidium porcatum, Plagiopyla 

frontata, and Trimyema sp. and two additional anaerobic species recovered from 

the NCBI nucleotide collection: Entodinium caudatum and Spathidium foissneri. 

18S rRNA gene sequences were also sampled from at least one species 

belonging to each of the eleven ciliate classes, as recognised by Adl et al. (2012). 

The analysis recovered four groups of anaerobic ciliates with moderate to high 

support. These groups were Spathidium foissneri and Entodinium caudatum 

(posterior probability of 0.88); Nyctotherus ovalis, Metopus striatus, Metopus es 

and Metopus contortus (posterior probability of 1); Cyclidium porcatum, forming an 

anaerobic clade on its own (posterior probability of 0.99); and Trimyema sp. and 

Plagiopyla frontata (posterior probability of 1). These groups are consistent with 

other analyses (Embley et al., 1995), suggesting that hydrogenosomes have 

evolved from aerobic mitochondria in ciliates on at least four occasions. The 

classes which are known to contain anaerobes are Litostomatea, Armophorea, 

Oligohymenophorea and Plagiopylea, and species of Armophorea, 

Oligohymenophorea and Plagiopylea that were investigated in the present study 

are highlighted in Figure 3.4. 
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Figure 3.4. Phylogeny of ciliates inferred from 18S rRNA gene sequences by Bayesian 

analysis using CAT+GTR model (Lartillot and Philippe, 2004) from an alignment of 1754 

nucleotide sites. Sequences were sampled from each major class of ciliates (green box). 

Support values indicate posterior probabilities. Scale bar represents estimated number of 

substitutions per site. 

  



59 
 

3.3.4 Identifying ciliate species with hydrogenosome genomes using PCR 

 

Attempts were made to identify which anaerobic ciliate species had 

hydrogenosome genomes by using PCR to amplify a fragment of the 

hydrogenosome genome 12S rRNA genes with primers TE59 and TE60. The 

sequences of these primers were provided by Anders Lind (Ettema-Lab, Uppsala 

University) who had previously used them to amplify a fragment of the 12S rRNA 

gene from the hydrogenosome genome of Nyctotherus ovalis. The only species 

for which a putative organelle genome PCR product was obtained was Metopus 

contortus (Figure 3.5. a.). The primers did not amplify any DNA product of 

expected size or sequence from Metopus striatus, Metopus es, Cyclidium 

porcatum, Trimyema sp. or Plagiopyla frontata despite repeated attempts to 

optimise the reaction. Likewise, published primers targeting 12S rRNA genes 

(VH59 and VH60) (van Hoek et al., 2000a), and others designed de novo based 

on alignments of ciliate mitochondrial 12S rRNA gene sequences, did not amplify 

DNA from these species. DNA bands of approximately 500-600bp in length 

(Figure 3.5. a.) were amplified from two samples of five Metopus contortus cells, 

after they were washed and dried. This DNA was cloned and sequenced using the 

methods described in Section 2.2. This produced a 534bp sequence (Box 3.1), 

which blastn searches indicated was most similar (e-value: 3e-44) to the 12S 

rRNA gene of the Nyctotherus ovalis hydrogenosome genome (accession: 

Y16670.1) available in the NCBI nucleotide collection. 
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Figure 3.5. a. Products of PCR reactions with TE59 and TE60 primers targeting 12S rRNA 

genes were run on a 1% agarose gel. 5 dried Metopus contortus cells were used as the 

template in each sample. Blue arrowheads indicate bands of expected size that were gel 

purified. b. Products of restriction digests using BglII restriction enzyme were run on a 1% 

agarose gel. Red arrowheads indicate pJET 1.2 plasmid cut at two restriction sites flanking 

insert. Blue arrowheads indicate DNA inserts similar in size to band amplified in (a.). 
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3.3.5 Fractionation of cell samples by differential centrifugation 

 

Fractionation of cell samples was performed as described in section 2.4.1, using 

cell lysis and differential centrifugation methods. This was based on a protocol 

devised and provided by Anders Lind (Ettema-lab, Uppsala University), which was 

used previously to successfully sequence a hydrogenosome genome from 

Nyctotherus ovalis. The fractionation procedure attempted to enrich for the 

hydrogenosomes in samples and decrease the number of macronuclei (Figure 

3.6). This procedure was optimised initially using Metopus contortus samples as it 

was possible to amplify part of the hydrogenosome genome from this species by 

using PCR with primers TE59 and TE60 (section 3.3.4). The same procedures 

were then used for Metopus es, Metopus striatus, Cyclidium porcatum, Plagiopyla 

frontata and Trimyema sp. PCR was used to test which fractions were the most 

enriched in macronuclei, prokaryotes and hydrogenosomes, using primers 

targeting ciliate 18S rRNA, prokaryote 16S rRNA and hydrogenosome 12S rRNA 

genes (Figure 3.6), as markers for each these entities in the sample. The process 

was not completely successful, as some signal from 18S rRNA and 16S rRNA 

genes often remained in the final pellets that were used for downstream 

amplification and sequencing. However signal for macronuclei and prokaryote 

marker genes was reduced in the final pellet and were most enriched in earlier 

fractions. Also the final pellet did appear to be the fraction most enriched in 

hydrogenosomes as was concluded from increased PCR product for primers 

targeting 12S rRNA genes. 
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Figure 3.6. Assessment of relative abundance of macronuclei, prokaryotic cells and 

hydrogenosomes in fractionated Metopus contortus cell sample using PCR of individual 

marker RNA genes. Primers targeted 18S rRNA genes (ciliate nuclear genome), 16S rRNA 

genes (prokaryotes) and 12S rRNA genes (hydrogenosomes) provide an indication of 

material being enriched in each fraction. Red arrowheads indicate the most enriched 

fraction in each PCR reaction. The final pellet had the strongest 12S rRNA gene signal, and 

the least enriched in 18S rRNA genes was used as template for MDA reactions. 

 

 

3.3.6 Multiple displacement amplification (MDA) of DNA from fractions 

 

DNA from fraction 4 (Figure 3.6) was amplified using MDA to provide sufficient 

DNA (50ng) for the production of Nextera sequencing libraries. The results of this 

process for five biological replicate samples are shown in Figure 3.7. All of the 

MDA reactions appeared to produce large quantities of high-molecular weight 

DNA (Figure 3.7. a.), which was purified using a QIAamp purification kit in order to 

remove primers and reaction buffers (Figure 3.7. b.). The purified samples were 

reassessed and shown to contain 12S rRNA genes using PCR (Figure 3.7. c.) 

before being used for library production. Nextera library preparation was 

performed by Lina Juzokaite (Ettema-lab, Uppsala University) and Illumina 

sequencing was performed by the Uppsala Genome Centre (Uppsala University). 
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Figure 3.7. MDA products of 5 (labelled 1 - 5) Metopus contortus hydrogenosome biological 

replicate enrichment samples. 3μl of product loaded in each labelled lane were run on a 1% 

agarose gel. The size of relevant bands and band markers are shown. 

a. Unpurified MDA products; 

b. Undiluted and diluted QIAquick purified MDA products run on a 1% agarose gel, samples 

were diluted 1:10 with H2O;  

c. 5μl of PCR products from PCR reactions with primers targeting 12S rRNA genes, run on a 

1% agarose gel, using 2μl of purified product from the samples in (b.) as template, except 

Positive Control in which the template was purified Metopus contortus 12S rDNA, amplified 

using primers TE59 and TE60, and Negative Control in which the template was replaced 

with water. Relevant sizes of DNA bands and marker bands in ladders are shown. 
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3.3.7 Genome assembly and identification of hydrogenosome genome contigs 

 

Assembled genomic datasets were produced by Anders Lind (Ettema-lab, 

Uppsala University) and contigs that contained putative ciliate hydrogenosome 

genome sequences were identified using blast searches (described in Section 

2.4.2). Contigs that appeared to represent hydrogenosome genome sequences 

were identified from the species Nyctotherus ovalis, Metopus contortus, Metopus 

es and Metopus striatus. The lengths and read coverage of these contigs are 

listed in Table 3.1. From this there generally appeared to be a trend that samples 

with higher coverage had a larger mean contig length. An exception to this 

however was that the mean length of contigs from Metopus contortus (9787.8 bp) 

was longer than the mean length of contigs from Metopus es (5537.2 bp) but the 

mean contig k-mer coverage from Metopus contortus (11.783) was lower than the 

mean contig k-mer coverage from Metopus es (15.145). The contigs recovered 

from Metopus striatus were on average the smallest (1063 bp) and also had the 

lowest coverage (4.723), whereas the single contig recovered from Nyctotherus 

ovalis was the longest (48118 bp) and had the highest coverage (649.397). 

One contig, Contig ID 3623, that was recovered from the Metopus es 

dataset was unusual in that it had exceptionally high k-mer coverage (22708.3). 

Further inspection of this sequence using gene prediction software and blast 

searches (described in Section 2.4.2), suggested that this contig was a chimeric 

sequence as it appeared to encode a number of proteins with similarity to viral and 

bacterial proteins (Figure. 3.8). The formation of sequence chimeras is a well-

known problem when using methods that involve MDA due to synthesised DNA 

strands being displaced and priming to a second DNA template during 

amplification (Lasken and Stockwell, 2007). Therefore the contig with Contig ID 

3623 was ‘cut’ into two sections at the position at which similarity to other ciliate 

mitochondrial genomes could no longer be detected, which was immediately after 

the ORF encoding the gene rpl2 (Figure 3.8). The 3040 bp section of Contig 3623 

which had similarity to ciliate mitochondrial genome sequences was retained for 

downstream analyses, whilst the remaining 12636 bp section of Contig 3623 was 

discarded (Figure 3.8). 
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Table 3.1. Contigs assembled from genomic sequencing data that were identified as being 

hydrogenosome genome sequences. The total and mean lengths and mean k-mer coverage 

for contigs corresponding to hydrogenosome genome sequences from each species 

dataset is displayed. Metopus es contig 3623 was identified as a possible chimera and had 

exceptionally high coverage. Metopus es Contig 3623 was not included in the calculated 

mean totals. 

Species Contig ID Length (bp) 
K-mer 
Coverage 

Nyctotherus ovalis 66 48118 649.397 
    

Metopus contortus 273 21866 22.344 

  400 12951 8.192 

  589 8586 14.432 

  1727 2771 9.405 

  1865 2765 11.542 

 Total: 48939   

 Mean: 9787.800 11.783 
    

Metopus striatus 21386 2278 3.301 

  35466 1546 4.297 

  73798 787 1.954 

  55930 1034 2.732 

  66780 869 6.192 

  52629 1096 4.756 

  146059 389 4.084 

  58689 988 7.245 

  79035 733 3.726 

  60293 963 8.939 

 Total: 10683   

 Mean: 1068.300 4.723 
    

Metopus es 7642 8779 19.771 

  15872 4761 20.943 

  17274 4431 4.968 

  18487 4191 6.484 

  5427 11635 20.480 

  5862 10957 14.721 

  105885 950 24.173 

  30317 2796 18.379 

  73053 1335 6.381 

 Total: 49835   

 Mean: 5537.222 15.145 
    

Metopus es 3623 15676 22708.3 
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Figure 3.8. Map of Metopus es Contig 3623 that appears to be a chimeric sequence. The 

positions of ORFs are displayed. Black boxes indicate ORFs with similarity to genes from 

ciliate mitochondrial genomes. Yellow boxes indicate ORFs with no similarity to ciliate 

genes and similarity to genes from other sources, for each of these ORFs the best hits from 

blast searches against the Nr database (NCBI) are indicated within the figure. Arrow 

indicates the point at which contig was separated, leaving a 3,040 bp contig which is 

considered as part of the hydrogenosome genome of Metopus es based on similarity to 

other ciliate mitochondria and hydrogenosome genomes. The remainder of Contig 3623 was 

discarded and excluded from any downstream analyses. 
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3.3.8 Co-assembly of hydrogenosome genomic contigs and RNA-seq reads 

 

Following the initial genomic assembly (section 3.3.7), the contigs listed in Table 

3.1 were used for a second, co-assembly with RNA-seq reads, which were 

sequenced from ciliates isolated from the same culture stocks that were used for 

genomic sequencing with the help of Henning Onsbring Gustafson (Ettema-lab, 

Uppsala University). The co-assemblies were performed by Anders Lind (Ettema-

lab, Uppsala University). For some contigs from Metopus contortus, Metopus es, 

and Metopus striatus the co-assembly of genomic contigs and RNA-seq reads 

extended the length of contigs from the initial genomic assembly and also joined 

some contigs together to form a single contig. In the case of Nyctotherus ovalis 

however, these procedures did not change the contig from the initial assembly. 

Additionally some transcripts were identified from assembled transcriptomic 

datasets, from Metopus contortus, Metopus es, Metopus striatus and Cyclidium 

porcatum (Section 3.3.14.), that were not detected in the original genomic data. 

These were also predicted to be encoded by hydrogenosome genomes based on 

their sequence similarity to other ciliate mitochondrial genome sequences. These 

transcripts that did not already map to contigs of hydrogenosome genomes from 

the genomic assemblies are displayed in Figure 3.10, Figure 3.11 and Figure 

3.12. Attempts to join contigs using PCR with specific primers were unsuccessful. 

Genomic maps of the final co-assembled contigs from the hydrogenosome 

genomes of Nyctotherus ovalis, Metopus contortus, Metopus es, Metopus striatus 

and Cyclidium porcatum are displayed in Figures 3.9-3.13 (These contig 

sequences annotated in GenBank format can be found in Appendix A) and the 

products of the genes encoded by these genomes are listed in Table 3.2. 
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Figure 3.9 Map of the single contig identified as being a partial sequence of the 

hydrogenosome genome from Nyctotherus ovalis. Black boxes indicate ORFs of known 

function. White boxes indicate ORFs of unknown function and tRNA and rRNA genes are 

indicated by grey boxes. Arrows indicate the direction of transcription. 
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Figure 3.10. Map of the two contigs and one transcript identified as being partial sequences 

of the hydrogenosome genome from Metopus contortus. Black boxes indicate ORFs of 

known function, white boxes indicate ORFs of unknown function and tRNA and rRNA genes 

are indicated by grey boxes. Arrows indicate the direction of transcription. 
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Figure 3.11. Map of the six contigs and one transcript identified as being partial sequences 

of the hydrogenosome genome from Metopus es. Black boxes indicate ORFs of known 

function, white boxes indicate ORFs of unknown function and tRNA and rRNA genes are 

indicated by grey boxes. Arrows indicate the direction of transcription. 
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Figure 3.12. Map of the ten contigs and two transcripts identified as being partial sequences of the hydrogenosome genome from Metopus 

striatus. Black boxes indicate ORFs of known function, white boxes indicate ORFs of unknown function and tRNA and rRNA genes are 

indicated by grey boxes. Arrows indicate the direction of transcription. 
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Figure 3.13. Map of the eight transcripts identified as being partial sequences of the hydrogenosome genome from Cyclidium porcatum. Black 

boxes indicate ORFs of known function and rRNA genes are indicated by grey boxes. 
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Gene Gene product Other aliases Complex 

nad1 NADH-dehydrogenase subunit 1 ND1 P-
module 

ETC 
Complex 

I nad2 NADH-dehydrogenase subunit 2 ND2 

nad3 NADH-dehydrogenase subunit 3 ND3 

nad4 NADH-dehydrogenase subunit 4 ND4 

nad4L NADH-dehydrogenase subunit 4L ND4L 

nad5 NADH-dehydrogenase subunit 5 ND5 

nad6 NADH-dehydrogenase subunit 6 ND6 

nad7 NADH-dehydrogenase subunit 7 49 kDa, NDUFS2 Q-
module 

nad9 NADH-dehydrogenase subunit 9 30 kDa, NDUFS3 

nad10 NADH-dehydrogenase subunit 10 PSST, NDUFS7 

     

ymf66     F1F0 ATP synthase 

     

rps2 Ribosomal protein S2   Ribosome 

rps3 Ribosomal protein S3   

rps4 Ribosomal protein S4   

rps7 Ribosomal protein S7   

rps8 Ribosomal protein S8   

rps10 Ribosomal protein S10   

rps12 Ribosomal protein S12   

rps13 Ribosomal protein S13   

rps14 Ribosomal protein S14   

rps19 Ribosomal protein S19   

rpl2 Ribosomal protein L2 60S ribosomal protein 

rpl6 Ribosomal protein L6   

rpl14 Ribosomal protein L14   

rpl16 Ribosomal protein L19   

     

rns Small subunit rRNA 12S Ribosome 

rnl Large subunit rRNA 16S 

 

Table 3.2. A key to the names of genes and their products that were identified from the 

ciliate hydrogenosome genomes, annotated in Figures 3.9-3.13. 
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3.3.9 Analysis of hydrogenosome genomes 

 

Hydrogenosome genomes were partially sequenced from Nyctotherus ovalis, 

Metopus contortus, Metopus es and Metopus striatus. Indirect evidence of a 

hydrogenosome genome in Cyclidium porcatum was also obtained since eight 

transcripts were identified in transcriptome datasets that share similarity with 

genes found in other ciliate mitochondrial genomes. No evidence was found from 

analysis of either genomic or transcriptomic sequencing, to suggest that the 

hydrogenosomes of Trimyema sp. and Plagiopyla frontata have a genome. Since 

Trimyema sp. and Plagiopyla frontata are members of the same clade (Figure 

3.4), it is possible that the hydrogenosome genome was lost in their common 

ancestor. Consistent with the lack of an organelle genome, no genes for 

components of the ETC were identified in these two species from transcriptomic 

datasets (section 3.3.14) and their hydrogenosomes do not appear to contain 

cristae (Figure 3.19). 

Metopus contortus, Metopus es, Metopus striatus and Nyctotherus ovalis 

appear to have hydrogenosome genomes and contigs with sequence similarity to 

other ciliate mitochondrial genomes were identified for each of these four species 

from genomic assembly data using blast searches. This indicates that 

hydrogenosome genomes could be a conserved feature shared by all species of 

Armophorea. The 48 118 bp hydrogenosome genome contig from Nyctotherus 

ovalis sequenced in the present study is predicted to be almost complete and is 

consistent with the size of the size of the hydrogenosome genome from another 

isolate of Nyctotherus ovalis, predicted as ‘exceeding 48 kb’ by de Graaf et al. 

(2011) from the results of Southern blotting experiments. From analysis of 

transcript data several sequences were identified that either map to these contigs, 

or are likely to be encoded by the hydrogenosome genomes based on their 

sequence similarity to genes encoded by ciliate mitochondrial genomes. Evidence 

for a hydrogenosome genome in Cyclidium porcatum was found from analysis of 

transcriptomic data, suggesting that the fractionation enrichment methods that 

were used to sequence sections of Metopus contortus, Metopus es and Metopus 

striatus were inadequate for Cyclidium porcatum. This was possibly due to 

Cyclidium porcatum being smaller in size than those ciliates (Figure 3.1) with far 

fewer hydrogenosomes per cell. Estimations from these species isolated in other 
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studies suggested that Metopus contortus contains approximately 21000 

hydrogenosomes per cell (Finlay and Fenchel, 1989), whereas Cyclidium 

porcatum was estimated to contain approximately 15 hydrogenosomes per cell 

(Esteban et al., 1993). Like other ciliate mitochondrial genomes the 

hydrogenosome genomes are expected to be linear-mapping but this was not 

clearly evident from the incomplete data generated. One end of the 

hydrogenosome genome contig sequenced from Nyctotherus ovalis in the present 

study however, has a region of three 38 bp (TATTGTAATACTAATAATATGT-

GTGTTAATGCGCGTAC) tandem repeats, which is similar in structure to the 

known telomeric regions of mitochondrial genomes found in ciliates such as 

Sterkiella histriomuscorum and Tetrahymena thermophila (Morin and Cech, 1986; 

Swart et al., 2012). Ciliate mitochondrial telomeres are typically found to be 

constructed of tandemly repeated sequences, the length of which can vary and 

can have no significant sequence similarity, even between closely related species 

of Tetrahymena (Morin and Cech, 1988). The function of mitochondrial telomeres 

in ciliates is thought to be similar to that of nuclear telomeres, to prevent 

shortening of the genome during replication that would lead to degradation (Morin 

and Cech, 1988). 

 

3.3.10 Protein-coding genes in ciliate hydrogenosome genomes 

 

The predicted protein coding genes of known function identified from ciliate 

hydrogenosome genomes are summarised in Table 3.3, alongside two 

mitochondrial genomes from aerobic ciliates that were sequenced in other studies 

(Pritchard et al., 1990; Swart et al., 2012). Several ORFs from ciliate mitochondrial 

genomes appear to encode proteins that can be assigned functions based on their 

similarity to known genes. In addition to these, however, all ciliate mitochondrial 

genomes studied to date (Pritchard et al., 1990; Burger et al., 2000; Brunk et al., 

2003; Moradian et al., 2007; de Graaf et al., 2009; Barth and Berendonk, 2011; 

Coyne et al., 2011; Swart et al., 2012) also encode numerous ORFs for which no 

function can be inferred, even when employing sensitive HMM search methods. 

This also appears to be the case for the ciliate hydrogenosome genomes 
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sequenced in the present study, which are also predicted to encode numerous 

ORFs of unknown function (Figures 3.9 – 3.13). 
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Table 3.3. Protein coding genes of known function encoded by the partial hydrogenosome genomes of Cyclidium porcatum, Metopus striatus, 

Metopus es, Metopus contortus and Nyctotherus ovalis, sequenced in the present study, the hydrogenosome genome of Nyctotherus ovalis 

sequenced in a previous study (de Graaf et al., 2011) and the mitochondrial genomes from two aerobic ciliates, Paramecium aurelia (Pritchard et al., 

1990) and Sterkiella histriomuscorum (Swart et al., 2012). Genes encoded by a single ORF (*) and split genes (a + b) are shown. 
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Since these genomes are only partially sequenced, it is difficult to form 

conclusions based on their patterns of gene loss but with this caveat in mind, 

some observations can nevertheless be made. Firstly, none of the components of 

ETC Complexes III and IV, or F1F0 ATP synthase, were detected in the data for 

Nyctotherus ovalis, Metopus contortus, Metopus es or Metopus striatus. By 

contrast, the genes for cob, cox1, cox2, atp9 and the cytochrome c maturation 

protein-coding gene ccmF, are typically found on the mitochondrial genomes of 

aerobic ciliates. This is consistent with previous studies (Boxma et al., 2005; de 

Graaf et al., 2011) and suggests the loss of these complexes from the anaerobic 

species. The gene content of the Nyctotherus ovalis hydrogenosome genome 

sequenced in the present study and that which has been sequenced previously 

(de Graaf et al., 2011) appears to be the same, although the primary sequences of 

these genes and genomes show differences in their nucleotide composition. 

Although no genes for components of these complexes were identified in 

Cyclidium porcatum, one transcript, which is likely to be encoded by the 

hydrogenosome genome based on its predicted genetic code, was identified that 

has homology to a protein named Ymf66 encoded by the Tetrahymena 

thermophila mitochondrial genome (Brunk et al., 2003; Smith et al., 2007). This 

protein is thought to be a component of the divergent F0 sub-complex of F1F0 ATP 

synthase (Nina et al., 2010). This suggests that the Cyclidium porcatum 

hydrogenosome genome may encode components of an F1F0 ATP synthase, as 

well as ETC Complex I and ribosomal proteins (Table 3.3). The only protein 

coding genes found in all hydrogenosome genomes in the present study are nad7 

and nad10, which encode two electron transferring Q-module subunits, and which 

have been identified from all other sequenced ciliate mitochondrial genomes. 

Previous studies suggest that these two genes are the most highly conserved 

protein-coding genes in ciliate mitochondrial genomes (Swart et al., 2012) and the 

retention of these genes in the hydrogenosome genomes sequenced in the 

present study is consistent with them having important functions in these 

organisms. 

Bacterial homologues of the proteins Nad2 (NuoN), Nad4 (NuoM) and 

Nad5 (NuoL), protein subunits of ETC Complex I, are thought to be distant 

homologues of a class of bacterial antiporters and are therefore inferred to be the 

main components facilitating proton translocation in this complex (Mathiesen and 
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Hägerhäll, 2002; Efremov et al., 2010). Some of these subunits are encoded by 

the hydrogenosome genomes of Metopus contortus, Metopus es and Metopus 

striatus, and Nyctotherus ovalis seems to contain all three. The presence of these 

proteins would suggest that the ETC Complex I of Metopus contortus, Metopus es, 

Metopus striatus and Nyctotherus ovalis are actively involved in proton 

translocation. Since none of these species appear to have F1F0 ATP synthase to 

make ATP, proton translocation in these hydrogenosomes likely serve a purpose 

other than to facilitate ATP production. An electrochemical gradient is thought to 

be required for protein import across the inner mitochondrial membrane (Gasser et 

al., 1982), this could be one explanation for why these Complex I subunits are 

retained in species without F1F0 ATP synthase. Cyclidium porcatum for which we 

have the least data is the only species from the present study from which none of 

these subunits were found. Given that the hydrogenosome genome of Cyclidium 

porcatum encodes a purported component of F1F0 ATP synthase, which requires 

proton translocation by ETC complexes in order to function, it could be predicted 

that this species does contain the genes nad2, nad4 and nad5, encoding proton-

pumping subunits of ETC Complex I, but the region of the hydrogenosome 

genome that encodes them was not sequenced. 

Similar patterns of gene retention were observed for ribosomal proteins 

encoded by the hydrogenosome genomes of Metopus contortus, Metopus es, 

Metopus striatus and Nyctotherus ovalis, the most apparent similarity being that 

they all encode rps12. Additionally all the ribosomal protein genes encoded by the 

hydrogenosome genomes of Metopus contortus, Metopus es and Metopus striatus 

are a subset of the ribosomal protein genes encoded by the more completely 

sequenced hydrogenosome genomes of Nyctotherus ovalis, with the exception of 

rps13 identified from Metopus striatus. rps13 has not been identified from the 

hydrogenosome genomes of any other anaerobic ciliate species but has been 

found encoded by the mitochondrial genomes of aerobic ciliates. The only 

ribosomal protein gene that has been detected from the hydrogenosome genome 

of Cyclidium porcatum so far is rpl2. Compared to aerobic ciliate mitochondrial 

genomes, the three most complete ciliate hydrogenosome genomes sequenced in 

the present study from Metopus es, Metopus contortus and Nyctotherus ovalis, 

appear to have lost some genes encoding ribosomal proteins. Although more 

protein genes could still be found on unsequenced regions of these three 
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genomes, given that the combined length of regions that are sequenced are 

similar to the length of other ciliate mitochondrial genomes, it could be predicted 

that they are mostly complete. If this is the case then it is surprising that the 

Metopus contortus hydrogenosome genome appears to be missing such a large 

number of genes encoding ribosomal proteins compared to the genomes of other 

ciliate mitochondria and hydrogenosomes. Given that only rps12 and rpl16 were 

detected from the hydrogenosome genome of Metopus contortus it is possible that 

other genes encoding ribosomal proteins may have diverged so much in 

sequence that they were not detected or that they could have been transferred to 

the nuclear genome. 

Some genes that are typically encoded by one ORF in some organisms are 

often found to be split and encoded by two ORFs in ciliate mitochondrial genomes. 

Such splits were identified in the protein encoding genes for nad1, nad2 and rps3 

in mitochondrial genomes of most ciliate species sequenced so far (Swart et al., 

2012). The nad1 and nad2 genes identified from the hydrogenosome genome of 

Nyctotherus ovalis in the present study are split and encoded by two ORFs and a 

split nad2 gene encoded by two ORFs was identified in Metopus contortus. Three 

nad1a genes were identified from Metopus contortus, encoded by three separate 

ORFs (labelled nad1a_i-nad1a_iv in Figures 3.10 and 3.15). A nad1b gene from 

Metopus contortus was not identified and has probably either been lost or is 

encoded by an unsequenced region of the genome. The three ORFs encoding 

nad1a in Metopus contortus show similarity to one another and appear to have 

arisen through gene duplication. Furthermore, Metopus contortus also appears to 

have four ORFs encoding nad3 (labelled nad3_i-nad3_iv in Figures 3.10 and 

3.15). These ORFs are similar but not identical and have presumably also arisen 

through gene duplication events. In the case of both nad1a and nad3 from 

Metopus contortus the duplicates are located adjacent to each other on the 

genome and it is unknown to what extent these genes are functional. Gene 

duplications are not uncommon in ciliate mitochondrial genomes and other 

examples were previously identified in aerobic ciliates including nad9 in 

Tetrahymena thermophila (Brunk et al., 2003) and nad5, nad4, and nad9 in 

Sterkiella histriomuscorum (Swart et al., 2012). 
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3.3.11 Ribosomal RNA genes from ciliate hydrogenosome genomes 

 

The genes rns and rnl, encoding SSU and LSU rRNA respectively, are split and 

are encoded by two independent regions of the mitochondrial genomes from 

several ciliates, including Tetrahymena, Paramecium and Sterkiella 

histriomuscorum. In the present study the rns and rnl genes of Cyclidium 

porcatum, appear to be split and transcripts were identified for each of these four 

genes. This is consistent with these split genes being a conserved feature of 

Oligohymenophorea mitochondrial genomes. Splits were not observed for the 

rRNA genes of Metopus species or Nyctotherus ovalis, which seem to be encoded 

by a single region of their hydrogenosome genomes and this is consistent with 

what was observed in previous studies of the hydrogenosome genome of 

Nyctotherus ovalis (de Graaf et al., 2011). 

 

3.3.12 Hydrogenosome genome transfer RNA genes 

 

Prediction of tRNA genes in ciliate mitochondrial genomes seems to vary between 

studies and despite using the same software the results reported here sometimes 

differ from what has been observed in another study (Swart et al., 2012). In the 

present study tRNA genes were predicted using the programs tRNAscan-SE 1.3.1 

and tRNAscan-SE On-line (Lowe and Chan, 2016), which uses tRNAscan-SE 2.0, 

the most recent version of the tRNAscan software. From the genomes analysed in 

Table 3.3, both versions of the software predicted the same tRNA genes from 

each genome. Several tRNA genes were predicted to be encoded by the 

hydrogenosome genome contigs that were sequenced in the present study from 

Nyctotherus ovalis, Metopus contortus and Metopus es, but no tRNA genes were 

predicted to be encoded by the hydrogenosome genome contigs of Metopus 

striatus. The mitochondrial genomes of Sterkiella histriomuscorum, Paramecium 

aurelia and Tetrahymena pyriformis were also reanalysed using the same 

methods. The main difference between the present study and what has been 

predicted previously (de Graaf et al., 2011; Swart et al., 2012), is that all genes 

which were previously predicted as being trnW were now predicted to be trnU 

genes. The reasons for this are unclear, however remoulding of tRNA genes 

appears to be common in many metazoan mitochondrial genomes (Cantatore et 
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al., 1987; Rawlings et al., 2003), although tRNA remoulding does not seem to be 

well documented in other organisms. It might simply be the case that ciliate 

mitochondrial trnW and trnU genes are difficult to distinguish. The tRNA genes 

predicted for hydrogenosome genomes in the present study from Nyctotherus 

ovalis, Metopus contortus, Metopus es and Metopus striatus are a subset of the 

tRNA genes predicted to be encoded by aerobic ciliate mitochondrial genomes 

(Table 3.4) and Nyctotherus ovalis appears to have the same tRNA genes as 

Paramecium aurelia. Some ciliate hydrogenosome and mitochondrial genomes 

seem to have several copies of the same tRNA genes. This particularly seems to 

be true for Metopus es, which three copies of each of the tRNA genes trnF, trnM 

and trnY. Since many of these copies appear to be located relatively close to one 

another on the hydrogenosome genome contigs of Metopus es (Figure 3.11), it is 

possible that they have arose through species-specific gene duplications. 

Table 3.4. The number of predicted tRNA genes identified from ciliate hydrogenosome 

genomes sequenced in the present study and the reanalysis of aerobic ciliate mitochondrial 

genomes from previous studies (Pritchard et al., 1990; Burger et al., 2000; Swart et al., 

2012). Numbers in brackets indicate the tRNA genes that were predicted for the same 

genomes by Swart et al. (2012). 
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3.3.13 Comparison of hydrogenosome genomes from Nyctotherus ovalis and 

Metopus contortus 

 

Including in the present study, the hydrogenosome genome of Nyctotherus ovalis 

has been sequenced three times (Boxma et al., 2005; de Graaf et al., 2011). 

Although some obvious similarities between these three genomes can be 

observed, their primary sequences are different from one another. Figure 3.14 

shows an alignment of the most conserved region of rns genes from the 

hydrogenosome genome of Nyctotherus ovalis sequenced in the present study 

and others (Boxma et al., 2005; de Graaf et al., 2011). Some regions of this gene 

appear highly conserved, whilst others appear to have insertions, deletions and 

point mutations. This demonstrates that even the most conserved gene on these 

genomes are different from one another. It is probably unlikely that these 

differences are all due to sequencing or assembly errors, since at the level of 

sequence identity, some regions of the gene appear to be more conserved than 

others. Differences caused by sequencing errors might be expected to be 

distributed more randomly across the gene. 

It is most likely that these genomes have been sequenced from several sub-

species of Nyctotherus ovalis, given that they were isolated from several 

cockroach genera. A previous study showed that Nyctotherus ovalis 18S rRNA 

gene sequences differed even between isolates from the same species of 

cockroach (Van Hoek et al., 1998). Hydrogenosome genomes therefore could 

have been sequenced from different sub-species of Nyctotherus ovalis, especially 

since in the present study it was isolated from the cockroach Blaptica dubia, 

whereas in previous studies it was isolated from strains of the cockroach Blaberus 

sp. (Boxma et al., 2005; de Graaf et al., 2011). In nature, it has been suggested 

that Nyctotherus ovalis lineages can swap species of cockroach hosts but is likely 

to only occur rarely (Van Hoek et al., 1998). Nyctotherus living commensally in 

other organisms, such as Nyctotherus cordiformis in frogs and Nyctotherus velox 

in millipedes, have evolved into distinct species, having probably diverged due to 

the behaviour and distributions of their hosts (Van Hoek et al., 1998). Although not 

completely isolated from each other, it could be argued that populations of these 

commensal ciliates are more isolated than free-living ciliates. Isolated populations 

are known to diverge from one another as they are subject to different selective 
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pressures and gene flow between populations is limited, as occurs under allopatric 

speciation (Dobzhansky, 1937). This could explain why the hydrogenosome 

genomes of different Nyctotherus ovalis isolates appear to be different from one 

another. 

  



85 
 

 

Figure 3.14 Alignment of rns (12S rRNA) genes from Nyctotherus ovalis sequenced in the present study by Anders Lind (Ettema-lab, Uppsala 

University) and others obtained from the NCBI nucleotide collection. Grey-scale shading indicates the most conserved nucleotide at each site 

with darker shades indicating nucleotides that are more conserved. Sequence accession numbers are displayed within the figure. In the region 

shown 66.9% of sites are conserved across all seven sequences.
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The Nyctotherus ovalis hydrogenosome genome in the present study was 

sequenced by Anders Lind (Ettema-lab, Uppsala University) and is the longest 

assembled to date (48,118bp). The next largest Nyctotherus ovalis 

hydrogenosome genome sequence is 41,666 bp in length (Accession: GU057832) 

(de Graaf et al., 2011), and the third is 14,928 bp in length (Accession: 

AJ871267.1). The most obvious structural difference between the two largest 

genomes is that there appears to have been a large-scale rearrangement, such 

that in order to recreate the gene order of one genome from the other, it must be 

divided into two sections and the first section be moved in front of the second 

(Figure 3.15). The corresponding sections between the two largest Nyctotherus 

ovalis genomes appear to have a gene order that is largely co-linear but the order 

of these two sections is swapped. It is of course possible that these differences 

are the results of erroneous assembly and this could be tested by performing PCR 

to attempt to amplify and then sequence the disputed regions from each isolate, in 

order to confirm whether they exist. 

The mitochondrial genomes of closely related ciliates typically share large sections 

of collinear gene order, as shown for the oligohymenophoreans Tetrahymena 

thermophila and Paramecium aurelia (Burger et al., 2000), and the spirotrichs 

Sterkiella histriomuscorum and Euplotes minuta (Swart et al., 2012). This was not 

observed between the hydrogenosome genomes of Metopus contortus and 

Nyctotherus ovalis in the present study and regions of genome synteny between 

these species is lacking. Just one collinear region encoding nad3, nad9 and nad2 

is conserved between them (Figure 3.15). 
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Figure 3.15. Three hydrogenosome genomes from anaerobic ciliates with positions of main 

coding features mapped. ORFs with similarity to genes of known function are represented 

by black boxes, ORFs of unknown function are represented by white boxes and RNA 

encoding genes are represented by grey boxes. Arrows indicate direction of transcription. 

Similarity between protein coding and RNA coding genes between Metopus contortus and 

Nyctotherus ovalis hydrogenosome genomes are indicated by green and blue bands, 

respectively. Genome regions of collinear gene order are indicated by red bands. 
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3.3.14 Assembly and analysis of transcriptome datasets 

 

In addition to analysing hydrogenosome genome sequences, nuclear-encoded 

genes were also analysed to identify proteins that are likely to function in 

hydrogenosomes. To do this transcriptomic datasets were assembled by Henning 

Onsbring Gustafson (Ettema-lab, Uppsala University) using methods described in 

section 2.5.1. Samples of cell isolates were sequenced from Metopus contortus, 

Metopus es, Metopus striatus, Cyclidium porcatum, Plagiopyla frontata and 

Trimyema sp., whereas the dataset from Nyctotherus ovalis was assembled from 

pooled data of three samples that were sequenced individually, also by Henning 

Onsbring Gustafson (Ettema-lab, Uppsala University). The final assembled 

transcriptomic datasets were assessed in order to estimate the numbers of unique 

transcripts from each that appeared to have been sequenced from Bacteria, 

Archaea and eukaryotes (including ciliates). This was done by searching each 

unique transcript from each dataset against the Nr database (NCBI) using blastx. 

A taxonomic classification was assigned to each transcript based on the taxonomy 

ID of the most similar protein from the Nr database (NCBI). 

The results of this analysis are displayed in Table 3.5. The transcripts that 

were assigned as ciliate transcripts in Table 3.5. are a subset of those transcripts 

that were most similar to eukaryote proteins, rather than Bacteria or Archaea. 

From this it appears that there were a large number of transcripts in the datasets 

that came from eukaryotes but were not ciliates, but we think this is unlikely for the 

following reasons. Firstly, the cells in each sequenced sample were isolated from 

monoxenic cultures, in each of which only one ciliate species and no other 

eukaryotes were known to be present. Secondly, 18S rRNA and 28S rRNA 

sequences were recovered from Nyctotherus ovalis, Metopus contortus, Metopus 

es, Metopus striatus, Cyclidium porcatum, Plagiopyla frontata and Trimyema sp. in 

each of their respective datasets but no other 18S rRNA or 28S rRNA sequences 

were recovered from any other eukaryotes. 

Sequence data were obtained from three biological replicate samples of 

isolated Nyctotherus ovalis cells, which were pooled prior to data assembly. This 

may explain why there were a greater number of unique transcripts recovered for 

Nyctotherus ovalis, since only one sample of isolated cells was sequenced from 
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Metopus contortus, Metopus es, Metopus striatus, Cyclidium porcatum, Plagiopyla 

frontata or Trimyema sp. The total number of unique transcripts recovered varied 

greatly for each species, but generally similar numbers of transcripts were 

recovered for species from the same taxonomic class. A large number (3915) of 

bacterial transcripts were recovered from the Cyclidium porcatum dataset. This is 

possibly due to the cells of Cyclidium porcatum being smaller (Section 3.3.1, 

Figure 3.1.) than the other species for which data was generated, which meant 

that they were more difficult to isolate and wash. Trimyema sp. is also smaller 

relative to most of the other ciliates investigated, however this species was easier 

to isolate than Cyclidium porcatum, as it moves more quickly, making it more 

visible to the eye. 

The whole genome sequences of Tetrahymena thermophila and 

Paramecium tetraurelia are predicted to encode 26996 and 39580 proteins, 

respectively (Aury et al., 2006; Eisen et al., 2006). Therefore the numbers of 

eukaryote transcripts that were obtained from Nyctotherus ovalis, Metopus 

contortus, Metopus es, Metopus striatus, Cyclidium porcatum, Plagiopyla frontata 

and Trimyema sp. suggest that a large number of genes from the genomes of 

these species have not been sequenced in the transcriptome datasets. 
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Total 
number of 
unique 
transcripts 

Number 
of 
transcripts 
with 
significant 
blastx hits 
b 

Percentage 
of 
transcripts 
with 
significant 
blastx hits 

(%) b 
Bacterial 
transcripts 

Bacterial 
transcripts 

(%) a 
Archaeal 
transcripts 

Archaeal 
transcripts 

(%) a 
Eukaryotic 
transcripts 

Eukaryotic 
transcripts 

(%) a,d 

Ciliate 
transcripts 
c 

Ciliate 
transcripts 

(%) a 

Nyctotherus ovalis 47592 24672 51.8 2345 9.5 156 0.6 20802 84.3 10696 43.4 

Metopus contortus 28796 16032 55.7 1249 7.8 435 2.7 13208 82.4 6597 41.1 

Metopus es 28753 15939 55.4 1349 8.5 170 1.1 13160 82.6 7134 44.8 

Metopus striatus 29350 17163 58.5 2480 14.4 960 5.6 12489 72.8 5588 32.6 

Cyclidium porcatum 31143 10769 34.6 3915 36.4 150 1.4 6192 57.5 4495 41.7 

Plagiopyla frontata 8872 5247 59.1 496 9.5 162 3.1 4272 81.4 2737 52.2 

Trimyema sp. 14577 6944 47.6 1716 24.7 490 7.1 4227 60.9 2186 31.5 

Table 3.5. Summary of the taxonomic affiliations of unique transcripts from assembled transcriptome datasets based on the results of blastx 

searches against the Nr database (NCBI) using each unique transcript as queries. The taxonomic affiliation of each transcript was assigned 

based on the taxonomic ID of its best (most significant) blast hit from the Nr database (NCBI) and was calculated using the software MEGAN5 

(Huson et al., 2016). The percentage values displayed in the table from different taxonomic groups (a) are calculated from the total number of 

unique transcripts that had significant blastx hits (b), therefore any transcripts that did not have significant blastx hits to any proteins in the Nr 

database (NCBI) were not included in this total. The transcripts that hit ciliates as top hits in the Nr database (NCBI) (c) were a subset of the 

transcripts that hit eukaryotes as top hits in the Nr database (NCBI) (d). Transcriptome datasets were produced from Nyctotherus ovalis, 

Metopus contortus, Metopus es, Metopus striatus, Cyclidium porcatum, Plagiopyla frontata and Trimyema sp.
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3.3.15 Reconstructing the hydrogenosome metabolisms of anaerobic ciliates from 

sequence data 

 

The hydrogenosome metabolisms of Cyclidium porcatum, Metopus contortus and 

Plagiopyla frontata, as representatives of the Oligohymenophorea, Armophorea 

and Plagiopylea, respectively, were reconstructed on the basis of the data 

generated in this thesis. The major metabolic processes and pathways that were 

investigated were glycolysis, pyruvate oxidation, substrate-level phosphorylation 

by ASCT and SCS, the TCA cycle, the ETC, and the Fe-S cluster biogenesis 

pathway. Subunits of the protein-importing TIM, TOM and MPP complexes, as 

well as MCF proteins, were also identified as these are important for the function 

of mitochondria and hence hydrogenosomes. Hydrogenosome metabolic 

reconstructions from Cyclidium porcatum, Metopus contortus and Plagiopyla 

frontata are shown in Figures 3.16—3.18 and are discussed in the following 

sections. Although the dataset from Nyctotherus ovalis appeared to be the most 

complete, we did not carry out a detailed hydrogenosome metabolic reconstruction 

of this species as this has been done previously (de Graaf et al., 2011) and 

therefore species were prioritised for which little was previously known. In several 

cases, some genes that were expected to be found for certain pathways and 

complexes were not detected. With partial data it is not possible to be sure 

whether this reflects actual gene loss or missing data, and both of these 

possibilities should be kept in mind with regards to the results discussed below. 

Some proteins were predicted to have N-terminal mitochondrial-like targeting 

signals by prediction programs (summarised in Appendix B), providing additional 

evidence for them being localised to hydrogenosomes. A large number of proteins 

were not predicted to have N-terminal targeting signals by prediction programs but 

it is not possible to be sure whether this reflects their true absence, or whether the 

5-prime end of the transcript was incompletely sequenced and therefore the N-

terminal of the protein is missing. 

 

Glycolysis 

 

The genomes of well-studied aerobic ciliates such as Tetrahymena and 

Paramecium appear to encode nine of the ten classical enzymes of the glycolysis 
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pathway: GPI, PFK, ALDO, TPI, GAPDH, PGK, PGAM, ENO and PK. These nine 

enzymes were also detected from Cyclidium porcatum, Metopus contortus and 

Plagiopyla frontata. Genes for hexokinase, which is classically the first enzyme in 

the glycolysis pathway, were not detected in the genomes of Tetrahymena and 

Paramecium (Smith et al., 2007). Other eukaryotes that lack typical aerobic 

mitochondria, such as Giardia intestinalis, Spironucleus barkhanus and 

Trichomonas vaginalis, appear to use glucokinase (GCK) as the first enzyme in 

the glycolysis pathway instead of hexokinase (Henze et al., 2001) and GCK was 

detected in the macronuclear genome sequence of Tetrahymena thermophila 

(Eisen et al., 2006), suggesting that GCK may have also replaced hexokinase in 

ciliates. GCK was detected in the data for Metopus contortus and Plagiopyla 

frontata but not in the less complete set for Cyclidium porcatum. 

 

Pyruvate metabolism 

 

Pyruvate is typically oxidised to acetyl-CoA by PDH in aerobic eukaryotes, 

including ciliates such as Tetrahymena thermophila (Smith et al., 2007). Each of 

the four subunits of the PDH complex, PDH E1ɑ, PDH E1β, PDH E2 and PDH E3, 

were detected from Metopus contortus and Plagiopyla frontata. Only one PDH 

subunit, PDH E1ɑ, was detected from Cyclidium porcatum, which has a role in 

pyruvate-binding. Many anaerobes use the homologous proteins PFO and PNO, 

or PFL for pyruvate oxidation. Here PNO was detected from Cyclidium porcatum 

but not PFL. Neither PFO/PNO nor PFL were detected from Metopus contortus or 

Plagiopyla frontata indicating that in these species the PDH complex is the 

principal enzyme used for pyruvate oxidation. 

 

The tricarboxylic acid (TCA) cycle 

 

There are eight classical enzymes and enzymes complexes that function together 

as the TCA cycle, CS, ACO, IDH, OGDC, SCS, SDH, FH and MDH, and each of 

these were identified in Tetrahymena thermophila (Rivière et al., 2004). Of the 

TCA cycle enzymes neither Cyclidium porcatum, Metopus contortus nor 

Plagiopyla frontata appear to have the complete set found in Tetrahymena 
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thermophila. ACO, IDH, FH and MDH, as well as the E3 subunit of OGDC and the 

SdhA subunit of SDH were detected from Cyclidium porcatum; OGDC, SCS, SDH, 

FH and MDH were detected in Metopus contortus; and IDH, OGDC, SCS, FH and 

MDH were detected from Plagiopyla frontata. Seven of the TCA cycle proteins 

from Metopus contortus were strongly predicted as containing N-terminal targeting 

signals (Appendix B), whereas only one protein from Cyclidium porcatum was 

strongly predicted and one protein from Plagiopyla frontata was moderately 

predicted as containing an N-terminal targeting signal. This suggests that TCA 

cycle proteins from Metopus contortus are likely to be located within their 

hydrogenosomes, whereas the location of TCA cycle proteins in Cyclidium 

porcatum and Plagiopyla frontata is unclear. The only TCA cycle enzymes shared 

by all three of these species therefore are FH and MDH, whereas CS is absent in 

all three. Expression of CS in the rhizarian Brevimastigamonas vehiculus has 

been suggested to be O2-dependant and not expressed in low O2 conditions 

(Gawryluk et al., 2016), which could also explain why it was not detected from 

anaerobically cultured Cyclidium porcatum, Metopus contortus or Plagiopyla 

frontata, but it is possible to speculate that the remaining enzymes could be 

expressed during periods of oxygen exposure. Additionally the hydrogenosomes 

of some anaerobic protists are suggested to use a subset of the TCA cycle 

enzymes running in reverse, enabling the use of fumarate as an electron acceptor, 

producing succinate. This reaction can be catalysed by ETC Complex II, SDH, 

functioning as a fumarate reductase. 

 

The electron transport chain  

 

The Tetrahymena thermophila ETC features several components of the main 

complexes, ETC Complexes I, II, III and IV, and F1F0 ATP synthase, which are 

typically found in the aerobic mitochondria of most eukaryotes (Smith et al., 2007). 

Individual subunits from each of the main ETC complexes were detected from 

Cyclidium porcatum, whereas subunits of ETC Complexes I, II and III, but not from 

ETC Complex IV or F1F0 ATP synthase, were detected from Metopus contortus. 

Plagiopyla frontata appears to have completely lost the ETC as no subunits from 

any of the ETC complexes were detected in the genomic or transcriptomic 

datasets. 
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ETC Complex I 

 

In aerobic eukaryotes, including Tetrahymena thermophila (Smith et al., 2007), 

ETC Complex I subunits are either encoded by the nuclear or mitochondrial 

genome. Only a small portion of the Cyclidium porcatum hydrogenosome genome 

has been sequenced, and genes for only three ETC Complex I subunits were 

identified of those which are typically encoded by mitochondrial genomes in 

ciliates. These are nad7, nad9 and nad10, which along with nuclear-encoded 

nad8 that was also detected from Cyclidium porcatum, are the core subunits of the 

Q-module of ETC Complex I. Out of the two core N-module subunits of ETC 

Complex I; the 24 kDa and 51 kDa subunits, which are nuclear encoded in aerobic 

ciliates, only the 51 kDa subunit was detected from Cyclidium porcatum. Two 

nuclear-encoded subunits involved in electron transfer in ETC Complex I, Nad11 

and the 24 kDa subunit, were not detected from transcriptome analysis. These two 

subunits are thought to be required for transferring electrons from the NADH 

oxidising 51 kDa subunit to the Q-module (Brandt, 2006), which was detected from 

Cyclidium porcatum. 

None of the core P-module subunits involved in proton translocation, Nad1, 

Nad2, Nad3, Nad4, Nad4L, Nad5 and Nad6, were identified in Cyclidium porcatum 

and it is therefore unclear whether ETC Complex I can translocate protons. 

Cyclidium porcatum appears to have several core F1F0 ATP synthase subunits 

(discussed below), which would require a proton gradient for ATP synthesis. Since 

only one core subunit could be detected from each of ETC Complexes III and IV, it 

may not be possible for these complexes to translocate protons across the inner 

hydrogenosome membrane, as they do in aerobic mitochondria. If this is the case 

then ETC Complex I might be entirely responsible for proton translocation across 

the inner hydrogenosome membrane in Cyclidium porcatum. This has also been 

suggested to be the case in hydrogenosomes that have retained a partial ETC in 

other organisms (Gawryluk et al., 2016). 

More of the fourteen ETC Complex I core subunits were detected from 

Metopus contortus than Cyclidium porcatum, partially owing to the more complete 

hydrogenosome genome sequence that was obtained from this species, and 
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these include Nad1, Nad2, Nad3, Nad4, Nad5, Nad7, Nad8, Nad9, Nad10, Nad11 

and the 24 kDa and 51 kDa subunits. The only core subunits that were not 

detected were Nad4L and Nad6, which are subunits of the proton pumping P-

module. Since the majority of core subunits that make up the three core modules 

of ETC Complex I are present in Metopus contortus, it is likely that this complex is 

functioning in a similar way to its homologues in the mitochondria of aerobic 

ciliates and other organisms. 

 

ETC Complex II 

 

Of the two ETC Complex II catalytic subunits, both SdhA and SdhB were identified 

in Metopus contortus, whereas only SdhA was identified from Cyclidium porcatum. 

Similar findings were made from transcriptome analysis of hydrogenosomes from 

Pygsuia biforma (Stairs et al., 2014), from which SdhA was detected but not SdhB. 

This might indicate either that SdhB is not required for the function of ETC 

Complex II in some anaerobic eukaryotes or simply has just not been sequenced. 

The two hydrophobic anchor proteins SdhC and SdhD were not identified in 

Metopus contortus or Cyclidium porcatum but these proteins are typically not well 

conserved and were not identified from the analysis of mitochondria from the 

aerobic ciliate Tetrahymena thermophila either (Smith et al., 2007). 

 

ETC Complex III 

 

The conserved catalytic core of ETC Complex III is composed of three subunits, 

cytochrome b, cytochrome c1 and Rieske (Yang and Trumpower, 1986; Iwata et 

al., 1998). In Tetrahymena thermophila, cytochrome b is encoded by the 

mitochondrial genome (Brunk et al., 2003), whereas cytochrome c1 and the Fe-S 

protein, Rieske, are thought to be encoded by the macronuclear genome (Smith et 

al., 2007). In the present study, cytochrome c and Rieske protein were detected 

from Metopus contortus but not cytochrome b. Rieske protein was also detected 

from Cyclidium porcatum, but cytochrome c1 and cytochrome b were not. 
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ETC Complex IV 

 

Of the thirteen ETC Complex IV protein subunits found in mammals (Kadenbach 

et al., 1983), seven were previously identified in Tetrahymena thermophila (Smith 

et al., 2007). Cox1 and Cox2 are encoded by the mitochondrial genome and 

Cox5b, Cox15, Cox19, Sco1 and Sco2 are encoded by the nuclear genome. In the 

present study no subunits of ETC complex IV were detected from Metopus 

contortus and only Cox15 was detected from Cyclidium porcatum. In yeast Cox15 

is thought to have a role in the assembly of ETC Complex IV and it also 

synthesizes heme a, a cofactor that is inserted into Cox1 in the assembled 

complex (Bareth et al., 2013). 

 

F1F0 ATP synthase 

 

The mitochondrial F1F0 ATP synthase complex is made up of two main 

components. The F0 component forms a channel that allows the movement of 

protons across the inner membrane, which drives ATP synthesis by the F1 

component (reviewed in Junge and Nelson (2015)). The F1F0 ATP synthase 

complex of Tetrahymena thermophila has been studied in detail and appears to be 

highly divergent, containing several proteins for which no homologues can be 

identified in other organisms (Nina et al., 2010). One of these proteins, Ymf66, is 

encoded by the mitochondrial genome of Tetrahymena thermophila. A transcript 

encoding Ymf66 was detected from Cyclidium porcatum and is therefore likely to 

be encoded by the hydrogenosome genome from this species. A small number of 

well conserved eukaryotic F1F0 ATP synthase proteins were identified in 

Tetrahymena thermophila however, including ATPɑ, ATPβ and ATPγ subunits of 

the F1 component and ATPδ, ATP9 and ATP12 of the F0 component (Nina et al., 

2010). Each of these subunits are encoded by the macronuclear genome in 

Tetrahymena thermophila, except ATP9 which is encoded by the mitochondrial 

genome. Subunits ATPɑ, ATPβ, ATPγ and ATPδ were detected from Cyclidium 

porcatum in the present study but ATP9 and ATP12 were not detected. No F1F0 

ATP synthase subunits were detected from Metopus contortus, which indicates 

that the F1F0 ATP synthase complex may have been lost from this species. 
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Rhodoquinone, fumarate reduction and alternative oxidase (AOX) 

 

The replacement of ubiquinone with rhodoquinone in the ETC is thought to be a 

necessary requirement in order for the fumarate reduction pathway to function in 

the hydrogenosomes of some anaerobic eukaryotes (Tielens and Van Hellemond, 

1998). The anaerobic eukaryotes Pygsuia biforma (Stairs et al., 2014) and 

Brevimastigamonas vehiculus (Gawryluk et al., 2016) most likely use 

rhodoquinone since the gene rquA was detected from both of these species. rquA 

was first discovered in Rhodospirillum rubrum and is currently the only known 

gene that is thought to be required for the biosynthesis of rhodoquinone from 

ubiquinone (Lonjers et al., 2012). rquA was not detected in the present study from 

Cyclidium porcatum or Metopus contortus, which is somewhat surprising given 

that both these species appear to have a partial ETC, which could possibly benefit 

from the use of fumarate as an electron sink. Interestingly, this gene appears to 

have been acquired by lateral gene transfer in Pygsuia biforma (Stairs et al., 2014) 

and Brevimastigamonas vehiculus (Gawryluk et al., 2016), therefore Cyclidium 

porcatum and Metopus contortus might not have acquired it, or it was not detected 

in our screen for ciliate genes. 

The main enzymes required for fumarate reduction are the TCA cycle 

enzymes FH and SDH. Both of these enzymes were identified from Nyctotherus 

ovalis previously (de Graaf et al., 2011) and Nyctotherus ovalis has also been 

shown to excrete succinate, the end product of fumarate reduction (Boxma et al., 

2005). These findings are consistent with the hypothesis that fumarate reduction 

occurs in the hydrogenosomes of Nyctotherus ovalis. Succinate was also detected 

from the ciliate Trimyema compressum but in very low quantities (Goosen et al., 

1990; Holler and Pfennig, 1991). FH and SDH were also detected from Cyclidium 

porcatum and Metopus contortus, with the exception of the SdhB subunit which 

was not detected in Cyclidium porcatum, indicating that these species have at 

least some of the necessary enzymes required for fumarate reduction. Another 

potential electron sink for the partial ETC of Cyclidium porcatum and Metopus 

contortus could be AOX, which was detected in both of these species. AOX 

typically uses O2 as a substrate for ubiquinol oxidation in aerobic eukaryotes but 

has also been detected in some anaerobic eukaryotes, including Blastocystis sp. 
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(Stechmann et al., 2008), Pygsuia biforma (Stairs et al., 2014) and Cantina 

marsupialis (Noguchi et al., 2015). 

 

Substrate phosphorylation by acetate:succinate CoA-transferase (ASCT) and 

succinyl-CoA synthetase (SCS) 

 

ASCT and SCS are the enzymes used to produce ATP from acetyl-CoA via 

substrate-level phosphorylation, the typical energy-generating pathway in 

hydrogenosomes (Müller and Lindmark, 1978). Both ASCT and SCS were 

detected from Metopus contortus and Plagiopyla frontata, suggesting that this 

pathway could be used by both of these species use to produce energy. Only 

ASCT and not SCS was detected from Cyclidium porcatum. Since SCS has 

important roles in the TCA cycle, as well as substrate-level phosphorylation, it is 

most likely that failure to detect this protein in Cyclidium porcatum means that it 

was not sequenced in the present study, rather than it being absent from this 

species. However, given that Cyclidium porcatum appears to have F1F0 ATP 

synthase, it could be possible that it does not require SCS for ATP production and 

therefore does not produce energy by substrate-level phosphorylation. The ASCT 

enzymes detected from Cyclidium porcatum, Metopus contortus, and Plagiopyla 

frontata each belong to the sub-family 1A of these enzymes, which are 

homologues of the succinyl-CoA:3-ketoacid CoA-transferase enzymes that are 

found in aerobic eukaryotes (Rivière et al., 2004; Tielens et al., 2010). 

 

The mitochondrial Fe-S cluster biogenesis (ISC) pathway 

 

The ISC pathway is an essential pathway of yeast mitochondria and is used for 

the maturation of functional Fe-S proteins (Lill, 2009). The core ISC proteins 

required for assembly of [2Fe-2S] clusters are Nfs1 and Isd11 (cysteine 

desulfurase complex), Yah1 (ferredoxin), Arh1 (ferredoxin reductase), Yfh1 

(frataxin), and the scaffold protein Isu1 (Freibert et al., 2017). The proteins Ssq1 

(mtHsp70), Mge1 and Jac1, transfer [2Fe-2S] clusters from Isu1 to Grx5 

(glutaredoxin), which inserts them into apoproteins, forming functional [2Fe-2S] 

proteins, including Yah1 (ferredoxin) (Dutkiewicz et al., 2003; Freibert et al., 2017). 
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Of these core proteins, Nfs1, Isu1, Yfh1, Yah1, Arh1, Grx5, Ssq1, Jac1 and Mge1 

have previously been identified in Tetrahymena thermophila (Smith et al., 2007). 

In the present study, Nfs1, Isu1, Yfh1, Yah1, Arh1, Ssq1, Jac1, Mge1 and Grx5 

were detected from Cyclidium porcatum and seven of these proteins were 

predicted as containing N-terminal targeting signals; Isu1, Isd11, Nfs1, Yfh1, 

Yah1, Jac1, Ssq1 and Mge1 were detected from Metopus contortus and eight of 

these proteins were predicted as containing N-terminal targeting signals; and Isu1, 

Nfs1 and Ssq1 were detected from Plagiopyla frontata and only one of these 

proteins was weakly predicted as containing N-terminal targeting signals. Although 

some core ISC components were not detected from each of these species, the 

presence of other ISC components is consistent with their hydrogenosomes using 

this pathway to assemble [2Fe-2S] proteins in a similar way to the mitochondria of 

their aerobic relatives, such as Tetrahymena thermophila (Smith et al., 2007). 

A secondary stage of the ISC pathway assembles [4Fe-4S] proteins and in yeast 

involves Isa1, Isa2, Iba57, Nfu1, Bol1, Bol3 and Ind1 (Melber et al., 2016; Uzarska 

et al., 2016; Freibert et al., 2017), of which Nfu1 and Isa1 were previously 

identified in Tetrahymena thermophila (Smith et al., 2007). In the present study 

Isa1, Iba57, Nfu1 and Ind1 were detected from Cyclidium porcatum; Isa1, Nfu1 

and Ind1 were detected from Metopus contortus; and Nfu1 was detected from 

Plagiopyla frontata. The presence of these components indicates that Cyclidium 

porcatum, Metopus contortus and possibly Plagiopyla frontata can produce [4Fe-

4S] clusters using the ISC pathway. The detection of Fe-S cluster proteins from 

these ciliates, including FeFe-hydrogenase (Discussed in detail in Chapter 4.), is 

consistent with the detection of components of the Fe-S cluster biogenesis 

pathway. In ciliates FeFe-hydrogenases contain one [2Fe-2S] cluster- and multiple 

[4Fe-4S] cluster-binding domains (Akhmanova et al., 1998; Horner et al., 2000) 

and presumably require the Fe-S cluster biogenesis pathway for the insertion of 

these clusters, in order to make them functional. 
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Hydrogenosome import mechanisms 

 

The translocase of the outer membrane (TOM) complex 

 

Import of proteins across the outer mitochondrial membrane is achieved via the 

TOM complex, which consists of core proteins that form the translocation channel, 

Tom70, Tom40, Tom22 and Tom7, and four additional subunits that assist in 

protein recognition, binding and transfer, Tom70, Tom20, Tom6 and Tom5 

(Dolezal et al., 2006). In Tetrahymena thermophila only the three core proteins, 

Tom40, Tom22 and Tom7 were previously identified (Smith et al., 2007). Some of 

the proteins detected in the present study that are thought to function in the 

hydrogenosomes of Cyclidium porcatum, Metopus contortus and Plagiopyla 

frontata have N-terminal mitochondrial-type targeting signals (Appendix B). This 

indicates that a classical mitochondrial TOM complex is present in the 

hydrogenosomes of these species, particularly the Tom20 receptor component, 

which recognises N-terminal targeting signals (Söllner et al., 1989). In the present 

study a Tom40-like porin was detected from Cyclidium porcatum and Metopus 

contortus, which is likely to facilitate the translocation of proteins across the outer 

hydrogenosome membrane but no TOM complex proteins were detected from 

Plagiopyla frontata. 

 

The translocase of the inner membrane (TIM) complexes: TIM22, TIM23 and tiny Tim 

proteins 

 

The TIM22 complex appears not to be well conserved in ciliates, and only the 

Tim22 and Tim54 subunits can be identified from the Tetrahymena thermophila 

genome sequence (Eisen et al., 2006).  Neither of these proteins were detected in 

Cyclidium porcatum, Metopus contortus or Plagiopyla frontata.  Eight of the known 

TIM23 complex proteins were identified previously in Tetrahymena thermophila 

(Smith et al., 2007), these are Tim50, Tim44, Tim23, Tim17, Tim16 (Pam16), 

Tim14 (Pam18), mtHsp70 and Mge1. Four of these TIM23 complex proteins were 

detected from Cyclidium porcatum, these were Tim17, Tim14 (Pam18), mtHsp70 

and Mge1; five were detected from Metopus contortus, these were Tim17, Tim16 

(Pam16), Tim14 (Pam18), mtHsp70 and Mge1; and just one was detected from 
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Plagiopyla frontata, which was mtHsp70. Three tiny Tim proteins, which shuttle 

substrates from the TOM complex to the TIM22 complex, were previously 

identified from Tetrahymena thermophila, these are Tim8, Tim9 and Tim10. No 

tiny Tim proteins however, were detected from Cyclidium porcatum, Metopus 

contortus or Plagiopyla frontata. 

 

The mitochondrial processing peptidase (MPP) complex and the mitochondrial 

inner membrane protease (IMP) complex 

 

The MPP complex consists of two separate subunits, Masɑ (Mas1) and Masβ 

(Mas2) and the IMP complex also consists of two proteins, Imp1 and Imp2 

(Dolezal et al., 2006). The MPP complex cleaves N-terminal targeting 

presequences from mitochondrial proteins once they reach the mitochondrial 

matrix (Gakh et al., 2002; Hoogenraad et al., 2002). A subset of mitochondrial 

proteins are targeted to the inner mitochondrial membrane by a secondary 

downstream N-terminal targeting signal, which is exposed once the first targeting 

signal is cleaved by the MPP complex (Ieva et al., 2013). The secondary targeting 

signal in these proteins is recognised by the TIM23 complex, which guides the 

protein into the inner mitochondrial membrane, where the targeting signal is then 

cleaved by the IMP complex (Ieva et al., 2013). 

Both MPP complex proteins, Masɑ (Mas1) and Masβ (Mas2), were identified in 

Tetrahymena thermophila previously (Smith et al., 2007) and both were also 

detected in the present study from Cyclidium porcatum, Metopus contortus and 

Plagiopyla frontata. Only Imp1 of the IMP complex has previously been identified 

from Tetrahymena thermophila and not Imp2. In the present study Imp1 was 

detected only from Metopus contortus and Plagiopyla frontata but not from 

Cyclidium porcatum, and Imp2 was not detected in any of these species. The 

presence of MPP and IMP subunits from Cyclidium porcatum, Metopus contortus 

and Plagiopyla frontata is consistent with the prediction that some of the purported 

hydrogenosome proteins from these species contain N-terminal targeting 

sequences (Appendix B), which are presumably processed by these complexes. 
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Mitochondrial carrier family (MCF) proteins 

 

MCF proteins transport different substrates needed or produced by mitochondria 

across the inner mitochondrial membrane (Ferramosca and Zara, 2013). Fifty-

three MCF proteins were previously identified from Tetrahymena thermophila 

(Smith et al., 2007). In the present study nineteen MCF proteins were detected 

from Cyclidium porcatum, fifteen were detected from Metopus contortus and six 

were detected from Plagiopyla frontata. These MCF proteins and their predicted 

substrate specificities are listed in Figures 3.16—3.18. The number of MCF 

proteins in these ciliate species is correlated with their metabolisms; the greatest 

number of MCF proteins were predicted from Cyclidium porcatum, which seems to 

have the most complete hydrogenosome metabolic pathways, whereas Plagiopyla 

frontata has the least number of MCF proteins and appears to have the most 

reduced hydrogenosome metabolism. Of course it is difficult to know whether this 

truly reflects the real nature of these hydrogenosomes, since Plagiopyla frontata is 

also the species that seems to have the least complete dataset. The number of 

MCF proteins that were predicted for these ciliates is similar to the number 

predicted for other organisms with hydrogenosomes. Thirteen MCF proteins were 

predicted from Brevimastigamonas vehiculus (Gawryluk et al., 2016) and twenty 

two were predicted from Pygsuia biforma (Stairs et al., 2014). Notably, ATP/ADP 

translocases were identified from Cyclidium porcatum, Metopus contortus and 

Plagiopyla frontata, indicating that ATP and ADP is likely exchanged between the 

hydrogenosomes and the cytosol of these species. 

 

The oxidase assembly (OXA) translocase complex 

 

The OXA complex mediates the insertion of proteins into the inner mitochondrial 

membrane and consists of four proteins, Oxa1, Mdm38, Mba1 and Y1h47 (Dolezal 

et al., 2006; Bohnert et al., 2010). Of these, only Oxa1 and Mdm38 were 

previously detected in Tetrahymena thermophila (Smith et al., 2007). In yeast, 

Mdm38 interacts with mitochondrial ribosomes and exports proteins across the 

inner mitochondrial membrane (Frazier et al., 2006). Mdm38 was detected from 

Metopus contortus, consistent with ribosomal proteins and rRNA genes subunits 

being detected from the macronuclear and hydrogenosome genome of this 
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species, but was not detected from Cyclidium porcatum or Plagiopyla frontata. 

Neither of the components Oxa1, Mba1 nor Y1h47 were detected from Cyclidium 

porcatum, Metopus contortus or Plagiopyla frontata.
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Figure 3.16. Metabolic reconstruction of the hydrogenosomes of Cyclidium porcatum based on analyses of genomic and transcriptomic 

datasets. Grey features without black outlines indicate components that were not identified but are present in mitochondria of the aerobic 

ciliate Tetrahymena thermophila (Smith et al., 2007). 
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Figure 3.17. Metabolic reconstruction of the hydrogenosomes of Metopus contortus based on analyses of genomic and transcriptomic 

datasets. Grey features without black outlines indicate components that were not identified but are present in mitochondria of the aerobic 

ciliate Tetrahymena thermophila (Smith et al., 2007). 
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Figure 3.18. Metabolic reconstruction of the hydrogenosomes of Plagiopyla frontata based on analyses of genomic and transcriptomic 

datasets. Grey features without black outlines indicate components that were not identified but are present in mitochondria of the aerobic 

ciliate Tetrahymena thermophila (Smith et al., 2007). 
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3.3.16 Testing the completeness of transcriptome datasets based on Fe-S cluster 

biogenesis and glycolysis 

 

The number of unique transcripts that were sequenced from Cyclidium porcatum, 

Metopus contortus and Plagiopyla frontata were lower than the number of genes 

encoded by the macronuclear genomes of Tetrahymena thermophila and 

Paramecium tetraurelia (Discussed in Section 3.3.14). It is therefore likely that the 

transcriptome datasets from these three ciliates are incomplete representations of 

the ciliate nuclear genomes. To investigate this further the completeness of two 

important eukaryotic pathways - for mitochondrial Fe-S cluster biogenesis and for 

cytosolic glycolysis - was assessed for each ciliate. 

All eukaryotes contain essential cytosolic and nuclear Fe-S proteins 

including DNA polymerase and Rli1 that depend on the mitochondrial Fe-S cluster 

biogenesis pathway for their maturation (Freibert et al., 2017). This suggests that 

a functional version of this pathway is needed by all of the studied ciliates. The 

Fe-S cluster biogenesis pathways of microsporidia appears to be the most 

reduced in eukaryotes, consisting of the proteins Isd11, Nfs1, Yfh1, Isu1, Yah1, 

Arh1, mtHsp70 and Jac1 (Freibert et al., 2017). This provides a model for the 

minimum set of mitochondrial proteins that is required to make Fe-S clusters and 

support cytosolic Fe-S protein biogenesis. An almost complete set of these 

proteins was identified for Cyclidium porcatum (missing Isd11 - which is very 

short) and Metopus contortus (missing Arh1). By contrast the pathway for 

Plagiopyla frontata was much less complete (missing Isd11, Yfh1, Yah1, Arh1 and 

Jac1). These findings suggest that the sequence data for these ciliates are 

incomplete to varying degrees but also suggest that coverage is not so poor that 

some useful insights into their metabolism cannot be made. This is supported by 

the detection of a complete glycolytic pathway for Metopus contortus and 

Plagiopyla frontata, and a pathway missing only one component, GCK, for 

Cyclidium porcatum. Based upon these data the glycolysis pathway in these three 

hydrogenosomal ciliates is the same as previously reported for the aerobic ciliate 

Tetrahymena thermophila (Smith et al., 2007). 

In some anaerobic microbial eukaryotes, the mitochondrial Fe-S cluster 

biogenesis pathway has been replaced by alternative pathways through lateral 

gene transfer. These include an archaeal sulphur mobilisation (SUF) system in 
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Pygsuia biforma (Stairs et al., 2015) and a bacterial nitrogen fixation (NIF) system 

in Mastigamoeba balamuthi (Nývltová et al., 2013). We searched for these 

proteins in the datasets from Cyclidium porcatum, Metopus contortus and 

Plagiopyla frontata but found no evidence that these proteins have replaced the 

mitochondrial pathway in ciliates. Moreover, several proteins of the Fe-S cluster 

biogenesis pathway identified from Cyclidium porcatum and Metopus contortus 

were predicted to contain N-terminal targeting signals (Appendix B), consistent 

with their location inside the hydrogenosomes of these species. 

 

3.3.17 Morphology of hydrogenosomes 

 

The morphology of hydrogenosomes from Cyclidium porcatum, Metopus contortus 

and Plagiopyla frontata were investigated using TEM, performed by Benoît Zuber 

and Beat Haenni (Microscopy Imaging Centre, Institute of Anatomy, University of 

Bern, Switzerland) (Figure 3.19). This was investigated in order to facilitate 

comparisons with aerobic mitochondria and understand how the changes in 

hydrogenosome metabolism influenced aspects of their morphology. Cristae, a 

hallmark of aerobic mitochondria, were observed within hydrogenosomes from 

Cyclidium porcatum and Metopus contortus. These observations are consistent 

with previous published images of hydrogenosomes from these species (Embley 

and Finlay, 1994). The cristae in the hydrogenosomes of Cyclidium porcatum 

appear to be widely distributed throughout the matrix of the organelle, whereas the 

cristae in the hydrogenosomes of Metopus contortus are less obvious and there 

appear to be far fewer in each hydrogenosome. Cristae morphology can differ 

dramatically between mitochondrial homologues of various organisms (Zick et al., 

2009) and it is therefore not too surprising that the morphology of cristae in the 

hydrogenosomes of Cyclidium porcatum and Metopus contortus also differ in 

appearance from one another . 

No cristae were observed in the hydrogenosomes of Plagiopyla frontata 

and this is consistent with other published images in which the hydrogenosomes 

of this species do not appear to have cristae (Fenchel and Finlay, 1991b; Fenchel 

and Finlay, 1995). Other well studied hydrogenosomes, in species such as 

Trichomonas vaginalis, also do not contain cristae (Bradley et al., 1997). Studies 
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have previously indicated that hydrogenosomes of Nyctotherus ovalis have cristae 

(Gijzen et al., 1991) and these seem to be similar in appearance to the cristae of 

the hydrogenosomes found in Metopus contortus shown in Figure 3.19, b. and 

published previously (Finlay and Fenchel, 1989). These two species are closely 

related (Figure 3.4), indicating that this feature has been conserved from their 

common ancestors which is predicted to have already had hydrogenosomes. 

The structure of F1F0 ATP synthase dimers were described in two species 

of ciliate: Tetrahymena thermophila (Nina et al., 2010) and Paramecium tetraurelia 

(Mühleip et al., 2016). In these species the two monomers are arranged in parallel 

forming U-shaped dimers, whereas in other species the monomers have a more 

angular arrangement, as such they form V-shaped dimers (Chaban et al., 2014). 

This structural difference is thought to be due to F1F0 ATP synthase complexes 

being highly divergent in ciliates, particularly the F0 sub-complex, which typically 

mediates dimer formation (Nina et al., 2010; Chaban et al., 2014). Nina et al. 

(2010) identified 13 novel subunits in Tetrahymena thermophila for which they 

could not discern any orthologues in any organisms other than ciliates. U-shaped 

dimers are thought to form helical tubular cristae (Mühleip et al., 2016), whereas 

species with V-shaped dimers, such as yeast and mammals, typically have 

lamellar cristae (Strauss et al., 2008; Davies et al., 2011; Davies et al., 2012). The 

hydrogenosomes of Cyclidium porcatum appear to have more defined cristae 

(Figure 3.19, a.) and appear to be similar to the cristae observed from TEM 

images in mitochondria of Paramecium tetraurelia and Tetrahymena thermophila, 

which have also been studied in detail (Nina et al., 2010; Mühleip et al., 2016). 

Since Cyclidium porcatum, Paramecium tetraurelia and Tetrahymena thermophila 

all belong to the Oligohymenophorea (Figure 3.4) and they appear to have a 

somewhat conserved cristae structure, it would be reasonable to predict that the 

F1F0 ATP synthase complexes of Cyclidium porcatum also form U-shaped dimers, 

but further research would be necessary to investigate whether this is the case. 

Dimers are thought to be formed by protein-protein interactions between 

monomer complexes but exactly which protein subunits are involved in this 

process appears to differ between species (Chaban et al., 2014). In yeast F1F0 

ATP synthase subunits a and e are thought to have key roles in dimer formation 

(Paumard et al., 2002; Arselin et al., 2004). TEM data indicates that cristae in 
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mitochondria of yeast mutants devoid of these two subunits form concentric layers 

of membranes, described as onion-like, much different in appearance to the 

tubular shape cristae of the wildtype (Paumard et al., 2002; Arselin et al., 2004). 

The cristae observed in Metopus contortus hydrogenosomes (Figure 3.19, b.) are 

arguably more similar in appearance to these onion-like cristae, forming a 

membranous layer, parallel to the outer membrane of the organelle, whereas the 

cristae in Cyclidium porcatum appear to have a more typical tubular shape (Figure 

3.19, a.). This is consistent with the finding that Cyclidium porcatum has retained 

F1F0 ATP synthase complex, whereas no evidence for this complex was found in 

Metopus contortus. 

Another protein complex that is thought to have a role in cristae formation is 

the MICOS complex (John et al., 2005). The MICOS complex was most likely 

acquired from the mitochondrial endosymbiont as some subunits of this complex 

were discovered in alpha-proteobacteria where they are thought to perform a 

similar function in development of intracytoplasmic membranes that resemble 

cristae (Muñoz-Gómez et al., 2015). Eight subunits of the MICOS complex, Mic10, 

Mic12, Mic13 (QIL1), Mic19, Mic23, Mic25, Mic27 and Mic60, were described in 

Opisthokonts (Zerbes et al., 2012; Guarani et al., 2015) and at least three of 

these, Mic10, Mic19 and Mic60 have also appear to be present in other eukaryotic 

lineages (Muñoz-Gómez et al., 2015). In ciliates however, of these subunits, only 

Mic10 has previously been identified from Paramecium tetraurelia, Tetrahymena 

thermophila and Oxytricha trifallax, which were found bioinformatically by 

searching sequences from publically available databases by two separate studies 

(Muñoz-Gómez et al., 2015; Huynen et al., 2016). The proteins identified as being 

Mic10 from ciliates by Muñoz-Gómez et al. (2015) however, do not appear to be 

homologues of the proteins identified as Mic10 in ciliates by Huynen et al. (2016). 

Knowing which of the two studies, if either, has most likely identified authentic 

Mic10 proteins is difficult due to their short lengths and low sequence identity to 

other proteins. That being said, probable homologues of the ciliate Mic10 proteins 

identified by Muñoz-Gómez et al. (2015) were detected in the present study from 

Metopus contortus, Metopus es and Metopus striatus but no proteins with 

significant sequence similarity to the Mic10 proteins identified by Huynen et al. 

(2016) could be detected from Nyctotherus ovalis, Metopus contortus, Metopus 

es, Metopus striatus, Cyclidium porcatum, Plagiopyla frontata or Trimyema sp. 
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The presence of the purported Mic10 protein detected from Metopus contortus 

could explain why some reduced cristae appear to be present within the 

hydrogenosomes of this species despite the probable absence of F1F0 ATP 

synthase (Figure 3.19, b.). Given that the hydrogenosomes of Cyclidium porcatum 

appear to have more defined cristae than Metopus contortus however, it could be 

expected that homologues of this purported Mic10 protein would be detected in 

Cyclidium porcatum too but they were not detected in the limited available data. 
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Figure 3.19. Transmission electron micrographs of samples prepared from cells of Cyclidium porcatum (a), Metopus contortus (b) and 

Plagiopyla frontata (c). Hydrogenosomes (H). Methanogens (M). Cristae (arrowheads). Scale bars represent 500nm.  
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3.3.18 Identification of endosymbionts in anaerobic ciliates using F420 

auto-fluorescence 

 

Intracellular methanogens were tentatively identified, based on their emissions of 

F420 auto-fluorescence, inside of Metopus contortus, Metopus es, Metopus 

striatus, Cyclidium porcatum, Plagiopyla frontata and Trimyema sp. (Figure 3.20). 

Intracellular methanogens have also been demonstrated in Nyctotherus ovalis 

previously (Gijzen et al., 1991). The endosymbionts within cells of Metopus es, 

Metopus striatus and Cyclidium porcatum appeared rod-shaped and the 

endosymbionts of Metopus contortus, Plagiopyla frontata and Trimyema sp. were 

more irregularly shaped and did not appear as rods. The presence of these 

methanogens is taken to be a reliable indicator for H2 being produced within these 

ciliates (Fenchel and Finlay, 1992). The methanogenic endosymbionts in 

Cyclidium porcatum, Metopus contortus and Plagiopyla frontata appear to be 

closely associated with hydrogenosomes (Figure 3.19). This is most likely to 

maximise their consumption of the H2 being produced by the hydrogenosomes as 

hydrogenotrophic methanogens require H2 to provide electrons, transferred via 

coenzyme F420, for reduction of CO2 to CH4 and H2O (Ferry, 1992). Previous 

evidence from electron microscopy data suggests that the cell walls of 

methanogen endosymbionts in Plagiopyla frontata, Trimyema sp. and Metopus 

contortus isolates are modified or reduced and they associate intimately with 

hydrogenosomes to the point at which their membranes appear fused, presumably 

to better facilitate transfer of H2 (Fenchel and Finlay, 1991c; Finlay and Fenchel, 

1991; Finlay et al., 1993a). It is unclear from Figure 3.19 whether such fusions 

occur between hydrogenosomes and endosymbionts in Cyclidium porcatum, 

Metopus contortus and Plagiopyla frontata isolated in the present study, although 

their close proximity is apparent. 
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Figure 3.20. F420 auto-fluorescence imaged from methanogen endosymbionts in anaerobic ciliates: Metopus contortus (a), Metopus es (b), 

Metopus striatus (c), Trimyema sp. (d), Plagiopyla frontata (e), Cyclidium porcatum (f). Methanogens in the figures fluoresce with a relatively 

high intensity of blue/green emitted light. Scale bars represent 20µm.  
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3.3.19 Identification of methanogen species by fluorescence in situ hybridisation 

 

Molecular fluorescent probes targeting the specific regions of rRNA from particular 

methanogen species were used to identify the methanogen species that were 

endosymbionts of Metopus contortus (Figure 3.21), Nyctotherus ovalis (Figure 

3.22) and Trimyema sp. (Figure 3.23). Based on these experiments, the 

endosymbionts of Nyctotherus ovalis are identified here as being closely related to 

Methanobrevibacter arboriphilus. This is consistent with predictions made earlier 

based on morphological comparisons (Gijzen et al., 1991) and fluorescent probing 

(van Hoek et al., 2000b). The endosymbionts of Metopus contortus and Trimyema 

sp. are closely related to Methanocorpusculum labreanum. This is consistent with 

the endosymbiont species that were identified from Metopus contortus and 

Trimyema sp. in studies previously (Embley et al., 1992a; Finlay et al., 1993b) In 

these earlier studies, Metopus contortus was isolated from marine sands in 

Denmark (Finlay and Fenchel, 1989; Embley et al., 1992a) and Trimyema sp. was 

isolated from a freshwater pond in Cumbria (UK) (Finlay et al., 1993b), whereas in 

the present study these species were isolated from locations in Dorset (UK) 

(methods described in Section 2.1). Given that these species were isolated from 

geographical locations that are separated by large distances, and more than two 

decades apart, but are shown to contain the same species of endosymbiont, it 

seems that the relationships between these ciliates and their endosymbionts are 

stable in the short to medium term. 
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Figure 3.21. Fluorescent probing of Metopus contortus cells in situ. Archaea-specific probe, 

ARCH915 (a.), Symbiont-specific probe (b.), DIC image (c.), high-resolution STED image (d). 

Images a. and b. are maximum intensity z-projections of multiple confocal slices. a., b. and 

c. were imaged with a 63x objective lens and d. with a 100x objective lens. Scale bars 

represent 20µm (a., b. and c.) and 10µm (d.) 
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Figure 3.22. Fluorescent probing of Nyctotherus ovalis cells in situ. Archaea-specific probe, 

ARCH915 (a.); DIC image of same field shown in a. (b.); symbiont-specific probe, MB (c.); 

DIC image of same field shown in c. (d.); high-resolution STED image (e); Images a. and c. 

are maximum intensity z-projections of multiple confocal slices. a., b., c. and d. were 

imaged with a 63x objective lens and e. was imaged with a 100x objective lens. Scale bars 

represent 20µm (a., b., c. and d.) and 10µm (e.) 
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Figure 3.23. Fluorescent probing of Trimyema sp. cells in situ. Archaea-specific probe, 

ARCH915 (a.); Symbiont-specific probe, SYM5 (b.); merged image of a. and b. (c.). Images 

a., b. and c. are maximum intensity z-projections of multiple confocal slices, imaged with a 

63x objective lens. Scale bars represent 10µm. 
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3.3.20 Phylogenetic relationships between methanogenic endosymbionts and their 

ciliate hosts 

 

The associations between anaerobic ciliates and their methanogenic 

endosymbionts, and whether they are preserved over large evolutionary 

timescales, were investigated further. This was done by comparing species 

phylogenies inferred from conserved regions of endosymbiont and free-living 

methanogen Archaea 16S rRNA gene sequences with a tree based upon ciliate 

18S rRNA gene sequences using the CAT+GTR model (Lartillot and Philippe, 

2004) (Figure 3.24). The 16S rRNA gene sequences from the endosymbionts of 

Trimyema sp. (Finlay et al., 1993b), Trimyema compressum (Shinzato et al., 2007) 

and Metopus palaeformis (Embley et al., 1992b) were obtained from studies that 

had previously identified these endosymbiont species, which were confirmed using 

in situ probing. The 16S rRNA gene sequences from the endosymbionts of 

Metopus contortus and Nyctotherus ovalis recorded in this thesis were obtained 

from their whole genome sequences, which were recovered from the 

hydrogenosome genome sequencing datasets. 

 Based on the phylogenies in Figure 3.24, it is clear that although 

Nyctotheurs ovalis, Metopus contortus and Metopus palaeformis form a clade 

(posterior probability of 1), their endosymbionts are polyphyletic. A similar situation 

can be observed for the clade containing Trimyema sp. and Trimyema 

compressum (posterior probability of 0.99), the endosymbionts of which are also 

polyphyletic. As predicted based on FISH experiments (Section 3.3.19), the 

endosymbionts of Metopus contortus and Trimyema sp. group with the free-living 

methanogen species Methanocorpusculum labreanum (posterior probability of 

0.92). The endosymbiont of Nyctotherus ovalis forms a clade with the 

endosymbiont of Trimyema compressum and Methanobrevibacer arboriphilus 

(posterior probability of 1), and the endosymbiont of Metopus palaeformis is 

closely related to Methanobacterium lacus (posterior probability of 1). 

 This analysis suggests that ciliates and methanogenic endosymbionts have 

not co-speciated in agreement with previously published work (Embley and Finlay, 

1994). However the expanded sampling does suggest that certain methanogen 

lineages may form endosymbioses with anaerobic ciliates more frequently than 

others. This is suggested by the clade that contains the closely related 
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endosymbionts of Trimyema sp. and Metopus contortus (posterior probability of 1) 

and the clade that contains the closely-related endosymbionts of Nyctotherus 

ovalis and Trimyema compressum. This could suggest that species from the 

genera Methanocorpusculum and Methanobrevibacter have evolved strategies for 

colonising anaerobic ciliates. Whether this is the case could be investigated by 

detailed analysis and greater sampling of whole genome sequences from these 

and other methanogenic endosymbionts of different lineages, and comparisons 

with their free-living relatives.  
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Figure 3.24. Phylogenies of methanogenic Euryarchaeaota Archaea (left) and ciliates (right), inferred from alignments of 16S and 18S rRNA 

genes, respectively, using the CAT + GTR model (Lartillot and Philippe, 2004). Anaerobic ciliates of the same clade that have had their 

endosymbiont species identified using in situ probing in the present study and others (Embley et al., 1992b; Finlay et al., 1993b; Shinzato et al., 

2007), are highlighted in the same colour. Corresponding endosymbiont species are also highlighted in the same colour as their ciliate hosts. 

Support values indicate posterior probabilities. Scale bars represent estimated number of substitutions per site.
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3.4 Discussion 

 

The present study has provided the first experimental evidence for the existence 

of hydrogenosome genomes in Metopus contortus, Metopus es, Metopus striatus 

and Cyclidium porcatum. Detailed analysis of the genes associated with these 

genomes reveals that they have all evolved from mitochondrial genomes. These 

data provide strong evidence for a common mitochondrial ancestry of the 

hydrogenosomes in these particular ciliates and in Nyctotherus ovalis (Figures 

3.8-3.13). By contrast, the hydrogenosomes of Plagiopyla frontata and Trimyema 

sp. appear to have lost their mitochondrial genomes but metabolic reconstructions 

for the hydrogenosomes from Plagiopyla frontata (see below) nevertheless 

demonstrate that it has retained proteins that are typically found in canonical 

mitochondria. Taken together the data provide compelling evidence for the 

hypothesis that ciliate hydrogenosomes have evolved from mitochondria on at 

least three separate occasions in the ciliate tree. 

Although the amount of sequence data varies for the different ciliates, it is 

apparent that the hydrogenosome genomes from Nyctotherus ovalis, Metopus 

contortus, Metopus es, Metopus striatus and Cyclidium porcatum share significant 

similarities in the genes they contain. All of the genomes have retained the genes 

nad7 and nad10, and genes nad1, nad3, nad4, nad5, nad9, rps12 and rpl2 are 

also commonly present. Most of the protein-coding genes identified from the 

hydrogenosome genomes are for ribosomal proteins and for subunits of 

ETC Complex I. This is similar to the reported gene content of hydrogenosome 

genomes from other eukaryotes, including Blastocystis (Jacob et al., 2016). This 

suggests that an important function of hydrogenosomal ribosomes is in the 

production of organelle-genome encoded proteins that make up the subunits of 

ETC Complex I. In turn this suggests that there is selection for retaining some 

functions of ETC Complex I, possibly including proton pumping to maintain a 

membrane gradient, inside of these hydrogenosomes. Only one gene was 

identified that does not encode a subunit of ETC Complex I or ribosomal proteins, 

this was a gene for ymf66 which appeared among the partial data for the 

Cyclidium porcatum organelle genome. This protein was identified previously in 

species of aerobic ciliates and based on the proteomic analysis of F1F0 ATP 
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synthase from Tetrahymena thermophila (Smith et al., 2007; Nina et al., 2010) it 

appears to be part of the F0 sub-complex. 

Genes for 12S and 16S mitochondrial rRNA were identified in all of the 

hydrogenosome genomes. Interestingly, the hydrogenosomal genome of 

Cyclidium porcatum is predicted to have two copies of each gene: this is also a 

feature of the mitochondrial genomes of other Oligohymenophorea including 

Tetrahymena thermophila and Paramecium tetraurelia (Pritchard et al., 1990; 

Brunk et al., 2003). The presence of mitochondrial rRNA genes is consistent with 

the presence of genes for ribosomal proteins, and together with nuclear encoded 

proteins they are likely to form a functional mitochondrial ribosome. A number of 

tRNA genes were also identified in each of the ciliate hydrogenosome genomes 

and these would be available to transfer amino acids to the hydrogenosome 

ribosomes during protein synthesis. Consistent with this, a predicted MCF amino 

acid transporter was identified from the transcriptome analysis of Cyclidium 

porcatum, suggesting that the hydrogenosomes of this species could import amino 

acids needed for protein synthesis from the cytosol. 

The genome data was supplemented with transcriptomic data and together 

they were used to reconstruct the hydrogenosome metabolisms for Cyclidium 

porcatum, Metopus contortus and Plagiopyla frontata. The hydrogenosomes of 

Cyclidium porcatum appears to have the most complete ETC as at least some 

nuclear genes for subunits of ETC Complexes I, II, III and IV, as well as for F1F0 

ATP synthase, were detected from this species. Consistent with the predicted role 

of F1F0 ATP synthase in cristae formation (Strauss et al., 2008), the cristae of 

Cyclidium porcatum hydrogenosomes are clearly visible in the EM images 

generated here and in published data (Esteban et al., 1993). Cyclidium porcatum 

was also the only species from which genes for PFO and PNO were detected, 

which it can potentially use for the oxidation of pyruvate and the reduction of the 

substrates ferredoxin and NADP+ respectively, as was shown for these enzymes 

from other organisms (Gorrell et al., 1984; Inui et al., 1987). Cyclidium porcatum 

also has some of the genes for substrate-level phosphorylation, so it could 

potentially use these to make some ATP. With the exception of GCK a complete 

pathway for glycolysis was detected. 
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The hydrogenosome metabolism of the two closely related anaerobic ciliates 

Metopus contortus, reconstructed in the present study, and Nyctotherus ovalis, 

reconstructed from a transcriptome analysis previously (de Graaf et al., 2011), 

share several similarities. Both these species have some genes for ETC 

Complexes I, II and III and lack genes for ETC Complex IV and F1F0 ATP 

synthase. Both of these species also have some of the genes needed for fumarate 

reduction, as well as ATP production by substrate-level phosphorylation. In the 

present study a number of genes were also identified from Metopus contortus that 

were not previously identified in Nyctotherus ovalis (de Graaf et al., 2011). These 

include a complete set of genes for the glycolysis pathway, consistent with the 

production of pyruvate and with the detection of all of the genes needed to make 

PDH. Additionally a coenzyme A transporter MCF protein was detected from 

Metopus contortus, which could potentially import cytosolic coenzyme A required 

for the decarboxylation of pyruvate by PDH. 

Fewer genes for hydrogenosome metabolism proteins were detected for 

Plagiopyla frontata compared to Cyclidium porcatum and Metopus contortus. This 

is partly due to less data being generated for this species overall, but – given the 

absence of an organelle genome - it likely also reflects further organelle reductive 

evolution. For example, neither the genomic or transcriptomic data provided any 

evidence for components of the ETC suggesting that Plagiopyla frontata has 

completely lost this pathway. Consistent with this, and in agreement with 

published data for Plagiopyla frontata (Fenchel and Finlay, 2010) no cristae were 

visible in the EM images taken for the hydrogenosomes of Plagiopyla frontata in 

this thesis. A complete set of genes for the glycolysis pathway were detected from 

Plagiopyla frontata as well as the genes for PDH used to oxidise pyruvate. Like 

Cyclidium porcatum, a coenzyme A transporter MCF protein was detected in 

Plagiopyla frontata, consistent with its hydrogenosomes importing the coenzyme A 

substrate required for pyruvate decarboxylation. Some of the genes required for 

ATP production by substrate-level phosphorylation were also detected from this 

species. 

At least some of the genes for proteins of the major mitochondrial protein 

import pathways were detected from Cyclidium porcatum, Metopus contortus and 

Plagiopyla frontata. Both subunits of the MPP complex were detected from each of 
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these three species and this is consistent with N-terminal targeting signals being 

predicted for some proteins for each of these three ciliates. The largest number of 

MCF proteins was detected from Cyclidium porcatum, which suggests that it may 

have retained more of the metabolic functions associated with canonical 

mitochondria than the other hydrogenosomes. Consistent with the idea that loss of 

MCF diversity is correlated with degree of metabolic reduction, the smallest 

number of MCF proteins was detected from Plagiopyla frontata. 

Genes for core components of the essential mitochondrial pathway for Fe-S 

cluster biogenesis (Freibert et al., 2017) were detected in the data for all three 

ciliates. The most complete set of proteins were found for Cyclidium porcatum and 

the least complete pathway was from Plagiopyla frontata. The presence of this 

pathway is consistent with the detection of genes for Fe-S proteins including 

ferredoxin and the FeFe-hydrogenases, which play a central role in hydrogen 

production. Given the vital role of the mitochondrial Fe-S cluster biosynthesis 

pathway in making essential cytosolic and nuclear proteins in model eukaryotes 

(Freibert et al., 2017), it appears likely that the incomplete nature of the ciliate 

pathways reflects missing data rather than gene loss. There are cases in 

anaerobic protists where the mitochondrial ISC pathway has been replaced by 

cytosolic bacterial-type pathways, that were likely acquired by lateral gene transfer 

(Stairs et al., 2014). This possibility was also explored by searching the datasets 

generated from the anaerobic ciliates in the present study, but no potential 

functional replacements for the ISC pathway could be identified. 

The relationships between the ciliates and their methanogenic endosymbionts 

were investigated and revealed apparent differences in their short and long term 

co-evolution. On one hand, comparison of host and symbiont species trees 

provide little evidence that ciliates and their endosymbionts have co-speciated 

over the long term, since closely related ciliates do not appear to have closely 

related endosymbionts. On the other hand, the ciliate species Metopus contortus 

and Trimyema sp. were re-isolated in the present study, over two decades since 

their endosymbionts were first identified (Embley et al., 1992a; Finlay et al., 

1993b) and from a completely different geographical location, yet they still contain 

the same species of endosymbionts. Similar patterns are also observed in 

Nyctotherus ovalis which are shown to contain the same endosymbiont species as 
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earlier studies (van Hoek et al., 2000b). At face value, these observations would 

suggest that the associations between methanogenic endosymbionts are stable 

over shorter time periods but not over longer periods of evolution. 
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Chapter 4. The evolution of enzymes involved in the 

hydrogenosome metabolism of ciliates 
 

4.1 The evolution of enzymes with roles in H2 production in the 

hydrogenosomes of ciliates 

 

Ciliates appear to have evolved hydrogenosomes from aerobic mitochondria 

repeatedly and independently in several lineages (Embley et al., 1995). 

Hydrogenosomes oxidise pyruvate, using enzymes such as PFO/PNO and PFL, 

and produce H2 using FeFe-hydrogenases, yet these enzymes are generally not 

found in aerobic mitochondria (Martin and Müller, 1998). In the present study 

anaerobic metabolism enzymes were analysed from the anaerobic 

hydrogenosome-containing ciliates Nyctotherus ovalis, Metopus contortus, 

Metopus es, Metopus striatus, Cyclidium porcatum, Plagiopyla frontata and 

Trimyema sp. and their origins inferred phylogenetically. It is unknown whether the 

aerobic ancestors of these anaerobic ciliates already had all of the necessary 

enzymes that they needed to ‘make’ a hydrogenosome, or whether they acquired 

them from alternative sources by lateral gene transfer. The origins of these 

enzymes are therefore most important for understanding how anaerobic ciliates 

evolved hydrogenosomes. 

 

4.1.1 FeFe-hydrogenases in anaerobic eukaryotes 

 

There are three non-homologous classes of hydrogenases that are capable of 

reducing protons to H2, these are defined as NiFe-hydrogenases (found in 

Bacteria and Archaea), Fe-hydrogenases (found in methanogenic Archaea) and 

FeFe-hydrogenases (found in Bacteria and eukaryotes), according to the most 

recent nomenclature (Vignais et al., 2001; Shima et al., 2008; Tard and Pickett, 

2009; Peters et al., 2015). Hydrogenases are typically thought to enable the use of 

protons as a terminal electron acceptor in oxidative pathways (Peters et al., 1998). 

FeFe-hydrogenases are the only hydrogenases found in eukaryotes (Horner et al., 

2002) but these proteins were initially characterised from the anaerobic Bacteria, 

Clostridium pasteurianum (Adams et al., 1989; Hildebrand et al., 1991) and 

Desulfovibrio vulgaris (Voordouw and Brenner, 1985; Voordouw et al., 1989). The 
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first eukaryote from which a FeFe-hydrogenase enzyme was identified and 

characterised was the excavate Trichomonas vaginalis and was also shown to 

localise to purified hydrogenosomes (Bui and Johnson, 1996). 

FeFe-hydrogenases have also been shown to localise to hydrogenosomes in situ 

for the anaerobic ciliate Nyctotherus ovalis (Akhmanova et al., 1998), as well as 

other organisms including Neocallimastix sp. (Voncken et al., 2002) and 

Blastocystis sp. (Stechmann et al., 2008). In species with hydrogenosomes, 

FeFe-hydrogenases usually contain N-terminal mitochondrial-like targeting signals 

(Akhmanova et al., 1998; Horner et al., 2000; Davidson et al., 2002; Nývltová et 

al., 2015), which is consistent with a hydrogenosomal sub-cellular localisation. 

Giardia intestinalis however is an example of a species that lacks 

hydrogenosomes, instead possessing mitosomes, and was also shown to produce 

cytosolic H2 (Lloyd et al., 2002). The FeFe-hydrogenase from this species appears 

to lack N-terminal targeting signals and was shown to localise to the cytosol 

(Emelyanov and Goldberg, 2011). 

All FeFe-hydrogenases share a conserved H-cluster binding domain which 

contains cysteine ligands that are required for coordination of the Fe-S cluster 

active site in the functional protein (Peters et al., 1998). The FeFe-hydrogenase 

active site consists of a [4Fe-4S] cluster coupled to a [2Fe] sub-cluster by a 

cysteine (Peters et al., 1998). Activation of the complete functional enzyme 

requires precise assembly by three maturase enzymes, HydE, HydF and HydG, 

which synthesise and insert the [2Fe] sub-cluster into the active site containing a 

pre-existing [4Fe-4S] cluster (Posewitz et al., 2004; Posewitz et al., 2005; Mulder 

et al., 2009). The [4Fe-4S] cluster is thought to be pre-formed and incorporated 

into the protein by the Fe-S cluster assembly components (Mulder et al., 2009). 

HydE, HydF and HydG maturases appear to be absent in some eukaryotes that 

possess FeFe-hydrogenases (Nicolet and Fontecilla-Camps, 2012). For example, 

none of the three maturases were identified from the whole genome sequences of 

Entamoeba histolytica (McCoy and Mann, 2004) or Giardia intestinalis (Jerlström-

Hultqvist et al., 2010), only HydE has been identified from the genome sequence 

of Blastocystis sp. (Denoeud et al., 2011). Previous transcriptomic studies of the 

anaerobic ciliate Nyctotherus ovalis (de Graaf et al., 2011) also failed to detect 

these enzymes. One possible explanation is that the active site of 

FeFe-hydrogenases from these species is only partially assembled i.e. they 
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contain the [4Fe-4S] cluster but not the [2Fe] sub-cluster, and can still produce H2 

but at lower levels (Nicolet and Fontecilla-Camps, 2012). This is plausible since 

other Fe-S cluster enzymes can reportedly make low-levels of H2, such as CO 

dehydrogenase and PFO (Menon and Ragsdale, 1996). 

Also well conserved are two [4Fe-4S] cluster-binding domains that are 

positioned immediately upstream from the H-cluster, in the direction of the 

N-terminus (Figure 4.1). In addition to these main conserved domains, different 

FeFe-hydrogenases often have various numbers of accessory [4Fe-4S] and [2Fe-

2S] cluster-binding N-terminal domains that resemble ferredoxins (Vignais et al., 

2001). The role of the accessory Fe-S clusters in the mature protein is thought to 

be the transfer of electrons to and from the active site of the H-cluster (Mulder et 

al., 2011). A variety of other cofactor and substrate binding domains, thought to be 

involved in the oxidation of different substrates, are often found fused to the C-

terminus of the H-cluster domain in different species. 

The only complete FeFe-hydrogenases from an anaerobic ciliate were 

sequenced from Nyctotherus ovalis (Akhmanova et al., 1998; Boxma et al., 2007) 

and these enzymes are different to those found in other eukaryotes as they have 

two additional C-terminal domains that have similarity to bacterial NuoE/24 kDa 

subunit of eukaryote ETC Complex I and bacterial NuoF/51 kDa subunit of 

eukaryote ETC Complex I (Figure 4.1). Previous analyses indicate that FeFe-

hydrogenases of anaerobic ciliates may have a bacterial origin different from the 

FeFe-hydrogenases of other anaerobic eukaryotes (Horner et al., 2000; Embley et 

al., 2003). In the current study FeFe-hydrogenases were sequenced and analysed 

from Nyctotherus ovalis, Metopus contortus, Metopus es, Metopus striatus, 

Cyclidium porcatum, Plagiopyla frontata and Trimyema sp., and the relationships 

and evolution of these enzymes to those from Bacteria and other eukaryotes are 

analysed and discussed. 
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Figure 4.1. Diagram showing the domain structure of the FeFe-hydrogenases from the 

excavate Trichomonas vaginalis, the ciliate Nyctotherus ovalis, and the beta-proteobacteria 

Sutterella wadsworthensis (this sequence appears to be the most closely related to ciliate 

FeFe-hydrogenase sequences based on the analysis shown in Figure 4.5. The well 

conserved H-cluster and two [4Fe-4S] cluster-binding domains are shown (red) as well as 

various N-terminal and C-terminal accessory binding domains. The C-terminal domains of 

the FeFe-hydrogenase from Nyctotherus ovalis with homology to NuoE (blue) and NuoF 

(yellow) are highlighted. The protein regions used to infer phylogenies in Sections 4.3.4 and 

4.3.5 of the present study are shown. Based on Figure 1 from Horner et al. (2000). 

 

 

4.1.2 Pyruvate:ferredoxin oxidoreductase (PFO) and pyruvate: NADP+ 

oxidoreductase (PNO) 

 

PFO oxidises pyruvate and has previously been found in some anaerobic species 

of Bacteria, eukaryotes and Archaea (Müller, 1993; Kletzin and Adams, 1996). In 

the hydrogenosomes of eukaryotes, PFO is thought to replace the role of pyruvate 

dehydrogenase (PDH), which typically oxidises pyruvate to acetyl-CoA in aerobic 

mitochondria (Kerscher and Oesterhelt, 1982; Horner et al., 1999; Embley, 2006). 

Like PDH, PFO also oxidises pyruvate to acetyl-CoA but can also reduce 

ferredoxin (Chabrière et al., 1999; Furdui and Ragsdale, 2000), which can then be 

reoxidised by FeFe-hydrogenase (Demuez et al., 2007). The PFO found in 

eukaryotes and Bacteria are similar as they consist of a single protein, whereas 
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the PFO found in Archaea are composed of multiple independent protein subunits, 

each of which are homologous to different domains of the PFO from eukaryotes 

and Bacteria (Hrdý and Müller, 1995a; Kletzin and Adams, 1996). Early 

phylogenetic analysis of a limited number of eukaryote PFO sequences that were 

available at that time recovered them as monophyletic (Horner et al., 1999). Since 

then the sampling of PFO from eukaryotes has been expanded and more recent 

analyses provide only weak support for the monophyly of eukaryotic PFO 

sequences and also indicated that the topology of the eukaryotic sequences do 

not agree with the species tree of the same organisms, leading to the suggestion 

that PFO evolution has been affected by extensive lateral gene transfers between 

eukaryotes (Hug et al., 2010). 

PNO is similar to PFO except it contains an additional C-terminal NADPH-

cytochrome p450 reductase domain (Figure 4.2) (Rotte et al., 2001). PNO from 

Euglena gracilis has been functionally characterised and was shown to oxidise 

pyruvate and reduce NADP+ but did not react with ferredoxin, making it 

functionally distinct from PFO (Inui et al., 1987). The relationship of PFO and PNO 

enzymes were analysed by several phylogenetic studies previously (Kletzin and 

Adams, 1996; Horner et al., 1999; Rotte et al., 2001) but the evolutionary 

significance of the fusion that occurred between PFO and NADPH-cytochrome 

p450 reductase, creating PNO, has only received limited discussion (Rotte et al., 

2001). 

 

Figure 4.2. Diagram of the general domain structure of PFO and PNO enzymes including the 

conserved pyruvate: ferredoxin oxidoreductase domain (red) and the fused NADPH-

cytochrome p450 domain (blue) that is present in PNO only. The protein region used for 

phylogenetic inference in Section 4.3.6 of the present study is shown. 
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In this chapter the identification of FeFe-hydrogenase, PFO and PNO enzymes 

from the anaerobic ciliates Nyctotherus ovalis, Metopus contortus, Metopus es, 

Metopus striatus, Cyclidium porcatum, Plagiopyla frontata and Trimyema sp. is 

described. Additionally the subcellular location of these proteins are predicted and 

phylogenetic analysis is used to infer the evolutionary origins of these proteins.  
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4.2 Results 

 

4.2.1. Identification of hydrogenosome metabolism enzymes from ciliate 

transcriptomes 

 

Blast-based methods, described in Section 2.5, were used to search the 

assembled transcriptomic datasets of Nyctotherus ovalis, Metopus contortus, 

Metopus es, Metopus striatus, Cyclidium porcatum, Plagiopyla frontata and 

Trimyema sp. for sequences related to FeFe-hydrogenase; the maturase 

enzymes, HydE, HydF and HydG; PFO/PNO; and PFL. Genes encoding FeFe-

hydrogenase were detected from Nyctotherus ovalis, Metopus contortus, Metopus 

es, Metopus striatus, Cyclidium porcatum, Plagiopyla frontata and Trimyema sp. 

and genes encoding PFO and PNO were detected from Cyclidium porcatum 

(listed in Tables 4.1. a—4.1. f.). HydE, HydF, HydG or PFL were not detected from 

the available data for any of these species. 

No PFO or PNO sequences were detected from Nyctotherus ovalis, 

Metopus contortus, Metopus es, Metopus striatus, Plagiopyla frontata or 

Trimyema sp. The three subunits of the pyruvate dehydrogenase (PDH) complex, 

however were detected from each of these species, many of which were predicted 

as having N-terminal mitochondrial-like targeting signals (Appendix B). This 

suggests that the hydrogenosomes of these species use PDH to oxidise pyruvate, 

similar to aerobic ciliate species (Smith et al., 2007). Similar findings were 

reported from a transcriptome analysis of Nyctotherus ovalis previously, where 

PDH was detected but not PFO, PNO or PFL (de Graaf et al., 2011). 

The transcripts identified as encoding FeFe-hydrogenase, PFO and PNO 

from ciliates in the present study can be found in Appendix C, along with their 

translated protein sequences. 

 

4.2.2 Codon usage analysis of genes identified for FeFe-hydrogenase, PFO and 

PNO 

 

Numerous genes from the assembled transcriptomic datasets were identified, 

based on sequence similarity from blast searches, as being encoded by the 

genomes of organisms other than Nyctotherus ovalis, Metopus contortus, Metopus 
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es, Metopus striatus, Cyclidium porcatum, Plagiopyla frontata and Trimyema sp. 

These organisms could be free-living prokaryotes that were not successfully 

removed from the samples by washing, endosymbionts living inside the ciliates or 

possibly undigested prokaryotes within ciliate food vacuoles. In addition to this 

some genes that are encoded by the ciliate macronuclear genome might have 

been recently acquired by lateral gene transfer and therefore the closest 

homologues of these genes would not be genes in other ciliates but rather could 

be an alternative prokaryotic or eukaryotic donor. All of these factors create a level 

of uncertainty regarding which genes in the datasets are encoded by which 

genomes. 

To investigate whether the genes for FeFe-hydrogenase, PFO and PNO 

were likely to be encoded by the macronuclear genomes of the ciliates, the codon 

usage of these genes was analysed and compared to the inferred codon usage for 

the ciliate macronuclear genome as a whole. These analyses were performed in 

collaboration with Dr Tom A. Williams (University of Bristol). The complete 

genomes from Nyctotherus ovalis, Metopus contortus, Metopus es, Metopus 

striatus, Cyclidium porcatum, Plagiopyla frontata and Trimyema sp. have not been 

sequenced, so the following strategy was used to identify sequences from each 

ciliate genome. These were identified by selecting the transcripts that were most 

similar to proteins encoded by ciliates in the nr database (NCBI) using blastx 

searches. The coding sequences predicted from the ciliate transcripts were used 

as the sets of ‘true’-positive ciliate genes from which codon usage tables were 

calculated, using the program cusp (Rice et al., 2000) (These tables can be found 

in Appendix D). Next codon adaptation index (CAI) (Sharp and Li, 1987) scores, 

which is a method of measuring codon usage bias, were calculated with the 

program cai (Rice et al., 2000). This was done for each gene in the ciliate ‘true’-

positive sets and for each gene from the genomes of what appeared to be the 

most abundant species of Bacteria and Archaea in the transcriptomic datasets. 

These CAI scores were then plotted as three normalised frequency distributions 

on the same axis to facilitate comparison of the CAI scores for each genome 

calculated under the codon usage tables of Nyctotherus ovalis, Metopus 

contortus, Metopus es, Metopus striatus, Cyclidium porcatum, Plagiopyla frontata 

and Trimyema sp. (Figure 4.3 a—f.). 
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Each of the ciliate CAI score frequency distributions were unimodal, which 

is consistent with the genes that were used being encoded by the same genome. 

The purpose of the distributions plotted for CAI scores from Bacteria and Archaea 

genes was to investigate whether this method provided sufficient resolution to 

identify whether genes were more likely to be ciliate macronuclear genes or more 

likely to have come from a different source. Because there was generally only 

limited overlap between the distributions of CAI scores for ciliate genes and the 

distributions for Bacteria and Archaea genes, this suggested that calculating the 

CAI scores for other genes would provide evidence for whether the genes are 

likely encoded by the ciliate macronuclear genomes or not. Therefore CAI scores 

were calculated for each of the genes encoding FeFe-hydrogenase, PFO and 

PNO. 

In the case of all of the genes for FeFe-hydrogenase, PFO and PNO, their 

CAI scores were within the frequency distributions for ciliate genes. In most cases 

they also had high values within these distributions, suggesting that they had CAI 

values that were typical for genes from these ciliate genomes and this therefore 

provided good evidence that they were real ciliate genes. Furthermore, in the 

majority of cases the CAI scores of these genes were outside of the distributions 

for Archaea and Bacteria species. Even in cases where they were within the 

Archaea and Bacteria distributions, they were in the top ten percent of the 

distribution suggesting that if they were genes from Archaea or Bacteria then their 

CAI values would be distant outliers. These results therefore provide strong 

evidence that each of the FeFe-hydrogenase genes identified in this study came 

from ciliates. 
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    Percentile Rank 

Species Enzyme Transcript IDs CAI score Ciliate Archaea Bacteria 

Cyclidium 
porcatum 

PFO c1688_g1_i1 0.785 88.8 100 100 

PFO/PNO c15969_g1_i1 0.764 75.1 100 100 

PFO/PNO c3950_g1_i1 0.752 64.9 100 100 

PNO c4339_g1_i1 0.745 58.3 100 100 

PNO c4345_g2_i1 0.78 85.9 100 100 

FeFe-
hydrogenase 

c4008_g1_i1 0.751 64.1 100 100 

c4008_g2_i1 0.781 86.5 100 100 
Table 4.1. a. CAI scores calculated for coding sequences from Cyclidium porcatum 

transcripts that were identified as encoding PNO and FeFe-hydrogenase enzymes based on 

blast searches. CAI scores were calculated using a codon usage table that was calculated 

from a set of ‘true’-positive ciliate genes from Cyclidium porcatum. The percentile rank of 

CAI scores for three distributions are shown. Values of 100 in the Archaea and Bacteria 

columns means that the CAI scores for these genes fell outside of the distribution of CAI 

scores for all Archaea and Bacteria genes, providing strong evidence they are from 

Cyclidium porcatum. 

 

Figure 4.3. a. Normalised distributions of codon adaptation index (CAI) scores calculated 

for three datasets of genes from Cyclidium porcatum, Methanoregula formicica and 

Desulfovibrio magneticus. Cyclidium porcatum coding sequences were predicted from 

transcripts that had most significant similarity to ciliate proteins in the nr database (NCBI) 

based on blastx searches and these were considered the ‘true’-positive set of ciliate genes. 

Methanoregula formicica (NC_019943.1) and Desulfovibrio magneticus (NC_012796.1) 

coding sequences were retrieved from their genome sequences, as annotated in their NCBI 

entries. All CAI scores were calculated using a codon usage table, which was calculated 

from the total set of ‘true’-positive ciliate genes from Cyclidium porcatum.  

https://www.ncbi.nlm.nih.gov/nuccore/NC_019943.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_012796.1
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    Percentile Rank 

Species Enzyme Transcript IDs CAI score Ciliate Archaea Bacteria 

Nyctotherus 
ovalis 

FeFe-
hydrogenase c14134_g1_i2 0.825 85.1 100 100 

  c14134_g2_i1 0.841 94.1 100 100 

  c14134_g1_i1 0.826 85.9 100 100 

Table 4.1. b. CAI scores calculated for coding sequences from Nyctotherus ovalis 

transcripts that were identified as encoding FeFe-hydrogenase enzymes based on blast 

searches. CAI scores were calculated using a codon usage table that was calculated from a 

set of ‘true’-positive ciliate genes from Nyctotherus ovalis. The percentile rank of CAI 

scores for three distributions are shown. Values of 100 in the Archaea and Bacteria 

columns mean that the CAI scores for these genes fell outside of the distribution of CAI 

scores for all Archaea and Bacteria genes, providing strong evidence they are from 

Nyctotherus ovalis. 

 

 

Figure 4.3. b. Normalised distributions of codon adaptation index (CAI) scores calculated 

for three datasets of genes from Nyctotherus ovalis, Methanobrevibacter smithii and 

Escherichia coli. Nyctotherus ovalis coding sequences were predicted from transcripts that 

had most significant similarity to ciliate proteins in the nr database (NCBI) based on blastx 

searches and these were considered the ‘true’-positive set of ciliate genes. 

Methanobrevibacter smithii (NC_009515.1) and Escherichia coli (NC_002695.1) coding 

sequences were retrieved from their genome sequences, as annotated in their NCBI entries. 

All CAI scores were calculated using a codon usage table, which was calculated from the 

total set of ‘true’-positive ciliate genes from Nyctotherus ovalis.  

https://www.ncbi.nlm.nih.gov/nuccore/NC_009515.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_002695.1
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    Percentile Rank 

Species Enzyme Transcript IDs CAI score Ciliate Archaea Bacteria 

Metopus 
contortus 

FeFe-
hydrogenase 

c9793_g1_i1 0.785 54.7 98.6 96.9 

c10068_g1_i1 0.788 59.8 98.8 97.3 

c10161_g1_i1 0.785 54.7 98.6 96.9 

Table 4.1. c. CAI scores calculated for coding sequences from Metopus contortus 

transcripts that were identified as encoding FeFe-hydrogenase enzymes based on blast 

searches. CAI scores were calculated using a codon usage table that was calculated from a 

set of ‘true’-positive ciliate genes from Metopus contortus. The percentile rank of CAI 

scores for three distributions are shown. High values in the Archaea and Bacteria columns 

mean that these genes are outliers in the distribution of CAI scores for all Archaea and 

Bacteria genes, providing strong evidence they are from Metopus contortus. 

 

 

Figure 4.3. c. Normalised distributions of codon adaptation index (CAI) scores calculated 

for three datasets of genes from Metopus contortus, Methanocorpusculum labreanum and 

Escherichia coli. Metopus contortus coding sequences were predicted from transcripts that 

had most significant similarity to ciliate proteins in the nr database (NCBI) based on blastx 

searches and these were considered the ‘true’-positive set of ciliate genes. 

Methanocorpusculum labreanum (NC_008942.1) and Escherichia coli (NC_002695.1) coding 

sequences were retrieved from their genome sequences, as annotated in their NCBI entries. 

All CAI scores were calculated using a codon usage table, which was calculated from the 

total set of ‘true’-positive ciliate genes from Metopus contortus.  

https://www.ncbi.nlm.nih.gov/nuccore/NC_008942.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_002695.1
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    Percentile Rank 

Species Enzyme Transcript IDs CAI score Ciliate Archaea Bacteria 

Metopus 
es 

FeFe-
hydrogenase c8491_g1_i1 0.792 91.5 94.9 94.6 

  c10311_g1_i1 0.786 85.2 93.6 93.6 

  c16173_g1_i1 0.77 55.1 90.5 90.6 

Table 4.1. d. CAI scores calculated for coding sequences from Metopus es transcripts that 

were identified as encoding hydrogenase enzymes based on blast searches. CAI scores 

were calculated using a codon usage table that was calculated from a set of ‘true’-positive 

ciliate genes from Metopus es. The percentile rank of CAI scores for three distributions are 

shown. High values in the Archaea and Bacteria columns mean that these genes are 

outliers in the distribution of CAI scores for all Archaea and Bacteria genes, providing 

strong evidence they are from Metopus es. 

 

 

Figure 4.3. d. Normalised distributions of codon adaptation index (CAI) scores calculated 

for three datasets of genes from Metopus es, Methanobacterium formicicum and 

Bacteroides fragilis. Metopus es coding sequences were predicted from transcripts that had 

most significant similarity to ciliate proteins in the nr database (NCBI) based on blastx 

searches and these were considered the ‘true’-positive set of ciliate genes. 

Methanobacterium formicicum (NZ_CP006933.1) and Bacteroides fragilis (NC_006347.1) 

coding sequences were retrieved from their genome sequences, as annotated in their NCBI 

entries. All CAI scores were calculated using a codon usage table, which was calculated 

from the total set of ‘true’-positive ciliate genes from Metopus es.  

https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP006933.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_006347.1
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    Percentile Rank 

Species Enzyme 
Transcript 
IDs CAI score Ciliate Archaea Bacteria 

Metopus 
striatus 

FeFe-
hydrogenase c8165_g1_i1 0.691 18.6 99.9 91.0 

  c9476_g1_i1 0.727 55.7 100 95.8 

  c9476_g2_i1 0.716 42.6 100 94.6 

Table 4.1. e. CAI scores calculated for coding sequences from Metopus striatus transcripts 

that were identified as encoding FeFe-hydrogenase enzymes based on blast searches. CAI 

scores were calculated using a codon usage table that was calculated from a set of ‘true’-

positive ciliate genes from Metopus striatus. The percentile rank of CAI scores for three 

distributions are shown. High values in the Archaea and Bacteria columns mean that these 

genes are outliers in the distribution of CAI scores for all Archaea and Bacteria genes, 

providing strong evidence they are from Metopus striatus. 

 

 

Figure 4.3. e. Normalised distributions of codon adaptation index (CAI) scores calculated 

for three datasets of genes from Metopus striatus, Methanosaeta concilii and 

Campylobacter concisus. Metopus striatus coding sequences were predicted from 

transcripts that had most significant similarity to ciliate proteins in the nr database (NCBI) 

based on blastx searches and these were considered the ‘true’-positive set of ciliate genes. 

Methanosaeta concilii (NC_015416.1) and Campylobacter concisus (NZ_CP012541.1) coding 

sequences were retrieved from their genome sequences, as annotated in their NCBI entries. 

All CAI scores were calculated using a codon usage table, which was calculated from the 

total set of ‘true’-positive ciliate genes from Metopus striatus.  

https://www.ncbi.nlm.nih.gov/nuccore/NC_015416.1
https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP012541.1
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    Percentile Rank 

Species Enzyme 
Transcript 
IDs CAI score Ciliate Archaea Bacteria 

Plagiopyla 
frontata 

FeFe-
hydrogenase c6085_g1_i1 0.703 48.1 99.9 99.8 

Table 4.1. f. CAI scores calculated for coding sequences from Plagiopyla frontata 

transcripts that were identified as encoding FeFe-hydrogenase enzymes based on blast 

searches. CAI scores were calculated using a codon usage table that was calculated from a 

set of ‘true’-positive ciliate genes from Plagiopyla frontata. The percentile rank of CAI 

scores for three distributions are shown. High values in the Archaea and Bacteria columns 

mean that these genes are extreme outliers in the distribution of CAI scores for all Archaea 

and Bacteria genes, providing strong evidence they are from Plagiopyla frontata. 

 

 

Figure 4.3. f. Normalised distributions of codon adaptation index (CAI) scores calculated for 

three datasets of genes from Plagiopyla frontata, Methanocorpusculum labreanum and 

Escherichia coli. Plagiopyla frontata coding sequences were predicted from transcripts that 

had most significant similarity to ciliate proteins in the nr database (NCBI) based on blastx 

searches and these were considered the ‘true’-positive set of ciliate genes. 

Methanocorpusculum labreanum NC_008942.1 and Escherichia coli NC_002695.1 coding 

sequences were retrieved from their genome sequences, as annotated in their NCBI entries. 

All CAI scores were calculated using a codon usage table, which was calculated from the 

total set of ‘true’-positive ciliate genes from Plagiopyla frontata.  
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    Percentile Rank 

Species Enzyme 
Transcript 
IDs CAI score Ciliate Archaea Bacteria 

Trimyema sp. 
FeFe-
hydrogenase c8419_g1_i1 0.697 43.3 100 100 

Table 4.1. g. CAI scores calculated for coding sequences from Trimyema sp. transcripts that 

were identified as encoding FeFe-hydrogenase enzymes based on blast searches. CAI 

scores were calculated using a codon usage table that was calculated from a set of ‘true’-

positive ciliate genes from Trimyema sp. The percentile rank of CAI scores for three 

distributions are shown. Values of 100 in the Archaea and Bacteria columns mean that the 

CAI scores for these genes fell outside of the distribution of CAI scores for all Archaea and 

Bacteria genes, providing strong evidence they are from Trimyema sp. 

 

 

Figure 4.3. g. Normalised distributions of codon adaptation index (CAI) scores calculated 

for three datasets of genes from Trimyema sp., Methanosaeta concilii and Pseudomonas 

fluorescens. Trimyema sp. coding sequences were predicted from transcripts that had most 

significant similarity to ciliate proteins in the nr database (NCBI) based on blastx searches 

and these were considered the ‘true’-positive set of ciliate genes. Methanosaeta concilii 

NC_015416.1 and Pseudomonas fluorescens NC_016830.1 coding sequences were retrieved 

from their genome sequences, as annotated in their NCBI entries. All CAI scores were 

calculated using a codon usage table, which was calculated from the total set of ‘true’-

positive ciliate genes from Trimyema sp. 
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4.2.3 Detection of N-terminal targeting signals in sequences of hydrogenosomal 

FeFe-hydrogenases, pyruvate: ferredoxin oxidoreductases and pyruvate: NADP+ 

oxidoreductases 

 

The mitochondrial processing peptidases (MPP) which cleave N-terminal targeting 

signals from mitochondrial pre-proteins as they enter the matrix were detected 

from the transcriptomes of Cyclidium porcatum, Metopus contortus and Plagiopyla 

frontata and this indicates that the hydrogenosomes of these species use 

N-terminal targeting signals to import proteins. Four different prediction programs 

(Claros and Vincens, 1996; Small et al., 2004; Emanuelsson et al., 2007; 

Fukasawa et al., 2015), each of which use a combination of strategies to predict 

N-terminal targeting signals, were used to analyse the FeFe-hydrogenase and 

PNO sequences from Nyctotherus ovalis, Metopus contortus, Metopus es, 

Metopus striatus, Cyclidium porcatum, Plagiopyla frontata and Trimyema sp. The 

results of these analyses are shown in Tables 4.2 and 4.3. Due to transcripts 

being incompletely sequenced, two FeFe-hydrogenase sequences from Metopus 

contortus and Plagiopyla frontata and one PNO sequence from Cyclidium 

porcatum had truncated N-termini, which was determined from multiple-sequence 

alignments with other homologues, and therefore these sequences could not be 

analysed for targeting signals. 

All of the FeFe-hydrogenase sequences from each species, except one 

from Cyclidium porcatum (ID c4008_g2_i1) were predicted to contain N-terminal 

targeting signals, with a probability greater than 0.5, by the majority of the 

prediction programs, consistent with them being targeted to the hydrogenosomes 

of these species. Only one PNO sequence (ID: c4345_g2_i1) from Cyclidium 

porcatum was predicted as having an N-terminal targeting signal with a probability 

greater than 0.5 by all four programs, whereas the other three PNO sequences 

(IDs: c15969_g1_i1, c3950_g1_i1, c4339_g1_i1) were predicted to have N-

terminal targeting signals with a probability less than 0.5 by most of the programs 

used. One of these sequences (ID: c4339_g1_i1) was not predicted as having an 

N-terminal targeting signal with a probability greater than 0.5 by any of the 

programs. 

Since each of the prediction programs use different methods it is difficult to 

argue which is the most reliable. The most recently developed of these programs, 
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MitoFates, was previously tested by other authors alongside the other three 

prediction programs, Mitoprot II, TargetP and Predotar, which were also used in 

the present study (Fukasawa et al., 2015). The results of this comparison 

determined that MitoFates predicted N-terminal targeting signals most accurately 

(Fukasawa et al., 2015), however these comparisons were made only whilst 

testing the programs on three datasets that contained sequences from metazoa, 

yeast and plants, separately, and therefore it is unknown whether this would be 

the most accurate program for predicting N-terminal targeting signals from ciliate 

sequences. Therefore the proteins shown in Table 4.2 and 4.3 were considered as 

being targeted to hydrogenosomes if they were predicted as containing an N-

terminal targeting signal, with a probability greater than 0.5, by a majority of (i.e. 

three or more) prediction programs. 

Using this interpretation of the data, this analysis suggests that each of the 

FeFe-hydrogenase enzymes sequenced in the present study that have complete 

N-termini are likely to be targeted to, and therefore function within 

hydrogenosomes, except the one sequence from Cyclidium porcatum 

(ID c4008_g2_i1). Additionally only one of the PNO enzymes sequenced from 

Cyclidium porcatum is predicted to be targeted to hydrogenosomes (ID 

c4345_g2_i1), whereas the lack of detectable targeting signals from the other 

PFO/PNO enzymes suggests that they are more likely to function in the cytosol. 

These results suggests that Cyclidium porcatum has cytosolic and 

hydrogenosomal copies of both FeFe-hydrogenase and PFO/PNO, although 

experimental work is needed to be sure. This is similar to what is observed in 

other anaerobic eukaryotes, such as Pygsuia biforma (Stairs et al., 2014) and 

Mastigamoeba balamuthi (Nývltová et al., 2015) each of which seem to possess 

FeFe-hydrogenase and PFO/PNO copies, with and without N-terminal targeting 

sequences. 

Visual inspection of the well-aligned first eight amino acids of the N-termini 

of the proteins that are not considered to be targeted to hydrogenosomes (ID 

c4008_g2_i2 & c4345_g1_i1), revealed some differences to those that are 

considered to be targeted to hydrogenosomes (Figure 4.4). These differences 

could be involved in the different targeting predictions of these proteins, although 

analysis of a much larger number of sequences from the same species would be 
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required to confidently determine what differences actually affect the targeting 

location of these proteins. Mitoprot II and TargetP in some cases were able to 

predict mitochondrial processing peptidase cleavage sites (Figure 4.4), although 

there were differences between predictions made by the two programs and in 

some cases neither program could make a prediction. In the case of proteins with 

and without targeting signals however, both appear to have an N-terminus region 

(Figure 4.4, highlighted in red) prior to the start of the functional protein domains 

(Figure 4.4, highlighted in yellow). 
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  Targeting signal prediction probabilities 

 Transcript ID Mitoprot II TargetP Predotar MitoFates 

Cyclidium porcatum c4008_g2_i1 0.9136 0.513 0.5 0.401 

c4008_g1_i1 0.9883 0.771 0.47 0.657 

      
Metopus contortus c10068_g1_i1 0.9512 0.468 0.88 0.758 

c10161_g1_i1 0.9701 0.759 0.8 0.984 

      
Metopus es c8491_g1_i1 0.9945 0.572 0.88 0.98 

c16173_g1_i1 0.9567 0.635 0.91 0.962 

c10311_g1_i1 0.7631 0.59 0.62 0.849 

      
Metopus striatus c8165_g1_i1 0.999 0.91 0.89 0.983 

c9476_g1_i1 0.733 0.789 0.53 0.947 

c9476_g2_i1 0.9965 0.729 0.92 0.956 

      

Trimyema sp. c8419_g1_i1 0.8815 0.472 0.52 0.595 

      
Nyctotherus ovalis c14134_g1_i1 0.9937 0.73 0.91 0.988 

c14134_g1_i2 0.9952 0.73 0.91 0.987 

c14134_g2_i1 0.953 0.575 0.93 0.871 

      

Metopus contortus 9793_g1_i1 
N-terminus missing   

Plagiopyla frontata c6085_g1_i1   
Table 4.2. Results of N-terminal targeting signal prediction for FeFe-hydrogenase amino 

acid sequences obtained from ciliates in the present study. The results from the programs 

Mitoprot II (Claros and Vincens, 1996), TargetP (Emanuelsson et al., 2007), Predotar (Small 

et al., 2004) and MitoFates (Fukasawa et al., 2015) are shown as probability values. Numbers 

highlighted in bold indicate a probabilities greater than 0.5 and transcripts highlighted in 

yellow are predicted as having N-terminal targeting signals based on the majority prediction 

of the prediction programs. 

 

  Targeting signal prediction probabilities 

 Transcript ID 
Mitoprot 
II TargetP Predotar MitoFates 

Cyclidium porcatum c15969_g1_i1 0.8213 0.346 0.32 0.049 

 c3950_g1_i1 0.3049 0.417 0.86 0.559 

  c4339_g1_i1 0.2037 0.366 0.26 0.374 

  c4345_g2_i1 0.925 0.528 0.56 0.688 

      

Cyclidium porcatum c1688_g1_i1 N-terminus missing   
Table 4.3. Results of N-terminal targeting signal prediction for pyruvate: ferredoxin 

oxidoreductase (PFO) / pyruvate: NADP+ oxidoreductase (PNO) amino acid sequences 

obtained from Cyclidium porcatum in the present study. The results from the programs 

Mitoprot II (Claros and Vincens, 1996), TargetP (Emanuelsson et al., 2007), Predotar (Small 

et al., 2004) and MitoFates (Fukasawa et al., 2015) are shown as probability values. Numbers 

highlighted in bold indicate a probabilities greater than 0.5 and transcripts highlighted in 

yellow are predicted as having N-terminal targeting signals based on the majority prediction 

of the prediction programs. 
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Figure 4.4. a. Sequence alignment of the N-terminus of FeFe-hydrogenases from Cyclidium porcatum, Metopus contortus, Metopus es, Metopus 

striatus, Trimyema sp. and Nyctotherus ovalis. The N-terminus (red) and beginning of the [2Fe-2S] cluster-binding domain (yellow) are 

highlighted. b. PFO/PNO N-termini from Cyclidium porcatum. The N-terminus (red), beginning of the PFO domain (yellow) are highlighted. a & b. 

Sequences that were predicted as having an N-terminal mitochondrial-like targeting signal are represented by ‘✱’ . Differences in the first eight 

amino acids that are unique to sequences which were not predicted as having N-terminal targeting signals are highlighted in pink. 

Mitochondrial processing peptidase cleavage sites as predicted by Mitoprot II (blue) and TargetP (green) are highlighted and where absent 

indicates that the program was unable to make a prediction. Site conservation between sequences is represented in grey-scale shading, with 

the most conserved amino acid shaded black if it is well conserved, or white if there is no conservation between sequences.
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4.2.4 Phylogenetic analysis of FeFe-hydrogenases from anaerobic ciliates 

 

The FeFe-hydrogenases obtained from Nyctotherus ovalis, Metopus contortus, 

Metopus es, Metopus striatus, Cyclidium porcatum, Plagiopyla frontata and 

Trimyema sp. all have a domain structure that is similar to the FeFe-hydrogenases 

that were detected from Nyctotherus ovalis previously (Akhmanova et al., 1998; 

Boxma et al., 2007) (Figure 4.1). Each has the conserved H-cluster domain, with 

one [2Fe-2S] and three [4Fe-4S] cluster binding domains at the N-terminus, and a 

NuoE and a NuoF domain at the C-terminus. To investigate the relationships 

between FeFe-hydrogenase enzymes an amino acid sequence alignment was 

constructed of the conserved regions of the H-cluster domain, including the two 

well conserved [4Fe-4S] cluster binding domains (Figure 4.1). A phylogeny was 

then inferred from this alignment using the LG+C60 model (Quang and Gascuel, 

2008; Quang et al., 2008), which was chosen as the best fitting model for each of 

these datasets by IQ-Tree (Figure 4.5). 

This analysis resolved the ciliate FeFe-hydrogenase sequences as being 

monophyletic (100% bootstrap support), forming a sister group to a sequence from 

the beta-proteobacterium Sutterella wadworthensis (90% bootstrap support). 

Nyctotherus ovalis sequences from other studies (Akhmanova et al., 1998; Boxma 

et al., 2007) also grouped with the Nyctotherus ovalis sequences from the present 

study. The branching pattern of sequences within the ciliate clade is similar to the 

species tree of these organisms, inferred by 18S rRNA gene sequences (Figure 

3.4, Section 3.3.3). This is consistent with a single acquisiton of 

FeFe-hydrogenases in the common ancestor of these species. There also 

appears to have been a number of duplications of this enzyme in lineages of some 

ciliate species, such as Cyclidium porcatum, and Nycotherus ovalis, Metopus 

contortus, Metopus es and Metopus striatus also seem to contain several copies 

that are most closely related to one another (bootstrap support 100%). Most of the 

other eukaryotic sequences included in the alignment form a single clade (79% 

bootstrap support) that does not appear to be closely related to the clade of ciliate 

sequences, and this is similar to what other studies have found previously (Horner 

et al., 2000; Embley et al., 2003). Neither of these eukaryote clades group with 

any sequences from alpha-proteobacteria, which suggests that there is no 

evidence that FeFe-hydrogenases in these two clades were acquired from the 
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mitochondrial endosymbiont despite recent claims that they were (Esposti et al., 

2016). A third eukaryotic clade contains sequences from Paratrimastix pyriformis 

and Monocercomonoides sp. (98% bootstrap support), which cluster with a 

sequence from the alpha-proteobacterium Azospirillum sp. on a long branch 

(100% bootstrap support). 

The remaining alpha-proteobacteria sequences cluster with sequences 

from other bacterial groups with high support (91-100% bootstrap support) but are 

not monophyletic, suggesting lateral gene transfer has affected the relationships 

between FeFe-hydrogenases from this bacterial lineage and others. Lateral gene 

transfer is generally accepted to occur frequently in Bacteria (Ochman et al., 2000) 

and therefore the gene content of modern-day alpha-proteobacteria is likely to be 

different to that of the mitochondrial endosymbiont (Martin, 1999). This means that 

if one of the eukaryote clades in the present analysis had acquired FeFe-

hydrogenase via the mitochondrial endosymbiont then this clade would not 

necessarilly group with alpha-proteobacteria. The position of eukaryote sequences 

in tree topologies in relation to alpha-proteobacteria sequences therefore is less 

important in analyses such as this one and what is more significant is that 

eukaryote sequences do not form a single clade and this suggests that they were 

acquired on more than one occasion from Bacteria in multiple lineages. Therefore 

this analysis has provided no support for an alpha-proteobacterial origin of the 

FeFe-hydrogenases found in eukaryotes. It is difficult to reject the possiblity that 

an FeFe-hydrogenase was present on the genome of the mitochondrial 

endosymbiont but there is no evidence to suggest it was. 
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Figure 4.5. Phylogeny of the conserved region of FeFe-hydrogenases sampled from 

Bacteria and eukaryotes, inferred from an alignment of 464 amino acid sites using the 

model LG+C60 (Quang and Gascuel, 2008; Quang et al., 2008). Support values were 

obtained using ultrafast bootstrap (Minh et al., 2013) in the program IQ-TREE (Nguyen et al., 

2015). Eukaryotes are highlighted in green, alpha-proteobacteria are highlighted in blue and 

sequences obtained from Ciliates in the present study are highlighted in yellow. Scale bar 

represents estimated number of substitutions per site. 
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4.2.5 Phylogenetic inference of the NuoE and NuoF domains of FeFe-hydrogenases 

from anaerobic ciliates 

 

Blastp searches using the sequences of the NuoE and NuoF C-terminal domains 

of the FeFe-hydrogenases from Nyctotherus ovalis, Metopus contortus, Metopus 

es, Metopus striatus, Cyclidium porcatum, Plagiopyla frontata and Trimyema sp. 

as queries suggested that these domains might have a different evolutionary 

history to the conserved H-cluster of the FeFe-hydrogenase enzyme to which they 

are fused. Therefore the relationships of these domains with homolgoues from 

bacteria and eukaryotes were investigated by inferring phylogenies using the 

LG+C60 model (Quang and Gascuel, 2008; Quang et al., 2008) (Figures 4.6 and 

4.7). FeFe-hydrogenase sequences were included in this analysis that were 

recently discovered from alpha-proteobacteria and from which it was inferred 

previously that FeFe-hydrogenases in eukaryotes have an alpha-proteobacterial 

ancestry (Esposti et al., 2016). 

In the NuoE analysis (Figure 4.6), the FeFe-hydrogenase NuoE domains 

sequenced in the present study from Nyctotherus ovalis, Metopus contortus, 

Metopus es, Metopus striatus, Cyclidium porcatum, Plagiopyla frontata and 

Trimyema sp. formed a clade with other Nyctotherus ovalis FeFe-hydrogenase 

NuoE domain sequences in other studies (Boxma et al., 2005; Boxma et al., 2007) 

(100% bootstrap support). This clade grouped with NuoE sequences from various 

bacterial species to the exclusion of any sequences of eukaryote 24 kDa subunits 

of ETC Complex I. By contrast 24 kDa subunits of ETC Complex I from 

Nyctotherus ovalis, Metopus es, Metopus contortus and Metopus striatus formed a 

clade with 24 kDa subunits of ETC Complex I from other ciliates (98% bootstrap 

support) and this ciliate clade emerged from within a larger clade of eukaryote 

24 kDa subunits of ETC Complex I (72% bootstrap support). The clade of 

eukaryotic 24 kDa subunits of ETC Complex I emerged from within a clade of 

NuoE sequences from alpha-proteobacteria (100% bootstrap support), consistent 

with ancestry from the mitochondrial endosymbiont. This suggests that the NuoE 

domains of ciliate FeFe-hydrogenases have a different origin from the 24 kDa 

subunits of ETC Complex I. 
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The NuoF analysis (Figure 4.7) shows a similar pattern to the NuoE 

analysis. The FeFe-hydrogenase NuoF domains sequenced in the present study 

from Nyctotherus ovalis, Metopus contortus, Metopus es, Metopus striatus, 

Cyclidium porcatum, Plagiopyla frontata and Trimyema sp. formed a clade with 

other Nyctotherus ovalis FeFe-hydrogenase NuoF domain sequences from other 

studies (Boxma et al., 2005; Boxma et al., 2007) (100% bootstrap support). This 

clade of ciliate FeFe-hydrogenase NuoF domains grouped with a clade of 

sequences from species of Bacteroidetes (100% bootstrap support). By contrast 

the 51 kDa subunits of ETC Complex I sequenced in the present study from 

Nyctotherus ovalis, Metopus contortus, Metopus es, Metopus striatus and 

Cyclidium porcatum form a clade with other ciliate species (100% bootstrap 

support) which forms a larger clade with the 51 kDa subunits of ETC Complex I 

sequences from other eukaryotes (100% bootstrap support). This clade emerges 

from within a group of NuoF sequences from alpha-proteobacteria (51% bootstrap 

support). 

The main finding of these analyses is that the C-terminal NuoE and NuoF 

domains of ciliate FeFe-hydrogenase enzymes appear to be distant homologues 

of the 24 kDa and 51 kDa subunits of ETC Complex I that are found in ciliates and 

other eukaryotes. Previously it has been claimed that these NuoE and NuoF 

domains of FeFe-hydrogenases from Nyctotherus ovalis were most similar to and 

assembled from the 24 kDa and 51 kDa subunits of Nyctotherus ovalis ETC 

Complex I, that had become fused to the C-terminus of the FeFe-hydrogenase H-

cluster (Akhmanova et al., 1998; Andersson and Kurland, 1999). It has been 

shown previously by Horner et al. (2000) that this is not the case however, but 

rather the NuoE and NuoF domains of ciliate FeFe-hydrogenases appear to be 

more closely related to NuoE and NuoF proteins found in Bacteria. The results of 

the current study confirm this conclusion and in addition show that the NuoE and 

NuoF domains of ciliate FeFe-hydrogenases are distant homologues of bona fide 

24 kDa and 51 kDa subunits of ciliate ETC Complex I. 
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Figure 4.6. Phylogenetic inference of the NuoE domain of ciliate FeFe-hydrogenase 

enzymes, bacterial NuoE and eukaryotic 24 kDa subunits of ETC Complex I, inferred from 

an alignment of 124 amino acid sites using the model LG+C60 (Quang and Gascuel, 2008; 

Quang et al., 2008). Support values were obtained using ultrafast bootstrap (Minh et al., 

2013) in the program IQ-TREE (Nguyen et al., 2015). Eukaryotes are highlighted in green, 

alpha-proteobacteria are highlighted in blue and the sequences obtained from Ciliates in 

the present study are highlighted in yellow. Scale bar represents estimated number of 

substitutions per site. 
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Figure 4.7. Phylogenetic inference of the NuoF domain of ciliate FeFe-hydrogenase 

enzymes, bacterial NuoF and eukaryotic 51 kDa subunits of ETC Complex I, inferred from an 

alignment of 352 amino acid sites using the model LG+C60 (Quang and Gascuel, 2008; 

Quang et al., 2008). Support values were obtained using ultrafast bootstrap (Minh et al., 

2013) in the program IQ-TREE (Nguyen et al., 2015). Eukaryotes are highlighted in green, 

alpha-proteobacteria are highlighted in blue and the sequences obtained from Ciliates in 

the present study are highlighted in yellow. Scale bar represents estimated number of 

substitutions per site. 
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4.2.6 Phylogenetic analysis of pyruvate: ferredoxin oxidoreductase from Cyclidium 

porcatum 

 

The relationships between the PFO and PNO enzymes sequenced in the present 

study from Cyclidium porcatum and homologues from other eukaryotes and 

bacteria were investigated by phylogenetic inference from an alignment of amino 

acid sequences using the LG+C60 model (Quang and Gascuel, 2008; Quang et 

al., 2008) (figure 4.8). This recovered all of the PFO and PNO sequences obtained 

from Cyclidium porcatum in the present study as a single clade (100% bootstrap 

support) suggesting that these genes have arisen through multiple duplications 

after a single origin in this lineage. The Cyclidium porcatum clade did not group 

with sequences from other alveolates in the phylogeny, including Cryptosporidium 

parvum and Perkinsus marinus. 

The Cyclidium porcatum sequences did form part of a larger group which 

contained all of the eukaryotic PFO and PNO sequences (86% bootstrap support). 

Although this major PNO clade is not well supported, it is consistent with the 

hypothesis that the fusion between PFO and a NADPH-cytochrome p450 

reductase, which formed PNO happened on just one occasion as has been 

suggested by previous studies (Rotte et al., 2001). The PNO clade emerges from 

within the major eukaryote PFO clade, which is separated from the major bacterial 

PFO clade by a branch with just 25% bootstrap support. This branch however 

represents the eukaryotic lineage in which the PNO fusion event is likely to have 

occurred and since PNO has only been reported from eukaryotes (Rotte et al., 

2001; Nývltová et al., 2015; Gawryluk et al., 2016), this is consistent with this 

fusion protein being a eukaryotic invention. The sequences in the major eukaryote 

PFO clade do not have any significant sequence similarity to the NADPH-

cytochrome p450 reductase domain of the PNO enzymes and hence they appear 

to lack the fusion and have diverged before the PNO fusion event. 

Branching from within the major eukaryote PNO clade there are a total of 

four PFO sequences from Thalassiosira pseudonana, Mastigamoeba balamuthi, 

Entamoeba histolytica and Cyclidium porcatum. To investigate whether these 

sequences were truncated PNO sequences, each of their coding sequences were 

analysed and identified as containing a stop codon, the position of which 

corresponded to the end of the PFO C-terminus based on multiple sequence 
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alignments. The PFO sequence from Thalassiosira pseudonana within the PNO 

clade is deep-branching and not well supported (43% bootstrap support) and 

because of this it is possible that this sequence may actually branch within the 

major eukaryote PFO clade, and could have diverged before the PNO fusion 

event. However, the branches leading to the PFO sequences from Mastigamoeba 

balamuthi, Entamoeba histolytica and Cyclidium porcatum within the PNO clade 

have much better support (96%, 99% and 97% bootstrap supports, respectively). 

The most likely explaination for the presence of these PFO enzymes in the PNO 

clade is that these enzymes have undergone a secondary loss of the 

NADPH-cytochrome p450 reductase domains and in doing so have reverted back 

to an ancestral domain structure similar to that of the PFO enzymes in the major 

eukaryote PFO domain. It could be envisaged that such a PNO to PFO-reversion 

is more likely to occur in an organism that has multiple copies of genes encoding 

PNO. This would allow such an organism to retain the enzymatic abilities of PNO 

encoded by one of the gene copies, using NADP+ as an electron acceptor for 

pyruvate oxidation (Inui et al., 1987), thereby not suffering any selective costs that 

would be associated with its loss. Then, losing the NADPH-cytochrome p450 

reductase domain from another gene copy could be of selective benefit if the 

resulting protein could function in the same way as an ancestral PFO, thereby 

expanding the repertoir of substrates that can used as an electron sink to include 

ferredoxin (Uyeda and Rabinowitz, 1971). Evidence in this analysis from 

Mastigamoeba balamuthi and Cyclidium porcatum support this, since they both 

possess at least one copy of PNO, as well as what appear to be reverted PFO. 

Emerging from within the major bacterial PFO clade are two smaller 

eukaryote clades, one of which contains just a single sequence from Paratrimastix 

pyriformis (92% bootstrap support). The second of these clades contains 

sequences from Beauveria bassiana and Trichuris trichiura (100% bootstrap 

support) and emerges from within a bacterial clade that contains five sequences 

from alpha-proteobacteria species, although they are separated by a small 

number of branches leading to other bacterial sequences. The sequences in the 

Paratrimastix pyriformis PFO clade and the major eukaryote PFO clade appear to 

be distantly related to the sequences from alpha-proteobacteria and this therefore 

suggests that PFO enzymes were acquired in eukaryotes by lateral gene transfer 

from Bacteria on more than one occassion. Early phylogenetic studies of PFO 
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suggested that this enzyme is monophyletic in eukaryotes but found no support 

that they were acquired via the mitochondria endosymbiont since they did not 

group with PFO from alpha-proteobacteria (Horner et al., 1999). The present study 

also finds no support for an alpha-proteobacterial ancestry of eukaryote PFO but 

due to expanded sampling it appears that PFO in eukaryotes may not be 

monophyletic. This agrees with a recent study which suggested that eukaryote 

PFO sequences may resolve as multiple clades, although monophyly of eukaryote 

PFO was unable to be rejected (Hug et al., 2010). 

The relationships between sequences that diverge within the major 

eukaryotic PFO and PNO clades are not consistent with accepted relationships 

between the species from which they were identified (Hampl et al., 2009; Burki, 

2014), although many of the deeper branches are weakly supported. For example 

the strongly supported sister group relationship between the PNO sequences from 

Cyclidium porcatum and the opisthokonts Lingula anatina, Priapulus caudatus and 

Capitella teleta (100% bootstrap support), is not reflected by a close relationship 

between alveolates and opisthokonts (Burki, 2014), suggesting that lateral gene 

transfer has had a role in the origin of PFO/PNO in these clades. In contrast to 

this, the clade consisting of sequences from chlorophyte species, Monoraphidium 

neglectum, Chlorella variabilis, Volvox carteri, Gonium pectorale and 

Chlamydomonas reinhardtii is well supported (100% bootstrap support) and this is 

suggestive of PFO being acquired in the common ancestor of these species and 

inherited vertically. This can also be observed in the PNO clade that consists of 

the amoebezoa Mastigamoeba balamuthi and Entamoeba histolytica too, 

suggesting a common ancestry of these sequences. Together these patterns 

provide evidence for a lateral mode of transfer for genes encoding PFO and PNO 

in some eukaryote lineages. Further evidence for this is provided by the two PFO 

and one PNO sequences from Mastigamoeba balamuthi that were included in this 

phylogenetic analysis. The relationships between these three sequences and 

those from other species suggest that one of them evolved before the PNO fusion 

event, whereas other two seem to have evolved after it. If this is the case then it is 

most likely that at least one of these sequences was acquired by Mastigamoeba 

balamuthi, or one of its ancestors, by lateral gene transfer. This would be true for 

any eukaryote species that possesses an ancestral-type PFO, diverging before 

the PNO fusion event, as well as a PNO or PFO that diverged after the PNO 
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fusion event. Therefore the PNO fusion event can act as a marker-point in 

identifying some lateral gene transfers in the evolution of these enzymes. 

Other evidence for lateral gene transfer of these enzymes can be observed 

from the PNO sequences from the excavates Euglena gracilis and Peranema 

trichophorum, which together form a clade (100% bootstrap support) suggesting 

that PNO has been acquired once by the euglenozoa lineage. This clade however, 

is not closely related to the PFO sequences from Giardia, Trichomonas vaginalis, 

and Spironucleus, which are also excavates. By contrast, if these enzymes had 

evolved by vertical inheritence in the excavates then all excavate species would 

be expected to form a single clade. 
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Figure 4.8. Phylogeny of PFO and the PFO domain of PNO enzymes (without the NADPH-

cytochrome p450 domain), sampled from Bacteria and eukaryotes, inferred from an 

alignment of 901 amino acid sites using the model LG+C60 (Quang and Gascuel, 2008; 

Quang et al., 2008). Support values were obtained using ultrafast bootstrap (Minh et al., 

2013) in the program IQ-TREE (Nguyen et al., 2015). Eukaryote PFO sequences are 

highlighted in green, Eukaryote PNO sequences are highlighted in red, alpha-proteobacteria 

are highlighted in blue and sequences obtained from Cyclidium porcatum in the present 

study are highlighted in yellow. The branch on which the PNO fusion event is likely to have 

occurred is shown and PFO sequences that are thought to have evolved after this event by 

loss of NADPH-cytochrome p450 reductase domains are highlighted (★ PFO). Scale bar 

represents estimated number of substitutions per site. 
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4.3 Discussion 

 

This study has expanded the sampling of genes encoding key anaerobic 

metabolism enzymes from anaerobic ciliates and shown that they have a codon 

usage that is typical of other genes that are encoded by the ciliate genomes. 

FeFe-hydrogenase sequences that contain N-terminal targeting signals were 

sequenced from Nyctotherus ovalis, Metopus contortus, Metopus es, Metopus 

striatus, Cyclidium porcatum, Plagiopyla frontata and Trimyema sp. These 

sequences appear to share a common domain structure not found in other 

eukaryotes and are monophyletic in our analyses. The ciliate sequences do not 

group with the FeFe-hydrogenases of other eukaryotes, in agreement with findings 

from previous studies (Horner et al., 2000; Embley et al., 2003). We found no 

evidence that ciliate FeFe-hydrogenases originated from alpha-proteobacteria. 

This supports a more recent acquisition of FeFe-hydrogenase enzymes in ciliates 

from Bacteria by lateral gene transfer rather than them having been retained in the 

ancestors of ciliates since the mitochondrial endosymbiosis. The C-terminal NuoE 

and NuoF domains of the FeFe-hydrogenases obtained from these ciliates are 

closely related to homologues in Bacteria but are only distantly related to 

homologues from alpha-proteobacteria and the 24 kDa and 51 kDa subunits of 

ETC Complex I found in eukaryotes, including those from ciliates. 

PFO and PNO sequences were also sequenced and analysed from 

Cyclidium porcatum and they appear to be monophyletic, indicating that they have 

evolved by gene duplications in this lineage. An N-terminal targeting signal could 

only be predicted for one PNO homologue from Cyclidium porcatum and appeared 

to be absent from others, suggesting that PNO may function in the cytosol as well 

as the hydrogenosomes of this species. Furthermore, the Cyclidium porcatum 

PFO appears to have evolved from a PNO by loss of the NADPH-cytochrome 

p450 reductase domain, a processes that appears to have occurred in other 

eukaryotes but since the N-terminus of this PFO is truncated it is unclear whether 

it is located to the cytosol or hydrogenosomes of this species. The PFO/PNO 

sequences from Cyclidium porcatum do not appear to be closely related to 

sequences from other alveolates, including Cryptosporidium parvum and 

Perkinsus marinus, and instead cluster strongly with opisthokonts, Lingula anatina, 

Capitella teleta and Priapulus caudatus, suggesting that this enzyme was acquired 
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by lateral gene transfer in the ancestor of Cyclidium porcatum and possibly from 

an opisthokont. 

Recently a number of FeFe-hydrogenase sequences were identified from 

several alpha-proteobacteria species and the discovery of these has been used to 

suggest an alpha-proteobacteria ancestry of FeFe-hydrogenases in eukaryotes 

(Esposti et al., 2016). This was used to infer that FeFe-hydrogenases were 

acquired once in eukaryotes, from the alpha-proteobacterium mitochondrial 

endosymbiont and then underwent differential loss in various lineages (Esposti et 

al., 2016). This interpretation would therefore be consistent with the Hydrogen 

Hypothesis (Martin and Müller, 1998). The relevant sequences were included in 

the analyses in the present study, however in contrast to Esposti et al. (2016) no 

evidence was found to suggest that they are the sister group of eukaryotes. 

Rather, since eukaryotes resolved into three separate clades, this indicates that 

they have probably been acquired on at least three occasions in eukaryotes. 

Additionally, only one of these clades, which contains sequences from two 

excavates, Paratrimastix pyriformis and Monocercomonoides sp., branches with a 

sequence from an alpha-proteobacteria. Yet FeFe-hydrogenases from other 

excavates like Trichomonas vaginalis, do not group within this clade which is 

inconsistent with a single acquisition in this lineage. 

Previously it has been suggested that lateral gene transfer in bacteria has 

obscured our view of the ancestry of anaerobic metabolism enzymes from the 

mitochondrial endosymbiont (Martin, 1999; Rotte et al., 2001; Muller et al., 2012). 

This however does not explain why in phylogenies of anaerobic metabolic 

enzymes, such as FeFe-hydrogenases and PFO/PNO, sequences from 

eukaryotes are polyphyletic, as has been shown by the present study and others 

(Horner et al., 2000; Hug et al., 2010). A more parsimonious explanation for this is 

that some of these sequences were acquired from Bacteria by lateral gene 

transfer and therefore have evolved in eukaryotes by a combination of vertical and 

lateral inheritance. 

To explain the patchy distribution of anaerobic metabolism enzymes in 

eukaryotes in a manner that is consistent with the Hydrogen Hypothesis (Martin 

and Müller, 1998) it has been suggested that these enzymes were acquired from 

the mitochondrial endosymbiont and were then differentially lost in different 
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eukaryote lineages (Muller et al., 2012). Given the disagreement between the 

phylogenies of these enzymes and the species-phylogeny of the organisms they 

are found in, it seems possible that anaerobic metabolism enzymes are being 

inherited by eukaryote-to-eukaryote lateral gene transfer in some lineages, which 

could also explain their patchy distribution. In sum, the evidence appears to favour 

multiple acquisitions of anaerobic metabolic enzymes in eukaryotes from Bacteria, 

and a lateral mode of inheritance between eukaryotes, and this is ultimately 

inconsistent with the Hydrogen Hypothesis (Martin and Müller, 1998). 
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Chapter 5. General Discussion and conclusions 
 

Anaerobic ciliates from three separate clades, Armophorea, Oligohymenophorea 

and Plagiopylea, were isolated into culture and investigated using whole genome 

sequencing and transcriptomics to provide the first detailed molecular insights into 

the metabolism of their hydrogenosomes. Mitochondrial (hydrogenosome) 

genomes were detected and partially sequenced from Metopus contortus, 

Metopus es, Metopus striatus and Cyclidium porcatum, and a new 

hydrogenosome genome was sequenced from a new isolate of Nyctotherus ovalis 

that is distinct from those studied previously (Boxma et al., 2005; de Graaf et al., 

2011). These data provide strong evidence for a common mitochondrial ancestry 

of the hydrogenosomes in these particular ciliates. The hydrogenosomes of 

Plagiopyla frontata and Trimyema sp. appear to have lost their mitochondrial 

genomes but metabolic reconstructions for the hydrogenosomes from Plagiopyla 

frontata revealed that they have retained features of canonical mitochondria. 

These data provide strong evidence that ciliate hydrogenosomes have evolved 

from mitochondria on at least three separate occasions in the ciliate tree.  

The gene content of the hydrogenosome genome sequences from 

Nyctotherus ovalis, Metopus contortus, Metopus es and Metopus striatus is 

reduced compared to the mitochondrial genomes of aerobic ciliates. Thus, no 

genes were detected for components of F1F0 ATP synthase or ETC complexes III 

and IV for any species, but genes were detected for components of ETC Complex 

I, some mitochondrial ribosomal proteins and rRNA. The retention of the latter 

genes, which are needed for the biogenesis of mitochondrial ribosomes, provides 

direct evidence for a capacity for protein synthesis inside the organelles. The ETC 

Complex I subunits encoded by the hydrogenosome genomes of these species 

are predicted to form part of the P-module, the inner membrane-embedded arm of 

the complex that transports protons across the inner mitochondrial membrane 

(Brandt, 2006). This suggests that a transmembrane potential can be maintained 

across the inner membrane of these hydrogenosomes. In canonical mitochondria 

the membrane potential is needed for ATP production using F1F0 ATP synthase, 

which these ciliates appear to have lost, but also for the import of nuclear encoded 

proteins into the organelle. It appears likely that this requirement provides the 
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selective pressure for the retention of genes for Complex I on the hydrogenosome 

genomes of these ciliates. 

The reconstructed hydrogenosome metabolism of Metopus contortus, 

where we recovered an almost complete organelle genome, is similar to the 

metabolism previously inferred for the hydrogenosomes of its close relative 

Nyctotherus ovalis (de Graaf et al., 2011). Both ciliates have most of the same 

genes for ETC Complex I, ETC Complex II and the cytochrome c1 subunit of ETC 

Complex III and both lack genes for ETC Complex IV and F1F0 ATP synthase. 

Nyctotherus ovalis and Metopus contortus also retained genes needed for 

fumarate reduction and ATP production by substrate-level phosphorylation. Both 

have retained nuclear encoded genes for all four subunits of PDH, suggesting that 

they can metabolise pyruvate in a similar way to aerobic ciliates such as 

Tetrahymena thermophila (Smith et al., 2007). More genes for the essential 

mitochondrial Fe-S cluster biogenesis pathway were identified from Metopus 

contortus than were identified previously from Nyctotherus ovalis, as well as more 

genes for the mitochondrial import complexes and for the mitochondrial carrier 

family (MCF) proteins that mediate transport of substrates including ATP, into and 

out of mitochondria. These differences may be due in part, for example to explain 

the missing essential components of the Fe-S cluster biogenesis pathway, to the 

incomplete nature of the sequence data for both species. 

Despite generating less nuclear and organelle genome data for Cyclidium 

porcatum, the sequences we detected are consistent with it retaining the most 

complete ETC. Thus, genes were detected from this species for some of the 

proteins from mitochondrial ETC Complexes I, II, III and IV and the F1F0 ATP 

synthase. Cyclidium porcatum was the only anaerobic ciliate for which any 

components of the F1F0 ATP synthase was identified, and it is likely that Cyclidium 

porcatum can use this to make ATP. We also detected some of the genes that 

would be required for ATP production by substrate-level phosphorylation. In 

mitochondria the production of ATP is powered by a proton gradient across the 

inner membrane, generated by the transfer of electrons through proton-pumping 

components of the ETC (Mitchell, 1961). The proton pumping ETC complex that 

seems to be most complete in Cyclidium porcatum is ETC Complex I and, as 

discussed above, this could create a transmembrane proton gradient for use by an 
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F1F0 ATP synthase. Cyclidium porcatum also has some of the genes required for 

the reduction of fumarate and an AOX, which could both potentially act as terminal 

electron acceptors for its partial ETC, under favourable conditions. An almost 

complete set of genes were identified from Cyclidium porcatum for the 

mitochondrial Fe-S cluster biogenesis pathway and the largest number (19) of 

MCF genes among the studied species. The relative abundance of MCF genes, 

which generally have different transport properties from each other, is consistent 

with the hypothesis that the hydrogenosomes of Cyclidium porcatum are the least 

reduced of the hydrogenosomes studied here.  

Relatively few genes for mitochondrial proteins were detected from 

Plagiopyla frontata, although it should be noted that the transcriptome data from 

this species was also the least abundant. Nevertheless the data suggests that 

there is no ETC present in this species, since not a single subunit of any of the 

ETC complexes were found, and this is consistent with our inability to detect any 

evidence for the retention of a mitochondrial (hydrogenosome) genome. 

Plagiopyla frontata has retained some of the genes required for substrate-level 

phosphorylation, which it may use to make ATP. Consistent with this, one of the 

small number of MCF genes detected was an ATP/ADP translocase. Plagiopyla 

frontata has genes for PDH, as do the anaerobic ciliates Metopus contortus and 

Nyctotherus ovalis, which it could use to oxidise pyruvate produced by the 

complete glycolysis pathway found in this species. An incomplete Fe-S cluster 

biogenesis pathway and failure to detect important components of the 

mitochondrial-type import machinery, including the outer and inner membrane 

translocases, are consistent with incomplete coverage of the proteome of this 

species. 

Cyclidium porcatum, Metopus contortus and Plagiopyla frontata have all 

retained components of the mitochondrial processing peptidase (MPP) complex, 

which in mitochondria cleaves N-terminal targeting signals from proteins targeted 

to the mitochondrial matrix (Ieva et al., 2013). This is consistent with the retention 

of other components of the mitochondrial import pathway. It is also consistent with 

the detection of N-terminal targeting signals on the FeFe-hydrogenases and other 

nuclear encoded proteins that must function inside the organelles if they are to 

make H2. It thus appears that the hydrogenosomes of these ciliates use similar 
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mechanisms as classical mitochondria to import proteins from the cytosol. The 

MCF proteins found in Cyclidium porcatum, Metopus contortus and Plagiopyla 

frontata suggests that the hydrogenosomes of these species can exchange a 

range of substrates with the cytosol, their diversity suggesting that there are still 

gaps to fill in our knowledge of hydrogenosome function. All three species have an 

ATP/ADP translocase that would be able to import or export ATP to or from the 

cytosol. 

The FeFe-hydrogenases detected from all of the ciliates have similar 

domain structures, each containing C-terminal NuoE and NuoF domains that are 

not of mitochondrial origin. This structure is so far unique among eukaryotic 

hydrogenases. These domains may enable the ciliate FeFe-hydrogenases to use 

NADH as a substrate for the reduction of protons to H2, as has been shown 

previously for the FeFe-hydrogenase of the bacterium Thermotoga maritima 

(Schut and Adams, 2009). In contrast to the other ciliates, which have retained 

PDH, Cyclidium porcatum has acquired PFO genes and it also has a predicted 

mitochondrial ferredoxin. In Trichomonas vaginalis PFO has been shown to 

reduce ferredoxin (Gorrell et al., 1984). Metopus contortus and Nyctotherus ovalis 

have retained the 24 kDa and 51 kDa subunits of ETC Complex I which were also 

shown to be able to reduce ferredoxin in Trichomonas vaginalis (Hrdy et al., 2004) 

and we detected mitochondrial ferredoxin for Metopus contortus and Cyclidium 

porcatum. Based upon these data it appears possible that the FeFe-hydrogenases 

of Cyclidium porcatum, Metopus contortus and Nyctotherus ovalis can all use 

reduced ferredoxin as a substrate for H2 production. The source of reducing power 

used for H2 production is less clear for Plagiopyla frontata because no genes for 

PFO or the 24 kDa and 51 kDa subunits of ETC complex I were detected for this 

species. 

The evolutionary origins of the FeFe-hydrogenases from Nyctotherus 

ovalis, Metopus contortus, Metopus es, Metopus striatus, Cyclidium porcatum, 

Plagiopyla frontata and Trimyema sp. and the PFO and PNO sequences from 

Cyclidium porcatum were investigated using phylogenetic trees. The individual 

domains of the FeFe-hydrogenases, namely the H-cluster, NuoE and NuoF 

domains, were analysed separately. The phylogeny of the H-cluster domain, which 

is well conserved in FeFe-hydrogenases from both Bacteria and Eukaryotes 
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recovered all the ciliate sequences as a monophyletic group. This clade was the 

sister group to a sequence from the beta-proteobacterium Sutterella 

wadsworthensis, suggesting a gene transfer from this group of bacteria to ciliates. 

Interestingly, the Sutterella wadsworthensis sequence does not contain the C-

terminal NuoE and NuoF domains found in the ciliate FeFe-hydrogenases. This 

suggests that the domains were added to the ciliate sequences in a single event 

postdating the split from Sutterella wadsworthensis, or that Sutterella 

wadsworthensis has lost them. Investigating the occurrence and structure of the 

hydrogenases of the close relatives of Sutterella wadsworthensis may help to 

resolve this. The observation that the ciliate FeFe-hydrogenases are monophyletic 

and robustly separated from the other eukaryote sequences strongly suggests that 

they were acquired through a single independent lateral gene transfer. Since there 

is no evidence that the topology of the ciliate FeFe-hydrogenase tree is 

incompatible with ciliate species relationships, it appears that acquisition was 

followed by vertical inheritance. These data provide no direct support for an origin 

of ciliate FeFe-hydrogenases from the mitochondrial endosymbiont as predicted 

by the Hydrogen Hypothesis (Martin and Müller, 1998). 

Phylogenetic analysis of the ciliate FeFe-hydrogenase NuoE and NuoF 

domains also recovered these sequences as monophyletic suggesting that this 

tripartite domain structure was present in their common ancestor. The NuoE and 

NuoF domains group with sequences from different Bacteria, so potentially have 

different origins, and they do not group with mitochondrial homologues. By 

contrast, the 24 kDa and 51 kDa subunits of ETC Complex I from the anaerobic 

ciliates did group with mitochondrial homologues from other eukaryotes. This 

clade emerges from within the alpha-proteobacteria, consistent with the genes for 

the 24 kDa and 51 kDa subunits of ETC Complex I being acquired from the 

mitochondrial endosymbiont. 

All of the PFO and PNO sequences from Cyclidium porcatum were 

recovered as a monophyletic group, consistent with gene duplication being the 

source of their diversity. The Cyclidium porcatum sequences seem to have been 

acquired by lateral gene transfer, possibly from an opisthokont. Consistent with 

this idea, the PFO and PNO sequences from Cyclidium porcatum are not closely 

related to those found in other alveolates, including Cryptosporidium parvum and 
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Perkinsus marinus, suggesting that they do not share a common origin. The 

Cyclidium porcatum PFO sequence seems to have evolved from a PNO by loss of 

the NADPH-cytochrome p450 reductase domain. Similar reversions appear to 

have occurred in other eukaryote species that contain a mixture of PFO and PNO 

sequences. 

The production of H2 by ciliate hydrogenosomes facilitates the growth of 

endosymbiotic methanogen Archaea, which were detected in all of the ciliates 

studied. The endosymbionts were identified from isolates of Metopus contortus, 

Nyctotherus ovalis and Trimyema sp. using a combination of sequencing and in 

situ probing. These data show that different types of methanogens can colonise 

anaerobic ciliates. Intriguingly, the endosymbiont sequences for Metopus 

contortus and Trimyema sp. were the same as those detected in the same species 

isolated from different locations over two decades ago. This suggests a degree of 

stability in the associations over this time period. By contrast, comparison of the 

phylogenies for the endosymbionts and host ciliates provided no compelling 

evidence for long-term co-speciation between endosymbionts and hosts. 

The present study has investigated the molecular basis of hydrogenosome 

metabolism in anaerobic ciliates. Future work would benefit from more complete 

sequence data for the studied ciliates, including whole genome sequences, to 

provide a more complete picture of the metabolic processes in these organisms. 

Due to the relative ease at which single-cell transcriptomes can now be produced 

for anaerobic ciliates and other single-celled eukaryotes, as is shown by the data 

in this thesis, it is possible to gain extensive molecular data without the need for 

culturing, which in many cases can be labour intensive and time consuming. It is 

therefore likely that such methods will be used in the future, if not already, to 

facilitate large-scale sampling efforts and production of transcriptomes for a varied 

and taxonomically diverse of single-celled eukaryotes. This would provide a wealth 

of knowledge for better understanding the relationships between the main 

eukaryote phyla and refine our current placement for the root of the eukaryote 

tree. With regards to anaerobic ciliates, improved large-scale sampling would 

likely help to resolve the origin of FeFe-hydrogenase in this group of organisms 

and additional experimental work is needed to localise proteins and to further 

characterise the organelle proteomes. Such data could have significant 
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implications for our understanding of eukaryote evolution and may help to revise 

our ideas of how they first evolved. 

It is already clear from the present data that ciliate hydrogenosomes have 

evolved convergently in different anaerobic clades from aerobic mitochondria, and 

that they represent different stages of reductive evolution. This thesis has also 

provided some strong evidence that lateral gene transfer has played an important 

role in the evolution of ciliate hydrogenosomes, particularly with regards to their 

FeFe-hydrogenases and the PFO found in Cyclidium porcatum. This is seemingly 

not unusual for eukaryotes adapting to low oxygen environments (Nývltová et al., 

2015; Eme et al., 2017), and provides further evidence against the opinions of 

some researchers that believe that lateral gene transfer has not had a significant 

impact on the evolution of eukaryotes (Ku and Martin, 2016). Understanding, the 

apparently contradictory data on the stability of the associations between 

endosymbiotic methanogens and their ciliate hosts would benefit from sampling of 

a greater number of such consortia, particularly among the Armophorea, which 

contains a large number of closely related and exclusively anaerobic genera 

(including Metopus and Nyctotherus), which also contain endosymbiotic 

methanogens, the species identities of which remain unknown for the vast majority 

of them. In particular, sequencing the genomes of endosymbiotic methanogens 

from diverse anaerobic ciliates, would facilitate comparisons both between them, 

as well as with other free-living methanogens. Such studies might reveal both 

generalised and lineage-specific adaptations to endosymbiotic lifestyles in 

methanogenic Archaea, which currently remain less studied than their 

endosymbiotic Bacteria counter-parts and otherwise seems to be a relatively rare 

trait in Archaea. 
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Appendices 
 

The data in the following appendices are made available on the CD provided 

with this thesis. 

Appendix A 

Annotated hydrogenosome genome contigs from Nyctotherus ovalis, Metopus 

contortus, Metopus es, Metopus striatus and Cyclidium porcatum in GenBank 

format, corresponding to Figures 3.9—3.13. 

 

Appendix B 

Tables of transcripts identified in metabolic reconstructions as genes functioning in 

the hydrogenosome metabolic pathways of Cyclidium porcatum, Metopus 

contortus and Plagiopyla frontata, summarised in Figures 3.16—3.18. 

These include raw transcript sequences, predicted coding sequences, translated 

protein sequences, probability values of predicted N-terminal targeting signals and 

codon adaptation index (CAI) scores, which correspond to ciliate CAI distributions 

in Figure 4.3. 

 

Appendix C 

Transcript and translated protein sequences of FeFe-hydrogenases, 

Pyruvate: ferredoxin oxidoreductase and Pyruvate: NADP+ oxidoreductases 

discussed in Chapter 4. 

 

Appendix D 

Codon usage tables that were calculated from the coding sequences of transcripts 

with best blast hits to ciliate genes. These tables were used to calculate the CAI 

scores that are plotted as distributions in Figure 4.3.  
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