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Abstract

The human gut harbours a vast diversity of microbial cells, collectively known as the gut microbiota,

that are crucial for human health and dysfunctional in many of the most prevalent chronic diseases.

Until recently culture dependent methods limited our ability to study the microbiota in depth in-

cluding the collective genomes of the microbiota, the microbiome. Advances in culture independent

metagenomic sequencing technologies have since provided new insights into the microbiome and

lead to a rapid expansion of data rich resources for microbiome research. These high throughput

sequencing methods and large datasets provide new opportunities for research with an emphasis on

bioinformatics analyses and a novel field for drug discovery through data mining.

In this thesis I explore a range of metagenomics analyses to extract insights from metagenomics

data and inform drug discovery in the microbiota. Firstly I survey the existing technologies and

data sources available for data mining therapeutic targets. Then I analyse 16S metagenomics data

combined with metabolite data from mice to investigate the treatment model of a proposed antibiotic

treatment targetting the microbiota. Then I investigate the occurence frequency and diversity of

proteases in metagenomics data in order to inform understanding of host-microbiota-diet interactions

through protein and peptide associated glycan degradation by the gut microbiota. Finally I develop a

system to facilitate the process of integrating metagenomics data for gene annotations.

One of the main challenges in leveraging the scale of data availability in microbiome research is

managing the data resources from microbiome studies. Through a series of analytical studies I used

metagenomics data to identify community trends, to demonstrate therapeutic interventions and to do

a wide scale screen for proteases that are central to human-microbiota interactions. These studies

articulated the requirement for a computational framework to integrate and access metagenomics

data in a reproducible way using a scalable data store. The thesis concludes explaining how data

integration in microbiome research is needed to provide the insights into metagenomics data that are

required for drug discovery.
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Chapter 1

Introduction

Studies of the human genome have lead to important advances in biomedical sciences and drug dis-

covery (Lander, 2011; Lander et al., 2001; Venter et al., 2001). However, it is becoming increasingly

apparent that determinants of our health are not solely controlled by our own genomes. Rather,

many disease pathologies involve the interplay between the human body, the external environment

and the complex communities of microorganisms residing on the mucosal surfaces of our respiratory

tract (Kiley, 2011), urogenital tract (Danielsson et al., 2011), gastro-intestinal tract (GIT) (Sekirov

et al., 2010) and skin (Grice & Segre, 2011).

This complement of microbial cells co-inhabiting any given individual, their microbiota, exceeds at

least ten-fold the number of human origin cells that make up that individual (Ley et al., 2006a; Sav-

age, 1977). Furthermore, the gene collective of this residing microbial community, their microbiome,

exceeds by at least 150 times the complement of unique genes present in their own human nuclear

genome (Qin et al., 2010). While knowledge of the health implications of many isolated bacterial,

viral and eukaryotic pathogens is well-established, the roles of these complex non-pathogenic mi-

crobial communities are a relatively recent development in our understanding of health and disease

pathologies.

Major public funding initiatives such as the American National Institute of Health (NIH) Human Mi-

crobiome Project (HMP), initiated in 2007 (Nelson et al., 2010), and the European Metagenomics of

the Human Intestinal Tract (MetaHIT) project, initiated in 2008 (Ehrlich & Consortium, 2011), have

invested heavily in the characterisation of microbiomes from thousands of individuals of different

ages, geographical, dietary and disease backgrounds. This is reflected in the growing number of pub-

lications using the terms ‘microbiota’ or ‘microbiome’ in the title or abstract, Figure 1.1, since the

technique for culture independent metagenomics sequencing was published in 1991 (Schmidt et al.,

1
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1991).
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Figure 1.1: Historical emergence of the terms ‘microbiome’ and ‘microbiota’ in the title and abstract
of publications. Figure generated using GoPubMed. Figure updated from Collison et al. (2012)

Together these technologies, investments and new insights have lead to an expansion of the data

available for microbiome research. However, there are currently significant challenges in maximising

the value of datasets to improve biological understanding and being able to use the data produced to

identify new drug discovery opportunities.

1.1 Drug discovery in the microbiota

Historically chronic and infectious diseases have been distinct and non-overlapping areas of drug dis-

covery and research development (Collison et al., 2012). The traditional translational development of

research in chronic disease has an established target space known as the druggable genome (Hopkins

& Groom, 2002). That is the accessible targets for small molecule drugs in the human cells. Over re-

cent decades the solution space for molecular targets in the druggable genome has started to become

saturated and the number of new molecular entities approved by the FDA has been declining (Feder-

sel, 2010; Research, 2014). Therefore the pharmaceutical industry is requiring more novelty in drug

discovery for chronic diseases. At the same time in-depth diagnostics are offering added value in the

pharmaceutical industry by predicting how a patient will respond to a treatment based on their habits

and physiological measurements increasing the opportunity for secondary treatments.

Rapidly emerging science in human-microbe interactions is opening the possibility for a new thera-

peutic paradigm where understanding of the microbiota contribution to the progression and pathology

of chronic diseases is opening treatment options that include anti-bacterial or anti-viral therapeutics,

http://www.gopubmed.org
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potentially extending the druggable solution space, Figure 1.2, and the treatment of side effects. This

is a paradigm that has also been proposed to work in both directions; viral, bacterial and parasitic

infections are treated via human host gene targets (Brown et al., 2011). The microbiota is part of a

complex pathology in many diseases and can affect many factors of health and disease, including the

efficacy of other treatments. Therefore the microbiota represents not only a new target space for dis-

ease treatment but also a likely target for coadministered drugs to alleviate side effects for treatments

and an important feature of personalised medicine (Angelakis et al., 2014).

Figure 1.2: Shows the traditional segmentation of research and drug discovery in chronic diseases
and infectious diseases and the potential cross over offering opportunities for novel drug discovery.
Figure adapted from Collison et al. (2012)

1.2 Metagenomics data analyses

Metagenomics developments have undoubtedly provided new insights into the microbiota but also

changed the challenges faced by researchers in this field. Particularly the scale and complexity of

sequence data from microbiome metagenomics studies puts more emphasis on the bioinformatics

analyses (Prakash & Taylor, 2012). A number of metagenomics annotation pipelines have been de-

veloped, mimicking genomic annotation pipelines, that complete the assembly and annotation of se-

quence reads typically allowing species and functions to be identified from existing databases (Meyer

et al., 2008). However, due to the high proportion of uncharacterised genes and the variability

in metagenomics samples there are major challenges in extracting low level insights from metage-

nomics data for translational studies in drug discovery.
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1.3 Aims and objectives

The link between human genotype and phenotype is a complex relationship. Genomics, transcrip-

tomics and proteomics can provide a detailed picture of internal human biology and metagenomics

can give a detailed snapshot of the microbiome. However, host-microbiota interactions that affect the

host phenotype are often not clear from standard annotation pipelines and isolated datasets (Viney,

2014). To gain insights into these critical host-microbiota interactions additional analyses are re-

quired to disect the data rich metagenomics resources.

1.3.1 Aim

Explore the biology of host-microbiota interactions through secondary bioinformatics

analyses to improve opportunities for new therapeutic strategies involving the micro-

biota.

1.3.2 Objectives

1. Evaluate the opportunities for drug discovery from existing microbiome analysis pipelines

2. Analyse the role of host-microbiome interactions in health, disease and pharmaceutical inter-

ventions

3. Provide computational tools to facilitate microbiome analyses and improve access to micro-

biome data for drug discovery

1.4 Thesis structure

• Chapter two, the background chapter, investigates computational tools and pipelines used in

metagenomics analyses to evaluate existing approaches to identify drug targets in the micro-

biome using sample datasets from existing studies.

• Chapter three documents the bioinformatics analyses of an experimental dataset provided by

GlaxoSmithKline PLC (GSK). A mouse model was used to test the efficacy of a micorbiota

targeted antibiotic intervention for type 2 diabetes. Analyses cover 16S metagenomics and

metabolite markers for physiological systems and the data show a significant improvements
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in the phenotype of the high dose Gram negative antibiotic treatment group and construct a

disease model involving the microbiota and a complementry treatment model.

• Chapter four is an exploratory study into the role of microbial proteases in protein and pep-

tide associated glycan degradation in the gut. In this chapter the protease complement of

the microbiome in healthy individuals is characterised and a group of novel genes of inter-

est are identified that contain putative CBM-protease pairs thought to be important in glycan

metabolism.

• Chapter five documents the development of a computational framework to enable effective data

integration and promote reproducible secondary analyses across integrative bioinformatics at

the scale of metagenomics studies.

• Chapter six concludes the thesis by evaluating the existing understanding of host-microbiota

interactions, the tools available to study host-microbiota interactions and the scope for transla-

tional studies that will develop new therapeutic strategies involving the microbiota.



Chapter 2

Background

2.1 The gut microbiota in health and disease

With over 200m2 of mucosal surface area and a nutrient rich environment, the GIT hosts the majority

of the human microbiota (Ley et al., 2006a; Whitman et al., 1998), Figure 2.1. Absorption in the

distal gut where the microbiota reside results in approximately 10% of the metabolites in the host

systemic blood flow being products of bacterial metabolism (Wikoff et al., 2009). Changes in gut

microbiota can therefore be linked with numerous GIT diseases and other systemic diseases (Sekirov

et al., 2010). The broad implications of GIT microbiota on human physiology combined with sample

accessibility, a large proportion of faecal material being microbial biomass (Sekirov et al., 2010;

O’Hara & Shanahan, 2006), has facilitated the exploration of the human GIT microbial ecosystem in

human health and disease.

In healthy individuals, changes in the GIT microbiota have been associated with host genetics (Spor

et al., 2011), aging (Biagi et al., 2010) and dietary patterns (Wu et al., 2011; Turnbaugh et al., 2009).

A cohort study involving 39 individuals from different cultures, geographical locations, races, as

well as disease patients, found that the GIT microbial communities of these individuals could be

segregated into three statistically robust clusters (Arumugam et al., 2011). These clusters, known as

enterotypes, were also found to be consistent across other larger cohort studies, including 85 Euro-

pean (Qin et al., 2010) and 154 American (Turnbaugh et al., 2009) individuals. Enterotypes were

identified using from latent variables of a Principal Coordinate analysis (PCoA) based on biodiver-

sity profile. The weighting of individual variables shows the clusters are mainly differentiated by

the relative abundances of three bacterial genera, Bacteroides, Prevotella (both of the phylum Bac-

teroidetes) and Ruminococcus (of the phylum Firmicute) (Arumugam et al., 2011). The stratified

6
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Figure 2.1: The image represents the microbiota on the human body with the depth of colour (trans-
parency percentage) approximately representing density of the microbiome in the corresponding
area. The information represents a comparison between the microbiome and the human genome,
including environmental factors that affect the respective genetic collection at the top, the size and
complexity of the genetic collection in the middle and the implications of each on disease at the
bottom. Figure adapted from Collison et al. (2012)

nature of the enterotype data indicates that the microbial ecology in each individual’s gut establishes

a stable and structured biodiversity that is independent of nationality, continent, sex, age or body

mass index.

Other studies suggest that long-term diet is important in shaping GIT microbial communities. Com-

parisons between children from Europe on a typical Western diet, high in animal protein and fat, with

children from Burkina Faso in Africa, on a low animal protein and high carbohydrate diet, found the

Bacteroides enterotype higher in Europeans while the Prevotella enterotype predominated in African

children (De Filippo et al., 2010). Another study also found that animal fat and high protein versus

carbohydrate rich diets correlated with the Bacteroides and Prevotella enterotypes, respectively (Wu

et al., 2011). In the same study, controlled feeding of 10 subjects with high fat, low fiber versus

low fat, high fiber diets produced detectable changes in their microbiome within 24 hours. However,

overall the enterotypes of individuals remained stable for the duration of the 10-day study, suggest-

ing that long-term rather than transient dietary trends determine the ecological structure of the gut

microbial communities.

Other factors such as environmental exposure also influence biodiversity and the gene content of

the GIT microbiota. Babies delivered naturally have microbial communities most similar to that of

the mother’s vagina while the microbiota from neonates born by Caesarean section closer resem-
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bles the mother’s skin bacteria (Dominguez-Bello et al., 2010). A fascinating case of lateral gene

transfer (LGT) from marine bacteria genomes to the human microbiome involved genes encoding

carbohydrate-active enzymes acting on marine algal polysaccharides being frequently detected in

the microbiome of Japanese individuals who have such seaweeds in their diets (Hehemann et al.,

2010). Further understanding of the microbiota variation across human populations, as well as the

environmental and genetic factors shaping it, will be important in designing future therapeutic strate-

gies.

One central aspect of the human-microbiota symbiosis is the dialogue between the microbiota and

the immune system (Hooper & Macpherson, 2010; Wells et al., 2011). The microbiota contributes

to the development of both the mucosal and systemic immune systems. It is now appreciated that

loss of homeostasis in the GIT immune system plays a central role in numerous disease conditions,

for example inflammatory bowel disease (IBD) (Sekirov et al., 2010; Abraham & Medzhitov, 2011;

Willing et al., 2010). Homeostasis of the mucosal immune system requires the development of both

tolerance to the residential microbiota and, at the same time, regulation to avoid overgrowth and inva-

sion of internal tissues. Both the microbiota and the innate and adaptive immune systems contribute

to the establishment of an optimal equilibrium whereas disturbances can lead to dysbiosis (Round &

Mazmanian, 2009) and disease states through the development of intestinal inflammation (Willing

et al., 2010; Abraham & Medzhitov, 2011). This is reflected on the host side by genetic predispo-

sitions to IBD, which point to the importance of the immune system and microbial sensing. For

example mutations in human genes NOD2, ATG16L1 and those encoding defensins are known pre-

dispositions to IBD (Willing et al., 2010; Abraham & Medzhitov, 2011).

The homeostasis of the GIT is also affected by the presence of eukaryotic parasites. Many para-

sitic protists, for example Entamoeba, Giardia and Blastocystis, and parasitic animals, for example

helminth worms, have specialised in colonising the human gut and affect the immune status of the

GIT. Parasitic protists may contribute to the disease state (Boorom, 2007). In the case of helminth

worms, the human GIT interactions can positively influence immune homeostasis (reflecting host-

parasite adaptations) by modulating the immune system towards an optimal anti-inflammatory sta-

tus (Elliott & Weinstock, 2009).

Dramatic changes over the last 50 years in antibiotic use, hygiene (especially the eradication of

helminth worms in most of the developed world) and diet (increase proportions of meat and animal

fat) are all potential contributing factors to disturb this balance established over millennia. The hy-

giene hypothesis suggests that the rapidly changing human lifestyle throughout the developed world

has resulted in predisposition to multiple currently prevalent diseases due to imbalances in immune-
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microbiota coupling (Elliott & Weinstock, 2009). A better understanding of the contribution of the

different partners in dysbiosis, and the cross-talk taking place between them, represents important

opportunities to develop new strategies to treat chronic diseases, such as IBD and asthma, that have

reached epidemic proportions in some populations (Elliott & Weinstock, 2009; Ley et al., 2006b).

While the natural variation of the human microbiota has yet to be fully determined, significant

changes in gut microbial communities have been associated with several diseases, including type II

diabetes (Burcelin et al., 2011), obesity (Ley et al., 2006b), fatty liver disease (Dumas et al., 2006), ir-

ritable bowel syndrome (IBS) (Saulnier et al., 2011) and inflammatory bowel diseases (IBD) (Frank

et al., 2011). Complementary to these associations based on trends in populations, obesity stud-

ies in animal models, including reciprocal transplants of faecal contents from obese to germ-free

mice, confirmed experimentally the role of the gut microbiota in controlling body weight and energy

homeostasis (Turnbaugh et al., 2006). Furthermore, in animal obesity models links between micro-

biota dysbiosis, low grade inflammation and diet induced type II diabetes have also been confirmed

experimentally (Cani & Delzenne, 2011). This combination of population based observations and

experimental modification of aspects of host-microbiota interactions can be very informative. Patient

cohorts receiving pharmaceutical interventions can also help in this approach.

In human patients with infective endocarditis, treatment with vancomycin has shown an increased

weight gain which is thought to be caused by dysbiosis due to colonisation of Lactobacillus species

that are intrinsically resistant to this antibiotic (Thuny et al., 2010). Clinically, antibiotic usage

has also been associated with increased incidence of Crohn’s disease and ulcerative colitis in both

adults (Shaw et al., 2011) and children (Hviid et al., 2011). The status of gut microbiome is in-

creasingly being studied in a wide variety of further clinical conditions such as post small bowel

transplantation (Hartman et al., 2009), colorectal cancers (Marchesi et al., 2011) and malnutrition-

immunity imbalances (Kau et al., 2011). Other areas of interest are the potential roles of the GIT mi-

crobiota in diseases of distal organs, including asthma (McLoughlin & Mills, 2011) and behavioural

disorders (Lyte, 2011). For these diseases and others, the GIT microbiota is an intriguing therapeutic

target because of its potential to dramatically expand the human druggable genome, presently esti-

mated to be around 20% of the human proteome sensu stricto (Hopkins & Groom, 2002; Plewczynski

& Rychlewski, 2009). Here, a key contribution can be made through computational approaches to

link specific changes in microbial communities with physiological changes in the host that reflect

disease phenotypes.
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2.1.1 Drugs and the microbiome

Targeted therapeutics for manipulating the microbiota are still nascent and rudimentary. Prebiotics

and probiotics are the most commonly marketed generic supplements for GIT disorders (Preidis &

Versalovic, 2009). However, our understanding of their mechanisms of symptom relief is limited.

Probiotics are usually supplements of single bacterial strains which integrate into the broader micro-

biota with limited global GIT effect (Shanahan, 2010; Quigley, 2011), unless the microbiota is tem-

porarily significantly depleted such as after antibiotic treatments (Hickson et al., 2007). Prebiotics,

nutrients aimed at stimulating the growth of specific microbial species, have shown greater potential

for manipulating the environmental pressures which shape the microbial ecology, especially in the

developmental stages of life (Arslanoglu et al., 2007), although the effects of these supplements are

short term and can be overshadowed by the overall diet (Preidis & Versalovic, 2009). It is widely ac-

cepted that a full complement of biodiversity is important for a healthy microbiota and single species

supplements or substitutions have little effect on the long-term host microbiota-phenotype as deter-

mined by underlying biology (Sekirov et al., 2010; Arumugam et al., 2011). Responsive probiotics

are the closest the field has come to targeted microbial therapies (Bailey et al., 2011). By introducing

iron responsive probiotics, the microbiota can be prepared for trauma and internal bleeding, such as

prior to surgery.

Other more extreme therapies are intentional infections by parasitic helminth worm (Weinstock &

Elliott, 2009) and faecal transplants (Landy et al., 2011) which have been tested as alternatives to

invasive surgery in IBD patients. In preliminary clinical trials, these approaches seem to somewhat

regulate the host gut inflammatory response (Landy et al., 2011), although more thorough controls

are desirable and the duration of relief is unclear.

Traditionally, antibiotics have been considered the most common course of action against infectious

disease, microbial disorders and inflammation. However, growing evidence for microbial contri-

bution to health and advanced understanding of complex microbial diseases has resulted in a re-

evaluation of some antibiotic (Dethlefsen et al., 2008; Blaser, 2011) and immunosuppressant treat-

ments (Proal et al., 2011). Antibiotics have been considered as a poor choice for GIT microbiota

modification because of tolerance issues associated with long term dosing and the lack of bacterial

species specificity. However, antibiotics have the potential to positively modulate chronic disease

conditions, such as diabetes and obesity, at least in rodent models (Kootte et al., 2011). Desir-

able pharmacological properties for a potential GIT microbiota modulator would be selective bacte-

rial species activity and high bioavailability in the gut. Intriguingly, these are precisely the type of
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molecules which are considered to be failed candidates in antibiotic drug development (Payne et al.,

2007). The fact that over 80% of the gut microbial species cannot be cultured using conventional

laboratory methods restricts the use of high throughput compound screening campaigns to discover

anti-microbiota compounds (Eckburg et al., 2005). However, the development of in vitro human gut

models (Feria-Gervasio et al., 2011) as well as using bacteria phylum specific antibiotics, for exam-

ple against Gram-positive Firmicutes, might accelerate the development of narrow spectrum drugs

for microbiota modulation.

Another avenue for potential therapies is targeting host genes involved with microbiota cross-talk.

Our knowledge of human receptors engaged in the maintenance of the GIT microbial community

balance is growing but far from complete (Zaneveld et al., 2008). Toll-like receptors (TLRs) are

responsible for cellular responses against bacterial infections, initiation of inflammation, produc-

tion of antimicrobial peptides, maturation of antigen-presenting cells and activation of cellular repair

and survival pathways (Saleh & Trinchieri, 2011). While TLR2 and TLR4 are primary sensors of

pathogenic bacteria, they are also important in maintaining bacterial gut flora homeostasis. Disrup-

tions of TLR and NOD (nucleotide-binding oligomerisation domain) pathways have been associated

with colorectal cancer (Saleh & Trinchieri, 2011), IBD (Knight et al., 2008) and other intestinal dis-

eases (Round & Mazmanian, 2009). Microorganisms synthesise a wide range of bioactive signalling

low molecular weight molecules and metabolites, many of which are similar to human or eukaryotic

produced metabolites (Shenderov, 2011). Using computational meta-analysis of data sources such

as human gene expression, bacterial metagenomics and metabolomics, molecules responsible for

human-host bacterial cross-talk could be discovered and form the basis for future drug design.

Besides being a potential therapeutic target for chronic disease, the vast metabolic potential of the

gut microbiota also plays a key role in the metabolism or biotransformation of xenobiotics, including

many marketed drugs. Over 30 drugs are known substrates of bacterial enzymes in the GIT (Sousa

et al., 2008) which can have considerable impact on drug development. A tragic example is the

reported deaths of several patients co-prescribed a new antiviral drug, sorivudine, along with an

oral 5-fluorouracil. The deaths were attributed to toxicity of secondary drug metabolites generated

by gut flora (Okuda et al., 1998). Contrasting to the previous case, selective inhibition of gut mi-

crobiota enzymes can be potentially used to improve drug efficacy and safety. The colon cancer

chemotherapeutic CPT-11 has a dose-limiting side-effect of severe diarrhea caused by reactivation

of the prodrug by gut bacteria producing the enzyme beta-glucuronidase. In rodent models, Wallace

et al. introduced an inhibitor of bacterial beta-glucuronidase which allowed for higher CPT-11 dos-

ing (Wallace et al., 2010). Interestingly, beta-glucuronidase is not essential for bacterial viability, so
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inhibition of this enzyme blocked the drug metabolism function while minimising disturbance of the

gut microbial community. The development of selective modulators of bacterial enzymes or species

responsible for drug biotransformation could be an intriguing strategy for improving the clinical ef-

ficacy and safety profiles of particular drugs. The efficacies of many widely used drugs, including

statins, are likely determined by both microbiota and host genetic factors (Kaddurah-Daouk et al.,

2011), which further prompts integration of microbiome, human genetics and metabolomics into

personalised medicine initiatives (Nicholson et al., 2011; Wilson, 2009) and in the identification of

therapeutic targets in the microbiome.

2.2 Computational approaches to studying the microbiome

The ‘target’ for therapeutic intervention in the microbiome is a broad concept ranging from molec-

ular entities, such as specific genes or proteins, to pathogenic species or community level modu-

lation (Round & Mazmanian, 2009). Furthermore, the complex pathology often associated with

microbiota-related diseases means multiple mechanisms can be linked and several different ‘targets’

can be isolated through studies of the same condition.

The international community is tackling human microbiome research through two complementary

sequencing programmes. First, a large number of reference genomes from selected microbial taxa

found in different human body sites are being cultured (where possible) and sequenced in their en-

tirety (Nelson et al., 2010; Peterson et al., 2009). Second, bacterial culture-independent metagenomic

sequencing is being used to investigate natural microbial ecological adaptations and enterotypes

that characterize a human anatomical site or condition. Having both a rich collection of reference

genomes as well as broad metagenomic survey data from controlled population studies are crucial

for determining microbiota and disease associations.

Historically, clinical microbiology has relied upon culture-dependent methods to seek evidence in

support of one of Koch’s key postulates (Falkow, 1988) that one pathogen or pathogenic genetic

feature results in a single disease disorder. However, a chronic disease might be the result of inter-

actions involving subtle changes across many different microbiota species and communities. Thus,

combined reference genome and culture-independent metagenomic analyses are necessary to study

complex microbial ecologies at both the molecular and community levels in order to illuminate link-

ages between microbiome and specific disease phenotypes.

Various commercial next-generation sequencing (NGS) platforms have been used for metagenomics

surveys. Several well-developed, publicly available software tools, such as QIIME (Caporaso et al.,
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2010b) and MG-RAST (Meyeret al., 2008), provide the means for identifying species and genes

from metagenomic data as well as quantifying biodiversity both within and between samples. A

thorough discussion of the usage and parameterization of primary analysis software tools (for assem-

bly and initial annotation) is provided elsewhere (Hamady & Knight, 2009). Here I will concentrate

on secondary computational analysis geared towards the characterization of microbiome phenotypes

and comparative metagenomics.

2.2.1 Reference genomes and comparative genomics

The Human Microbiome Project (Nelsonet al., 2010) was one of the �rst major initiatives with

a goal of sequencing genomes from the microbiota to expand reference genome resources. With

multiple sequencing centres across America early efforts aimed to sequence 1,000 genomes from

the microbiota (Nation Institute of Health, n.d.). By the end of the �rst phase of the Human Mi-

crobiome Project in 2012 there were over 3,000 new genomes published from the microbiota and

culturing methods were substantially more advanced to enable previously unculturable species to be

sequenced (Markowitzet al., 2012). Furthermore, other national microbiome projects had started

across the world that were also contributing to the expanding resource of reference genomes (Du-

bilier et al., 2015). These included the European metaHIT project (Ehrlich & Consortium, 2011),

Canadian Microbiome Project (Government of Canada, 2009), Brazilian Microbiome Project (Pylro

et al., 2014) and the Japanese Microbiome Consortium. Since 2015 the national project structure has

also been complemented with a Uni�ed Micorbiome Initiative (Dubilieret al., 2015) where the Earth

microbiome Project (Alivisatoset al., 2015; Janssonet al., n.d.) aims to facilitate collaboration and

coordinate efforts to exapnd the reference resources for microbiome analyses.

Determining the taxonomic content and gene function of a metagenomic dataset primarily depends

on the availability and annotation of reference genome sequences. Ideally, the reference genome

catalogue for the human microbiota would provide an exact functional homologue of every metage-

nomic read in a dataset. Therefore, given the associated ecological conditions, human anatomical

regions, hygiene status and medical history, each mapped metagenomic sequence read could be as-

signed some physiological context and molecular function based on the functional annotation of the

reference gene (Ellrottet al., 2010; O'Sullivanet al., 2009; Leeet al., 2008). However, most genes

do not have complete functional annotations from reference genomes and inferring function and tax-

onomy from sequence similarity is one of the major challenges in this �eld. Even when a perfect

match is found often genes are annotated as hypothetical proteins. Thus, to discover more about

these genes indirect bioinformatics methods for predicting function must be employed.
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Figure 2.4: Biomarker discovery across a population of healthy and ulcerative colitis model mice,
data from Garrett et al. (2010). (A) Shows microbial species and their statistical significance as
biomarkers for the microbiota phenotype of healthy mice (green) and mice with ulcerative colitis
(red). (B) Shows a cladogram indicating the phylogenetic distribution of microbes associated with
healthy mice (green) and mice with ulcerative colitis (red). Figures generated in LEfSe (Segata et al.,
2011).

pan-genome for microbes (Medini et al., 2005; Frese et al., 2011; Xu et al., 2007). Metagenomics

data with its typically low sequence coverage leading to short contigs and numerous singletons is not

ideal to investigate individual LGT as the full genomic context of a gene is required to investigate its

origin in detail. However, metagenomics data is the only way to get a direct snapshot of the entire

metabolic capacity of a microbial community given the exact strains present at the time.

As demonstrated in Figure 2.5, the relative abundance of phyla can vary widely across individual

samples. However, the relative abundance of major functional categories remains almost equal,

which implies that common gene functions are roughly equally distributed across the microbiota in

each individual. This represents a broad adaptation to the environmental niche for the entire micro-

bial population. Despite this high level consistency the functional adaptations to the environment at

a finer level are thought to represent the defining characteristics of the microbiota that determine the

pathophysiology of dysbiosis and disease. Hence, identifying functional variation at a finer granula-

tion could identify important features corresponding to valuable drug targets, such as proteases and

other enzymes degrading xenobiotics, biochemical stressors and toxins (Steck et al., 2011).

Functional diversity is usually visualized in two ways with multiple levels of abstraction; functional
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Figure 2.5: Comparison of taxonomic variability against functional variability in six human micro-
biota samples, a subset of data Turnbaugh et al. (2006). (A) Shows phylum-level bacterial variability
by percentage abundance. (B) Shows gene function variability across the major functional categories
by percentage abundance.

categorization, which reflect many of the same traits as taxonomic visualisation due to the hierarchi-

cal structure of the categories, and metabolic pathway reconstruction, Figure 2.6.

In metabolic pathway reconstruction, metagenomic reads are mapped onto known pathways, which

can then be compared across the classifications within the data to see which pathways are over rep-

resented in which condition. Functional categorization maps each gene to a functional hierarchy and

quantifies frequency of genes observed at each level, which again can be compared across classifica-

tions in the dataset. These functional analyses have been used successfully to identify gene functions

important to a particular habitat (Ellrott et al., 2010). Analysing the distribution of genes and gene

functions across different habitats helps generate hypotheses for the level importance of a gene set

in a particular environment. This same approach has also been used to identify features of disease

vs control microbiomes but mainly seems to identify microbial sub-community biases rather than

molecular functions related to disease pathology.

Similar to taxonomic classification, the differential representation of genes and gene functions can
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Figure 2.6: Visualization of functional metagenomics across six mice microbiota (three lean, one
overweight and two obese), a subset of data from Turnbaugh et al. (2009). (A) Shows comparative
abundance of the major functional categories (abundance has been normalized to compensate for
dataset sizes). (B) Shows comparative metabolic pathways mapped onto the KEGG atlas in the
background; purple lines indicate metabolic pathways present in both populations, blue lines indicate
metabolic pathways only present in the lean population and red lines indicate metabolic pathways
present in only the overweight and obese population. Figure generated in MG-RAST (Meyer et al.,
2008).

also be established using the software Metastats (White et al., 2009) and LEfSe (Segata et al., 2011).

The scale of gene observations is, however, approximately 3,000 times greater than that of the num-

ber of non redundant taxa observations. Therefore, clustering of genes by functional pathways or

categorical function can allow for more powerful analyses. MetaPath is customised for statistical
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identification of over-represented metabolic pathways by using a greedy search algorithm to iterate

over the Metastats differential abundance results (Liu & Pop, 2011). Predictive relative metabolic

turnover (PRMT) is an extension of this approach that takes into account the metabolic transfor-

mations of the pathways as well as sequence abundance. This can be used for approximate sys-

tem modelling, thereby predicting metabolite usage based on metagenomics datasets (Larsen et al.,

2011). Equally, this approach can be reversed to predict microbial functions based on the metabolites

present. This level of metagenomics-metabolomics coupling has the potential to be a powerful tool

for modelling the host-microbiota metabolite systems.

System modelling is highly dependent on robust assignments of gene function across any particular

microbiome, which is not possible at present. In one study in 2011 25% of all predicted Open Read-

ing Frame (ORF)s from human gut metagenomic data were shown to have no significant similarity

to any known protein coding sequences from existing complete genomes including hypothetical pro-

teins (Kurokawa et al., 2007). Similarly, in another study over 50% of ORFs identified in human

gut metagenomic samples could not be assigned to any known conserved functional region in the

Pfam database (Ellrott et al., 2010). In the first large scale metagenomics cohort study approxi-

mately 30% of the microbiome predicted genes were unmapped to any known genes and an addi-

tional 30% mapped to hypothetical genes (Qin et al., 2010). Furthermore, the majority of mapped

functional annotations would have been house keeping genes and a proportion of the genes mapped

to known functions would also have been inaccurate and inconsistent (Valencia, 2005; Bell et al.,

2013). This highlights the limitations of functional inference when only a section of the datasets have

some known molecular assignment; hence, boosting the taxonomic coverage of reference genomes

and enriching their functional annotations are primary and fundamental tasks underpinning fruitful

metagenomic analysis (Nelson et al., 2010).

In addition to relying on pair-wise sequence similarity to reference genome sequences, profile-based

approaches to identify known conserved functional regions in various protein databases, such as

Pfam, Interpro and PRIAM, can also be used to assign potential functions to metagenomic reads.

Such analyses include highly sensitive profile-profile-based searches (Hildebrand et al., 2009; Kalev

& Habeck, 2011) used to investigate divergent protein domains or families identified from metage-

nomic data (Ellrott et al., 2010) that otherwise reveal no similarity in pair-wise comparison or simple

profile analyses.

Notably, protein domain databases are originally derived from the analyses of reference genomes and

are continually updated as new sequences from both complete genome and metagenomic sequences

become available (Ellrott et al., 2010; Godzik, 2011; Kurokawa et al., 2007). Thus, periodic re-
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analysis of published metagenomic datasets could illuminate new bacterial species or gene functions

in those study conditions as reference genome and protein databases mature over time.

Most metagenomics analysis software packages provide references to multiple databases for anno-

tation. For example, the CoMet web server (Lingner et al., 2011) is an easy-to-use comparative

metagenomic package for analysing such datasets. The tool provides a complete pipeline for ORF

finding, functional annotation (Pfam, FIGfam and Gene Ontology) and comparative statistical analy-

sis of multiple metagenomic data. However, the majority of these databases are only sparsely popu-

lated with environment- specific genes, and the divergent nature of gut microbes provides significant

challenges in mapping reads to known-function genes.

Comparative studies of the microbiome typically involve a large number of protein sequences and

thus will require a significant amount of computing power. The tremendous amount of sequence

data from reference genomes (across all habitats) and metagenomic surveys of the human micro-

biome necessitates the development of efficient tools for comparative sequence analysis. Several

high-throughput computational frameworks employing Grid and Cloud computing have been devel-

oped, e.g. QIIME (Caporaso et al., 2010b) and Microbase (Sun et al., 2005). However, the results

of these pipelines are often massively reduced incompatible representations of the analyses and re-

quire reprocessing for integration. A standard for representing derivative data and a data integration

framework capable of handling scalable data would be ideal.

2.3 Moving beyond sequence data

Beyond microbial genomics and metagenomics, other studies have investigated human-host ge-

nomics, epigenetics, proteomics, and metabolomics as well as microbiota metabolomics (Keller-

mayer et al., 2011; Holmes et al., 2008).

Strategies to optimize the integration of the microbiome, host-derived datasets and metabolomics

to investigate associations of host-microbe genetic traits with disease conditions will allow a more

global understanding of host-microbiota interactions in human health and disease (Holmes et al.,

2008). These multi-dimensional human-host-microbial datasets will allow us to investigate the

microbiome-encoded metabolic pathways and their relationships with human physiological and en-

vironmental variables (Holmes et al., 2008). This implies a predictive nature between the parameters

and could allow, in the future, a wider inference from simple sample analysis to extrapolate much

broader fields. For example, measurements from multiple areas of the intestine and host tissues
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coupled with metagenomics sampling and predictive models could be used to develop detailed be-

havioural analysis of microbial trends and phenotypic behaviour in response to stimuli such as drugs.

Ultimately, we would expect this type of analysis to highlight multiple targets for intervention which

can be matched up with the compound repositories in silico to search for drug repurposing opportu-

nities (Cockell et al., 2010).

2.3.1 Data integration approaches

For certain diseases, there has been a great deal of activity in the development of tools for the integra-

tive analysis of therapeutics and their targets (Cockell et al., 2010; Gao & Dahlman-Wright, 2011).

Integration across the previously described datasets related to microbiome effects on human health

will be especially challenging yet critical for the advancement of microbiome targeted therapeutics.

Effective strategies for controlling and manipulating our gut microbiota could benefit enormously

by taking into account temporal changes in human and microbiome gene expression that could be

correlated with other factors such as the host’s immune status and genotype as well as environmen-

tal conditions. Thus, we can expect to see integrative microbiome models that include information

derived from global strategies for measuring gene expression such as RNAseq. These models may,

in turn, lead to the identification of biomarkers and expression profiles that are indicative of the

microbiota status in terms of disease involvement and responsiveness to therapeutic agents.

Data integration, not a new problem in bioinformatics, is already an active research area in the field

of molecular and medical informatics. Conventional approaches such as data warehouses coupled

with tools for multi-dimensional statistical analyses still have the potential to provide rich integrative

environments that will allow biologists to explore the interdependencies between many factors si-

multaneously. More recently, graph-based approaches to representing biological data have started to

appear and are valuable for the systems level analysis (Smoot et al., 2011; Weile et al., 2011). These

graphs can be of different levels of abstraction from functional networks (Lee et al., 2004) to highly

annotated and computationally amenable semantic graphs (Ondex) (Weile et al., 2011).

In the future, dynamic systems modelling may play a large part in helping us to understand the

complexity of the microbiome. Efforts to integrate data necessary for microbiome analysis may start

to reveal deficiencies in upstream processes such as DNA sequence annotation. For example, the

clinical status of a patient from where a particular microbiome was sampled might be used as an

annotation. This would require not only new sequence annotation formats but also careful blinding

of patient data in order to maintain confidentiality. As such, we may find that new standards are
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required to capture the metadata required for microbiome analysis. In the meantime a first step is

mapping metagenomics data to a single representation and providing a computational framework

capable of managing this resource.

2.4 Implementation technologies

Throughout the thesis the software development tasks can generally be separated into two categories;

statistical scripting and systems development. My local development environment ran programs on

Microsoft Windows with up to 8GB RAM. When further compute was needed the software was

ported to either a local server machine with a 48 cores and 96GB RAM or a range of Amazon

Web Services EC2 instances. Extensive systems administration was also involved in using specific

tools to generate analyses and visualisations for the thesis although these are specific to projects and

documented individually in each chapter.

MATLAB version R2012B (The MathWorks, n.d.b) was used for all statistical analyses and many

of the data visualisation plots. MATLAB is a software package including an integrated development

and execution environment that interfaces with the weakly typed MATLAB interpreted programming

language. MATLAB was chosen as a familiar solution that was effective for developing single use

scripts to leverage the statistics toolbox packages (The MathWorks, n.d.a).

Java (Oracle, n.d.a) was used for systems development. Java is a strongly typed, object oriented,

3rd generation programming language that compiles to javabytes and is executed in the Java Virtual

Machine (JVM). The advantage of Java is that it can be executed on any platform where the Java

Runtime Environment (JRE) is installed. One of the reasons I chose to use Java over other strongly

typed languages is the tool chain. The software lifecycle is well supported with IDEs for source code

development, effective build tools that coordinate complex build processes and can be used to form

portable execuatable endpoints, and full unit and integration testing suites. I used Netbeans version

8.1 (Oracle, n.d.b), Maven (Apache, n.d.) version 3 and the junit framework version 4. I also used the

shade plugin to compile self contained executable jar files which was important for porting programs

between the local development environment and remote High Performance Compute (HPC) servers.

The Oracle implementation of Java (Oracle, n.d.a) was used throughout and the latest version used

for development at the time of writing is version 1.8.151.



Chapter 3

Antibiotic Remodelling of the Gut

Microbiota in a Type II Diabetic Mouse

Model

3.1 Introduction

T2DM is a major healthcare issue that is increasing at epidemic rates across the world (Smyth &

Heron, 2006; Shen et al., 2012; Zhao et al., 2012). The International Diabetes Federation estimated

that in 2014 over 387 million people worldwide (8.3% of the global population) were living with

diabetes and more than 612 billion USD (11% of global healthcare expenditure) was spent on health-

care for diabetic patients, of which 90% suffered from T2DM. Furthermore, due to the complex

and heterogeneous nature of T2DM pathophysiology, an estimated 179 million of the sufferers were

undiagnosed (International Diabetes Federation., 2013).

Historically, lifestyle and genetics were thought to be the main factors determining T2DM on-

set (Scheen, 2003). However, recent developments have shown that the gut microbiota also con-

tributes to the condition (Larsen et al., 2010), opening the possibility for microbiota-targeted thera-

pies to complement established treatments (Cani & Delzenne, 2011).

3.1.1 Type II diabetes mellitus pathophysiology

T2DM is a metabolic disease characterised by a lack of blood glucose regulation which causes chron-

ically high blood glucose levels and over time can cause heart disease, stroke, diabetic retinopathy,

26
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kidney failure and circulatory problems (Choices, 2012; Diabetes UK, 2014). This chronic blood

glucose elevation is a result of the hyperglycaemic threshold being increased in the direct glucose

feedback loop, Figure 3.1. In healthy subjects, insulin is secreted from the pancreas into the blood

during periods of high blood glucose concentration and this insulin promotes glucose uptake and

utilisation by bodily tissues which reduces blood glucose. In T2DM patients, despite an increase

in levels of circulating insulin, blood glucose levels remain high for longer periods. This disease

mechanism is known as insulin resistance.
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Figure 3.1: Direct blood glucose feedback loop. Wide arrows indicate the hormones insulin and
glucagon are secreted under hyperglycaemic and hypoglycaemic conditions, respectively, from the
pancreas into the blood stream. Each hormone is then transported to target tissues indicated by
narrow arrows. Red arrows show target tissues that are activated in low blood glucose conditions
and result in an increase in blood glucose, green arrows show target tissues that are activated in high
blood glucose conditions and result in a decrease in blood glucose. Red lightning bolts show where
the insulin dependent mechanisms are implicated in T2DM.

The main factors that determine an individual’s insulin sensitivity and that can contribute to insulin

resistance are metabolic status and inflammatory status (Hu, 2011). Each of these factors has genetic

and environmental determinants as well as a variable acute status that is the product of a network

of endocrine signalling pathways (Lazar, 2005). This complexity means insulin sensitivity is highly

variable over time and between individuals and therefore predisposition to insulin resistance and

T2DM can be difficult to predict (Stumvoll et al., 2005).

At a population level, concordance studies show that if one monozygotic twin has been diagnosed
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with T2DM, the other twin has a 76% chance of developing the condition (Medici et al., 1999;

Newman et al., 1987); dizygotic twins have a 38% chance (Newman et al., 1987). Genome Wide

Association Studies (GWAS) identified 56 loci that vary linked to T2DM (Morris et al., 2012; Cho

et al., 2012; Zeggini et al., 2008; Scott et al., 2007). These genes include monogenic genes, that

independently increase the risk of T2DM, and networks of polygenic genes that contribute through

complex systems. The biological processes repeatedly implicated in the GWAS studies are cell cycle

regulation, adipocytokine signalling and CREBBP-related transcription factor activity (Morris et al.,

2012). The combination of all of the genes identified are estimated to only accounted for 10% of

the heritability of T2DM (Morris et al., 2012). It is clear from these population based studies that

familial traits can lead to strong predispositions, but genetics has minimal direct impact on risk and

predisposition to T2DM. Lifestyle trends and environmental factors are central to T2DM onset in

most cases (Reue & Donkor, 2007).

There are multiple environmental factors known to increase the risk of T2DM, these include un-

balanced diets, sedentary lifestyles, stress, chronic immuno-supressant treatments, lack of sleep,

alcoholism and motherhood (American Diabetes Association, 2012). Despite the range of potential

contributing environmental factors epidemiological comorbidity trends between obesity and T2DM

show that diet and a sedentary lifestyle are the main environmental risk factors causing the high

prevalence of T2DM in modern society (Wild et al., 2004; Smyth & Heron, 2006; World Health

Organization, 2013; Hu, 2011). The epidemiological trends in comorbidity for obesity and T2DM

are repeated but variable across the world, 30% comorbidity in China and Japan, 60-80% comor-

bidity in Europe and 90% comorbidity Pima Indians and Pacific Islanders (Wild et al., 2004; Hu,

2011). Although it is unclear why there are inconsistencies in the comorbidity rates between obesity

and T2DM across the world the molecular mechanisms linking obesity and T2DM have been well

characterised.

3.1.1.1 Molecular mechanisms of diet-induced obesity and type II diabetes mellitus

The main pathway responsible for obesity driven T2DM is through inflammation caused by increased

adiposity (Taylor, 2013). High levels of adiposity cause low grade inflammation and this inflamma-

tion increases insulin resistance, Figure 3.2. Molecular mechanisms underlying adiposity driven in-

flammation revolve around leptin and Angiopoietin-like 4 (ANGPTL4) secretion (Brännmark et al.,

2013). The molecular mechanisms underlying inflammation driven insulin resistance are a combi-

nation of selective lack of insulin receptor (InsR) expression, intracellular pathway activation shifts

and pancreatic β -cell function (Pickup, 2004).
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Figure 3.2: Diet-induced obesity and T2DM disease model. The boxes and arrows represent the
established disease progression linking obesity and T2DM. Blue arrows indicate predictable steps
in the progression towards insulin resistance. Green arrows indicate a step that leads to variable
outcomes across human populations.

This obesity driven T2DM disease model has been largely developed in mice as genetics and envi-

ronment can be controlled. The disease model is commonly referred to as diet-induced obesity and

T2DM (Surwit et al., 1988b; Winzell & Ahren, 2004). However, in humans there is major variability

in the outcomes of this model as shown in the comorbidity trends (Wild et al., 2004; Hu, 2011). This

variability is due to the vast variability in environmental factors, particularly in dietary variation and

cultural differences, that can contribute to low grade inflammation through mechanisms other than

through leptin and ANGPTL4 secretion. One theory is that the microbiota is the central link between

diet, environment and inflammation.

3.1.2 Type II diabetes mellitus and the microbiota

Recent studies have begun to provide insights into the role of the microbiota in dietary and inflamma-

tory regulation and mediation. There is also emerging research on how obesity affects the microbiota

and how the microbiota can contribute to obesity, however, the implications for T2DM remain un-

clear.

In humans and mice, obesity and an increase of fat in the diet are associated with increases in Fir-

micute communities and decreases in Bacteroidetes communities in the gut microbiota (Turnbaugh

et al., 2009; De Filippo et al., 2010). Furthermore, reciprocal transplants of the microbiota from

healthy mice and obese mice cause reversal of the obese and healthy phenotypes showing a some-

what causative link (Million et al., 2013; Ridaura et al., 2013). Recent studies have also associated

the distinction between Firmicute and Bacteroidetes dominated communities with increased levels

of low grade inflammation and other early complications associated with T2DM (Cani & Delzenne,

2011; Qin et al., 2012; Tilg & Kaser, 2011; Ley et al., 2005). These studies show the microbiota in

mice is affected by the diet and the microbiota is capable of contributing to T2DM.
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Obesity linked microbiota communities have a physiological impact on multiple disease associated

functions such as; energy balance (Cani et al., 2012), gut permeability (Muccioli et al., 2010; Cani

et al., 2009), metabolic endotoxemia through lipopolysaccharides (Cani et al., 2007), and metabolic

inflammation (Cani et al., 2008; Muccioli et al., 2010; Cani et al., 2009, 2007), Figure 3.3. These

Firmicute dominant microbiota-disease associations have been tested in studies with clear null hy-

potheses, however, their relative contribution to diabetes onset remains unclear. The microbiota

dysbiosis categorised in these studies is often based on the Firmicute dominated microbiota commu-

nities identified in previous studies (Turnbaugh et al., 2009; De Filippo et al., 2010). The relative

importance of sub communities in these microbiota is also unclear for taxonomic groups of different

levels. Moreover, the communities shared between humans and mice remains unclear beyond the

divide in Firmicute dominated microbiota and Bacteroidetes dominated microbiota.

Increased 
inflammation  

Insulin 
resistance  

Microbiota 
dysbiosis 

[1,2,3] 

Endotoxemia [4] 
Mechanism [LPS 
binds TLR2/4 and 

CD14] 

Gut barrier permeability [4]  
Mechanism [reduced 

mucosal integrity to leaky 
junctions] 

Pro-inflammatory 
microbiota [2] 

Mechanism [ROS and 
opportunistic 
pathogens] 

1. Qin et al, Nature (2010) 
2. Turnbaugh et al, Nature (2009) 
3. Turnbaugh et al, Nature (2006) 
4. Cani et al, Gut (2009) 

eCB 

Efficient energy harvesting  
Increased vascularisation  
[Higher density substrates 

and increased hunger] 

Unbalanced 
diet  

Increased 
adiposity  

  Diet Induced Obesity 

Sedentary 
lifestyle  

Figure 3.3: T2DM disease model and the microbiota mechanisms. The blue boxes represent the
classic understanding of disease progression. Blue arrows indicate well characterised steps in the
progression towards insulin resistance. The yellow arrow indicates a step that is variable in human
populations. Green boxes represent contributions of microbiota dysbiosis to the disease progression.
eCB = endocannabinoid system.

This study seeks to investigate a disease model of T2DM including a role for high level microbial

communities and therefore a treatment model in which modifying the broad diversity can benefit the

phenotype of a mouse model.
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3.1.3 Mouse model of obesity induced T2DM

A common model for insulin resistance, and the model used in this study, is the diet induced obesity

(DIO) mouse model (Surwit et al., 1988b; Winzell & Ahren, 2004). Compared to human T2DM

the disease progression in DIO mice is much more predictable and the physiological conditions can

be closer controlled. One of the challenges in the DIO mouse model is that there is no diagnostic

threshold for T2DM. To provide an accurate indication of insulin sensitivity, and an indication of

T2DM phenotype, the blood glucose and insulin are measured from and the insulin:glucose ratio is

calculated. This ratio provides a measure of insulin sensitivity partially accounting for fluctuations in

glucose and insulin levels caused by dietary intake, digestion time and molecular half lives of insulin

and glucose (Surwit et al., 1988b; Winzell & Ahren, 2004). Another indirect marker for insulin

sensitivity is glucagon-like peptide-1 (GLP-1). GLP-1 is a hormone known to directly affect insulin

sensitivity by promoting expression of insR receptors (Drucker, 2003). Together these markers give a

measure of blood glucose regulation state. A range of other biomarkers and measurements, including

body weight, metabolic biomarkers, endocrine signalling molecules and endogenous enzymes are

also measured to monitor the physiological state of each study mouse and study the physiological

context to generate a disease treatment model.

Weight loss is widely known to change the metabolic status and subcutaneous fat in adipose tissues

has a key role in endocrine signalling in T2DM. Weight loss is an important control to test for the

effect of any treatment beyond the confounding beneficial effects of weight loss. OFS is a food

sweetener and an additive often used to induce weight loss in mice through increased satiety (Mac-

farlane et al., 2008). OFS is added to a high fat chow diets used to induce weight loss in many

mouse model studies (Winzell & Ahren, 2004). Additionally OFS works as a sweetener due to its

resistance to digestion in the stomach but this also makes it an effective prebiotic as it is digested by

the microbiota in the gut.

The liver is a key organ in the blood glucose feedback loop and often in metabolising antibiotics

and other xenobiotic metabolites (Sahin et al., 2006). The markers measured for paranchymal cell

integrity in the liver were aspartate transaminase (AST) and alanine transaminase (ALT). If liver

function is disrupted these are found in high volumes and the measured enzymatic activity would

be increased. Bilirubin is a protein produced by the liver and total bilirubin (tBil) is an indicator of

liver function related to hydrophobic molecule transportation. If tBil is high this indicates the liver

may not be processing albumin effectively. Albumin is made exclusively by the liver and has a half

life of around 2 weeks. Albumin levels can be used as a direct general marker for long term liver
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functionality and will be dramatically lower if the liver is damaged. Albumin levels are can also be

inflated by dehydration.

Blood glucose levels are closely related to blood pressure and osmolarity of the blood which are con-

trolled mainly by the kidneys. Kidney function was monitored by measuring creatinine and creatine

kinase (CK). If the kidneys are damaged both of these markers are found in high volumes (Ward,

1988).

Beta cells in the pancreas are the central cells controlling glucose regulation. Clearly pancreas in-

tegrity is an important consideration in the measurement of mechanisms affecting onset of T2DM.

The markers used for pancreatic function were amylase and lipase. These measurements should be

zero in healthy mice as the enzymes should be contained in the pancreas and not leaked into the

blood.

Energy substrates and endocrine signalling molecules can be used to investigate metabolic status of

the host. Cholesterol, triglycerides and high-density lipoproteins carrying cholesterol (HDL-C) can

be increased as a result of dietary digestion and catabolic states, where the host is consuming more

energy than is being used. Conversely, when the host consumes less energy than is expended beta-

hydroxybutyrate (bHBA) can be produced by vital organs when glucose is critically low reflecting an

anabolic metabolic status. Additionally measurements for amylin, leptin, ghrelin, gastric inhibitroy

polypeptide (GIP), peptide YY (PYY), pancreatic protein (PPr) and GLP-1 show how the body is

responding to satiety and a more long term metabolic status.

3.1.4 Hypothesis

This study was carried out to investigate the effects of a broad spectrum Gram-positive selective

antibiotic (antibiotic A) and a broad spectrum Gram-negative selective antibiotic (antibiotic B) on

the microbiota and glucose regulatory system in a mouse model of diet-induced obesity and T2DM.

This chapter aims to analyse biomarkers of T2DM that may provide information as to the underlying

value, if any, of the antibiotic treatments targeting the microbiota. Furthermore to investigate if the

microbiota can be included in the T2DM disease model and be manipulated to generate a treatment

model to help clarify the opportunities for drug discovery.

The hypothesis is that Gram-positive or Gram-negative antibiotics can improve the glucose regulatory

system in a diet-induced obesity mouse model of T2DM by modifying the micorbiota.



CHAPTER 3. ANTIBIOTIC REMODELLING OF THE GUT MICROBIOTA 33

3.2 Methods

The experimental design and laboratory work to generate FASTQ format sequence data and metabo-

lite measurements were carried out by collaborators at GSK, under the direction of Dr. James R.

Brown. These methods are listed under Section 3.2.1.

Metagenomics data, FASTQ format sequence data from a 454 sequencer, and metabolite measure-

ments were supplied for subsequent data analysis at Newcastle University. These methods are listed

under Section 3.2.2. All scripts for reproducing figures and statistical tests, excluding commercially

sensitive data, are available on request1.

3.2.1 Experimental Design

The experimental method involved 90 mature mice (Taconic C57 black 6) (Surwit et al., 1988b)

living in shared facilities, separated into nine treatment groups including three dosage sub-groups

per antibiotic treatment. For simplicity throughout the report I will refer to the common treatment

groups as defined below.

• L - Lean control group

• O - Obese control group

• A500 - High dose Gram-positive antibiotic group

• A150 - Medium dose Gram-positive antibiotic group

• A50 - Low dose Gram-positive antibiotic group

• B500 - High dose Gram-negative antibiotic group

• B150 - Medium dose Gram-negative antibiotic group

• B50 - Low dose Gram-negative antibiotic group

• D10% - OFS supplement group

Each group followed a 10 week dietary regime, followed by a 14 day treatment period, Figure 3.4.

Following this treatment period a selected metabolite profile was measured from blood serum and

faecal samples were collected and prepared for 16S metagenomic sequencing as described in Sec-

tion 3.2.1.2.
1https://github.com/mcollison/diabetes-disease-and-treatment-model

https://github.com/mcollison/diabetes-disease-and-treatment-model
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Figure 3.4: Overview of the experimental design. There were nine treatment conditions L, O,
A500, A150, A50, B500, B150, B50 and D10%, as defined in the text above. Each group followed a 10
week dietary regime; L standard chow with 10% calories from fat and O, A, B and D contained high
fat content chow with 45% calories from fat. This diet was followed by a 14 day treatment period
where the previous diet was continued with additional treatments listed in treatment phase. After
the 14 day treatment period faecal samples were collected and physiological markers were measured
from blood samples. Images in the figure are not images of mice from the study and are included
for illustrative purposes only to demonstrate the expected impact of the stated dietary conditions.
OFS=Oligo-fructosaccharide supplement.

The 10 week dietary regime for the lean control group (L) was an ad-libitum standard chow with

10% calorific content from fat. The dietary regime for the diet-induced obesity groups (O, A, B

and D10%) was an ad-libitum high fat content chow with 45% calorific content from fat (Surwit

et al., 1988a; Winzell & Ahren, 2004). The treatment period for the OFS supplement group (D10%)

was an ad-libitum high fat content chow with 45% calorific content from fat mixed with an OFS

supplement constituting an overall 10% calorific content. Mice selection for each group was pseudo-

randomised according to pre-experimental percentage body fat and all antibiotic treatments were

given as food supplements as part of the evening feed each day. Both antibiotics were dosed at

500mgkg−1, 150mgkg−1 and 50mgkg−1. As experimental procedures became more complex only

selected subjects’ specimens were used for certain experimental techniques. This decision was made

by personel at GSK to reduce costs and wasn’t considered to comprimise the fundamental study de-

sign. Table 3.1 summarises the number of subjects from each treatment group that were successfully

analysed using each technique. A more detailed per subject breakdown is provided in Appendix I

Table 6.1.
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Table 3.1: A summary of the number of mice represented in the datasets from each treatment group
in each experimental technique.

Condition number of mice assayed
Weight metabolite profiling 16S metagenomics

L 10 10 9
O 10 10 9

A500 9 9 9
A150 10 0 0
A50 9 0 0
B500 10 10 7
B150 9 0 0
B50 10 10 6

D10% 10 10 9

3.2.1.1 Metabolite Profiling

The metabolite measurements were obtained through undisclosed assays at GSK. The marker name,

physiological function, units and number of subjects per group is summarised in Table 3.2.

3.2.1.2 Metagenomic Sequencing

Faecal specimens from each subject were collected and homogenised before an 8ml sample was

extracted and frozen in a solution of DNA stabiliser. In preparation for sequencing each sample was

thawed and a 1.4ml subsample was taken for DNA extraction, which was carried out following the

steps from the PSP spin stool DNA plus kit (molecular, 2012). Transmission spectrophotometry was

then used to quantify the amount of DNA in each sample.

For 16S metagenomic sequencing, extracted DNA from each stool sample was diluted to normalise

pre-amplification concentration across samples based on spectrophotometry measurements. Recip-

rocal barcode primers were ligated to the 16S small subunit ribosomal RNA (16S) primers and were

subsequently used to amplify the DNA in triplicate. The 16S bacterial specific primers targeted

regions V1 to V3 on the 16S gene. The primers were 27F (5-AGAGTTTGATCCTGGCTCAG-

3) (Weisburg et al., 1991) and 534R (5-ATTACCGCGGCTGCTGG-3) (Muyzer et al., 1993), de-

signed to suit an average 454 read length of over 500 base pairs and for high coverage of the Bacteria

domain (Baker et al., 2003; Klindworth et al., 2012). This primer pair is also widely used by the

HMP (Caporaso et al., 2011). Multiple samples were then pooled and simultaneously sequenced

using GS FLX Titanium series reagents on a Roche 454 sequencer. The multiplex barcode was later

used in bioinformatics analyses to reassign sequences to their experimental origin.
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Table 3.2: Subject numbers for each metabolite measurement. High density lipoprotein = HDL,
Asp=aspartate, Ala=Alanine.

Metabolite Physiological function units L O A50 B50 B500 D10%

Glucose energy substrate mgdL−1 10 10 9 10 10 10
Non-esterified fatty acids energy substrate mEqL−1 10 10 9 10 10 10
Triglycerides energy substrate mgdL−1 10 10 9 10 10 10
Cholesterol energy substrate mgdL−1 10 10 9 10 10 10
HDL(cholesterol) energy substrate mgdL−1 10 10 9 10 10 10
glycerol energy substrate mgdL−1 10 10 9 10 10 10
beta-hydroxybutyric acid energy substrate mgdL−1 10 10 9 9 10 9
Total bilirubin kidney function mgdL−1 10 10 9 10 10 10
Creatinine kidney function UL−1 10 10 9 9 10 9
Creatine kinase kidney function UL−1 10 10 9 10 10 10
Asp aminotransferase liver function UL−1 10 10 9 10 10 10
Ala aminotransferase liver function UL−1 10 10 9 10 10 10
Amylase pancreatic function UL−1 10 10 9 9 10 10
Lipase pancreatic function UL−1 9 10 9 10 10 10
Total proteins general health gdL−1 10 10 9 9 10 9
Albumin inflammatory status gdL−1 10 10 9 9 10 9
Albumin/Globulin ratio inflammatory status - 10 10 9 9 10 9
Insulin endocrine signalling *ND 8 9 9 8 10 9
Amylin endocrine signalling *ND 8 9 9 8 10 9
Leptin endocrine signalling *ND 8 9 9 8 10 9
Ghrelin endocrine signalling *ND 8 9 8 8 10 9
Gastric-inhibitory peptide endocrine signalling *ND 8 9 9 8 10 9
Peptide YY endocrine signalling *ND 8 9 9 8 10 9
pancreatic protein endocrine signalling *ND 7 9 8 8 9 9
active GLP-1 endocrine signalling *ND 8 9 9 8 10 9
total GLP-1 endocrine signalling *ND 8 9 9 8 10 9

*ND = not disclosed

3.2.2 Bioinformatics Analyses

3.2.2.1 Metabolite Markers

Throughout this report, population statistics are tested using analysis of variance (ANOVA), Kruskal-

Wallis tests, paired t-tests, unpaired t-tests, Wilcoxon tests and one-sample Kolmogorov-Smirnov

tests from the MATLAB R2013b distribution with the statistics package R2013b.

Box plots are displayed to show and compare the distributions of sample populations using the box-

plot function from the statistics MATLAB package R2013b. The box represents the 25th to 75th

percentiles and the red line indicates the median value. The whiskers (dashed line to T bar) show

the range excluding outliers, which are shown as red crosses. Points are drawn as outliers if they are

larger than q3+w(q3−q1) or smaller than q1−w(q3−q1), where q1 and q3 are the 25th and 75th
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percentiles, respectively, and w equals 1.5. The default of 1.5 corresponds to approximately plus or

minus 2.7 standard deviations and 99.3% coverage if the data are normally distributed.

Normal probability plots for each sample population per metabolite have been generated using the

normplot function from the statistics package R2013b and are displayed in Appendix 6.2. These

plots show the frequency distribution of each subsample without bining data, which can be mislead-

ing in such sparse datasets, to give an indication of whether the data follow a normal distribution.

Simulated data is superimposed on these plots in red and follows a predicted normal distribution with

standardised mean and standard deviation. If the real data is normally distributed it will be linear and

denser in the middle section, following the red simulation. These plots were used in combination

with significance values presented in the results to determine which differential tests were suitable

for comparing sub populations.

A correlation matrix plot was produced using Pearson’s correlation scores generated by the statistics

package R2013b corr function and visualised using a customised MATLAB script provided in the

code available on request.

3.2.2.2 16S Metagenomics

To analyse the 16S metagenomics data, a bioinformatics pipeline was constructed in QIIMEv1.7 (Ca-

poraso et al., 2010b) with the major steps listed below.

1. Quality control and file integrity

2. Clustering of operational taxonomic unit (OTU)s

3. Taxonomic assignment

4. Diversity and meta-analysis

Parameters for quality control when processing the FASTQ format sequence data with the denoising

script (Reeder & Knight, 2010) provided in QIIMEv1.7 remained as the default values; minimum

mean average quality score of 25, minimum and maximum lengths of 200 to 1000 base pairs and

zero mismatches allowed in the primer sequence. Within this step the multiplexing barcodes in the

mapping file were used to assign each sequence from the two sequencing runs to their respective

subject sample and then the forward and reverse primers were removed as well as the barcode. The

corresponding results justifying threshold cutoffs are presented in the results Section 3.3.8.

OTU clustering was calculated using uclust-v1.2.2 (Edgar, 2010) and a threshold of 97% with no

reverse strand mismatches. The clusters were subsequently assigned a representative sequence based
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on the most popular sequence in the cluster.

PyNAST (Caporaso et al., 2010a) was used in combination with the template alignment from green-

genes, file core_set_aligned.fasta.imputed, to align OTUs to the reference taxonomy alignment. The

final alignment was written to the Newick tree file format and used for unifrac distance calcula-

tions (Lozupone et al., 2011). Taxonomy was inferred using the RDP naïve Bayesian classifier

algorithm version 2.2 (Wang et al., 2007) and RDP database with 80% confidence threshold. The

results were formatted to populate an OTU occurrence table.

Secondary analyses were then completed. Chao score, Shannon index and species count were calcu-

lated as diversity metrics with rarefied and non-rarefied data. Due to large variation in data available

for each treatment group non-rarefied data is represented in the diversity plots within this chapter.

Differential statistics were then calculated for classification of the phenotype. Independent t-tests

were calculated on each OTU in the OTU table.
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3.3 Results

The data generated from the experimental methods described in Section 3.2.1, were produced by

collaborators at GSK directed by Dr James R. Brown. All analyses presented here were subsequently

completed as part of this project at Newcastle University.

This study tests the hypothesis that antibiotic modulation of the microbiota improves insulin sensi-

tivity in a diet induced mouse model of T2DM as measured using physiological markers, endocrine

signalling markers and metagenomics from the gut microbiome.

3.3.1 A Mouse Model for Type II Diabetes Mellitus

All of the blood glucose regulation markers from groups L and O show normal distributions (P>0.05)

and significant variability (P<0.05), Table 3.3. Figure 3.5 shows the population level phenotype shift

from healthy to insulin resistant assumed T2DM caused by the 12 week high fat diet (10 weeks pre-

treatment period plus 2 week treatment period). These results are consistent with those reported in

the literature on this diet-induced obesity and T2DM mouse model (Surwit et al., 1988b; Winzell &

Ahren, 2004; Wang & Liao, 2012).

There is one anomaly in the lean group; subjects 1, as shown by their insulin:glucose ratio and insulin

levels. These measurements are likely due to a hyper glycaemic stage in the regulation cycle. There

is one anomaly in the obese group; subject 11, as shown by their total GLP-1 and active GLP-1

measurements. However, GLP-1 expression is dynamic. For further note obese control subjects 19,

17, 16 and 14 have an insulin:glucose ratio within the range of lean control mice.

This results demonstrates that the diet-induced obesity protocol had a systematic effect on blood glu-

cose, insulin and GLP-1. Importantly, the diet-induced obesity experimental control groups represent

the mice pre-treatment and show the mice in groups O, A500, B50, B500 and D10% would have been

insulin resistant with a T2DM phenotype directly before the treatment period.



CHAPTER 3. ANTIBIOTIC REMODELLING OF THE GUT MICROBIOTA 40

Table 3.3: Population statistics for blood glucose regulation markers between the lean control
group (L) and the obese control group (O). L and O columns show one-sample Kolmogorov-
Smirnov test p-values for whether the sample population is normally distributed and the t-test asks if
there is variability across the two groups, given the subpopulations are normally distributed.

Blood glucose regulation marker L n=10 O n=10 T-test p-value
Glucose 0.871 0.612 0.035
Insulin 0.330 0.906 0.009
Active GLP-1 0.982 0.888 <0.001
Total GLP-1 0.898 0.402 0.002
Insulin:glucose ratio 0.281 0.910 0.014
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Figure 3.5: Boxplots showing the effect of a 12 week high fat diet on blood glucose regulation
markers in the lean control group (L) and obese control group (O). Supporting statistics for
normalisation testing and differential statistics can be found in Table 3.3. Units, where disclosed, are
in Table 3.2.

3.3.2 Treatment Effects on Insulin Sensitivity

T2DM is fundamentally a blood glucose regulation dysfunction. To investigate the effects of the

treatment period on blood glucose regulation a series of markers, as listed in the above Results

Section 3.3.1, were tested across all treatment groups. In order to test for effects of treatment on pre-

existing insulin resistance and an assumed T2DM phenotype, differential statistics were calculated
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excluding the lean control group.

All markers for blood glucose regulation for all treatment groups showed normal distributions (P>0.05)

and significant (P<0.05) variability across the treatment groups, except for the insulin:glucose ratio,

Table 3.4. The boxplots in Figure 3.6 show a trend towards improved glucose regulation across

all treatment groups, although the main differences across the treatment groups are in the Gram-

negative antibiotic treatment groups, particularly group B500. The range of insulin measurements

and the range of insulin:glucose ratio measurements for group B500 has fallen to within the quartile

bounds of group L; an unpaired t-test shows there is no significant difference (P=0.797) between

group B500 and group L for insulin. All other groups show a significant (P<0.05) difference from

group L.

Both active GLP-1 and total GLP-1 levels are dramatically increased in the blood for the Gram-

negative antibiotic treatment groups B500 and B50 far beyond increases caused by other treatments.

Of further note, groups A500 and D10% also show significant increases (P<0.05) in both active GLP-1

and total GLP-1 levels as well as non significant (P>0.05) reductions in glucose and insulin levels.

There are three subjects with anomalously high insulin levels, subject one in group L which also

shows an anomalous insulin:glucose ratio; subject 22 in the group A500 which also shows an anoma-

lous insulin:glucose ratio; and subject 59 in group D10%. There is one anomaly in the group B50,

subject 45, with anomalously high glucose levels. These subjects are likely in hyper or hypo gly-

caemic stages of the glucose regulation cycle. Subjects 11 (group O), 37 (group B500), 41 (group B50)

and 49 (group B50) show anomalous results for total GLP-1 and subject 37 also shows an anoma-

lous result for active GLP-1. However, considering the observed distribution for GLP-1 expression

outliers are expected.

These results are central to this chapter. The blood glucose regulation markers shows a full recovery

to health during a 14 day treatment period in response to treatment with antibiotic B treatment at

500mgkg−1. This is one of the first studies to show acute beneficial effect of antibiotics on T2DM.

Additionally, the results show a general improvement in the insulin sensitivity for all treatment groups

and a drammatic increase in expression of GLP-1 in response to antibiotic B. The underlying effect of

each treatment on broader physiological markers is investigated in the following sections to explore

the disease model and propose a model for treatment.
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Table 3.4: Population statistics for blood glucose regulation markers for all treatment groups.
L, O, A500, B50, B500 and D10% columns show one-sample Kolmogorov-Smirnov test p-values for
whether the sample population is normally distributed. The ANOVA p-value tests if there is vari-
ability across the treatment groups excluding the lean control group, given the subpopulations are
normally distributed.

Blood glucose reg-
ulation marker

L O A500 B50 B500 D10% ANOVA
p-value

Glucose 0.871 0.612 0.799 0.980 0.879 0.958 0.002
Insulin 0.330 0.906 0.615 0.989 0.880 0.767 0.038
Active GLP-1 0.982 0.888 0.606 0.579 0.736 0.837 <0.001
Total GLP-1 0.898 0.402 0.951 0.575 0.529 0.843 <0.001
Insulin:glucose 0.281 0.910 0.279 0.824 0.999 0.858 0.159
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Figure 3.6: Boxplots showing blood glucose regulation markers, glucose, insulin, total GLP-1,
active GLP-1 and insulin:glucose ratio across all groups after the 14 day treatment period.
Supporting statistics for normalisation testing and differential statistics can be found in Table 3.4.
Units for markers, where available, are in Table 3.2 and parameters used for drawing the graph are
discussed in the methods.

3.3.3 Treatment Effects on Body Weight

Adiposity is a major factor in insulin resistance. Furthermore, weight gain or loss can give an indica-

tion of metabolic status when combined with calories consumed. This section investigates whether
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there were any changes in overall body weight and fat mass over the treatment period and whether

there were any differences across the groups.

Overall body weight is significantly (P<0.05) different from pre-treatment to post-treatment in groups

L, B500, B150 and D10%, Table 3.5. In group L this weight change accounts for healthy growth during

this period of aging for mice. Therefore, the average weight change in group L was subtracted from

the weight measurements in other treatment groups to correct for natural growth. After correction

all groups showed significant (P<0.05) weight loss except group L and group O. The boxplots in

Figure 3.7 show the main differences are found in group D10% (P=<0.001 unpaired t-test) and group

B500 (P=<0.001 unpaired t-test), although groups A150, B150 and B50 also show significant (P<0.05

unpaired t-tests) weight loss compared to group O despite largely following the same diet. Interest-

ingly there is a distinction between the dosage groups for antibiotic B. Group B500 is significantly

(P<0.001) different from the other groups, including B50 but not D10%(P=0.507). These results indi-

cate a potential basis for the dosage response differences seen in insulin levels between B50 and B500

in Results Section 3.3.2.

Importantly for the experimental design, the OFS group show a clear weight loss. OFS as an artificial

sweetener increases the satiety of the mice and therefore reduces their desire for food. OFS supple-

ments are a common mechanism for inducing weight loss in mice so in this experimental design

represent a natural weight loss control. The implication of this result is that any impact on insulin

sentitivity beyond what would be natural from weight loss can be attributed to mechanisms related

to antibiotic treatment.

Table 3.5: Body weight and fat mass measurements before and after the treatment period.
Paired t-test p-values show whether there is variability in body weight and fat mass over the treatment
period. Baseline correction tests for variability after correcting for weight gain and fat mass gain
shown in the lean control group.

Weight (g) L O A500 A150 A50 B500 B150 B50 D10%

Pre-treatment body weight 26.8 40.7 40.3 40.0 40.5 41.0 40.9 40.2 40.5
Post-treatment body weight 28.0 41.4 39.6 39.4 40.3 36.7 39.0 39.0 35.9
Body weight paired t-test <0.01 0.120 0.312 0.099 0.963 <0.01 <0.01 0.121 <0.01
Baseline corrected t-test 0.941 0.347 0.015 <0.01 0.036 <0.01 <0.01 <0.01 <0.01
Pre-treatment fat mass 3.3 15.6 15.3 15.2 15.5 15.5 15.6 15.3 15.3
Post-treatment fat mass 3.7 16.0 14.1 13.9 14.7 11.6 14.0 14.4 11.2
Fat mass paired t-test <0.01 0.419 0.081 <0.01 0.096 <0.01 <0.02 0.212 <0.01
Baseline corrected t-test 0.434 1.000 0.023 <0.01 0.015 <0.01 <0.01 0.083 <0.01
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Figure 3.7: Average body weight change for mice during the 14 day treatment period. See
methods for treatment group labelling.

3.3.4 Treatment Effects on Host Physiology

Blood glucose regulation is complex and involves multiple physiological systems. The next analyses

attempt to identify the effect of each treatment on physiological systems in the mice by analysing

markers for liver function, kidney function and pancreatic function.

A Kolmogorov-Smirnov test with the CK, amylase and lipase data reject the null hypotheses that

the data are normally distributed and show a recurrent trend towards an F distribution. Given these

distributions Kruskal-Wallis rank sum tests were used in place of ANOVA tests to test for variability

in CK, amylase and lipase.

Differential statistical tests show there was no significant (P>0.05) variability across all of the treat-

ment groups and group L for any of the markers for liver, kidney or pancreatic function except for

albumin, Table 3.6. Albumin levels are slightly increased, which suggests dehydration as opposed to

reduced liver function which would be also reflected in tBil measurements. This result indicates that

liver function, kidney function and pancreatic functions are not damaged across any of the treatment

groups.

A closer look at the data reveals there are multiple outliers across all of the groups, as identified by

the boxplots, Figure 3.8. These outliers could indicate subjects that are unwell due to reasons outside

the experimental procedure or measurement anomalies. Within the measurements identified, none



CHAPTER 3. ANTIBIOTIC REMODELLING OF THE GUT MICROBIOTA 45

of the subjects showed to be outliers across multiple measurements indicating most are likely to be

healthy subjects.

Table 3.6: Population statistics for marker of liver function, kidney function and pancreatic
function across all treatment groups. L, O, A500, B50, B500 and D10% columns show one-sample
Kolmogorov-Smirnov test p-values for whether the sample population is normally distributed. The
differential p-value tests if there is variability across the treatment groups including the lean control
group, using ANOVA tests where the subpopulations are deemed to be normal distributions and
Kruskal-Wallis rank sum tests where the subpopulations are deemed to be not normally distributed.

Physiological markers L O A500 B500 B50 D10% Differential
p-value

AST 0.186 0.039 0.526 0.241 0.589 0.182 0.897
ALT 0.147 0.064 0.326 0.981 0.839 0.540 0.106
tBil 0.715 0.246 0.350 0.654 0.224 0.302 0.084
Albumin 0.312 0.763 0.335 0.216 0.896 0.803 0.007
creatinine 0.896 0.244 0.349 0.321 0.790 0.701 0.392
CK 0.095 0.071 0.656 0.216 0.012 0.084 0.101
amylase 0.015 0.951 0.027 0.088 0.066 0.080 0.307
lipase 0.011 0.936 0.025 0.108 0.136 0.019 0.201
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Figure 3.8: Boxplots showing the treatment effects on liver function, kidney function and pan-
creatic function. Supporting statistics for normalisation testing and differential statistics can be
found in Table 3.6. Units for markers, where available, are in Table 3.2 and parameters used for
drawing the graph are discussed in the methods.
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3.3.5 Treatment Effects on Inflammatory Status

Plasma protein markers give an indication of health and inflammation. Total plasma proteins are

increased with episodes of inflammation or dehydration. Albumin measurements give a measure of

dehydration assuming healthy liver function. Globulin provides a measure of inflammation, although

this measure can be affected by dehydration. Globulin is higher when the innate immune system is

more active. The albumin:globulin ratio provides an indication of levels of inflammation accounting

for dehydration.

All plasma protein marker measurements show normal distributions (P>0.05) except group A500 for

the albumin:globulin ratio. One-way ANOVA tests suggest there is significant (P<0.01) variability

across the treatment groups including group L for all plasma protein markers. Furthermore one-way

ANOVA tests also suggest there is significant variability across the treatment groups excluding group

L for total proteins and albumin levels, with p-values of 0.020 and 0.006 respectively. Figure 3.9

shows there is a distinction (P=0.0639) between group B500 and group B50 in the albumin:globulin

ratio.

These results demonstrate no significant increases in inflammation beyond the bounds of the control

groups that would indicate an acute inflammatory in response to illness. This means despite signif-

icant variance between the groups the overall inflammatory status for all mice is considered normal

given the conditions and can variance can be attributed to the experimental treatment. The variance

between the groups is mainly associated to the high fat diet although there is a trend towards reduced

inflammation in group B500. However, the measurements are not precise enough to draw any conclu-

sions regarding low grade inflammation. Given the proposed model for the microbiota contributing

to the disease model through low grade inflammation this measurement is a significant downfall of

the experimental procedure.
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Table 3.7: Population statistics for plasma protein markers across all treatment groups. L, O,
A500, B50, B500 and D10% columns show one-sample Kolmogorov-Smirnov test p-values for whether
the sample population is normally distributed. The differential p-value tests if there is variability
across the treatment groups including the lean control group, using ANOVA tests where the sub-
populations are deemed to be normal distributions and Kruskal-Wallis rank sum tests where the
subpopulations are deemed to be not normally distributed.

Plasma Protein Markers L O A500 B500 B50 D10% ANOVA p-value

total plasma proteins 0.738 0.940 0.480 0.480 0.788 0.538 <0.001

albumin 0.312 0.763 0.335 0.216 0.896 0.803 0.007

albumin:globulin ratio 0.262 0.535 0.026 0.555 0.574 0.614 <0.001
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Figure 3.9: Boxplots showing the treatment effects on plasma proteins.Supporting statistics for
normalisation testing and differential statistics can be found in Table 3.7. Units for markers, where
available, are in Table 3.2 and parameters used for drawing the graph are discussed in the methods.
A/G ratio = Albumin:Globulin ratio.

3.3.6 Treatment Effects on Metabolic Status

The 10 week high fat diet resulted in high amounts of sub cutaneous fat, as shown in Section 3.3.3,

which is known to cause higher levels of glycerols, cholesterol and HDL-C in the blood. One-way

ANOVA tests support this with significant (P<0.05) variability across the treatment groups including

group L for cholesterol and HDL-C, Table 3.8. However, there is also significant (P<0.05) variability

between the treatment groups excluding group L. Interestingly cholesterol and HDL-C show the

reverse trend of the weight loss profiles for group B500 and group B50 Figure 3.10. bHBA varies
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significantly (P<0.05) across the groups and shows a clear reflection of the weight loss profiles. This

is an indication that the weight loss profiles are also a reflection of a healthy metabolic status.

Table 3.8: Population statistics for metabolic status markers across all treatment groups. L, O,
A500, B50, B500 and D10% columns show one-sample Kolmogorov-Smirnov test p-values for whether
the sample population is normally distributed. The ANOVA p-value tests if there is variability across
the treatment groups including the lean control group, using ANOVA tests where the subpopulations
are deemed to be normal distributions and Kruskal-Wallis rank sum tests where the subpopulations
are deemed to be not normally distributed. NEFA = non-esterified fatty acids.

Energy Substrates L O A500 B500 B50 D10% ANOVA p-value

glucose 0.871 0.612 0.799 0.980 0.879 0.958 0.003

NEFA 0.853 0.740 0.833 0.058 0.139 0.984 0.210

triglycerides 0.947 0.983 0.827 0.472 0.518 0.948 <0.001

cholesterol 0.917 0.975 0.822 0.748 0.421 0.798 <0.001

HDL-C 0.834 0.942 0.800 0.925 0.188 0.939 <0.001

glycerol 0.935 0.796 0.980 0.349 0.191 0.455 0.153

bHBA 0.966 0.214 0.897 0.991 0.983 0.550 <0.001
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Figure 3.10: Boxplots showing the treatment effects on energy substrates in the blood. Support-
ing statistics for normalisation testing and differential statistics can be found in Table 3.8. Units for
markers, where available, are in Table 3.2 and parameters used for drawing the graph are discussed
in the methods.
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3.3.7 Treatment effects on endocrine signalling

This section investigates whether endocrine signalling was affected by the treatment period. En-

docrine signalling can give an indication as to the endocrine pathways contributing to changes in

insulin sensitivity.

All endocrine signalling biomarker measurements are normally distributed for all groups (P>0.05).

One-way ANOVA tests show there is significant (P<0.05) variability across the groups including

group L for insulin, amylin, leptin GIP, PYY, active GLP-1 and total GLP-1. Equally of interest,

there was no significant (P>0.05) variability in Ghrelin or PPr. One-way ANOVA tests suggest there

is also significant (P<0.05) variability across the treatment groups excluding the lean control group

for insulin, amylin, GIP, PYY, active GLP-1 and total GLP-1.

This data shows there were multiple changes in endocrine signalling caused by both the 10 week

high fat diet and the treatment period. In particular, Figure 3.11 shows a very similar trend for

insulin and amylin, which is expected since they are both dependent on liver insulin sensitivity, and

the high dose Gram-negative antibiotic group have reduced levels of insulin. Leptin follows the trend

in weight and subcutaneous fat. Ghrelin appears to be affected by the Gram-positive antibiotic but is

highly variable across all groups. GIP appears to improve with all treatments. PYY follows the trend

of GLP-1 where the Gram-negative treatment groups show much higher levels.

The notable part of these endocrine signalling results are in distinguishing effects of pharmalogical

treatment from changes related in weight loss. The most obvious distinction is in GLP-1 marker

which does not follow the trends for weight loss. While both Gram-negative antibiotic groups have a

drammatic roughly ten fold increase, the Gram-positive antibiotic group also shows a roughly three

times increase as well as a significant reduction in GIP.
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Table 3.9: Population statistics for endocrine signalling markers across all treatment groups.
L, O, A500, B50, B500 and D10% columns show one-sample Kolmogorov-Smirnov test p-values for
whether the sample population is normally distributed. The ANOVA p-value tests if there is vari-
ability across the treatment groups including the lean control group, using ANOVA tests where the
subpopulations are deemed to be normal distributions and Kruskal-Wallis rank sum tests where the
subpopulations are deemed to be not normally distributed. NEFA = non-esterified fatty acids.

Diabetic
Marker

L O B A A D ANOVA
p-value

insulin 0.330 0.906 0.615 0.989 0.880 0.767 0.012
amylin 0.643 0.894 0.946 0.701 0.130 0.783 0.002
leptin 0.938 0.054 0.215 0.540 0.180 0.998 0.013
ghrelin 0.356 0.980 0.845 0.972 0.767 0.891 <0.001
GIP 0.554 0.977 0.616 0.758 0.493 0.632 <0.001
PYY 0.513 0.613 0.913 0.632 0.918 0.971 <0.001
PPr 0.608 0.799 0.649 0.483 0.162 0.445 0.794
active GLP-1 0.982 0.888 0.606 0.579 0.736 0.837 <0.001
total GLP-1 0.898 0.402 0.951 0.575 0.529 0.843 <0.001
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Figure 3.11: Boxplots showing the treatment effects on endocrine signalling. Supporting statistics
for normalisation testing and differential statistics can be found in Table 3.9. Units for markers, where
available, are in Table 3.2 and parameters used for drawing the graph are discussed in the methods.
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3.3.8 Variable Correlation

Overall it is clear that the 10 week high fat diet and treatment period had a wide spread impact

on the physiology of the mice and the treatment period caused some clear phenotypic distinctions.

This section investigates whether there were correlations between the biomarkers measured to look

for potential interactions between markers that would facilitate the development of a disease and

treatment model.

The correlation matrix shows some strong correlations, mostly between markers linked within the

results categories, such as lipase and amylase, AST and ALT, cholesterol and HDL-C, total GLP-

1 and active GLP-1. There are also some notable correlations between markers across categories

although these appear to be weaker correlations. Amylase and lipase with tBil, non-esterified fatty

acids (NEFA) and glycerol. Cholesterol with many of the endocrine signalling markers. PYY and

PPr with both GLP-1 markers. These weaker correlations (Pearson’s coefficient value between 0.3

and 0.7) provide limited evidence that these markers are physiologically linked. They also support

the fact this data is noisy and any conclusions from multivariate analyses would be limited from these

measurements.

The hypothesis for this section is that there is a systematic relationship between metabolite markers

and insulin that would be indicative of a treatment mechanism. For example, if markers for infam-

mation were part of the treament mechanism I would expect inclusion of the data from those markers

to improve the accuracy of a multivariate predictive model. I tested if data from each metabolite was

able to improve a multivariate model for predicting insulin levels. The results showed only those

metabolites directly linked to the insulin signalling pathways significantly improved the model due

to the noise to signal ratio in the other markers.

These results demonstrate a lack of continuous data from the metabolite markers. Many of the mark-

ers are measured as dysfunctional markers and show very limited variability in healthy individuals.

A more insightful experimental design would have provided a more continuous response curve for

the range of healthy individuals.
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Figure 3.12: Biomarker correlation matrix showing the relative Pearson’s coefficient between each
biomarker. The range starts from zero to one and is represented by a graded colouring from blue to
red.

3.3.9 16S Metagenomics

To analyse the microbiome a 16S survey was completed using a 454 sequencer and the data was put

through a bioinformatics pipeline as described in Section 3.2.2.2.

269,745 sequence reads were present in the raw data, 21,794 were outside the minimum and max-

imum length restrictions, 24 contained more than six ambiguous base pairs, 369 had an average

quality score lower than twenty five, 2,191 contained a homopolymer run of more than six, 123,118

contained a mismatch in one of the primers or barcodes. This high number of barcode mismatches

was due to inclusion of sequencing samples from unknown origins where the barcode could not be

included in the analyses. There were 91,174 remaining sequence reads assigned to samples. The

minimum, median and maximum number of sequences per sample were 0, 1753.35 and 4478 and

distributed as in Figure 3.13. Due to low sequence counts subjects 31, 35, 39, 40, 41, 47, 49 and 53

were not included in later analyses, as identified in Appendix 6.1.
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Figure 3.13: Sequence read lengths bined into 20 base intervals and a summary of the range of
sequences reads per sample. ‘Raw’ is red and represents all of the sequence reads generated during
sequencing, ‘before’ is green and represents the sequence reads remaining after initial quality control
filtering and ‘after’ ‘ represents the remaining sequence reads after quality control and after barcode
sequences and amplicon sequences have been removed.

OTUs are terminal nodes in phylogenetic analyses (Blaxter et al., 2005). In this instance they rep-

resent a cluster of sequences thought to originate from a single strain or species, exemplified by a

consensus sequence. 11,091 OTUs were identified.

Each OTU was assigned a representative sequence that was taxonomically classified. Figure 3.14

shows the proportional representation of each phylum level bacteria from the OTU table taxonomic

classification.
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Figure 3.14: Phylum level proportional representation of each microbiomes. Average proportional
breakdown is shown at the top and a per subject breakdown of proportional representation is shown
directly underneath. Adjoining lines between the top and bottom plots show the division by pheno-
type of each subject.

What is clear from the initial metagenomic results is that the antibiotics had a broad impact on the

microbiome. The Gram-positive antibiotic (antibiotic A) removed almost all of the diversity includ-

ing the Firmicutes and they were replaced by Proteobacteria. There are two anomalies where a large

proportion of Firmicutes remain in the microbiome with around 20% and 40% Proteobacteria. The

Gram-negative antibiotic treatments (antibiotic B) also appear to have removed a large portion of

the diversity. Although antibiotic B appears to have allowed the Firmicutes to thrive, the dominant

species of Firmicute has changed indicating a major remodelling. These remodelling results indi-

cate that both antibiotic treatments had a broad cleansing effect on the microbiota and the resulting

population was made up of a previously minor constituent of the microbiota. Despite not having

abundance data the implication is that the biomass is dramatically reduced as well (Langdon et al.,

2016; Panda et al., 2014).

There are two anomalies that have a large proportion of Proteobacteria, one that also has some

Bacteroidetes. The OFS supplements appear to have had a more subtle impact in promoting Bac-
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teroidetes in place of Firmicutes but also allowing other bacteria such as Tenercutes and Verricomi-

crobia to thrive in some subjects (Macfarlane et al., 2008).

One way to represent complexity is by quantifying the overall alpha diversity. As well as the total

number of species found, the Shannon index, phylogenetic distance (PD_whole_tree) and species

richness (Chao1 score) were all measured. The Shannon index reflects the entropy or uncertainty of

a system. In this instance, diversity is weighted towards the most common species so less species

and skewed abundances would result in a low number and the more species that are more common

the higher the number. The phylogenetic distance is calculated based on a cumulative total of the

evolutionarily separation of all identified species from the most abundant species using a standard

phylogenetic model. The Chao metric of species richness is weighted more heavily on less common

species so measures based on how many species are represented by only few sequences.

In order to make the diversity metrics comparable it is necessary to account for experimental coverage

of the sample to predict the actual diversity. To do this a rarefaction curve is produced and the alpha

diversity is calculated at any given point. To rarify the OTU table a series of randomised sub samples

are taken from each sequencing sample, then the average number of OTUs found are plotted on a

graph to produce a curve. As the size of the sub sample increases it is expected the diversity measure

will get closer to a saturation point (absolute diversity) and plateau. The curve can be extrapolated

in a model to predict when the curve will plateau. However, due to the complexity of evolution and

adaptation of the microbiome these models are often inaccurate extrapolations.

In Figure 3.15 the species count does not appear to plateau in any of the groups. This shows that

there are likely to be multiple species unidentified in the samples and further sequencing would be

able to identify further species as well as increasing the number of sequences for currently identified

OTUs. Despite this it is clear that all three antibiotic treatments dramatically reduced the diversity,

the high fat diet reduces diversity and OFS increases diversity as seen in multiple other studies.

Phylogenetic distance measurements in Figure 3.15 shows a similar trend to species count. This

supports the evidence that there are likely to be multiple species unidentified. This graph also shows

that the new species identified in higher rarefied fractions of data aren’t just close relatives of highly

abundant species already identified.

The Shannon index in Figure 3.15 appears to approach a plateau for all groups. This would indicate

that the proportion of major constituents is relatively accurate as represented at the phylum level in

Figure 3.14. Furthermore this would indicate that the diversity driven by major constituents is more

competitive in the lean animals and far less in the antibiotic treated animals. This trend follows that
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a higher dosage of antibiotics is likely to be less facilitating to a diverse microbiome.

Finally in Figure 3.15 the Chao1 score supports the finding that many minority constituents of the

microbiome are likely to be undefined due to low sequence coverage of the community. Importantly

the Chao1 score shows the diversity of the minor proportional constituents is dramatically reduced

in all antibiotic treatment groups and appears to show the increase in minor constituents is more

pronounced.

In summary the antibiotic treatments cause a huge decrease of the diversity and cause a simplified

community with few species. A comparison of group D10% with L would indicate that the higher

diversity found in the group D10% group represents a large number of minor constituents and therefore

a more complex community.
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Figure 3.15: Observed species rarefaction curve. Green is the lean control group, red is the obese
control group, blue is the Gram-positive antibiotic treatment group, purple is low dose Gram-negative
antibiotic treatment group, yellow is high dose Gram-negative antibiotic treatment group and orange
is the OFS dietary supplement group.

Another approach to summarise the complexity and compare between treatment groups is principal

co-ordinate plots. This involves calculating the beta diversity, that is the distance or dissimilarity
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between each microbiome. Figure 3.16 shows a clear separation in the first principal component

between antibiotic treatment and no antibiotic treatment with the majority of the weighting shared

among popular species in the non treatment groups. The second principal component shows a dis-

tinction between the non treatment groups and is driven by a fraction of the Firmicute species. The

third principle component separates the groups with a heavier weighting on Bacteroidetes species.

Figure 3.16: This figure shows the first three principle co-ordinates plotted against each other to
demonstrate the dissociations between the treatment groups. Green is the lean control group, red is
the obese control group, blue is the Gram-positive antibiotic treatment group, purple is high dose
Gram-negative antibiotic treatment group, yellow is low dose Gram-negative antibiotic treatment
group and orange is the OFS dietary supplement group.

Aside from the drammatic reduction in diversity seen in the antibiotic treatment groups. There is a

more subtle observation in the OFS treatment group. As a control group the expectation was that

the microbiome would remain the same. Notably the OFS group have an increased representation of

Bacteroidetes and are the only group that have a consistent representation of Verrucomicrobia which

are Akkermansia muciniphila at the species level and have been considered a marker for a healthy

microbiome (Dao et al., 2015; Bland, 2016; Everard et al., 2013).
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3.4 Discussion

The hypothesis for this work was that antibiotic modulation of the microbiota would have an impact

on glycaemic control in a mouse model of T2DM. This study demonstrates that antibiotics can

have a beneficial impact on glycaemic control. Particularly, a Gram-negative antibiotic can cause a

full recovery to healthy blood glucose regulation without any notable negative implications to the

physiological systems in a mouse model of T2DM. This study is one of the first to demonstrate

antibiotics being used as a therapeutic intervention via modulation of the microbiota.

This study also showed trends towards beneficial impacts for all treatment groups, including Gram

positive antbiotics treatment, low dosage Gram negative antibiotic treatment and OFS supplements

with improvements in weight, changes in endocrine signalling pathways and remodelling of the

microbiota. These groups showed some indications of improvements towards a healthy status in

glucose, insulin and GLP-1, however, these trends were not supported by a large enough sample size

to draw any conclusions.

Host-microbiota interactions in T2DM have been clearly shown to contribute to the disease model for

T2DM as changes in the microbiome have caused drammatic changes in diagnostic markers. Turn-

baugh et al. (2009) previously showed a consistent difference in the Bacteroidetes:Firmicutes ratio

between lean and obese subjects. In the Turnbaugh et al. (2009) study they found obese subjects had

an increased representation of Firmicutes and a reduced diversity which is also observed in the obese

group and lean group in this study. Interestingly the OFS supplement also worked as a prebiotic and

increased the Bacteroidetes representation and overall diversity at the same time as increasing weight

loss. However, the antibiotic treatment shows a contradictory trend. When Firmicutes are removed,

which is the case for the majority of the A500 group there is limited evidence for improvements. Also

in the group B500 group the bacterial community is almost exclusively Firmicutes and has very little

diversity yet this is the group where we observe a recovery to healthy glycaemic control. This range

of outcomes demonstrates that the microbiota has a significant contribution in the disease model and

can be a key part of the treatment model but further studies are required to establish the low level

mechanisms of host-microbiota interactions that will improve understanding of the disease model so

treatments can be effectively designed with a clearer biological foundation.

3.4.1 Treatment model for high dosage antibiotic B treatment

Antibiotic B is a third generation cephalosporin that disrupts cell wall biosynthesis. The antibi-

otic works by inhibiting cross linking in the cell wall by binding in the place of D-alanine-D-
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alanine (Hayes & Orr, 1983). This inhibition halts cell division and interupts ongoing functions

of organelles.

Group B500 showed significant changes from the diet-induced obesity control group in glucose, in-

sulin, GLP-1, weight, body fat, triglycerides, albumin, hHBA, PYY, GIP, amylin and leptin. The most

likely mode of action for the treatment given this data is as a result of the microbiota remodelling.

The microbiota has been proposed to contribute to T2DM by increasing the capacity and efficiency

of substrate uptake from the gut, increasing the abundance of high calorie substrates, decreasing

mucosal integrity and increasing endotoxaemia, Figure 3.3. Endotoxaemia increases inflammation

and causes a shift in the metabolic status. This exaggerates low grade inflammation by increasing

Lipopolysaccharides (LPS) in the blood which is a substrate derived from the microbiota that is

higher during periods of microbiota dysbiosis (Cani et al., 2008; Muccioli et al., 2010; Cani et al.,

2009, 2007). PYY and GLP-1 are released from the mucosa and are linked to mucosal integrity.

Group B500 and group B50 showed significantly increased levels of both biomarkers compared to

other treatment groups. This may indicate that mucosal integrity was increased by the antibiotic

treatment, which in turn would have impacted positively on LPS levels. Therefore the remodelling

the microbiota the antibiotic treatment likely had a positive impact on the host diabetic status.

Group B50 shared many of the same trends except was significantly different from group B500 in

glucose, insulin, weight, body fat, triglycerides, amylin, leptin, hBHA, HDL-C, albumin and total

protein. This raises the question of why there was a difference in the dose responses. The mi-

crobiome of groups B50 and B500 are essentially identical so if the microbiome modulations was

causing improvements it should have been indiscriminant across the groups. Equally the endocrine

signalling differences thought to be responsible for increased insulin sensitivity are essentially the

same. The main differences between dose response groups are insulin sensitivity markers, weight

loss and plasma proteins.

One explanation for dose response differences is a slower recovery in the low dosage group. There

are signs that the phenotype of the low dosage group was improving. This may indicate that the low

dosage antibiotic remodelled the microbiome at a different rate, which wouldn’t have been measured

given the single sample metagenomics analysis.

Another explanation could be reduced biomass in the high dosage treatment group. If the high

dose antibiotic caused reduced total biomass the proportional measurements shown in this analysis

would not have accounted for overall biomass and this could be an important factor. . Either way

the underlying mechanisms of the treatment are likely to involve increased mucosal integrity and
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therefore lower mucosal permeability and a reduction in endotoxaemia.

Figure 3.17: Proposed treatment mechanisms for T2DM..

3.4.1.1 Treatment model proposal - Follow up studies

The microbiota is an established contributor to metabolic status through low grade inflammation.

This study shows that antibiotics treatments can cause an improvement the metabolic status of a

diabetic mouse and modulate the microbiota. However, there is still limited clarity in the exact roles

of the microbiota consituents and the host response mechanisms related to microbiota changes in

the disease model. To clarify the change of metabolic status caused by antibiotics a robust control

for healthy mice with antibiotic treatments and an OFS treatment combined with the Gram negative

antibiotic treatment would be ideal. Further, to clarify the inflammation response implied in the

microbiota treatment model a measure of LPS in the blood serum could provide a better response

curve. This proposal was suggested by reanalysing frozen serum samples although not persued by

the study sponsor GSK.

One aim of this work is to bring the empirical models of diabetes closer to the first principal models in

our understanding of the condition. The study design largely limitated analytics to binary comparison

rather than detailed modelling and limited the robustness of mechanism modelling. GSK are due to

run follow up work on this study with rat models although chose not to complete follow up analyses

on existing samples from the mouse study.

3.4.2 Treatments for type II diabetes mellitus

The most common treatments for T2DM aim to reduce spikes in blood glucose often by giving in-

sulin supplements that increase glucose uptake by bodily tissues. Some treatments also aim to reduce
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internal glucose release and increase internal insulin release; sulfonylureas and meglitinides thera-

pies can be used to increase beta cell insulin secretion, metformin and biguanides inhibit hepatic

glucose output and pramlintide and other amylin analogues slow digestion of carbohydrates by slow-

ing gastric emptying. These treatments are well established therapies for managing the relatively

short term symptoms of T2DM. Recently a series of therapies have also been approved that tar-

get insulin sensitivity. GLP-1 analogues such as exendin-4 increase insulin sensitivity which results

in increased insulin release and increased amylin release for slower gastric emptying and reduced

glucagon release as well as lowering of the hyperglycaemic threshold. Related drugs also inhibit the

GLP-1 degradation enzyme DPP-4 to increase the GLP-1 half life.

Treatments for T2DM have improved over the last decade, however, pharmaceutical interventions

remain mostly focused on endocrine mimicry in the direct glucose feedback loop. In contrast to

pharmaceutical interventions, lifestyle interventions, such as dieting and exercise, are also commonly

adopted to treat T2DM symptoms (Taylor, 2013). There is a major challenge in understanding how

lifestyle changes are impacting recovery and how lifestyle changes impact on the efficacy of phar-

maceutical treatments. This study shows that antibiotic interventions are capable of modifying the

insulin sensitivity of a diet induced T2DM mouse model outside of the primary pharmaceutical tar-

gets. This demonstrates a target that would be complementary to established treatments and could

progress the scientific basis of lifestyle interventions.

3.4.2.1 Microbiota manipulation as a new therapeutic intervention

Microbiome modulation has been studies by four major approaches; probiotics, prebiotics, mixed

microbial transplantations, dietary interventions. This study is one of the first studies to target mi-

crobiota manipulation using antibiotics as a potential disease treatment.

This chapter clearly shows microbiota-targeted antibiotic interventions are an underexploited thera-

peutic strategy. With a more detailed understanding of the microbial communities involved in disease

it is conceivable that antibiotics could be a valuable addition to the pharmaceutical options for T2DM

and therapeutic strategies involving microbiota targeted treatments are a realistic possibility for mul-

tiple chronic diseases. However, there are major limitation in translational microbiome studies from

mouse microbiota as the gut and inflammatory system is not equal to that of a human. Also it is not

clear how long the beneficial effects would last after the antibiotic treatment period or after resistance

had evolved in microbiota communities. Furthermore modification of the microbiota may leave the

patient susceptible to other diseases and conditions. To address these issues and progress towards an
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acurate microbiota disease model that would be reliable enough for designing therapeutic strategies,

a deeper understanding of the mechanisms underlying host-microbiota interactions is required.

In this chapter I have shown the beneficial effects of anitbiotics modulation of the microbiome and

generated a basic disease model involving the microbiota. To develop the disease model to under-

stand the mechanisms of host-microbiota interactions it is crucial to understand what is happening at

the mucusal interface which would enable a more precise definition of a disease model and therefore

a solid basis for systematic therapuetic interventions.



Chapter 4

Protein and Peptide Associated Glycan

Metabolism in the Gut Microbiota

4.1 Introduction

Glycans, glycosidically linked monosaccharide compounds, are large complex molecules that form

a major energy source for the gut microbiota and are critical in establishing and maintaining healthy

host-microbiota interactions (Koropatkin et al., 2012; Kaoutari et al., 2013; Tailford et al., 2015).

Many gut bacteria are adept at foraging glycans so the availability of particular glycan substrates and

metabolites in the gut plays an important role in shaping the biodiversity of the microbiota (Pudlo

et al., 2015a; den Besten et al., 2013; Pokusaeva et al., 2011; Garrido et al., 2011; Salyers et al.,

1977).

Protein and peptide associated glycans are an emerging area of interest due to their complex metabolism

and their proposed role in microbial food chains, niche microhabitats and the biogeography of the

gut microbiota (Costello et al., 2009; Donaldson et al., 2016; Zhang et al., 2014). Genomics data

has provided many insights into the mechanisms involved in processing glycans in the gut through

carbohydrate targetting enzymes (cazymes) and polysaccharide utilisation locus (PUL)s which coor-

dinate the systematic digestion of glycans (Tailford et al., 2015; Kaoutari et al., 2013). A recent addi-

tion to this understanding emerged from a series of studies that identified three proteases with CBMs

that target mucin (Nakjang, 2011; Nakjang et al., 2012; Ndeh, 2013; Navarro-Garcia et al., 2010).

These were the first proteases identified with a CBM configuration typically found in cazymes. These

studies also suggest that there could be a range of proteases, similar to the ones that were charac-

terised, that can cleave the core peptides and therefore change the model of protein and peptide

63
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associated glycan metabolism by breaking down the macromolecular structure instead of digesting

the side chains in series and have a broad impact on host-microbiota interactions. The purpose of this

chapter is to explore abundance and diversity of proteases targeting protein and peptide associated

glycans in metagenomics data and evaluate the scope for metagenomics data to provide a compre-

hensive view of host-microbiota interactions that could be used to design therapeutic strategies and

relate single gene research into microbiome level disease models.

4.1.1 Glycans in the gut microbiota

There are three sources of glycans in the gut; diet derived, microbiota derived and host derived. Each

type plays a key role in maintaining gut physiology and each type has different characteristics that

can provide selective pressures for specific niches (Koropatkin et al., 2012). Over time glycan avail-

ability fluctuates and forms one of the environmental challenges that can disturb the microbiota. The

biodiversity impact of glycans is largely a balance of short term adaptations to glycans in the lumen

mainly originating from the diet and long term adaptation to microhabitats such as on mucosal sur-

faces where the majority of glycans are host derived (De Filippo et al., 2010; den Besten et al., 2013;

Walter & Ley, 2011; Zhang et al., 2014). These microhabitats are thought to lay the foundations for

microbial food chains and provide longevity to microbiota communities.

Dietary glycans make up a large proportion of the microbiota energy source and are highly available.

Many glycans are indigestible by human enzymes and can therefore be found in high concentrations

in the gut lumen (den Besten et al., 2013). Typically these glycans constitute N-linked glycosylated

structures from plant sources and O-linked glycosylated structures from animal sources. Early studies

recognised the role of the microbiota in producing the vast array of enzymes required to breakdown

the complex dietary glycans into useful substrates for the host (McNeil, 1984). Research has since

developed in this area and the diverse roles of cazymes in glycan metabolism and short chain fatty

acid production is a highly active and expanding field of research, as demonstrated by the growth

of CAZy as one of the most cited databases in bioinformatics literature (den Besten et al., 2013;

Lombard et al., 2014; Cantarel et al., 2009; Terrapon et al., 2015).

Microbiota derived glycans mainly consist of peptidogylcans from the cell wall. Peptidoglycans form

90% of the dry weight of Gram positive bacteria and 10% of the dry weight of Gram negative bacte-

ria. They are made up of alternating amino sugar units of N-acetylglucosamine and N-acylmuramic

acid cross linked with short peptides (Brown et al., 2015). The regular alternating patterns provide a

rigid three dimensional crystal lattice. Cell wall synthesis and degradation can be considered as part
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of cell division, a competition mechanism and as food source foraging. Peptidoglycan synthesis and

degradation in the cell cycle and peptidoglycan degradation as a competition mechanism are areas of

research with a long history related to the development of antimicrobial compounds (Aminov, 2010).

However, metagenomics has only recently been used to search for novel compounds relating to pep-

tidoglycan degradation (de Castro et al., 2014) and, as far as I am aware, within microbiome research

there are only studies investigating antibiotic resistance in this area (Penders et al., 2013; Bengtsson-

Palme et al., 2015). Peptidoglycan degradation for food source foraging has shown bacteria can

target fungal glycoproteins as a key food source (Temple et al., 2017). However, no studies have

investigated the range of bacterial enzymes for foraging bacterial peptidoglycans in metagenomics

studies.

Host derived glycans in the gut mainly consist of mucins and other mucosal secretions. 80% of

mucin mass is from glycosylated side chains that are attached to a peptide core by O-linked glycosy-

lation (Tailford et al., 2015). The glycan biomass in mucins also contributes to the macromolecular

structure of the mucus bilayer which protects the epithelium and is an essential factor in maintaining

a healthy gut physiology. Mucins are a dense molecular energy source that facilitates microbiota

colonisation in the early stages of life and provides a stable energy source through fast and feast cy-

cles (Mueller et al., 2015). Mucins are one of the key drivers behind the symbiotic host-microbiota

relationship and when the host-microbiota interactions breakdown at this interface multiple disease

mechanisms can be triggered (Everard et al., 2013).

4.1.2 Glycan metabolism

The capacity for polysaccharide metabolism in the human genome comprises a total of 17 glyco-

syl hydrolase genes (Kaoutari et al., 2013). Some microbiota organisms alone encodes hundreds of

cazymes and the microbiome in total encodes thousands of genes for polysaccharide metabolism (Kaoutari

et al., 2013; Lombard et al., 2014). The microbiota also represents a dynamic system that is adapt-

able to its environment through gene regulation and sub community population size fluctuations. The

result of this dynamic adaptability is that the diversity of mechanisms for glycan metabolism is broad

and central to microbiota ecology.

Bacteroidetes is by far the most representative Gram negative phylum in the gut (Qin et al., 2012)

and has a well characterised strategy for glycan foraging (Koropatkin et al., 2012). Bacteroidetes

employ PULs, clusters of carbohydrate active molecules that work together, to target classes of gly-

cans. Typically a PUL is co-regulated and coordinates the capture, transport and degradation of
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glycan substrates from extracellular space to the intramembranous space to be metabolised before

monosaccharides are imported into the cytoplasm (Koropatkin et al., 2012).

Bacteroides thetaiotaomicron (BT) is a particularly well studied Bacteroidetes organism that encodes

88 PULs which comprise 18% of its genome (Terrapon et al., 2015). BT is an example of a ’gen-

eralist’ that can degrade both diet derived and host derived glycans through selective activation of

multiple PULs. BT was first studied as the host of the starch utilisation system (Sus) which is an 8

gene cluster that targets starch and was the first PUL discovered before many more Sus-like systems

were characterised (Chaudet & Rose, 2016).

PULs have multiple characteristic markers that make them identifiable in genomics data (Terrapon

et al., 2015). Noteably, they contain a set of genes that are physically linked, including adjacent susC-

like and susD-like binding proteins as well as cazymes and often regulatory genes on the opposite

DNA strand that mark the bounds of the PUL. Carbohydrate active enzymes are obviously critical to

PULs although their position within the PUL can vary to facilitate flexibility of regulation. Research

into the function of cazymes is stored in CAZy and has rapidly become one of the most valued re-

sources summarising glycoside hydrolases, glycosyltransferases, polysaccharide lyases carbohydrate

esterases and carbohydrate binding domains.

Hundreds of PULs have been identified in the microbiome and their mechanisms are central to sur-

vival (Tailford et al., 2015). Importantly though there is a high metabolic investment required for

producing glycan degrading enzymes and often microbes have a preference for specific substrates.

Some ’generalists’ are capable of metabolising multiple glycans and can choose their preferred sub-

strate whereas other ’specialists’ target only specific glycans. Many microbial species and com-

munities contribute to this system of selective specificity and can form spatial glycan microhabi-

tats (Pokusaeva et al., 2011; Garrido et al., 2011; Salyers et al., 1977). Furthermore, it has been

suggested that microhabitats at the interface of host-microbiota interactions are central to mucosal

health. Some species, for example Akkermansia muciniphila (Everard et al., 2013), are known to

digest glycans and have been identified as biomarkers of a healthy microbiota due to their inferred

role in maintaining microbial food chains. They can also be used as an indicator of mucosal health

and permeability. However, the mechanisms of glycan metabolism that distinguish these healthy

microhabitats and health related species remains unclear.
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4.1.3 The role of proteases in protein and peptide associated glycan metabolism

Protein and peptide associated glycans are particularly complex molecules that incorporate complex-

ity in their macromolecular structure as a mechanism of generating a stable macromolecule. Due

to this macromolecular complexity often only highly specific enzymes can degrade them and these

enzymes have mainly been studied through genes identified in isolated strains. A working hypothesis

is that due to the central role of protein and peptide associated glycan in host-microbiota interactions

a broad range of specific enzymes, exemplified by the PF13402 sequences studied by Nakjang et al.

(2012), are able to effectively break down the macromolecular structure of protein and peptide asso-

ciated glycans of various sources including host, microbiota and diet. This study attempts to identify

protein and peptide associated glycan targeting protease diversity in metagenomics data.

Mucus is an example protein associated glycan that is highly available in the gut. The molecular

structure of mucus is a mesh of mucin molecules, Figure 4.1, which are mainly produced by goblet

cells in the epithelium. Mucins come in four varieties in the gut; MUC1, MUC4, MUC2 and MUC5b

with MUC 2 being the most prominent (Allen & Pearson, 2000; Pearson & Brownlee, 2010). The

mucin molecules are attached to each other by di-sulphide bridges formed between the cysteine rich

area at the ends of each core peptide and share gel forming regions due to hydrophobicity in the

glycosylated side chains. Some MUC 1 and MUC4 molecules are also have transmembrane domains

attached to the mucosa. All mucins are configured with a protein core and multiple glycosylated

side chains where the density of the side chains is highest in the middle of the protein core although

composition of mucin molecules can vary both in the chemistry at the core O-glycosylation links

and peripheral units of the glycosylated side chains and physically in the configuration and density

of side chains and polymerisation (Hanisch, 2001; Tailford et al., 2015).

BT is an example of a species that can target mucins and carries 18 PULs that are upregulated in

the presence of mucus (Pudlo et al., 2015b). Mucus metabolism can be considered in three sections;

reduction of the disulphide bonds, digestion of the side chains and cleaving of the protein core. Re-

duction of the disulphide bonds can be caused by multiple factors and modern diets regularly lead to

increased reducing agents in the gut and an increase in specific sulphate-reducing bacteria (Rey et al.,

2013). Digestion of the glycosylated side chains can further be split into at least three enzymatic jobs.

Selective removal the peripheral unit from the epitope layer, digestion of the glycosylated backbone

and removal of the O-linked GalNac attached to the peptide core (Tailford et al., 2015). Most PULs

active to mucins are adept at systematically digesting side chains, however, the terminal unit can

require specific enzymes. Until recently the peptide core was considered to be cleaved last due to it
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being protected by the dense glycosylation. Studies by Ndeh (2013) have now shown BT can access

and cleave the protein core before the mucin has been fully degraded with a specific combination of

CBMs in the gene configuration. This new model for mucus digestion is a shift in understanding of

how the macromolecular structure of mucus is metabolised. However, currently there are only few

example of such protease genes.

Figure 4.1: Molecular structure of mucin on the right showing the three regions of the glycosylated
side chains and the corresponding macromolecular structure of mucus on the left showing the mesh
structure created by the disulphide bonds.

4.1.4 M60-like zinc metalloprotease

The M60-like zinc metalloprotease (PF13402) is an enzyme that was initially identified through the

process of annotating Trichomonas vaginalis (Hirt et al., 2011). The T. vaginalis gene was initially

uncharacterised although through a process of BLAST alignment and subsequent profile searches

homologue were consistently found in the context of mucosal associated bacteria. Through a process

of phylogenetic analyses, domain searches and laboratory experiments the functional characteris-

tics of a select few examples of the protease were determined as well as the specificity for mucin

degradation when associated with CBMs (Nakjang, 2011; Nakjang et al., 2012; Ndeh, 2013).

Of particular interest to mucus metabolism there are instances of the M60-like zinc metalloprotease

enzyme that pair with CBMs (CBM51 or CBM37). This combination is proposed to allow the

enzyme to bind to GalNac glycosidic bonds between the glycosylated side chain and mucin peptide

core which brings the protease within reach of the peptide core. The endopeptidase protease is then

http://pfam.xfam.org/family/PF13402
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able to cleave protein core of mucin and breakdown the macromolecular structure. The gene is also

found with other CBMs configurations that are proposed to allow it to bind variants of glycosidic

side chain bonds of mucins and other glycoproteins.

The original study by Nakjang et al. (2012) investigated the gene copy number per strain of the

mucinase genes in genomics data highlighting the higher copy numbers of the gene in strains isolated

from the gut showing a specific adaptation. This was one of the first studies to show a protease with

a CBM domain as a specific adaptation for mucus metabolism. A further studies by Ndeh (2013)

demonstrated a competitive advantage for BT4255 through this specific adaptation. This study takes

a similar approach to using gene occurence and configuration data on a broader scale to explore

specific adaptations to microbiota ecology that are central to host-microbiota interactions.

4.1.5 Hypothesis

Microhabitats in the gut are critical to understanding the host-microbiota and microbiota-microbiota

interactions. This study investigates the occurrence of bacterial proteases in metagenomics datasets

particularly focusing on proteases with specific adaptations to target protein and peptide associated

glycans that are thought to form the basis for microhabitats as exemplified by sequences found using

PF13402. This study analyses of the presence, diversity, and frequency of CBMs on putative protease

genes to identify a series of candidate proteases targeting protein and peptide associayed glycan

metabolism.

The hypothesis for this chapter is that a broad range of (uncharacterised) proteases pair with CBMs

to target protein and peptide associated glycans.

http://pfam.xfam.org/family/PF13402
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4.2 Methods

The analyses covered in this chapter explore the protease complement of metagenomics datasets, with

a focus on proteases targeting protein and peptide associated glycans. Initially, following methods

in Section 4.2.2, a protein family (PF13402) containing a recently characterised mucin targeting

protease is searched for using profile and local alignment search algorithms to establish the natural

gene frequency and diversity across healthy individuals. Figure 4.2 summarises the data sources and

three step analysis pipeline which is described in detail through the methods section. Step 1 following

methods in Section 4.2.3, the entire MEROPS collection of protease signatures is then searched for in

the set of predicted genes from metagenomics datasets to identify the frequency and diversity of all

putative protease genes from the MEROPS database in the microbiome. Step 2, following methods in

Section 4.2.3, the predicted genes containing hits from the MEROPS database are then used to search

for CBMs from the dbCAN database. The outcome is a list of all MEROPS proteases with a CBM

domain and a matrix of CBM-protease pair occurrences. Step 3, these final CBM-protease genes of

interest are then annotated with gene domain configuration, number of known hits, number of known

distinct genes encoding this configuration and known annotations for taxonomy and function.

BGI	Non-redundant	
gene	set

MEROPS
Pepunits

BLAST

ORF	
prediction	

ORF	
prediction	
ORF	

prediction	
ORF	

prediction	
ORF	

prediction	
GenesGenesGenesGenesGenesGenesGenesGenes

ORF	
prediction	
ORF	

prediction	
ORF	

prediction	
ORF	

prediction	

GenesGenesGenesGenesGenesGenesGenesContigs
GenesGenesGenesGenesGenesGenesGenesIllumina	

sequence	reads	

ORF	
prediction	
ORF	

prediction	
ORF	

prediction	
ORF	

prediction	
ORF	

prediction	Assembly

Genes

ORF	
prediction	
ORF	

prediction	
ORF	

prediction	
ORF	

prediction	
ORF	

prediction	
ORF	

prediction	
ORF	

prediction	

GenesGenesGenesGenesGenesGenesGenesGenes

GenesGenesGenesGenesGenesGenesGenesPutative	
proteases	

GenesGenesGenesGenesGenesGenesGenes
Putative	
CBM-

proteases	

cdCAN
CBM	domains

HMMER

CBM-protease	matrix

Non-redundant	gene	
set

CBM-protease		non	redundant	
gene	set

Processing	script

BLAST

NCBI	-NR

BLAST

CBM-protease		taxonomy	
analysis	

CBM-protease		functional	
analysis	

CD-
HIT

[Qin et al 2010]

ST
EP

 
1

ST
EP

 
2

STEP 
3

Figure 4.2: The analysis pipeline shows main analysis steps in extracting and annotating the CBM-
protease pairs as well as the analysis pipeline from the Qin et al. (2010) study that generated the
input data for this study and the gene catalog that is used in stage 3 of the analyses. Squares represent
flat files in the anlaysis pipeline. Diamonds represent processes and cylinders represent databases.
Shaded files represent results files that are available to download on the project webpage. Arrows
show the flow data through the process steps and intermediary files.

All code is linked from the text and hosted in the publicly accessible repository linked below. All re-

http://pfam.xfam.org/family/PF13402
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sults files are hosted at the project webpages also linked below and all intermediary files are available

on request.

http://github.com/mcollison/CBM-protease-analyses

http://homepages.cs.ncl.ac.uk/matthew.collison/research/CBM-protease-pairs

4.2.1 Metagenomics data source

Metagenomics datasets of the gut microbiome from faecal samples of 85 healthy subjects were

taken from the Qin et al. (2010) as assembled contigs as shown in Figure 4.2. This data was cho-

sen as one of the largest cohort metagenomics studies at the time of analysis and has been used

as a benchmark dataset in many studies since. The data was downloaded as assembled contigs

from a web server hosted at EMBL http://www.bork.embl.de/~arumugam/Qin_et_

al_2010/. The original experiment used the Illumina-GA platform for sequencing and SOAP-

denovo (Li et al., 2009) with parameters -m 3 for assembly. For full experimental methods see the

primary publication Qin et al. (2010).

4.2.2 PF13402: M60-like zinc metalloprotease analyses

PF13402 otherwise known as M60-like zinc metalloprotease was identified as a protease family of

interest. Fasta formatted sequences for PF13402 were extracted on 22 May 2013 from the PFAM

entry PF13402, http://pfam.xfam.org/family/PF13402. Full sequences from the 75%

representative proteome were extracted constituting 129 sequences in a fasta format. The sequences

were used with both BLAST and HMMER to search for homologs in the metagenomics data.

Firstly, the PF13402 alignment extracted from PFAM was used to generate a HMM profile using

HMMER version 3.1b1 for 64 bit Linux. This profile was then used to search the metagenome con-

tigs again using HMMER. BLAST was initially run against the metagenome contigs and Prodigal

predicted genes separately. The results showed the same number of hits for the BLAST searches on

the Prodigal predicted genes and contigs although the Prodigal predicted genes computed substan-

tially faster and allowed the complete genes to be extracted. Therefore Prodigal genes were used as

targets for all BLAST results shown in this chapter. BLAST and HMMER hits were filtered at an e

value of 0.01, as justified in results Figure 4.3.

The BLAST and HMMER results were parsed, integrated with the metagenomics metadata and

output into csv files using custom Java scripts. A spreadsheet was then sorted and visualised as

heatmaps using Microsoft Excel.

https://github.com/mcollison/CBM-protease-analyses
http://homepages.cs.ncl.ac.uk/matthew.collison/research/CBM-protease-pairs
http://www.bork.embl.de/~arumugam/Qin_et_al_2010/
http://www.bork.embl.de/~arumugam/Qin_et_al_2010/
http://pfam.xfam.org/family/PF13402
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4.2.3 Protein and peptide associated glycan targeting proteases

This study aims to identify proteases targeting protein and peptide associated glycans in metage-

nomics studies through a 3 step process.

Step 1: Identifying all putative proteases in the gut microbiome metagenomics samples

metaProdigal version 2.0 (Hyatt et al., 2012) was used to predict genes from the 85 metage-

nomics datasets described in Sections 4.2.1. A bash script was used to coordinate this process

on a local HPC server. The result was a library of predicted genes for each metagenome from

85 healthy individuals.

MEROPS (Rawlings et al., 2008) is a manually curated database for protease genes with entries

clustered by clan and by functional family. The database was downloaded in the pep-unit

format which lists the active domain of each protease gene in the database. Pep-units were

selected for their specificity to reduce false positive hits in alignment searches. These pep-

units were used as query sequences to search the libraries of Prodigal predicted genes from the

metagenomics datasets. BLAST version 2.2.2 (Altschul et al., 1990) was used to achieve this

and a bash script coordinated the analyses to firstly convert the predicted genes into a BLAST

database using formatdb and then produce the BLAST report summarising the BLAST hits for

each MEROPS pep-unit in each metagenome. The results were parsed with a Java program

to extract only the top hit for each predicted gene with an e-value less than 0.01 and produce

a refined table of filtered BLAST results. The filtered results were then processed the with

another Java program to extract and write fasta sequences to file for all of the putative proteases

in each of the 85 metagenomes.

Finally a Java program was used to generate a summary csv matrix of each MEROPS en-

try with a hit documenting the MEROPS ID, the clan ID, the family ID, the corresponding

MEROPS description and the number of hits per metagenome. This table was then manipu-

lated as a spreadsheet using Microsoft Excel to group MEROPS families and clans in a master

matrix which provides the data for the results section 4.3.2.

Step 2: Identifying CBM domains on putative proteases.

dbCAN (Yin et al., 2012) is a database of profiles for carbohydrate active molecules, largely

replicating CAZy, that contains sequence data and profiles for each carbohydrate active do-

main. Using HMMER version 3.1 (Eddy, 2011) and the hmmpress command, the profiles for

carbohydrate active molecules were converted from dbCAN release 4 into HMMER formatted

http://prodigal.ornl.gov/
https://github.com/mcollison/CBM-protease-scripts/tree/master/prodigal/metaHIT_prodigal_merops_blast.sh
https://blast.ncbi.nlm.nih.gov/
https://github.com/mcollison/CBM-protease-scripts/tree/master/merops-blast/MHXXXX-merops-blast.sh
https://github.com/mcollison/CBM-protease-analyses/tree/master/src/main/java/uk/ac/ncl/ssip/utility/BlastFilter.java
https://github.com/mcollison/CBM-protease-analyses/tree/master/src/main/java/uk/ac/ncl/ssip/utility/ExtractMeropsFasta.java
https://github.com/mcollison/CBM-protease-analyses/tree/master/src/main/java/uk/ac/ncl/ssip/utility/MeropsMgOccurenceMatrix.java
http://homepages.cs.ncl.ac.uk/matthew.collison/research/cbm-protease-pairs/results/merops-family-hit-table.csv
http://homepages.cs.ncl.ac.uk/matthew.collison/research/cbm-protease-pairs/results/merops-family-hit-table.xlsx
http://homepages.cs.ncl.ac.uk/matthew.collison/research/cbm-protease-pairs/results/merops-family-hit-table.xlsx
http://hmmer.org/
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profiles. These profiles were then used in a bash script to search for signatures of carbohydrate

active molecules within the set of putative proteases identified in step 1. The HMMER results

reports for each metagenome were then converted into dbCAN HMMER hit tables using a

another bash script with criteria of the alignment being over 80 amino acids, and e-value of

less than 1e-5, otherwise use e-value less than 1e-3 and check the covered fraction of HMM

profile is over 30%.

Next a Java program was developed to use data from the dbCAN HMMER hit tables and the

filtered BLAST hit tables to extract each putative protease sequences that contained a CBM.

This is the first point that fasta sequences were grouped into files based on the MEROPS

family of the protease rather than the metagenomics dataset in which they originated. Also

in this step the results were filtered specifically for CBM domains as opposed to including all

dbCAN domains.

One artefact of identifying all sequences with a CBM and a MEROPS ID was that sequences

with multiple CBMs were recorded multiple time. This redundancy was removed using a small

Java program to produce non-replicated fasta results. Annotation details were then added to the

fasta files using this Java program to pull coordinates for the CBM domains from the dbCAN

hit tables and proteases domains from the filtered BLAST hit tables. The results were a list of

all of the annotated fasta sequences for all MEROPS proteases with a CBM. Note all dbCAN

domains (including glycoside hydrolases GH, glycosyltransferases GT, polysaccharide lyases

PL and carbohydrate-esterases CE) have been annotated in these fasta files when they are

present on a sequence that contains a CBM.

Finally a Java program was developed to take data from the dbCAN HMMER hit tables along

with the filtered MEROPS BLAST hit tables and record all of the individual occurrences of a

CBM and with a MEROPS proteases in each metagenome and wrote them to two column

csv files. Another Java program was then used to combine this occurrence data for each

metagenome into a master hit matrix. Microsoft Excel to was used to calculate the matrix

at the family level which is shown in the results section 4.3.3.

Step 3: Annotating gene configurations, gene function and taxonomy.

The annotated list of all predicted protease genes with a CBM domain identified in the metage-

nomics datasets contains homologs and partial genes. To remove this redundancy and map

partial genes to complete gene BLAST version 2.2.2 (Altschul et al., 1990) was used to con-

vert the BGI non-redundant gene library into a BLAST database and compute alignments to

https://github.com/mcollison/CBM-protease-scripts/tree/master/dbCAN/MHXXXX-dbCAN-HMM.sh
https://github.com/mcollison/CBM-protease-scripts/tree/master/dbCAN/MHXXXX-dbCAN-parser.sh
https://github.com/mcollison/CBM-protease-analyses/tree/master/src/main/java/uk/ac/ncl/ssip/utility/ExtractCbmProteaseFasta.java
https://github.com/mcollison/CBM-protease-analyses/tree/master/src/main/java/uk/ac/ncl/ssip/utility/RedundancyRemover.java
https://github.com/mcollison/CBM-protease-analyses/tree/master/src/main/java/uk/ac/ncl/ssip/utility/RedundancyRemover.java
https://github.com/mcollison/CBM-protease-analyses/tree/master/src/main/java/uk/ac/ncl/ssip/utility/AddFastaAnnotations.java
https://github.com/mcollison/CBM-protease-analyses/tree/master/src/main/java/uk/ac/ncl/ssip/utility/ExtractCbmMeropsPairs.java
https://github.com/mcollison/CBM-protease-analyses/tree/master/src/main/java/uk/ac/ncl/ssip/utility/MeropsCbmMatrixGenerator.java
http://homepages.cs.ncl.ac.uk/matthew.collison/research/cbm-protease-pairs/results/merops-cbm-matrix.csv
http://homepages.cs.ncl.ac.uk/matthew.collison/research/cbm-protease-pairs/results/merops-cbm-matrix.xlsx
http://homepages.cs.ncl.ac.uk/matthew.collison/research/cbm-protease-pairs/results/merops-cbm-matrix.xlsx
https://blast.ncbi.nlm.nih.gov/
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the fasta sequences extracted from the metagenomics data. The resulting BLAST tables map

metagenomics genes to the gene catalogue genes.

These BLAST results tables from step 3a were then combined with the annotations from fasta

sequences generated in step 2c using a Java program to create a master table for each MEROPS

family. Note there was a threshold of over 95% coverage for the BLAST results to be included.

For each MEROPS family three pieces of information were included in the master table along

with the number of occurrences of each and a spread of occurrences across the metagenomics

data; the MEROPS family, all CBM gene configurations that have been observed with that

protease family, and the gene catalogue entries that represent each gene configuration. The

total number of occurrences and the number of distinct genes from the gene catalogue was

recorded for each gene configuration, in files labelled v1 and included in Appendix 6.2, and

the full spread of occurrences across the metagenomics samples were recorded in files labelled

v2. These files were then modified and concatenated to produce results figures using Microsoft

Excel.

Finally another BLAST alignment was run with the fasta sequences extracted from the metage-

nomics data against NCBI-NR and the BLAST results were processed using a Java program

to produce annotation files mapping each putative protease to the gene catalogue gene and

any known gene in NCBI NR so each gene taxonomic origin and molecular function could be

found.

https://github.com/mcollison/CBM-protease-analyses/tree/master/src/main/java/uk/ac/ncl/ssip/utility/GeneConfigCsv.java
https://github.com/mcollison/CBM-protease-analyses/tree/master/src/main/java/uk/ac/ncl/ssip/utility/MapGenes2Catalog2Taxonomy.java
http://homepages.cs.ncl.ac.uk/matthew.collison/research/cbm-protease-pairs/results/cbm-protease-annotations/
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4.3 Results

The following results explore the protease complement of the gut microbiome in faecal metage-

nomics datasets from 85 healthy individuals, focusing on proteases targeting protein and peptide

associated glycans. Initially the frequency and diversity of the protein family PF13402, known to in-

clude a mucin targeting protease gene, was analysed. Then the frequency of occurrence of the entire

MEROPS gene set was analysed. Finally CBM profiles were used to identify predicted proteases that

bind glycans. These protease-CBM pairs were then grouped into functional families and analysed as

genes of interest.

4.3.1 PF13402: M60-like zinc metalloprotease

Figure 4.3 shows the frequency distribution of e values for non-redundant BLAST hits. 0.01 was

selected as a threshold that would maximise the true positives, potentially at the cost of including

false positives, to maximise the possibility of novel gene discovery in subsequent steps of analysis

and to account for the divergent evolution of genes in the microbiome environment.

Figure 4.3: Frequency plot showing the frequency of e-value scores for PF13402 BLAST alignments
against predicted genes from metagenomes. Data was binned at 10 fold intervals and the axis shows
the upper bound of the bin. For example a BLAST hit with e-value of 0.005 would be included in
frequency score for the 0.01 bin. A threshold of 0.01 was selected, as shown by the dashed line, to
retain as many true positives as reasonably possible.

The results show an average of 11.8 and 10.5 hits for PF13402 per microbiome for BLAST and HM-

MER respectively, with a standard deviation of 8.8 and 9.5, a maximum of 40 hits per microbiome

and a distribution skewed towards zero, Figure 4.4B. The correlation between HMMER and BLAST

is shown to be high with a Pearson’s coefficient of 0.99, Figure 4.4C. This correlation shows that,

within the constraints of the cutoff threshold for filtering hits and given use of the same sequences

to produce the HMMER profile as used for BLAST searches, both alignment algorithms captured

similar diversity of the PF13402 gene indicating very few, if any, more divergent examples of this
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gene were identified by HMMER that weren’t included in the BLAST search results.

Figure 4.4: BLAST and HMMER hit counts across the metagenomes of 85 healthy individuals for
129 (58 of which had hits) M60-like zinc metalloprotease (PF13402) sequences. A) shows BLAST
hits in a heat map for individual sequences. The PF13402 genes are sorted by the most popular left
to right and the microbiomes are ordered by those with the most overall hits. B) shows the frequency
distribution of the total number hits per metagenome with values binned into multiples of 5. For
example the first data point shows the number of metagenomes with less than 5 hits. C) shows the
correlation between number of hits found using BLAST searches and HMMER searches.

The majority of BLAST hits are spread across 13 sequences, as shown in Figure 4.4A. The maxi-

mum number of hits in a microbiome per individual gene is 7. This shows it is more common for

multiple variants of the gene to be encoded, probably encoded by different species, within the same

microbiome rather than high numbers of the same species.

One of the most surprising outcomes of these results is the limited number of hits per microbiome.

Given the copy number defined in the previous study (Nakjang et al., 2012), up to 15 copies per

genome, and the abundance and variety of strains thought to carry this gene it would be reasonable

to expect the metagenmomics sample of the entire microbiome to contain substantially more copies

of this gene. Clearly the metagenomics method represents a sampling technique (Zoetendal et al.,

2002) and sequencing technique (Nayfach & Pollard, 2015) that are incomplete and by their nature
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although this finding is a clear indication that the fraction represented is minimal and variable. One

way to distinguish sampling and sequencing biases is comparing the number of proteases identified

against the sequencing coverage.

Sequencing coverage, as calculated by the amount of sequence reads multiplied by average sequence

read length, and the number of PF13402 hits showed no correlation (r=0.11), Figure 4.5A. This result

suggests further sequencing would not have uncovered more PF13402 hits. There could be multiple

reasons for lower representation of PF13402 genes including sample collection, DNA extraction,

DNA isolation, DNA sequencing and biases in genomic strain sampling and sequencing.

Despite the low numbers of hits there were multiple notably correlations between PF13402 genes in-

cluding higher correlations between genes of separate species than within species, Figure 4.5B. The

five most common genes showed a high and roughly equal representation in the top 30 individuals

and a broad reduction in hits in the remaining subjects. Interestingly, notable genes from Akkerman-

sia (AKKM8) B2UP41_AKKM8, B2UPI7_AKKM8, B2ULE8_AKKM8 and B2UQK5_AKKM8

showed some correlation but not to the same extent as the most highly scoring five genes that were

from different species. This difference in correlation scores could be partially due to correlation

metric showing a bias towards higher numbers although the trend seems to persist beyond this lim-

itation. Likely the PF13402 genes are part of the pan genome so not equally represented across all

Akkermansia strains. The implication being a microbiome having a high number of one Akkermansia

muciniphilia PF13402 gene does not indicate it will contain a proportional number of the others. As-

suming these genes are important or typical of mechanisms for establishing a microhabitat, this also

highlights a limitation in the use of Akkermansia as a biomarker (Everard et al., 2013; Roopchand

et al., 2015).

Interestingly the genes D3EB52_GEOS4 and F9YU00_CAPCC showed an equal spread throughout

the metagenomes. In contrast to the highly correlating genes discussed above, these genes would

suggest an independent function of the most correlated genes. This poses the question why are the

correlated genes captured in some samples and not others.

Publications accompanying large datasets often use rarefaction analysis to demonstrate a significant

level of coverage has been achieved in each study. The implication is that if we were to take a

first principles approach we can estimate the average genome size and the biomass in the gut to

determine the fraction of the microbiome accounted for when the rarefaction curve plateaus and the

imply that the remaining gene functions and taxonomy is redundant. Often this analysis is used to

demonstrate that the rate at which new species or new genes are being observed and the rate at which

the proportions of species or genes is changing has plateaued and therefore additional data would
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Figure 4.5: PF13402 correlation data. A) shows sequence coverage vs number of hits per microbiome
for PF13402 HMMER search. B) shows the correlation between the top 13 PF13402 sequences. The
remaining sequences had too few hits for any intuitive correlation statistics.

not have any implication on the outcome of the data. However, as shown in the Figure 2.5 from the

introduction, high level gene functions are conserved across species common in the microbiome so

an early plateau occurs in most diversity metrics for whole microbiome diversity. Additionally we

know some of the most physiologically important species are embedded in mucus layers so may be

sampled at a different rate, Figure 4.5. This result indicates sampling low level functional diversity

(single gene families) does not give an accurate representation of the overall community and current

methods of metagenomics analyses only really support robust statistical analysis for more common

genes and often those with house keeping functions.

4.3.2 MEROPS protease database

The MEROPS database is a manually curated resource dedicated to proteases (Rawlings et al., 2016,

2008). Searching for MEROPS proteases in metagenomic data will give an indication as to what

proteases are prevalent and an indication of what functions are important in the gut.

There were 611,948 hits for 59,193 MEROPS entries across the microbiomes of 85 healthy indi-

viduals. Each microbiome had an average of 7,039.91 protease hits and the standard deviation was

3,212.7, showing the observed occurrence of proteases varied broadly (up to ten fold difference)

across the microbiomes of individuals in the cohort, Figure 4.6A. The overall number of protease

hits did not correlate with the number of hits for PF13402 sequences (r=0.34). The frequency dis-

tribution shows the number of hits per MEROPS pepunit was skewed towards zero Figure 4.6C

indicating the vast majority of entries had very few hits. There were 31 entries with over 1020 hits

(the total number of hits for all PF13402 sequences combined) as summarised in Table 4.1.
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Figure 4.6: Summary of the number of BLAST hits for all MEROPS entries. A) Number of hits for all MEROPS entries per metagenome on left axis and
number of hits for PF13402 sequences per metagenome on the right axis. B) Correlation between the number of hits for all MEROPS entries and the number
of hits for PF13402 sequences. C) Frequency distribution for all MEROPS entries showing how many entries had how many hits across all metagenomes.
The total number of hits for PF13402 sequences is indicated by the red dotted line intercepting the graph at 1020 hits.
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Table 4.1: A summary of the MEROPS entries with the most hits across the 85 healthy gut micro-
biomes from Qin et al. (2010). The first three columns show the MEROPS family, MEROPS ID
and MEROPS description copied verbatim from the MEROPS database for the corresponding pep
unit sequence used in sequence alignment searches. The description contains information about the
MEROPS entry functional annotation, taxonomic origins of that sequence and the database index ID.
The final column represents the total number of hits in all 85 metagenomes.

No Family MER ID MEROPS description No of Hits

1 C26 MER260723 carbamyl phosphate synthetase ({Saccharomyces

cerevisiae}) (Dasypus novemcinctus) [C26.956]

9077

2 C26 MER077614 family C26 unassigned peptidases (Prochlorococcus

marinus) [C26.UPW]

3056

3 C26 MER331802 family C26 unassigned peptidases (Lactobacillus

fermentum) [C26.UPW]

2564

4 C26 MER295850 gamma-glutamyl hydrolase (Nematostella vecten-

sis) [C26.001]

2260

5 S16 MER332505 family S16 unassigned peptidases (Desulfotomacu-

lum acetoxidans) [S16.UPW]

2215

6 M23 MER274317 subfamily M23B unassigned peptidases (Roseburia

hominis) [M23.UPB]

2000

7 U69 MER255370 family U69 unassigned peptidases (Zobellia galac-

tanivorans) [U69.UPW]

1850

8 I39 MER104267 family I39 unassigned peptidase inhibitor homo-

logues (Spirosoma linguale) [I39.UNW]

1539

9 S33 MER230625 family S33 unassigned peptidases (Micromonospora

sp. L5) [S33.UPW]

1527

10 S16 MER281224 family S16 unassigned peptidases (Glaciecola ni-

tratireducens) [S16.UPW]

1499

11 C40 MER027021 PgdS peptidase (Desulfitobacterium hafniense)

[C40.005]

1495

12 M41 MER273662 family M41 non-peptidase homologues (Clostrid-

ium acetobutylicum) [M41.UNW]

1467

13 I39 MER187397 family I39 unassigned peptidase inhibitors (Sul-

furospirillum deleyianum) [I39.UPW]

1391
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Table 4.1 – continued from previous page

No Family MER ID MEROPS description No of Hits

14 M16 MER332268 subfamily M16C unassigned peptidases (Clostrid-

ium hathewayi) [M16.UPC]

1388

15 M23 MER287297 subfamily M23B unassigned peptidases (Enterococ-

cus faecium) [M23.UPB]

1355

16 A01 MER282526 subfamily A1A unassigned peptidases (Naumovia

dairenensis) [A01.UPA]

1349

17 I87 MER277542 family I87 unassigned peptidase inhibitors

(Clostridium bartlettii) [I87.UPW]

1339

18 I39 MER064398 family I39 unassigned peptidase inhibitors (Capno-

cytophaga ochracea) [I39.UPW]

1307

19 I87 MER331877 family I87 unassigned peptidase inhibitors

(Clostridium thermocellum) [I87.UPW]

1259

20 I39 MER196386 family I39 unassigned peptidase inhibitors (Pirellula

staleyi) [I39.UPW]

1247

21 C26 MER236171 family C26 unassigned peptidases (Thermus scoto-

ductus) [C26.UPW]

1243

22 S16 MER298341 family S16 unassigned peptidases (Burkholderia

mallei) [S16.UPW]

1152

23 I39 MER193949 family I39 unassigned peptidase inhibitors

(Chitinophaga pinensis) [I39.UPW]

1147

24 I39 MER129323 family I39 unassigned peptidase inhibitor homo-

logues (Pedobacter heparinus) [I39.UNW]

1112

25 S33 MER209532 family S33 non-peptidase homologues (Strongylo-

centrotus purpuratus) [S33.UNW]

1107

26 I39 MER133149 family I39 unassigned peptidase inhibitor homo-

logues (Dyadobacter fermentans) [I39.UNW]

1096

27 C44 MER223378 family C44 non-peptidase homologues (Ignisphaera

aggregans) [C44.UNW]

1087
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From the MEROPS annotations in Table 4.1 the majority of common proteases do not carry assigned

functions in MEROPS although their functions can be approximated through the family and subfam-

ily assignments which forms the basis for the following summary of gene funcitons. The four most

common protease hits are for the C26 family and are involved in amino acid biosynthesis so can be

considered essential house keeping functions present in both Eukaryotes and Prokaryotes. The next

top hit is for an unassigned S16 protease involved in degrading unfolded proteins which appears again

at number 10 and 22 on the top hits list and is considered to be involved in house keeping internal cell

functions. Next we have an unassigned M23B subfamily protease. This is the first hit that is likely

to be involved in glycan associated metabolism as it is an endopeptidase that lyses bacterial cell wall

peptidogylcans. Next an unassigned U69 family peptidase. This peptide is a known self-processing

(autocatalytic) extracellular peptidase. The function is related to excretion rather than extracellular

function so the implications could be broad although not specific to a protease activity. I39 family is a

broad endopeptidase inhibitor. S33 family is a non essential exopeptidase with a signal peptide. C40

is PgdS peptidase targets cell walls in some instances during sporulation. M41 is a metalloprotease

MXXH structure likely targeting membrane proteins.

As shown in Figure 4.6C there is a long tail of individual MEROPS entries with a relatively high

number of hits. Each MEROPS entry is assigned to the species it was isolated from so it would be

reasonable to expect a species bias for the top individual hits. MEROPS families allow the entries

to be grouped into functional clusters. There were 253 MEROPS families with hits and Figure 4.7

summarises the consistency and frequency of hits per MEROPS family across the microbiomes.

Figure 4.7 shows key trends in the MEROPS protease families. The first point to notice is the broad

correlation across all of the protease families with the total number of proteases. Noting the pro-

portional consistency, it would seem to suggest that variation in the overall proteases reflect an ex-

perimental artifact, such as what would be caused by varied sequence coverage. However, the most

popular family is I39, a broad protease inhibitor, is one of the least correlated with any other common

proteases indicating the hit count for I39 may be reflective of a biological artifact. After I39, S9 is

the next most popular MEROPS family and does not have an individual MEROPS entry in the top

hits listed in Table 4.1. S9 is listed as an enzyme targeting biological active molecules.
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Figure 4.7: Boxplots and heatmap showing how the distribution in the number of hits per MEROPS family across 85 gut metagenomes. A) Boxplots showing
the spread in the number of hits for each MEROPS family across the metagenomes. The box represents the upper quartile and lower quartile and the line
represents the top and bottom of the range.
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Clearly there are multiple MEROPS protease families that are very common in the microbiome and

the family annotation gives an indication as to the high level function of that gene. However, the fam-

ily functional annotation often is not specific enough to distinguish the characteristics of individual

proteases. Also as shown in Table 4.1 the individual functional annotations provided by MEROPS

database descriptions for many of the most common genes is simply ’unassigned peptidase’. It is

common in metagenomics data that a gene will not carry a specific molecular function annotation

so it can be useful to use piece together complementary evidence to infer more detail about the

individual gene function.

4.3.3 Protein and peptide associated glycan targeting proteases

Looking at the CBM and protease configuration of a gene can provide insights into the target and

the function of the proteases. The M60-like zinc metalloprotease was the first protease found to

pair with a CBM to target host glycans. The data showed it paired with CBM32, CBM5_12 and

CBM51 and that this pairing enabled a functional shift in the ability of the enzyme to target specific

protein associated glycans in mucus (Nakjang et al., 2012). Here we investigate CBM configuration

at a global scale to gain insights into other protease genes that may target glycans. Combining

the configuration data with the number of hits in the microbiome will give an indication as to the

diversity and the context of the gene as well as an indication as to the popularity and specificity of

gene variants.

CBM profile searches on the putative protease gene set identified a total of 15,914 hits for 1,011

unique CBM-protease pairs (351 unique pairs grouped by MEROPS family) from a total of 56 CBM

motifs and 822 proteases (92 MEROPS families). Many of the proteases from the same family share

the same function so from here in we will discuss CBM-protease pairs as CBMs linked with one of

the 92 MEROPS families. The fasta sequences for all putative CBM-proteases are available on the

project website, sequences are grouped into the MEROPS family of the putative protease.

http://homepages.cs.ncl.ac.uk/matthew.collison/research/CBM-protease-pairs

As shown in Figure 4.8 there are 37 MEROPS families that combine with CBMs and accumilated

more than 10 hits across the microbiomes. Table 4.2 shows most common MEROPS families, the

number of times a CBM is paired with each protease family (No of hits) and the distinct number

of CBMs associated with the protease family (NR CBM pairs) as well as the most common CBM

domains, the number of times each CBM pairs with a protease and the number of distinct MEROPS

families it pairs with (NR MEROPS pairs). Often there are multiple CBM domains on the same gene

http://homepages.cs.ncl.ac.uk/matthew.collison/research/CBM-protease-pairs
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as a protease, each CBM on a gene is counted as a distinct pairing occurrence.

Of particular interest to the role of proteases in the metabolism of glycans is the association with

a range and combination of CBM domains. The range of CBM associations for some proteases is

broad whereas other protease associations are dominated by few CBM configurations. To further

investigate the nature of CBM-protease pairings a breakdown of the exact gene configurations, the

number of hits for each configuration, the number of distinct genes containing that configuration and

the species level origin of each distinct genes was computed. Appendix 6.2 summarises this gene

configuration and distinct gene data.
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Figure 4.8: A matrix of the number of hits for combinations of CBMs and MEROPS families. The rows and columns are sorted vertically and
horizontally by the total number of hits per row or column respectively. Each CBM hit registers as a single hit, for example if there are two CBM50 domains
with an M23 protease it will add two to the count in the intersection between CBM50 and M23 on the matrix. The colour range was selected to show a
distinction the variety of combinations so 0 is white and anything in the range 1-7930 is graded red to green. For the a more focused view of the most
common MEROPS families and CBM domains see Figure 4.9.
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Figure 4.9: A matrix of the number of hits for combinations of the most common CBMs and
MEROPS family protease pairs. The figure shows the top 26 CBM motifs and top 22 MEROPS
families sorted vertically and horizontally by the total number of hits per row or column respectively.
Each CBM hit registers as an independent count so duplicates cause an increment of two in the
relevant place on the matrix. Colour scheme was selected to show a distinction between the most
common combinations and is graded white to red for 0-50 hits and red to green for 50-8000. For the
entire matrix including all MEROPS families and all CBM domains see Figure 4.8

Table 4.2: Column one lists the MEROPS family proteases sorted by the highest number of
hits with CBMs. Column three lists the number of different/non-redundant (NR) CBMs each
MEROPS family protease paired with. Column 4 lists the CBMs sorted by the highest num-
ber of hits with a MEROPS family protease. Column six lists the number of different/non-
redundant (NR) MEROPS family proteases each CBM paired with. Note duplicate CBMs
counted multiple times for hits but if a protease family paired with multiple of the same CBM this
counted once for the NR count.

MEROPS family No of Hits NR CBM pairs CBM No of Hits NR MEROPS pairs

M23 7984 12 CBM50 10327 11

C40 2393 17 CBM37 1867 22

I43 1324 13 CBM48 744 13

S09 1127 19 CBM44 531 8

S08 606 26 CBM40 509 7

M43 602 12 CBM32 507 38

U69 283 17 CBM26 189 8

M14 168 6 CBM20 128 10
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Table 4.2 – continued from previous page

MEROPS family No of Hits NR CBM pairs CBM No of Hits NR MEROPS pairs

M60 153 4 CBM13 126 18

C82 139 8 CBM4 101 14

M67 114 1 CBM56 97 11

M09 97 4 CBM66 90 9

C01 89 5 CBM35 81 15

M10 89 4 CBM6 63 12

M06 69 8 CBM9 56 7

M15 68 2 CBM22 50 8

S33 61 12 CBM16 49 12

I39 51 13 CBM61 44 12

S01 39 11 CBM46 43 7

M04 35 7 CBM67 42 16

M50 31 3 CBM62 42 10

M26 28 9 CBM51 32 12

M20 25 9 CBM11 28 5

C14 20 2 CBM2 25 7

I63 19 7 CBM34 24 4

S12 17 2 CBM23 21 5

S11 16 4 CBM42 21 1

Figure 4.8 and Table 4.2 show a wide range of pairings but also contains some clear structure. As

CBMs have a specific binding target it is possible to break down how different proteases may be

using CBMs to target particular substrates at the centre of particular microhabitats. Further we can

investigate what species are encoding proteases that exploit each microhabitat. Crucially this level of

information would faciliate a more generic overview of host-microbiota interactions and identify how

particular perturbations of the microbiota communities may impact on host-microbiota interactions.

The main trends in microbiota, diet and host glycans specificity are idenified in Figure 4.9. Interest-

ingly, some proteases pair with CBMs that target multiple sources of glycan, for example S09 and

S08 that have generic functions, however, there are also examples where there are biases that may

indicate a functional adaptation to a type of glycan from a particular source.
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4.3.4 Proteases targeting microbiota derived protein and peptide associated glycans

The most common CBM-protease pairing in the matrix is M23 and CBM50 with 7930 occurences.

CBM50, also known as LysM, is known to be involved in cell wall peptidoglycan processes and has

specificty for the N-acetylglucosamine sugars directly linked to the peptide from the cell wall (Ohnuma

et al., 2008). LysM is common in single celled organisms, except in Archaea, and LysM hydrolases

are also known to be common. The M23 protease family is a well characterised beta-lytic endopep-

tidase that is known to lyse the cell walls of other bacteria as a defensive mechanism or feeding

mechanism. M23 targets either the N-acylmuramoyl-Ala bond between the cell wall peptidoglycan

and the cross-linking peptide or a bond within the cross linking peptide, as descibed in the MEROPS

entry.

One feature of the M23-CBM50 pairing is the high number of distinct genes. 53 copies was the high-

est number of a particular M23-CBM50 gene (GL0074796_MH0025_C3650026_1_95_976) found

in any micorbiome. Furthermore, as shown in Figure 4.10, the M23 protease has a relatively even

taxonomic profile implying that CBM50-M23 genes are present in multiple species in the micro-

biome. Despite the broad presence of LysM proteases across the microbiota, there is an indication in

some instances of specific adaptations through increasing the number of CBM domains to increase

avidity and in some instance to create a multimodular domain that provides specificity necessary for

function (Mesnage et al., 2014).

LysM (CBM50) has been studied at length in multiple organisms (Buist et al., 2008) and has been

used in a range of biotechnology applications, such as cell surface detection and vaccine develop-

ment (Visweswaran et al., 2014). However, as far as I know, use as a natural microbial molecule

has not been explored. Furthermore, this is the first metagenomics study identifying diversity of

LysM hydrolases in metagenomics data which identifies areas where novel previously unidentified

instances of the gene can be found. As shown in Figure 4.11 there are instances of CBM50-M23

with low similarity to known homologues which could guide novel gene discovery.

MEROPS family C40 has 2388 hits with CBMs, of which 2141 are accountable to CBM50. Similar

to MEROPS family M23, this family targets the peptidoglycans in the cell wall, appears to increase

avidity or add specificity through increased CBM50 counts and has an even taxonomic spread, Figure

4.12. However, the MEROPS entry suggests C40 is a cytoplasmic enzyme expressed during sporu-

lation so this combination is assumed to have an internal house keeping function. Interestingly C40

also pairs with multiple CBMs that typically are not involved in cell wall processes, such as CBM32

and CBM44.
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Figure 4.10: The taxonomic profile for M23 proteases that pair with CBMs.

Figure 4.11: The taxonomic profile for M23 proteases that pair with CBMs. The colour here reflects
the percentage similarity between the reference gene and the query gene.

Figure 4.12: The taxonomic profile for C40 proteases that pair with CBMs.
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Peptidoglycan hydrolases are a common mechanism for microbial competition and have been shown

to contribute in both healthy and dysbiosis states as well as creating predispoisitions by allowing

pathogens to be tolerated (Rangan et al., 2016; Hasnain et al., 2012). This result shows how regular

peptidoglycans are across the microbiome and where novel instances may be found across the range

of the micorbiota and the scope for novel compound discovery in this area from this approach.

4.3.5 Proteases targeting host derived protein and peptide associated glycans

Excluding the high number of cell wall targeting proteases MEROPS families S08 and S09 represent

the largest group of proteases. The S08 and S09 families represent generic secreted and biologically

active protesaes, respectively, that pair with a broad range of CBM combination. Notabley CBM37,

CBM48, CBM44, CBM32 CBM26 are the most common partners, however, the proteases usually

pair with these CBMs in isolation indicating a single target. Interestingly, when MEROPS family

S08 pairs with CBM32 (a known mucin binding domain) it also combines with CBM51 which shares

similarly to the M60-like mucinase discussed earlier.

MEROPS family M60 is shown to almost exclusively pair with CBM32. The family has 152 hits in

total, 150 from CBM32 and they all stem from a single CBM pairing in the M60-CBM32 configu-

ration which is encoded in 34 distinct genes. The taxonomic distribution, Figure 4.13, also shows

a clear bias towards Bacteroidetes and a likely microhabitat. These 34 distinct genes represents a

high chance of novel host mucin targeting proteases, particularly the genes with low similarity to

any known homologues in the Prevotella phylum, Figure 4.14. Noting these features of the M60

protease; MEROPS family S33 also shares a similar bias to CBM32 pairing and a taxonomic distri-

bution across Bacteroidetes, Figure 4.15. Therefore, the S33 proteases represent a whole new class

of putative proteases targeting host mucins.

Not all host derived protein and peptide associated glycans are structural molecules. MEROPS family

S09 has 1124 hits with CBMs, of which 704 are hits with CBM48. MEROPS family S09 is broadly

linked with biologically active molecules, including DDP4 a protease that degrades GLP-1, and is

regularly found paired with CBM48 which binds glycogen. It would seem sensible to speculate that

the S09-CBM48 pair has an impact on host derived peptide signalling in the gut.
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Figure 4.13: The taxonomic profile for M60 proteases that pair with CBMs.

Figure 4.14: The taxonomic profile for M60 proteases that pair with CBMs.The colour represents
the percentage similarity to the closest known homologue.

Figure 4.15: The taxonomic profile for S33 proteases that pair with CBMs.
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4.3.6 Proteases targeting plant derived protein and peptide associated glycans

MEROPS families M09, C01 and M15 all show a bias towards targeting plant based glycans and all

have a clear taxonomic distribution scewed towards Firmicutes and Clostridia, Figure 4.16, Figure

4.17 and Figure 4.18, respectively.

Figure 4.16: The taxonomic profile for M09 proteases that pair with CBMs.

Figure 4.17: The taxonomic profile for C01 proteases that pair with CBMs.
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Figure 4.18: The taxonomic profile for M15 proteases that pair with CBMs.
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4.4 Discussion

The hypothesis for this study was that there are a range of previously uncharacterised proteases

targeting protein and peptide associated glycans in the microbiota that have a broad impact on host-

micorbiota interactions. By quantifying the frequency of occurence and diversity of different protease

classes that target glycans this study provides context for many isolated studied focussed on single

proteases and highlights a limitation of current methods for using metagenomics data to study low

level gene occurence. Moreover this study identifies a range of previously uncharacterised protease

genes thought to have important roles in host-microbiota interactions.

Existing protease research in the microbiome area has shown gut bacteria can produce extracellular

bacterial proteases that degrade host matrix components, such as in cell junctions, and interfere

in signalling pathways to facilitate infection (Steck et al., 2011) and that these bacterial proteases

have an increased activity in inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS)

patients (Carroll et al., 2013). Protease functions in the direct infectious cycle, however, do not

account for a large part of the complexity involved in colonisation of the gut particularly in protein

and peptide associated glycan metabolism. In this regard this is the first study to investigate the

occurrence of protease genes at the microbiome level.

Our global analysis provides a survey of the breadth and frequency of proteases and their functions in

metagenomics data. This study identified 611,948 proteases, 15,914 occurrences of CBM-protease

pairings, 3,811 distinct CBM-protease genes 1,011 different CBM-protease combinations, and 483

MEROPS family gene configurations.

Glycan metabolism is a central part of the diet-microbiota, microbiota-microbiota and host-microbiota

interactions in the gut. As our understanding of the mechanisms underlying microhabitats and coloni-

sation of the gut emerge the links between metagenomics data and dysbiosis associated disease states

becomes clearer. Established studies have shown the prevalence of cazymes in the microbiome and

their role in the systematic digestion of glycans in the gut. Recent studies have also shown the impor-

tance of diverse mechanisms of glycan metabolism for adaptation under specific conditions. Ndeh

(2013) demonstrated the first endopeptidase activity from bacterial proteases using a CBM to target

host proteoglycans which improves fitness only in the mucosal niche. This study provides a global

summary of proteases that may contribute to niche fitness and microbiota-microbiota interactions.
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4.4.1 Novel gene discovery

Efforts to study individual genes often speculate on the variance and prevelence of their gene of inter-

est. If the application of the gene is valuable enough large scale screening studies are undertaken that

consume extensive man hours and enormous resources. Exploiting metagenomics data for examples

of natural diversity is a relatively cheap and complementary alternative that could guide or refine

compound screening and provide a preliminary assessment of the natural prevelance and diversity of

gene variants given a specific gene configuration.

Specific highlights of this study include M23-CBM50 variants that represent a breadth of potential

natural antimicrobial peptides and S33-CBM32 and M60-CBM32 pairings that represent a range

of putative mucin targeting genes. Although the scope for further exploration of all aspects of this

dataset is vast and domain specific. The main challenge in persuing these application, however, is

data accessibility.

4.4.2 Metagenomics for therapeutic intervention design

Current approaches to data mining therapeutic targets in the microbiome use top down statistical

testing to detect statistically over represented gene categories. This approach is comparable to com-

parative genomics and population based testing common in historical drug development. However,

metagenomics data describes a complex system with incomplete data so the insights that can be

gained from comparative statistics are limited. One of the limitations of gut microbiome data is the

faecal sampling bias. Many of the most influential microbes reside next to the mucosa and therefore

can be more difficult to sample (Zoetendal et al., 2002). One of the outcomes of this chapter is in

the quantification of the inconsistency in hit rate for genes that are known to be prevalent both at low

level, as shown in PF13402, and when looking at the entire MEROPS database, which shows up to

10 fold differences in the number of proteases between individuals.

Bottom up analyses in the microbiota will be crucial to designing effective microbiota targeted in-

terventions. Understanding the range of mechanisms for host-microbiota interactions is central to

understanding any comprehensive disease model. To design an effective intervention and treatment

model it is important to account for the range of species encoding relevant functions. There are cur-

rently no resources to effectively map gene occurence data with taxonomic data to facilitate these

analyses.
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4.4.3 Quantitative annotations from metagenomics context

Our approach to domain based configuration searches has generated new quantitative contextual data

about the occurrence frequency for thousands of genes that is complementary to existing functional

annotations held annotation databases. This new approach to analysing metagenomics data will

enable effective microbiota models to be generated and more comprehensive therapeutic strategies

to be designed.

Our ongoing work aims to provide new insights into the potential mechanisms contributing to dis-

turbances in host-microbiota interactions. These analyses will contribute to refining ongoing exper-

imental work dissecting host-microbe interactions at mucosal surfaces and could form the basis of

studies into therapies with molecular targets in the microbiota. Furthermore the approach to identify

and annotate uncharacterised genes in the microbiome highlights one of the most valuable assets of

metagenomics data that has yet to be exploited. A single resource to map the occurrence of metage-

nomics genes and their neighbors in order to provide context specific information to a multitude of

new metagenomics genes. To make this type of resource effectively usable there is a requirement for

community standards and an infrastructure for scalable resource handling.



Chapter 5

BioSSIP: A Scalable Semantic

Integration Platform for Bioinformatics

5.1 Introduction

Biological data are becoming exponentially larger and more complex as high-throughput sequencing

technologies become ubiquitous across life sciences (Fernández-Suárez et al., 2013). This increase in

data availability has lead to computational challenges in storing, accessing and integrating bioinfor-

matics resources as well as making secondary analyses reproducible (Cohen-Boulakia et al., 2017).

These issues are particularly challenging in microbiome research where data-rich resources are con-

stantly being produced and updated alongside new approaches to data analysis and data mining (Tsil-

imigras & Fodor, 2016). In this chapter I describe a system to facilitates scalable data handling and

a software development life cycle for data integration in microbiome research.

Most highly used bioinformatics resources are provided as federated stores (Zhang et al., 2011).

To the user this means the data source is curated by a third party and provided through websites,

which produce neat results and negates the requirement for distribution of software and access to

high performance computational resources. This approach is useful for enabling user access to a

single use application or analysis tool, however, often complementary datasets require integration

and adaptation to extract value from multiple data sources through integrative bioinformatics (Zhang

et al., 2011; Lapatas et al., 2015). This is when data integration pipelines are developed and data

warehousing can be employed by bioinformaticians.

98
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5.1.1 Data Integration pipelines

Generating an integrated dataset can be as simple as matching a string which represents an ID in one

file to an identical string in another file. Often though data integration tasks become complicated pro-

cesses requiring a high level of domain knowledge, understanding of semantic data formats as well as

managing high performance computing resources. Moreover the process of developing software to

facilitate the integration pipeline can become convoluted and error prone with multiple intermediary

files and single use software programs. There are four main stages in most data integration studies;

reading data sources, data integration, data storage and data access or distribution.

5.1.1.1 Data entry

The process of reading data from a data source is dependent on the format of the input data and

typically involves the developer writing a parser to interpret the data. Often data formats are followed

loosely and there is a time consuming process of identifying edge cases that need to be captured

to avoid errors being propagated through the integration pipeline. Related to this issue reuse and

distribution of parsers is uncommon and intermediary file formats are often replicated and relatively

hidden on local machines. Therefore the data integration process often becomes untestable and non

reproducible. Programming languages tied to data standards for data integration have shown some

promise in this area showing that it is possible to automate dataset generation and testing (Warrender

& Lord, 2015; Köhler et al., 2006). However, generating datasets with TAWNY OWL is based on

single use programs, strict ontological data standards and uncommon programming languages such

as Clojure (Lord, 2013).

5.1.1.2 Data integration

Data integration is the process of classifying data and finding a conensus to enable data sources to be

merged (Applications, 2007). The semantics and metadata which underlie classification and equiva-

lence assertions in data integration can be defined with varying degrees of formality and specificity.

Lightweight metadata approaches, such as eXtensible Markup Language (XML) and restricted vo-

cabularies, are the most common. These formats are flexible but do not usually let you reason over

the data. Ontology and Resource Description Framework (RDF) formats are rich and represent a

gold standard for data representation. However, ontologies can be time consuming to define and re-

quire in-depth domain knowledge that is often not flexible enough for integration projects with time

sensitive data sources.
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5.1.1.3 Data storage

Data storage and retrieval requirements in bioinformatics applications are usually met through in

memory or relational database systems and in some instances through denormalised data warehous-

ing to push performance at scale. However, some bioinformatics projects are pushing the perfor-

mance limitations of these data storage solutions and there is a requirement in bioinformatics for

scalable complex data handling such as graph databases (Have & Jensen, 2013). NoSQL solutions

have been developed and deployed elsewhere to enable web technologies but few have bioinformatics

support meaning there are high implementation costs to use NoSQL technologies.

If the datasets are small enough, then in-memory data structures are often the easiest and fastest way

handle data. However, for larger datasets, persistent storage may be required. Scale, complexity and

accessibility of the data and objectives of the mining task are the main concerns in the specification of

a database model. Practically, these concerns are measured by the size of the dataset, complexity of

the mining process and the latency requirements for the end user. Bespoke in memory data structures

are very fast and can work well for complex datasets due to comprehensive accessibility of the

database model. However, the size is limited to memory allocation on your machine or distributed

cluster. Often in memory formats are used for complex analyses of relatively small datasets and

visualisation tasks. ONDEX (Köhler et al., 2006), cytoscape (Smoot et al., 2011) and gephi (Mathieu

Bastian et al., 2009) are examples of in memory software systems used for data integration and

visualisation. As the hardware limitations of these systems are reached a persistent data storage

model is required.

Relational databases work well for continuous data with a predictable data structure. Most biological

databases, such as RefSeq, MEROPS and UniProt can be downloaded in SQL format and fit well

with the tabular schema required. However, for data integration across multiple data sources the

database schema can become complicated. Additionally querying performance in SQL data stores

tends to be good for accessing indexes within a small number of tables but if there is a requirement

for a high number of ’joins’ between data sources to access your data (which would be stored across

multiple tables and indexes in the SQL schema) there is often substantial delays in the query time or

the data structure has to be denormalised to make the data structure fit the query and requires a high

amount of replication and reduced flexibility.

NoSQL databases use non relational data models. NoSQL projects range from flat key-value stores,

such as Amazon’s Dynamo, to nested document stores, such as MongoDB, and graph based data

stores, such as Neo4J. NoSQL data stores typically sacrifice relational features such as referential
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integrity (asserting that two pointers represent the same value) for vastly increased build and query

speeds, and the ability to distribute datasets over multiple machines.

5.1.1.4 Data access and distribution

Data access and distribution are implicitly linked to the data storage. The requirements for data

distribution depends on the intended user. The endpoint of an integration pipeline can be a live

database or a flat results file of comma separated values, such as in Chapter 4. However, if the data

endpoint is part of a evolving system that will be updated over time and replicated by other developers

on other projects it is important to support updates and version control. Database dumps are often

provided for this type of endpoint or datasets are serialised into flat files for subsequent distribution

and reuse. Rarely though is the dataset distributed with the software that was used to generate

it therefore limiting the ability to update particular derivative resources. Typically the software is

decoupled from the data on private machines and only the data is published for interogation.

In practice software applications for data integration tend to champion one of two approaches. They

offer an end to end integration pipeline environment with visualisation and lightweight metadata,

such as ONDEX (Köhler et al., 2006) or cytoscape (Smoot et al., 2011). Alternatively, a bespoke

integration process with multiple manual steps are built to populate a database (Oh no sequences,

2014; Lord, 2013; Noy et al., 2003). The first approach is useful for small projects although limited

in terms of the scale of the data handling and can be contrained for complex system designs. The

second approach is useful in terms of flexibility in system design and for scalability of the dataset

but limited in terms of reproducibility. Both approaches have advantages and disadvantages but one

major factor in deciding which will work for a given project is the performance requirements for how

the integrated dataset will be stored, accessed and distributed.

Table 5.1: A table to compare the features of a range of typical applications used data integration
tasks.

DB type file format Application Goals Bio support Distributed License
in memory xml Gephi Vis No No GPL

rdf ONDEX Vis / data store Yes No Apache2.0
rdf Cytoscape Vis Yes No Apache2.0

SQL sql MySQL Data store No No Apache2.0
sql BioMart Data store Yes No Apache2.0
sql Teradata Data store No Yes Copyright

NOSQL JSON MongoDB Data store No Yes Apache2.0
key value Neo4J Data store No No AGPL
key value Casandra Data store No Yes GPL
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5.1.2 Microbiome use case

The human gut microbiota is a highly complex, diverse and variable microbial ecology (Arumugam

et al., 2011; Qin et al., 2010; Caporaso et al., 2011). Advances in high-throughput sequencing

technologies have provided new insights into the genetic complement of the gut microbiota and

revealed multiple links with diseases that are highly prevalent in modern society (Sekirov et al.,

2010). To utilise the vast datasets produced by these technologies to investigate the microbiota a

large amount of data complemented with large scale data integration and analysis is crucial (Collison

et al., 2012).

The most common tools currently used for microbiome analyses are QIIME (Caporaso et al., 2010b)

and MG-RAST (Meyer et al., 2008), for analysis of 16S metagenomic data and whole-genome

metagenomic data respectively. These solutions provide primary analyses including quality con-

trol, filtering, assembly and annotation. A typical whole-genome metagenomics dataset from the

gut microbiota sequenced using an Illumnia Genome Analyser II contains around 3 Giga base-pairs

from around 40 million sequence reads (Karlsson et al., 2013). Through pipeline analyses, 70-90%

of the reads pass quality control and filtering and the assembled contigs typically predict around

200,000 ORFs of which 60-90% can be annotated with molecular functions and species level taxon-

omy (Meyer et al., 2008). This results in around 100,000-200,000 predicted genes with secondary

(functional or taxonomic) annotations that represent partial coverage of the true genetic comple-

ment of the microbial community. Secondary analyses are subsequently used to predict community

characteristics by clustering secondary annotations, both functionally and taxonomically, to identify

patterns and features across datasets that provide insights into the overall community function.

Secondary analyses are usually carried out on an individual study basis and can be enhanced by re-

processing data from the other studies for comparison. Given the scale, complexity and non-standard

nature of microbiome data, the task of secondary analysis and particularly data integration is not

simple. MG-RAST (Meyer et al., 2008) and other pipelines offer comparisons between secondary

annotations processed within the same pipeline based on common annotation sources and experi-

mental metadata. However, these top-down analyses only produce results comparing the fraction of

data that contains secondary annotations from any single annotation source within the constraints of

the experimental model. This means integration of datasets with other data sources processed outside

of the analysis pipeline, including key dataset produced by major consortium studies, is challenging

and often not easily reproducible. Furthermore bottom-up exploration of data is difficult due to data

handling challenges associated with handling primary data. For example studying correlations be-
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tween all predicted gene clusters across experimental datasets instead of only functionally annotated

clusters is beyond the capacity of most anlaysis pipelines.

A relevant use case is Chapter 4, a seemingly simple 3 step process to find common proteases tar-

geting protein and peptide associated glycans in metagenomics datasets. This study required 1479

lines of java code, 14 bash scripts, hundreds of Gigabytes of intermediary files and thousands of CPU

hours on HPC machines. Moreover, despite my best efforts to publish all intermediary data files and

code to a project webpage the data integration process is not easily reproducible and does not contain

a intuitive interface to access all of the endpoint data for updating resources.

The hypothesis for this work is that a framework for data integration of metgenomics data would

facilitate more reproducible data usage and facilitate the use of metagenomics data for gene discovery

and exploration.

5.1.2.1 Datasets

Initiatives such as the European Metagenomics of the Human Intestinal Tract (MetaHIT) project (Ehrlich

& Consortium, 2011) and American Human Microbiome Project (HMP) (Nelson et al., 2010) have

been the drivers behind a dramatic expansion in the availability of data relating to the microbiota.

These consortium driven ventures aimed to address some of the big challenges in the field, such

as providing a catalogue of common genes (Qin et al., 2010, 2012; Karlsson et al., 2013) and

genomes (Consortium, 2012; Gevers et al., 2012) and characterising a ‘stable’ microbiome (Capo-

raso et al., 2011) and a ‘core’ microbiome (Arumugam et al., 2011). The corresponding studies have

identified or quantified these important features and generated a series of high quality datasets (Qin

et al., 2010; Arumugam et al., 2011; Le Chatelier et al., 2013; Karlsson et al., 2013). The datasets

provide extensive evidence of metageonmic concepts, such as metagenomic linkage groups (MLGs),

as well as providing a large number of high quality datasets that can be used as gold standards.

These datasets are often published with GenBank project IDs and processed in-house so intermedi-

ate annotation results are not stored in online analysis pipelines and occasionally published in custom

formats.

These centralised initiatives are a contrast to many distributed research efforts exploring more subtle

experimental hypotheses, both through generation of new data and through identifying new patterns

in existing data. Such projects depend on availability of datasets, including secondary analyses that

can be related to independent experimental models. Datasets of independent research projects are

often submitted to online analysis pipelines and therefore populate IMG/HMP, MG-RAST and other
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public databases containing intermediate and secondary analysis results.

Table 5.2 summarises the main resources containing secondary analyses of microbiome data includ-

ing, metagenomic datasets and their metadata from both pooled distributed studies (such as those

in MG-RAST) and centralised consortium studies, full genomes isolated from the microbiota by the

HMP and distributed through the IMG/HMP resource, curated annotation database resources both

for taxonomic and functional annotation as exemplified by GreenGenes, Kegg Orthology (KO) and

eggNOG, and metagenomics feature datasets identified from consortium studies as exemplified by

metagenomic linkage groups (MLGs). This list is not exhaustive but represents the major data re-

sources and data concepts within the microbiome research field.

Table 5.2: Summary of the main resources for secondary analyses of microbiome data.

type resource size (GB) number of
samples

genes per
sample

taxa per
sample

metagenomes MetaHIT 2010 3.3Gb 124 1,800,000 4500
Chinese study 15.2Gb 345 2,200,000 4000

taxonomy GreeneGenes 2Gb 5,000 1000 1
MLG 0.4Gb 200 100 1
HMP 8Gb 4000 2000 1

function KEGG ontology 0.8Gb na na na
COG 2.1Gb na na na
eggNOG 1.7Gb na na na

We consider each of the above significant resources that are currently difficult to consistently in-

tegrate in secondary analyses due to the heterogenous distribution of data. In order to utilise this

heterogeneous data it is crucial that it is represented in a standardised computationally reasonable

format and handled in a scalable manor.

Strategies designed to mine primary annotation and integrated annotations require multiple datasets

and annotation sources to be stored in a standardised format and to be accessible within a single

datastore. Consequently this requires data storage in the order of hundreds of millions of documents

with the highly linked information, which is beyond the capacity of most relational database models

but lends itself to graph database technology (Have & Jensen, 2013).

5.1.3 Hypothesis

The hypothesis for this work is that data integration standards will improve access to rich metage-

nomics datasets and support bottom up approaches to exploiting metagenomics data. This tool aims
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to support better science and community resources to improve and accelerate progression towards de-

veloping models host-microbiota interactions in disease that can be used in the design of therapeutic

interventions considering the microbiota.

Here I present BioSSIP, a Scalable Semantic Integration Platform for Bioinformatics. BioSSIP is

a software library for bioinformatics data integration that supports standardised data integration

pipelines in a modular manor allowing each application to combine flexible parser design with simple

semantics and a graph database back end.

5.2 BioSSIP

BioSSIP is a three tier user system, Figure 5.1. The core software API facilitates the building of

closely coupled data integration and data mining applications. Each BioSSIP application includes

a data integration pipeline that integrates multiple data sources into a single performant data repre-

sentation which can be used for data mining and exposed as a live database when the application

is executed. Secondary users can then download BioSSIP applications and relaunch the integrated

dataset locally, or they can reuse the data parsers, data mining strategies and data integration pipelines

with new data or extended the pipeline with new modules. Finally client side users can interact with

live applications, run live queries on integrated datasets and interogate both the integration pipeline

and data mining strategy as well as the resulting data.

1. The developer interface: Uses the core BioSSIP API and provides the ability to develop stan-

dardised data integration pipelines built on a performant embedded NOSQL database in an

open source version controlled, cross platform application.

2. The server side UI interface: A BioSSIP application that implements the core API. The appli-

cation can be downloaded, relaunched, extended and rebuilt with an existing dataset or a new

dataset without writing any code.

3. The client UI interface: A web interface to a live BioSSIP application. The client side UI

provides the ability to query a live dataset that was built in BioSSIP and effectively visualise

or interpret the results.
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Figure 5.1: Software lifecycle for BioSSIP and the three tier user system.

5.2.1 BioSSIP core: For developers

BioSSIP core is a software API and maven dependency that co-ordinates data handling for bioin-

formatics data integration and data mining, Figure 5.2. The modular nature of BioSSIP allows the

user to develop a standardised and reproducible data integration pipeline in java, the most popular

programming language in use at the time of writing (noa, n.d.), with facilities for full version control

and cross project dependencies using the maven build tools. BioSSIP natively uses an embedded

graph database, Neo4J, for data storage which means the integrated dataset is stored in a scalable

and highly performant database that can be distributed and relaunched without manipulating data

integrity.

5.2.1.1 Build process - parsers and data integration

BioSSIP is built around the maven build lifecycle. You must first create a project with maven and

add the BioSSIP core dependencies. For developers there is a getting started tutorial which guides

the user through the process of setting up a project. Once you have a project you will be able to start

building parsers and generate an application that will handle the integration process.

Data sources are imported into the BioSSIP platform as SSIPNode objects and SSIPRelationship

objects through parsers that implement the ParserInterface and write to a database through a

http://homepages.cs.ncl.ac.uk/matthew.collison/biossip/getting_started.html


CHAPTER 5. BIOSSIP 107

Server 

Data access layer  

Optimised 

data store 

List <SSIPNode> 

Java bean graph 

OWL  

Ontology 

concepts  

Gene 

GO:123 
Species 

Parsers Data mining 

Data integration Query expansion  

SSIP  

Results 

report  

Graph vis 

Static flat 

files 
Performance 

report  

Client  

Input  Output  
Data storage format 

DrugBank 

XML GenBank Fasta 

STRING DO 

UniProt 

HMP MetaHIT MG rast 

GO KEGG 

Neo4J  Sesame Entanglement OrientDB 

Figure 5.2: Software architecture for BioSSIP. Red indicates data stored as static files that make
up the input and output of the software. Blue indicates modules of code in the software where data
are represented as ontology concepts before being flattened to Java Beans.

data access layer which implements BackendInterface, this is a Neo4J object by default. Se-

mantic structure is defined by forced type and id properties on each SSIPNode. Metadata is

abstracted implicitly from the type properties that are defined in the parser design. There is currently

no restrictions on the type property although any new relationships between types are extracted and

submitted into a metadata graph that enables the metadata to be stored ’on the fly’.

Uniqueness and equivalence is asserted based on matching the id properties in each SSIPNode.

Multiple IDs can be defined under different labels and the labels can be dynamically loaded into

the namespace during the data integration process. The merge policy is based on overwriting the ex-

isting node so requires a read/write process to retain an existing state. Alternative merge properties

can be loaded and discarded from uniqueness checks using the Neo4J.createIndex(String

property)method. SSIPNodes store outgoing relationships in a Map<SSIPNode,SSIPRelationship>

so within each node it has an empty version of destination nodes without knowing if that entity exists

yet. This enables ’hanging’ relations. Then at runtime the node is merged with the existing record.

Nodes are held in a buffer and committed in batches of 1000 or when the database connection is
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closed.

5.2.1.2 Database Model and data storage

BioSSIP data is natively stored in an embedded Neo4J database as nodes and edges. Practically

there are three levels of abstraction on the data, Figure 5.3. At the machine code level the database

is serialised into property hashes and index files. As the database is loaded the identifiers for the

indexes contained in each label are loaded into memory to seed queries in the graph and during

requests only the information of immediate neighbours are loaded into memory. Subsequent nodes

are loaded at request time as the relevant key value stores are engaged through traversals. The Neo4J

node and edge concepts are constructed around the key value properties. Neo4J nodes and edges are

passed from the BioSSIP client to the database and interpreted during the response. The BioSSIP

abstraction level only works on the client side to help structure metadata on the node and edge

objects. By structuring ID and metadata concepts during the data build phase it is possible to allows

semantics to be layered into the database model without the database model having any knowledge

of the semantics. By extracting the type and inferring metadata structure at build time BioSSIP has a

live view of the metadata that can be used to interpret the data and structure/query strategies.

As datasets are built in BioSSIP the parsers communicate with the data access layer. The data access

layer manages the database connection and stores a buffer of node concepts. This buffer is set to

1000 node concepts by default and is commited when the terminate database connection command is

given. Once a database transaction is established the transactionality of the commit is handled within

a Transaction container and if the Transaction fails a log is written and the transaction is rolled back

as guaranteed by ACID transactions in Neo4J.

5.2.1.3 Query process - data access and distribution

The BioSSIP API provides an interface for writing data mining strategies. This is based on simple

rules for traversing the graph to reach an endpoint. The query then represents a formal specification

for the data mining strategy.

A major goal in the development of this tool was to enable a development lifecycle for data inte-

gration and data mining. The persistent embedded nature of the graph database means the entire

database and source code constituting the integration pipeline and any queries can be version con-

trolled, packaged and distributed as a normal maven project. There are multiple advantages to this

approach, the optimised data store can be precomputed and distributed, any updated data sources can
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be rebuilt into a new or into the existing database, the exact same data integration pipeline and data

mining strategies can be run over multiple versions of the computed database as it changes over time.

5.2.2 BioSSIP Application: For server-side user

The endpoint for a BioSSIP data integration project is an executable BioSSIP application. This

application is the package containing a fully version controlled copy of the data integration pipeline

including a copy of BioSSIP core, project specific data parsers, the integrated dataset as an optimised

Neo4J datastore and any data mining strategies formalised in Query classes.

5.2.2.1 Running the application

All BioSSIP applications contain an executable jar built in Java so the executable application can

run on any platform where there is a Java runtime environment. When the application is launched it

will establish a web server and a website interface is uses to construct the data integration pipeline

through a browser, as shown in Figure 5.4. The application has two main pages after the opening data

integration pipeline has been registered and submitted; the build page and the query page, Figure 5.5.

The build page simply keeps a log of the input data that has been submitted to generate the dataset.

The query page enables live queries and canned queries (preprogrammed data mining strategies) to

be executed and the results to be downloaded. In the current state the build and query pages are very

simple as they rely in metadata from the pipeline configuration.
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Figure 5.4: The application opening page. The data integration pipeline is built by selecting parsers
from the dropdown menu and selecting a datasource to upload or by providing a link to an online
resource.

Figure 5.5: Build pages are loaded once the data integration pipeline has been submitted.

5.2.2.2 Data and software distribution and dependencies

BioSSIP is built on maven as a build tool. This platform allows both the core software to be loaded

and third party parsers to be shared and loaded easily and effectively. Furthermore the embedded

nature of the database means each database can also be distributed and packaged with the software.

5.2.3 BioSSIP users: For client side users

As a client the typical use case is a user that wants to run a new query on an existing dataset or a

reviewer that wants to check the development followed rigorous methods but ultimately it’s about

data visualisation and interpretation.
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5.2.3.1 Data visualisation

A simple visualisation was implemented in the browser using sigmajs to get a overview of the re-

turned graph although it is recommended that graph results are explored in Gephi. The Gephi ex-

porter was built to facilitate the export and analysis of results and is called by default on all results

returned to the user. An RDF exporter was also developed to enable compatibility with other tools

althoug isn’t inlcuded in the standard UI.

5.2.4 Branding and licensing

This project was developed under the GNU GPLv3 license. The Neo4J dependency enforces an

AGPL license that restricts commercial use of their enterprise software, however, BioSSIP is built on

the community edition release that is free for reuse so the entire BioSSIP project has been released

under the GPLv3 license.

Branding for BioSSIP was designed as a simple way for people to recognise the platform and the

software engineering process it embodies. The research community is a major factor in designing

this system so branding and open source licensing was a small but important factors.

Figure 5.6: BioSSIP and SSIP logos.

5.3 Results

5.3.1 KEGG test case

KEGG (Kanehisa & Goto, 2000) was chosen as a suitable test dataset. The data is nicely hierarchical,

there is an easily manageable number of nodes that verifying the data structure would be sensible and

Kegg is a common annotation source that most developers will be familiar with.

To build the test dataset run the KeggOrthologyParser. It is included in the ssip-core depen-

dency at uk.ac.ncl.ssip.parsers, to implement the test case you simply include the ko0001.kegg file in

the root directory, create a database object and parser object providing the filepath. On completion
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you should pass the getAllNodes to GephiExporter and generate a graph of the dataset. You should

get a gexf file in you project root directory on completion. Run the file in gephi and should be told

there are 10143 nodes and 23043 edges. Once the graph loads you will get a square graph. Select

the forced atlas 2 layout and the graph will change shape and start looking like Figure 5.7. Now to

check the query function is working, if you construct a query with the properties below and pass the

reult to the gephi exporter it should return a grpah like Figure 5.8.

Figure 5.7: A Gephi visualisation of the graph representation of the KEGG orthology in BioSSIP.

5.3.2 Microbiome use case

One of the central resources for microbiome research is the metagenomics gene catalogue. However,

without experimental context many of the genes are simply just unannotated genes. This use case

maps 20 microbiomes to the gene catalogue from the Qin et al. (2010) study. Then maps functional

annotations to the catalogue as examples of clustering features. The outcome is an integrated dataset

that allows users to discover the metagenomics occurrences of genes in the gene catalogue. The full

use case can be seen at the project site.

http://homepages.cs.ncl.ac.uk/matthew.collison/MicroBioSSIP

http://homepages.cs.ncl.ac.uk/matthew.collison/MicroBioSSIP
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Figure 5.8: A Gephi visualisation of the data visualisation for a simple sub network query.

5.3.3 Third party use case: an integrated dataset for drug repositioning

A BioSSIP application was built by Joseph Mullen at Newcastle University as part of the work

contributing to his thesis titled ’Systems Approaches to Drug Repositioning’. The project was also

in collaboration with GSK and the Integrative Bioinformatics group in the School of Computing

Science. This application was developed concurrently with the BioSSIP framework and makes use

of the data integration and pipeline development protocols.

DReNIn, is an integrated dataset developed for drug repositioning. DReNIn uses a high-level drug

repositioning ontology to structure data and describes 25 relevant data types and the relationships

that exist between these. The integrated dataset includes data from over 20 different sources.

5.4 Discussion

Metagenomics data are inherently large, complex and incomplete datasets. High-throughput tech-

nologies have facilitated the emergence of data rich studies and dramatically increased our under-

standing of how this data can relate to the community level function. This increased data availability

has posed challenges to the computational infrastructure for analysing metagenomics data. We have
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developed a solution to facilitate integrated studies in order to handle the scale and complexity of

these data. This approach provides a platform for reproducibility which makes the secondary analy-

ses more accessible to the bioinformaticians. This software is a prototype implementation for a new

approach to mircobiome research.

5.4.1 NOSQL for scalable data handling

Graph visualisation tools are common place in integrative bioinformatics. However, graph databases

have rarely been used in bioinformatics despite the growing requirement for large scale data han-

dling (Have & Jensen, 2013). This study shows NOSQL graph databases can useful for handling

scalability in bioinformatics. Particularly, this study shows one of the first applications of Neo4J and

graph databases in bioinformatics.

5.4.2 Data integration developer community

Sharing parsers and derivative datasets could save time, reduce workload and improve standards

for the data integration software developer community. Moreover by creating and documenting the

data integration and data mining process more clearly it is possible that a new approach to utilising

metagenomics data could be adopted by the research community.

5.4.3 Biological insights for drug discovery applications

Host-microbiota interactions are extremely complex and developing effective disease models in-

corporating the microbiota require a broad understanding of the mechanisms contributing the host-

microbiota interactions. Metagenomics data provides a data rich resource, genomics provide context

and molecular biology provides mechanisms. Each of these pieces of information has critical infor-

mation that can inform effective disease models. However, none of them are capable of characterising

the microbiota contribution in isolation. Therefore exploring the context of molecular mechanisms in

the microbiome is a crucial step in developing understanding of the microbiota, generating effective

disease models and designing effective therapeutic strategies. Existing metagenomics analysis tools

and annotation pipelines provide a top down view of comparative metagenomics. Here we describe

a new approach and a tool to facilitate exploring metagenomics data in a bottom up way to facilitate

insight from molecular mechanisms.



Chapter 6

Conclusions, Discussion and Future

Work

6.1 Project evaluation

The microbiota links human biology with the environment through microbial communities. Micro-

biome research provides vast opportunities to study and manipulate this relationship to benefit humn

health. The aim of this thesis was ’explore the biology of the microbiota through bioinformatics to

improve opportunities for new therapeutic strategies’. To summarise, in this thesis I have surveyed

the capabilities of existing data mining approaches to identify features of the microbiota associated

with disease states, contributed to the development of a novel microbiota targeted therapeutic inter-

vention for type II diabetes, completed a wide scale screening of metagenomics data for previously

uncharacterised protease genes proposed to impact host-microbiota and microbiota-microbiota inter-

actions, and developed a data integration tool to facilitate a new bottom up approach to study the

microbiome and complete secondary analyses that will be key to developing effective strategies for

therapeutic interventions considering the microbiota. The thesis had three objectives:

6.1.1 Evaluate the opportunities for drug discovery from microbiome data analytics

There are three types of experimental methods used to study the microbiome, genomics, 16S metage-

nomics and whole-genome metagenomics. Each type has a clear limitation in the end points that can

be extracted from that data source. Figure 6.1.

This work discusses the limitations of genomics research in that isolated analyses of individual

115
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Figure 6.1: Experimental methodologies for studying the micorbiome.

species are fruitless in such as large complex bacterial community. The limitations of a 16S metage-

nomics data in that only very naieve disease models can be generated. The limitations of whole-

genome metagenomics in that the resolution of sampling is not detailed enough to complete reliable

analyses of low level genes. Together these studies highlighted thelimitations of existing approaches

to analyse each method in isolation and raised the opportunity to exploit the complementary features

of each method in integrative analyses that facilitates a new approach to microbiome data analyses.

6.1.2 Evaluate the role of host-microbiota and microbiota-microbiota interactions in

health, disease and pharmaceutical interventions

Host-microbiota interactions are complex and understanding the nature of the host-microbiota in-

terface in disease remains a major challenge in development of therapeutic therapies. Developing

accuarte testable models for the impact of microbiota in disease is a key step. Chapter 3 contributed

to disease understanding by developing a high level disease model and proposing a treatment model

for type 2 diabetes. Chapter 4 contributed to disease understanding by revealing thousands of genes

linked host-microbiota and microbiota-microbiota interactions that will progress understanding of

niche microhabitats key in developing disease models. Chapter 5 contributed to understanding of

host-microbiota and microbiota-microbiota interactions by enabling a new approach to microbiome

analyses.
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6.1.3 Provide computational tools to facilitate microbiome analyses and improve ac-

cess to microbiome data for drug discovery

The analyses in the early chpaters of this thesis highlight the requirement for reproducible and scien-

tific approaches to data integration. The SSIP framework is an early implementatiopn of a potential

solution to these challenges.

6.2 Discussion

Microbiome research has significant challenges in data handling. The increase in data availability

has lead to computational challenges in storing, accessing and integrating bioinformatics resources

as well as making secondary analyses reproducible. Most commonly used software tools and bench-

mark datasets, such as MG-RAST and the HMP datasets, are provided as end to end analyses and

federated stores to avoid the users needing high performance computational resources or in-depth

knowledge of the analysis pipeline. However, this also means most experimental datasets are anal-

ysed in isolation and secondary analyses to facilitate screening for novel genes and low level func-

tional analysis required for drug discovery and understanding of molecular mechanisms data integra-

tion will be important.

Top-down analyses only produce results comparing the fraction of data that contains secondary an-

notations from any single annotation source within the constraints of the experimental model. This

means integration of datasets with other data sources processed outside of the analysis pipeline,

including key dataset produced by major consortium studies, is challenging and often not easily re-

producible. Furthermore bottom-up exploration of data is difficult due to data handling challenges

associated with handling primary data. For instance studying correlations between all predicted gene

clusters across experimental datasets instead of only functionally annotated clusters is beyond the

capacity of most anlaysis pipelines.

This thesis documents and quantifies the possibilities and limitations of existing approaches to mi-

crobiome analyses in drug development, shows the advantages and scope for bottom up analyses of

metagenomics data and finally provides a computational tool to support a new approach to micro-

biome analyses that could bridge the gap between high level metagenomics studies and low level

molecular biology studies that is needed for effective design of therapeutic strategies that considers

host-microbiota interactions.



Appendix I - Subject identification

Table 6.1: Subject identification and assignment to analyses. A tick indicates that subject was
included in analyses for the corresponding techniques. An astericks indicates the daat collec-
tion for that subject is missing measurements for Insulin, Amylin, Leptin, Ghrelin, GIP, PYY,
PPr, active GLP-1 and total GLP-1. Superscript notation means measurements for the names
metabolite are missing and @ means multiple others are also missing.

Subject ID Condition Weight metabolite profiling 16S metagenomics WG metagenomics
1 L 4 4LIP 4 4

2 L 4 4 4 4

3 L 4 4PPr 4

4 L 4 4

5 L 4 4 4

6 L 4 4* 4

7 L 4 4 4

8 L 4 4* 4

9 L 4 4 4

10 L 4 4 4

11 O 4 4 4

12 O 4 4 4 4

13 O 4 4* 4

14 O 4 4 4

15 O 4 4 4

16 O 4 4 4

17 O 4 4 4

18 O 4 4 4

19 O 4 4 4

20 O 4 4 4

21 A500 4 4 4

22 A500 4 4Ghrelin 4

23 A500 4 4PPr 4

24 A500 4 4 4

25 A500 4 4 4

26 A500 4 4 4
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Table 6.1 – continued from previous page
Subject ID Condition Weight metabolite profiling 16S metagenomics WG metagenomics

27 A500 4 4 4

28 A500 4 4 4

29 A500 4 4 4

30 A500

31 A150 4

32 A150 4

33 A150 4

34 A150 4

35 A150 4

36 A150 4

37 A150 4

38 A150 4

39 A150 4

40 A150 4

41 A50 4

42 A50 4

43 A50 4

44 A50 4

45 A50 4

46 A50 4

47 A50 4

48 A50 4

49 A50 4

50 A50

51 B500 4 4* 4

52 B500 4 4

53 B500 4 4 4

54 B500 4 4 4

55 B500 4 4 4

56 B500 4 4*@

57 B500 4 4 4

58 B500 4 4 4

59 B500 4 4 4

60 B500 4 4

61 B150 4

62 B150 4

63 B150 4

64 B150 4

65 B150

66 B150 4
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Table 6.1 – continued from previous page
Subject ID Condition Weight metabolite profiling 16S metagenomics WG metagenomics

67 B150 4

68 B150 4

69 B150 4

70 B150 4

71 B50 4 4PPr

72 B50 4 4

73 B50 4 4 4

74 B50 4 4 4

75 B50 4 4 4

76 B50 4 4 4

77 B50 4 4 4

78 B50 4 4

79 B50 4 4 4

80 B50 4 4

81 D10% 4 4 4 4

82 D10% 4 4* 4

83 D10% 4 4 4

84 D10% 4 4

85 D10% 4 4 4

86 D10% 4 4 4

87 D10% 4 4 4

88 D10% 4 4 4

89 D10% 4 4 4

90 D10% 4 4 4



Appendix II - Normal probability plots
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Figure 6.2: Normal probability plots of each metabolite for each group. Simulated data following
a predicted normal distribution with real mean and standard deviation is present in the background
in red. If the real data is normally distributed it will be linear and denser in the middle section,
following the red simulation. This graph and the statistical values were calculcated and generated
using modelvalidation.m.
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https://bitbucket.org/m_collison/diabetic-mouse-model-scripts/src/8d3be90c9e0676e723dbe258b9bc967a1d31f0e1/modelvalidation.m?at=master
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Figure 6.3: Normal probability plots of each liver function marker for each group. Simulated
data following a predicted normal distribution with real mean and standard deviation is present in
the background in red. If the real data is normally distributed it will be linear and denser in the
middle section, following the red simulation. This graph and the statistical values were calculcated
and generated using treatmentphysiology.m.

https://bitbucket.org/m_collison/diabetic-mouse-model-scripts/src/8d3be90c9e0676e723dbe258b9bc967a1d31f0e1/treatmentphysiology.m?at=master


CHAPTER 6. CONCLUSIONS, DISCUSSION AND FUTURE WORK 123

Figure 6.4: Normal probability plots of each kidney function marker for each group. Simulated
data following a predicted normal distribution with real mean and standard deviation is present in
the background in red. If the real data is normally distributed it will be linear and denser in the
middle section, following the red simulation. This graph and the statistical values were calculcated
and generated using treatmentphysiology.m.

Figure 6.5: Normal probability plots of each pancreatic function marker for each group. Simu-
lated data following a predicted normal distribution with real mean and standard deviation is present
in the background in red. If the real data is normally distributed it will be linear and denser in the
middle section, following the red simulation. This graph and the statistical values were calculcated
and generated using treatmentphysiology.m.

https://bitbucket.org/m_collison/diabetic-mouse-model-scripts/src/8d3be90c9e0676e723dbe258b9bc967a1d31f0e1/treatmentphysiology.m?at=master
https://bitbucket.org/m_collison/diabetic-mouse-model-scripts/src/8d3be90c9e0676e723dbe258b9bc967a1d31f0e1/treatmentphysiology.m?at=master
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Figure 6.6: Normal probability plots of each plasma protein marker for each group. Simulated
data following a predicted normal distribution with real mean and standard deviation is present in
the background in red. If the real data is normally distributed it will be linear and denser in the
middle section, following the red simulation. This graph and the statistical values were calculcated
and generated using treatmentphysiology.m.

Figure 6.7: Normal probability plots of each energy substrate for each group. Simulated data
following a predicted normal distribution with real mean and standard deviation is present in the
background in red. If the real data is normally distributed it will be linear and denser in the middle
section, following the red simulation. This graph and the statistical values were calculcated and
generated using treatmentphysiology.m.

https://bitbucket.org/m_collison/diabetic-mouse-model-scripts/src/8d3be90c9e0676e723dbe258b9bc967a1d31f0e1/treatmentphysiology.m?at=master
https://bitbucket.org/m_collison/diabetic-mouse-model-scripts/src/8d3be90c9e0676e723dbe258b9bc967a1d31f0e1/treatmentphysiology.m?at=master
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Figure 6.8: Normal probability plots of each energy substrate for each group. Simulated data
following a predicted normal distribution with real mean and standard deviation is present in the
background in red. If the real data is normally distributed it will be linear and denser in the middle
section, following the red simulation. This graph and the statistical values were calculcated and
generated using treatmentphysiology.m.

Figure 6.9: Normal probability plots of each endocrine signalling molecule for each group. Sim-
ulated data following a predicted normal distribution with real mean and standard deviation is present
in the background in red. If the real data is normally distributed it will be linear and denser in the
middle section, following the red simulation. This graph and the statistical values were calculcated
and generated using treatmentphysiology.m.

https://bitbucket.org/m_collison/diabetic-mouse-model-scripts/src/8d3be90c9e0676e723dbe258b9bc967a1d31f0e1/treatmentphysiology.m?at=master
https://bitbucket.org/m_collison/diabetic-mouse-model-scripts/src/8d3be90c9e0676e723dbe258b9bc967a1d31f0e1/treatmentphysiology.m?at=master


Appendix III - Complete gene

configuration table

Table 6.2: Gene configuration information for all CBM-protease pairs.

MEROPS

family

Gene configuration No of

hits

No of

distinct

genes
A01 A01-CBM50 10 6
A01 A01-CBM2 1 1
A01 A01-CBM32 1 1
A01 A01-CBM54 1 1
A11 A11-CBM48 1 1
A22 A22-CBM67 1 1
C01 C01-CBM37 25 9
C01 C01-CBM37-CBM37-CBM37-CBM37 8 3
C01 C01-CBM37-CBM37 7 4
C01 C01-CBM46 6 4
C01 C01-CBM32 3 3
C01 C01-CBM58 2 1
C01 C01-CBM56 2 1
C01 C01-CBM32-CBM46 1 1
C01 C01-CBM37-CBM37-CBM37 1 1
C02 C02-CBM32 12 4
C10 C10-CBM61 3 2
C10 C10-CBM37-CBM37 2 1
C10 C10-CBM6 1 1
C11 C11-CBM56 9 5
C12 C12-CBM26 1 1
C13 C13-CBM32-CBM32 1 1
C14 C14-CBM37 14 8
C14 C14-CBM37-CBM37 1 1

126
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C14 C14-CBM32 1 1
C14 C14-CBM37-CBM37-CBM37 1 1
C15 C15-CBM35 1 1
C16 C16-CBM67 1 1
C19 C19-CBM32 1 1
C25 C25-CBM35 2 2
C26 C26-CBM65 1 1
C26 C26-CBM32 1 1
C39 C39-CBM13 2 1
C40 C40-CBM50 953 298
C40 C40-CBM50-CBM50 312 95
C40 C40-CBM44 137 32
C40 C40-CBM50-CBM50-CBM50 131 43
C40 C40-CBM50-CBM50-CBM50-CBM50-CBM50 11 5
C40 C40-CBM40 10 1
C40 C40-CBM50-CBM50-CBM50-CBM50 9 4
C40 C40-CBM32 8 3
C40 C40-CBM13 7 4
C40 C40-CBM44-CBM44 7 2
C40 C40-CBM56 5 3
C40 C40-CBM54 4 4
C40 C40-CBM44-CBM40 3 1
C40 C40-CBM37 3 2
C40 C40-CBM35 2 2
C40 C40-CBM9 2 1
C40 C40-CBM61 2 2
C40 C40-CBM37-CBM37 2 2
C40 C40-CBM4 1 1
C40 C40-CBM26-CBM26 1 1
C40 C40-CBM6 1 1
C40 C40-CBM37-CBM37-CBM37 1 1
C40 C40-CBM12 1 1
C40 C40-CBM44-CBM37 1 1
C40 C40-CBM50-CBM50-CBM50-CBM50-CBM50-CBM50 1 1
C40 C40-CBM66 1 1
C44 C44-CBM67 9 1
C44 C44-CBM32 1 1
C44 C44-CBM48-CBM68 1 1
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C45 C45-CBM32 15 3
C50 C50-CBM50 1 1
C51 C51-CBM13 8 6
C51 C51-CBM37 4 4
C51 C51-CBM13-CBM13 1 1
C56 C56-CBM34 1 1
C59 C59-CBM67 1 1
C60 C60-CBM20 1 1
C60 C60-CBM62 1 1
C69 C69-CBM67 4 1
C82 C82-CBM35 26 2
C82 C82-CBM37-CBM37 22 3
C82 C82-CBM37 17 7
C82 C82-CBM37-CBM37-CBM37 9 2
C82 C82-CBM50 6 5
C82 C82-CBM61 5 2
C82 C82-CBM69 4 2
C82 C82-CBM32 3 1
C82 C82-CBM37-CBM32 2 1
C82 C82-CBM13-CBM13 1 1
C82 C82-CBM6 1 1
C97 C97-CBM50 1 1
I32 I32-CBM4 1 1
I39 I39-CBM42 21 2
I39 I39-CBM22 9 6
I39 I39-CBM34 6 3
I39 I39-CBM16 3 2
I39 I39-CBM23 2 2
I39 I39-CBM56 2 1
I39 I39-CBM51 2 2
I39 I39-CBM39 1 1
I39 I39-CBM13 1 1
I39 I39-CBM68 1 1
I39 I39-CBM21 1 1
I39 I39-CBM32 1 1
I39 I39-CBM4 1 1
I43 I43-CBM37 297 120
I43 I43-CBM37-CBM37 182 89
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I43 I43-CBM37-CBM37-CBM37 67 35
I43 I43-CBM37-CBM37-CBM37-CBM37 37 11
I43 I43-CBM26 10 1
I43 I43-CBM37-CBM37-CBM37-CBM37-CBM37 9 6
I43 I43-CBM16 9 5
I43 I43-CBM32 9 8
I43 I43-CBM4-CBM37-CBM37-CBM37-CBM37 7 1
I43 I43-CBM37-CBM32-CBM37-CBM37 5 1
I43 I43-CBM4 4 2
I43 I43-CBM23 4 1
I43 I43-CBM37-CBM37-CBM37-CBM37-CBM37-CBM37 3 2
I43 I43-CBM37-CBM37-CBM37-CBM16-CBM37-CBM37 3 1
I43 I43-CBM32-CBM37-CBM37 3 1
I43 I43-CBM37-CBM37-CBM37-CBM37-CBM37-CBM37-

CBM37-CBM37

3 1

I43 I43-CBM16-CBM37-CBM37-CBM37-CBM37-CBM37 3 2
I43 I43-CBM61 2 2
I43 I43-CBM46-CBM23-CBM46-CBM37-CBM37-CBM46-

CBM37

1 1

I43 I43-CBM46-CBM46-CBM37-CBM46-CBM23-CBM37-

CBM37

1 1

I43 I43-CBM6-CBM37 1 1
I43 I43-CBM37-CBM37-CBM16 1 1
I43 I43-CBM37-CBM37-CBM37-CBM37-CBM16 1 1
I43 I43-CBM37-CBM46-CBM23 1 1
I43 I43-CBM37-CBM37-CBM37-CBM37-CBM37-CBM37-

CBM37

1 1

I43 I43-CBM37-CBM37-CBM16-CBM37-CBM37-CBM37 1 1
I43 I43-CBM37-CBM16-CBM37-CBM37-CBM37-CBM37 1 1
I43 I43-CBM23-CBM37-CBM46 1 1
I43 I43-CBM37-CBM46-CBM23-CBM46-CBM37-CBM37-

CBM46

1 1

I43 I43-CBM13-CBM13-CBM37 1 1
I43 I43-CBM37-CBM16 1 1
I43 I43-CBM46-CBM46-CBM37-CBM46-CBM23-CBM37 1 1
I43 I43-CBM46-CBM37-CBM46-CBM23-CBM46-CBM37 1 1
I43 I43-CBM20 1 1
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I43 I43-CBM46-CBM23-CBM37-CBM46-CBM46-CBM37-

CBM37

1 1

I43 I43-CBM32-CBM37 1 1
I43 I43-CBM46 1 1
I43 I43-CBM23-CBM46-CBM37 1 1
I43 I43-CBM22 1 1
I43 I43-CBM44 1 1
I63 I63-CBM13 8 3
I63 I63-CBM56 2 2
I63 I63-CBM50 2 1
I63 I63-CBM13-CBM13 1 1
I63 I63-CBM2-CBM2 1 1
I63 I63-CBM6 1 1
I63 I63-CBM51 1 1
I63 I63-CBM32 1 1
M01 M01-CBM32 1 1
M02 M02-CBM26 1 1
M03 M03-CBM11 2 2
M03 M03-CBM47 1 1
M03 M03-CBM32 1 1
M03 M03-CBM35 1 1
M04 M04-CBM35 26 4
M04 M04-CBM4 3 2
M04 M04-CBM51 1 1
M04 M04-CBM41-CBM25-CBM41-CBM48 1 1
M04 M04-CBM8 1 1
M06 M06-CBM44 29 8
M06 M06-CBM37 18 8
M06 M06-CBM32 7 3
M06 M06-CBM16 4 4
M06 M06-CBM38 3 2
M06 M06-CBM46 2 1
M06 M06-CBM44-CBM44 2 2
M06 M06-CBM11 1 1
M06 M06-CBM61 1 1
M07 M07-CBM46 1 1
M09 M09-CBM44 79 27
M09 M09-CBM32-CBM44 5 3
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M09 M09-CBM44-CBM37 2 2
M09 M09-CBM37-CBM44 1 1
M09 M09-CBM62-CBM62 1 1
M10 M10-CBM20-CBM20 32 3
M10 M10-CBM20 12 2
M10 M10-CBM32-CBM62 6 1
M10 M10-CBM13 1 1
M12 M12-CBM50 2 1
M12 M12-CBM58 1 1
M13 M13-CBM37 9 1
M13 M13-CBM67 2 2
M13 M13-CBM20-CBM20 2 2
M14 M14-CBM50 119 30
M14 M14-CBM37 24 8
M14 M14-CBM13 7 5
M14 M14-CBM40 2 2
M14 M14-CBM13-CBM13-CBM13-CBM13-CBM13 1 1
M14 M14-CBM13-CBM13-CBM13-CBM13 1 1
M14 M14-CBM4-CBM32 1 1
M14 M14-CBM32 1 1
M14 M14-CBM13-CBM13 1 1
M14 M14-CBM37-CBM37 1 1
M15 M15-CBM37-CBM37-CBM37-CBM37 14 1
M15 M15-CBM37 3 1
M15 M15-CBM37-CBM37-CBM37 2 1
M15 M15-CBM37-CBM37 1 1
M15 M15-CBM35 1 1
M16 M16-CBM6 2 1
M16 M16-CBM61 1 1
M16 M16-CBM4-CBM4 1 1
M17 M17-CBM9 1 1
M18 M18-CBM5 4 2
M18 M18-CBM12 1 1
M18 M18-CBM48 1 1
M19 M19-CBM34 14 1
M19 M19-CBM10 1 1
M20 M20-CBM48 6 2
M20 M20-CBM66 6 1
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M20 M20-CBM22 3 1
M20 M20-CBM31 3 1
M20 M20-CBM67 2 2
M20 M20-CBM20-CBM20 1 1
M20 M20-CBM35 1 1
M20 M20-CBM40 1 1
M20 M20-CBM32 1 1
M22 M22-CBM62-CBM62 2 1
M22 M22-CBM4 2 1
M22 M22-CBM14 1 1
M22 M22-CBM37 1 1
M22 M22-CBM62 1 1
M23 M23-CBM50 4078 1211
M23 M23-CBM50-CBM50 1060 335
M23 M23-CBM50-CBM50-CBM50 413 113
M23 M23-CBM50-CBM50-CBM50-CBM50 76 32
M23 M23-CBM50-CBM50-CBM50-CBM50-CBM50 31 14
M23 M23-CBM37-CBM50 9 5
M23 M23-CBM13 5 4
M23 M23-CBM50-CBM37 4 3
M23 M23-CBM13-CBM13 3 3
M23 M23-CBM63-CBM50 3 1
M23 M23-CBM61-CBM50 2 1
M23 M23-CBM66 2 2
M23 M23-CBM61-CBM61-CBM50-CBM61 2 2
M23 M23-CBM50-CBM61-CBM61-CBM61 2 2
M23 M23-CBM50-CBM61 1 1
M23 M23-CBM6-CBM50 1 1
M23 M23-CBM61 1 1
M23 M23-CBM4 1 1
M23 M23-CBM50-CBM28 1 1
M23 M23-CBM37-CBM13 1 1
M23 M23-CBM11 1 1
M23 M23-CBM50-CBM50-CBM50-CBM50-CBM50-CBM50 1 1
M23 M23-CBM16 1 1
M23 M23-CBM37 1 1
M23 M23-CBM56 1 1
M26 M26-CBM37 7 3
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M26 M26-CBM56 5 3
M26 M26-CBM62 2 2
M26 M26-CBM61 2 2
M26 M26-CBM32 2 2
M26 M26-CBM46 2 2
M26 M26-CBM2 1 1
M26 M26-CBM62-CBM32 1 1
M26 M26-CBM20 1 1
M26 M26-CBM35 1 1
M26 M26-CBM32-CBM32-CBM32 1 1
M28 M28-CBM35 1 1
M28 M28-CBM16 1 1
M38 M38-CBM8 3 1
M38 M38-CBM32 3 2
M38 M38-CBM56 1 1
M41 M41-CBM22 8 1
M41 M41-CBM35 1 1
M41 M41-CBM64 1 1
M42 M42-CBM50 1 1
M42 M42-CBM62 1 1
M43 M43-CBM40 404 144
M43 M43-CBM66 55 20
M43 M43-CBM32 45 7
M43 M43-CBM40-CBM13 15 3
M43 M43-CBM40-CBM40 7 5
M43 M43-CBM13-CBM40 5 2
M43 M43-CBM40-CBM32 4 2
M43 M43-CBM66-CBM40 3 2
M43 M43-CBM32-CBM40 3 1
M43 M43-CBM56-CBM40 2 1
M43 M43-CBM36 2 1
M43 M43-CBM32-CBM32 1 1
M43 M43-CBM51-CBM66 1 1
M43 M43-CBM32-CBM6 1 1
M43 M43-CBM44 1 1
M43 M43-CBM57 1 1
M43 M43-CBM13 1 1
M43 M43-CBM40-CBM51 1 1
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M43 M43-CBM40-CBM56 1 1
M43 M43-CBM35-CBM40 1 1
M43 M43-CBM9 1 1
M43 M43-CBM44-CBM44 1 1
M50 M50-CBM9 21 1
M50 M50-CBM66 7 4
M50 M50-CBM23 3 1
M56 M56-CBM70 1 1
M60 M60-CBM32 148 34
M60 M60-CBM37-CBM32 1 1
M60 M60-CBM13 1 1
M60 M60-CBM32-CBM51 1 1
M61 M61-CBM51 1 1
M67 M67-CBM50 114 27
M81 M81-CBM51 1 1
M82 M82-CBM27 1 1
N06 N06-CBM2 1 1
N10 N10-CBM16 2 2
N10 N10-CBM61 1 1
P01 P01-CBM25 2 2
P01 P01-CBM35 1 1
S01 S01-CBM32 10 2
S01 S01-CBM37 9 5
S01 S01-CBM51 7 5
S01 S01-CBM67 2 2
S01 S01-CBM32-CBM32 2 1
S01 S01-CBM40 1 1
S01 S01-CBM46 1 1
S01 S01-CBM13 1 1
S01 S01-CBM26 1 1
S01 S01-CBM3 1 1
S01 S01-CBM2 1 1
S01 S01-CBM19 1 1
S06 S06-CBM32 3 2
S08 S08-CBM44 104 36
S08 S08-CBM26 73 16
S08 S08-CBM37 29 10
S08 S08-CBM40 27 13
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S08 S08-CBM32 26 11
S08 S08-CBM26-CBM26 26 9
S08 S08-CBM44-CBM44 24 9
S08 S08-CBM11 23 1
S08 S08-CBM26-CBM48 15 2
S08 S08-CBM37-CBM37 8 3
S08 S08-CBM13 8 6
S08 S08-CBM35 7 4
S08 S08-CBM22 6 5
S08 S08-CBM40-CBM13 6 1
S08 S08-CBM62 5 1
S08 S08-CBM2-CBM2 5 3
S08 S08-CBM66 4 2
S08 S08-CBM13-CBM13 4 4
S08 S08-CBM2 4 4
S08 S08-CBM46-CBM32 4 2
S08 S08-CBM26-CBM26-CBM48 4 1
S08 S08-CBM32-CBM32 3 2
S08 S08-CBM46 3 3
S08 S08-CBM44-CBM40 3 1
S08 S08-CBM67 2 2
S08 S08-CBM66-CBM66-CBM67 2 1
S08 S08-CBM6 2 2
S08 S08-CBM56 2 2
S08 S08-CBM13-CBM13-CBM13 2 2
S08 S08-CBM23 1 1
S08 S08-CBM61 1 1
S08 S08-CBM48-CBM26 1 1
S08 S08-CBM32-CBM32-CBM32 1 1
S08 S08-CBM66-CBM6-CBM66 1 1
S08 S08-CBM51-CBM32-CBM32 1 1
S08 S08-CBM32-CBM46 1 1
S08 S08-CBM13-CBM32-CBM6-CBM32-CBM32 1 1
S08 S08-CBM40-CBM40 1 1
S08 S08-CBM44-CBM32 1 1
S08 S08-CBM35-CBM35 1 1
S08 S08-CBM26-CBM48-CBM26 1 1
S08 S08-CBM3 1 1
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S08 S08-CBM32-CBM32-CBM6-CBM32 1 1
S08 S08-CBM32-CBM32-CBM51 1 1
S08 S08-CBM4 1 1
S08 S08-CBM22-CBM6-CBM22 1 1
S08 S08-CBM22-CBM22 1 1
S08 S08-CBM57 1 1
S08 S08-CBM58 1 1
S08 S08-CBM32-CBM32-CBM13-CBM6-CBM32 1 1
S08 S08-CBM30-CBM4 1 1
S08 S08-CBM44-CBM22-CBM16 1 1
S08 S08-CBM32-CBM32-CBM6-CBM13-CBM32 1 1
S08 S08-CBM48 1 1
S09 S09-CBM48 611 110
S09 S09-CBM44 58 17
S09 S09-CBM37 51 30
S09 S09-CBM37-CBM37-CBM37 38 4
S09 S09-CBM20 32 6
S09 S09-CBM48-CBM6 30 3
S09 S09-CBM48-CBM48 27 3
S09 S09-CBM37-CBM44 17 2
S09 S09-CBM37-CBM37 10 7
S09 S09-CBM32 10 6
S09 S09-CBM6-CBM48 9 2
S09 S09-CBM26 9 4
S09 S09-CBM62-CBM62 8 1
S09 S09-CBM22 4 4
S09 S09-CBM4 4 4
S09 S09-CBM44-CBM44 3 3
S09 S09-CBM34 3 1
S09 S09-CBM51 3 1
S09 S09-CBM66 2 1
S09 S09-CBM51-CBM51 2 1
S09 S09-CBM29 2 1
S09 S09-CBM6 2 1
S09 S09-CBM67 1 1
S09 S09-CBM23 1 1
S09 S09-CBM62 1 1
S09 S09-CBM40 1 1
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S09 S09-CBM64 1 1
S09 S09-CBM26-CBM37 1 1
S09 S09-CBM37-CBM23 1 1
S09 S09-CBM13 1 1
S10 S10-CBM67 1 1
S10 S10-CBM11 1 1
S11 S11-CBM37 6 4
S11 S11-CBM32 4 2
S11 S11-CBM22 3 2
S11 S11-CBM67 3 1
S12 S12-CBM32 16 2
S12 S12-CBM9 1 1
S13 S13-CBM13-CBM13 1 1
S13 S13-CBM48 1 1
S14 S14-CBM32 3 1
S14 S14-CBM64 1 1
S14 S14-CBM61 1 1
S14 S14-CBM67 1 1
S16 S16-CBM20 2 1
S16 S16-CBM32 1 1
S24 S24-CBM48 1 1
S26 S26-CBM12 2 2
S26 S26-CBM30 1 1
S26 S26-CBM19 1 1
S26 S26-CBM48 1 1
S33 S33-CBM32 38 9
S33 S33-CBM20 7 1
S33 S33-CBM51 4 1
S33 S33-CBM67 3 1
S33 S33-CBM4 2 1
S33 S33-CBM13 1 1
S33 S33-CBM12 1 1
S33 S33-CBM66 1 1
S33 S33-CBM44 1 1
S33 S33-CBM16 1 1
S33 S33-CBM48 1 1
S33 S33-CBM3 1 1
S41 S41-CBM4 2 1
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S45 S45-CBM48 1 1
S49 S49-CBM20 2 1
S54 S54-CBM32 1 1
S55 S55-CBM16 12 2
S66 S66-CBM5 1 1
T01 T01-CBM9 2 1
T03 T03-CBM6 2 1
T03 T03-CBM67 2 1
T03 T03-CBM62 1 1
T03 T03-CBM37-CBM32 1 1
T03 T03-CBM48 1 1
T03 T03-CBM48-CBM48 1 1
T05 T05-CBM70 1 1
U32 U32-CBM39 5 1
U32 U32-CBM62-CBM32 1 1
U32 U32-CBM16 1 1
U62 U62-CBM36 2 1
U69 U69-CBM56 60 37
U69 U69-CBM32 47 15
U69 U69-CBM37 19 7
U69 U69-CBM4-CBM4-CBM4-CBM4 11 1
U69 U69-CBM4 11 9
U69 U69-CBM35 7 7
U69 U69-CBM9-CBM9 6 1
U69 U69-CBM22 5 4
U69 U69-CBM67 5 2
U69 U69-CBM9 4 1
U69 U69-CBM22-CBM9-CBM9 4 1
U69 U69-CBM61 3 1
U69 U69-CBM2 3 2
U69 U69-CBM6 3 2
U69 U69-CBM51 3 1
U69 U69-CBM4-CBM4-CBM4 3 1
U69 U69-CBM26 2 2
U69 U69-CBM66 2 2
U69 U69-CBM26-CBM26-CBM26 2 2
U69 U69-CBM26-CBM56 2 1
U69 U69-CBM9-CBM22-CBM9 2 1
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U69 U69-CBM2-CBM2 1 1
U69 U69-CBM56-CBM26 1 1
U69 U69-CBM32-CBM32-CBM32 1 1
U69 U69-CBM13-CBM13 1 1
U69 U69-CBM59 1 1
U69 U69-CBM16 1 1
U69 U69-CBM56-CBM56 1 1
U69 U69-CBM13 1 1
U69 U69-CBM26-CBM26 1 1
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