
Newcastle University, UK

School of Electrical and Electronic Engineering (EEE)

Compositional Circuit Design
with

Asynchronous Concepts

PhD Thesis

Jonathan Richard Beaumont

March 2018

Abstract
Synchronous circuits are pervasive in modern digital systems, such as smart-phones,
wearable devices and computers. Synchronous circuits are controlled by a global clock
signal, which greatly simplifies their design but is also a limitation in some applications.
Asynchronous circuits are a logical alternative: they do not use a global clock to syn-
chronise their components. Instead, every component reacts to input events at the rate
they occur. Asynchronous circuits are not widely adopted by industry, because they are
often harder to design and require more sophisticated tools and formal models.

Signal Transition Graphs (STGs) is a well-studied formal model for the specifica-
tion, verification and synthesis of asynchronous circuits with state-of-the-art tool sup-
port. STGs use a graphical notation where vertices and arcs specify the operation of
an asynchronous circuit. These graphical specifications can be difficult to describe com-
positionally, and provide little reusability of useful sections of a graph. In this thesis
we present Asynchronous Concepts, a new design methodology for asynchronous cir-
cuit design. A concept is a self-contained description of a circuit requirement, which is
composable with any other concept, allowing compositional specification of large asyn-
chronous circuits. Concepts can be shared, reused and extended by users, promoting the
reuse of behaviours within single or multiple specifications. Asynchronous Concepts can
be translated to STGs to benefit from the existing theory and tools developed by the
asynchronous circuits community.

Plato is a software tool developed for Asynchronous Concepts that supports the
presented design methodology, and provides automated methods for translation to STGs.
The design flow which utilises Asynchronous Concepts is automated using Plato and
the open-source toolsuite Workcraft, which can use the translated STGs in verification
and synthesis using integrated tools. The proposed language, the design flow, and the
supporting tools are evaluated on real-world case studies.

i

Acknowledgments

I would like to thank my supervisor, Andrey Mokhov, for his wisdom and guidance
throughout my postgraduate studies. He introduced me to graphical design methods,
and helped me shape what has become the subject of this thesis, and I am very grateful.
I would also like to thank Danil Sokolov, who has greatly helped my skills and knowledge
in this field and in software design, and Alex Yakovlev, who often helped me expand my
understandings and bring this into my research.

I also extend my thanks to my colleagues Alessandro de Gennaro, Vladimir Dubikhin
and Adiran Wheeldon. We have worked together and discussed many topics over the
years, and from them all I have learned many things. I hope they continue to be successful
with their research and future careers.

To my friends, whom I have had the pleasure of spending time with since I began
my studies. I thank you for all of your support and the fun times we have had. To Chris
Dunn, thank you for your hospitality, and to Ashley Matthews, thank you for always
being up for a chat, and your interest in my work. I also thank my family for their
support throughout my studies.

Finally, and most importantly, I am thankful to Elie Howes for all of her love, support
and patience throughout my PhD. She was there to help me at difficult times, and to
share in the good times. Her encouragement has helped me with the research and with
the writing of this thesis, and I am very grateful.

This research was supported by EPSRC research grant ‘A4A: Asynchronous design
for Analogue electronics’ (EP/L025507/1) and the Royal Society Research Grant ‘Com-
putation Alive: Design of a Processor with Survival Instincts’

ii

Contents

Abstract i

Acknowledgments ii

Contents iii

List of Figures vi

List of Tables xi

Publications xii

1 Introduction 1

1.1 Current usage of asynchronous technology 2

1.2 Motivation for a new design method 4

1.3 Contribution . 6

1.4 Thesis layout . 7

2 Technical background 9

2.1 Finite State Machines . 9

2.2 Petri Nets . 12

2.3 Signal Transition Graphs . 15

2.3.1 STG design flow . 17

2.4 Digital Circuits . 18

2.5 Monoids . 21

2.6 Boolean functions . 23

2.6.1 Converting any Boolean function to CNF 24

2.6.2 Converting CNF functions to DNF functions 26

2.7 Haskell syntax . 27

iii

2.8 Summary . 28

3 Asynchronous Concepts 30

3.1 Circuit-specific concepts . 31

3.1.1 Signal-level concepts . 31

3.1.2 Gate-level and Protocol-level concepts 40

3.2 Generalising to multiple inputs . 52

3.3 High-level concept functions . 55

3.3.1 Boolean function concepts . 55

3.3.2 Bubble transformation . 57

3.3.3 Dual transformation . 63

3.3.4 Enable transformation . 66

3.4 Set-Reset latch example . 70

3.5 Abstract concepts . 73

3.6 Summary . 77

4 Asynchronous Concepts design flow 79

4.1 Design approach . 80

4.2 Generating concepts from set and reset functions 83

4.3 Process mining for Asynchronous Concepts 84

4.4 User generated libraries of concepts . 86

4.5 Asynchronous Concept translation . 87

4.6 Combining concept specifications . 89

4.6.1 Sequential template . 90

4.6.2 Concurrent template . 90

4.6.3 Choice template . 91

4.6.4 Complex combinations . 92

4.7 Verification . 92

4.8 Synthesis . 94

4.9 Summary . 95

5 Automation of the design flow 97

5.1 Plato . 100

5.1.1 Translation to STG . 101

5.1.2 Translation to State Graphs 107

iv

5.1.3 Generating concepts from Boolean functions 112

5.2 Workcraft . 116

5.2.1 Plato integration . 116

5.2.2 PGminer integration . 118

5.2.3 Verification and synthesis tools 119

5.3 Summary . 123

6 Case Studies 125

6.1 Case Study 1: A simple buck controller 125

6.1.1 Combining the scenarios . 131

6.1.2 Simulation and verification . 132

6.1.3 Synthesis of a speed-independent controller 134

6.2 Case Study 2: Multiphase buck controller 135

6.2.1 Single phase block diagram . 137

6.2.2 WAIT element . 141

6.2.3 Full specification . 144

6.3 Summary . 151

7 Related Work 154

8 Conclusions 165

8.1 Main contributions . 165

8.2 Future research and development . 168

A Multiphase buck controller components 174

A.1 High-load handler . 174

A.2 Token-control . 176

A.3 Delay . 177

A.4 MERGE element . 179

A.5 Under-voltage handler . 181

A.6 Zero-crossing handler . 183

A.7 Over-current handler . 186

A.8 Transistor Delay Controller . 187

A.9 Full system translated STGs . 189

Bibliography 193

v

List of Figures

1.1 Interconnect examples . 3

1.2 Example of an STG with hidden patterns of behaviour 5

1.3 Equivalent concept specification for the STG in Figure 1.2 5

2.1 Abstract FSM of a stopwatch . 10

2.2 An example FSM with signals as transition conditions 10

2.3 An FSM featuring 3 concurrent transitions 11

2.4 The elements of a Petri Net . 12

2.5 A stopwatch PN model . 13

2.6 Constructs for modelling concurrency and choice in PNs 14

2.7 An example of a system with concurrency modelled as a PN 14

2.8 A PN featuring 3 concurrent transitions 15

2.9 STG constructs for modelling choice and concurrency 16

2.10 A system featuring concurrency in STG form 16

2.11 An STG with 3 concurrent signal transitions 17

2.12 Two possible implementations of a 3 input C-element 19

2.13 Digital circuit converted to an STG . 20

2.14 Two formations of signal transition loops 20

2.15 An STG using loop formation of signal transition loops 21

2.16 AND-OR, or AO22 circuit icon . 21

2.17 Equivalent STGs for an AO22, both featuring an error 22

3.1 Example of interface in a digital circuit 33

3.2 First example specification with t as an output 34

3.3 Second example specification with t as an internal 35

3.4 Concepts and the translated STG for interface and initial state 36

3.5 Translated STG with a single causality concept 38

vi

3.6 Translated STG containing AND causality 38

3.7 Translated STG showing OR causality 40

3.8 Buffer circuit . 41

3.9 Translated STG of a buffer . 42

3.10 Inverter circuit . 42

3.11 Translated STG of an inverter . 43

3.12 The translated STG of a handshake, and its resynthesized version 44

3.13 C-element circuit . 45

3.14 Translated STG of a C-element . 46

3.15 OR gate circuit . 46

3.16 Translated STG of an OR gate . 47

3.17 AND gate circuit . 47

3.18 Translated STG of an AND gate . 48

3.19 XOR gate circuit . 48

3.20 Translated STG of an XOR gate . 50

3.21 Translated STG of a mutual exclusion concept 51

3.22 Mutual exclusion element (metastability filter omitted for clarity) 51

3.23 Translated STG of a mutual exclusion element 52

3.24 Commonly used gates that we have not specified before 57

3.25 Translated STG of example7 . 58

3.26 Translated STG of example8 . 59

3.27 Translated STG of example9 . 60

3.28 STG and circuit generated from example10 61

3.29 STG and circuit generated from example11 62

3.30 Example circuit to apply dual to . 64

3.31 The dual of Figure 3.30 . 65

3.32 Mutual exclusion elements with and without enable 67

3.33 STG of a mutual exclusion element with an enable signal 69

3.34 Circuit implementation of a mutual exclusion element with enable 69

3.35 Translated STG of example19 . 71

3.36 Translated FSM of example19 . 72

3.37 Synthesized set-reset latch circuit . 73

4.1 Translated STG of example20 . 82

vii

4.2 Synthesized circuit of example20 . 83

4.3 Synthesized circuit from example21 . 84

4.4 InvertedGates user concept file, with reusable concepts 87

4.5 A concept specification ready for translation 88

4.6 STG and state graph translations of example23 89

4.7 Example of sequential combination . 90

4.8 Example of concurrent combination . 91

4.9 Example of a choice combination . 92

4.10 example24 translated to an STG . 93

4.11 Technology mapped AND gate . 94

4.12 A circuit synthesized without technology mapping 95

5.1 A diagram showing the interoperability of the software tools. 98

5.2 3-input NOR gate concept specification file 99

5.3 behaviour concept in atomic form . 104

5.4 Translated STG with initial states inserted 106

5.5 Translated STG with one read arc inserted 107

5.6 Fully translated STG . 107

5.7 example25 translated to a state graph 112

5.8 3-input NOR gate concept file generated by Bool-to-Concepts 115

5.9 Plato dialogue for authoring concepts 117

5.10 Plato include dialogue in Workcraft . 117

5.11 Completed translation, and timing diagram of a concept specification . . 118

5.12 PGminer import dialogue . 119

5.13 STG specification of a simple buck controller 120

5.14 Workcraft dialogue showing multiple satisfied verification properties . . . 121

5.15 Custom property dialogue for MPSAT 122

5.16 Dialogue indicating the custom property is satisfied 122

5.17 Synthesized circuit from the STG seen in Figure 5.13 123

6.1 Buck converter and its informal description. 126

6.2 Concept specification for the ZC absent scenario 128

6.3 STG translated from the zcAbsent concept and resynthesized 129

6.4 Concept specification for the ZC late scenario 129

6.5 STG translated from the zcLate concept and resynthesized 129

viii

6.6 Concept specification for the ZC early scenario 130

6.7 STG translated from the zcEarly concept and resynthesized 131

6.8 Combined STG for a buck converter, featuring all three scenarios 132

6.9 STG for a buck converter, with some redundant arcs removed 133

6.10 Combined STG for a buck converter, featuring all three scenarios 134

6.11 Complex gate synthesis result of full STG 135

6.12 Technology mapped implementation of the simple buck controller 135

6.13 Schematic of a multiphase buck converter [1] 136

6.14 Block diagram of a single phase of the controller [1] 138

6.15 A WAIT element . 141

6.16 Concept specification for a WAIT element 142

6.17 Resynthesized WAIT element STG translated from concepts 142

6.18 Figure 6.17 synthesized . 143

6.19 Implementation of a WAIT element using an ME element 143

6.20 WAIT element specified using an ME element 143

6.21 STG of a wait element implemented using an ME element 144

6.22 Module name and imports for the activation specification 145

6.23 hlh_block concept . 145

6.24 Connecting components with internal signals 146

6.25 tc_block concept . 146

6.26 Concept specification for the activation section 147

6.27 Module name and imports for the charging specification 148

6.28 uv_block concept . 149

6.29 dc_block concept . 149

6.30 Concept specification for the charging section 150

6.31 Imports and module name for a single phase concept specification 151

6.32 Declaration of all signals in a single phase of the multiphase buck 152

6.33 Concept specification for a single phase of the multiphase buck 153

8.1 Two temperature control circuits, with a hazardous input signal 169

8.2 The circuit and models of a toggle circuit. 170

8.3 STG and state graph of a toggle circuit with CSC resolved 171

A.1 High-load handler component concept specification 175

A.2 HLH STG translated from concepts. 175

ix

A.3 HLH STG resynthesized. 176

A.4 Token control component concept specification. 176

A.5 TC STG translated from concepts. 177

A.6 TC STG resynthesized. 177

A.7 Delay component concept specification. 178

A.8 Delay STG translated from concepts. 179

A.9 Delay STG resynthesized. 179

A.10 MERGE component concept specification. 180

A.11 MERGE STG translated from concepts. 181

A.12 Simplified state graph of a MERGE element 181

A.13 UVH component concept specification. 182

A.14 UVH STG translated from concepts. 183

A.15 UVH STG resynthesized . 183

A.16 ZCH component concept specification. 184

A.17 ZCH STG translated from concepts. 185

A.18 ZCH STG resynthesized, with differing ZC signalling timings 185

A.19 OCH component concept specification. 186

A.20 OCH STG translated from concepts. 187

A.21 OCH STG resynthesized . 187

A.22 DC component concept specification. 188

A.23 DC STG translated from concepts. 188

A.24 DC STG resynthesized . 189

A.25 Translated STG of the activation section. 190

A.26 Translated STG of the charging section. 191

A.27 Translated STG of the full multiphase buck specification. 192

x

List of Tables

2.1 Truth table for function (a ∧ b) ∨ c . 26

3.1 The hierarchy of interface concepts . 34

3.2 The duals of gates in the library . 66

5.1 OR-causality lists by effect . 104

5.2 Causalities in DNF form . 105

5.3 Causalities and source encoding . 111

7.1 A comparison of Asynchronous Concepts with similar methods 156

xi

Publications

Conference Papers

J. Beaumont, A. Mokhov, D. Sokolov and A. Yakovlev, “Compositional design of asyn-
chronous circuits from behavioural concepts”, 2015 ACM/IEEE International Conference
on Formal Methods and Models for Codesign (MEMOCODE)
doi: 10.1109/MEMCOD.2015.7340478

J. Beaumont, “Plato: a tool for behavioural specification of asynchronous circuits”, 2017
17th International Conference on Application of Concurrency to System Design (ACSD),
Zaragoza, Spain, 2017, pp. 68-73.
doi: 10.1109/ACSD.2017.14

Book chapter

A. Mokhov, J. Carmona, J. Beaumont. “Mining Conditional Partial Order Graphs from
Event Logs”, M. Koutny, J. Desel, J. Kleijn (Eds.): Transactions on Petri Nets and
Other Models of Concurrency XI in Lecture Notes in Computer Science,
vol. 9930, pp. 114-136, Springer, 2016.
doi: 10.1007/978-3-662-53401-4_6

Journal Article

J. Beaumont, A. Mokhov, D. Sokolov, A. Yakovlev, “High-level asynchronous concepts at
the interface between analogue and digital worlds”, Special Issue on Circuit and System
Design Automation for Internet of Things in Transactions on Computer-Aided Design of
Integrated Circuits and Systems.
doi: 10.1109/TCAD.2017.2748002

xii

Technical reports and memos

J Beaumont “Modelling Digital Systems using Behavioural Fragments”, Technical Re-
port Series, async.org.uk, January 2015
http://async.org.uk/tech-reports/NCL-EEE-MICRO-TR-2015-194.pdf

J. Beaumont, “A survey of theory and practice in compositional design of asynchronous
circuits”, Technical Memo Series, async.org.uk, November 2015
http://async.org.uk/tech-memos/NCL-EEE-MICRO-MEMO-2015-011.pdf

J. Beaumont, “Automated translation of asynchronous concepts to Signal Transition
Graphs”, Technical Memo Series, async.org.uk, December 2016
http://async.org.uk/tech-memos/NCL-EEE-MICRO-MEMO-2016-013.pdf

xiii

http://async.org.uk/tech-reports/NCL-EEE-MICRO-TR-2015-194.pdf
http://async.org.uk/tech-memos/NCL-EEE-MICRO-MEMO-2015-011.pdf
http://async.org.uk/tech-memos/NCL-EEE-MICRO-MEMO-2016-013.pdf

Chapter 1

Introduction

Digital systems are used in most industries in this day and age, such as to aid in diagnosis
and treatment in the medical field. Many individuals will also use a digital system on
a daily basis, as the availability of computers, smart phones, wearable technology, and
connected-home devices grows.

These digital systems are primarily designed using synchronous technology. In a
synchronous system, the clock signal oscillates at a regular frequency and is used to
synchronise components. The clock period is used to determine the length of time that
operations must take place in, such as the storing of an input to the circuit. However,
there are several disadvantages to synchronous systems. Many operations can complete
in a much shorter time than the clock period, but must wait to start a new operation
for the remainder, meaning there can be periods of inactivity. Synchronous systems are
also always active, polling for changes to inputs, increasing their power consumption.

Asynchronous circuits are a class of digital circuits which do not use a clock signal.
Without a clock signal, asynchronous circuits immediately perform an operation as soon
as the inputs change. This can reduce the length of time a circuit is waiting between
operations, making the system faster compared to synchronous systems [2]. This also
means that the system does not need to constantly test for changes in the inputs as
synchronous circuits do. Thus, the time and power consumption of asynchronous circuits
can be lower than that of their synchronous counterparts.

There are a few examples of fully asynchronous systems in academic literature, but
even fewer in the industrial world. For example, Fulcrum Microsystems was a company
which designed asynchronous networking solutions, and was bought by Intel [3]. This
may influence the use of asynchronous technology in future Intel chips, but even with

1

proof that this is beneficial in areas such as networking, wide adoption of asynchronous
circuits has yet to come to fruition.

Asynchronous technology has yet to be widely adopted for a few key reasons. Histor-
ically, synchronous designers have used textual based design methods, using languages
such as Verilog and VHDL, which describe systems based on clock signals. Asynchronous
design methods tend to use behavioural models which are very different, specifying sys-
tems graphically using vertices and arcs, the differing ways in which these interconnect
indicating different behaviours. Graphical methods are therefore unfamiliar and unattrac-
tive for industry, as it would require the retraining of designers, and the development of
new Electronic Design Automation (EDA) tools that aid in the design of asynchronous
circuits. This can be costly and time consuming, and mean the development of the
following systems is relatively slow, which for an ever growing market of digital systems,
is not ideal for industry.

To address these issues, and realise the full potential of asynchronous systems, we
need to develop design methods, and associated software tools, which provide a simpler
switch from synchronous design to asynchronous design, that the digital system industry
will be more willing to use. This thesis introduces such a design method, using a new
language, Asynchronous Concepts, and some software tools which aid in automating
many steps in the design process.

In this chapter we outline the current state of asynchronous technology in industry,
and our motivation and proposed methodology for designing asynchronous circuits, dis-
cussing the contribution, aiming to combat the issues faced with existing methodologies.
We also detail the layout of this thesis, briefly discussing the main topics of each chapter.

1.1 Current usage of asynchronous technology

Some asynchronous theories have become popular in recent years, when including these
with existing synchronous technology. As a circuit becomes physically larger, ensuring
the clock reaches the whole system can become difficult, as clock skew can cause timing
disparities between different sections of the circuit. Communication between subsystems
can therefore be difficult, and thus asynchronous handshakes have come into use with
these systems.

Figure 1.1a is a simplified diagram of how subsystems in a fully synchronous circuit
connect. The sending device (left) will output signals, which passes through combina-

2

clk clk

Combinational
Logic

(a) Example of synchronous interconnect

Combinational
Logic

(b) Example of asynchronous interconnect

Figure 1.1: Interconnect examples

tional logic, and is stored by the receiving device (right) when the clock signal goes high.
The outputs from the combinational logic may be ready before the clock, and thus there
can be wasted time.

Figure 1.1b is a similar diagram, this time using the asynchronous handshake protocol
to interconnect between devices. In this case, the left device sends a request (r) signal
to the right device when the signals are output to the combinational logic. The request
signal is delayed enough to allow for the signals to propagate through the combination
logic, then as soon as this logic outputs the new values, and the request signal reaches the
right device, this will send an acknowledge (a) signal back to the left device, indicating
that the data has been received. When this acknowledge is received, the request will
be dropped and the left device can begin again when ready. This means that these
subsystems can move on as soon as they are able, not needing to wait.

This extends to more than just combinational logic, however. This example may
contain sequential logic or other clock based systems between these devices. These can
feature their own clock signal, rather than a distributed clock signal, but each subsystem
continues to communicate asynchronously. Each subsystem can then operate at their
own fastest possible speed, and communicate with other subsystems as soon as they
are ready, increasing the speed of these primarily synchronous systems. Asynchronous
techniques such as this can be applied to the circuit, component, or subsystem level as
is the case in this example, with this type of system is known as Globally-Asynchronous

3

Locally-Synchronous (GALS) [4].

A new direction of research for asynchronous technology is analogue and mixed-
signal systems, the process of using analogue signals with digital circuits, reacting to
the changes of these analogue signals dynamically. This is necessary with the recent
increase in availability of mobile and autonomous applications, such as smart phones,
wearable electronics and self-powered Internet-of-Things nodes, where it is essential
to have intelligent timing control and power regulation [5][6][7]. An on-chip power
management system is an illustrative example: it relies on analogue circuitry for power
regulation and conversion, and its behaviour is characterised by many operating modes
with complex interplay and high-level decision logic that is digitally controlled.

Asynchronous circuits are event-driven, i.e. they react to changes in a system at the
rate they occur [8]. This makes them particularly useful for interacting with analogue
world, where the ability to quickly respond to non-digital input, e.g. a measurement of
something in the environment, which the circuit in question needs to react to once this
measures above a threshold value.

1.2 Motivation for a new design method

Various methods for designing asynchronous systems exist [9], including behavioural
models which specify the low-level interaction between the system and the environ-
ment, such as Finite State Machines (FSMs), Petri-Nets (PNs) and Signal Transition
Graphs (STGs) [10][11][12]. This has spawned multiple Electronic Design Automa-
tion (EDA) tools, which serve to make the design process using these methods simpler.

In this thesis we introduce a new language, Asynchronous Concepts, for the specifi-
cation of asynchronous circuits. These are introduced as a method of describing patterns
of behaviour when specifying asynchronous circuits, using a language-based approach.
This is aimed at providing a textual method like the existing languages used in a syn-
chronous design, but providing the ease of use for common asynchronous constructs. All
concepts can be composed, producing new concepts which describe new behaviours, and
all concepts can be reused, so a pattern can be used multiple times, and be built-upon
as the pattern evolves and as asynchronous circuits are used more often.

The existing asynchronous design methods do include common patterns, but can
become lost as a specification becomes larger, and more patterns are included. For
example, Figure 1.2 contains a simple STG which features hidden patterns of behaviour.

4

Signals r1 and g1 behave like a buffer, with input r1 and output g1. This is also the
case for r2 and g2. Signals g1 and g2 are also mutually exclusive. The equivalent
concept specification for this STG is found in Figure 1.3

Figure 1.2: Example of an STG with hidden patterns of behaviour

example1 = behaviour <> initState <> interface

where

behaviour = buffer r1 g1 <> buffer r2 g2 <> mutex g1 g2

initState = initialise0 [r1, r2, g1, g2]

interface = inputs [r1, r2] <> outputs [g1, g2]

Figure 1.3: Equivalent concept specification for the STG in Figure 1.2

The behaviours in this system can be described easily in the concept specification, and
the words used are indicative of the behaviour, but the STG hides these, making it
harder to understand the interactions of these signals. Moreover, any useful behaviours
which are specified in the STG cannot be easily reused, and they must be rebuilt in
another specification. The concept equivalent can be referenced from another concept
specification, importing this specification, or even saving any valuable new patterns in a
user-generated library.

This example is that of a Mutual Exclusion element (ME element). This device
arbitrates between two requests for a single resource, granting only one of these requests
access at on time. The STG and concept specification do not specify the behaviour of any
environment that might affect such a device. An STG that features some assumptions
about the environment can be created, which may show more clearly the operations of

5

the ME element. More information and concept specification for this example will be
discussed in more detail in Section 3.1.2.

A basic library of circuit-specific concepts can be used to produce a behavioural
specification, or be used to create further libraries, containing concepts which are used
regularly throughout a design. Every concept can be composed with any other concept,
forming another concept, to provide a full specification composed of any level of concepts.
The different levels of concepts are:

• Signal-level concepts based on one or more signal events causing one or more other
signal transitions,

• Gate-level concepts which describe the behaviours of logic gates and the signals
included in these and

• Protocol-level concepts which describe constraints and interactions of multiple
signals as often used useful constructs.

A composition of concepts ensures that each signal has relevant behavioural patterns
applied to it. Any concepts can then be reused in future designs.

1.3 Contribution

The major contributions of this thesis are:

• A domain-specific language, Asynchronous Concepts [13][14]. This language is
used to specify the behaviours of asynchronous circuits, describing the interactions
of signals in systems at various levels.

• A library of circuit-specific concepts. This includes concepts at all levels, which
describe the common protocols and gates which apply to asynchronous circuits. It
also provides transformations which can change concepts to provide a much wider
range of behaviours.

• We propose a design flow for designing asynchronous circuits using concepts. A de-
sign can be started from a blank specification, use existing concept specifications,
using the Boolean set and reset functions from a circuit, or through process mining
an existing circuit.

6

• To aid in this design flow, we provide Plato [15][16], an open-source EDA tool
which implements the language of Asynchronous Concepts and includes the circuit-
specific library. This tool compiles concepts specifications to check for errors,
providing information to aid in corrections and features algorithms to translate
concept specifications to STGs and state graphs.

Plato is integrated into the open-source EDA software suite Workcraft [17][18]. This
supports multiple modelling formalisms, including FSMs, PNs, state graphs and STGs,
and can automatically insert a translated concept specification from Plato in state graph
or STG format for viewing, simulation and further operations.

Translating a concept specification to an STG means this can then be verified against
certain properties, to ensure that it can be synthesized to produce a logic gate implemen-
tation. There are several software tools which can automatically verify and synthesize
an STG specification, such as Petrify [19], MPSAT [20] [21], both of which are also
integrated into Workcraft, allowing the design flow to be carried out entirely within one
software suite, with a Graphical User-Interface (GUI).

We have developed a method of converting Boolean expressions into Concepts. This
extends the outreach of concepts, allowing existing circuits to be used in conjunction
with other concept specifications. A Boolean function can also be used in line with other
concepts. This process will be explored.

We also provide a method of discovering specifications by observing real systems.
Process mining performed by another tool integrated into Workcraft, PGminer [22][23],
which can be used in order to identify concurrency and event ordering from the simula-
tion traces of such a system. From this noted concurrency, we can then automatically
generate a list of concepts forming a specification, and this could be optimised, finding
higher-level concepts from the list of lower-level concepts.

Through transformations of concepts, a wider range of behaviours can be described
which include inverted signals, the dual of a system, or applying enable operations to any
specification. The concepts language can be expanded upon to allow the specification
of asynchronous systems of many different types with further research and development.

1.4 Thesis layout

This thesis is organised as follows:

7

Chapter 1 - Introduction. In this chapter we briefly discuss the motivations for the
thesis, and summarise the contributions, namely the Asynchronous Concepts language,
the design flow using this language, and the software tools to support it.

Chapter 2 - Technical Background. We discuss the existing modelling formalisms
of Finite State Machines, State Graphs, Petri Nets and Signal Transition Graphs. We
explain the design methodology of STGs, and the shortcomings, and we discuss digital
circuits and how they can be translated to STGs. We introduce Monoids, an algebraic
structure on which concepts are built, as some definitions of monoids are used when
discussing concepts. Finally, we introduce some of the syntax of Haskell, which is used
to implement Plato, and write concept specifications, and as such, the syntax is used
often throughout this thesis.

Chapter 3 - Asynchronous Concepts. This chapter introduces the Asynchronous
Concepts language: Circuit-specific asynchronous oncepts and a library of signal-, gate-
and protocol-level concepts will be explained, as well as generalized multi-input concepts
for some of these gates. This library includes some high-level concept functions which
can provide other methods of specification and a wider range of uses for concepts. We
also discuss abstract concepts as a base for the development of new concepts for different
types of asynchronous circuit.

Chapter 4 - Asynchronous Concepts Design Flow. This chapter will introduce
the design flow using Asynchronous Concepts, providing a work-through from authoring
concepts, to synthesis of a logic gate implementation. We will also explain how process
mining and Boolean set and reset functions can be used within this design flow.

Chapter 5 - Tool Support. In this chapter, we will discuss the tool Plato, its inte-
gration with Workcraft, explain the algorithms for translating concept specifications to
Signal Transition Graphs or state graphs, and discuss the process mining tool, PGminer.

Chapter 6 - Case Study. Here we use an example of a WAIT element to show how
concepts can be used to specify this, and the real-world example of an asynchronous
multi-phase buck controller to show how a full asynchronous system such as this can be
specified using concepts.

Chapter 7 - Related Work. This chapter discusses other asynchronous design
methodologies and EDA tools, and how the contributions of this thesis fit into this
research area.

Chapter 8 - Conclusions. This will be a summary of the contributions as discussed
in this thesis, and future research areas for Asynchronous Concepts and Plato.

8

Chapter 2

Technical background

In this chapter, we will discuss some existing models that can be used to specify asyn-
chronous circuits, the advantages and disadvantages of the models themselves and their
design flows. The models featured in this chapter are Finite State Machines in Sec-
tion 2.1, Petri nets in Section 2.2 and Signal Transition Graphs in Section 2.3. We will
also discuss digital circuits, what they represent, and the conversion of digital circuits to
Signal Transition Graphs, and the uses of this in Section 2.4.

Monoids are a mathematical construct, important for the contributions of this thesis,
and we introduce these in Section 2.5. Boolean functions are also used multiple times
in this thesis, and these are discussed in Section 2.6, as well as some algorithms used to
convert Boolean functions between various forms. Finally, we will discuss the syntax of
the programming language Haskell, which is used heavily, as this is the language that
Asynchronous Concepts are built in, Section 2.7.

2.1 Finite State Machines

Finite State Machines (FSMs) have many uses, from the modelling of a system at a
higher level, such as a vending machine or a stopwatch, to the specification of a digital
circuit, both synchronous and asynchronous. They hold an overall state for the modelled
system which at higher levels abstracts the complex implementation details, and at lower
levels shows the system state and all possible events from this state [24][25].

An FSM is comprised of states, and transitions between those states. Each transition
has a condition applied to it, which must be satisfied for the transition to be enabled,
allowing the system to move from one state to another.

9

In more abstract FSMs these conditions can be labels, simply indicating that some
event in the environment of the model can occur. For example, Figure 2.1 contains
an FSM of a simple stopwatch. In this, the states are labelled "reset", "stop", "run"
and "lap". There are transitions between these states, indicated by the arcs connecting
them, and the conditions on these transitions are labels, including "lap_button", "re-
set_button" and "start_stop_button". These indicate which buttons on the stopwatch
must be pressed in order to change state. To move from the "stop" state to the "run"
state, the "start_stop_button" condition must be satisfied, which in the physical system
requires that the button has been pressed. Buttons are used to transition between all
states, except the transition from states "reset" to "stop". The condition applied to this
is an "ε", or empty, requiring no conditions for this transition to be enabled. This means
that as soon as the stopwatch has been reset to 0, it immediately transitions to the stop
state, preparing it to start timing from 0 once again.

Figure 2.1: Abstract FSM of a stopwatch

For lower-level systems such as asynchronous circuits, where signal interactions need to
be specified, we can also use FSMs. A variant of FSMs exists which specifically uses
signal transitions as the conditions for state transitions, based on the signal types of
input, output and internal. These are known as state graphs, and the states can be
labelled with binary codes representing the values of the system’s signals in that state.

Figure 2.2: An example FSM with signals as transition conditions

Figure 2.2 contains a state graph featuring three signals, a and b are inputs and x is an

10

output. Each state is labelled with the encoding of the state, in the order abx. When all
signals are low, the encoding is 000, when a+ has occurred and the system transitions
to state 100.

A property of state graphs and state encodings is Complete State Coding (CSC).
This states that each state with differing behaviour has a different encoding. In this way,
each state can be referenced separately, and the circuit synthesized from this will react
differently to each state. If two or more states with the same encoding but differing
behaviours occur, then the signals will be the same in each of these states. Logic would
not be able to distinguish and perform the different behaviours. Therefore, the encoding
of a state graph is important.

This example shows that the condition for each state transition allows only one signal
to transition, so each state change indicates that one signal has transitioned. In the event
that two signals can transition concurrently, such as in this example where both a and
b must transition high (+) for x to transition high, then the state graph indicates that
either order of a and b transitioning is possible, either a then b, or b then a. This is
called interleaving semantics.

However, when the number of concurrent signal transitions increases, this can create
a large and complicated state graph. If we add another input signal, c, which transitions
concurrently with a and b, and must also be required to transition high for x to transition
high, the result is found in Figure 2.3.

Figure 2.3: An FSM featuring 3 concurrent transitions

The concurrency in this example now causes much larger sections with multiple arcs
crossing over each other, making the state graph harder to understand. This will only
increase as the number of concurrent events increases, and is known as the State Explo-
sion problem [26]. If there are n concurrent events, the number of states needed in the
state graph to ensure that every possible order in which the events can occur is modelled

11

becomes 2n.

Concurrency is therefore difficult to model with FSMs which makes them undesir-
able for specifying larger asynchronous circuits with many signals, which often feature
concurrency. However, in some cases, it may be useful to view the intricacies that a
system may present, which can be more easily viewed in state graph form, which, due
to its wide-range of uses, is more well-known.

2.2 Petri Nets

Petri Nets (PNs) are a mathematical model, introduced in [27], and are commonly used
for modelling systems with a high degree of concurrency, and are therefore useful for
specifying asynchronous systems. Unlike FSMs, a PN does not aim to show the state of
the system being modelled at any point, and so does not deal with interleaving semantics
which removes the issues associated with state explosion. Similar to FSMs however, PNs
can be used to model systems at various levels, from high-level whole system designs,
to low-level circuit designs.

(a) A Petri Net place (b) A place containing a token (c) A Petri net transition

(d) p0 contains a token, enabling t0 (e) t0 has fired, producing a token in p1

(f) p0 connects to t0 via a read-arc

Figure 2.4: The elements of a Petri Net

A PN is comprised of several elements. These include places (Figure 2.4a), which can
hold a token (Figure 2.4b), transitions (Figure 2.4c) which consume tokens from places
which connect to the transition and produce tokens for places this transition connects to,
and arcs which are directed, connecting places and transitions (Figure 2.4d). Double-
arcs can also be used, known as Read-arcs (Figure 2.4f). These arcs connect a place
to a transition, the transition being enabled only when a token is contained within the

12

place. When the transition fires, this token is not consumed, but the transition can still
produce a token.

A transition can only be enabled when all places which connect to it contain a token.
Using the example in Figure 2.4d, t0 is enabled as p0 contains a token. When t0

consumes the token, it is said to have fired, and will pass a token to all places which
follow it, in this case, p1 (Figure 2.4e). Also included in a PN model is the initial state.
This is the placement of tokens in a system when the system begins, which indicates
which transitions are able to fire first. The formal definition of Petri Nets can be found
in [28].

With PNs, we can model a high-level system like a stopwatch as we have with
FSMs (Figure 2.1). The PN version can be found in Figure 2.5. This PN is not too dif-
ferent from the FSM version, but there is no concurrency in this system. The differences
become more apparent when concurrency is a factor, as in the case of Figure 2.2.

Figure 2.5: A stopwatch PN model

Using the elements of a PN there are multiple constructs available to model some useful
information about the system, such as where concurrency begins and where there are
choices of transitions. These are:

• Choice (Figure 2.6a) - Where there are multiple choices of transition following a
place, only one of which can consume the token, meaning only one branch then
runs.

• Merge (Figure 2.6b) - When one of the free choice branches has completed, the
token is passed into a place, ready to move onto the next section.

• Fork (Figure 2.6c) - A transition begins a section with multiple concurrent events,
all places following the fork transition receive a token, allowing each branch to run
independently of the others.

• Join (Figure 2.6d) - When all concurrent branches have completed, each will have

13

a token in its final place, allowing the join transition to fire, ending this concurrent
section.

(a) Free choice (b) Merge (c) Fork (d) Join

Figure 2.6: Constructs for modelling concurrency and choice in PNs

For the example as seen in Figure 2.2, we can create a PN form of this using the fork
and merge constructs to indicate concurrency between signals a and b. The resulting
Petri net is shown in Figure 2.7.

a+

b+

x+

a-

b-

x-

Figure 2.7: An example of a system with concurrency modelled as a PN

In comparison to Figure 2.2, the PN is quite different. The PN does not include
both possible orders of a and b transitioning, instead there is a fork from x- to p0 and
p1, leaving us with one branch where a+ can fire, and one where b- can fire, allowing
either to fire first. Both of these transitions must fire however in order for the join from
p2 and p3 to x+ which can only then fire. Following x+, another fork occurs to places
p4 and p5, for two branches allowing a- and b- to fire in any order. p6 and p7 then
join at x-, as both are required for this to fire.

The way concurrency is shown in a PN is much clearer than in a state graph, and
this becomes more apparent as the number of concurrent events increases. If we now
add an input signal c in again, as in Figure 2.3, then for a PN another branch is added
in each fork, where as the state graph adds many more states. This PN can be viewed
in Figure 2.8.

14

x+ b-

x-

a+

b+

c+

a-

c-

Figure 2.8: A PN featuring 3 concurrent transitions

PNs can be used on much larger-scale systems, both high-level and at circuit-level, such
as with asynchronous circuits. However, as can be seen in Figures 2.7 and 2.8 there are
a multitude of places and transitions which can make a larger design look cluttered. To
try and combat this issue, and create clearer models for larger specifications of circuits,
Signal Transition Graphs which are discussed in Section 2.3.

2.3 Signal Transition Graphs

Signal Transition Graphs (STGs) are domain-specific Petri nets, used for specifying asyn-
chronous circuits [19]. The transitions of STGs are solely the event of a signal transi-
tioning, either high or low [10][12]. STGs can be used to model the environment that a
circuit reacts to, the input signals, the intermediate signal changes within the circuit, in-
ternal signals, and the output signals which are the circuits reaction to the environment,
and conventionally, input, output and internal signals are identified by their colour, red,
blue and green respectively. Each signal can transition either high, indicated by the +

operator, or low, indicated by the − operator.
As STGs are derived from PNs, they feature all of the elements of PNs, including

tokens, arcs and read-arcs. Places are also a feature, however in an STG there can
be implicit places, which allows tokens to be contained within an arc connecting two
transitions. This removes the number of places that a single model contains, which can
make for a clearer STG. The choice and merge constructs in a circuit can be indicated
in the same way as PNs, but implicit places change how concurrency constructs, fork
and join, are indicated.
Figure 2.9 contains the constructs for choice, merge, fork and join in STGs. Free choice
(Figure 2.9a) and merge (Figure 2.9b) are very similar to those of PNs, with a place
passing a token to only one branch of the system, and a chosen branch returning this

15

(a) Free choice (b) Merge (c) Fork (d) Join

Figure 2.9: STG constructs for modelling choice and concurrency

token to a place when merging, to be passed onto the next section. Fork (Figure 2.9c)
and join (Figure 2.9d) however feature transitions connecting to transitions. In these
cases, the places which in a corresponding PN would need to be connected between
these transitions, are implied as part of the arcs which connect them. This is shown in
the join figure, which contains a token on each arc, both of which being present allows
z+ to fire. For the fork example, once p+ has fired, a token will be available on all
following arcs.

An STG can be used to model a system such as the stopwatch example, as it is
derived from PNs, but their usage is aimed at much lower-level specifications for circuits,
at signal-level. For STGs we will use the concurrency example, which can be seen in
state graph form in Figure 2.2, and PN form in Figure 2.8.

Figure 2.10: A system featuring concurrency in STG form

Figure 2.10 is very similar to the PN form, but without the places this simply shows the
causality between signal transitions, one signal transition causing another, and so-on.
The initial state is indicated by the tokens contained by the arcs from x- to both a+

and b+.

If we add in a signal c as before, which is also required to transition concurrently
with a and b for x to transition in the same direction, the result is similar to the PN
equivalent, Figure 2.8, but clearer still. Figure 2.11 shows the STG for this.

16

Figure 2.11: An STG with 3 concurrent signal transitions

2.3.1 STG design flow

STGs are commonly used for the specification of asynchronous circuits, and as such
feature a design flow, taking a specification, verifying this and then synthesizing it for
an implementation. In this section, we will discuss the ordering of this design flow, and
the tool support available. We will also discuss disadvantages that are faced using this
approach.

A specification using STGs is often started with a blank page, and transitions, places
and arcs are added in manually as behaviours and interactions of the system being
specified are covered. Workcraft is a software suite which provides a GUI for modelling
and specifying systems with multiple interpreted graph models, including FSMs, state
graphs, PNs and STGs [17][18]. This software can be used to create STGs visually.

Both during and following a specification being prepared, simulation can take place
using Workcraft. This aids in the design process, allowing a user to simulate as they
create, and can determine where their design does not operate as expected, allowing
them to fix errors as they work.

For an STG to be considered correct and usable for synthesis, it needs to satisfy
certain properties, which are discussed in Section 4.7. Workcraft also features integrated
back-end tools to automatically perform verification, such as MPSAT [20] [21]. MPSAT
tests whether a specification satisfies these properties, and can also verify for any custom
properties a user chooses. If a system fails verification, this must be fixed in order for
the system to be synthesized.

Fixing or debugging these verification errors becomes more difficult the larger an STG
becomes. Finding the relevant area can become difficult, with a multitude of transitions,
places and arcs interconnected which may need to be changed. This can also make
comprehension difficult for a user who did not design this system initially.

When an STG specification has passed all the necessary verification, and is deter-

17

mined, through simulation, to work as desired, this specification can then be synthesized.
This process determines the Boolean equations which describe the output (and internal)
signals as functions of the environment. These functions can then be used to determine
a set of logic gates which satisfy the equation, providing a logic gate implementation
which can be used in a circuit design.

Using the example from Figure 2.11, we can synthesize this. We start by finding
what causes the output, signal x, to rise. From the STG we can see that this requires
that a+, b+ and c+ have all occurred. Thus, for the output to go high we provide the
boolean function, known as the set function, set : a ∧ b ∧ c. For the output to go low,
known as the reset function, we look at the STG and find that this occurs after a-, b-
and c- have all occurred, therefore the reset function will be reset : a ∧ b ∧ c.

These functions can then be checked against a library, which contain the set and
reset functions of various gates, and is used to map these functions onto existing gates.
In this case, the result features at least one C-element. Synthesis can again be performed
automatically by some tools, such as MPSAT and Petrify [19], which are integrated into
Workcraft. The possible results of this synthesis can be found in Figure 2.12.

The specifications generated by this design flow tend to become monolithic, and any
features of one specification which may be useful in future specifications are difficult to
identify in a large specification and re-use. Therefore, a future design must again begin
with a blank page, which makes future designs slower. While STGs are commonly used
for design of asynchronous circuits, the lack of reusability, and the difficulty in compre-
hending, editing and debugging specifications can make this design flow undesirable.

2.4 Digital Circuits

Digital circuits are circuits with digital signals, signals that have two states, high or 1
and low or 0. These circuits contain gates, including standard gates such as AND gates,
OR gates or C-elements, and other non-standard gates which have specific behaviours
to combine signals in desired ways, providing outputs indicating these combinations.
Digital circuits are synthesized from specifications, such as those in STG form, and
Boolean functions determined during synthesis can be mapped onto standard gates,
contained in a library, or simply be stated based on set and reset equations.

Workcraft features a digital circuit plugin, where a user can create a digital circuit and
simulate it. A digital circuit can also automatically be synthesized from a specification

18

(a) Three input C-element (b) Two, two input C-elements

Figure 2.12: Two possible implementations of a 3 input C-element

and imported into Workcraft for further work.

Figure 2.12 contains two possible digital circuits which can be synthesized from the
concurrency example as seen in Figure 2.11. Figure 2.12a is a three-input C-element
that synchronises three signals. However, C-elements are commonly two-input gates,
and as such, it could also be synthesized to produce a circuit as in Figure 2.12b, which
features two C-elements. One of these gates synchronises input signals a and b, and the
other synchronises the output of the first C-element, and the third input signal c. The
output signal of this second C-element is the output of the circuit x. These two circuits
are not equivalent, however, unless certain assumptions about how the environment, the
inputs signals, behave are given.

Within Workcraft, it is also possible to convert a digital circuit directly to an STG.
This allows a new specification to be used in conjunction with the specification of an
existing circuit. The conversion process is direct, simply capturing the causalities between
signal transitions. If we now convert either synthesized digital circuit from Figure 2.12,
we will find that the STG generated correctly captures the operations of the circuit
which produce the output x, but is not as compact as the equivalent STG, shown in
Figure 2.11.

The converted STG features the input signals on the left, and the output signals on the
right. Each signal is arranged in a formation which includes their high (+) and low (−)
transition, as well as two places which are connected between these signals, labelled
"s_HIGH" and "s_LOW", where s is the signal in question. These places are used to
show the state of the respective signals, the LOW holding a token when the signal is 0,
and HIGH holding a token when the signal is 1.

These arrangements are used to ensure that each signal’s transitions alternate in
the system, allowing a high transition only after a low transition, and vice versa. This
ensures that the consistency property is satisfied.

The places of the input signals are connected to transitions of the output signal, x via

19

Figure 2.13: Digital circuit converted to an STG

read-arcs. These are used so that for a signal transition to be enabled, all of the places
to which it connects must hold a token. The transition can then fire, but the read-arcs
will ensure that none of the tokens are consumed, so no signals are then blocked from
firing.

The arrangement of signal transitions and places in this converted STG is useful for
capturing the causalities clearly, and ensure that no signal is ever blocked from transi-
tioning. There are two forms of this notation; the Z formation, used when converting
digital circuits to STGs using Workcraft as in Figure 2.13. The other form is a circular,
loop formation, shown in Figure 2.14b, which will be commonly used in this thesis, as
this formation is generated automatically by automated concept translation.

(a) "Z" formation of a signal transition loop (b) "Loop" formation of a signal transition loop

Figure 2.14: Two formations of signal transition loops

The example digital circuit converted to an STG using the loop formation can be viewed
in Figure 2.15. This STG is equivalent to that in Figure 2.13. This also features proxy
places connecting the x transitions to the places of the input signals, which indicate that
a connection is there, but hidden, as the number of arcs could make the STG cluttered.

20

Figure 2.15: An STG using loop formation of signal transition loops

This example is fairly simple, and the resulting STGs in either form can be understood
relatively easily. We now introduce another example which is more complex, an AND-OR
gate, the circuit of which is shown in Figure 2.16. This gate serves to indicate when
either both of the inputs a and b, or both of the inputs c and d have transitioned high.

Figure 2.16: AND-OR, or AO22 circuit icon

To show how difficult it can be to debug a more complex STG, we provide the converted
STGs in both Z formation, in Figure 2.17a, and loop formation in Figure 2.17b. However,
both of these examples contain the same errors, meaning it does not act as an AND-OR
gate. Can you spot these errors in either of these STGs?

2.5 Monoids

Monoids are neither a graph formalism, nor a design method. Monoids are a structure
in abstract algebra, on which the basis of Asynchronous Concepts is formed [29]. As
such, in this section, we introduce monoids, listing and explaining some definitions and

21

(a) Z formation of an AO22 converted to an STG, with an error

(b) Loop formation of an AO22 converted to an STG, with an error

Figure 2.17: Equivalent STGs for an AO22, both featuring an error

22

notations that are used in this thesis. The information presented here will be built upon
when describing the abstract base of concepts in Section 3.

We use B to denote the set of Boolean values {0, 1}. Given two Boolean functions
f : X → B and g : X → B with the same domain X, we lift Boolean operators
(disjunction ∧, conjunction ∨, implication ⇒, etc.) in the usual manner: h = f ∨ g

means h(x) = f (x)∨ g(x) for all x ∈ X,, etc. Furthermore, 0 and 1 stand for constant
Boolean functions that discard their input and return values 0 and 1, respectively.

A monoid is a set M and a binary operation � : M �M→ M satisfying two axioms:

• Identity: e � a = a � e = a for any a ∈ M where e ∈ M is the identity element of
the monoid.

• Associativity: a � (b � c) = (a � b) � c for all a, b, c ∈ M.

Monoid is the simplest mathematical structure that captures the notions of emptiness
and composition. Asynchronous Concepts introduced in Chapter 3 form commutative
monoids: they have identity elements corresponding to empty specifications, and can be
composed to build complex concepts from simpler ones. The order of composition does
not matter, i.e., the concepts commute: a � b = b � a for all a, b ∈ M.

2.6 Boolean functions

Boolean functions are used regularly throughout this thesis, as they feature heavily in
design methodologies for asynchronous circuits. Here we briefly introduce some notations
for Boolean functions which we will use.

Boolean functions consist of variables, constants and logic operations. The constants
are the logic values of true or false, represented by 1 and 0 respectively. Variables can
take on one of these values, but can be negated or inverted, which provides the opposite
value than the current value for this variable. For example, a variable x can have value
0 or 1. If we it is said to have the value of 1, but is negated, indicated as x, then the
value is 0.

x = 1, y = 0

x = 0, y = 1

Logic operations are mathematical operations performed on the values of the variables.
The two key operations used in this thesis are AND (∧) and OR (∨). These take two

23

Boolean values, and depending on the operator, combine in certain ways. AND will
return 1 if both input values are 1, and will return 0 otherwise. OR will take in two
values and output 1 if at least one of the input values is 1, returning 0 when both inputs
are 0.

Asynchronous Concepts utilise Boolean functions in several forms, and in this section
we will discuss these. Two forms primarily used are Conjunctive Normal Form (CNF) and
Disjunctive Normal Form (DNF). We use both forms in order to represent behaviours
in Asynchronous Concepts in some way, and thus need to be able to convert between
these. However, not every Boolean function is in either of these forms initially, and thus
we need to be able to convert any function into one of these forms, which can then be
converted to the other form if necessary.

CNF can be described as a form where the top-level logic operation is an AND. There
are sub-functions within a CNF function which feature OR operations of variables. All
sub-functions are ANDed at the top-level [30]. CNF functions are used to represent
concepts, and thus, we provide an algorithm to convert from any Boolean function to
CNF, discussed in Section 2.6.1.

DNF is the dual of CNF, the top-level logic operation is OR. Sub-functions are all
ANDs of variables, and all sub-functions are ORed at the top-level [31]. DNF functions
are used less than CNF in the language of Asynchronous Concepts, but are still used
within the design flow, and we include a conversion method from CNF to DNF, discussed
in Section 2.6.2.

2.6.1 Converting any Boolean function to CNF

Algorithm 1 details how a function is converted into CNF form. Consider the following
example Boolean function:

f unction = (a ∧ b) ∨ c

Using this function, we will follow Algorithm 1, and perform the operations manually to
show the operation of this algorithm.

The algorithm begins by generating a table of all possible combination of true (1)
and false (0) values for all the variables, a, b and c. Each of these combinations are
then applied in turn to the function and evaluated, finding the true or false resulting
value of the whole function.

24

Algorithm 1 Algorithm to convert a Boolean function to CNF
1: function CONVERT-TO-CNF(function)
2: //Generate a list of all combinations of true/false for all variables
3: values← genVals(variables) in function
4: for all values do
5: //Evaluate each function. If it is true, ignore it.
6: if evaluate(function, value) is false then
7: for each value do
8: //For the value of each variable
9: if true then

10: //If true, OR the negated variable with the function
11: newFunction← newFunction OR (NOT variable)
12: else if false then
13: //If false, OR the non-negated variable with the function
14: newFunction← newFunction OR variable
15: end if
16: end for
17: //AND the new function with the function in CNF form.
18: //This provides the top-level AND
19: cnfFunction← cnfFunction AND newFunction
20: end if
21: end for
22: //Simplify for a more compact function.
23: cnfFunction← simplify(cnfFunction)
24: end function

If the first set of values for the variables is to set all variables to 0, then it is evaluated
as follows. First, by replacing all of the variables with their value:

(a ∧ b) ∨ c = (0∧ 0) ∨ 0

The evaluation of this function with the given values will be 0. The truth table in
Table 2.1, shows all combinations of values for the variables, and the evaluation values.
The algorithm then aims to use any values which are false to generate the function in
CNF form.

This section of the algorithm then uses the value of each variable used in the evalua-
tion and uses it to generate a small function. Each variable is then inverted with respect
to the values stated, and OR with the remaining function. For example, for false false

false, the following occurs when generating the small function:

25

f unction is empty
a = 0, therefore f unction ∨ a

f unction = a

b = 0, therefore f unction ∨ b

f unction = a ∨ b

c = 0, therefore f unction ∨ c

f unction = a ∨ b ∨ c

This is then ANDed with the whole CNF form of the set function. After this cn f Function

will contain a ∨ b ∨ c only. Each individual function for the different combinations can
be found in Table 2.1.

Table 2.1: Truth table for function (a ∧ b) ∨ c

a value b value c value evaluation value sub function if 0

0 0 0 0 a ∨ b ∨ c

0 0 1 1 N/A

0 1 0 0 a ∨ b ∨ c

0 1 1 1 N/A

1 0 0 0 a ∨ b ∨ c

1 0 1 1 N/A

1 1 0 1 N/A

1 1 1 1 N/A

The full CNF function, following the completion of the evaluation of all possible
combinations of values, will include all of these sub functions ANDed as follows:

cn f Function = (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c)

This function can be used in it’s current form. However, as the number of variables
increases, the size of the function may also increase, leading to a higher-level of com-
plexity than necessary. We therefore simplify the function on line 16. The simplified
CNF function will be:

cn f Function = (a ∨ c) ∧ (b ∨ c)

2.6.2 Converting CNF functions to DNF functions

While different in form, the CNF and DNF functions are similar and related. A CNF
function can be converted to DNF using the Cartesian Product. Each sub-function in a

26

CNF function is part of the Cartesian product, each ORed variable in these is ANDed
with each variable in every other sub-function. Each sub-function produced is then ORed,
which is the top-level, producing the DNF form.

Using the CNF function from the previous example, we can convert this to DNF.
Applying the Cartesian product results in the following function:

dn f Function = (a ∧ b) ∨ (a ∧ c) ∨ (c ∧ b) ∨ (c ∧ c)

This is a correct DNF function, but as with the conversion to CNF, if there are many
variables, this could be much longer and more complex. We can simplify this however,
for example, (c ∧ c) simplifies to c. The simplified DNF function for this function is:

dn f Function = (a ∧ b) ∧ c

This result is the same as the function we initially converted to CNF. This helps to show
that these conversions are correct, but also that we can use Algorithm 1 in order to
convert DNF functions, as well as any other Boolean functions to CNF. This is is the
process used by tools developed for Asynchronous Concepts, as discussed in Chapter 5

2.7 Haskell syntax

Plato, the tool which includes the circuit-specific concept library and performs the auto-
matic translation, is written in the functional programming language Haskell [15][16]. It
compiles concept specifications, which themselves are Haskell files, and thus use Haskell
syntax.

The examples of the Asynchronous Concepts language used within this thesis are
therefore written primarily using Haskell syntax, which we discuss in this section in order
to ensure that these examples can be fully understood. Some implementation details
of the language, such as how certain concepts are derived, and the algorithms which
perform various operations on concept specifications, will also be discussed, and use this
syntax, as well as some standard Haskell functions. These will be identified and discussed
further when used.

Primarily, Asynchronous Concepts are written as functions in Haskell, which may
take in one or more parameters and return a concept, composable with other concepts.
Functions in Haskell do not require parentheses or comma separations when passing in
parameters. For example, a function which adds two integers can be defined as:

27

add x y = x + y

x and y are the parameters in for this function, and do not use parentheses. If a function
such as add is used, it will simply be referenced in the form of add x y. Concept functions
are used in the same way.

Some functions can also be used as a binary-operator, with one argument either side
of the operator. A function such as this must only have two parameters, however. add
for example, can be replaced with the operator +, and add x y can be performed by using
x + y. In Plato, we add a few operators for our functions where appropriate. These will
be explained in Chapter 3.

Lists are also commonly used in Asynchronous Concepts, for listing signals and events.
Lists are denoted using square brackets, using commas for separation of each element in
the list. For example:

[a, b, c]

Finally, Haskell does not support postfix notation, where functions or operators can
be applied to parameters written before this function or operator. This occurs often
in Plato, as the conventional notation for signal transitions is a+ and a-, as is shown
in STGs (Section 2.3), with + indicating a rising transition, and - indicating a falling
transition.

Due to this, we include in Plato the functions rise and fall, which take one
parameter, of the form of rise a. This correctly replaces the postfix operators, but can
become confusing. For clarity, throughout the beginning of this thesis we will continue
to use the postfix operators, in the form a+ and a-.

2.8 Summary

We have discussed the background of the design of asynchronous circuits in this chapter.
This includes FSMs and PNs which are higher level models for systems which do not
necessarily feature interactions at the signal level. Derived from FSMs and PNs is state
graphs and STGs respectively, which do show interactions for circuits at the signal level.

state graphs have some disadvantages however, such as not being able to show large
levels of concurrency, with state explosion leading to large and complex state graphs.
This leads to them not being used as commonly for asynchronous circuit design, thus
we turn our focus to STGs.

28

STGs are most commonly used for designing asynchronous circuits, and multiple
software tools exist to automate the verification and synthesis of these models. The
design method using STGs is mostly monolithic however, meaning that larger designs
become harder to debug, and useful sections cannot be easily reused in other designs.
These disadvantages are what we aim to combat with the proposed methodology.

Digital circuits are also discussed, which the design flows mentioned in this thesis are
aimed at creating, through specification, simulation, verification and finally synthesis,
which provides us with a digital circuit implementation. Digital circuits can be used
to automatically generate an STG, which can give us some details about the signal
interactions.

These generated STGs can be in one of multiple forms, most notably the Z and loop
formations, which indicate the state of an individual signal, using read arcs to connect
places in a formation to transitions which require a signal in this state.

Monoids are the mathematical construct on which Asynchronous Concepts are based,
and we introduce them to explain the idea that a concept is a monoid and is composable
with another concept, forming a concept, which again is composable, and so on.

A brief background on Boolean functions is explained, as throughout this thesis we
use Boolean functions. The causality captured by Asynchronous Concepts will be in
CNF form, but for translation to a modelling formalism, we will need them in DNF form.
Manipulation of Boolean functions is used often with the proposed design flow, and as
such we need to be able to convert functions of any form to CNF, and CNF to DNF,
and we introduce our methods of converting these.

Finally, we discuss Haskell syntax. Haskell is a functional programming language
which has been used to implement the domain-specific language of Asynchronous Con-
cepts, and as such, concepts themselves are written using this syntax. In this thesis, we
will use many examples of concept specifications, and as such, some information on the
syntax may help the reader understand how the concept specification works.

29

Chapter 3

Asynchronous Concepts

Asynchronous Concepts are a domain-specific language which was introduced [13] to
provide a fully compositional design method which is highly reusable. These concepts
are used to describe the behaviour of signals in asynchronous systems at signal-, gate-
and protocol-level. These behaviours can be used to ensure that a resulting specification
contains all of the behaviours applied to each signal, without the need to fiddle with a
multitude of arcs, places and transitions which can occur with the monolithic approach
of Signal Transition Graphs (Section 2.3.1).

This chapter is the main contribution of the thesis. It contains the definitions of
Asynchronous Concepts in Section 3.1. This introduces how the library of circuit-specific
concepts is built, and their use as a behavioural specification language for asynchronous
circuits. We discuss the different levels of concepts; signal-, gate- and protocol-level
through a library of circuit-specific concepts. This provided library includes concepts to
describe some common behaviours and gates for asynchronous circuits. Through these
we will show how reusable and composable concepts can be.

Asynchronous Concepts can be used to specify some standard logic gates with two
inputs. However, these can have any number of inputs, thus they do not need to be
defined as having only a certain number. We therefore provide some concepts for multiple
input gates, discussed in Section 3.2. These use generalised forms of the standard gate-
level concepts which can therefore apply to any number of inputs.

In some cases, a more complex system may be used as part of a specification,
for which Boolean expressions are known. Rather than manually determine a concept
specification, these functions can be passed to a higher-level concept and used in-line with
other concepts. This provides flexibility to concepts, if a particular part of a system has

30

been specified previously, or the implementation already exists, the Boolean expressions
can be used instead of performing the lengthy procedure of respecifying this in concept
form.

In practice, the protocols and gates we introduce are not always used as defined, and
some variations on these can be used, for example, a gate may include an inverted input
or output. It is possible to capture a variation as another concept definition, but this
may need to be done for multiple variations on the same gate, which leads to lengthy
and time-consuming specifications. It may be simpler to use the same concept, but with
some transformations performed on the concepts involving an affected signal or signals.
This extends the scope of the circuit-specific library, for example allowing for a standard
gate-level concept to include the inverted output version, or the dual. These higher-level
concepts and transformations will be discussed in Section 3.3.

Finally, this chapter discusses Abstract Concepts. These are the base level of concepts
which identify the simple behaviours that a set of concepts should describe. Abstract
concepts can be used as a starting block with the intention of using them to develop new
domain-specific languages for Concepts for the purposes of specifying different types of
asynchronous circuit. These are discussed in Section 3.5.

3.1 Circuit-specific concepts

This section discusses the library of circuit-specific concepts which have been defined and
are included the tool Plato, covering signal-, gate- and protocol-levels. We will discuss
their implementation, and their uses within asynchronous circuits.

These concepts are used to describe the behaviours of asynchronous circuits, and
such, the alphabet of this domain is based on digital signals, and the transitions of
these, the rising (+) and falling (-) transitions. A global state can be determined at any
point during the operation of such a system based on the latest transitions of each signal.
This information is used to determine causalities, as discussed later in this chapter.

3.1.1 Signal-level concepts

Signal-level concepts form the atomic level of Asynchronous Concepts. These can be
composed to produce higher-level concepts, but cannot be decomposed further. Any
specification can be composed wholly of signal-level concepts, but this can lead to long

31

and complicated specifications. However, some of these concepts will be necessary
for every specification, as they describe the basic information required for any circuit:
Interface and Initial State.

Composition

Throughout this chapter we will be using compositions of concepts in order to define new
concepts. The operator used for this is: <>. Every concept is a monoid (Section 2.5)
and thus every concept can be combined using the <> operator.

Composition is used to combine initial states, the invariant and the interface of
multiple concepts. This can have some interesting interactions, for example, if two
subsystems feature common signals, but defined with different interfaces in each, then
there is a hierarchy defined which determines the post-composition interface of each
signal (see Interface Concepts).

Behaviours are also combined when composed. This allows a designer to specify one
important behaviour at a time, and compose several to produce a specification which
features all behaviours interacting together, as discussed in the AND Causality section.

Every concept featured in this chapter is composable, and the result produces a
concept which again can be composed, and so on. This means that a designer can derive
a concept which features many behaviours, composed of many concepts, and refer to
this simply by a given name, and compose this with other concepts. The behaviours
then composed, without needing to define them all once again. This reusability, and
the highly compositional nature of Asynchronous Concepts will be seen throughout this
chapter, as we discuss the derivation of each concept in the circuit-specific library.

Interface concept

Interface is important for specifications, detailing how the device being specified inter-
acts with the outside world. Signals can be classified as either input, output or internal.
This can help to quickly identify errors (e.g. an input transition is caused by a hidden
internal transition), and reuse existing tools for circuit simulation, verification and syn-
thesis. Signal type information is also used in the algorithm for automated translation
of concepts to STGs (Section 5.1.1)

Input signals generally identify signals that come into the system from the environ-
ment. Outputs are those signals that are produced by the system and used to affect the

32

environment. Internals are signals which are the outputs of part of the system, such as
a gate, but are used simply to affect other parts of this system, and are not provided
paths to the environment.

As interface is specific to circuits, which need to feature the types of each signal,
we therefore introduce a primitive Interface concept. This can have one of four values:
Input, Output and Internal as expected, but also Undefined. Each signal in the system is
Undefined initially, until it is defined as any other type. This is helpful for the translation
process, as a signal without a type cannot exist in a specification.

From this primitive, we then derive three concepts to describe signal types. These
are inputs, outputs and internals. Signals which are of each of these types are
listed. For example, if we have a system containing three input signals, a, b and c, one
output signal, z, and a single internal signal, t, then these concepts would be defined
as follows:

inputs [a, b, c] <> outputs [z] <> internals [t]

Note that interface concepts are commutative: these concepts in any order would pro-
duce an identical specification.

These concepts could be used for a specification featuring two C-elements, one with
inputs a and b, and output t, the second takes as inputs c and t and outputs z. t

could be used by another subsystem but never be available to affect the environment.
The circuit diagram for this can be seen in Figure 3.1.

Figure 3.1: Example of interface in a digital circuit

For the interface concept, we impose a set of rules in the event that multiple concept
specifications are combined. Signals which occur in one specification can occur in an-
other, both with their own interface concept. These rules define what the resulting
interfaces are in the event that two differing interface concepts for a single signal are
composed, this is in the form of a hierarchy.

Table 3.1 details the results when two interface concepts are composed. It indicates
that two of the same concepts composed will produce the same interface type concept. If

33

� Input Output Internal

Input Input Output Internal

Output Output Output Internal

Internal Internal Internal Internal

Table 3.1: The hierarchy of interface concepts

the two concepts differ, the hierarchy indicates that internal is the highest type, followed
by output, with input as the lowest. The intuition is as follows:

• If a signal is an input in one component of the system, but is an output in another
component, then in the composition it will be an output.

• An internal signal is similar to an output signal in the sense that it is driven by the
circuit (not the environment), but it is hidden, i.e. not accessible via the circuit
interface. Once a signal is hidden and declared internal it cannot be revealed.

Thus, an input composed with any non-input type will become the non-input type.
An output composed with an internal will become an internal, but remain an output if
composed with an input, and an internal composed with anything will remain an internal
signal.

If we take the example from Figure 3.1 and split it into two specifications, the first
featuring a single C-element with signals defined as inputs, a and b, and the output,
defined as such, t. The result can be seen in Figure 3.2

inputs [a, b] <> outputs [t]

(a) t is defined as an output (b) Circuit diagram

Figure 3.2: First example specification with t as an output

The second specification takes c as an input signal, t as an internal signal, both of
which are inputs to the C-element, signal z as the output. The second specification is
a continuation of the first, using t as an internal signal, and therefore forcing it to be
an internal signal instead of an output, usable by the system, but not viewable by the

34

inputs [c] <> outputs [z] <> internals [t]

(a) t is defined as an internal (b) Circuit diagram

Figure 3.3: Second example specification with t as an internal

environment. The interface concepts and the circuit diagram for this specification can
be viewed in Figure 3.3.

Composing both of these specifications would mean the signal t will be defined as
internal, and the full circuit diagram would be as seen in Figure 3.1.

Initial state concept

Initial state is another important concept needed for specification of asynchronous cir-
cuits, as it indicates what the first transition of each signal and the first transition of the
system is. Without the initial state of a system being known, no signal transitions can
occur, and the specification cannot be used in further processes, such as combination
with other specifications, verification and synthesis.

We provide the initialise concept. This takes a signal as an argument, and a
Boolean value, 0 or 1. This therefore applies the selected initial value to the signal in
question.

initialise a 0 <> initialise x 1

For convenience, we introduce two concepts to list signals by initial state: initialise0
and initialise1. Listing the signals by those which are initially 0 and those which
are initially 1 is a shorter method than using a single initialise concept for each
individual signal, which for systems with more than a handful of signals, can lead to a
large concept specification.

initialise0 [a, b, c] <> initialise1 [x, y, z]

Both interface and initial state must be declared in each specification, which will then
allow a specification to be used in further process, such as translation to an STG or
state graph, and in synthesis. From this concept onwards, we will use translated STGs
from the given concepts to show how the concept in question affects the STG.

35

initialise0 [a, t] <> initialise1 [z] <>

inputs [a] <> outputs [z] <> internals [t]

(a) Concepts specification for interface and initial state

(b) Translated STG showing interface and initial state

Figure 3.4: Concepts and the translated STG for interface and initial state

Figure 3.4a contains a concept specification consisting of only initial state and interface
concepts. These are the minimum requirements for translation of a specification to
occur, thus we provide the translated STG in Figure 3.4b. The algorithm to perform
this translation is discussed in Section 5.1.

The initial state concepts determine the placement of tokens in a resulting STG.
initialise0 [a, t] translates to, in Figure 3.4b, signals a and t containing tokens
in their 0 places (a0, t0). Signal z contains a token in its 1 place (z1), as the concept for
this is initialise1 [x]. This gives the indication that a and t can initially transition
high, and that z can transition low. This is the effect that the initial state concepts have
on a resulting STG.

The interface concepts are inputs [a], outputs [z] and internals [t]. The
types of the signals are indicated by their colours in the STG as discussed in Section 2.3;
red identifies an input, blue identifies an output and green identifies an internal signal.
Thus, from the translated STG in Figure 3.4b we can determine that a is an input, z is
an output and t is an internal signal.

For clarity, all concept examples for the remainder of this chapter will omit the
interface and initial state concepts. While they must be included for a correct translation
to an STG, we do this to focus primarily on the concepts we introduce and discuss. Some
signal types may be stated in the text, but we assume that all initial states are 0.

36

Causality concept

With the interface and initial state concepts, we also need concepts to describe the
interactions between signals in a specification. A causality concept we use to refer to
a concept which specified the interactions between signal transitions. We say that a
transition effect ∈ E causally depends on transition cause ∈ E. A causality function is
provided:

causality cause effect

effect can occur only in states that are after cause. For example, if an input signal a
transitioning high causes an output signal z to transition high, we say that a transitioning
high is the cause event and that z transitioning high is the effect event. This can be
written using the causality concept:

causality a+ z+

Causality has an operator for convenience and clarity: ~>. This is used in the form cause

~> effect, where cause and effect are signal transitions. Using the above example, we
can instead state the causality concept as:

a+ ~> z+

The causality operator will be used throughout the rest of the thesis, instead of the
function.

Figure 3.5 contains the translated STG for this concept. This STG includes an arc,
connecting place a1 with the signal transition z+. This is a read arc, a double-ended arc
which in this case, will allow z+ to transition only when a1 contains a token. A token
will be placed in a1 only after a+ has occurred, moving the token from a0 to a1. z+

can then occur, however this will not consume the token from a1, as this would block
a from transitioning further. Instead, it simply checks for the token in order to allow z+

to occur.

37

Figure 3.5: Translated STG with a single causality concept

AND causality

AND causality occurs when more than one causality concepts with a common effect
transition is composed. The cause transitions combine, requiring all of the cause tran-
sitions to occur before the effect can occur. For example, in a system containing three
signals, inputs a and b, and output z, we have the following concepts:

a+ ~> z+ <> b+ ~> z+

One of these causality concepts indicates that for z+ to be excited, the system must be
in a state where a+ has already occurred. The other states that z+ is excited in states
where b+ has occurred. Composing these concepts results in a system where for z+ to
be excited, the system must be in a state where both a+ and b+ has already occurred.

The AND-causality in this example is viewable in the translated STG, Figure 3.6,
where z+ features read arcs connecting it to both a1 and b1. This ensures that a+ and
b+ have both occurred, indicated by tokens in these places which will allow z+ to occur.

Figure 3.6: Translated STG containing AND causality

For ease of use, and smaller specifications, we also provide an operator for multiple
cause events causing a single effect event. This operator is ~&~>. This is used by listing
the cause events before the operator, for the single effect after the operator, such as

38

[cause1,cause2, cause3, ...] ~&~> effect. The example above can therefore
be rewritten as:

[a+, b+] ~&~> z+

These two concept representations are equivalent.

OR causality

OR causality is the dual of AND causality. Where AND causality is a collection of
required causes for an effect, OR causality is a collection of possible causes for an effect.
A minimum of one of the possible cause transitions is required to occur for the effect
transition to occur.

For example, if there are two input signals, a and b, and at least one of these is
required to transition high in order for an output signal, z to occur. We can describe
this behaviour using the orCausality function, providing a list of the possible cause
transitions, and the single effect transition:

orCausality [a+, b+] z+

In words, this states that either a rise in a, or a rise in b is required for the rising
transition of signal z to be excited.

We introduce a new operator for OR causality: ~|~>. The use of this is to list the
possible causes for an effect, such as [cause1,cause2, cause3, ...] ~|~> effect.
one or more of the listed causes can occur in order for the effect to occur. The example
above which uses the orCausality function for this OR causality concept can therefore
be rewritten as:

[a+, b+] ~|~> z+

A translation of OR-causality to an STG provides an interesting result, containing mul-
tiple effect transitions. If we translate the example concept to an STG, the result will be
as shown in Figure 3.7. The output, z, has two separate rising transitions, both are con-
nected to the places in the loop, allowing either to transition and the signal to continue
transitioning thereafter. Each of these z+ transitions are connected via read arc to one
of the possible cause transitions. The left z+ transition connects to a1, requiring only
a+ to have occurred for this to transitions, the right z+ transition connects to b1, and
therefore only requiring that b+ has occurred in order for this to transition. Whichever
z+ transition fires will pass the token from z0 to z1.

39

Figure 3.7: Translated STG showing OR causality

Never concept

The never concept is used to express a state of the system which violates the invariant.
For example, let’s say that signals a and b are mutually exclusive, i.e. we do not want
these signals to both be high at the same time.

The never concept is used to list the signals which must not be in certain states at
the same time. So, for the mutually exclusive signals a and b, we provide the concept:

never [a+, b+]

This concept states that any state where a+ and b+ have occurred, or any state where
a and b are both 1 violates the invariant, and should not be allowed.

This concept does not produce any places, transitions or arcs in a translated STG
in order to block this state from being reached, but it is important nonetheless for the
purposes of verification. The information contained in never concepts can be passed into
other tools to automatically verify that this state is not reachable. This process will be
discussed in Section 4.7.

3.1.2 Gate-level and Protocol-level concepts

The signal-level concepts discussed in Section 3.1.1 are atomic, these cannot be broken
down further. A concept specification can be authored entirely from these concepts, but
for larger specifications this can make such a specification difficult to comprehend.

Using the example we have used before of a 3-input C-element, with inputs a, b and
c and output z. One possible concept specification for this is:

40

example2 = outRise <> outFall <> init <> interface

where

outRise = [a+, b+, c+]~&~> z+

outFall = [a-, b-, c-]~&~> z-

init = initialise0 [a, b, c, z]

interface = inputs [a, b, c] <> outputs [z]

This is a large specification for a simple 3-input gate, even when using the shorter
notation for AND causality and initial state. If this is to be used as just one part of a
system, it is far too large to define each time.

As part of the library of circuit concepts, we define some derived concepts which spec-
ify commonly used gates and protocols, composed of the signal-level concepts, and other
gate and protocol concepts. These can make describing the behaviours of asynchronous
systems more convenient, and prove the reusable nature of concepts.

Buffer concept

A buffer is a simple gate, containing one input and one output. The output reacts to the
input, following its transitions; when the input transitions high, the output transitions
high, and vice versa.

Figure 3.8: Buffer circuit

The concept specification of a buffer in this library is composed of two causality concepts.
A user can then specify their initial states and the desired interface. The causality
concepts for a buffer are defined as follows:

buffer a z = a+ ~> z+ <> a- ~> z-

For each of z+ and z- there is a single cause transition. The STG for a buffer can be
found in Figure 3.9. This features a read arc connecting a1 to z+, satisfying the first
concept, a+ ~> z+. A second read arc connects a0 to z-, which satisfies the second
concept a- ~> z-.
Note that the buffer concept does not restrict the behaviour of the input, it only specifies
the behaviour of the output in relation to the input. The input signal can transition at

41

Figure 3.9: Translated STG of a buffer

any time with no respect to the output signal. To Restrict the environment the designer
can use a separate concept.

This buffer concept can now be reused in any concept specification. buffer a z,
replacing the signals a and z with the chosen input and output signal names from
the target specification will automatically specify the buffer behaviour between the two
chosen signals.

Inverter concept

An inverter is similar to a buffer, it has one input and one output. However, in this case,
the output transitions the opposite way to the input, the output inverts, or negates,
the input. When the input transitions high, the output transitions low, when the input
transitions low, the output transitions high. Inverters are a very standard gate as signals
are often inverted in digital circuits.

Figure 3.10: Inverter circuit

Similar to the buffer concept specification, the inverter specification contains two con-
cepts, the effect transitions for the output signal are the opposite however.

inverter a z = a+ ~> z- <> a- ~> z+

Figure 3.11 contains the translated STG of the inverter concept. The concept does not
contain any concepts for the interface or the initial state, thus for this STG we assume
that the input is signal a, the output is signal z. We also assume the initial states for
both signals are 0, however, this means that the z- transition will immediately be able
to occur, as a0 will initially contain a token.

42

Figure 3.11: Translated STG of an inverter

As the system initialises, the state of a will become 0, and the output of the buffer, z will
transition high as a result. A specification may include initialise1 [z] to automate
this behaviour, but it is not required. This concept can be reused similarly to the buffer
concept.

Handshake concept

A handshake is a protocol, often used in asynchronous circuits to communicate between
devices or components of a circuit, as shown in Figure 1.1b. One device may send a
request, indicated by setting a signal high, the receiving device will send an acknowl-
edgement of receiving this request by setting one of its own signals high. When the
requesting device has completed its requested operation it will set this signal low, and
the receiving device will acknowledge this by setting its acknowledgement signal low as
well.

It is ideal to include a concept specifically for handshakes, as it is a very common
pattern used in asynchronous systems. A handshake consists of two signals, commonly
known as request, r, and acknowledge, a.

handshake r a = r+ ~> a+ <> a+ ~> r- <> r- ~> a- <> a- ~> r+

The concept for a handshake is composed of four concepts. r+ ~> a+ shows the receiver
acknowledging the request. a+ ~> r- shows that following the acknowledge, that the
request will be rescinded some time after. r- ~> a- indicates that following the request
being removed, the acknowledgement will also be set low. Finally, a- ~> r+ is the reset
of the handshake, allowing the process to start again when the requester requires.

These concepts are descriptive of the behaviour of a handshake, yet it can be ex-
pressed in another way. Instead of signal-level concepts, these can be replaced by gate-

43

level concepts, describing the behaviour of a handshake on at a gate-level. The concepts
r+ ~> a+ and r- ~> a- are the same concepts as featured in a buffer concept. The
other two concepts, a+ ~> r- and a- ~> r+ are the same concepts as featured in an
inverter concept. Thus, the handshake concept can be redefined.

handshake r a = buffer r a <> inverter a r

This example shows that using concepts, a specification can be expressed in multiple
ways, depending on the preference of an author. It also shows the reuse of concepts, in
this case it is reusing concepts from a library, but this can apply to concepts written by
a user, stored in their own libraries of concepts.

(a) Translated STG of a handshake (b) Resynthesized handshake STG

Figure 3.12: The translated STG of a handshake, and its resynthesized version

The translated STG (Figure 3.12a) features mirrored read arcs. The connection between
r1 and a+ and the connection between a0 and r+ are mirrored showing that when signal
r goes high, a will go high after, and when a goes low, r will go high after, resetting
the handshake. The read arc between r0 and a-, and the mirrored read arc between a1

and r- show that when r goes low, a will follow, and when a goes high, r will go low
after, when its request has completed.

Figure 3.12b is an equivalent handshake STG, produced from the STG in Figure 3.12a
by Resynthesis. Resynthesis can be used to find a smaller model by decomposing a model
and recomposing it of selective components [32]. This produces a much more compact
handshake, which is clearer and more recognisable as a handshake pattern.

The handshake concept can be reused, replacing r and a with signals from the target
specification which act as request and acknowledge signals.

C-element concept

C-elements are commonly used in asynchronous circuits, as they are used to synchronise
signals, the output going high when all inputs are high, the output going low only when

44

all input signals go low.

Figure 3.13: C-element circuit

For the circuit-specific concept library, we provide a 2-input C-element. For this
example, the inputs are a and b, the output is z. The concept specification for a
C-element is as follows:

cElement a b z = a+ ~> z+ <> b+ ~> z+ <> a- ~> z- <> b- ~> z-

This concept features AND causality, both z transitions requiring both a and b to
transition first, a+ and b+ for z+, a- and b- for z-.

As with the handshake concept, there is another way of representing a C-element. If
we look at the concepts by common cause transitions, we see that a+ ~> z+ and a- ~>
z- are the concepts for a buffer of a and z. Similarly, b+ ~> z+ and b- ~> z- form a
buffer of b and z. Thus, we can redefine a C-element concept.

cElement a b z = buffer a z <> buffer b z

This form of the specification for a C-element does not show the implementation, but
shows the behaviour. Through the AND-causality between these two buffer concepts,
we describe that a and b both transitioning high or low will cause the same transition
in z.

The translated STG can be seen in Figure 3.14, and shows this AND causality.
Looking at one input signal and the output signal shows the similarities to the translated
buffer STG (Figure 3.9).

This concept can be reused for any concept specification, replacing the inputs with
the signals to be synchronised, and the output with the signal used to identify this
synchronisation. Using the three-input C-element example as we have used before 2.12,
we can now define this using this cElement concept.

example3 a b c t z = cElement a b t <> cElement t c z

45

Figure 3.14: Translated STG of a C-element

OR gate concept

An OR-gate is a standard logic gate used in digital circuits, and it features OR causality.
The output of an OR gate goes high when at least one of the inputs has gone high, and
the output only goes low when all of the inputs are low.

Figure 3.15: OR gate circuit

The circuit-specific concept library contains a 2-input OR gate. For this example, we
have input signals a and b, and output signal z. The concept specification for an OR
gate is:

orGate a b z = [a+, b+] ~|~> z+ <> [a-, b-] ~&~> z-

This specification is composed of OR causality for the set phase of the gate, and AND
causality for the reset phase. For z+ to occur, either a+, b+, or both must have occurred.
For z-, both a- and b- must have occurred.

Both the OR and AND causalities are evident in the translated STG, found in Fig-
ure 3.16. It can be seen that a1 and b1 connect to separate z+ transitions, indicating
that these are the two possible causes of z+. For z-, there is only one transition, con-
nected via read arc to both a0 and b0, which is the AND causality requiring both input
signals to be low for the output to go low.

46

Figure 3.16: Translated STG of an OR gate

AND gate concept

AND gates are similar to OR gates, however, their operation is the dual. The output
goes high when all input signals are high, going low when any of the input signals go
low. Therefore, the AND gate also features OR causality.

Figure 3.17: AND gate circuit

As with the C-element and OR gate, the AND gate concept featured in the circuit-
specific library is a 2-input AND gate. The signals for our example are a and b as inputs,
z as the sole output. The concept specification is:

andGate a b z = [a+,b+] ~&~> z+ <> [a-,b-] ~|~> z-

The set and reset phases of the AND gate are the dual of those for the OR gate, with
AND causality required for z+, both a+ and b+ must have occurred, and OR causality
used for z-, needing at least one of a- and b- to have occurred.
Figure 3.18 contains the translated STG for this AND gate concept specification. Com-
paring this to the OR gate STG (Figure 3.16), these STGs look like they have been
mirrored around the central horizontal axis. The AND causality in this STG is apparent
for z+, being connected to a1 and b1, thus requiring both a+ and b+ to have already
occurred. In this STG, the OR causality affects the z- transition, providing two separate
transitions, one connected to a0, so it can transition low after a has, and one connected
to b0, so it can transition low when this has. This concept can now be used for any

47

Figure 3.18: Translated STG of an AND gate

three signals, using the concept andGate a b z, replacing a and b for the inputs, and
z for an output.

As stated, an AND gate is dual of an OR gate. Therefore we can simplify the AND
gate concept further:

andGate a b z = dual (orGate a b z)

This uses the dual function which inverts every cause and effect transition in a given
concept, thus swapping the OR and AND causalities in the OR gate concept, providing
an AND gate. The dual function will be discussed in further detail in Section 3.3.3.

XOR gate concept

An XOR gate, or Exclusive OR gate is a slightly more complex logic gate. This gate
sets its output high when exactly one of the inputs are high. i.e. If the inputs are all
high or all low, the output is low.

Figure 3.19: XOR gate circuit

The XOR gate concept included in the circuit-specific library is a 2-input gate. The two
input signals are, a and b, and the one output is z. For an XOR gate, the best way to
derive a concept is to look at the set and reset functions, the Boolean functions which
define what causes the output to rise, the set function, and the output to fall, the reset
function. The set function for an XOR gate is: (a ∧ b) ∨ (a ∧ b). In words, this is a
being high and b being low, or a being low and b being high.

48

This can not directly be described with concepts, as the composition of concepts <> is
an AND (∧) operation. Asynchronous Concepts do not feature an OR (∨) operation. As
discussed in Section 2.6 this function is in Disjunctive Normal Form (DNF), identified as
having OR operations at the top-level. In order to describe this in concepts, and use the
composition operator, we need to convert this function in DNF to Conjunctive Normal

Form (CNF), which uses top level ANDs, as concepts do. Section 2.6 discusses this
conversion in greater detail.

The result of the conversion of this function is: (a ∨ b) ∧ (a ∨ b). We can now use
this to generate the concepts for an XOR output rising.

outRise = [a+, b+] ~|~> z+ <> [a-, b-] ~|~> z+

Now, we can perform the same operation for the reset function, which in DNF is:
(a ∧ b) ∨ (a ∧ b). Converting this to CNF produces: (a ∨ b) ∧ (a ∧ b). Producing the
concepts for this we find:

outFall = [a+, b-] ~|~> z- <> [a-, b+] ~|~> z-

With the outRise and outFall functions, we can now produce the full concept for an
XOR gate.

xorGate a b z = outRise <> outFall

The translated STG for this XOR concept can be viewed in Figure 3.20. Note that for
both z+ and z-, there are two transitions. For the z+ transitions, one requires both
a1 and b0 to contain tokens, and the other requires a0 and b1 to both contain tokens,
as expected from an XOR gate. Similarly, one z- transition needs both a0 and b0 to
contain tokens, the second needs a1 and b1 to contain tokens.
It is a generally useful technique to use the set and reset functions to generate concepts
for a gate, as the gate itself may require a large and complex concept specification, so
we offer the option to include these functions as concepts in a concept specification, or
to generate a specification from the set and reset functions.

We provide some high-level concepts which can use Boolean functions, and we can
use one to simplify the XOR gate concept further, complexGate. This will be discussed
in more detail in Section 3.3.1. This function takes a set and reset function, and an
output signal. This will then be used in translation to produce an STG. Therefore, we
can derive the following concept for an XOR gate:

xorGate a b z = complexGate ((a ∧ b) ∨ (a ∧ b)) ((a ∧ b) ∨ (a ∧ b)) z

49

Figure 3.20: Translated STG of an XOR gate

Mutual exclusion concept

Mutual exclusion, or mutex for short, is a protocol between two signals which allows
only one to be high at a time, these signals are said to be mutually exclusive. This exists
for multiple reasons, for example, when a resource only allows access to one user at a
time, if two users request access at the same time, mutual exclusion ensures that only
one is granted access, the other gaining access when the first has finished.

For the concept library, we provide a two signal mutual exclusion concept. For this
example, we have two output signals, as the signals to request access in such an example
would be outputs of a system. All signals are stated to be initially 0.

mutex x y = x- ~> y+ <> y- ~> x+ <> never[x+, y+]

The causality concepts x- ~> y+ and y- ~> x+ require that for one of the signals
to transition high, the other must have already transitioned low. These themselves
guarantee that these signals will be mutually exclusive, but the never concept is included
for automatic verification that these signals are mutually exclusive and are not both
initially 1.

Figure 3.21 is the mutex concept translated to an STG. This model shows that for x+ to
transition, y0 must contain a token, meaning that y must be low. This is the same for
y+ to occur, where x0 must contain a token. Verifying this STG for a possibility where
x and y are both 1 will prove that this is an unreachable state. This concept can now
be included in any specification where signals are needed to be identified as mutually
exclusive.

50

Figure 3.21: Translated STG of a mutual exclusion concept

Mutual exclusion element concept

A mutual exclusion element is a gate that implements the mutex protocol. It incorporates
inputs in order to control the transitions of the mutually exclusive outputs. This gate
was used as an example in Section 1.2, in the introduction, to show how an STG may
be more difficult to understand, but concepts can be more indicative as they describe
the behaviours.

Figure 3.22: Mutual exclusion element (metastability filter omitted for clarity)

This gate has two inputs, r1 and r2, which are request signals. They are inputs to this
gate, coming from devices which request access to a resource. The outputs, g1 and g2

grant access to this shared resource, but only one at a time. When r1 goes high, g1 will
pass the access, only if g2 is not already high. When r1 goes low, the requesting device
has finished with the resource, relinquishing its hold of it, g1 will then go low, allowing
access to g2, if r2 is high. This is the same for r2 and g2. The concept specification
for this gate is as follows:

meElement r1 r2 g1 g2 = buffer r1 g1 <> buffer r2 g2 <> me g1 g2

We use buffers in the specification of this gate as the behaviour of the grant signals is
to react to their respective request signals, and leads to a more compact specification.

51

The mutual exclusion serves to make sure that the grant signals do not try to provide
access to the shared resource at the same time.

Figure 3.23: Translated STG of a mutual exclusion element

Figure 3.23 contains the translated STG for this concept specification. There are
three areas to note. If we just take the signals r1 and g1, and the read arcs connecting
them, this is expected to be similar to a buffer, which compared to the STG of a buffer,
as shown in Figure 3.9, is the same, but rotated. This is the same if we compare just
the read arcs between r2 and g2.

Now, taking just signals g1 and g2 and the read arcs between these two, we can
see that this looks the same as the Figure 3.21, the mutual exclusion STG. These
three separate views of this STG show the different effects the three concepts have, but
composed produce a new gate-level concept, a mutual exclusion element.

3.2 Generalising to multiple inputs

In many cases, a standard logic gate may be used with more than two inputs. It is
possible to use a gate as we have defined it in Section 3.1, but many internal signals will
be included, which can make the resulting STG larger and more complex. Therefore,
we introduce some concepts which allow any number of inputs, for a single output, for
some standard gates. These are included in the circuit concept library, to supplement
the existing gate concepts.

52

As discussed in Section 2.7, this generalisation to multiple inputs takes advantage
of several Haskell functions, which aim to automate the process of defining gates with
any number of inputs. These generally are used to iterate over any number of provided
signals, and compose all of these. The Haskell functions in question will be discussed
when used.

Multiple input C-element concept

As stated in Section 3.1, a C-element can be defined as a composition of buffers, making
it a more compact concept. Using this, we can easily define a C-element which has any
number of inputs. For example, a 3-input C-element can be defined as:

example4 a b c z = buffer a z <> buffer b z <> buffer c z

Adding another input will simply add another buffer concept. We can therefore define
a new concept, cElementN, where N stands for any number of inputs. This takes a list
of inputs, and a single output, and creates a buffer concept from each input to the
output signal. The implementation of cElementN in Haskell is as follows:

cElementN ins out = mconcat (map (`buffer` out) ins)

The functions mconcat and map are Haskell functions, useful for this implementation.
mconcat composes a list of monads, and map will apply each element of a list, in this
case each element of ins to the function inside the brackets, in this case, buffer. This
therefore produces a buffer concept for each element of ins as in the input, with the
output for all being out. All of these buffer concepts are then composed by mconcat.

To produce the above concept for a 3-input C-element, we can use:

cElementN [a, b, c] z

As an example to show that this concept produces an equivalent 2 input C-element, we
can use the concept cElementN [a, b] z. Using this, the internals of cElementN will
produce the following composition of concepts:

buffer a z <> buffer b z

This is the same as the defined concept for a two input C-element.

53

Multiple input OR gate concept

OR gates are defined as a composition of OR causality and AND causality, listing the
rising possible input transitions as OR causality for the output to rise, and all the required
falling input transitions as AND causality for the output to fall. Manually, a three input
OR gate concept would be defined as:

example5 a b c z = [a+, b+, c+] ~|~> z+ <> [a-, b-, c-] ~&~> z-

To define an OR gate concept for any number of inputs, it is a case of taking a list of
the inputs, and defining all of their rise transitions as a possible causes for the output
rising transition, and all the input falling transitions as required causes for the output
falling transition. This concept is called orGateN. The implementation of orGanteN in
Haskell is as follows:

orGateN ins out = map ins+~|~> out+ <> map ins-~&~> out-

This uses map once again. In this case, it iterates over all of the transitions for every
input signal, provided in the parameter ins, applying the rise function, + to every signal.
These are listed as OR causality for the output signal, out to rise. Similarly mapping all
of the falling transitions for the inputs signals, ins, and setting these as AND causality
for out-.

Again, to show this concept works for a two input OR gate, we can use the concept
orGateN [a, b] z. The resulting composition from the use of orGateN will be:

[a+, b+] ~|~> z+ <> [a-, b-] ~&~> z-

These concepts are the same as for the derived two input OR gate.

Multiple input AND gate

A two input AND gate is defined as the dual of a two input OR gate. Therefore, for the
multiple input AND gate, or andGateN, the concept implemented in Haskell as follows:

andGateN inputs output = dual (orGateN inputs output)

In this concept, inputs is a list of all input signals and output is a single output. Since
a dual OR gate is an AND gate, the dual of a multiple input OR gate will be a multiple
input AND gate. How the dual function works, and an example showing that a dual
OR gate is an AND gate is discussed in Section 3.3.3.

54

3.3 High-level concept functions

The circuit-specific concepts derived in Section 3.1 can be used to design many circuits.
However, in some cases the set and reset functions for a specification or implementation
to be included may be known, and it would reduce design time, and increase ease, to
use these in a specification. We introduce some functions which can use these Boolean
functions in Section 3.3.1.

The concepts we have introduced in their current form may not describe every be-
haviour that is possible in a circuit. Through some concept transformations, we can
find other behaviours which can provide many further uses for the underlying concepts.
These transformations are aimed at reusing the existing concepts, and avoiding the need
to specify each possible circuit explicitly, which can lead to needlessly long and complex
concepts specifications and libraries. The transformations we introduce are bubble (Sec-
tion 3.3.2), dual (Section 3.3.3), and enable (Section 3.3.4).

3.3.1 Boolean function concepts

When designing an asynchronous system using concepts, it is possible that an existing
circuit will be used as part of the new system. While concepts can be used to define the
behaviours within these specifications, the existing circuit may be large and complex,
meaning that deriving the concept form of this can be time consuming.

However, the synthesis of this circuit will have produced a set and reset function,
which are Boolean functions describing how the input signals are combined in order to
cause the output to rise, from the set function, or fall, from the reset function.

We therefore introduce functions for the concepts language, which take Boolean
functions and return a concept. First of all, we introduce function. This takes a single
Boolean function and a signal transition which this boolean function causes. This is
used in the form:

function (Boolean f unction) x+

Where Boolean f unction is any function using AND, OR and NOT operations with
standard operators, and where x+ is any signal transition, rising or falling, which is
caused by the Boolean function.

55

Using the example once again of a 3-input C-element, the output z will rise when all
inputs, a, b and c are high. Therefore, the set function of z can be defined as a∧ b∧ c.
function will be used for this example as follows:

function (a ∧ b ∧ c) z+

This does not complete the 3-input C-element specification however. We still need to
define the concept for the reset function. For the output to fall, all inputs must have
fallen. As such, the reset function can be defined as a ∧ b ∧ c. We can now define
function for this reset function, which because it produces concepts can be composed
with any other concept. As such, we can compose both the set and reset functions for
the 3-input C-element:

function (a ∧ b ∧ c) z+ <> function (a ∧ b ∧ c) z-

These concepts will correctly produce a C-element with three inputs, but requires two
separate concepts for each function. For convenience we also include complexGate,
which takes a set function, a reset function and the signal which is caused to transition
by these functions. This is used in the form:

complexGate (set f unction) (reset f unction) x

Where set f unction and reset f unction are the Boolean functions for setting the output
high and low respectively, and x is the signal whose transitions are caused by these
functions. Note that in this case, we provide just the signal not the transition.

As with function, complexGate can be composed as with any other concept.
Therefore, we can define this 3-input C-element fully:

example6 = complexGate (a ∧ b ∧ c) (a ∧ b ∧ c) z <> inits <> interface

where

inits = initialise0 [a, b, c, z]

interface = inputs [a, b, c] <> outputs [z]

If only a set function is known, then this can be used to generate a combinational gate.
This type of gate uses the set function to set the output high, but does not use a reset
function, instead using the negation of the set function for this. Using complexGate to
specify an AND gate, this would be as follows:

56

complexGate (a ∧ b) (a ∧ b) z

For when a combinational gate is to be generated with many more signals and a more
complex set function, we provide a simpler concept, combinationalGate. This is
implemented as follows:

combinationalGate set out = complexGate (set) (set) out

An AND gate can therefore be specified more simply using this concept:

combinationalGate (a ∧ b) z

As part of the Plato tool, Boolean functions can also be used to generate a full concept
specification, which can be saved as a file. This can then be used to generate an STG, or
be used as part of another specification. This will be discussed further in Section 5.1.3.

3.3.2 Bubble transformation

Some gates may have multiple combinations, where inputs or outputs are inverted. These
behaviours are important, but can mean that for each type of gate there can be multiple
separate specifications to cover each of these combinations. We have specified an AND
gate, but often an inverted output AND gate is used, more commonly known as a NAND
gate. Similarly, a NOR gate is also often used, which is an inverted output OR gate.

(a) NAND gate (b) NOR gate

Figure 3.24: Commonly used gates that we have not specified before

Figure 3.24 contains a NAND gate and a NOR gate. These are indicated as such due
to them featuring bubbles on the outputs of their gates, small circles which are not
featured on their non-inverting counterparts (see Figures 3.17 and 3.15).

We therefore provide a transformation function, bubble, to invert a single signal’s
polarity, in order to provide gates such as NANDs and NORs to a user, without necessarily
needing to provide a separate concept for these in the library.

This function is important, as with any gate there can many possible combinations
of inverted inputs and outputs. If we have a 3 input gate for example, then there is four

57

signals, three inputs and an output. This means that there can be 24 = 16 possible
combinations of inverted and non-inverted signals. bubble can be used to avoid needing
to specify 16 separate gates in a library. A NAND gate can be specified in concepts,
using the bubble function as follows:

example7 a b z = bubble z (andGate a b z)

This in itself produces a concept, which can be composed with any other concept, as
expected. The translated STG is shown in Figure 3.25. Note that this STG, unlike an
AND gate (Figure 3.18) has two c+ transitions, and one c- transition. As expected of
a NAND gate, for c+ to occur, either a or b must be 0, and for c-, both a and b must
be 1. This is the inversion of an AND gate.

Figure 3.25: Translated STG of example7

However, note that in Figure 3.25 the place c0 contains a token. This being an inverting
gate, and all initial states are 0, this means that as soon as the system starts up, c+
can occur. This is the correct operation, but it is ideal to capture that the initial state
of c in this case is 1. Thus, the bubble function also will invert the initial state of the
chosen signal. With the example of a NOR gate, we will show how bubble can be used
to invert the signal and its initial state.

example8 a b z = bubble z (orGate a b z <> interface <> initialState)

where

interface = inputs [a, b] <> outputs [z]

initialState = initialise0 [a, b, z]

In this specification, we have defined the interface and initial state and composed these
within the example8 concept, along with orGate a b z. This whole composition then

58

has the bubble function applied to it for signal z. This will invert the transitions for
signal z in the OR gate concept, and change the initial state of z from 0 to 1, but not
affect the transitions or initial states of signals a or b. The interface is also unaffected by
the bubble function, as the inversion of an interface is not a meaningful transformation.
This is what provides us with a NOR gate.

Figure 3.26: Translated STG of example8

The translated STG of this NOR gate specification (Figure 3.26) contains a token in
place z1, indicating that the initial state has been changed by the bubble function. Note
also, that this is also unlike its non-inverted counterpart, seen in Figure 3.16. In this
case, either a or b must be 1 for z- to occur, but both must be 0 for z+ to occur. This
is the expected operation of an inverted OR gate.

The bubble function also applies to the invariant, and will invert any states of the
inverted signal that have been declared, using the never concept, to violate the invariant.
This is to ensure that, using the example of two mutually exclusive signals, if one of these
is "bubbled", then its inactive state will now be 1, so the state of both of these signals
being 1 will be entirely reachable, when one state is active and the other is inactive.

We can demonstrate this using the mutex element. If we invert one of the grant
signals, in this example g2, if we do not also invert the invariant for this signal, then
when g1 is active and g2 is inactive, then this would violate the original invariant, stated
to be never g1 and g2 being high at the same time, as g1 is high when active, and g2
is high when inactive. The concept specification of this is as follows:

example9 r1 r2 g1 g2 = bubble g2 (meElement r1 r2 g1 g2

<> interface <> initialState)

where

interface = inputs [r1, r2] <> outputs [g1, g2]

initialState = initialise0 [r1, r2, g1, g2]

59

This function will take a standard mutual exclusion element, and invert transitions of
output g2, so when r2 transitions high, this will be able to transition low, its initial state
will be changed from 0 to 1, and the invariant will change from forbidding g1+ and g2+,
to g1+ and g2-.

The translated STG, Figure 3.27 indicates that this is the case, requiring g1- to have
occurred before g2- can occur, and g2+ to have occurred to allow g1+ to occur.

Figure 3.27: Translated STG of example9

The bubble function does not only apply to output signals. In many cases there may be
an inverted input signal, but the gate output is non-inverted. Bubble is used in the same
way, but by naming an input signal. With the example of a C-element, we can specify
the following:

example10 a b z = bubble a (cElement a b z

<> interface <> initialState)

where

interface = inputs [a , b] <> outputs [z]

initialState = initialise0 [a, b, z]

This will mean that in order for z to go high, a will need to be low and b will need to
be high. The initial state of a will also be 1, while b and z will be 0. This can be seen
in Figure 3.28a.

The synthesized circuit produced from this STG is shown in Figure 3.28b, and features
a bubble on the a input, as expected from the specification, and the translated STG.

60

(a) Translated STG of example10

(b) Synthesized circuit of example10

Figure 3.28: STG and circuit generated from example10

It is possible to combine the bubble function, applying it to one signal in a system and
then applying it to another of the result of the first bubble. Using the above concept
specification for a C-Element with one input inverted, if we bubble z as well:

example11 a b z = bubble z (bubble a (cElement a b z

<> interface <> initialState))

where

interface = inputs [a , b] <> outputs [z]

initialState = initialise0 [a, b, z]

The translated STG from this, shown in Figure 3.29a, will feature the inversion of a as
with Figure 3.28a, but this time also features the inversion of z, which is initially 1, and
to be set high requires a to be high and b to be low, and to be set low, requires a to be
low and b to be high. The circuit for this (Figure 3.29b) features a bubble both on one
of the inputs and the output.

Note: bubble is a commutative transform, meaning that regardless of the order
in which multiple signals have bubble applied to them, the result will be the same.
With example11, we have applied bubble a to the C-element, interface and initial
states. We then apply bubble z to the result of this. If we swapped these bubble

functions, applying bubble z to the C-element, interface and initial state, and then
apply bubble a to the result, the produced STG and therefore the synthesized gate

61

(a) Translated STG of example11

(b) Synthesized circuit of example11

Figure 3.29: STG and circuit generated from example11

would be the same as in Figure 3.29.
Due to the commutativity of the bubble transform, we therefore include the bubbles

transform. This is a more convenient form of bubble, which takes a list of signals to
be inverted, avoiding the need to have multiple bubble functions and parentheses.
example11 can therefore be rewritten as:

example11 a b z = bubbles [z, a] (cElement a b z

<> interface <> initialState)

where

interface = inputs [a , b] <> outputs [z]

initialState = initialise0 [a, b, z]

As a simple example, showing that the bubble functions works as expected, we will aim
to show the occurrence in a concept, when the bubble function is applied to the same
signal twice. For this example, we use a C-element, with the output inverted twice. In
concepts this is:

example12 a b z = bubble z (bubble z (cElement a b z))

First, we break the C-element concept into the signal-level concepts.

example12 a b z = bubble z (bubble z ([a+, b+] ~&~> z+ <>

[a-, b-] ~&~> z-))

Now, with the first bubble, we invert each z transition, removing this function.

62

example12 a b z = bubble z ([a+, b+] ~&~> z- <> [a-, b-] ~&~> z+)

For the second bubble, we do the same again, inverting all z transitions.

example12 a b z = [a+, b+] ~&~> z+ <> [a-, b-] ~&~> z-

The result of this is the same as a non-inverted C-element. Thus, inverting the same
signal twice acts as expected, and causes no inversion of this signal in the result.

3.3.3 Dual transformation

The dual transformation is based on the principle of duality for Boolean functions. This
principle states that each operator and variable in a Boolean function has a dual, and
that the result of the dual function will be the dual of the original function [33].

For a function f (x), the dual can be described as: d(x) = f ′(x′). In words, this
states that a dual of a function is the inversion of the original function with inverted
variables and constants. For example, using the complement axiom for AND, A∧ A = 0,
stating that the AND of any variable and its complement is 0, if we find the dual of this
by first inverting the variables and constants (A ∧ A = 1) then inverting the operator,
an AND (∧) becomes an OR (∨) and vice versa. The result is A ∨ A = 1, which itself
is an axiom for the complement under OR, stating that any OR operation on a variable
and its complement is 1.

This principle is particularly useful in dual-rail logic [34], which is commonly used in
low-power digital circuits. In dual-rail logic, each signal has two wires, and each bit is
instead represented by two bits; a logic 0 is represented by 01 and logic 1 is represented
by 10. Therefore, one wire for each signal represents the actual logic value, and the
second represents the dual. These wires can in-fact feature four states: 01 and 10 as we
have already discussed identify values 0 and 1 respectively, but there can also be 00 and
11. In dual-rail logic, 00 is used to identify the system as idle, not having any inputs,
and 11 is used to show an illegal output, meaning an error has occurred.

Therefore, with these two wires the digital circuit can perform a logic operation on
the non-inverted input wire, providing an output. This can then be checked to be correct
by performing the dual logic operation on the inverted input wire. If the output is 01
or 10, we know that the circuit has performed successfully. If this is 00 or 11, either
the logic operation has not completed or an error has occurred and the output can be
ignored until a valid output has been produced.

63

In low-power digital circuits, dual-rail logic is commonly used, as the output not being
the expected 01 or 10 identifies that the operation of this circuit has not yet completed,
or there is an error. The circuit can then continue to wait for a correct 01 or 10 output.
This makes dual-rail logic more dependable to produce correct output [35].

We provide the dual function for Asynchronous Concepts, which allows a user to
define the operations performed on input signals to provide an output, and then provide
the dual for this with ease, to allow the design of circuits such as those featuring dual-rail
logic simpler.

The dual function behaves similar to the bubble function, but applies the inversions to
the transitions, initial states and never concepts of all signals in the concept specification.
This function can be used in multiple ways. To demonstrate that this function produces
the dual correctly, we will first show the dual of an OR gate. This is specified in concepts
as follows:

example13 a b z = dual (andGate a b z)

If we break the gate-level concept of andGate down to the atomic signal-level concepts,
the specification will be:

example13 a b z = dual ([a+, b+] ~&~> z+ <> [a-,b-] ~|~> z-)

As stated, the dual function will invert every transition of a given concept, so the resulting
specification after the dual function is:

example13 a b z = [a-, b-] ~&~> z- <> [a+,b+] ~|~> z+

This concept specification is now the same as an OR-gate, with either a+ or b+ needing
to have occurred to allow z+, but both a- and b- needing to have occurred for z-.

Rather than on individual concepts, the dual function can also be used to provide the
dual of entire specifications. For example, if we have the circuit as shown in Figure 3.30,
we can apply dual to this entire circuit.

Figure 3.30: Example circuit to apply dual to

64

The concept specification for this circuit is:

example14 a b c t z = gate1 <> gate2 <> interface <> initialState

where

interface = inputs [a, b, c] <> outputs [z] <> internals [t]

initialState = initialise0 [a, b, c, z] <> initialise1 [t]

gate1 = bubble t (andGate a b t)

gate2 = orGate t c z

Now, if we apply the dual to this specification, as follows:

example15 a b c t z = dual (example14 a b c t x)

Which when synthesized produces the circuit as seen in Figure 3.31

Figure 3.31: The dual of Figure 3.30

All of the initial states of the signals have been inverted, meaning that a, b, c and z

are initially 1, and t is initially 0. Therefore, we can treat each signal as if it has been
inverted from the original gate.

First, gate1 before the dual generates a NAND gate. The function of this NAND
gate is: t = a ∧ b. Applying the dual to this results in: t = a ∨ b, a NOR function.

gate2 before dual generates an OR gate. The function of this is z = t∨ c. We have
stated before (Section 3.1.2) the dual of an OR is an AND, so for this specification the
dual function is: z = t ∧ c. Therefore, the dual of this has been found successfully with
concepts.

Some standard gates that are derived in this circuit concept library have interesting
duals, and these are detailed in Table 3.2.
To demonstrate that a dual transformation can produce the dual of a gate, and the
dual of this is the original gate, we will use the example of an AND gate. As has been
discussed, an AND gate is the dual of an OR gate. And this is how an AND gate has
been defined, as:

65

Gate Dual

Buffer Buffer

Inverter Inverter

C-element C-element

ANDgate ORgate

ORgate ANDgate

XORgate XNORgate

Table 3.2: The duals of gates in the library

andGate a b z = dual (orGate a b z)

For this example, we will apply dual to the andGate a b z. And this is the same effect
as applying dual twice to an OR gate. Expanding this initially will produce:

example16 a b z = dual (dual (orGate a b z))

Now if we expand orGate a b z

example16 a b z = dual (dual ([a+, b+] ~|~> z+ <> [a-, b-] ~&~> z-))

If we apply one of the dual functions to this, we get:

example16 a b z = dual ([a-, b-] ~|~> z- <> [a+, b+] ~&~> z+)

The AND causality and OR causality in this has now switched, so what was once and
OR gate is now and AND gate. Let’s apply the second dual:

example16 a b z = [a+, b+] ~|~> z+ <> [a-, b-] ~&~> z-

This specification is now the same as an OR gate, demonstrating that applying a dual
to an AND gate, which is in itself is a dual of an OR gate, results in an OR gate.

3.3.4 Enable transformation

While the gates we have derived can be functional on their own, in some circumstances,
their operation may be subject to certain conditions. For this transformation, we concern

66

(a) Without enable (b) With enable

Figure 3.32: Mutual exclusion elements with and without enable

signals which enable a circuit, that is, the polarity of one signal determines whether the
output of the circuit can change, be it one gate or the output of an entire circuit.

In practice, an enable signal can be used to select between multiple devices, or be
used to only allow a circuit’s output to change when chosen by the environment, such
as when it the output is ready to receive the changes. Commonly, therefore this enable
signal is applied only to output signals.

As with bubble and dual, this transformation can avoid the need to derive many
concepts with similar operations, but slight changes, based on inverted signals, or in-
cluding an enable signal. Therefore, we introduce enable.

This transformation takes a transition, which is the transition of the enable signal
which indicates that the gate is enabled. This can allow for both active high and active

low enables, where the enable signal in question must be high or low to indicate an
enabled state. It also takes in a signal, which cannot transition without the system
being enabled. Finally, it takes in the concept, containing the circuit, gate or protocol
to which this enable applies. An example of the use of enable is:

enable e+ x (example17 a b x)

Where e+ is the enable transition, x is the signal that requires the enable transition
and example17 is a concept, which features the signal x as an output, so regardless of
the operation of a and b, the output cannot transition without the enable signal having
transitioned first. enable applies the enable transition, e+ in this example, to both the
rising and falling transition of the given signal, x. This ensures that the output signal
only transitions following the enable transition.

A real use-case example of this transformation is with a mutual exclusion element.
Figure 3.32 contains mutual exclusion element circuits with the implementation hidden.

67

Figure 3.32b should react the same as Figure 3.32a as long as signal e remains high,
but the outputs will not change when e is low.

Note that there are two outputs of a mutual exclusion element g1 and g2. Enable is
a commutative transformation, meaning that we can compose two enabled concepts in
any order, applying enable to each signal correctly. For this example we need to include
an enable transformation for each of the output signals, which will be in the form:

enable e+ g1 (enable e+ g2 (meElement r1 r2 g1 g2))

Here, the second enable, enable e+ g2, will be applied to the meElement concept.
The result of this is also a concept, which will have the first enable applied to it,
enable e+ g1. This results in another concept which can be composed as usual.

It is possible that circuits may have multiple outputs, all of which will not transition
without a single enable signal. Therefore, we also include enables, which takes a list
of signals to apply enable to. With this, we can derive a full concept specification for
a mutual exclusion element with an enable.

example18 r1 r2 g1 g2 e = enables e+ [g1, g2] (meElement r1 r2 g1 g2)

<> initState <> interface

where

initState = initialise0 [r1, r2, g1, g2, e]

interface = inputs [r1, r2, e] <> outputs [g1, g2]

The resulting STG from translating this concept specification is found in Figure 3.33.
This is very similar to the STG as seen in Figure 3.23, which is an STG for a mutual
exclusion element without an enable signal. This STG includes an extra signal transition
loop for signal e, with read-arcs connecting the rising and falling transitions of g1 and
g2 to the place e1, which indicates when the circuit is enabled.

Taking this STG and synthesizing it produces the circuit as shown in Figure 3.34. Com-
paring this to Figure 3.22, the circuit for a mutual exclusion element without an enable
signal, we find that they both feature the structure of two AND gates, with each taking
one input and the opposite output signal inverted.

However, for the inputs, there is a difference. This time, r1 does connect to the AND
gate to produce g1, but through another AND gate. The other input to this AND gate
is e. If e is low, the output of this gate will be 0, regardless of the polarity of r1, so it

68

Figure 3.33: STG of a mutual exclusion element with an enable signal

Figure 3.34: Circuit implementation of a mutual exclusion element with enable

cannot cause a change in g1. If e is high, then the output of this AND gate is whatever
the value of r1 is, which can then propagate to g1. This is the same for r2.

The enable signal in this example is used to determine whether the input signals can
reach the logic which affects the output signals. If it is low, then no change can occur,
if it is high, then the input signals determine whether the outputs change. This is
the desired operation of the enable signal. This shows how effective the enable and
enables transformations can be used, simply being applied to concepts to change their
operation, without the need to derive a new concept specifically to include an enable
signal.

69

3.4 Set-Reset latch example

A set-reset latch is an interesting example, which exercises many of the concepts we have
discussed, and some intuition to provide a concept specification for a set-reset latch, but
shows some problems with concepts which can be improved upon with future research.

A latch is a device used in digital circuits to store the value of an input signal,
outputting this once stored. There are many types of latches, the differences between
them are how to control the storing of the input signal. In a set-reset latch, there are
two control signals for the latch, set and reset, which set the output high, and set the
output low respectively, thus storing a high or low value.

First, let us describe the operation of a standard set-reset latch. This consists of
four signals, two input signals, s for set and r for reset, and two output signals, q, which
contains the value of the stored signal, and nq, which is the negated output of the stored
value.

If we describe the behaviour of the latch just based on the non-negated output q, we
can do this with the complexGate function. For q to rise, s must be high, and for q to
fall, r must be high. This easily gives us the set and reset functions, and the concept is
as follows:

example19 = complexGate (s) (r) q

This concept causes the desired change in q, but there are issues that can occur with a
specification such as this: if s and r are both high at the same time, then what is the
change in q?

Figure 3.35 is the translated STG for this example. Notice that if s and r are both
high, then q can transition both high and low, depending on it’s current polarity, but as
long as both input signals remain high, q can continuously transition both high and low.
This is more clearly shown in the state graph format of this STG, found in Figure 3.36.

In this state graph, we have highlighted the important arcs which show the issue when
both inputs are high, i.e. when the states are 110 or 111. These arcs are optional [36].
Unfortunately, STGs do not support optional arcs, and neither do Asynchronous Con-
cepts. These cannot specify what occurs in these situations. It may be possible to include
optional arcs in Concepts, but this will be a challenging process, and is an opportunity
for further research.

70

Figure 3.35: Translated STG of example19

Instead, with concepts, we aim to try and block access to the states where both input
signals are high. Ideally, we would apply mutual exclusion to s and r, but this is a
hard restriction to try and place on the environment, which we can specify for, but not
control. Instead, we use a never concept, which can then be verified to ensure that a
state where both the set and reset signals are high cannot be reached. Adding this to
the concept specification becomes:

example19 = complexGate (s) (r) q <> never [s+, r+]

This now ensures that q only rises when s is high and r is low, and falls when r is high
and s is low. There can still be an issue when an input signal transitions high, then
low before the output has transitioned in the correct way. For example, if s rises and
falls before q transitions high, then the latch is not correctly storing the value. We can
therefore add two more concepts to ensure this does not occur. This concept is now the
specification for one output signal of a latch, which we name srHalfLatch.

srHalfLatch s r q = complexGate (s) (r) q <> never [s+, r+]

<> q+~> s- <> q-~> r-

With these final two causality concepts, the output must transition before the inputs
can transition low. These impose a constraint on the environment, which is not ideal.
However these are not acting as a block for the system entering a state, but they simply
imply timings on the signal transitions.
With srHalfLatch we can now use this to derive a concept for a full set-reset latch,
srLatch, using srHalfLatch as a base. The full latch will use all four signals, s, r,

71

Figure 3.36: Translated FSM of example19

q and nq. Since the behaviours for s are already described in srHalfLatch, we can
include this for q.

nq however is somewhat different. Since this is the negation of q, we can say that
for it to rise, r must be high, and for it to fall, s must be high. The behaviours of nq
are the same as with q, just with r and s swapped, thus we can reuse srHalfLatch

and simply swap the two input signals. So far, the concept can be defined as follows:

srLatch s r q nq = srHalfLatch s r q <> srHalfLatch r s nq

Due to the use of srHalfLatch we include the never concept stating that s and r

can never be high at the same time, and the concepts we used to state the timings that
either input signal will only transition low after the output has changed, we also need
to ensure that the initial state does not violate the invariant as explained in the never

concept. We do this by forcing the initial states of signals q and nq to be 0 and 1

respectively.
srLatch s r q nq = srHalfLatch s r q <> srHalfLatch r s nq

<> initialise0 [q] <> initialise1 [nq]

Again this is not ideal, as it is entirely possible for a latch to have an initial state with
q and nq as 1 and 0 respectively, but we need to impose this as these signals need to

72

have differing initial states. Again, further improvements and research can be applied to
concepts to allow these signals to have any initial states, providing they are different.

We can now synthesize a specification using srLatch, providing the environment
restrictions are made. The resulting circuit can be found in Figure 3.37. This concept
can now be used as any other concept is, composing it with other concepts or applying
transformations to it.

Figure 3.37: Synthesized set-reset latch circuit

3.5 Abstract concepts

Abstract Concepts are the base level of concepts that we use as building blocks for
developing domain specific concepts, such as those related to asynchronous circuits
(Section 3.1).

The alphabet of abstract concepts is the same as with that of circuit-specific con-
cepts, a set of signals. These signals can have either a high polarity, 1, or low polarity,
0. This means there are a finite set of states in such a system, containing every possible
combination of high and low polarities for each signal. While not all states may be
reachable, the maximum number of states therefore is 2n, where n is the number of
signals.

The global state of a system can be determined at any point, using the polarities
of all signals at that point. This provides an encoding, using 1 or 0 for each signal
which can be used to identify each state. The current state of a system can be used to
determine whether certain events are enabled or excited. An event in a system is the
transition of a signal.

With this information, we can describe the basic concepts that make up abstract
concepts, with the parameters of finite sets of states S and events E.

73

Initial state concept

The initial state concept captures all possible (or permitted) initial states of the system.
In the most general form it is a function

initial : S→ B

that given a state s ∈ S returns 1 if s is an initial state and 0 otherwise. In practice
this concept is often realised as a membership test of a set of initial states I ⊆ S,
i.e. initial(s) = s ∈ I. However, we prefer the functional form because it is more
abstract and permits other, often more efficient realisations. Note that 0 and 1 have
natural interpretations as initial concepts: they correspond to systems with no initial
states, and systems where any state can be initial, respectively. Initial state concepts form
a commutative monoid with the identity element 1 and the composition operation ∧.

Using the example of a 2-input AND gate circuit, if the initial state of this is set as
000, identifying that all signals are initially low, then passing this into the initial function
will return:

initial(000) = 1

indicating that this is the initial state. However, if some transitions have occurred in the
system, and the current state is 110, then

initial(110) = 0

indicating that this state is not initial.

Intuitively, if a system comprises two subsystems then its initial state should satisfy
constraints imposed by both subsystems, hence the conjunction operator ∧. For example,
suppose we compose two subsystems, both of which feature a signal, a. If in subsystem
one, we set the initial state for a as 0, then in the second subsystem, a must either not
have its initial state set, or must must also be set at 0 to satisfy the specifications for
both subsystems. Setting the initial state for this signal to 1 in one of the subsystems
and 0 in the other means the initial states are inconsistent, and neither specification can
be satisfied until the same initial state is agreed upon for both specifications. If only one
subsystem sets the initial state of a, then this state will apply to both subsystems after
composition.

74

Excitation concept

The event excitation concept captures all states wherein a given event can occur (or is
excited). This is useful to determine causalities, determining whether a cause event (or
events) has occurred, which will enable an effect transition.

In the most general form it is a function

excited : E× S→ B

that given an event e ∈ E and a state s ∈ S checks whether e is excited in s.
With the 2-input AND gate example, if we are checking whether the output signal,

z, can transition high, we can pass this, and the current state of the system into the
excited function. If the current state is 011:

excited(z+, 011) = 0

indicating that the z+ transition is not enabled in this state, which is expected as for the
output to transition high, it must first be low, and both inputs must be high. If we use
this function with the state 110:

excited(z+, 110) = 1

Now the z+ transition is enabled.
In practice this concept is often realised using interpreted graph models such as

Finite State Machines, state graphs, Petri Nets [19], STGs, Conditional Partial Order
Graphs [37], and others. A partial application of the excitation function is often useful:
excited(e) captures all states where event e is excited; for example, if excited(e) = 0

then e is never excited or dead.
Event excitation concepts also form a commutative monoid with e = 1 and � = ∧.

This definition corresponds to the parallel composition operation, a standard notion for
many behavioural models [38].

Invariant concept

Some states may be impossible or undesirable during the normal system operation. To
express this we use the invariant concept, which captures all correct or permitted states
of the system. A typical use case for invariant concepts is to specify assertions or
assumptions about the system state space, that may by verified via model checking

75

and/or used for optimising the implementation. In the most general form an invariant
concept is a function

invariant : S→ B

that given a state s ∈ S returns 1 if s is permitted by the invariant and 0 otherwise. Note
that if for some state s the initial concept initial(s) holds but the invariant invariant(s)

does not hold, then the specification is contradictory and cannot be satisfied by any
implementation. We therefore assume that initial(s)⇒ invariant(s) holds for all s ∈ S.

Using the AND-gate example once again, there may be an environment constraint
stating that one of the input signals, a, must not be low when the other signal b is
high, leading to a system where a must transition high before b, and b must transition
low before a. This behaviour can be captured by a concept, and using the invariant

function, we can determine which states are permitted. The state of 100 for example,
when passed into this function:

invariant(100) = 1

which indicates that a state where a is high, and b is low is permitted by the invariant.
With the state of 011:

invariant(011) = 0

This state is not permitted by the invariant, and thus, should not be reachable.

Invariant concepts also form a commutative monoid with e = 1 and � = ∧. Intu-
itively, if a system comprises two subsystems then its states should be permitted in both
of the subsystems.

Silent concept

One can derive other useful concepts from the three concepts described above, for
instance,

silent(e, s) = excited(e, s)

captures all states s ∈ S when a given event e ∈ E cannot occur. Furthermore, one can
define other useful concepts that cannot be derived from the above, e.g., the execution

concept capturing the effects that different events have on the system state.

76

Concept composition

All the above concepts are monoids, hence their combinations are trivially monoids too.
It is convenient to consider triples of concepts (initial, excited, invariant) with (1, 1, 1)

representing the empty specification, and composition

(initial1, excited1, invariant1) � (initial2, excited2, invariant2)

defined as

(initial1 � initial2, excited1 � excited2, invariant1 � invariant2)

.

Note that the result of the composition of two non-contradictory specifications is al-
ways non-contradictory, that is if both initial1(s) ⇒ invariant1(s) and initial2(s) ⇒

invariant2(s) hold for all states s ∈ S, then initial1(s) � initial2(s) ⇒ invariant1(s) �

invariant2(s) holds too.

The process of composing concepts is the same as finding the Synchronous Product,
or Parallel composition, of two of the same modelling formalism, such as Petri nets [38].
Both concept composition and the synchronous product. Initial and invariant states
compose as expected, ensuring that these states are satisfied in the result as well as in
the original models. In the event that there is an effect transitions with different cause
transitions in each of the original models, then the synchronous product of these will
require that all of the cause transitions occur before the common effect transition can
occur. This is the same as concept composition.

3.6 Summary

This chapter has discussed the library of Asynchronous Concepts specifically for asyn-
chronous circuits, showing the derivation of each concept, and the reusability inherent
in the language. This library includes many standard signal interactions, logic gates and
protocols that asynchronous circuits feature.

From this library, we have derived some generalisations which provide concepts that
enable the specification of logic gates with any number of inputs. This avoids the need
to derive a concept for a gate of every size a user may desire.

High-level concepts have been discussed, which allows reuse of existing circuits, using
the Boolean expressions used to synthesize these. These concepts can be used in-line

77

with any other concept, to allow easier specification of a system, instead of manually
specifying this existing circuit once again.

The library also includes several transformations, which serve to provide a wider range
of gates from the derived gates in the library, without the need to derive a separate
concept for each individual version of a gate. Bubble transformations can be used so
that the concept for any gate-level concept can be used when any of inputs or outputs of
this gate needs to be inverted, and this can also apply to any signal-level or protocol-level
concept.

The dual transformation can also produce a wide range of gates from specifications
using the library of circuit-specific concepts. This can be useful for different asynchronous
circuit types, such as dual-rail, where the dual can be applied to an entire specification,
providing the dual-rail for such a circuit automatically.

Enable is a transformation that can turn any concept, at any level, or any concept
specification into a system which features an enable signal, requiring that a signal be
in a specified state in order to allow the system to change state. This again provides a
wider range of uses for the circuit-specific library discussed in Section 3.1.

Using the interesting example of a set-reset latch, we use some of the discussed
concepts to derive a concept for this gate. The information from this chapter can now
be used in the explanation of the design flow using concepts. The concepts discussed
will be used and built-upon to explain further contributions of this thesis.

Finally, this chapter discussed abstract concepts in Section 3.5. This is a form of
concepts on which other concepts, including the circuit-specific concepts, can be built.
This is aimed at providing a base on which many other types of Asynchronous Concepts
can be built, aimed at other types of asynchronous circuit, such as mixed signal circuits,
or large-digital data based asynchronous circuits.

78

Chapter 4

Asynchronous Concepts design flow

With the circuit-specific concepts derived, and information on high-order functions for
these concepts, we can now discuss the method of designing an asynchronous circuit.
This chapter covers the usage of Asynchronous Concepts when designing an asyn-
chronous circuit, which is performed in a few steps.

• The design flow may begin with a description of the system behaviours, and from
this, finding appropriate concepts to capture these behaviours. We discuss this in
Section 4.1.

• The design could include existing circuits for which we know the set and reset
functions, which we can use in-line with other concepts following a transformation
pattern presented in Section 3.3.1. Alternatively we can generate an entire concept
specification from these functions, which we will discuss in Section 4.2.

• If we are to include a circuit for which the set and reset functions are not known,
we can instead generate concepts for these through process mining. This finds
patterns of concurrency in the simulation traces for a circuit, which can be used
to generate concepts. This technique is explained in Section 4.3.

• Following this, a designer will have generated multiple concepts. These will be
used to generate a specification for the circuit, some of these may be used more
than once within this specification and in future specifications. These may be
stored in user libraries, which can be imported into concept specifications for an
overall design, and we will outline this in Section 4.4.

• When a user has completed a specification, for it to then be used in further
operations, it must be compiled, ensuring that the concepts are sound, and then

79

translated to a form usable by existing verification and synthesis tools. This step
is discussed in Section 4.5.

• If the system behaviour is described by more than one specification they can be
combined using templates introduced in Section 4.6.

• When a full specification has been produced for the circuit, it then needs to be veri-
fied. This process ensures the specification satisfies certain properties which means
it can produce an implementation. These properties are discussed in Section 4.7.

• Finally, when the specification is verified, we then use this to find an implementa-
tion through synthesis, as discussed in Section 4.8.

4.1 Design approach

When preparing a design, a description of how the system should operate may be given,
in lieu of having any previous versions to base the design on. For example this could be
a description of how the signals interact, in both the circuit and the environment. From
this, the concepts are then derived using signal-level concepts to describe the individual
interactions, or gate-level and protocol-level concepts if there are appropriate behavioural
patterns. There is no requirements on the concepts used, it is down to preference and
the experience of each designer.

We present a simple example to indicate how we find a design, from the description
of the interaction between the circuit and its environment. The description of this is as
follows:

The circuit contains three signals, two inputs and one out-

put. The output is set high when both inputs are low, and

the output is set low when both inputs are high. The inputs

become high when the output is high, and they become low

when the output is low. The inputs are initially low and

the output is initially high.

From this description, we can immediately define the interface and initial states for this
circuit. For this, we will use a and b to represent the inputs signals and z for the output.

interface = inputs [a, b] <> outputs [z]

initState = initialise0 [a, b] <> initialise1 [z]

80

Now we begin to describe the operations. Beginning with what causes the output to
rise, both inputs must be low. In signal-level concepts this can be described as:

outRise = [a-,b-] ~&~> z+

The concept to describe what causes the output to fall is similar to this:

outFall = [a+,b+] ~&~> z-

There are also operations which cause the inputs to change, describing the environment.
While the operations of the environment are not directly synthesized, it is important to
model them, so simulations and formal verification will ensure the entire circuit works
as expected. We define the environment concept as follows:

environment = z+~> a+ <> z-~> a- <> z+~> b+ <> z-~> b-

We now have the full specification, which is defined as follows:

example20 = outRise <> outFall <> environment <> interface <> initState

where

outRise = [a-,b-] ~&~> z+
outFall = [a+,b+] ~&~> z-
environment = z+~> a+ <> z-~> a- <> z+~> b+ <> z-~> b-
interface = inputs [a, b] <> outputs [z]

initState = initialise0 [a, b] <> initialise1 [z]

This concept specification is complete, and adequately specifies the circuit as described
above. It can now be translated to an STG for simulation, verification and synthesis, or
it can be stored in a user concept library. However, this is just one way of representing
this circuit with concepts, and it may be represent it more easily using concepts from
the provided circuit specific library.

If we take the operations which cause the output signal to rise and fall, we can
simplify this. The description states

“The output is set high when both inputs are low, and the

output is set low when both inputs are high.”
This means that for the output to transition, both inputs must have transitioned. This
operation is the same as a C-element, however, the output transitions the opposite way
to both inputs, indicating that the output of the C-element is inverted. The outRise

and outFall concepts can be replaced by:

81

gate = bubble z (cElement a b z)

Then environment concept as described above is also quite long, itself composed of
four signal-level concepts. Instead, if we look at the concepts for this, it may be noted
that the input signals follow the transitions of the output signal. This is like the buffer
concept, where the input, z in this case, causes the output, a and b, to transition in the
same way. The environment concept can be redefined as:

environment = buffer z a <> buffer z b

The final concept specification with these simplifications is as follows:

example20 = gate <> environment <> interface <> initState

where

gate = bubble z (cElement a b z)

environment = buffer z a <> buffer z b

interface = inputs [a, b] <> outputs [z]

initState = initialise0 [a, b] <> initialise1 [z]

These two concept specifications are equivalent as seen by substituting the definitions
of bubble, cElement and buffer. The decision of which concepts to use is based on
the preference of each user. Either of these concept specifications can be translated to
produce the same STG, as seen in Figure 4.1.

Figure 4.1: Translated STG of example20

The synthesis of this STG will lead to the circuit as viewed in Figure 4.2. This features a
C-element with an inverted output, and buffers from the output to each of the input sig-
nals, as described in the concept specification. In this example, the behaviours described
using the gate-level cElement and buffer concepts can be directly implemented. Each
of the separate concepts which are defined to produce this concept can be seen in this
circuit.

82

Interface
concept

output

input

Circuit
concept

Initial state
concept

z=1

a=0

b=0

Environment
concept

System
concept

input

Figure 4.2: Synthesized circuit of example20

4.2 Generating concepts from set and reset functions

If the set and reset function of a circuit to be included in a design is known, then rather
than manually derive the concept specification for this, the set and reset functions can be
used, which saves time. In Section 3.3.1 we discussed the function and complexGate

concepts which take in these Boolean functions and are used in-line with other circuit-
specific concepts.

In some cases however, it may be necessary to view the concepts which the given
set and reset functions generate. This may be for example required in order to use a
certain part of it, to make minor changes manually, or to add further functionality to the
specification. As such, we can generate a concept specification from these functions.

As an example for this section, we have an AND-OR gate, which features four inputs,
a, b, c and d, the single output is z. The set function for this gate is: (a∧ b)∨ (c∧ d).
It is not required that a reset function be provided. In this event it can be assumed that
the reset function is the negation of the set function, in this case: (a ∧ b) ∨ (c ∧ d).

Passing the function to Plato, the output will be a full concept specification. The
concept specification generated from providing the function for the AND-OR gate is as
follows:

example21 = outRise <> outFall <> interface <> initState

where

outRise = [a+, c+]~|~> z+ <> [a+, d+]~|~> z+
<> [b+, c+]~|~> z+ <> [b+, d+]~|~> z+

outFall = [a-, b-]~|~> z- <> [c-, d-]~|~> z-
interface = inputs [a, b, c, d] <> outputs [z]

initState = initialise0 [a, b, c, d, z]

This specification may be used in this form, or a user can edit some of its operations,

83

such as by applying a transformation to it. It may even be a requirement of the circuit
that, for example, it operates exactly the same, except a+ and c+ both having occurred
does not cause z+. It may have been noted that its operation is very similar to the
AND-OR gate, so it was ideal to start with it as a base, and edit the functionality as
appropriate.

This concept specification is translatable, and therefore may be verified and synthe-
sized for an implementation as seen in Figure 4.3.

Figure 4.3: Synthesized circuit from example21

4.3 Process mining for Asynchronous Concepts

In the event that we do wish to include a circuit, but the set and reset functions are not
known, it is also possible to generate a concept specification through process mining, or
specification mining [39]. This takes a list of traces from simulations of the circuit, with
multiple different orders of signal transitions, which form an event log. Mining these will
extract concurrency and find behaviours in the circuit, which can then be captured using
concepts.

For process mining, we developed a tool known as PGminer [22][23]. This takes
in event logs, and automatically outputs Boolean functions, which as we know from
Section 4.2, can be used to generate a concept specification automatically.

As an example, we have a system with two input signals, a and b, and one output
signal z. We do not know what the set and reset functions of the circuit are. Instead,
we simulate the circuit, recording all signal transitions. After some simulations, the
following event log is produced:

84

a+ b+ z+

b+ a+ z+

a− b− z−

b− a− z−

a− z−

b− z−

Each line of this event log is its own trace, produced by a separate simulation. These
traces have been split into what caused the output to transition high, and transition low.
We separate these in order to determine separate causes.

The event log is now be passed into PGminer, which will extract concurrency and
produce Boolean functions. These functions are, for each transition of the output, the
combinations of concurrent events which are required for the given output transition.
The given functions for this event log are:

z+ : a ∧ b

z− : (a ∧ b) ∨ a ∨ b

For z+, the traces have been mined, discovering that a+ and b+ are concurrent, as
in one trace, a+ occurs first, and in the other b+ occurs first. However, z+ only occurs
after both a+ and b+, so the function requires that a+ AND b+ have occurred.

With z- we have a few more traces. In two traces, both a- and b- occur, in either
order, so this is included in the function as (a∧ b). However, in two other traces, either
a- occurs only, or b-. In these cases, the function ORs these requirements with the
previous function, providing us with the full Boolean function.

With these functions, we can now use the method from Section 4.2 to generate
concepts. This will simplify the functions, which causes no change for the z+ function,
but for z- will produce a∨ b. The concept specification generated from this will therefore
be:

example22 = outRise <> outFall <> interface <> initState

where

outRise = [a+, b+]~&~> z+
outFall = [a-, b-]~|~> z-
interface = inputs [a, b, c, d] <> outputs [z]

initState = initialise0 [a, b, c, d, z]

85

The gate used in this example is an AND gate, and the behaviours specified in the
generate concept specification reflects this.

4.4 User generated libraries of concepts

Throughout the design process when using Asynchronous Concepts, a user may
have generated several of their own concepts, which are used multiple times, or may
have use for future specifications. It is possible to simply copy-and-paste these concepts,
to use them as part of other compositions, but this leads to long specifications which
are difficult to comprehend.

To combat this, a user can create their own concept library. This stores some useful
and important concepts which a user chooses, and make the references to them simpler,
and the concept specifications they are writing clearer, and less repetitive. The library
can be imported during translations, and use other concepts libraries, including the
circuit-specific concept library included with Plato.

For example, if a user frequently uses several gates not included in the provided
library throughout their specifications, such as a NAND gate, rather than specify the
NAND gate as

bubble z (andGate a b z)

each time, then a user library could derive a NAND gate concept.

nandGate a b z = bubble z (andGate a b z)

nandGate can then be used instead of the larger concept with the resulting concept
being the same.

This feature allows a user to specify a concept which is complex only once, but use
it many times. It allows a user to define their own gates and protocols which are useful
for their designs, and not need to specify it each time. This promotes reuse, and reduces
complexity in specifications.

A user library must include a module name. This is used as a reference when import-
ing the chosen libraries. The module should be something which describes the concepts
contained within, for example, if we created a library for inverted output gates, con-
taining a NAND concept, NOR concept, inverted output C-element concept and so on,
we could name this InvertedGates, and it could contain the concepts as shown in
Figure 4.4

86

module InvertedGates where

import CircuitConcepts

nandGate a b z = bubble z (andGate a b z)

nandGateN inputs output = bubble z (andGateN inputs output)

norGate a b z = bubble z (orGate a b z)

norGateN inputs output = bubble z (orGateN inputs output)

nCElement a b z = bubble z (cElement a b z)

nCElementN inputs output = bubble z (cElementN inputs output)

Figure 4.4: InvertedGates user concept file, with reusable concepts

4.5 Asynchronous Concept translation

At this stage in the design flow, we will have a complete concept specification. This may
be generated from different levels of Asynchronous Concepts from the circuit-specific
library, while using concepts generated from the set and reset functions of an existing
circuit, and importing concepts generated from process mining an existing circuit, all of
which is used in conjunction with several concepts which a user has derived and stored
in their own library.

For example, if we have the concept specification as found in Figure 4.5, we have
used a nandGate concept as defined in the user generated library from Figure 4.4, the
InvertedGates library, which has been imported. We also use signal-level initialise
and interface concepts form the standard CircuitConcepts library included with
Plato.

A concept specification cannot be used as is in any form. Concepts cannot currently
be used directly for verification, to ensure that they satisfy the properties necessary for
an asynchronous implementation, nor can a concept specification be used directly in
synthesis, to produce an implementation which may be used to build a physical version
of the circuit.

Concepts are in their infancy, and providing tools which verify and synthesize concepts
is a time consuming process, and one which needs further research and development in
order to produce. Instead, we provide a method of translating concepts to an equivalent

87

module Example23 where

import InvertedGates

import CircuitConcepts

example23 a b z = nandGate a b z <> interface <> initState

where

interface = inputs [a, b] <> outputs [z]

initState = initialise0 [a, b] <> inintialise1 [c]

Figure 4.5: A concept specification ready for translation

specification in an existing formal specification method, namely Signal Transition Graphs
(STGs) and state graphs.

State graphs, a form of FSMs, provide a very low-level description of a system, as
discussed in Section 2.1. This may be key to aid in the understanding of an asynchronous
circuit for a designer, and thus a designer can translate a concept specification to a state
graph, to view and simulate the system, making any changes they deem necessary to
the concepts.

STGs provide a higher-level visualisation of a system and as discussed in Chapter 2,
are much better at visualising the concurrency which is often a larger factor of asyn-
chronous circuits. There are also several tools which automatically verify and synthesise
STGs. These tools have a long history of research and development, and so are tried
and tested in the field of asynchronous circuits, and are featured in several design flows
and software suites. Translating a concept specification to an STG therefore means
that a concept specification can be automatically verified and synthesize, removing the
immediate need for tools specifically for concepts.

example23 from Figure 4.5 will be translated into an equivalent state graph or STG,
as seen in Figure 4.6.

It is not necessary that a designer first visualise the STG translated from a concept
specification before they continue to verify and synthesize the system. A translated STG
may be immediately passed to a tool which will perform these operations.

Translation is a key feature of Plato and will be discussed in Section 5.1. The
operation is to call Plato, passing the file containing the target concept specification, as
well as any of the files from which concepts are imported.

88

(a) Translated STG of a NAND gate, from example23

(b) Translated state graph of a NAND gate, from example23

Figure 4.6: STG and state graph translations of example23

4.6 Combining concept specifications

Some systems may be made up of multiple different concept specifications, each of which
is a separate scenario which performs its own operation and has its own intricacies. In this
case it may be beneficial to specify, translate, simulate and verify each scenario separately,
resulting in an STG for each specification. Once all of these have been determined to
be sound, these scenarios need to be combined for the full system specification.

With the STGs translated from concept specifications, we can combine specifications
according to a few templates which state how these scenarios interact, when they run,
and what determines which one is running at any time. These combinations must be
performed at the STG level currently. Performing combinations at the concept level

89

is a challenge for future research, and may be performed with the help of Process

Windows [40].

4.6.1 Sequential template

Sequential combination is where an order is chosen for two or more scenarios, each
running one after the other. This is, for example, useful for start-up scenarios, which
initialise a system. This should be used for when there is a clear order for the specified
scenarios to be run in. A token enters the first scenario, and is passed through its
operations, and when this is complete, the token is passed directly into the next scenario.

This involves adding a place at the start of the first scenario, which will pass a token
into this scenario when it runs. Between this scenario and the second, another place will
be added to receive the token from the first scenario, and pass it into the second. A
place will need to be added between each sequential scenario in this way. A place will
also need to be included at the end of the final sequential scenario. This will take the
token from the final scenario, signalling the end, but can also be used to handle tokens
which should be passed to other scenarios combined with any other templates.

Scenario 1 Scenario 2... ...

Figure 4.7: Example of sequential combination

4.6.2 Concurrent template

Concurrent combination allows scenarios to run at the same time as each other, both
being able to begin at the same time, but for the system to move on, all of the concurrent
scenarios must complete. For example, a circuit may feature two separate paths of logic,
and when an input signal transitions, both of these paths will propagate this transition,
but only when this has propagated through both will this cause a change to an output
signal.

It may be necessary to limit how many of these scenarios run concurrently, by allowing
only a certain number of tokens, one of which will be used by each scenario. This acts
like a large interpretation of the fork and join concepts as explained in Section 2.3.

Each scenario will be provided with an input place, which receives the token from a
fork. This token will then be passed through the scenario, and following completion, an
output place will be added which will hold the token from this scenario until the join,

90

which connects all of the concurrent scenarios, is enabled. When this fires, the token
from each of these output places, one from each concurrent scenario, will be consumed.

Scenario 1A

... ...
Scenario 1B

Fork Join

Figure 4.8: Example of concurrent combination

4.6.3 Choice template

Scenarios which are combined using the choice template are determined to only allow
one to be active at a time, but there is a choice based on other knowledge about which
scenario will run next. This is a larger scale choice and merge construct as discussed
in Section 2.3. For example, if a mutual exclusion element (meElement) is used in a
circuit, when both requests, r1 and r2, arrive close to each other, a choice must be made
about which grant signal, g1 or g2 must be set high, as due to the mutual exclusion,
only one of these signals can be high at a time. When the choice is made, the circuit
will continue to operate, and then merge, setting the first grant signal low once again
in order to allow the second grant signal to be set high.

A choice place is used before all of the combined scenarios in this template, that
connects to each of the first transitions in each scenario. This choice place contains
a single token, which is passed into whichever scenario is chosen, blocking any other
scenario from starting. When the running scenario is complete, the token is placed into
a merge place which is connected to from all of the final transitions of each combined
scenario. This token is then passed on for further operations in the system, or if the
system contains only scenarios included in the choice, the choice and merge places may
be one and the same.

The choice and merge places are used instead of providing a place at the beginning
and end of each scenario, as with the sequential and concurrent combination templates.
This ensures that only one of the choice scenarios can run at one time. The first element
of each scenario in this case will be a transition, and only one transition will be able to
fire, consuming the single token in the choice place.

91

Scenario A

... ...
Scenario B

Choice Merge

Figure 4.9: Example of a choice combination

4.6.4 Complex combinations

It is often the case that scenarios in a system will not only interact through one of these
methods. It is possible to combine a specification of previously combined scenarios with
another scenario or scenarios using another of these templates.

For example, if a system features a start-up scenario, and several other scenarios only
one of which is run at a time, then these can be combined using the choice template,
then a sequential combination can take place, with the start-up scenario as the first
scenario in the template, and the previously combined set of scenarios as the second.

This provides multiple combination possibilities, accounting for scenarios running in
multiple orders, and the combinations could be performed automatically, reducing the
chance of error during this step [41].

The positioning of places included in each template ensures that each set of scenarios
when combined can then be included in a combination template with other scenarios, or
previously combined scenarios.

4.7 Verification

Before an implementation is found through synthesis, a specification needs to satisfy
certain properties which determine whether it is implementable. These properties include:

• Signal consistency: in any trace the rising and falling transitions of each signal
alternate.

• Deadlock freedom: no state is reachable from which no progress can be made.

• Complete State Coding (CSC): each state of the model with different behaviour
has differing signal encodings to avoid problems during synthesis. Note that if the
conflict is not irreducible, then it may be resolved automatically [42].

92

• Output persistence: No output signal can be disabled by any other signal transi-
tioning.

Custom properties may also be checked, and in the event that a never concept is used
in a specification, following the translation, we perform an automatic custom verification
to check whether the states indicated in the never concept are unreachable.

As an example, we have a concept specification as follows:
example24 a b z = buffer a z <> buffer b z

<> z+~> a+ <> z+~> b+
<> inputs [a, b] <> outputs [z]

<> initialise0 [a, b, z]

This is similar to a C-element, with buffers from the input signals, a and b to output
signal z. Also included however is two environment concepts, which state that the
output must be high for both inputs to go high. The translated STG of this concept
specification is found in Figure 4.10.

Figure 4.10: example24 translated to an STG

Note the read-arcs between a+ and z1, and b+ and z1. These require that z have
transitioned high for a+ and b+ to occur. However, the read-arcs between a1 and z+,
and b1 and z+ require that both inputs are high for the output to transition high.

This poses a problem. z+ will only occur if a+ and b+ have occurred, but a+ and b+

will only occur if z+ has occurred. Thus, this means that when the system has initialised,
there are no possible transitions that can occur. This is a deadlock, and is one of the key
properties that is verified, as a circuit will not be synthesized if there is no transitions
that can occur. This is just one example of how an STG is verified.
There are several tools which perform the verification of STGs automatically and these
tools will be discussed in further detail in Section 5.2.3.

93

4.8 Synthesis

Once a specification has been verified, the final step is to synthesize the specification.
This process finds set and reset Boolean functions which describe the polarity and com-
bination of signals which are needed to set the outputs high and low.

These functions can then be used in a number of synthesis methods. The most
practically useful method of synthesis is Technology Mapping. This involves using a
gate-library, containing a list of gates and the Boolean functions for these gates. The
set and reset functions determined from an STG for synthesis will be mapped against
the functions for the gates in the library, finding one or more gates which represent the
determined functions.

Technology mapping is important in practice as a library can be provided which
contains only the gates that are available in the type of logic being used, which can
differ based on the technology processes used to create the set of gates. In the event
that technology mapping cannot provide an implementation, the specification can be
changed to ensure that only the gates in the library are used.

Synthesis is also often aimed at producing a speed-independent (SI) implementa-
tion. Speed-independence is a type of asynchronous circuit which will operate correctly
regardless of any delays in the logic gates. This class of circuit ensures that an imple-
mentation will continue to work if the associated delays change at all, such as will occur
with differences in power, and devices made using a different process technology [43].

If we have the STG for a 2-input AND gate (Figure 3.18), and we synthesize this, we
will be provided with the set function of: a ∧ b. This is mapped against a gate library,
which features an AND2 gate and has the registered function of a ∧ b. The function
is therefore mapped onto an AND2 gate, and the digital circuit would be as seen in
Figure 4.11.

Figure 4.11: Technology mapped AND gate

We can synthesize without mapping, but this can lead to a digital circuit featuring logic
gates which have multiple layers and do not exist in conventional libraries. Thus, the

94

circuit will need decomposing in order to find multiple gates which are mappable, a
process which is not always possible.

Figure 4.12 contains such a circuit. This is a gate, comprised of several separate
gates, the outputs of which lead into the inputs of a gate in the next layer, but is not a
standard gate in and of itself, and thus cannot be technology mapped.

Figure 4.12: A circuit synthesized without technology mapping

Synthesis is also performed automatically by the same tools which perform verification
automatically, which will be discussed in Section 5.2.3. Tools such as these will also
perform some verification before attempting to synthesize, in order to avoid producing
an implementation for a specification which is incorrect. Instead, an error will be given
to the user, identifying the problem with the specification.

The implementation can then be built in the real-world, which will then be subject
to further testing, to ensure that for its application, it functions as expected. This
is necessary as the design process may not account for some circumstances which the
circuit will come under when in use in the real-world.

4.9 Summary

We have introduced the design flow using Asynchronous Concepts in this chapter. This
can begin from an informal description of the system to be specified, or it can begin with
the Boolean set and reset functions used to identify the operation of an existing circuit,
which can be used to find a concept specification. It may also begin with a system
that only the inputs and output signals are known, and through simulation then process
mining, a concept specification can be determined. Any of these methods can be used
in conjunction with any other, if, for example, a system uses existing circuits with or
without known set and reset functions, with some new operations, described informally.

Any concepts which are used multiple times throughout a specification, or specify
behaviours which may be useful in future designs, can be stored in a user-generated

95

concept library. This can be imported to a concept specification, and the necessary
concepts simply used as any other concept, passing in the involved signals, and composed
with other concepts.

Asynchronous Concepts cannot currently be directly simulated, verified or synthe-
sized, and as such, must be translated to another form which can be used in these
processes. Part of the design flow is compiling a concept specification, which identifies
errors in the concepts, and when error-free, translates them to an existing modelling
method, either STGs or state graphs. Each of these have their benefits, but STGs are
the primary translation target, as these have a wealth of tools for simulation, verification
and synthesis.

The concept specification may consist of multiple separate specifications, each of
which specify a different mode or scenario, for example. In this event, the specifications
need to be combined, which after translation they can using certain templates. These
templates can combine STGs in certain ways, depending on how these scenarios interact.

After reaching a full specification, this must be checked to ensure it functions as
required, and satisfies certain properties. Simulation can be performed on a translated
STG or state graph, which allows a user to ensure that only the expected transitions can
occur. STGs can be verified, ensuring that it can be used to derive an implementation.

STGs determined to be sound through simulation and verification can then be syn-
thesized to find an implementation. This process finds Boolean functions which cause
an output signal to be set (rise) or reset (fall). These functions are then used to find a
set of logic gates which can produce the output signals from the input signals.

96

Chapter 5

Automation of the design flow

In previous chapters, we have introduced Asynchronous Concepts, and the associated
design flow. Many of the processes which have been discussed may be done manually,
but this is a time consuming process and is subject to human error, which adds further
time to the design process. There are however several software tools designed to perform
these operations automatically, which thus decrease the design time of a system.

In this chapter, we discuss several electronic design automation (EDA) tools. Some
of these have been introduced recently, and provide uses specifically for Asynchronous
Concepts, and as such, we will discuss the algorithms designed for these tools. Oth-
ers tools were introduced previously, but their functionality is used in conjunction with
concepts, and we will explain how they have been adapted for concepts and the design
flow.

Plato, discussed in Section 5.1, is a software tool specifically for Asynchronous Con-
cepts, and has multiple features. It contains a circuit-specific concept library, and auto-
matically compile concept files, which identifies errors with syntax and concepts in the
file. These are then translated to other modelling formalisms, and the algorithms will
be introduced and explained. It can also be used to generate concepts from Boolean
functions, which will also be discussed.

PGminer is a tool designed for the purpose of process mining, mining event logs of
any system and producing Boolean functions. This tool can be adapted to work with
simulation traces from existing systems, and we will discuss the tool and its integration
with the design flow and Workcraft in Section 5.2.2.

97

Concept
Specification

Boolean Functions

Digital circuit
with unknown

implementation

Event log
containing

simulation traces
of circuit

Circuit
implementation

Signal Transition
Graph

State graph

Verification
report

Translate to
STG

Translate to
State Graph

Compile
concepts

Visualise,
edit and

simulate STG

Visualise, edit
and simulate
state graph

Visualise and
simulate

digital circuit

Convert Boolean
functions to

concept
specification

Plato

Workcraft

Generate
Boolean

functions from
event log

PGminer

Verify
STG

Synthesize
STG

MPSat

Synthesize
STG

Petrify

Figure 5.1: A diagram showing the interoperability of the software tools.

98

There are several tools which all work together but are not necessarily designed to
work with each other, which means that there are some difficulties when using the results
from one tool as the inputs to another. A method to combat this comes in the form
of Workcraft. This software suite uses many tools as a backend, including Plato, and
displays the results visually, and automatically pass these results into other tools. This
creates a more user-friendly design environment, and we will discuss how these tools are
integrated in Workcraft in Section 5.2.

Several tools exist which verify and synthesize STGs, and we use these for the STGs
which are translated from concept specifications. These tools are commonly used for the
STG design flow, and are used as part of the Asynchronous Concepts design flow. We
will explain how they are used with concepts, and from within Workcraft in Section 5.2.3.

Figure 5.1 is a diagram of how the tools discussed in this chapter interoperate, to
automate the design flow. It features the tools, and the features used in the design
flow, as well as the intermediate data types which are used to communicate between the
software.

As discussed in Section 2.7, the syntax of Haskell does not allow for signal transitions
in Asynchronous Concepts to be stated in the form a+ and a-. For clarity we have
continued to use this form however in previous chapters. From this point on, as we will
be using examples for tools which use Asynchronous Concepts, we will begin to use rise
and fall for signal transitions in concept specifications. Signal transitions such as a+
and a- will now be replaced by rise a and fall a.

Throughout this chapter, we will use a single example to show how the tools in
question work, and in some cases using this example to show how an algorithm works.
First we must provide a concept specification for this example. This example is of a
2-input NOR gate, which is enabled by a third input signal. The specification is found
in Figure 5.2.

example25 a b e z = behaviour <> initState <> interface

where

behaviour = enable (rise e) z (bubble z (orGate a b z))

initState = initialise0 [a, b, e] <> initialise1 [z]

interface = inputs [a, b, e] <> outputs [z]

Figure 5.2: 3-input NOR gate concept specification file

99

This file includes more than just the concept specification, so we will discuss this. The
actual concept specification, example25, will be compiled when passed to Plato. It
features 4 signals, a, b, e, and z. This concept specification is composed of three
concepts, behaviour, initState and interface.

Following this and the where are some local concept declarations. These concepts
can only be used within this function, example25. The three concepts which are com-
posed for this specification are declared here. initState and interface are named for
their purpose, to declare the initial states and the interface of the signals respectively.

behaviour is the most important concept here. This is what describes the operation
of the circuit. Note, that we have not imported the derived NOR-gate concept from
Figure 4.4. This example describes the circuit using this manner in order to better
indicate how the tools described in this chapter operate.

5.1 Plato

Plato [16] was introduced in [15] as an implementation of the domain-specific language
of Asynchronous Concepts, written in the functional programming language Haskell. Its
main function is to take a concept specification, importing all associated concepts, and
compiling this. This notion of compiling a specification comes from the idea that STGs
and state graphs are the assembly language of asynchronous circuits, and Plato compiles
the higher-level language of concepts to produce lower-level STGs and state graphs.

The compilation takes place at the beginning of the translation process, where a
concept specification is used to generate an equivalent STG or state graph. This uses
the Glasgow Haskell Compiler (GHC) to perform this, as the domain-specific language of
concepts is implemented in Haskell, and as such, a file containing a concept specification
is in itself a file which features Haskell code, and uses the same syntax (Section 2.7).

Plato also has the feature of generating concepts from Boolean set and reset func-
tions, similar to the function and complexGate concepts. Rather than using the
concepts generated as part of a concept specification however, Plato will generate a
separate concept specification consisting of the concepts generated from the Boolean
functions. This can then be used in several ways.

100

5.1.1 Translation to STG

Translation from Asynchronous Concepts to STGs is the key feature of Plato, as cur-
rently, there is no tool which verifies and synthesizes a concept specification directly.
This may indeed be possible, but developing such tools is a time consuming process, and
is an opportunity for further research and development.

Therefore, we provide a method of translating concepts to existing formalisms which
are more commonly used, and feature several commonly used tools which automatically
verify and synthesize specifications.

This process is performed by calling Plato, passing in the file path which points to the
concept specification file, and any file paths of concept libraries that this specification
uses, excluding the circuit-specific library provided with Plato.

The algorithm to translate a concept specification to an equivalent STG is introduced
in Algorithm 2. In this section, we will explain how the translation algorithm works using
the example of the 2-input NOR gate with enable. This will show the intricacies of the
translation algorithm.

The main function of this algorithm is translate-stg which is called by Plato. This
takes in a concept specification, and can access the information contained within this,
such as the list of cause and effect transitions, all signals in the system, and so on. This
calls several other functions which are also included in the algorithm, and passes in this
information for it to compile the concepts, and build the STG The first function this
calls is list-transitions, passing in the list of effect transitions.

Regardless of the concepts used in the specification, be they signal-level or higher-
level gate and protocol concepts, the algorithm uses the atomic signal-level concepts, as
all concepts are made up of these. list-transitions takes each effect transition, and lists all
of the cause transitions for them. However, there may be multiple lists, each individual
list being a list of possible causes, in the form of OR-causality, and the collection of lists
being all causalities in Conjunctive Normal Form (CNF), i.e. each list is composed with
AND causality, but the sub-lists are OR-causality.

The behaviour concept from the specification for this example with all concepts in
atomic form is found in Figure 5.3. The initState and interface concepts use only
signal-level concepts, thus they are in their most atomic form, so we will omit them from
this figure.

The algorithm takes this and then forms lists of the cause of each effect, the effects in

101

Algorithm 2 Algorithm for translation from Asynchronous Concepts to STGs

1: //Main function. Takes a concept specification which includes
2: //signals, cause and effect transitions and generates an STG.
3: function TRANSLATE-STG(concept-specification)
4: transitions← list-transitions(effects)
5: loops← create-loops(signals)
6: loops-with-inits← set-initial-states(signals, loops)
7: stg← connect-transitions(transitions, loops-with-inits)
8: end function
9:

10: //Takes list of effects, performs the Cartesian product on the causes for each.
11: //Returns a list of cause transitions for each effect in DNF.
12: function LIST-TRANSITIONS(effects)
13: for all effects do
14: transitionList← cart-product(causes(effect))
15: transitions← transitions + transitionList
16: end for
17: end function
18:
19: //Takes list of signals. Creates signal transition loops.
20: //This connects transitions and places for each signal, and sets the interface.
21: function CREATE-LOOPS(signals)
22: for all signals do
23: set-interface(signal)
24: create-place(signal-name + 0)
25: create-place(signal-name + 1)
26: for all transitions of signal do
27: if transition is rising then
28: create-consuming-arc(0 place, transition)
29: create-producing-arc(transition, 1 place)
30: else if transition is falling then
31: create-consuming-arc(0 place, transition)
32: create-producing-arc(transition, 1 place)
33: end if
34: end for
35: end for
36: end function

102

37: //With the transition loops, checks each signal’s initial state concept.
38: //Sets a token in the correct place, 1 place for high, 0 place for low.
39: function SET-INITIAL-STATES(signals, loops)
40: for all signals do
41: if init-state(signal) is low then
42: add-token(0 place)
43: else if init-state(signal) is high then
44: add-token(1 place)
45: end if
46: end for
47: end function
48:
49: //With the list of transitions, connects the place signalling a cause transition
50: //to the effect transition, connecting all causalities.
51: function CONNECT-TRANSITIONS(transitions, loops)
52: for all transitions do
53: if transition is rising then
54: for all effects of transition do
55: create-read-arc (1 place, effect)
56: end for
57: else if transition is falling then
58: for all effects of transition do
59: create-read-arc (place 0, effect)
60: end for
61: end if
62: end for
63: end function

103

behaviour = [rise a, rise b] ~|~> fall z

<> fall a ~>rise z <> fall b ~> rise z

<> rise e ~> rise z <> rise e ~> fall z

Figure 5.3: behaviour concept in atomic form

Table 5.1: OR-causality lists by effect

Cause transitions Effect transition

rise a, rise b fall z

rise e fall z

fall a rise z

fall b rise z

rise e rise z

this example being rise z and fall z. Table 5.1 contains these lists. For fall z,
there are two lists. One contains the rising concepts for the input signals, a and b, for
the NOR gate, and one contains only the enable transition. In CNF, these two lists can
be stated as a Boolean Function: (a ∨ b) ∧ e. When translating to an STG, we add
transitions for fall z into the transition loop, but this requires a set of possible cause
transitions for each of these fall z transitions. Thus we need to combine these two
lists in a way which applies all OR causalities, and the AND causalities.

This operation is done with the Cartesian Product, which in the algorithm is called
by cart-product. This function applied to lists will AND each element of one list with
each element of all other lists, and OR each of these. We treat the OR-causality list
of transitions as is, but we must also treat the rise e transition as its own list of one.
Then, performing the Cartesian product, on both of these lists, we get two lists:

[rise e, rise a], [rise e, rise b]

This is a list of two possible combinations of transitions which must occur for fall z

to occur, and each is applied to a separate fall z transition in the transition loop.
This process converts the transition combinations into Disjunctive Normal Form (DNF),
which for translation is the arrangement we require. The Boolean Function of this is
now: (e ∧ a) ∨ (e ∧ b).

We must then perform this for rise z. For this transition, there are three separate
AND causalities, and no OR-causalities. We therefore treat each as a single element list,

104

and perform the Cartesian product. For these transitions we simply combine all three
cause transitions, leading to a single list:

[rise e, rise a, rise b]

We now have a set of causality concepts in DNF form, as seen in Table 5.2. There
are two possible fall z transitions, which are numbered, so they can be referenced
separately but still identify a falling transition for z. All of these cause transitions, for
the given effect transitions are now stored in a list.

Table 5.2: Causalities in DNF form

Cause transitions Effect transition

rise e, rise a fall z/1

rise e, rise b fall z/2

rise e, fall a, fall b rise z

translate-stg can now start to build the STG. It calls the function create-loops passing
in all signals, which creates the signal transition loops, as were discussed in Section 2.4.
For each signal in the system, it starts by setting the interface and creating places for the
signal, naming these with the signal name and a 0 or a 1. Next, it connects all transitions
of the signal to these places, rising transitions have a consuming arc from the 0 place to
the transition, and a producing arc connects the transition to the 1 place. The falling
transition connects the opposite, consuming arc from the 1 place to the transition, and
a producing arc from this to the 0 place. This completes the loop for this signal, and the
function will continue to do this for all signals, returning all of these loops to be used by
translate-stg.

The next function called is set-initial-states and passes in these newly created signal
transition loops, to prepare the initial states. This simply takes the initial state concept
for each signal, placing a token in the 0 place if it is initially low, or placing a token in the
1 place if the state is initially high. Figure 5.4 contains the STG after the initial states
have been inserted. For this example, all signals are initially 0, except the output signal,
z, which is initially 1. Therefore all input signals will have a token in their 0 place, and
z will contain a token in its 1 place. set-initial-states then returns the loops with the
initial states.

Finally, the connect-transitions function is called, which takes in the initialises signal
transition loops and the list of transitions. For each cause transition, it determines

105

Figure 5.4: Translated STG with initial states inserted

whether it is a rising or falling transition. If it is rising, it then connects the 1 place of
this signal to the effect transition with a read arc, and if it is a falling transition, it does
the same with the 0 place of this signal. Because of the placement of the token in a
transition loop, this is used to determine the polarity of this signal, and as such, can be
used to determine whether the effect transition is enabled.

Looking at the list of causalities in Table 5.2, the first cause transition is rise e

and the associated effect transition is fall z/1. The /1 reference in the signal is
not identified in the STG, but is used to refer to one of the fall z transitions. This
transition is then connected to the e1 place, as seen in Figure 5.5.

This is then repeated for each transition in the system, next connecting rise a to
fall z/1, and so on. When all read arcs are inserted, the translation is complete,
and the resulting STG is equivalent to the concept specification. This STG returned
to translate-stg, which can then print it. The completed STG for the NOR-gate with
enable gate example is found in Figure 5.6.

106

Figure 5.5: Translated STG with one read arc inserted

Figure 5.6: Fully translated STG

5.1.2 Translation to State Graphs

As discussed in Section 2.1, state graphs are undesirable when specifying asynchronous
circuits, and there are fewer major verification and synthesis tools for state graphs com-
pared to those for STGs therefore. However, state graphs may still be useful for viewing
the operation of a system as they are at a low-level and so, it may be easier to understand
signal interactions with an state graph.

As part of Plato, we provide translation from Asynchronous Concepts to state graphs.

107

Algorithm 3 Algorithm to translate Asynchronous Concepts to state graphs

1: //Main function. Takes a concept specification. Uses the signals,
2: //and causalities to generate a state graph.
3: //Uses some functions from Algorithm 2
4: function TRANSLATE-STATE-GRAPH(concept-specification)
5: consistent-spec← add-consistency(signals)
6: transitions← list-transitions(effects)
7: init-encoding← get-initial-encoding(signals)
8: state-graph← encode-and-connect(transitions, signals)
9: end function

10:
11: //Takes in the signals, and provides consistency to the state graph, ensuring
12: //that each signal can transition high when it is low, and vice versa
13: function ADD-CONSISTENCY(signals)
14: for all signals do
15: set-interface(signal)
16: concept-specification <> rise signal ~> fall signal
17: concept-specification <> fall signal ~> rise signal
18: end for
19: end function
20:
21: //Uses the initial states of each signal find the encoding of the initial state.
22: //This state is then designated as initial in the generated state graph
23: function INIT-ENCODING(signals)
24: for all signals do
25: if init-state(signal) is low then
26: initState← initState + 0
27: else if init-state(signal) is high then
28: initState← initState + 1
29: end if
30: end for
31: end function

108

32: //For each effect, finds the source state based on the cause transitions,
33: //the destination state, and connects them with the effect transition.
34: function ENCODE-AND-CONNECT(transitions, signals)
35: for all each effect-transition do
36: for all cause-transitions(effect) do
37: for all signals do
38: if signal is cause-transition then
39: srcEnc← srcEnc + polarity(cause-transition)
40: else if signal is effect-transition then
41: srcEnc← srcEnc + polarity(effect-transition)
42: else
43: srcEnc← srcEnc + dontCare(signal)
44: end if
45: end for
46: allSrcStates← replaceDontCares(srcEnc)
47: for all allSrcStates do
48: destState← togglePolarity(effect-transition)
49: connect(srcState, destState, effect-transition)
50: end for
51: end for
52: end for
53: end function

While not as key a feature as translating to STGs, it is still useful, and the difference
in usage is negligible. Plato is called as usual, passing in the file path for the concept
specification file and any user-generated concept libraries that are used by this specifica-
tion, again, excluding the circuit-specific concept library. To translate to a state-graph
instead of an STG, a flag is added: -f, or --fsm.

The algorithm for this translation is presented in Algorithm 3. The main function is
translate-state-graph, which again calls other functions, including list-transitions, as in
Algorithm 2. This is because it is still necessary for the transitions to be converted to
DNF form for translation. As such, we do not include list-transitions in this algorithm.
The main difference in how these algorithms differ is in how the STG and state graph are
built. We will explain the operation of this algorithm in this section, once again using
the example of a NOR gate with an enable signal for the output.

The algorithm first calls add-consistency, passing in the signals in this concept speci-
fication. This defines the interfaces of all signals in the system, and adds the consistency
for each signal, which for state graphs requires that for any signal transition, the opposite
signal transition has occurred first. Thus, we add two concepts for each signal:

rise x ~> fall x <> fall x ~> rise x

109

Where x is any signal. These are simple concepts, but this ensures that for any transition
in the system, it will only occur when the opposite transition has occurred. Including
these concepts here means that they are included in in list-transitions conversion, which
ensures that the state of a signal for an effect transition is a requirement. For signals
which are never an effect transition, this ensures that they can transition freely, but a
transition does not mean this signal stays in that state indefinitely.

For clarity, we will omit these consistency concepts from the worked-through example,
as it adds minor details which do not add to the algorithm explanation.

Following this, translate-state-graph calls list-transitions, the same function as in
Algorithm 2. This is because for translation to either STG or state graph, we need the
causalities to be in DNF, and as such, we convert them in the same way. Therefore
following this function call, Table 5.2 will be produced once again.

translate-state-graph will then call init-encoding to find the initial state for the state
graph. Rather than placing tokens as in STG translation, this involves finding the
encoding for this state. The encoding for all states is written using 0 to represent a
signal being low, and 1 to represent a signal being high, and the order of signals is a,
b, e, z. Thus, from the concept specification, the initial state for the two-input NOR
gate with enable will be 0001. init-encoding returns this initial state which is used for
the translated state graph.

The final function, encode-and-connect builds the state graph. Initially, for each
effect signal transition, we produce a source encoding, the encoding of the states from
which the effect transition occurs. This is done by taking the effect transition, and using
the cause transitions, generate this state. It may be the case that not every signal in
the system will be involved in this, and for these signals we apply a don’t care value,
represent by a ‘-’ character.

For the first causality from Table 5.2, rise e and rise a causing fall z, we check
for each signal in the system. The first signal is a, which is involved in this causality,
and for the effect transition fall z, a must be high, so the source state requires that
a be 1. Signal b is not involved in this causality, so the source state does not require
b to be any state, so the polarity of b is set to don’t care, or ‘-’. e is involved, and it
is required that rise e has occurred, so the source state needs e to be 1. Finally, we
have z, which is the effect signal, and due to consistency, it is necessary that z be high
to allow a falling transition to occur, so we set the source state to include z at 1. The
final source state for this causality is 1-11.

110

Table 5.3: Causalities and source encoding

Cause transitions Effect transition Source encoding

rise e, rise a fall z 1-11

rise e, rise b fall z -111

rise e, fall a, fall b rise z 0010

This is performed for every causality in encode-and-connect, and Table 5.3 contains
this list of causalities with the source states. We use these encodings to find a list of
all states where the effect transitions can occur, which is performed on line 46 of the
algorithm. With just the first causality, we take the encoding 1-11 and remove the -

states, converting them into all possibilities of 0 and 1, providing us with more states,
with encodings which are used to reference actual states in the system. 1-11 expands
into: 1011, 1111.

Finally, the algorithm generates a destination state encoding from each of these
states, which is the state encoding of the state after the effect transition. The destination
state of fall z from the source state 1011 will be 1010, and from the source state 1111,
the destination state will be 1110. These states are then connected, adding the effect
transition fall z as the event for the arc.

The remaining causalities are then translated to a state graph in the same way, and
any states which have the same encodings as any states we have discussed may feature
connections to or from other states due to the remaining causalities. This function will
then return the translated state graph to translate-state-graph which will then output
this.

Figure 5.7 contains the translated state graph for example25. This state graph is
quite complex, for a simple circuit. It can be seen that z only transitions once e has
transitioned, and either a or b for one of three possible z- transitions, or both a and
b for the single z+ transition. States where e is low (the outer diamonds) have no z

transitions.

Note that with the state graph translation algorithm, any CSC conflicts will be
translated, and the functionality of the states with encoding conflicts will all be included
all within the same state. This is due to how the algorithm builds the state graph using
state encodings. As discussed in Section 2.1, CSC is important in a state graph for
the purposes of synthesis. Unfortunately, the algorithm therefore will not produce an
accurate state graph.

111

Figure 5.7: example25 translated to a state graph

Since state graphs feature less tool support for verification, CSC conflicts will not
be caught during the verification step, but this also means that there is less too sup-
port for synthesis of state graphs, and as such, CSC conflicts will not propagate to an
implementation. This algorithm can be improved through future development, however,
the major contribution of Plato is the translation of Asynchronous Concepts to STGs,
so the state graph translation algorithm is not of the highest priority.

5.1.3 Generating concepts from Boolean functions

Boolean functions may be used directly in a concept specification with the complexGate
and function high-level concepts (Section 3.3.1), or be used to generate a concept
specification (Section 4.2). Both of these features are built into Plato, complexGate and
function in the circuit-specific concept library, and a function called bool-to-concept.

In both cases, the Boolean functions may be in any form, and must be evaluated
in order to find the CNF, which is used to generate concepts. Algorithms to convert
Boolean functions into CNF are discussed in Section 2.6. CNF for the functions is
necessary as this is the form in which concepts are represented in Plato.

Bool-to-concepts can take arguments of the set and reset functions or just a set
function, a file path to a file in which to write the concept specification, and the name
of the effect signal. If functions are not given, the user will be prompted to enter them,
and the reset function can be left blank. In the event a reset function is not entered,
the reset function will be treated as the inversion of the set function. If no output file
path is given, the resulting concept specification will be printed to stdout.

112

Algorithm 4 Algorithm to generate concepts from Boolean functions
1: //Main function. Takes Boolean set and reset functions. Outputs a concept

specification.
2: //This converts the functions into CNF and uses this to generate concepts.
3: function BOOL-TO-CONCEPT(setFunc, resetFunc)
4: if setFunc is empty then
5: (setFunc, resetFunc)← get-functions
6: end if
7: if resetFunc is empty then
8: resetFunc← invert(setFunc)
9: end if

10: allVars← get-vars(setFunc, resetFunc)
11: outVar← get-output-var
12: setCNF← convert-to-CNF(setFunction)
13: resetCNF← convert-to-CNF(resetFunction)
14: outputRise← generate-concepts-text(setCNF, rise outVar)
15: outputFall← generate-concepts-text(resetCNF, fall outVar)
16: print-concepts(fielpath, allVars, outVar, outputRise, outputFall)
17: end function
18:
19: //Takes a function, and an output transition. Generates the concept for
20: //the output to rise or fall. Outputs this in text form.
21: function GENERATE-CONCEPTS-TEXT(function, output-transition)
22: for all sub-functions in function do
23: for all variables in sub-function do
24: if variable is negated then
25: causes← causes + “fall” + variable
26: else
27: causes← causes + “rise” + variable
28: end if
29: end for
30: concepts← concepts + “<>” + causes + “~|~>“ + output-transition
31: end for
32: end function

Algorithm 4 details how, given Boolean set and reset functions, a concept specification
will be generated. We will use our NOR gate with enable example to detail the operation
of this Algorithm. Suppose the functions given were as follows:

set : (a ∧ b) ∧ e

reset : (a ∧ e) ∨ (b ∧ e)

The main function of this algorithm is bool-to-concept. As with the main functions
in other algorithms, it calls other functions which perform useful functions, and return
information for further functions. This function is passed a set and reset function, which
may contain functions from calling this function, or may be empty. It begins by checking

113

this, and if empty, calls get-functions which prompts the user to enter them.

Following this, it then checks the reset function, as this can be left empty by the user.
If this is the case, the algorithm inverts the set function to use as the reset function, as
performed on line 8.

When the set and reset functions are obtained, a list of all variables in both functions
is created, resulting in a, b and e. get-output-var obtains the output variable name, which
may be input by a user when calling the function, or be a default of out. For this example
we will set it as z.

Next, bool-to-concept will convert the functions provided to CNF, using Algorithm 1.
The resulting CNF functions, simplified will be as follows:

setCNF : a ∧ b ∧ e

resetCNF : (a ∨ b) ∧ e

Now, we can begin to generate the text of concepts, using the function generate-

concept-text. This is used in order to generate both the concept for the output to rise
and to fall, and as such, passed into it is a function, either set or reset, and the output
transition, either rise z or fall z.

generate-concept-text begins with a loop, working with each sub-function in the given
function. A sub-function in this case is found between each top-level AND. Using setCNF
this leaves us with three sub-functions, each a single variable; a, b and e. For each of
these, it will determine whether the variable is negated or, using the fall function to
indicate a falling transition if so, or a rise function, indicating a rising transition, if not.
The text of the transition is created and stored in a list fo each sub-function.

Once all variables in the sub-function have been used to generate a transition, we
then create the concept in text-form for this, using OR-causality to the given effect
transition of the output variable. Each sub-functions causes are composed with one
another as expected for the specification.

Line 13 in bool-to-concept will reuse generate-concepts-text for resetCNF, creating
a concept with the effect transition of fall zinstead. Note, that we use OR-causality
exclusively in this algorithm. For the purposes of automatic concept generation, we use
only this form of causality, as if a sub-function contains only one variable, then this can
be described as the only possible cause of the effect signal, having the same effect as
AND causality, and we will refer to these cases as AND-causality in this example

114

Following this, we have created the concepts of outputRise and outputFall, which
will be as follows:

outputSet = fall a~> rise z <> fall b~> rise z <> rise e~> rise z

outputReset = [rise a, rise b]~|~> fall z <> rise e~> fall z

With these, the behaviours are described, and a concept specification can be generated,
and printed to the desired destination. We pass the necessary variables to the print-

concepts function which will print a concept specification in the form as seen throughout
this thesis, seen in Figure 5.8.

Note that when generating these concepts, for initial state concepts we assume that
all signals in the system will be initially 0, and for the interface concepts, it is assumed
the given output variable is the only output, and all variables in the functions are inputs.
This specification is now complete, Figure 5.8 displayss the resulting file.

module Concept where

import CircuitConcepts

circuit a b c z = outputRise <> outputFall
<> initState <> interface

where
outputRise = fall a ~> rise z <> fall b ~> rise z

<> fall c ~> rise z
outputFall = [rise a, rise b, rise c] ~|~> fall z
initState = initialise0 [a, b, c, z]
interface = inputs [a, b, c] <> outputs [z]

Figure 5.8: 3-input NOR gate concept file generated by Bool-to-Concepts

The assumptions of interface and initial state are not accurate, as from the set and reset
functions alone it is not possible to derive what the interface and initial states of the given
system are. For the purposes of automation, we include these default interface and initial
state concepts in order to generate a specification which is immediately translatable, as
Figure 5.8 is. In this way, a user can translate the specification, and discover this
information through simulation of the circuit, or if the interface is known for example,
can edit the generated concept specification themselves. This process is still quicker
than that of manually deriving the concepts of a circuit for which only the set and reset
functions are known.

115

5.2 Workcraft

Workcraft [17][18] is a software suite which provides a graphical user interface (GUI)
for multiple graph-based modelling formalisms, including FSMs, state graphs, PNs and
STGs. These graphs can be visualised and manipulated in a way which manually would
be a lengthy and difficult process. It also features several algorithms and tools as a back
end which automatically perform operations with these graph formalisms.

The aim of Workcraft is to add an ease of use to existing design methods, and
automate many processes to also speed up designs. A graph can be designed from
the ground up, adding and removing vertices and arcs, or be generated using a tool,
or converted from another graph formalism. Graphs can be simulated to show the
movement of tokens such as with PNs and STGs, and the traces from this be used to
generate timing diagrams. A graph can be verified automatically at the click of a button,
and in some cases, verification problems can be solved automatically. A graph can then
be synthesized, and the resulting implementation be manipulated and synthesized from
within Workcraft.

In this section, we will discuss Plato (Section 5.1) and PGminer (Section 5.2.2),
and how they are integrated into Workcraft, for the Asynchronous Concepts design flow,
which provides a GUI for this. We also discuss the processes of verifying and synthesizing
an STG, and the tools which perform this.

5.2.1 Plato integration

Plato can currently be used to generate both STGs and state graphs, and thus, the
plug in for both of these graphs features an option to generate them from Asynchronous
Concepts. Both feature a “Conversion” menu, which contains a “Translate concepts...”
option. Selecting this option provides a dialogue for the authoring of concepts, as seen
in Figure 5.9. Note, this dialogue contains a different concept specification for the NOR
gate with enable, importing the NOR gate from InvertedGates (Figure 4.4). This is
used to show features of Workcraft integration.

This provides some options for authoring Asynchronous Concepts. Either, a specifi-
cation can be written within this dialogue and be translated, without the need to save
the file, or it may be saved for use later. An existing concepts file and be opened, edited,
translated or saved. There are also options to reset the dialogue to a basic template for

116

Figure 5.9: Plato dialogue for authoring concepts

a concept specification, and to select a layout preference for the translated STG, either
the loop notation, or use a dot description to set the layout using the tool Graphviz [44],
another backend tool utilized by Workcraft.

A button labelled “Included files” is part of this dialogue, and when pressed, opens
another dialogue, which is used to select files which must be included in the translation,
such as those that are imported in the concept specification. As seen in Figure 5.10, we
have included the InvertedGates file, which contains the norGateN concept.

Figure 5.10: Plato include dialogue in Workcraft

In the Plato preferences of Workcraft, concept files which are used regularly may be
listed, in order to be included in every translation from concepts to either STGs or state

117

graphs. This feature is intended for user-generated concept libraries, which may be often
used, avoiding the need to ensure they are included in every translation.

Following the writing of a concept specification, one may choose to save the file, and
then translate this. This will then automatically pass the necessary files, the concept
specification and all included files, to Plato, which will generate an STG or state graph.
The resulting graph will then be automatically imported to Workcraft, and laid out using
the chosen methods, as seen on the top right of Figure 5.11.

The generated graph is then be simulated to ensure it works as expected. The traces
from a simulation may be used to generate a timing diagram, such as at the bottom of
Figure 5.11.

Figure 5.11: Completed translation, and timing diagram of a concept specification

The generated STG can then be used in further operations such as verification and
synthesis, which will be discussed further in Section 5.2.3.

5.2.2 PGminer integration

The general operation of process mining has been discussed in Section 4.3. This tool
takes in an event log, and outputs Boolean functions, which are then be used to generate
concepts using the Bool-to-Concept function of Plato (Section 5.1.3).

118

An event log is produced by simulating a circuit, or specification. This can be performed
in Workcraft, producing an event log. This contains the events which cause the output
to transition, such as the transitions which caused an output to transition high. One
simulation of what cause transitions cause an effect transition is known as a trace, and
a collection of traces forms an event log. We split up traces which cause an effect
transition to rise and fall.

PGminer features its own plug in within Workcraft. This tool imports event logs
and it process mines these to indicate any concurrency. There is a menu for “Process
mining”, which offers two options, one to extract the concurrency of the selected graphs
in the current editor, or to import an event log. The second option opens the dialogue
as shown in Figure 5.12.

Figure 5.12: PGminer import dialogue

This dialogue allows a user to select an event log file from their file system, to extract
the concurrency of this. In this case, we are extracting the concurrency of the set of
traces from simulations of a circuit. “Perform concurrency extraction” being checked
means that PGminer will extract the concurrency from this event log and import the
results. “Split traces into scenarios” will, when importing the event log, name events
which repeat in a single trace as different events, which helps to identify the number of
times a single event occurs as part of the system operations.

Importing this file will pass the event log to PGminer, which will then perform con-
currency extraction, and generate Boolean functions which represent the states of the
signals required to cause the output transitions to rise and fall. These can then be passed
into Plato, for Bool-to-concept to generate a concept specification for the given system.

5.2.3 Verification and synthesis tools

When we have produced a specification in Asynchronous Concept form, and translated
it to an STG, before we can use it to find an implementation, it needs to be verified that

119

the STG satisfies certain properties. Workcraft features back end tools to perform these
automatically, using any STG, including those automatically translated from a concept
specification. Note, state graphs can be used for simulation and some tools can perform
synthesis with them but due to state explosion this can be a lengthy process, thus we
will discuss STGs in relation to verification and synthesis.

To display verification and synthesis, we will use the example of a simple buck con-
troller. The operation and behaviours of this circuit will be discussed in Chapter 6, but
is a good example for showing how verification and synthesis are be performed within
Workcraft. The STG for this circuit is seen in Figure 5.13.

Figure 5.13: STG specification of a simple buck controller

These automatic verification and synthesis tools that Workcraft uses are Petrify [19] and
MPSAT [20] [21]. They take an STG in ‘.g ’ format, and perform their operations. First
of all we will discuss the process of verification.

The STG plugin of Workcraft features a “Verification” menu, from which the STG
in the editor at that time can be verified automatically, determining whether the STG
satisfies some properties, including consistency, deadlock freeness, input properness,
output persistency and complete state coding. Workcraft will either state that the
properties have been satisfied, or that there is a problem, and provide a trace which
identifies how the property has not been satisfied.

Verifying the STG of the simple buck for all properties provides the dialogue as shown
in Figure 5.14, indicating that all properties are satisfied.

MPSAT also provides the option to verify custom properties. This is used by Plato when
a translated STG is imported to Workcraft. If a never concept is used, Plato passes this

120

Figure 5.14: Workcraft dialogue showing multiple satisfied verification properties

information to Workcraft, which generates a custom property to make sure that a the
never concept is satisfied. For example, if the concept never [rise x, rise y] is
included in a concept specification, this is used to generate a custom property, as shown
in Figure 5.15.

With the example of the STG in Figure 5.13, we need to also ensure that it is not
possible for signals gp and gn to both be high at the same time, as they are mutually
exclusive and switch PMOS and NMOS transistors respectively, and both being active
at the same time will lead to a short circuit. As well as this, we should also ensure
that gn_ack and gp are never high at the same time, and gp_ack and gn are never
high at the same time, as these acknowledge signals indicate whether the corresponding
transistor is active, so this can also be used to ensure that no short circuit occurs.

It must also be ensured that signals uv and oc, which are also mutually exclusive,
are never high at the same time. We verify this with a custom property, as shown in
Figure 5.15.

Running MPSAT and verifying this custom property for the given STG will provide
a dialogue indicating whether the property is satisfied or not. For this STG gp and gn

must never be high at the same time, and uv and oc must never be high at the same
time, thus the mutual exclusions for these signals hold. The dialogue stating that this
is satisfied is seen in Figure 5.16.

This feature may be used for many different types of custom property for a user to ensure
that their own set of properties are satisfied.

If at any point, a user finds a problem with the STG in question, this can be fixed
either at the concept specification or the STG level. Once all properties are satisfied
however, an implementation will then be found through synthesis. Both Petrify and
MPSAT automatically synthesize these, and through Workcraft, the Boolean functions

121

Figure 5.15: Custom property dialogue for MPSAT

Figure 5.16: Dialogue indicating the custom property is satisfied

that these generate for the implementation will be imported to Workcraft.

As discussed in Section 4.8, Workcraft uses these functions, and compares them
against a library of gates in technology mapping. These libraries can be used to limit
the set of possible gates usable by an implementation, and Workcraft features a library
for these. Following the matching of functions to the gates, Workcraft will then produce
an implementation, and visualise it in the circuit plug in.

The simple buck controller circuit will now be synthesized, as all verification proper-
ties, including our own check that mutual exclusions for some signals, are satisfied. We
will synthesize this circuit using technology-mapping, and the resulting circuit is seen in
Figure 5.17

122

Figure 5.17: Synthesized circuit from the STG seen in Figure 5.13

5.3 Summary

Discussed in this chapter are several software tools. These tools serve to automate much
of the design flow, discussed in Chapter 4. Automation of this can allow for a quicker
design flow, as well as reducing the chance of error that can occur through performing
many of these processes manually.

Plato is major contribution discussed in this chapter. This implements the domain-
specific language of Asynchronous Concepts, and provides several functions for the design
flow. It will compile a given concept specification, importing any concepts which a user
has stored in a library, and aim to find any syntax or concept errors. It can then
automatically generate an equivalent STG or state graph for the concept specification.

Plato can also be used to automatically generate concepts from Boolean functions.
This can be from functions provided within a concept specification using complexGate

or function, which will generate concepts and simply compose them with the rest of
the specification. Alternatively, an entire concept specification can be generated from
given Boolean functions, which can then be edited, built-upon, or imported into other
concept specifications.

PGminer is a tool used to generate concept specifications from event logs, which are
generated from the simulations of an existing state graph. This automatically provides
Boolean functions which can be passed to Plato, to generate a concept specification.

Workcraft is a software suite, supporting several modelling formalisms, including
those mentioned within this thesis. Plato, PGminer and some verification and synthesis
tools are all integrated into Workcraft, providing the means to use one piece of software
for an entire design using the Asynchronous Concepts design flow. It provides a GUI,
allowing a user to author concepts, automatically translate to an STG or state graph,

123

which is imported into Workcraft. From here, the model can be verified and simulated
with a few mouse-clicks, avoiding the need to fiddle with command line tools.

The combination of these tools allows the design flow to be carried out more easily,
automating some processes which can be time consuming. Workcraft provides a cleaner
interface to be able to use all of these tools, one after the other, without any issues
of incompatibility between these tools. This all aids in providing a simpler and quicker
design flow.

124

Chapter 6

Case Studies

So far in this thesis, we have introduced a library of circuit specific concepts which can be
used to design many asynchronous circuits. The design flow of Asynchronous Concepts
has been discussed, explaining how to start a design from a blank page, and through to
producing an implementation. We have also explained the tools which support concepts
and the design flow, automating much of the design process.

In this chapter, we will use all of this information to follow two case studies. These
examples come from the power management domain [14] [1], specifically on-chip voltage
regulators. The first example is quite simple, and the second is much more complex.
We will briefly introduce the systems we are designing in each of these examples, and
follow how one can design these using the Asynchronous Concepts design flow, creating
a concept specification which uses concepts from a user generated library. We will
translate these to Signal Transition Graphs, which we can simulate and verify to ensure
are sound. We can then use these to synthesize for an implementation for each of these
circuits.

6.1 Case Study 1: A simple buck controller

The first example is that of amulti-scenario power regulator [45]. A basic power regulator
comprises an analogue buck and a digital controller, as shown in Figure 6.1a. The
controller operates the power regulating PMOS and NMOS transistors of the buck (using
gp and gn output signals) as a reaction to under-voltage (UV), over-current (OC) and
zero-crossing (ZC) conditions (uv, oc, and zc inputs, respectively). These conditions
are detected by a set of sensors that compare the measured current and voltage with

125

control

V_nmos

V_pmos

buck

V_ref

R
_l
o
a
d

PMOS

NMOS

I_max

gp_ack

oc

uv

zc

gn_ack

gp

gn

over-current

under-voltage

zero-crossing V_0

(a) Schematic (digital control in analogue environment).

UV UV OC

I_max

current ZC absent ZC late

OC

ZC early

PMOS OFF

ZC

PM
OS OFF

NM
OS ON

NMOS OFF

ZC

NMOS O
FF

PM
OS

ON

NM
OS

OFF
NM

OS ON

PM
OS OFF

PM
OS O

N

UV OC

timeNM
OS

OFF

PM
OS

ON

I_0

(b) Informal description of three behavioural scenarios.

Figure 6.1: Buck converter and its informal description.

some reference values (V_ref, I_max, I_0). Note that in order to avoid a shortcircuit,
the PMOS and NMOS transistors of the buck must never be ON at the same time.
Therefore, the controller is explicitly notified (by gp_ack and gn_ack) when the power
transistor threshold levels (V_pmos and V_nmos) are crossed.

The operation of a power regulator is usually described in an intuitive, but rather
informal way, e.g. by enumerating the possible sequences of detected conditions and
describing the intended reaction to these events, as shown in Figure 6.1b. The diagram
shows that UV should be handled by switching the NMOS transistor OFF and PMOS
transistor ON, while OC should revert their state – PMOS OFF and NMOS ON (ZC ab-

sent scenario). Detection of the ZC after UV does not change this behaviour (ZC late

scenario). However, if ZC is detected before UV then both the PMOS and NMOS
transistors remain OFF until the UV condition (ZC early scenario).

The informal specification of the buck converter defines three operating modes that
require distinctive control scenarios. Requirements for each operating mode can be
captured with a separate list of concepts and translated into scenario STGs. These can
be subsequently combined to produce single STG for the whole circuit. During this

126

process, it is useful to find any operations which occur between two or more operating
modes, as these can then be reused.

ZC absent scenario

A circuit that handles buck operation in absence of ZC condition is specified as in Fig-
ure 6.2. The zcAbsent concept is a composition of buck charging and UV handling.
Consider the charging function captured in the separate chargeFunc concept. It com-
prises several concepts: interface specifies the types of signals and initState defines
their initial state; gpHandshake and gnHandshake specify the protocol on gp/gp_ack
and gn/gn_ack interfaces respectively; noShort enforces a safety constraint to pre-
vent a shortcircuit; ocFunc and ocReact define the interplay with OC condition; and
environment captures the fact that OC and UV conditions never happen at the same
time.

Note that the sequence of PMOS/NMOS switching during the charging cycle is the
same for all operating modes, and therefore the chargeFunc concept can be reused in
other scenarios. We have stated it as a separate concept in this concept file, as well as
uvFunc and uvReact which describe the operations caused by UV. These can now be
imported to other concept files and be used as it has in zcAbsent.

The zcAbsent concept can now automatically be translated to an STG for use
with simulation, verification and synthesis tools, and for combination with the other
scenarios. We have resynthesized this STG into a form which is more compact as shown
in Figure 6.3 using the MPSAT tool [32]. The STG translated from the specification
while correct is large and complex, so for clarity we include a more compact version.

127

module ZCAbsent(uvFunc, uvReact, chargeFunc) where

import CircuitConcepts

zcAbsent uv oc zc gp gp_ack gn gn_ack

= uvFunc uv gp gn <> uvReact gp_ack gn_ack uv

<> chargeFunc uv oc zc gp gp_ack gn gn_ack

uvFunc uv gp gn = rise uv~> rise gp <> rise uv~> fall gn

uvReact gp_ack gn_ack uv = rise gp_ack~> fall uv

<> fall gn_ack~> fall uv

chargeFunc uv oc zc gp gp_ack gn gn_ack

= interface <> initState <> ocFunc <> ocReact

<> environment <> noShort <> gpHandshake <> gnHandshake

where

interface = inputs [uv, oc, zc, gp_ack, gn_ack]

<> outputs [gp, gn]

initState = initialise0 [uv, oc, zc, gp, gp_ack]

<> initialise1 [gn, gn_ack]

ocFunc = rise oc~> fall gp <> rise oc~> rise gn

ocReact = fall gp_ack~> fall oc <> rise gn_ack~> fall oc

environment = mutex uv oc

noShort = mutex gn gp <> fall gn_ack~> rise gp

<> fall gp_ack~> rise gn

gpHandshake = handshake gp gp_ack

gnHandshake = handshake gn gn_ack

Figure 6.2: Concept specification for the ZC absent scenario

128

Figure 6.3: STG translated from the zcAbsent concept and resynthesized

ZC late scenario

If ZC condition is detected after UV, then buck operation is the same as in absence
of ZC, i.e. ZC conditions can be ignored. This is captured by an additional zcLate
concept, as seen in Figure 6.4

module ZCLate where

import CircuitConcepts

import ZCAbsent(uvFunc, uvReact, chargeFunc)

zcLate uv oc zc gp gp_ack gn gn_ack

= zcLateFunc <> uvFunc uv gp gn <> uvReact gp_ack gn_ack gp

<> chargeFunc uv oc zc gp gp_ack gn gn_ack

where

zcLateFunc = rise uv~> rise zc <> fall zc~> fall uv

Figure 6.4: Concept specification for the ZC late scenario

Figure 6.5: STG translated from the zcLate concept and resynthesized

The STG specification automatically produced from the zcLateScenario concept is
shown in Figure 6.5. It looks similar to the STG in Figure 6.3 but features a concurrent

129

branch for the zc signal. Note that the arc rise zc~> fall zc is implied at translation
time by the consistency provided by signal transition loops as discussed in Section 5.1.1.

Note that the concept specification of zcLate reuses most of the code from the
zcAbsent concept, and imports this for the containing file using import ZCAbsent.
This includes uvFunc and uvReact, as the operations that occur after UV signals does
not change, and chargeFunc as the environment, safety constraints and operation after
OC signals does not change. This removes the need to specify this again, as would
be necessary for the monolithic STG approach. This makes the specification for this
scenario much shorter.

Workcraft allows to copy and paste STGs, which mitigates the problem, but du-
plication and associated design problems remain [46] – for example, if the analogue
environment needs to be amended, these changes need to be done consistently in all
scenarios. With concepts, only one definition needs to be changed, which increases the
productivity of the designer.

ZC early scenario

If ZC condition is detected before UV then it needs to be explicitly handled by the control
circuit. This is specified with the concepts as seen in Figure 6.6.
module ZCEarly where

import CircuitConcepts

import ZCAbsent(chargeFunc)

zcEarly uv oc zc gp gp_ack gn gn_ack

= zcFunc <> zcReact <> uvFunc' <> uvReact'

<> chargeFunc uv oc zc gp gp_ack gn gn_ack

where

zcFunc = rise zc~> fall gn

zcReact = fall oc~> rise zc <> rise gp~> fall zc

uvFunc' = rise uv~> rise gp

uvReact' = rise zc~> rise uv <> fall zc~> fall uv

<> rise gp_ack~> fall uv

Figure 6.6: Concept specification for the ZC early scenario

The obtained STG for the zcEarly concept is shown in Figure 6.7. Note this is similar

130

in shape to the previous STGs, but ZC is the first condition to be signalled and thus, the
gn and gn_ack signals go low, and both transistors are turned OFF, until UV eventually
signals, where gp and therefore gp_ack will be set high, and zc will go low before uv

goes low.

Figure 6.7: STG translated from the zcEarly concept and resynthesized

A lot of code was once again reused from the imported ZCAbsent module, namely the
charegFunc concept. As with the zcLate concept, some of the main behaviours of
the zcEarly concept are the same, thus it is not necessary to specify these behaviours
again, providing a more compact concept specification.

6.1.1 Combining the scenarios

The scenario STGs can now be combined as described in Section 4.6 to produce a multi-
scenario specification. As buck operating modes are active one at a time, the control
scenarios are combined using the non-deterministic choice template.

Figure 6.8 is the combined STG. It contains all three scenarios as translated and seen
in Figures 6.3, 6.5 and 6.7. However, this now leads to some redundant arcs, such as
those connecting oc- and uv+, and in the ZC early scenario, the arc connecting oc- to
zc+. These can be safely removed, producing the STG as seen in Figure 6.9.

Figure 6.8 shows the resulting STG specification. This can be further simplified
manually by merging the common parts of the scenarios, thus producing a more compact
model similar to that shown in Figure 6.10.

There is an explicit place in this model which holds a token initially and allows any
of the scenarios to run. This free-choice place has no control over which scenario can
run, and only allows one of them to run at a time.

131

Figure 6.8: Combined STG for a buck converter, featuring all three scenarios

6.1.2 Simulation and verification

We can now simulate this STG in Workcraft, and test that it works as expected, and
attempt to find any possible errors. Some points of error to look for during the simulation
of this STG are:

• Unexpected enabled transitions - Any transitions which are enabled at in a state
that it should not be.

• Each scenario is separate from each other - Each scenario is separate, and each is
its own process window [40]. This means that each can be extracted from the full
system STG.

• The STG will correctly return to the choice state - Once a scenario has run, the
STG will correctly return to a state where any of the scenarios can run once again.

Assuming the STG simulations were successful, as discussed in Section 4.7, before we can
synthesize a specification to find an implementation, we need to verify the STG to ensure

132

Figure 6.9: STG for a buck converter, with some redundant arcs removed

it satisfies implementability properties (Section 4.7). We can use MPSAT [20] [21] to
verify the STG automatically.

Due to the safety constrains and the environment stated in the concept specifications
of these scenarios, the translation process will also automatically run custom verifications.
These ensure that the UV and OC conditions will never signal at the same time, as stated
by the mutex uv oc concept.

This also applies to the noShort concept, which ensures no short circuit can occur
in the system with the concept mutex gp gn, indicating these two signals can never
be high at the same time. However this is not sufficient, as the gp and gn signals are
buffered in order to switch the transistors, and thus there is a delay between a transition
in one of these signals, and the associated transistor switching ON or OFF. This means
that, while one of these signals may transition low to switch a transistor OFF, setting
the other signal high may cause both transistors to be switched ON at the same time,
before the first has switched OFF. For this reason, the signals gp_ack and gn_ack exist
to indicate the state of the PMOS and NMOS transistors respectively. Therefore, along
with the concept of mutex gp gn, we also include two other concepts, gn_ack~> gp,

133

Figure 6.10: Combined STG for a buck converter, featuring all three scenarios

which stops the PMOS transistor from being switched ON until the NMOS transistor
has is acknowledged to have been switched OFF, and gp_ack~> gn, to stop the NMOS
transistor from being switched ON until the PMOS transistor has been acknowledged to
have been switched OFF.

In the event that the simulation testing fails, or one or more of these verification
properties does not hold, the STG cannot be used for synthesis, as reported to the user.
In this case a problematic concept can be fixed in a specification, and re-translated and
combined with the others, and the simulation and verification process be run again. Or,
the STG can be edited itself, however this means that the concept specifications will no
longer be equivalent to the STG.

6.1.3 Synthesis of a speed-independent controller

The final step in this design flow is to synthesise the STG specification (Section 4.8), in
this case, for a speed-independent controller. Circuits can be synthesised automatically
using Petrify or MPSAT. For this example, Figure 6.11 shows the result of Complex gate

synthesis of the buck STG.

Complex-gate synthesis does not use a gate library and yields Boolean functions of
arbitrary complexity. These functions are often too large to be implemented by a single
gate available in the gate library. Unfortunately, breaking up a complex-gate into smaller
ones, when performed naïvely, generally yields an incorrect circuit – this happens due to
the delays associated with the outputs of the newly introduced gates and can lead to

134

Figure 6.11: Complex gate synthesis result of full STG

glitches or deadlocks.
In fact, logic decomposition in the context of speed-independent circuits is a very

difficult problem, that cannot always be solved. Petrify and MPSAT backend tools do a
good job in many situations, but occasionally they fail to converge to a solution and a
manual intervention by the designer is required.

We can also use Technology mapping to generate an implementation for this example.
The result is found in Figure 6.12.

Figure 6.12: Technology mapped implementation of the simple buck controller

The gate labels correspond to the gate names in the library. More information on the
synthesis of this example can be found in the tutorials of the Workcraft website [18].

6.2 Case Study 2: Multiphase buck controller

The second example is that of an Asynchronous Multiphase Buck Controller. Introduced
in [1], this consists of multiple control circuits, each for one of multiple PMOS and NMOS
transistors, each known as a phase. For reference Figure 6.13 contains the schematic of
the multiphase buck converter, with the control system which we aim to design.

A single uv signal is input to all phases, which signals under-voltage, and causes the
PMOS transistor to switch ON and the NMOS transistor OFF, as with the simple buck

135

from Section 6.1, in the currently active phase. Each phase has it’s own oc and zc

signals, which indicate the over-current and zero-crossing conditions of each phase, and
also switch the transistors the same as in the simple buck (OC switches PMOS OFF and
NMOS ON, ZC switches both transistors OFF).

Each phase becomes active one after the other, with connecting signals passing a
token indicating activity from one to the next. There is also a condition known as high-
load (hl), indicating a sudden increase in power demand, which activates all phases
at the same time, starting a charge as with the under-voltage, switching the PMOS
transistor ON, and the NMOS transistor OFF.

R
_
lo

ad

Th_nmos

Th_pmos

Th_nmos

Th_pmos

buck

PMOS[1]

NMOS[1]

PMOS[N]

NMOS[N]

control

oc1

zc1

ocN

uv

zcN

gn_ackN

gn_ack1

gp1

nrst

gp_ack1

gn1

gp_ackN

gpN

gnN

hl

over-current (oc)

V_0

I_max

I_max

V_0

V_ref

zero-crossing (zc)

under-voltage (uv)

V_minhigh-load (hl)

Figure 6.13: Schematic of a multiphase buck converter [1]

In this section, we will show how, using Asynchronous Concepts, we can specify the

136

separate components of such a circuit, creating a library. We can then create concept
specifications which import concepts from the library, and connect them to produce a
full specification.

Note: As we are focussing on how to build a system specification from compo-
nent parts in this section, for clarity we will not be showing the specification of every
component. Appendix A contains concept specifications and STGs for each component
not discussed in this section, and we will identify the relevant figures for each compo-
nent. We will also be focussing on the authoring of this specification, as opposed to the
verification and synthesis of this.

6.2.1 Single phase block diagram

We will begin by introducing a block diagram for a single phase of the controller, Fig-
ure 6.14, and briefly discuss each component. This diagram identifies how the compo-
nents interconnect, useful for the full system specification.

Initially, it can be seen in this block diagram that there are two clear sections,
Activation and Charging, which are connected by a handshake. We will discuss each
section individually.

Activation section

• HL_WAIT (High-load WAIT) - This is a WAIT element, which will be discussed
in Section 6.2.2. hl is a non-persistent analogue signal and thus cannot be used
directly as an input to an asynchronous digital circuit. The WAIT element serves
to sanitize this analogue signal, setting the digital signal san high when hl crosses
the threshold indicating it is high, signalling the high-load condition.

• HLH (High-load handler) A.1 - As the high-load condition sets all phases to charge,
this will take the hl signal (sanitized by HL_WAIT), and then request that this
phase, and all phases, activate, and set the charging section into charge mode,
switching the PMOS transistor ON and the NMOS transistor OFF.

• TC (Token control)A.2 - This takes a token from the previous phase, via get,
which will then send a request to the merge element, which in turn will activate
the charging section. The TC will also simultaneously send a request to the
TOKEN_TIMER, which will ensure that the token is kept in this phase for a

137

Figure
6.14:Block

diagram
ofa

single
phase

ofthe
controller

[1]

138

minimum amount of time. When the activation section is complete, the TC
will receive an acknowledge, and when both this and the acknowledge from the
TOKEN_TIMER are received, it will pass the token to the next phase, via the
pass signal.

• TOKEN_TIMER (Delay) A.3 - The token timer is started as the token is received
from get in order to delay the token being passed to the next phase via pass.
Delays are used multiple times throughout a phase, and each operate in the same
way to provide a delay.

• MERGE A.4 - This MERGE element aims to combine the request and acknowledge
handshakes from HLH and TC, both of which aim to activate the phase, into one
channel, which is passed to the charging section to activate it. This was, whether
the circuit is in high-load condition, or the token is passed, the charging section
will be activated.

The operation overview of the activation section is: Either a token will arrive at this
phase, or the high-load condition will signal. Either or both of HLH or TC will send
requests to MERGE, which will send a request to the charging section from one of
these. When the acknowledge signal comes from the charging section, MERGE will send
the acknowledge to one of HLH or TC, depending on which device sent the original
request. If HLH receives the acknowledge, then this will remove the latched hl signal
from the WAIT element, resetting it. When TC receives an acknowledge, it synchronises
with the acknowledge from the delay, which indicates it has been a minimum length of
time to hold the token, and then passes the token to the next phase.

Charging section

• UV_WAIT (Under-voltage WAIT) - A WAIT element (Section 6.2.2). uv is a non-
persistant signal, similar to hl and must be sanitized to be used with the digital
circuit. The output of this, san will then signal the under-voltage condition if uv
is deemed to be high.

• UVH (Under-voltage handler) A.5 - When the activation section sends a request,
this then checks the UV_WAIT for the under-voltage condition. If this is signalled,
then the acknowledgement is sent back to the activation section, so this can then

139

pass the token to the next phase (ai), and it sets the output request ro high,
sending it to the ZCH module.

• ZCH (Zero-crossing handler) A.6 - zc may not signal, or it may signal after the
request comes from UVH via ri. In either of these cases, the condition is ignored.
zc may go high before any request comes from UVH however, and in this case the
request, ro will go high, which is passed to OCH to switch both power regulating
transistors OFF. When ri goes high, which signals that uv has gone high, this
will then set ro low, to switch ON the PMOS transistor to fix the under-voltage
condition.

• OCH (Over-current handler) A.7 - This component controls the switching of the
transistors. The request from ZCH, via ri determines the switching of transistors.
When ri goes high, the NMOS transistor is switched OFF, and when ri goes low,
the PMOS transistor is switched ON. When the over-current condition is signalled
by oc, then this will switch the transistors in the opposite way.

• PMIN_DC (Delay control for PMOS) A.8 - This component is used to switch the
PMOS transistor ON for a minimum period of time. The request comes from OCH
when it sets rp high, for ri to PMIN_DC. This will set ro high, to switch the
PMOS transistor ON, and set rd high to start the delay (PMIN_TIMER). When
the transistor is acknowledged as being switched ON by gp_ack and the timer has
completed, signalled by ad, only then can the acknowledge be sent back to OCH.

• PMIN_TIMER (Delay) A.3 - When rd is set high from PMIN_DC this then will
set ad high after a delay, the minimum period of time the PMOS transistor can
be switched ON for.

• NMIN_DC (Delay control for NMOS) A.8 - This is the same as PMOS_DC, but
switches the NMOS transistor according to the requests from the rn signal from
OCH. It uses NMIN_TIMER to switch the NMOS transistor ON for a minimum
period of time.

• NMIN_TIMER (Delay) A.3 - Similar to PMIN_TIMER, this will allow the NMOS
transistor to be switched ON for a minimum period of time.

The operation overview of the charging section is: When a request comes from the
activation section, UVH will then check for under-voltage. When this signals, it sends

140

a request to ZCH. This can either pass the request straight to OCH, switching the
NMOS transistor OFF and the PMOS transistor ON, if zero-crossing either signals after
under-voltage, or does not signal at all. If it signals before under-voltage, then it sends a
request to OCH to switch the NMOS transistor OFF, but waits for a request from UVH
before removing the request, which switches the PMOS transistor ON.

OCH will switch the signals as requested from ZCH, but if the over-current condition
is signalled, then it switches the PMOS transistor OFF and the NMOS transistor ON.
OCH uses request signals rp to switch the PMOS transistor, and rn to switch the NMOS
transistor. These signals are received by PMIN_DC and NMIN_DC respectively, which
will switch the transistors according to the requests. If being switched ON, then a delay
is used to ensure that the transistors are ON for a minimum length of time.

6.2.2 WAIT element

Figure 6.15: A WAIT element

A WAIT element is an Asynchronous Arbitration Primitive [47]. It is designed to allow
a hazardous signal to be used as an input to an asynchronous digital circuit. Analogue
signals are said to be hazardous to digital circuits, due to the fact that they do not have
the two states, high and low, and as such a signal may be a value in the middle, and the
value must be decided for use in the digital domain.

Another type of hazardous signal is one that is non-persistent. In the multiphase
buck, the signals hl and uv are non-persistent. This is because these signals signal to
every phase in the system, and these conditions can be solved by any phase. For example,
when uv signals, the current phase will switch the PMOS transistor ON and the NMOS
OFF, and the token will pass to the next phase. If the under-voltage condition stops
signalling while the next phase is reacting to it and switching the transistors as necessary,
then this may lead to an unspecified behaviour of the circuit.

Due to this non-persistence, the WAIT element must allow the input, sig to transi-
tion freely. The other signals, ctrl and san form a handshake, with ctrl being used to

141

set the device into WAIT mode, where it then waits for the input sig to transition high.
When this occurs, this is captured by setting san high, sanitizing the non-persistent sig.
At this point, the state of the input signal does not matter, and san will remain high
until the ctrl signal is set low again, at which point san will transition low.

From this informal description of the operation, we can provide the concepts in Fig-
ure 6.16.

wait sig san ctrl = behaviour <> initState <> interface

where

behaviour = handshake ctrl san <> rise sig~> rise san

initState = initialise0 [sig, san, ctrl]

interface = inputs [sig, ctrl] <> outputs [san]

Figure 6.16: Concept specification for a WAIT element

The translated STG of these concepts can be found in Figure 6.17. Note, we have
resynthesized this to provide a clearer handshake. This correctly captures the behaviour,
freely allowing sig to transition, but with san capturing the high transition of sig only
when ctrl is high, when the system is in WAIT mode.

Figure 6.17: Resynthesized WAIT element STG translated from concepts

This specification unfortunately does not capture the real world operation of such an
element, where it is possible for a conflict to occur when sig transitions low before san
captures this. This can be seen in the synthesized circuit in Figure 6.18, where sig can
transition high, which will need to propagate through the OR-AND gate in order for
san to go high. Following this, san would hold the output high until ctrl was set low.
However, if sig transitions low before this has propagated through the OR-AND gate,
then the san would not transition high at all.

This issue, and the contrasting usefulness in sanitizing non-persistent signals in the
multiphase buck controller is why the WAIT element is interesting and important.

142

Figure 6.18: Figure 6.17 synthesized

Figure 6.19: Implementation of a WAIT element using an ME element

This leads us to a more robust implementation. This implementation uses a mutual
exclusion element, or ME-element (Section 3.1.2) as seen in Figure 6.19. The operation
of this circuit is: While sig is 0, the input r1 to the ME-element is high, which causes
the g1 to go high. When ctrl transitions high, setting the input r2 high, san cannot
go high from the ME-element output g2 until sig transitions high, setting r1 low and
therefore g1 low. This will then be held as long as ctrl is high, as while san is high,
g1 can never go high.

As the circuit-specific concept library already features an meElement concept, we
can reuse this, producing the concept specification as seen in Figure 6.20

wait sig san ctrl g1 = behaviour <> initState <> interface

where

behaviour = bubble sig (meElement sig ctrl g1 san)

initState = initialise0 [sig, san, ctrl, g1]

interface = inputs [sig, ctrl] <> outputs [san] <> internals [g1]

Figure 6.20: WAIT element specified using an ME element

Note that in Figure 6.19 the g1 output of the ME-element is not connected to an output
pin. This output is not used, and therefore can be removed. However, in the concept
specification we still include a signal g1 which is specified as an internal signal. A
limitation of concepts is that we cannot use a derived concept but ignore certain signals

143

from it. Future development of concepts may provide a method of allowing certain
behaviours of g1 to be included, such as the mutual exclusion with g2, and therefore
san, but ignore the signal itself, as it serves no purpose. For this case study, however
we must include this signal. Specifying it as an internal signal means that we can still
observe its behaviour in a translated STG, such as in Figure 6.21.

Figure 6.21: STG of a wait element implemented using an ME element

The WAIT element in the specification of the multi-phase buck will use the concept
component variant which uses an ME-element, and the concepts we have provided in
this section will be imported into the specification, along with the concepts featured in
Section A.

6.2.3 Full specification

With concept specifications for each block in the diagram (Figure 6.14), we can now
start to build a specification for the full multiphase buck controller. To begin with, we
can start by deriving the specification for each of the larger sections, activation and
charging.

Activation section specification

This section uses; a WAIT element, the high-load handler, the token control and a timer
for the token control, and finally a Merge element. We can begin by importing these
into the activation concept module, as in Figure 6.22

144

module Activation where

import CircuitConcepts

import WAIT

import HLH

import TC

import D

import Merge

Figure 6.22: Module name and imports for the activation specification

Since the behaviours are all specified in the specific files, this specification becomes
a description of how these components interconnect. To ease this process, we try to
combine some of the components. For example, HL_WAIT is used simply to provide a
sanitized hl signal to the HLH. Thus, we can produce a concept which connects these,
Figure 6.23

hlh_block hl san whl ro ao wait_i1 =

hlwait <> hlh san whl ro ao <> interface

where

hlwait = wait hl san whl wait_i1

interface = internals [san, whl]

Figure 6.23: hlh_block concept

This concept will take in the hl signal from the environment, and sanitize it in the
HL_WAIT component. This is controlled by the whl signal in the HLH component, and
the sanitized signal is passed from HL_WAIT to HLH via signal san. These signals were
defined as inputs and outputs to these components, but in this instance, can be declared
as internal signals, as they do not come from the environment, nor are they output to the
environment, they are simply used to connect these two circuits. For example, Figure 6.24
contains two components, component_a (6.24a) and component_b (6.24b). Both of
these have two inputs and two outputs. If we connect the outputs of component_a
to the inputs of component_b, then the outputs of component_a no longer affect the
environment, and the environment no longer affects the inputs of component_b, we have
control over the signals connecting these two components, and thus they are internal,
as in Figure 6.24c.

145

(a) Component_a (b) Component_b

(c) Internal signals connect them

Figure 6.24: Connecting components with internal signals

For this reason, we declare them as internals, which supersedes any previous interface
declarations of input or internal, as discussed in Section 3.1.1. This block can now be
used as part of the specification for the activations section.

We can now do the same for the token control and token timer, connecting these.
The tc_block concept can be seen in Figure 6.25.

tc_block get pass ro ao rd ad tt_ro tt_ao tt_csc1 =

timer <> tc get pass rd ad ro ao <> interface

where

timer = delay rd ad tt_ro tt_ao csc1

interface = internals [rd, ad, tt_ro, tt_ao]

Figure 6.25: tc_block concept

tc_block takes in the get signal from a previous phase, and pass will output the token
to the next phase when this has completed. Connecting the delay component to the
token control means that the signals rd and ad are now internal signals, and as such
are declared. We also declare the two other signals in the delay, named here tt_ro and
tt_ao, as internals. These would normally be an output and an input respectively, but
this part of the circuit is not included within the specification so we declare it as an
internal. This block can also now be used in the specification for the activation section.

It may be necessary to translate the activation section on its own, to ensure that its
operation is as expected. To do this, we can write a component specification, which

146

uses the above derived hlh_block and tc_block. Due to the number of signals in this
section, this will have a large number of signals in the concept declaration. Thus, we
will split these up and label them. The labels are the same as those used to label the
interconnections between components in Figure 6.14, however as per the requirements
of Haskell syntax when using these as parameters, we us lower case characters.

component

hl hlw_san wait_i1 -- HL_WAIT signals

hlh_whl hlh_ro -- HLH signals

get pass tc_rd tc_ro -- TC signals

tt_a tt_ro tt_ao tt_csc1 -- Token timer signals

mrg_ai1 mrg_ai2 mrg_ro mrg_i1 mrg_i2 -- Merge signals

uvh_ai -- Signal from charging section

= hlh_block hl hlw_san hlh_whl hlh_ro mrg_ai1 wait_i1

<> tc_block get pass tc_ro mrg_ai2 tc_rd tt_a tt_ro tt_ao tt_csc1

<> merge hlh_ro tc_ro mrg_ai1 mrg_ai2 mrg_ro uvh_ai mrg_i1 mrg_i2

Figure 6.26: Concept specification for the activation section

Figure 6.26 contains the activation section concept specification. While this may be
complicated, it uses only three concepts in order to specify the section. The behavioural
details are within the concepts, and signals which are shared between the concepts
hlh_block, tc_block and merge will connect these components.

This can be translated to an STG, which can then be simulated, verified and syn-
thesized if necessary. This STG can be viewed in Figure A.25. Due to the large number
of signals, this produces a large STG, which may be harder to decipher as much infor-
mation as the concepts which specify it. Many of the signals are internals, and this is
due to there being many signals which are the output of one component and the input
to another, and thus can be declared as internal signals.

Some internal signals also serve other purposes, such as signals used to resolve CSC
conflicts, which for this case study have been solved previously. Some signals also are
used as intermediate signals, such as a signal from the output of a logic gate to the
input of another logic gate. This is due to a limitation of the Asynchronous Concepts
language, which may be solved with future research and development.

We could have used a higher-level concept function, such as function or complexGate,

147

however the behaviours we are trying to specify with the logic gates which use interme-
diate signals are not aimed at using the physical logic gates described. Instead, we are
trying to capture some behaviours, which may or may not translate to the logic gates
used.

Charging section specification

The components in the charging section are; a WAIT element, the under-voltage handler,
the zero-crossing handler, the over-current handler, two transistor delay controllers, and
two minimum time, or delays for the transistor delay controllers. We can begin this
concept specification by importing other modules as seen in Figure 6.27.

module Charging where

import CircuitConcepts

import WAIT

import UVH

import ZCH

import OCH

import DC

import D

Figure 6.27: Module name and imports for the charging specification

This specification will also become a description of what components are in the circuit,
and how they interconnect. We will combine the UV_WAIT and UVH components into
one concept for ease, and we will also create a concept which combines a transistor delay
controller and delay timer into one concept, which can then be used for both PMIN_DC
and NMIN_DC.
The uv_block concept is specified as in Figure 6.28. This provides the WAIT element
to sanitize the input signal uv, and this is controlled by wuv. It is then passed into the
UVH component via the signal san. This means that the signals wuv and san are signals
used to connect the two components, and thus are declared as internal signals.

For the transistor delay controllers, PMIN_DC and NMIN_DC we assume that the
delays which are used to ensure that each transistor is switched ON for a minimum
length of time are the same. Thus we can create a reusable concept, dc_block, which

148

uv_block uv wuv san ri ai ro ao uvw_i1 uvh_i1 =

uv_wait <> uvh wuv san ri ai ro ao wvh_i1 <> interface

where

uv_wait = wait uv san wuv uvw_i1

interface = internals [wuv, san]

Figure 6.28: uv_block concept

will take in the request signals from the OCH component, it will connect to a delay
component, and have outputs for switching either the PMOS or NMOS transistor. We
specify this block in Figure 6.29.

dc_block ri ai rd ad ro ao d_ro d_ao d_csc1 =

timer <> dc ri ai rd ad ro ao <> interface

where

timer = delay rd ad d_ro d_ao d_csc1

interface = internals [ri, ai, rd, ad, d_ro, d_ao]

Figure 6.29: dc_block concept

For either of the PMIN_DC or NMIN_DC components, it can be seen that this will work,
removing the need to specify a similar concept for both. The delay is also included. We
also define some internal signals which are the interconnecting signals between these two
components.

We will now produce a component concept for translation of this charging section,
for simulation and further use. Again, many signals are included in this specification, so
we will label them using the labels provided by the block diagram, but with lower case
charactes, as with the activation section. (Figure 6.14). This will use a combination of
the concepts specified in this section, or concepts which are specified in Appendix A.
The charging section concept specification can be viewed in Figure 6.30.

Once again this translates to produce a large STG, as there are many signals, par-
ticularly internal signals used for CSC resolution, intermediate signals, and component
interconnections. However, it is not necessary that the translated STG be visualized. The
STG can simply be immediately passed into another tool for verification and synthesis.
The charging section STG can be found in Figure A.26.

149

component

mrg_ro -- Signal from activation section

uv uvw_san uvw_i1 -- UV_WAIT signals

uvh_wuv uvh_ro uvh_ai uvh_i1 -- UVH signals

zc zch_ai zch_ro zch_nozc zch_i1 -- ZCH signals

oc och_ai och_rp och_rn -- OCH signals

pdc_ai pdc_ai -- PMIN_DC signals

pt_a pt_ro pt_ao pt_csc1 -- PMIN timer signals

ndc_ai ndc_ai -- NMIN_DC signals

nt_a nt_ro nt_ro nt_ao nt_csc1 -- NMIN timer signals

gp gn gp_ack gn_ack -- Signals to/from transistors

= uv_block uv uvh_wuv uvw_san mrg_ro uvh_ai uvh_ro zch_ai uvw_i1 uvh_i1

<> zch zc uvh_ro zch_ai zch_ro och_ai zch_nozc zch_i1

<> och oc zch_ro och_ai och_rp pdc_ai och_np ndc_ai

<> dc_block och_rp pdc_ai pdc_rd pt_a gp gp_ack pt_ro pt_ao pt_csc1

<> dc_block och_np ndc_ai ndc_rd nt_a gn gn_ack nt_ro nt_ao nt_csc1

Figure 6.30: Concept specification for the charging section

Complete specification

Finally, we can now produce a full specification. As shown in the block diagram (Fig-
ure 6.14) these two sections interconnect through two signals. Thus, there are several
ways we can do this. For this case study, we will reuse a lot of the concepts from the
activation and charging section, and produce a system specification. Initially, we must
import all of the necessary modules (Figure 6.31).

As this is a system concept we must now declare the signals. This serves to make
the system concept specification itself to be shorter, as the component specifications
for activation and charging are quite long, and feature many signals. Note that these
declared signals also all start with capital characters, unlike with the specifications for
activation and charging. This is due to Haskell syntax once again, where signals that
are declared in this way act like data types, which must be declared at least with the
first character being a capital letter. The signals therefore begin with capital letters, but
match the signal names as given in the block diagram for a single phase, Figure 6.14.
The signals for this system, can be defined as seen in Figure 6.32.

150

module Concept where

import CircuitConcept

import WAIT

import HLH

import TC

import D

import Merge

import UVH

import ZCH

import OCH

import DC

import Activation

import Charging

Figure 6.31: Imports and module name for a single phase concept specification

We can specify the behaviour of a single phase of this multiphase buck, using previously
derived concepts, as in Figure 6.33.

With the signals declared as they are, this makes for a clearer concept, only containing
the concepts used to specify the behaviours. Note that in this, we have specified that
the signals MRG_ro and UVH_ai are internals. This is because these signals are used to
communicate between the activation and charging sections. As we are specifying the
whole system, these are not needed to be viewed by the environment, so specifying them
as internals supersedes any specifications of these signals as inputs or outputs.

This specification can now be translated to an STG, this can be viewed in Figure A.27.

6.3 Summary

In this chapter, we have shown how a specification can be built, using real examples. The
first case study used a simple, multi-scenario buck controller. This included describing
the behaviours of each scenario, using an informal description of the operation of each
scenario. Between each scenario, there were common concepts, which were reused by
importing the specification containing the reusable concept.

151

data Signal =

HL | HLW_san | WAIT_i1 |

HLH_whl | HLH_ro | -- HLH signals

Get | Pass | TC_rd | TC_ro | -- TC signals

TT_a | TT_ro | TT_ao | TT_csc1 | -- Token timer signals

MRG_ai1 | MRG_ai2 | MRG_ro | MRG_i1 | MRG_i2 | -- Merge signals

UV | UVW_san | UVW_i1 | -- UV_WAIT signals

UVH_wuv | UVH_ro | UVH_ai | UVH_i1 | -- UVH signals

ZC | ZCH_ai | ZCH_ro | ZCH_nozc | ZCH_i1 | -- ZCH signals

OC | OCH_ai | OCH_rp | OCH_rn | -- OCH signals

PDC_ai | PDC_rd | -- PMIN_DC signals

PT_a | PT_ro | PT_ao | PT_csc1 -- PMIN timer signals

NDC_ai | NDC_rd | -- NMIN_DC signals

NT_a | NT_ro | NT_ao | NT_csc1 -- NMIN timer signals

GP | GN | GP_ack | GN_ack -- Signals to/from transistors

deriving (Bounded, Enum, Eq)

Figure 6.32: Declaration of all signals in a single phase of the multiphase buck

Following this, we used the choice combination template (Section 4.6) to combine all
three of these scenarios to provide a full system specification. This was then translated to
an STG, and we simulated this to ensure that it works as expected. We then verified the
specification, and synthesized it to produce a logic gate implementation, and synthesized
with technology mapping to produce an improved implementation.

The next case study was more complex, a single phase of a multiphase buck controller.
This had some similar features to the simple buck controller, with the same conditions
occurring, and them being corrected in a similar fashion. However, each phase of this
performs the same operation, and there can be many phases. There were two sections
of this system, both of which were described.

To create a specification for this system, we used a block diagram, and specified
the behaviour of each block in the Appendix. This is with the exception of the WAIT
element, an interesting component which sanitizes potentially hazardous signals. We
discussed this further because the concepts to describe the behaviours do not produce
a particularly safe implementation, and as such, we use a mutual exclusion element to

152

system =

hlh_block HL HLW_san HLH_whl HLH_ro MRG_ai1 HLW_i1

<> tc_block Get Pass TC_ro MRG_ai2 TC_rd TT_a TT_ro TT_ao TT_csc1

<> merge HLH_ro TC_ro MRG_ro MRG_ai1 MRG_ai2 UVH_ai MRG_i1 MRG_i2

<> uv_block UV UVH_wuv UVW_san MRG_ro UVH_ai UVH_ro ZCH_ai UVW_i1 UVH_i1

<> zch ZC UVH_ro ZCH_ai ZCH_ro OCH_ai ZCH_nozc ZCH_i1

<> och OC ZCH_ro OCH_ai OCH_rp PDC_ai OCH_rn NDC_ai

<> dc_block OCH_rp PDC_ai PDC_rd PT_a GP GP_ack PT_ro PT_ao PT_csc1

<> dc_block OCH_rn NDC_ai NDC_rd NT_a GN GN_ack NT_ro NT_ao NT_csc1

<> internals [HLH_ro, MRG_ai1, TC_ro, MRG_ai2]

<> internals [ZCH_ro, OCH_ai, MRG_ro, UVH_ai]

Figure 6.33: Concept specification for a single phase of the multiphase buck

provide the implementation.
Following this, we generated component specifications of both sections, activation

and charging, importing the component specifications from the relevant blocks, trans-
lating and displaying the result. In both cases, the STG was large and difficult to
comprehend, but proves that an STG can be produced, which can then be used with
verification and synthesis tools.

Finally, we created a system specification for the whole phase of the controller. This
used declared signals, which in turn produced a more compact concept specification, and
importing concepts reused from all of the previously specified blocks. This produced an
STG, which was very large also. The size of these STGs was due to the large number
of internal signals, which are used for the interconnecting signals between components,
as well as for CSC resolutions, and due to limitations in the Asynchronous Concepts
language, intermediate signals between gate-level concepts in specifications.

153

Chapter 7

Related Work

There are several methods of designing asynchronous circuits. These descriptions may
represent a system in one of several ways, for example in a text form or as a graph. Each
one has benefits for designing a certain type of asynchronous circuits, and therefore has
several pitfalls for designing another type of circuit.

There also exists several design methodologies for breaking a system down into sep-
arate sections to be designed separately, similar to the simple buck controller example
in Section 6.1. This sort of methodology we refer to as Modular design. This means
that changes can be made to one module without affecting the functionality of others.
Because each module will be smaller, finding an area to make changes will also be easier,
unlike with the monolithic approach, where a large design can make finding a certain
transition or read-arc fiddly.

As discussed throughout this thesis, Asynchronous Concepts are a language for de-
scribing an asynchronous circuit at various levels, from the low-level of signal interactions,
to higher-level concepts which use Boolean expressions. All concepts can then be com-
posed with other concepts to produce a specification, or simply concepts which can be
reused. A specification can then be automatically translated to a form which is usable in
automated verification and synthesis, making for a quick and clear design process, and
allows reusability of any concepts used in a design.

In this chapter, we will discuss and compare multiple methods of asynchronous and
modular design methods, including the methodology introduced in this thesis. We include
Table 7.1 which contains key information based on several metrics of comparison. These
metrics help us to discuss how design methods differ, and are as follow:

• Asynchronous circuit support - Do the methods feature support for asyn-

154

chronous circuits?

• Software tool support - Which of these methods have some form of software
which can assist in the design of a circuit? This metric is focussed on whether
there is a tool which can automate the given methodology, and not on whether
the tool has a GUI or is supported by multiple platforms etc.

• Composition - This metric shows whether a method allows for composition of
smaller elements of a design, producing a larger element which can in-turn be
composed.

• Gate-level design - Can the design methods allow for logic gates to be designed?
Can these then be referenced to abstract the complexity of the gates when design-
ing systems?

• Signal-level design - Is it possible to design a system based on events which
occur in a system or the environment, such as signal transitions on inputs?

• Protocol-level design - Can the listed design methods allow for signal protocols,
such as handshakes, to be described and then be used in abstract to avoid repetition
of the causal relationships between these signals?

• Design focus - Asynchronous circuits can be ‘little digital’ focused, for example a
control system, which interacts with and aims to control analogue circuitry using a
control signals and sensors. Asynchronous circuits can also be ‘big digital’ focused,
where they are aimed at data operations, with wires which are multiple bit widths.

Following this table we will discuss each of these methodologies in turn, comparing them
to Asynchronous Concepts.

155

Name Asynchronous Tool Composition Gate Signal Protocol Design
support support -level -level -level Focus

Algebra of
Parameterised
Graphs

X X X X X Little
digital

Algebra of
Switching
Networks

X X X Little
digital

Balsa X X X X Big
digital

Biscotti X X X Big
digital

Caltech
Synthesis
Method

X X X X X Little
digital

Communicating
Hardware
Processes

X X X X X Big
digital

Cλash X X X Big
digital

Conditional
Partial Order
Graphs

X X X X Little
digital

DI Algebra X X X Little
digital

Discriminators X X X X X Little
digital

Hierarchical
Design of DI
Systems

X X X X Little
digital

Lava X X X Big
digital

Proteus X X X Big
digital

Resynthesis X X X X Little
digital

Snippets X Little
digital

Structural
Design

X Modular

Tiempo X X X X Big
digital

Uncle X X Big
digital

Asynchronous
Concepts
(proposed
method)

X X(Plato) X X X X Little
digital

Table 7.1: A comparison of Asynchronous Concepts with similar methods

Algebra of parameterised graphs [48] has been introduced to overcome limitations
of Conditional Partial Order Graphs (CPOGs), such as the lack of structural abstraction
and composition methods, as well as the difficulty of formal analysis and verification.
Similar to CPOGs, PGs target little digital systems and support signal and gate level

156

modelling of asynchronous circuits. PGs have rudimentary support in Workcraft.

Algebra of Switching Networks [49] specifically addresses signal and transistor
level design of little digital circuits. The key differentiating feature of this modelling
approach is that both structure and behaviour of a system can be captured by the same
mathematical expression and therefore both analysis and synthesis tasks can be achieved
by rewriting the expression according to specific sets of rules. This modelling method
supports various forms of composition, however there is currently no tool support.

The algebra of PGs, the algebra of switching networks, and Asynchronous Concepts
have a similar idea, using a textual method of representing a graph. For PGs and switch-
ing networks, this becomes a form of equation, which may be simplified in this form,
and become smaller than an equivalent graph, but not necessarily easier to comprehend.
With concepts, the aim is to describe the operations in one of several ways, which is
chosen by a designer, to help them create a specification which is easy for them to
understand.

Balsa [50][51] is a design approach which features a Register Transfer Language (RTL)
like language, similar to VHDL or Verilog, which aims to produce both data-driven and
control circuits. This approach closely follows the process of the Phillip’s Tangram com-

piler [52]. A specification written in this language is used to produce a circuit imple-
mentation in two steps. First, a Balsa program is converted into a format describing a
network of handshaked components. This format can then be used for simulation, cir-
cuit diagrams and in the second step, which maps handshaked components on to library
components for synthesis.

RTL languages are regularly used for synchronous design, thus a designer can adapt
more easily to asynchronous design. These languages feature the ability to easily per-
form operations on multiple bits unlike the proposed approach, and uses programming
constructs such as conditional statements for control. Specifying a control system can
lead to a complicated program which can be difficult to comprehend, in comparison to
concept specifications, which explicitly states signal interactions and the use of protocols.
RTL languages do allow for reuse of modules, something we address with the proposed
method, and this can speed up the design process. Resynthesis is commonly used for
the optimisation of Balsa control circuits. However, in Balsa the set of predefined com-
ponents is fixed, so a designer cannot easily introduce new components. This means
Balsa does not support composition natively, as Asynchronous Concepts do.

Biscotti [53] is a C-like language which features ’forever ’ blocks, in which code runs

157

sequentially, but all blocks run concurrently to each other. This design method starts
by specifying a circuit. This is then compiled into formats for use by various tools, such
as Petri nets for verification in Workcraft, for optimisation and net list generation. If
these stages are successful, then the circuit can be synthesized. This is designed for
data-driven asynchronous systems.

Similar to Balsa, a C-like language can be easy to adapt to, as designers are likely
to have programming knowledge. Biscotti, however is designed primarily for data-driven
circuits, for specifying data operations which run in parallel, and communications between
them. As with Balsa and RTL languages in general, specifying an asynchronous control
system can become complex, with more signal interactions to describe, however, reuse
of written code and modules, as with Balsa, Biscotti and Asynchronous Concepts, can
help to produce a quicker design process.

The Caltech Synthesis Method [54][55][56] uses individual signal interactions,
such as those for control systems, and these are specified using a regular expression style
language, based on Communicating Sequential Processes (CSP). After these programs

have been specified as a list of processes, they are then compiled, where a process is
decomposed into a set of processes which are equivalent to the original. This occurs
until all processes are in a simpler form that the compiler can continue to use. Next
is handshake expansion, where handshaking replaces connections between each process.
During this, some process orders may be changed which do not affect the operation,
but may avoid issues such as deadlocks, this is known as reshuffling. Finally, operator
reduction is performed to reduce the number of operators used in the new set of pro-
cesses, by finding operators which can be described by other more standard operators.
After this, the program will be synthesizable using a library of standard operations.

As with Asynchronous Concepts, the Caltech Synthesis Method is used to describe
causalities at the level of signal transitions. Because of the CSP language, understanding
a program can be complicated if there are more than a handful of signals, and while
writing a specification is somewhat simpler than in that of an RTL language, reusing
a CSP specification is not as simple, nor as simple as with the reuse of concepts and
scenarios in the proposed method.

Communicating Hardware Processes (CHP) [57] is a programming language
which is primarily used for designing asynchronous circuits. A program written in CHP
consists of a fixed set of concurrent processes which communicate by messages. These
processes are written separately, the code in each of which is usually sequential but

158

some in-process concurrency is allowed, and a full system is produced from parallel
composition of these processes. CHP processes use variables for data manipulation and
for signal interactions, supporting standard programming constructs such as ‘if..then’
statements for example. This allows for selection of signals, useful for control systems.
Processes do not share these variables however, and data is passed in messages through
communication channels. There is a tool as part of CHP, called CHPsim which simulates
CHP programs.

Similar to the Asynchronous Concepts language, CHP provides a language for spec-
ifying asynchronous circuits, different than those methods which use an RTL language,
and CHP is popular for this reason. Specifying control through signal states is sim-
pler, and data operations can be specified also. It is similar to Biscotti in that blocks of
sequential code are written, and these all run concurrently, but CHP offers simpler meth-
ods of specifying the communication channels between these blocks. Reuse is therefore
available in CHP, but a control system written in CHP and featuring many signals and
interactions can still be difficult to specify, comprehend and debug.

Cλash is another tool which is implemented in Haskell. [58][59]. There are similarities
to Lava and is focussed on synchronous data processing circuits. It has some cross-
over features with Lava, such as builtin verification, and the ability for users to define
functions. Cλash also features built in synthesis and simulation, avoiding the need to
export VHDL, however this feature remains. This allows a simpler way of specifying
synchronous circuits, which may be more natural for designers, however Haskell as a
language features huge differences to programming languages like C, which may be an
issue for adoption.

The implementation of Asynchronous Concepts also uses Haskell as the host lan-
guage, but our focus is on asynchronous control circuits, therefore the designer only
works with a very small subset of Haskell using predefined domain-specific primitives,
i.e. no advanced Haskell knowledge is required. We use Haskell because it provides
powerful functional programming abstractions, significantly simplifying our implementa-
tion, and allowing us to use algebraic approaches to the specification of event-interaction
graph.

Conditional Partial Order Graphs (CPOGs) [37][60] target a class of systems
that are comprised of multiple acyclic behavioural scenarios, such as microprocessors [61].
CPOGs are equipped with powerful scenario-level composition techniques that are au-
tomated in Workcraft. CPOGs can also be described in algebraic form (see Algebra of

159

parameterised graphs). Structural composition of CPOGs is very limited and not auto-
mated at present. The CPOG model has been extended to model asynchronous circuits
with cyclic scenarios [62] at the levels of signals and gates, however, automation in this
context is also limited at present.

CPOGs, like Asynchronous Concepts, do provide the methods to describe signal
interactions, and even gate behaviours, but not protocols, and the lack of composition
means that a single CPOG must be used to describe a whole system, as opposed to an
individual section which can be described separately and reused. Due to the conditions
that determine which partial orders are active at a time, CPOGs can be used to describe
the operations of devices like a processor, which depending on the polarity of a set
of signals, will perform different operations. This makes CPOGs better suited to little
digital systems which are composed of several defined circuits, and generate a structure
to determine which circuit is active based on a set of control signals.

DI Algebra, introduced in [63], is a method of describing systems as algebraic equa-
tions, specifying causal relations between signal transitions, making it ideal for asyn-
chronous control systems. Each equation represents an operation of the specification,
and these can be composed and simplified for a more compact version. All equations can
then be composed to find an equation for the whole specification and again simplified
for a more compact version.

The proposed method is similar to DI algebra, however Asynchronous Concepts are
described textually and as such, simplification does not occur at concept level, but during
the composition and combination steps. To the best of our knowledge there are no tools
or methodologies supporting compositional design of asynchronous circuits based on DI
algebra and thus it is incompatible with the rest of our design flow and not suitable for
use in industrial settings.

A Discriminator is a “black box” which contains a model, usually a PN, but to
everything outside of the discriminator, only the input and output pins are known [64].
This allows each discriminator to contain a separate model of a function of an asyn-
chronous system, which is designed and verified separately. Each discriminator can then
be composed, connecting the inputs of some with the outputs of others, and vice versa.
Some discriminators can be used multiple times in a specification, and even in other
specifications.

This methodology has plenty of similarities to Asynchronous Concepts, in that a
specification can be broken down into different functions, operating modes, or scenarios,

160

specified separately and then composed, connecting outputs and inputs of each separate
unit. Discriminators can be reused both within a specification and in further specifica-
tions, as can concepts. However, each discriminator is still a PN model, which may be
problematic to specify if it is a large function, and difficult to comprehend for debug-
ging, editing and future use. Behavioural specification using a language such as concepts
can be beneficial in capturing behaviours in a manner that is easier to understand, and
the lack of tool support for discriminators means that manual composition is necessary,
which can lead to errors with larger specifications.

Hierarchical design of DI systems [65] provides a set of building blocks, either
Delay Insensitive (DI) or hybrid (Non-DI) blocks, which are not necessarily individual
logic gates. These are composed by describing the interconnections between the blocks,
and this forms a module. Modules can then be composed with other modules in the
hierarchy. Signal Transition Graphs are used in this method for specification of a circuit
from blocks and modules, and this can be used for analysis of the circuit.

This has some similar ideas to Asynchronous Concepts. Both feature a lower level of
specification (building blocks or concepts) which is used to create an STG specification
(modules or scenarios) and these are then combined in some manner to produce a
full system specification. The difference is that the building blocks provided in the
hierarchical design method are set, and Asynchronous Concepts allows for users to define
their own low level specification components.

Lava [66] is another tool written in the functional programming language Haskell,
like Cλash, with its own associated design flow able to design data-driven or control
circuits, and all design steps can be performed in Lava. It features several predefined
functions, such as simple logic gates which can be used either as direct operations for
circuits, or as part of user defined functions. A user can define a function in terms of
inputs, operations on these inputs, and outputs. A circuit is defined as inputs, stored
in variables, operations are performed on these using functions which can be sequential
or parallel, and then variables are set as outputs. Lava has built in verification, using
a parameter which defines verification property. This returns a logic equation which is
automatically processed, returning a value determining whether the property is satisfied.
Lava also features the ability to generate code for other languages, primarily VHDL,
which can then be used by other tools for simulation and synthesis.

Due to Lava being a Haskell based language, it features similar issues to Cλash.
It features fairly different syntax to languages used in other existing methods. Unlike

161

Cλash, Lava does not feature built in tools for synthesis and simulation, and as such,
specifications must be converted into VHDL for these processes, a feature which is built
in.

Proteus [67][68] introduces a design flow which uses Pipelines. Pipelines are the
channels which pass data between stages of an asynchronous system which in some cases
can cause bottlenecks, a major source of delay as data passage is slowed. Proteus is a tool
which automatically analyses and optimises a pipelined system to reduce bottlenecks and
delays. It takes in an RTL language or a CSP like specification. This is then synthesized,
producing a net list which is then analysed and optimised to produce a new pipelined
implementation which will have the best performance.

Proteus takes in a specification in the form of CSP or VHDL, which can be useful for
designers who may prefer one language over another, however Proteus is a tool which
analyses and optimises a previously designed pipelined system which are generally data-
driven systems, where as Asynchronous Concepts are aimed at designing an optimised
asynchronous control system from the ground up.

Resynthesis [32] is the process of decomposing a full model and recomposing it of
selective components to reproduce a smaller model. This can be used to reduce the
number of signals to connect two separate models for example.

Resynthesis requires full models which are decomposed. For the proposed method-
ology, we take a ground-up approach to design, starting with concepts to be composed,
and producing specifications which can be combined for a full system. Resynthesis can be
used at a later stage of the proposed approach, once the complete model of a system (or
a subsystem) has been obtained, which in some cases can produce a more compact and
more easily comprehensible STG from one which has been translated from Asynchronous
Concepts.

Snippets [69] are smaller FSM models which are used to compose full FSMs of
larger systems. Snippets describe the operation of a part of a system in terms of input
and output alphabets, and in which ways these snippets can fail. When composed with
other snippets they can produce a working system state graph model.

With Asynchronous Concepts we want to go deeper than snippets and compose a
component from concepts which are responsible for capturing signal behaviours for sys-
tem features, such as handshakes, mutual exclusion, synchronisation, etc. As discussed
in Section 2.1, FSMs feature some disadvantages when specifying asynchronous circuits,
and these apply to the snippets methodology too.

162

Structural Design [70] encompasses the re-usability of modular components. A
component design can be used multiple times across full device designs in conjunction
with several other circuit modules. These modules can be changed in some way without
affecting how they are used in a full device and how they interact with other modules.
This method aims at promoting reuse of circuit designs across different full systems, and
reduces the need for redesign of correctly working systems for each new device.

The ideas of this method are similar to the ideas of Asynchronous Concepts, to
reduce design time by reusing previously designed elements. However, this method is at
a much higher level, using fully designed and tested components, where as we propose
to allow reusability when modelling at circuit level, using composed concepts.

Tiempo [71] introduced a design flow which uses a tool called Asynchronous Circuit

Compiler(ACC). This tool uses Verilog to model operations and communication channels
between asynchronous entities, which are normally handshaked. The tool allows the use
of several asynchronous architecture types aimed at data-driven circuits, i.e. pipelined,
parallel, sequential etc. Synthesis uses libraries which contain asynchronous cells, and
constraints, such as timing information, have to be specified for the tool. First, a
netlist is produced and further constraints produced by the tool. A place and route tool
then optimises and verifies the system based on the constraints, and a few necessary
properties.

Tiempo uses Verilog as a specification language, another RTL language. This has
some differences to design flows like Balsa, mainly in how it verifies and synthesises a
specification, but the advantages and disadvantages are similar. These design methods
are usually used for data-driven systems, making them unsuitable for control systems.

Uncle is introduced in [72]. It is a tool which uses a design approach aimed at
producing an implementation using Null Convention Logic (NCL), a set of components
which have a state similar to precharge. Each component starts in the null state where
outputs and inputs are all null, which does not represent any data. It remains in this
state until data is present on all inputs, at which point the component will output data
based on the inputs. This data will be held on the outputs of the component until all
inputs return to null, when the outputs will return to null. Uncle uses an RTL language.
This tool then synthesizes the specification using a library of NCL gates which can be
simulated and verified, ultimately producing an NCL implementation.

Uncle also uses an RTL language for specification of circuits, and these are discussed
above. In Uncle, specifying a circuit is carried out in effectively the same way as other

163

methods, the differences are in the synthesis and verification, where null convention
logic is used which operates differently and requires different verification properties to
standard logic types produced by other design tools.

Asynchronous Concepts, the proposed method, have many advantageous features,
such as reuse, natural description, multiple level description and composition, and more.
Several of these approaches feature similar ideas which make them beneficial in certain
ways, but we believe fall down where the inclusion of one or more of these features
could make an approach better. With the Asynchronous Concepts language, we have
attempted to address these issues and make Plato not only a powerful tool to specify
asynchronous circuits, but a method with as much ease-of-use as possible, particularly
targeting the little-digital design domain. Asynchronous Concepts and Plato are also
supported by industrial-strength open-source software toolsuite Workcraft.

164

Chapter 8

Conclusions

This thesis presents a new language for the behavioural specification of asynchronous
circuits, and a design flow utilising this language. These aim to promote modular specifi-
cation, and provide reusability of useful behaviours for future specifications. We provide
an EDA tool, Plato, and a library of standard Asynchronous Concepts to aid in the
design flow. It also automatically translates a specification to a form which can be used
by multiple existing EDA tools for verification and synthesis. These all serve to provide
a new compositional design methodology for asynchronous circuit design, to make them
more attractive to industry.

In this chapter we will summarise the thesis, discussing the main subjects of each
chapter, and outlining the main contributions (Section 8.1). We will then identify areas
of future research for improvements to the project (Section 8.2).

8.1 Main contributions

In Chapter 3 we discuss Asynchronous Concepts. Starting with the abstract base,
we discuss Asynchronous Concepts which introduce the notion of initial state, excitation
and invariant. From these, we then build circuit-specific signal-level concepts, which
specify behaviours in asynchronous circuits. These are atomic and can be composed to
produce higher-level concepts. We explain how these are built on top of the abstract
concepts. The causality concepts, built upon the abstract excitation concept, are com-
posed to produce AND causality, or OR causality where a set of possible causes can
be specified and composed with other causalities.

Gate- and Protocol-level concepts are then introduced. These are combinations

165

of signal-level concepts, used to specify the behaviour of standard asynchronous logic
gates, such as a C-element, and protocols, such as a handshake. We identify how these
are derived using signal-level concepts, and how the concepts at this level can be reused
to specify other gates. We also introduce several generalised multiple input gates,
which can allow the behaviours of some gates to apply to any number of inputs, as
opposed to the two-input gates we discussed previously.

We also introduce high-level concept functions, which provide extensions to the
language, such as function and complexGate which allow Boolean functions to be
used along-side concepts. We also provide some transformations to extend the range
of behaviours a single concept can be used for. The bubble transformation allows
signal transitions to be inverted in the given concept, such as inverting the output
of a gate-level concept. dual is a transformation which provides the dual of a given
concept by inverting all transitions, the initial state, and any states which do not hold
for the invariant. Furthermore enable can provide a signal which determines whether
the specified device outputs can transition.

All concepts and high-level functions introduced in Chapter 3 are included in a circuit
specific library provided with the tool designed for use with concepts, Plato. We use
several of these in an example when deriving a concept for a set-reset latch. This
identifies some difficulties when trying to derive the concept, which indicates an issue with
the language of concepts, an issue which we aim to fix with future research. Ultimately,
we provide a concept, srLatch, which has some assumptions about the environment,
but does specify the behaviour of this component.

Chapter 4 discusses the Asynchronous Concepts design flow. This can start
with an informal description of the device to be designed, and these descriptions can be
used to specify behaviours. Alternatively, it may use a previously defined circuit, and we
can use the set and reset functions for this to generate a concept specification, or if no
functions are known, we can use process mining to obtain one possible specification from
the simulation traces. Of course, the specification may include a combination of new
components, and previously designed components. Any useful behaviours or components
can be stored in a user generated concept library. This can be imported by other
concept files for use of these concepts multiple times in this specification, or in future
specifications.

A concept specification is then compiled and translated to an STG. This process
identifies errors in the concept specification for a user to correct, and then produces an

166

STG which can be visualised. If a system features several specifications, each of which
may describe a separate scenario for example, then these can be combined at the STG
stage using templates, which will add information which allows the STGs to interact
according to some rules.

When a full system specification has been produced, this can then be simulated,
to ensure that the system operates as expected. Verification can then be carried out,
to ensure that the STG is implementable. This can then be synthesized, producing an
implementation.

Chapter 5 introduces the tools which support the Asynchronous Concepts design
flow. This includes Plato, a tool developed for concepts, which compiles and translates
concept specifications, and implements algorithms for translation to either STGs or
state graphs. We also provide the algorithm for the Bool-to-Concept feature of Plato,
which takes Boolean functions, such as the set and reset functions of a component, and
generates a concept specification for these.

This chapter also discusses the open-source toolsuite, Workcraft, which features
a GUI in order to visualise graphical modelling formalisms, such as STGs, FSMs and
state graphs. Plato is integrated to Workcraft, which allows the design flow to be
performed entirely within Workcraft, where concept specifications can be written, saved,
edited, and translated at the click of a button. The generated STGs and state graphs are
automatically imported into Workcraft, for further operations. Workcraft also features
integrated tools for simulation, verification and synthesis which can all be performed
from the click of a button, further streamlining the design flow.

We then use the Asynchronous Concepts language, the associated design flow, as
well as the supporting tools, in some case studies in Chapter 6. The first was the example
of a simple buck controller, which featured three scenarios. Each was specified using
asynchronous concepts, verified, and then all of these were combined. The STG was
then verified and synthesized, producing one of several implementations.

The second case study in Chapter 6 was that of a multiphase buck controller. Specif-
ically, we specified the behaviour of a single phase of this system, producing concept
specification for each separate block. These were then composed in specifications for
the two larger sections, activation and charging. Finally, we produced a single concept
specification for the full system, using all of the concepts derived for these blocks, and
translated an STG from this.

167

8.2 Future research and development

The contributions of this thesis discuss the current state of the language of Asynchronous
Concepts and the associated tool Plato. However, further improvements may be made
with additional research and development, to extend the usability of concepts, improve
the design flow, and provide a tool with more features. These are discussed in this
section.

Currently, Asynchronous Concepts are aimed at specifying asynchronous control sys-
tems, and the library provided is specific for control circuits. However, asynchronous
systems can be used for different types of digital systems. A future research area for
concepts could be for expanding the language to be able to specify different types of
asynchronous circuits.

For example, the circuit specific concepts could be expanded to include mixed signal
systems [73] as these are a recent research area for asynchronous concepts. Analogue
signals could be included, which have a numeric value associated with them, and have
threshold values identifying whether this can be considered as high or low. This infor-
mation could help the specification in expressing how this signal should be handled.

As with analogue signals, a hazardous signal could be identified in a concept speci-
fication. This may not require a numeric value to be associated with it, however it can
aid in determining how behaviours this signal is involved with should operate. For exam-
ple, a WAIT element, and other derived arbitration primitives, are designed to sanitize
hazardous signals. If a hazardous signal is identified, the translation process could auto-
matically include a WAIT element for this signal, to ensure that the issues this hazardous
signal can present to a circuit are automatically prevented [47].

For example, if we specify a temperature control circuit, which controls a fan, as
shown in Figure 8.1a. When the temperature has reached a threshold, temp_max signals,
which turns on the fan to cool the environment. However, when the temperature is
around the temperature threshold, it may fluctuate, meaning that temp_max may be
hazardous, causing the fan control system to enter a state which may be problematic.

A concept specification which identifies temp_max as a potentially hazardous signal
could instead automatically include a WAIT element. This, as discussed in Section 6.2.2,
will sanitise the temp_max signal. The automation of this could also prepare the logic
necessary for the control of the WAIT element. The result of this will be as seen in
Figure 8.1b.

168

(a) A hazardous input signal (b) Using a WAIT element

Figure 8.1: Two temperature control circuits, with a hazardous input signal

Asynchronous Concepts could be adapted to big-digital systems, which deal with data of
multiple bit widths, and the operations on these. This could be built upon the abstract
base, and even be used in conjunction with the circuit specific concepts, which can be
used to specify the control for the big-digital circuit. An interesting case study would
be to produce a library of Asynchronous Concepts which features dataflow components
be used to design dataflow systems, such as in [74].

Similarly, we could derive libraries for other types of asynchronous system, and test
their usefulness, to explore the range of uses that Asynchronous Concepts can be used
for. For example, multi-way arbitrating components as discussed in [75], or Flat Arbiters,
components which make decisions, as discussed in [76].

CSC conflicts are currently detected and corrected at the STG phase of the design-
flow. This is often resolved by adding an internal signal to the STG, sometimes automat-
ically. This therefore means that the concept specification, and the STG with the CSC
conflict resolved, are no longer equivalent. To combat this, a method of CSC conflict
detection could be added to the compilation and translation operations of Plato, in order
to identify this to the user, and add the resolution to the concept specification. This
way, the concept specification and the translated STG remain equivalent.

As an example we use a toggle circuit (Figure 8.2a). This has one input signal,
a, and two output signals, x and y. After initialisation, when a rises, then x will rise.
Following this, a will fall, and x will fall. When a rises again, y will this time rise, and
fall after a falls. x and y will alternately rise when a falls.

The STG of a toggle circuit can be found in Figure 8.2b. This is a simple STG,
but it does not show the CSC conflicts which occur with this. Figure 8.2c does show
this. There states which conflict are highlighted. These states occur because there is
no information to suggest whether x or y should transition high next.

169

(a) Toggle circuit

(b) Toggle circuit STG

(c) Toggle circuit state graph

Figure 8.2: The circuit and models of a toggle circuit.

The circuit needs some form of memory in order to identify which of the output signals
will transition next, and this can be in the form of an internal signal. This signal will
in turn cause the encodings of one set of these states to be different, solving the CSC
conflicts. Ideally, this would be performed automatically by Plato during compilation or
translation, and this is an area of future development. The CSC resolved STG and state
graph can be found in Figure 8.3.

As discussed as part of the set-reset latch example (Section 3.4), optional arcs can
occur, where a system can continually transition between some states, until an alternate
transition causes a change to a different state not featuring these optional arcs [36].
Being able to identify optional arcs in Asynchronous Concepts, and what operation
should occur in this without making the assumptions about the environment as we have
in this example would be a benefit. This could then transfer to STGs, which do not
support optional arcs either.

In some cases, particularly where a component concept features a signal and its

170

(a) Toggle circuit STG with CSC resolved

(b) Toggle circuit state graph with CSC resolved

Figure 8.3: STG and state graph of a toggle circuit with CSC resolved

inversion together, a future development would be to add a concept which links the
initial state of these signals. Again, referring to the set-reset latch example, we force
that the q output of this signal is initially 0, and its inversion, nq is initially 1. However, it
may be the case that these are the opposite in practice. Thus, a concept which indicates
that when one of these signals is initially low, the other must be initially high would stop
the need of forced initial states, which currently will block concepts being compiled if
the initial states are be reversed when using this concept.

Plato currently can generate concepts from given Boolean functions, useful for au-
tomatically finding a concept specification for an existing circuit, whether these Boolean
functions are known (Section 5.1.3) or not (Section 5.2.2). However, the specification
produced uses signal-level concepts. For larger circuits, featuring more than a handful
of signals, this can make for a particularly large generated concept. Optimization of
these concepts could be performed with some future development, which looks at higher
protocol- and gate-level concepts, and tries to cover as many of the signal-level concepts
with higher-level concepts as possible, resulting in a smaller specification. However, this

171

may prove to be a difficult problem to solve. There may be many possible combinations
of concepts which cover the given set of signal-level concepts. A prototype tool which
attempts this is Copter [77].

In Section 4.5, it is explained that Asynchronous Concepts are automatically trans-
lated to STGs in order to take advantage of their theory, and verification and synthesis
tools with a long history of development. In the future it may prove to be beneficial
to develop concept verification and synthesis tools. These may prove to be more ef-
ficient than verification and synthesis via translation to STGs, however the translation
process to STGs and state graphs will still be beneficial for the purposes of simulating
specifications, to ensure it works as expected.

Currently, combination of concept specifications is performed on translated STGs (see
Section 4.6). This is due to some limitations of the concepts language, and Plato, in
that there is no method to explicitly specify a place, or identify the exit state of a
specification. Ideally, if a collection of specifications have been determined to be sound,
then given a template, a tool would automatically determine what can be considered the
exit state of a specification, and then connect this to a place, and connect this to the
entry state of other specifications. The addition of places would not pose a problem as
an additional feature. However, detection of the exit state of a given specification would
be, as there could be multiple possible exits. Research into the automated detection of
where scenarios switch is being done as part of Process windows [40]. This work may
be key to improving the combination of concepts in the future.

To improve the clarity of translated STGs of larger specifications, it would be useful
to reduce the number of internal signals. As an example, the translated STGs from
the multiphase buck controller case study (Figures A.25, A.26 and A.27) are large, and
feature many internal signals. Most of these are used as intermediate signals, connecting
the output of one logic gate to an input of another. Some are unused output signals,
and simply set as internal to not be confused with an important output (e.g. the mutex
g1 used in the WAIT element). It would improve clarity to hide these internal signals
so that only important internal signals, such as those used to resolve CSC conflicts, are
included.

To fix this, a feature to add would be to allow the output of a logic gate be used
as the input to a logic gate, or be able to hide a signal which is used neither as an
internal signal nor an output. This signal may be given a name for ease of reference in a
specification, but it could be identified as one which need not be included in translations.

172

Instead, the behaviours this signal is involved can be passed into other signals which are
related to this.

Finally, an important area of future development would be to provide a language and
compiler for Asynchronous Concepts. Currently, concepts are a domain-specific language
embedded within Haskell, meaning that many of the Haskell features and syntax carry
over. Therefore, a user needs to be reasonably familiar with Haskell itself in order to
effectively use the language. Providing a compiler specific to concepts allows us to shape
the syntax, and enable useful constructs, such as postfix notation, so a transition can
be stated as x+ instead of rise x. This would improve the usability of asynchronous
concepts further, while allowing for improvements to the language and the design flow.

173

Appendix A

Multiphase buck controller components

This appendix section contains the concept specifications, and STGs for the components
used in the asynchronous multiphase buck controller. Some specifications are included
within Chapter 6 however, the chapter aims to show how a full system specification can
be built using component specifications, and as such, the operation of each individual
component is not included in this chapter. The concept specifications provided here are
imported and used in the specification for the full system in Section 6.2.3. The block
diagram for how the components interconnect can be found in Figure 6.14.

The operation of a multiphase buck controller, as well as each component included
in the system are briefly discussed in chapter 6, and more information on them can be
found in [1].

A.1 High-load handler

The High-load handler is used to set all phases of the multiphase buck into charging
mode, when the hl signal is high. hl is sanitized by a WAIT element, namely HL_WAIT.
Regardless of where the token in the system is, the PMOS transistor is switched ON,
and the NMOS transistor is switched OFF in all phases.

Figure A.1 contains the concept for the high-load handler. Figure A.2 is the STG
when translated from the concept. Figure A.3 is the resynthesized version of this STG.

174

module HLH where

import CircuitConcepts

hlh hl whl ro ao = behaviour <> interface <> initState

where

behaviour = hlHandshake <> reqAckHS

<> hlSignalled <> chargeAck

hlHandshake = handshake whl hl

reqAckHS = handshake ro ao

-- When hl signals, request charge

hlSignalled = rise hl~> rise ro

-- When acknowledged, stop waiting for hl

chargeAck = inverter ao whl

interface = inputs [hl, ao] <> outputs [whl, ro]

initState = initialise0 [hl, ao, whl, ro]

Figure A.1: High-load handler component concept specification

Figure A.2: HLH STG translated from concepts.

175

Figure A.3: HLH STG resynthesized.

A.2 Token-control

Token control is used to control the movement of the token between the phases. get

takes the token from the previous phase, and this is used to activate the current phase.
The token is held for a minimum amount of time, which is determined by a delay
component, named TOKEN_CONTROL. When the charging section is active, then the
token is passed through pass to the next phase.

Figure A.4 contains the concept for the Token-control component. Figure A.5 is the
STG translated from this concept. Figure A.6 is a resynthesized version of this STG.

module TC where

import CircuitConcepts

tc ri ai rd ad ro ao = behaviour <> interface <> initState

where

behaviour = reqAckHS <> sendReq <> startTimer <> ackFunc

reqAckHS = handshake ri ai <> handshake rd ad

<> handshake ro ao

sendReq = rise ri~> rise ro

startTimer = rise ri~> rise rd

-- Wait for timer and charge acks before passing token

ackFunc = cElement ad ao ai

interface = inputs [ri, ad, ao] <> outputs [ai, rd, ro]

initState = initialise0 [ri, ai, rd, ad, ro, ao]

Figure A.4: Token control component concept specification.

176

Figure A.5: TC STG translated from concepts.

Figure A.6: TC STG resynthesized.

A.3 Delay

A delay is used as a timing element. When the input request, ri goes high, a second
handshake is started, which takes a set period of time to complete. This will then allow
the input acknowledge, ai to go high, indicating the minimum length of time has passed.
This component is used to ensure that the token is held in a phase for a minimum length
of time, and that the PMOS and NMOS transistors are switched ON for a minimum
length of time.

Figure A.7 contains the concept for this element. It is used multiple times throughout

177

the specification. Figure A.8 is the translated STG for this concept. Figure A.9 is the
resynthesized version of this STG.

module D where

import CircuitConcepts

delay ri ai ro ao csc1 = behaviour <> interface <> initState

where

behaviour = reqAckHS <> riFunc <> aiReact <> cscRes

reqAckHS = handshake ri ai <> handshake ro ao

riFunc = rise ri~> rise ro

aiReact = fall ao~> rise ai

cscRes = rise ao~> rise csc1

<> [fall ai, fall ri] ~&~> fall csc1

<> rise csc1~> fall ro <> rise csc1~> rise ai

<> fall csc1~> rise ri <> fall csc1~> rose ro

interface = inputs [ri, ao] <> outputs [ai, ro]

<> internals [csc1]

initState = initialise0 [ri, ai, ro, ao, csc1]

Figure A.7: Delay component concept specification.

178

Figure A.8: Delay STG translated from concepts.

Figure A.9: Delay STG resynthesized.

A.4 MERGE element

The MERGE element is used to combine request-acknowledge handshakes from two
sources. If either of the requests, ri1 or ri2, signals then the output request will
signal. The MERGE element also serves to arbitrate between the requests of these two
sources when both requests arrive at almost the same time, which can lead to an issue
of metastability.

Figure A.10 contains the concept for the MERGE element. Figure A.11 is the trans-
lated STG. For the MERGE element we also provide a simplified state graph which
removes several states, to provide a clearer view of the operation of a MERGE element.
The states removed include the output request and acknowledge transitions, and states

179

which lead back to the device resetting. For this reason, the state labels have been
removed.

module MERGE where

import CircuitConcepts

merge r1 r2 r a1 a2 a i1 i2 = behaviour <> interface <> initState

where

behaviour = reqAckHS <> reqHandshake <> singleAck

<> outRequest <> twoWayHandshake a a1 a2

reqAckHS = handshake r1 a1 <> handshake r2 a2

<> handshake r a

reqHandshake = inverter r r1 <> inverter r r2

<> [rise r1, rise r2]~|~> rise r

singleAck = mutex a1 a2

-- Ensure that the request is only sent when r1 OR r2 is high

outRequest = bubble r1 (andGate r1 a1 i1)

<> bubble r2 (andGate r2 a2 i2)

<> bubble r (orGate i1 i2 r)

-- i1 and i2 are intermediates between and gates and or gate

interface = inputs [r1, r2, a] <> outputs [r, a1, a2]

<> internals [i1, i2]

-- A handshake with one input causing only one of two outputs

twoWayHandshake a b c = rise a~> rise b <> rise a~> rise c

<> [rise b, rise c]~|~> fall a

<> fall a~> fall b <> fall a~> fall c

<> [fall b, fall c]~&~> rise a

Figure A.10: MERGE component concept specification.

180

Figure A.11: MERGE STG translated from concepts.

Figure A.12: Simplified state graph of a MERGE element

A.5 Under-voltage handler

The under-voltage handler is a component which, when the charging section is activated
by a request coming from the activation section, will check the uv signal. This signal is

181

sanitized by a WAIT element, UV_WAIT. When uv signals, indicating the under-voltage
condition, an acknowledgement is passed back to the activation section through ai,
which then allows the token to be passed to the next phase, and the request is set high,
ro, which is passed to the ZCH module, to ultimately switch the PMOS transistor ON,
and the NMOS transistor OFF.

Figure A.13 contains the concept for the under-voltage handler. Figure A.14 is the
STG translated from these concepts. Figure A.15 is a clearer, resynthesized version of
the STG.

module UVH where

import CircuitConcepts

uvh wuv uv ri ai ro ao i1 = behaviour <> interface <> initState

where

behaviour = reqAckHS <> sendReq <> activateAck <> wuvReact

reqAckHS = handshake wuv uv <> handshake ri ai

<> handshake ro ao

sendReq = rise uv~> rise ro

activateAck = rise uv~> rise ai

wuvReact = buffer ri wuv <> fall ro~> fall wuv

<> fall ao~> fall wuv <> rise i1~> rise wuv

<> bubbles [wuv, ao] (cElement ao wuv i1)

interface = inputs [ri, ao, uv] <> outputs [wuv, ai, ro]

<> internals [i1]

initState = initialise0 [wuv, uv, ri, ai, ro, ao]

<> initialise1 [i1]

Figure A.13: UVH component concept specification.

182

Figure A.14: UVH STG translated from concepts.

Figure A.15: UVH STG resynthesized

A.6 Zero-crossing handler

The zero-crossing handler deals with the zero-crossing condition, indicated by the zc

signal. A request comes from the UVH module, ri, which may or may not signal before

183

zc, or zc may not signal at all. If it does not, or signals after the request from UVH,
then the zero-crossing condition is ignored, and the output request, ro is set high, which
will switch both transistors OFF, and then high, which will switch the PMOS transistor
ON, to charge which solves the under-voltage condition. If zc signals before the request
from the UVH component, then the output request, ro, will be set high to switch both
transistors OFF until uv signals.

Figure A.16 is the concept for the zero-crossing handler component. Figure A.17 is
the STG which is translated from the concept, and Figure A.18 is a resynthesized version
of this.

module ZCH where

import CircuitConcepts

zch zc ri ai ro ao no_zc i1 = behaviour <> interface <> initState

where

behaviour = reqAckHS <> choice <> zcDecided <> zcComplete

<> merge <> late_noZC <> earlyZC

reqAckHS = handshake ro ao <> handshake ro ao

choice = fall ai~> rise ri <> fall ai~> rise zc

zcDecided = orGate zc no_zc i1 <> latchHelp

latchHelp = bubble ri (srHalfLatch i1 ri ai)

zcComplete = fall zc~> fall ai

<> [fall ao, fall zc]~&~> rise ai

merge = [rise ri, rise zc]~&~> fall ro

late_noZC = rise ri~> rise no_zc

<> [rise ri, rise zc]~|~> rise ro

earlyZC = rise ro~> fall zc

-- i1 is an intermediate. no_zc is instead of a dummy signal

interface = inputs [ri, ao, zc] <> outputs [ai, ro]

<> internals [no_zc, i1]

initState = initialise0 [zc, ri, ai, ro, ao, no_zc, i1]

Figure A.16: ZCH component concept specification.

184

Figure A.17: ZCH STG translated from concepts.

Figure A.18: ZCH STG resynthesized, with differing ZC signalling timings

185

A.7 Over-current handler

The over-current handler deals with the over-current condition, indicated by the oc

signal. It also handles the switching of the transistors. When a request comes from ZCH
via ri, this will switch the NMOS transistor OFF, setting rn low, and both transistors
will be OFF. When ri goes low, the PMOS transistor will be switched ON by setting rp

high, which will correct the under-voltage condition. When oc signals, this will switch the
PMOS transistor OFF, and then the NMOS transistor ON, to correct the over-current
condition.

Figure A.19 is the over-current handler concept. Figure A.20 contains the translated
STG from this concept. Figure A.21 is a clearer STG, resynthesized from the translated
STG.

module ZCH where

import CircuitConcepts

zch zc ri ai ro ao no_zc i1 = behaviour <> interface <> initState

where

behaviour = reqAckHS <> pmosON <> nmosOFF <> noShort

<> ocReact <> ocFunc

reqAckHS = handshake rp ap <> handshake ri ai

<> handshake rn an

pmosON = fall ri~> rise rp <> rise ap~> fall ai

nmosOFF = rise ri~> fall rn <> fall an~> rise ai

<> fall rn~> rise ai <> fall ai~> fall ap

noShort = mutex rp rn <> fall an~> rise rp

<> fall ap~> rise rn

ocReact = rise rp~> rise oc <> rise rn~> fall oc

ocFunc = rise oc~> fall rp <> rise oc~> rise rn

<> fall oc~> fall rn <> fall oc~> rise rp

<> fall oc~> rise ri <> fall oc~> rise ai

interface = inputs [oc, ri, ap, an] <> outputs [rp, rn, ai]

initState = initialise0 [oc, ap, an, rp, rn, ri, ai]

Figure A.19: OCH component concept specification.

186

Figure A.20: OCH STG translated from concepts.

Figure A.21: OCH STG resynthesized

A.8 Transistor Delay Controller

The transistor delay controller is used to switch a transistor ON or OFF, based on the
requests incoming from the OCH module. Two of these components are used, one for
the PMOS transistor, and one for the NMOS transistor. When a request comes in via
ri, it will set ro high to switch the transistor on. It will also set rd high, which starts the
delay timer, as discussed in Section A.3. This will ensure that the transistor is switched
on for a minimum amount of time. The transistor being switched on is acknowledged
by the ao signal, and when the delay acknowledges via ad, then the transistor can be
switched OFF when the input request, ri, is set low.

187

Figure A.22 contains the concept for the transistor delay controller. This is used
twice in the full specification, one for each transistor in a single phase. The translated
STG from this concept is found in Figure A.23, and a resynthesized version is seen in
Figure A.24.

module DC where

import CircuitConcepts

dc ri ai rd ad ro ao = behaviour <> interface <> initState

where

behaviour = reqAckHS <> ioInteract <> delay

reqAckHS = handshake ri ai <> handshake ro ao

<> handshake rd ad

ioInteract = buffer ri ro <> buffer ao ai

delay = rise rd~> rise ai <> rise ao~> rise rd

interface = inputs [ad, ri, ao] <> outputs [rd, ai, ro]

initState = initialise0 [rd, ad, ri, ai, ro, ao]

Figure A.22: DC component concept specification.

Figure A.23: DC STG translated from concepts.

188

Figure A.24: DC STG resynthesized

A.9 Full system translated STGs

Figures A.25, A.26 and A.27 are STGs translated from specifications for the activation
section, charging section and full multiphase buck specification from Section 6.2.

189

Fi
gu

re
A

.2
5:

Tr
an

sl
at

ed
ST

G
of

th
e

ac
ti

va
ti

on
se

ct
io

n.

190

Fi
gu

re
A

.2
6:

Tr
an

sl
at

ed
ST

G
of

th
e

ch
ar

gi
ng

se
ct

io
n.

191

Fi
gu

re
A

.2
7:

Tr
an

sl
at

ed
ST

G
of

th
e

fu
ll

m
ul

ti
ph

as
e

bu
ck

sp
ec

ifi
ca

ti
on

.

192

Bibliography

[1] D. Sokolov, V. Khomenko, A. Mokhov, A. Yakovlev, and D. Lloyd, “Design and
verification of speed-independent multiphase buck controller,” in Asynchronous Cir-

cuits and Systems (ASYNC), 2015 21st IEEE International Symposium on. IEEE,
2015, pp. 29–36.

[2] J. A. Brzozowski and C.-J. H. Seger, Asynchronous circuits. Springer Science &
Business Media, 2012.

[3] (2011) Intel to Acquire Fulcrum Microsystems. [Online]. Available: https:
//newsroom.intel.com/news-releases/intel-to-acquire-fulcrum-microsystems/

[4] D. M. Chapiro, “Globally-asynchronous locally-synchronous systems.” STANFORD
UNIV CA DEPT OF COMPUTER SCIENCE, Tech. Rep., 1984.

[5] J. Myers, A. Savanth, R. Gaddh, D. Howard, P. Prabhat, and D. Flynn, “A sub-
threshold arm cortex-m0+ subsystem in 65 nm cmos for wsn applications with
14 power domains, 10t sram, and integrated voltage regulator,” IEEE Journal of

Solid-State Circuits, vol. 51, no. 1, pp. 31–44, Jan 2016.

[6] A. Talbot, “Holistic mixed signal design in ultra deep sub-micron technologies,”
NMI R&D Workshop: Analog and Mixed-Signal Design, 2016.

[7] Y. Lee, Y. Kim, D. Yoon, D. Blaauw, and D. Sylvester, “Circuit and system design
guidelines for ultra-low power sensor nodes,” in Design Automation Conference

(DAC), 2012 49th ACM/EDAC/IEEE, June 2012, pp. 1037–1042.

[8] J. Sparsø and S. B. Furber, Principles of asynchronous circuit design: a systems

perspective. Springer Netherlands, 2001.

[9] C. H. V. Berkel, M. B. Josephs, and S. M. Nowick, “Applications of asynchronous
circuits,” Proceedings of the IEEE, vol. 87, no. 2, pp. 223–233, Feb 1999.

193

https://newsroom.intel.com/news-releases/intel-to-acquire-fulcrum-microsystems/
https://newsroom.intel.com/news-releases/intel-to-acquire-fulcrum-microsystems/

[10] T. Chu, C. K. Leung, and T. S. Wanuga, “A design methodology for concurrent
vlsi systems,” in Proc. of, vol. 901, 1985, pp. 407–410.

[11] T.-A. Chu, “Synthesis of self-timed vlsi circuits from graph-theoretic specifications,”
Ph.D. dissertation, Massachusetts Institute of Technology, 1987.

[12] L. Rosenblum and A. Yakovlev, “Signal graphs: from self-timed to timed ones,”
International Workshop on Timed Petri Nets, pp. 199–206.

[13] J. Beaumont, A. Mokhov, D. Sokolov, and A. Yakovlev, “Compositional design
of asynchronous circuits from behavioural concepts,” in ACM-IEEE International

Conference on Formal Methods and Models for System Design MEMOCODE15,
June 2015.

[14] J. Beaumont, A. Mokhov, D. Sokolov, and A. Yakovlev, “High-level asynchronous
concepts at the interface between analogue and digital worlds,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. PP, no. 99, pp.
1–1, 2017.

[15] J. Beaumont, “Plato: a tool for behavioural specification of asynchronous circuits,”
in International Conference on Application of Concurrency to System Design (ACSD

2017), 2017.

[16] Plato tool repository. [Online]. Available: https://github.com/tuura/plato

[17] D. Sokolov, V. Khomenko, and A. Mokhov, “Workcraft: Ten years later,”
in This asynchronous world. Essays dedicated to Alex Yakovlev on the

occasion of his 60th birthday. Newcastle University, 2016. [Online]. Available:
http://async.org.uk/ay-festschrift/paper25-Alex-Festschrift.pdf

[18] Workcraft framework webpage. [Online]. Available: www.workcraft.org

[19] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, Logic
Synthesis for Asynchronous Controllers and Interfaces. Springer, 2002.

[20] V. Khomenko, “Model checking based on prefixes of petri net unfoldings,” 2003.

[21] V. Khomenko and A. Mokhov, “An algorithm for direct construction of complete
merged processes,” in International Conference on Application and Theory of Petri

Nets and Concurrency. Springer, 2011, pp. 89–108.

194

https://github.com/tuura/plato
http://async.org.uk/ay-festschrift/paper25-Alex-Festschrift.pdf
www.workcraft.org

[22] A. Mokhov, J. Carmona, and J. Beaumont, “Mining Conditional Partial Order
Graphs from Event Logs,” in Transactions on Petri Nets and Other Models of

Concurrency XI. Springer Berlin Heidelberg, 2016, pp. 114–136.

[23] Pgminer tool repository. [Online]. Available: https://github.com/tuura/
process-mining

[24] V. Taraate, Finite State Machines. New Delhi: Springer India, 2016, pp. 197–217.
[Online]. Available: http://dx.doi.org/10.1007/978-81-322-2791-5_8

[25] A. Gill et al., “Introduction to the theory of finite-state machines,” 1962.

[26] A. Valmari, “The state explosion problem,” Lectures on Petri nets I: Basic models,
pp. 429–528, 1998.

[27] C. Petri, “Kommunikation mit automaten (communicating with automata),” Ph.D.
dissertation, University of Bonn, 1962.

[28] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the

IEEE, vol. 77, no. 4, pp. 541–580, Apr 1989.

[29] M. Kilp, U. Knauer, and A. V. Mikhalev, Monoids, Acts and Categories: With

Applications to Wreath Products and Graphs. A Handbook for Students and Re-

searchers. Walter de Gruyter, 2000, vol. 29.

[30] B. Pfahringer, Conjunctive Normal Form. Boston, MA: Springer US, 2010, pp.
209–210. [Online]. Available: https://doi.org/10.1007/978-0-387-30164-8_158

[31] B. Pfahringer, Disjunctive Normal Form. Boston, MA: Springer US, 2017, pp.
371–372. [Online]. Available: https://doi.org/10.1007/978-1-4899-7687-1_223

[32] A. Alekseyev, I. Poliakov, V. Khomenko, and A. Yakovlev, “Optimisation of Balsa
control path using STG resynthesis,” in UK Asynchronous Forum, 2009.

[33] B. H. Arnold, Logic and Boolean algebra. Courier Corporation, 2011.

[34] I. David, R. Ginosar, and M. Yoeli, “An efficient implementation of boolean func-
tions as self-timed circuits,” IEEE Transactions on Computers, vol. 41, no. 1, pp.
2–11, Jan 1992.

195

https://github.com/tuura/process-mining
https://github.com/tuura/process-mining
http://dx.doi.org/10.1007/978-81-322-2791-5_8
https://doi.org/10.1007/978-0-387-30164-8_158
https://doi.org/10.1007/978-1-4899-7687-1_223

[35] A. Mokhov, V. Khomenko, D. Sokolov, and A. Yakovlev, “On dual-rail control
logic for enhanced circuit robustness,” in 2012 12th International Conference on

Application of Concurrency to System Design, June 2012, pp. 112–121.

[36] F. Bujtor, S. Fendrich, G. LÃĳttgen, and W. Vogler, “Nondeterministic modal
interfaces,” Theoretical Computer Science, vol. 642, no. Supplement C, pp. 24 –
53, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S030439751630247X

[37] A. Mokhov and A. Yakovlev, “Conditional partial order graphs: Model, synthesis,
and application,” IEEE Transactions on Computers, vol. 59, no. 11, pp. 1480–1493,
2010.

[38] A. Alekseyev, V. Khomenko, A. Mokhov, D. Wist, and A. Yakovlev, “Improved par-
allel composition of labelled petri nets,” in International Conference on Application

of Concurrency to System Design (ACSD), 2011, pp. 131–140.

[39] J. d. S. Pedro, T. Bourgeat, and J. Cortadella, “Specification mining for asyn-
chronous controllers,” in 2016 22nd IEEE International Symposium on Asyn-

chronous Circuits and Systems (ASYNC), May 2016, pp. 107–114.

[40] A. Mokhov, J. Cortadella, and A. de Gennaro, “Process windows,” in 2017 17th

International Conference on Application of Concurrency to System Design (ACSD),
June 2017, pp. 86–95.

[41] J. Cortadella, A. Moreno, D. Sokolov, A. Yakovlev, and D. Lloyd, “Waveform
transition graphs: A designer-friendly formalism for asynchronous behaviours,” in
23rd IEEE International Symposium on Asynchronous Circuits and Systems, 2017.

[42] D. Wist and R. Wollowski, “Avoiding irreducible csc conflicts in component stgs,” in
Proceedings of the 19th UK Asynchronous Forum. Imperial College London, 2007.

[43] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and A. Yakovlev, “Basic
gate implementation of speed-independent circuits,” in Proceedings of the 31st

annual Design Automation Conference. ACM, 1994, pp. 56–62.

[44] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull, Graphviz—
Open Source Graph Drawing Tools. Berlin, Heidelberg: Springer Berlin

196

http://www.sciencedirect.com/science/article/pii/S030439751630247X
http://www.sciencedirect.com/science/article/pii/S030439751630247X

Heidelberg, 2002, pp. 483–484. [Online]. Available: https://doi.org/10.1007/
3-540-45848-4_57

[45] D. Sokolov, A. Mokhov, A. Yakovlev, and D. Lloyd, “Towards asynchronous power
management,” in IEEE Faible Tension Faible Consommation (FTFC), May 2014,
pp. 1–4.

[46] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. C. Hong, M. Davis, R. T. Guy, S. H.
Haddock, K. D. Huff, I. M. Mitchell, M. D. Plumbley et al., “Best practices for
scientific computing,” PLoS biology, vol. 12, no. 1, p. e1001745, 2014.

[47] A. Mokhov, D. Sokolov, V. Khomenko, and A. Yakovlev, “Asynchronous arbitration
primitives for new generation of circuits and systems,” in 2017 New Generation of

CAS (NGCAS), Sept 2017, pp. 81–84.

[48] A. Mokhov and V. Khomenko, “Algebra of parameterised graphs,” ACM Transac-

tions on Embedded Computing Systems, vol. 13, no. 4s, 2014.

[49] A. Mokhov, “Algebra of switching networks,” IET Computers & Digital Techniques,
2015.

[50] D. Edwards and A. Bardsley, “Balsa: An asynchronous hardware synthesis lan-
guage,” The Computer Journal, vol. 45, no. 1, pp. 12–18, 2002.

[51] K. Van Berkel, Handshake circuits: an asynchronous architecture for VLSI program-

ming. Cambridge University Press, 1993, vol. 5.

[52] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, “The vlsi-
programming language tangram and its translation into handshake circuits,” in
Proceedings of the conference on European design automation. IEEE Computer
Society Press, 1991, pp. 384–389.

[53] G. Jin, L. Wang, and Z. Wang, “A new description language for data-driven asyn-
chronous circuits and its design flow,” in Circuits, Communications and Systems,

2009. PACCS ’09. Pacific-Asia Conference on, May 2009, pp. 322–325.

[54] S. Burns and A. Martin, “A synthesis method for self-timed vlsi circuits,” in Pro-

ceedings of the International Conference on Computer Design, 1987.

197

https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57

[55] A. Martin, “Compiling communicating processes into delay-insensitive vlsi circuits,”
Distributed Computing, vol. 1(4), pp. 226–234, 1986.

[56] C. A. R. Hoare, “Communicating sequential processes,” Communications of the

ACM, vol. 21, no. 8, pp. 666–677, 1978.

[57] A. J. Martin and C. D. Moore, “Chp and chpsim: A language and simulator for fine-
grain distributed computation,” Caltech Technical Report CS-TR-1-2011, Tech.
Rep., 2011.

[58] J. Kuper and C. Baaij, “Hardware specification with cλash,” DSL 2013, 2013.

[59] C. Baaij, “Cλash : from Haskell to hardware,” December 2009. [Online]. Available:
http://essay.utwente.nl/59482/

[60] A. Mokhov, “Conditional partial order graphs,” Ph.D. dissertation, Newcastle Uni-
versity, 2009.

[61] A. Mokhov, A. Iliasov, D. Sokolov, M. Rykunov, A. Yakovlev, and A. Romanovsky,
“Synthesis of processor instruction sets from high-level isa specifications,” IEEE

Transactions on Computers, vol. 63, no. 6, pp. 1552–1566, 2014.

[62] A. Mokhov, D. Sokolov, and A. Yakovlev, “Adapting asynchronous circuits to op-
erating conditions by logic parametrisation,” 2012 IEEE 18th International Sympo-

sium on Asynchronous Circuits and Systems, pp. 17–24, 2012.

[63] M. Josephs and J. Udding, “An overview of d-i algebra,” in System Sciences, 1993,

Proceeding of the Twenty-Sixth Hawaii International Conference on, vol. i, Jan
1993, pp. 329–338 vol.1.

[64] A. V. Yakovlev, A. M. Koelmans, and L. Lavagno, “High-level modeling and design
of asynchronous interface logic,” IEEE Design Test of Computers, vol. 12, no. 1,
pp. 32–40, Spring 1995.

[65] P. Lam and H. Li, “Hierarchical design of delay-insensitive systems,” Computers

and Digital Techniques, IEE Proceedings E, vol. 137, no. 1, pp. 41–56, 1990.

[66] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava: hardware design in
haskell,” in ACM SIGPLAN Notices, vol. 34, no. 1. ACM, 1998, pp. 174–184.

198

http://essay.utwente.nl/59482/

[67] P. Beerel, G. Dimou, and A. Lines, “Proteus: An asic flow for ghz asynchronous
designs,” Design Test of Computers, IEEE, vol. 28, no. 5, pp. 36–51, Sept 2011.

[68] G. Gill and M. Singh, “Automated microarchitectural exploration for achieving
throughput targets in pipelined asynchronous systems,” in Asynchronous Circuits

and Systems (ASYNC), 2010 IEEE Symposium on, May 2010, pp. 117–127.

[69] I. Benko and J. Ebergen, “Composing snippets,” in Concurrency and Hardware

Design, ser. Lecture Notes in Computer Science, J. Cortadella, A. Yakovlev,
and G. Rozenberg, Eds. Springer Berlin Heidelberg, 2002, vol. 2549, pp. 1–33.
[Online]. Available: http://dx.doi.org/10.1007/3-540-36190-1_1

[70] C. Armenti, “Get to market faster with modular circuit design,” Electronic

Engineering Journal, 2015. [Online]. Available: http://www.eejournal.com/
archives/articles/20150122-zuken/

[71] A. Yakovlev, P. Vivet, and M. Renaudin, “Advances in asynchronous logic: From
principles to gals amp; noc, recent industry applications, and commercial cad tools,”
in Design, Automation Test in Europe Conference Exhibition (DATE), 2013, March
2013, pp. 1715–1724.

[72] R. B. Reese, S. C. Smith, M. Thornton et al., “Uncle-an rtl approach to asyn-
chronous design,” in Asynchronous Circuits and Systems (ASYNC), 2012 18th IEEE

International Symposium on. IEEE, 2012, pp. 65–72.

[73] D. Sokolov, V. Dubikhin, V. Khomenko, D. Lloyd, A. Mokhov, and A. Yakovlev,
“Benefits of asynchronous control for analog electronics: Multiphase buck case
study,” in Design, Automation Test in Europe Conference Exhibition (DATE), 2017,
March 2017, pp. 1751–1756.

[74] D. Sokolov, A. de Gennaro, and A. Mokhov, “Reconfigurable asynchronous
pipelines: from formal models to silicon,” in Design, Automation & Test in Eu-

rope Conference & Exhibition (DATE). IEEE, 2018.

[75] S. Golubcovs, D. Shang, F. Xia, A. Mokhov, and A. Yakovlev, “Modular approach
to multi-resource arbiter design,” in Asynchronous Circuits and Systems, 2009.

ASYNC’09. 15th IEEE Symposium on. IEEE, 2009, pp. 107–116.

199

http://dx.doi.org/10.1007/3-540-36190-1_1
http://www.eejournal.com/archives/articles/20150122-zuken/
http://www.eejournal.com/archives/articles/20150122-zuken/

[76] A. Mokhov, V. Khomenko, and A. Yakovlev, “Flat arbiters,” Fundamenta Informat-

icae, vol. 108, no. 1-2, pp. 63–90, 2011.

[77] Copter prototype repository. [Online]. Available: https://github.com/gtarawneh/
copter

200

https://github.com/gtarawneh/copter
https://github.com/gtarawneh/copter

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Publications
	Introduction
	Current usage of asynchronous technology
	Motivation for a new design method
	Contribution
	Thesis layout

	Technical background
	Finite State Machines
	Petri Nets
	Signal Transition Graphs
	STG design flow

	Digital Circuits
	Monoids
	Boolean functions
	Converting any Boolean function to CNF
	Converting CNF functions to DNF functions

	Haskell syntax
	Summary

	Asynchronous Concepts
	Circuit-specific concepts
	Signal-level concepts
	Gate-level and Protocol-level concepts

	Generalising to multiple inputs
	High-level concept functions
	Boolean function concepts
	Bubble transformation
	Dual transformation
	Enable transformation

	Set-Reset latch example
	Abstract concepts
	Summary

	Asynchronous Concepts design flow
	Design approach
	Generating concepts from set and reset functions
	Process mining for Asynchronous Concepts
	User generated libraries of concepts
	Asynchronous Concept translation
	Combining concept specifications
	Sequential template
	Concurrent template
	Choice template
	Complex combinations

	Verification
	Synthesis
	Summary

	Automation of the design flow
	Plato
	Translation to STG
	Translation to State Graphs
	Generating concepts from Boolean functions

	Workcraft
	Plato integration
	PGminer integration
	Verification and synthesis tools

	Summary

	Case Studies
	Case Study 1: A simple buck controller
	Combining the scenarios
	Simulation and verification
	Synthesis of a speed-independent controller

	Case Study 2: Multiphase buck controller
	Single phase block diagram
	WAIT element
	Full specification

	Summary

	Related Work
	Conclusions
	Main contributions
	Future research and development

	Multiphase buck controller components
	High-load handler
	Token-control
	Delay
	MERGE element
	Under-voltage handler
	Zero-crossing handler
	Over-current handler
	Transistor Delay Controller
	Full system translated STGs

	Bibliography

