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Abstract 

In the face of global competition and tighter safety and environmental regulations, the 

pharmaceutical industry is exploring new areas and technologies that could potentially bring 

about step change in process performance. Process intensification has the potential to improve 

early development by introducing new process options, which are capable of achieving green 

and sustainable benefits in production.  

In this thesis, the objective is to demonstrate the synthesis and evaluation of 

pharmaceutical processes for intensification and sustainability benefits. This is illustrated with 

two main processes – the amidation process and the ortho-lithiation process. Based on the 

experiences gained at the end of the case studies, a general framework that summarizes the 

approach to Process Intensification (PI) for pharmaceutical processes is developed. 

Firstly, the amidation process has been successfully intensified with the implementation 

of a number of PI options, which are proven feasible in lab-scale experiments. These options 

are represented in terms of three intensified cases - the intensified batch case, the continuous 

reaction case and the continuous process case, are compared to the batch base case. To compare 

their sustainability performance, the respective plants are designed at a hypothetical throughput 

of 3 tons per year. Overall, the intensified batch case provided the most benefits, with cost 

savings of up to 40%, and more than 70% improvements in total material efficiency and E-

factor compared to the batch base case. This also indicates that batch mode operation in this 

particular process is more suitable than continuous mode.  

The second case study on the ortho-lithiation process consists of three parts. The first 

part investigates ortho-lithiation reaction in continuous flow reactors at ambient temperature. 

The findings demonstrated that the highest reaction yield of 99% was obtained in a T-reactor 

as a result of short residence time and good mixing. The Spinning Disc Reactor (SDR) also 

showed distinct advantage in handling this reaction with mild solid precipitation. The second 

part focuses on the comparison of the T-reactor, the SDR and the Stirred Tank Reactor (STR) 

based on the sustainability metrics. The results showed that the T-reactor process achieved 66% 

and 11% reduction in energy consumption and operating expenditure respectively as compared 

to the STR process. The last part of the ortho-lithiation process focuses on the study of the 

whole process including workup. To avoid dealing with inefficient separation process, 

consecutive reaction has been attempted by avoiding the isolation of ortho-lithiation crude 

product and directly transferring it into the next reactor for subsequent reaction. This is 

experimentally proven feasible and resulted in a greener process.  
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CE Centrifugal Extractor 

CFD Computational Fluid Dynamics 

CSTR Continuous Stirred Tank Reactor 

DSC Differential Scanning Calorimetry 

GC Gas Chromatography 
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OPEX Operational Expenditure 

PI Process Intensification 

PTFE Polytetrafluoroethylene 

RC 1 Reaction Calorimeter 

SDR Spinning Disc Reactor 

STR Stirred Tank Reactor 

WFE Wiped Film Evaporator 

 

Symbols 

AC 4-chlorobenzoyl chloride 

Alcohol 1 4-chloro-N,N-diisopropyl-2-(hydroxymethyl)benzamide 

Aldehyde 1 4-chloro-N,N-diisopropyl-2-formylbenzmide 

Amide 1 4-chloro-N,N-diisopropylbenzamide 

DIPA Diisopropylamine 

DIPA.HCl Diisopropylamine hydrochloride 

DMF Dimethylformamide 

mol eqv Mole equivalent with respect to starting material (AC/Alcohol 

1/Aldehyde 1/Amide 1) 

SP1/SP2 Side products 1 or 2 

TEA Triethylamine 

TEA.HCl Triethylamine hydrochloride 

THF Tetrahydrofuran 

i.d. Internal diameter 

o.d. Outer diameter 
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Chapter 1. Introduction 

The pharmaceutical industry is one of the most innovative sectors when it comes to 

inventing and developing new chemical lead structures and finding new therapeutic approaches. 

For the last decades this industry has developed blockbuster drugs for a wide range of illnesses, 

although a number of diseases are still presenting significant challenges to find effective cures. 

The drivers for large pharmaceutical companies to invest in improved production methods have 

been weak. Only recently, the issues on sustainability of the development, production and 

application of medicines have gained public attention. Regulatory authorities such as the United 

States Food and Drug Administration (FDA) have begun to provide guidance for industry to 

develop more sustainable manufacturing. In order to create and maintain sustainable businesses 

in the face of global competition and tighter safety and environmental regulations, the 

pharmaceutical industry is exploring new areas and technologies that could potentially bring 

about significant improvements in process performance. 

Process intensification (PI) has the potential to improve early development or to retrofit 

existing processes by creating new process options, which are required to achieve green and 

sustainable benefits in production. Reported works on PI are mostly case specific, that is, 

applying particular PI equipment (e.g. Spinning Disc Reactor) or method (e.g. Reactive 

Distillation) to improve a specific process. The main barrier to adopting PI generally includes 

the investment required, the uncertainty associated with implementation of such technologies 

and lack of experience in their operation. One reason for this is the lack of simple systematic 

identification of PI option for any given process. This includes the method of deciding in the 

early stage where and how the process should be intensified for improvements in product 

quality, productivity and process sustainability. Although there are substantial methodologies 

documented in the literature, a practical methodology which analyses the whole process flow 

from reaction to work-up for a range of reactions with different characteristics is still 

unavailable. 

1.1 Research Motivations 

In contrast to processes that are encountered in large, continuous processing plants, 

batch pharmaceutical processes often have chemistries that are substantially more complex. The 

amount of resources required to evaluate the kinetics and physical parameters to the accuracy 

required to apply ‘standard’ chemical engineering design methods (e.g. define reaction time by 

integrating the rate equation) would be immense.  
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Simulation is a tool that has been described useful by many methodologies reported in 

the literature in earlier chapter. It can be used to model and predict physical properties, as well 

as to optimize yield based on mathematical model. However, these published methodologies 

are seldom used in practical situations and fail in real life application. In the event of 

inaccurately extrapolated data, the resulting impact is more serious in PI 

technologies/continuous process than batch process. The common problems faced when using 

modelling based methodologies include: 

 Inaccurate and missing chemical, physical and process data due to insufficient 

time and resources to obtain them 

 Uncertainty in suitability of new/PI equipment due to insufficient PI equipment 

data or knowledge and lack of standardized characterization test for 

benchmarking 

 Time taken to familiarize with the chemical transformation and new/PI 

equipment is too long 

However despite the poor quality of information, the decision on which production 

technologies to use is usually made at the early stage of process development. The risk of failure 

is therefore quite high if the wrong decision is made. The decision is further complicated by a 

number of decision criteria – cheap, safe, environmental-friendly and fast time to market. 

The availability of wide range of technology is not necessarily a good measure of 

development capability as there may be potential mismatch of technologies. There may also be 

other forms of intensification options besides the application of new technology (e.g. reduce 

solvent and reagent usage, recycle, etc.). The vast options to intensify a process made decisions 

difficult for the typical project technical team (of non-process intensification experts) to identify 

the best option within the time constraints of a project. As pointed out by some of the big 

pharmaceutical companies, the industry requires practical methodologies to evaluate the 

processes and swiftly identify feasible options for greener and more sustainable manufacturing 

(Jiménez-González et al., 2011).  

Another weak link is the pharmaceutical workup process, in contrast to bulk chemical 

production, there has been little focus on separation steps which have been reported to be the 

major contributors of the overall processing energy and costs of a synthesis (i.e. distillation and 

drying steps often consume more than 50% of the energy requirements) (Poechlauer et al., 

2012).  
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1.2 Aims and Objectives 

The primary focus of this project is to showcase the evaluation of pharmaceutical 

processes (reaction and workup) for intensification and sustainability benefits. The current 

research may be categorized into the following sections: 

1. Amidation process – Synthesis and evaluation for intensification and 

sustainability benefits 

2. Ortho-lithiation process – Part 1: Process understanding 

3. Ortho-lithiation process – Part 2: Assessment of sustainability benefits for 

reaction 

4. Ortho-lithiation to reduction process – Part 3: Assessment of sustainability 

benefits for whole process featuring consecutive reaction from ortho-lithiation 

to reduction  

5. General framework 

The objective of the amidation process case study is to evaluate the sustainability 

benefits of intensification of a conventional batch amidation process. PI options, proven feasible 

in lab-scale experiments are adopted and represented in terms of three intensified cases - the 

intensified batch case, the continuous reaction case and the continuous whole process case, 

which are compared to the batch base case. To compare their sustainability performance, the 

respective plants are designed at the same basis of about 3 ton per year throughput. The 

sustainability metrics used in this study are volume efficiency, maximum processing inventory 

at any point of time, material efficiency, E-factor, energy efficiency, capital and operational 

expenditure. 

The ortho-lithiation process consists of three parts. The objective of the first part of this 

work is to demonstrate the technical feasibility of performing ortho-lithiation reaction in 

continuous flow reactors (the microreactor, the stainless steel reactor, the T-reactor and the 

SDR) at ambient temperature to obtain high purity product. For example, it is known that 

clogging tends to occur in microreactor during ortho-lithiation. It is envisioned that the use of 

the SDR which allows a free surface film flowing over the disc surface instead of through an 

enclosed channel would overcome this potential limitation.  

Based on the experimental performance of the intensified continuous flow reactors, the 

most promising two have been selected – the T-reactor and the SDR for further theoretical 

evaluation. The objective of the second part of the ortho-lithiation process focuses on theoretical 

evaluation of the sustainability benefits of operating the reaction in the T-reactor and the SDR 

as compared to the conventional stirred tank reactor (STR). This chapter only studies the 

reaction step at a hypothetical design scale of 3 tons per year, excluding workup. The potential 
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benefits that could be achieved are higher reaction selectivity, higher material efficiency, lower 

energy consumption, improved safety and economic savings. 

As a continuation, the last part of the ortho-lithiation process would study the 

sustainability performance of the whole process including workup for the batch (STR) and flow 

(T-reactor) processes. With the understanding that T-reactor is able to obtain higher reaction 

yield than the STR, it would be ideal to investigate the impact of reaction yield on downstream 

processes. The primary objective of this study is aimed at intensifying the workup steps by 

avoiding the isolation of aldehyde 1 and directly transferring it into the next reactor for 

subsequent reaction. The potential benefits that could be achieved from consecutive reactions 

are significant savings from wash solvents, lower energy consumption, higher material 

efficiency and reduction in loss of product. A detailed study of the selected reduction reaction 

is thus performed to assess its compatibility and limitations in performing the consecutive 

reactions. Upon validating the feasibility of the consecutive reactions, the batch process and the 

continuous consecutive reaction process would be conceptually synthesized at a hypothetical 

design scale of 3 tons per year and compared based on their sustainability metrics. 

Based on the experience gained from the different processes, this thesis presents a 

general framework which summarizes the approach to PI for pharmaceutical processes. This 

framework aims to facilitate the early stage of process development by offering the initial 

estimation of benefits versus costs and generates possible intensification options through an 

experimental approach. 

1.3 Thesis Layout 

Chapter 1 introduces the research motivations and the aims and objectives of the work. 

The next chapter, Chapter 2, provides an overview to the background of pharmaceutical 

manufacturing, followed by a summary of the list of PI techniques and conventional equipment 

relevant to the pharmaceutical industry.  A critical review of the existing PI methodologies is 

also provided.  

Chapter 3 presents the sustainability benefits of intensification of a conventional batch 

amidation process. This includes experimental validation of the potential PI options and 

comparison between different intensified cases and the batch base case. 

The ortho-lithiation continuous flow experiments performed in various PI reactors are 

presented and discussed in Chapter 4. The T-reactor and the SDR are selected to compare with 

the conventional batch stirred tank reactor based on the sustainability metrics at a hypothetical 

production scale of 3 tons per year in Chapter 5. Intensification of workup is included in Chapter 
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6 where the evaluation of sustainability benefit of performing consecutive reaction from ortho-

lithiation to the subsequent reaction (reduction) is investigated.  

Chapter 7 presents the general framework which summarizes the approach to PI for the 

two main chemical transformations discussed in Chapter 3 and 4. This chapter serves as a 

reflection of the learning points gathered from the case studies. 

Finally, the conclusions and recommendations for future investigations are presented in 

Chapter 8. 
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Chapter 2. Literature Review 

2.1 Background: Manufacturing of Pharmaceuticals 

Currently pharmaceutical manufacture is mostly dominated by batch processing 

(Sharratt, 1997). This is an industry characterized as traditionally operating in flexible 

multipurpose batch plants. One key feature of pharmaceutical batch process is the tendency to 

use the same piece of equipment for multiple operations – usually a stirred tank manufactured 

in a corrosion-resistant material. The stirred tank might be used for blending reagents, warming 

them to reaction temperature, cooling, perform liquid-liquid extraction, solvent evaporation and 

crystallise the product. Other than the stirred tank, common batch process equipment includes 

filters and dryers. Often, solid handling is involved with a significant manual effort. 

The design and operation of batch processes for the manufacture of active 

pharmaceutical ingredients (API) is very different from those for the manufacture of bulk 

chemicals by continuous process. The process chemistry tends to be more complex and less 

well understood than those in a continuous process. Often, reactions are carried out in the liquid 

phases, in the presence of a solvent at moderate temperatures and atmospheric pressure. The 

products are often solids which necessitate operations like good mixing and filtration. The 

conventional typical batch manufacturing process is to react the starting material, followed by 

workup (e.g. evaporation, solvent swap, filtration, etc.) and purification (e.g. crystallisation). 

Although the reaction is often the focus of the process, it usually takes only a portion of the 

time, energy and material consumption. The frequency of common unit operations in 

pharmaceutical syntheses is shown in Figure 2-1. Majority of the unit operations is in 

separations, for example, extractions, distillation, drying, filtration, etc. Separations are usually 

performed in batch or semi-batch manner, where intensified methods are uncommon. In terms 

of mass efficiency, the separation steps usually contribute about 40-90% of the mass intensity 

of a pharmaceutical synthesis process. In terms of energy consumption, the distillation and 

drying steps often accounts for more than 50% of the energy consumed and are usually the 

bottleneck operations due to their long cycle time (Jiménez-González et al., 2011). 

Consequently, the amount of time and energy required for separation are often much higher 

than for the reaction which results in increased equipment size, higher energy usage and higher 

capital and operating costs. 
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Figure 2-1 Frequency of unit operations used in pharmaceutical syntheses. Derived 

from GlaxoSmithKline's phase III and new product portfolio (Jiménez-González et al., 2011) 

The widespread use of stirred tanks and other ‘generic’ equipment has led to the 

standardization of mechanical engineering design within batch processing companies. For 

example, it is convenient to buy glass-lined steel tank reactors, ready-fitted with agitator and 

motor, in a wide range of sizes. The commonly used heat exchangers (e.g. plate) also come in 

fixed sizes. It is common to have oversized vessels but the time-saving benefit of using these 

standardised equipment outweighs the benefit of customising the vessel to the exact size for the 

duty. 

2.2 Process Intensification (PI) 

Process Intensification (PI) has emerged to become one of the most promising trends in 

process engineering during the past thirty years. The concept of PI has evolved over time, from 

technologies aiming at volume reduction as proposed in 1980s by Colin Ramshaw to PI as an 

integrated approach for overall process improvement (Ramshaw, 1999). PI is defined as “any 

chemical engineering development that leads to a substantially smaller, cleaner and more 

energy efficient technology” which ultimately result in cheaper, safer environmental-friendlier 

and sustainable technologies (Stankiewicz and Moulijn, 2000). To achieve PI, van Gerven and 

Stankiewicz (Van Gerven and Stankiewicz, 2009) defined four explicit goals of PI: (1) 

maximize the effectiveness of intra- and intermolecular events; (2)  optimize the driving forces 

at every scale and maximize the specific surface area to which these forces apply; (3) maximize 

synergistic effects, and (4) give each molecule the same processing experience. Lutze, Gani and 

Woodley (Lutze et al., 2010) define four principles for PI, which are (a) integration of unit 

operations, (b) integration of functions, (c) integration of phenomena and (d) targeted 

enhancements of phenomena in a given operation. In the pharmaceutical and fine chemical 
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context, for example, instead of slowing down a reaction to fit into the limited capabilities of a 

batch multipurpose reactor, the reaction environment is optimized for the respective 

requirements of the reaction. Therefore, costly and environmentally unfriendly tasks like 

dilution and operation at very low temperature would be rendered unnecessary. As the energy 

and material efficiencies of an intensified process are better than those of non-intensified 

process, so the aim of sustainable manufacturing will require intensification of selected process 

steps. 

Within process intensification two broad categories of technology can be distinguished: 

novel equipment and new processing methods as shown in Figure 2-2. A few of the PI 

equipment and methods, for example, reactive distillation (Harmsen, 2007b), rotating packed 

beds (Rao et al., 2004) and microreactors (Kockmann et al., 2011) have been commercialised 

and operated at industrial scale, while others are still in the research phase and require more 

technical information. One point to note is that many pharmaceutical processes require solid 

handling and intensification of processes involving solids tends to be more challenging. 

Recently, a review focusing on PI applied to solid handling has been published  (Wang et al., 

2017). 
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Figure 2-2 Process intensification concept (Stankiewicz and Moulijn, 2000) 

2.3 Conventional and PI equipment in Pharmaceutical Industry 

This review summarises some of the PI and conventional equipment that can be used in 

the pharmaceutical process. They are classified broadly under different unit operations – 

reaction, liquid-liquid extraction, filtration, purification and drying. To date, the majority of the 

PI equipment discussed in this chapter have been successfully applied in the pharmaceutical 

industry and commercialised as summarised in Table 2-1.  

One of the most important aspect of pharmaceutical processing is mixing/agitation. 

Mixing is involved in various tasks such as blending of reagents, suspension of solids, 

dispersion of two immiscible liquid phase, enhancing heat and mass transfer rates, etc. 

Depending on the production scale, mixing times can be of the orders of minutes or longer in 

batch stirred tank. Inefficiency mixing can affect process efficiency which is most noticeable 

upon scale-up from laboratory scale. It is important to identify and address any potentially 

mixing-sensitive operations with suitable mixing equipment to achieve appropriate mixing 

performance on the production scale. Superior mixing can be achieved by using various PI 

equipment (Visscher et al., 2013), such as the microreactor, spinning disc reactor, static mixer 

reactor, spinning-tube-in-tube reactor, Taylor-Couette reactor, oscillatory baffled reactor, HEX 

reactor, impinging jet reactor and rotating packed bed reactor. For reaction involving catalysts, 

the gas-liquid-solid trickle flow reactor, the catalytic foam stirrer reactor and monolithic reactor 

are applicable.  

2.3.1 Microreactors 

Microreactors (Figure 2-3) are chemical reactors of extremely small dimensions and 

usually have a sandwich-like structure, consisting of a number of layers constituted by 

micromachined channels whose diameter may range between 20-500 µm (Hartman et al., 2011). 

Microreactors allow very high heat transfer rates that are not achievable in other equipment. 

This makes isothermal operation of highly exothermic process possible. Very low reaction-

volume-to-surface-area ratios make microreactors attractive for reactions involving poisonous 

or explosive reactants (Nagaki et al., 2014b). Compared to traditional reactors, heat dissipation 
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in microreactors is significantly enhanced by passing the reaction fluid through very small 

channels, realized in high thermally conductive metal blocks which, depending on the 

endothermic or exothermic nature of the reactions, are heated or cooled, respectively. The major 

advantage of microreactors is the excellent control of reaction temperature. The main 

drawbacks, instead, are high pressure drops, relevant clogging tendency and high unit cost. 

Microreactors may be successfully exploited in both fine chemistry and pharma (Yoshida et al., 

2008; Kockmann and Roberge, 2011; Dencic and Hessel, 2013; Schwolow et al., 2016).  

 

Figure 2-3 Example of microchip reactor (Sigma-Aldrich, 2017) 

2.3.2 Spinning Tube in Tube Reactor 

The spinning tube in tube reactor (Figure 2-4) is a reactor with tubular geometry. It 

consists of a rotating tube (rotor) inside a stationary tube (stator), which are mounted at a 

concentric radial spacing between 0.25x10-3 and 0.44x10-3 m (Visscher et al., 2013). The gap 

between the inner diameter of the rotor and the outer diameter of the stator is filled with 

reactants, where typical volume varies from 1x10-5 to 1x10-3 m3. Typical rotational speed for 

the rotor is between 3000 and 12,200 rpm. As a result of the small distance between the 

cylindrical rotor and stator, the reactants inside the annual volume are exposed to high shear 

rates in the range of 30,000 s-1 to 70,000 s-1. Excellent heat transfer rates, mass transfer rates 

and phase interactions are expected due to the high shear rates and low reactor volume, thus 

making the reactor suitable for highly exothermic reactions that require only a small amount of 

catalyst.   
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Figure 2-4 Spinning Tube in a Tube, HOLL-Reactor® (Costello, 2017) 

2.3.3 Gas-Liquid-Solid Trickle Flow Reactor 

In a gas-liquid-solid trickle flow reactor (Figure 2-5), fine adsorbent trickles through the 

fixed bed of catalyst, which selectively removes in-situ one or more of the products from the 

reaction zone. An example is methanol synthesis, which involves feeding CO and H2 are fed to 

a gas-solid-solid trickle flow reactor consisting of three tubular reactor sections with cooling 

sections in between. Silica-alumina power was used as absorbent and complete conversion was 

achieved (Kuczynski et al., 1987). 

 

Figure 2-5 Example of trickle bed reactor (Mederos et al., 2009) 

2.3.4 Catalytic Foam Stirrer Reactors 

Catalytic foam reactors (Figure 2-6)  use a solid foam as stirrer blades and as support 

for deposition of catalyst for reactions of liquid and/or gas phase reactants (Tschentscher et al., 

2010a; Tschentscher et al., 2010b; Leon et al., 2011; Leon et al., 2012; Leon et al., 2013). One 

of the advantages of such a foam stirrer is easy catalyst handling. This approach greatly 

enhances mass transfer since foam has high surface area for deposition of the catalytic material 

and has potential to lower pressure drop, leading to lower energy consumption. This technology 
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is still in the early stage of development.  Research shows that foam reactor is 10 times more 

energy efficient as compared to conventional packed bed reactors (Stemmet et al., 2006).  

 

Figure 2-6 Example of rotating foam reactor (Visscher et al., 2013) 

2.3.5 Heat Exchanger (HEX) Reactors 

In a HEX reactor (Figure 2-7), reactions take place adjacent to a heat exchange surface.  

The design of a HEX reactor is largely based on compact heat exchangers geometries, where 

metallic foams, fins, etc. can be inserted to improve reactions conditions such as mixing and 

residence time, etc (Anxionnaz et al., 2008). The main advantage of a HEX reactor is that heat 

generated in the reaction can be easily removed (or supplied in the case of endothermic 

reactions). There are different designs of HEX reactors, e.g. Marbond (Phillips and Symonds, 

2007), plate heat exchanger reactors, ProxHeatex (Delsman et al., 2004), microstructure heat 

reactor (Rebrov et al., 2001), counter-current heat exchanger reactor (Friedle and Veser, 1999), 

printed circuit heat exchanger (Johnston et al., 2001). HEX reactors have large potential for fast 

reactions with a high heat of reaction.  

 

Figure 2-7 Example of a HEX reactor (Murphy et al., 2014) 

2.3.6 Static Mixer and Static Mixer Reactor 

Stirring technology has greatly advanced during the last 30 years not only by through 

improvements in conventional mechanical mixer, but also significant process made in of static 
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mixers that are increasingly favoured. Static mixers (Figure 2-8) are pipe inserts which generate 

radial mixing, and for multiphase systems, provide interfacial surface area in the form of fine 

bubbles or droplets (Lobry et al. 2011). The fluids to be mixed can be liquid streams, gas 

streams, disperse gas into liquid, or immiscible liquids. The energy for mixing is extracted from 

the loss in pressure of the fluids as they flow through the static mixer and as such extra pumping 

duty is required. Static mixers are particularly useful for the continuous processing of chemicals 

and are also incorporated as part of a batch system in pump around loop. Compared to 

conventional mixing systems, static mixers have higher energy dissipation rate. The main 

disadvantage of static mixer is their relatively high sensitivity to clogging by solid.  

Static mixer reactor provides a combination of intensive mixing, heat and mass transfer. 

For instance, Sulzer (2017a) has mixing element made of heat-transfer tubes.  The mixing and 

mass transfer is provided by the insertion of mixing elements in the reactor tubes while the heat 

transfer is achieved via the shells or jackets. The potential advantages of such system are 

compactness of unit, high selectivity and high thermal efficiency. In general, static mixers are 

suitable for relatively fast reactions with short residence time.   

 

Figure 2-8 Example of SMX Sulzer static mixer (Sulzer, 2017a) 

2.3.7 Oscillatory Baffled Reactor (OBR) 

The OBR (Figure 2-9) generally consists of a cylindrical column or tube containing 

equally spaced orifice baffles and superimposing with fluid oscillation (Vilar et al., 2008). 

Eddies are generated when fluid flow passes through the baffles, enabling significant radial 

motions where events at the wall are of the same magnitude as these at the centre. The 

generations and cessation of eddies creates uniform mixing in each baffled cell, collectively 

along the column or tube. This allows nearly plug-flow conditions even at low flow rate, thus 

inducing enhanced mass and heat transfers as compared to conventional stirred tank reactor. 

The degree of mixing is independent of the net flow, thus much longer residence time is 

achievable compared to other tubular device.  The main advantages of OBR are significant 

energy/utility savings, higher yields and less side product. In addition, capital cost savings are 

achieved through much more compact designs. This technology is applicable to industrial 

production involving solid, liquid and gas phases. The main barriers are dealing with high 
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viscous or high density liquids, high gas production in reaction, high concentration of solid, and 

reactions with long intrinsic reaction times.  

 

Figure 2-9 Schematic of oscillatory baffled reactor (University, 2017) 

2.3.8 Thin-film Spinning Disc Reactor 

The objective of the Spinning Disc Reactor (SDR) (Figure 2-10) is to generate a highly 

sheared liquid film (typically 50 to 500 µm) when a liquid is supplied to the unit at or near the 

centre (Boodhoo, 2013). The film is instantly accelerated tangentially by the shear stresses 

established at the disc/liquid interface and breaks down into an array of spiral ripples. The detail 

form of the film depends on various factors including the viscosity of the fluid, the speed of 

rotation, the geometry of the disc, etc. The liquid film is intrinsically unstable and allows for 

high rates of mass transfer and heat transfer.  

(a)

 

(b)

 

Figure 2-10 Thin film SDR with (a) a grooved disc surface (Boodhoo, 2013); (b) 

underneath the disc surface (NewcastleUniversity, 2017) 

A SDR generally has a working disc with a diameter between 10 cm and 1 m. Discs are 

made of various metals, often with a base of copper and thin chrome plating for chemical 

resistance. The disc can be smooth, grooved or meshed depending on the application and the 

throughput requirement. The rotational speeds of the disc can vary from 100 to 6000 rpm 

(typically ~1000 rpm). The characteristic of SDR make it particularly attractive for applications 

in fast, highly exothermic reactions, also involving highly viscous liquids.  

Expressions for various SDR parameters, such as film thickness and residence time have 

been developed (Boodhoo, 2013) as presented below: 
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Q=volumetric flowrate [m3/s] 

ttres=mean residence time [s] 

𝛿=film thickness [m] 

ri: radial distance across disc surface [m] 

ro: radius at exit [m] 

The above simplified representation of the hydrodynamics of thin films on a rotating 

surface are based on the Nusselt model for a fully developed laminar flow, which neglects the 

effect of surface instabilities and inertia on flow regimes.  

2.3.9 Rotor-Stator Spinning Disc Reactor 

The rotor-stator spinning disc reactor (Figure 2-11) is a multiple phase rotating reactor 

that is developed as an improvement of the thin-film spinning disc reactor. This reactor consists 

of a spinning disc (rotor) located between two stationary discs (stators) (Meeuwse et al., 

2011).The axial distance between the rotor and the stator is typically in the range of 1 mm. The 

rotational disc speed typically around 1000 rpm but rotational speed of up to 4500 rpm is also 

reported. High velocity gradient is present in the gap between the rotor and the stator, which 

acts as a shear force which breaks gas bubbles, leading to a high gas-liquid interfacial area. 

Small turbulent eddies are formed due to the rotation of the disc, which increase the gas-liquid 

and liquid-solid mass transfer coefficients. Scale up can be achieved by stacking single stage 

rotor-stator units in series.  



Chapter 2. Literature Review 

16 

 

 

Figure 2-11 Schematic of SpinPro R300 (Flowid, 2015) 

2.3.10 Hydrodynamic Cavitation Reactor 

In a hydrodynamics cavitation reactor (Figure 2-12), the energy of the liquid flow, 

instead of exposing to ultrasound (see supersonic reactors), can be utilized to create cavitation. 

Possible applications would be found in all fields of chemical as well mechanical processing of 

fluids streams. Possible fields of application include mixing (gas-liquid, liquid-liquid or liquid-

solid), extraction, disintegration of particles and colloidal suspensions, homogenisation, and 

increase of chemical reactions and synthesis (e.g. oxidation, formulation of metal catalysts, etc.).  

(a) 

 

(b)  

 

Figure 2-12 (a) Schematic of hydrodynamic cavitation (Parthasarathy et al., 2013); (b) 

emulsion formation using cavitation (Zhang et al., 2016) 

2.3.11 Taylor-Couette Reactor 

A Taylor-Couette type of flow (Figure 2-13) is observed in reactors in which only the 

inner or both inner and the outer cylinders are rotating. The advantages are short residence times, 

low processing volume, centrifugally accelerated settling and flexible phase ratios (Visscher et 

al., 2013; Wang et al., 2017). The residence time distribution for such a reactor is close to plug 

flow behaviour for Taylor number (ratio of centrifugal to the viscous forces) above 60 (Pudjiono 

and Tavare, 1993). 
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Figure 2-13 Example of Taylor-Couette reactor (Tran et al., 2016) 

2.3.12 Monolithic Reactor 

In a monolithic reactor (Figure 2-14), the catalyst is prepared in the form of a structured 

material, the “monolith”, consisting of a regular or irregular network of channels (Porta et al., 

2016). Characteristics of monolithic reactors are high specific geometric areas, low mass 

transfer resistances and very low pressure drop. The main advantage of a monolithic reactor 

compared to a pack-bed is that the packing is more homogeneous and a consistent fluid 

dynamics can be expected. Limitation is poor radial heat transfer due to the absence of the radial 

mixing and thus poor heat removal. This technology is generally used in gas-phase catalytic 

processes, e.g. gas-phase cleaning of off-gas, de-NOx-ing. Commercial-scale applications in 

gas-liquid chemical processes have also been realized. Pilot-scale study using monolithic 

catalysts as more efficient three-phase reactors was given by Nijhuis et al. (Nijhuis et al., 2001) 

where they obtained higher productivity for a monolithic reactor compared to a trikle-bed 

reactor for solid catalysed gas-liquid reaction that is mass transfer limited in the gas-phase 

reactant.  

 

Figure 2-14 Example of monoliths (Rouhi, 2003) 
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2.3.13 Impinging Jets Reactor 

Impinging jets reactor (Figure 2-15) is a high-intensity reactor for liquid-liquid reactions. 

In this reactor, after introducing the reactants in a suitable way, the combined flows are 

commingled and made to flow through a series of baffles having inlet and outlet ports. The 

mixed flow forms into a series of jets, which are in turn directed against another baffles, or in 

some cases against each other. High intensity shear regions are formed in the reactor, resulting 

in excellent conditions for mixing, heat and mass transfer. Potential benefits are energy savings, 

cost saving, narrower product quality. Fundamental research is required to understand 

characteristics of impinging jest reactors (Siddiqui et al., 2009). 

 

Figure 2-15 CFD simulation of an impinging jet reactor (Gavi et al., 2007) 

2.3.14 Rotating Packed Bed 

Original known as HIGEE technology (Figure 2-16), rotating packed beds greatly 

intensify mass transfer processes by applying high centrifugal forces. It is usually applied to 

gas-liquid system, and has potential application to other phase combinations, such as liquid-

liquid, and gas-liquid-solid. In a rotating packed bed, heavy phase enters the eye of rotor, being 

distributed on the rotor packing, and the light phase enters the stationary housing and passes 

through the rotor from outside to inside. Not only mass transfer, but also heat transfer and 

momentum transfer can be intensified. Rotating packed bed can not only be applied in different 

separation processes include absorption, stripping, liquid-liquid extraction, crystallization, etc, 

but also reacting systems especially when mass transfer is a limitation (Liu et al., 1996). 

Potential benefits are smaller processing volumes and better product quality. 
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Figure 2-16 Schematic of the rotating packed bed reactor (Visscher et al., 2013) 

2.3.15 Reactive Distillation 

Reactive distillation (Figure 2-17), also known as catalytic distillation, is a technology 

combines chemical reaction and distillation in one apparatus. The process take place in a 

conventional distillation column where chemicals are reacted and the products are continuously 

separated by fractionation. Chemical reaction equilibrium can be shifted to favour generation 

of products so that high conversion can be reached. Advantages include lower energy 

requirements, increased yields and selectivity, simpler process and lower capital investments.  

Major commercial technology providers are CDTECH and Sulzer Chemtech.  Up to 

2006, CDTECH has licensed up to over 200 commercial scale processes include production of 

ethers (MTBE, TAME, ETBE), hydrogenation of aromatics and light sulpur, 

dydrodesulfurisation, isobutylene production from C4 stream, and ethyl benzene production. A 

review of commercial applications, research, scale-up, design and operation for reactive 

distillation can be found in reference (Harmsen, 2007a). Issues include catalyst development 

and lack of expertise in fine chemistry and pharma. 

 

Figure 2-17 Schematic of reactive distillation (Cárdenas-Guerra et al., 2010) 
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2.3.16 Simulated Moving Bed (SMB) 

A simulated moving bed (SMB) (Figure 2-18) is used to separate one chemical 

compound or one class of chemical compounds from one or more other chemical compounds 

to provide significant quantities of the purified or enriched material at a lower cost than could 

be obtained using batch chromatography. The technology can be applied to processes where 

chromatography separation is a necessary step, but cannot provide any separation or 

purification that cannot be done by a simple column chromatography. Simulated moving bed 

reactor (SMBR) combines continuous countercurrent chromatographic separation and reactions 

(Lode et al., 2001). This is a hybrid process, not energy-intensive and is competitive with 

traditional processes in which reaction and separation are carried out in different devices. 

Higher yields and better conversion can be achieved by separating products from the reagents 

to shift chemical equilibrium. SMBR can be applied to large scale processes, but it is more 

realistic to smaller scale processes in fine chemicals and pharmaceuticals. Examples of 

applications are esterifications, transesterifications, etherifications, acetilations, some 

isomerisations, hydrogenations, some enzyme reactions (Migliorinia et al., 1999). 

 

Figure 2-18 Schematic of simulated moving bed (SMB) (KNAUER, 2017) 

2.3.17 Rotating Annular Chromatographic Reactor 

Similar to the simulated moving bed reactor (Figure 2-19), in rotating annular 

chromatographic reactor the chemical and biochemical reactions are carried out together with 

a chromatographic separation. The difference is rotating annular chromatographic reactor 

works in the co-current mode, where different reagents are selectively adsorbed an as a result 

of the rotation of the reactor, take different helical path through the bed and be continuously 

collected at fixed location. The advantage of a RACR is similar to that of a SMBR. A 

comparison is given by Molga et al. (Molga et al., 2009).  
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Figure 2-19 Schematic of rotating annular chromatographic reactor (Visscher et al., 

2013) 

Liquid-liquid extraction has been a successful separation technique applied in the 

pharmaceutical industry because of its inherent flexibility and its suitability for processing heat-

sensitive products. Comparing the extraction applications with most other industries, very dilute 

solutions are usually used in pharmaceutical process (Goldberg, 2012) and multiple stages/units 

are involved. Technical improvements have been made and many of the extractors that are 

developed for pharmaceutical applications are still in use today. Exaamples include the 

centrifugal extractor, the Scheibel column, the Kuhni column, the asymmetric rotating disc 

contactor and the Karr column. 

2.3.18 Centrifugal Extractor 

The centrifugal extractor uses the rotation of the rotor inside a centrifuge to mix two 

immiscible liquid outside the rotor and to separate the liquids based on their density difference 

inside the rotor. It can obtain continuous extraction from one phase into another liquid phase. 

The CE is able to handle liquids with small density difference and requires short contact time 

due to its efficient mixing and separation. Furthermore, it has a smaller equipment volume 

compared to traditional tanks, mixer settlers and extraction columns. However, the centrifugal 

extractors are expensive and it has mechanical parts that require frequent maintenance. It has 

low number of contact stages, so for multi-stage extractions, several CEs are required to operate 

in series (CINC, 2017).  

 

Figure 2-20 Example of two CINC CE in series (ColeParmer, 2017) 
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2.3.19 Agitated Columns 

The Scheibel column (Figure 2-21 (a)) was the first agitated column extractor developed 

for pharmaceutical applications. The column is vertically divided, by baffles, into several 

mixing and settling zones. Each mixing zone has an agitator (between inner baffles), once 

mixed, the fluids are directed to the outer region (outer baffles) to allow phase separation before 

entering the next mixing zone. It is a compact extractor with multiple stages incorporated which 

is suitable for difficult extractions. However, one operating problem with this column is the 

emulsification of fluids which might require additional processing in another extractor. Kuhni 

columns differ from Scheibel columns with its mixing compartments separated by perforated 

plates which are attached to the impeller. The design of the perforated plates (area and holes) 

is important to the efficiency of this column. The rotating disc contactor uses disc rotating inside 

the mixing compartment, followed by settling compartments to provide separate mixing and 

settling zones. The asymmetrical rotating disc contactor (Figure 2-21 (b)) is similar to the 

original rotating disc contactor but its rotating discs have been moved off the axial centre of the 

extractor. This is to create a side of agitated region within the column and form a series of 

mixing stages divided by adjacent horizontal stators. Karr columns (Figure 2-21 (c)) have 

reciprocating plates (180° out of phase with one another) with holes for dispersion of liquids. 

Although the capacity and efficiency of the countermotion plate columns is improved, the 

columns are mechanically more complex and require greater maintenance. Karr column have 

frequently been used in pharmaceutical separations and have several advantages over other 

columns. One major advantage is the nature of the reciprocating plates to minimise 

emulsification. It is suitable for extraction process where residence time requirements are not 

so critical as to require a centrifugal extractor. This is particularly the case for difficult 

extraction where many stages are required (Goldberg, 2012). 
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(a) 

 

(b)

 

(c)

 

Figure 2-21 (a) Scheibel column (KMPS, 2017c); (b) asymmetric rotating disc 

contactor (Separationprocesses, 2017); (c) Karr column (KMPS, 2017a) 

Another important aspect of pharmaceutical process is the handling of solids in 

crystallisation, filtration and drying. Batch filtration involves the separation of suspended solids 

from a slurry containing liquid. The type of filter to be used and the suitability of filter medium 

must be considered. The problem of equipment selection is made difficult by the enormous 

number of options available. This review contains a list of some of the filtration equipment used 

in separations. Guidelines to obtain the ‘best’ solution to the equipment selection have been 

published (Wakeman, 1995). However, very often the best solution does not mean an optimum 

filter selection, as it would still require a large amount of effort and time to optimise with a 

wide range of variables. The guidelines prevent the purchase of a completely unsuitable system 

and avoid severe process difficulties. Examples of three common filters are discussed in this 

review – nutsche filter, centrifugal filter and rotary vacuum drum filter.  

2.3.20 Nutsche Filters 

Nutsche filters (Figure 2-22) are particularly application in pharmaceutical industry 

where rigorous cake washing is required. The batch vessel unit can be multi-function – 

crystallisation/precipitation, extraction, filtration, dryer (vacuum/convection). Agitators are 

designed to provide agitation for slurry, smoothing and discharge of filter cake (Sharratt, 1997).  
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Figure 2-22 Schematic of Nutsche filtration and drying process (Systems, 2017b) 

2.3.21 Centrifugal Filters 

The separation principle is similar to that of sedimentation, where the driving force is 

resulting from the difference in density between the solid particles and the liquid (Majekodunmi, 

2015). Centrifugal force generates a pressure which forces the liquid through the filter cake, 

filter medium and basket perforations (Figure 2-23). The filter cloth retains the solid particles 

inside the rotating basket. Washing can be introduced and controlled in the same manner as the 

slurry. The separated solids are discharged by inverting the filter cloth through axial movement 

of the shaft while the bowl rotates slowly. The inverting centrifugal filter is equipped with 

pressure (Anlauf, 2007). The features of this system are full automatic solid discharge, compact 

and homogeneous cake structure (Heinkel, 2017b).   The only consideration is the time taken 

for acceleration and deceleration of the drum consists a signification fraction of the cycle time 

(Sharratt, 1997). 
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Figure 2-23 Schematic of centrifugal filter (Heinkel, 2017a) 

2.3.22 Rotary Vacuum Drum Filter  

Rotary vacuum filter drum (Figure 2-24) consists of a drum rotating in a suspension to 

be filtered. The drum is pre coated with a filter aid which acts like a sieve and rotates through 

the suspension. The vacuum “sucks” liquid and solids onto the drum pre-coat surface, the 

filtrate is transported through the filter media to the central duct and pumped away. The solids 

adhere to the outside of the drum, which then passes under a knife, where the filter cake is cut. 

It is a continuous operation, commonly used in pharmaceutical industry, handling suspensions 

with solid loading up to 30 w/w%. The advantages include low labour cost as its operation is 

mainly automatic and continuous and the process can be modified by controlling the speed of 

drum rotation. The disadvantages include high energy consumption by the vacuum pump, it is 

relatively expensive and the filter aid may be clogging if the solids form sticky cake. This 

continuous filtration system is commonly used in the pharmaceutical industry. 
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Figure 2-24 Schematic of rotary drum vacuum filter (Komline-Sanderson, 2017) 

Drying of product can be carried out in a range of driers. Tray driers, fluidized bed driers, 

belt driers and rotary drum driers are all currently used in the pharmaceutical industry. The 

types of drier chosen will depend on factors such as the properties of the solids, mode of 

operation, extent of drying required and the cost of equipment. Recently, several PI equipment 

have shown potential to achieve more efficient drying – wiped film evaporator, agitated thin 

film dryer, spray dryer and microwave drying. 

2.3.23 Conventional Pharmaceutical Dryers 

The tray dryer (Figure 2-25 (a)) consists of multiple trays of wet solids placed on top of 

each other in a drying oven. Heat is provided by circulation of hot air by electric heaters or 

steam in radiator coils. The system is designed so that heating is uniform within the oven. The 

tray dryer can be equipped with vacuum which is mainly used for drying high grade, 

hygroscopic and temperature sensitive products. It is usually used in small batch production 

operations. However, it is labour intensive to operate and has a long cycle time (Faure et al., 

2001). The fluid bed dryer (Figure 2-25 (b)) is suitable for drying granular crystalline material 

in pharmaceuticals but inappropriate for sticky paste-like material. Fluidization produces 

agitation of solid particles as each particle is in direct contact with hot air introduced from the 

base of the product container (Faure et al., 2001). Due to the high heat transfer rate, drying at 

relatively low temperature and short residence time is often sufficient. Unlike tray dryer, fluid 

bed dryer occupy less floor space and less labour intensive. Belt dryer (Figure 2-25 (c)) is 

continuous drying equipment that can handle pasted material like the filter cake after shaped 

through granulator. The wet material is first distributed on the conveyor belt through crusher or 

granulator. The conveyer passes through the heating unit where hot air passes from above and 
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below the wet material (Vaxelaire and Puiggali, 2002). The drum dryer (Figure 2-25 (d)) 

consists of a heated hollow metal drum which rotates on its longitudinal axis and dips in the 

solution. As the dipping process completed, the solution forms a liquid film on the surface of 

the heated dryer. Upon evaporation of the solution, a layer of solid forms on the surface of the 

metal drum and a scraper/knife is present to off the dried solid close to the surface of the drum. 

In general, the drum dryer allows rapid drying to take place due to good heat and mass transfer 

and it has a small equipment volume. However, its maintenance cost is high and skilled 

operators are needed to control the thickness of the film. It is not suitable for suspension with 

the presence of solid. Drum dryer can be used to dry thermos sensitive APIs (Mujumdar and 

Menon, 1995).  

(a)

 

(b)

 

(c)

 

(d) 

 

Figure 2-25 (a) Example of tray dryer (PRISMpharma, 2017); (b) Schematic of fluid 

bed dryer (Deviatkin, 2013); (c) Example of a conveyor dryer (Alibaba, 2017b); (d) Schematic 

of double drum type drum dryer (Katsuragi, 2017) 

2.3.24 Wiped Film Evaporator (WFE) 

The wiped film evaporator (Figure 2-26) separate volatile from less volatile components 

with a gentle process utilizing the thin-film wiping action of feed liquid through a heated 

cylindrical vacuum chamber with high vacuum. The unique features of the WFE include short 
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residence time of the feed liquid, lowered temperature due to vacuum capability and efficiency 

in mass and heat transfer due to thin liquid film. It is mainly applied in the pharmaceutical 

industry where heat-sensitivity is a determining factor. A major disadvantage of WFE is cost 

which is high compared to other evaporators. Furthermore, it has rotating parts which can result 

in higher maintenance cost and its application is considered rather limited compared to agitated 

thin film dryer.  

(a)  

(b)  

Figure 2-26 Schematic of the WFE (a) Scrapper spreading a thin film on the walls; (b) 

Direction of liquid flow (FoodProcessingTechnologies, 2017) 

2.3.25 Agitated Thin Film Dryer 

The main application of ATFD (Figure 2-27) is to turn a concentrated solution into dry 

powder. There are three types of film dryers – vertical and horizontal and a combination of both. 

The dryer consists of cylindrical, vertical/horizontal body with rows and wiper blades all over 

the length of dryer. The hinged blades spread the wet feed product in a thin film over the heated 

wall. As the solvent evaporates, the solution will convert to slurry and to cake and scrapped off 

the wall surface as dry power. The solvent vapour travels counter-current to the solution flow 

and will be condensed in the condenser. The system is usually operated under vacuum for 

temperature sensitive products. The advantages of this system are gentle evaporation due to 

short residence time, one step operation from solution to solid in one pass, fouling of surface 

prevented by wiper blades and minimal product hold-up (KetavConsultant, 2017). 
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Figure 2-27 Schematic of agitated thin film dryer (Aquacare, 2017) 

2.3.26 Spray Dryer 

The most common method of drying API has been batch drying either by tray or fluid 

bed dryers (Sharratt, 1997). The solution is atomised into fine droplets in the spray dryer and 

dispersed radially to a moving stream of hot gas (Figure 2-28). The temperature of the droplets 

is immediately increased and fine droplets get dried instantaneously. This process is completed 

in a few seconds before the droplets reach the wall of the dryer. There are many advantages in 

using spray dryer which include rapid drying, excellent particle size control and low labour 

costs as it integrates the function of an evaporator, crystalliser, dryer and size reduction unit. 

However, it is bulky and complex equipment that is not always easy to operate. It is not only 

expensive but also suffers from low thermal efficiency as much heat is lost in the discharged 

gases. It is commonly used in pharmaceutical process (Patel et al., 2009). 

  

Figure 2-28 Example of spray drying technology (Sonarome, 2017) 
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2.3.27 Microwave Drying 

Microwave dryer is used in pharmaceutical industry as it provides rapid drying at low 

temperature and uniform heating of the wet mass. However the batch size of microwave dryer 

is usually smaller than the fluidized bed dryer. The coupling between continuous flow and 

microwave heating can overcome the scalability issue (Wiles and Watts, 2012). The main 

advantage of microwave drying is the shortening of drying time from hours to minutes. It is not 

energy efficient to depend solely on microwave heating to completely dry the product. Rather, 

it should be used to complement conventional heating where non-uniform heating tends to 

occur (Walters et al., 2014).  
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Table 2-1 List of PI and conventional equipment for pharmaceutical applications 

 Unit operations PI options Examples of pharmaceutical applications 
Examples of commercial 

suppliers 

1 
Reaction  

(Gas-liq) 
Microreactor 

Organometallic (Yoshida et al., 2013; Nagaki et al., 

2014a; Nagaki et al., 2015) 

Syrris (2017) 

Uniqsis (2017) 

2 
Reaction  

(Gas-liq) 

Spinning tube in tube 

reactor 

Oxidation of alcohol (Hampton et al., 2008) 

Synthesis of imidazolium (Gonzalez and Ciszewski, 

2008) 

Costello (2017) 

3 
Reaction 

(Gas-liq-solid) 

Gas-liquid-solid trickle 

flow reactor 
Selective hydrogenation (Ouchi et al., 2014) - 

4 
Reaction 

(Gas-liq-solid) 

Catalytic foam stirrer 

reactors 

Hydrogenation of functionalised alkyne (Leon et al., 

2011) 
- 

5 
Reaction 

(Gas-liq) 

Heat exchanger (HEX) 

reactors 

Oxidation of sodium thiosulfate (Prat et al., 2005) 

Esterification (Benaïssa et al., 2008) 
BHR (2017) 

6 

Reaction 

Mixing 

(Gas-liq) 

Static mixer and static 

mixer reactor 

Liquid-liquid mixing (Kiss et al., 2011) 

Boc protection of amine (Brechtelsbauer and Ricard, 

2001) 

Sulzer (2017a) 

Noritake (2017a) 

7 

Reaction  

Crystallisation 

(Gas-liq-solid) 

Oscillatory baffled reactor 
Crystallisation of APIs (Lawton et al., 2009; McGlone et 

al., 2015) 
Nitech (2017) 

8 

Reaction 

Crystallisation 

(Gas-liq-solid) 

Thin-film spinning disc 

reactor 
Crystallisation of API (Oxley et al., 2000) 

Organometallic (Feng et al., 2017) 
Flowid (2015) 

9 

Reaction 

Separation 

(Gas-liq-solid) 

Rotor-stator spinning disc 

10 

Reaction 

Waste treatment 

(Gas-liq-solid) 

Hydrodynamics cavitation 

reactor 

Synthesis of pharmaceutical nanoemulsions (Sivakumar 

et al., 2014) 

Applications of cavitation in biotechnology (Gogate and 

Kabadi, 2009) 

Hydrodynamics (2017) 

11 Reaction Taylor-Couette reactor Crystallisation (Nguyen et al., 2012) - 
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Crystallisation 

(Gas-liq) 

Fast competitive reactions (Forney et al., 2005) 

12 

Reaction 

Separation 

(Gas-liq) 

Monolithic reactor 

Selective oxidation of benzyl alcohol (Al Badran et al., 

2013) 

Organocatalysis (Chiroli et al., 2014) 

Chromatography (Viklund et al., 1996) 

PSE (2017) 

Techninstro (2017) 

13 

Reactive 

Crystallisation 

(Gas-liq) 

Impinging jets reactor 
Reactive crystallisation (Lince et al., 2009; Liu et al., 

2017) 
- 

14 

Reactive 

precipitation 

(Gas-liq-solid) 

Rotating packed bed 

absorption of VOCs(Chen and Liu, 2002) 

absorption of CO2 with ionic liquid (Zhang et al., 2011) 

Reactive precipitation (Chen et al., 2000) 

(life, 2017) 

15 

Reactive 

separation 

(Gas-liq) 

Reactive distillation 

 

Esterification (Steinigeweg and Gmehling, 2004; Liu et 

al., 2005) 

Sulzer (2017c) 

(Chemoxy, 2017) 

16 

Reaction 

Separation 

Purification 

(Liq-liq) 

Simulated moving bed 

(reactor) 

Separation of racemic mixture (Guest, 1997) 

Nucleophilic substitution (O'Brien et al., 2012) 

(Chemito, 2017) 

(technology, 2017) 

(KNAUER, 2017) 

17 

Reaction 

Separation 

Purification 

(Liq-liq) 

Rotating annular 

chromatographic reactor 

 

Hydrolysis of methformate (Cho et al., 1980) (Biofilm, 2017) 

18 
Liquid-liquid 

extraction 
Centrifugal extractor 

Recovery of penicillin (Likidis and Schügerl, 1987) 

Pharmaceutical processes (Meikrantz et al., 2002) 

(CINC, 2017) 

(B&PLittleford, 2017) 

(RousseletRobatel, 2017) 

19 

Liquid-liquid 

extraction 
Scheibel column 

Preparing arylalkanoic acid derivatives (Amin and 

Walker, 1979) 
(KMPS, 2017c) 

Liquid-liquid 

extraction 
Kuhni column Extraction of zinc sulfate (Mansur et al., 2003) (Sulzer, 2017b) 
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Liquid-liquid 

extraction 

Asymmetrical rotating disc 

contactor 

Synthesis of pharmaceutical intermediate (Teoh et al., 

2015) 
(KMPS, 2017b) 

Liquid-liquid 

extraction 
Karr column Extraction of fermentation broth (Karr et al., 1980) (Karr et al., 1980) 

20 Filtration Nutsche filters 

Vacuum contact drying of pharmaceutical compounds 

(Murru et al., 2011) 

Removal of solvent in pharmaceuticals manufacturing 

(Mudryk et al., 1999) 

(Heinkel, 2017b) 

21 Filtration Centrifugal filters Common pharmaceutical filters (Sharratt, 1997) (Heinkel, 2017a) 

22 Filtration Rotary vacuum drum filter Recovery of biomass (Grima et al., 2003) (Komline-Sanderson, 2017) 

23 

Drying 
Tray dryer (optional 

vacuum) 
Drying sensitive drug (Roy, 2002) (WALDNER, 2017) 

Drying Fluid bed dryer Pharmaceutical granules (Leuenberger, 2001) (Glatt, 2017) 

Drying Belt dryer 
Continuous pharmaceutical granules (Ghebre-Sellassie et 

al., 2002) 
(TheilenMaschinenbau, 2017) 

Drying Drum dryer Coating of pharmaceutical tablets (Denis et al., 2003)  (FEECO, 2017) 

24 
Solvent 

evaporation 

Wiped film evaporator 

(WFE) 

 

Concentrate clopidogrel base (Turgeman and Malachi, 

2006) 

Synthesis of N-acetylneuraminic acid (Mahmoudian et 

al., 1997) 

(POPEscientific, 2017)  

(Pfaudler, 2017) 

(PMMixers, 2017) 

(SMS, 2017) 

25 

Solvent 

evaporation 

Drying 

Agitated thin film dryer Drying of API (Kumar and Dixit, 2007) 

(KetavConsultant, 2017) 

(LCIcorp, 2017) 

(GIGKarasek, 2017) 

(SMS, 2017) 

26 

Solvent 

evaporation 

Drying 

Spray dryer 

Pharmaceutical application (Broadhead et al., 1992; 

Tarara et al., 2003; Vehring, 2008; Sollohub and Cal, 

2010) 

(Hovione, 2017) 

(GEA, 2017) 

(Capsugel, 2017) 

(Juniper, 2017) 

27 Drying Microwave drying Drying of pharmaceutical powder (McMinn et al., 2005) (LinnHighTherm, 2017) 
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2.4 Pharmaceutical Plant-wide Process Intensification – Batch to continuous 

Continuous process (CP) is one of the forms of process intensification which aims to 

reduce costs, reduce the size of process equipment, improve product quality, and reduce energy 

consumption, solvent usage and waste generation. Ideally, the continuous process is constrained 

only by the chemistry and physics of the reaction, whilst batch process is usually limited by the 

equipment constraints. In the pharmaceutical context, PI brings several advantages: 

2.4.1 Economics 

Lower operational cost (OPEX) can be obtained from reduced inventory, processing 

equipment footprint, waste and emissions and energy consumption. One commercial example 

from Lonza describes a case where the cryogenic lithiation reaction and coupling reactions are 

replaced by a microreactor in a flow system to run higher temperature and avoid long residence 

time. The yield is also increased by 5% compared to the batch result. The reaction time is no 

longer the bottleneck of the process as the reaction rate is increased dramatically. The 

operational cost saving of this process is estimated to be 10% versus batch (Roberge et al., 

2008). 

2.4.2 Quality 

Continuous processing offers improved mass and heat transfer and the ability to operate 

more intensely at higher temperatures which can improve product quality compared to batch. 

Furthermore, process deviations in CP can be less detrimental since there is small inventory, 

resulting in less product loss. More precise control of temperature, pressure and heat transfer 

can improve yields and selectivity and reduce process deviations. For example, a continuously 

operating spinning disc reactor (SDR) achieved 93% reduced impurity level for a phase-

transfer-catalyzed (PTC) Darzen’s reaction to prepare a drug intermediate and recrystallization 

of an API (Oxley et al., 2000). With contact time of under 1s, the impurity arise from prolonged 

contact of desired product with other reagent can be minimized drastically. 

2.4.3 Safety 

Smaller reactor volumes and inventory offers process safety especially when dealing 

with hazardous reagents or solvents. Usually the smaller equipment or flexible modular setup 

require smaller containment facilities (walk-in fumehood) which provide a reduced potential 

for exposure to chemicals. CP can minimise the risks with hazardous chemistry that otherwise 

would have been impossible in batch processing. For example in the synthesis of 1H-4-

substituted imidazoles, high temperature and backpressure of 17 bar in a stainless steel coil 

reactor with a residence times of 2 to 5 minutes afforded the desired products in high purity 

(Carneiro et al., 2015). CP allows implementation of “Novel Process Windows” (Hessel et al., 
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2013) which enhance reaction performance under a safer environment. Other examples of 

implementation of a continuous flow reactor driven by safety concerns are the nitration 

bromination reactions (Pelleter and Renaud, 2009).   

2.4.4 Environmental 

The application of rapid mixing and heat transfer in complex pharmaceuticals synthesis 

offers the possibility to run concentrated reaction which minimizes the use of solvent. Thus, 

significant reduction can be recognised in Process Mass Intensity (PMI). Compared to high 

frequency of cleaning in batch, CP steady-state operations should require less frequent 

shutdown and cleaning. In return, the solvent usage and emissions can also be reduced. For 

example, the reduction of ethyl nicotinate was performed solvent-free without the need for 

further downstream processing (Ouchi et al., 2016). 

However, it should be noted that not all reactions are suitable for continuous processing. 

When the reaction times are longer than several minutes, flow reactors start to become 

increasingly impractical. There are very few reactions that take hours to perform continuously 

(Boodhoo and Harvey, 2013).  

In summary, the pharmaceutical industry requires methodology for in-depth analyses of 

existing processes and new processes to identify opportunities to sustainability metrics by 

intensifying steps. In the pharmaceutical development, time to market is paramount and new 

technologies are perceives as high risk so there is usually hesitance to apply them; hence, PI 

implementation can be very difficult.  

Additionally, there are so many ways to intensify a process, it is often difficult for the 

typical project technical team to swiftly identify what option might be best within the time 

constraints and capability (Jiménez-González et al., 2011). Despite the many options available, 

only 22% of all PI equipment are categorised as highly mature while around 60% of the PI 

equipment are considered as low or medium maturity (Lutze et al., 2010; Lutze et al., 2012; 

Lutze et al., 2013). 

To overcome these barriers, the ACS GCI Pharmaceutical Roundtable has made 

suggestions for research opportunities (Jiménez-González et al., 2011) to develop guidance and 

tools to assist with the selection of the best intensification option. This includes the development 

of methodologies to integrate intensification considerations into a given process from early 

stage of process development. Also, establish procedures of analysis for production processes 

to define opportunities to identify opportunities to intensify unit operations to improve their 

sustainability metrics. 
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2.5 PI of ortho-Lithiation 

Ortho-lithiation is an important class of reaction for the synthesis of regiospecifically 

substituted aromatics, and it is an emerging method to prepare phthalides which are common 

pharmaceutically active compounds (de Silva et al., 1992; Roberge et al., 2008; Faigl et al., 

2010; Karmakar et al., 2014; Newby et al., 2014; Laue et al., 2016). Ortho-lithiation is typically 

conducted in batch mode under cryogenic temperatures (-78 to -40 ˚C) (Desai, 2012) to 

minimize the side reactions arising from the highly reactive organlithium intermediates. 

Although this process produces high purity compounds, it requires the use of large reaction 

vessels and long cycle time to achieve the required throughput. The challenges of safely 

handling both the highly reactive chemicals and a highly energetic reaction in scaled-up 

operations constitute a major disadvantage of such batch processes. One solution to overcome 

these safety related issues is to implement continuous flow processes (Anderson, 2012).  

There are examples of deploying flow processing for lithiation reaction as a process 

intensification (PI) technique. The Yoshida group demonstrated several lithiation reactions 

using different electrophiles in microstructured flow devices (consisting of micromixers and 

microtube reactors) to be superior to batch protocols (Nagaki et al., 2011; Yoshida et al., 2011; 

Nagaki et al., 2014a; Nagaki et al., 2014b; Nagaki et al., 2015).  

Several successful studies have been performed to scale up continuous lithiation using 

tubular flow reactors (Newby et al., 2014; Laue et al., 2016). These flow reactors offer superior 

control of process parameters like mixing, residence time and temperature. Roberge et al. 

(2008) and Laue et al. (2016) have both demonstrated the possibility to scale up lithiation 

reactions in flow reactors for pharmaceutical manufacturing. However, both authors reported 

challenges in handling plugging due to precipitation of salts. Kockmann et al. (2011) evaluated 

the feasibility to scale up the lithiation reaction using tubular flow reactors with different 

channel diameters and flow rates to avoid parallelization. 

2.6 Review of PI Methodology  

In general, the identification of a feasible intensified process is not easy and intuitive 

(Harmsen, 2010). Existing methodologies for process synthesis can be categorized into either 

heuristics, thermodynamic insights (Jaksland et al., 1995), mathematical programming such as 

superstructure optimisation (Franke et al., 2008) or combinations of these into hybrid methods 

(Lutze et al., 2010). Most of the process synthesis methodologies have been developed based 

on unit operations. However, innovative concepts have been used to synthesize processes as 

well, for example methodologies for synthesizing processes based on elementary process 

functions (Freund and Sundmacher, 2008, Peschel et al., 2010, Peschel et al., 2011a, Peschel et 
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al., 2011b); modularisation (Arizmendi-Sánchez and Sharratt, 2008) mass and heat building 

blocks (Papalexandri and Pistikopoulos, 1996; Proios and Pistikopoulos, 2005; Algusane et al., 

2006); phenomena (Ben-Guang et al., 2000; Rong et al., 2004; Rong et al., 2008) have been 

proposed. The common bottleneck among these methodologies is the lack of details on 

algorithms to select suitable PI equipment and methods. The IMPULSE project (Bayer et al., 

2005) called for cooperation of equipment manufacturers to characterise the equipment 

according to standardised methods, so that a database of equipment characteristics can be 

created. 

The PI concept is complex and covers multiple aspects and one of the focus is the 

integration of reaction and separation. For example, the process synthesis framework for 

reactive separation (Schembecker, 2002); design and optimisation of hybrid separation 

processes based on integration (Franke et al., 2008) and integration of superstructure 

optimisation and thermodynamic insights (Marquardt, 2008). Optimisation function is usually 

performed using MINLP methods. Another PI strategy is continuous processing which has been 

claimed to be more efficient at batch processes, examples of guideline on the benefits and 

feasibility of converting a batch to continuous process is discussed by  (Teoh et al., 2016), 

Plouffe et al. (2014) and Kockmann et al. (2011). The following summarises the reviews on 

reported methodologies. 

2.6.1 Phenomena Approach 

The approach classified process phenomena into “chemistry and chemical reaction 

phenomena, materials phases and transport phenomena, phase behaviour and separation 

phenomena etc.” Process phenomena are further characterised by surface materials, operation 

modes, flow pattern, facility medium, geometry, energy sources, key variables as well as 

components and phases. This systematic methodology based on phenomena approach was 

given by Rong (Ben-Guang et al., 2000; Rong et al., 2004; Rong et al., 2008). The methodology 

decomposes the synthesis problem into 10 hierarchical steps. The heart of their method consists 

of trial and error variations of the characteristics for the identified key process phenomena 

through seven different suggested PI principles. Despite a systematic approach, there are gaps 

that the methodology did not address: (1) Identification of phenomena; (2) strategies for 

variations of these phenomena; (3) techniques on how to find all currently available options; (4) 

identification of the best option. 

2.6.2 Framework for Choice of Intensified Equipment 

This methodology have been proposed by Commenge and Falk (2014) aims to provide 

a decision tool that relates directly and rapidly the specifications of a given problem to the best 
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technologies available commercially. Two intermediate steps are included between initial 

problem that engineering tends to intensify, and the best available technologies to solve this 

problem. The first one consist in identify limitation of a problem. The second step is based on 

a set of intensification strategies. Two matching matrix are built between the lists of limitations 

and strategies. The first matrix relates limitations to strategies. In each cell, a mark is attributed 

to describe the relevance of this strategy with respect to this limitation. The marks range from 

0 (no impact) up to 5 (Very strong impact). The second matrix relates the strategies to a list of 

technologies. The relevance of each technology as an application of each strategy is assessed 

by attributing marks to each cell of the matrix. A mark equal to 0 indicates that this strategy 

cannot be applied in this equipment, whereas a mark of 5 indicates that this equipment is ideally 

suited to apply this strategy. After calculation, a sorted list of the most-promising technologies 

is provided. Unfortunately, the marks included in the matrices only assessed the degree of 

relevance of strategies with respect to limitations and technologies, but did not take into account 

the quantitative data of the initial problem. The search space was based on a small selection of 

predefined PI equipment and strategies. This was no guidance on how to gauge the weightage 

of new limitations and strategies to a problem to maintain consistency when extending this 

methodology to new case studies. 

2.6.3 Local and Global Process Intensification Approach 

Portha et al. (2014) have proposed the global process intensification approach as more 

superior to local process intensification as the local process intensification approach tends to 

present several limitations when compared to the more holistic global intensification. It is 

because when PI focuses on single units, the strong interactions among all units within the 

process are ignored, resulting in weak improvement of the whole process. The global 

intensification evaluates a multi-dimensional aspect of the whole process where different 

drivers (economic, safety eco-efficiency and sustainability) are included. The downside of this 

methodology was the lack of algorithms, necessary tools and solution techniques to implement 

global intensification. The application of this data-intensive approach was also more 

challenging for new processes. 

Ponce-Ortega et al. (2012) have reclassified the local and global process intensification 

into two main categories called unit intensification and plant intensification. A general 

mathematical formulation for each intensification process was proposed considering the 

intensification of existing units and installation of new units. The study uses the methodologies 

of process systems engineering (including modelling, optimisation, control and integration) to 

achieve intensification objectives. Although this methodology used algorithms for 
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intensification, it relied heavily on process system engineering, there was insufficient PI 

strategies (e.g. batch to continuous, reactive separation, etc.) incorporated. The application was 

not straightforward as it required intensive modelling (General Algebraic Modelling Systems, 

GSMS, BARON, etc.) which can only be used by expert in the field. 

2.6.4 Thermodynamics Approach 

Jaksland et al. (1995) have developed a methodology for synthesis/design of separation 

systems by linking physicochemical properties of pure components as well as mixtures to select 

suitable unit operations in a database. The mixture properties is retrieved from a database or 

generated using property prediction methods. For all binary pairs, the difference in binary ratio 

of each pair is analysed to identify a set of potentially suitable equipment. Unfortunately, the 

property prediction and equipment database were not updated so new chemistry transformations 

and separation methods (e.g. reactive separation) were not captured in the database. 

2.6.5 Modularisation Approach 

The modularisation approach is defined by several authors (Papalexandri and 

Pistikopoulos, 1996; Proios and Pistikopoulos, 2005; Algusane et al., 2006) as process synthesis 

based on heat and mass building blocks instead of specified unit operations. Given the 

connections between the building blocks produce a feasible solution, then in a subsequent step, 

unit operations are identified. The selection of initial search space of building blocks is based 

on heuristics and thermodynamics insights. Arizmendi and Sharratt (2008) classified 

description of mass transfer, phase change, energy, change conditions and mechanical 

operations into phenomena which are aggregated to form phases. Phases can be aggregated to 

form tasks. Task can be aggregated to represent the whole process. However, majority of the 

methodologies did not provide tools to identify PI options 

2.6.6 Decomposition Based Solution Approach 

This is a systematic computer aided model-based methodology have been proposed by 

Lutze et al. (Lutze et al., 2010; Lutze et al., 2012; Lutze et al., 2013). Instead of solving the 

whole synthesis problem, the problem is decomposed into subsets of process options at the 

phenomena level. For each process option, operational constraints and short-cut phenomena 

model are solved and known unit operations are identified which then make up the process. The 

resulting feasible process is ranked according to performance criteria. Rigorous modelling is 

used to further optimise the top-ranked feasible alternatives to determine the optimal solution. 

The methodology decomposed the problem into 6 steps. In each step, the user needs to make 

decisions, use algorithms and tools to proceed to the next step. One obstacle in applying this 

methodology is the use of many algorithms and modelling software (e.g. ICAS Databases, 
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ProcAMD, ProII, ProPed, ICAS MOT, etc.) which is usually inaccessible by the industry. 

Although the methodology provided a PI knowledge base which contain a long list of 

equipment (>100), the equipment description is qualitative and general which might not 

generate meaningful result. 

The sustainability/LCA factors have been excluded from the performance criteria used 

to rank processes in the methodology presented by Lutze. Babi et al. (Babi et al., 2014; Babi et 

al., 2015) have focused on comparison of PI options based on sustainability/LCA factors along 

with criteria related to economic (e.g. utility, cost, operational cost, profit, etc.). To perform the 

economic, sustainability and LCA analysis, the respective tools were used- ECON (Kalakul et 

al., 2014), SustainPro (Carvalho et al., 2013), LCSoft (Kalakul et al., 2014). 

A similar method for reaction synthesis is proposed recently (Živković and Nikačević, 

2016) as it establishes interaction between PI principles and process system engineering (PSE) 

techniques. The method consists of three stages: (1) reaction screening where the 

phenomenological modules are defined; (2) reaction system superstructure and mathematical 

modelling in which modules are connected in a generic reactor superstructure and (3) 

Optimisation in which optimal structure and operational regime is derived, using techno-

economical objective function and different optimisation methods. 

Benneker et al. (2016) have recently applied the PI methodology developed by Lutze in 

an industrial process (production of DADPM) of the Huntsman with the goal of reducing 

operating costs. It is demonstrated that the DTU method is unable to detect the bottleneck 

accurately, whilst heuristics and good engineering practices are able to provide additional 

insight and trace the process limitations. It is concluded that the combination of both heuristic 

and methodology-based intensification would be able to provide more efficient analysis and 

synthesis and reduces calculations. 

2.6.7 Elementary Process Function Approach 

The approach (Freund and Sundmacher, 2008; Peschel et al., 2010; Peschel et al., 2011a; 

Peschel et al., 2011b) tracks a fluid element through a reactor with possibilities to integrate 

separation and heating/cooling (thermal). Starting from a definition of the objective of the 

investigation, the method decomposes the problem into three levels: 1) Level of integration in 

which the optimal route in the state space is identified; 2) Operational constraints based on 

detailed mass and energy transport calculations are integrated within the design of level 1; 3) 

Unit operation is identified to screen for technical constraints of the design. 
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Reactor parameters such as interfacial areas, residence time and number of units are not 

chosen a priori but are investigated through a stepwise procedure, identifying resistances in 

individual process steps. The performance of innovative reaction concepts were benchmarked 

against reference reactors for comparison. This approach tend to depend strongly on chemical 

engineering experiment to make preliminary decisions to focus or eliminate initial possible 

reaction concepts.  

2.6.8 Optimisation and Integration for Reactive Separation 

Schembecker (2002) has developed a systematic framework focusing on assessing the 

feasibility of reactive separation in the early stages of process development. This involves 

defining the operation windows for reaction and separation and only if an overlap is identified, 

reactive separation process is feasible. Another group of researchers (Franke et al., 2008; 

Marquardt, 2008) have proposed a three-step systematic framework for the design of separation 

flowsheets. 1) UNIFAC and Computer-Aided Molecular Design (CAMD) are used to predict 

mixture properties based on group contribution methods when database is not available. (2) 

Alternative flow sheets are evaluated with shortcut methods and narrowed down to best 

alternatives with minimum energy demand. (3) A rigorous mixed-integer nonlinear 

programming (MINLP) optimisation of the entire flow sheet is executed to determine the best 

alternative. This approach requires expertise in the field of programming and computation like 

MINLP. 

2.6.9 Framework for Batch to Continuous 

Recently, (Teoh et al., 2016) have proposed a practical methodology to assess the 

feasibility of converting a batch process into a continuous one. The methodology guides user 

to make swift decision at the beginning of the evaluation state on either to proceed with or kill 

the idea at early stage to avoid wasted effort. The ordered approach also provides a whole 

process assessment and decision making for the appropriate choice of continuous or hybrid 

processing mode. The methodology was applied to three case studies (the Reformatsky reaction, 

the synthesis of 4,D-erythronolactone and the phase transfer catalysed O-alkylation of 3-

phenyl-1-propanol). This methodology may also be extended to incorporate a wider spectrum 

of PI strategies (use of alternative energy, membrane separation, reactive distillation, etc.). 

Plouffe et al. (2014) have proposed an approach by considering reaction kinetics (Type 

A, B, C), reacting phases and the reaction network in order to select the most appropriate reactor 

module (Plate, Coil or CSTR) for continuous operation. The very fast (in seconds), intermediate 

and slow reactions were classified in types A, B and C respectively. Kockmann et al. (2011) 

described an additional Type D reaction which requires harsher reaction conditions to be treated 
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as at least a Type C reaction. Three case studied were presented (1. Reaction of dimethl-oxalate 

with ethylmagnesium chloride; 2. Nitration of salicylic acid; 3. Ring-closing metathesis 

reaction). The classification of reaction may simplify the evaluation of the complex and broad 

spectrum of pharmaceutical reactions. Although the Plate, Coil and CSTR were more accessible 

by the industry, the reactor module considered in the study was very limited. 

2.6.10 PI Equipment Database Focused Approach 

The IMPULSE project (Bayer et al., 2005) has called for cooperation of equipment 

manufacturers to characterise the equipment according to standardised methods, so that a 

database of equipment characteristics can be created. The information collected is concerned 

with reaction, mixing, heat and mass transfers, phases to be processed, flow patterns and 

operability. The database is captured in a user-friendly manner enabling user to input critical 

parameters and the database would generate a list of possible equipment. Currently, the 

database has collected more than 400 equipment information. However, some of the entries 

apply to very specific model of equipment provided by the equipment manufacturer which may 

not be a good representation of the generic class of equipment when used in the initial 

equipment screening stage. The entries are only limited to commercially available equipment 

(mainly reactors), they do not extend to novel equipment reported in literature and do not 

include equipment used in separation and purification. Overall, this project offered a good 

approach to benchmark the equipment in an accurate and practical manner. 

In summary, the synthesis of a holistic PI methodology is not easy and requires 

enormous effort and interdisciplinary collaborations. Most of the existing methodologies 

reviewed in this chapter encountered common limitations and gaps when applied to industrial 

pharmaceutical processes. Some of the common limitations include the need to perform 

optimisation using programming tools like MINILP, property prediction tools like UNIFAC 

and CAMD and modelling software like ICAS Databases, ProII, etc. and these are usually 

inaccessible by the industry. Furthermore, due to the complexity of the pharmaceutical reactions, 

the application of these modelling/prediction tools are often restrictive due to the lack of 

information on the new chemical reaction. This is a serious challenge as the accuracy of the 

results from these modelling-based methodologies is directly dependent on the reliability of the 

data input which is known to be hard to obtain.  

Often, the existing PI methodologies do not include database for PI equipment and 

strategy although this database is pivotal to the selection of optimum PI option. Currently, the 

applications of PI equipment and strategy are reported independently in literature which leads 

to a scattered and fragmented database where benchmarking of PI equipment is hard. This is 



Chapter 2. Literature Review 

43 

 

the reason for the strong reliance on chemical engineers’ experience when it comes to 

equipment selection. 
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Chapter 3. Amidation Process – Synthesis and Evaluation for 

Intensification and Sustainability Benefits 

3.1 Introduction  

Amide bond formation is one of the most frequent transformations in the pharma 

industry and amide bonds are very often part of active pharmaceutical ingredients (API) 

(Roughley and Jordan, 2011). The most common practice is to perform amidation through the 

acylation of commercially available acid chloride on a large scale, as this approach avoids the 

need for acid activation (Carey et al., 2006; Hong et al., 2013; Ishimoto et al., 2013; Yoshida 

et al., 2014).  

Direct amidation using commercially purchased 4-chlorobenzoyl chloride with 

diisopropylamine (Faigl et al., 2010) is chosen as an example  for this case study. One reason 

for selecting this reaction is because the product, 4-chloro-N,N-diisopropylbenzamide (amide 

1), is a potential building block for the synthesis of many natural molecules. This reaction is 

considered for intensification because it demonstrates sufficiently complex process behaviours. 

For example, the reaction involves multiple phases consisting of sticky gel-like solids and is 

moderately fast and exothermic. The separation and purification processes also present a 

realistic representation of a large number of processes commonly seen in pharmaceutical 

processing that involve extraction, handling of sticky solids and drying.  

3.2 Aims and Objectives 

The objective of this work is to evaluate the sustainability benefits of the intensification 

of a conventional batch amidation process. In this study, the sustainability performance of 

different systems (Table 3-1) under various intensification scenarios for the whole process 

(reaction and separation) is assessed and compared at a hypothetical design scale of 3 tons per 

year. The benefits that could potentially be achieved are minimization of solvents, reagents and 

wastes, improved mixing performance and better process safety.  

Table 3-1 Four amidation cases to be evaluated 

 Cases Potential intensification options 

1 Batch base case 
Conventional batch manufacturing process following the 

literature procedure reported by Faigl et al. (2010) 

2 Intensified batch case 

1) Reduce the number and amount of reagents used 

2) Reduce toluene usage  by using toluene-water mixture 

as solvent 

3) Reduce the wash mediums in workup  

4) Consecutive reactions from amidation to ortho-lithiation 
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3 
Continuous reaction 

(workup in batch mode) 
Continuous reaction in static mixer reactor 

4 Continuous whole process 
Continuous reaction + Continuous separation operations 

using centrifugal extractor and wiped film evaporator 

The batch base case, which is developed from a lab-scale procedure (Faigl et al., 2010), 

serves as a benchmark for the intensified cases. Since there is no side product formation in 

amidation reaction, the material efficiency of the reaction is close to 100%. Hence, it is difficult 

to reduce the operational costs by increasing reaction efficiency. Only contributions from 

reduction in wash solvents and waste treatment and solvent recycling would make a difference, 

Therefore, the intensification efforts should be focused on these areas as described in the 

intensified batch base case. Attempts are made to perform consecutive reactions from amidation 

to ortho-lithiation without solvent swap and product isolation. This involves drying the reaction 

mixture to a moisture level suitable for the next reaction (ortho-lithiation).  

Switching from batch to continuous reaction, higher reaction volume efficiency is 

expected as the residence time required is shorter.  The amidation reaction is estimated to have 

a reaction time in the order of minutes, so flow reactors with extremely short residence time (in 

the order of seconds) like the microreactor and SDR are unsuitable. The static mixer reactor is 

selected in this study as it can provide flexible residence time by extending the length of the 

reactor and sufficient mixing. The workup process in the continuous reaction case is performed 

in batch mode. The continuous whole process case extends continuous processing from reaction 

to workup. This is achieved with the use of centrifugal extractor and wiped film evaporator, 

which are suitable for pharmaceutical application.  

3.3 Experimental Apparatus and Procedures 

3.3.1 Batch base case experiment/RC1 Experiment  

Calorimetry was carried out using a Mettler Toledo RC1 in a 500 mL volume baffled 

reactor (6 cm i.d., AP01-0.5-RTC), glass 4-pitch blade turbine agitator (4 cm i.d.), RD10 control 

box and RC1 software. The RC1 reactor was charged with 233 g of toluene and 30 g of 

diisopropylamine (DIPA) (1.1 M) as shown in Figure 3-1. The temperature of the reaction 

mixture was stabilized at 25 ˚C and was stirred at 450 rpm for 5 minutes before calibration and 

determination of the initial reaction mixture heat capacity. 24 g of 4-chlorobenzoyl chloride 

(AC) (0.5 M) was charged into the reactor over 15 minutes using a New Era 1000 syringe pump. 

1 mL GC samples were drawn via a syringe every 30 min for conversion measurement.  Full 

conversion was observed after 2 h of reaction time and the heat capacity of the final reaction 



Chapter 3. Amidation Process 

46 

 

mixture was calibrated. Large excess of 1 M HCl solution was added to quench the reaction by 

reacting with the excess DIPA. 

 

Figure 3-1 Base case amidation reaction in a 500 mL RC 1 reactor. 

3.3.2 Amidation mixing study in toluene solvent system 

21.7 g of triethylamine (TEA) (1.5 mol eqv w.r.t. AC) and 21.7 g of DIPA (1.5 mol eqv 

with respect to AC) were charged into a 500 mL round bottom flask (RBF) and mixed with 269 

mL of toluene using a magnetic stirrer. A temperature sensor connected to a data logger was 

submerged in the solution. The agitation speed of the magnetic stirrer was set at 100 rpm. The 

stopwatch was started once 25 g of AC was added into the solution in one shot. After three 

minutes, the reaction was quenched by adding 100 mL of 1 M HCl solution the reaction mixture 

in one shot and the agitation speed was increased to 1000 rpm. Although HCl was also produced 

as the byproduct, the amine bases were present in excess. The large excess of quench HCl 

ensured the neutralization of all the excess bases. The quenched reaction mixture was allowed 

to stir vigorously for about 5 min before sample was taken from the organic layer for GC 

analysis. The experiment was repeated using two other agitation speeds at 500 rpm and 1000 

rpm.  

3.3.3 Amidation kinetic study in toluene solvent system 

A 150 mL baffled stirred tank reactor (4 cm i.d.) (Figure 3-2) was charged with 60 g of 

toluene and selected amounts of AC and DIPA were added successively according to Table 3-2. 

The toluene solution of DIPA was stirred at 400 rpm using a 2 blade pitched propeller stainless 

steel agitator (2 cm i.d.) for 5 min. The jacket temperature was set at 20 °C. The stop watch was 

started once AC was added in one-shot manually via a syringe. 1 mL samples were drawn from 

the reaction mixture at fixed irregular time intervals and immediately quenched with an excess 

of 1 M HCl solution. The GC samples were taken from the organic phase to quantify the 

respective reaction conversions. 
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Figure 3-2 Amidation kinetic study in a 150 mL stirred tank reactor 

Table 3-2 Initial AC and DIPA concentrations used for amidation kinetic study 

Run Temperature (°C) Initial AC [M] Initial DIPA [M] 

1 20 0.042 0.11 

2 20 0.042 0.20 

3 20 0.055 0.20 

4 35 0.042 0.11 

5 6 0.042 0.11 

 

3.3.4 Intensified Batch Case Experiment in Toluene-Water Solvent System 

The 150 mL baffled stirred tank reactor (4 cm i.d.) (Figure 3-2) was charged with 40 g 

of toluene and 10 g of DIPA (2.1 M in toluene), followed by 7 g of water. The liquid-liquid 

mixture was stirred at 400 rpm using a 4 blade pitched stainless steel agitator (2 cm i.d.) for 5 

min. The jacket temperature was set at 20 °C. The stop watch was started once 8.5 g of AC (1 

M in toluene) was added dropwise manually via a syringe and the addition took less than a 

minute. The reaction was quenched after 5 min, upon addition of excess 1 M HCl solution under 

vigorous agitation. Samples from the organic phase were taken for GC analysis to quantify the 

reaction conversion. 

3.3.5 Continuous Reaction in Static Mixer 

In the setup shown in Figure 3-3, two peristaltic pumps (Watson Marlow 520S/R 

peristaltic pumps) were used to deliver toluene solution of AC (1 M) and aqueous solution of 

DIPA (1.1 M) respectively. The two tubing carrying the two streams of solutions were 

connected in a head-on manner to a Tee-joint (CTA-2-STEL, 1/8 in, Hylok) and the combined 

outlet was connected to three Noritake static mixers (T3-17R-S) in series with a combined 

length of about 1 m, followed by a 24.5 m long bare 1/8 in i.d. PTFE tubing to provide a 

residence time of 5 min. The long coils of PTFE tubing is shown in Figure 3-4. Each static 

mixer (Figure 3-5) was 10 cm in length and equipped with 17 rod-like elements positioned 
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perpendicular to the flow direction of liquid. The peristaltic pumps were calibrated and dried 

by pumping air through prior to the experiment. The static mixer setup was dried prior to each 

experiment by pushing compressed air through. 

2 L of AC in toluene (1 M) and 6 L of aqueous solution of DIPA (1 M) were prepared. 

The flow rate of the AC stream into the reactor was set at 32.3 mL/min, while the flow rate of 

DIPA stream was set at 67.7 mL/min. Flow through the two pumps was started simultaneously 

and a combined flow rate of 100 mL/min was collected at the reactor outlet. The reaction 

mixture was collected in two 5 L schott bottle prefilled with 1 L of 2 M HCl solutions. The 

reaction mixture was mixed vigorously with the quench solution using a magnetic stirrer. The 

experiment was conducted for about 40 min as the first 10 min were discarded to minimize 

collection during unsteady-state. The samples were taken from the organic phase at different 

time intervals and sent for GC analysis to quantify the reaction conversion. 
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Figure 3-3 Schematic of the continuous static mixer setup. 
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Figure 3-4 Continuous amidation reaction in static mixer setup (Static mixers not visible) 

 

Figure 3-5 A single Noritake static mixer (Source: Noritake (2017a)) 

3.3.6 Continuous Extraction using Centrifugal Extractor 

A schematic of a centrifugal extractor (CE) (CINC, V02) is shown in Figure 3-6 (a).  

Prior to the experiment, trials were conducted with toluene/water mixture and different weir 

sizes under a fixed rotational speed of 4000 rpm (maximum) to obtain suitable weir size aimed 

at obtaining clear separation of the two phases. A weir size of 2.1 cm was found to be the most 

robust and effective weir size to separate toluene/water mixture. All experiments were carried 

out in a single stage CINC V02, which was washed with toluene and water between the 

experiments. The experiment was initiated by switching on the agitator at 4000 rpm and 

pumping the heavy phase (aqueous) first, followed by the lighter phase (organic). After 

reaching steady state at the outlet flows, the experiment went on for several minutes. The CE 

was tested under three different operating conditions:  

1) Separation of liquid-liquid reaction mixture directly from the output of static mixer 

setup into organic and aqueous phase. The objective was to ensure clear separation 

of the phases. The outlet of the static mixer setup flowed directly into the CE at 100 

mL/min and the respective phases were collected at separate outlets as seen in Figure 

3-6 (b). The rate of collection of the organic phase was at about 30 mL/min, while 
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AC pump 
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DIPA/water reservoir 

 

24.5 m PTFE 

bare tubing 

Waste 

O

utlet 



Chapter 3. Amidation Process 

50 

 

the collection rate of the aqueous phase was 70 mL/min and clear phase separation 

was obtained. 

2) Extraction of excess DIPA from organic phase into HCl solution. The objective was 

to ensure majority of DIPA was removed in the aqueous phase. The organic phase 

from previous extraction and 1 M HCl solution were both pumped (Watson Marlow 

520S/R peristaltic pumps) into the CE at 30 mL/min each via two separate inlets. 

The collection rates of both organic and aqueous phases were observed to be 30 

mL/min. Samples for analysis were taken from the organic phase for the detection 

of DIPA by qualitative NMR analysis. 

3) Extraction of amine salt (if any) from organic phase into 1 M NaCl solution. As 

there was no suitable analytical method to quantify amine salt in organic solvent, so 

it was assumed that the quantity of NaCl solution used according to literature (Faigl 

et al., 2010) would be sufficient to remove all the amine salt from the organic phase. 

The organic phase from previous extraction and 1 M NaCl were pumped into the 

CE at 30 mL/min and 15 mL/min respectively. The collection rates remained at 30 

mL/min for the organic phase and 15 mL/min for the aqueous phase. 

 (a)

 

(b)

 

Figure 3-6 (a) Schematic of CINC V02 centrifugal extractor (Source: CINC (2017)); 

(b) Actual setup used in experiment. 

3.3.7 Wiped Film Evaporator 

The wiped film evaporator (WFE) from Pope Scientific Inc., USA was used in 

continuous solvent evaporation as seen in Figure 3-7. The temperature of the still jacket was 

set at 70°C with a pressure of 0.09 bar and agitator speed of 250 rpm. The organic feed, obtained 

from the multiple CE washes, was admitted into the still at two different flow rates – 43 and 

100 mL/min using a Watson Marlow 520S/R peristaltic pump. The feed flowed down the 

evaporative surface, where the more volatile toluene vaporized, while the less volatile amide 1 
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concentrate continued flowing down the cylinder into the concentrate collector. The toluene 

was collected in the distillate receiver after passing through the condenser. The equipment 

dimensions were:  

1) Distance from evaporation surface to agitator tips: 1 mm; 

2) evaporator heated surface area: 0.108 m2; 

3) evaporator cylinder internal diameter: 10.16 cm; 

4) condenser surface area: 0.390 m2. 

 

 

Figure 3-7 POPE Wiped Film Evaporator used in actual experiments. 

3.3.8 Feasibility Study of Consecutive reactions from amidation to ortho-lithiation: THF 

drying study 

Analytical grade THF (100 mL) was washed with 1 M NaCl (33 mL) and the aqueous 

layer was separated. The volume of the ‘wet’ THF was measured and the required amount of 

desiccant was weighed and packed in a glass column. The ‘wet’ THF was then passed through 

the desiccant plug and the volume of solvent collected was noted. This process was repeated, if 

required, with a second batch of fresh desiccant. 
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The water content of THF was determined via Karl Fischer titration (Mettler Toledo 

Karl Fischer Titrator V20, using HYDRANAL®-Solvent, and HYDRANAL®–Titrant 5 pre-

calibrated with HYDRANAL®–Water Standard 10). 

3.4 Reaction Understanding 

According to Faigl et al. (2010), the overall stoichiometries of amidation between 4-

chloro benzoyl chloride (AC) and diisopropylamine (DIPA) and of neutralization reaction 

between trimethylamine (TEA) and by-product HCl are given by Eqs. (3-1) to (3-3) below. 

Synthesis of amide 1 via amidation reaction between AC and DIPA: 

 

(3-1) 

By-product HCl neutralised by TEA to form amine salts: 

 
(3-2) 

By-product HCl neutralised by DIPA to form amine salts: 

 
(3-3) 

Amide 1 was obtained from the reaction between AC and DIPA in the presence of TEA 

at ambient temperature. During the reaction, stoichiometric amounts of amine salts were formed 

while the HCl released were ‘captured’ by the amine bases. The amine salts were insoluble in 

toluene and presented as solids. This reaction had no side product formation according to GC 

analysis. 

The RC 1 experiment revealed a heat of reaction of 105 kJ/mol AC, with a potential 

adiabatic temperature rise of 56 K. During the addition of bases (DIPA and TEA mixture) to 

AC in toluene and depending on the addition rate and agitation speed, evolution of HCl fume 

was observed. Caution was exercised during the RC 1 experiment to ensure minimum release 

of HCl fume into reactor headspace by optimizing the agitation speed and reagent dosing rate. 

Good ventilation was ensured during the reaction and the headspace was constantly purged by 

nitrogen gas, which bubbled through sodium hydroxide solution before exiting to the 

surrounding. Preliminary study from RC 1 experiment showed that the amidation reaction, 

following the procedure from Faigl et al. (2010), did not seem entirely safe due to release of 

HCl fume. Therefore, slight modifications were made to the literature procedure to enhance it 

into a safe and scalable base case. 

According to Faigl et al. (2010), the mixture of DIPA and TEA was added slowly to a 

solution of AC in toluene. The reason for using two different amine bases was to ensure that 
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sufficient TEA is available to quench the HCl byproduct as DIPA react with AC. The quenching 

of HCl was made more efficient by changing the addition sequence – AC added slowly to a 

solution of bases in toluene. With this modification, noticeably lesser HCl fume was released 

during the reaction because AC was added to a large excess of bases where the concentration 

of amine bases is significantly higher than AC and HCl. As a result, HCl was quickly ‘taken’ 

by the bases that are present in abundance. 

It was also visually observed during the RC 1 experiment that there was a layer of 

stagnant solid-liquid suspension close to the reactor wall and the only moving section was in 

the center of the reactor where the impeller was. This phenomena is very similar to the 

description of a cavern in Figure 3-8 (Paul et al., 2004), which is a physical characteristic of 

viscoelastic/yield-stress fluid when the minimum shear stress in a vessel is lower than the fluid 

yield stress. This raised concerns that the poor mixing close to the wall could have led to 

accumulation of unreacted AC in the reactor and potential exothermic runaway should all the 

unreacted materials suddenly make contact, mix rapidly and react.  

 

Figure 3-8 Schematic of cavern formation (Paul et al., 2004) 

In order to validate whether the formation of amine salts could result in mixing 

limitation during the reaction, experiments were conducted at different agitation speeds. Results 

in Figure 3-9 (a) shows that the conversion was dependent on agitation speed; this was 

supported by their respective temperature profiles in Figure 3-9 (b). The initial temperature rise 

in 100 rpm was noticeably slower than those at higher agitation speeds, indicating that the initial 

rate of reaction is affected by agitation speed. Based on these observations, it is clear that mixing 

is paramount to the scalability of this process. 

 

 

 

 



Chapter 3. Amidation Process 

54 

 

(a)

 

(b) 

 

Figure 3-9 a) Mixing dependency of the amidation experiments; b) Temperature 

profile of the experiments 

A series of rheology tests were performed to characterise the flow behaviour of the 

reaction mixture through analysis of the material’s storage and loss moduli (Appendix A.1). 

The rheology results revealed that the suspension behaved as a viscoelastic solid at low strains 

and began to flow at higher strains after a long period of yield as it turned into a viscoelastic 

liquid. A microscope photo of the gel-like suspension (Figure 3-10) was taken to gain an insight 

to its physical structure. The amine salts (TEA.HCl and DIPA.HCl) formed rod-like crystalline 

dispersion in toluene. According to a study by Solomon and Spicer (2010), one common feature 

of rod-shaped particle systems is their ability to form space-filling networks, to efficiently 

create elasticity and to trigger a solid-like rheological response. For example, a network of rod-

shaped particles could increase the yield stress by orders of magnitude for a given concentration 

compared to a close packing of spherical shaped particles. This suggests that the extensive 

network of rods might be responsible for the physical properties such as viscosity and yield-

stress. However, if the solid concentration falls below a certain concentration or minimum 

percolation volume fraction such that the number density of the rods is too low to contact each 

other, the rods would likely lose their structural impact on the suspension. Under such a 

condition, the intrinsic reaction kinetics could be achieved without the effect of mixing 

limitation.  

 

Figure 3-10 Microscope photography of the final reaction mixture slurry at 6 w/w% 
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Given the mixing limitation, one possible solution was to increase the volume of cavern 

by employing multiple impellers as shown in Figure 3-11 (Arratia et al., 2006). Although the 

bulk of the vessel seemed to be well mixed, the volume close to the wall might still be poorly 

mixed. The impeller shaft needed to be carefully designed and positioned to ensure consistent 

mixing throughout the vessel. Due to equipment constraint (no suitable multiple impellers), this 

method could not be proven experimentally. It is assumed to be a practical and effective solution 

to the mixing problem and could potentially be applied in the batch base case for a safe and 

scalable batch process. 

 

Figure 3-11 Schematics of cavern observed in mixed tanks, where grey areas indicate 

regions that are well mixed and white indicates unmixed areas. (Kresta et al., 2015) 

Based on the experimentally obtained reaction kinetics in Table 3-3 (Appendix A.2) 

using very low reagent concentration (~0.5 w/w% solid loading), the reaction time for the 

original AC concentration of 0.5 M could be extrapolated. It was estimated that the intrinsic 

reaction time required to obtain 99% conversion at 20 °C was about 183 s (3 min) while Faigl 

et al. (2010) reported a residence time of 24 h at similar concentration and temperature. Under 

the assumption that the use of multiple impellers eliminated mixing limitation, the residence 

time was assumed be solely dependent on AC dosing rate, which was controlled by the heat of 

reaction. 

Table 3-3 Kinetic parameters of amidation reaction 

Batch base case Kinetic data 

Order of  4-chlorobenzoyl chloride 1 

Order of DIPA 2 

k, rate constant at 20 °C (L2 s2/mol2) 2.1 

Ea (kJ/mol) 20 

ko , pre-exponential (L2 s2/mol2) 5581 

Overall rate equation at 20 °C −𝑟𝐴𝐶 = 2.1𝐶𝐴𝐶𝐶𝐷𝐼𝑃𝐴
2  

Isolation of amide 1 from the solution was carried out as described by Faigl et al. (2010) 

where the organic solvent was evaporated under reduced pressure. The resultant ‘wet’ solid 

(amide 1) was triturated with hexane and filtered. However, these steps were unsuitable for 

large scale process as amide 1 was quite soluble in hexane, with a recovery of only 30-40% of 
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the reaction yield after filtration. Nevertheless, it is concluded that purification and trituration 

are unnecessary as the reaction does not produce side products.  

Another major challenge was the evaporation of the crude reaction mixture. The minute 

amounts of water present during solvent evaporation resulted in the formation of hard and 

clumpy solid that was not readily transferrable from the reactor vessel. It was found that 

‘drying’ of the reaction mixture using anhydrous magnesium sulfate allowed the formation of 

easy-to-flow crystalline solid product as seen in Figure 3-12 and there was no solid sticking to 

the wall of the round bottom flask. 

 

Figure 3-12 Crystalline solid amide 1 obtained after workup under anhydrous 

condition  

Based on the experiments and experiences during the base case development, the 

following pitfalls/bottlenecks/limitations in the process were identified: 

 Large amount of DIPA and TEA excesses used which led to unnecessary wastage 

of reagents. 

 Unnecessary complication by using two types of bases (DIPA and TEA) which 

required additional premixing step. 

 Maximum initial AC concentration capped at 0.5 M due to mixing limitation which 

led to the use of large amount of solvent and high energy consumption for solvent 

evaporation in workup. 

3.5 Investigation of process intensification options 

Based on the above identified bottlenecks, possible PI options were proposed to remove 

bottlenecks in the process and improve process performance. In the following section, several 

process intensification options were discussed, followed by propositions of three intensified 

cases. The PI options investigated were: 

1) Reduce the number and amount of reagents used 

2) Reduce toluene usage  

3) Reduce the wash mediums in workup  

4) Consecutive reactions from amidation to ortho-lithiation 

5) Continuous reaction 
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6) Continuous whole process (including workup) 

3.5.1 Reduce Number and Amount of Reagents Used 

As DIPA has similar basicity as TEA, the TEA in the amine reagent mixture was 

replaced by an equal amount of DIPA without affecting the reaction performance. The 

premixing of DIPA and TEA prior to the reaction was avoided.   

Attempts to reduce the usage of DIPA from 3 to 2.1 mol eqv (with respect to moles of 

AC) did not affect the efficiency of capturing HCl. This was done by quantifying the amount 

of DIPA.HCl present in the first aqueous wash medium through conductivity tests (Appendix 

A.3) and assuming that all DIPA.HCl salt dissolved in the aqueous layer. The result showed 

that 97% of the HCl was converted to DIPA.HCl, which indicated that the reduction of DIPA 

did not compromise on safety as majority of the HCl byproduct was efficiently captured by the 

DIPA. Table 3-4 shows the material costs for different quantities and types of amines used. 

Option 3 gives about $26 to $36 savings in reagent cost when compared to options 1 and 2. 

Therefore, the decision is to use 2.1 mol equivalent of DIPA as it appears to be the most cost 

saving option. 

Table 3-4 Cost comparison of amine reagents 

 Options 
Cost (USD/kg amide 

1) 

Cost Saving (%) 

1) 3 mol eqv DIPA 122 N.A. 

2) 1.5 mol eqv TEA+ 1.5 mol eqv DIPA 112 8.2 

3) 2.1 mol eqv DIPA 86 29.5 

3.5.2 Reduce Toluene Usage  

To eliminate mixing limitation caused by amine salt (solid), water could be added to the 

solvent (toluene) as the amine salt was highly soluble in water (approximately 500 g/L). 

Without mixing limitation, higher initial AC concentration in toluene could be used.  

To test this, 1.05 M of DIPA was prepared in toluene followed by addition of minimum 

amount of water needed to dissolve the amine salt. Subsequently, AC (0.5 M in toluene) was 

added to the toluene-water solvent system and the reaction was monitored through regular 

sampling and GC analysis. Based on visual observation during the reaction, there was no 

formation of solid and the reaction mixture appeared cloudy as the organic and aqueous phases 

appeared to be well dispersed under the agitation of a single impeller at 450 rpm. The result 

indicated that full conversion was reached in less than 5 min (Appendix A.4) and it proved that 

the use of toluene-water mixture as solvent can effectively avoid mixing limitation. 
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In light of this promising result, the initial AC and DIPA concentrations in toluene were 

doubled to 1 M and 2.1 M respectively. Under these conditions, complete conversion was 

achieved in less than 90 s, which was expected as the rate of reaction increases at higher 

concentrations. This proved that the toluene-water system was robust even with more 

concentrated reaction mixture. Even though the toluene-water system might be capable of 

operating at even higher reagent concentrations, the decision is to cap the initial AC and DIPA 

concentrations at 1 M and 2.1 M, as AC has limited solubility in toluene and it might take a 

longer time for complete dissolution of the AC in toluene if higher concentrations were used. 

3.5.3 Reduce Wash Medium in Separation Process 

The amounts of wash solvents (e.g. water, NaCl solution and HCl solution) used in the 

safe and scalable batch process were investigated (Table 3-5). Based on the solubility of 

DIPA.HC in water (500 g/L), the required amount of water to dissolve the salts was calculated 

to be only 45% of the reported value (219 g/L) by Faigl et al. (2010).  

Based on section 4.5.1, since the required mol eqv of DIPA was decreased from 3 to 

2.1, the excess DIPA correspondingly decreased from 1 to 0.1 mol eqv. As a consequence, the 

amount of HCl wash required for neutralization of excess DIPA was reduced significantly.  

The brine wash reported in literature (Faigl et al., 2010) was replaced by 1 M NaCl 

extraction because brine has a higher tendency to corrode stainless steel in the long term. 

Unfortunately, there was no suitable analytical equipment to quantity the amount of amine salt 

and DIPA that remained in the organic phase. In order to ensure that the majority of the amine 

salt and the DIPA were removed from the organic phase, a conservative decision is to use the 

same volume equivalent with respect to AC of 1 M NaCl solution as reported in the literature 

(Faigl et al., 2010). 

Although the amide 1 yield residing in the organic phase decreased after each aqueous 

wash (Table 3-5), no traces of amide 1 was observed in the GC analysis of the respective 

discarded aqueous phases after phase separations. This suggested that the loss of amide 1 was 

more likely due to handling.  

Table 3-5 Summary of the improvement actions taken to minimise amount of wash medium 

used. 

Workup 

step 

Reagents Literature 

data (Faigl 

et al., 2010) 

PI option Crude 

sustainability 

benefits 

Amide 1 

yield in 

organic 

phase (%) 

Water wash 

and phase 

separation 

Water  
0.63 L/mol 

AC  

0.28 L/mol AC 

(minimum) 

55% reduction 

in volume of 

water usage 

98 
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HCl wash 

and phase 

separation  

5 w/w% 

(1.44M) 

HCl 

0.47 L/mol 

AC  
0.07 L/mol AC 

85% reduction 

in volume of 

HCl solution 

usage  

96 

NaCl wash 

and phase 

separation  

1 M NaCl 

solution 

0.47 L/mol 

AC 

0.47 L/mol AC is 

the minimum 

amount required to 

remove the 

remaining salt in 

toluene 

- 94 

3.5.4 Consecutive Reaction from Amidation to ortho-Lithiation  

With the intent to minimise amide 1 yield loss in the workup steps, attempts were made 

to carry the amidation crude to consecutive ortho-lithiation reaction. Since ortho-lithiation was 

performed in THF, the amidation was also carried out in THF. The use of THF as amidation 

reaction solvent was demonstrated to be feasible. However, one important criterion for 

amidation crude to go on to ortho-lithiation was to have a very low water content of 

approximately 0.04 w/w% as observed from lab-scale experiments. A technology search was 

done and some common dehydration techniques using desiccants like anhydrous magnesium 

sulfate and neutral alumina were assessed through preliminary lab-scale experiments 

(Appendix A.5). 

To assess the drying efficiency of various desiccants, pure THF was first washed with 

1 M NaCl solution and the organic phase (‘wet’ THF) was isolated and analysed via Karl 

Fischer titration. This step ‘simulated’ the water content in the amidation reaction crude after 

the aqueous extractions which were necessary steps before carrying on to ortho-lithiation. 

Subsequently, the desiccant was added to the wet THF and THF was dried over the selected 

desiccants. Unfortunately, the results showed that both drying agents were unable to reduce the 

water content in the THF to 0.04 w/w% as they were limited to 1 w/w%. Another general 

problem faced was the significant loss of reaction crude within the desiccant matrix which not 

only trapped water but also amide 1 and THF. The loss of amide 1 whilst passing it through the 

packed drying agents would be too high to make this a viable process. Unless a more efficient 

drying method could be found, performing consecutive reactions from amidation to ortho-

lithiation would not be feasible. Amide 1 had to be isolated as dry crystalline solid for use in 

the next reaction step. 

3.5.5 Continuous reaction 

The use of toluene-water solvent system in the intensified case was able to avoid the 

formation of solid amine salt, which made it compatible with continuous mode of reaction. The 

proof of concept was experimented with static mixers. The objective of the static mixer 
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experiment was to prove the feasibility of operating amidation in continuous flow reactor. The 

static mixer setup offers flexible residence time as it could be extended using longer PTFE bare 

tubing.  

The schematic diagram of the continuous static mixer reactor setup is shown in Figure 

3-4, where the two reagent streams (AC in toluene, DIPA in water) were mixed in a T-mixer, 

after which the liquid-liquid mixture were mixed in three static mixers connected in series (1 m 

in length, 12 s of residence time) and a long stretch of bare tubing (24.5 m) which provided the 

required residence time of about 5 min with a flow rate of 100 mL/min.  

The issue with this setup was the poor mixing in the bare tubing where the toluene-water 

mixture flowed through as large biphasic slugs were observed in Figure 3-13. This might 

explained the longer residence time required to obtain complete conversion in contrast to a 

batch reactor. Although this setup was not optimised in terms of mixing efficiency, throughput 

and residence time, the applied reaction condition was able to obtain full conversion within a 

reasonable range of residence time. Based on this encouraging result, the static mixer reactor 

setup is used as a feasible example of the continuous reaction.  

Improvements to improve the mixing performance in the setup could be made by 

extending the length of static mixer length longer or reducing the diameter of the bare tubing.  

Given better mixing capability, a shorter residence time and smaller reactor volume would be 

expected (Ghaini et al., 2011; Hartman et al., 2011; Ufer et al., 2011). 

 

Figure 3-13 Photo of large biphasic slugs of toluene and water phases in the bare 

PTFE tubing section. Large liquid-liquid slugs observed in red circle 

3.5.6 Continuous whole process 

In view of a continuous flow reaction, a continuous operation incorporating continuous 

workup was proposed. A potential continuous process involved a static mixer reactor (section 

4.5.5) and subsequent continuous separation equipment such as centrifugal extraction, Karr 

column, agitated thin film dryer, spray dryer and wiped film evaporator.  There are many other 

possible continuous workup equipment that might be applicable. For the ease of determining 
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the feasibility of the equipment, experiments were performed with technologies that were 

available in-house such as the centrifugal extractor (CE) and the wiped film evaporator (WFE). 

The CE was used in three liquid-liquid phase separation steps involving 1) separation 

of aqueous and organic phase; 2) extraction of excess DIPA from the organic phase using 1 M 

HCl solution; and 3) removal of any remaining salts in the organic phase using 1 M NaCl 

solution. For all the phase separations, clear organic and aqueous streams were collected from 

the outlets. Nearly complete removal of DIPA from organic phase was achieved for the given 

operating condition according to NMR analysis of the organic phase. Due to lack of analytical 

method to quantify amine salt in the organic phase, it was conservatively assumed that the CE 

would be equally efficient in amine salt extraction as STR. In general, the extraction using CE 

is considered superior to batch as the mixing and phase separation was completed in seconds 

compared to more than 10 mins in STR.  

The use of Wiped Film Evaporator (WFE) was aimed at obtaining amide 1 as free-

flowing dry solid by efficiently removing toluene continuously through a heated column under 

reduced pressure continuously. The pressure in the WFE was set at 0.09 bar and the estimated 

boiling point of toluene at this pressure is about 35 °C. In order to increase the rate of 

evaporation, the WFE jacket was set at 70 °C which is still below the boiling point of amide 1 

at about 85 °C. In the first trial with a reaction mixture flow rate of 100 mL/min in a single pass, 

only 24 v/v% of toluene was removed. Despite operating at the highest temperature and lowest 

pressure possible, this result was far from ideal. It was believed that the residence time of the 

reaction mixture in the heated column was too short for evaporation. In order to extend the 

residence time in the fixed length column, the lowest possible flow rate of 43 mL/min was used 

and the result improved as 33 v/v% of toluene was removed. A second pass was made under 

the same condition and a further 22 v/v% was removed. At this point, the existing WFE had 

removed more than half of the solvent in two passes. Although multiple passes were required 

to obtain the desired product specification, WFE has shown promising and optimistic results.  

3.5.7 Summary of PI options 

After assessing the feasibility of the proposed PI options 1 to 6, the experimental 

conditions for the following four cases (batch base case, intensified batch case, continuous 

reaction case and continuous process case) are summarised in Table 3-6. It was noted that the 

operating conditions and results reported were not optimised, but experimentally proven as 

feasible.  

The batch base case is a modification from the literature procedure (Faigl et al., 2010) 

to obtain a safe and scalable process. It is also virtually designed under the assumption of no 
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mixing limitation with the use of multiple impellers during the reaction. An intensified batch 

case is developed by retrofitting PI options 1-4 on the batch base case.  

For the continuous reaction case and the continuous process case, the pre-mixing of 

DIPA in water to obtain an aqueous stream of DIPA and AC in toluene are required. However, 

this raised concern that increased quantity of water is required to dissolve DIPA because DIPA 

has limited solubility in water (100 g/L or 1 M). A brief water consumption comparison is also 

shown in Table 3-6.  

Table 3-6 Summary of reaction and separation information in literature, base case and 

intensified batch case, continuous reaction and continuous process 

  Literature 

case (not 

scalable) 

Batch base 

case 

 

Intensified 

batch case  

Continuous 

reaction 

Continuous 

whole 

process 

Mode of 

reaction 

Batch Continuous Continuous 

Mode of 

separation 

Batch Continuous 

Solvent system Toluene Toluene Toluene-water 

Recycling of 

solvent 

No No Yes 

Required 

residence time 

24 h 3 min 

(Theoretical) 

90 s 5 min 

Sequence of 

addition 

Mixture of 

TEA & 

DIPA added 

to a mixture 

of AC in 

toluene 

AC added to 

a mixture of 

TEA & DIPA 

in toluene 

AC added to 

DIPA in 

toluene-

water 

mixture 

AC in toluene mixed with 

DIPA in water 

Concentration 

of limiting 

reagent (AC) 

0.5 M 0.5 M 1 M 

Reagents TEA – 1.5 

mol. eq. 

TEA – 1.5 

mol. eq. 

DIPA – 2.1 mol. eq. 

DIPA – 1.5 

mol. eq. 

DIPA – 1.5 

mol. eq. 

Reaction yield >99% 

Work up Water wash Water wash HCl wash HCl wash 

in CE 

HCl wash HCl wash 1 M NaCl solution wash 1 M NaCl 

wash in CE 

Brine wash 1M NaCl 

solution wash 

Anhydrous MgSO4 

addition 

Anhydrous 

MgSO4 

addition in 

CSTR 

MgSO4 

drying 

Anhydrous 

MgSO4 

addition 

Filtration Continuous 

filtration 
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Filtration Filtration Evaporation of toluene Wiped film 

dryer 

Distillation Evaporation 

of toluene 

Drying - 

Trituration 

with 

Hexanes 

Drying - - - 

Filtration - - - - 

Drying - - - - 

Recycling of 

solvent 

No No Yes 

Water 

consumption 

0.7 L/mol 

AC 

0.7 L/mol AC 0.3 L/mol 

AC 

2.1 L/mol AC 

 

3.6 Design of batch base case, intensified batch case, continuous reaction case and 

continuous whole process case for 3 tons per year production (amide 1)   

In order to compare the sustainability benefits between the batch base case, intensified 

batch case, continuous reaction case and continuous whole process case, the plants were 

designed to produce about 3 tons per year of amide 1 from AC and DIPA (Reaction scheme), 

with product purity of about 99 w/w% and less than 0.1 w/w% of residual toluene. The 

following assumptions were made based on lab-scale experimental work: 

1) There was no side product observed from the reaction based on 1H NMR spectra. 

2) There was no observable degradation of AC when in contact with water based on the 

amide 1 yield obtained. 

3) There was no observable heat of neutralisation when excess DIPA and HCl solution are 

mixed together. 

4) During the HCl wash step, all the excess DIPA was assumed to be reacted and removed 

in the aqueous phase as observed from 1H NMR spectra. 

5) During the NaCl solution wash step, all the amine salt was assumed to be removed in 

the aqueous phase. 

6) All amide 1 losses were assumed to be due to handling as no organics is observed in the 

aqueous phase based on GC analysis.  

7) 90% of the toluene used in intensified batch case, continuous reaction and continuous 

process was assumed to be recycled. 

8) The reactors were assumed to have good containment so there was no loss of volatile 

amines to the atmosphere. 

9) For the batch base case, it was assumed that three agitators of 3 pitched blade turbine 

impellers would provide good mixing performance. 

10) Total number of operation hours per year was assumed to be 8000 h. 
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Heat and mass balances of the process were carried out based on lab scale experimental 

data as well as the above assumption. Both the batch base case and intensified case consisted 

of one-pot integrated reaction and separation process where the reactor vessel is used for 

reaction and workup extraction (water, HCl and HCl washes). The solvent evaporation, 

filtration and drying unit operations are not performed in the reactor. The schematic diagrams 

of all the four cases are shown in Appendix A.6. 

The base case used more reagents (DIPA and TEA) and solvents (toluene, water, HCl 

solution) than the intensified batch case where the reaction is performed at higher 

concentrations. Due to the higher reaction concentration, the volume of the reactor in the 

intensified batch case is designed to be relatively smaller than that in the batch base case. It is 

also verified experimentally that there was no mixing limitation in the intensified batch case 

due to the presence of water which dissolved the amine salt during the reaction. The 

condensation and recycling of evaporated toluene for subsequent batches is incorporated in the 

design of the intensified batch and continuous cases. 

The reaction conditions used in the continuous reaction case is based on the actual static 

mixer experiment which obtained 100% conversion at a residence time of 5 min and a combined 

AC and DIPA flow rate of 100 mL/min. The reactor design consisted of three Noritake static 

mixers connected in series to a 24.5 m long PTFE tube. The separation operations are performed 

in batch mode where the reaction mixture had to be collected in a decanter for phase separation. 

After accumulation to a certain volume, the organic phase is pumped from the top layer into the 

next reactor for washes in batch mode, while the aqueous phase in the bottom layer is discarded.  

The continuous whole process case consisted of continuously reaction and separation. 

The continuous extractions are designed to be performed using three CE in series. Although the 

WFE did not obtain satisfactory result, it showed potential for continuous solvent removal. For 

the purpose of design, it is assumed that a state-of-the-art agitated thin film dryer which 

operated based on the same principle as the WFE would be able to meet the expectation. Other 

conceptually developed continuous operations included the continuous feed of anhydrous 

magnesium sulfate using an automatic screw feeder, a well-mixed CSTR to suspend the 

magnesium sulfate and a continuous filtration of the slurry. 

For all these plants, the utilities used would be electricity for pumping/agitation/heating 

and chilled water for cooling/condensation. All the organic, aqueous and solid waste generated 

are assumed to be drained into the Intermediate Bulk Containers (IBCs) and sent off for 

treatment/disposal by a waste management contractor. 
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3.7 Comparisons of sustainability performance  

Based on the process design for the four cases, their sustainability performances in terms 

of economy, mass, energy and environmental efficiencies are summarized in Table 3-7 

(Appendix A.7). The continuous cases have higher reaction volume efficiency than the batch 

cases. The static mixer reactor volume is much smaller than the batch reactors because the batch 

cases have relatively longer cycle times (one-pot reaction) which require larger reactor volumes 

in order to cope with the required throughput. When comparing the volume efficiency of the 

separation process, the continuous process case has the smallest equipment volume (CE, Wiped 

film dryer, etc.). The batch base case has the lowest volume efficiency because it needed to 

process more solvent (toluene) than the other cases. 

Table 3-7 Comparisons of sustainability metrics between batch base case, intensified case, 

continuous reaction, continuous whole process at design scale of about 3 ton amide 1 per year. 
 

Batch base 

Case 

Intensified 

batch case 

Continuous 

reaction 

Continuous 

whole 

process 

Reaction volume efficiency  (kg 

amide 1 /h/m3)  
3 17 835 835 

Reaction and separation volume 

efficiency (kg amide 1 /h/m3)  
0.001 0.007 0.013 5.644 

Max processing inventory at any 

point of time (L/kg amide 1/h) 
993 203 293 225 

Total material efficiency (kg 

material/kg amide 1) 
21 6 15 15 

E-factor (kg waste/kg amide 1) 20 5 14 13 

Total energy efficiency (kJ/kg 

amide 1) 
454,784 149,927 167,069 420,338 

CAPEX (USD/kg amide 1) 76 63 68 145 

Economic savings in CAPEX 

(%) 
Benchmark 17 10 -91 

OPEX (USD/kg amide 1) 369 220 227 253 

Economic savings in OPEX (%) Benchmark 40 39 32 

The maximum processing inventory at any point of time refers to the total inventory in 

all the processing equipment which includes the storage and mixing tanks. Despite providing 

the best volume efficiency, the continuous reaction and continuous whole process cases did not 

provide overall smaller inventory in the plant compared to the intensified batch case. This is 

because of the additional volumes of the DIPA/water and AC/toluene mixing tanks and the 

decanter in the continuous cases that are not required in the batch cases. Nevertheless, the three 

intensified cases would still provide safety benefits compared to the batch base case when 

dealing with hazardous chemicals. 
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In terms of the material efficiency and E-factor, the intensified batch case appears to 

have the best performance because recycling of toluene is incorporated in the design 

conceptually. For the continuous cases, the poorer performance is due to significant amount of 

water used to dissolve DIPA in order to introduce DIPA as an aqueous stream to the organic 

stream containing AC. This is unnecessary in the intensified batch case where toluene, DIPA, 

water and AC are added separately into the batch reactor and significantly lesser amount of 

water is required as the amine salt is highly soluble in water. 

The two most energy intensive cases are the batch base case and the continuous whole 

process case. The majority of the energy consumption for the batch base case is invested in 

toluene evaporation; as its AC concentration was more dilute than in other the cases. For the 

continuous whole process case, most of the continuous equipment, including the centrifugal 

extractors, the screw feeder and the agitated thin film dryer, required mechanical 

movement/agitation that is energy intensive. 

Costing of the plants is based on process designs (Appendix A.6) and it is assumed to 

be operating on existing plant area which is fully facilitated with utility infrastructure. Apart 

from the centrifugal extractor and the static mixer, most of the general equipment like storage 

vessel is priced on the same costing basis using Matches’ Process Equipment Cost Estimates  

(Matche, 2017). As for the specialized state-of-the-art equipment like the agitated thin film 

dryer, the equipment quotations are obtained from Alibaba (2017a).  The absolute capital 

expenditure (CAPEX) calculated in this section might not reflect the actual CAPEX of a plant 

because many of the equipment are not customized and installation costs are not included. 

However, the percentage CAPEX reduction relative to the batch base case cost would provide 

a sensible comparison. The slight CAPEX reduction in the intensified batch case and the 

continuous reaction case is mainly due to the decrease in equipment volume since the reactor 

volume is reduced significantly compared to the batch base case. As expected, the CAPEX of 

the continuous process case appears to be most expensive and is 90% higher than the batch base 

case. This was due to the costly specialized continuous equipment involved such as the agitated 

thin film dryer, the rotary vacuum drum filter, three centrifugal extractors and an automatic 

screw feeder. 

The operational expenditure (OPEX) derived in this study included the cost of raw 

materials, utilities/energy and waste treatment. They are priced based on the same source of 

costing database. In general, the cost of raw material constituted majority of the operating cost 

in this process is as summarized in Figure 3-14. AC is the most expensive regent among the 

chemicals used, followed by toluene and the amine bases. Since all the cases have the same AC 

input, the difference in raw material cost is due to varied quantities of toluene and amine used. 
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The intensified batch base case obtains the lowest CAPEX of 220 USD/kg amide 1 because of 

the reduction in solvents and DIPA used, which also leads to reduction in waste treatment and 

energy consumption for solvent evaporation. For the continuous reaction case and the 

continuous whole process case, the water consumptions are much higher than the intensified 

batch case, hence the aqueous waste treatment costs in the continuous cases are also indirectly 

higher. The main OPEX difference between the continuous reaction case and the continuous 

whole process case is in the workup energy cost as significant amount of energy is supplied to 

the continuous workup equipment. Despite having higher CAPEX than the batch base case, the 

continuous process offered a lower operating cost which might still justify the adoption of 

continuous process in the long run. Furthermore, labor cost is not considered in this study but 

it is generally observed that labor cost is lower in continuous process compared to batch (Denčić 

et al., 2014) and it might compensate for the higher energy cost.  Nevertheless, all the cases 

summarized in Table 3-7 are still considered profitable according to the market price of 4300 

USD/kg amide 1 (Apolloscientific, 2017).  

 

Figure 3-14 Breakdown of OPEX for all 4 cases. 

In this study, the continuous whole process did not bring the most benefits. It is 

recognized that the continuous cases resulted in higher water consumption and solvent waste 

generation due to low DIPA water solubility. Although this did not negatively affect OPEX to 

a great extent, the effect on E-factor and material efficiency is significant. The continuous 

operation of the entire process has not been practiced yet and the actual operation might be 

different or there could be consequences not predicted by the preliminary process design 

discussed here. However, in the context of sustainable processing, the continuous cases are 

likely to be considered as feasible development options.  
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The result of this study indicates that the largest overall cost reduction potential is the 

intensified batch case as the waste and energy costs are relatively low compared to the 

continuous reaction and continuous process cases. It uses the least amount of reagents and 

solvents among all the cases leading to least material processed and least energy demanded 

overall, which is significant from an environmental point of view. The impact of several process 

improvement actions using the batch process can sum up to a greener process. 

3.8 Conclusion 

The amidation reaction of 4-chlorobenzoyl chloride with DIPA is successfully 

developed and improved based on the implementation of a number of processing and 

operational modifications in order to achieve sustainability benefits. The thick, gel-like, solid-

liquid suspension that exhibited viscoelastic liquid properties was challenging to scale up due 

to poor mixing. By changing the phase of reaction mixture to liquid-liquid through addition of 

water during the reaction, the major mixing limitation is eliminated and the reaction is 

performed at higher reagent concentrations over a much shorter residence time. Several PI 

options, proven feasible in lab-scale experiments are adopted. These included reducing the 

amount of DIPA and solvents used in washes and carrying out continuous flow reaction in static 

mixers. A systematic series of washes and phase separation are also performed in a centrifugal 

extractor, which enabled a continuous extraction process to be developed. Promising 

experimental results are obtained from the WFE but it was not efficient enough to obtain dry 

solid product. Instead, a conceptual agitated thin film dryer is assumed to be able to meet the 

drying specifications.  Attempts are also made to avoid tedious workup steps by performing the 

subsequent reaction (ortho-lithiation) directly on amidation reaction mixture. However, this 

required the THF solvent to be dried to 0.04 w/w%, which was difficult to achieve due to the 

common drying agents failing to efficiently remove water without excessive loss of amide 1.  

In order to evaluate the sustainability performance of the batch base case, the intensified 

batch case, the continuous reaction case and the continuous process case, the respective plants 

were designed at the same basis of about 3 ton per year throughput. Overall, the intensified 

batch case provides the most benefits, in terms of higher material and energy efficiency, lower 

E-factor, smaller processing inventory and lower CAPEX and OPEX. It is noted that the reason 

for the poorer performance of the continuous cases is because of the larger amount of water 

used to dissolve DIPA due to the difference in the mode of reagent addition between the batch 

and continuous cases. On the basis of the sustainability analysis undertaken in this study, it is 

demonstrated that continuous processing might not always be the best process intensification 

option.  
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Chapter 4. Ortho-Lithiation process – Part 1: Process Understanding 

4.1 Introduction 

Ortho-lithiation is an important class of reaction for the synthesis of regiospecifically 

substituted aromatics, and it is an emerging method to prepare phthalides which are common 

pharmaceutically active compounds (de Silva et al., 1992; Roberge et al., 2008; Faigl et al., 

2010; Karmakar et al., 2014; Newby et al., 2014; Laue et al., 2016). Ortho-lithiation is typically 

conducted in batch mode under cryogenic temperatures (-78 to -40 ˚C) (Desai, 2012) to 

minimize the side reactions arising from the highly reactive organlithium intermediates. 

Although this process produces high purity compounds, it requires the use of large reaction 

vessels and long cycle time to achieve the required throughput. The challenges of safely 

handling both the highly reactive chemicals and a highly energetic reaction in scaled-up 

operations constitute a major disadvantage of such batch processes. One solution to overcome 

these safety related issues is to implement continuous flow processes (Anderson, 2012).  

Indeed, several successful studies have been performed to scale up continuous lithiation 

using tubular flow reactors (Newby et al., 2014; Laue et al., 2016). These flow reactors offer 

superior control of process parameters like mixing, residence time and temperature. There are 

examples of deploying flow processing for lithiation reaction as a process intensification (PI) 

technique. The Yoshida group demonstrated several lithiation reactions using different 

electrophiles in microstructured flow devices (consisting of micromixers and microtube 

reactors) to be superior to batch protocols (Nagaki et al., 2011; Yoshida et al., 2011; Nagaki et 

al., 2014a; Nagaki et al., 2014b; Nagaki et al., 2015). Roberge and co-workers (Roberge et al., 

2008) and Stephan and co-workers (Laue et al., 2016) have both demonstrated the possibility 

to scale up lithiation reactions in flow reactors for pharmaceutical manufacturing. However, 

both authors reported challenges in handling plugging due to precipitation of salts. Kockmann 

and co-workers (Kockmann et al., 2011) evaluated the feasibility to scale up the lithiation 

reaction using tubular flow reactors with different channel diameters and flow rates to avoid 

parallelization. 

One major problem with adopting flow processing in enclosed microchannels is the 

possibility of deposition of the intermediate lithium salts, which can lead to clogging of such 

flow reactors (Laue et al., 2016). It is envisioned overcoming this limitation by the use of the 

SDR which allows a free surface film flowing over the disc surface instead of through an 

enclosed channel. The SDR also possesses a number of characteristics which make it a potential 

intensification tool for ortho-lithiation reaction, such as the capability of achieving rapid mixing 

with an estimated micromixing time in the range of 0.125 to 0.02 s (Jacobsen and Hinrichsen, 
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2012)  and high mass and heat transfer rates in the free flowing thin film of liquid produced 

owing to centrifugal acceleration created by rotation (Boodhoo, 2013). Various examples in the 

literature demonstrate the advantages of performing fast reactions in the SDR (Boodhoo et al., 

2006; Vicevic et al., 2007; Mohammadi et al., 2014). 

The objective of this work is to minimize side product formation by the use of 

continuous flow PI reactors at ambient temperature. Inspired by the success of performing 

ortho-lithiation reaction in microreactors, feasibility study using microreactors (microchips 1 

and 2) and stainless steel reactor is conducted. From the reaction understanding gained from 

the feasibility study, a customized PI reactor – T-reactor, is assembled in-house. In depth reactor 

study on the two most promising PI reactors (T-reactor and SDR) is performed. Comparison of 

the experimental result between the stirred tank reactor (STR), the T-reactor and the SDR is 

shown.   

4.2 Reaction System 

 A typical ortho-lithiation reaction is taken from the literature (Scheme 5-1) (Faigl et 

al., 2010) where the 4-chloro-N,N-diisopropylbenzamide (amide 1) was treated with n-

Butyllithium (n-BuLi, 1.6 M in hexane) in tetrahydrofuran (THF) at -70 to -75 ˚C and the 

lithiation occurred selectively at the ortho-position to  the amide group. The subsequent 

treatment with dimethylformamide (DMF) in step 2 produced 4-chloro-N,N-diisopropyl-2-

formylbenzamide (aldehyde 1). Step 1 was a very fast reaction with an adiabatic temperature 

rise of more than 55 ˚C (230 kJ/mol n-BuLi) (Godany et al., 2011). The second step was less 

demanding in terms of heat exchange and mixing and had a lesser possibility for new side 

product formation (Kockmann et al., 2011).  

 

Scheme 4-1 Reaction used in this study and possible side reactions. 
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Unfortunately the side reaction mechanism of ortho-lithiation is not yet fully 

understood. Only partial information was obtained in the study using liquid chromatography-

mass spectrometry (LC-MS) which nevertheless provided some useful insight into the possible 

side products formed. As shown in Scheme 1, two possible side reactions had been proposed 

based on identification by LC-MS of two molecular masses which had been matched to the 

anticipated molecular structures SP 1 and SP 2. It was noted that versions of other structural 

isomers of these molecules were also possible. It was postulated that these side products arise 

from unselective lithiation reactions competing with the desired ortho-lithiation in step 1. The 

mixing performance in step 2 determined the formation of either SP 1 or SP 2. Poor mixing in 

step 2 tended to generate SP 1 as DMF failed to react with the lithiated species before contacting 

water, while good mixing in Step 2 allowed the lithiated species to undergo electrophilic 

addition to form SP 2. Certain processing conditions may also affect the overall amide 

conversion. For instance, n-BuLi tended to decompose or get consumed in the reaction with 

THF (Stanetty and Mihovilovic, 1997) when n-BuLi was not well-mixed. A lesser quantity of 

n-BuLi available for reaction with amide 1 led to low overall conversion. Similarly low overall 

conversion was expected when the DMF failed to mix homogeneously with the reaction mixture 

in step 2, so the intermediate was converted back to amide 1 upon contact with water during 

separation process. The step 1 reaction in a batch reaction at -60 ˚C was monitored by in situ 

IR measurement (Appendix B.1). Although accurate reaction kinetic was not obtained, the 

experimental result showed that step 1 reaction was very fast and it was estimated to reach 99% 

conversion at 20 ˚C in 2.6 x 10-6 s. 

4.3 Experimental Apparatus and Procedures 

4.3.1 Microreactors 

Microchip 1 used this study is made of borosilicate glass and has a reaction volume 

of 250 µL, as shown in Figure 4-1. The 4-chloro-N,N-diisopropylbenzamide and n-BuLi were 

delivered into the microchip with a nominal cross sectional area of 0.075 mm2 via its two 

inlets, while the third inlet was blocked off. The two streams was mixed in the mixing channel 

(40 µL) followed by the reaction channel (210 µL). It was noted that only the reaction channel 

is encased on the temperature control module while the mixing channel is not. After passing 

through the reaction channel, the reaction mixture was immediately quenched with the DMF 

in a Tee-joint after leaving the glass microchip outlet.   
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(a)  

(b)  

Figure 4-1 (a) Setup of the entire microreactor system; (b) Schematic of glass 

microchip 1 with two inlets in use 

Microchip 2 used in this study is also made of glass but it has a larger nominal cross 

section area of 1 mm2. The point of contact between the n-BuLi and the 4-chloro-N,N-

diisopropylbenzamide is similar to a Y-junction. The walls of the glass microchip were lined 

with static elements (step and rotating), after the Y-junction. As seen in Figure 4-2, the 4-chloro-

N,N-diisopropylbenzamide and the n-BuLi were mixed together in the initial section of the 

channel labelled in red which occupied 300 µL. Subsequently, DMF was added via the third 

inlet and quenched the reaction along the purple channel which occupied 700 µL. Microchip 2 

was submerged in constant temperature cooling bath. At least 4 samples, at fixed time intervals, 

were collected to check if steady-state has been reached during each sample collection. 

Figure 4-2 Schematic of glass microchip 2 with three inlets 

The preparation steps for all flow reactors were similar. 0.4 M of amide 1 solution was 

prepared by dissolving amide 1 (24 g) in THF (230 mL) using a 250 mL volumetric flask. About 

120 mL of the amide 1 solution, 40 mL of n-BuLi in hexanes (1.6M) and 10 mL of DMF were 

drawn using syringes (HSW syringes) and loaded onto syringe pumps (NE 1010 dual, NE 1000, 

NE300 respectively). The chip reactor was flushed and filled with anhydrous THF for at least 

10 min before experiments to ensure anhydrous environment. The output of the reactor was 
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collected in fixed time intervals of about every 30 s for up to 5 min. All collected samples were 

analysed and unsteady-state sample data were excluded (e.g. increasing/decreasing trend in the 

initial/final sample data). From experience, the unsteady-state condition usually occurred in the 

first 30 s and last 30 s of each run. However, due to limited volume of the syringe, the flow 

reactors could only be operated for a short time (about 5 min).  Samples were taken at different 

time intervals to ensure steady state has been reached. 

4.3.2 Stainless Steel Reactor 

The stainless steel reactor was assembled in house from commercially available 

stainless steel tubing (1.75 mm i.d., 3.17 mm o.d.) and the tubing was fitted with Hy-Lok 

stainless steel nuts and ferrules and connect to the Hy-Lok union Tee fitting (CTA-2-S316, 2.28 

mm i.d., 3.17 mm o.d.). The  T-reactor setup, included three precooling coils of 1 m each (for 

amide 1 in THF, n-BuLi in hexanes and DMF streams) and the reactor tubing, R1, ranged from 

0.26 to 5.55 m. The n-BuLi in hexanes and the amide 1 in THF streams were pumped into the 

first T-mixer from opposite directions and the DMF stream merged with the reaction mixture 

in the second T-mixer. Other than the syringe pumps and the outlet tubing, the stainless steel 

reactor was immersed in a circulated silicone oil bath using Huber temperature control unit. 

The flow diagram is depicted in Figure 4-3. 

(a)

 

(b) 

Figure 4-3 (a) Setup of the stainless steel reactor; (b) Reagents delivered into stainless 

steel reactor via syringe pumps, submerged in circulated silicon oil bath. 

4.3.3 PTFE T-reactor 

The T-reactor was assembled in house from commercially available PTFE tubing 

(Sigma Aldrich, 1.6 mm I.D.) and connected to of two PTFE T-mixers (Upchurch Scientific P-

713, 1.25 mm i.d., 17.5 µL swept volume) as shown in Figure 4-4. The T-reactor setup, included 

a reactor tubing, R1, ranged from 0.06 to 2 m. The n-BuLi in hexanes and the amide 1 in THF 

streams were pumped into the first T-mixer from opposite directions and the DMF stream 
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merged with the reaction mixture in the second T-mixer. Other than the syringe pumps and the 

outlet tubing, the T-reactor was immersed in a circulated silicone oil bath using Huber 

temperature control unit. 

 

Figure 4-4 PTFE T-reactor setup 

4.3.4 Spinning Disc Reactor (SDR) 

For the SDR, the stainless-steel disc of 10 cm in diameter was driven by an electric 

motor which operates in the range of 400-2,400 rpm. The SDR was tightly enclosed and purged 

with nitrogen prior to the experiment and kept at positive nitrogen gas pressure throughout the 

experiment. Cooling water was recirculated underneath the disk surface through a temperature-

controlled water bath to keep the disc temperature constant. The three reagents were delivered 

via syringe pumps onto the rotating disk through three feed pipes. The two center feed pipes 

delivering amide 1 in THF and n-BuLi in hexanes were located at the center of the disc. The 

third feed pipe delivering DMF was located at a radial distance of 45 mm from the centre of the 

disc. All the feed pipes were fixed at a distance of 5.0 mm above the surface. The feed tube 

diameter was approximately 1.6 mm for the starting material stream and 1.0 mm for the n-BuLi 

in hexanes and DMF streams where the flow rates were slower. The reactor diagram is depicted 

in Figure 4-5. 
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(a)

 

(b)   (c)   

Figure 4-5 (a) Schematic of the SDR (10 cm diameter) set-up; (b) view of disc surface; (c) 

picture of the set-up. 

Details on analytical methods, n-BuLi titration and stability of aldehyde 1 are presented 

in Appendix B.2. 

4.4 Feasibility Study of Flow Process  

4.4.1 Microreactors (Microchip 1 and 2) Results and Discussions 

The main objective of the feasibility study was to ensure no clogging occurs during the 

flow process and reasonably good reaction yield could be obtained at higher temperature under 

similar reagent concentrations as the batch system.  

Unfortunately, the initial trial with microreactor using Microchip 1 (nominal cross 

section area 0.2 mm2) resulted in blockages as seen in Figure 4-6. The possible reasons for this 

could be the formation of solids due to moisture in feed streams, impurities, formation of salt, 

solid formation in the hot spots or polymerization. Attempts to avoid moisture was made by 

drying the reagents and using anhydrous solvents but still, the formation of solids could not be 

totally eliminated. 

(a)  (b)  

Figure 4-6 Microchip 1 – (a) Clogging in premixing region; (b) clogging in entire microchip 

Microchip 1 was replaced by Microchip 2 (1 mm2) which has a channel cross sectional 

area five times larger than Microchip 1 and equipped with static elements. The intention was to 
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provide large enough passage space for fine solids to pass through. This method worked well 

for a short period of time before pressure started to build up as particle accumulation was 

observed in Figure 4-7 in the channel. It was speculated that the solid particles were trapped 

between the narrow gaps of the static elements. 

(a)  (b)  

Figure 4-7 (a) Smooth run; (b) particle accumulation in Microchip 2 channel 

Although the Microchip 2 setup faced issues with clogging, the result appears promising 

(Table 4-1), obtaining aldehyde 1 yield of 90% at the highest step 1 combined flow rate. Despite 

a shorter step 1 residence time, the high flow rate provided better mixing performance. The 

result indicated that the reaction was most likely a mixing controlled.  

Table 4-1 Microchip 2 result at 20 ˚C 

Run Step 1 combined 

flow rate (mLs-1) 

Step 1 

residence 

time (s) 

Re Aldehyde 1 

yield (%) 

Overall 

conversion 

(%) 

Impurity* 

(%) 

1 0.002 144 4 55 99 44 

2 0.01 28 20 67 99 32 

3 0.06 5 108 76 99 23 

4 0.1 3 187 83 99 16 

5 0.15 2 284 90 99 9 

(*) % impurity = % overall conversion - % aldehyde 1 yield 

4.4.2 Stainless Steel Reactor Results and Discussions 

Based on the experience working with Microchips 1 and 2, it was gathered that 

increasing the channel size and avoiding the use of static elements might reduce the extent of 

clogging. Therefore, a stainless steel reactor setup (Figure 4-8) consisting of even larger 

dimensioned stainless steel bare tubing (R1, i.d.=1.75 mm) and Tee-mixer (i.d.=2.28 mm) was 

assembled. The use of stainless steel was intended to improve the heat transfer capability of the 

reactor given its lower surface area to volume ratio as compared to the microchips. 
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(a)  (b)
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Figure 4-8 (a) Stainless steel reactor setup; (b) Schematic of stainless steel reactor setup 

The flow experiments showed that the stainless steel reactor flow experiments did not 

cause any clogging issues. This was because the fine solids were able to flow through the 

relatively large reactor channel smoothly. However, for similar step 1 combined flow rates, the 

stainless steel reactor (Table 4-2) obtained in poorer yield compared to Microchip 2. This could 

be due to the less efficient mixing and temperature control in the large reactor channel.  

The reactor surface temperature profiles of Run 1 and 7 (Table 4-2) are shown in Figure 

4-9. The R1 surface temperature difference between the two flow rates was almost 10 ˚C. The 

surface temperature of inlet R1 was observed to be higher than that of T-mixer in both flow 

rates. This might be because the T-mixer wall was thicker and more insulated than R1 (bare 

tubing) wall. It is interesting to observe that although the reaction temperature was higher than 

30 ˚C in Run 7, the corresponding aldehyde 1 yield was still the highest. This finding seemed 

to contradict the general statements found in the literature that ortho-lithiation reaction requires 

accurate control of the inner temperature to stabilize the intermediate. 

Table 4-2 Effect of flow rate at constant residence time and temperature for stainless steel 

reactor 

Run Step 1 

combined 

flow rate 

(mL s-1) 

Residence 

time (s) 

R1 length 

(m) 

Re Aldehyde 

1 yield 

(%) 

Overall 

conversion 

(%) 

Impurity* 

(%) 

1 0.12 11 0.6 133 26 42 16 

2 0.14 11 0.65 145 28 46 18 

3 0.16 11 0.75 169 63 93 30 

4 0.18 11 0.85 193 77 97 20 

5 0.23 11 1.05 242 79 99 20 

6 0.54 11 2.55 580 81 97 16 

7 1.18 11 5.55 1263 82 99 17 

(*) % impurity = % overall conversion - % aldehyde 1 yield 
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 (a) 

 

(b)

 

Figure 4-9 Temperature profile on the surface of the T-mixer and surface of inlet of R1 tube 

for (a) 0.12 mL/s and (b) 1.18 mL/s respectively (Bath temperature was at 17 ˚C) 

Another approach was taken to study the temperature sensitivity of the reaction. The 

reaction profiles at different bath temperatures were studied using the stainless steel reactor. As 

shown in Table 4-3, the reaction proved to be robust over a range of about 50 ˚C as the reaction 

yield decreased only slightly from 92% to 85% as the bath temperature increased from -20 ˚C 

to 35 ˚C.  

Table 4-3 Reaction profile at different temperatures 

Run Bath 

temperature 

(˚C) 

Tres (s) Flow 

rate in 

first T-

joint 

(mL/s) 

Flow 

rate in 

second 

T-joint 

(mL/s) 

Aldehyde 

1 yield 

(%) 

Overall 

conversion 

(%) 

Impurity* 

(%) 

1 -20 0.5 1.22 1.27 92 99 7 

2 0 0.5 1.22 1.27 91 99 8 

3 17 0.5 1.22 1.27 89 99 10 

4 35 0.5 1.22 1.27 85 97 12 

(*) % impurity = % overall conversion - % aldehyde 1 yield 

This result is consistent with the finding in Figure 4-9 and this is referred to as Flash 

Chemistry (Yoshida et al., 2008) where reaction time is usually less than a second, given highly 

efficient mixing on a time scale with similar order of magnitude or even shorter. For this type 

of condition, the mixing efficiency is more important than temperature control as the residence 

times are very short and the time taken for decomposition of the intermediate is less of a 

concern. Due to the short residence times, even high reaction temperatures, e.g. 30 ˚C, could be 

tolerated. The reaction yields obtained in continuous reactor are significantly more superior to 

the yields obtained in stirred tank reactor. This is because of the poor mixing and residence time 

control in the semi-batch stirred tank reactor, where the high reactive n-BuLi was rapidly 

consumed in side reactions or over reaction, accounting for the low conversion and yield. 
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Based on these experiments and experiences during the feasibility study, the following 

could be concluded: 

1) The problem of clogging could be avoided by using larger dimension channel as long 

as the fine solids were able to flow freely through. 

2) The reaction in flow (~90% at 20 ˚C) is superior to batch (3% at 20 ˚C) as the formation 

of side products was greatly minimized. 

3) Mixing efficiency was more important than temperature control given short residence 

time. Poor mixing performance resulted in low overall conversion due to decomposition 

of n-BuLi and formation of impurities. 

4) Both step 1 and step 2 were mixing sensitive. Step 1 reaction time to achieve 99% 

overall conversion was estimated to be 2.6 x 10-6 s. 

4.5 Development of T-reactor (PTFE) Flow Process 

From the stainless steel reactor experiments, it was found that the reaction in flow was 

not very sensitive to temperature, high reaction temperatures, for example close to adiabatic 

temperature could even be used, as long as the stability of intermediates and aldehyde 1 at the 

maximum internal temperature (MTSR) were ensured. The thermal stabilities of aldehyde 1 

and amide 1 up till 300 ˚C are determined using differential scanning calorimetry (DSC) 

(Appendix B.3). Although there was no secondary decomposition observed, it was difficult to 

conduct thermal stability test on the reaction intermediate as it was unstable and decompose 

instantaneously in air. It was important to determine the possibility to perform the reaction at 

adiabatic conditions (or worst case scenario). The reason for this is so that simple and 

inexpensive PTFE tubing and Tee-mixers could be used instead of the stainless steel reactor 

which was less flexible and more costly, since better heat transfer property was not much of an 

advantage in this case.  

Commercially available PTFE T-mixers (i.d.= 1.25 mm) were used and joined together 

with PTFE tubing (i.d.= 1.6 mm) where its length could be adjusted to provide desired residence 

times. The final reactor setup for the two step ortho-lithiation reaction is depicted in Figure 4-4. 

The feeds enter the T-mixers from opposing direction and the combined stream exited in a 90° 

angle for both step 1 and step 2.  
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4.5.1 Effect of DMF Addition Mode 

The addition mode/mixing of DMF in step 2 played an important part on determining 

the overall aldehyde 1 yield and overall conversion. It is evident from Table 4-4 that the DMF 

flow rate could influence the aldehyde 1 yield. Beyond a ‘minimum’ DMF quantity, the mixing 

limitation in step 2 diminished and reaction profile depended solely on the flow conditions in 

step 1. However, the ‘minimum’ DMF quantity was likely to be a variable which was dependent 

on step 1 flow rate.  

Table 4-4 Experiments using different quantities of DMF carried out under constant step 1 

residence time of 0.4 s and bath temperature set at 17 ˚C 

Run DMF 

flow rate 

(mL/s) 

DMF 

mole 

eqv to 

amide 1 

Step 1 

combined 

flow rate 

(mL/s) 

Step 2 

combined 

flow rate 

(mL/s) 

Aldehyde 

1 yield 

(%) 

Overall 

conversion 

(%) 

Impurity 

(%) 

1 0.01 1.3 0.65 0.66 74 97 23 

2 0.02 1.7 0.65 0.67 90 99 9 

3 0.03 2 0.65 0.68 92 99 7 

4 0.05 4 0.65 0.70 91 99 8 

5 0.08 6 0.65 0.73 90 99 9 

6 
DMF 

reservoir 

~ 

Infinity 
0.65 NA 91 99 8 

(*) % impurity = % overall conversion - % aldehyde 1 yield 

For simplicity of scale-up and material efficiency, DMF of 2 mole equivalent with 

respect to amide 1 was used in all flow experiments.  For T-reactor, the same mixing principles 

in step 1 could be applied to step 2 as the reaction mixture met ‘head on’ with the DMF feed in 

the second T-mixer. The speeds of the feeds in the second T-mixer mixing channel were 

dependent on the combined flow speed in the first T-mixer. Thus, it was expected that mixing 

time in the second T-mixer is of similar order of magnitude as the first T-mixer. Therefore, 

good mixing performance in the first T-mixer was likely to improve mixing in the second T-

mixer and vice versus. It was also noted that poor reaction performance could be a result of 

poor mixing contributed by both steps. 

4.5.2 Effect of Bath Temperature in step 1 

Attempts were made to change the reaction temperature of T-reactor by adjusting the 

bath temperature. Figure 4-10 shows that the reaction seemed robust over a range of bath 

temperature from 0 ˚C to 40 ˚C. Assuming that the system was adiabatic as PTFE is a good 

insulator, the temperature rise was expected to be more than 50 ˚C and yet there was no 

significant deterioration in aldehyde 1 formation observed in Figure 4-10. The poor heat transfer 

capability of the T-reactor may be compensated by improving the mixing performance and 



Chapter 4. Ortho-Lithiation Process – Part 1 

81 

 

shortening the residence time. The circulated silicon bath temperature was maintained at 17 ˚C 

for subsequent experiments. 

 
Figure 4-10 Effect of circulation bath temperature on step 1 under constant residence time 

(0.4 s) and combined flow speed. 

4.5.3 Effect of Residence Time in Step 1 

Figure 4-11 shows the effect of residence time for two different flow speeds and it was 

demonstrated that shorter step 1 residence time improved aldehyde 1 yield. The longer than 

desired residence time could result in poorer yield due to prolonged exposure to high 

temperature which might cause decomposition of intermediate or overreaction.  

 

 
(a) 

 
(b) 

Figure 4-11 (a) Aldehyde 1 yield; (b) Overall conversion against residence time (Step 1) using 

T-reactor for different Re numbers of 1219 and 2437 

One observation made from Figure 4-11 (a) was that the gap in aldehyde 1 yield between 

Re of 1219 and 2437 appeared more significant at shorter residence times. One possible reason 

could be the effect of mixing limitation was more prominent at low flow speed (Re=1219) and 

short residence times (below 0.8 s). As the residence time increased for Re of 1219, there was 

a subtle improvement in aldehyde 1 yield as there was more time available for mixing to occur 

until over-reaction kicked in as characterized by the drop in yield. Therefore, the optimum 

residence time was very much mixing dependent. 
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4.5.4 CFD Simulation of Mixing in T-mixer 

To achieve realistic simulations, the dimensions of the T-mixer chosen were as close to 

the actual dimension of the T-mixer used as possible. The geometrical setup of the channel 

structure in the T-mixer with circular cross sections is displayed in Figure 4-12.  The reactor 

geometry consisted of a mixing channel with a length of 6 mm and uniform diameter of 1.25 

mm. Each inlet channel is 4.75 mm long with the same diameter as the mixing channel. The 

focus was on the mixing within the T-mixer and in order to avoid perturbations of the flow 

behavior due to the outflow conditions, the outlet of the T-mixer was connected to a PTFE tube 

with diameter of 1.6 mm which was similar to the actual experimental case.  

 

Figure 4-12 Schematic picture of T-mixer used in step 1 in T-reactor 

For the inlet velocity profile, a fully developed duct flow was used. At outlet, the 

pressure was set to atmospheric pressure. No slip boundary condition at the side walls was 

applied. The numerical simulations were performed with the CFD software FLUENT 17.2 

(Ansys Academic). The simulations were performed with approximately 60,000 elements. THF 

and hexane at 20 ˚C were simulated to mix in the T-mixer. THF was specified to enter the T-

mixer from the right inlet and hexane on the left inlet. Three different scenarios were simulated 

and summarized in the Table 4-5. 

Table 4-5 Simulated flow conditions in T-reactor using three different flow speeds 

Scenario Velocity at right 

inlet (m/s) in x-

direction 

Velocity at left 

inlet (m/s) in x-

direction 

Re in mixing 

channel of T-

mixer 

Model 

1 0.002 -0.0006 6 Laminar 

2 0.1 -0.03 305 Laminar 

3 0.81 -0.24 2437 Laminar 

In the experimental study the lowest Re used was about 305, corresponding to the 

simulation in Figure 4-13 (Scenario 2) where the two feed streams swap to the opposite sides. 

This is known as the secondary flow which is first defined by Prandtl (Prandtl and Deans, 1953) 
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as the result of centrifugal force when fluid flows in a curved path. This results in cross flow 

which is good for mixing as it creates a larger area of contact between the two liquids for 

mixing. This observation is similar to that seen by Kockmann, Engler, Wong and co-workers 

in T-mixers using similar Re, which they described as engulfment flow, characterized by 

distinct rapid increase of mixing quality with Re (Engler et al., 2004; Wong et al., 2004; 

Kockmann et al., 2006).  

 
Scenario 1, Re=6: Particle traces coloured 

by volume fraction (3d, dp, pbns, mixture, 

spe, lam) 

 
Scenario 2, Re=305: Particle traces 

coloured by volume fraction (3d, dp, pbns, 

mixture, spe, lam) 

 
Scenario 3, Re=2437: Particle traces 

coloured by volume fraction (3d, dp, pbns, 

mixture, spe, lam) 

 

Figure 4-13 Simulation result of scenarios 1 to 3 showing particle traces and contour plots of 

volume fraction. (Red: THF stream; Blue: Hexane stream) 

Even though all the runs are likely to be operating in the engulfment flow regime, the 

mixing performance is still dependent on Re as seen in Figure 4-14. At low Re where the two 

feeds are not efficiently mixed, the n-BuLi may get consumed by reacting unselectively with 

THF and DMF that are present in abundance. This leaves the bulk of amide 1 unreacted which 

accounts for the low overall conversion in Figure 4-14 (b). 
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(a) 

 

(b) 

 

(c) 

 

Figure 4-14 (a) Aldehyde 1 yield; (b) overall conversion; (c) Aldehyde 1 selectivity against 

Re (Step 1) using T-reactor under constant residence times of 0.4 s and 0.8 s 

Comparing the simulated flow patterns between Re of 305 and 6, a large contrast in 

mixing can be seen in Figure 4-13 (Scenario 1) at very low Re where there was a distinct 

boundary between the blue (hexane) and red (THF) streams when they came together at the T-

mixer. This indicates no extensive mixing, except for diffusion, at the low flow speed as the 

streams flows in a laminar mode at low Re. It is expected that none of the runs in Figure 4-14 

falls into this flow pattern. 

As the Re increased beyond 2400, aldehyde 1 yield reached a plateau or is slightly 

decreased (Figure 4-14 (a)). One possible reason could be the back-mixing effect in the n-

BuLi/hexane feed arm as seen in Figure 4-13 (Scenario 3), as it caused small quantity of amide 

1/THF to travel into n-BuLi feed arm where the n-BuLi localized concentration is high and tend 

to encourage side reactions. This might account for the lower aldehyde 1 yield observed in 

Figure 4-14 (a) at Re above 4800. Similar observation is made by Kockmann and co-workers 

(Kockmann et al., 2006) where the segregation index is increased for higher Re. Another 

possible explanation put forward by Knockmann and co-workers is the formation of transient, 

fluctuating vortices, at the entrance of the feed inlets at higher flow speed, which transport 

unmixed feed through the mixing chamber. 
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4.6 Development of Spinning Disc Reactor (SDR) Flow Process 

4.6.1 Mode of DMF Addition 

The DMF feed was added close to the edge of the disc (4.5 cm radial distance away 

from the center of the disc) where the mixing performance should be better compared to other 

parts of the disc. While the residence time of step 2 on the disc was expected to be even shorter 

than step 1 as it had only a radial distance of 5 cm to mix and react, the step 2 reaction was 

expected to be faster than step 1 (Kockmann et al., 2011). Thereafter, the reaction mixture was 

flown off the disc and splashed onto the wall which was, in fact, a form of mixing as well. 

Theoretically, SDR offered relatively better mixing for step 2 reaction than step 1 provided that 

the DMF feed contacted the disc as a continuously stream  rather than dropwise. Therefore, 

Step 1 was deemed as ‘bottleneck’ in term of mixing performance and it was also the step that 

aldehyde 1 yield and overall conversion were most dependent upon. Through visual 

observation, a minimum flow rate of 2 mole equivalent (0.06 mL/s) of DMF was required for 

the lowest Step 1 combined flow rate of 1.3 mL/s was needed to ensure a continuous stream of 

DMF from the feed pipe. 

4.6.2 Position of n-BuLi Feed 

Theoretically, the mixing of the amide 1 and n-BuLi feeds could be improved by moving 

one of the feed (e.g. n-BuLi) away from the center of the disc, where the mixing was poor, to a 

higher radial position where the film thickness is smaller (Jacobsen and Hinrichsen, 2012). 

However, the result obtained for n-BuLi feed placed 2.5 cm from center of the disc were worse 

than position at center of disc (Table 4-6). The poorer overall conversion could be explained by 

the reduction in residence time as the n-BuLi feed moves 2.5 cm closer to the edge of the disc.  

Table 4-6 Effect of position of n-BuLi feed on reaction profile 

Position of n-

BuLi feed 

Flow rate 

(mL/s) 

Disc speed 

(rpm) 

Aldehyde 1 

yield (%) 

Overall 

conversion (%) 

Impurity* (%) 

Center of disc 1.3 1400 87 97 10 

2.5 cm away 

from center of 

the disc 

1.3 1400 66 90 24 

(*) % impurity = % overall conversion - % product 1 yield 
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4.6.3 Effect of SDR Coolant Temperature 

The coolant temperature dictates the disc surface temperature in the SDR. Figure 4-15 

shows that aldehyde 1 yield was only marginally affected by the coolant temperature. Similar 

explanation as in the T-reactor could be applied where the effect of temperature was limited by 

the short contact time between the reagents and the disc. Although compared to the T-reactor, 

the SDR was expected to have a better heat transfer capability where the coolant was supplied 

directly beneath the metal rotating disc which had a relatively large surface area for heat 

transfer; the SDR had even shorter residence time and thus shorter exposure time to the higher 

surface temperature than the T-reactor.   

 

Figure 4-15 Effect of circulated bath temperature under constant residence time (0.4 s), total 

flow rate (1.2 mL/s) and disc speed (1,400 rpm). 

4.6.4 Effect of Total Flow Rate 

Figure 4-16 shows a steady decrease in aldehyde 1 yield and overall conversion with 

the increase in flow rate from 1.2 to 5 mL/s at a disc speed of 1400 rpm.  

 

Figure 4-16 Effect of total flow rate (step 1) under constant disc speed of 1400 rpm. 
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Under the same disc speed, Figure 4-17 shows the corresponding residence time (Eqs. 

2-1) (Boodhoo and Al‐Hengari, 2012) for the flow rates in Figure 4-16 at 1,400 rpm. The 

residence time decreased with increasing flow rates, from 0.15 s at lowest flow rate to 0.05 s at 

the highest flow rate. It is known that ortho-lithiation reaction time is very fast especially at 

high temperature, so the reaction is most likely mixing limited in this regime. The micromixing 

time reported by Hinrichsen (Jacobsen and Hinrichsen, 2012)  using similar operating 

conditions and disc size, is in the range of 0.125 to 0.02 s. If a conservative estimate of 0.125 s 

was taken to be the average micromixing time regardless of flow rate and disc speed, Figure 

4-17 shows that for disc speed of 1,400 rpm and flow rates above 1.2 mL/s, the corresponding 

residence times could be shorter than the micromixing time (represented by the dotted line). 

This suggested that the mixing controlled reaction might be indirectly limited by the short 

residence time. Therefore, the longer residence time benefits the mixing as it allows more time 

for molecular contact.  This trend was similarly observed in the T-reactor with low flow rates.  

 

Figure 4-17 Estimated residence time (Boodhoo and Al‐Hengari, 2012) of Step 1 on the disc 

at different flow rates and disc speeds. Data within the pink area represents the corresponding 

residence times at 1400 rpm 

Although the SDR residence time could be extended by reducing the disc speed, the 

mixing intensity might be compromised even further. Compared to the T-reactor which offered 

residence times of 0.2 to 3 s, the estimated range of residence time of 0.05 to 0.15 s used in the 

existing SDR was much shorter. The shorter residence time on the SDR was more likely to 

minimize over-reaction at the expense, however, of insufficient mixing. 

4.6.5 Effect of Disc Speed 

Attempts were made to improve the mixing and thus, the reaction dependency on 

residence time. From Figure 4-18 and Figure 4-19, it could be inferred that aldehyde 1 yield 
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and overall conversion were inversely proportional to the film thickness for flow rates at 3 and 

5 mL/s. In the lower disc speed range, typically between 400 and 1400 rpm, the film thickness 

decreased considerably and the corresponding yield increases significantly. Beyond 1,400 rpm, 

there was only a marginal decrease in film thickness from about 30 to 20 µm which was 

accompanied by a minimal increase in yield. This seemingly direct correlation between film 

thickness decrease and yield increase highlighted more rapid mixing and mass transfer taking 

place across the reduced path length of thinner films. 

 
(a) 

 
(b) 

Figure 4-18 (a) Aldehyde 1 yield; (b) overall conversion against disc speeds of 400 to 2400 

rpm at different flow rates 

 

Figure 4-19 Estimated film thickness (Boodhoo, 2013) at different disc speed at constant total 

flow rates. 

The film thickness depended on disc speed and flow rate as seen in Figure 4-19 is 

described in Eqs. (2-2). The convergence of the film thickness profiles at high disc speeds in 

Figure 4-19 also matched aldehyde 1 yield trends seen in Figure 4-18 (a), suggesting that the 

limit of highest mixing/mass transfer had been reached for the process under consideration. 

Similar convergence profiles were observed at high disc speeds in micromixing studies 

conducted in the SDR (Boodhoo and Al‐Hengari, 2012). This observation is in agreement with 

the findings made by Jacobsen and Hinrichsen (2012) that the micromixing segregation index 

is directly correlated to the calculated film thickness.  
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4.6.6 Visual Observations 

Besides considerations to change reagent concentrations, some observations were made 

during the experiments. During SDR experiments, a thin film of white precipitate tended to 

form on the surface of the disc and walls where there were still traces of moisture present but 

once the moisture was consumed by n-BuLi, there was minimum accumulation of precipitate 

in the subsequent reaction as seen in Figure 4-20. Therefore, the advantages of the SDR include 

less fouling and the formation of the precipitate is not disruptive to the reaction and cleaning of 

the disc surface is relatively easy. 

(a)  (b)  (c)  

Figure 4-20 (a) SDR disc before experiment; (b) SDR after 2 hours of usage; (c) SDR disc 

after 6 hours of usage 

Attempts to use higher initial amide 1 concentration were made in both T-reactor and 

SDR, with the intent to reduce the amount of THF used. Unfortunately, the yields in both flow 

reactors dropped drastically when higher concentrations were used (Figure 4-21) so the decision 

is to keep to the current amide 1 concentration of 0.4 M in THF. 

(a)

 

(b)

 

Figure 4-21 (a) T-reactor under constant residence time (0.4 s) and total flow rate (1.3 mL/s); 

(b) SDR under constant total flow rate (1.2 mL/s) and disc speed (1,400 rpm). (Circulated 

bath at 17 ˚C) 

At higher amide 1 concentrations (e.g. 0.7 M and above), the reaction selectivity in the 

T-reactor was worse than in the SDR. It may be due to the better heat transfer capability in SDR 
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which was enhanced at higher temperature where the temperature difference between the 

reaction and disc surface was sufficiently large. Although higher aldehyde 1 yield could be 

achieved in the SDR using lower concentration of 0.3 M and below, this would compromise 

the throughput based on the current operating condition. 

4.7 Summary  

The feasibility of performing the ortho-lithiation reaction in the T-reactors and the SDR 

at ambient temperature was demonstrated. The conventional method was to operate the reaction 

at -70 ˚C in a fed-batch mode which was challenging to scale up. A continuous flow PI reactor 

– T-reactor is developed and obtained a highest aldehyde 1 yield of 99% at ambient temperature 

by providing short residence time (flash chemistry concept) and efficient mixing (CFD 

simulation).  

The early feasibility study using the microreactors (chips 1 and 2) demonstrated 

constraints like clogging of the narrow channel and non-adjustable channel length which 

resulted in inflexible residence time given a fixed flow rate. To overcome these limitations, a 

stainless steel reactor was assembled in-house which provided sufficiently large channel size to 

avoid clogging, flexible reactor length and made of good heat transfer material. Unfortunately, 

the large channel size resulted in poor mixing, hence the relative low aldehyde 1 yield.  

In depth reactor study was performed on the two most promising PI reactors – the T-

reactor and the SDR. Although the T-reactor obtained higher aldehyde 1 yield than the SDR, 

further optimization of the SDR operating conditions was expected to offer distinct potentials 

of improvement in the aldehyde 1 yield to a level similar to the T-reactor. More importantly, 

the free surface film characteristics of the SDR, in contrast to the fully enclosed volume of the 

T-reactor, could render the SDR more advantageous if other processing capabilities were 

desirable- for example, handling a reaction with solid formation or requiring rapid heat removal 

through evaporation or formation and removal of gas that the T-reactor cannot do.  

The experimental operating conditions of the best runs of the STR, the T-reactor and 

the SDR are summarized in  

Table 4-7. The STR experimental results and discussions is presented in Appendix B.4.  

The experience gained from these experiments should provide adequate basis to illustrate the 

critical differences in performance that would be expected between batch and flow processes at 

industrial scale.  

Table 4-7 presents the operating conditions that would be used in the batch and flow 

process designs for the comparison of their sustainability performance which is investigated in 

Chapter 5. 



Chapter 4. Ortho-Lithiation Process – Part 1 

91 

 

Table 4-7 Highest yield obtained in the different reactors and their respective operating 

conditions 

 STR T-reactor SDR 

Mode of operation Batch/semi-batch Flow Flow 

Coolant temperature 

(˚C) 
-80 ˚C 17 ˚C 17 ˚C 

Aldehyde 1 yield (%) 96 99 87 

Impurity (%) 4 <1 10 

Step 1 combined 

flow rate (mL/s) 
- 1.2 1.2 

Residence time (s)  
Mins (depends on 

dosing rate) 
~0.4 s ~0.14 s 

BuLi mol eqv 1.2 1.2 1.2 

DMF mol eqv 1.3 2 2 
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Chapter 5. Ortho-lithiation Process – Part 2: Assessment of Sustainability 

Benefits for Reaction                        

 

As a continuation from Chapter 4, the objective of this chapter is to evaluate the 

sustainability benefits of operating ortho-lithiation reaction in different process intensification 

(PI) reactors as compared to the conventional batch reactor (Teoh et al., 2015). This work 

focuses on the comparison of the sustainability performance of a batch and two intensive 

continuous reactors (the T-reactor and the spinning disc reactor) for the reaction step excluding 

workup at a hypothetical design scale of 3 tons per year. The potential benefits that could be 

achieved are higher reaction selectivity and material efficiency, lower energy consumption, 

improved safety and economic savings.  

5.1 Design of STR Reaction System for 3 tons per year Production 

Having obtained laboratory data for the three process technology options in  

Table 4-7, the designs for operation at a nominal 3 tons per year scale were generated. 

For each technology, considerations were made to whether the laboratory data were 

representative of what could be achieved at the larger scale. 

For the batch STR, due to lack of suitable large equipment that can provide a proper 

cooling system (-80 ˚C), experiments were unable to perform ortho-lithiation at the designed 

industrial scale of 28 L. However, it would still be possible to design the STR batch process by 

making some realistic assumptions based on the laboratory results at 50 mL Multi-max ™ scale.  

It is identified that the reaction was most sensitive to temperature which is directly controlled 

by the n-BuLi dosing rate.  To ensure the cooling capacity of the reactor is sufficient to cope 

with the n-BuLi dosing rate, a conservative overall heat transfer coefficient value is assumed. 

In addition, good mixing is required to avoid temperature gradient. The power dissipation of 

the 50 mL Multi-max ™ at its maximum achievable agitation speed is used as a basis for 

providing sufficient mixing required for the 28 L reactor. The refrigeration method is one of 

the biggest differences between the laboratory Multimax™ and designed industrial process. 

The vapor-compression refrigeration system is selected for the large scale cryogenic reactor 

design which is based on highly idealized model. 

A two-stage selected cascade system schematic is shown in Figure 5-1. The refrigeration 

system consists of two compressor units, two heat exchangers, two throttles and an evaporator 

is required to achieve a refrigeration temperature of -80 ˚C. Refrigerants R-32 and R-23 are 

selected for the cascade cycle to provide maximum thermodynamic efficiency and recycled 
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after each batch. An ideal cycle model was assumed, taking into account the compressor in the 

cryogenic reactor is driven by an electric motor with an efficiency of 0.72. The utilities 

consumed will be mainly for compressor duties, pumping, agitation and chilled water for 

condensation. In order to achieve similar mixing intensity, the agitation power of the large scale 

STR is designed to have similar agitation power as the bench scale of 0.053 W/kg.  
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P-03
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R23 compressor
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13 kg THF per batch

3.6 kg 1.6 M n-BuLi in hexane per batch
Added over 30 min

0.6 kg DMF per batch
Added over 12 min
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R23 evaporator
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R23-R32 heat exchanger

EP-02
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Figure 5-1 Schematic process diagram for batch process 

5.2 Design of T-reactor and SDR Reaction Systems for 3 tons per year Production 

For both the T-reactor and the SDR flow processes, their process designs would be 

based on the actual laboratory operating conditions (flow rate, temperature, residence time, etc.) 

used in their best runs in  

Table 4-7 that are able to deliver an annual production of about 3 tons per year. This 

provides a more realistic operating conditions on the flow reactors, rather than artificially trying 

to predict the yield at other operating conditions. One point to note is that for all the flow 

experiments conducted either in the T-reactor or the SDR, the maximum duration of the run is 

about 5 min due to volume limitation of the syringe pump. However, the large scale design 

requires the run duration to be extended to 8000 h.  

Although there was no clogging in the T-reactor experiments as the runs performed 

were very short, there could be a possibility of agglomeration of the precipitate (Cafiero et al., 

2002b) over time and result in clogging of the mixing chamber. One possible option to get 
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around this problem is to build in several T-reactors that can be easily switched to another when 

pressure build up is sensed. The clogged T-reactors can then be disposed and replaced swiftly 

as the T-mixers and tubes are relatively cheap. In this way, sudden disruption to the process due 

to clogging and maintenance of the T-reactor can be avoided entirely. 

Even though a small amount of lithium salt was observed on the surface of the disc after 

the experiments, the SDR is clearly less prone to clogging. The SDR maintenance can be 

scheduled regularly without the worry of sudden severe pressure drop as seen in the T-reactors 

(Cafiero et al., 2002a). Another operational advantage of the SDR is the variation in rotational 

speed which offers an additional degree of freedom as the disc speed can be controlled 

independently of the flow rate to achieve target mixing intensity without affecting the 

throughput.  

One common drawback in the flow processes is the less efficient method to prepare 

amide 1 solution as additional equipment are required to dissolve amide 1 in THF. The 

respective reactor setups are shown in Figure 5-2 and Figure 5-3. 32 L of amide 1 solution (0.4 

M) will be prepared in a 41 L mixing tank (M-01) in batch mode which will provide 8 hours of 

amide 1 solution supply for the T-reactor. To ensure continuous supply of amide 1 solution, 

two mixing tanks are required to alternate between each other when one is consumed. Similarly, 

two product storage tanks (T-05) will be required.  
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Figure 5-2 Schematic process diagram for T-reactor flow process 
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Figure 5-3 Schematic process diagram for SDR flow process 

For the T-reactor system (Figure 5-2), the utilities used will be mainly the electricity for 

silicone oil bath cooling, pumping and agitation for mixing tanks. To avoid evaporation of 

butane during the reaction, a back pressure of 2 bars is applied.  

For the SDR flow process (Figure 5-3), the utilities used will be mainly the electricity 

for rotating the disc, silicone oil bath cooling, pumping and agitation for mixing tanks. No 

backpressure is applied in this system, so butane is expected to evaporate from the surface of 

the disc and which will be diluted by the continuous supply of nitrogen gas. The mixture of gas 

then escapes together with the final reaction mixture through the sink underneath the SDR.  

Although argon gas was used in experiments, nitrogen gas can also be used and is considered 

in the reactor design. 

Following general design assumptions were made: 

1) No loss of aldehyde 1 yield due to workup, all aldehyde 1 were assumed to be 

recovered. (workup is excluded from the study) 

2) All reactors were assumed to be air- and moisture-free during the course of the 

reaction. 

3) At the end of the reaction, butane gas (byproduct) was assumed to be diluted and 

discharged via nitrogen purge.  

4) All chemicals were at ambient temperature which is at 20 ˚C. 

5) Concentration of purchased n-BuLi in hexane was always 1.6 M. 

6) Total number of operation hours per year in a plant was 8000. 
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7) T-reactor and SDR reached steady state in less than a minute observed from 

experiment data, insignificant aldehyde 1 loss due to unsteady state flow during 

start up and shut down was assumed. 

8) No observable degradation of aldehyde 1 after addition of DMF during storage 

based on GC. 

9) Pump efficiency was assumed to be 50 %. 

10) Specifications of purchased raw materials were assumed as in Table 5-1. 

Table 5-1 Specifications of the raw materials 

Material cost is calculated as 1/10 of a catalogue price (Laird, 2005). Cost of labour are 

not considered. The equipment capital cost are estimated based on online catalogue from 

suppliers like Alibaba, Coleparmer, etc. Waste treatment cost and utility consumption are 

estimated based on charges in Singapore. The sizing of the equipment is sized on the cycle time 

and production capacity. Lang factor of 4.7 is factored into the overall capital cost to account 

for liquid system (Sinnott, 1999). All costs are expressed in USD to avoid conversion factors. 

Detailed cost tables are presented in Appendix C. 

5.3 Comparisons of Sustainability Performance 

Based on the above process designs, the sustainability performance is evaluated in terms 

of volume, mass and energy efficiencies and estimated the expected operational expenditure 

(OPEX) and capital expenditure (CAPEX) respectively (Table 5-2). The reactor volumes in the 

flow processes are smaller than the equivalent batch process because of the shorter residence 

time. In terms of the footprint of the major equipment, the T-reactor and SDR process are only 

20 % of the batch equivalent.  

Table 5-2 Comparisons of sustainability metrics between STR, T-reactor and SDR process at 

design scale of about 3 tons per year aldehyde 1 
 STR T-reactor SDR 

Operation time fraction 0.5 1 1 

Throughput (kg aldehyde 1/h) 0.38 0.38 0.29 

Processing equipment footprint ratio 1 0.2 0.2 

Max processing inventory at any point of time (L/kg aldehyde 

1/h) 
59 0.01 0.06 

Total material efficiency (kg aldehyde 1/kg material*) 0.087 0.090 0.079 

Material efficiency (%) - 4 -8 

Raw materials Specifications 

4-chloro-N,N-diisopropylbenzamide (amide 1) Solid, >99% pure 

n-BuLi in Hexane  Liquid solution, 1.6 M 

Tetrahydrofuran (THF) 
Liquid, anhydrous, 99.9% stabilized 

with BHT 

Dimethylformaide (DMF) Liquid, anhydrous, 99.8%  
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Total energy efficiency (kJ/kg aldehyde 1) 3,956 1,321 2,173 

CAPEX (USD/kg aldehyde 1) 48 31 40 

Economic savings in CAPEX (%) - 36 16 

OPEX (USD/kg aldehyde 1) 456 406 466 

Economic savings in OPEX (%) - 11 -4 

(*) kg material consists of masses of amide 1, n-BuLi, DMF and THF. 

Maximum processing inventory at any point of time for batch process includes the 

stirred tank reactor volume. As for the T-reactor and the SDR flow processes, it refers to the 

volume of the reactor and the piping of the reactor system. The mixing tanks are excluded from 

the process equipment as they do not deal with n-BuLi and are not involved any reactions; they 

are instead considered as part of the storage unit. On this basis, the T-reactor and SDR flow 

processes provide much smaller processing inventory as compared to batch process. This would 

provide significant safety benefit especially when dealing with hazardous chemical like n-BuLi.  

With the T-reactor operating at a flow rate of 1.3 mL/s, it is able to handle the throughput 

of a 32 L stirred tank reactor which would require strict safety measures to be in place. However, 

one possible safety concern when operating the flow reactors could be the incomplete quench 

of n-BuLi during unsteady state flow which may occur during the reactor start-up or shut down 

phases. This could lead to unreacted n-BuLi to exit from the flow reactors and get into direct 

contact with water during the downstream separation process. This scenario could be avoided 

by starting the n-BuLi feed pump last during start-up and stopping it first during shut down, 

this ensures sufficient quantities of amide 1 and DMF are present to react with and quench n-

BuLi.  

Comparing the process safety considerations of the T-reactor and SDR, the T-reactor 

presented a higher risk of leakage of reaction mixture if the system was pressurized due to 

clogged channel. This is an unlikely situation in SDR where even if there was precipitation on 

the disc it would not affect the system pressure. To minimize the danger of n-BuLi leaking from 

the T-reactor into the environment, silicon oil was used as coolant in the circulated cooling 

system as its moisture content is lower (especially at 20 ˚C – minimum condensation) and it is 

less reactive towards n-BuLi.  

As for the SDR, the major safety concern lies with the presence of vapor space in the 

reactor, unlike T-reactor, the butane gas produced in SDR is allowed to escape from the liquid 

film and the large surface area of the liquid film also promoted evaporation of the volatile 

solvents. If there was failure in the inert gas supply or insufficient inert gas to dilute the organic 

vapor, there would be accumulation of flammable vapor in the SDR vapor space. This risk can 

be mitigated by setting up an alternative inert gas supply which can be placed in operation if 

failure in primary inert supply was detected. Moreover, the SDR reactor volume is much smaller 
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than the batch reactor volume and this put a limit to the maximum quantity of flammable vapor 

that can be accumulated, so it can be diluted fairly quickly and has a less catastrophic 

consequence. 

There is hardly any difference in total material efficiency between the STR and T-

reactor because both processes have similar aldehyde 1 yield. The SDR is less material efficient 

due to lower reaction selectivity. Even though the quantity of DMF used in the T-reactor and 

SDR flow processes is slightly higher than in the batch process, it appears that its impact on the 

total material efficiency is minimal. 

Figure 5-4 shows the energy consumption breakdown of the processes. Compressor 

duties in the two-stage cascade refrigeration system consume the most energy to maintain the 

reaction temperature at -70 ˚C. Although the two-stage cascade refrigeration system is more 

energy efficient than direct cooling with electricity, the energy required in the batch process is 

still much higher than in the flow processes because it needs to maintain at a very low 

temperature. In addition, the pumping duty required in batch process is also much higher than 

in the flow processes because the material flow rate is higher than in the flow reactors where 

the flow rate is averaged and becomes smaller. The T-reactor flow process gives the best energy 

efficiency where the overall energy consumption is about 65 % lesser than the batch equivalent. 

The avoidance of the use of cryogenic temperature in the flow reactors resulted in tremendously 

energy savings. The sources of energy usage for the T-reactor and the SDR processes are similar 

with the exception of additional energy required for disc rotation in the SDR and extra pump 

duty needed to overcome the backpressure (2 bars) in T-reactor. The SDR process requires 

about 50 % more energy than the T-reactor to account for the disc rotational energy which 

consist of the rotational energy of the dry disc, overall kinetic energy supplied to the fluid and 

frictional energy dissipation of the fluid on the disc (Ghiasy and Boodhoo, 2013). 

 

Figure 5-4 Breakdown of the energy consumption 
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The calculation of the operating cost (OPEX) in Figure 5-5 is based on the cost of raw 

materials and utilities which consists of electricity, chilled water and nitrogen cost. It is found 

that the raw materials cost represents the bulk of the OPEX. Amide 1 is the most expensive 

reagent among the chemicals used. The cost analysis shows cost saving of 10 % for the T-

reactor in OPEX which is mainly contributed by the increased in aldehyde 1 yield (99 %) as 

compared to 96 % in the STR. Despite lowering the energy consumption by more than 50 %, 

the SDR incurred a higher OPEX than the STR. The cost savings from reduced energy 

consumption is meager compared to the cost of amide 1 due to the lower yield in the SDR (86 

%). The reaction yield will also affect the downstream process (workup) which is critical to the 

overall process cost. A higher yield could mean a less tedious workup and waste treatment 

procedure that leads to further cost reduction. However, the impact of yield on subsequent 

workup is not included in the scope of our current study. 

 

Figure 5-5 Cost breakdown of the OPEX 
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refrigeration equipment (e.g. compressors, heat exchangers, condenser and evaporator) and 

cold resistant reactor vessel could be avoided which leads to lower CAPEX in flow reactors 

compared to STR as shown in Figure 5-6. 

 

Figure 5-6 Cost breakdown of the CAPEX 

5.4 Summary 

The feasibility of performing the ortho-lithiation reaction in the T-reactors and the SDR 

at ambient temperature was demonstrated in Chapter 4. The conventional method is to operate 

the reaction at -70 ˚C in a fed-batch mode which is challenging to scale up. By performing the 

reaction in flow reactors, similar yields were achieved with a much shorter residence time at 

ambient temperature. 

Compared to batch process, significant process intensification is achieved in the flow 

reactors which demonstrated higher energy efficiency, better volume efficiency, smaller 

processing inventory, smaller equipment footprint. 

The performance of the T-reactor was particularly outstanding among the three reactors 

leading to much lower CAPEX and OPEX. Based on these promising results, the use of T-

reactor presents a commercial viable alternative to the conventional batch processing. The SDR 

also performs well and brings additional energy-saving benefits  

Chapter 6 would involve the study of the whole process including workup for the batch 

and flow processes. The reaction yield would affect the downstream processes which is critical 

to the overall process cost.  
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Chapter 6. Ortho-lithiation to Reduction Process – Part 3: Assessment of 

Sustainability Benefits for Whole Process Featuring Consecutive 

Reaction from ortho-Lithiation to Reduction 

6.1 Introduction 

As an extension from Chapter 5, this chapter studies the sustainability performance of 

the whole process including workup for the batch (STR) and flow (T-reactor) processes. Given 

that the T-reactor is able to obtain higher reaction yield than the STR, it would be interesting to 

investigate the impact of reaction yield on downstream processes. The manufacturing process 

of the typical pharmaceutical plant involves multiple reaction steps with intermediate separation 

steps. The separation process is usually the most time consuming, energy and material intensive 

step and it is expected to be where the bottleneck resides. The purposes for product isolation 

between reactions are for solvent switch and product purification. 

The products, classified as phthalide, from ortho-lithiation are useful building blocks in 

the synthesis of common pharmaceutically active compounds (Castaner and Roberts, 1979; 

Sorbera et al., 2001; Hilden et al., 2004), which are used widely in a number of subsequent 

reactions. These include ortho-carboxylation (Kosaka et al., 2005), acidic treatment (Snieckus, 

1990) and reduction (Faigl et al., 2010). In this study, the reduction reaction is selected as the 

subsequent reaction as described by Faigl et al. (2010).  

The objective of this study is to evaluate the sustainability benefits through 

intensification of the ortho-lithiation workup steps by avoiding the isolation of product 

(aldehyde 1) and directly transferring it into the next reactor for subsequent reduction reaction 

in a continuous mode. This is summarized in  

Figure 6-1 (a) as the continuous consecutive reaction case. The continuous consecutive 

reaction case is benchmarked against the combined batch base case (Figure 6-1(b)), which 

consists of conventional batch ortho-lithiation reaction and aldehyde 1 isolation, followed by 

similar conventional batch reduction reaction and alcohol 1 isolation. The potential benefits of 

the continuous consecutive reaction case are significant savings from wash solvents and energy 

consumption, higher material efficiency and reduction in loss of product. 

 

 

 

(a) Continuous consecutive reaction case 
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Continuous ortho-lithiation at 20 °C Water wash

Evaporation of organic solvents

Continuous reduction Water and NaCl washes

Heptane purification Drying Alcohol 1Filtration

 

(b) Combined batch base case 

Batch ortho-lithiation at -78 °C Multiple water washes Evaporation of organic solvents Filtration Drying

Batch reduction Water and NaCl washes Evaporation of organic solvent Filtration Drying

Aldehyde 1

Alcohol 1
 

Figure 6-1 Summary of major process steps in (a) continuous consecutive reaction. Blue 

boxes indicate ortho-lithiation related steps; yellow boxes indicate reduction related steps; (b) 

combined base case process; 

A detailed study of the selected reduction reaction was performed to assess its 

compatibility and identify any constraints in performing the consecutive reactions. Upon 

validating the feasibility of the consecutive reaction, a comparison between the combined batch 

base case (ortho-lithiation followed by reduction in batch mode) and the conceptually 

synthesized continuous consecutive reaction process at a hypothetical design scale of 3 tons per 

year would be made based on sustainability performance.  

6.2 Experimental Apparatus and Procedures 

6.2.1 Method of analysis in ortho-lithiation and reduction workup 

The same method of GC analysis was used in ortho-lithiation and reduction workup. 

Organic and aqueous samples were collected after every separation step and analyzed using the 

internal standard method. The quantities of aldehyde 1 and alcohol 1 were determined by Gas 

Chromatography (GC) using Agilent Technologies 6890N GC system with 7693 autosampler 

and a HP-5 column. Temperature ramp: 150 to 210 ˚C, 25 ˚C/min; run time: 15 min; post run: 

280 (5 min); injection volume: 1 µl; detector temperature: 280 ˚C, control mode: constant 

pressure; pressure: 11.02 psi. Response factors of aldehyde 1 and alcohol 1 were determined by 

calibration using n-hexadecane as the internal standard in Appendix D.1. 

After each separation step, about 1 mL of reaction mixture was taken and weighed. 50 

mg of internal standard was added to the sample. Lastly, 20 µL of the organic layer was drawn 

and diluted in 1 mL of ethyl acetate. 
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6.2.2 Ortho-lithiation laboratory-scale workup according to literature procedure 

After the ortho-lithiation reaction, the reaction mixture was diluted with a saturated 

aqueous solution of ammonium chloride and the aqueous phase was extracted three times with 

ethyl acetate. The combined organic phase was then washed with brine, dried over MgSO4 and 

evaporated. The residue was triturated with heptane. The crystalline aldehyde 1 was collected 

by filtration. The workup steps for ortho-lithiation reactions in both the cryogenic batch reactor 

and T-reactor were the same. 

6.2.3 Modified safe and scalable ortho-lithiation workup  

The literature lab-scale workup steps in section 6.2.2 were modified to ensure a safe and 

scalable ortho-lithiation separation process. After the reaction, the reaction mixture was 

quenched with water, followed by phase separation and the aqueous phase was discarded. A 

second water wash was introduced to ensure the removal of all salts and excess DMF and the 

second aqueous phase was discarded. The organic solvents were evaporated and water was 

slowly added during the evaporation until complete evaporation of the organic solvents and 

precipitation of aldehyde 1 in water as a solid-liquid suspension. The solid aldehyde 1 was 

collected after filtration and purified with heptane, followed by a second filtration to obtain the 

residue. The aldehyde 1 was then dried in oven.  

6.2.4 Reduction experiments (in-situ IR) 

A three-necked baffled jacketed 150 mL glass reactor was used to carry out the 

reduction experiments. The reactor has three glass baffles and its internal diameter is 0.06 m. 

The impeller is made up of a 4-pitched blade with diameter of 0.03m that is attached to an 

overhead stirrer through the middle neck of the reactor.  

Two reduction reactions were performed using different forms of NaBH4 – option 1: 

solid NaBH4; option 2: 25w/w% NaBH4 dissolved in 1 M NaOH solution. Table 6-1 shows the 

summary of the reaction conditions for the two experiments. 20 mL of 0.3 M aldehyde 1 

solution in THF was charged into the reactor. A nitrogen blanket was introduced through one 

of the remaining necks. NaBH4 was added in one-shot as the formation of alcohol 1 was 

monitored in-situ using IR spectroscopy measurement. The setup is shown in Figure 6-2. 

Table 6-1 Lab-scale batch reduction reaction conditions using different forms of NaBH4 

Options Agitation 

speed (rpm) 

Reaction 

components 

(molar ratio) 

Solvent (mL) Temperature 

(˚C) 

Time 

(min) 

1 (S-L) 450 
Aldehyde 1 

/NaBH4 (1:1.3) 
THF (20 mL) 20  ~16 
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2 (L-L) 450 
Aldehyde 1 

/NaBH4 (1:0.5) 

THF- 1 M 

NaOH (20:0.3 

mL) 

20 ~2 

(a)  (b)  

Figure 6-2 (a) 150 mL stirred tank reactor (STR) used for performing batch IR 

experiments; (b) STR connected to IR computer via IR probe 

The IR spectroscopy was carried out using Bruker Matrix-MR-ex, Mid IR ATR-FTIR 

with the IN350-T Fiber Probe that measures spectra range from 3500 to 720 cm-1. An exposure 

of 1 s with 64 acquisitions was employed for a single scan in this study. The IR probe was 

submerged in the solution through the third neck and the background spectra were taken using 

the initial reaction mixture as a reference.  

The IR spectra shows that the C=O bond stretching in the aldehyde 1 occurred at a 

frequency of between 1700 and 1620 cm-1 and gave a distinct peak (Figure D-1 in Appendix 

D.1). Calibrations based on the area of the peak corresponding to different starting aldehyde 

concentrations in the THF were obtained (Appendix D.1).   

6.2.5 Reduction laboratory-scale workup 

The reaction progress was tracked using in-situ IR spectroscopy. The reaction was 

deemed to be complete once no more aldehyde 1 could be detected according to IR 

spectroscopy. Water was added to quench the excess unreacted NaBH4 and also to provide a 

heat sink for the quench reaction. Caution was taken to maintain good ventilation as hydrogen 

gas was evolved during the quench. After fully quenching the NaBH4, phase separation of the 

organic and aqueous phase was performed. The aqueous phase containing the salts was 

discarded. A second wash using 1 M NaCl solution was added to the remaining organic phase 

to remove any remaining salts in the organic phase, followed by a second phase separation 

where the second aqueous phase was discarded. Anhydrous magnesium sulfate was added to 

the final organic reaction mixture to remove as much water from the organic phase as possible, 

followed by filtration to collect the filtrate. The filtrate was evaporated in a rotor-evaporator 

under vacuum and 40 ˚C water bath.  

IR probe 

IR Computer 

IR 

probe 

Agitator 
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6.3 Bottlenecks in ortho-lithiation Batch Base Case Separation Process 

The key steps in proposed safe and scalable batch whole process for ortho-lithiation are 

summarized in Table 6-2. To ensure a safe and scalable batch base case, the key process steps 

were modified from the lab-scale procedure reported by Faigl et al. (2010) (Appendix D.2).  

Table 6-2 Summary of ortho-lithiation safe and scalable base case operations 

Steps Aldehyde 1 yield (%) 

1) Ortho-lithiation reaction 96 (crude yield) 

2) First water wash 90.3 

3) Second water wash 90.1 

4) Evaporation of organic solvents and addition of water 90.1 (assumed) 

5) First filtration 90.1 (assumed) 

6) Heptane wash 72.3 

7) Second filtration 72.3 (assumed) 

8) Drying 72.3 (assumed) 

Upon completion of the ortho-lithiation reaction at very low temperature, the reaction 

mixture was warmed to ambient temperature. In step 2, water was added to dissolve lithium 

dimethylamine and excess DMF and was discarded as the aqueous phase after phase separation. 

The second water wash in step 3 ensured the removal of any remaining lithium dimethylamine 

and DMF from the organic phase. One major issue observed during lab-scale evaporation of 

solvent (step 4) using the rotor-evaporator was the formation of sticky solid that hardened on 

the wall of the glass vessel. This would be a problem at large scale during the transfer of solid 

product out of the reactor vessel. Therefore, this step was conceptually modified by adding 

water during evaporation of the organic solvents. The solid product (aldehyde 1), which was 

insoluble in water, is expected to precipitate out and form a solid-liquid suspension as all the 

organic solvents evaporate. The suspension was filtered in Step 5 and aldehyde 1 was obtained 

as solid residue while the aqueous filtrate was discarded. The solid aldehyde 1 was purified 

using small amount of heptane as the side products are expected to be more soluble in heptane 

than aldehyde 1 in step 6. Finally, aldehyde 1 was filtered and dried to a moisture content of 

0.1%. 

The aldehyde 1 yield loss specified in steps 1, 2, 3 and 6 was based on lab-scale 

experiment and assumptions. For workup steps 4, 5, 7 and 8, the yield loss was assumed to be 

negligible at large scale because the loss was believed to be attributed to handling, which could 

be greatly minimized in actual large-scale operation that is much more efficient compared to 

lab-scale experiment.  

In step 6, it was observed experimentally that the solubility of aldehyde 1 in heptane 

varied with the level of impurity in the mixture. Table 6-3 provides a rough estimation on the 

effect of impurity on aldehyde 1 recovery. It was decided that for reaction where the aldehyde 
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1 yield was below 90%, the decision is not to proceed with separation process as a yellow oil 

would be obtained and the aldehyde 1 recovery would be insignificant. For this reason, the SDR 

reactor system, which obtained a highest yield of 87%, was not considered in this whole process 

comparison. As expected, the major bottleneck of the whole process was in the separation 

process and specifically the heptane purification step (step 6 in Table 6-2) where there was an 

almost 20% aldehyde 1 yield loss. Since the raw material cost (amide 1) accounted for the 

greatest operating cost, the considerable yield loss would raise the operating cost significantly. 

This step justified the need for intensification as major value could be gained. 

Table 6-3 Effect of amount of side product on purification 

Reaction aldehyde 1 yield  Side products (mol%) Aldehyde 1 recovered (mol%) 

>90% <10% >80% 

 
<90% >10% Cannot recover (yellow oil) 

 

6.4 Feasibility of performing consecutive reactions from ortho-lithiation to reduction 

in batch mode 

The two important requirements for integrated, two-step consecutive reactions of ortho-

lithiation and reduction were solvent compatibility and ease of isolation of product (alcohol 1) 

after the two reactions. A detailed study of the selected reduction reaction was thus performed 

to assess its compatibility and limitations in performing the consecutive reactions. 

6.4.1 Solvent compatibility 

According to Faigl et al. (2010), the reduction of aldehyde 1 using sodium borohydride 

(NaBH4) was carried out in methanol where 1.3 mol eqv of NaBH4 was used. To avoid solvent 

swap between ortho-lithiation and reduction, the original reduction solvent, methanol, was 

replaced by THF (solvent used in ortho-lithiation). As for the form of NaBH4 used, two options 

were investigated as highlighted in Table 6-4. Option 1 uses solid NaBH4 while option 2 

involves dissolution of NaBH4 in aqueous sodium hydroxide solution (1 M NaOH) to form a 

fully dissolved aqueous basic solution. The result showed that both options were feasible in 

THF, achieving complete conversion with no side product formation. 
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Table 6-4 Comparison of reduction rate between solid and liquid form NaBH4 used 

Options Agitation 

speed 

(rpm) 

Reaction 

components 

(molar ratio) 

Solvent 

(mL) 

Temperature 

(˚C)  

Time 

(min) 

Conversion 

(%) 

1 (Solid-

Liq) 

450 Aldehyde 1 

/NaBH4 (1:1.3) 

THF (20 

mL) 

20  ~16 99 

2 (Liq-

Liq) 

450 Aldehyde 1 

/NaBH4 (1:0.5) 

THF- 1 M 

NaOH 

(20:0.3 

mL) 

20 ~2 100 

 

The reaction rate for option 1 appeared to be almost independent of the reactant 

concentrations with a likely overall reaction order of zero as seen in Figure 6-3. One possible 

explanation put forward by Ward and Rhee (1989) is that in the absence of dissolved NaBH4 

species, heterogeneous (solid-liquid) reduction is likely to occur, which might further inhibit 

the dissolution of NaBH4. This suggested that the rate of reduction was limited by the 

dissolution rate of the solid NaBH4 in THF as a solid-liquid suspension was observed during 

the reaction.  

 

Figure 6-3 Aldehyde 1 concentration profiles tracked by in-situ IR measurement for 

two different forms of NaBH4 used 

The rate of reduction in option 2 was faster than option 1 as shown in Figure 6-3. As 

NaBH4 is known to be more stable in high pH, the use of NaOH solution in option 2 enabled 

the dissolution of NaBH4 in the aqueous alkaline solution without undergoing rapid hydrolysis. 

Without the inhibition from the heterogeneous reduction, the reaction was likely to be much 
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faster even though a lower stoichiometric ratio of NaBH4 (0.5 mol eqv) was used since the 

alkaline solution was pre-saturated with dissolved NaBH4. The reduction reaction mechanism 

using aqueous base NaBH4 is proposed in Appendix D.3. 

A comparison between the options is summarized in Table 6-5. Due to the fast rate of 

reaction, the release of flammable hydrogen gas and large heat of reaction, the literature case 

(Faigl et al., 2010) was deemed as unsafe for scale-up. Options 1 and 2 appeared to be the safer 

options, especially in terms of mitigating safety concerns from the generation of hydrogen gas 

during the reaction and quench.  

Table 6-5 Summary of the advantages and disadvantages of different reduction cases 

Case Solvents Reagent Advantages Disadvantages 

Literature 

(Faigl et 

al., 2010) 

 

Methanol 

(0.45 M) 

Solid 

NaBH4 

(1.3 mol 

eqv) 

 Fast rate of reaction 

(~instantaneous). 

 Consume large 

excess of NaBH4. 

 Large heat of 

reaction released 

(RC 1, ΔHr = 453 

kJ/mol aldehyde). 

 Flammable 

hydrogen gas 

generated during 

reaction. 

 Heat may ignite 

hydrogen gas. 

 Precooling (0 ˚C) 

required. 

Option 1 THF 

(0.3 M) 

Solid 

NaBH4 

(1.3 mol 

eqv) 

 No loss of NaBH4 to 

reaction with solvent. 

 Lesser hydrogen gas 

and heat of reaction 

generated during 

reduction. 

 Relatively slow 

rate of reaction.  

 No reduction in 

quantity of NaBH4 

used as it would 

result in even 

slower rate of 

reduction. 

 Quench reaction 

between excess 

NaBH4 with 

water, generates 

hydrogen gas. 

Option 2 THF-

NaOH 

(0.3 M) 

Aqueous 

NaBH4 

(0.5 mol 

eqv) 

 Fast rate of reaction (~2 

min). 

 Smaller quantity of 

NaBH4 required. 

 No significant loss of 

NaBH4 to reaction with 

solvent. 

 Lesser hydrogen gas 

and heat of reaction 

 Required an extra 

step of dissolving 

NaBH4 in NaOH 

solution. 

 Addition of NaOH 

solution. 
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generated during 

reduction and quench 

reaction. 

A brief material cost comparison between options 1 and 2 is presented in Table 6-6. 

Although an additional reagent (NaOH solution) is required in option 2, it was still cheaper than 

option 1 because NaBH4 is more costly than NaOH. The decision is to go with option 2 for 

reduction in THF. 

Table 6-6 Material cost comparison between options 1 and 2 

 Option 1 Option 2 

Materials Mol eqv Cost (USD/kg 

alcohol 1) 

Mol eqv Cost (USD/kg 

alcohol 1) 

4-chloro-N,N-

diisopropyl-2-

formylbenzamide 

1 - 1 - 

NaBH4 1.3 61.71 0.5 23.74 

Sodium 

hydroxide 

solution (1 M) 

- - 3 times w/w% 

of NaBH4 

0.16 

 Total $61.71 Total $23.90 

6.4.2 Feasibility of workup after the consecutive reactions in batch mode 

After verifying the feasibility of performing reduction in THF, actual ortho-lithiation 

reaction mixtures from the STR and T-reactor with composition as shown in Table 6-7 were 

used to perform reduction in batch mode. It was noted that the water washes after ortho-

lithiation reaction were necessary to remove excess DMF, which could react with NaBH4, and 

to remove lithium dimethylamine, which might reduce the solubility of NaBH4 in the reaction 

mixture. The average water content in the respective reaction mixtures after the two water 

washes were obtained experimentally from Karl Fischer.  

Table 6-7 Composition of reaction mixtures from STR and T-reactor after ortho-lithiation 

reaction and two water washes. 

Compounds STR reaction mixture (96% 

crude yield) 

T-reactor reaction 

mixture (99% crude 

yield) 

 w/w% w/w% 

4-chloro-N,N-diisopropyl-2-

formylbenzamide (Aldehyde 1) 

8.9 (~0.3 M) 9.2 (~0.3 M) 

Unknown side products 0.4 0.1 

THF 70 70 

Hexane 18 18 

Water 2.7 2.7 

As expected, complete reductions of aldehyde 1 were achieved in both reaction 

mixtures. Other than the side products from ortho-lithiation reaction, there was no new side 
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products observed from GC analysis after the reduction reaction. The lab-scale reduction 

workup, as described in Table 6-8, was performed on both the ‘STR’ and ‘T-reactor’ reaction 

mixtures after reduction reaction. It was observed that the product (alcohol 1) from the ‘STR’ 

reaction mixture existed as an ‘oil’ even after trituration with heptane (step 5), forming a liquid-

liquid mixture with heptane as the lighter phase and ‘oil’ as the heavier phase. On the other 

hand, the product (alcohol 1) from the T-reactor reaction mixture had successfully precipitated 

as white solid. One reason for this difference could be the higher proportion of side products in 

the STR reaction mixture that might have inhibited the precipitation of the alcohol 1. Therefore, 

it was concluded that only ortho-lithiation reaction mixture with high product purity (~99%) is 

suitable for the consecutive reduction reaction. Otherwise, the alcohol 1 isolation step in 

reduction would be problematic.  

Table 6-8 Reduction laboratory scale experiments and observations 

 STR reaction mixture T-reactor reaction mixture 

Steps Observations 

Reaction  Complete reduction of aldehyde 1 after an hour. 

No additional side products observed. 

1) First water wash Rapid formation of hydrogen gas as excess sodium 

borohydride reacted with water. 

2) Second water wash Clear phase separation due to presence of hexane, 

minimized loss of organic in aqueous. 

3) Additional of anhydrous 

magnesium sulfate and 

filtration 

Filtrates collected. Residue discarded. 

4) Rotor-evaporation Colorless oil obtained. White solids formed on the 

wall. 

5) Heptane wash Liquid-liquid mixture. 

‘Oil’ was heavier phase. 

 

Solid slightly soluble in 

heptane. 

  

6.5 Design of combined batch base case and continuous consecutive reaction processes 

for 3 ton per year production 

The major process steps in the combined base case is summarised in  

Figure 6-1 (b). The combined base case consisted of two independently operated 

conventional batch processes (ortho-lithiation and reduction) with a production target of about 

3 tons products (aldehyde 1 and alcohol 1) per year. The proposed safe and scalable batch whole 

processes for ortho-lithiation and reduction are summarised in Appendix D.4. After the ortho-

lithiation workup, the aldehyde 1 was isolated in the form of ‘white powder’ before 
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commencing with the reduction reaction. Unlike the continuous consecutive reaction case 

where the aldehyde 1 concentration was fixed by the upstream ortho-lithiation reaction 

concentration, the aldehyde 1 concentration in the reduction reaction of the combined batch 

base case did not have such constraint. Although the concentration of aldehyde 1 in THF used 

in lab-scale experiments (section 6.4.1) was 0.3 M, theoretically higher aldehyde 1 

concentration in THF could be used as aldehyde 1 is very soluble in THF. A conservative 

assumption of 1 M aldehyde 1 in THF was used in the reduction reaction of the combined batch 

base case. 

The key unit operations of the continuous consecutive reaction case are summarized in 

Figure 6-1(a). The continuous ortho-lithiation reaction was performed in the T-reactor, which 

had the best reactor performance (Chapter 4). Although the reduction reaction was performed 

solely in batch mode in this study, a continuous reduction process was conceptually developed 

to ensure a smooth process integration from a continuous ortho-lithiation to reduction.  

A potential continuous process would involve ortho-lithiation reaction in T-reactor and 

the subsequent water washes using mixer-settler column, reduction reaction in static mixer, 

followed by workup steps consisting of continuous extractions with water and NaCl solution, 

agitated thin film dryer to remove the organic solvent, continuous filtration with heptane and 

drying. Some possible examples of the commercially available, state-of-the-art continuous 

equipment (Description in Chapter 2) for each unit operation are listed in Table 6-9. It is 

assumed that the performance of the continuous equipment is at least equivalent to that of the 

batch process in terms of energy consumption, efficiency and alcohol 1 recovery. The 

continuous equipment cost is assumed to be 110% of batch equipment cost of equivalent 

production rate (Schaber et al., 2011). 

Table 6-9 Summary of small-scale continuous consecutive reaction operations 

Steps Examples of continuous equipment 

1) Ortho-lithiation reaction T-reactor (in-house) 

2) Water washes Karr column (KMPS, 2017a) 

3) Reduction reaction  Static mixer (Noritake, 2017b; Sulzer, 2017a) 

4) Water wash Karr column 

(KMPS, 2017a) 

Centrifugal extractor 

(CINC, 2017) 
5) 1 M NaCl wash 

6) Evaporation of organic solvents  
Agitated thin film dryer 

(KetavConsultant, 2017; systems, 2017a) 

7) Heptane wash 
Rotary pressure filter (Komline-Sanderson, 2017) 

8) Filtration 

9) Drying 
Belt dryer 

(TheilenMaschinenbau, 2017) 
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Following general design assumptions were made: 

1) No observable degradation of aldehyde 1 and alcohol 1 during the course of the 

reactions.  

2) No scheduling of the reactions was required in the combined base case as the 

ortho-lithiation and reduction processes were operated in different plants. 

3) All chemicals were at ambient temperature which was at 20 ˚C. 

4) Total number of operation hours per year in a plant was 8000. 

5) No product loss in evaporation of solvent, filtration and drying operations as 

product loss due to handling was assumed to be minimal in large scale 

operations. 

6) Byproducts such as salts and excess reagents were assumed to be completely 

removed during water washes. 

7) Pump efficiency was assumed to be 50 %. 

6.6 Comparison of process performance between combined base case and continuous 

consecutive reaction 

Based on the process designs (Appendices D.4 and D.5), the whole process performance 

metric for combined base case and continuous consecutive reaction case were estimated based 

on alcohol 1 throughput of 3 tons per year. Table 6-10 presents the comparison of sustainability 

metrics between the combined base case and continuous consecutive reaction in terms of 

volume, mass and energy efficiencies and operational and capital expenditures. The 

performance metric of the combined base case is derived from the sum of the individual ortho-

lithiation and reduction batch base cases. For the reduction whole process, it is noted that the 

material cost does not include the cost of aldehyde 1 as it was produced in-house through ortho-

lithiation reaction and was not commercially available. This explains the relatively low 

reduction OPEX obtained as cost of raw material is often one of the major process cost. Based 

on the assumption that the energy consumption of the continuous equipment in consecutive 

reaction is the same as the batch equipment in the combined base case, both cases have the 

same electricity cost and energy efficiency. 

Table 6-10 Performance metrics of combined ortho-lithiation and reduction base case at design 

scale of about 3 tons per year alcohol 1 

Performance metric Ortho-

lithiation 

whole 

process* 

Reduction 

whole 

process* 

Combined 

base case 

Continuous 

consecutive 

reaction 

Total material efficiency (kg 

material/kg product) 

37 14 51 44 
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E-factor (kg waste/kg product) 35 13 48 43 

Material cost (USD/kg product) 634 33 667 583 

Energy and utilities cost (USD/kg 

product) 

111 20 131 131 

Waste treatment cost (USD/kg 

product) 

27 14 41 34 

Total energy efficiency (kJ/kg 

product) 

13,745 6,592 20,337 20,337 

CAPEX (USD/kg product) 85 38 123 75 

% CAPEX reduction - - Benchmark -39% 

OPEX (USD/kg product) 771 48 819 656 

% OPEX reduction - - Benchmark -20% 

(*) Refer to Appendix D.4 for the synthesis of the ortho-lithiation and reduction whole 

processes 

A 20% reduction in operating cost (OPEX) is expected in the continuous consecutive 

reaction case because of the avoidance of the ortho-lithiation heptane purification step, which 

resulted in significant aldehyde 1 loss given that material cost accounts for the largest 

contribution in the process cost. The other major cost saving in the continuous consecutive 

reaction case is contributed by reduced energy cost as the three most energy and time intensive 

separation operations (present in the combined base case) are avoided: 1) the use of very low 

reaction temperature in ortho-lithiation; 2) the evaporation of solvents (THF and hexane); and 

3) the drying of solid aldehyde 1.  

Although the aldehyde 1 concentration in the combined batch base case could be 

conceptually increased to 1 M, the continuous consecutive reaction still resulted in lower 

solvent demand. The material efficiency is improved in the continuous consecutive reaction 

mainly due to reduction in solvent usage (THF) as no additional solvent was required for 

reduction reaction. In addition, the relatively lower product loss in the continuous consecutive 

reaction case has also improved the material efficiency. Consequently, the improvement in 

material efficiency led to lower E-factor and waste treatment cost since the amount of organic 

waste was directly reduced.  

It is noted that the CAPEX shown is only a vague estimation. For more accurate 

estimation, detailed equipment sizing, material of construction and technical specifications 

have to be taken into consideration. The main reason for the much lower CAPEX in the 

continuous consecutive reaction compared to the combined base case was because of the 

significantly lower capital cost of T-reactor compared to a batch cryogenic reactor. The 
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continuous consecutive operation of the entire process have not been demonstrated yet, 

although in the context of cost saving and sustainable processing, it is likely to considered as 

future development options. 

6.7 Conclusion 

As demonstrated in Chapter 4, the ortho-lithiation reaction yield difference between the 

STR and T-reactor was not significant as the respective yields were 96% and 99%. The 

improvement in yield achieved by the T-reactor was insignificant compared to the amount of 

aldehyde 1 loss (~20%) during heptane purification step, which drastically decreased the overall 

process efficiency. The most time consuming operation was found to be drying and the most 

energy intensive operation was the evaporation of organic solvents. It was clear that the 

separation process was the bottleneck of the whole ortho-lithiation process. To avoid dealing 

with inefficient separation process, the feasibility of performing consecutive reactions (ortho-

lithiation followed by reduction) in the same solvent without major intermediate workup was 

investigated. The consecutive reaction has been proven feasible using THF as the common 

solvent. However, the reaction mixture from batch ortho-lithiation (STR) was unable to obtain 

solid alcohol 1 after the reduction work-up because of the higher amount of impurities/side 

products present.  

This illustrated the direct impact of reaction yield on downstream processes and 

subsequent reaction. Although the difference in ortho-lithiation reaction yield between the STR 

and T-reactor was less than 5%, its impact on subsequent reduction reaction and separation was 

significant. It was concluded that the consecutive reaction was only suitable to be carried out in 

ortho-lithiation reaction mixture with product purity of 99%. This intensification strategy ($656 

USD/kg alcohol 1) was theoretically estimated to be more competitive in terms of OPEX than 

the combine base case ($819 USD/kg alcohol 1). The cost savings mainly come from 1) greater 

aldehyde 1 recovery and 2) significant reduction in energy cost in ortho-lithiation reaction. The 

consecutive reaction also contributes to a greener process as solvent usage is greatly reduced 

by conducting the reactions in the same solvent.  

Key separation process technologies operating in continuous mode, which are 

commercially available on the market, have been identified in a conceptual fully continuous 

process to produce alcohol from amide. Although continuous operation of the entire process 

including the separation stages  has yet to be demonstrated in practice, it is likely to be 

considered as future development options.  
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Chapter 7. General Framework  

Based on the experience gained working with different processes, a general framework 

is presented by summarizing the approach to PI for pharmaceutical processes. The framework 

is developed primarily based on the work covered Chapters 3, 4, 5 and 6, and its scope is limited 

to some of the common problems faced in pharmaceutical processing, such as solid handling, 

challenging purification, sensitive reactions, etc. 

The overall work-flow for this framework is given in the Figure 7-1. The starting point 

of a new process is usually from a lab-scale procedure and in the cases of amidation and ortho-

lithiation, this was obtained from a lab-scale procedure reported by Faigl et al. (2010). 

Therefore, the first step relies heavily on lab-scale experiments, with the objective of process 

definition. This is followed by the development of a safe and scalable batch base case to 

establish a benchmark. Based on the issues encountered in lab-scale experiments, possible PI 

options/solutions are proposed and evaluated based on preliminary experimental results. 

Intensified cases are developed by incorporating the promising PI options. Finally, the base 

case and the intensified cases are compared based on techno-economic-sustainability metrics.  

 

Figure 7-1 Stepwise framework for intensification 

The constraints of this approach include 1) tedious multiple lab-scale experiment and 2) 

equipment constraint due to lack of resources. It is envisioned that the framework proposed 

would address these potential issues by providing guidance on prioritization of crucial 

experiment based on mapping of PI options to techno-economic sustainability drivers and 

identify the potential barriers. The initial evaluation would be primarily based on lab-scale 

Lab-scale batch experimentsStep 1
•Obtain reaction characteristics, identify potential process bottlenecks

Develop safe batch base caseStep 2
•Act as benchmark

Generate PI optionsStep 3
•Experimental validation

Develop intensified cases Step 4
•Incorporation of PI options into different PI cases

Sustainability benefitsStep 5
•Comparison between the batch base case and intensified cases
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experiments, although simple engineering calculations (e.g. Dynochem modelling), rule-of-the-

thumb and best practice did get involved to provide indicative numbers for further evaluations. 

As for equipment constraint, this is a very realistic problem often faced by many in industries 

and academia alike. It is encouraged to perform experiments with available in-house resources 

or alternatives in order to provide analogous assessment of the potential of the actual state-of-

the-art equipment. The intention is to provide an accurate assessment of the feasibility of the PI 

option rather than to provide the best and most optimized solution. This framework is therefore 

complementary to other methodologies. 

7.1 Lab-scale Batch Experiments 

Information regarding the basic physical behavior of the reaction mixture (e.g. evolution 

of gas, formation of solids, phase behavior or interaction etc.) is often unavailable in the 

literature procedure and experiments needs to be performed to bridge the gap. Other than the 

usual lab-scale batch experiments (e.g. RC 1 to obtain heat of reaction), for some characteristics 

additional investigations need to be carried out. For instance, the determination of mixing 

sensitivity requires additional mixing study to make a more informed assessment and to predict 

whether a reaction would face mixing limitation at large scale. Table 7-1 lists the available 

literature procedures and the findings from actual lab-scale experiments for the amidation and 

ortho-lithiation processes.  

Besides the inherent reaction characteristics, potential side reaction formation, safety, 

phase complexity and workup performance are also considered in order to have a holistic view 

of the whole process to be developed. For workup, the tracking of product yield is performed 

by taking organic sample after every workup step (i.e. reaction, extraction, filtration, etc.). It is 

noted that the amount of product lost at lab-scale might not be reflective of the equipment 

performance at large-scale as large-scale equipment are usually more efficiency than that at lab-

scale. For example, centrifugal filter is more efficient in solid-liquid separation as compared to 

filter paper and funnel. Therefore, it is assumed that product loss is minimal during large-scale 

unit operations like filtration, solvent evaporation and drying, even though the product lost at 

lab-scale is significant. 
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Table 7-1 Initial evaluation of characteristics of lab-scale batch chemical systems 

 Amidation Ortho-lithiation 

Reaction A given literature procedure Information from laboratory experiment A given literature procedure 
Information from laboratory 

experiment 

Order of 

addition 

A mixture of diisopropylamine (1.5 

mol. eq.) and triethylamine (1.5 

mol. eq.) was added dropwise to 4-

chlorobenzoyl chloride (limiting 

reagent) in toluene (17.8 mol. eq.) 

Same procedure as literature. 

 

HCl fume was emitted depending on addition rate 

and agitation speed. Not a robust procedure for scale 

up. 

n-BuLi (1.2 mol eqv) added slowly 

to a solution of amide 1 in THF at -

78 ˚C. After 1 h, temperature of 

reaction mixture was raised to -50 ̊ C 

followed by the addition of DMF 

(1.3 mol eqv). 

Same procedure as literature.  

Use of 

reagent(s) 

Use of two types of base 

Large excess of DIPA and TEA 

used. 

TEA and DIPA were mixed together before addition 

to a solution of AC in toluene. 

Corrosive HCl fume released if it is not fully 

neutralised. 

2.5 M of n-BuLi in THF was used. 

Due to lack of supply, 1.6 M of n-BuLi 

in THF was used. Although the 

reaction concentration changed, it was 

assumed that the reaction would not be 

affected  

Phase 

complexity 

&  

physical 

properties 

Not reported. 

Large amount of amine salt (DIPA.HCl) formed 

when AC was added. The thick suspension exhibited 

complex viscoelastic/yield stress liquid properties 

which resulted in poor mixing during RC 1 

experiment. The solid loading is approx. 0.069 g/mL 

(6 % w/w, calculated from a 8 g scale batch 

reaction). 

Not reported. 

Particulates observed when n-BuLi 

reacts with residual moisture in the 

solvent to form lithium salt.  

Mixing Not reported. Mixing limited. Not reported. Mixing limited. 

Use of 

solvent(s) 
Toluene is used as the solvent 

Toluene used as solvent but further increase in 

reagent concentrations was unlikely due to high 

solid loading. 

Anhydrous THF used as solvent 

Unlikely to increase reaction 

concentration further as it would either 

require a longer dosing time to control 

the exotherm or cause more side 

reactions. 

Heat 

generation 

 

Slow reagent addition to control 

exotherm. 

Keep reaction at room temperature. 

Moderately exothermic (~105 kJ/mol AC). 

Although amidation is not a highly exothermic 

reaction, poor mixing can raise safety concerns with 

sudden contact between accumulated, unreacted 

reagents which could react rapidly and cause fast 

heat released. 

Not reported. 

No experimental calorimetric data. 

Significant heat released during ortho-

lithiation according to literature (>200 

kJ/mol) 

Reaction 

rate 

 

Long residence time of 24 h 

reported 

Fast reaction of within 5 min. 

Long residence time required due to poor mixing. 
Not reported. 

Step 1 (lithiation) – Fast (<1 s) 

Step 2 (DMF) addition – Faster than step 

1 

 

Hazards 

 

Not reported. 
Corrosive HCl fume released if it is not fully 

neutralised. 
Not reported. 

n-BuLi is pyrophoric which 

ignite in air/water 
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Large excess of DIPA (50 mol%) used. 

Harmful to aquatic lives if it is not disposed 

properly. 

Side 

reaction(s) 
Not reported 100% conversion to amide 1 Not reported. 

Side reactions dominate in high n-BuLi 

concentration, inefficient mixing and 

higher temperature. 

Workup A given literature procedure Information from laboratory development A given literature procedure 
Information from laboratory 

experiment 

   

Water wash 

After 24 h, toluene and water were 

added. Phase separation to remove 

and dispose the aq. layer. 

The actual reaction time was found to be less than 5 

mins.  

Amine salt has high solubility in water of ~500 g/L  

DIPA has low solubility in water of ~100 g/L 

No significant amide 1 loss observed 

Quench with water, followed by 

phase separation (remove aqueous 

layer) 

Follow the literature procedure. 

HCl wash 

The organic layer was separated, 

washed with an aqueous solution of 

5wt/wt% HCl. Phase separation to 

remove and dispose the aqueous 

layer. 

HCl 5 wt/wt% added to organic layer to neutralise the 

excess amine base.  

No significant amide 1 loss observed 

Multiple extraction of aqueous layer 

to retrieve aldehyde 1. The organic 

layers were combined. 

The amount of aldehyde 1 recovered 

from multiple ethyl acetate extraction 

was insignificant.  

NaCl wash 

The organic layer was further 

separated and washed with brine. 

Phase separation to remove and 

dispose the aqueous layer. 

Brine was used to remove salt from the org layer. 

No significant amide 1 loss observed 

Anhydrous MgSO4 was added to 

organic phase to remove residual 

water followed by filtration where the 

filtrate was collected. 

Not necessary as water was required in 

the next step. 

Drying of 

mixture 

Dried the organic layer over 

MgSO4. 

Add anhydrous MgSO4 to dry the organic layer. 

Filter to discard the hydrated solid MgSO4. 

No significant amide 1 loss observed 

Evaporation of solvent from filtrate. 

After solvent evaporation, aldehyde 1 

was present as a sticky solid which was 

difficult to transfer. 

Solvent 

removal 

Evaporated solvent from the 

organic layer. 

Evaporated solvent from the organic layer. 

No significant amide 1 loss observed 

Purification by triturating residue 

with hexane. 

Significant amount of aldehyde 1 lost 

(>50%) as it was slightly soluble in 

hexane/heptane. The amount of 

purified aldehyde 1 crystallised 

depended the amount of side products 

in the mixture.  

Purification 

The residue was triturated with 

hexane. 

The crystalline product was 

collected by filtration. 

Significant amount of amide 1 lost (40%) during 

trituration as amide 1 was quite soluble in hexane.  

Trituration was found to be unnecessary as there was 

no formation of side products. 

Filtration and collect the residue 

followed by drying. 
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7.2 Safe and Scalable Batch Base Case 

Since the given literature procedures are done in lab-scale, some processes possess 

characteristics that cannot be run efficiently or safely when scaled up. For example, the 

formation of thick solid-liquid suspension in amidation reaction requires more effective mixing 

than what a conventional stirred tank reactor is capable of and the release of corrosive HCl fume 

also presents challenges. In addition, the formation of sticky solid product in ortho-lithiation 

after solvent evaporation made transfer challenging. These problems are not reported in 

literature and were only detected after initial lab-scale experiments. In order to obtain safe and 

scalable base cases, modifications to the lab-scale procedure are required where necessary.  

The conventional typical pharmaceutical manufacturing process in batch mode is 

assumed (i.e. one-pot reaction, liquid-liquid extractions, evaporation, solvent swap, filtration 

and drying). It is also assumed that the reaction chemistry is fixed but there is flexibility to 

modify solvent types.  

7.3 Generation of PI Options  

The initial findings from step 1 made it easier to identify process issues and process 

steps where there is value to be gained (e.g. low yield, loss of product, generate too much waste, 

etc.). Table 7-2 and Table 7-3 present the PI options that can potentially address the process 

issues in amidation and ortho-lithiation processes respectively.  

The approach taken to generate PI options starts with addressing the issues in the process 

and that is where the primary PI options are proposed as illustrated in Figure 7-2. However, the 

primary PI options might not be successfully applied all the time as there may be barriers and 

roadblocks during the execution of the primary PI options. A qualitative rating of 3 levels, 

“high”, “medium” and “low”, is used to assess the potential benefits and effort required to 

execute the PI option and “negative” is used for identified barrier when executing the PI option. 

Given that the execution of a primary PI option would yield ‘high’ benefits with the presence 

of a barrier, an extended PI option (1) can be generated as a potential solution to overcome the 

barrier. 

 

Issue 

Primary PI option 

Roadblock 

Extended PI option (1) 

Successfully 

intensified 

Further 

intensified 

Extended PI option (2) 

Figure 7-2 Thought process for the generation of PI options 
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In a situation where there are both benefits and hindrances but minimum effort is 

required to perform it in the laboratory, it would be very useful to base the decision on lab-scale 

experimental results – “experiment”, which would present a realistic and accurate assessment 

of the technical feasibility of the PI option. When there is no hindrance and minimum effort is 

required to execute the PI option, the decision would naturally be “Yes”. The final decision to 

execute the PI option depends on stakeholder’s business objective.  

As an illustration (Table 7-2), in order to avoid pre-mixing of TEA and DIPA in the 

amidation process, one possible primary PI option is to replace TEA by DIPA. However, this 

resulted in an increase in overall reagent cost as DIPA is more costly than TEA and a roadblock 

is met. An extended PI option (1) to overcome the roadblock is generated through the lowering 

of the mol eqv of DIPA used. Yet again, this extended PI option raised concerns on whether 

there is sufficient base to capture HCl. At this stage, it is difficult to decide how much DIPA 

could be reduced without compromising the efficiency of HCl neutralisation. Instead of trying 

to model the outcome, an experiment would be able to provide a quick and relatively more 

accurate assessment of the situation. In the case of amidation, the experiment gave satisfactory 

result that shown almost 97% of the HCl released was captured by DIPA. A swift decision to 

reduce the mole equivalent of DIPA used could be made based on the experimental result.  

Extended PI option (2) is built upon the success of the primary PI option. In the case of 

ortho-lithiation process (Table 7-3), the success of the PI reactor to achieve better product 

selectivity would generate extended PI options focusing on downstream process, such as 

elimination of purification step or continuation with consecutive reduction reaction using crude 

reaction mixture. In general, the potential benefits in product quality, efficiency, cost and safety 

are significant enough to make a strong case to carry out experiments using the PI reactors even 

though it might take effort to setup the reactors.  

As mentioned previously, the identification of suitable PI reactor will depend on the 

process engineers’ knowledge of the capabilities (e.g. heat transfer, mass transfer, mixing 

efficiency, residence time etc.) and availability of the PI reactor at the desired scale. It is noted 

that some barriers are unknown or unexpected until they are discovered during experiments, 

such as the problem of clogging in the microreactor. In the case where the microreactor did not 

meet the requirement of the reaction, another PI reactor can be built in-house and customized 

to the reaction specifications (e.g. T-reactor in this particular case). In view of the presence of 

unexpected barriers, it is important to verify the feasibility of the extended PI options (1) and 

(2) through experiments where possible. 
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Table 7-2 Potential benefits and barriers to PI options for amidation process 

Issues 

identified 

PI options Safety Quality Cost Efficiency Environmental 

impact 

Time to 

market 

Effort to 

execute 

Decision 

Two types of 

base used 

Replace TEA with 

DIPA (Primary) 

  Negative 

DIPA is slightly 

more costly than 

TEA 

High 

Avoid 

premixing 

of TEA with 

DIPA 

  Low Experiment 

Large excess 

of costly 

DIPA was 

used 

Reduce the 

quantity of DIPA 

from 3 to 2.1 mol 

eqv.(Extended) 

  High 

Cost reduction 

from lesser DIPA 

usage 

 High 

Amine salts are 

bad for aquatic 

life if the waste is 

not treated. 

 Low Experiment 

Mixing 

limitation due 

to solid 

suspension 

Reduce toluene 

usage by 

increasing reagent 

concentrations in 

toluene-water 

solvent system 

(Primary) 

 Negative 

Possible 

degradation 

of starting 

material upon 

contact with 

water 

Medium 

Cost reduction 

from less toluene 

usage 

 Medium 

Higher material 

efficiency 

 Low Experiment 

No recycling 

of solvent 

Toluene recycling 

(Primary) 

  High 

Cost reduction 

from toluene 

recycling 

 High 

Higher material 

efficiency 

 Low Yes 

Long batch 

residence time 

due to poor 

mixing 

Continuous 

reaction (Primary) 

Medium 

Higher 

reaction 

volumetric 

efficiency 

  Neutral 

Might 

require 

continuous 

separation 

 

Negative 

Consume more 

water to dissolve 

DIPA 

High 

Throughput 

can be adjusted 

by flow rate 

using existing 

flow setup 

Medium Experiment 

Loss of amide 

1 in workup 

Consecutive 

reaction from 

amidation to 

ortho-lithiation 

(Primary) 

  High 

Cost saving from 

energy and 

utilities used for 

solvent 

evaporation and 

condensation in 

amidation 

workup 

High 

No tedious 

workup and 

loss of 

product 

through 

handling 

High 

Lesser solvent 

usage and 

reduced waste 

generated. 

High 

Significant 

time saving 

from 

avoidance of 

workup steps, 

especially 

drying. 

Low Yes 
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Unnecessary 

large amount 

of wash 

solvents used 

Reduction of 

solvents used in 

washes (Primary) 

  High 

Wash solvents 

like water, HCl 

and NaCl 

solutions are 

relatively 

cheaper than 

reagents so the 

cost impact 

might not be 

great. 

Waste treatment 

cost might be 

reduced. 

 High 

Reduction in 

aqueous waste 

generated. 

 Low Yes 

Batch workup 

is a potential 

barrier to 

continuous 

reaction  

Continuous 

workup 

(Extended) 

High 

Higher 

workup  

volumetric 

efficiency 

  High 

Process 

integration 

from 

continuous 

reaction to 

workup.  

 

 Neutral 

Greater 

flexibility as 

throughput 

might be 

adjusted by 

changing flow 

rate. 

Might be time 

consuming to 

obtain an 

optimum 

operating 

condition due 

to potential 

technical 

barriers. 

High 

Require PI 

equipment 

like CE, 

WFE, 

continuous 

filtration, 

etc. 

Experiment 
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Table 7-3 Potential benefits and barriers to PI options for ortho-lithiation process 

Issues 

identified 

Preliminary PI 

options 

Safety Quality Cost Efficiency Environmental 

impact 

Time to market Effort Decision 

High energy 

consumption 

due to -70 ˚C 

 

Mixing 

limitation due 

to fast reaction 

Suitable PI 

reactor that 

provide better 

heat control and 

efficient mixing 

can reduce side 

reactions 

(Primary) 

High 

Better heat 

control in 

flow 

equipment 

Medium 

Improve product 

selectivity 

Medium 

Reduce energy 

consumption 

by performing 

reaction at 

higher 

temperatures 

High 

Avoid long 

waiting time for 

reaction mixture 

to cool and 

warm 

Negative 

Clogging likely 

to occur in 

microreactor 

Medium 

Less energy 

consumption 

High 

Flow equipment 

allows the 

development of 

scalable 

processes in the 

laboratory. 

Medium 

 

Experiment 

Clogging in 

flow reactor as 

potential 

barrier to PI 

reactor  

Flow reactor 

with larger 

diameter 

(Extended) 

 Negative 

Larger channel 

‘microreactor’ 

might 

compromise on 

product quality 

 High 

Issue of 

clogging might 

be resolved 

  Medium Experiment 

Spinning disc 

reactor 

(Extended) 

High 

Better heat 

control in 

flow 

equipment 

Medium 

Improve product 

selectivity 

Medium 

Reduce energy 

consumption 

by performing 

reaction at 

higher 

temperatures 

High 

Avoid long 

waiting time for 

reaction mixture 

to cool and 

warm 

 

 High 

Flow equipment 

allows the 

development of 

scalable 

processes in the 

laboratory. 

Medium  Yes 

n-BuLi is 

pyrophoric 

PI reactor with 

lower inventory 

(Extended) 

High 

Inherently 

safer 

process via 

lower 

inventory 

     Medium Yes 

Significant 

heat released 

during 

lithiation 

PI reactor with 

good heat 

control 

(Extended) 

High  

Reduces 

the risk of 

runaway 

reactions 

     Medium Experiment 
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Loss of 

product during 

purification 

Make 

purification 

redundant by 

minimising side 

reactions 

(Extended) 

 

 High 

Improve product 

quality 

High 

Minimise loss 

of high value 

product 

High 

Simplification 

by skipping 

purification step 

 Medium 

Simplification of 

workup step 

Low Yes 

Loss of 

product during 

workup 

Consecutive 

reaction from 

ortho-lithiation 

to reduction 

using crude 

reaction mixture 

(Extended) 

 Negative 

Side products 

crude ortho-

lithiation 

reaction mixture 

might be 

detrimental to 

reduction 

Medium 

Cost saving in 

reducing wash 

solvents and 

energy 

consumption 

during workup 

High 

Avoid workup 

steps 

High 

Reduce solvent 

usage in 

reduction 

High 

Avoidance of 

tedious workup 

Low Experiment 
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7.4 Synthesis of Intensified Cases (Whole Process)  

After generation of PI options and assessment of their feasibility through experiments, 

it is essential to consider the development of the whole process including the workup steps. For 

the ortho-lithiation process, it has been demonstrated that the continuous flow PI reactors can 

bring significant benefits by minimizing side product formation due to shorter contact time. 

This prompted the need for continuous workup to improve the overall process efficiency. The 

subsequent batch extraction, solvent evaporation and filtration can be eliminated by using 

continuously operated centrifugal extractor, wiped film evaporator, rotary drum filter, etc. In 

cases where experimental demonstration is lacking due to equipment constraint or 

unavailability such as for continuous workup operations in amidation and ortho-lithiation as 

highlighted in Chapters 3 and 6, assumptions are made to fill in the process gaps. 

7.5 Comparison of Sustainability Metrics  

According to the process intensification strategy, an intensified process should provide 

higher production capacities, reduced energy and raw materials consumption, increased safety 

and reduced equipment volume and waste generation. Under these definitions, a set of metrics 

has been selected and weighted as shown in Table 7-4. The weightage is determined based on 

individual project goals and overall strategy of the company. For the purpose of this project, 

operational cost, material efficiency and E-factor have been selected as the most relevant 

indicators for intensification. The capital cost and energy efficiency do not have large impact 

on the overall production cost in the long term, hence they are assigned lower weightage. 

Similarly, safety is not a main objective for process intensification though compromise in safety 

is definitely unacceptable. 

The sustainability metrics of the intensified cases would be compared to the batch base 

case at the designated manufacturing scale. The result of the comparison would support a 

decision to implement the selected process/case on a plant based on their overall business 

drivers.  
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Table 7-4 Sustainability metrics 

Metric Class Weight 

Capital cost Economic + 

Operational cost Economic +++ 

E-factor Environmental ++ 

Material efficiency Environmental/ economic +++ 

Energy efficiency Environmental + 

Volume efficiency Safety + 

In-process inventory Safety + 
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Chapter 8. Conclusions and Recommendations 

This research deals with intensification of industrial API synthesis, with a focus on two 

particular process – the amidation of 4-chlorobenzoyl chloride in the presence of amine base; 

and ortho-lithiation of 4-chloro-N,N-diisopropylbenzamide, and evaluate the sustainability 

benefits of various process options. The impact of reaction mode, operating mode, solvent 

evaporation, purification and drying method on the overall operating costs have been 

investigated.  

8.1 Conclusions 

1. The amidation process is successfully intensified with the implementation of a 

number of Process Intensification (PI) options, proven feasible in lab-scale 

experiments. These options are represented in terms of three intensified cases - the 

intensified batch case, the continuous reaction case and the continuous process case, 

are compared to the batch base case. To compare their sustainability performance, 

the respective plants are designed at a hypothetical throughput of 3 tons per year. 

The sustainability metrics used in this study are volume efficiency, maximum 

processing inventory at any point of time, material efficiency, E-factor, energy 

efficiency, capital and operating expenditure. Overall, cost savings of up to 40% is 

estimated for the intensified batch case, indicating that batch mode operation in this 

particular process is more suitable than continuous mode. It is noted that the main 

reason for the poorer performance of the continuous cases is because of the larger 

amount of water used to dissolve DIPA due to the difference in the mode of reagent 

addition between the batch and continuous cases.  

2. In the first part of the ortho-lithiation process, the feasibility of performing the ortho-

lithiation reaction in continuous flow reactors at ambient temperature is investigated 

in Chapter 4. The conventional method is to operate the reaction at -70 ˚C in a fed-

batch mode which is challenging to scale up. A continuous flow PI reactor – T-

reactor was developed and obtained the highest reaction yield of 99%  at ambient 

temperature by providing short residence time (flash chemistry concept) and 

efficient mixing (CFD simulation). In depth reactor study was performed on the two 

most promising PI reactors – the T-reactor and the SDR. Although the T-reactor 

obtained higher aldehyde 1 yield than the SDR, further optimization of the SDR 

operating conditions is expected to offer distinct potentials of improvement in the 

aldehyde 1 yield to a level similar to the T-reactor.  



Chapter 8. Conclusions and Recommendations 

128 

 

3. In the second part of the ortho-lithiation process, a comparison of the T-reactor, the 

SDR and the Stirred Tank Reactor (STR) based on the sustainability metrics is made. 

Compared to the STR, significant process intensification is achieved in the flow 

reactors which demonstrate higher energy efficiency, better volume efficiency, 

smaller processing inventory and smaller equipment footprint. The performance of 

the T-reactor is particularly outstanding among the three reactors leading to 66% 

and 11% reduction in energy consumption and operating expenditure compared to 

the STR process respectively. Based on these promising results, the use of T-reactor 

presents a commercial viable alternative to the conventional batch processing. The 

SDR also performs well and brings additional energy-saving benefits  

4. The last part of the ortho-lithiation process focuses on the study of the whole process 

including workup for the batch and flow processes. For the batch production, it is 

clear that the separation process is the bottleneck of ortho-lithiation whole process. 

To avoid dealing with challenging and inefficient operations during the purification 

stages of the aldehyde product obtained from the ortho-lithiation reaction, the 

feasibility of performing consecutive reactions (ortho-lithiation followed by 

reduction) in the same solvent without major workup in between is investigated. 

This example illustrated the direct impact of reaction yield on downstream processes 

and subsequent reaction. Although the difference in ortho-lithiation reaction yield 

between batch and continuous (T-reactor) was less than 5%, its impact on 

subsequent reduction reaction and separation is significant. Theoretical estimation 

for the continuous consecutive reaction ($656 USD/kg alcohol 1) highlight that it is 

likely to be more competitive than the combined base case ($819 USD/kg alcohol 

1). The cost savings mainly come from 1) greater aldehyde 1 recovery; 2) significant 

reduction in energy cost in ortho-lithiation reaction.  

5. Lastly, based on the experience gained in different processes, a general framework 

which summarizes the approach to PI for pharmaceutical processes is developed. It 

aims to facilitate the early state of process development by offering the first 

estimation of benefits versus costs and providing suggestions on possible 

intensification options through an experimental approach.  

8.2 Recommendations for Future Work 

One of the objectives set for the project was to identify gaps to be covered in future 

work or in alternative projects.  
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1. It has been mentioned in the framework that key missing data can be obtained 

through laboratory experiments when information in the form of mathematical 

models is limited or not available. Laboratory protocols are not included in the 

framework, so these should be developed and integrated with process development. 

It can provide guidance to capture critical data while performing fewer numbers of 

experiments. 

2. The framework presented depends largely on process engineers’ experience, 

resources and knowledge to select suitable PI technology. Although there are several 

organizations involved in cataloguing the capabilities of intensified devices (Bayer 

et al., 2005), it is not designed for pharmaceutical industry which often require 

dealing with challenging workup steps and handling with solids, etc. The generation 

of such a database is not included in the project scope. As the PI concept is 

continuously expanded and new devices and designs are developed, there should be 

knowledge base dedicated to the pharmaceutical application. 

3. The work presented features the two chemical transformations and the proposed 

framework is adapted to the needs of these specific industrial applications. Essential 

refinement of the framework should be done by application of more challenging 

transformations such as the Heck coupling which has long reaction time and 

involves catalytic reaction, Friedel-Crafts which is exothermic and involves ‘messy’ 

workup, etc.  This should improve the robustness of the framework. It is further 

suggested to extend the analysis to more process steps including formulation of the 

final drug and to perform life cycle analysis for the selected process options. 

4. Previous research has shown that process bottlenecks tend to occur in the separation 

process. Although preliminary experiments  has been performed with the centrifugal 

extractor and the wiped film evaporator, future experimental work should also 

extend to continuous intensified filtration and drying operations. This will 

potentially bring further improvements and intensification benefits.   

5. Challenges come from the selection of ‘optimum’ operating condition for the PI 

reactors can be enhanced by obtaining the reaction kinetics. It is vital that the PI 

reactor operates in the right process conditions as minor variations may have a 

significant influence on the overall system (i.e. incomplete reaction due to 

insufficient residence time, etc.). However, it is also equally important to ensure that 

the reaction kinetics obtained is accurate which is very difficult to obtain for fast 
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reactions (reaction time in seconds). Otherwise, the use of inaccurate kinetic data 

may result in greater deviation from optimum result. A sensible decision has to be 

made on whether to focus and prioritize the effort to obtain the reaction kinetics or 

perform trial and error experiments to scan for the optimum process condition. 

6. Additional gaps that have to be covered in future work are related to the solvent 

selection. Given the sustainability consideration, the feasibility of performing 

reactions with greener solvents (i.e. 2-methyl tetrahydrofuran versus 

tetrahydrofuran) should be incorporated in the initial stage. Apart from the one-

parameter-at-the-time analysis performed here, design of experiment (DOE) can be 

performed instead to identify critical factors that can be enhanced to give the 

maximum overall process yields. 
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Appendices 

Appendix A. Amidation Process - Synthesis and Evaluation for Intensification and 

Sustainability Benefits 

A.1 Rheometer study  

Shear measurements were performed to evaluate the flow behavior of the solid-liquid 

reaction mixture.  Apparent viscosity and shear elastic modulus were measured at 25 ˚C using 

rheometer (Anton Paar MCR 301), using parallel plate geometry (50 mm diameter) as shown 

in Figure A-1. Samples of different solid concentrations were prepared and poured slowly onto 

the bottom plate and the upper plate was lowered to the fixed position, leaving 1 mm gap in 

between. Immediately after the sample was spread onto the rheometer plates, an external casing 

was lowered to cover the plates to minimize evaporation of solvent into the surrounding. The 

sample was allowed to rest for 5 minute before commencing the tests. The oscillation frequency 

was fixed at 10 rad/s and shear strain was varied from 0.0001 to 1. Reaction mixtures with 

different solid loading were tested: 2.0, 2.5 and 3.5 w/w%. These solid suspensions were 

prepared individually with lower AC and DIPA concentrations. 

(a)  (b)  

Figure A-1 (a) Anton Paar rheometer; (b) Sample was placed on the plate with an 

external black casing that can be lowered to minimise solvent evaporation from the sample. 

Attempts were made to perform rheological analysis to characterise the flow behaviour 

of the reaction mixture. However, it was quickly realised that the handling of the sample was 

challenging. The rheology testing required the suspension to be spread into a thin layer over the 

plate, it resulted in rapid evaporation of toluene. Dry white powder, which was believed to be 

a mixture of amine salts and amide 1, was observed on the plate after leaving the sample to 

settle for 5 minutes before testing despite covering the plates with an external housing. 
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Unfortunately, it was impossible to perform tests on the white powder as it would not be 

representative of the original reaction mixture. In order to prevent excessive solvent 

evaporation, more dilute suspensions of solid loading of 2.0, 2.5, 3.5 w/w% were tested instead 

of the original 6 w/w%. However, the reproducibility of the tests were not ideal. Figure A-2 

shows three repeated test conducted with three different samplings from the same 2 w/w% 

suspension. It was observed that during sampling, the sample bottles contained precipitant that 

was difficult to remove from the wall and this might had significant impact on the solid loading 

of the sample which could affect the consistency.  

 

Figure A-2 Sampling reproducibility 2w/w% repeated 3 times 

It can be seen from Figure A-3(a) that the suspension becomes more viscous as the solid 

loading increases. In Figure A-3 (b), the complex viscosity was taken at 100% and plotted 

against respective samples with different solid loadings and an extrapolated value can be 

obtained for 6 w/w%, shown in orange, giving a complex viscosity at about 4.5 kPa s, which is 

considered very viscous (i.e. peanut butter typically liquid viscosity is 250 Pa s at 35 ˚C). 

Although the general trend of complex viscosity increasing with higher solid loading, the 

absolute value of the complex viscosity of suspension at 6 w/w% is questionable due to low 

reproducibility of the test results.  
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(a)

 

(b)

 

Figure A-3(a) Change in complex viscosity across strain for suspensions with different 

solid loadings; (b) Complex viscosity for suspensions with different solid loadings at 100% 

strain. 

Nevertheless, the rheology study revealed some insightful understanding about the 

general physical properties of the suspensions. For example, Figure A-4 shows the storage and 

loss moduli, G’ and G”, of 2 w/w% suspension against strain. Generally, storage modulus, G’ 

[Pa] is a measure of the material’s ability to elastically store energy, which is the solid 

characteristics of the material. Loss modulus, G” [Pa] is the material’s ability to flow and this 

is liquid behaviour. The behaviour of the suspension follows the more dominant moduli (greater 

value). The strain is the amount of deformation (i.e. horizontal displacement divided by vertical 

sample gap height) the material experiences. It starts from almost undisturbed (i.e. 0.0001) to 

complete deformation (i.e. 1). 

Normally for polymeric gel-like material, it would have a constant G’ under very small 

strain where reversible elastic deformation occurs and the intermolecular interaction would not 

be disrupted. However, it can be seen in Figure A-4 that the G’ has started to decline even at 

0.001 strain, signifying weak interactions. The orange zone shows yield zone where strain 

increase successively disrupts more interactions, hence solid in the suspension loses the ability 

to elastically store energy.  

It can be seen that G’ continues to decrease until it is equal to G” and this is called the 

flow point, where any increase in strain beyond this point induces flow. This is when all 

intermolecular interactions are completely broken and the solids in the suspension begin to flow 

like fluid. It is also the minimum strain required to ensure good mobility and mixing. The green 

zone shows the flow zone. 

In general, it can be observed that the suspension behaved as a viscoelastic solid at low 

strains, and after a long period of yielding, and began to flow at higher strains, turning into a 
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viscoelastic liquid. The suspension was identified as yield-stress fluid by its gel-like 

characteristics and initial resistance to motion (Kresta et al., 2015).  

 

Figure A-4 Change in storage and loss modulus for suspension at 2w/w% solid 

loading. 

A.2 Amidation kinetic study (Batch base case) 

Based on the understanding of the microstructure of the suspension, the reaction kinetic 

study was carried out at a lower AC concentration of 0.04 M (0.5 w/w% solid loading) instead 

of the literature value of 0.5 M (6 w/w% solid loading). As mentioned earlier, a very dilute 

suspension is unable to form highly interconnected crystalline structures and would solely 

behave like a fluid without yield stress properties. This would ensure a homogeneous reaction 

without the complication of dealing with yield stress fluids so that intrinsic reaction kinetics 

could be obtained. After several trials with different AC concentrations, 0.04 M was chosen as 

it resulted in a sufficiently low solid loading of 0.5 w/w% where the reaction mixture appeared 

non-viscous and translucent. Due to lack of suitable analytical method to identify AC and DIPA, 

their quantities in the samples could not be quantified, only amide 1 concentration was 

monitored against time as shown in Figure A-5 below. The respective reaction conditions were 

tabulated in Table A-1. 
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Figure A-5 Kinetic experiments of amidation in the toluene system 

Table A-1 Respective reaction conditions of the kinetic experiments 

Run Temperature (˚C) Initial AC 

[M] 

Initial DIPA 

[M] 

Rate 

constant (3rd 

order rate 

equation) 

Average 

rate 

constant at 

20 ˚C 

1 20 0.042 0.11 3.16 

2.1 2 20 0.042 0.20 1.29 

3 20 0.055 0.20 1.83 

4 35 0.042 0.11 6.45  

5 6 0.042 0.11 0.98  

 

The data obtained from the kinetics study was fitted to kinetic models using the integral 

analysis method. It was assumed that the second reaction between DIPA and HCl as shown in 

Scheme A-1 was very fast, with the first step as the rate determining step. 

 

 

Scheme A-1 “two-step” amidation reaction being considered 

The first iteration was undertaken with the simplest form of the irreversible bimolecular-

type second order reaction. Unfortunately, the result from the first iteration of overall second-

order kinetics cannot reasonably represent the data as shown in Figure A-6 so third-order 

kinetics was assumed. Figure A-6 (b) showed that the third order kinetics fitted the data better. 
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First iteration: 

AC + 2 DIPA  Amide 1 +DIPA.HCl  -rAC = k[CAC][CDIPA] 

Second iteration: 

AC + 2 DIPA  Amide 1 +DIPA.HCl  -rAC = k[CAC][CDIPA]2 

 

(a) 

 

(b)

 

Figure A-6 Test of rate equation by integral analysis method using data from Run 1 as 

an example of the fittings. (a) Second order rate fitting; (b) third order rate fitting 

Therefore, the rate equation that represents the amidation reaction in toluene system is 

assumed as irreversible trimolecular-type third-order reaction: 

−𝑟𝐴𝐶 = 𝑘𝐶𝐴𝐶𝐶𝐷𝐼𝑃𝐴
2  A-2 

 

In terms of conversions the rate of reaction becomes 

𝑑𝑋𝐴𝐶

𝑑𝑡
= 𝑘𝐶𝐴𝐶0

2 (1 − 𝑋𝐴𝐶)(𝑀 − 2𝑋𝐴𝐶)2 
A-3 

where,  𝑀 =
𝐶𝐷𝐼𝑃𝐴0

𝐶𝐴𝐶0
 (Levenspiel and Levenspiel, 1972) 

 

On integration this gives 

𝑓(𝐶𝐴𝐶𝐶𝐷𝐼𝑃𝐴) =
(2𝐶𝐴𝐶0 − 𝐶𝐷𝐼𝑃𝐴0)(𝐶𝐷𝐼𝑃𝐴0 − 𝐶𝐷𝐼𝑃𝐴)

𝐶𝐷𝐼𝑃𝐴0𝐶𝐷𝐼𝑃𝐴

+ ln (
𝐶𝐴𝐶0𝐶𝐷𝐼𝑃𝐴

𝐶𝐴𝐶𝐶𝐷𝐼𝑃𝐴0

) = (2𝐶𝐴𝐶0 − 𝐶𝐷𝐼𝑃𝐴0)2𝑘𝑡 A-4 

where (2𝐶𝐴𝐶0 − 𝐶𝐷𝐼𝑃𝐴0)2 is a constant and k is the gradient. 

Using Run 1 in Figure A-5 as an example to obtain rate constant is by plotting 

f(CACCDIPA) against t, k can be found based on the gradient of the line. This was repeated for 

run 2 to 5 to obtain their respective rate constants as shown in Table A-1. An average rate 

constant of 2.1 was taken for runs at 20 ˚C. 

Based on the reaction rate constants obtained at 6, 20, 35 °C (279, 293 and 308 K), a 

graph of ln(k) against 1/T is plotted in Figure A-7. The pre-exponential factor (ko) was obtained 
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and the activation energy (Ea) were obtained from the intercept and gradient respectively 

according to following Arrhenius’ Law: 

𝑘 = 𝑘𝑜𝑒(−
𝐸𝑎
𝑅𝑇

)
 

A-5 

 

 

Figure A-7 Temperature dependency of the reaction based on Arrhenius Law 

The kinetics parameters of the amidation reaction at 20 ̊ C are summarized in Table A-2. 

Table A-2 Kinetics parameters of amidation reaction in toluene system. 

Toluene system Kinetic data 

Order of  4-chlorobenzoyl chloride 1 

Order of DIPA 2 

k at 200C (L2 s2/mol2) 2.1 

Ea (kJ/mol) 20 

ko  5581 

 

A.3 Analytical methods 

Determination of DIPA.HCl salt concentration  

A conductivity meter (Yokogawa FLXA21 Two-wire analyzer, with SC42-EP15 epoxy 

probe) was calibrated using different concentration of DIPA.HCl solutions as shown in Figure 

A-8. Prior to this, an amidation experiment was performed to obtain DIPA.HCl solids by 

filtering the reaction mixture, wash with toluene and oven dried. The calibration sample 

solutions were prepared by weighing exact amounts of DIPA.HCl dissolved in deionised water. 

To determine the DIPA.HCl formed during the amidation reaction, minimum volume of water 

(0.28 L/mol AC) was added to the reaction mixture slurry to dissolve the DIPA.HCl, followed 

by phase separation to obtain the mass of the aqueous layer. Assuming 100 % conversion and 

all the HCl formed is converted to DIPA.HCl and dissolved in the aqueous layer, the aqueous 

DIPA.HCl concentration is expected to be about 490 g/L. A 20x dilution of the aqueous layer 
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with water brought the concentration to within the detection range for the conductivity meter 

(about 25 g/L).  

The equation for the calibration curve (Figure A-8) is obtained as follows:  

Conductivity reading (mS/cm) = 0.80205 (aq. DIPA.HCl)0.8665 

 

Figure A-8 Conductivity calibration for aqueous solution of DIPA.HCl salt 

Method of analysis and sample collection 

Samples were collected at particular time intervals and analyzed using the internal 

standard method. The amide 1 yield/ determined by Gas Chromatography (GC) using Agilent 

Technologies 6890N GC system with 7693 autosampler and a HP-5 column. Temperature 

ramp: 150 to 210 ˚C, 25 ˚C/min; run time: 15 min; post run: 280 (5 min); injection volume: 1 

µl; detector temperature: 280 ̊ C, control mode: constant pressure; pressure: 11.02 psi. Response 

factor of amide 1 was determined by calibration using n-hexadecane as the internal standard as 

shown in Figure A-9.  

First, the samples were collected for a fixed time interval and weighed. About 1 mL of 

reaction mixture was taken and weighed separately, to which 1 mL of quench water was added. 

Followed by the addition of 50 mg of internal standard and mixed well. Lastly, 20 µL of the 

organic layer was drawn and diluted in 1 mL of ethyl acetate. 
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Figure A-9 Response factor for amide 1 using internal standard method 

A.4 Amidation in toluene-water solvent system (Intensified batch case) 

For toluene-water system, the main aim is to minimise the mixing limitation 

experienced in the toluene system at high AC concentration by dissolving the solid amine salt 

in the water present in the system during the reaction. The experiment was conducted by 

preparing DIPA in toluene. Water was subsequently added to the DIPA solution, where 

minimum amount of water needed to dissolve all the amine salt was used, based on solubility 

of DIPA.HCl in water (500 g/L). 

The experimental data is as shown in Figure A-10 and the reaction was completed within 

5 min which is likely to be faster than reaction in the toluene system with solid loading of 6 

w/w%. Based on visual observation during the reaction, there was no accumulation of amine 

salt, the reaction mixture appeared cloudy as the organic and aqueous phases seemed well 

dispersed. This indicated that the absence of amine salt during the reaction is able to minimise 

the mixing limitation significantly. With this understanding higher reaction concentrations can 

be considered, primarily aimed at reducing the toluene usage and increasing material efficiency 

while maintaining good mixing. To validate this idea, the amount of toluene was reduced by 

half so the AC and DIPA initial concentrations (in toluene) became 1 M and 2.1 M respectively. 

The experimental data in Figure A-10 shows that full conversion was reached in less than 90 s, 

which did not deviate too much from the calculated reaction time of 72 s based on the rate 

equation (Table A-2). This proved that the toluene-water system is robust and does not 

encounter significant deterioration in mixing performance even with more concentrated 

reaction mixture. Even though the toluene-water system might be capable of operating at even 

higher reagent concentrations, the decision is to maintain the initial AC and DIPA 
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concentrations at 1 M and 2.1 M, as AC had limited solubility in toluene and it might require a 

longer time for complete dissolution of the reagents in toluene. 

Based on the rate equation in Eqs. (A-5), the apparent rate constant, kTW, obtained at 20 

°C for the toluene-water system is 1.3 L2s2/mol2. Compared to the ‘intrinsic’ rate constant of 

2.1 L2s2/mol2, the value of kTW is smaller as the reaction in the toluene-water system is slower 

than in the toluene system (without mixing limitation). One possible reason for this could be 

that DIPA is also soluble in water (100 g/L) so the concentration of DIPA in toluene could be 

diluted by the addition volume of water. Consequently, DIPA dissolved in the aqueous phase 

might experience liquid-liquid mass transfer limitation as it is required to diffuse back into 

organic phase to react with AC which is insoluble in the aqueous layer. 

 

Figure A-10 Rate of amidation reaction in toluene-water solvent system in batch. 

−𝑟𝐴𝐶 = 1.3𝐶𝐴𝐶𝐶𝐷𝐼𝑃𝐴
2  A-6 

A.5 THF drying study  

To assess the drying efficiency of various desiccant, pure THF was washed with 1 M 

NaCl solution, and the organic layer (‘wet’ THF) isolated and analysed via Karl Fischer 

titration. Preliminary results with anhydrous MgSO4 as the drying agent (Figure A-11), shows 

that a water content of 1 w/w% is the limit. Also, the greater the desiccant loading, the more 

solvent is lost as it is being trapped within the desiccant matrix. 
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(a) 

 

(b) 

 

Figure A-11 Drying of 'wet' THF with various loading of MgSO4. x-axis means 0-

after separation from 1 M NaCl; 1- after 1st pass through desiccant; 2- after 2nd pass through 

fresh desiccant. 

Following this, using neutral alumina as the drying agent, as shown in Figure A-12, 

gave disappointing results as well. It was not able to obtain the results as reported in the 

literature (Williams and Lawton, 2010). 

(a) 

 

(b) 

 

Figure A-12  Drying of 'wet' THF with various loading of neutral alumina. x-axis 

means 0-after separation from 1 M NaCl; 1- after 1st pass through desiccant; 2- after 2nd pass 

through fresh desiccant. 

Subsequently it was found that the solvent that was trapped within the alumina plug 

should not be eluted during the process as that would increase the water content of the collected 

solvent significantly. It is reasoned that alumina acts as a desiccant by adsorption of water 

present in the solvent; hence drying the alumina plug by eluting the residual solvent would elute 

the adsorbed water as well. By only collecting the THF that passes through the alumina plug 

without the need to apply additional pressure, it is able to obtain a THF solvent that meets the 

specification for the subsequent lithiation reaction. Unfortunately, the high loading of alumina 

required suggests that the loss of amide product whilst passing it through the alumina plug 

would be too high to make this a viable process. 
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A.6 Sustainability performance  

1. Batch base case 
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Figure A-13 Schematic process diagram for base case 
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2. Intensified batch case – similar to batch base case 
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Figure A-14 Schematic process diagram for base case 
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3. Continuous reaction case 
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Figure A-15 Schematic process diagram for continuous reaction case 
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4.  Continuous process case 
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Figure A-16 Schematic process diagram for continuous process. 
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A.7 Sustainability metrics 

1. Batch base case 

Total material efficiency (kg material/kg product) 20.8 Raw materials kg/year kg material/kg prodt Weightage 

Total material efficiency (kg product/kg material) 0.047985 Toluene 31263 9 45 

    AC 2708 1 4 

    DIPA 2350 1 3 

    TEA 2350 1 3 

    Water 10273 3 15 

    HCl solution 11266 3 16 

    NaCl solution 8158 2 12 

    MgSO4 1257 0 2 

      69626 21 100 

 

Total Energy Efficiency (kJ/kg prodt) 454784 Energy kJ/year kJ/kg product Weightage 

    Agitation  498157264 149103 33 

    Pump duties 2160000 647 0 

    Heating 1019130372 305035 67 

      1519447636 454784 100 

 

Waste index   Waste kg/year kg/kg prodt weightage 

Total waste/total product 19.81787 Aqueous waste 33587 10 51 

    Org waste 31262.71241 9 47 

    solid waste 1362.590047 0 2 

      66212.13586 20 100 

Total OPEX per year (USD) 1234196 Raw materials USD/year USD/kg prodt weightage 

Total OPEX per year (USD/kg prodt) 369.4055 Toluene 319954 96 28 

Weightage   AC 426865 128 37 

Waste treatment 3.785902 DIPA 158321 47 14 

energy and utilities 3.934994 TEA 132967 40 12 

raw materials 92.2791 Water 9 0 0 

    HCl solution 39945 12 4 
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    NaCl solution 13978 4 1 

    MgSO4 46867 14 4 

      1138905 341 100 

            

    Energy and Utilities USD/year USD/kg prodt Weightage 

    Electricity consumption 48017 14 99 

    Chilled water consumption 549 0 1 

      48566 15 100 

            

    Waste treatment USD/year USD/kg prodt Weightage 

    Aqueous waste 23321 7 50 

    Organic waste  12697 4 27 

    Solid waste 958 0 2 

    IBC 9750 3 21 

      46725 14 100 

 

Total CAPEX 253762 Equipment USD 

Reaction eqpt (%) 93 Pumps 19630 

workup eqpt (%) 6 vacuum pump 10740 

CAPEX per kg prodt (USD/kg prodt) 75.95326 Toluene storage tank (for 1 week) 751.9698017 

    DIPA storage tank 217.828306 

    TEA storage tank 217.828306 

    AC storage tank 165.9574856 

    Distillate receiver 1 247.8629509 

    Distillate receiver 2 5.968728004 

    Condenser 2000 

    Reactor jacketed, agitated 4184 

    Evaporator jacketed, agitated 3531 

    Agitator 2700 

    Filter 5000 

    Dryer 3500 

    conveyor 1000 

    Mixing tank 100 

    Total 53992 

    Lang factor for Liquid system (ref: C&R) 4.7 

    Total CAPEX 253762 
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2. Intensified batch case 

Total material efficiency (kg material/kg product) 6.4 Raw materials kg/year kg material/kg prodt Weightage 

Total material efficiency (kg product/kg material) 0.155384 Toluene 1340 0 6 

    AC 2708 1 13 

    DIPA 3290 1 15 

    Water 4242 1 20 

    HCl solution 1127 0 5 

    NaCl solution 8183 2 38 

    MgSO4 611 0 3 

      21502 6 100 

 

Total Energy Efficiency (kJ/kg prodt) 149927 Energy kJ/year kJ/kg product Weightage 

    Agitation  82798807 24782 17 

    Pump duties 5616000 1681 1 

    Heating 412496703 123464 82 

      500911509 149927 100 

 

Waste index   Waste kg/year kg/kg prodt weightage 

Total waste/total product 5.012852 Aqueous waste 16048 5 96 

    solid waste 700.3155911 0 4 

      16748.09965 5 100 

 

Total OPEX per year (USD) 734682 Raw materials USD/year USD/kg prodt weightage 

Total OPEX per year (USD/kg prodt) 219.8966 Toluene 13712 4 2 

Weightage   AC 426865 128 61 

Waste treatment 1.894885 DIPA 221649 66 32 

energy and utilities 2.414546 Water 4 0 0 

raw materials 95.69057 HCl solution 3995 1 1 

    NaCl solution 14021 4 2 

    MgSO4 22775 7 3 

      703021 210 100 

            

    Energy and Utilities USD/year USD/kg prodt Weightage 

    Electricity consumption 17309 5 98 
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    Chilled water consumption 430 0 2 

      17739 5 100 

            

    Waste treatment USD/year USD/kg prodt Weightage 

    Aqueous waste 11029 3 79 

    Solid waste 492 0 4 

    IBC 2400 1 17 

      13921 4 100 

 

Total CAPEX 210474 Equipment USD 

Reaction eqpt (%) 92 Pumps 16610 

workup eqpt (%) 8 vacuum pump 10740 

CAPEX per kg prodt (USD/kg prodt) 62.9968 Toluene storage tank (for 1 week) 513.6105105 

    DIPA storage tank 262.11069 

    AC storage tank 165.9574856 

    Distillate receiver 1 87.87988262 

    Distillate receiver 2 3.528957654 

    Condenser 2000 

    Reactor jacketed, agitated 1697 

    Evaporator jacketed, agitated 1402 

    Agitator 1800 

    Filter 5000 

    Dryer 3500 

    conveyor 1000 

    Total 44782 

    Lang factor for Liquid system (ref: C&R) 4.7 

    Total CAPEX 210474 

3. Continuous reaction case 

Total material efficiency (kg material/kg product) 15.0 Raw materials kg/year kg material/kg prodt Weightage 

Total material efficiency (kg product/kg material) 0.066813 Toluene 1340 0 3 

    AC 2708 1 5 

    DIPA 3290 1 7 

    Water 32747 10 65 
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    HCl solution 1127 0 2 

    NaCl solution 8183 2 16 

    MgSO4 611 0 1 

      50006 15 100 

 

Total Energy Efficiency (kJ/kg prodt) 167069 Energy kJ/year kJ/kg product Weightage 

    Agitation  47405703 14189 8 

    Pump duties 98280000 29416 18 

    Heating 412496703 123464 74 

      558182405 167069 100 

 

Waste index   Waste kg/year kg/kg prodt weightage 

Total waste/total product 13.5444 Aqueous waste 44552 13 98 

    solid waste 700.3155911 0 2 

      45252.28468 14 100 

 

Total OPEX per year (USD) 758695 Raw materials USD/year USD/kg prodt weightage 

Total OPEX per year (USD/kg prodt) 227.0839 Toluene 13712 4 2 

Weightage   AC 426865 128 61 

Waste treatment 4.982391 DIPA 221649 66 32 

energy and utilities 2.352496 Water 28 0 0 

raw materials 92.66511 HCl solution 3995 1 1 

    NaCl solution 14021 4 2 

    MgSO4 22775 7 3 

      703045 210 100 

            

    Energy and Utilities USD/year USD/kg prodt Weightage 

    Electricity consumption 17344 5 97 

    Chilled water consumption 505 0 3 

      17848 5 100 

            

    Waste treatment USD/year USD/kg prodt Weightage 

    Aqueous waste 31159 9 82 

    Solid waste 492 0 1 

    IBC 6150 2 16 

      37801 11 100 
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Total CAPEX 228581 Equipment USD 

Reaction eqpt (%) 89 Pumps 21140 

workup eqpt (%) 7 vacuum pump 10740 

CAPEX per kg prodt (USD/kg prodt) 68.41627 Toluene storage tank (for 1 week) 513.6105105 

    DIPA storage tank 262.11069 

    AC storage tank 165.9574856 

    Distillate receiver 1 77.7300525 

    Distillate receiver 2 3.121374944 

    Condenser 2000 

    Reactor jacketed, agitated 116 

    Evaporator jacketed, agitated 1240 

    Agitator 900 

    Filter 5000 

    Dryer 3500 

    conveyor 1000 

    DIPA mixing tank 136 

    AC mixing tank 90 

    static mixer 1581 

    Decanter 168 

    Total 48634 

    Lang factor for Liquid system (ref: C&R) 4.7 

    Total CAPEX 228581 

 

4. Continuous process case 

Total material efficiency (kg material/kg product) 14.7 Raw materials kg/year kg material/kg prodt Weightage 

Total material efficiency (kg product/kg material) 0.067946 Toluene 1340 0 3 

    AC 2710 1 6 

    DIPA 3290 1 7 

    Water 32747 10 67 

    HCl solution 1127 0 2 
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    NaCl solution 7348 2 15 

    MgSO4 611 0 1 

      49172 15 100 

 

Total Energy Efficiency (kJ/kg prodt) 420338 Energy kJ/year kJ/kg product Weightage 

    Agitation  918651079 274960 65 

    Pump duties 56160000 16809 4 

    Heating 371952000 111328 26 

    Filtration 57600000 17240 4 

      1404363079 420338 100 

 

Waste index   Waste kg/year kg/kg prodt weightage 

Total waste/total product 13.2944 Aqueous waste 43717 13 98 

    solid waste 700 0 2 

      44417.00664 13 100 

 

Total OPEX per year (USD) 844738 Raw materials USD/year USD/kg prodt weightage 

Total OPEX per year (USD/kg prodt) 252.8374 Toluene 13712 4 2 

Weightage   AC 427081 128 61 

Waste treatment 4.407158 DIPA 221649 66 32 

energy and utilities 12.51031 Water 28 0 0 

raw materials 83.08254 HCl solution 3995 1 1 

    NaCl solution 12590 4 2 

    MgSO4 22775 7 3 

      701830 210 100 

            

    Energy and Utilities USD/year USD/kg prodt Weightage 

    Electricity consumption 43636 13 41 

    Chilled water consumption 62044 19 59 

      105679 32 100 

            

    Waste treatment USD/year USD/kg prodt Weightage 

    Aqueous waste 30587 9 82 

    Solid waste 492 0 1 

    IBC 6150 2 17 
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      37229 11 100 

 

Total CAPEX 485638 Equipment USD 

    Pumps 19630 

    vacuum pump 7160 

CAPEX per kg prodt (USD/kg prodt) 145.3556 Toluene storage tank (for 1 week) 539.0838901 

    DIPA storage tank 275.1105118 

    AC storage tank 174.1878951 

    Distillate receiver 1 5490.751888 

    Condenser 1000 

    CSTR 242 

    Wiped film dryer 19000 

    Agitator 900 

    Continuous filter 7250 

    conveyor 500 

    DIPA mixing tank (50 L) 193 

    AC mixing tank (50 L) 193 

    static mixer 1581 

    Automatic screw feeder 9200 

    CE 30000 

    Total 103327 

    Lang factor for Liquid system (ref: C&R) 4.7 

    Total CAPEX 485638 
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Appendix B. Ortho-Lithiation Process – Part 1: Process Understanding 

B.1 In-situ IR monitoring of ortho-lithiation in STR 

Prior to the experiment, the 50 mL round bottom flask (RBF) was purged with nitrogen 

gas for 30 minutes. 0.21 g of amide 1 was dissolved in 20 mL of THF (0.044 M) and stirred at 

500 rpm using the magnetic stirrer. The reactor was closed and cooled down to -60 ˚C which 

was the lowest attainable temperature for the setup.  

The IR spectroscopy was carried out using Bruker Matrix-MR-ex, Mid IR ATR-FTIR 

with the IN350-T Fiber Probe and measures spectra range from 3500 to 720 cm-1 as shown in 

Table B-1. An exposure of 0.5 s with four acquisitions was employed for a single scan in this 

study. IR probe was submerged in the THF solution and the background spectra were taken 

using the initial reaction mixture as a reference.  

Table B-1 Bond frequencies of major species present in the reaction. 

Species Band assignments Frequency (cm-1) 

Amide 1 C=O stretching of the 

amide  

1585 

Intermediate  1633 

Aldehyde 1 Two C=O stretches 1700 and 1620 

THF (solvent)  1633 

The concentration of n-BuLi used was estimated to be 1.38 M. The reaction was started 

by dosing 0.2 mL (0.28 mmol, 0.3 amide 1 equivalents) of n-BuLi, after waiting for about 2 

minutes, the second and third doses of 0.2 mL were added, each dose was followed by a 2 

minutes wait. The fourth dose was 0.12 mL (0.17 mmol, 0.2 amide 1 equivalents) 

Unfortunately, the solvent and intermediate peaks overlap at 1633 cm-1, but they were 

able to resolve the intermediate peak through the use of BTEM curve resolution and multiple 

linear regression. In situ IR was used to investigate the rate of intermediate formation at 1633 

cm-1 and starting material depletion at 1585 cm-1.   

Several studies has been done using in-situ IR (Godany et al., 2011; Newby et al., 2014) 

to monitor batch lithiation reactions but they were not extended to kinetic study. There is no 

existing published information on fundamental kinetic information on ortho-lithiation that is 

needed for the determination of the order of reaction for the reagents to date. Beak and Snieckus 

(1982) explained that the reaction mechanism for ortho-lithiation is very complex and specified 

which is dependent on the effects of many factors (e.g. aggregation, ion association, 

complexation and temperature, etc.) in order to speculate on the reaction mechanism. Initially, 

attempts were made to examine the possibility of tracking the reaction by offline GC and 

samples were taken in the shortest time possible (every 2 min). However, it was found that 
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sampling was a major challenge as it was impossible to maintain the reaction temperature 

during sampling. There was no meaningful result obtained from the GC samples. 

In situ IR spectroscopy was successfully used to track the formation of the desired 

intermediate at -60 ˚C. IR spectroscopy showed some overlapping peaks between THF and 

intermediate, but the overlapped peak could be deconstructed using band-target entropy 

minimization (BTEM) curve resolution algorithm (BTEM) successfully recovered the 

intermediate peak. The depleting starting material peaks and increasing intermediate peaks are 

illustrated in Figure B with their corresponding wavelengths at 1580 and 1630 cm-1. Their 

absolute concentrations were calculated from the relative area of the peaks. 

 

Figure B-1 IR spectrum of Step 1 

In order to gain a better understanding of the relative rates of step 1 at different amide 

1 concentrations, a series of “shot” of n-BuLi were added. The corresponding reaction condition 

is presented in Table B-2. As seen in Figure B-2, the first dose of n-BuLi only caused a slight 

dip in the amide 1 concentration; the reason could be the presence of traces of water in THF 

that consumed the n-BuLi.  This resulted in overall conversion of only 80%. It is observed that 

the slopes of amide 1 and intermediate become gentler with decreasing concentrations of amide 

1; this indicates a decreasing rate of lithiation. Although the general trend of intermediate 

formation mirrors the decreasing amide 1, it was not mass balanced. There was some side 

product formation (obtained from mass balance) as the overall yield, after addition of DMF, 

was only 67%. The formation of side products is only signification in the presence of n-BuLi, 

otherwise, the intermediate appears to be stable in the presence of excess amide 1 for at least 

60 s. Insufficient mixing or ‘hotspot’ during n-BuLi addition might most likely trigger the side 

reactions.  

Table B-2 IR step 1 reaction conditions  

Step 1 reaction parameter Condition 

Temperature (˚C) -60 

Reaction volume (mL) 20 

Intermediate  

Amide 1 
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Initial amide 1 concentration (M) 0.044 

Amount of 1st n-BuLi dose 0.32 moleqv. 

Amount of 2nd n-BuLi dose 0.32 moleqv.  

Amount of 3rd n-BuLi dose 0.32 moleqv. 

Amount of 4th n-BuLi dose 0.1 moleqv.  

 

Figure B-2 In-situ IR monitoring of a series of n-BuLi shot-addition in step 1 at -60 ˚C. 

The initial rates of the second, third and fourth doses were estimated based on initial 

gradients of amide 1 concentrations in Table B-3. Based on the initial rates shown in Figure B-

2, the reaction appears to have an overall reaction order of two with first order with respect to 

amide 1 and n-BuLi.  

Table B-3 Estimation of initial rate 

 

 

 

 

 

Rate equation is assumed as follows: 

𝑑[𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒]

𝑑𝑡
=

𝑑[𝐵𝑢𝑡𝑎𝑛𝑒]

𝑑𝑡
= −

𝑑[𝐴𝑚𝑖𝑑𝑒 1]

𝑑𝑡
= −

𝑑[𝑛𝐵𝑢𝐿𝑖]

𝑑𝑡
= 𝑘[𝐴𝑚𝑖𝑑𝑒1][𝑛𝐵𝑢𝐿𝑖] 

Assumptions 

1. First n-BuLi dose is not considered. 

No. of 

dose 

Temperature 

(˚C) 

Initial amide 

1 (M) 

Initial n-

BuLi (M) 

Initial rate 

(mol/L/s) 

Apparent 

rate 

constant, k 

(L/mols) 

2nd -60 0.0423 0.0127 0.00226 6.5 

3rd -60 0.0289 0.0127 0.00152 

4th -60 0.0143 0.0042 0.000223 

1st n-BuLi dose 

2nd n-BuLi dose 

3rd n-BuLi dose 

4th n-BuLi dose 
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2. All amide 1 is converted to intermediate, no formation of side products. 

3. Kinetic limited, not mixing limited. 

4. Constant reaction temperature. 

Figure B-3 shows the best fitting of the second order reaction with an overall rate 

constant of 6.5 L/mol.s to the IR data at -60 ˚C. Unfortunately, IR data at different temperatures 

were unattainable as the lowest reaction temperature achievable by the reactor setup was -60 

˚C. If higher temperatures were used, risk of formation of significant amount of side products 

would be greater and the measured rate of the desired reaction would be less accurate. Without 

activation energy, the measured rate constant of 6.5 L/mol.s is only applicable to reaction at -

60 ˚C. Unfortunately, the spectral quality and reconstruction of step 2 was not satisfactory 

despite several attempts. The possible reason for this could be the change in compound 

concentration and solvent composition (addition of hexane) that might have caused the critical 

peaks to shift. Step 2 (electrophilic addition) is reported to be faster than step 1 (Newby et al., 

2014). 

 

Figure B-3 Fitting of kinetic model to step 1 experimental data 

Due to experimental constraints, the activation energy of the reaction was unable to be 

obtained from experiment. Assuming the activation energy of the reaction 94.6 kJ/mol  (Sapse 

and Schleyer, 1995), the reaction time needed to obtain 99% amide 1 conversion to product is 

summarized in Table B-4. From the simulated results, the reaction time of step 1 is about 2.6 x 

10-6 s at 20 ˚C and 0.4 M of initial amide 1 concentration. In general, the reaction time of Step 

1 is shown to be extremely fast where it is highly likely to be mixing controlled reaction. 
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Table B-4 Determined Step 1 kinetic parameters from in-situ IR 

Rate law 𝑟 = 𝑘 𝐶𝑎𝐶𝑏 

k, rate constant k at -60 ˚C (L/mol s) 6.5 

Ea, activation energy (kJ/mol) 94.6 (Sapse and Schleyer, 1995) 

k0, frequency factor  at 20 ˚C (s-1) 1.03 x1024 

k, rate constant at 20 ˚C (L/mol s) 1.4 x 107 

Reaction time 99% conversion at 20 ̊ C (s) 2.6 x 10-6  

B.2 Analytical methods, n-BuLi titration, stability of aldehyde 1 

GC analytical method and sample collection  

Samples were collected at particular time intervals and analyzed using the internal 

standard method. The aldehyde 1 yield and reaction conversion were determined by Gas 

Chromatography (GC) using Agilent Technologies 6890N GC system with 7693 autosampler 

and a HP-5 column. Temperature ramp: 150 to 210 ˚C, 25 ˚C/min; run time: 15 min; post run: 

280 (5 min); injection volume: 1 µl; detector temperature: 280 ˚C, control mode: constant 

pressure; pressure: 11.02 psi. Response factors of the aldehyde 1 and amide 1 were determined 

by calibration using n-hexadecane as the internal standard as seen in Figure B-4.  

First, the samples were collected for a fixed time interval and weighed. About 1 mL of 

reaction mixture was taken and weighed separately, to which 1 mL of quench water was added. 

Followed by the addition of 50 mg of internal standard and mixed well. Lastly, 20 µL of the 

organic layer was drawn and diluted in 1 mL of ethyl acetate. 

 

Figure B-4 Response factor for aldehyde 1 and amide 1 using internal standard method 

LC-MS analytical method  

LC-MS analysis was done at ambient temperature via reverse phase liquid 

chromatography with Tandem Mass Spectrometry (Waters Quattro Micro API ™ LCMS/MS) 

with Restek Ultra C8 column (5 μm,  4.6 mm (i.d.),  150 mm (L)) an isocractic elution gradient 

of 50% acetonitrile/water was used. The samples were ionized by ESI and the ionized 
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components were analysed by a quadrupole analyzer. Retention time of amide 1 is 27 min; 

product 1 is 19 min; SP 1 is 15 min; SP 2 is 10 min. 

n-BuLi Titration 

The n-BuLi (~1.6 M solution in hexanes) was titrated once a week (Burchat et al., 1997). 

It is noted that the concentrations of the n-BuLi may vary (1.4-1.6 M). To account for the 

variation in n-BuLi concentration, the corresponding n-BuLi flow rates were adjusted.  

100 mg of n-benzylbenzamide was dissolved in 10 mL of anhydrous THF. The solution 

was cooled to -40 ˚C and n-BuLi was add dropwise suing a 1 mL microsyringe until the 

colourless solution turned blue. The volume of n-BuLi added was recorded. The titration was 

repeated for three times to get an average n-BuLi concentration. 

Warning! BuLi solution are corrosive to human tissue, pyrophoric and explosive; therefore, 

they should be handled with care. 

Stability of aldehyde 1 in organic solvents 

The stability of aldehyde 1 in the final reaction mixture was investigated (Table B-5) 

Considerable loss of aldehyde 1 was observed after 1 and 2 days. This indicates that the 

isolation of aldehyde 1 should be done as soon as possible in a large scale batch production, 

storage of the reaction mixture for more than a day is undesirable.  

Table B-5 Stability of aldehyde 1 in reaction mixture at ambient temperature 

Storage time Aldehyde 1 yield 

(%) 

Overall conversion 

(%) 

Impurity (%) 

5 min 96 99 3 

30 min 96 99 3 

1 day 90 99 9 

2 days 87 99 12 

B.3 Differential scanning calorimetry (DSC): Amide 1 and Aldehyde 1 

 

Figure B-5 DSC of Aldehyde 1 (20 ˚C to 300 ˚C) 
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Figure B-6 Amide 1 (20 °C to 300 °C) 

B.4 Stirred tank reactor (STR): Experiment procedure and results 

For the batch stirred tank reactor (STR),  a 50 mL Multi-max™ reactor (with standard 

overhead stirrer, 2 blade propeller impeller with diameter of 2.5 cm) was employed to conduct 

the ortho-lithiation reaction over a range of temperatures between  -75  and 20 ̊ C and impeller 

agitation speed between 50 to 400 rpm. A total of 2 g (8 mmol) of amide 1 was added into 

the reactor followed by 19 g of solvent, THF (anhydrous, 99.8%).  The n-BuLi in hexanes 

(1.6 M, 1.2 mole equivalent) was added dropwise (0.4 mmol/min or 0.3 mL/min) via syringe 

pump (NE 1000) to the solution of starting material in THF in the reactor as seen in Figure 

B-. The reactor was submerged in an isopropyl alcohol (IPA) bath with constant addition of 

dry ice to maintain reactor internal temperature at about -70 ˚C monitored using a digital 

temperature sensor in contact with the reaction mixture. After which the reaction mixture was 

allowed to warm to about -50 ̊ C when DMF (0.8 g, 11 mmol, 1.3 mole equivalent) was added 

at a rate of 10 mmol/min (0.8 mL/min) via syringe pump (NE 300). During the reaction, an 

inert reaction environment was maintained under nitrogen blanket.  
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(a)  (b)  

Figure B-7 (a) Lab-scale stirred tank reactor setup; (b) Closer view of STR 

Temperature was one of the most important process parameters for ortho-lithiation 

reaction in batch process. Attempts were made to perform the reaction at higher temperatures 

but side products were formed in large extent as shown in Table B-6, the drastic drop in yield. 

As expected, -70 ˚C was necessary for reaction in stirred tank reactor. In large scale batch 

production, the addition rate of n-BuLi should be adjusted to maintain the reaction temperature 

below -70 ˚C.  

Table B-6 Ortho-lithiation at different temperatures at constant agitation speed of 400 rpm in 

batch process. 

Temperature (˚C) Aldehyde 1 

yield (%) 

Overall conversion (%) Impurity* (%) 

20 3 93 90 

0 26 99 73 

-20 36 97 61 

-70 96 99 3 

(*) % impurity = % overall conversion - % aldehyde 1 yield 

Mixing is also very important for ortho-lithiation which is a fast reaction. As seen in 

Table B-7, the results were very dependent on mixing which was measured by power input, 

determined by agitation speed. Poor mixing not only lead to increase in impurities but also 

lower overall conversion. The low agitation speed was expected to lead to a high n-BuLi 

localized concentration due to ineffective mixing which might encourage decomposition and/or 

attack on THF (Stanetty and Mihovilovic, 1997). The loss of n-BuLi was evident from the low 

consumption of amide 1 as seen in Table B-7 at agitation speeds of 50 and 100 rpm. For the 

Nitrogen 
gas 

Thermometer 

Silicon oil 
bath 

Reagent 
injection 

Syringe pump 

(n-BuLi dosing) 

Lab-scale 

stirred tank 

reactor 
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Multi-max™ reactor used, the maximum agitation speed achievable was 400 rpm. This 

corresponds to a power dissipation of 0.053 W/kg which was set as the minimum power 

dissipation for batch large scale production. 

An example of STR power dissipation for 400 rpm (Paul et al., 2004) 

𝜀 =
𝑁𝑝𝑁3𝐷𝑖

5

𝑉
 

Where 𝑁𝑝 is the power number, D the impeller diameter (m), V the volume of liquid in 

the vessel (l),  

N=400 rpm 

D=0.025 m 

V=0.028 L 

𝜌 = 920.6 𝑔/𝐿 

Viscosity = 0.00186 Pa.s 

Reaction mixture mass = 0.024 kg 

Np=0.5 (Paul et al., 2004) 

𝜀 =
0.5×(

400

60
)3×0.0255

0.024

920.6

 =0.053 W/kg 

Table B-7 Ortho-lithiation at 0 ˚C under different agitation speeds where n-BuLi and DMF 

addition rates were kept constant at 0.4 and 2 mmol/min respectively. 

Agitation (rpm) Aldehyde 1 yield 

(%) 

Overall conversion (%) Power (W/kg) 

400 26 99 0.053 

200 25 99 0.007 

150 22 98 0.003 

100 7 42 0.0008 

50 7 36 0.0001 

To study the effect of mixing on step 2, two different DMF addition rates were used 

while keeping the agitation speed of the reactor constant at 400 rpm (Table B-8). The high 

charging rate of DMF might cause inhomogeneous mixing and hotspot formation that could 

lead to decomposition of the intermediates, where some of the lithiated intermediates might 

have been converted back to amide 1. This explained the lower overall conversion of amide 1 

at fast DMF dosing rate.  

Table B-8 Addition mode of DMF at -50 ˚C (Step 1 performed at -70 ˚C) 
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DMF addition rate Aldehyde 1 

yield (%) 

Overall conversion 

(%) 

Impurity* 

(%) 

Agitation 

speed (rpm) 

One shot (~10 mmol/s) 30 63 33 400 

Usual dosing rate (2 

mmol/min) 

96 99 3 400 

(*) % impurity = % overall conversion - % aldehyde 1 yield 
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Appendix C. Ortho-Lithiation Process – Part 2: Assessment of Sustainability Benefits for Reaction 

C.1 Stirred tank reactor 

Product produced (kg product/year) 3000 

Number of batch per year 1818 

Volume of reactor (L) 31.79 

Throughput (kgprodt/h) 0.38 

    

Product yield (%) 96 

Max inventory of processing at any point of time (L) 22 

Max inventory of processing at any point of time (L/kgprodt/h) 59 

    

Volume efficiency   

Volume of reactor per kg product (L/kgprodt/h) 85 

 

Total material efficiency (kg material/kg product) 12 Raw materials kg/year kg material/kg prodt Weightage 

    THF 24082 8 69 

    DMF 1109 0 3 

    n-BuLi (1.6M) 6679 2 19 

    4-chloro-N,N-diisopropylbenzamide 2798 1 8 

      34668 12   

 

Total Energy Efficiency (kJ/kg prodt) 3956 Energy kJ/year kJ/kg product Weightage 

    Compressor duty 11329586 3777 95 

    Agitation  15048 5 0 

    Pump duties 522677 174 4 

      11867311 3956   

Total OPEX per year (USD) 1369115 Raw materials USD/year USD/kg prodt weightage 

Total OPEX per year (USD/kg prodt) 456 THF 105435 35 9 
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Weightage   DMF 7255 2 1 

raw materials 88 n-BuLi (1.6M) 153060 51 13 

energy and utilities 12 4-chloro-N,N-diisopropylbenzamide 940188 313 78 

      1205938 402 100 

            

    Energy and Utilities USD/year USD/kg prodt Weightage 

    Electricity consumption 162211 54 99 

    Chilled water consumption 209 0 0 

    Argon 757 0 0 

      163177 54 100 

 

Total 

CAPEX 

14343

7 Equipment 

Volume 

(L) 

Quan

tity USD Ref 

  

47.812

178 

THF sanitary centrifugal 

pump   1 3300 

https://www.coleparmer.com/i/sanitary-3a-centrifugal-pump-62-gpm-0-5hp-316-304ss-3600rpm-

208-230-460-vac/7672000 

    n-Buli piston pump   1 4000 

https://www.coleparmer.com/i/pw2003e-variable-speed-liquid-piston-pump-for-hazardous-duty-

115-v-class-1-div-2/7930610 

    DMF piston pump   1 2560 

https://www.coleparmer.com/i/cole-parmer-piston-pump-system-w-drive-0-to-192-ml-

min/0710884 

    

Product  sanitary centrifugal 

pump   1 3300 

https://www.coleparmer.com/i/sanitary-3a-centrifugal-pump-62-gpm-0-5hp-316-304ss-3600rpm-

208-230-460-vac/7672000 

    

Chilled water centrifugal 

pump   1 194 

https://www.coleparmer.com/i/md-6-220v-mag-drive-pp-centrifugal-pump-w-enclosed-motor-2-

3-gpm-4-5-ft-220v/7201005 

    R23 (kg)   29 441 https://www.alibaba.com/product-detail/Eco-friendly-R23-Refrigerant-Price_60481182470.html 

    R32 (kg)   34 169 https://www.alibaba.com/product-detail/r32-refrigerant-price-R32_60484502044.html 

    THF storage tank 1493 1 1247 

https://www.alibaba.com/product-detail/1000-liter-wheeled-chemical-stainless-

steel_60457310584.html 

    DMF storage tank 65 1 222 

https://www.alibaba.com/product-detail/1000-liter-wheeled-chemical-stainless-

steel_60457310584.html 

    Product storage tank 2149 1 1523 

https://www.alibaba.com/product-detail/1000-liter-wheeled-chemical-stainless-

steel_60457310584.html 

    Cryogenic reactor vessel 32 1 7341 

https://www.alibaba.com/product-detail/ss304-high-quality-stainless-steel-

reactor_60560574880.html?s=p 
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    Agitator   1 900 

https://wholesaler.alibaba.com/product-detail/The-strongest-design-SS304-Corrosion-

resistant_60510700657.html 

    Compressors   2 522 

https://wholesaler.alibaba.com/product-detail/The-Copeland-Scroll-K5-Compressor-

for_60552472035.html?spm=a2700.7724838.0.0.TrYNko 

    Condenser (SS304 coils)   1 4800 

https://www.alibaba.com/product-detail/High-Quality-SS304-Condenser-Coils-

for_60508687907.html?s=p 

    Total     

3051

8   

    

Lang factor for Liquid 

system (ref: C&R)     4.7   

    Total CAPEX     

1434

37   

 

C.2 T-reactor 

Product produced (kg product/year) 3040 

Operation hours per year 8000 

Volume of reactor (L) 18 

Throughput (kgprodt/h) 0.38 
  

Product yield (%) 98.6 

Max inventory of processing at any point of time (L) 0.002761 

Max inventory of processing at any point of time (L/kgprodt/h) 0.007266 
  

Volume efficiency 
 

Volume of reactor per kg product (L/kgprodt/h) 47 

 

Total material efficiency (kg material/kg product) 11 Raw materials kg/year kg material/kg prodt Weightage 

    THF 23573 8 69 

    DMF 1684 1 5 

    n-BuLi (1.6M) 5875 2 17 

    4-chloro-N,N-diisopropylbenzamide 2798 1 8 
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      33930 11   

 

Total Energy Efficiency (kJ/kg prodt) 1321 Energy kJ/year kJ/kg product Weightage 

    Cooling  3870720 1273 96 

    Agitation  83945 28 2 

    Pump duties 61308 20 2 

      4015974 1321   

 

Total OPEX per year (USD) 1234616 Raw materials USD/year USD/kg prodt weightage 

Total OPEX per year (USD/kg prodt) 406 THF 103207 34 9 

Weightage   DMF 11017 4 1 

raw materials 95 n-BuLi (1.6M) 134644 44 11 

energy and utilities 5 4-chloro-N,N-diisopropylbenzamide 927997 305 79 

      1176865 387 100 

            

    Energy and Utilities USD/year USD/kg prodt Weightage 

    Electricity consumption 57016 19 99 

    Argon 734 0 1 

      57750 19 100 

 

Total CAPEX 93713 Equipment 

Volume 

(L) 

Quan

tity 

US

D   Ref 

CAPEX 

(USD/kg prodt) 

30.82

463 

THF sanitary centrifugal 

pump   1 

33

00 

330

0 

https://www.coleparmer.com/i/sanitary-3a-centrifugal-pump-62-gpm-0-5hp-316-

304ss-3600rpm-208-230-460-vac/7672000 

    

Amide 1 in THF piston 

pump   1 

25

60 

256

0 

https://www.coleparmer.com/i/cole-parmer-piston-pump-system-w-drive-0-to-192-

ml-min/0710884 

    n-Buli piston pump   1 

26

10 

261

0 

https://www.coleparmer.com/i/cole-parmer-piston-pump-system-w-drive-0-to-30-ml-

min/0710880 

    DMF piston pump   1 

26

10 

261

0 

https://www.coleparmer.com/i/cole-parmer-piston-pump-system-w-drive-0-to-30-ml-

min/0710880 

    

Silicon HTF centrifugal 

pump   1 

19

4 194 

https://www.coleparmer.com/i/md-6-220v-mag-drive-pp-centrifugal-pump-w-

enclosed-motor-2-3-gpm-4-5-ft-220v/7201005 

https://www.coleparmer.com/i/md-6-220v-mag-drive-pp-centrifugal-pump-w-enclosed-motor-2-3-gpm-4-5-ft-220v/7201005
https://www.coleparmer.com/i/md-6-220v-mag-drive-pp-centrifugal-pump-w-enclosed-motor-2-3-gpm-4-5-ft-220v/7201005
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    Mixing tank (8h supply) 41 2 

17

3 346 

https://www.alibaba.com/product-detail/Custom-made-chemical-storage-tank-

on_60527019551.html?s=p 

    Agitator   2 

90

0 

180

0 

https://wholesaler.alibaba.com/product-detail/The-strongest-design-SS304-Corrosion-

resistant_60510700657.html 

    

Product storage tank (1 

weeks) 377 2 

58

5 

117

0 

https://www.alibaba.com/product-detail/Custom-made-chemical-storage-tank-

on_60527019551.html?s=p 

    THF storage tank (1 weeks) 1024 1 

69

2 692 

https://www.alibaba.com/product-detail/Custom-made-chemical-storage-tank-

on_60527019551.html?s=p 

    DMF storage tank (2 weeks) 69 1 

15

6 156 

https://www.alibaba.com/product-detail/Custom-made-chemical-storage-tank-

on_60527019551.html?s=p 

    1/8" PTFE tube 50m 1 

12

1 121 http://www.sigmaaldrich.com/catalog/product/supelco/58699?lang=en&region=SG 

    P-713 Tee joint   2 

10

0 200 

https://us.vwr.com/store/product/9475346/upchurch-scientific-tees-multi-port-

connectors-idex-health-science 

    P300x Ferrule   8 20 156 http://www.cmscientific.com/proddetail.php?prod=P-300X 

    P304 Nut   6 50 302 http://www.cmscientific.com/proddetail.php?prod=P-304 

    P658 Luer lock adaptor   3 20 59 http://www.cmscientific.com/products.php?cat=Luer+Adapters 

    P785 backpressure regulator   1 

17

6 176 http://www.cmscientific.com/proddetail.php?prod=P-785 

    

Silicon HTF circulated bath 

(18L)   1 

26

29 

262

9 

https://www.thomassci.com/Equipment/Circulators/_/Stirred-Thermostatic-Baths-

and-Circulators?q=* 

    Silicone oil (50cSt, 18L)   1 

85

9 859 http://www.sigmaaldrich.com/catalog/product/aldrich/378356?lang=en&region=SG 

    Total       

199

39   

  

Lang factor for Liquid 

system (ref: C&R)    4.7  

  Total CAPEX    

937

13  

C.3 Spinning disc reactor 

Product produced (kg product/year) 2281 

Operation hours per year 8000 

Volume of reactor (L) 17.25 

Throughput (kgprodt/h) 0.29 

https://www.thomassci.com/Equipment/Circulators/_/Stirred-Thermostatic-Baths-and-Circulators?q=*
https://www.thomassci.com/Equipment/Circulators/_/Stirred-Thermostatic-Baths-and-Circulators?q=*
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Product yield (%) 87.0 

Max inventory of processing at any point of time (L) 0.016 

Max inventory of processing at any point of time (L/kgprodt/h) 0.055 
  

Volume efficiency 
 

Volume of reactor per kg product (L/kgprodt/h) 61 

 

Total material efficiency (kg material/kg product) 15 Raw materials kg/year kg material/kg prodt Weightage 

    THF 23588 10 69 

    DMF 1684 1 5 

    n-BuLi (1.6M) 5875 3 17 

    4-chloro-N,N-diisopropylbenzamide 2798 1 8 

      33945 15   

 

Total Energy Efficiency (kJ/kg prodt) 2566 Energy kJ/year kJ/kg product Weightage 

    Cooling  3870720 1697 66 

    Agitation  83926 37 1 

    Pump duties 8553 4 0 

    SDR  1888697 828 32 

      5851896 2566   

 

Total OPEX per year (USD) 1253650 Raw materials USD/year USD/kg prodt weightage 

Total OPEX per year (USD/kg prodt) 550 THF 103273 45 9 

Weightage   DMF 11017 5 1 

raw materials 93 n-BuLi (1.6M) 134644 59 12 

energy and utilities 7 4-chloro-N,N-diisopropylbenzamide 920898 404 79 

      1169832 513 100 

            

    Energy and Utilities USD/year USD/kg prodt Weightage 
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    Electricity consumption 83084 36 99 

    Argon 734 0 1 

      83818 37 100 

 

Total 

CAPEX 

1075

20 Equipment 

Volume 

(L) 

Quant

ity 

US

D   Ref 

    

THF sanitary centrifugal 

pump   1 

33

00 3300 

https://www.coleparmer.com/i/sanitary-3a-centrifugal-pump-62-gpm-0-5hp-316-304ss-

3600rpm-208-230-460-vac/7672000 

    Amide 1 in THF piston pump   1 

25

60 2560 

https://www.coleparmer.com/i/cole-parmer-piston-pump-system-w-drive-0-to-192-ml-

min/0710884 

    n-Buli piston pump   1 

26

10 2610 

https://www.coleparmer.com/i/cole-parmer-piston-pump-system-w-drive-0-to-30-ml-

min/0710880 

    DMF piston pump   1 

26

10 2610 

https://www.coleparmer.com/i/cole-parmer-piston-pump-system-w-drive-0-to-30-ml-

min/0710880 

    Silicon HTF centrifugal pump   1 

19

4 194 

https://www.coleparmer.com/i/md-6-220v-mag-drive-pp-centrifugal-pump-w-enclosed-

motor-2-3-gpm-4-5-ft-220v/7201005 

    Mixing tank (8h supply) 41 2 

17

3 346 

https://www.alibaba.com/product-detail/Custom-made-chemical-storage-tank-

on_60527019551.html?s=p 

    Agitator   2 

90

0 1800 

https://wholesaler.alibaba.com/product-detail/The-strongest-design-SS304-Corrosion-

resistant_60510700657.html 

    

Product storage tank (1 

weeks) 377 2 

58

5 1170 

https://www.alibaba.com/product-detail/Custom-made-chemical-storage-tank-

on_60527019551.html?s=p 

    THF storage tank (1 weeks) 1024 1 

69

2 692 

https://www.alibaba.com/product-detail/Custom-made-chemical-storage-tank-

on_60527019551.html?s=p 

    DMF storage tank (1 weeks) 69 1 

15

6 156 

https://www.alibaba.com/product-detail/Custom-made-chemical-storage-tank-

on_60527019551.html?s=p 

    1/8" PTFE tube 50m 1 

12

1 121 http://www.sigmaaldrich.com/catalog/product/supelco/58699?lang=en&region=SG 

    Silicone oil TCU (6L) 6L 1 

50

0 500 

https://www.alibaba.com/product-detail/Advanced-instruments-thermostatic-equipment-

silicone-oil_60555478623.html  

    316 stainless steel (m3) 10kg 1 

15

02 1502 http://sg.rs-online.com/web/p/stainless-steel-rods-bars/7703585/ 

    Electric motor   1 

11

11 1111 

https://www.alibaba.com/product-detail/YE2-three-phase-electric-

motor_60617245609.html?s=p 

    Labour cost + frame   1 

39

19 3919 Assumption 

https://www.coleparmer.com/i/md-6-220v-mag-drive-pp-centrifugal-pump-w-enclosed-motor-2-3-gpm-4-5-ft-220v/7201005
https://www.coleparmer.com/i/md-6-220v-mag-drive-pp-centrifugal-pump-w-enclosed-motor-2-3-gpm-4-5-ft-220v/7201005
https://www.alibaba.com/product-detail/Advanced-instruments-thermostatic-equipment-silicone-oil_60555478623.html
https://www.alibaba.com/product-detail/Advanced-instruments-thermostatic-equipment-silicone-oil_60555478623.html
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    Silicone oil (50cSt, 6L)   1 

28

6 286 http://www.sigmaaldrich.com/catalog/product/aldrich/378356?lang=en&region=SG 

    Total       

2287

7   

  

Lang factor for Liquid system 

(ref: C&R)    4.7  

  Total CAPEX    

1075

20  
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Appendix D. Ortho-Lithiation to Reduction Process – Part 3: Assessment of 

Sustainability Benefits for Whole Process Featuring Consecutive Reaction from 

Ortho-Lithiation to Reduction 

D.1  IR and GC calibration 

The IR spectra show that  the C=0 bond stretching in the aldehyde 1 occurred at a 

frequency of between 1700 and 1620 cm-1 and  gave a distinct peak as shown in Figure D-1. 

 

Figure D-1 IR spectra showing a gradual decrease in C=O peak area during reduction 

reaction 

Calibrations based on the area of the peak corresponding to different starting aldehyde 

concentrations in the THF was obtained in Figure D-2. 

 

Figure D-2 IR calibration of aldehyde 1 in THF 

The GC response factors of aldehyde 1 and alcohol 1 were determined by the following 

calibration graphs (Figure D-3 and Figure D-4). 
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Figure D-3 Aldehyde 1 GC calibration 

 

Figure D-4 Alcohol 1 GC calibration 

D.2 Ortho-lithiation workup results and discussion 

The mass and energy balances for the ortho-lithiation base case batch process are 

evaluated. The separation processes and purification steps has been fixed by Faigl et al. (2010) 

which is based on laboratory scale experiments. Additional experiments were performed to 

identify the issues that may arise and roughly estimate the amount of product loss at each step 

at large scale production. Figure D-5 shows the flow chart for the workup steps executed at 

laboratory scale. To ensure a safe and scalable base case, necessary modifications were made 

to the procedure reported by Faigl et al. (2010).  
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Figure D-5 Literature (Faigl et al., 2010) workup procedure analysis 

Step 1, the saturated ammonium chloride solution (2.24 mL/mmol amide 1) was 

replaced by water (1.75 mL/mmol amide 1) which was based on the solubility of lithium 

dimethylamine in water. Using lesser volume of water allowed the aqueous phase to be more 

concentrated in lithium dimethylamine which reduced the solubility of organic compounds in 

the aqueous layer. This might have minimized the amount of aldehyde 1 lost in the aqueous 

wash. It was assumed that this loss would exist regardless of the scale. 

According to Faigl et al. (2010), the ethyl acetate was used to recover product from the 

first aqueous wash layer. However, it is found that the overall extraction efficiency of ethyl 

acetate (Step 2) was very low (24% of aldehyde 1 recovered) as the extraction efficiency of the 

extractions diminished after the first extraction.  The low extraction efficiency is believed to be 

due to the low affinity of the product in ethyl acetate compared to water, so similar observation 

was likely to prevail at scale. The cost of ethyl acetate is calculated as 1/10 of a catalogue 

price(Laird, 2005), which is assumed as $3.74/L. Table D-1 shows that just the price of ethyl 

acetate to recover 1 kg of product costs $1337 which excludes energy cost for evaporation and 

waste treatment cost. Compared to the operating cost of batch reaction, the ethyl acetate 
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extraction operation was uneconomical as the amount recovered aldehyde 1 did not justify for 

the extraction. The decision was therefore to discard the aqueous phase and avoid the ethyl 

acetate extraction step to lower the operating cost. 

Table D-1 Cost of ethyl acetate used in extraction of aldehyde 1 

Volume of EA used in 3 extractions 8.1 mL 

Mass of product recovered in extraction 0.023 g 

Volume of EA/kg aldehyde 1 recovered 358 L 

Cost of EA/kg product recovered (USD) $1337 

The organic phase obtained after first water wash is washed again with water (Step 3) 

to ensure the removal of all water soluble by/side products and excess DMF. Brine instead of 

water is normally used (Faigl et al., 2010); however in this study, brine is avoided as it tends to 

corrode the stainless steel reactor after prolonged exposure.  

The organic phase was dried with anhydrous magnesium sulfate, followed by filtration 

(Step 4). This step is necessary to remove residual water in the organic layer which was, 

otherwise, challenging to evaporate using the rotor-evaporator. The experimental result showed 

that the 10% of aldehyde 1 was lost, which is expected to be minimized if it is performed at 

large scale where the equipment would be much more efficient than that in the lab-scale. No 

organics is assumed to remain on the residue as vacuum filtration is designed to be used. 

D.3 Reaction mechanism for reduction reaction using aqueous base NaBH4 

The reduction of aldehyde 1 with sodium borohydride takes place in a heterogeneous 

aqueous base-organic solvent mixture, where aqueous phase contains dissolved sodium 

borohydride and organic phase contains aldehyde 1 dissolved in THF. The literature does not 

provide much detail about the mechanism of such biphasic borohydride reduction reaction. 

However, Yadav and co-workers presented a reaction mechanism for liquid-liquid Phase 

Transfer Catalysis (PTC) catalyzed borohydride reduction of carbonyl compounds (Yadav et 

al., 2003; Yadav and Lande, 2006) where the rates of biphasic borohydride reductions can be 

intensified using PTC. The use of PTC is also applicable to the reaction system to enhance rate 

of reduction and could be investigated further in future work. Based on the understanding of 

Liquid-Liquid PTC, the reaction mechanism of biphasic reduction could be inferred as follows 

in Figure D-6: 
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Bulk organic phase (all fast steps) 

𝑅𝐶𝑂(𝑜𝑟𝑔) + 𝐵𝐻4
−(𝑜𝑟𝑔)

𝑘1
→ 𝐵𝐻3(𝑅𝐶𝐻𝑂)−(𝑜𝑟𝑔)     (3) 

𝑅𝐶𝑂(𝑜𝑟𝑔) + 𝐵𝐻3
−(𝑜𝑟𝑔)

𝑘2
→ 𝐵𝐻2(𝑅𝐶𝐻𝑂)2

−(𝑜𝑟𝑔)     (4) 

𝑅𝐶𝑂(𝑜𝑟𝑔) + 𝐵𝐻2
−(𝑜𝑟𝑔)

𝑘3
→ 𝐵𝐻(𝑅𝐶𝐻𝑂)3

−(𝑜𝑟𝑔)     (5) 

𝑅𝐶𝑂(𝑜𝑟𝑔) + 𝐵𝐻−(𝑜𝑟𝑔)
𝑘4
→ 𝐵(𝑅𝐶𝐻𝑂)4

−(𝑜𝑟𝑔)     (6) 

Liquid-liquid (Aqueous base – Organic) interface  

𝐵𝐻4
−(𝑎𝑞) →  𝐵𝐻4

−(𝑜𝑟𝑔) (Rate determining step)    (2) 

𝐵(𝑅𝐶𝐻𝑂)4
− + 𝐻2𝑂 →   𝐵(𝑂𝐻)(𝑅𝐶𝐻𝑂)3

− + 𝑅(𝐶𝐻)𝑂𝐻(𝑜𝑟𝑔)  (7)  

𝐵(𝑂𝐻)(𝑅𝐶𝐻𝑂)3
− + 𝐻2𝑂 →   𝐵(𝑂𝐻)(𝑅𝐶𝐻𝑂)2

− + 𝑅(𝐶𝐻)𝑂𝐻(𝑜𝑟𝑔)  (8) 

𝐵(𝑂𝐻)(𝑅𝐶𝐻𝑂)2
− + 𝐻2𝑂 →   𝐵(𝑂𝐻)(𝑅𝐶𝐻𝑂)− + 𝑅(𝐶𝐻)𝑂𝐻(𝑜𝑟𝑔)  (9) 

𝐵(𝑂𝐻)(𝑅𝐶𝐻𝑂)− + 𝐻2𝑂 →   𝐻2𝐵𝑂3
−(𝑎𝑞) + 𝑅(𝐶𝐻)𝑂𝐻(𝑜𝑟𝑔)  (10) 

Bulk aqueous phase (all fast steps) 

𝑁𝑎𝐵𝐻4(𝑠) → 𝑁𝑎+(𝑎𝑞) + 𝐵𝐻4
−(𝑎𝑞)      (1) 

𝐻2𝐵𝑂3
−(𝑎𝑞) + 𝐻2𝑂 → 𝐻3𝐵𝑂3(𝑎𝑞) + 𝑂𝐻−(𝑎𝑞)    (11) 

𝑂𝐻−(𝑎𝑞) + 𝑁𝑎+(𝑎𝑞) → 𝑁𝑎𝑂𝐻(𝑎𝑞)     (12) 

 

If this was a Liquid-Liquid PTC reduction reaction (Zeynizadeh and Behyar, 2005; 

Yadav and Lande, 2006), step 3 would usually be the rate determining step as the presence of 

PTC would enhance the mass transfer of  borohydride (𝐵𝐻4
−) from aqueous to organic phase 

greatly, ensuring the reaction is kinetically controlled by step 3. However, in the absence of 

PTC in this biphasic reduction, step 2 is proposed to be the rate determining step and the rate 

of mass transfer of the borohydride species from aqueous to organic phase controls the overall 

rate of reaction. The subsequent reactions (steps 3-6) with borohydride complex in the organic 

phase are considered to be relatively faster than step 2. The fully complexed borohydride 

complex formed in step 6 is transferred from organic to aqueous phase across the interface 

where the complex is broken when in contact with water in aqueous phase. Alcohol 1 is released 

from the complex and transferred back to organic phase. Although the volume fraction of the 

Figure D-6 Reaction mechanism for liquid-liquid borohydride reduction of aldehyde 1 
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aqueous phase is quite small (1.5 v/v%), steps 7-10 are believed to be very fast and might get 

slower as the reaction proceeds with more water being consumed. The boric acid formed in step 

11 is likely to be neutralized successively with NaOH in step 12. 

D.4 Derivation of combined batch base case 

Development of ortho-lithiation whole process 

 Based on the above process design, the performance metric of the whole process was 

evaluated in terms of volume, mass and energy efficiencies and estimated the expected 

operating (OPEX) and capital cost (CAPEX) respectively (Table D-2). Total production time 

of one batch was 9.6 h, based on 0.5 occupancy of the longest operation (drying, F-01), with 

8000 h of operation per year. The performance metrics for ‘only reaction’ is obtained in Chapter 

5 and it is shown alongside the whole process to demonstrate the difference due to separation 

process.  

Maximum processing inventory at any point of time for whole process includes the 

stirred tank reactor volume (R-01), evaporator (R-02), filter dryer (F-01) and distillate 

collectors (T-07 and T-08). 

Table D-2 Performance metric of ortho-lithiation base case at design scale of about 3 tons per 

year aldehyde 1 

Performance metrics Ortho-lithiation whole 

process 

Total material efficiency (kg material/kg aldehyde 1) 37 

Max inventory of processing at any point of time (L/kgprodt/h) 456 

E-factor (kg waste/kg aldehyde 1) 35 

Material cost (USD/kg aldehyde 1) 634 

Energy and utilities cost (USD/kg aldehyde 1) 111 

Waste treatment cost (USD/kg aldehyde 1) 27 

Total energy efficiency (kJ/kg aldehyde 1) 13,745 

CAPEX (USD/kg aldehyde 1) 85 

OPEX (USD/kg aldehyde 1) 771 
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Figure D-7 Schematic process diagram for ortho-lithiation safe and scalable base case process. 
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Table D-3 shows a breakdown in terms of operation time and energy consumption for 

major equipment. As expected, the most energy consuming operation was R-02, evaporator. 

The filter dryer was most time consuming (4.6 h) and required energy intensive condition such 

as  vacuum (100 mbar) and constant heating (jacket temperature at 50 ˚C). As expected, the 

major bottlenecks of the whole process lie in the separation process and these bottlenecks 

specifically include the following: 

 The significant amount of aldehyde 1 loss in purification step decreased the overall 

process efficiency. 

 The most time consuming operation was filter drying. 

 The most energy intensive operation was evaporation of organic solvents.  

Table D-3 Breakdown of operation time and energy consumption for ortho-lithiation whole 

process with a production target of 3 tons aldehyde 1 per year. 

Equipment Operation Operation 

time (h) 

Total 

volume (L) 

Operation 

time fraction 

Energy 

fraction 

Reactor, 

R-01 

Reaction 2.5 93 0.3 0.38 

Vessel, 

R-02 

1) First water wash 

Mixing 

Phase separation 

Discharge first aqueous 

layer 

0.2 133 0.3 0.51 

2) Second water wash 

Mixing 

Phase separation 

Discharge second 

aqueous layer 

0.2 

3) Evaporation of organic 

solvents and addition of 

water 

3.4 

Filter 

dryer, F-

01 

4) First filtration 

Discharge filtrate (water) 

0.1 25 0.4 0.11 

5) Heptane wash 

Mixing 

0.1 

6) Second filtration 

Discharge filtrate 

(heptane) 

0.1 

7) Drying of residue 4.6 

 

Development of reduction whole process 

Since major change in the solvent selection was made to the literature case, 

modifications had to be made to the separation steps. The objective of the laboratory scale 

workup experiment is to establish a safe and scalable separation process and identify major 

issues that can be encountered at scale. 
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The proposed batch separation process for reduction is summarised in Table D-4 where 

the alcohol 1 yields were obtained from laboratory scale experiments. In the first water wash, 

the phase separation between aqueous and organic (THF) is easy because of the high ionic 

strength of the salts and NaOH in aqueous phase. However, after the removal of the salts and 

NaOH, the second water-THF phase separation would be difficult as they have high solubility 

in each other and might result in high yield loss.  Therefore, NaCl solution instead of water was 

used in the second wash to provide sufficient ionic strength in the aqueous phase to minimise 

loss of alcohol 1 in aqueous phase. Upon evaporation of THF in the rotor-evaporator, solid 

alcohol 1 was observed to stick strongly to the sides of the evaporating flask. Therefore, 

addition of water is necessary at scale to suspend alcohol 1 as precipitates after THF is fully 

evaporated.  

Table D-4 Summary of reduction safe and scalable base case operations 

Steps Objectives Alcohol 1 yield with 

respect to aldehyde 1 

(%) 

Reduction reaction  Reduction reaction >99 

1) Water wash Quench the excess sodium 

borohydride. 

Remove salts, boric acid and sodium 

hydroxide in the aqueous phase. 

96.2 

2) 1 M NaCl wash Remove any remaining by-products. 94.5 

3) Evaporation of organic 

solvents and addition of 

water 

Suspend product as precipitate in 

water phase for easy transfer out of 

the reactor. 

94.5 

4) Filtration Remove water and obtain solid 

product as residue. 

94.5 

5) Drying Dry product to a moisture content of 

0.1% 

94.5 

The following process flow diagram in Figure D-8 summarised the key process steps. 

The long term stability of dissolved NaBH4 is not excellent in dilute aqueous base of 1 M NaOH 

solution, so a mixing tank (M-01) was used to prepare aqueous NaBH4 solutions before dosing 

into the reactor (R-01).  
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Figure D-8 Schematic process diagram for reduction safe and scalable base case process. 
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For reduction, it is noted that the material cost does not include the cost of aldehyde 1 

as it was produced in-house (ortho-lithiation base case) and is not commercially available. This 

explains the relatively low reduction OPEX obtained as cost of raw material is one of the major 

process cost. The reduction material efficiency and E-factor were also relatively low because 

of the higher concentration of aldehyde 1 in THF was used (1 M instead of 0.4 M). 

Table D-5 shows a breakdown in terms of operation time and energy consumption for 

two major equipment – reactor (R-01) and filter dryer (F-01). As expected, the most energy 

consuming operation is drying as it is very time consuming (15 h) and requires energy intensive 

condition such as  vacuum (50 mbar) and constant heating (jacket temperature at 65 ˚C). In the 

reactor, majority of the energy consumed is for the evaporation of THF. 

Table D-5 Breakdown of operation time and energy consumption for reduction whole process 

with a production target of 3 tons alcohol 1 per year. 

Equipme

nt 

Operation Operatio

n time (h) 

Total 

volume 

(L) 

Operation 

time fraction 

Energy 

fraction 

Reactor, 

R-01 

Reduction reaction 0.24 150 

 

0.2 0.35 

1) Water wash 

Mixing 

Phase separation 

Discharge first aqueous 

layer 

0.12 

2) NaCl wash 

Mixing 

Phase separation 

Discharge second aqueous 

layer 

0.05 

3) Evaporation of THF and 

addition of water 

0.59 

Filter 

dryer, F-

01 

4) First filtration 

Discharge filtrate (water) 

0.02 25 0.8 0.65 
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D.5 Schematic of the continuous consecutive reaction process 
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 Figure D-9 Schematic process diagram for continuous consecutive ortho-lithiation and reduction reaction with final workup 
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