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Abstract 

Landslides represent major natural phenomena with often disastrous consequences. 

Monitoring landslides with time-series surface observations can help mitigate such 

hazards. Unmanned aerial vehicles (UAVs) employing compact digital cameras, and in 

conjunction with Structure-from-Motion (SfM) and modern Multi-View Stereo (MVS) 

image matching approaches, have become commonplace in the geoscience research 

community. These methods offer a relatively low-cost and flexible solution for many 

geomorphological applications. The SfM-MVS pipeline has expedited the generation of 

digital elevation models at high spatio-temporal resolution. Conventionally ground 

control points (GCPs) are required for co-registration. This task is often expensive and 

impracticable considering hazardous terrain.  

This research has developed a strategy for processing UAV visible wavelength imagery 

that can provide multi-temporal surface morphological information for landslide 

monitoring, in an attempt to overcome the reliance on GCPs. This morphological-based 

strategy applies the attribute of curvature in combination with the scale-invariant feature 

transform algorithm, to generate pseudo GCPs. Openness is applied to extract relatively 

stable regions whereby pseudo GCPs are selected. Image cross-correlation functions 

integrated with openness and slope are employed to track landslide motion with 

subsequent elevation differences and planimetric surface displacements produced. 

Accuracy assessment evaluates unresolved biases with the aid of benchmark datasets.  

This approach was tested in the UK, in two sites, first in Sandford with artificial surface 

change and then in an active landslide at Hollin Hill. In Sandford, the strategy detected a 

±0.120 m 3D surface change from three-epoch SfM-MVS products derived from a 

consumer-grade UAV. For the Hollin Hill landslide six-epoch datasets spanning an 

eighteen-month duration period were used, providing a ± 0.221 m minimum change. 

Annual displacement rates of dm-level were estimated with optimal results over winter 

periods. Levels of accuracy and spatial resolution comparable to previous studies 

demonstrated the potential of the morphology-based strategy for a time-efficient and cost-

effective monitoring at inaccessible areas.  
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Chapter 1. Introduction 

1.1 Research background 

1.1.1 Overview 

Landslides represent hazardous natural phenomena that can have disastrous impact on 

society (Schuster, 1996; Haque et al., 2016). Catastrophic landslides often involve loss of 

life, damage to infrastructure and communities yielding significant economic 

implications worldwide (Schuster, 1996; Klose et al., 2014; Haque et al., 2016). It has 

been reported that thousands of landslides triggered by the 7.8-strength earthquake in 

Nepal on 25th of April 2015 caused more than 8.5 thousand human losses and more than 

US$5 billion in damages (Chaulagain et al., 2016; USGS, 2016). However, earthquakes 

are not the only landslide trigger factor. Other causes include natural erosion, volcanic 

processes, subsidence, snowmelt, hydrogeological processes, human activities (e.g. slope 

undercutting, excavation, mining), prolonged and intense rainfall, as well as combinations 

of these (Clague and Stead, 2012; Haque et al., 2016). In the UK context, the British 

Geological Survey (BGS) reported a significant increase in landslide events during 2012 

due to the increase in extreme rainfall events that year (BGS Landslides Team, 2013). A 

potential increase in the number of landslides in the future due to climate change has also 

been investigated (Uhlemann et al., 2015; Gariano and Guzzetti, 2016). Reliable 

approaches to interpret, monitor and mitigate landslide hazards are therefore crucial. 

Time-series surface observations can improve understanding of a landslide’s complex 

behaviour and aid quantification of its geometry and kinematics (Lu et al., 2004). To 

derive suitable time-series of morphological change an appropriate monitoring strategy 

must be implemented. This choice depends on various factors, including: a) the type of 

the landslide, its movement mechanism and velocity (Cruden and Varnes, 1996); b) 

required spatio-temporal resolution to derive the magnitude of the surface change; c) 

constraints such as site extent, accessibility, vegetation and weather conditions; and d) 

operational costs for monitoring equipment and logistics (Mantovani et al., 1996; Borgatti 

et al., 2010; Scaioni et al., 2014; Dall'Asta et al., 2017). Traditionally, geotechnical and 

geophysical investigations have been used to monitor the internal structure of landslides 

(Franklin, 1984; Walstra et al., 2007; Uhlemann et al., 2016). Land surveying equipment 



2 

constitute conventional tools for quantification of surface movement (Franklin, 1984; 

Walstra et al., 2007; Jaboyedoff et al., 2012). However, the aforementioned approaches 

require physical access to the site that can be impractical and potentially hazardous in 

steep or mountainous terrain. Thus, scientists have been investigating the potential of 

remotely-sensed multi-temporal surface observations with the ultimate scope of 

developing time-efficient and cost-effective reliable landslide monitoring approaches 

(Lee, 2004; Scaioni et al., 2014). Not only can these approaches measure the extent, the 

horizontal and vertical change of a surface spatially and temporally, but also can 

complement traditional methods thereby accelerating the landslide investigation and 

model prediction.  

1.1.2 Landslide processes 

A landslide is “a movement of a mass rock, earth or debris down a slope” as defined by 

Cruden (1991). Any type of sliding movement of material influenced by gravity and/or 

water is considered as a landslide (Cruden and Varnes, 1996; Clague and Stead, 2012). 

The gravitational and the hydrological forces constitute the disturbing forces that act upon 

a slope (Lee, 2004). When the disturbing forces exceed the resisting forces of the material 

(i.e. the strength of the material), landslides develop as a result of a slope failure (Lee, 

2004). The factors that contribute to a slope failure either increase the disturbing forces 

or decrease the strength of the materials (Varnes, 1978). For instance, the removal of 

underlying support material due to running water or the increase of loading due to 

vegetation can increase the shear stress. Moreover, loose soil materials are more 

vulnerable to weathering which can decrease their strength (Varnes, 1978). Many more 

examples can indicate the numerous factors involved in a landslide development, 

illustrating its complex mechanism. The most common factors are material 

characteristics, geological structure, pore water pressures, topography, slope angle, river 

and coastal erosion, weathering, seepage erosion and high groundwater levels (Lee, 

2004).  

Landslides are primarily classified based on the type of movement and the properties of 

the materials, as defined by Varnes (1978) and Cruden and Varnes (1996). An updated 

classification scheme was recently introduced by Hungr et al. (2014). Figure 1.1 

illustrates the different categories as a combination of the movement and material type.  
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Figure 1.1: Landslide classification scheme (BGS, 2017). 
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Usually, a combination of the different types shown in Figure 1.1 occur in nature (BGS, 

2017). A secondary landslide classification scheme, designed by Cruden and Varnes 

(1996), is based on the velocity magnitude, as seen in. Table 1.1. According to Lee (2004) 

this classification scheme designates the level of expected risks and potential damages 

that need to be taken into consideration for a proper response, especially when human life 

is threatened. In addition, landslides are differentiated depending on their activity state as 

active, suspended, dormant, abandoned, stabilised and relict (Cruden and Varnes, 1996). 

The activity state is a vital attribute of a landslide as it shows temporal patterns of 

behavior. For instance, reactivation of acceleration of a landslide can occur after 

variations of external forces such as an intensive rainfall event and/or an increase of 

groundwater level (Lee, 2004; Stumpf et al., 2017). All aforementioned classification 

schemes set a common terminology for Earth scientists and engineers to support 

investigation of landslide behavior and motion.  

Table 1.1: Velocity classes for landslides (Cruden and Varnes, 1996). 

Velocity 
class 

Description Typical velocity Response 

7 Extremely rapid 5 m/s Nil 
6 Very rapid 3 m/min Nil 
5 Rapid 1.8 m/h Evacuation 
4 Moderate 13 m/month Evacuation 
3 Slow 1.6 m/yr Maintenance 
2 Very slow 16 mm/yr Maintenance 
1 Extremely slow <16 mm/yr Nil 

 

A landslide event directly deforms the Earth’s surface topography, as can be seen in 

Figure 1.1 (Clague and Stead, 2012). For instance a rotational failure followed by 

transitional slide to earthflow (complex type in Figure 1.1) causes ground subsidence 

forming a scarp at the top and transverse cracks over the accumulated material at the toe 

of a slope (Lee, 2004). This shows that a spatial change of surface morphology occurs 

during landslide development. The surface morphology becomes generally rough when 

surface discontinuities are formed (McKean and Roering, 2004). Quantification of this 

change can reveal important information related to landslide nature (i.e. activity state, 

type, velocity etc.) and triggering factors (Scaioni et al., 2014).  
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1.1.3 Landslide monitoring 

Landslide monitoring is defined by Mantovani et al. (1996) as the comparison of 

conditions relevant to a landslide (i.e. spatial extent, velocity, surface topography, soil 

moisture etc.) over time to assess the landslide activity. Hence, quantitative observations 

of morphological surface changes across space and time of a slope prone to failure 

constitute the basis of landslide monitoring (Scaioni et al., 2014). Assessment of surface 

deformations can provide an early indicator of instability (Scaioni et al., 2014). 

Observations of morphological changes in combination with invasive observations of the 

internal landslide body acquired with geotechnical and geophysical ground-based 

investigations installed on site can further support landslide investigation. Therefore, 

monitoring is crucial as it directly enhances the understanding of landslide mechanisms, 

which in turn facilitates the modelling, prediction and mitigation of hazards (Lee, 2004).  

In the context of a monitoring strategy, many factors need to be considered, specifically, 

spatial and temporal scale, accuracy level and spatial resolution (Lane et al., 1998; Lu et 

al., 2004; Dall'Asta et al., 2017). These parameters are related to selection of the 

equipment, the measuring technique and the algorithms required by the monitoring 

strategy. They are also strongly correlated to the nature of the landslide, such as spatial 

extent, type and motion rate. To account for the uncertainties associated with the 

technological framework, a minimum detectable surface change must be estimated (Lane 

et al., 2003; James et al., 2017b). A European research program, SafeLand1, raised the 

awareness of landslide risks and consequences and delivered guidelines for monitoring 

and assessment (SafeLand, 2011). These guidelines described a series of remote sensing 

techniques suitable for landslide monitoring and discussed their advantages and 

limitations in relation to the aforementioned factors. Of particular importance were the 

costs of data collection and post-processing (SafeLand, 2011). When it comes to the 

development of a monitoring strategy, the ratio between costs and performance of a 

technique requires consideration.  

Overall, a landslide event involves numerous parameters which need to be investigated 

to enable a comprehensive understanding of its complex behavior. Identifying these 

parameters within a holistic monitoring strategy is a challenging task, even though 

modern techniques and state-of-the-art algorithms have improved the technological 

performance and capabilities.  

                                                 
1 www.esdac.jrc.ec.europa.eu/projects/safeland  

http://www.esdac.jrc.ec.europa.eu/projects/safeland
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1.1.4 Monitoring studies 

Traditionally, inclinometers, tiltmeters and extensometers have been used to monitor the 

internal structure of landslides (Franklin, 1984; Walstra et al., 2007; Uhlemann et al., 

2016). However, these devices need to be installed within the ground across a landslide 

to provide invasive subsurface observations (Chambers et al., 2011). Point-based 

monitoring techniques, based on Global Navigation Satellite Systems (GNSS) and total 

stations, plus aerial photogrammetric surveys, are complementary approaches to derive 

surface displacements (Malet et al., 2002; Walstra et al., 2007; Borgatti et al., 2010). In 

the last two decades, airborne laser scanning (ALS) and terrestrial laser scanning (TLS) 

have become attractive alternatives, enabling generation of high quality digital elevation 

models (DEMs) (Ackermann, 1999; Jaboyedoff et al., 2012). Although laser scanning 

offers higher spatial resolution than point-based approaches, both ALS and TLS require 

relatively high cost investment (Stumpf et al., 2011; Travelletti et al., 2012). Further, with 

TLS, occlusions can occur due to oblique incidence angles which necessitate the 

establishment of numerous scanning positions (Jaboyedoff et al., 2012), increasing 

operational cost. The emergence of unmanned aerial vehicles (UAVs) equipped with off-

the-shelf compact cameras, alongside the Structure-from-Motion (SfM) and Multi-View 

Stereo (MVS) processing pipeline, has expedited the automatic generation of high spatio-

temporal resolution dense point clouds (DPCs) (Snavely et al., 2008; Remondino et al., 

2014), in a time-efficient, cost-effective and user-friendly manner (Fonstad et al., 2013).  

The SfM-MVS pipeline is capable of generating a point cloud of tie points (i.e. image 

observations), after pixel-based matching, via a self-calibrating bundle adjustment 

without any a priori information about the camera interior orientation parameters (IOP) 

(i.e. focal length, sensor size, radial and tangential distortion coefficients). An initial 

estimate of the focal length is extracted from the exchangeable image file format (EXIF) 

(Fonstad et al., 2013; Remondino et al., 2014). Control information, necessary to scale 

and orientate the resultant point cloud, is usually provided in the form of surveyed ground 

control points (GCPs), (in the case of indirect georefencing, IG), or obtained from the 

positions of the camera exposures (in the case of direct georeferencing, DG). This 

information, incorporated into a seven-parameter Helmert transformation, determines the 

reconstructed point cloud and exterior orientation camera parameters (EOPs), in a fixed 

reference frame (James and Robson, 2014; Remondino et al., 2014; Carbonneau and 

Dietrich, 2016). The SfM-MVS pipeline usually results in (red green blue; RGB) coloured 
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DPC, a digital surface model (DSM), a digital elevation model (DEM), an 

orthophotomosaic, a 3D mesh and texture.  

The suitability of the UAV-based SfM-MVS pipeline utilising compact cameras to detect 

morphological changes in dynamic Earth surface environments has been presented in 

various studies, for example: landslide monitoring (Niethammer et al., 2012); fluvial 

dynamics (Woodget et al., 2015; Cook, 2017); soil erosion (d'Oleire-Oltmanns et al., 

2012; Eltner et al., 2015); coastal dynamics (Gonçalves and Henriques, 2015; Turner et 

al., 2016); glacier monitoring (Immerzeel et al., 2014; Dall'Asta et al., 2017). These 

studies demonstrated the flexibility of the SfM-MVS pipeline for monitoring hazardous 

phenomena, enabling dense point clouds to be generated from several centimetres ground 

sample distance (GSD). UAV-based DEMs and orthophotomosaics of cm-level spatial 

resolution covering study sites with km-length and hundreds of metres width can be 

derived. Datasets can be acquired with high temporal frequency, as UAVs are easily 

deployable and can be launched at short notice (Eisenbeiss and Sauerbier, 2011). These 

studies also report the variability of the estimated uncertainty (i.e. relevant root mean 

square errors, RMSEs) of the derived products over stable terrain. Reported relative error 

ratios (average UAV flying height divided by the estimated uncertainty, see Eltner et al. 

(2016)) range from 1: 150 to 1: 3000, indicating the wide spectrum of precision with 

respect to flying height. In addition, the studies report errors from 1-10 times the DEM 

spatial resolution derived from the SfM-MVS pipeline, with largest errors typically 

caused primarily by vegetation presence. 

Regardless of the geo-referencing approach, IG or DG, SfM-MVS studies invariably 

report the presence of DEM deformations, such as doming or dishing, causing 

uncertainties in derived products. A number of recent studies (James and Robson, 2014; 

Eltner and Schneider, 2015; Carbonneau and Dietrich, 2016; James et al., 2017a; James 

et al., 2017b) have investigated the error sources of these deformations. These include: a) 

poor imaging networks (i.e. parallel flight lines with low percentage overlap); b) low 

number and poor distribution of GCPs; c) GCPs of low measurement uncertainty included 

as weighting information in the self-calibrating bundle adjustment; d) non-rigorous 

camera models in the employed SfM-MVS software that were unable to resolve the IOPs 

and EOPs. Carbonneau and Dietrich (2016) demonstrated that these deformations, if 

unsolved, can be propagated into rotational, translational and vertical offsets in the SfM-

MVS derived products, creating systematic tilt and/or radial patterns that adversely affect 

the time-series observations. An additional error source is the presence of vegetation, 
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which creates high surface roughness, affecting the photogrammetric outcome (Lane et 

al., 2000; Cook, 2017). In the context of morphological monitoring, it is crucial to account 

for these errors and estimate the real terrain change (James et al., 2017b).  

The aforementioned studies employed a wide spectrum of UAV platforms, from in-house 

manufactured systems equipped with a consumer-grade single frequency GNSS receiver 

and Micro-Electro Mechanical System-Inertial Measurement Unit (MEMS-IMU), to 

more expensive, survey-grade UAVs integrated with dual frequency GNSS and multiple 

MEMS-IMU sensors or augmented with RTK-GNSS (Carbonneau and Dietrich, 2016; 

Rehak and Skaloud, 2017b). Consumer-grade platforms typically deliver precision of a 

few meters and degrees for position and orientation of the camera exposure stations 

respectively, whereas survey-grade instrumentation is capable of dm-level measurement 

precision with 1º angular precision (Chiang et al., 2012; Carbonneau and Dietrich, 2016; 

Gerke and Przybilla, 2016; James et al., 2017b). This makes survey-grade more reliable 

than consumer-grade platforms, especially when DG approaches are employed. 

Nonetheless, for repeated surveys with RTK-integrated UAVs, systematic errors 

associated with erroneously fixed ambiguity solutions can be propagated into the UAV 

camera exposure stations (Dall'Asta et al., 2017) and lead to co-registration discrepancies 

between epochs in reconstructed DEM time-series. Therefore, augmentation of the SfM-

MVS pipeline through the inclusion of a few well distributed GCPs is still considered an 

essential step to simultaneously reduce biases and derive detectable surface changes at 

the cm-level (Carbonneau and Dietrich, 2016). However, the installation and maintenance 

of GCP networks for long-term observations is a labour intensive and costly task, as well 

as potentially hazardous in steep or mountainous terrain.  

Of great importance for landslide investigation is the motion tracking of characteristic 

surface features related to the landslide mechanism together with the estimation of a 

continuous surface displacement map. Surface morphological attributes, derived from 

DEMs (e.g slope, shaded relief, curvature, etc.), can provide additional information for 

landslide investigation (McKean and Roering, 2004; Glenn et al., 2006). Traditionally, to 

detect the landslide motion, discrete locations at natural or artificial features were either 

monitored through stereoscopic images or surveyed with GNSS/total station (Brückl et 

al., 2006). A recent study on glacier monitoring (Dall'Asta et al., 2017) reported that a 

manual detection of about 1000 characteristic surface features on multi-epoch UAV 

derived orthophotomosaics required eight hours effort from an experienced operator. 

Thus, apart from the risks related to site accessibility, as previously discussed, these 
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approaches are labour intensive and time consuming with high operational costs and low 

spatial resolution. Only a few studies have exploited the high resolution of morphological 

attributes, generated from UAV-based DEMs, to determine surface displacements 

(Lucieer et al., 2014; Turner et al., 2015). To achieve this, they utilised the morphological 

attribute of shaded relief in combination with image cross-correlation functions. The 

latter is a well-established technique in monitoring studies (Leprince et al., 2007a; Ayoub 

et al., 2009a; Heid and Kääb, 2012). However, there are many morphological attributes, 

as presented in Favalli and Fornaciai (2017), yet to be investigated for the purpose of 

landslide monitoring.  

Through this discussion the research motivation and gaps are highlighted. Firstly, an 

investigation to overcome the reliance on GCPs in the SfM-MVS pipeline for landslide 

monitoring is presented in this research. An automatic workflow to generate “pseudo 

GCPs” over relatively “stable” terrain for the effective co-registration of time-series 

DEMs derived from a consumer-grade, fixed-wing mini UAV and SfM-MVS is 

introduced. This automatic solution can potentially bridge the gap between the expensive 

task of physically establishing and repetitively surveying GCPs using an IG strategy, and 

the use of survey-grade UAVs in DG. Secondly, to meet the need for additional analysis 

with high-resolution morphological datasets, this research examines the implementation 

of image cross-correlation functions with various UAV survey derivatives. The research 

blends different analytical methods within a monitoring strategy to deliver an overview 

of horizontal and vertical surface deformation patterns.  
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1.2 Aims and objectives 

Τhis research aims to develop a strategy for handling UAV imagery that can provide 

multi-temporal surface morphological information for landslide monitoring. A particular 

focus is co-registration for aligning time-series of SfM-MVS products in the absence of 

physically established GCPs. It is anticipated that this core component can increase the 

time-efficiency and cost-effectiveness of the strategy, thereby enabling landslide 

investigation at inaccessible and/or hazardous areas. Ultimately, the research will directly 

facilitate effective surface morphological change estimation beneficial to landslide 

assessment. The main objectives to achieve the aim are: 

1. To evaluate the suitability of current UAV-based approaches for morphological 

monitoring; 

2. To investigate the uncertainties associated with SfM-MVS processing of UAV 

imagery; 

3. To propose and develop a monitoring strategy that establishes the rigorous 

alignment of spatio-temporal UAV-derived observations and quantifies landslide 

kinematics; 

4. To implement the monitoring strategy at appropriate tests sites and undertake 

quantitative evaluation with the aid of benchmark observations; 

5. To evaluate the capabilities and uncertainties of the strategy, thereby ensuring its 

applicability for landslide monitoring. 

1.3 Thesis outline 

The thesis comprises seven chapters, as outlined below. 

Chapter 1 sets the research context and provides relevant background information to 

landslide monitoring. It highlights the research gaps and specifies the aims and objectives 

of the research. 

Chapter 2 provides a review of both traditional and state-of-the-art research geomatics 

techniques for morphological monitoring. First, the well-established techniques are 

presented and then the emerging UAV-based remote sensing approaches are investigated 

in terms of accuracy, performance and suitability for morphological monitoring.  

Chapter 3 details the methodological steps of the morphology-based monitoring strategy. 

It explains the SfM-MVS pipeline, which constitutes the core process of the UAV image 

processing, and highlights associated errors. This chapter sets the fundamental co-
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registration aspect of the strategy, the Morphology-Based co-Registration (MBR) 

workflow. A review of various relevant algorithms, alongside their integration within the 

monitoring strategy, are presented.  

Chapter 4 describes the three study sites used in the research: Cockle Park Farm near 

Morpeth; an experimental site with artificial surface change at Sandford, Prees; an active 

landslide at Hollin Hill, Yorkshire. The ground-based control observations acquired at 

each site are also presented. These constitute the benchmark datasets for quantitative 

assessment of the monitoring strategy. The Quest-300 fixed-wing UAV that was used, 

together with the on-board off-the-shelf cameras employed for imagery acquisition, are 

described.  

Chapter 5 firstly examines the typical SfM-MVS workflow, performed with the 

inclusion of a minimum number of GCPs at Cockle Park. It then describes the 

implementation of the MBR workflow to the experimental site at Sandford. Co-

registration solutions, performed both with and without GCPs, are used to assess the MBR 

workflow performance. Results of the estimated surface change are presented. Accuracy 

assessment at each stage of the workflow is carried out with the aid of benchmark 

datasets.  

Chapter 6 describes the implementation of the morphology-based monitoring strategy at 

the Hollin Hill landslide, evaluating its performance with ground-based control datasets 

under different scenarios with and without GCPs. Results of co-registration solutions, 

horizontal, vertical and volumetric changes from observations of the two utilised cameras 

are presented. Minimum detectable surface changes are quantified within the 

morphology-based monitoring strategy under each scenario. Accuracy considerations are 

discussed.  

Chapter 7 brings together the findings from Chapters 5 and 6 and addresses the 

advantages, limitations, challenges and opportunities related to the morphology-based 

monitoring strategy and its efficiency for landslide monitoring. Objectives are revisited 

and future research recommendations are proposed.  

Equation Chapter (Next) Section 1 

Equation Chapter (Next) Section 1 
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Chapter 2. Geomatics monitoring techniques 

Chapter 1 introduced the landslide phenomenon and highlighted the importance of 

monitoring and assessment. The level of landslide deformation that can be monitored with 

a particular strategy is regulated by the spatiotemporal resolution and the accuracy of the 

adopted technique. Chapter 2 presents the techniques that are used in morphological 

studies with a particular focus on landslide monitoring. Ground-based and remote sensing 

techniques are reviewed in relation to accuracy considerations and cost-effectiveness. The 

review is completed with a presentation of current UAV-based approaches highlighting 

their suitability for morphological monitoring.  

2.1 Ground-based techniques 

2.1.1 Geotechnical and geophysical investigations 

Geotechnical and geophysical investigations are well-established techniques for landslide 

monitoring (Baum and Reid, 1995; Corominas et al., 2000; Chambers et al., 2011; 

Uhlemann et al., 2017). Geotechnical investigations involve invasive subsurface 

observations that provide direct metrics of the internal structure of unstable bodies 

(Dunnicliff, 1988). They also observe environmental conditions vital to understand 

landslide trigger factors (Borgatti et al., 2010). Conversely, geophysical investigations 

are non-invasive and provide information about physical properties of the ground material 

(e.g. electric and elastic materials behavior etc.), not directly related to geological 

characteristics (Jongmans and Garambois, 2007).  

Geotechnical investigations 
Traditional geotechnical techniques include: a) borehole and penetration tests utilising 

extensometers, inclinometers etc.; b) hydrogeological and hydraulic sensors such as 

piezometers and tensiometers, and c) sensors for climatic observations such as rainfall 

and temperature (Baum and Reid, 1995; Abbiate and Lovisolo, 2010; Borgatti et al., 2010; 

Uhlemann et al., 2016).  

For example, extensometers measure the distance changes between two points. 

Extensometers are vertically installed in stable and unstable parts of the ground. 

Typically, extensometers are installed within boreholes by means of a rod or a wire with 
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the latter considered a low-cost solution (Corominas et al., 2000; Abbiate and Lovisolo, 

2010). Sub-mm level accuracies of relative displacement have been reported in 

Corominas et al. (2000) and (Malet et al., 2002). Inclinometers are used to detect the depth 

of the shear surface (Uhlemann et al., 2016). A typical installation involves multiple 

probes fixed within a borehole at various depths, along a guided casing, which tracks 

changes of orientation (Abbiate and Lovisolo, 2010). Inclinometers give low spatial 

resolution, due to limited observations only around the boreholes (Uhlemann et al., 2016). 

Piezometers observe the water level and pore water pressure within the ground providing 

valuable information for landslide triggering parameters (Abbiate and Lovisolo, 2010). 

The aforementioned sensors can be installed in boreholes, providing simple and cost-

effective long-term monitoring (Abbiate and Lovisolo, 2010). However, geotechnical 

methods offer limited spatial resolution across a landslide body due to discrete 

observations. Installation of geotechnical sensors require physical access to steep slopes 

and hazardous terrain (Chambers et al., 2011; Merritt et al., 2014). Nevertheless, modern 

sensors provide remote control and automatic data recording, suitable for real time 

monitoring (Abbiate and Lovisolo, 2010). Refer to Dunnicliff (1988) for further reading.  

Geophysical investigations 
Unlike geotechnical investigations, geophysical investigations provide observations of 

the subsurface across a landslide body and can be easily conducted on steep terrain 

(Jongmans and Garambois, 2007; Lecomte et al., 2010). Geophysical observations can be 

obtained along 1D vertical/horizontal profiles, 2D vertical sections providing 2D maps 

and multiple 2D sections generating 3D maps (Jongmans and Garambois, 2007).  

There is a wide range of geophysical methods, including seismic and geoelectrical 

methods, and ground penetrating radar (GPR) (Jongmans and Garambois, 2007; Lecomte 

et al., 2010; Chambers et al., 2011; Uhlemann et al., 2017). In seismic methods, the 

velocity of seismic waves is measured providing, amongst other, insight into the shear 

strength of the ground material (Jongmans and Garambois, 2007). In geoelectrical 

methods, electrical currents are introduced to the ground from pairs of electrodes. The 

geoelectrical measurements are assessed to produce spatial information about the nature, 

conductivity, water content and other attributes of the ground material (Jongmans and 

Garambois, 2007; Chambers et al., 2011). The GPR systems consist of two antennas for 

emitting and receiving electromagnetic waves through the ground. The antennas are 

typically set at a fixed distance and can be moved along a profile on the surface. 

Measurements of the velocity and attenuation of the electromagnetic waves can provide 
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useful information about the electrical properties of the ground material (e.g. electric 

permittivity), indicating, amongst other, fractures, voids and ground water content 

(Lecomte et al., 2010). Interpreting geophysical observations to provide intuitive 

information about a landslide body is a challenging task which requires the cooperation 

of many scientists (Lecomte et al., 2010). Moreover, calibration and cross-validation from 

geotechnical observations and observations of higher spatial resolution are essential to 

derive time-series observations (Chambers et al., 2011; Merritt et al., 2014).  

2.1.2 Total station and GNSS 

In addition to sub-surface landslide investigation, conventional land survey-based 

techniques include total station and GNSS measurements (Gili et al., 2000; Malet et al., 

2002; Borgatti et al., 2010; Giordan et al., 2013).  

Total station  
A total station, consisting of an electronic theodolite augmented with electronic distance 

measurement, can record angles and distances to derive the 3D position of a point. In the 

context of landslide monitoring, total station measurements are used to detect the 

movement of significant surface features (i.e. fissures, cracks, faults etc.) on a slope over 

space and time. To achieve that, a network of points (retro-reflective micro prisms) is 

usually established on the unstable landslide body and at least two fixed stations are 

established on the stable part of the area (Giordan et al., 2013). The installation of a total 

station is simple, and easy, providing a low-cost solution (Stumpf et al., 2011). Modern 

robotic total stations allow for observations of high temporal frequency (Giordan et al., 

2013; Salvini et al., 2015). The main advantage of total station measurements is their mm-

level 3D accuracy (Gili et al., 2000; Malet et al., 2002; Stumpf et al., 2011; Giordan et 

al., 2013; Salvini et al., 2015). Due to this, total station measurements are considered 

benchmark observations and used for assessing positional accuracies of other geomatics 

techniques.  

Tsai et al. (2012) utilised a reflectorless total station to quantify surface and volumetric 

changes after a landslide event in Taiwan. The authors surveyed sample points with an 

average density of 1.5 point/m2 and reported a maximum relative range error of 0.003 %. 

They also noted that expertise is required for the selection of the surveyed point location 

in order to achieve high point density across rugged terrain. However, they did not 

investigate to what extent the estimated changes were affected by the reported point 

densities, as observations of higher spatial resolution were unavailable. Giordan et al. 
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(2013) observed planimetric displacements of prisms installed on a landslide in Italy, with 

the aid of robotic total stations which could handle remote data recording. With a 

maximum observed distance of 1 km relative to base stations, they estimated minimum 

surface velocities of mm per day. However, total station observations do not provide a 

complete image of the deformation across the landslide site due to spatial low resolution 

(Merritt et al., 2014). With repeated measurements over several hours and high positional 

accuracies, these techniques give relatively reliable results offering the potential for early 

warning and real-time monitoring (Stumpf et al., 2011; Giordan et al., 2013).  

GNSS  
The term global navigation satellite systems (GNSS) encompasses all satellite-based 

positioning systems, namely, the Global Positioning System (GPS) operated by the 

United States, the Global Navigation Satellite System (GLONASS) operated by Russia, 

the Galileo system operated by the European Union and the Beidou system operated by 

China (Hofmann-Wellenhof, 2008). Currently, 24 to 30 GPS satellites have been 

deployed ~ 20.000 km altitude above the Earth’s surface in various orbital planes 

(Hofmann-Wellenhof, 2008). GNSS typically carrier signals at L-band frequencies, e.g. 

the L1 and L2 for GPS satellites. The coarse/acquisition (C/A) GPS code is modulated on 

L1 (used for civilian purposes, e.g. handheld receivers with m-level accuracy) and 

precision (P) code modulated on both carrier signals. These codes are emitted from each 

satellite. The receiver measures the travel time of the signal and determines the distance 

to the satellite. The distance determination is affected by multiple errors such as the 

ionospheric and tropospheric errors, clock bias, orbital errors, multipath etc. Observations 

from at least four or more satellites are used to determine the position of a point. Refer to 

Hofmann-Wellenhof (2008) and Groves (2013) for GNSS principles.  

Static and rapid static are two common post-processing techniques for position 

determination of an observed point. Static includes observations over longer periods than 

rapid static (observations of few minutes). The post-processing is performed with 

dedicated software that account for biases and can derive positions with cm-level 

accuracy. Typically, simultaneous observations from stations of known positions are also 

included in the post-processing (relative positioning). In kinematic positioning, the 

position of a second (rover) moving receiver is determined with respect to a base station. 

Real time kinematic (RTK) GNSS provides instantaneous (real-time) solutions with the 

aid of pseudorange differential GPS, whereby corrections from a base station of known 
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position are transmitted to the rover via a data link. Refer to Gili et al. (2000) for further 

reading in relation to landslide monitoring.  

GNSS is a well established land survey-based technique and has long been used for 

morphological monitoring, such as crustal deformation (Prescott et al., 1989), glacier 

monitoring (Sjöberg et al., 2000), landslide monitoring (Gili et al., 2000; Malet et al., 

2002; Brückl et al., 2006; Baldi et al., 2008), coastal monitoring (Mills et al., 2005; 

Teatini et al., 2005) etc. These studies demonstrated that GNSS technology can derive 

mm-level 3D accuracies at individual points.  

Similar to total station observations, GNSS provide discrete measurements unsuitable for 

a holistic overview of landslide deformation (Stumpf et al., 2011; Merritt et al., 2014). 

However, surface features can be tracked with GNSS over long distances without the 

requirement of a visible line of sight and at any desirable time interval. High temporal 

frequency GNSS observations are possible for monitoring any type of landslide (Table 

1.1), and also suitable for supporting an early warning system (Malet et al., 2002; Stumpf 

et al., 2011; Giordan et al., 2013). In the context of a monitoring strategy, the installation 

and cost of multiple GNSS receivers over steep and hazardous terrain should be 

considered (Stumpf et al., 2011; Giordan et al., 2013).  

In recent monitoring studies, total station/GNSS observations were used for three main 

purposes: a) to assess DEM accuracies derived from remote sensing techniques (e.g. 

Giordan et al. (2013) and Stumpf et al. (2017); b) to provide control information for UAV-

based monitoring approaches (e.g. Dall'Asta et al. (2017), Section 2.3.3); and c) to 

integrate subsurface with surface movements (e.g. Uhlemann et al. (2015)) providing a 

complete image of landslide deformation. 

2.2 Remote sensing techniques 

Remote sensing techniques, for landslide monitoring utilise terrestrial, airborne and 

spaceborne optical and microwave images as well as airborne (ALS) and terrestrial laser 

scanning (TLS) datasets (Scaioni et al., 2014). ALS, TLS and techniques using optical 

observations are discussed in the following section. Techniques using microwave 

observations (e.g. synthetic aperture radar) are outside the interest of this research. As 

synthetic aperture radar systems typically measure signal phase differences through time, 

require other than morphology-based approaches in order to generate surface 

deformations (e.g interferometry, Colesanti and Wasowski (2006)).  
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2.2.1 Photogrammetric techniques 

Photogrammetric techniques involve observations from optical images acquired with 

terrestrial, airborne and spaceborne sensors (Mikhail et al., 2001; Kraus, 2007; Wolf et 

al., 2014). Photogrammetry, originating from the Greek word “φωτογραμμετρία”, implies 

the derivation of metric information from photographs.  

The fundamental mathematical concept to derive metric information is based on the 

collinearity condition; an optical ray is defined by three points, the image point, the 

camera perspective centre and the object point, forming a straight line. In stereo 

photogrammetry with the use of image pairs, two optical rays, representing conjugate 

image points, ideally intersect at an object point (spatial intersection). The collinearity 

condition establishes the geometric relationship between 2D image coordinates and 3D 

object space position. To reconstruct this relationship, interior, relative and absolute 

orientations are involved (Kraus, 2007; Wolf et al., 2014).  

Interior orientation establishes the camera geometry determining the camera’s interior 

orientation parameters (IOP). These are focal length (the distance between the lens centre 

and the point where the lens focuses), principal point (the intersection of fiducial lines), 

symmetrical radial lens and decentring distortion parameters (see Section 3.2.5). With 

known camera geometry (i.e. interior orientation), relative orientation can be established. 

This determines the position and orientation between two images, relative to each other, 

generating a stereo model. In a stereo model, two optical rays of image points intersecting 

at an object point, together with the baseline between their camera perspective centres, 

form a plane (coplanarity condition). Absolute orientation defines the 3D position of 

control points of a stereo model in the required coordinate system, via a 3D conformal 

coordinate transformation using at least two horizontal and three vertical control points. 

Then, the camera’s exterior orientation parameters (EOPs i.e. three translations, in each 

coordinate direction and three rotations around each coordinate axis) are determined 

(spatial resection). When multiple images are acquired, the orientations of all images are 

determined simultaneously (aerial triangulation). Bundle block adjustment then 

establishes the position and orientation of each bundle of optical rays. For redundancy, 

multiple GCPs are utilised. In the case of self-calibrating bundle adjustment both IOP and 

EOP are re-optimised simultaneously in a least-squares sense but initial values are 

essential for the solution convergence. Refer to Mikhail et al. (2001), Kraus (2007) and 

Wolf et al. (2014) for additional reading.  
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Photogrammetry is a well-established technique for landslide investigations. For 

example, in large photoscale (>1:10.000, Mantovani et al. (1996)) applications, satellite 

derived DEMs have been used for monitoring (Delacourt et al., 2009; Debella-Gilo and 

Kääb, 2011; Barazzetti et al., 2014; Stumpf et al., 2017). Depending on the resolution of 

the recording system, ground sampling distance (GSD) values between 1- 30 m were 

reported in Stumpf et al. (2011). The quality of the derived DEM depends on the satellite 

sensor characteristics, the image quality and the post-processing algorithms (Stumpf et 

al., 2011). 

In addition, studies with archival aerial photographs have been conducted since the 1990s 

with the use of analogue metric cameras (Chandler and Brunsden, 1995; Walstra et al., 

2007; Baldi et al., 2008; Dewitte et al., 2008; Prokešová et al., 2010; Achilli et al., 2015). 

Archival photographs can illustrate the evolution of landslide phenomena up to the 

present day. Malet et al. (2002) reported dm-level typical positional accuracy for average 

flying height of 500 m. In principle, the accuracy is influenced by the flying height, the 

focal length and the distance between camera exposure stations of a stereo pair (Kraus, 

2007).  

With the transition from analogue metric to digital single lens reflex (DSLR) and low-

cost compact cameras, terrestrial observations for close range landslide monitoring 

became more affordable (Barazzetti et al., 2010; Gance et al., 2014). Stumpf et al. (2011) 

noted that DSLR and compact cameras cost € 1.000-2.000 and <€ 500 respectively. In 

terrestrial applications, as images are mainly oblique, corrections for topographic effects 

and camera distortions are essential to derive high quality DEMs (Travelletti et al., 2012). 

A major difficulty is the identification of well-defined surface features in the natural 

environment for use as GCPs and/or for derivation of motion vectors from subsequent 

acquisitions. Image cross-correlation algorithms have been applied to derive 

displacement vectors in the absence of GCPs (Travelletti et al., 2012; Gance et al., 2014; 

Stumpf et al., 2015). Moreover, environmental conditions (e.g. fog, rain, night etc.) can 

limit image acquisitions and affect the accuracy of the photogrammetric outcome (Stumpf 

et al., 2011). However, terrestrial techniques offer higher spatial resolution than point-

based techniques and deliver cm-level positional accuracies, as shown in (Travelletti et 

al., 2012) for points located at 100 m distance from the camera station.  
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2.2.2 Airborne and terrestrial laser scanning 

Laser scanning technology is based on the light detection and ranging sensors (LIDAR) 

which emit pulses of light (infrared region of electromagnetic spectrum) with much 

greater thousands of pulses per second. Distances from a scanner position to a surface are 

measured by computing the travel time needed for the pulse (i.e. laser beam) to return 

(Baltsavias, 1999). In ALS technology, laser sensors are mounted on fixed-wing or rotary 

manned aircrafts. The position and orientation of the scanner are derived with the aid of 

GNSS/IMU sensors of high accuracy. In TLS technology, the laser sensors are fixed on 

a base platform. ALS and TLS generate point clouds of high density representing a 3D 

model of a surface. Further description of LIDAR technology can be found in Baltsavias 

(1999) and Lichti and Jamtsho (2006). A detailed review of laser technology in relation 

to landslides is presented in Jaboyedoff et al. (2012). A variety of recent laser scanning 

sensors with ALS and TLS for landslide monitoring is presented in Stumpf et al. (2011).  

Numerous studies have applied ALS and TLS to generate DEMs for landslide detection, 

characterisation and monitoring (McKean and Roering, 2004; Glenn et al., 2006; 

Monserrat and Crosetto, 2008; Teza et al., 2008; Abellán et al., 2009; Ghuffar et al., 2013; 

Kenner et al., 2014; Fey et al., 2015). These studies showed that ALS observations can 

cover thousand km2 with cm to dm-level vertical accuracies. ALS produce point clouds 

with density of 0.1-30 points/m2, as reported in Stumpf et al. (2011). According to 

Baltsavias (1999), the accuracy of a ALS derived DEM is affected by various factors such 

as uncertainties associated with the scanning sensor and the GNSS-IMU sensors, flying 

height, mechanical and systematic errors of the laser beam etc. Recent investigations 

apply ALS strip matching with ICP algorithms to minimise systematic errors (Glira et al., 

2015).  

Compared to ALS, the accuracy of TLS derived DEMs is one order of magnitude higher 

(Jaboyedoff et al., 2012; Scaioni et al., 2014). Due to portability, simple setup and high 

spatial resolution, TLS has become more popular than ALS (Stumpf et al., 2011). 

However, both techniques have drawbacks; firstly, unlike imagery, they do not provide 

textural information and secondly, both require relatively high cost investment (Stumpf 

et al., 2011; Travelletti et al., 2012). In particular, ALS entails high costs associated with 

airborne surveys and requires relatively good weather conditions. James and Robson 

(2012) reported TLS costs of US$104-105magnitude. Additionally, in the case of TLS, 

several scan stations are required in order to cover a large study area and occlusions can 

occur in point clouds due to oblique incident angles (Eisenbeiß, 2009).  
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2.3 UAV-based approaches 

2.3.1 UAV systems 

Parallel to the advance of satellite/airborne remote sensing platforms, UAV technology 

has been developed over the last decade (Eisenbeiß, 2009; Watts et al., 2012; Toth and 

Jóźków, 2016). UAVs are also known as aerial robots, drones, unmanned aerial systems 

and remotely piloted aircraft systems (Colomina and Molina, 2014; Toth and Jóźków, 

2016). Although they were initially designed for military purposes (Watts et al., 2012), 

interest for commercial and research applications has grown due to their affordability and 

flexibility (Colomina and Molina, 2014). A UAV system includes a platform, imaging 

sensors, GNSS and IMU sensors, an autopilot unit, a ground control station and a 

communication data link (Colomina and Molina, 2014). 

UAV platforms 
A variety of UAV platforms exist. For instance, there are flexible wing UAVs such as 

gliders and kites, fixed-wing UAVs with propeller or jet engines as well as rotary-wing 

UAVs including single rotors, coaxial, quad-rotors, hexacopters and octocopters 

(Eisenbeiß, 2009). The use of each platform depends on the nature of the application and 

the environmental conditions (i.e. weather and wind velocity). For example, fixed-wing 

UAVs can fly over larger areas compared to rotary-wing UAVs. Conversely, multi-rotors 

are manoeuvrable and easy to take off and land in challenging environments such as 

forests, steep slopes etc. (Eisenbeiß, 2009; Toth and Jóźków, 2016). Images acquired with 

rotary-wing UAVs can also be captured obliquely and/or on near-vertical surfaces. UAV 

platforms can be launched at short notice and fly at low altitudes and being limited by 

cloudy conditions. Due to this, they are more cost-effective than manned 

photogrammetric surveys for large areas. For further information about various UAV 

platforms refer to Eisenbeiß (2009) and Colomina and Molina (2014).  

According to the United Kingdom Civil Aviation Authority, UAV platforms are classified 

as micro and mini with total mass < 5 kg and < 30 kg respectively (CAP, 2012). UAVs 

heavier than these are considered tactical. An operational licence is not required for a 

UAV platform of total mass ≤ 7 kg. Typically, micro and mini UAVs have been adopted 

for morphological monitoring in research communities, as presented in Section 2.3.3. The 

UAV system used in this research is described in Section 4.4.  
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UAVs are also classified into consumer and survey-grade with respect to accuracy levels 

of the on-board sensors (Eisenbeiß, 2009; Carbonneau and Dietrich, 2016; Toth and 

Jóźków, 2016; Rehak and Skaloud, 2017b).  

In a consumer-grade UAV the on-board GNSS receiver is normally limited to single 

frequency and provides positional accuracy to 5 m or better (Rehak et al., 2013; Turner 

et al., 2013). The autopilot unit contains a small, low-grade MEMS-IMU comprising 

accelerometers, gyroscopes and magnetometers (Groves, 2013). As these sensors are 

small in size, lightweight and inexpensive they are prone to errors (gyro drift and 

accelerometer bias) that accumulate rapidly over time, as detailed by Groves (2013). A 

study by Woodman (2007) shows that when MEMS-IMU sensors operate in a stand-alone 

mode the average error in position grows to more than 150 m after 60 seconds. To reduce 

these errors the commercial autopilot units of mini-UAVs incorporate a Kalman filter that 

refines the flight trajectory in real-time when the UAV is operating. More specifically, 

the Kalman filter combines IMU with GNSS observations and provides a best estimate 

of the new aircraft position based on the previous position (Woodman, 2007; Groves, 

2013). Additionally, it describes the variation of errors with respect to time (Woodman, 

2007; Groves, 2013). Various Kalman filters have been developed to improve the 

integration of low-cost UAV components (Weiss and Siegwart, 2011; Hajiyev and Soken, 

2013). However, Rehak et al. (2013) noted that, compared to conventional airborne 

photogrammetric approaches with metric cameras, mini-UAV approaches still cannot 

provide better than cm-level positional and arc-minute orientational accuracy, 

independently of direct or indirect georeferencing approach.  

Survey-grade UAVs consist of high performance IMU (Eisenbeiß, 2009) or multiple 

MEMS-IMU sensors (Rehak and Skaloud, 2017b) alongside dual frequency GNSS and/or 

augmentation with RTK-GNSS receivers (Carbonneau and Dietrich, 2016).  

RTK-GNSS can deliver cm-level positional accuracies with the use of differential 

positioning, as long as the satellite signal is transmitted without interruption and the 

ambiguity2 is fixed (Hofmann-Wellenhof, 2008). UAVs augmented with RTK-GNSS 

receivers rely on a base ground control GNSS station (with known coordinates) which 

send corrections to the on-board GNSS receiver (Dall'Asta et al., 2017). The RTK-

integrated UAV allows for direct georeferencing with the aid of the on-the-fly GNSS 

                                                 
2 Ambiguity is the unknown integer number of the full wavelength of the carrier phase signal. It can be 
fixed for example with initial static observations of a GNSS receiver over a known point. (Hofmann-
Wellenhof, 2008). 
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coordinates of the camera exposures, thereby enabling an automatic orientation of the 

photogrammetric block (Section 2.3.2). In principle, the positional accuracy is influenced 

by several errors such as noise in the GNSS phase observations, multipath, satellite 

availability etc. (Hofmann-Wellenhof, 2008). Additional noise can be generated due to 

electromagnetic interference and vibrations during flying, increasing the risk for 

erroneous ambiguity resolution (Rehak and Skaloud, 2017a). To minimise erroneous 

solutions, at least one GCP is recommended to be incorporated into the SfM-MVS 

pipeline when processing RTK-UAV images (Benassi et al., 2017).  

Shi et al. (2017) investigated the integration of precise point positioning into RTK-UAVs. 

Precise point positioning methods do not rely on corrections from a ground control 

station, but on the precise satellite orbit and clock data provided, for example, by the 

International GNSS Service (Hofmann-Wellenhof, 2008; Shi et al., 2017). Shi et al. 

(2017) demonstrated the potential of precise point positioning solutions to derive the 

aircraft trajectory with accuracies comparable to conventional airborne photogrammetry. 

Although such UAV systems are still under development, this is a new and potentially 

high accuracy opportunity for mapping. 

According to Rehak and Skaloud (2017b) a critical aspect of a UAV system is time 

synchronization between the GNSS logged timestamp with the real image acquisition 

time. Typically, this is achieved with the installation of a time pulse counter device on 

the camera. Such installations are not usually provided in consumer-grade UAVs. In 

addition, the time delay between the activation of the mechanical shutter and the recorded 

trigger time can propagate into positional error of the camera exposure stations (e.g. 0.05 

m error for a 5 ms delay with a UAV speed of 10 m/s, Rehak and Skaloud (2017b)). This 

in turn can adversely affect the accuracy of direct georeferencing with survey-grade 

UAVs.  

In recent morphological studies (Gonçalves and Henriques, 2015; Woodget et al., 2015; 

Carbonneau and Dietrich, 2016; Cook, 2017) the costs of UAV systems have been 

reported. Draganflyer X6 together with the Panasonic Lumix DMC-LX3 and relevant 

accessories cost £ 29,500 in 2010 (Woodget et al., 2015). According to Gonçalves and 

Henriques (2015) the cost of consumer-grade UAVs with payload within 0.5-3.5 kg lies 

in the range of US$ 5,000-60,000. Cook (2017) reported that a total expense of $ 1000 

was required to purchase the DJI Phantom 2 quadcopter equipped with the Canon IXUS 

135 and Powershot 4000IS compact cameras with an in-house manufactured camera case. 
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Costs of US$ 1,200 -2,400 for consumer-grade DJI3 UAVs were also reported by 

Carbonneau and Dietrich (2016). On the other hand, Carbonneau and Dietrich (2016) 

reported cost exceeding £ 10,000 for RTK integrated UAVs. It is noteworthy that, due to 

the emerging technology and demanding market, the costs fluctuate continuously. 

However, UAV cost is an important parameter in monitoring studies. 

The reported costs showed that typical commercial UAV systems with consumer-grade 

GNSS/IMU sensors and off-the-shelf digital cameras are generally affordable. However, 

raw GNSS/IMU observations are not available from the manufacturers (Toth and Jóźków, 

2016). This limits control of further post-processing and potential for refining the aircraft 

trajectory, thereby improving the initial camera exposure positions.  

Camera settings for UAV surveys 
UAV survey planning involves specification of forward/lateral overlap and flying height 

based on the camera’s nominal focal length and pixel resolution. It is common practice 

to set the flight plan assuming that images are acquired along parallel axes and that they 

are vertical. The theoretical GSD is denoted by: 

 
×

= pixH S
GSD

f
  (2.1) 

where H is the flying height, Spix the camera’s nominal pixel size and f the focal length. 

By decreasing the flying height, the GSD is increased yielding higher spatial resolution. 

It is recommended to set up the focus (which is a function of aperture) to infinity in order 

to achieve the full depth of field of the camera under any height variation (Shahbazi et 

al., 2015).  

With regard to camera settings, automatic stabilization options and automatic focus are 

deactivated so that the internal camera geometry remains stable (Eltner et al., 2016). 

Conversely, systematic errors might be produced see (Section 3.2.6). Shutter speed 

defines the exposure time and regulates the motion blur (Sieberth et al., 2014; O’Connor 

et al., 2017). Increased exposure time (i.e. low shutter speed) allows more light to reach 

the sensor, thereby improving dark images. However, it can overexpose bright ones 

increase blur. High shutter speed reduces the errors due to UAV forward motion. ISO 

indicates the sensor’s noise and is generally set at low values. In order to generate sharp 

                                                 
3www.dji.com/  
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images, camera settings should be taken into account. Important considerations related to 

optimal camera settings can be found in O’Connor et al. (2017). 

2.3.2 Transition from classical to UAV-based photogrammetry 

Early studies with medium format digital cameras employed on microlight aircrafts 

represent an important advance in airborne photogrammetry providing affordable to that 

time survey mapping solutions (Graham, 1988; Mills et al., 1996). Recently, mini UAVs 

with off-the-shelf digital cameras have become even more attractive over expensive 

manned photogrammetric platforms and heavy metric cameras respectively (Toth and 

Jóźków, 2016). Together with the continuously emerging UAV technology, as discussed 

previously, contemporary processing approaches have been developed blending classical 

photogrammetric and computer vision algorithms. An overview and history of the SfM-

MVS pipeline evolution is presented here. 

The SfM-MVS pipeline has facilitated and expedited the photogrammetric process using 

image-based feature matching approaches (Seitz et al., 2006; James and Robson, 2012; 

Remondino et al., 2014). SfM-MVS is related to the 3D geometry of an object or a scene 

(structure) viewed from multiple positions (multi-view) of a moving camera (motion) 

(Ullman, 1979; Snavely et al., 2008; Granshaw, 2016a). SfM-MVS involves a self-

calibrating bundle adjustment together with two image-based matching approaches: a) 

feature-based and b) area-based. The feature-based approaches establish the detection of 

corresponding points or features (such as edges, lines, corners etc.). This has also been 

named image correspondences (Lowe, 2004; Remondino et al., 2014). The area-based 

approaches utilise local or global window templates to measure the per-pixel intensity 

values (e.g normalized cross-correlation (NCC) function, gradient-based algorithms, 

energy minimization algorithms etc.) (Hirschmüller, 2008; Szeliski, 2011; Gruen, 2012; 

Remondino et al., 2012; Scaioni et al., 2015). These approaches enable the generation of 

disparity or depth map, known in photogrammetry as parallax, which corresponds to the 

object’s height perception from overlapping stereo pairs (Remondino et al., 2014; Wolf 

et al., 2014). The current state of the SfM-MVS pipeline results from a blend of 

developments in bundle adjustment and image-based matching algorithms from both the 

photogrammetry and computer vision community (Remondino et al., 2014; Granshaw 

and Fraser, 2015; Eltner et al., 2016).  

According to published reviews (Snavely et al., 2008; Westoby et al., 2012; Nex and 

Remondino, 2014; Remondino et al., 2014; Granshaw and Fraser, 2015; Scaioni et al., 
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2015; Eltner et al., 2016), the major contributions from the two communities that 

supported the evolution of the SfM-MVS concept, are listed in Table 2.1. More studies 

could be reported, but Table 2.1 constitutes the core of the SfM-MVS concept. As 

evidenced in Table 2.1, the transition from analogue to analytic and digital 

photogrammetry from 1950 to 1990 gave more automated and precise techniques that 

were incorporated within least squares adjustment for image matching. The transition also 

included the extension of a stereo pair from two images to multiple stereo pairs. In 

parallel, computer vision algorithms emerged through robotic applications. These focused 

on developing fast algorithms thereby decreasing the computational effort for matching 

multiple images. This was beneficial for the era of close range photogrammetry, in the 

1990s and later, when convergent imagery was included into the photogrammetric blocks. 

Moreover, the development of computer vision algorithms supported reconstruction of 

3D surfaces from convergent imagery, which traditional aerial photogrammetric 

algorithms could not handle. This is because traditional algorithms were designed to cope 

with 100% nadir imagery from calibrated cameras. The computer vision approaches 

provide automation with the potential to overcome the reliance on a priori information 

such as the camera’s IOPs or surveyed GCPs (Nex and Remondino, 2014; Remondino et 

al., 2014; Granshaw and Fraser, 2015). 

Over the last decade, novel feature detection algorithms and linear optimization 

approaches from computer vision (Table 2.1), have been adopted into the self-calibrating 

bundle adjustment and applied to close-range images (Fonstad et al., 2013; Nex and 

Remondino, 2014; Granshaw and Fraser, 2015). These, together with the innovative 

image matching approaches (Table 2.1), enabling a dense surface representation, have led 

to the maturity of the SfM-MVS matching concept (Remondino et al., 2014). 

The SfM-MVS pipeline has become a standard workflow for processing UAV imagery 

(James et al., 2017a), as it can handle mixed image block geometries of non-vertical, 

unordered and marker-less images (Fonstad et al., 2013; Nex and Remondino, 2014). This 

is mainly attributable to the feature-based image matching algorithms, which are able to 

generate a high number of image correspondences (usually >1000) regardless of the 

different image rotations, scales and baselines within the photogrammetric block (Fonstad 

et al., 2013; Nex and Remondino, 2014). The adaptation of random sampling consensus 

“(RANSAC)-type” algorithms (e.g. maximum a posterior sample consensus, least median 

of squares etc.), into the feature-based matching algorithms, has aided in removing 

erroneous image correspondences (i.e. outliers) and simultaneously estimating the 
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relative orientations in a fast and robust manner (Snavely et al., 2008; Barazzetti et al., 

2010; Granshaw and Fraser, 2015). Conversely, in the classical photogrammetric 

procedure, a smaller number of high quality points (i.e. tie points and GCPs), compared 

to SfM-MVS, can solve for the collinearity condition (Fonstad et al., 2013; Granshaw and 

Fraser, 2015). 

In classical photogrammetry the self-calibrating bundle adjustment relies on the inclusion 

of redundant GCPs to re-estimate the camera’s IOPs and EOPs (Nex and Remondino, 

2014). Their initial values are usually obtained by laboratory or field calibration methods 

performed in advance (Wolf et al., 2014). In the SfM-MVS pipeline, initial values of 

camera’s IOPs are not essential as only an approximate estimate of the focal length is 

typically extracted from the exchangeable image file format (EXIF, Snavely et al. (2008)). 

Then, a self-calibrating bundle adjustment re-estimates the focal length and determines 

all other interior parameters per image based on specified camera calibration models with 

the aid of linearised formulations adapted from computer vision (Pierrot Deseilligny and 

Clery, 2011; Fonstad et al., 2013; Granshaw, 2016b). 

In the past heavy and expensive metric cameras were designed and calibrated to be used 

in the classical airborne photogrammetry for mapping purposes (Clarke and Fryer, 1998). 

The geometric stability of those cameras was well defined by manufacturers. With the 

advance of consumer-grade, lightweight digital cameras, as not being designed for the 

derivation of metric information, the stability of their interior orientation was and still is 

a crucial consideration. A large body of literature has investigated the geometric internal 

consistency of consumer-grade digital cameras since late 90s (Fraser, 1997; Clarke and 

Fryer, 1998; Shortis et al., 1998; Mills et al., 2003b; Habib et al., 2006; Wackrow et al., 

2007). Their investigations including development of camera calibration methods and 

assessment of interior parameters behavior have improved our understanding of errors 

propagated into any type of photogrammetric products, with the more recent ones derived 

from the SfM-MVS pipeline (Section 3.2.6).  

 

 



 

Table 2.1: Summary of major innovations in image matching from photogrammetry and computer vision contributed to SfM-MVS evolution. 

Studies Contribution Community 

Hobrough (1959); Introduction of image cross correlation for identification of image correspondences. Photogrammetry 
Marr and Poggio (1976); Longuet-Higgins (1981) Stereo disparity determination and implementation on biological applications of neuroscience. Computer Vision 
Helava (1978); Implementation of image cross correlation on stereoscopic plotting systems. Photogrammetry 
Granshaw (1980); Fraser (1982);  
Dermanis (1994); Fraser (1997); Self-calibration and free network bundle adjustment techniques. Photogrammetry 

Lucas and Kanade (1981); Moravec (1981); Early work for feature tracking and image registration with applications in robotics.  Computer Vision 
Fischler and Bolles (1981); Random sampling consensus algorithm (RANSAC) for outlier detection in image observations. Computer Vision 
Förstner (1982); Ackermann (1984); Image to image least squares correlation, parallax determination and implementation in analytical plotter. Photogrammetry 
Rosenfeld and Kak (1982); Introduction to similarity correlation measures.  Computer Vision 
Gruen (1985); Gruen and Baltsavias (1988); Geometrical constraints for multi-photo least squares matching. Photogrammetry 
Förstner (1986); Förstner and Gülch (1987); Detecting distinctive points with precise localisation for image matching.  Photogrammetry 
Wrobel (1987); Heipke (1992); Least squares image matching in object space. Photogrammetry 
Harris and Stephens (1988); Interest operator for identifying image correspondences based on gradient-based algorithms. Computer Vision 
Spetsakis and Aloimonos (1991); Collins (1996); Geometric relationships between object and image space from multiple images. Computer Vision 
Tomasi and Kanade (1992); Shi and Tomasi (1994); Matrix formations of image observations including affine transformation for feature tracking. Computer Vision 
Förstner (1993); Feature extraction from multiple images and geometrical relationship between object and image space. Photogrammetry 
Maas (1996); Combination of previous image matching approaches for DEM reconstruction from multiple images. Photogrammetry 
Roy and Cox (1998);  Global energy minimisation cost routine for matching multiple epipolar line pairs. Computer Vision 
Birchfield and Tomasi (1999); Per-pixel measurements for disparity computation. Computer Vision 
Triggs et al. (2000); Linear numerical formulations for bundle adjustment. Computer Vision 
Lowe (2004); Ke and Sukthankar (2004); Rosten and 
Drummond (2006); Bay et al. (2008); Interest operators for detection and description of distinctive features on images. Computer Vision 

Pierrot-Deseilligny and Paparoditis (2006) Extension of Roy and Cox (1998) algorithm with satellite imagery. Photogrammetry 
Vogiatzis et al. (2007); Furukawa and Ponce (2010); 
Vu et al. (2012) MVS algorithms including patch-based and global optimisation routines. Computer Vision 

Hirschmüller (2008); Gehrke et al. (2010) Semi global matching (SGM) algorithms for dense representation of a surface. Computer Vision 
Photogrammetry 

28 



 29 

In conventional airborne photogrammetry, approximate camera EOPs are estimated from 

on-board survey-grade GNSS/IMU sensors facilitating the aerial triangulation solutions 

(Schenk, 1997). Consumer-grade UAVs carry miniature GNSS/INS sensors of low 

positional accuracy (Section 2.3.1), consequently the inclusion of GCPs in the SfM-MVS 

pipeline is recommended (James and Robson, 2014). However, researchers are currently 

investigating automated solutions as a tradeoff between accuracy and cost, critical 

parameters of a monitoring strategy (Carbonneau and Dietrich, 2016; James et al., 2017b). 

A description of the SfM-MVS pipeline as implemented in current commercial software 

is presented in Section 3.2. 

2.3.3 Applications to morphological monitoring, UAV-case studies 

Recent morphological monitoring case studies with UAV systems, as discussed in Section 

2.3.1, are introduced here.  

Niethammer et al. (2012) monitored the Super-Sauze landslide in the southern French 

Alps. They generated a SfM-MVS derived DEM of 0.06 m spatial resolution, using a 

quad-rotor UAV equipped with a Praktica Luxmedia 8213 compact camera, manually 

flying 100-250 m above ground level. They established 199 GCPs, which were included 

into the SfM-MVS pipeline (e.g. as a combination of three software: a) Vision 

Measurement System4 for close range photogrammetric process, b) Gruen Otto–Chau 

image matching algorithm; Otto and Chau (1989) and c) an image blending algorithm 

included in OrthoVista5). They achieved a 0.20 m planimetric and vertical RMSE after 

comparing the SfM-MVS estimation with the GNSS surveyed GCP coordinates. To 

cross-validate the results, the SfM-MVS DEM was compared with a TLS DEM at the toe 

of the landslide, delivering a 0.310 m vertical RMSE. Due to high uncertainty, the authors 

acknowledged that this study was suitable for displacement analysis at an annual basis, 

as smaller displacement magnitudes could not be resolved from observations of higher 

temporal frequency.  

d'Oleire-Oltmanns et al. (2012) extracted a DEM of 0.05 m spatial resolution with a Sirius 

I MAVinci fixed-wing UAV fitted with a Panasonic Lumix GF1 compact camera, flying 

at approximately 70 m above ground level. They surveyed 30 GCPs with total station 

delivering a 0.03 m planimetric and 0.01 m vertical precision and achieved a cm-level 3D 

RMSE at GCPs after including them in the SfM-MVS bundle adjustment (e.g. Leica 

                                                 
4 www.geomsoft.com/  
5 www.orthovista.com/  

http://www.geomsoft.com/
http://www.orthovista.com/
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Photogrammetric Suite). They demonstrated the capability of their system to identify high 

spatial resolution gully edges, which aided in monitoring gully development in Morocco. 

However, there were no independent observations to cross-validate their results.  

Turner et al. (2015) presented the continuation of a monitoring study of an active landslide 

in southern Tasmania firstly commenced by Lucieer et al. (2014). This landslide is 

moving with a rate of approximately 0.01-0.038 m per day (Lucieer et al., 2014). Turner 

et al. (2015) generated seven DEMs of 0.02 m spatial resolution when flying with a multi-

rotor OktoKopter equipped with a Canon 550D Digital Single Lens Reflex (DSLR) 

camera at 40 m height. SfM-MVS processing (e.g. PhotoScan; see Table 3.1) was adopted 

with the inclusion of 16-66 GCPs, with a different number per campaign. To evaluate the 

SfM-MVS results, RMSEs at independent check points (CPs) were calculated by 

comparing the CP coordinates, surveyed with RTK GNSS, at the estimated SfM-MVS. 

Planimetric and vertical RMSEs were estimated in the range 0.031-0.076 m and 0.031-

0.090 m respectively. They also reported that a 0.07 m mean vertical RMSE was 

calculated over stable terrain after comparing subsequent DEMs. The authors noted that 

UAV acquisitions with higher frequency than a few-months duration would be necessary 

in order to resolve the actual displacement rate.  

Eltner et al. (2015) generated dense point clouds of 0.002 m and 0.004 m GSD with 

Panasonic Lumix DMC-LX3 and Sony NEX 5N cameras respectively, mounted on an 

octo-rotor Falcon 8 UAV flying within 8-11 m above ground level. They validated the 

SfM-MVS derived data (processed in Pix4D; see Table 3.1) against TLS-derived 

observations through point cloud comparisons, delivering an average 0.005 m 3D 

standard deviation for the differences. They reported that the lowest detectable change 

was 0.01 m from their multi-temporal SfM-MVS observations, by applying typical error 

propagation approach to the 0.005 m standard deviation with a 90% confidence level 

(Wolf and Ghilani, 2010). Eltner et al. (2015) demonstrated the high spatial and temporal 

resolution of SfM-MVS outputs and the capability to quantify soil erosion with precision 

of 10-2 m3 and detect surface ridges of 0.02 m width.  

Woodget et al. (2015) investigated the quantification of fluvial geomorphology with the 

use of a SfM-MVS pipeline from images obtained with the consumer-grade Draganflyer 

X6 UAV. This was equipped with a Panasonic Lumix DMC-LX3 compact camera. Four 

DEMs of average 0.02 m spatial resolution were generated when the UAV was flying at 

approximately 27 m. From 16 to 25 GCPs were incorporated into the SfM-MVS pipeline 
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(e.g. PhotoScan) and hundreds of independent CPs were observed with total 

station/GNSS for validation. After comparing the SfM-MVS derived CP coordinates with 

the surveyed CP coordinates, vertical standard deviations outside the submerged areas 

were estimated in the range 0.019-0.203 m. High vertical standard deviations were 

attributed to tall and dense vegetation.  

Gonçalves and Henriques (2015) evaluated the SfM-MVS pipeline in monitoring of 

coastal dynamics at sandy beaches of the Portuguese coast. They used a SwingletCAM6 

fixed-wing UAV equipped with a Canon IXUS 220 HS compact camera. A 0.045 m and 

a 0.032 m GSD were estimated when the UAV flew at 131 m and 93 m above ground 

level respectively at two different sites. 12 and 13 GCPs were incorporated into the SfM-

MVS processing (e.g. PhotoScan) of the two UAV flights. 114 and 71 independent CPs 

were distributed on the sand at the first site and outside the GCP-coverage at the second 

site respectively and surveyed with RTK GNSS. A 0.046 m and a 0.107 m vertical 

RMSEs were estimated at CPs indicating the overall accuracy of the SfM-MVS outputs. 

Gonçalves and Henriques (2015) explained that poor accuracy was caused by sand 

movement which might have occurred below the targets while surveying with the GNSS 

poles.  

Dall'Asta et al. (2017) utilised a SwingletCAM fixed-wing UAV to monitor a rock alpine 

glacier in Italy with an expected motion of 0.10 m per month. This UAV flew twice fitted 

with a Canon IXUS 220 HS and a Canon IXUS 125 HS compact camera in 2012 and 

2014 respectively, at an average flying height of 150 m above the ground. A 0.05 m GSD 

was achieved from both cameras and both flights. With the use of 10 to 16 GCPs in the 

SfM-MVS pipeline (e.g. PhotoScan), a 0.110 m and a 0.156 m standard deviations in 

elevation were calculated after comparing the coordinates from GNSS observations at 

CPs. In the same study, a senseFly eBee7 RTK UAV flew at 140 m with a Sony Cyber-

shot DSC-WX220, which has better pixel resolution than the other two cameras, 

delivering a 0.04 m GSD. A 0.05 m 2D RMSE and a 0.072 m vertical RMSE was 

computed after comparing the RTK-UAV derived and GNSS surveyed coordinates at 12 

CPs. The RTK-UAV derived point cloud was compared against a GCP-UAV derived 

point cloud after co-registering the two point clouds with an Iterative Closest Point (ICP) 

algorithm. The point-to-point comparison delivered a 0.136 RMSE, indicating the overall 

uncertainty of the RTK-UAV direct georeferencing. From the multi-epoch UAV-derived 

                                                 
6 www.sensefly.com/fileadmin/user_upload/sensefly/images/BROCHURE-swingletCAM.pdf  
7 www.sensefly.com/drones/overview.html  

http://www.sensefly.com/fileadmin/user_upload/sensefly/images/BROCHURE-swingletCAM.pdf
http://www.sensefly.com/drones/overview.html


 32 

orthophotomosaics Dall'Asta et al. (2017) identified the displacement of 48 markers and 

compared against GNSS observations, achieving a 0.16 m 3D RMSE. This study 

demonstrated that comparable accuracies can be derived from the GCP and RTK-UAV 

based solutions. However, they did not explicitly derived minimum detectable thresholds 

that can be estimated from the various solutions to confirm their suitability for glacier 

monitoring of a dm-level motion per month.  

Cook (2017) utilised a DJI Phantom 2 quadcopter customised with a Canon IXUS 135 

and Powershot 4000IS compact cameras of 16 Mb resolution to monitor the erosion of 

the Daan River Gorge in Taiwan. They manually flew the quadcopter at an average height 

of 73 m and generated SfM-MVS point clouds of an average 0.022 m GSD. They 

incorporated 8 -14 GCPs into the SfM-MVS pipeline (e.g. PhotoScan) during two UAV 

campaigns. After comparing the two point clouds with TLS derived point clouds, 

generated at the same epochs, 3D RMSEs of an order of 0.30 m were computed from the 

point-to-point differences. They suggested that 0.30 m is the lowest detectable threshold 

of 3D surface change with their methodology.  

The aforementioned case studies demonstrated variations of SfM-MVS outputs in spatial 

resolution and uncertainties, delivered from a wide spectrum of UAV systems with 

GNSS/IMU and imaging sensors of different performance and spatial resolution 

respectively. According to James and Robson (2012) and Eltner et al. (2016) a relative 

error ratio (er) can be computed to compare the reported uncertainties as follows: 

 = e
r

σ
e

H
  (2.2) 

where σe is a reported vertical error representing either an RMSE or standard deviation 

value after comparing SfM-MVS results against benchmark datasets (e.g. TLS or 

independent CPs) and H corresponds to the average flying UAV height. Based on 

Equation (2.2) relative error ratios of the aforementioned studies are listed in Table 2.2. 

Equation (2.2) was also applied to compare results from this research (see Chapters 5 and 

6) with the results of the aforementioned studies and presented in Section 7.1.1. 
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Table 2.2: Reported vertical errors and estimated relative error ratios per study.  

Study  Inclusion  
of GCPs 

Reported 
vertical 

errors [m] 

Average 
flying height 

[m] 

Relative 
error 
ratio 

Highest/ 
lowest 
error 

Niethammer et al. (2012) Yes 0.310 175 1:565  
Turner et al. (2015) Yes 0.044 40 1:909 Lowest  
Turner et al. (2015) Yes 0.090 40 1:444 Highest 
Eltner et al. (2015) Yes 0.005 9.5 1:1900  

Woodget et al. (2015) Yes 0.019 26.89 1:1415 Lowest 
Woodget et al. (2015) Yes 0.203 28.39 1:140 Highest 

Gonçalves and Henriques (2015) Yes 0.046 131 1:2848 Lowest 
Gonçalves and Henriques (2015) Yes 0.107 93 1:869 Highest 

Gerke and Przybilla, (2016) No  
(RTK-UAV) 

0.065 105 1:1615  

Cook (2017) Yes 0.307 73 1:238  
Dall'Asta et al. (2017) No  

(RTK-UAV) 
0.072 140 1:1944 Lowest 

Dall'Asta et al. (2017) Yes 0.110 150 1:1364 Highest 
 

For studies with numerous experiments, Table 2.2 reports the results with the highest and 

lowest errors. Relative error ratios are in the region of 1:140-1944 with the lowest caused 

primarily by vegetation presence (Woodget et al., 2015). Overall, ratios are at the lower 

end of the 1:1080-9400 which were estimated from the use of DSLR cameras and 

conventional photogrammetric procedures by James and Robson (2012). In addition, in 

the absence of GCPs, the ratios are comparable giving confidence to the performance of 

the recent RTK-UAV. However, in the context of morphological monitoring, 

investigation of the error distribution is also required. It is noteworthy that, regardless of 

the UAV system and/or camera types, SfM-MVS processing can generate uncertainties 

that influence the level of the minimum detectable surface change (Section 3.2). The 

review of these case studies demonstrated that consumer-grade UAVs equipped with off-

the-shelf cameras can offer cm-level spatial resolution and can constitute a suitable cost-

effective monitoring approach. However, examination of resultant uncertainties is a 

necessity (Mantovani et al., 1996) , which can be achieved with the aid of total station, 

GNSS and/or TLS observations as they provide up to mm-level accuracies.  

Equation Chapter (Next) Section 1  



 34 

2.4 Summary 

Chapter 2 demonstrated the wide range of geomatics monitoring techniques and discussed 

their performance in relation to accuracy and cost-effectiveness. Firstly, conventional 

geotechnical and geophysical investigations, used to observe subsurface structure, were 

introduced. These are generally complemented by total station and GNSS observations to 

derive surface displacement and movement rates. These techniques can quantify landslide 

deformations with high accuracy but low spatial resolution. Previous monitoring studies 

with photogrammetric, ALS and TLS observations demonstrated the capability for high 

spatial and temporal resolutions with high performance. Although these techniques are 

still popular in landslide monitoring, they are relatively costly. Chapter 2 also reviewed 

current UAV-based approaches which bridge the gap between terrestrial, manned 

airborne and spaceborne techniques. The flexibility of mini UAVs with compact and low-

cost off-the-shelf digital cameras alongside the ease of contemporary SfM-MVS 

processing workflow have become attractive in monitoring studies. The review showed 

that consumer-grade UAV-based approaches could deliver cost-effective monitoring 

solutions with acceptable accuracies and spatial resolutions for landslide monitoring. 

However, to quantify the landslide deformation that each approach can observe, errors 

inherited in the SfM-MVS process and UAV systems must be investigated. As a 

continuation of this review, Chapter 3 details the associated uncertainties and proposes a 

morphology-based monitoring strategy.   
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Chapter 3.  
Morphology-based monitoring strategy 

Chapter 2 reviewed existing geomatics techniques for landslide monitoring and 

highlighted some relevant differences between them. Discussion related to different 

spatial and temporal resolutions, operational costs for repeated surveys and the level of 

landslide movement each technique can estimate. The chapter also presented the 

evolution and emergence of UAV technology, in combination with the SfM workflow, as 

a modern and affordable airborne photogrammetric approach. Through the discussion, it 

was concluded that mini consumer-grade UAVs are suitable for monitoring purposes, 

enabling point clouds of high density with relatively low operational costs. This chapter 

presents a monitoring strategy that can be applied to UAV imagery acquired over 

inaccessible hazardous terrain accounting for the variations of surface morphology over 

time. The chapter commences with an introduction of the proposed monitoring strategy 

and then describes the generation of DEM, orthophotomosaic and surface morphological 

attributes, which are the core input datasets, also highlighting associated errors. Finally, 

every step of the proposed strategy is explained, while the various algorithms involved in 

the process are reviewed.  

3.1 Strategy overview 

The proposed morphology-based monitoring strategy links together three prime aspects 

of surface monitoring, namely a) co-registration for aligning time-series of 3D surfaces; 

b) 3D sensitivity to set the error boundaries through statistics; and c) estimation of 3D 

surface change to support landslide mechanism investigation (Figure 3.1). 
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Figure 3.1: Morphology-based monitoring strategy overview 

Co-registration constitutes the core step of the proposed monitoring strategy. Unresolved 

misalignment errors and other possible biases from the co-registration step are expressed 

in the 3D sensitivity. This quantifies the minimum detectable change and constitutes a 

quality index of co-registration. Cross-validation of the estimations is performed with 

independent benchmark datasets and is integrated into every phase of the monitoring 

strategy. The fundamental element of the proposed monitoring strategy that distinguishes 

it from other approaches is the bond between landslides and surface morphology. This 

bond is developed through the integration of surface morphological attributes into the 

adopted workflows for co-registration and surface estimation. This integration involves 

an automatic generation of pseudo GCPs incorporated into the SfM-MVS pipeline, 

eliminating the requirement for surveyed GCPs. Moreover, it involves the combination 

of morphological attributes with image cross-correlation functions to automatically 

quantify landslide kinematics. 

3.2 UAV-derived SfM-MVS products 

3.2.1 Typical SfM-MVS pipeline  

According to recent published studies and reviews (Snavely et al., 2008; Haala and 

Rothermel, 2012; Fonstad et al., 2013; James and Robson, 2014; Remondino et al., 2014; 

Eltner and Schneider, 2015; Eltner et al., 2016; James et al., 2017a), the standard SfM-

MVS pipeline can be summarized into three main phases, as follows: 

Sparse point cloud reconstruction: Firstly, the generation of a point cloud of tie points 

(i.e. image observations, internal constraints, sparse point cloud) is performed, with 

feature-based matching, via a self-calibrating bundle adjustment without any a priori 

information of the camera’s IOPs. This step aligns acquired images and establishes a 

Surface 
morphological 
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Co-
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3D change3D 
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multi-stereo pair reconstruction based on epipolar geometry8. In particular, a feature-

based algorithm detects and matches corresponding points lying on epipolar lines across 

images. Subsets of images are incrementally aligned until the complete photogrammetric 

block is orientated. Outlier detection is recursively performed to eliminate erroneous 

point matches. The camera’s IOPs and EOPs are simultaneously determined through 

iterations in a least squares sense by minimizing a global reprojection error. This 

quantifies the pixel differences between the initially detected corresponding points and 

those estimated and back-projected into all overlapping images of the photogrammetric 

block. Hence, space resection and intersection9 of every tie point is resolved and a sparse 

point cloud with 3D coordinates in an arbitrary coordinate system is generated.  

Georeferencing: Control information is necessary to scale and orientate the resultant 

sparse point cloud and photogrammetric block, determining the precise 3D shape of a 

surface. It is usually provided in the form of surveyed GCPs (indirect georefencing, IG), 

or obtained from the positions and/or orientations of the camera exposure stations (direct 

georeferencing, DG). This information is used as weighted observations (i.e. external 

constraints) in conjunction with the tie points (i.e. internal constraints) in a least squares 

bundle adjustment, thereby re-estimating the camera’s IOPs, EOPs and the 3D 

coordinates of the sparse point cloud in the desired coordinate system.  

Dense point cloud (DPC) reconstruction: Given the already established epipolar geometry 

of the photogrammetric block from the first phase, disparities are computed at all pixels 

via area-based image matching approaches. The pixels are back-projected to all images 

and triangulated (i.e. via spatial intersection) to form a 3D surface without abrupt 

irregularities through gradient-based and energy minimization algorithms. The SfM-

MVS pipeline results in a RGB-colored DPC that constitutes the raw form of a 3D surface 

representation.  

3.2.2 DSM/DEM generation 

A DSM and DEM constitute the common digital mathematical surface representations 

(2.5D or quasi-3D models) with each grid point comprising one single elevation value, as 

opposed to true 3D surface with multiple elevations over a particular point (Turner, 1997; 

Koch and Heipke, 2006; Wolf et al., 2014). A DSM represents the earth’s terrain, 

including manmade features and vegetation, whereas a DEM only includes the bare earth 

                                                 
8 Equivalent to coplanarity condition (see Section 2.2.1). 
9 See Section 2.2.1 
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(Aguilar et al., 2005). Both models are structured either in the form of a regular grid or a 

triangulated irregular network (TIN) (Wolf et al., 2014).  

In a grid DEM the elevation values are stored in a double array of square pixels with a 

uniform size (Wolf et al., 2014; de Smith et al., 2015). Additional georeferencing 

information, such as XY coordinates of the centres of the four corner pixels, are typically 

embedded into a DEM. A TIN involves the creation of unique triangles from a point cloud 

representing planar facets with XYZ coordinates at their nodes. The triangles are 

structured with Delaunay triangulation, which connects the points with each other to form 

the triangle edges based on a particular assumption. This requires that any circle passing 

through three vertices of a triangle does not include any vertex from another triangle, 

resulting in triangles with non-intersecting edges (Wolf et al., 2014; de Smith et al., 2015). 

Compared to a TIN, a grid DEM is suitable for the generation of orthophotomosaics and 

surface morphological attributes as it supports algorithmic processing in a 

computationally efficient way (Wolf et al., 2014). Alternatively, a TIN needs to be 

converted into a grid DEM with the aid of interpolation (Wolf et al., 2014).  

To generate any form of DEM, interpolation is performed from discrete point-based 

observations, creating a continuous surface without voids. Interpolation techniques are 

divided into two general categories: a) deterministic and b) probabilistic (Maune et al., 

2007; Bater and Coops, 2009; Godone and Garnero, 2013). The deterministic techniques 

rely on mathematical relationships between neighboring values, whereas the probabilistic 

techniques, also called geostatistical methods, predict this relationship by investigating 

the spatial autocorrelation of neighbouring points (Maune et al., 2007; Bater and Coops, 

2009; de Smith et al., 2015).  

Some common deterministic interpolation techniques applied in landslide monitoring 

studies are: natural neighbour, Delaunay triangulation, inverse distance weighted (IDW) 

and spline (Glenn et al., 2006; Kasai et al., 2009; Stumpf et al., 2013; Turner et al., 2015; 

Al-Rawabdeh et al., 2016b). Natural neighbor is based on Thiessen (or Voronoi) 

polygons. It assigns an elevation value on each point from those of the nearest Thiessen 

polygons, which define the region of influence around each point (Sibson, 1981; Guo et 

al., 2010). Delaunay triangulation is a linear interpolation technique and closely 

associated with the generation of the Thiessen polygons. These are formed by connecting 

the centres of the circumcircles of each triangle derived from Delaunay triangulation. 

IDW is based on the fundamental law of geography (Tobler, 1970), expressing that closest 
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points are more similar than distant ones (Guo et al., 2010). The weights used in IDW are 

inversely proportional to a power of the horizontal distance (usually a power of two) 

between a grid point and the nearest observed point (Chaplot et al., 2006). Splines create 

a smooth surface by fitting a combination of different linear functions to the observed 

points within a specified search radius (Guo et al., 2010; Godone and Garnero, 2013; 

Wolf et al., 2014). Apart from the aforementioned techniques, there are others such as 

nearest neighbour, bi-linear and bi-cubic interpolation, mostly suitable for image 

resampling (e.g. a bi-cubic technique was applied in Debella-Gilo and Kääb (2011)). For 

a complete description of available interpolation techniques refer to de Smith et al. (2015).  

Regarding geostatistical methods, Kriging is the most popular. Firstly, a semi-variogram 

is created, which indicates the spatial correlation between the values of observed points 

and their distances. Then, an empirical mathematical model is fitted to the semi-

variogram providing the autocorrelation values used to derive the kriging weights for the 

observed values of known locations. Based on these weights, kriging can predict the 

values to all unknown locations and generate the interpolated surface. For instance, in 

Immerzeel et al. (2014), kriging was applied to manually extracted points from UAV 

derived orthophotomosaics to compare their displacement against UAV derived DEMs. 

A detailed explanation of geostatistical methods can be found in Sarma (2009). 

In surface change detection studies, with point clouds of high but irregular density (e.g. 

derived with TLS or UAV), interpolation is sometimes avoided to prevent smoothing 

effects (Lague et al., 2013; James et al., 2017b). However, as time-series of morphological 

attributes and orthophotomosaics are utilised (see Chapters 5 and 6), interpolation is 

essential. The choice of an interpolation technique can affect the quality of a DEM in 

terms of how closely it models the true surface, regardless of the geomatics method 

applied to obtain the observations (Bater and Coops, 2009; Fan and Atkinson, 2015).  

Numerous studies have investigated the influence of various factors into the resultant 

interpolated surface, such as sampling point density, spatial resolution and morphology 

of the terrain (Lloyd and Atkinson, 2002; Aguilar et al., 2005; Chaplot et al., 2006; Bater 

and Coops, 2009; Aguilar et al., 2010; Guo et al., 2010; Fan and Atkinson, 2015). Aguilar 

et al. (2005) and Guo et al. (2010) concluded that high sampling point density does not 

necessarily decrease interpolation errors, as noise from strong surface variations can be 

added, especially over rough terrain. Conversely, they highlighted that the higher the 

point density is the higher the DEM quality becomes, but the computational effort 
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increases. However, oversampling can often decrease the DEM quality as in the case of 

merging a sparse with a denser point cloud (e.g. Buckley and Mitchell (2004)). Moreover, 

to reduce points, surface morphology should be taken into account so that a DEM properly 

reflects important characteristics. Guo et al. (2010) also reported that DEM quality is 

linearly correlated to the spatial resolution, with worse quality produced by coarser 

resolutions. Overall, there is no single interpolation technique outperforming others. For 

instance, in the context of landslides, spline and kriging are not suitable to model convex 

and concave breaks in slope, as noted by Tarolli et al. (2012). TIN can cope better with 

surface discontinuities than the other two techniques (Heritage et al., 2009). To improve 

the quality and faithfulness of a surface representation using TIN the insertion of 

breaklines of significant discontinuities that have constant slope is a necessity (Wolf et 

al., 2014). However, this requires additional human intervention and high computational 

effort when dealing with millions of points for DEM generation.  

To overcome the inclusion of breaklines and reduce the additional noise in high-density 

point clouds, recent studies have implemented moving planes interpolation with ALS and 

TLS datasets (Hollaus et al., 2010; Milenkovic et al., 2015). Compared to previous 

techniques, moving planes interpolation takes into consideration the local surface 

morphology. It fits the best-tilted plane to a specified number of nearest neighbour points, 

by minimizing the vertical distance in a least squares sense (Lancaster and Salkauskas, 

1981; Kraus et al., 2006; Hollaus et al., 2010). Hollaus et al. (2010) demonstrated that 

this technique can accurately model an inclined surface and Kraus et al. (2006) 

highlighted that it can handle possible outliers which exist above or below the surface 

through the least squares adjustment. Such outliers can be found in UAV derived point 

clouds, which makes the moving planes interpolation suitable for UAV DEM generation, 

especially over grassy and rough terrain.  

3.2.3 Orthophotomosaic generation 

To generate an orthophoto, which represents a continuous image grid with a uniform 

mapping scale, orthorectification is undertaken (Mikhail et al., 2001; Wolf et al., 2014). 

This ensures that each object is mapped in its true orthographic positions and relief 

displacement is removed from the orthophoto. Orthorectification is achieved with the 

inclusion of a DEM and the systematic use of collinearity condition for all grid points per 

image (Wolf et al., 2014). The pixels of an image are projected onto the DEM, their 

coordinates in object space are defined, and then are back-projected onto the image. 

Possible pixel differences, caused by relief displacement and perspective errors, are 
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minimised through interpolation to generate the orthoimage (Mikhail et al., 2001). By 

mosaicking orthoimages together, an orthophotomosaic is created.  

3.2.4 SfM-MVS software description  

Over the last decade a series of low-cost commercial and open-source SfM-MVS software 

has emerged and been used for UAV image processing (see Table 3.1). Such software are 

different from the high-end photogrammetric software (e.g. ImageStation, IMAGINE 

Photogrammetry, LPS, Inpho and SOCET GXP), as noted by Granshaw (2016b). Pure 

photogrammetric software was designed for fixed image block geometry, such as 100% 

nadir imagery, unlike the abrupt variations in flight altitudes and perspective views 

contained within a UAV image block (Rosnell and Honkavaara, 2012; Nex and 

Remondino, 2014; Wolf et al., 2014). Hence, traditional photogrammetric software 

cannot readily cope with the instability of on-board UAV compact cameras (Whitehead 

and Hugenholtz, 2015).  

Table 3.1: List of software produced to-date that adopts (partially or fully) the SfM-MVS pipeline. 
Software Source Commercial/ 

Open-source 
Autodesk 123D Catch (Autodesk, 2017) Open-source 
VisualSfM  (Snavely et al., 2008; Wu, 2017) Open-source 
Bundler  (Snavely et al., 2008; Lourakis and Argyros, 2009) Open-source 
Clustering View for Multi-view 
Stereo (CMVS)  

(Furukawa and Ponce, 2010) Open-source 

Patch-based Multi-view Stereo 
(PMVS2) 

(Furukawa and Ponce, 2010) Open-source 

MicMac-Apero  (Pierrot Deseilligny and Clery, 2011) Open-source 
Surface Reconstruction (SURE) (Haala and Rothermel, 2012) Commercial 
PhotoModeler  (PhotoModeler, 2017) Commercial 
Pix4D  (Pix4D, 2016) Commercial 
Agisoft PhotoScan  (PhotoScan, 2016a) Commercial 
 
Among the reported software in Table 3.1, only PhotoScan, Pix4d and MicMac follow 

the full SfM-MVS pipeline as previously described. For example, CMVS, PMVS2 and 

SURE are only designed for the DPC reconstruction and have augmented VisualSfM. 

Table 3.1 includes a list of the most frequently used tools within published studies. An 

extended list is described in Eltner et al. (2016). 

In recent years, PhotoScan has gained popularity in the scientific community, as 

evidenced in Figure 3.2, mostly due to its user-friendly, almost “black-box”, workflow 

(Eltner et al., 2016; James et al., 2017a). The number of published studies have gradually 

increased relative to Pix4D, whereas there is a steady linear trend for MicMac use (Figure 

3.2). It should be noted that the results in Figure 3.2 include UAV studies from many 
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scientific communities, and not only photogrammetry. PhotoScan’s simple workflow has 

appealed to non-photogrammetric experts. Whilst comparison of the various SfM-MVS 

software is not a core aim of this study, their review has supported the understanding of 

PhotoScan’s routines, since PhotoScan was implemented and integrated into the 

proposed monitoring strategy.  

 
Figure 3.2: Number of published studies processing UAV imagery with PhotoScan, Pix4D and MicMac in 
the last six years, as extracted from Scopus10.  

According to previous studies (Pierrot Deseilligny and Clery, 2011; Fonstad et al., 2013; 

Woodget et al., 2015) it is more likely that PhotoScan utilises a similar algorithm to SIFT 

(introduced by Lowe (2004)) in combination with a RANSAC-style algorithm for image 

alignment and sparse point cloud reconstruction. Compared to classical photogrammetric 

routines with image cross-correlation functions (Helava, 1978; Ackermann, 1984; Gruen 

and Baltsavias, 1988), the SIFT operator is not affected by variations in spatial resolution 

(Fonstad et al., 2013). This is because SIFT processes the images under multiple levels 

of blur and image resolutions. It detects interest points on the images at the local extremes 

created by the difference-of-Gaussian smoothing functions (Lowe, 2004). This particular 

property of SIFT makes feature-detection invariant to image translations, rotations and 

illumination differences, favorable for aligning UAV imagery (Fonstad et al., 2013; 

Woodget et al., 2015). This was also demonstrated in Snavely et al. (2008) through 

aligning internet photos acquired in different seasons, with different sensors and spatial 

resolutions. A comprehensive description of SIFT implementation can be found in Lowe 

(2004) and Ives and Delbracio (2014). In addition, Jazayeri and Fraser (2010) identified 

a collection of various feature detectors/descriptors not yet widely established in close 

                                                 
10 Three searches performed in Scopus on 13th June 2017, based on the three software names titles, as 
follows: [“software name” AND “UAV” OR “RPAS” OR “drones”]. 
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range photogrammetry and demonstrated their performance on image matching. A more 

recent study (Kehl et al., 2017) investigated the performance of various SIFT-like 

algorithms under multiple scenarios of different illumination conditions. They reported 

that few algorithms successfully detected homologous features due to radiance variations 

observed on the images. Overall, different SIFT implementations can lead to different 

results depending on their algorithmic settings alongside the environmental conditions at 

the time of image acquisition.  

3.2.5 SfM-MVS pipeline in PhotoScan 

Sparse point cloud reconstruction 
The numerical implementation of SIFT-RANSAC, and the definition of the arbitrary 

coordinate system during the sparse point cloud reconstruction phase, is not clearly 

explained in PhotoScan’s documentation. However, based on other studies (Hartley and 

Zisserman, 2004; Snavely et al., 2008; Barazzetti et al., 2010), the RANSAC outlier 

detection algorithm appears to rely on the photogrammetric block’s relative orientation 

and epipolar geometry, which are expressed by the fundamental matrix. The fundamental 

matrix links points in overlapping images along their epipolar lines (Hartley and 

Zisserman, 2004; Snavely et al., 2008; Barazzetti et al., 2010; Granshaw and Fraser, 

2015). Firstly, candidate corresponding points detected by SIFT are stored in a 

connectivity graph (with nodes and edges), which links the spatial relationship between 

multiple image pairs. The graph nodes correspond to the images and the graph edges to 

the image pairs associated with the number of corresponding matches (Snavely et al., 

2008; Rupnik et al., 2015). An initial image pair selection establishes a first stereo view. 

The selection is based on the high number of image correspondences and a wide baseline 

with large intersection angle, as searched within the connectivity graph (Snavely et al., 

2008).  

To define the relative orientation of the initial stereo pair and estimate an approximate 

fundamental matrix, the Nistér (2004) method is typically applied. Five corresponding 

points are chosen among all SIFT candidate correspondences (Snavely et al., 2008; 

Barazzetti et al., 2010). RANSAC recomposes the relative orientation by eliminating 

outliers given an a priori threshold. Then, an initial sparse point cloud of the first stereo 

pair is reconstructed via space resection and intersection. This point cloud incrementally 

extends, as points from more image pairs are concatenated (Snavely et al., 2008; 

Remondino et al., 2014; Rupnik et al., 2015). A self-calibrating bundle adjustment solves 

for the minimisation of a global reprojection error with the aid of iterative optimisation 
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methods such as Gauss-Newton, Gauss-Markov and Levenberg-Marquardt (Snavely et 

al., 2008; Lourakis and Argyros, 2009; Pierrot Deseilligny and Clery, 2011; Remondino 

et al., 2012).  

This bundle adjustment also estimates the camera’s IOP based on specified camera 

distortion models. For example, PhotoScan has adopted the Brown distortion model 

(Brown, 1971), widely used in photogrammetry, which is expressed as (Zhang, 1996; 

Wolf et al., 2014; Carbonneau and Dietrich, 2016):  
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where ( , )x y  are the distorted image coordinates, ˆ ˆ( , )x y  the undistorted (i.e. distortion-

corrected) image coordinates, (xp, yp) the image coordinates of principal point location, r 

the radial distance, 1 2 3 4( , , , )K K K K  parameters of symmetrical radial lens distortion and 

1 2 3 4( , , , )P P P P  parameters of decentring (asymmetric radial and tangential) distortion 

(Wolf et al., 2014). Based on the central perspective geometry, the principal point is 

considered as the origin of the image coordinate system. Typical symmetrical radial 

distortion patterns are barrel and pincushion, with magnitudes of distortion towards and 

outwards from the image centre respectively. Decentring distortion is caused by 

misalignments of the lens system (Wolf et al., 2014).  

PhotoScan provides the option to select a number of parameters to be re-estimated; 

otherwise the parameters are regarded as fixed and not included in the bundle adjustment. 

However, for compact cameras, it is preferable to account for the radial distortion 

estimation only, as decentering generally does not provide a comparable significant 

distortion magnitude (Eltner and Schneider, 2015). MicMac and Pix4D also offer the 

capability to select other distortion models, such as polynomial models of higher degrees, 

or to create a theoretical model, or even combine all provided ones together (Pierrot 

Deseilligny and Clery, 2011; Tournadre et al., 2015). Older SfM-MVS tools with limited 

functionality (e.g. VisualSfM) use only the K1 symmetrical radial lens distortion 

parameter. For a detailed comparison of the different SfM-MVS software capabilities the 

reader can refer to Eltner and Schneider (2015) and Eltner et al. (2016). 
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In the case of UAV imagery acquired with off-the-shelf compact cameras, the self-

calibrating bundle adjustment is generally preferred to fixing the pre-calibration values 

of distortion parameters. This is because the self-calibrating bundle adjustment can 

compensate for on-board instability and the imaging network irregularity in an off-the-

shelf camera (Luhmann et al., 2016). Carbonneau and Dietrich (2016) noted that 

estimated values of camera distortion parameters derived from multiple SfM-MVS self-

calibration experiments under identical environmental and sensor conditions varied 

significantly. Harwin et al. (2015) compared the SfM-MVS self-calibrating solution 

against the SfM-MVS bundle adjustment with fixed pre-calibrated distortion values. They 

conducted experiments with the same UAV imagery under different scenarios (e.g. with 

and without the inclusion of oblique imagery and with various numbers of GCPs). They 

concluded that overall the self-calibrating bundle adjustment provided smaller errors at 

independently surveyed CPs.  

However, recent studies (James and Robson, 2014; Eltner and Schneider, 2015; 

Carbonneau and Dietrich, 2016; James et al., 2017a; James et al., 2017b) have 

demonstrated that SfM-MVS self-calibrating bundle adjustment was unable to entirely 

resolve camera lens distortion. This was found to be particularly relevant in the case of 

low-cost cameras and in the absence of GCPs. Unresolved distortion formed bowl-shape 

systematic patterns that were recognisable either in the undistorted images (Eltner and 

Schneider, 2015) or in the vertical error distributions at independent CPs (James and 

Robson, 2014; James et al., 2017a).  

Georeferencing  
Regarding the georeferencing phase of the SfM-MVS pipeline, PhotoScan also supports 

the inclusion of external constraints (i.e. GCPs or camera exposure stations). Based on 

previous studies (James and Robson, 2014; Nex and Remondino, 2014; Rupnik et al., 

2015; James et al., 2017a) the georeferencing phase has two roles, namely a) to define the 

datum i.e. absolute orientation of the photogrammetric block; and b) to alleviate the bowl-

shape systematic effect. Typically a seven parameter Helmert transformation (three 

translations, three rotations and a scale) is performed after the self-calibrating bundle 

adjustment to transform the 3D point cloud from the arbitrary to the desirable coordinate 

system defined by the GCPs or the camera exposure stations (Eltner et al., 2016). Then, 

a least squares bundle adjustment is followed using weighted observations and estimating 

the camera’s IOPs and EOPs (James et al., 2017a). This step is optional in PhotoScan but 
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highly recommended (James et al., 2017a), whereas it is not included in VisualSfM and 

Bundler (Snavely et al., 2008; Eltner and Schneider, 2015).  

The internal and external constraints in PhotoScan are weighted according to four 

parameter settings, as named in PhotoScan (Reshetyuk and Mårtensson, 2016; James et 

al., 2017a): 

a) camera positional accuracy, which corresponds to the measurement precision of the 

camera exposure stations and orientations, usually associated with the uncertainties 

of on-board GNSS/INS sensors. Typical values of 10 m for position and 50º for 

camera angles (i.e. yaw, pitch, roll) are recommended for low-cost UAV platforms 

(PhotoScan, 2016b; PhotoScan, 2016a; Reshetyuk and Mårtensson, 2016). They were 

adopted in all experiments of this study; 

b) marker accuracy in meters, referring to the precision of measured GCPs or CPs as 

derived from field survey or any other adopted method. For mm-level precisions, a 

marker accuracy value between zero to five mm is recommended (Reshetyuk and 

Mårtensson, 2016; James et al., 2017a); 

c) marker accuracy in pixels, related to the precision of a marker (GCP or CP) after back-

projecting from 3D object to image space. PhotoScan recommends a typical value of 

0.1 pixels (PhotoScan, 2016a; James et al., 2017a); 

d) tie point accuracy in pixels, which corresponds to the precision of a tie point after 

back-projection from the 3D object to image space. PhotoScan recommends a typical 

value of four pixels (PhotoScan, 2016a; James et al., 2017a). 

It is noteworthy that after importing the 3D coordinates of GCPs into PhotoScan the user 

is required to locate at least three of them in the imagery. Given the already established 

epipolar geometry, PhotoScan allows for locating the remaining GCPs in an automated 

manner, mapping also the epipolar lines per image pair. The user then visually checks 

whether the result is correct or not, taking into consideration the estimated reprojection 

error per point. The user can refine the position of GCPs on images with sub-pixel 

movements if necessary. 

The aforementioned accuracies serve as a priori uncertainties in a weight matrix 

accompanying the observations in the least squares bundle adjustment (not explicitly 

described in PhotoScan’s documentation). The first three settings (a-c) are related to the 

weights of external constraints, whereas the fourth (d) is associated with the internal 

constraints. In an attempt to understand the functionality of the weight matrix, James et 
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al. (2017a) assessed the relationship between the last three parameters by computing the 

average 3D RMSEs at 15 GCPs and 15 CPs after repeating the least squares bundle 

adjustment with different values of the parameters. In their experiments, they used UAV 

imagery acquired in d'Oleire-Oltmanns et al. (2012). They demonstrated that marker pixel 

accuracies lying within the range of 0-1 pixel do not have a significant impact on 3D 

RMSEs variations. They also concluded that higher accuracy values are equivalent to 

lower weights in the bundle adjustment. Based on PhotoScan’s recommended settings of 

four pixels tie point accuracy and 0.1 pixels marker accuracy, they estimated that the 

GCPs were over-weighted. A trade-off between the two settings is required to prevent 

overfitting the observations towards tie point or marker weights (James et al., 2017a). 

They also recommended that the standard deviation of all image observations residuals 

after the sparse point cloud reconstruction phase can serve as tie point accuracy. 

Dense point cloud (DPC) reconstruction  
Concerning the DPC reconstruction phase, it is most likely that PhotoScan utilises an 

algorithm similar to SGM designed by Hirschmüller (2008) (Remondino et al., 2014; 

Eltner and Schneider, 2015). This approach is based on the assumption that in a stereo 

pair, neighboring pixels are expected to have similar disparities. The algorithm searches 

every single pixel along the epipolar line to find its potential correspondent disparity by 

assigning costs based on pixel value differences of its nearest neighbors (Dall'Asta and 

Roncella, 2014; Remondino et al., 2014). The search is performed in multiple directions 

within a neighborhood and the assigned costs are aggregated and evaluated through 

penalties. These control the smoothness level of the resultant 3D DPC. For example, 

neighboring pixels with large disparity variations get higher penalties. Costs and penalties 

are combined into a global cost function (Equations 13 and 14 in Hirschmüller (2008)). 

The final disparity per pixel corresponds to the disparity with the minimum cost 

(Hirschmüller, 2008; Dall'Asta and Roncella, 2014).  

Detailed descriptions of various area-based image matching approaches for 3D DPC 

reconstruction can be found in Remondino et al. (2014) and Dall'Asta and Roncella 

(2014). After comparing the performance of various approaches, both studies concluded 

that no overall significant differences of the reconstructed DPCs were observed. They 

also reported that matching algorithms are mostly sensitive to shadows and local sharp 

surface discontinuities.  

PhotoScan offers three different disparity options to control the smoothness level during 

reconstruction, namely mild, aggressive and moderate. The mild option maintains minor 
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surface details, the aggressive option filters out these details and the moderate option 

produces an intermediate smoothing. In combination with the aforementioned options, 

PhotoScan requires the specification of an image pyramid level upon which the 

reconstruction can be based. Four levels are provided, namely ultra-high, high, medium 

and low, with the first one maintaining the initial image spatial resolution. Each other 

level subsequently downscales the spatial resolution by 50%, decreasing proportionally 

the DPC density, similar to a subsampling filter. An optimal selection of disparity and 

image pyramid level is a trade-off between desired spatial resolution and computational 

effort (Remondino et al., 2014).  

After the SfM-MVS pipeline, the raw 3D DPC usually has an irregular structure, resulting 

in heterogeneous point density. At the edges of a study area with lower image overlap, 

the point density usually decreases (Cook, 2017). Moreover, the presence of high 

frequency noise may affect the DPC quality. This noise usually occurs when a group of 

points close to each other represent the same 3D point on a surface (Remondino et al., 

2014). To overcome this, a filtering step can be applied to raw point clouds such as 

resampling and thinning (Dyn et al., 2008; Rychkov et al., 2012; Remondino et al., 2014). 

It is worth noting that PhotoScan provides a filtering step through the aforementioned 

settings of DPC reconstruction. For instance, Cook (2017) compared the noise on three 

SfM-MVS point clouds reconstructed with three different image pyramid levels (ultra-

high, high, and medium). They concluded that, although the medium level smooths high 

frequency noise over terrain with complex texture (e.g. sparse vegetation mixed with bare 

earth), the spatial resolution was degraded to an extent unsuitable for application-volume 

estimation of individual boulders. They also reported difficulty in the data handling of 

millions of points generated with the ultra-high level setting. Overall, any filtering method 

should maintain the informative surface characteristics at the required level based on the 

morphological application (Remondino et al., 2014).  

DEM and orthophoto generation  
After 3D DPC creation, it is recommended to remove very low or high points. This is 

usually performed manually. Then, a ground classification is performed to remove the 

“off-ground” features from the DPC. PhotoScan has adopted a slope-based routine for 

classification similar to the algorithm implemented in TerraSolid TerraScan (TerraScan, 

2016). Firstly, it creates an initial triangulated surface from points with the lowest 

elevation within a certain grid size. This grid size is specified by the user and indicates 

the average size of a region with “off-ground” points, which exists in the study area (e.g. 
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a building or a densely vegetated sub-region). The user also needs to define two limits for 

angle and distance which indicates how far a ground point should be from the actual 

surface. It is recommended to use small angles for flat terrain, and conversely large angles 

for steep terrain. Then, the algorithm searches for points, located within these limits; it 

classifies these as ground and adds them into an initial triangulated surface. This surface 

is iteratively updated until all points from the initial DPC have been checked and 

classified.  

Prior to interpolation PhotoScan performs a triangulated mesh computation which blends 

the previously generated disparities at a pixel level from the filtered DPC, creating planar 

facets (Verhoeven et al., 2012). Afterwards, the triangulated mesh is rasterised via IDW 

and then combined with median filtering. PhotoScan does not allow the import of an 

externally generated DEM. In parallel to the creation of the triangulated mesh, a texture 

map is generated assigning colors to all triangle nodes from the most nadir images 

(Verhoeven et al., 2012; PhotoScan, 2016a). The images are corrected for distortion, 

based on the previously estimated distortion parameters (Equations (3.1) and (3.2)). Each 

image pixel is reprojected onto the terrain mesh creating an ortho-image (Mills and 

McLeod, 2013) as part of the orthorectification process, described in Section 3.2.3. All 

ortho-images are then blended together to generate an orthophoto of the study area with 

the aid of global stitching methods that smooth edge effects, such as the one presented in 

Mills and McLeod (2013). It is not clear which method is implemented in PhotoScan. A 

list of documentation related to PhotoScan’s tools can be found in PhotoScan (2016b).  

3.2.6 Error sources in SfM-MVS derived products 

Numerous recent studies have revealed the presence of systematic errors in the automatic 

SfM-MVS pipeline which generate deformations in the derived products (James and 

Robson, 2014; Sieberth et al., 2014; Eltner and Schneider, 2015; Harwin et al., 2015; 

Carbonneau and Dietrich, 2016; Eltner et al., 2016; James et al., 2017a). Carbonneau and 

Dietrich (2016) demonstrated that these deformations, if unsolved, propagate into 

rotational, translational and vertical offsets, creating systematic tilt and/or radial patterns 

that adversely affect the UAV time-series observations. The systematic errors usually 

originate from image sensor characteristics, camera distortion models included within the 

SfM-MVS software, SfM-MVS software settings, imaging network configurations, GCP 

characteristics, surface texture, lightning and weather conditions, as well as over-

parameterisation. Image sensor characteristics were mentioned in Section 2.3.1. The 

camera distortion models and the various SfM-MVS settings, mostly related to 
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PhotoScan, were discussed in Section 3.2.5. The remaining error sources are described in 

this section.  

Imaging network configurations 
Many published studies (Lucieer et al., 2014; Stöcker et al., 2015; Turner et al., 2015; 

Woodget et al., 2015) reported pre-planned image overlap percentages for parallel UAV 

flight lines below 100 m height, exceeding the standard 60% forward with 20% to 30% 

lateral overlap used in conventional aerial metric film camera surveys (Mikhail et al., 

2001; Wolf et al., 2014). High pre-planned overlaps can prevent occlusions caused by 

UAV instability combined with wind turbulence. In general, low overlap might yield 

mismatches during the initial image alignment step of the SfM-MVS pipeline and 

generate discontinuities in the reconstructed sparse point cloud (Harwin et al., 2015; 

Dietrich, 2016). This, in turn, can destabilise the bundle adjustment solution and errors 

can propagate into the DEMs (Harwin et al., 2015). The higher the image overlap, the 

greater the number of optical rays that intersect an object point, thereby attaining 

increased redundancy in point determination (Haala and Rothermel, 2012). However, 

with the increase of image overlap, and hence higher number of images, the increase of 

computational effort is unavoidable; an important parameter to consider for UAV image 

post processing (James and Robson, 2012; Eltner et al., 2016).  

James and Robson (2014) demonstrated that parallel flight lines can cause vertical 

systematic bowl-shape deformations on the resultant DEM. According to James and 

Robson (2014) these errors can be significantly reduced either by acquiring convergent 

images, flight lines in opposing directions or with the inclusion of evenly distributed 

GCPs into the bundle adjustment. Convergent imagery can be easily configured with rotor 

platforms, unlike fixed-wing platforms. For that, James and Robson (2014) recommended 

the inclusion of smooth banked turns to strengthen the imaging network geometry with 

fixed-wing UAVs. As noted by Eltner et al. (2016), convergent imagery widens the image 

baselines thereby improving tie point matching performance.   

GCP characteristics 
It has already been stated that a good distribution of an adequate number of GCPs 

incorporated into the SfM-MVS bundle adjustment can mitigate systematic errors. It is 

also well-known that high GCP coverage offers redundancy in photogrammetry (Wolf et 

al., 2014). James et al. (2017a) conducted an experiment to define the optimal number via 

a Monte Carlo process performing many combinations of randomly selected GCPs among 

30 surveyed targets, using the remaining as independent CPs. They noted that no 
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particular GCP distribution can entirely remove systematic errors. They also illustrated 

that five GCPs, four of them creating an approximate rectangle and one located in the 

middle, can generate DEM deformations within a ± 3.0 cm range compared against a 

DEM derived with all GCPs. Similarly, Reshetyuk and Mårtensson (2016) concluded that 

five GCPs of the same installation pattern can deliver sub-cm vertical differences when 

compared against TLS data over a flat terrain. Many studies have highlighted the 

importance of establishing GCPs around the edges of the study area otherwise 

deformations in SfM-MVS DEMs outside the GCP coverage can increase (James and 

Robson, 2012; Immerzeel et al., 2014; Javernick et al., 2014; Eltner et al., 2016; Cook, 

2017). This GCP configuration is similar to the “von Gruben points” which are located 

on the overlapping region of a stereo pair, typically used for the relative orientation 

establishment in classical photogrammetry (Kraus, 2007).  

Further, the measurement precision of the surveyed GCPs, which serve as weights in the 

self-calibrating bundle adjustment (Section 3.2.5) and are usually inserted as markers’ 

accuracy in PhotoScan, can affect the mitigation level of bowl-shape bias (Eltner et al., 

2016; James et al., 2017a). Remondino et al. (2014) suggested that when GCPs constitute 

“ground truth” for the SfM-MVS pipeline, they should be independently surveyed, 

providing an estimated precision at least three times better than the expected results. 

James et al. (2017a) conducted simulated tests to evaluate the influence of GCP weights 

and their correlation with the camera distortion models with respect to the estimated 

RMSE at CPs after bundle adjustments in PhotoScan. They concluded that when four 

parameters of symmetrical radial lens distortion and four parameters of decentring 

distortion are chosen (K1-K4, P1-P4 of Equation (3.1)) GCP weights larger than 0.10 m 

(i.e. high markers’ accuracy values) caused systematic vertical bowl-shape deformations. 

With the exclusion of the K4, P3 and P4 distortion parameters, these deformations 

decreased significantly. Their investigations were undertaken with a Panasonic Lumix 

GF1 compact camera mounted on a Sirius I fixed-wing UAV (d'Oleire-Oltmanns et al., 

2012). Dietrich (2016) surveyed GCPs with a Trimble GeoXH handheld GNSS receiver 

attached with an additional antenna that allowed for differential corrections. They 

achieved a 0.20 cm average measurement precision for inclusion into PhotoScan’s bundle 

adjustment. They reported that the low precision caused DEM deformations when SfM-

MVS DEM was compared against an ALS DEM. However, they did not describe the 

distortion camera model used, thus no conclusion for correlation between GCPs weights 

and distortion parameters can be deducted.  
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Surface texture, lighting and windy conditions 
The image matching algorithms in the SfM-MVS workflow are affected by illumination 

differences, poor and homogenous textures and high gusts of wind (Remondino et al., 

2014; Eltner et al., 2016). Illumination differences are caused by either wrong exposure 

camera settings or variations in lighting during a UAV flight. Overexposing bright areas 

or under exposing dark areas can vary the distinctive properties of surface features, 

thereby adversely affecting the tie point detection. A similar effect on overlapping images 

can be caused by successive transition from strong shadow to sun glare that can occur 

during a long UAV flight (Eltner et al., 2016). To prevent this, James and Robson (2012) 

recommended acquiring images under cloudy weather with bright lighting conditions 

(Eltner et al., 2016). Ideally, SfM-MVS should provide consistent results over any type 

of surface texture, as noted by (Nex and Remondino, 2014). However, intensity-based 

algorithms are vulnerable to homogenous textures (e.g. sandy texture in Mancini et al. 

(2013)), thereby degrading the SfM-MVS performance (Remondino et al., 2014; Eltner 

et al., 2016). Further, windy conditions with strong gusts can create sudden turbulences 

and can cause instability and forward motion of the UAV, causing blurred images 

(Sieberth et al., 2014). As Sieberth et al. (2014) noted, image blur affects the image 

sharpness which might influence the camera calibration results and might also affect the 

reliable detection and matching of tie points.  

Over-parameterisation 
As several parameters are involved at different stages of the SfM-MVS pipeline, errors 

are propagated through the process (Eltner et al., 2016). Typical quality indicators of a 

photogrammetric process are provided from the covariance and correlation matrices 

computed in bundle adjustment (Granshaw, 1980; Luhmann et al., 2016). However, such 

estimators are absent in most “black-box” SfM-MVS software and hidden errors of the 

pipeline are not explicitly explained (Fonstad et al., 2013; Luhmann et al., 2016; James 

et al., 2017a). A large number of observations from hundreds of images and many 

estimated parameters in the self-calibrating bundle adjustment can impede the matrix 

inversion, essential for covariance estimation. Thus, another possible cause of the 

systematic errors is over-parameterisation, which cannot be easily controlled with SfM-

MVS software packages. In response, recent studies (Carbonneau and Dietrich, 2016; 

James et al., 2017b) suggested analytical ways of quantifying the internal precision of the 

estimated IOPs within SfM processing. These included multiple Monte Carlo tests either 

to derive optimal combinations of K1-K2 camera distortion coefficients (Carbonneau and 

Dietrich, 2016) or examination of the optimal SfM software parameters (i.e. marker/tie 



 53 

points accuracies) and camera distortion models together with strengthening of the image 

observations (James et al., 2017b). Moreover, the correlation between parameters varies 

with the different bundle adjustment implementations in various SfM-MVS software. 

Reshetyuk and Mårtensson (2016) found that using the same SfM-MVS parameters and 

camera model, different systematic errors were derived from different SfM-MVS 

software. This implies the necessity to tune each software’s parameters and to become 

familiar with the software capabilities (Remondino et al., 2014), as well as to verify the 

propagated errors at every step of the SfM-MVS pipeline with the aid of benchmark 

observations if possible.  

3.3 Surface morphological attributes 

Landslide processes erode the earth’s surface causing failure and, as a result, discernible 

geomorphological features (e.g. scarps, ridges, cracks etc.) are formed (McKean and 

Roering, 2004; Gunn et al., 2013). Due to underlying surface mechanisms, an active 

landslide area (i.e. failed terrain) has relatively rougher surface topography than a non-

failing region (McKean and Roering, 2004; Glenn et al., 2006; Tarolli, 2014). Unstable 

terrain can be then represented using a rough surface texture, and vice versa (Baek and 

Kim, 2015). In the context of multiple epoch surface co-registration to detect surface 

deformations, the identification of stable terrain is required (Wujanz et al., 2016). 

Numerous morphological attributes have been proposed to identify stable/unstable terrain 

and delineate geomorphological features. These attributes can be classified into three 

categories based on the derivation. The first category consists of those based on statistical 

analysis of variations in elevation, such as standard deviation, slope and normal vectors 

(Hobson, 1972; Shepard et al., 2001; McKean and Roering, 2004; Frankel and Dolan, 

2007; Berti et al., 2013). The second category includes attributes derived from those of 

the first category such as shaded relief, curvature, openness and Eigen value ratio 

(Yokoyama et al., 2002; de Smith et al., 2015). The third category consists of attributes 

calculated with other more complex analysis, such as Fourier/wavelet transformations 

and semi-variograms (Glenn et al., 2006; Booth et al., 2009; Berti et al., 2013). Apart 

from the aforementioned, several other attributes have been implemented for landslide 

and morphological studies (Hobson, 1972; McKean and Roering, 2004; Glenn et al., 

2006; Grohmann et al., 2011; Ventura et al., 2011; Favalli and Fornaciai, 2017), such as 

area ratio, residual topography, vector dispersion, standard deviation of slope, sky view 

factor, etc. In this study, the attributes of the first two categories are investigated and 

incorporated into the proposed monitoring strategy. Favalli and Fornaciai (2017) provide 
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a detailed comparison of the most commonly used attributes in recent morphological 

studies.  

3.3.1 Morphological attributes derived from elevation variations 

To derive characteristic properties of a 3D surface, an analytical form is fitted to 

elevations z , at the DEM grid points, ( , )x y  namely ( , )z f x y=  within a moving kernel 

(de Smith et al., 2015). The most common analytical form, used in geomorphological 

studies, is the bivariate quadratic functional model (Evans, 1979; Tarolli et al., 2012; de 

Smith et al., 2015; Rigol-Sanchez et al., 2015): 

 2 2z ax by cxy dx ey f= + + + + +   (3.3) 

where a f−  are the quadratic coefficients. The partial derivatives of this functional 

model are expressed as: 
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DEM Standard Deviation  
The standard deviation of a DEM is calculated as follows:  
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∑   (3.6) 

where n is equal to the number of pixels within a moving kernel of a specified size, iz  

refers to elevation value at each DEM grid point and z is the mean elevation of all grid 

points within the moving kernel. In the case of a DEM derived from a moving least 

squares interpolation, its corresponding standard deviation expresses the local variance 

from the fitted plane (Buscombe, 2016).  

The expression in Equation (3.6), as introduced by Shepard et al. (2001), has been the 

most popular morphological attribute due to its computational simplicity (Grohmann et 

al., 2011; Berti et al., 2013; Favalli and Fornaciai, 2017). Not only has it been used to 

express surface roughness, but also to evaluate the DEM quality (Grohmann et al., 2011). 
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For instance, Wheaton et al. (2010) and Brasington et al. (2012) implemented this 

attribute as an intermediate step in order to estimate the uncertainty of elevation variation 

between two epochs. They generated each epoch’s DEM with thousands of points 

surveyed over stable terrain. They concluded that the uncertainty of elevation variation is 

higher over rough and steep terrain compared to the uncertainty over smooth and flat 

terrain. Additionally, Berti et al. (2013) and Grohmann et al. (2011) reported that this 

attribute is sensitive to DEM artefacts. Although this is generally a weakness, it can 

become an advantage when the DEM standard deviation is used as a DEM uncertainty 

measure, crucial for morphological monitoring applications.  

Slope, aspect and normal vectors 
Slope constitutes one of the main parameters used in slope stability and landslide 

susceptibility modelling (Dawson et al., 1999; Van Westen et al., 2003). In landslide 

mapping and monitoring, slope and aspect have been used to identify regions prone to 

instability and potential active landslides over large regions viewed from satellite, 

airborne imagery or ALS (Lee and Min, 2001; Iwahashi et al., 2003; Kasai et al., 2009). 

For close range applications, these attributes can provide local information on steep 

angles and orientation of eroded surface features to support the understanding of landslide 

mechanisms (Glenn et al., 2006; Kasai et al., 2009). In addition, Al-Rawabdeh et al. 

(2016b) computed the distribution of slope derived from a UAV DEM to detect landslide 

scarps given by sharp surface discontinuities. They assumed that potential scarps exist 

over regions with larger than the average slopes for the whole study area. The average 

slope also coincided with the average angle of friction in the sub-surface. Apart from 

feature extraction, slope has been utilised in combination with image cross correlation 

functions to quantify the spatio-temporal movement of earthflows (Daehne and Corsini, 

2013; Travelletti et al., 2014).  

Slope and aspect are computed as follows (Veitinger et al., 2014; de Smith et al., 2015): 

 ( ) ( )22arctan x yslope f f = +  
  (3.7) 

 arctan y

x

f
aspect

f
 

=  
 

  (3.8) 

In Equations (3.7) and (3.8) slope indicates the steepest angle of a surface and aspect 

depicts the azimuth of the steepest slope. Typically, slope is expressed in degrees or 
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percentage and aspect in degrees from 0º degrees to 360º, clockwise with North equal to 

zero / 360 degrees.  

Smooth terrain is characterised by constant slope and aspect, whereas rough terrain by 

local variations (Hobson, 1972; McKean and Roering, 2004; Favalli and Fornaciai, 2017). 

These variations can be mathematically expressed with the unit direction vectors, also 

called normal vectors, and are always perpendicular to a surface plane at a specified point 

(Gray, 1997; McKean and Roering, 2004). In the case of a TIN representing the surface 

topography, a local plane is defined by a triangle. Each triangle of the TIN has three 

properties: a) normal vector, b) slope and c) aspect. After converting the TIN into a grid 

DEM, the normal vectors at the edges of each grid are computed as the average of the 

vectors of their neighboring triangles within a specified kernel size. The result is 

illustrated in Figure 3.3.  

 
Figure 3.3: Schematic representation of normal vectors mapped in two DEMs visualising a rough and 
smooth terrain. The variations of vector orientation indicate surface roughness. Reproduced from McKean 
and Roering (2004) and Hobson (1972). 

Normal vectors with coherent orientation imply that local slope and aspect are similar, as 

occurs in a smooth terrain. Whereas a random distribution of their orientation indicates a 

local diversity in slope and aspect. This diversity constitutes a roughness measure of a 

surface, as evidenced in Figure 3.3.  

Based on differential geometry, for a surface represented as in Equation (3.3), the normal 

vector at a point p with coordinates 0 0( , )x y  is calculated as (Gray, 1997): 
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  (3.9) 

For example, the surface of a plane in Euclidian space ( 3R ) is defined by: 
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 ( , , )f x y z ax by cz d= + + +   (3.10) 

with its normal vector, passing through point p , specified as: 
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  (3.11) 

An alternative expression of normal vectors follows a covariance analysis (Watson, 1966; 

Woodcock, 1977; McKean and Roering, 2004; Favalli and Fornaciai, 2017). This analysis 

is commonly implemented with point clouds instead of a DEM or TIN representing a 3D 

surface (Pauly et al., 2002; Rusu, 2009; Yang and Zang, 2014). A covariance matrix of a 

point is defined as: 
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where ip  the point i  of a local neighborhood with n  number of points and p  the 3D 

centroid of the neighbourhood. To reconstruct the unit normal vectors, a least squares 

plane adjustment is applied where the best plane passing through the 3D centroid is fitted 

to the points in the local neighborhood. Any variation of the points from the best fitted 

plane are represented with eigenvalues and eigenvectors (Pauly et al., 2002). These are 

defined by applying the eigenvalue decomposition theorem to the matrix: 

 l l lCv vλ=   (3.13) 

where {1,2,3}l∈  with  1 2 3 0λ λ λ> > >  the 3 eigenvalues (3x3 diagonal matrix) and 

1 2 3, ,v v v  their corresponding eigenvectors (3x1 matrix), which always form an orthogonal 

frame (Watson, 1966). This notation is implemented in point cloud processing software 

such as Point Cloud Library (PCL)11 (Rusu, 2009) and Cloud Compare 12 (Lague et al., 

2013).  

                                                 
11 www.pointclouds.org/  
12 www.danielgm.net/cc/  

http://www.pointclouds.org/
http://www.danielgm.net/cc/
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3.3.2 Secondary morphological attributes  

Shaded relief 
The Shaded relief attribute creates a visually appealing natural representation of the 

topography through simulated illumination (Horn, 1981; Smith and Clark, 2005; Hiller 

and Smith, 2008; Liu and Mason, 2016). The illumination is applied to a surface from an 

artificial light source of a specified elevation angle and azimuth simulating the sun’s 

relative position. Subtle surface characteristics viewed from a certain azimuth can be 

visually enhanced or suppressed (Hiller and Smith, 2008). This technique is called relief 

shading or hill shading, hence its attribute’s name (Hiller and Smith, 2008). Together 

with contouring it is one of the oldest and widely implemented techniques for surface 

visualisation due to its simple interpretation (Smith and Clark, 2005). Another recent use 

of this technique has been landslide movement detection through image cross correlation 

functions (Lucieer et al., 2014; Fey et al., 2015; Turner et al., 2015).  

All available GIS software packages have adapted the hill shading technique considering 

two criteria: a) a surface should always reflect the incident light uniformly and diffusely 

from any angle of view (i.e. Lambertian surface); and b) a parallel light from one single 

source should illuminate a surface at an infinite distance. Then, the hill shading estimates 

the surface brightness proportionally to the cosine of the angle between the normal vector 

of the surface and the illumination direction (Liu and Mason, 2016; Favalli and Fornaciai, 

2017). Shaded relief (SR) is calculated within a specified kernel size (Liu and Mason, 

2016) as: 

 255[cos(za)cos( ) sin(za)sin( ) cos(az )]SR slope slope aspect= + −   (3.14) 

with slope and aspect computed from Equations (3.7) and (3.8), za  the zenith angle (i.e. 

90° complement of the elevation angle) and az  the azimuth. Based on Equation (3.14) 

the values of shaded relief attribute varies within 0-255, expressing a relative intensity 

estimation of an incident light on a slope. For example, a 45° zenith angle and a 315° 

azimuth (i.e. sun placed in NW) generate a shaded relief attribute with low values at the 

bottom-right of objects highlighting their shadows (Liu and Mason, 2016).  

A preferred azimuth mainly affects the visual perception of relief details of a surface 

producing shadows, which can also lead to misinterpretation of surface roughness (Favalli 

and Fornaciai, 2017). This is a common limitation of shaded relief, called azimuth-

biasing (Smith and Clark, 2005). To overcome this angle dependence, a surface can be 
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visualized: a) with multiple shaded relief attributes derived from different azimuths, 

(Smith and Clark, 2005); b) with one shaded relief attribute derived from 90°elevation 

angle (Favalli and Fornaciai, 2017); c) with a combination of multiple shaded relief 

attributes from different azimuths as a result of mean, minimum or maximum (Zakšek et 

al., 2011); and d) with a shaded relief attribute derived from a homogenous illumination 

with ambient occlusion technique. The latter applies a diffuse uniform illumination from 

a non-direct light simulating a cloudy day (Michael and Heinrich, 2000). This smoothens 

the shadow effect usually produced by lighting from a single direction (Fey et al., 2015; 

Favalli and Fornaciai, 2017). Michael and Heinrich (2000) showed that depth in a 3D 

surface can be better perceived and discriminated under diffuse uniform illumination. 

Among all the aforementioned techniques, the ambient occlusion has been also proved to 

perform best in quantification of landslide kinematics (Fey et al., 2015). 

Curvature 
Curvature has been one of the most commonly used morphological attributes for surface 

feature characterization since 1972 (Evans, 1972; Evans, 1979; Evans, 1980). Evans’ 

method was the first to introduce the derivation of different attributes of curvature (e.g. 

profile, plan, minimum, maximum etc.) via gridded DEMs. Afterwards, a series of 

alternative expressions have been proposed and implemented in various GIS software 

packages (Zevenbergen and Thorne, 1987; Shary, 1995; Wood, 1996; Schmidt et al., 

2003). A detailed description of several expressions can be found in Rigol-Sanchez et al. 

(2015) and de Smith et al. (2015).  

To determine any expression of curvature, two fundamental forms are derived for a 3D 

surface (Gray, 1997; Pressley, 2010). Based on differential geometry, let w  be a tangent 

vector at a point p  to surface S embedded in 3R Euclidean space. In addition, any set of 

tangent vectors of 3R to the surface form a plane-the tangent plane. For r , a regular 

parameterisation of surface S  , the tangent plane is considered the image of 2R . Regular 

parameterisation means that the , yxr r  partial derivatives of r  with respect to ( , )x y

variables are linearly independent and a normal vector can be computed as: 

 y

y

x

x

r r
N

r r
=

×
×

  (3.15) 

The first fundamental form depicts the arc length of a curve of the ( , )r x yr parametric 

surface, equal to the dot product of the tangent vector, as follows: 2w w w= ⋅ . This can 
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also be expressed as a linear combination of two vectors with ( , )x y  variables (Gray, 

1997; Pressley, 2010): 

 2 2( , ) 2yx y xI ar br ar br Ea Fab Gb+ + = + +   (3.16) 

The second fundamental form depicts the change of the arc length while the surface 

( , )r x y is shifted along its normal vector and is expressed as: 

 2 2( , ) 2x y x yII ar br ar br ea fab gb+ + = + +   (3.17) 

Where a, b are constants, , ,E F G and , ,e f g are the coefficients of the first and second 

fundamental form, respectively computed as: 

 x xE r r= ⋅  , yxF r r= ⋅  , y yG r r= ⋅   (3.18) 

 xxe r N= ⋅  , xyf r N= ⋅  , yyg r N= ⋅   (3.19) 

with , yyxxr r and xyr the second partial derivatives with respect to ( , )x y variables. 

The (H) mean curvature is estimated as the average of the (k1) minimum and (k2) 

maximum curvature, also called principal curvatures, both related to the (K) Gaussian 

curvature (Gray, 1997). Then: 

 1 2K k k=   (3.20) 

 1 2
1 (k k )
2

H = +   (3.21) 

which leads to the solutions of the principal curvatures as: 

 2
1k H H K= + −  and 2

2k H H K= − −   (3.22) 

Based on the coefficients of the two fundamental forms, the mean (H) and Gaussian (K) 

curvatures are computed by (Gray, 1997): 
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Openness 
Openness indicates the angle of a cone that can fit to the terrain around a specified spatial 

extent and is related to the zenith angles (positive openness) and the nadir angles (negative 

openness) computed in the terrain’s line-of-sight. Figure 3.4 illustrates the two different 

openness attributes. Positive (φL) and negative (ψL) openness are computed as follows 

(Yokoyama et al., 2002; Rigol-Sanchez et al., 2015): 
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where d ϵ D=(0˚, 45˚, 90˚, 135˚, 180˚, 225˚, 270˚, 315˚) the azimuth angle of 8 compass 

directions, 𝛽𝛽𝐷𝐷,𝐿𝐿 the maximum and 𝛿𝛿𝐷𝐷,𝐿𝐿 the minimum elevation angle (𝜗𝜗) along a direction 

D within a specified radial distance L. Given two grid points cp  and ip with horizontal 

distance 
c ip pr  and elevation values ,

c ip pz z , respectively, the elevation angle 𝜗𝜗 can be 

computed. The grid point cp denotes the centre of a sampling kernel of size L and the grid 

point ip  denotes any point i, which lies on each direction D within the spatial limit of L.  

 
Figure 3.4: Illustration of positive (a) and negative (b) openness at a particular point of a DEM with L 
denoting the spatial limit. Extracted and modified from Yokoyama et al. (2002) and Chen et al. (2015). 

 

(a) positive openness

L

nadir
L

zenith

(b) negative openness
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Positive openness expresses the extent of depressions, whereas negative openness 

illustrates the extent of summits of a topographic surface. For a grid point on a summit, 

the values of positive openness are greater than 90˚ when looking from above the surface. 

Conversely the values of negative openness are lower than 90˚ when looking from below 

the surface. For a grid point on a relatively flat terrain, both values of positive and negative 

openness vary within the range of 90˚-180˚ (Yokoyama et al., 2002).  

Equations (3.25) and (3.26) calculate the mean positive and negative openness of the 8 

directions respectively, which constitute the original mathematical expression based on 

(Yokoyama et al., 2002). To highlight characteristic slope breaks on a surface, Equations 

(3.25) and (3.26) can be transformed to compute the minimum or maximum of 

corresponding openness respectively.  

Eigenvalue ratio (EVR) 
An additional morphological attribute derived from normal vectors constitute the EVR 

(McKean and Roering, 2004; Glenn et al., 2006; Berti et al., 2013; Al-Rawabdeh et al., 

2016b). EVR is calculated as the natural logarithmic ratio of the normalized eigenvalues 

(Watson, 1966; Woodcock, 1977; McKean and Roering, 2004; Baek and Kim, 2015): 

 1
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EVR ln S
S

 
=  

 
  (3.28) 
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In Equation (3.29) the eigenvalues (see Equation (3.13) for their derivation) are 

normalized with respect to the number of observations denoted by n.  

EVR indicates the degree of data distribution with respect to the direction of their 

corresponding eigenvectors (Woodcock, 1977). As Baek and Kim (2015) described, after 

Watson (1966), when the observations are plotted as points on a unit mass over a spherical 

surface two basic distributions can be formed; a) a cluster distribution and b) a girdle, as 

shown in Figure 3.5. In a cluster distribution the data are orientated along one main 

direction with eigenvalues λ1> λ2, λ3 whereas in a girdle formation the data are distributed 

into two directions with eigenvalues λ1, λ2> λ3 (Figure 3.5). In other words, the dominant 

orientation of the distribution is based on the magnitude of the eigenvalues and the 

direction of the eigenvectors. In the case of a uniform distribution the eigenvalues are 
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equal and the data are plotted in the centre of the spherical surface (McKean and Roering, 

2004; Baek and Kim, 2015). 

 

Figure 3.5: Example of two distributions of points projected on a spherical surface; a) cluster distribution 
where one large eigenvalue (λ1) is observed and b) girdle where two comparable eigenvalues (λ1, λ2) are 
dominant. Modified from Baek and Kim (2015). 

McKean and Roering (2004) showed that regions over landslides have less clustered 

surface variations than the adjacent un-failed (i.e. stable) terrain. They also illustrated that 

in the rough terrain the EVR values create a skewed distribution compared to the normal 

distribution over a smooth terrain. Baek and Kim (2015) computed the EVR to identify 

surface irregularities and detect potential hazardous regions. However, both studies used 

a 1 m spatial resolution DEM derived from ALS. In a more recent study, Al-Rawabdeh 

et al. (2016b) implemented the EVR and the slope to assess how accurate scarp features 

of a rocky landslide can be automatically delineated. A 0.02 m DEM, obtained with a 

GoPro Hero 3 camera mounted on the DJI Phantom 2 quadcopter, was used to derive 

these morphological attributes. They concluded that a 90% accuracy was delivered when 

compared with ground truth data, as derived from manual digitisation of the scarps using 

the quadcopter-derived orthophoto. Overall, these studies have proved that the EVR 

performs well for landslide identification of regions with large extent and without 

vegetation. No other studies have investigated the sensitivity of EVR over grassy terrain 

with observations of high spatial resolution, which leaves a question over EVR 

performance.  

3.4 Morphology-Based co-Registration (MBR) workflow 

Co-registration of 3D surfaces is a fundamental requirement in quantifying deformations 

in the natural environment. Co-registration refers to the alignment of multi-temporal 3D 

surfaces with each other. As opposed to georeferencing (Section 3.2.1), co-registration is 

not related to a reference coordinate system (Wujanz et al., 2016). It matches subsequent 

3D surfaces to a reference surface without an input of external information (e.g. GCPs). 

The reference surface is usually that of the first (oldest) epoch and can be fixed to a 
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desirable coordinate system either with aid of GCPs (i.e DG) or camera exposure stations 

(i.e. IG). The proposed MBR workflow has been designed to work in both cases, 

highlighting the potential for eliminating the requirement for established GCPs within a 

SfM-MVS monitoring approach.  

3.4.1 Related work on co-registration 

Co-registration has been a major area of interest within the field of photogrammetry and 

computer vision. To handle the co-registration problem two approaches have been 

extensively used by both communities, namely a) least squares surface matching and b) 

iterative closest point (ICP) algorithm. A detailed review of these approaches can be 

found in Gruen and Akca (2005).  

An example of a least squares surface matching approach was introduced by Mitchell 

(1994) and has been further developed at Newcastle University, by Buckley (2003), Mills 

et al. (2003a); Mills et al. (2005); Miller et al. (2008); and Kunz et al. (2012). The latest 

version of this approach minimises the Euclidean distance between points of a floating 

surface to the corresponding plane facets of a reference (fixed) surface by solving a seven-

parameter 3D conformal transformation in an iterative least squares sense. This approach 

has been applied to coastal geohazards (Miller et al., 2008) and glacier monitoring (Kunz 

et al., 2012) studies. Whilst former variants of the approach (Karras and Petsa, 1993; 

Zhang and Cen, 2008; Ang and Mitchell, 2010) could align only grid DEMs, the current 

version of the algorithm can also handle irregular structures of 3D point datasets. In 

addition, it can cope with observations obtained with different geomatics methods; for 

example it was implemented with point clouds derived from ALS and airborne 

photogrammetry in Gneeniss et al. (2015).  

Noh and Howat (2014) extended the seven-parameter least squares matching approach 

by integrating additional similarity constraints to quantify glacier elevation change from 

satellite imagery. They generated the morphological attributes of slope, aspect and 

standard deviation (Section 3.3.1) from DEMs at two epochs. They computed a 

correlation coefficient per attribute to identify stable terrain, based on the assumption that 

for high similarities the surface is expected to remain unchanged. Further, they applied a 

seven-parameter least squares matching approach to the detected stable terrain, which 

served as the control surface for DEM co-registration. However, this approach did not 

take into account a good distribution of control surfaces across the surveyed extent that 

would ensure the convergence of least squares.  
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An alternative co-registration approach constitutes the ICP algorithm, originally proposed 

by Besl and McKay (1992) and Chen and Medioni (1991). This searches for the closest 

point correspondences between subsets of 3D point clouds by solving a six-parameter 

rigid transformation. A comprehensive review of ICP evolution can be found in 

Pomerleau et al. (2013). Compared to least squares surface matching approaches, ICP 

variants are more versatile as they allow matching of any type of datasets (e.g. point-to-

point technique in Besl and McKay (1992); point-to-tangent plane in Chen and Medioni 

(1991), etc.).  

Teza et al. (2007) applied the original ICP algorithm for monitoring a landslide in the 

Italian Alps with TLS point clouds. Instead of a global co-registration, they performed 

the ICP per sub-regions expecting that in adjacent regions the transformation parameters 

were similar. This approach did not converge at the edges of the study site and over 

vegetated terrain, delivering erroneous alignments over areas with significant surface 

change. A recent improvement of ICP proposed by Wujanz et al. (2016) overcame 

misalignments experienced in the previous study by excluding regions with surface 

deformations from the resolution of the transformation parameters. Firstly, they applied 

ICP to point clouds with the aid of an octree13. Unstable regions were identified based on 

the different transformation parameters estimated within each octree level. Finally, they 

applied global ICP to the corresponding octree stable sub-regions to refine the co-

registration. This approach was tested with SfM-MVS point clouds derived from two 

UAV image acquisitions over an active soil creep site, as described in Al-Rawabdeh et 

al. (2016a). They reported several centimeters accuracy for the co-registration over the 

automatically detected stable regions. However, further investigations of the ICP 

performance over grassy terrain are yet to be carried out.  

All aforementioned studies reported that a major limitation of both least squares surface 

matching and ICP algorithms is the requirement for an adequate approximation of the 

transformation parameters between control and matching datasets. In the case of DG with 

consumer-grade UAV of m-level and degree-level precision for position and orientation 

of camera exposure stations respectively (Chiang et al., 2012; Carbonneau and Dietrich, 

2016), an approximate alignment between surfaces may be unachievable. For instance, 

Miller et al. (2008) extracted GCPs from maps to establish an approximate orientation to 

                                                 
13 Octree and voxel hulls are two 3D space partition structures used in software of point cloud processing. 
(examples of various structures can be found in Pfeifer et al. (2014)). 
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archival DEMs. Al-Rawabdeh et al. (2016a) refined the coarse orientation from DG with 

the inclusion of GCPs into the typical SfM-MVS pipeline prior to ICP application.  

An alternative for a coarse alignment is extraction of a few corresponding points between 

two surfaces, similar to the five-point approach proposed by Nistér (2004) that was 

adopted in the SfM-MVS software (e.g. VisualSfM, Table 3.1, Section 3.2.5). Wujanz et 

al. (2016) incorporated a similar approach (e.g. four-points-congruent-sets by Aiger et al. 

(2008)) into their ICP variant to establish an initial alignment. Although this was 

successfully applied to TLS point clouds on a bare earth quarry face, no investigations 

have been conducted over terrain with homogenous texture such as grassy terrain or sand 

dunes (Wujanz et al., 2016). To apply this concept to SfM-MVS outputs, human 

intervention is required to extract corresponding features over subsequent UAV derived 

orthophotomosaics. This task can become cumbersome due to illumination variations 

across epochs, especially over grassy terrain, which constitutes a well-known error source 

in SfM-MVS products (Section 3.2.6). 

Ferraz et al. (2016) proposed extraction of planar patches from ALS point clouds for road 

detection in a forest environment. This approach could offer an alternative solution for 

initial transformation through matching corresponding planar patches across point clouds. 

Liu et al. (2016) demonstrated a co-registration approach with linear features extracted 

from ALS point clouds, which served as additional constraints into a SfM-MVS UAV 

imagery processor. Both studies provided co-registration solutions only if a good 

distribution of planar patches or linear features across the site could be guaranteed. 

Moreover, it cannot be guaranteed that linear, planar or any other artificial features will 

be present in a landslide occurring in a natural environment.  

To overcome the aforementioned issues in the absence of GCPs over a landslide area, this 

study formulates co-registration as a morphology-matching, rather than a DEM-

matching, problem. The approach assumes that surface morphology over stable terrain 

remains the same across epochs. Here, the morphological attribute of mean curvature was 

adopted, as described in Section 3.3.2. To co-register multi-epoch curvature grids derived 

from SfM-MVS DEMs coarsely aligned with DG, an algorithm invariant to translations 

and rotations is required. For that, instead of least squares surface matching or ICP, the 

SIFT operator was chosen due to its proven robust performance with UAV optical images 

of different transformations (Fonstad et al., 2013).  
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The SIFT operator was originally designed for identifying homologous features on optical 

imagery and has been extensively implemented in SfM-MVS software (Section 3.2.4). 

Only a few studies have adapted the SIFT operator to images with other than visible 

electromagnetic wavelength for automatic co-registration purposes. These include 

intensity images obtained with ALS datasets (Wang et al., 2012), range images generated 

from TLS observations (Barnea and Filin, 2008), hyperspectral (Sima et al., 2014), and 

synthetic aperture radar images (Dellinger et al., 2015). In this study, the SIFT 

implementation identifies homologous key locations of surface structures using mean 

curvature grids of multiple epoch pairs, constituting the essential component of the 

proposed morphology monitoring strategy. Even though the co-registration problem is 

firstly treated more as a 2D alignment than 3D matching, the third dimension is later 

incorporated into a self-calibrating bundle adjustment included in the SfM-MVS pipeline.  
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3.4.2 Implementation and development 

The MBR workflow consists of three main stages, as illustrated in Figure 3.6. Stage 1 

corresponds to DEM generation of the reference and subsequent epochs, and Stage 2 

refers to the creation of pseudo GCPs and co-registration of epoch pairs. Stage 3 is the 

final error assessment phase that defines the sensitivity level of surface change. 

 
Figure 3.6: Workflow of the MBR approach to generate a UAV-derived DEM time series. 

Stage 1: DEM generation  
In Stage 1 the SfM-MVS pipeline is implemented to create the DEMs at all epochs. Stage 

1 follows the typical workflow, as summarised in Section 3.2.1. Two approaches can be 

used to create the reference E0-DEM that corresponds to the DEM of the first epoch. The 

first is to use a minimum number of GCPs and the second refers to DG employing the 

camera exposure stations (steps (a) or (b) in Figure 3.6, respectively). To generate the 

subsequent DEMs, only step (b) is followed, providing approximate positions for coarse 

georeferencing.  

A python script was developed to automatically extract the approximate 3D camera 

exposure positions, as this capability is not always provided in commercial UAV systems. 
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This script reads the EXIF information from all acquired images, calculates the time 

difference between two subsequent images within one flight and couples them with each 

image file name. A requirement is that the timestamp, the 3D position and the filename 

of the first image after launching, are recorded in the UAV autopilot’s log file. The script 

reads these records from the log file and calculates the timestamps of the remaining 

images per flight based on the previously estimated time differences. Afterwards it 

searches through the log file to extract the recorded 3D positions that correspond to the 

calculated timestamp. These extracted camera exposure stations are approximate, as they 

involve positional errors associated with the consumer-grade UAV capabilities (Section 

2.3.1). Nonetheless, at this initial stage of the workflow, these coarse positions are 

adequate to scale and orient the cloud of tie points at any epoch i, as Ei DEMs will be co-

registered with respect to E0 at later stages of the MBR workflow (Figure 3.6). The 

python script is presented in Appendix A. 

The camera exposure stations, as extracted from the aforementioned script, are 

incorporated into the SfM-MVS pipeline to perform the georeferencing step in PhotoScan 

(Section 3.2.5). Dense image matching, which results in the raw 3D DPCs per epoch, is 

performed in PhotoScan. Additional analysis verifies the optimal PhotoScan disparity 

settings based on the surface characteristics of each study site (see Sections 5.2.1 and 

6.1.3).  

All DEMs were generated using the Orientation and Processing of Airborne Laser 

Scanning data (OPALS) software (Pfeifer et al., 2014), as it outperforms other point 

cloud-based and GIS-based software (e.g. TerraScan, ArcGIS14) in the fast processing of 

millions of points. This task is extremely cumbersome when dealing with time-series of 

high-density point clouds. OPALS transforms the irregular 3D DPC into a grid form and 

automatically derives statistics (e.g. point density, number of total points etc.), reducing 

the additional time required with other software. With regard to interpolation, moving 

planes was adopted in this study, as it best accounts for extreme local surface variations 

(Section 3.2.2). To find the number of nearest neighbors required for this interpolation, 

the density of the resultant DPC is taken into consideration in fashion similar to that 

described by Barbarella et al. (2017). They calculated the number of points that occurred 

within a desired DEM pixel size via the density tool in ArcGIS. More than three 

neighboring points are required to provide redundancy in the least squares solution 

                                                 
14 GIS software package (www.arcgis.com/features/index.html) 

http://www.arcgis.com/features/index.html
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(Milenkovic et al., 2015). Another parameter required for this interpolation is the search 

radius, which regulates the spatial extent of the interpolation. This parameter should be 

chosen with care as, for example, a large radius can degrade significant surface variations 

(Milenkovic et al., 2015).  

Stage 2a: Creation of candidate pseudo GCPs 
Stage 2 is divided into three steps (Figure 3.6). In step 1, candidate pseudo GCPs are 

created by implementing the SIFT operator with multiple pairs of mean curvature grids. 

Mean curvature grids were computed in OPALS, as the average of principle curvatures 

(Equations (3.22) and (3.23)) after applying partial derivation to a quadratic functional 

model (Equation (3.3)). SIFT is implemented following a similar process chain to that 

described in Snavely et al. (2008) and Barazzetti et al. (2014).  

A python script was developed to generate the candidate pseudo GCPs and is presented 

in Appendix A. This script adapts the SIFT operator in the open-source OpenCV python 

library15. The SIFT operator generally consists of two components such as the detector 

and the descriptor. The former identifies potential key-points on an image by applying 

the difference-of-Gaussian functions. The latter associates each detected key-point to 

multiple descriptors, which are invariant to image translation, rotation and scaling (Ives 

and Delbracio, 2014). The OpenCV library has kept the default values of SIFT 

parameters, based on its initial implementation, as presented in Lowe (2004) and Ives and 

Delbracio (2014). Many authors have adopted the same default values for image 

processing due to the proven robustness of SIFT to image geometrical transformations 

(Mikolajczyk and Schmid, 2005; Sima et al., 2014). However, Sima and Buckley (2013) 

and Kehl et al. (2017) have demonstrated the significant improvement of SIFT 

performance after optimizing its default settings accounting for geometric and 

radiometric variations.  

In the same script, erroneous correspondences are filtered by applying the RANSAC 

algorithm incorporated into a 2D similarity transformation that comprised two 

translations, a rotation about Easting and a scale factor (Hartley and Zisserman, 2004). 

The mathematical expressions are described in Appendix A. RANSAC was chosen as an 

outlier estimator of the first approximation of candidate key-points due to its simplicity 

                                                 
15 http://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html  

http://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html
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and high number of breakdown points (Barazzetti et al., 2010). The processing chain of 

Stage 2, developed in the python script is as follows: 

1. Read the input curvature grids (geotiff) of a specified kernel size for epoch pair ij; 

2. Detect key-points for both grids; 

3. Compute their descriptors Di and Dj for grid of epoch i and j respectively; 

4. Match the Di and Dj descriptors between potential key-point pairs and compute the 

Euclidean distances dij per pair; 

5. Sort the distances from shortest to longest; 

6. Accept detected matches if d1ij/ d2ij<0.8, where d1ij, d2ij are the first and second-best 

distance candidates respectively; 

7. Store the image coordinates of the matched key-points in pixels; 

8. Apply a 2D similarity transformation with RANSAC to the stored key-points for any 

ij epoch pair; 

9. Accept key-points that provide an average standard error (SE), post transformation < 

0.9 pixels; 

10. Store the estimated transformation parameters; 

11. Store the coordinates in pixel and meters of the final accepted homologous key-points; 

12. Store the residuals of each key-point as a quality indicator of the 2D similarity 

transformation. 

In steps 1 to 3, SIFT with curvature grids is performed. In steps 4 to 6 a distance ratio test 

is applied to remove spurious matches, because in most cases a descriptor of image i can 

match with more than two descriptors of image j (Snavely et al., 2008; Barazzetti et al., 

2014). Typical ratio values within the range of 0.5 to 0.8 have been adopted from other 

studies (Snavely et al., 2008; Barazzetti et al., 2010; Barazzetti et al., 2014), allowing a 

sufficient number of erroneous candidate homologous points to be removed. In steps 7 to 

12, RANSAC is recursively performed within a 2D similarity transformation. Step 9 

assigns a threshold to support the RANSAC outlier filtering process with sub-pixel 

accuracy. The average SE (Equation (3.32)) is based on the residuals computed for each 

set of homologous points after each RANSAC iteration by back-projecting the points of 

curvature j into curvature i. In step 11, the coordinates of the candidate homologous 

points (pseudo GCPs) are firstly stored in pixels and afterwards transformed into Easting 

and Northing based on the spatial reference information embedded into the curvature 

grids (of geotiff format). This information is provided from the coarse alignment in Stage 

1 of the MBR workflow. The standard errors for each pseudo GCPs computed after the 
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final iteration are used as markers’ accuracy (Section 3.2.5).and inserted in PhotoScan 

during Stage 2c of the MBR workflow (Figure 3.6). 

The described process is repeated for epoch pairs of multiple curvature kernel sizes (5x5 

to 33x33). For instance, epoch i and j, as shown in Figure 3.6, represent one epoch pair. 

In the case of n epochs there are n(n-1)/2 epoch pairs. For each epoch pair, SIFT detects 

numerous different key-points from curvature grids of various kernel sizes and this adds 

redundancy into the process. Identical points are automatically erased in ArcGIS when all 

candidates from all epochs are combined together into one vector file, including their 

corresponding per epoch 2D coordinates (Easting, Northing). Corresponding elevation 

values are then interpolated from the points’ coordinates on the equivalent DEMs derived 

in Stage 1.  

Stage 2b: Creation of stable/unstable terrain mask 
In step 2, a stable/unstable terrain mask is created based on classification of the area into 

regions with smooth/rough surface texture using the morphological attribute of openness. 

The computation of an openness grid using a DEM is described in Section 3.3.2 and is 

implemented in OPALS. A spatial length is required, which is empirically defined based 

on a priori knowledge of the extent of surface failures in each study area. Both positive 

and negative openness are computed (Equations (3.25), (3.26) and (3.27)), combined with 

map-algebra and focal statistics smoothing algorithms in ArcGIS to generate the final 

stable terrain masks for each epoch j. Map-algebra algorithms contain mathematical and 

logical operators that are applied to raster grids on a cell-by-cell basis. Focal statistics 

calculate statistics for a grid point based on the neighbouring grid values within a 

specified kernel size. These algorithms are applied to openness raster grids, which are 

then converted into polygons with vectorisation tools in ArcGIS. To remove speckle noise 

from the stable terrain masks, usually generated from extremely small polygons, 

additional smoothing is applied by eliminating those with area lower than 10 m2. The 

points that fall outside the stable masks are eliminated from the process.  

To verify the stable and unstable detected regions, the EVR grid is computed based on 

Equations (3.28) and (3.29), implemented in OPALS. Histograms of EVR values are 

generated for sample sub-regions over stable (smooth) and unstable (rough) terrain. 

According to investigations in McKean and Roering (2004), it is expected that EVR 

values over smooth terrain follow a normal distribution, as opposed to a skewed 

distribution over rough terrain. This test constitutes an intermediate independent 

verification of the stable/unstable mask creation step.  



 73 

Stage 2c: Final pseudo GCPs 
Up to this point, 3D coordinates of the extracted pseudo GCPs over stable terrain for all 

epochs (plus the associated standard errors) are included in a single file. This file can be 

incorporated into the epoch pairwise self-calibrating bundle adjustment, implemented in 

PhotoScan. In particular, given the established coarse alignment from Stage 1 of the 

workflow (Figure 3.6), the coordinates of pseudo GCPs at epoch i (Ei) can be 

automatically located on each image of the UAV photogrammetric block. After assigning 

these as control markers with the aid of the integrated PhotoScan python script 16, the 3D 

coordinates are then reimported with their values from reference epoch 0 (E0). It is 

expected that the coordinates at Ei and E0 correspond to the same locations. This is 

checked at step 9 of Stage 2a. The least squares bundle adjustment is expected to re-

optimise the solution and co-register the two epochs.  

In this study, the bundle adjustment refines, amongst others, the camera’s IOPs including 

focal length, principal point, three radial (K1, K2, K3) and two tangential (P1, P2) distortion 

parameters. Hence, from Equation (3.1) K4, P3 and P4 are not used in the process. This 

combination of parameters was chosen as it has been shown to reduce DEM deformations 

(James et al., 2017a), when tested with a similar compact camera (Section 3.2.6). 

After the bundle adjustment in PhotoScan statistical measures for each component 

(Easting, Northing and Elevation) of the pseudo GCPs are computed. The selection of the 

final pseudo GCPs is performed through an iterative statistical outlier detection test, using 

the normal distribution with 95% confidence level and 1.96 percentile (Wolf and Ghilani, 

2010). A python script was developed for the outlier detection test using input data the 

statistical measures computed by PhotoScan, as presented in Appendix A. Outliers are 

expected to have Easting, Northing and Elevation outside the range ±2σ with σ denoting 

the standard deviation (Equation (3.33)). The ±2σ range is chosen as it is a typical level 

in error assessment of photogrammetric products (Whitehead and Hugenholtz, 2015). The 

number of iterations of the statistical test depends on two stopping criteria: 

1. The SEs (Equation (3.32)) computed from all inliers in each coordinate 

component should be lower or equal to the DEM spatial resolution; 

2. At least one pseudo GCP should be completely inside each of the five Thiessen 

polygons the area is divided into. 

                                                 
16 The script can be found in www.agisoft.com/forum/index.php?topic=4665.0  

http://www.agisoft.com/forum/index.php?topic=4665.0


 74 

The first criterion relates the methodology with the achievable spatial resolution of the 

UAV-derived products. The second criterion ensures that automatically generated pseudo 

GCPs are well distributed across the study area, as five corresponding Thiessen polygons 

can define the region of influence around each theoretical GCP. Five theoretical GCPs 

would provide a convenient establishment of control targets with accuracy level of 

1 x GSD as described in Section 5.1. Based on this, five Thiessen polygons can be used 

to verify a reliable pseudo GCP distribution. Any remaining systematic directional errors 

are manually checked and removed based on the calculation of their azimuth and creation 

of polar plots, which support inspection of the dominant direction. The final step of the 

MBR workflow is to reconstruct the DPC, DEM and orthophoto for each epoch with the 

exception of E0, through processing performed in PhotoScan and OPALS (Figure 3.6). 

3.4.3 Statistical measures 

Throughout the process, different outlier tests are performed and a number of statistical 

measures (Wolf and Ghilani, 2010) are computed to support the analysis of pseudo GCP 

generation. 

A residual is the difference between a single observation and its true, or most probable, 

value as expressed by: 

 i iyε µ= −  , i iu X X= −   (3.30) 

For true known values, ε refers to error instead of residual. When the true value is 

unknown, it is substituted from the value with the highest probability of occurrence. This 

can be the mean of the observations when many observations are present, given by: 
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where n  is the number of observations. The mean values in Easting, Northing and 

Elevation of the generated pseudo GCPs are expected to be close to zero. Deviations from 

zero imply the presence of systematic bias. The standard error expressing the square root 

of population variance is denoted by: 
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A unique value of SE is calculated for Easting, Northing and Elevation separately. The 

standard deviation is an unbiased estimator of the sample variance, σ2, expressing the 

precision of the automatically generated pseudo GCPs:  

 2
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i

u
n

σ
=

=
− ∑   (3.33) 

Compared to the conventional IG with surveyed GCPs, in the MBR workflow the true 

values of pseudo GCPs are unknown. Hence, the aforementioned statistical measures 

refer to the mean rather than the true values. It is assumed that after outlier detection tests 

a relatively high number of pseudo GCPs remain, forming a homogenous distribution 

with systematic biases removed. These statistical measures are used as indicators of the 

internal accuracy of the MBR workflow, while the external accuracy is estimated through 

cross-validation against benchmark observations such as surveyed independent CPs and 

TLS.  

3.5 3D sensitivity and estimation of surface change 

3.5.1 Related work on error assessment  

The primary step of the proposed monitoring strategy, namely the co-registration (Figure 

3.1), is completed through the previously described two Stages of the MBR workflow 

(Figure 3.6). Before quantifying elevation and planimetric surface changes from the co-

registered time series, it is important to determine the level of detail that can be achieved 

with the adopted methodology (Brasington et al., 2003; Lane et al., 2003; Wheaton et al., 

2010; Brasington et al., 2012; Smith and Vericat, 2015; Cook, 2017; James et al., 2017b). 

This process is included into Stage 3 as seen in Figure 3.6. 

Whilst many studies (Wheaton et al., 2010; Milan et al., 2011; Brasington et al., 2012; 

Smith and Vericat, 2015) have compared DEMs, others have compared point clouds 

(Lague et al., 2013; Cook, 2017; James et al., 2017b) to determine the lowest detectable 

surface change. The first category proposed the DEM standard deviation (see Equation 

(3.6)) as a quality indicator to express the spatial distribution of errors. These errors are 

associated with geomatics and interpolation techniques adopted for DEM generation. The 

second category proposed statistical measures extracted from point-to-point distance 

differences. To derive the significant statistical level of change detection (i.e sensitivity), 

all aforementioned studies have adopted the typical error propagation approach (Wolf and 

Ghilani, 2010) applied to either point-to-point distances or DEM differences. 
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Regardless of the approach taken for sensitivity quantification, the most widely 

established statistical measure for error assessment of 3D point clouds or DEMs is the 

root mean square error (RMSE). RMSE is usually computed at independent CPs, as 

suggested by ASPRS guidelines (Abdullah et al., 2015; Whitehead and Hugenholtz, 

2015). RMSEs taken at GCPs cannot provide a reliable quality indicator of the final SfM-

MVS products as GCPs play a significant role in shaping the resultant 3D surface (James 

and Robson, 2014; Eltner et al., 2016). Nonetheless, in the absence of ground truth, 

RMSEs together with mean values reported at GCPs can still quantify unresolved biases 

after SfM self-calibrating bundle adjustment. 

Recent studies (Carbonneau and Dietrich, 2016; James et al., 2017b) showed that the 

RMSE at CPs provides an overall georeferencing error (related to the defined datum), but 

fails to identify the spatial distribution of systematic errors, especially for a low number 

of poorly distributed CPs. Further, when ground truth observations are available (e.g. 

TLS-based, GNSS/Total station observations), a quality indicator can be retrieved by 

direct comparison between the SfM-MVS-derived DPC and ground-truth points via point 

to point or point-to-mesh comparison for flat terrain, or via the multiscale model to model 

cloud comparison (M3C2) for more complex terrain (Carbonneau and Dietrich, 2016). 

Mesh-to-mesh comparison is also an alternative but it requires the intermediate step of 

converting a point cloud to mesh. All algorithms are implemented in CloudCompare and 

described in Lague et al. (2013); the main difference being that M3C2 takes into 

consideration local surface roughness (Stumpf et al., 2015; Cook, 2017; James et al., 

2017b). This makes it superior to all other approaches especially for complex terrain. The 

point-to-point comparison is more sensitive to different point densities (Eltner et al., 

2016). After investigating the performance of point-to-mesh against the M3C2 algorithm 

with TLS point clouds, Stumpf et al. (2015) concluded that M3C2 provides estimations 

that are more reliable.  

In particular, M3C2 derives distances between two point clouds in two steps: a) firstly it 

calculates a normal vector at any point of the first cloud and b) projects the calculated 

normal vector into both clouds. The average position of the two projections along the 

normal vector constitutes the estimated distance between the two clouds. The M3C2 

distance is calculated, either to each point of the first point cloud, or to core points after 

sub-sampling for faster performance. The normal vector is estimated by fitting a plane to 

neighbouring points within a radius (D/2). The projection is performed at another radius 

(d/2) which defines the size of a cylinder containing subsets of both point clouds. Both 
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parameters D and d define the spatial extent whereby surface variations are considered. 

For small values of D, the estimated normal vectors of the first cloud have various 

orientations which can result in distance overestimation when projected onto the second 

cloud. A detailed explanation of the M3C2 algorithm can be found in Lague et al. (2013).  

Overall, direct comparison of point clouds mitigates against interpolating errors in 

derivation of the DEMs (Stumpf et al., 2015; Eltner et al., 2016; Cook, 2017). However, 

it is not always feasible to obtain benchmark point clouds of higher precision than SfM-

MVS outputs over large extents. Moreover, M3C2 distances are affected by surface 

roughness (Lague et al., 2013). For instance, TLS and SfM-MVS point clouds obtained 

over the same surface at the same epoch represent surface roughness in different levels 

of detail. TLS allows for a fine representation of surface characteristics as opposed to the 

smoother result of the SfM-MVS point cloud derived from UAV imagery (also illustrated 

in Cook (2017)). Hence, when these are compared through the M3C2 algorithm, 

appropriate selection of parameters (i.e. sub-sampling distance, D and d distances) is 

essential to reduce the effect caused by roughness variations between the clouds (Stumpf 

et al., 2015). Values lying within the range of 0.3-2.0 m for the d parameter have been 

recommended by Barnhart and Crosby (2013) and Lague et al. (2013) when the M3C2 

algorithm was tested with TLS point clouds.  

James and Robson (2012) and Micheletti et al. (2015) demonstrated that error assessment 

should be performed after applying a global co-registration to SfM-MVS outputs, even if 

the inclusion of GCPs was considered. That way the derived quality indicator can also 

reflect misalignment errors usually present in time-series SfM-MVS outputs. They 

adapted a six-parameter rigid transformation ICP algorithm (neglecting the scale) when 

a SfM-MVS point cloud was assessed against a TLS point cloud. The authors confirmed 

that distance discrepancies were caused by the different technique applied and not 

attributed to co-registration errors.  

Overall, error assessment in photogrammetry involves the quantification of precision and 

accuracy (Wolf et al., 2014). Precision is related to the repeatability of an output whereas 

accuracy refers to the closeness to a ground-truth (Wolf et al., 2014; Eltner et al., 2016; 

Granshaw, 2016a). In the present study, statistical measures, described in Section 3.4.3, 

deal with precision throughout the monitoring strategy. The sensitivity level described in 

Section 3.5.3 is indicative of accuracy but also expresses a level of precision, as it includes 
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errors produced over stable regions from repeated UAV surveys. This step constitutes the 

final Stage 3 of the MBR workflow, as shown in Figure 3.6.  

3.5.2 Related work on surface change estimation 

The last part of the morphology-based monitoring strategy is quantification of elevation 

change and planimetric surface movement. This is conducted with the aid of DEM 

differencing and image cross correlation functions combined with surface morphological 

attributes.  

Differencing of successive co-registered DEMs constitutes a standard approach to 

estimate ground accumulation and depletion in monitoring applications (Daehne and 

Corsini, 2013; Travelletti et al., 2014). DEM subtraction on a pixel-by pixel basis results 

in estimation of elevation changes, which in turn leads to volumetric changes. However, 

the estimated changes can be mixed with unresolved misalignment errors, other 

systematic errors mostly propagated through the SfM-MVS pipeline, and random noise 

caused by vegetation. The first two biases have been discussed in Section 3.2.6.  

In an attempt to assess the first two biases, Turner et al. (2015) computed the RMSEs of 

subsequent elevation differences over stable terrain. After a trial and error procedure, a 

constant shift was applied to DEMs of particular epoch pairs until the RMSEs were 

minimised. This process generally disregards rotational errors and should be treated with 

care (Turner et al., 2015). The M3C2 and ICP algorithms, as discussed in Section 3.4.1, 

account for both planimetric and rotational errors.  

It is well-known that vegetation creates high surface roughness, affecting the 

photogrammetric outcome (Lane et al., 2000). Vegetation is strongly related to surface 

texture (Section 3.2.6) as it creates surface variations when captured from different 

angles, hampering tie point matching in the SfM-MVS pipeline (Eltner and Schneider, 

2015). Tonkin et al. (2014) reported that the elevation differences between observations 

obtained with UAV and a total station were higher in areas vegetated with heather than 

in short grassland. Javernick et al. (2014) identified regions with vegetation height higher 

than 0.40 m in a SfM-MVS derived DEM. They firstly generated a 0.50 m DEM 

resolution by calculating the minimum elevation of each pixel. Then, the original spatial 

resolution of the DPC was degraded to create different DEMs of coarser resolution which 

were subtracted from the initial DEM. In this way, they mapped the regions of vegetation 

noise. However, this approach is likely to also smooth regions of local surface variations, 

and therefore is not suitable for landslide monitoring. Cook (2017) compared ALS with 
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SfM-MVS point clouds and concluded that the latter does not represent vegetation in a 

consistent manner since it is influenced by vegetation density. Dense bushes and grass 

cause surface variability in SfM-MVS point clouds, resulting in a unfavourable bare 

ground representation which can affect change detection estimation (Cook, 2017). Here, 

vegetation is initially filtered with PhotoScan’s ground classification routine (Section 

3.2.5) and the DEM standard deviation (Equation (3.6)) is then considered for removing 

any unfiltered noise prior to pairwise DEM subtraction. Further, to extract real elevation 

change, deformations within the estimated sensitivity level are excluded from the DEM 

differences. 

With respect to surface planimetric movement estimation, image cross-correlation 

functions have been implemented in the context of earthquakes (Dominguez et al., 2003; 

Leprince et al., 2007a; Leprince et al., 2007b; Ayoub et al., 2009a), landslides (Travelletti 

et al., 2012; Daehne and Corsini, 2013; Lucieer et al., 2014; Fey et al., 2015; Turner et 

al., 2015; Stumpf et al., 2017) and glaciers (Kääb and Vollmer, 2000; Debella-Gilo and 

Kääb, 2011; Heid and Kääb, 2012; Messerli and Grinsted, 2015). Compared to the 

intensive task of manual feature tracking, image cross-correlation functions provide a 

continuous grid of surface displacements in an automatic fashion. Numerous studies have 

applied image cross-correlation functions to optical imagery (Kääb and Vollmer, 2000; 

Dominguez et al., 2003; Leprince et al., 2007a; Leprince et al., 2007b; Ayoub et al., 

2009a; Heid and Kääb, 2012; Messerli and Grinsted, 2015; Rosu et al., 2015; Stumpf et 

al., 2017). Nevertheless, the application of image cross-correlation functions to UAV-

derived orthophotomosaics can increase noise due to variations in illumination conditions 

(Lucieer et al., 2014). Recent studies have demonstrated that the implementation of image 

cross-correlation functions with DEM morphological derivatives can automatically 

determine the movement of surface features that preserve their structural patterns over 

time (Daehne and Corsini, 2013; Lucieer et al., 2014; Travelletti et al., 2014; Fey et al., 

2015). Among these, Lucieer et al. (2014) and Turner et al. (2015) found that the UAV-

derived morphological attribute of shaded relief, implemented with image cross-

correlation functions, provided better surface displacement estimation of a landslide than 

single bands from the corresponding orthophoto. This study evaluates image cross-

correlation functions with various UAV-derived morphological attributes (Section 3.3) 

for 3D landslide deformation monitoring. According to Hiller and Smith (2008), and also 

highlighted by Favalli and Fornaciai (2017), each morphological attribute can offer a 

unique representation of geomorphological features. Hence, a comprehensive 
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investigation of the image cross correlation functions’ performance related to various 

morphological attributes becomes a necessity.  

Numerous image cross correlation functions have been proposed, such as those performed 

in the spatial domain (Lewis, 1995; Kääb and Vollmer, 2000; Debella-Gilo and Kääb, 

2011; Messerli and Grinsted, 2015) and those performed in the frequency domain 

(Scambos et al., 1992; Leprince et al., 2007b; Rosu et al., 2015; Stumpf et al., 2017). A 

description of various functions can be found in Heid and Kääb (2012). Here, the 

normalised cross correlation (NCC) function performed in the spatial domain was 

utilised. This is one of the most popular and mathematically simple functions for Earth 

mass movement (Debella-Gilo and Kääb, 2011; Heid and Kääb, 2012). 

In a broader context, the NCC function is an area-based matching algorithm (Section 

2.3.2), which compares the similarity between intensity values of two grids, 

corresponding to the covariance between them (Favalli and Fornaciai, 2017). The 

normalisation refers to the division of the covariance by the standard deviation of a grid 

(Equation (3.6)), resulting in the correlation coefficient. To derive surface movements 

between two grids, the NCC function searches for the maximum absolute value of the 

correlation coefficient by sliding a rectangular patch systematically from a pre-event 

image (first grid) within a search window in a post-event image (second grid), as 

expressed by Equation (3.39).  

A major limitation of the NCC function is its sensitivity to the large variations of intensity 

values (Debella-Gilo and Kääb, 2011; Heid and Kääb, 2012; Travelletti et al., 2014). Such 

variations are usually caused by different illumination conditions, shadows, dense 

vegetation, mixed terrain texture (e.g white snow with black rocks as noted in Heid and 

Kääb (2012)) and surface features with various specular reflectance, aspect variability 

and rotational failures (Debella-Gilo and Kääb, 2011; Heid and Kääb, 2012; Stumpf et 

al., 2017). These changes in intensity can result in decorrelation, producing noise within 

the surface movement estimations. In addition, erroneous estimations can be generated 

by the presence of co-registration errors in an image pair (Debella-Gilo and Kääb, 2011; 

Stumpf et al., 2017). In particular, the rotational misalignments between two images can 

strongly affect the computed correlation, as noted by Debella-Gilo and Kääb (2011) and 

Travelletti et al. (2014). Debella-Gilo and Kääb (2011) also highlighted that the NCC 

function does not allow for movement detection magnitude lower than the co-registration 
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error, implying the necessity of a sensitivity level determination prior to NCC 

implementation.  

To overcome the aforementioned errors, many studies (Kääb and Vollmer, 2000; 

Milledge et al., 2009; Debella-Gilo and Kääb, 2011; Travelletti et al., 2014) applied filter 

methods to the estimations. Filters included averaging within a specified window and 

eliminating movements over regions with correlation lower than a specified threshold and 

upslope direction. Stumpf et al. (2017) recently proposed a multiple pairwise image 

correlation algorithm which takes into account the coherence of surface movement over 

time. For instance, they reduced noise by averaging the magnitude and direction of 

movement among all epoch pair combinations. The authors also investigated the 

variations of movement from the theoretical zero over stable terrain and accommodated 

relevant thresholds into their algorithm to optimise the estimations over unstable terrain. 

However, regardless of the filtering method adopted, a priori knowledge of the surface 

kinematics is required. Here, such knowledge is extracted from visual inspection of the 

co-registered UAV-derived orthophotomosaics, as also recommended by Lucieer et al. 

(2014). 

3.5.3 Computational aspects 

Error assessment 
The error assessment step is part of Stage 3 of the MBR workflow (Figure 3.6). RMSE at 

GCPs or CPs in the x-direction are calculated as described in Equation (3.34). The same 

equation is applied for y and z directions.  

 2

1

1 ( )
n

x obs ref
i

RMSE x x
n =

= −∑   (3.34) 

 
2 2

plan x yRMSE RMSE RMSE= +   (3.35) 

 
2 2 2

3D x y zRMSE RMSE RMSE RMSE= + +   (3.36) 

In Equation (3.34) ( )obs refx x−  refers to the differences between the SfM-MVS estimated 

and surveyed point positions. Equations (3.35) and (3.36) are applied to derive 

planimetric and 3D errors respectively. In the case of pseudo GCPs, Equation (3.32) is 

used instead of Equation (3.34) for each component, which corresponds to SEs, as 
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ground-truth of pseudo GCPs is unknown. Hence, reference positions are extracted from 

the reference epoch. The 3D sensitivity level is derived by applying a classical error 

propagation approach to the estimated quality indicators of the MBR-based DEMs/point 

clouds between reference E0 and any other epoch i, for a 95% confidence level, using: 

 
2 2

(0) ( )1 geor geor is t e e= +   (3.37) 

 
2 2

(0) ( )2 geor co reg is t e e −= +   (3.38) 

In Equations (3.37) and (3.38) t =1.96 is the critical value for 95% confidence, geore  

indicates the RMSE at CPs, with co geore −  denoting the RMSE calculated from the cloud 

to cloud M3C2 distances. Together with the mean, standard deviation and RMSE values 

(Equations (3.31), (3.33) and (3.36) respectively) are also calculated from the M3C2 

distances. All statistical measures are computed after applying co-registration of all 

epochs over stable terrain. 

The co-registration algorithm adopted here is the six-parameter rigid transformation (3 

translations and 3 rotations)17, as implemented in the ICP variant in OPALS (Glira et al., 

2015). Amongst others, this ICP variant can handle multiple point clouds of subsequent 

epochs simultaneously without the necessity of a complete overlap, as it uses voxel hulls13 

partitioning. The ICP minimises the sum of squared point-to-plane distances in an 

iterative least squares adjustment (Milenković et al., 2016). Unlike pairwise ICP variants, 

this globally optimizes the transformations from all epoch combinations of point clouds 

with respect to a reference epoch. 

Equation (3.37) follows the standard definition of the lowest threshold of change 

detection between DEM differences of consecutive epochs, while Equation (3.38) uses 

the co-registration error. The maximum value of 1s  and 2s  characterise the lowest 

detectable surface change. The spatial distribution of the co-registration error is analysed 

from the precision map provided in the M3C2 comparison result (Lague et al., 2013). 

DEM subtraction and volume differences are performed with the aid of the Geomorphic 

Change Detection toolbox (Wheaton et al., 2010) operated in ArcGIS18.  

                                                 
17 www.geo.tuwien.ac.at/opals/html/ModuleICP.html  
18 www.gcd.joewheaton.org/  

http://www.geo.tuwien.ac.at/opals/html/ModuleICP.html
http://gcd.joewheaton.org/
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The Normalised Cross Correlation (NCC) function 
In this study, the statistical NCC function was firstly implemented in the Co-registration 

of Optically Sensed Images and Correlation (COSI-Corr) software (Leprince et al., 

2007b; Ayoub et al., 2009b) and afterwards in the Correlation Image Analysis (CIAS) 

package (CIAS, 2012; Heid and Kääb, 2012). Unlike COSI-Corr, which generates a 

continuous grid of surface movement estimations, CIAS allows for individual feature 

tracking. COSI-Corr requires the input of three rectangular window sizes, namely a) a 

correlation window whereby the correlation is performed; b) a search patch in which the 

displacements are estimated and c) a step size used for sliding the patch within the 

correlation window defining the spatial resolution of the resultant displacement grid. The 

first two parameters are only necessary for the CIAS package.  

Let 1(i, j)I be the grid value at the ith and jth grid cell within a correlation window cW of a 

pre-event image 1I . For a specified step size (s) and a post-event image 2I , the NCC 

function is expressed as (Kääb and Vollmer, 2000; Debella-Gilo and Kääb, 2011; Aryal 

et al., 2012; Heid and Kääb, 2012; Travelletti et al., 2014): 
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  (3.39) 

where s s(i , j ) are the grid cell coordinates shifted by (s) in both directions, µ  and σ  are 

the mean and standard deviation of the grid values within the correlation window in the 

two images denoted with the corresponding subscripts I1 and I2. The computed 

displacements in Easting and Northing are determined by the matched correlation peak 

between the two grids (Debella-Gilo and Kääb, 2011; Heid and Kääb, 2012; Messerli and 

Grinsted, 2015).  

To tune the settings and evaluate the performance of the NCC function shown in Equation 

(3.39), as applied to various morphological attributes, experiments in this study were 

conducted with synthetic epoch pairs (Section 6.4.1). Apart from the displacements in 

Easting and Northing, the COSI-Corr function also calculates a signal-to-noise ratio 

(SNR), indicative of the correlation quality. SNR values closer to unity are indicative of 

more reliable results, as high correlation is established.  
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Favalli and Fornaciai (2017) investigated the level of correlation between many 

morphological attributes and concluded that some are strongly correlated with each other 

(e.g. slope with shaded relief of 90° elevation angle). Here, to assess possible correlations, 

a comparative analysis of the estimated displacements and derived SNRs, obtained with 

the synthetic datasets is conducted. This comparison also examines uncertainty in noise 

and displacements provided from different morphological attributes. These attributes are 

generally scale variant as they provide different surface representations when DEM 

spatial resolution and moving kernel size vary (Grohmann et al., 2011). To account for 

this, the comparative analysis investigates the different estimations and noise levels with 

the change of spatial extent.  

The morphological attributes with the lowest noise levels and more precise displacement 

estimations are chosen for the NCC implementation within COSI-Corr for an active 

landslide. Having generated a time-series of 3D surface deformation across the site, an 

additional investigation over sub-regions with the largest deformations is then performed 

with the aid of CIAS package. The outcomes are cross-validated with the surface 

displacements calculated from sample points, manually measured across the SfM-MVS 

derived orthophotomosaics and independently surveyed with GNSS.  

Equation Chapter (Next) Section 1 

 

3.6 Summary 

Chapter 3 has established the workflow of the morphology-based monitoring strategy that 

will be applied to the study sites in Chapters 5 and 6. The relative theoretical and 

computational aspects required for the development and implementation of the proposed 

monitoring strategy are explained in this Chapter. The monitoring strategy combines the 

SfM-MVS pipeline to post-process multi-temporal UAV imagery with surface 

morphology and image-cross correlation functions. The main feature of the monitoring 

strategy is the co-registration of subsequent SfM-MVS products without the requirement 

to physically establish GCPs, rendering the approach suitable for inaccessible landslide 

areas.  
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Chapter 4.  
Study sites, ground-based data acquisition  

and equipment 

Chapter 3 established the monitoring strategy that is tested and implemented in Chapters 

5 and 6. This chapter describes three different sites whereby UAV imagery was collected 

to support development of the strategy. A farm close to Newcastle University, an 

experimental site with artificial surface change, and an active landslide constitute the 

three sites. These sites aided familiarisation with the SfM-MVS pipeline and software 

described in the previous chapter. This chapter thus introduces the study sites, presenting 

relevant information such as location, geomorphology, geology, landslide kinematics etc. 

and describes the ground-based control observations acquired at each site. These 

observations serve as benchmark datasets for cross-validation at different stages of the 

monitoring strategy. Finally, this chapter describes the UAV platform with the on-board 

sensors used for image acquisition. 

4.1 Cockle Park test site 

4.1.1 Site overview and ground-based control data 

Cockle Park farm is located near the town of Morpeth (55°13'07.44"N, 1°41'34.07"W), 

27 km north of Newcastle upon Tyne, UK (Figure 4.1). The farm, owned by Newcastle 

University, provided an opportunity for UAV flight training and collection of 

experimental datasets to investigate the on-board sensor performance. Cockle Park farm 

mainly consists of pastureland used for grazing. The ground is relatively flat with short 

grass suitable for fast post processing of SfM-MVS point clouds without the requirement 

for additional cleaning. 
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Figure 4.1: Overview of the Cockle Park farm. Inset map locates the site within the UK. 

A field campaign was carried out on 8th October 2014. 36 black/white circular targets 

were established and surveyed using RTK-GNSS using Leica GS10 receivers, with a 

distribution shown in Figure 4.1. The real-time GNSS correction services (SmartNet, 

provided by Leica Geosystems19) worked efficiently at the farm even close to trees. This 

delivered a 0.01 m planimetric and a 0.02 m vertical absolute accuracy in the Ordnance 

Survey Great Britain 1936 (OSGB36) coordinate system. 

 

Figure 4.2: A black and white circular target. 

The targets were made of sticky-backed plastic with an internal black circle of 0.40 m 

diameter (Figure 4.2). This diameter is equal to approximately 8-10 pixels on imagery 

acquired from a flying height of 120 m (i.e. 400 ft), which is the maximum UAV flying 

height allowed in UK. The targets were anchored to the ground with tent pegs inserted 

                                                 
19 www.uk.smartnet-eu.com/  

http://uk.smartnet-eu.com/


 87 

into four locations at the edges of the white circle (Figure 4.2). A GNSS pole was set up 

on a bipod and was positioned over a white dot, which marked the centre of the targets.  

4.2 Sandford Industrial Park test site 

4.2.1 Site overview 

Sandford Industrial Park is located at Prees (52°54'26.52"N, 2°37'55.30"W), 8 km south 

of Whitchurch, UK (Figure 4.3). The site is mainly utilised for controlled earthworks by 

the “Safety and training” department of the Hawk Group20 (a group of companies 

providing construction solutions) and for UAV flight training undertaken by Leica 

Geosystems21. Data collection was performed on 30th November 2016 at a dedicated site, 

as depicted in Figure 4.3. 

The site is an embankment of approximately 20˚ slope and a relatively flat field of mostly 

bare soil with sparsely distributed low grass of approximately 0.1 m height. To 

synthetically create surface change, ground material were excavated from the 

embankment, and placed at the foot of the slope, as seen in Figure 4.4a. The slope change 

introduced covered an approximate area of 100 m2 and was generated over two epochs. 

The change extended 3.50 m along and 6.50 m across the slope with an approximate depth 

of 0.25 m in epoch E1, and an approximate length, width and depth of 6.50 x 9.50 x 0.50 

m in epoch E2 (Figure 4.4b). The surroundings of the synthetically generated change were 

stable throughout, apart from the hatched region in Figure 4.3 where access was allowed 

to excavators and hence, no ground-based observations were performed. 

                                                 
20 www.hawk-group.co.uk 
21 www.leica-geosystems.com, www.aibotix.com  

http://www.leica-geosystems.com/
http://www.aibotix.com/
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Figure 4.3: Overview of the experimental site at Sandford. Inset map locates the site within the UK. The 
UAV derived orthophotomosaic at epoch E0 (prior to excavations) is displayed in the background. 

 

 
Figure 4.4: (a) Excavation of ground material for slope failure performed by the Hawk Group. (b) Overview 
of the epoch E2 excavations with the GNSS receiver at station S2 in the background. 
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4.2.2 Ground-based control data 

At Sandford, ground-based observations were obtained with both GNSS and TLS. The 

GNSS observations were used for establishing two base and scan stations on stable terrain 

and for GCPs. Two GNSS base stations (T1 and T2 in Figure 4.3) were established on 

the top of the embankment and observed in GNSS static mode with Leica GS10 receivers 

for 1.5 hours. These GNSS observations were combined with RINEX data from five 

Ordnance Survey Net stations located within a 60 km radial distance22 and post-processed 

in Leica Geo Office software (LGO version 8.3). The post-processing delivered a 0.020 

m 3D absolute accuracy in OSGB36. 15 circular targets (the same used at Cockle Park 

farm) were established within the region of interest. An enlarged view part of a typical 

UAV image capturing a circular target of point 12 is shown in Figure 4.3. These targets 

were each observed in GNSS rapid static mode for at least four minutes and delivered 

mm-level 3D accuracy relative to base station T1, as processed in LGO.  

TLS observations were collected from two scan positions, S1 and S2 as mapped in Figure 

4.3, using a Leica Scanstation P40. The two scan positions were surveyed in GNSS static 

mode for 10 minutes, delivering mm-level 3D accuracy relative to base station T1. Station 

T2 was used as an additional constraint to register the scans from S1 and S2, achieving a 

0.002 m 3D mean registration error, performed in Cyclone (Leica Geosystems Ltd). The 

scan position S1 was chosen because it provided a direct incident angle to the slope 

failure. TLS observations were collected in between excavations for each of the three 

epochs (Figure 4.5). Due to time limitations, the slope failure was scanned only from S1 

for epoch E1. However, to prevent more occlusions the slope was scanned from both S1 

and S2 stations in epoch E2, enabling an approximate point cloud density equal to 2000 

points/m2.  

                                                 
22 www.ordnancesurvey.co.uk/gps/os-net-rinex-data/ 

http://www.ordnancesurvey.co.uk/gps/os-net-rinex-data/
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Figure 4.5: Perspective view of TLS point clouds at the three observed epochs over slope failure. 

Figure 4.5 illustrates a perspective view of the slope failure at the three epochs. The higher 

density of the E2 point cloud compared to other point clouds can be observed. However, 

few occluded regions at the edges of the slope failure were still apparent in epoch E2. To 

use TLS point clouds as benchmark datasets very low/high points, as well as “off-ground” 

features (e.g. people, tripods and fences), were manually filtered out. The scanned area 

was suitable for cross-validation because vegetation was absent, which is also evidenced 

in Figure 4.4a and b. 
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4.3 Hollin Hill landslide  

4.3.1 Geological and geomorphological overview 

The landslide study area is located at Hollin Hill (54º 6' 38.90'' N, 0º 57' 36.84'' W), 11 

km west of Malton, North Yorkshire, UK as shown in Figure 4.6. The site is covered by 

short grass, with occasional shrubs and trees surrounded by hedgerows. Even though the 

land is mostly used for grazing, the grass height is uneven across the site, resulting in high 

surface roughness, especially during spring through autumn. The study area extends 

approximately 290 m E-W and 230 m N-S. The site is a south-facing linear hillslope of 

average 12º slope, with a 50 m elevation difference in N-S direction (Figure 4.6). 

 

Figure 4.6: (a) Breaks in slope superimposed over Shaded relief grid derived from 2011 ALS with (b) 
geomorphological and geological properties of Hollin Hill landslide. Inset map locates the site within the 
UK. Modified from Merritt et al. (2014) and Uhlemann et al. (2017). 

The Hollin Hill landslide has been a BGS observatory site since 200523. It constitutes 

typical inland shallow slope failures of Lower and Middle Jurassic formations near 

Sheriff Hutton Carr (Merritt et al., 2014; Uhlemann et al., 2017). During the ice age this 

area was an icy lake (Lake Mowthorpe), part of the glacier ice sheet, which covered 

northern Britain (Merritt et al., 2014). Due to hydrogeological actions, depositions of 

lake-sediments occurred during and after the ice melt and many sites became prone to 

failure (Merritt et al., 2014). Chambers et al. (2011) characterised the Hollin Hill landslide 

as a very slow moving multiple earth slide-earth flow, based on the Cruden and Varnes 

(1996) classification scheme. The authors reported an average of 2 m/yr movement rate. 

Uhlemann et al. (2016) observed episodic movements that reached 3.5 m/yr. Earth 

slide/flow has been mostly triggered by intensive rainfall in combination with responses 

                                                 
23 www.bgs.ac.uk/landslides/hollinHill.html  

http://www.bgs.ac.uk/landslides/hollinHill.html
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to pore-water pressure of the four geological formations, upon which the landslide sits 

(Uhlemann et al., 2016). These are the Dogger, the Whitby Mudstone, the Staithes 

Sandstone and the Redcar formation, mapped in Figure 4.6b, as extracted from Edina 

Digimap24. A description of materials transition from one formation to the other and their 

properties (e.g. lithological characteristics, depth etc.) can be found in Uhlemann et al. 

(2016) and Uhlemann et al. (2017). 

Long-term investigations by the BGS (Chambers et al., 2011; Gunn et al., 2013; Merritt 

et al., 2014; Uhlemann et al., 2016; Uhlemann et al., 2017) have identified shallow 

rotational slumps of weak materials at the upper parts of the slope and translational 

movements at the lower parts of the slope. Rotational failures have caused ground 

subsidence, creating a back scarp (Figure 4.6b, Figure 4.7a and Figure 4.7b), which 

reverts towards the north. These slumps sit on the Whitby Mudstone formation, which 

has been characterised by Gunn et al. (2013) as the failing material. In addition, Chambers 

et al. (2011) and Uhlemann et al. (2017) identified the failure as low permeable material 

sliding over the well-drained Staithes Sandstone formation. The extent of the curved 

breaks of the slump blocks at the upper parts of the slope is viewed in Figure 4.7a and 

Figure 4.7b. Many secondary scarps, linear and parallel (Merritt et al., 2014), have 

emerged across the main landslide body and are depicted in Figure 4.7a and Figure 4.7b 

as breaks in slope. These were delineated by Merritt et al. (2014) from an ALS DEM 

acquired in 2011 with the aid of the 3D stereographic software, GeoVisionary.  

Figure 4.7a illustrates that the surface gradient is not continuous. A flat plateau in the 

middle divides the site into top and bottom parts, where the slope becomes steeper. Thus, 

the top of the slope is not always visible when viewing from the bottom of the site, 

evidenced in Figure 4.7d.  

                                                 
24 www.digimap.edina.ac.uk  

http://digimap.edina.ac.uk/


   

 

Figure 4.7: (a) Overview of the back scarp at the top of the slope captured on 01/14 during reconnaissance with (b) a closer view taken on 09/15. (c) Surface cracks observed across 
the site. (d) Formed lobes at the west part of the site, as seen from the foot of the slope (taken on 01/14). (e) A closer view of the eastern lobe captured on 03/15. (f) A weather station 
installed in the centre of the site together with other sensors and pegs shown in (g).  
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The flat plateau sits on the failing formation, which has translated downwards. The 

translation has compressed the surface and created undulations. This has weakened the 

ground support at the top of the slope while the water forms ponds at the surface (Figure 

4.6b) after intensive rainfall. Due to translational movements, the ground has accumulated 

with a flow-like behaviour. As a result, lobes have formed which have continuously 

surged towards the toe of the slope. Many curved fissures have been observed over the 

prograding lobes compared to the parallel linear fissures at the middle part of the landslide 

body. The aforementioned description of the landslide behaviour is based on the BGS 

investigations (Merritt et al., 2014; Uhlemann et al., 2016; Uhlemann et al., 2017). Figure 

4.6b depicts these characteristics mainly for the eastern part of the site that has been 

mostly monitored by the BGS.  

During the spring-autumn period some breaks in slope are usually covered by bushes and 

grass (Figure 4.7b). Due to vegetation, the surface texture in Figure 4.7b is rougher than 

that of Figure 4.7a. In addition, the surface roughness varies over different parts of the 

landslide. For example, the advancing eastern lobe (formed by fractured ground material 

creating ridges) (Figure 4.7e) has a rougher texture than the adjacent continuous grassy 

terrain over deposits (Figure 4.6b). The concave feature, delineated in black in Figure 

4.7e, separates this distinctive change of surface curvature and roughness. Apart from the 

continuous breaks in slope, there are also many individual narrow tension cracks across 

the main landslide body (Figure 4.7c), which tend to widen due to surface translational 

movements. 

The geology, geomorphology and kinematics of the Hollin Hill landslide have been 

monitored by the BGS with multiple environmental, geotechnical, geophysical, aerial and 

ground-based observations, using numerous sensors installed across the site. For 

example, a weather station (Figure 4.7f) was installed in 2008. Geotechnical sensors, 

namely inclinometers, tiltmeters, acoustic emission monitoring etc., have been 

established over the most active western and eastern lobes. Moreover, geophysical 

observations have been collected with electrical resistivity and self-potential tomography 

from profile arrays of electrodes installed in the subsurface (Section 2.1.1). Refer to 

Uhlemann et al. (2016) and Uhlemann et al. (2017) for more information about the 

various observations. These long time series, together with borehole logs, ALS-derived 

DEM obtained in 2011 and RTK-GNSS surveying (Section 4.3.2) have supported BGS 

investigations in characterising and interpreting the complex landslide behaviour. UAV 

derived observations further enhances the ongoing BGS research by providing a higher 
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spatial and temporal resolution. Overall, the complexity and variability of the landslide 

dynamics have made this site a challenging scenario to test the morphology-based 

monitoring approach.  

4.3.2 GNSS and total station observations 

As previously mentioned, BGS fieldwork involved RTK-GNSS measurements on a 

monthly-basis at permanently installed wooden pegs. An array of pegs has been 

established between the western and eastern lobes, shown in Figure 4.6a. Each peg is a 

square of approximately 0.10 m x 0.10 m size, too small to be identified in the UAV-

derived orthophotomosaics. The height of the pegs above the ground vary from tens of 

centimetres (Figure 4.7f) to approximately 0.50 m. The GNSS pole on a bipod was 

positioned behind each peg to collect the measurements.  

During the fieldwork of this study, the following tasks were performed: 

(1) A GNSS base station was established on stable terrain in an adjacent field and 

observed in GNSS static mode for between three and eight hours; 

(2) The same circular targets described in Section 4.1.1 were evenly distributed over 

the landslide and surveyed in GNSS rapid static mode (three-minute 

observations); 

(3) Additional stations for topographic surveying and laser scanning observations 

were established and observed in GNSS static mode for at least twenty minutes; 

(4) Spot heights of characteristic concave/convex surface features and other features 

on grassy terrain were topographically surveyed using total station and/or rapid 

static GNSS (three-minute observations) for validation purposes (Figure 4.8). 



  

 

Table 4.1: Data processing details of surveyed base stations, circular targets and spot heights. 

Campaign  
(day/month 

/year) 
Easting [m] Northing [m] Elevation 

[m] 
Ordnance Survey’s  

Net stations 

Planimetric  
standard 

deviation as 
exported from 

LGO [m] 

Vertical  
standard 

deviation as 
exported from 

LGO [m] 

Duration 
Number  

of circular 
targets 

Number  
of spot 
heights 

Geomatics 
technique  
applied for 

surveying spot 
heights 

15/05/14 468486.494  468792.437 54.129 LOFT, YEAS, SWAN, SCAO, LEED 0.005 0.017 7h 38´ 17 - - 
15/12/14 468260.482  468814.849 65.979 LOFT, YEAS, SWAN, SCAO 0.003 0.013 4h 56´ 10 48 GNSS rapid static  
19/03/15 468105. 219 468650.441 44.603 LOFT, YEAS, SWAN, SCAO 0.005 0.021 3h 40´ 11 52 GNSS rapid static 
10/06/15 468105.246 468650.443 44.629 LOFT, YEAS, SWAN LEED 0.004 0.013 7h 28´ 18 98 Total station 
27/09/15 468103.917 468632.373 43.080 LOFT, YEAS, SWAN LEED 0.003 0.010 5h 40´ 20 - - 
12/02/16 468105.224 468650.442 44.602 LOFT, YEAS, SWAN, SCAO, LEED 0.003 0.013 6h 44´ 20 65 Total station 
27/05/16 468105.221 468650.435 44.590 LOFT, YEAS, SWAN SCAO ,LEED 0.004 0.014 6h 12´ 20 559 Total station 
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Figure 4.8: Location of surveyed spot heights per campaign. 
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The equipment used was a Leica GPS 1200 and a Leica Viva GS10 for GNSS 

observations and a Leica TCR805 for total station measurements. To derive the 

coordinates of the base stations, RINEX observations from at least four Ordnance Survey 

Net stations22 were used and post processed in LGO. The OS Net stations, together with 

the estimated coordinates and standard deviations of the base stations after network 

adjustments, are reported in Table 4.1. Among all OS Net stations, YEAS is closest to the 

study area (11 km distance) while the others are 40-50 km from the site. As listed in Table 

4.1, the maximum standard deviation was estimated as 0.005 m in plan and 0.020 m in 

elevation.  

Due to tractor movements and farming activities, the base station was set up at different 

locations for three of the campaigns. However, for four campaigns 03/15, 06/15, 02/16, 

05/16 (Table 4.1) it was possible to establish the base over the same peg, 90 m south of 

hedgerows at the bottom of the slope (Figure 4.6a). A view of the west part of the 

landslide from this location can be seen in Figure 4.7d. 0.014 m planimetric and 0.016 m 

vertical standard deviations were estimated from the positions of the four campaigns. This 

verified that the base station was on stable terrain. Given the long baselines between the 

peg and the OS Net stations, any uncertainty can be attributed to the GNSS related errors 

and not to surface movement.  

Due to logistics, the number of circular targets and spot heights varied for each campaign 

(Table 4.1). Figure 4.6a shows the distribution of the circular targets and the locations of 

the stations for 05/17. The locations of all spot heights per campaign are shown in Figure 

4.8. The most complete survey was conducted in the last campaign. After post processing 

the GNSS and total station observations, a 3D accuracy at the mm-level relative to the 

GNSS base stations was delivered for all campaigns.  

4.3.3 Terrestrial laser scanning observations 

TLS observations were undertaken with a Leica Scanstation P40 during the last two 

campaigns (Table 4.1) with the support of a related project (Chidburee et al., 2016). The 

observations covered a sub-region of the rotational failure at the upper part of the slope 

of area 722 m2 (Figure 4.6a and Figure 4.6b). Four stations were established around the 

failure to tackle occlusions and surveyed in GNSS rapid static mode, as mentioned in the 

previous section. The four scans were registered with scan-to-scan registration and 

georeferenced from the coordinates of the four stations in OSGB36 using Cyclone. An 

RMSE of 0.005 m for the registration was estimated for both campaigns. An automatic 
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ground classification was not efficient due to the high density of the point clouds and 

computer memory issues. For that, “off-ground” features, mostly bushes, were manually 

removed from the point clouds by Chidburee et al. (2016) in TerraSolid TerraScan 

(TerraScan, 2016). This resulted in two TLS point clouds with density of an average 

10,000 points/m2 over the rotational failure that were used to cross-validate the SfM-MVS 

derived point clouds. (Section 6.2.2). Figure 4.9 illustrates the TLS point clouds of the 

last two campaigns after filtering. The point clouds were colored using the images 

captured with the scanner. Even though four scan stations were used, there are still 

occluded areas due to the complex surface irregularities, as shown in black in Figure 4.9. 

Two of the scan positions were established in front of the slope face with a direct incident 

angle to the cracks. Thus, the back scarp can be depicted in detail, as evidenced in Figure 

4.7a and Figure 4.7b when compared to Figure 4.9.  

 
Figure 4.9: Rotational failure at the top of the slope, as observed with TLS (a) in 02/16 and (b) in 05/16.  

4.4 UAV system 

4.4.1 Platform overview 

A fixed-wing Quest-300 UAV manufactured by QuestUAV Ltd, UK, was used for all 

experiments reported in this study. This UAV is made of hard compressed foam, has a 

maximum payload of 5 kg and a flight duration of approximately 15 minutes utilising a 

Lithium polymer battery (Figure 4.10a). The UAV platform is equipped with one or two 

compact digital cameras (detailed below), an on-board single-frequency GNSS receiver 

(Fastrax IT500, SkyCircuits Ltd25) and a consumer-grade MEMS-IMU (SkyCircuits 

Ltd25). The latter comprises a 3-axis accelerometer, 3-axis gyroscope and 3-axis 

magnetometer. It also contains a micro-processor with autopilot software (SkyCircuits 

Ltd25) that interprets predefined flight mission parameters (a series of 3D way-points that 

describe the flight path and the camera exposure time), enabling the UAV to fly 

                                                 
25 www.skycircuits.com/  

http://www.skycircuits.com/
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autonomously. The autopilot system allows for assisted piloting through the aerial link to 

the transmitter (Figure 4.10b), handling abrupt movements with respect to roll/pitch axes 

usually generated by an inexperienced pilot. The assisted mode supports a secure landing 

that can be controlled by the pilot. 

 
Figure 4.10: (a) Overview of Quest-300 UAV. (b) Payload setup inside the main UAV body. (c) AutoCAD 
3D model and (d) 3D printed version of a camera case to hold the Sony A6000 camera.  

The micro-processor stores a log file which describes the flight trajectory information, 

including the time-tagged 3D UAV position at 10 Hz. This position is recorded in World 

Geodetic System 1984 (WGS84) coordinates (longitude, latitude and altitude), as 

estimated after the integration of GNSS with MEMS-IMU observations through an 

extended Kalman filter. This is implemented in real-time within the micro-processor 

(SkyCircuits Ltd25). The UAV log file also stamps the time and 3D position of the first 

image only as captured after the aircraft’s launch and triggered by the autopilot. This 

configuration is typical of most consumer-grade UAV systems used for photogrammetric 

capture (Section 2.3.1). 

4.4.2 On-board sensors 

The utilized Quest-300 UAV was initially fitted with two compact digital cameras 

(Panasonic Lumix DMC-LX5) for RGB and near infra-red image acquisition. RGB 

imagery was used in this study (Chapters 5 and 6). Both cameras are fixed in a wooden 

case which is mounted on gel, for vibration damping, and fitted in the main UAV body 

(Figure 4.10b). A simple gimbal, attached to the UAV body (Figure 4.10b), compensates 
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for the aircraft's movements along the roll axis, thereby enabling the camera to capture 

close to nadir images. 

An additional compact digital camera, a Sony A6000, for visible imagery was purchased 

in 2015 during the course of the study. To mount this camera in the Quest-300 UAV a 

new case was designed and modelled by the author at Newcastle University using 

AutoCAD 3D26 (Figure 4.10c). This was then 3D printed using BGS facilities (Figure 

4.10d). The fit of the new case to the UAV body frame was also implemented by the 

author. After mounting the new camera, it was vital to ensure that the UAV’s centre of 

gravity was unaltered. Due to different materials and weights of the two camera cases, an 

extra weight was added close to the nose of the UAV to maintain the same weight balance. 

To confirm that the UAV flying performance was effectively the same using either 

camera, trial flights were conducted at Cockle Park farm.  

Regarding the sensor’s characteristics, the Panasonic DMC-LX5 has a 5.1 mm nominal 

focal length Leica lens, an 8.07 x 5.56 mm CCD sensor with 2 x 2 μm nominal pixel size 

creating an image of 3648 x 2736 pixels. The Sony A6000 carries a Sony E 16 mm F2.8 

pancake interchangeable lens with a 16.0 mm nominal focal length. It has a 24 megapixel 

(6000 x 4000 pixels) APS-C CMOS sensor of 23.5 x 15.6 mm size with a 3.9 x 3.9 μm 

nominal pixel size.  

Prior to UAV flights, the Panasonic DMC-LX5 and Sony A6000 were calibrated in 

PhotoModeler and PhotoScan respectively. A calibration grid board with coded targets 

that can be automatically identified by PhotoModeler was used for Panasonic DMC-LX5 

calibration on 02/07/2012 (Figure 4.11a). On 26/09/2015, a separate indoor calibration 

test field was established using targets at several depths over a 6 m range, as seen in 

Figure 4.11b. The positions of the targets were precisely surveyed using a total station. 

For both tests, 12 convergent images at 0º and ±90º roll angles were captured from four 

different positions. Even though the same camera model (Equations 3.1 and 3.2) is 

adopted in both PhotoModeler and PhotoScan, the bundle adjustments in the two 

software packages involve different type of observations, which consequently yield 

different IOP estimations. For example, as compared to PhotoScan, PhotoModeler does 

not implement the SfM workflow in its calibration toolbox and only observations at the 

locations of the coded targets are used for spatial resection and intersection (Section 

2.2.1). For comparative purposes between the two software packages, the damped bundle 

                                                 
26 www.autodesk.co.uk  

http://www.autodesk.co.uk/
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adjustment toolbox (DBAT) implemented in Matlab and created by Börlin and 

Grussenmeyer (2016) was utilised.  

 
Figure 4.11: Illustration of (a) the calibration board used in PhotoModeler and (b) the calibration test field 
used in PhotoScan.  

DBAT runs a self-calibrating bundle adjustment (Börlin and Grussenmeyer, 2013; Börlin 

and Grussenmeyer, 2016). DBAT uses as image observations the image coordinates of 

coded targets and tie points as derived from the two software. In addition, it uses 

approximate camera IOPs and EOPs determined from the two software and then it re-

estimates them through bundle adjustment. The DBAT tool was more advantageous for 

calibration than PhotoScan as high correlations between parameters could be identified 

and quality indicators derived, which are not available in PhotoScan. The results derived 

from PhotoModeler, PhotoScan and DBAT for both cameras are reported in Table 4.2. 

DBAT re-estimated all distortion parameters listed in Table 4.2 apart from the format 

width and height.  
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Table 4.2: Calibration results prior to UAV flights for Panasonic DMC-LX5 and  
Sony A6000, as derived from PhotoModeler, PhotoScan and DBAT. 

Panasonic DMC-LX5-Calibration 02/07/2012 
Determined parameters PhotoModeler DBAT 
 Value σ Value σ 
f-focal length [mm] 5.129 5.30 x 10-04 5.128 5.43 x 10-04 
xp-principal point [mm] 3.565 3.70 x 10-04 3.565 3.68 x 10-04 
yp-principal point [mm] 2.718 4.00 x 10-04 2.718 3.82 x 10-04 
Fw-format width [mm] 7.225 1.20 x 10-04 7.225 - 
Fh-format height [mm] 5.419 - 5.419 - 
K1-radial distortion 1 2.72 x 10-04 8.50 x 10-06 2.64 x 10-3 1.40 x 10-05 
K2- radial distortion 2 -1.03 x 10-04 4.00 x 10-07 -9.04 x 10-5 2.06 x 10-06 
K3- radial distortion 3 3.91 x 10-06 - 3.32 x 10-6 9.53 x 10-08 
P1- decentring distortion 1 3.83 x 10-04 4.00 x 10-06 3.84 x 10-4 3.99 x 10-06 
P2- decentring distortion 2 -9.36 x 10-05 4.30 x 10-06 -9.08 x 10-5 4.12 x 10-06 

Sony A6000-Calibration 26/09/2015 
 PhotoScan DBAT 
 Value σ Value σ 
f-focal length [mm] 16.204 - 16.200 1.02x 10-03 
xp-principal point [mm] 11.992 - 11.994 7.42 x 10-04 
yp-principal point [mm] 7.857 - 7.858 6.08 x 10-04 
Fw-format width [mm] 23.997 - 24.000 - 
Fh-format height [mm] 16.000 - 16.000 - 
K1-radial distortion 1 3.07 x 10-04 - 2.90 x 10-04 1.02 x 10-06 
K2- radial distortion 2 -1.76 x 10-06 - -1.53 x 10-06 1.46 x 10-08 
K3- radial distortion 3 1.14 x 10-09 - 2.17 x 10-10 6.04 x 10-11 
P1- decentring distortion 1 3.47 x 10-05 - 3.74 x 10-05 1.12 x 10-06 
P2- decentring distortion 2 -2.76 x 10-05 - 2.90 x 10-05 9.15 x 10-07 

 

For the Panasonic DMC-LX5, the differences of the estimated values and standard 

deviations from PhotoModeler and DBAT were insignificant, giving confidence to the 

DBAT solution. Both calibrations resulted in an overall RMSE of 0.20 pixel as calculated 

from the residuals of the point observations, i.e. 4 control and 141 additional points 

detected on the grid board (Figure 4.11a). For the Sony A6000, PhotoScan used 43 

calibration targets (as GCPs) which were located in the imagery (Figure 4.11b). 25185 tie 

points across 10 images were automatically identified. This configuration delivered an 

RMSE of 0.30 pixel at GCPs and 0.80 pixel at all observations including tie points, after 

the DBAT solution. The higher RMSE compared to the PhotoModeler value is possibly 

attributed to the fact that the average optical ray-angle generated from the tie points was 

4º, whereas the average optical ray-angle from GCPs was 44º. The latter was close to the 

50º average optical-ray angle computed from the grid board configuration. The 4º angle 

implies that the majority of tie points were detected in the centre of the test field, and sub-

optimal for calibration purposes. This was also checked during the calibration 

experiment. As noted by (Kraus, 2007), the various optical ray-angles can influence the 
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bundle adjustment solutions. Acquired images with a wider baseline and a better 

convergent angle closer to 44º would improve the overall RMSE as more tie points at the 

corners of each image could be identified. However, the size of the room restricted the 

space available and for that reason the grid calibration board was used later for additional 

calibration tests (Section 6.5.3). 

For both cameras, DBAT showed that K2 and K3 were 98% correlated, implying that K3 

can be excluded from the self-calibrating bundle adjustment. However, these tests were 

performed indoors under ideal conditions with cameras mounted on tripods and triggered 

with an external trigger device (Panasonic DNC-LX5) or an infra-red LED connection 

(Sony A6000) to minimise shaking and blurring (Sieberth et al., 2014). Assuming that 

during a UAV flight these ideal conditions are violated, the self-calibrating bundle 

adjustment would produce different calibration solutions. The results in Table 4.2 were 

only used as reference to compare against other indoor calibration tests, which were 

performed under the same configurations during and after the end of the monitoring 

period (Section 6.5.3) to examine each camera’s stability.  

Equation Chapter (Next) Section 1  



 105 

Chapter 5.  
Control testing of morphology-based strategy 

Chapter 4 presented three study areas and described the ground-based observations 

undertaken in each area. It described the Quest-300 UAV platform with the on-board 

image sensors used for experiments. This chapter presents four experiments carried out 

at the Cockle Park and Sandford study areas. The experiments examine the performance 

of the SfM-MVS pipeline under the selection of different umber of GCP. The MBR 

workflow is tested and evaluated under various scenarios. For cross-validation 

benchmark datasets obtained with TLS are utilised. Analysis of the MBR-based results 

shows the potential of the co-registration solution without the requirement of GCPs.   

5.1 Experiment description 

The four experiments are as follows: 

1) The first experiment carried out at the Cockle Park study area to define a minimum 

number of GCPs which can deliver georeferencing accuracy equal to the GSD;  

2) The second experiment, named GCP-based experiment, carried out at the 

Sandford study area with the inclusion of the optimally-defined number of GCPs; 

3) The third experiment, named MBR-GCP experiment, adopted the MBR approach 

(Section 3.4.2) with a reference epoch generated from the GCP-based SfM-MVS 

process.  

4) The fourth experiment is the MBR-UAV experiment, which implemented the 

MBR approach excluding the GCPs in the reference epoch. This scenario 

resembles a realistic case of monitoring an inaccessible hazardous environment 

with a consumer-grade UAV platform. 

The third and fourth experiments were undertaken at Sandford. The last three experiments 

involved identical PhotoScan parameters, these being camera position accuracy equal to 

10 m, marker accuracy for CPs equal to 0.050 m, tie point accuracy equal to 1.0 pixel, 

projection accuracy equal to 0.1 pixels, “ultra-high” quality and aggressive disparity 

mode. The imaging network (i.e. number of images and characteristic flight lines) was 
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also identical for the three experiments. For all experiments described in this chapter, a 

Panasonic DMC-LX5 camera was utilised for image capture. 

5.1.1 UAV image acquisition and processing 

Three UAV flights were carried out on 8th October 2014 at Cockle Park (Section 4.1.1) 

at flying heights (above ground level) of 250 ft, 300 ft and 350 ft, which correspond to 

76 m, 91 m and 107 m respectively. The Panasonic DMC-LX5 camera was set in shutter 

priority mode with a shutter speed of 1/800 s, at ISO 400 and varying aperture. The focal 

distance was set to infinity to ensure that surface objects captured at different heights 

were within the camera’s depth of field. A 2.5 s exposure interval, with a UAV speed of 

18 m/s was selected to produce a 60 % forward and a 60 % lateral overlap.  

 
Figure 5.1: The 250 ft post-flight trajectory (in white), with the number of overlapping images (in colour), 
the camera exposure positions after post-processing together with the distribution of targets.  

The distance between two neighbouring flight lines was computed equal to 54 m, taking 

into consideration the lowest flying height (i.e. 250 ft). In addition, the image ground 

footprint was estimated to be 109 x 82 m. Cross-wind parallel flight lines were configured 

for all three surveys. The post-flight trajectory of the 250 ft height can be seen in Figure 

5.1. Given the flight specifications, an adequate image overlap was achieved with most 

GCPs and CPs appearing in at least three images. As an example, the flight configuration, 

highlighting image overlap for the 250 ft flight after post-processing in PhotoScan, is 
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depicted in Figure 5.1. Increased image overlaps were achieved for the 300 ft and 350 ft 

UAV flights.  

Four PhotoScan projects for the different scenarios were created as listed in Table 5.1. 

The first three projects included imagery from the three different flying heights and a 

fourth project combined images from all flights. The estimated average height, calculated 

in PhotoScan, mismatched the predefined height which is also reported in Table 5.1 This 

is possibly because of wind turbulence and errors associated with the consumer-grade on-

board sensors, such as the GNSS and MEMS-IMU (Section 4.4.1).  

Table 5.1: Processing details of four UAV projects used in the Cockle Park experiment. 

Configuration  Predefined flying height 
[ft (m)] 

No of 
images over 
the region of 

interest 

Estimated 
GSD [m] 

Estimated 
average 

flying height 
[m] 

Optical 
rays per 
tie point 

1 250 (76) 72 0.029 85.934 2.7 
2 300 (91) 76 0.036 104.362 3.1 
3 350 (107) 84 0.041 119.863 3.1 
4 combined 232 0.039 100.000 4.0 

 

Each project was post-processed using the SfM-MVS pipeline (sparse point cloud 

reconstruction and georeferencing phases) with default settings in PhotoScan (Section 

3.2.5). After removing images and points with > 1 pixel reprojection error (Section 3.2.1), 

an average of 0.5 pixels global reprojection error was estimated in all projects. The SfM-

MVS pipeline was repeated 14 times per project; in the first run, no GCPs were included, 

only the camera exposure stations derived from autopilot (Stage 1 in Figure 3.6); and for 

the remaining 13 runs, three to 15 GCPs were successively incorporated. The GCP 

distribution is shown in Figure 5.1. The numbers indicate which GCP was used for each 

run. For instance, three GCPs generated a triangle with indices 1, 2 and 3; four GCPs 

generated a rectangle with indices 1-4, etc. (Figure 5.1). A set of 21 independent CPs was 

used for accuracy assessment, which is discussed in the following section.  
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5.1.2 Experimental results and analysis 

For the different numbers of GCPs the SfM-MVS bundle adjustment provided solutions 

with various RMSEs at each CP, as computed from Equations (3.34), (3.35) and (3.36). 

The average RMSE in plan, elevation and in full 3D magnitude at 21 CPs are plotted with 

respect to the number of GCPs per project in Figure 5.2. Figure 5.2a shows that the 3D 

RMSEs derived from the three GCP-based bundle adjustment significantly varies within 

a range of 0.20 m with respect to the three flying heights. The three GCP-based bundle 

adjustment of the combined project provided a 3D RMSE less than 0.10 m. However, 

when no GCPs were incorporated into the SfM-MVS bundle adjustment m-level RMSEs 

were estimated regardless of the different flying height scenarios (Table A.1 in 

Appendix A). These m-level values were associated with the low precision of the 

consumer-grade UAV GNSS-INS sensors, as also observed in previous studies (Chiang 

et al., 2012; Shahbazi et al., 2015; Carbonneau and Dietrich, 2016).  

In the case of the five GCP solution, planimetric RMSEs (Figure 5.2c) decreased with 

respect to a higher number of GCPs. The highest RMSEs were provided from the 350 ft 

flying height. This was expected, as the estimated GSD was also higher at 350 ft than for 

the flights with lower flying heights (Table 5.1). For five GCPs, the RMSEs in plan lie 

within a maximum 0.022 m difference between the 350 ft and the combined height 

scenario. Regarding RMSEs in elevation, the range difference between the 350 ft and the 

combined height scenarios is equal to 0.052 m for five GCPs, higher than the range 

difference in plan (Figure 5.2d and Table A.1 in Appendix A). Among all scenarios with 

five GCPs, the combined scenario delivered a planimetric RMSE closer to 1 x GSD and 

a 3D RMSE approximately 1.5 x GSD (Table 5.1 and Table A.1 in Appendix A). These 

findings indicate that a minimum number of GCPs can deliver SfM-MVS outputs with 

accuracy level of 1 x GSD, eliminating the need for establishing and surveying numerous 

GCPs. 
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Figure 5.2: Average RMSEs at 21 CPs under different scenarios of flying height and number of GCPs. 

The 250 ft height RMSEs in elevation showed an upward trend with respect to the higher 

number of GCPs, unlike the downward trends of the other three height scenarios (Figure 

5.2d). This is possibly due to the overall lower image overlap of the 250 ft mission (Figure 

5.1). For instance, the analysis showed that a CP at the south of the site with two optical 

rays (in other words projections i.e. number of images that a point can be back-projected) 

at 250 ft provided a 0.086 m elevation error, indicated in Figure 5.1. Whereas, a -0.047 

m (half of the 250 ft elevation error) was calculated at the same CP for 350 ft, which 

allowed for five optimal rays. Table 5.1 reports the number of optical rays. This is 

computed as a ratio of the total number of optical rays over the total number of tie points 

detected, indicating the effective image overlap. The highest number of optical rays per 

tie point was estimated from the combined height scenario. As a result, CPs viewed by 

fewer images adversely affected the average RMSE in elevation.  

Apart from the error magnitude, error distribution also varied relative to the number of 

GCPs included into the SfM-MVS georeferencing. Figure 5.3a and b show two examples 
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of planimetric and vertical errors for the combined height scenario estimated from five 

GCPs and 15 GCPs respectively. When only five GCPs were utilised, the majority of 

planimetric vectors at CPs are oriented towards the south (Figure 5.3a). Whereas with the 

inclusion of extra GCPs the distribution of error vectors became more random (Figure 

5.3b). The error in elevation, interpolated with the natural neighbour interpolation 

technique (Section 3.2.2), formed bowl-shape patterns in both scenarios. Figure 5.3a 

shows a dishing pattern with negative values at the SE and a doming pattern with positive 

values at the NE of the study area. The input of more GCPs significantly reduced the SE 

dishing effect, while it slightly increased the spread of the NE doming effect (Figure 5.3a 

and b). According to Carbonneau and Dietrich (2016) these complex distortion patterns 

(a combination of dishing and doming shapes) are mostly apparent in compact digital 

cameras. The causes of these errors were already described in Section 3.2.6. The present 

analysis has found that the higher number of GCPs did not entirely reduce the bowl-shape 

systematic biases in the case of parallel flight lines. James and Robson (2014) and James 

et al. (2017a) reported similar findings and suggested that the inclusion of convergent 

imagery and flight lines of opposing direction could mitigate these effects (Section 

3.2.6.).  

Repeating the SfM-MVS pipeline under various GCP configurations resulted in 

variations in the estimated camera IOPs. Figure 5.4 plots the estimated values of focal 

length and the K1 lens distortion parameter. The latter was chosen because it is considered 

the most critical among all lens distortion parameters, especially in the case of compact 

digital cameras (James and Robson, 2014; Carbonneau and Dietrich, 2016). Maximum 

variations in focal length and K1 estimations were observed in the 250ft and 300 ft height 

scenarios. Such variations imply that SfM-MVS self-calibrating bundle adjustment is 

sensitive to both the number of GCPs and imaging network configurations. Remondino 

et al. (2012) demonstrated that the SfM-MVS pipeline also estimated numerically 

inconsistent camera IOPs with other SfM software - i.e. this is not restricted to PhotoScan. 

This numerical instability of the SfM-MVS solution was also presented by Shahbazi et 

al. (2015). The authors noted high correlations between focal length and the camera’s 

EOPs (mostly in elevation) when images were acquired from a constant flying height. 

Figure 5.4 shows that minimum variations were observed in the combined height 

scenario, which provides a more consistent focal length and K1 value. 
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Figure 5.3: Planimetric error vectors and errors in elevation after interpolation at GCPs and CPs.  

 

 
Figure 5.4: Values of (a) camera’s focal length and (b) K1 lens distortion parameter estimated after the SfM-
MVS self-calibrating bundle adjustment.  
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5.2 Morphology-based co-registration experiments at Sandford Industrial Park 

5.2.1 UAV image acquisition and DPC pre-processing 

Three UAV flights were performed on 30th November 2016 before and after artificial 

surface changes, as described in Section 4.2.1, with the following camera and flight plan 

settings:  

A fixed shutter speed of 1/800; fixed aperture of f/2; ISO 100; 2 s exposure interval; 90 % 

forward and lateral overlap with 5 parallel flight lines of NW to SE direction; one 

additional NS crossing with two smooth turns; and a 120 m predefined flying height. The 

flight plan was designed taking into account the dominant west wind direction. The flight 

line separation was defined as 25 m. The flying height was set up to the maximum allowed 

flying height (400 ft) due to health and safety requirements.  

Information about the number of images acquired and used, estimated GSD with average 

flying height and optical rays per tie point are listed in Table 5.2. Compared to the Cockle 

Park experiment (Table 5.1), the flight plan and camera settings ensured a higher image 

overlap, thereby providing higher redundancy with more optical rays per tie point. The 

pre-processing details, reported in Table 5.2, were derived after the sparse point 

reconstruction phase of the SfM-MVS pipeline (Section 3.2.5).  

Table 5.2: UAV image acquisition over Sandford Industrial Park. 

Epoch  No of Images  Estimated 
GSD[m] 

Estimated 
average flying 

height [m] 

Optical rays 
per tie point 

E0 33 0.043 123 4.2 
E1 39 0.043 124 5.2 
E2 33 0.044 127 4.3 

 

Prior to MBR implementation, an investigation was conducted to derive optimal disparity 

settings (page 47 in Section 3.2.5). This involved the DPCs reconstruction under mild, 

aggressive and moderate disparity over a relatively smooth terrain of a 4 m x 9 m extent, 

as depicted in red in Figure 5.5. This test used the “ultra-high” quality parameter to 

maintain the original image resolution during processing. Then, the three UAV DPCs 

were compared against TLS DPC of epoch E2. Observations from this epoch were chosen 

primarily because the E2 TLS data provided a denser point cloud expressing detailed 

surface characteristic unlike the other two epochs (Section 4.2.2 and Figure 4.5). To 
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achieve the comparison and reduce possible misalignments between UAV and TLS, five 

GCPs were incorporated into the georeferencing step, as indicated in Figure 5.6c.  

 
Figure 5.5: Profile of UAV and TLS-derived DPCs. Inset map locates profile AB within the study area.  

 

Figure 5.5 clearly shows that UAV imagery could not capture high frequency surface 

irregularities regardless of the disparity settings used. As depicted in the detailed 

perspective view of a sub-region, the UAV DPCs smoothed the vertical depth of a 

maximum 0.05 m along an approximately 0.65 m length. This is an example along the 

profile AB, however these vertical irregularities, generated by the excavators, were close 

to the estimated 0.044 m GSD, as reported in Table 5.2. Because of the flattened result 

derived from UAV DPCs, this terrain can be considered relatively smooth compared to 

the failed surface right next to it. After conducting a similar comparison, Cook (2017) 

highlighted that UAV point clouds usually round off sharp surface edges. Possibly a better 

level of detail would have been achieved with lower flying height and a sensor with a 

larger number of pixels than those of the presented study.  

Statistical results of the comparison performed with the M3C2 algorithm (Section 3.5.1) 

over the red rectangle area in Figure 5.5 are listed in Table 5.3. To examine the effect of 

the surface roughness in the M3C2 computation, two different scale settings were 

considered (D and d parameters, as described in Section 3.5.1). In the first case, both 

parameters were equal to 3 x GSD (i.e. 0.132 m) and in the second case both parameters 

were equal to 1.00 m (a value that lies within a recommended range, as per Section 3.5.1). 
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Table 5.3: Statistics of M3C2 comparison between UAV and TLS DPCs. 

Disparity 
settings 

M3C2 scale: 0.132 m  M3C2 scale: 1.000 m 
μ σ RMSE Min. Max. μ σ RMSE Min. Max. 

Mild 0.017 0.026 0.031 -0.227 0.215 0.017 0.011 0.021 -0.009 0.056 
Moderate 0.015 0.027 0.030 -0.224 0.273 0.016 0.013 0.020 -0.010 0.064 
Aggressive 0.013 0.024 0.028 -0.123 0.128 0.011 0.009 0.014 -0.027 0.042 

 

As seen in Table 5.3 for a smaller M3C2 scale, standard deviations and RMSEs are one 

larger than those computed with a 1.000 m scale. This is possibly because in the latter 

case more neighbouring points are considered into the distance computation and a lower 

weighting for high surface roughness is taken into account. However, insignificant 

discrepancies between different disparity settings were found as the mean distance values 

were similar at both M3C2 scales. In this analysis, the boxplots of the M3C2 comparison 

(Figure A.1 in Appendix A) showed that the aggressive mode provided outliers with the 

smallest M3C2 distances. This is also evidenced in Table 5.3 as the smallest standard 

deviations and RMSEs are obtained from the aggressive mode. For this reason, the 

aggressive mode was chosen during the DPC reconstruction in all following experiments 

described in this chapter and Chapter 6. Further investigations for the characteristics of 

SfM-MVS derived DPCs would be vital for a study with mm-level surface modelling 

(e.g. soil roughness in Milenković et al. (2016)), but this is outside of the scope of this 

study.  

5.2.2 MBR-based implementation and analysis 

For the GCP-based experiment, three DEMs of epochs E0, E1 and E2, were generated, 

utilising five GCPs (with indices 5, 6, 8, 9 and 12 in Figure 5.6c). These GCPs were 

deployed very close to the five theoretical GCPs, depicted in Figure 5.6c, creating an ideal 

rectangle. These theoretical GCPs were used to generate the five Thiessen polygons 

which supported the examination of pseudo GCP distribution throughout the MBR 

workflow. The E0 DEM was used as a reference for the MBR-GCP experiment with 

DEMs of epochs E1 and E2 being constructed with the aid of pseudo GCPs (Section 

3.4.2). For the MBR-UAV experiment, no GCP-based reference DEM was utilised and 

the E1 DEM was co-registered relative to the E0 DEM derived from UAV coarse 

alignment (Figure 3.6 in Section 3.4.2). In all experiments, DPCs and DEMs with 0.044 

m spatial resolution were constructed. The DPCs delivered an approximate point density 

of 600 points/m2, sufficient for the moving planes interpolation to create a continuous 

DEM, without pixel voids, using 15 nearest neighbouring points (Section 3.2.2 and 3.4.2). 
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“Off-ground” feature filtering was considered unnecessary as the vegetation was sparse 

and low, and the openness grid allowed for masking all manmade features (Figure 5.6d). 

 
Figure 5.6: Mean curvature grids of (a) E0 and (b) E2 epochs with their corresponding candidate pseudo 
GCPs. (c) Distribution of GCPs and CPs, used for the GCP-based experiment. (d) Overview of openness 
grids together with the detected pseudo GCPs.  

  



 116 

Analysis of the MBR-GCP experiment 
In the MBR-GCP experiment (Stage 2 in Section 3.4.2), 1565 candidate pseudo GCPs 

(light blue circles in Figure 5.6d) were detected at locations of slope variations at the foot 

of the embankment, at the edges of storage units, roofs, fences, machines and over bare 

earth where the excavator’s movement formed structures. For example, Figure 5.6a and 

b show the 51 candidate pseudo GCPs detected from the SIFT algorithm implemented 

with the mean curvature grids with kernel size 21 x 21 pixels for E0 and E2 epochs. The 

SIFT algorithm did not extract points over the slope failure, (Figure 5.6a, b and c) which 

was advantageous for automatic co-registration. It can be noted in Figure 5.6d that a 

considerable number of candidate pseudo GCPs were detected N-E of the site where the 

sparse short grass structured characteristic curvature variations. South of the site over the 

bare soil the SIFT algorithm did not detect many interest points, possibly due to the 

homogenous surface texture, a well-known error source in the SfM-MVS process 

(Section 3.2.4). 

Positive and negative openness grids (Equations 3.25, 3.26 and 3.27) were computed from 

the E2 DEM within a 75 x 75 pixel radial distance, equivalent to 3.3 m for 0.044 m pixel 

resolution, adequate to capture the extent of the artificial failure. A threshold of 84˚, which 

is the average openness value for this area, was selected to differentiate the smooth texture 

for relatively flat terrain from rougher texture over the steeper terrain. Regions with 

openness angles exceeding 84˚ were classified as smooth-stable terrain, otherwise regions 

were classified as rough-unstable terrain, as displayed in green and orange for positive 

and negative respectively in Figure 5.6d (see also Figure 5.9b). These were combined to 

create a single grid that represents the rough-unstable terrain mask. A simple smoothing 

process was performed to filter speckle noise from the mask, as described in Stage 2b in 

Section 3.4.2. It is noteworthy that the foot of the embankment, indicated in Figure 5.6c, 

was detected as unstable terrain because of the narrow positive openness angle (Figure 

5.6d). An example of openness grid over the slope failure is shown in Figure 5.9a and b. 

At this site, the slope foot was stable, however in reality, the steepest point of the slope 

could be prone to failure in a landslide environment. It is well-known that a variety of 

triggering factors can cause landsliding (Section 1.1.1, Lee (2004)). Under certain 

circumstances (e.g. intense rainfall event (Lee, 2004)) the strength of loose materials 

cannot resist the shear stress leading to slope failure. Typically, materials from the top of 

the slope are pushed down to the foot deforming the surface. Steep and low points of a 

slope as well as concave and convex features can change during a landslide event. In this 
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context, the openness grid could identify regions of potential hazard and aid in landslide 

mapping.   

To verify the smooth and rough terrain extraction with openness, the EVR grid (Section 

3.3.2 and 3.4.2) was computed from the E2 DEM. According to Favalli and Fornaciai 

(2017), the EVR grid is not correlated to openness grids, hence it can be used for an 

independent comparison. The histograms of EVR values over a smooth and a rough 

region are plotted in Figure 5.7. The two sample regions are selected based on the 

openness mask outcome with Sa indicating the smooth and R the rough region, as shown 

in Figure 5.6d. The histograms and the reported statistics in Figure 5.7 clearly illustrate 

the wider spread of EVR distribution over rough terrain compared to the distribution over 

smooth terrain. This provides confidence in the openness mask extraction based on 

McKean and Roering (2004) (Section 3.3.1). 

 
 

Figure 5.7: Histograms of EVR values for epoch E2. Figure 5.8: Example of EVR grid for epoch E2. 

 
Figure 5.9: E2 Openness (a) before and (b) after applying a threshold of 84º over slope failure. 
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However, it was expected that the mean μ value would be closer to 0 over the Sa region, 

indicating the flatness of the terrain. This shift from 0 is possibly caused by the fact that 

the short grass affected the surface roughness. The EVR values were also calculated for 

the Sb smooth region of bare soil (Figure 5.6d) and the histogram gave results similar to 

the Sa region. Figure 5.8 illustrates an example of EVR where high values depicted the 

sharp edges of the artificial slope failure. The noisy data in the surroundings of the failure 

can explain the sensitivity of EVR to surface irregularities due to grass height variations 

or the excavator’s movements. In contrast to the smooth-rough mask derived from 

openness (Figure 5.9a and b), the EVR grid could only capture the boundaries of unstable 

terrain.  

After stable-unstable terrain extraction, the step of pseudo GCP generation was finalised. 

From the 1565 candidates only 168 pseudo GCPs were extracted over smooth terrain 

(depicted as blue rectangles in Figure 5.6d), most generated from curvature grids of 

kernel sizes 9 x 9 to 23 x 23 pixels (Figure 5.10a). The use of many kernel sizes allowed 

the identification of numerous interest points with different curvature characteristics 

across the site. It is well-established in digital photogrammetry that for an automated 

image block triangulation, more than a handful of tie points (typically detected by an 

operator) can aid in the camera’s EOP estimation (Schenk, 1997). In this context, the 

MBR workflow identifies candidate control points from a multi-scale curvature 

implementation offering higher redundancy.  

Figure 5.10b presents the estimated errors of the 2D transformation for the selected 

pseudo GCPs within the MBR workflow (Equation 3.32). This indicates sub-pixel 

accuracy of the SIFT implementation when the RANSAC threshold was 0.9 pixels, 

resulting in a 0.021 m average error. Tests showed that choosing a lower RANSAC 

threshold, with the aim to reduce the average error, resulted in a considerably lower 

number of pseudo GCPs with a sparse distribution, particularly in the south of the area. 

For that reason, a RANSAC threshold of 0.9 pixels was considered adequate for the 

proposed MBR workflow.  

As Figure 5.6d shows, sufficient pseudo GCPs were distributed within the Thiessen 

polygons from N-W to N-E, but only two were located at the south as many candidate 

points on the manmade features and surface variations were masked out. These variations 

over the restricted area (Figure 5.6c) were not deliberately imposed but created by the 

excavators and were classified as rough terrain within the generated openness mask.  
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The 3D coordinates of the168 pseudo GCPs were imported into the PhotoScan project 

corresponding to the E1 DEM. Given the established coarse alignment from Stage 1 of 

the MBR workflow (Figure 3.6), the points were automatically located on each image of 

the UAV photogrammetric block. After assigning the errors shown in Figure 5.10b to 

control markers, the points were then reimported with their 3D coordinates from reference 

E0. By performing the bundle adjustment, the residuals of the pseudo GCPs were 

estimated and imported into the statistical test (Section 3.4.2). The same process was 

followed for epoch E2. The statistical test was iterated until the SEs (Equation 3.32) in 

Easting, Northing and Elevation were lower than 0.044 m, which corresponds to the 

estimated maximum GSD (Table 5.2). 

 
Figure 5.10: Histograms of pseudo GCPs with respect to (a) different curvature kernel sizes and (b) errors 
derived from the MBR workflow. 

Vectors of the estimated errors were plotted to check for apparent systematic patterns. 

Their azimuths were also computed alongside the polar plots (Figure A.3 in Appendix A). 

In both epochs the error vectors were distributed within a narrow band of the azimuth 

spectrum before removal. This band defined the dominant orientation. For example, in 

epoch 1 the error vectors had a NE to SE orientation falling within the [30º-60º] and [210º-

240º] band respectively. Thus, points with this dominant orientation and remaining error 

magnitude greater than 0.044 m were removed. The polar plots after removal show a 

better distributed spread across all orientations (Appendix A). Finally, the bundle 

adjustment was repeated using the selected pseudo GCPs after removal. The statistical 

values are summarised in Table 5.4.  
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The fact that the μ values were not close to zero was indicative of systematic error. After 

the removal procedure, especially in E1, the μ values were decreased by a factor of 0.5 

and σ and RMSEs by a factor of 0.6 in plan. The statistical errors in elevation did not 

change significantly, indicating that the systematic errors were only present in the 

horizontal plane. After bias removal in both epochs, a normal distribution can be fitted to 

the histograms of the pseudo GCPs residuals, as expected (Figure A.2 in Appendix A). 

However, a systematic error was still observed, after removal for E2 (Figure 5.13), since 

the μ value in Northing increased from 0.020 m to 0.070 m (Table 5.3). This is because 

of a low number of pseudo GCPs with relatively high error magnitudes, combined with a 

dominant systematic pattern, which could not be removed, as the second criterion to keep 

at least one point within each Thiessen polygon would not be fulfilled (Section 3.4.2). 

For example one pseudo GCP at the south, shown in Figure 5.13b and d, was not removed 

even though its error was relatively higher than the other pseudo GPCs and its orientation 

fell within the dominant NE direction. 



  

Table 5.4: Statistics of the pseudo GCPs before and after the removal of points with error vectors showing systematic pattern (MBR-GCP experiment). 

Epoch Pseudo GCPs Easting [m] Northing [m] Plan [m] Elevation [m] 

Before removal 

  μ σ SE μ σ SE σ SE μ σ SE 
E1 144 0.013 0.028 0.031 0.070 0.032 0.033 0.043 0.045 -0.000 0.029 0.027 
E2 152 0.009 0.034 0.035 0.020 0.043 0.044 0.055 0.056 -0.001 0.020 0.020 

After removal 

  μ σ SE μ σ SE σ SE μ σ SE 
E1 94 0.006 0.019 0.020 0.000 0.021 0.021 0.028 0.029 0.002 0.030 0.030 
E2 102 0.050 0.021 0.022 0.070 0.020 0.028 0.035 0.036 -0.050 0.020 0.020 
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Analysis of the MBR-UAV experiment 
The MBR workflow was repeated for all epochs in the MBR-UAV experiment and an 

example of the detected candidate pseudo GCPs with kernel size equal to 21 is shown in 

Figure 5.11. The black dots correspond to the points of reference E0 and the red dots to 

the corresponding points of subsequent epochs. The white lines connecting the 

corresponding points indicate the 2D translation and rotation of the reference epoch with 

respect to the subsequent epochs. For instance, Figure 5.11a shows that there is a NE to 

SW shift between E0 and E1 whereas Figure 5.11b illustrates a rotation between E0 and 

E2 (equal to 4.5º about Easting). The 2D translational, rotational and scale differences 

between the subsequent epochs are attributed to the coarse coordinate systems established 

by the UAV camera exposure stations. The SIFT implemented with multiple curvature 

kernel sizes allowed for the recovery of these differences and extracted 199 final pseudo 

GCPs over stable terrain for all epoch pairs combined with a 0.021 m average error.  

 
Figure 5.11: Candidate pseudo GCPs detected on (a) epoch E1 and (b) epoch E2. 

The MBR workflow was successfully completed for epoch E1 and only three iterations 

of the statistical test (Section 3.4.2) were required so that the SEs in Easting, Northing 

and Elevation were lower than the GSD. However, for epoch E2 when the E0 coordinates 

of pseudo GCPs were reimported in PhotoScan, the bundle adjustment failed to transform 

the sparse point cloud from E2 relative to E0, delivering errors of m-level at pseudo GCPs. 

The E2 sparse point cloud had a completely different shape from the reference sparse 

point cloud due to the large rotational variations between the two epochs. This resulted 

in PhotoScan’s bundle adjustment converging to the wrong solution. Thus, only the 

MBR-UAV of E1 is assessed in this section.  
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The SEs of the 149 final pseudo GCPs in E1 are listed in Table 5.5. The SEs in Plan and 

Elevation (Table 5.5) were in the same order with the corresponding SEs in the MBR-

GCP experiment of epoch E1, reported in Table 5.4. This gives confidence to the MBR-

UAV results. Figure 5.12a depicts the planimetric error vectors and Figure 5.12b shows 

their directional distribution on a polar plot. This shows that no dominant systematic error 

was observed, as the direction of vectors spanned the whole polar spectrum, therefore no 

pseudo GCPs were removed.  



  

Table 5.5: Statistics of the final pseudo GCPs for E1 (MBR-UAV experiment). 

Epoch Pseudo GCPs Easting [m] Northing [m] Plan [m] Elevation [m] 

  μ σ SE μ σ SE σ SE μ σ SE 
E1 149 -0.050 0.037 0.037 -0.090 0.028 0.029 0.047 0.048 -0.030 0.031 0.031 

 

 
Figure 5.12: (a) Planimetric error vectors at pseudo GCPs of the MBR-UAV experiment with (b) their directional distribution 

.
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5.2.3 Assessment of co-registration solutions 

Solution of the MBR-GCP experiment 
To evaluate the MBR-GCP experiment, the results were compared against the GCP-based 

results as these provided solutions after the input of a minimum number of five GCPs. 

Figure 5.13 depicts the elevation differences, DEMMBR – DEMGCP, plotted at the level of 

1σ = 0.030 m, the maximum σ in elevation of the pseudo GCP residuals (Table 5.4). The 

highest elevation differences, larger than -2σ, were observed around the manmade objects 

in both epochs. This shows that control points should only be extracted over bare ground 

features and not over hard edges. Firstly, hard edges in a landslide environment can 

represent regions prone to instability, as explained previously. Secondly, SfM-MVS 

derived DEMs smooth the sharp surface discontinuities (as mentioned in Section 5.2.1, 

Cook (2017)). Hence, the openness measure worked efficiently, as it masked out the 

points over regions with strong curvature variations.  

For E1 the elevation differences showed a general linear slope where the MBR 

overestimated the elevations in NW and underestimated in SE (Figure 5.13a), compared 

to GCP-based outputs. This tilt remained after removal of the pseudo GCPs with 

systematic patterns, but with a slight change in direction (Figure 5.13c). In E2 the 

elevation differences were within ±2σ, lower than those of E1, creating a radial pattern 

with lower differences in the centre of the study area and higher towards its corners 

(Figure 5.13c). After removal of pseudo GCPs there was no significant change in the 

elevation differences of E2 (Figure 5.13d).  

The planimetric residuals and error vectors at CPs are included in Figure 5.13. Figure 

5.13a and b clearly show error vectors of pseudo GCPs with a systematic pattern in the 

NE direction and a relatively higher magnitude than the remainder. After their removal, 

the magnitude and direction of the vectors at CPs did not significantly change and a 

systematic pattern still remained, especially for E2 in Figure 5.13d. This is because a 

single pseudo GCP with the highest error in the south was not removed (Figure 5.13d), 

as this weakened the geometric pseudo GCPs configuration. Analysis after removing this 

only pseudo GCP showed that additional rotational errors were introduced in the north, 

thereby further increasing the vertical offsets observed in the elevation differences 

between GCP-based and MBR-GCP DEMs, at the periphery of the site. The error 

magnitudes at CPs after the removal of the dominant biases are described in Table 5.6 

and compared against values from GCP-based results. The MBR workflow delivered an 
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average egeor in plan (Table 5.6) for both epochs lower than the DEM spatial resolution 

(0.044 m).  

 
Figure 5.13: Elevation differences between GCP-based and MBR-GCP DEMs, before (a, b) and after (c, 
d) removal of pseudo points with systematic error.  

 

Table 5.6: Statistics at CPs derived from the MBR-GCP and GCP-based experiment. 

Epoch σ [m] 
   

  
   

 

RMSEs [m] 
 MBR-GCP based experiment (15 CPs) 

 Plan Elevation Plan Elevation 3D Full magnitude (egeor) 
E1 0.024 0.019 0.029 0.019 0.035 
E2 0.031 0.019 0.042 0.028 0.050 

mean 0.030 0.019 0.036 0.024 0.043 
GCP-based experiment (10 CPs) 

 Plan Elevation Plan Elevation 3D Full magnitude (egeor) 
E0 0.013 0.023 0.018 0.024 0.030 
E1 0.013 0.021 0.017 0.024 0.029 
E2 0.017 0.013 0.020 0.012 0.024 

mean 0.014 0.019 0.018 0.020 0.028 
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Table 5.7 summarises the M3C2 comparison between GCP-based and MBR-GCP derived 

DPCs against TLS. Also presented are the statistics of the co-registrations over stable 

terrain within the TLS coverage (Figure 4.3), undertaken with the global ICP algorithm. 

For the M3C2 comparison, the d and D scale parameters were equal to 1.000 m to give 

less weight to high surface roughness, as described in Section 5.2.1. In Table 5.7 the 

negative μ values show that the DPCs were always below the “ground-truth” data (TLS 

or reference E0). The differences between the estimated RMSEs over all epochs were 

statistically insignificant given the DEM spatial resolution. The RMSEs of the MBR-GCP 

experiment were within the range of the 3D RMSEs, based on the CPs uncertainties of 

Table 5.6, which was not the case for the GCP-based results. For example, the mean 

RMSE after applying the ICP algorithm, as reported in Table 5.7, was approximately 

double the mean 3D RMSE of Table 5.6 (i.e. 0.046 = 1.66 x 0.028 m). This is possibly 

attributed to the relatively small number and sub-optimal distribution of the ten CPs. 

Table 5.7: Statistics of M3C2 comparison against TLS and after ICP per experiment. 

Epoch GCP-based experiment [m] MBR-GCP based experiment [m] 
Similar epoch to epoch comparison against TLS DPC 

 μ  σ  RMSE (eco-reg) μ  σ  RMSE (eco-reg)  
E1 -0.023 0.039 0.045 -0.027 0.042 0.049 
E2 0.002 0.043 0.043 -0.021 0.040 0.045 

mean -0.011 0.041 0.044 -0.024 0.041 0.047 
After ICP over stable terrain 

 μ  σ  RMSE (eco-reg) μ  σ  RMSE (eco-reg)  
E1 -0.010 0.049 0.050 -0.024 0.039 0.046 
E2 0.011 0.041 0.042 -0.027 0.030 0.040 

mean 0.001 0.045 0.046 -0.026 0.035 0.043 
 

Solution of the MBR-UAV experiment 
In the MBR-UAV experiment, the E0 DEM was georeferenced to the UAV’s arbitrary 

coordinate system with a DG approach (Figure 3.6). Thus, error differences from 

“ground-truth” observations (i.e. CPs and TLS) were not evaluated. The co-registration 

error (i.e. eco-reg) was computed from M3C2 comparison after ICP over stable terrain. For 

M3C2 comparison, the D and d scale parameters were set equal to 1.000 m identical to 

the MBR-GCP experiment.  

Table 5.8: Statistics of M3C2 comparison after ICP of the MBR-UAV experiment. 

Epoch μ  σ  RMSE (eco-reg) min max  
E1 -0.032 0.048 0.058 -0.179 0.204 
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In this evaluation, the stable terrain consisted of the whole site (the outer red rectangle 

shown in Figure 5.6c and d) apart from the south section were slope failure was generated 

and excavators were moving. Vegetation and storage units were also masked out. Extreme 

values after M3C2 comparison were observed at the edges of the study area. It is 

noteworthy that discrepancies of the statistical values between MBR-GCP (Table 5.7) 

and MBR-UAV (Table 5.8) experiments were not statistically significant given the GSD.  

5.3 Assessment of surface change estimations at Sandford Industrial Park 

5.3.1 3D sensitivity estimations 

The two sensitivities s1 and s2 (Equations 3.37 and 3.38), utilising the egeor (RMSEs at 

CPs in Table 5.6) and the eco-reg (RMSEs of M3C2 comparison in Table 5.7) respectively, 

are listed in Table 5.9. For the MBR-UAV experiment, georeferencing error (egeor) was 

not included because errors at CPs were not computed. Thus, s2 indicates a relative 

sensitivity without the absolute uncertainty. For the other two experiments, the 

uncertainty of E0 was 0.030 m (egeor in Table 5.6). All estimated sensitivities are 

comparable in magnitude, which is mostly for the MBR-UAV experiment. The maximum 

difference of GCP-based and MBR-GCP estimations was 0.040 m in E2 for s1. This 

difference is lower than the 0.044 m DEM spatial resolution, therefore it is considered 

insignificant. The maximum value, rounded to 0.12 m, quantifies the lowest detectable 

3D surface change in absolute units for the GCP-based and MBR-GCP solutions. The 

value of 0.12 m indicates the relative lowest detectable 3D surface change for the MBR-

UAV solution. 

Table 5.9: 3D Sensitivity estimations per experiment. 

 GCP-based  
experiment [m] 

MBR-GCP  
experiment [m] 

 

MBR-UAV  
experiment [m] 

 Epoch  s1  s2  s1  s2  s2  
E1 0.082 0.114 0.090 0.107 0.113 
E2 0.075 0.099 0.115 0.098 - 

 

5.3.2 Elevation and volume differences 

To compare the three experiments and extract a relative change, elevation differences of 

epoch pair E1-E0 over the same region of interest were computed. As explained in the 

previous section, the MBR-UAV solution provided different absolute scale due to the 

different reference coordinate systems compared to the other two solutions. Hence, to 
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generate the region of interest a polygon was manually delineated by the centres of four 

targets with indices 5, 6, 9 and 12 (Figure 5.6c).  

The centres were identified on the orthophotomosaics per each epoch of the MBR-UAV 

experiment. Statistical values after DEM differencing, with values exceeding the ± 0.12 

m sensitivity level filtered out, are listed in Table 5.10.  

Table 5.10: Statistics following DEM subtraction of the epoch pair E1-E0 per experiment. 

Experiment  GCP-based  MBR-GCP MBR-UAV 

Total area of detectable change [m2] 46.89 41.10 76.58 
Percentage of total area with change [%] 0.70 0.61 0.91 
Total volume of difference [m3] 11.21 ± 5.63 10.26 ± 4.93 17.95 ± 9.19 
Mean of elevation differences μ [m]  -0.04 0.01 -0.01 
Standard deviation of elevation differences σ [m] 0.27 0.28 0.27 
RMSE of elevation differences [m] 0.27 0.28 0.27 
Minimum of elevation differences [m] -0.83 -0.74 -0.91 
Maximum of elevation differences [m] 0.65 0.67 0.73 

 

The discrepancies of estimated total areas and volumes with detectable change between 

the MBR-UAV solution and the other two solutions were caused by the different scale, 

as expected. The variations of the estimated percentage of the area of change with respect 

to the total region of interest did not exceed 0.3% between the experiments. In addition, 

the standard deviations and RMSEs of elevation differences fell within the same order of 

magnitude in all experiments. The maximum absolute difference of the estimated mean 

elevation differences was 0.03 m, which is lower than the DEM spatial resolution (i.e. 

0.044 m in Table 5.2). These findings show that the SfM-MVS outputs were relatively 

consistent under the two co-registration scenarios, i.e. GCP-based and MBR-based.  

To evaluate the absolute change, DEM differences of epoch pair E2-E0 were computed 

over the region of slope failure and cross-validated with respect to TLS derived 

differences. This epoch-pair was chosen because E0 TLS included a coverage of the slope 

failure with no voids and E2 TLS provided fine details of the surface edges scanned from 

two positions (Figure 4.5). To perform a valid comparison between TLS and UAV 

products, the occluded areas generated from E2 TLS observations needed to be excluded 

from the computations. To achieve this, a density raster was calculated from the E2 TLS 

point cloud with pixel size equal to UAV derived DEM spatial resolution. The sub-

regions with less than three points in each pixel were extracted from the density raster 
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representing the occluded areas. For the elevation change computations in all 

experiments, the sensitivity level was also excluded.  

Table 5.11: Statistics of elevation differences of epoch pair E2-E0 over area of slope failure. 

Experiment μ [m] σ [m] RMSE [m] Minimum [m] Maximum [m] 
TLS 0.10 0.58 0.58 -0.77 1.17 
GCP-based 0.12 0.52 0.53 -0.74 1.02 
MBR-GCP  0.09 0.52 0.53 -0.76 0.99 

 

As evidenced in Table 5.11, the statistical values of elevation differences showed 

consistency, regardless of the absence/presence of GCPs in the derivation of subsequent 

DEMs. The MBR-GCP results varied within 1.4 x GSD (i.e. 0.062 m) with the exception 

of a relatively high difference observed at the maximum values (i.e. 0.180 m) when 

compared to TLS results.  

Table 5.12: Area and volume of detected changes of epoch pair E2-E0. 

Experiment Area of change [m2] Volume change [m3] 
 Cut Fill Cut Fill Net 
TLS 21.82 27.35 -10.14 ± 2.62 15.26 ± 3.28 5.12 ± 4.20 
GCP-based 19.98 27.48 -8.6 3± 2.40 14.20 ± 3.30 5.57 ± 4.08 
MBR-GCP  21.22 26.09 -9.27 ± 2.55 13.52 ± 3.28 4.25 ± 4.04 

 

Table 5.12 lists the changes in area and volume per experiment. Given the fact that TLS 

datasets constitute the “ground-truth”, the total area of detected change was estimated as 

49 m2. SfM-MVS results from GCP-based and MBR-GCP experiments slightly 

underestimated the excavated area. TLS observations captured the subtle surface 

structures formed by the digging bucket, as shown in Figure 4.4b. These detailed surface 

characteristics cannot be modelled with the acquired UAV imagery after SfM-MVS 

processing, as illustrated in Figure 5.5. TLS estimated a cut of 39.92 % and a fill of 

60.08 % of the total volume. SfM-MVS estimations of volume change fell within the 

range of ± 2 % in relation to TLS results.  

Up to this point, analysis has compared the results from the three experiments over 

particular sub-regions. Figure 5.14a displays the DEM differences of the epoch-pair E2-

E0 generated from the GCP-based and the MBR-GCP solutions over the whole region of 

interest. Positive and negative values indicate regions of fill and cut respectively. The 

lowest bound of the elevation differences are equal to the ± 0.12 m sensitivity level. 

Erroneous values were observed at the north corner of the region (indicated with (i)) and 
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over the manmade structures for both workflows. These errors were mostly at the edges 

of the region over stable terrain with a few exceptions over vegetation close to the middle 

of the region as indicated with (ii). It is not surprising that SfM-MVS outputs generated 

errors over sharp edges and vertical walls. Firstly, because no convergent imagery was 

included to capture the façades of the storage units. Secondly, it is known that SfM-MVS 

processing tends to smooth corners (Cook, 2017), as described in Section 3.2.4. 

Additional false elevation differences in the SE which belong to the band [-0.30:-0.12  m] 

(shown with (iii) in yellow in Figure 5.14b) were observed in the MBR-GCP results. 

These are possibly due to rotational errors, not entirely resolved by the SfM-MVS 

pipeline and propagated as deformations into the DEM, as described in Carbonneau and 

Dietrich (2016). Real change was observed in the SW, indicated with (iv) as part of the 

company’s training. Excavators’ movements were also captured in (v) which did not 

reflect real surface change.  

In an attempt to understand the cause of the erroneous results generated by the MBR-

GCP experiment, a similar test to James et al. (2017a) was conducted for E2 of the MBR-

GCP experiment. Here, the self-calibrating bundle adjustment was repeated 13 times 

(using the same camera model with K1-K3, P1-P2 of Equations 3.1 and 3.2), using the 102 

final pseudo GCPs of E2 (Table 5.4), and varying the marker accuracies within the range 

0.01-0.06 m on each iteration. The 3D RMSEs at pseudo GCPs and 15 CPs were 

calculated separately with the corresponding boxplots depicted in Figure 5.15a and b. The 

median is displayed in red, the blue boxes indicate the 25th -75th percentiles, the whiskers 

locate the minimum and maximum after exclusion of outliers, with these outliers denoted 

by crosses.  

The box plots for both pseudo GCPs and CPs show a generally consistent pattern without 

significant discrepancies. However, especially at the CPs in Figure 5.15b, the variation is 

skewed and significantly increases for marker accuracies in the range of 0.1-1.5 cm. 

Values of marker accuracy greater than 1.5 cm causes the 3D RMSEs to plateau. The test 

analysis also showed that the increase is most apparent in elevation. Compared to the 

distribution of 3D RMSEs at GCPs (Figure 5.15a) the distribution at CPs is wider (Figure 

5.15b). In the GCP-based and MBR-GCP experiments the estimated SEs did not exceed 

the 0.044 m GSD (Figure 5.10b). Similarly, the median values of the boxplots in Figure 

5.15b were lower than the GSD. James et al. (2017a) observed similar variations at 

vertical RMSEs at CPs, especially for marker accuracies within 0.01-0.10 m. These 

variations were considered as systematic errors of the vertical component that the SfM-
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MVS pipeline could not resolve. As a result of the observed fluctuations, it is speculated 

that assigned uncertainties of the pseudo GCPs of values mixed within the 0.1-1.5 cm 

range possibly caused DEM deformations (indicated with (iii) in Figure 5.14b). 

In SfM-MVS processing it is not expected to use GCPs with uncertainties higher than the 

estimated GSD. However, that could represent an extreme scenario; for example 

obtaining GCPs with a handheld GNSS receiver (Shahbazi et al., 2015). Under such a 

scenario the low uncertainties should not be incorporated as weights into the process and 

the GCPs should be utilised only to orientate and scale the SfM-MVS point clouds, as 

recommended by James et al. (2017a). However, in the presented experiments the 

uncertainties, being lower than the GSD, were incorporated into the SfM-MVS bundle 

adjustment as part of an automated workflow. In an attempt to entirely remove possible 

systematic errors, future recommendations of additional intensive post-processing checks 

within the workflow should be taken into consideration (Section 7.1.1).   

 



  

 
Figure 5.14: Elevation differences of E2-E0 epoch pair derived from (a) the GCP-based and (b) the MBR-GCP experiments. 
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Figure 5.15: 3D RMSEs at (a) 102 pseudo GCPs and (b) 15 ICPs for E2 of MBR-GCP experiment. 
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5.4 Summary 

The GCP-based experiment at Cockle Park firstly examined the capabilities of a Quest-

300 fixed-wing UAV fitted with a Panasonic DMC-LX5 camera. This UAV system was 

capable of generating DPCs at approximately 0.04 m GSD. This experiment has also 

demonstrated the overall improvement of the SfM-MVS output georeferencing accuracy 

when images from various flying heights are included. With this imaging network 

configuration, a 3D RMSE at CPs of 2 x GSD was delivered, when three GCPs were 

incorporated into the SfM-MVS pipeline. Moreover, this analysis has shown that the 

presence of five GCPs can further improve the vertical accuracy to approximately 

1 x GSD. In the context of landslide monitoring, five GCPs with a distribution depicted 

in Figure 5.3a, can provide a convenient establishment of control targets. Four GCPs can 

be set up at the outer extent of the area and a fifth in the middle close to the landslide. A 

similar GCP configuration was also suggested in Reshetyuk and Mårtensson (2016). This 

establishment could be considered as a trade-off between fieldwork time and optimal 

accuracy. The higher number of GCPs could increase the accuracy but could also increase 

the operational costs that constitute a critical aspect of periodical UAV surveys. This 

configuration is adopted in all GCP-based experiments included in this study (Chapters 5 

and 6) providing the benchmark SfM-MVS results.  

The experiment at Cockle Park also evaluated the performance of the SfM-MVS pipeline. 

Even with the incorporation of 15 GCPs into the SfM-MVS pipeline, bowl-shape 

deformations cannot be entirely removed. Sources of these deformations were discussed 

in Section 3.2.6. Further, inconsistent camera IOP solutions from SfM-MVS self-

calibrating bundle adjustments have been demonstrated. This inconsistency can be 

minimised with the inclusion of images acquired from different UAV flying heights.  

The experiments conducted at Sandford supported the development of the MBR 

workflow, which constitutes the first aspect of the morphology-based monitoring strategy 

(Section 3.1). The experiments also compared the estimated 3D sensitivities and elevation 

changes in the absence and presence of GCPs under a controlled environment. This 

involved an artificial slope failure surrounded by known stable areas. The experiments 

did not deal with planimetric movement estimations as only excavations were carried out. 

In such cases, the NCC function can be applied, as demonstrated in Chapter 6.  

The analysis has demonstrated that the performance of the MBR workflow is relatively 

consistent in terms of the estimated 3D georeferencing accuracy and sensitivity when 
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compared to benchmark SfM-MVS approach including five GCPs. The two MBR 

experiments, a) with and b) without the presence of GCPs in the reference epoch yielded 

results of the same order of magnitude. Both experiments estimated a minimum 

detectable 3D surface change of 2.7 x GSD. The GSD in these experiments corresponded 

to the DEM spatial resolution. It was possible to quantify the volume of change with ± 

2 % difference from TLS-derived solutions. Given that TLS outperforms UAV 

measurements obtained from high flying heights, this comparison provided confidence in 

the MBR-derived outcome. The errors of the SfM-MVS pipeline were also addressed 

through the experimental analysis. Regardless of GCPs inclusion, false DEM differences 

were observed at the edges of the area, over vegetation and manmade objects. However, 

the MBR results indicated that unresolved rotations from the SfM-MVS pipeline were 

propagated into DEM differences, generating additional false DEM offsets. This error 

was possibly caused by the uncertainties of pseudo GCPs introduced into the SfM-MVS 

pipeline. The MBR workflow showed a sensitivity to high rotations between subsequent 

DEMs, in the absence of GCPs from the reference epoch. However, in conclusion, it can 

be summarised that the MBR workflow, with inclusion of a minimum number of five 

GCPs in the reference epoch, provides stable performance. The MBR-workflow can 

therefore potentially constitute a practical, low-cost means of repeat monitoring of 

hazardous terrain.  

Equation Chapter (Next) Section 1  
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Chapter 6.  
Real world assessment at Hollin Hill landslide 

Chapter 5 demonstrated the capabilities of the Quest-300 UAV fitted with a Panasonic 

DMC-LX5, evaluated the SfM-MVS pipeline performance at Cockle Park and tested the 

MBR workflow (described in Section 3.4.2) at Sandford. This chapter implements the 

morphology-based monitoring strategy at Hollin Hill landslide examining all three 

aspects of the strategy (Section 3.1). Firstly, it describes the UAV imagery acquisitions 

across multiple epochs obtained with the Panasonic DMC-LX5 and the Sony A6000. 

Next, it presents the data preparation required for the MBR workflow. Co-registration 

solutions from both cameras are evaluated by means of comparison against GCP-based 

benchmark solutions that were derived from SfM-MVS processing with five GCPs (five 

was investigated in Chapter 5 to be the optimal low number of GCPs). After assessment 

of the co-registrations, the 3D sensitivity levels, constituting the second aspect of the 

morphology-based monitoring strategy (Section 3.1), are estimated from the various 

solutions. Inter-epoch elevation differences together with volume changes are computed 

indicating significant landslide deformations. 2D surface displacements are estimated 

with the implementation of the NCC function, as described in Section 3.5.3. The 3D 

surface change, as output of the morphology-based monitoring strategy, is cross-validated 

with benchmark observations obtained with GNSS, total station and TLS at each stage of 

the process. A discussion about the 3D landslide motion in relation to previous knowledge 

is also presented. Throughout this chapter, various tests are conducted to tune settings of 

the different software used and to examine possible error sources associated with the 

monitoring strategy. Part of the work presented in this chapter was demonstrated in Peppa 

et al. (2016) and Peppa et al. (2017). 
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6.1 Description of experiments, data acquisition and data cleaning 

6.1.1 Experiment description  

Five experiments are analysed with different co-registration characteristics, as follows: 

1) GCP-based Panasonic experiment: six DEMs from Panasonic imagery were co-

registered utilising the SfM-MVS pipeline with the inclusion of five GCPs. Part 

of this experiment was presented in Peppa et al. (2016);  

2) MBR-GCP based Panasonic experiment: six DEMs from Panasonic imagery were 

co-registered after applying the MBR workflow incorporating five GCPs only in 

the reference epoch; 

3) GCP-based Sony experiment: two DEMs from Sony imagery were co-registered 

utilising the SfM-MVS pipeline with the inclusion of five GCPs; 

4) MBR-GCP based Sony experiment: two DEMs from Sony imagery were co-

registered after applying the MBR workflow incorporating five GCPs only in the 

reference epoch; and 

5) MBR-UAV based Sony experiment: two DEMs from Sony imagery were co-

registered after applying the MBR workflow without any ground control 

information. 

6.1.2 UAV imaging network configurations 

Seven field campaigns were carried out spanning a two-year period, as listed in Table 5.1. 

For the first three campaigns (05/14, 12/14 and 03/15), the Panasonic camera was set in 

shutter priority mode with a shutter speed of 1/800 s, at ISO 400 and varying aperture. 

An exposure interval of 2.5 seconds enabled image capture with a standard 60% forward 

and 40% lateral overlap. After gaining a better understanding of the UAV’s operational 

capabilities under different wind conditions, the settings for the last four campaigns 

(16/15, 09/15, 02/16 and 05/16) were changed. In particular, the exposure interval was 

set to 2 seconds and the lateral overlap increased to 70% to enable better overlapping 

coverage. The Panasonic camera was set up with a fixed shutter speed of 1/800 s to 

decrease image blurring, ISO 100 to ensure that images were captured with low noise 

(Sieberth et al., 2014) and a fixed aperture of f/2 to ensure that sufficient light reached the 

sensor.  

For the last two campaigns (02/16 and 05/16) additional flights were carried out using the 

Sony A6000 fitted in the new 3D printed case designed by the author (Section 4.4.1). The 
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Sony A6000 was set up with fixed aperture of f/4, fixed shutter speed of 1/1600, ISO 250 

and 2 s exposure interval. Due to infra-red LED trigger connection (Section 4.4.2) a time 

delay was unavoidable. Thus, images acquired from three consecutive flights per 

campaign were processed to ensure a sufficient image overlap. 

Table 6.1: Details of SfM-MVS processing of UAV imagery. 
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Panasonic DMC-LX5 
15/05/14 56 15 2 0.038 109 2.6 0.5 177 
15/12/14 67 5 5 0.034 108 3.4 0.7 214 
19/03/15 200 5 6 0.030 87 5.0 0.7 271 
10/06/15 257 5 13 0.031 87 5.4 0.4 265 
27/09/15 197 5 15 0.028 83 3.7 0.4 314 
12/02/16 195 5 15 0.028 90 3.7 0.7 309 
27/05/16 189 5 15 0.029 84 3.4 0.8 292 

Sony A6000 
12/02/16 144 5 15 0.018 79 3.7 0.8 761 
27/05/16 221 5 15 0.019 82 3.5 0.9 717 

 

Because of the 50 m elevation difference the NS direction at Hollin Hill, the distance of 

the camera to the ground could not be kept fixed. In an attempt to compensate for this 

elevation change, the UAV’s flight plan was designed to gradually increase the UAV’s 

height as it climbed towards the top of the slope. This was planned for the first three 

campaigns. However, the fixed wing platform did not follow this flight plan as firstly it 

reached the desired height and then headed towards the predefined direction. That plan 

would work with a rotary platform, which allows for a steady climb. Therefore, for the 

remaining four campaigns the plan was configured differently. In particular, parallel 

flight lines of EW direction and cross lines of NS were designed with an approximately 

60 m line separation and flying heights of 300 ft to 350 ft. Combined flying heights were 

chosen as they improved the SfM-MVS georeferencing accuracy in the Cockle Park 

experiment (Section 5.2.2). Further, flight lines in opposing directions were added, 

according to the recommendations of James and Robson (2014), in order to achieve a 

better flight configuration and to minimise systematic errors (Section 3.2.6). These plans 

were adopted for both cameras.  
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Figure 6.1: Image overlap and post flight trajectories for (a) 05/14 and (b) 05/16 campaigns. 

Figure 6.1a and b illustrate the imaging network configuration of the first and last 

campaigns respectively. Less than four images covered the upper part of the slope in 

Figure 6.1a, resulting in a significantly lower number of optical rays per tie point 

compared to all other campaigns (Table 5.1). The lower point density for the first two 

campaigns (05/14 and 12/14) are also noticeable in Table 5.1. As is shown in Figure 6.1b, 

alterations in the flight settings strengthened the imaging network, increasing the number 

of images considerably. However, it should be noted that on 03/15 a relatively high 

number of optical rays per point was computed because of the inclusion of some oblique 

images. In particular, 57 out of 200 images exceeded the ±10º roll angle. A test 

investigated the inclusion or exclusion of these images and showed that, after excluding 

those, the average SE (Equation 3.32) in elevation at GCPs was 10 times higher than the 

SE computed after including those images. The exclusion of these images decreased the 

redundancy in point determination and adversely affected the SEs. Thus, the images were 

included in all following experiments.  

It should be noted that UAV imagery is stored in RAW format which does not apply any 

enhancement to the digital numbers (Verhoeven, 2010). However, PhotoScan, as well as 

other SfM-MVS software, are not able to read RAW format. For that reason, the original 

images were converted into tiff by applying an RGB transformation in the Panasonic and 

Sony dedicated software. This transformation did not include additional image 

enhancement processing. As a result, no brightness or contrast transformation was applied 

to underexposed and overexposed images (e.g. Figure B.4 in Appendix B). 
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6.1.3 DPC pre-processing and vegetation filtering 

DPC pre-processing 
An investigation to define the optimal disparity settings for DPC reconstruction was 

undertaken at Sandford (Section 5.2.1). This showed that the aggressive mode delivered 

the best results. However, this test was undertaken over bare soil. Therefore, it was 

repeated at Hollin Hill to investigate the choice of disparity settings over vegetated 

terrain. Thus, post processing in PhotoScan for three different disparity settings (mild, 

moderate and aggressive, Section 3.2.5) was carried out over a subarea, as seen in Figure 

6.2 with images acquired on 09/15. A section through a reconstructed DPC located across 

a shrub with height lower than 0.50 m is illustrated in Figure 6.2. The aggressive option 

was finally adopted because it was seen to remove points from such low vegetated areas 

(Peppa et al., 2016).  

 
Figure 6.2: Profile of a DPC reconstructed with three disparity options (Peppa et al., 2016). 

An additional test was carried out to investigate the optimal choice of image pyramid 

level (Section 3.2.5). In this test 33 images of 12/14 campaign over a 0.061 km2 subarea, 

were processed with aggressive filtering and three image pyramid level options, namely 

a) “Ultra-high”, b) “High” and c) “Medium”. Option (a) produced a 0.03 m DEM spatial 

resolution, equal to the achievable GSD (Table 5.1) and density of 1010 points/m2, with 

7.3 hrs of computation time. After 1 hr, option (b) reduced the spatial resolution 0.06 m 

with density of 253 point/m2. Option (c) further decreased the original resolution by 4 

resulting in 63.3 points/m2 density after 7 min of processing. Hence, aggressive with 

“High” image pyramid level were selected for all campaigns and experiments as a trade-

off between computational time and spatial resolution.  



 142 

Other PhotoScan parameters were set as follows: camera position’s accuracy=10 m, 3D 

marker accuracy for GCPs and CPs=0.010 m, tie point accuracy=1.0 pixel and projection 

accuracy=0.1 pixels. The estimated post processing values for GSD and point densities 

are listed in Table 6.1. For the GCP-based and MBR-based Panasonic experiments, seven 

DEMs with 0.06 m spatial resolution were generated. For the GCP-based and MBR-based 

Sony experiments, two DEMs with 0.04 m spatial resolution were generated. In all 

experiments, the DEM spatial resolution was double the average GSD. Due to larger 

sensor size, Sony imagery delivered higher spatial resolution as expected (Section 4.4.2). 

Vegetation filtering 
Vegetation filtering was conducted in PhotoScan as described in Section 3.2.5. Together 

with DEMs, DEM standard deviation grids (Equation 3.6) were constructed for all 

campaigns in OPALS27. Even after PhotoScan’s vegetation filtering, "off-ground" points 

remained, mainly around the densely vegetated regions. Thus, a test was undertaken to 

derive which values of the DEM standard deviation grid represent those regions. The test 

showed that DEM standard deviation values greater than 0.01 m mostly indicated the 

remaining vegetation, as evidenced in Figure 6.3. Applying this threshold, the DEM 

standard deviation grids were classified into two categories representing regions with 

standard deviation a) from 0 m to 0.01 m and b) greater than 0.01 m. The regions of (b) 

category were converted into polygons and used to remove the erroneously classified 

features from the DEM. 

Figure 6.3a shows an example of vegetated areas, detected at the upper part of the site for 

05/16 datasets. Points in red (Figure 6.3b) were erroneously classified as bare ground in 

PhotoScan and then masked out with the DEM standard deviation threshold higher than 

0.01 m. Figure 6.3a also maps other objects detected such as fences, photovoltaic panels 

and sheep. Even though the DEM standard deviation aided in cleaning spurious 

classification results from PhotoScan, it created few errors over the landslide scarp west 

of the site (Figure 6.3a). These subareas were identified with the aid of the 

orthophotomosaic and excluded from cleaning. The pre-processing filtering step was 

repeated for all campaigns and experiments.  

                                                 
27 www.geo.tuwien.ac.at/opals/html/index.html  

http://www.geo.tuwien.ac.at/opals/html/index.html
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Figure 6.3: (a) Polygons of DEM standard deviation for masking out (b) erroneously classified vegetated 
regions. 

Apart from cleaning, the DEM standard deviation grid also indicated DEM quality. For 

example, it revealed linear artefacts in the 05/14 dataset. These artefacts originated from 

sharp discontinuities that occurred in the point cloud due to mismatches caused by low 

image overlap (Figure 6.1a), as discussed in Section 3.2.6. Harwin et al. (2015) explained 

that it is difficult to remove such discontinuities especially in a grassy terrain, such as 

Hollin Hill. This is because a photogrammetric approach records the vegetation surface 

and is unable to capture the underlying terrain, compared to ALS for example. DEM 

standard deviation grids for 05/14, 12/14, 02/16 and 05/16 datasets are shown in 

Figure  B.1 in Appendix B. It is noteworthy that the linear artefacts in the DEM standard 

deviation grid for 05/14 were correlated with the linear edges of overlapping images 

depicted in Figure 6.1a. It can be deducted that all imaging network configurations, with 

the exception of the first campaign, generated standard deviations with low noise and 

without linear artefacts. Due to artefacts, the 05/14 dataset was excluded from the 

experiments in the following sections.  

6.2 Co-registration solutions 

6.2.1 MBR-based implementation and analysis 

According to the MBR workflow described in Section 3.4.2, pseudo GCPs were firstly 

generated with combined SIFT and mean curvature grids. The mean curvature for each 

epoch was computed within the range of 5x5 to 35x35. For low kernel sizes the curvature 

grid illustrates fine surface details, whereas, as the kernel increases, the curvature 

becomes smoother. For epoch pairs with 5x5 kernel size SIFT detected only 4 points 

corresponding to an unreliable solution. This is attributed to the fact that the high 
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frequency of the curvature variations within a 0.30 m spatial extent (kernel size x spatial 

resolution) did not allow for extraction of characteristic features. For that reason, 

curvature grids of 5x5 kernel size were eliminated from the MBR workflow. 

 In a similar manner to the experiments in Sandford (Section 5.2) a RANSAC threshold 

of 0.9 pixels was used, corresponding to the average standard error post transformation 

(step 9 of Stage 2 in Section 3.4.2). For a RANSAC threshold of 0.5 pixels a considerably 

lower number of candidate points were identified. For example, in the epoch pair E04 

(12/14-02/16) of the Panasonic experiment, almost 50% fewer points were detected with 

0.5 RANSAC compared to the number of points detected with 0.9 RANSAC. It was 

expected that within an eighteen-month duration (15/12/14-27/05/16) surface curvature 

would change due to landslide activity, hence with a strict 0.5 pixels threshold fewer 

points were identified. Therefore, RANSAC equal to 0.9 pixels was adopted, as it 

generates a sufficient number of candidate pseudo GCPs even within a long period which 

can aid in eliminating possible systematic errors in the later stages of the MBR workflow.  

For all experiments described in this chapter, processing was performed only over the 

region surrounded by hedgerows, as adjacent fields were subjected to environmental 

change (e.g. crop growth) that would adversely affect identification of stable/unstable 

terrain. Figure 6.4a displays an example of negative openness generated from the GCP-

based Panasonic experiment derived from the E2 and E4 DEMs within a spatial extent of 

4.5 m. This extent allowed for capturing landslide fissures and surface openings. The 

smooth texture of the “stable” terrain around the landslide fissures was represented by 

wide openness angles, whereas the rough texture of landslide patterns corresponded to 

narrower openness angles. Positive openness for the E2 and E4 epochs are depicted in 

Figure 6.4c and Figure 6.4d respectively. As described in Section 3.3.2, positive and 

negative openness illustrate complementary surface characteristics. By combining these 

together, as in case of the Sandford experiments (Section 5.2), both concave and convex 

features that were present within the landslide bodies were captured. The focal statistics 

tool (Stage 2b in Section 3.4.2) was applied until small polygons were removed from the 

main landslide bodies and the final mask was smooth and continuous, as shown in red 

and blue polygons in Figure 6.4a. Because of this smoothing, the track in the south of the 

site (Figure 4.6a), with a 3.7 m width lower than the 4.5 m openness spatial extent, was 

excluded from the smooth terrain (Figure 6.4).  
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Figure 6.4: Openness grids for stable terrain extraction from the GCP-based Panasonic experiment. 

Moreover, it is evidenced in Figure 6.4a and b that parts of the flat plateau in the middle 

of the site (Section 4.3.1) were characterised as stable terrain due to the wide openness 

angles derived over that region (Figure 6.4a and b). For E3 and E5, the presence of longer 

grass, caused high surface roughness around the lobes at the foot of the slope and affected 

the smoothness of the mask (E5 in Figure 6.4b).  

The openness grids generated from the DEMs of the MBR-based experiments were 

identical to those of the GCP-based experiments, extracting the same stable terrain. 

However, these grids were shifted and orientated with respect to the coordinate system of 

the coarse alignment defined in each epoch (Stage 1 of the MBR workflow in Section 

3.4.2). This was not an issue because the coordinates of the candidate pseudo GCPs were 

shifted and orientated accordingly, as derived from the 2D transformation implemented 

within SIFT. 
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Figure 6.5: Mean curvature grids of (a) E0 and (b) E4 epochs with their corresponding pseudo GCPs over 
stable terrain. 

Figure 6.5a and b present two examples of mean curvature grids derived with kernel size 

of 25x25 for epoch E0 and E4 respectively. Within this period, different maximum and 

minimum curvature values were observed over failing parts of the landslide. These 

extreme values of the curvature indicate features with steep slopes unsuitable for pseudo 

GCPs. Over the smooth terrain, extracted by openness, the mean curvature was 

unchanged. The final pseudo GCPs selected for epoch pair E0-E4 generated from the 

MBR workflow are superimposed over the grids corresponding to each epoch (Figure 

6.5a and b). The locations of these points represent features outside of the main landslide 
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bodies, but with distinctive surface characteristics over the smooth terrain. For example, 

ridges on the surface in the NS direction were structured from old hedgerows that were 

removed before the UAV acquisitions by the land owner (Figure 6.5). Many pseudo GCPs 

were generated over these structures, providing a valid solution as the structures were 

considered stable and not caused by landslide deformation.  

 
Figure 6.6: Key-points as derived from the SIFT implementation with (a) E0 and (b) E4 orthophotomosaics 
using exactly the same settings described in Section 3.4.2. 

To demonstrate the superiority of using curvature grids with the SIFT algorithm instead 

of optical images, an additional test was conducted for the E0-E4 epoch pair with results 

shown in Figure 6.6. The RGB E0 and E4 orthophotomosaics, as generated from the GCP-
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based Panasonic experiment, were firstly converted into grayscale and then implemented 

with the SIFT algorithm using identical settings to the MBR workflow (Stage 2a in 

Section 3.4.2). As evidenced in Figure 6.6 this implementation failed to detect correct 

key-points with the exception of one and only key-point 2. This result contrasts with the 

numerous key-features detected with the MBR workflow of the same epoch pair, as 

shown in Figure 6.5. The poor result derived from the SIFT implementation with the 

orthophotomosaics was caused by illumination and vegetation variations (Kehl et al., 

2017), well-known error sources that adversely affect the quality of image matching 

algorithms (Section 3.2.6). Overall, this test justifies the use of morphological surface 

attributes (e.g. curvature) for the detection of candidate pseudo GCPs with the SIFT 

algorithm, as implemented in the OpenCV python library (python script in Appendix A).  

Following the analysis of the SIFT implementation with curvature grids, it is noteworthy 

that curvature kernel sizes lower than 11x11 did not contribute to the MBR solution as 

no points from any epoch pair of that kernel size, were finally selected over stable terrain. 

This contrasts with the Sandford experiments (Figure 5.9). For example, in epoch E3 

approximately 60% of the pseudo GCPs were generated from curvature kernel sizes of 

33, 29, 19, 13, 11 and 35. In epoch E5 the smallest kernel size of 11x11 contributed only 

3% of the pseudo GCP generation. Hence, the use of multiple kernel sizes provided 

additional redundancy increasing the number of pseudo GCPs. An average 0.03 m SE 

(Equation 3.32) was computed from all pseudo GCPs. A normal distribution could be fit 

to the histogram of the pseudo GCP residuals.  

Prior to the final selection of pseudo GCPs, manual inspection of systematic patterns was 

performed for all epochs and experiments. An example of using polar plots for 09/15 

campaign is illustrated in Figure B.2 in Appendix B. The selected pseudo GCPs, showed 

an error in the NW direction with azimuth ranging between 280º-315º. The majority of 

the pseudo GCPs were gathered within this narrow band. Points with error magnitudes 

greater than the DEM spatial resolution (i.e. 0.06 m) were identified and removed in 

ArcGIS, according to the first stopping criterion in Stage 2C (described in Section 3.4.2). 

Whilst the directional error was not entirely removed, as evidenced in Figure B.2 in 

Appendix B, it was slightly better distributed across the quarters of the polar spectrum. 

The pseudo GCPs for all other epochs showed a good directional distribution; therefore 

no removal was required. As numerous points were detected, there was an absence of 

dominant systematic directional pattern within any particular quarter of the polar plot 

(polar plots of E5 results are shown in Figure B.3 in Appendix B). For the MBR-based 
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Sony experiments, even though comparably fewer points were extracted over stable 

terrain for E5 (Table 6.3) than for the corresponding Panasonic experiment (Table 6.2), 

all quarters of the polar plot were filled (Figure B.3 in Appendix B).  

Statistical analysis of the final pseudo GCPs of the MBR-GCP based Panasonic 

experiment are presented in Table 6.2. The vertical SEs were lower than the planimetric, 

with a maximum value of 0.03 m similar to Sandford experiments (Table 5.4). The highest 

error, equal to 0.05 m in Easting and Northing, were observed at E5, still lower that the 

0.06 m DEM spatial resolution (Table 5.1). The mean values in Easting and Northing 

were lower than 0.01 m in all epochs with the exception of E3, which included the least 

number of pseudo GCPs. In both Easting and Northing, the E3 statistical values had 

approximately the same order of magnitude per epoch; hence no systematic bias towards 

one particular direction was observed.  

Table 6.3 presents the statistical results of the MBR-based Sony experiments. 

Interestingly, a 0.03 m vertical SE was achieved in the MBR-GCP based experiment, 

lower than the 0.04 DEM spatial resolution. A 0.053 m planimetric error just above the 

DEM spatial resolution was delivered. A significant part of the errors come from the 

Northing component, as the mean value was higher in the Northing than the Easting 

(Table 6.3). This planimetric error was still lower than the error achieved with the 

Panasonic experiment in E5 (see Table 6.2 for comparison). Comparing the two Sony 

experiments in Table 6.3 there is no substantial difference in the estimated SEs. However, 

the mean values in all coordinate components of the MBR-UAV based experiment were 

greater than 0.02 m, which is equal to the GSD (Table 5.1). This is possibly attributed to 

the low number of pseudo GCPs detected between the epochs E4 and E5, compared to 

the Panasonic experiments.  

Further analysis of the Panasonic experiment showed that approximately 50% of the 

pseudo GCPs detected in E2, E3 and E4 separately, were identical to the points used in 

E5. For instance, 333 points out of the total 743 points of E2 were transferred to E5 (Table 

6.2). Even 40% of the E1 detected points were maintained in E5. This indicated that there 

were surface features with invariant through time curvature, which could be shared across 

epochs.  

 

 



     

 

Table 6.2: Statistics of the coordinate residuals of the MBR-derived pseudo GCPs from Panasonic experiment. 

Epoch Pseudo GCPs Easting [m] Northing [m] Plan [m] Elevation [m] 

  μ σ SE μ σ SE σ SE μ σ SE 
E1 1096 0.002 0.023 0.023 0.001 0.019 0.019 0.030 0.030 0.001 0.028 0.028 
E2 743 0.006 0.029 0.029 -0.003 0.035 0.035 0.045 0.045 -0.004 0.018 0.018 
E3 541 -0.019 0.034 0.039 0.018 0.034 0.038 0.048 0.054 -0.002 0.020 0.021 
E4 654 0.001 0.021 0.021 0.000 0.027 0.027 0.034 0.034 0.000 0.016 0.016 
E5 1298 -0.004 0.050 0.050 0.008 0.050 0.050 0.071 0.071 0.002 0.029 0.029 

 

Table 6.3: Statistics of the coordinate residuals of the MBR-derived pseudo GCPs from Sony experiments. 

Epoch Pseudo GCPs Easting [m] Northing [m] Plan [m] Elevation [m] 

  μ σ SE μ σ SE σ SE μ σ SE 
MBR-GCP based Sony experiment 

E5 37 0.004 0.035 0.035 -0.012 0.038 0.039 0.052 0.053 -0.005 0.030 0.030 
MBR-UAV based Sony experiment 

E5 28 -0.023 0.035 0.041 0.025 0.035 0.043 0.050 0.059 -0.031 0.034 0.045 
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6.2.2 Assessment of co-registration solutions 

Evaluation of GCP-based Panasonic and Sony results at check points 
For GCP-based experiments, processing was performed with the GCPs included as 

reported in Table 5.1. After processing with PhotoScan, an assessment of georeferencing 

accuracy was performed. Statistical values at CPs computed by Equations 3.34, 3.35 and 

3.36 are listed in Table 6.4. An average of 0.031 m 3D RMSE was derived for all epochs, 

approximately equal to the GSD. The differences of less than 0.01 m between the standard 

deviation values and RMSEs imply that there are no systematic biases. Planimetric error 

vectors at CPs are also included in Figure 6.7. As illustrated, no general systematic 

directional pattern was observed at CPs. This indicates that a reliable solution was 

achieved in the horizontal plane for all epochs.  

Table 6.4: Statistics at CPs from the GCP-based Panasonic experiment.  

Campaign 
(month/year) Epoch 

No of 
CPs 

σ [m] RMSEs [m] 
Plan Elevation Plan Elevation 3D (egeor) 

12/14 E0* 10 0.014 0.016 0.020 0.026 0.033 
03/15 E1* 11 0.013 0.016 0.014 0.019 0.024 
06/15     E2  13 0.020 0.030 0.019 0.031 0.036 
09/15     E3 15 0.035 0.018 0.038 0.024 0.045 
02/16     E4 15 0.011 0.019 0.012 0.019 0.022 
05/16     E5 15 0.021 0.015 0.024 0.015 0.029 

 average 0.019 0.019 0.021 0.022 0.031 
* Errors of GCP-based results were calculated from both GCPs and CPs due to limited number of available 
CPs. 
 

There are, however, a few planimetric vectors of comparatively higher magnitude, for 

example a 0.088 m planimetric error on 09/15 at point GP15 (Figure 6.7d). This error 

might originate from a few overexposed images acquired over that region generating 

glared surfaces (Section 3.2.6). The sun glare reflected on the dark part of the target 

hampered the centre detection of the target and reduced its black/white contrast. This is 

illustrated in Figure B.4 of GP15 target (Appendix B). The high planimetric error at this 

point resulted in 3D RMSE in epoch E3 exceeding the 0.03 m average GSD (Table 6.4).   



     

 

Figure 6.7: Planimetric error vectors and errors in elevation after interpolation at CPs in the GCP-based Panasonic experiment. For (a) and (b) interpolation performed at both GCPs 
and CPs due to a limited number of CPs (Table 6.4).  
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Figure 6.7 depicts the vertical error distribution as interpolated with the natural neighbour 

technique (Section 3.2.2) to form a continuous error surface. The magnitude of the 

vertical error was relatively small within ±0.03 m for all epochs. However, E2 displayed 

high errors across the north of the site (Figure 6.7c). For example a -0.078 m vertical error 

at the CP17 point and a 0.045 m vertical error at CP02 point were observed in E2 (Figure 

6.7c). The former is caused by the low number of four images viewing this target point 

compared to the number of optical rays corresponding to all other targets. This resulted 

in a high error due to low image overlap which led to low redundancy in elevation 

derivation (Section 3.2.6). The vertical error at CP02 is likely to have originated from 

strong gusts of wind, which destabilised the UAV while turning from east to south. This 

created blurred images over that region, degrading the image resolution (Sieberth et al., 

2014) and yielding vertical deformations (Section 3.2.6). An example of a blurred image 

over the CP02 target is shown in Figure B.5 in Appendix B, illustrating that the target’s 

original circular shape was altered due to UAV instability. Even though the extreme 

blurred images were excluded at the beginning of the pre-processing step (Section 6.1.2), 

a few remained as they could not be removed as this would have resulted in insufficient 

overlapping images.  

It is noteworthy that during processing, tests were carried out to investigate the optimal 

combination of five GCPs with the distribution recommended in Section 5.1. The tests 

involved which five GCPs delivered the lowest average RMSE. Thus, the corner targets 

were not always chosen as GCPs, an example is shown in E4 (Figure 6.7e). Moreover, 

additional tests were undertaken to investigate the presence of bowl-shape deformations 

(Section 3.2.6). DEMs derived from the GCP-based Panasonic experiment were 

subtracted from the DEMs generated from all available GCPs. Based on this DEM 

differencing, (see Figure B.6 in Appendix B), an unresolved deformation was observed 

in epoch E5 with values ranging within [-0.06-0.03] m. Although deformations of lower 

magnitude were found in epoch E1. These deformations were also observed in the Cockle 

Park experiment and discussed in Section 5.2.2. 

Statistical results of the GCP-based Sony experiment computed at CPs after PhotoScan 

processing are summarised in Table 6.5 and mapped in Figure 6.8. Both σ and RMSEs 

have comparable order of magnitude per epoch indicating an absence of systematic errors. 

However, statistics in elevation of E4 epoch were higher than the statistical results of E5 

epoch. As shown in Figure 6.8a, error deformations in excess of 0.02 m were observed 

over the upper part of the slope. Note the different classification scheme adopted in Figure 
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6.8 compared to Figure 6.7, This is because the GSD achieved with the Sony imagery 

was different from the GSD derived from Panasonic imagery (Table 5.1). A 0.056 m 

vertical error at PCT10 point and a 0.066 m vertical error at PCT14 point were observed 

in E4. It is likely that the error was caused by a few underexposed dark images acquired 

over that region. A general issue with this dataset was the acquisition of relative dark 

images which might have degraded the vertical accuracy (Section 3.2.6). Further 

investigations on image enhancement prior to PhotoScan were not applied as they are 

outside the scope of this study. Overall, an average 0.032 m 3D RMSE was achieved with 

Sony imagery, which is close to the average 3D RMSE from Panasonic imagery.  

Table 6.5: Statistics at CPs from the GCP-based Sony experiment.  

Campaign 
(month/year) Epoch 

No of 
CPs 

σ [m] 

   
  

  
 

 

RMSEs [m] 
 Plan Elevation Plan Elevation 3D (egeor) 

02/16 E4 15 0.021 0.030 0.022 0.030 0.037 
05/16 E5 15 0.017 0.011 0.021 0.018 0.028 

 average 0.019 0.021 0.021 0.024 0.032 

 
Figure 6.8: Planimetric error vectors and errors in elevation at CPs of the GCP-based Sony experiment.  

Elevation values from the derived DEMs were cross-validated against elevations at spot 

heights independently surveyed with GNSS and a total station (Figure 4.8 in Section 

4.3.2). The cross-validation of GCP-based Panasonic result is summarised in Table 6.6. 

Vertical RMSEs of 0.043 m difference across epochs were achieved. However, a high 

mean value was observed at epoch E1. This is possible because almost all spot heights 

were located at the edges of the landslide scarp and convex breaks, as seen in Figure 4.8. 

The most rigorous statistical result was epoch E5 with close to zero mean value from spot 

heights well distributed across the site. Hence, E5 observations, being the most reliable, 

are used for cross-validation in the experiments described in the following Sections.  
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Table 6.6: Statistics of elevation differences derived from the comparison of the GCP-based Panasonic 
outputs against independently observed elevations at sample points. 

Campaign (month/year) Epoch No of points μ [m] σ [m] RMSE [m] 
12/14 E0 48 0.047 0.100 0.110 
03/15 E1 52 -0.110 0.079 0.131 
06/15 E2 98 -0.050 0.090 0.102 
02/16 E4 65 0.058 0.087 0.104 
05/16 E5 559 0.003 0.088 0.088 

 

Elevation cross-validation of the GCP-based Sony outputs in E5 delivered a 0.004 m 

mean value and standard deviation and RMSE equal to 0.081 m. From both Panasonic 

and Sony experiments a normal distribution can be fit to the histograms of elevation 

differences at spot heights in E5.  

Evaluation of MBR-based Panasonic and Sony results at check points 
Table 6.7 summarises the statistical values derived at CPs from the MBR-GCP Panasonic 

experiment. The MBR workflow delivered better and more consistent RMSEs in 

elevation than in plan across all epochs of less than 0.06 m. The discrepancies between σ 

and RMSEs imply the presence of non-zero mean values between the surveyed and 

estimated CP coordinates. Interestingly, an average 0.04 m vertical RMSE was achieved, 

lower than the 0.06 m DEM spatial resolution.  

Table 6.7: Statistics at CPs from the MBR-GCP based Panasonic experiment. 

Campaign 
(month/year) Epoch 

No of 
CPs 

σ [m] RMSEs [m] 
Plan Elevation Plan Elevation 3D (egeor) 

03/15 E1 11 0.043 0.044 0.056 0.044 0.071 
06/15 E2  18 0.042 0.027 0.070 0.027 0.075 
09/15 E3 20 0.054 0.022 0.057 0.037 0.067 
02/16 E4 20 0.022 0.024 0.070 0.050 0.086 
05/16 E5 20 0.032 0.040 0.099 0.042 0.108 

 average 0.039 0.032 0.070 0.040 0.082 
 

Comparing the statistics from GCP-based and MBR-GCP Panasonic experiments (Table 

6.4 with Table 6.7 respectively), a difference was observed in planimetric RMSEs. The 

coordinates in elevation at 559 spot heights in E5, surveyed with a total station, were 

compared against the MBR-derived elevations. A mean value of -0.014 m, standard 

deviation of 0.103 cm and RMSE of 0.104 m verified the 3D error magnitude estimated 

at CPs (0.108 m in Table 6.7). This RMSE value was only 0.02 m different from the 

corresponding RMSE derived from the GCP-based cross-validation in E5, as seen in 

Table 6.6.  
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Figure 6.9 depicts the planimetric error vectors of pseudo GCPs and CPs, as calculated 

by the MBR workflow. The vectors are plotted over elevation differences, which were 

obtained by subtracting the MBR-GCP DEM from the GCP-based DEM at each epoch. 

The classification scheme of the elevation differences adopted is identical to that shown 

in Figure 5.12 for the Sandford experiment (Section 5.3.3). Various deformation patterns 

were observed in Figure 6.9, illustrating random behaviour across all epochs. For example 

a radial pattern is shown in E1 and E2 (Figure 6.9a and b) while a tilt is apparent in E5 

(Figure 6.9e). Both radial patterns in E1 and E2 show a dishing distortion (Carbonneau 

and Dietrich, 2016) with larger deformations at the edges of the site. Comparing these 

two, the error magnitude in E2 is 1σ smaller. The deformation patterns in E3 and E4 

(Figure 6.9c and d) also seem radial but with a rather wide spread with the centre of 

distortion not coinciding with the centre of the site as in E1. Figure 6.9e shows a clear tilt 

with lower deformations in the north and higher in the south. The error vectors at CPs (in 

Figure 6.9e) show a generally dominant N-S direction, similar to the direction of the 

landslide movement previously estimated by BGS (Uhlemann et al., 2016). Nevertheless, 

as is already described in Section 6.2.1, the error vectors of pseudo GCPs provide a 

random error distribution without showing dominance towards a particular direction. 

Further investigation with other benchmark datasets, described in Section 6.5.2, explained 

how the landslide motion negatively affected the MBR-GCP outcome. Overall, among 

all epochs, E3 (Figure 6.9c) shows the smallest vertical deformation magnitude across the 

site with a relatively random planimetric directional distribution at CPs. 



     

 
Figure 6.9: Planimetric error vectors of pseudo GCPs and CPs with elevation differences between GCP-based and MBR-GCP based Panasonic experiments. 
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Table 6.8 reports the statistics at CPs of the MBR-GCP Sony results. Interestingly, a 

0.039  m RMSE in elevation was achieved, very close to the RMSE in E5 of the 

corresponding Panasonic experiment seen in Table 6.7. However, the Sony experiment 

delivered a much lower RMSE value in plan than the Panasonic experiment (Table 6.7 

versus Table 6.8).  

Table 6.8: Statistics at CPs from the MBR-GCP Sony experiment.  

Campaign 
(month/year) Epoch 

No of 
CPs 

σ [m] 

   
  
   

 

RMSEs [m] 
 Plan Elevation Plan Elevation 3D (egeor) 

05/16 E5 20 0.029 0.034 0.053 0.039 0.066 
 

In the Panasonic experiment numerous pseudo GCPs were detected from all possible 

epoch pairs, transformed into E5, and not extracted only from the epoch pair E4-E5 as in 

the Sony experiment. Even though the numerous pseudo GCPs aided in generating a good 

distribution of control points across site, an error might have been introduced because of 

epoch-to-epoch transformation. This could possibly explain the discrepancy of the error 

magnitude in plan between the two experiments. On the other hand, when few pseudo 

GCPs were detected, as in the Sony experiment, a relatively poor distribution of control 

points was generated with no points at the upper parts of the slope (Figure 6.10a).  

 
Figure 6.10: (a) Elevation differences between GCP-based and MBR-GCP Sony experiment with 
planimetric error vectors in E5. (b) Planimetric error vectors at pseudo GCPs of the MBR-UAV Sony result.  

Although the planimetric error magnitude in Table 6.8 was better than the error in Table 

6.7, there was an apparent N-S directional error at CPs and an unresolved radial 

deformation (Figure 6.10a). Note that the elevation differences in Figure 6.10a are plotted 

with the same color scheme seen in Figure 6.9.  
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MBR-GCP Sony outputs were cross-validated against the 559 spot heights surveyed in 

E5. Interestingly, the cross-validation delivered a 0.01 m mean value and standard 

deviation and RMSE equal to 0.089 m, close to the GCP-based results of both Panasonic 

(Table 6.6) and Sony datasets. This verified a good overall co-registration solution in 

elevation.  

Figure 6.10b presents the planimetric error vectors of pseudo GCPs derived from the 

MBR-UAV Sony experiment. As no OSGB36 georeferencing was involved in this 

experiment, errors at CPs and/or spot heights could not be assessed. Comparing Figure 

6.10a and b, it can be seen that different pseudo GCPs were identified despite the fact that 

imagery of an identical camera and epoch pair were processed. The only difference 

between the two experiments is the way the reference DEM was derived. In particular, in 

the MBR-GCP experiment, E4 DEM was derived with the inclusion of five GCPs 

whereas, in the MBR-UAV experiment E4 DEM was generated after a coarse alignment 

from the UAV camera exposure stations (Figure 3.6). Due to the absence of GCPs, the 

E3 3D surface had a relatively different shape from the “ground-truth” (i.e. 3D surface 

derived with five GCPs) which in turn generated a different curvature grid. This, 

combined with the coarse horizontal coordinates, resulted in a curvature epoch pair with 

other characteristics than the epoch pair of the MBR-GCP experiment. As result, SIFT 

detected points at different locations.  

As also investigated in the Sandford experiments (Section 5.4.2), further tests were 

carried out to analyse possible sources of distortion as seen in Figure 6.9 and Figure 6.10a. 

The test involved investigating whether the distortion was attributed to the pseudo GCPs 

uncertainties. These are the computed SEs that served as markers’ accuracies in the SfM-

MVS pipeline (Section 3.4.2). In a manner similar to Sandford (Section 5.3.2). 13 self-

calibrating bundle adjustments were conducted with respect to different markers’ 

accuracies within the range of 0.1-6.0 cm, for the Panasonic MBR-GCP experiment. 

Figure 6.11 displays the resulting boxplots of the first and last epoch. The boxplots in 

Figure 6.11a and b show an expanding spread as the marker accuracy increases, whereas 

in Figure 6.11c and d show a relatively more consistent spread. The boxplots at CPs, in 

Figure 6.11b, also illustrate a skewed RMSE distribution compared to the boxplots of 

pseudo GCPs, in Figure 6.11a. The distortions, depicted in Figure 6.9a, can possibly be 

correlated with the patterns of the boxplot spreads. The same test was performed with the 

datasets from the GCP-based datasets for E1, with similar results to those in Figure 6.11a 
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and b. Thus, DEM errors in E1 probably resulted from the imaging network itself, and 

not the actual MBR workflow.  

Regarding E5, the tilt in Figure 6.9e, is unlikely to be entirely attributable to the various 

marker accuracies, since the boxplots in Figure 6.11c and d do not reveal any dramatic 

variations. Moreover, the average magnitude of the 3D RMSEs of the last epoch (Table 

6.7, Figure 6.9e and Figure 6.11d), was relatively greater than the previous epochs. This 

implies that the landslide movement within the monitoring period was possibly 

propagated through processing and integrated into the results.  

 
Figure 6.11: 3D RMSEs of MBR-GCP processing at (a) 1096 pseudo GCPs, (b) 11 CPs of E1, also at (c) 
1298 pseudo GCPs and (d) 20 CPs of E4.  

After applying the ICP algorithm for the sensitivity computation (Section 3.5.3), E5 DEM 

was reconstructed by applying the transformation parameters estimated from the 

algorithm, and compared against the GCP-based derived DEM. The comparison showed 

that the tilt in E5 remained and its direction was reversed with negative error in the south 

and positive in the north, as opposed to Figure 6.9e. This is possibly because the E4 DEM 

had significant differences from E0 DEM caused by landslide movement and seasonal 

changes. As also stated in Eltner et al. (2016), ICP cannot recover errors when it is applied 

to surfaces with substantial changes.  
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Comparison with TLS datasets 
In Section 5.3.1, a test was conducted comparing SfM-MVS outputs with TLS datasets 

to define the optimal M3C2 settings (D and d scale parameters, Section 3.5.1). As that 

test was applied to a flat region at Sandford, it was repeated for the back scarp of TLS 

coverage at Hollin Hill (Figure 4.6). The M3C2 algorithm was implemented with the the 

MBR-GCP based and TLS datasets of E5 for a range of 0.1-2.0 m for D and d parameters. 

A uniform scale was used for both parameters to simplify the computations as 

recommended by Lague et al. (2013). The results of the test are presented in Figure 6.12.  

 
Figure 6.12: Implementation of the M3C2 algorith for various scale settings. 

Figure 6.12a shows the mean value and RMSE of the M3C2 distance computed between 

the MBR-GCP and TLS point clouds for different scale parameters. The mean and RMSE 

of the M3C2 distance reached a plateau for scale greater than 0.8 m. For small scale the 

magnitude of the M3C2 distance was overestimated due to possibly improper estimation 

of the normal vectors over regions with strong curvature variations (Section 3.5.1). Lague 

et al. (2013) noted that for small spatial extents mostly over cliffs, the orientation of the 

normal vectors becomes parallel to the local orientation of the overhanging parts of the 

surface yielding to distance overestimation. To overcome these errors, Lague et al. (2013) 

recommended higher scale values within the range of 0.5- 2.0 m.  

However, the test showed that for a large scale of 2.0 m, the M3C2 algorithm over 

smoothed the surface roughness. The M3C2 algorithm also delivered an uncertainty map 

of the estimated distance between the two point clouds. This was computed based on the 

error propagation applied to estimated standard deviations of each point cloud (see Lague 

et al. (2013) for further description). For example, the distance uncertainty maps derived 

from scales set to 1.0 m and 2.0 m are shown in Figure 6.12b and c respectively. As 

expected the distance uncertainty was higher over surfaces scars, because subtle surface 

details can be better modeled with TLS than UAV imagery. However, Figure 6.12c shows 
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that for 2.0 m scale, the M3C2 algorithm smoothed the local surface variations creating a 

smooth uncertainty map. Hence, to consider the local surface roughness without 

miscalculating the point cloud distances, M3C2 scales D and d were set equal to 1 m in 

all computations presented in this Section.  

Using the above M3C2 settings, statistics of the epoch to epoch direct comparison with 

TLS observations for both cameras and experiments are presented in Table 6.9.  

Table 6.9: Statistics of M3C2 after epoch to epoch comparison with TLS datasets. 

Panasonic 

Epoch GCP-based experiment [m] MBR-GCP based experiment [m] 
 μ  σ  RMSE  μ  σ  RMSE   

E4 0.014 0.014 0.020 -0.028 0.020 0.035 
E5 0.001 0.028 0.028 -0.048 0.031 0.058 

average 0.007 0.021 0.024 -0.038 0.025 0.046 
Sony 

Epoch GCP-based experiment [m] MBR-GCP based experiment [m] 
 μ  σ  RMSE  μ  σ  RMSE   

E4 0.055 0.017 0.057    
E5 -0.025 0.026 0.036 -0.044 0.027 0.051 

average 0.015 0.021 0.046 -0.044 0.027 0.051 
 

The statistics of the Panasonic datasets show that for both epochs the MBR-GCP derived 

data are below the TLS data. The RMSE magnitude in E5 is higher than the magnitude 

in E4 for both GCP-based and MBR-GCP workflows. This is possibly due to significant 

changes at the back scarp between 02/16 and 05/16. For the Sony GCP-based experiment, 

a relatively high value of mean and RMSE were observed in E4. This coincides with the 

vertical errors depicted at CPs over the upper part of the site over the TLS coverage 

(Figure 6.8a). A possible reason would be the inferior UAV imagery acquired at that 

epoch, as mentioned in Section 6.2.2. Interestingly, for the two MBR-GCP based results, 

mean and RMSE values were in the same order of magnitude in E5. The 0.051 m RMSE 

in E5 derived from the Sony MBR-GCP result was close to the 0.066 m 3D RMSE at CPs 

(Table 6.8). Overall, these results provide confidence in the MBR workflow. However, it 

should be noted that TLS observations only covered a sub region at the top of the slope. 

SfM-MVS outputs typically show usually higher errors at the edges of a site (Section 

3.2.6). Hence, the estimated RMSEs in Table 6.9 indicate the extremes of the achieved 

georeferencing accuracy for all experiments.  
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6.3 3D sensitivity and estimation of elevation change 

6.3.1 3D sensitivity estimations 

Up to this point, the georeferencing accuracy is estimated from GCP-based, and MBR-

GCP Panasonic and Sony experiments. To derive 3D sensitivities, co-registration errors 

were computed by the M3C2 comparison after applying the ICP algorithm over stable 

terrain (Section 3.5.3). The stable regions were generated based on Stage 2b of the MBR 

workflow (Section 3.4.2) per epoch. For each experiment in the ICP computation, point 

clouds of the reference epoch served as datasets with a fixed coordinated system. The 

M3C2 comparison post ICP implementation indicated an overall 3D error that could not 

be entirely removed from the workflows.  

Table 6.10 reports the Panasonic statistics. With respect to the Panasonic GCP-based 

outputs in Table 6.10, the calculated RMSEs across all epochs lie within the range of the 

3D RMSEs reported in Table 6.4. The ICP minimised possible misalignments and 

decreased the mean value close to zero, as expected, with the exception of E1 and E5 for 

the MBR-GCP Panasonic results (Table 6.10). The higher RMSEs of E1 and E5, reflect 

deformation patterns attributed to a combination of possible errors, such as inferior 

imaging configuration together with landslide movement and errors introduced by the 

MBR workflow. Figure 6.11 also reveals errors caused partly by the marker’s accuracy 

incorporated in the SfM-MVS pipeline (Section 6.2.2). In both experiments, the 

comparably higher RMSE of E5 could also be caused by the vegetation change. This is 

also seen through the openness mask creation which showed rough texture mostly around 

the lobes (Figure 6.4b). On the other hand, the E2 and E4 openness masks (Figure 6.4a) 

do not show high surface roughness outside the main landslide bodies. The RMSEs of 

E2, E3 and E4 in the MBR-GCP results of Table 6.10, have similar magnitude and lower 

than the 0.06 m DEM spatial resolution (Table 5.1), showing consistency in the co-

registration accuracy. At these epochs, the 3D RMSEs at CPs (Table 6.4) and the RMSEs 

of the M3C2 comparison (Table 6.10) do not differ by more than 0.03 m, equal to the 

achieved GSD. It seems that the MBR workflow did not introduce additional errors and 

the MBR outcome was not affected by high roughness as opposed to E1 and E5 datasets. 
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Table 6.10: Statistics of M3C2 comparison after ICP implemented with respect to E0 over stable terrain, 
for Panasonic datasets. 

Panasonic 

Epoch GCP-based experiment [m] MBR-GCP based experiment [m] 
 μ  σ  RMSE (eco-reg) μ  σ  RMSE (eco-reg) 

E1 0.000 0.018 0.018 0.026 0.108 0.108 
E2 0.000 0.019 0.019 0.000 0.031 0.031 
E3 0.001 0.027 0.027 0.000 0.055 0.055 
E4 0.000 0.017 0.017 0.000 0.041 0.041 
E5 -0.002 0.030 0.030 0.023 0.087 0.087 

average 0.000 0.022 0.022 0.010 0.064 0.064 
 

With respect to processing of the Sony imagery, the M3C2 results after the ICP 

implementation per experiment are listed in Table 6.11.  

Table 6.11: Statistics of M3C2 comparison after ICP implemented with respect to E4 over stable terrain, 
for Sony datasets. 

Sony 
Epoch μ [m]  σ [m] RMSE (eco-reg) [m]  Experiments 

E5 0.012 0.057 0.057 GCP-based 
E5 0.003 0.090 0.090 MBR-GCP 
E5 -0.013 0.077 0.078 MBR-UAV 

 

For Sony datasets E4 was used as a reference fixed surface for ICP. Hence, the statistics 

cannot be directly comparable with the results from Panasonic datasets. Perhaps the most 

interesting finding in Table 6.11 is that the statistical values of MBR-UAV results have 

magnitude similar to the magnitude of MBR-GCP statistical values. Both experiments 

provided eco-reg (Table 6.11) and egeor accuracies (Table 6.8) which do not differ by more 

than 0.04 m, equal to the DEM spatial resolution derived from Sony datasets.  

Having computed the georeferencing and co-registration uncertainties, sensitivities s1 and 

s2, derived from Equations 3.37 and 3.38, are reported in Table 6.12 and Table 6.13 for 

Panasonic and Sony datasets respectively. For the GCP-based results in Table 6.12, the 

two sensitivities match across all epochs. In the MBR-GCP results, E1 and E5 s2 

sensitivities are the largest, indicating unresolved errors, as explained previously. 

Conversely, E2 and E4 s2 sensitivities are similar to the corresponding sensitivities of 

GCP-based results. It is noteworthy that the average sensitivities across epochs of MBR-

GCP Panasonic results were approximately double the sensitivities derived from the 

GCP-based experiments (Table 6.12).  
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Table 6.12: Sensitivities estimated for Panasonic experiments. 

 GCP-based [m] MBR-GCP [m] 

Epoch  s1  s2  s1  s2  
E1 0.079 0.073 0.153 0.221 
E2 0.096 0.074 0.161 0.088 
E3 0.109 0.083 0.147 0.126 
E4 0.078 0.072 0.180 0.103 
E5 0.085 0.087 0.221 0.182 

average 0.089 0.078 0.172 0.144 
 

Comparing the sensitivities from the two cameras (Table 6.12 and Table 6.13), s1 and s2 

derived from Sony GCP-based and Sony MBR-GCP respectively are similar to the 

equivalent values of Panasonic experiments. Moreover, s2 sensitivity of the Sony MBR-

UAV results, which does not include the absolute uncertainty, still lies within the bounds 

of s1 and s2 of the Sony MBR-GCP experiment (Table 6.13).  

Table 6.13: Sensitivities estimated for Sony experiments.  

 GCP-based [m] MBR-GCP [m] MBR-UAV [m] 

Epoch  s1  s2  s1  s2  s2  
E5 0.091 0.133 0.148 0.191 0.153 

 
 

Overall, these 3D sensitivity estimations coming from different experiments suggest that 

the MBR workflow detected a lowest surface change that lies within the range of 0.088-

0.22 m. The 0.088m threshold is the minimum value and the 0.22 m is the maximum 

value between the two sensitivities across all epochs (Table 6.12). The minimum 

sensitivity, which is very close to the sensitivities of the GCP-based results, represents 

the optimal outcome when no biases are involved. The maximum sensitivity, which is 

double the maximum sensitivity estimated from GCP-based experiment (i.e. 0.109 m), 

represents the threshold of surface change that can be identified from SfM-MVS outputs 

that involve biases. The two maximum sensitivities 0.109 m and 0.221 m from the GCP-

based and MBR-GCP experiments respectively were used to mask out the elevation 

differences from Panasonic results. Whereas from the Sony results the two maximum 

sensitivities 0.133 m and 0.191 m represent the lowest detectable 3D change derived from 

the GCP-based and MBR-GCP experiments respectively. 
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6.3.2 Estimation of elevation and volume change 

Figure 6.13 plots the elevation differences between E0-E1, E1-E4 and E4-E5 derived 

from the GCP-based (Figure 6.13a, b, and c) and MBR-GCP Panasonic experiments 

(Figure 6.13d, e and f). E2 and E3 observations were excluded from Figure 6.13 due to 

small differences and additional noise caused by vegetation change. An example of this 

noise is seen in E0-E3 elevation differences, which are depicted in Figure B.7 in 

Appendix B. The ±0.109 m sensitivity level was excluded from Figure 6.13a, b and c, 

while Figure 6.13e, f and d did not include the ±0.221 m sensitivity level. Shades of blue 

and red indicate the ground accumulation and depletion respectively.  

As seen in Figure 6.13, the Hollin Hill landslide showed a non-systematic and a non-

continuous vertical deformation. The eastern and western lobe, as well as the back scarp, 

constitute the most active parts of the landslide. However, over these parts the magnitude 

of change varied spatially and temporally. For instance, elevation changes of the front 

part of the eastern lobe occurred between E0-E1 (Figure 6.13a) and E4-E5 (Figure 6.13c), 

whereas this part was inactive during E1-E4 (Figure 6.13b). This mixed behaviour of 

activation/inactivation was corroborated by BGS ground-based investigations (Uhlemann 

et al., 2016). Moreover, elevation changes occurred predominantly along the convex and 

concave geomorphological features that can be highlighted with the shaded relief in 

Figure 6.13. These observations were also confirmed by BGS research (Merritt et al., 

2014). Ground accumulation ([-0.11:-0.22] m change in yellow) usually followed ground 

subsidence ([0.11:0.22] m change in cyan) forming surface undulations, as clearly seen 

at the back scarp in Figure 6.13b and Figure 6.14c (see Section 4.3.1). 

Part of the western lobe collapsed (25.14 m2 in extent), sliding downwards, and created a 

dramatic change of -0.70 m maximum ground loss and a + 0.50 m maximum ground 

accumulation within eleven months (Figure 6.13b). The failure appeared to have occurred 

between the 09/15 and 02/16 campaigns. However, part of the western lobe was eroding 

after 03/15. As far as the eastern lobe is concerned, ground material had continuously 

accumulated at the toe of the eastern lobe, which appears to have surged forward post-

05/14. Even though the 05/14 DEM was not included in the experiments, DEM 

subtraction from 05/16 DEM illustrated a total deposition (equal to 59.74 m3) of the front 

part of the most active lobe observed within two years (Figure B.8 in Appendix B). At 

the upper part of the slope, the surface was ruptured generating new curvilinear features 

near the back scarp (Figure 6.13c, Figure 6.14c). These features could also be identified 

on the openness grids as seen in Figure 6.4b and d as well as on the slope map as illustrated 
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in Figure 6.14d. The surface failure appeared to have occurred after 02/16 yielding a 

maximum ground subsidence of approximately - 1.70 m, whereas material sliding down-

slope created a maximum elevation increase of approximately + 1.05 m between E4-E5 

epochs (Figure 6.13c). 

Among all pairs, E1-E4 (Figure 6.13b) produced the clearest picture of landslide elevation 

differences due to minimal seasonal variations during winter. Even though a filtering 

process for removing vegetation was implemented (Section 6.1.3), elevation differences 

were apparent around the trees, hedgerows and fences. An example of this is seen at the 

top of the slope in Figure 6.13a, where grass growth was observed as positive change near 

hedgerows. Grass growth was also observed in Figure 6.13c at the bottom of the slope. 

As mentioned in Section 4.3.1, Hollin Hill is used for grazing. The farmer occasionally 

kept sheep within the upper area, north of the track. Because of that, the grass grew up to 

0.30 m at the foot of the slope between E4-E5 epochs (Figure 6.13c). Given the 

background knowledge from BGS investigations (Section 4.3.1), no landslide movement 

was observed at the toe of the site; hence this elevation change was certainly caused by 

grass growth. However, negative elevation differences were apparent west of the site in 

Figure 6.13c. It is possible that vegetation changes were mixed with actual erosion, which 

was observed as elongated geomorphological features over the lobes. Although no 

significant deformation was captured from UAV observations over the lobes west of the 

site, this part appeared active during the 2011-2014 period before the UAV flights. This 

is seen from elevation changes between DEM derived from ALS 2011 and the UAV 

reference DEM (Figure B.9 in Appendix B). Thus, negative elevation changes seen in 

Figure 6.13c may indicate a landslide reactivation over the western part. 

Figure 6.14a and c illustrate a perspective 3D view of the surface model over the back 

scarp for E0 and E5 epochs respectively. The surface models (i.e. 3D meshes) were 

produced and textured in PhotoScan for visualisation purposes. Figure 6.14b and d 

display the surface slope as generated in the Visualisation and Interpretation Software –

LIME (LIME, 2018). Various geomorphological features such as ridges, undulations and 

cracks can be clearly identified in both epochs. The dramatic elevation change (Figure 

6.13c), was the result of a surface rupture occurred between E4-E5 epochs, as illustrated 

in Figure 6.14b and d. Also, the 3D views help in identifying small bushes appeared on 

the surface cracks due to seasonal changes across epochs, thereby allowing visual 

interpretation of surface deformation.  



     

 
Figure 6.13: Elevation differences of three successive epoch pairs derived from GCP-based and MBR-based experiments 
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Figure 6.14: Perspective 3D views of (a) E0 and (c) E5 textured surface models with their corresponding (b) E0 and (d) E5 slope maps over back scarp derived from GCP-based 

experiment. 
 

 

. 
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To this point, the aforementioned analysis involved only elevation differences estimated 

with the GCP-based processing. Comparing the GCP-based (Figure 6.13a, b and d) with 

the MBR-GCP results (Figure 6.13e, f and g), it can be noted that the MBR-GCP outcome 

missed small landslide deformations, given the ±0.22 m sensitivity threshold. Apart from 

that, it also overestimated grass growth at the foot of the slope (see Figure 6.13f, possibly 

because of the additional systematic errors observed at that epoch (see Figure 6.9e). The 

analysis showed better results and lowest sensitivities for E2, E3 and E4 epochs (Table 

6.12).  

Volume changes were estimated between the two workflows over the most active parts 

for various epoch pairs (Section 3.5.3). In particular, volume changes were computed 

over the back scarp and eastern lobe for the E0-E1, E1-E4 and E4-E5 epoch pairs, as well 

as over the western lobe for E1-E4 and E3-E4 epoch pairs. These regions are delineated 

in Figure 6.13. The aforementioned epoch pairs were selected as they show the indicative 

landslide deformation. Volume change was computed for both GCP-based and MBR-

GCP workflows based on the elevation differences plotted in Figure 6.13. The volume 

change for the back scarp and eastern lobe together with the computed standard errors are 

presented in Figure 6.15.  

The volume change over the back scarp is significantly larger than over the eastern lobe 

throughout the monitoring period. The volume change over western lobe was comparably 

smaller, and, for that reason, it is not presented in Figure 6.15. Among all epoch pairs, the 

highest difference in volume change computation between GCP-based and MBR-GCP 

results, was observed in E4-E5 with fill volume equal to 50 m3 at the back scarp. This 

was expected because of the observed tilt in E5 MBR-GCP derived DEM (Figure 6.9e). 

The smallest difference in volume change was derived in E3-E4 over the western lobe. 

This outcome was also expected as DEMs of E3 and E4 epochs had small systematic 

errors especially in the middle of the site over the western lobe (Figure 6.9c and d).  



 171 

 
Figure 6.15: Volume change over (a) back scarp and (b) eastern lobe for three successive epoch pairs 
computed by GCP-based and MBR-GCP elevation differences.  

A total volume cut of -262.28 m3 across the selected epoch pairs was calculated from 

GCP-based results. Out of this total, an average -6.95 m3 difference in volume change 

between the two workflows was estimated. This corresponds to approximately 3% in 

volume change computation. Similarly, for a 312.48 m3 total fill volume, an average 

24.72 m3 difference was computed which is equivalent to 8%. In the same manner, 

volume changes were computed between E4-E5 over the back scarp with the GCP-based 

and MBR-GCP Sony outputs. Overall, a 8.5% difference in volume change between the 

two workflows was estimated. Considering that the GCP-based results are closer to the 

“ground truth”, this percentage indicate the relative lowest detectable volume change that 

can be derived with the MBR-GCP workflow.  

6.4 Evaluation of the NCC function 

6.4.1 NCC implementation with synthetic datasets  

Prior to NCC implementation with morphological attributes derived from GCP-based and 

MBR-GCP products, an experiment was conducted with synthetic epoch pairs to evaluate 

the performance of the NCC function. To generate the synthetic displacement, 

translations of: 

a) 0.050 m in Easting and -0.100 m in Northing (i.e. 0.112 m total magnitude) were 

applied to Region A (Figure 6.16), approximating to the ±0.109 m sensitivity level; 

b) shifts of 0.455 m in Easting and -0.544 m in Northing (0.709 m total magnitude) 

applied to Region B (Figure 6.16) in the E0 Panasonic GCP-based DEM, simulating 

typical inter-epoch movement of the real landslide.  

Among all morphological attributes described in Section 3.3, four (shaded relief, slope, 

positive openness and curvature) were used in this experiment. Shaded relief was created 
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with the aid of the ambient occlusion tool in the SAGA GIS package28. This applies 

homogenous illumination to the DEM, providing the best results for quantification of 

landslide planimetric displacement as evidenced in Fey et al. (2015) and described in 

Section 3.3.2. The remaining three morphological attributes were all generated using 

OPALS. In this experiment: a) slope indicates the steepest slope angle of the surface 

(Section 3.3.1); b) positive openness represents the minimum angle of a cone fitted in the 

DEM, as viewed from above the surface (Section 3.3.2, Figure 3.4a); c) curvature 

constitutes the average of minimum and maximum curvature, representing concave and 

convex surface features respectively (Section 3.3.2). Of these, only shaded relief and 

slope have been tested with the NCC function in previous studies (Daehne and Corsini, 

2013; Lucieer et al., 2014; Travelletti et al., 2014; Fey et al., 2015; Turner et al., 2015).  

It should be noted that positive openness used in this experiment is not the same as 

positive openness used for stable terrain extraction in the MBR workflow (Section 3.4.2). 

That openness was computed based on the mean value, whereas the positive openness 

used in this experiment was computed based on the minimum value between the 8 

directions expressed in Equations 3.25 and 3.26. This was chosen as it more clearly 

identifies concave breaks in slope. With respect to curvature, this is exactly the same 

morphological attribute used with SIFT for the generation of pseudo GCPs (Section 6.2.1 

and Figure 6.5). Overall, these four morphological attributes were chosen, as they were 

proved to be uncorrelated in Favalli and Fornaciai (2017).  

Morphological attributes of slope, positive openness and curvature were computed using 

a 3x3 pixel radial distance, equivalent to 0.18 m at 0.06 m pixel resolution. Four pairs of 

morphological attributes were then derived from both the original E0 DEM and the 

synthetically shifted DEM. Each pair, comprising the pre- and post-event images, was 

imported into the COSI-Corr function. An explanation of the NCC function is described 

in Section 3.5.3. After a trial and error procedure, a correlation window size of 64x64 

pixels (3.84 m) with a step of 16x16 pixels (0.96 m) and a search patch of 20x20 pixels 

(1.20 m) were chosen for this experiment. The 16x16 pixels step parameter dictated the 

spatial resolution of the estimated horizontal displacements. The trial and error procedure 

showed a spatial resolution less than 0.96 m (by using a lower than 16x16 step value) 

generated more noise and required more computational time. A trade-off between spatial 

resolution and computational effort has also been taken into consideration in Daehne and 

                                                 
28 www.saga-gis.org/en/index.html  

http://www.saga-gis.org/en/index.html
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Corsini (2013). The chosen settings ensured that the maximum imposed shift over Region 

B could be detected and was therefore chosen in line with a priori knowledge of the Hollin 

Hill landslide movement rates (Uhlemann et al., 2017). 

The COSI-Corr function calculates the displacements in Easting and Northing and a 

signal-to-noise ratio (SNR), indicative of the correlation quality. SNR values closer to 

unity are indicative of more reliable results. A comparative analysis of the estimated 

displacements and derived SNRs, obtained with the four morphological attributes, was 

then performed to determine which of the morphological attributes produced the optimal 

results. All four morphological attributes underestimated the assigned displacement of 

Region A, delivering an average displacement 0.030 m ± 0.027 m in Easting and 0.054 

m ± 0.030 m in Northing. For Region B, the closest result to the truth in Easting was 

delivered by positive openness, with an average value of 0.435 m ± 0.145 m, whereas 

shaded relief detected the best average displacement in Northing of -0.528 m ± 0.131 m. 

Statistics of SNR values derived from all attributes are reported in Table B.1 in Appendix 

B.  

Figure 6.16a and b depict the SNR results, derived from positive openness and shaded 

relief respectively, over stable terrain outside Regions A and B. Figure 6.17 presents the 

boxplots of the comparative SNR analysis. SNR values close to zero (Figure 6.16b) 

indicated decorrelation, which is also illustrated as outliers in the boxplot of shaded relief 

over stable terrain, whereas the other three morphological attributes were less noisy 

(Figure 6.17). For Regions A and B all morphological attributes with the exception of 

curvature produced similar boxplots. The boxplots reveal greater variation in SNR in 

Region B than in Region A (Figure 6.17) possibly due to the noise caused by the extreme 

local surface variations around Region B. Overall, slope and positive openness provided 

comparable displacements and noise levels. Thus, both attributes were chosen for the 

estimation of Hollin Hill landslide motion.  
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Figure 6.16: SNR maps derived from Cosi-Corr with (a) positive openness and (b) shaded relief generated 
from synthetic datasets of E0 Panasonic GCP-based DEM (Peppa et al., 2017). 

 

 
Figure 6.17: Box plots for stable terrain, Regions A and B, as derived from the implementation of COSI-
Corr with shaded relief, slope, positive openness and curvature applied to synthetic datasets. The median 
is displayed as a red line, the mean as a red rectangle, the whiskers as black horizontal lines and the outliers 
as black crosses (Peppa et al., 2017).  
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6.4.2 Sensitivity analysis of the NCC function with real datasets  

Slope and positive openness together with the COSI-Corr function, was applied to 

successive epoch pairs of the Hollin Hill landslide. A series of experiments were carried 

out to compare the COSI-Corr estimations produced with these two morphological 

attributes, and examine the selection of COSI-Corr settings with respect to the real 

motion. For this analysis, datasets of the GCP-based Panasonic experiment were utilised.  

In the first experiment, the settings in COSI-Corr were the same used with the synthetic 

datasets (i.e. correlation window: 64x64, step size: 16x16 and search patch: 20x20, see 

Section 3.5.3 for description). The COSI-Corr result was cross-validated with the surface 

displacements calculated from 27 sample points, manually located on the multi-temporal 

derived orthophotomosaics (Figure 6.21). These points were identified on characteristic 

surface breaks evenly distributed across the site with displacement magnitude spanning 

cm to m-level. For instance, a 0.065 m and a 1.128 m maximum displacement was 

observed in E2-E3 and E4-E5 respectively. This independent validation indicated the 

sensitivity of the NCC function to different displacement magnitudes.  

The scatterplots in Figure 6.18 show a general systematic overestimation of the 

displacement magnitude derived from COSI-Corr. Some scattered points fell within the 

±0.109 m 3D sensitivity level (i.e. maximum sensitivity in Table 6.12 for GCP-based 

experiment) shown in grey, especially for E1-E2 and E2-E3 epoch pairs. Significant 

movement was observed mostly between E0-E1, E3-E4 and E4-E5 epoch pairs, which is 

also evidenced from the elevation differences in Figure 6.13a, b and c.  

The NCC function with positive openness (Figure 6.18a) delivered results in good 

agreement with the manual measurements (closer to the straight line) for small 

displacements. However, it miscalculated the surface movement of the last epoch pair, 

when compared to the NCC estimations derived from slope (Figure 6.18b). There are a 

few outliers within the grey zone possibly caused by the vegetation change in both 

scatterplots (Figure 6.18a and b). Due to insignificant landslide motion in E1-E2, E2-E3 

and E3-E4 epoch pairs and additional noise generated from grass growth, the comparison 

was also repeated for the E1-E4 pair. 
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Figure 6.18: Scatterplots of estimated surface displacements determined by COSI-Corr with (a) positive 
openness and (b) slope plotted against manual observation per epoch pair (Peppa et al., 2017).  

The RMSEs, computed from the manual observations and the NCC estimations, were 

lower in E0-E1 and E1-E4 epoch pairs when implemented with positive openness than 

slope (see Table B.2 in Appendix B). For the E4-E5 epoch pair the converse was true (see 

RMSEs in Table B.2, Appendix B).  

This first comparison showed that COSI-Corr performs differently with respect to the 

displacement magnitude and the morphological attribute used. For instance, slope does 

not illustrate the distinctive surface characteristics to such a degree as positive openness. 

As a result, after significant surface change, pre and post slope maps show a better 

correlation aiding the NCC performance in delivering less noisy estimations. The NCC 

surface displacements estimated with positive openness and slope over the eastern lobe 

for E4-E5 epoch pair are depicted in Figure 6.19a and b respectively. The voids observed 

in Figure 6.19a indicate the decorrelation produced by positive openness mostly over 

surface breaks, around vegetated areas and monitoring sensors. The NCC implemented 

with slope resulted in a smoother surface displacement map without many voids over 

stable terrain around eastern lobe (Figure 6.19b). 
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Figure 6.19: COSI-Corr results over eastern lobe for E4-E5 epoch pair derived with morphological 
attributes of (a) positive openness and (b) slope. 

To further investigate the NCC sensitivity, additional analysis using the morphological 

attribute of slope for the E4-E5 epoch pair was carried out. This compared results from 

three correlation windows, specifically 128x128, 64x64 and 16x16, without altering the 

other COSI-Corr settings, against the manual observations (see Figure B.10 in Appendix 

B). Of all, the small window produced the highest noise, as erroneous correlation was 

resolved. This incorrect correlation was possibly produced from the same features that 

could be identified within the vicinity of the small window size (Travelletti et al., 2014; 

Fey et al., 2015). This was also called a “self-similarity” problem in Fey et al. (2015). On 

the other hand, the 128x128 pixel correlation window delivered a 0.323 m RMSE higher 

than the 0.185 m RMSE computed with the 64x64 pixel window, when compared against 

manual observations. Moreover, the NCC function with the largest correlation window 

increased the spatial voids around vegetated regions, reducing the overall coverage of the 

surface displacement map. 

In a similar manner, a test was conducted to verify the choice of the optimal search patch. 

Utilising a 64x64 pixels correlation window with a 16 pixels step parameter, COSI-Corr 

was repeated for three different search patches of 10x10, 20x20 and 30x30 pixels. In the 

E4-E5 epoch pair, the smallest search patch could not generate a displacement higher than 

0.8 m. The largest search patch overestimated the movement producing a 2.9 m maximum 

displacement. COSI-Corr results under various window sizes and search patches are 

mapped in Figure B.11 in Appendix B.  
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A final experiment examined the impact of the moving kernel size, which is required for 

the generation of slope and positive openness, with respect to the NCC performance. This 

test compared the displacements derived from manual observations against the 

displacements of the COSI-Corr outcome from kernel sizes within the range of 3x3-21x21 

pixels. The computed RMSEs of this comparison are presented in Figure 6.20 as derived 

from the GCP-based Panasonic E4-E5 datasets. The analysis showed that the largest 

kernel size did not suppress the noise level produced by grass growth in the E4-E5 epoch 

pair for both morphological attributes. In addition, no significant variation in RMSE 

values was observed for the result of positive openness. Conversely, the NCC outputs 

computed with slope and large kernel sizes overestimated the real displacements, and 

produced higher RMSE values, approximately three times the ± 0.109 sensitivity level.  

 
Figure 6.20: RMSEs computed from the differences between manually observed displacements and COSI-
Corr displacements derived with various kernel sizes for morphological attributes of E4-E5 epoch pair.  

 

Overall, the sensitivity and comparable analysis implemented with COSI-Corr indicated 

that the 3x3 pixels kernel size produced the closest to the actual horizontal displacement. 

Through the analysis the derived optimal COSI-Corr settings included a 64x64 pixels 

correlation window, a 20x20 pixels search patch and a 16 pixels step parameter. Among 

all morphological attributes examined, positive openness provided NCC outcome with 

the lowest noise levels over stable terrain for small displacements (E0-E1 and E1-E4 

epoch pairs). For large displacements in the E4-E5 epoch pair slope generated the lowest 

noise and estimated closer to the real displacements.  
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6.5 2D landslide motion and validation 

6.5.1 GCP-based and MBR-GCP estimations of 2D displacements 

NCC implementation in COSI-Corr 
The NCC function in COSI-Corr was applied to both GCP-based and MBR-GCP derived 

morphological attributes of positive openness and slope with the settings described in the 

previous Section. Positive openness was used for E0-E1 and E1-E4 epoch pairs, while 

slope was used for the last epoch pair. The 2D displacement maps are presented in Figure 

6.21. Blue hatched polygons represent areas with reliably estimated surface 

displacements, of SNR greater than 0.7. This value is equivalent to the lowest whisker of 

the slope boxplot (horizontal line in Region B in Figure 6.17), representing the outlier 

threshold as: 

 1 3 11.5( )w Q Q Q= − −   (6.1) 

where 1Q  and 3Q  the 25% and 75% percentiles of the data respectively. The lowest 

whisker of the slope was equal to 0.69 and the lowest whisker of the openness box plot 

was calculated equal to 0.66. Because these values generated similar SNR polygons, the 

final outlier threshold was rounded to 0.7. There are a few erroneous displacements, 

mostly at the edges of the study site, around vegetated areas and outside the blue hatched 

polygons for both experiments. Moreover, SNR values lower than 0.7 outside of landslide 

deformation in the E4-E5 epoch pair indicated that the grass growth affected the NCC 

function’s reliability. As already discussed, voids on the maps were caused by 

decorrelation mostly over extreme surface deformation (e.g. back scarp in Figure 6.21c 

and f).  

With regard to the MBR-GCP displacements, the best outcome was delivered from the 

E1-E4 epoch pair (Figure 6.21e). The good agreement between E1-E4 GCP-based and 

MBR-GCP displacement estimations is illustrated in Figure 6.22b. The scatterplots in 

Figure 6.22 correlate the displacements that fell within the blue hatched polygons 

excluding those that were lower than the 0.221 m MBR-GCP sensitivity level (Table 

6.12). 



     

 

Figure 6.21: Maps of surface displacements of (a and d) E0-E1, (b and e) E1-E4 and (c and f) E4-E5 epoch pairs from GCP-based and MBR-GCP datasets. Manually derived planimetric 
vectors at sample points are also superimposed. 
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Figure 6.22: Scatterplots of 2D displacements between GCP-based and MBR-GCP results for three consecutive 
epoch pairs.  

However, for the E0-E1 and E4-E5 epoch pairs a general systematic overestimation was 

observed. An overestimation especially over stable terrain is seen in Figure 6.21d, compared to 

Figure 6.21a. Conversely, according to the scatterplots in Figure 6.22a and c, MBR-GCP results 

underestimated the large displacements, especially over the eastern lobe (Figure 6.21d and f) 

This mixed outcome could possibly be attributed to systematic biases observed in E1 and E4 

DEMs and discussed in Section 6.2.2).  

COSI-Corr allows for the derivation of a vector field map from the 2D surface displacements 

by averaging them within a specified window size. The vector field maps corresponding to the 

2D displacements of Figure 6.21 are displayed on Figure B.12 in Appendix B. The vectors were 

averaged within a window size of 11x11 pixels after a trial and error procedure. Even though, 

this window size removed spurious vectors, many remained at the edges of the site and around 

vegetated areas. As expected, erroneous vectors were observed in E0-E1 epoch pair of the 

MBR-GCP experiments (Figure B.12d in Appendix B) for the reasons explained previously. 

The vector field map provides additional directional information to the landslide kinematics 

across the whole site compared to the motion at discrete locations (e.g. GNSS pegs in Figure 

6.24).   
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NCC implementation in CIAS 
To further investigate significant landslide deformations, the GCP-based E5 positive openness 

was superimposed over the corresponding map from E0 and is presented in Figure 6.23a and b. 

Figure 6.23c illustrates that narrow angles of openness can distinguish surface undulations 

sliding down-slope. For instance, point 1 moved 1.10 m along the profile AB towards the south. 

To visualise these structures a threshold of 63º was applied to the openness maps (Figure 6.23a 

and b). Different thresholds can visualise different morphological features. The threshold of 63º 

was derived with the aid of visual inspection along profiles at multiple locations over active 

parts of the landslide. Positive openness also captured the surface rupture that occurred at the 

top of the slope between E4 and E5 epochs (Figure 6.13c and Figure 6.21c).  

Coordinates of distinctive features were identified in E0 positive openness and used as input 

data to the NCC function implemented in CIAS (Section 3.5.3, CIAS (2012)), together with the 

E0 and E5 positive openness maps (Section 3.5.3). The sizes of correlation window and search 

patch set in COSI-Corr were also used in CIAS. Unlike COSI-Corr, CIAS allows individual 

feature tracking without generating a continuous displacement map. The planimetric vectors of 

the distinctive features are plotted in Figure 6.23a and b, as automatically determined with 

CIAS. Manual cleaning to remove spurious vectors was also necessary. This process was semi-

automated by application of threshold parameters. For example, vectors with length lower than 

±0.109 sensitivity level were removed. In addition, vectors with azimuth within the range of 

[270º-90º] were excluded from Figure 6.23. This was based on previous knowledge about the 

landslide motion (Uhlemann et al., 2017). Spurious vectors were observed at the edges of the 

back scarp, possibly generated by rotational failures as investigated by BGS (Uhlemann et al., 

2016). Perhaps the erroneous vectors, previously discussed in Section 6.4.2, were also caused 

by the “self-similarity” issue between the two openness maps. These errors are not attributable 

to misalignment biases as the Panasonic GCP-based datasets delivered an approximate 0.02 m 

co-registration accuracy (i.e. eco-reg Table 6.10).  
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Figure 6.23: Detailed view of E0 and E4 positive openness maps over (a) eastern lobe and (b) back scarp with 
elevation and openness plotted along (c) Profile AB from Panasonic GCP-based datasets (Peppa et al., 2017). 

6.5.2 Comparison with GNSS and rainfall observations 

The 27 features, manually detected and used in Section 6.4.2 to cross-validate the NCC 

function, were also used to derive the landslide movement rate from GCP-based and MBR-

GCP datasets and compared to movement estimated from GNSS permanent pegs (Section 

4.3.2). The planimetric vectors (Figure 6.24) indicate 2D incremental displacement between 

E0-E4 (Figure 6.24a and b) and between E0-E5 (Figure 6.24c and d) epoch pairs. The start 

positions are coordinates of the reference E0 for both the 27 sample points and the GNSS pegs. 

Figure 6.24a and c illustrate the movement rate as computed from GCP-based Panasonic 

datasets whereas Figure 6.24b and d present the MBR-GCP results. The UAV and GNSS field 

campaigns did not coincide with the exception of the reference E0 (15/12/2014, Table 5.1). 

Because there were no GNSS observations for E4, the displacements were derived by 

interpolating the corresponding observations from the GNSS campaigns from the 15/12/2015 
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and 20/03/2016. Similarly, E5 GNSS displacements were calculated by means of interpolation 

from the 21/04/2016 and 30/06/2016 GNSS observations.  

 
Figure 6.24: Elevation differences and planimetric vectors indicating the horizontal 2D incremental displacement 
rate of E0-E4 and E0-E5 epoch pairs derived from GNSS, total station, GCP-based and MBR-GCP observations.  

Utilising 27 sample points, the E0-E5 displacement rates between the GCP-based and MBR-

GCP workflows gave a mean difference of -0.05 m ±0.03 m. The E0-E4 displacement rates 

delivered a mean difference of -0.03 m ±0.02 m between the two workflows. The smaller 

difference in E4 was expected, as the E4 MBR-GCP products had small average errors 

compared to other epochs (e.g. lower sensitivity of E4 compared with E5 in Table 6.12). The 

MBR-GCP workflow slightly underestimated the movement rate for typically small magnitudes 

(e.g. the motion at the upper part west of the site shown in Figure 6.24b and d versus Figure 

6.24a and c respectively).  
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With respect to the motion, the two workflows provided good agreement in directions. 

Satisfactory results were also achieved compared to the directions derived from GNSS 

observations (Figure 6.24a and c versus Figure 6.24b and d). Further, Figure 6.24e verifies the 

direction of both workflows, by depicting the movement of a crack close to point 100. This 

movement was delineated with multi-epoch total station observations, in combination with the 

GCP-based orthophotomosaics. The displacement in Figure 6.24e can also be cross-correlated 

with the movement illustrated in Figure 6.23a, as derived from the CIAS implementation. This 

verified the direction and magnitude of landslide motion over the eastern lobe as estimated with 

different approaches.  

One difficulty with the Panasonic imagery was that GNSS permanent pegs could not easily be 

identified on the orthophotomosaics. The detection was not feasible because of the pegs’ small 

size (Section 4.3.2) related to the estimated GSD (i.e. approximately 0.03 m across all epochs 

in Table 5.1). Only two GNSS pegs could be detected, peg 8 and peg  4, shown in Figure 6.24d. 

For these two, the incremental displacement and elevation differences from E0 were calculated 

from GNSS, GCP-based and MBR-GCP observations.  

Figure 6.25 displays the time-series for peg 8 only as peg 4 moved less than the ±0.109 m 

sensitivity level; hence it was excluded from the graph. The x-axis shows the exact dates of 

UAV acquisitions (Table 5.1) which are different from the GNSS surveys. As the GNSS 

observations constitute the “ground truth” datasets, a piecewise linear and a polynomial of 

degree 3 were fitted to the horizontal and the elevation differences respectively (blue curves in 

Figure 6.24). In the horizontal displacements, R-squared was equal to 0.39 for the first part and 

0.89 for the last part of the linear curve. A value 0.89 of R-squared elevation differences was 

estimated. Due to limited GNSS observations, R-squared was not always close to unity. 

However, the modelled curves were used to compare the two approaches. The comparison 

against GNSS curves showed good agreement of the 3D surface changes with an estimated 

0.081 m 3D RMSE for the differences between both GCP-based and MBR-GCP approaches 

for peg 8. This is lower than the ±0.109 m sensitivity.  

With respect to the Sony imagery, a GSD of approximately 0.02 m (Table 5.1) allowed for 

identification of 20 out of the total 45 permanent GNSS pegs on the E5 orthophotomosaic. 

However, due to darker E4 Sony imagery, only 10 common GNSS pegs were detected on both 

E4 and E5 orthophotomosaics. Comparison of the 3D movement from the three types of 

observations was performed. To achieve this, the 3D coordinates of GNSS pegs were 

interpolated for the exact dates of E4 and E5 UAV campaigns. A 0.11 m 2D RMSE and a 
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0.06 m 3D RMSE were computed from the differences of the 2D motion and elevation 

respectively between GNSS and GCP-based datasets. Moreover, RMSEs derived from the 

comparison of GNSS against MBR-GCP observations (0.09 m 2D RMSE, 0.05 m 3D RMSE) 

delivered similar agreement. This independent validation showed RMSEs lower than the 

sensitivity levels reported in Table 6.11, providing confidence to the MBR-GCP workflow.  

Figure 6.25 displays the daily effective rainfall during the eighteen-month monitoring duration, 

as observed from the weather station at Hollin Hill (Figure 4.7f) and calculated by BGS 

(Uhlemann et al., 2016; Uhlemann et al., 2017). The effective rainfall represents the remaining 

water level that is derived by subtracting potential evapotraspiration from the absolute rainfall 

(Shaw, 1999). Evapotraspiration indicates water loss due to evaporation to the atmosphere and 

transpiration from vegetation (Shaw, 1999). Figure 6.25 also presents the 3D movement of peg 

8, located at the back scarp, and point 100 at the eastern lobe. Figure 6.25 shows how the top 

and bottom parts of the landslide responded differently in relation to the rainfall variations. In 

particular, after a relatively dry winter in 2015, with lower than ±10 mm/day effective rainfall, 

peg 8 was displaced less than the ±0.109 m sensitivity level until the start of the winter 2016. 

This indicated the relatively stable upper part of the site. In contrast, point 100 over the eastern 

lobe moved approximately 0.16 m in 3D, showing a steadily linear motion, but with no 

significant horizontal displacement.  
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Figure 6.25: 2D incremental displacements and elevation differences from GNSS, GCP-based and MBR-GCP 
datasets over peg 8 and point 100. Effective rainfall is superimposed.   
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However, after the comparably wet spring and summer period of 2015 together with the 

intensive rain during winter 2016, the landslide was dramatically activated. For instance, point 

100 was displaced almost 0.5 m from 02/16 to 05/16 (Figure 6.23, Figure 6.24 and Figure 6.25). 

Peg 8 was pushed downwards 0.6 m by the failing material from the top of the slope within the 

same period (Figure 6.24 and Figure 6.25). This activation/reactivation period of the landslide 

was previously investigated by BGS with multiple ground-based observations acquired since 

2009 (Uhlemann et al., 2016; Uhlemann et al., 2017). As mentioned in Uhlemann et al. (2016) 

the Hollin Hill landslide reactivation has been triggered by a combination of factors. In 

particular, intensive rainfall over long durations increased soil moisture causing high stress to 

the geological materials. This stress weakened the material leading to failure. Rotational failures 

at the top forced the material to prograde downwards adding extra pressure. This can possibly 

explain why the displacement over the lobes were relatively greater than the movement at the 

top of the slope, even during non-active periods before the 2016 winter. This phenomenon 

occurred in previous years as explained in Uhlemann et al. (2016). The rainfall fluctuations also 

affected the pore water pressure levels in the subsurface causing acceleration/deceleration of 

the landslide (Uhlemann et al., 2016). For example, higher movement rates were observed over 

the eastern lobe after 02/2016, as shown in Figure 6.24. This acceleration was possibly triggered 

by the significant rainfall event at the beginning of winter 2016 (Figure 6.25).  

It is noteworthy that motion was also observed at GNSS pegs located between the two lobes 

(e.g. peg 33 in Figure 6.24). This region was characterised as stable/smooth terrain when 

generated from the openness mask with the MBR workflow (Figure 6.4a). No surface fissures 

were apparent on the orthophotomosaics, thus the smooth characterisation was valid. However, 

the instability of the subsurface, caused by the factors discussed previously, most probably 

resulted in peg’s 33 motion. This peg is located in close vicinity to the active eastern lobe 

(Figure 6.24); hence, it was more affected than other pegs located within the smooth terrain. It 

is possible that, while generating pseudo GCPs based on the MBR approach (Section 6.2.1), 

the subsurface movement was propagated into the process. As a result, a systematic pattern was 

observed at the CPs in Figure 6.9 with a N-S direction similar to the motion’s direction (Figure 

6.24). Moreover, due to landslide acceleration after intensive rainfall in winter 2016, the 

directional bias was even more pronounced in Figure 6.24d and e giving a higher 

georeferencing 3D RMSE in E5 (Table 6.7).  
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6.5.3 Camera stability checks 

The unstable SfM-MVS solutions with respect to different markers accuracies is previously 

discussed in Section 6.2.2 and Figure 6.11, with or without the inclusion of GCPs. That test 

showed the variation of 3D RMSEs computed at CPs. Here, an additional test describes the 

variation of focal length as estimated from the three experiments, a) GCP-based, b) MBR-GCP 

and c) MBR-UAV in PhotoScan. The focal length values are displayed in Figure 6.26 with a 

continuous line for the GCP-based and a dashed line for the MBR-based workflows.  

 
Figure 6.26: Focal lengths estimated by different workflows across all epochs for (a) the Panasonic DMC-LX5 
and (b) the Sony A6000. 

With respect to the Panasonic GCP-based results, a maximum of 12 pixels was observed 

between E0 and E1 epochs (Figure 6.26a). This, multiplied by the 0.03 m GSD (Table 5.1), 

corresponds to 0.36 m ground distance. The second largest difference was observed between 

E0 and E5 epochs equal to eight pixels, equivalent to 0.24 m ground distance. Two possible 

reasons might have caused these large discrepancies. Firstly, Panasonic DMC-LX5 was 

extensively used for UAV imagery acquisitions after 2012, with the most frequent usage during 

2014 and 2015. Hence, the numerous landings might have caused the internal units of the 

camera to suffer sudden shocks. This could have altered the camera’s IOPs. Secondly, 

inconsistent camera IOP solutions from SfM-MVS self-calibrating bundle adjustments may 

have contributed to the discrepancies in focal length across epochs. This inconsistency is a 

known issue as discussed and investigated in Section 3.2.6 and Section 5.2.2 respectively.  
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Regarding the variations of the focal length values derived from the GCP-based and MBR-GCP 

workflows, it can be noted that E1 and E5 provided the highest discrepancies (Figure 6.26a). 

DEMs from these two epochs showed high errors in Figure 6.9a and Figure 6.9e. In addition, 

high s2 sensitivities were also estimated in E1 and E5 (Figure 6.13). Thus, it is possible that E1 

and E5 MBR-GCP datasets suffer from biases either because of inferior imaging network 

configurations or the fact that landslide motion has been integrated into the observations (also 

mentioned in Section 6.2.2). The latter is also seen through GNSS observations in Section 6.5.2.  

Figure 6.26a shows variations of the focal length values in relation to the marker accuracy for 

each epoch. This shows the sensitivity of the SfM-MVS self-calibrating bundle adjustment to 

marker accuracy. A similar sensitivity is presented in Section 6.2.2. In Figure 6.26a, the highest 

variations are observed for marker accuracy within the range of 0.001 m to 0.020 m. For 

instance, the E5 curve displays an exponential decrease in Figure 6.26a, indicating instability 

of the SfM-MVS solution, which also corresponds with the estimated high errors (Section 6.2.2 

and 6.3.1). Interestingly, similar exponential curves are observed in Figure 6.26b for E5 MBR-

GCP and MBR-UAV experiments conducted with the Sony A6000. However, for the Sony 

experiments, focal length values vary within a 3.5 pixels range that correspond to 0.07 m ground 

distance for a 0.02 GSD (Table 5.1). This shows the sensitivity of the SfM-MVS self-calibrating 

bundle adjustments in relation to different cameras.   

To independently validate the camera’s internal stability across the monitoring period, indoor 

calibration tests were carried out before, during and after the UAV field surveys. The results of 

the first indoor calibration experiment conducted, before the UAV imagery acquisitions, are 

presented in Section 4.4.2. For the Panasonic DMC-LX5 two additional calibration tests were 

carried out during the monitoring period of 26/02/15 and 26/09/15. One extra test was 

conducted post UAV fieldwork on 22/07/17. For Sony A6000 two calibration tests were 

conducted one before (26/09/15) and one after the UAV fieldwork (22/07/17). The estimated 

parameters of 22/07/17 calibration for both cameras are reported in Table B.3 in Appendix B. 

All calibrations were processed in PhotoModeler using the calibration shown in Figure 4.11a 

with the exception of the 26/09/15 test which was processed in PhotoScan which used the test 

field shown in Figure 4.11b. To bring all solutions under the same bundle adjustment, the 

DBAT software was adopted to reestimate the IOPs, as explained in Section 4.4.2. Both 

cameras radial distortion curves are displayed in Figure 6.27.  
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Figure 6.27: Radial distortion curves of the on-board Quest-300 UAV used cameras. 

Considering Panasonic DMC-LX5 results, the highest difference (approximately 47μm) was 

observed between 02/07/12 and 26/09/15 at the outer corners of the Panasonic image (Figure 

6.27). This is equivalent to 23.5 pixels (1 pixel equals to 2 μm) corresponding to 0.705 m ground 

distance for a 0.03. m GSD. Such large deviation possibly stemmed from the extensive use of 

the camera during the monitoring period. In contrast, at two thirds of the radial distance, the 

distortion only varies 6 μm which is equal to 0.09 m ground distance. For the Sony A6000, the 

highest deviation was observed closer to two thirds of the radial distance, equal to 11 μm, which 

gives 0.06 m (1 pixel corresponds to 3.9 μm). It should be noted that the Sony A600 was used 

less extensively than the Panasonic DMC-LX5.  
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6.6 Summary 

Chapter 6 has demonstrated the performance of a morphology-based monitoring strategy with 

imagery collected over an active landslide at the Hollin Hill observatory site. Images was 

acquired with a Panasonic DMC-LX5 and a Sony A6000 fitted on a Quest-300 UAV. The 

chapter described data acquisition and all necessary tasks for tuning PhotoScan’s settings and 

generating free from vegetation multi-epoch DEMs. Co-registration, 3D error boundaries and 

3D surface change were investigated for various scenarios.   

Results of the MBR workflow with the inclusion of five GCPs at the reference epoch were 

compared against benchmark GCP-based SfM-MVS co-registration outputs. This comparison 

showed that a ±0.221 m minimum 3D change could be detected with the MBR workflow, which 

is double the sensitivity levels of the benchmark GCP-based results. Below these limits, 

systematic biases were observed. These included misalignment errors that deformed the DEMs 

and caused underestimation of the real 3D surface change (e.g. E1 and E5 datasets). It is 

possible that errors were introduced as a combination of numerous factors, namely the 

automatic generation of pseudo GCPs with various uncertainties, inferior imaging network 

configurations, change in vegetation, the landslide motion itself and the instability of the SfM-

MVS self-calibrating bundle adjustment solutions. However, there were cases (e.g E2, E3 and 

E4 datasets) where the MBR-based solutions provided comparable results with the benchmark 

GCP-based solutions. This verifies the presence of low biases and the reliability of the MBR 

workflow. In addition, the MBR-based solutions provided consistent 3D RMSEs with both 

cameras, when compared against independently surveyed CPs and TLS observations, in all but 

the E1 and E5 datasets.  

After co-registration and 3D sensitivity assessment, inter-epoch elevation differences and 

volume changes are estimated. Given the estimated sensitivity levels and DEM deformations, 

the MBR workflow masked small elevation differences and overestimated grass growth. The 

MBR results from both cameras underestimated the volume change by about 8.5% over the 

active parts of the landslide when compared to the GCP-based results. 

In addition, this chapter demonstrated implementation of the NCC function, as adopted in 

COSI-Corr and CIAS software, with four surface morphological attributes of shaded relief, 

slope, positive openness and curvature. Tests are described that evaluated the NCC function 

with synthetic datasets and aided in tuning the software’s optimal settings. Among all 

morphological attributes, positive openness and slope provided the lowest noise. Inter-epoch 

2D displacements were estimated and compared with benchmark GNSS and compared with 
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rainfall observations. The analysis has presented the potential of the NCC function to provide 

a continuous multi-epoch displacement map over the whole site and to track the motion of 

distinctive surface features over the most active parts. Unreliable NCC estimations over 

vegetated regions and over regions with rotational failures are highlighted, as they caused map 

voids and spurious vectors. 

This chapter presented a time-series of the 3D Hollin Hill landslide motion within an eighteen-

month period, as provided by the morphology-based monitoring strategy. It should be noted 

that the 3D deformation is delivered through subsequent planimetric displacement maps and 

motion vectors as well as elevation differences. This is because the monitoring strategy involves 

analysis of raster datasets (e.g. DEM, openness, curvature etc.). The true 3D motion could be 

derived if the 3D point clouds were analysed instead of raster datasets. However, the strategy 

also delivered any type of co-registered SfM-MVS products including DEMs, morphological 

attributes, 3D point clouds and orthophotomosaics. This offers the potential to derive metric 

information, for example how the dimensions of slope failure change across epochs. Future 

improvements are presented in Chapter 7. The results of Chapter 5 and 6 are the basis for a 

discussion about the limitations, merits and opportunities the morphology-based monitoring 

strategy has to offer. Equation Chapter (Next) Section 1 
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Chapter 7. Discussion and Conclusions 

Chapter 7 discusses the overall performance of the proposed monitoring strategy, separately 

examining the challenges and opportunities that each step of the strategy provides. The 

discussion links all results presented in Chapters 5 and 6 and includes a comparison with 

previous studies to show the potential of the proposed strategy in the absence of GCPs. 

Challenges that hampered landslide monitoring are also presented. Through the discussion, the 

research outcomes are presented and the research objectives are revisited. Finally, the research 

contribution and its outlook for natural hazard investigations are demonstrated.  

7.1 Discussion of research outcomes 

7.1.1 Performance of the MBR workflow 

With respect to flying height 
To bring together the results from Chapter 5 and 6 and compare them with other morphological 

studies (previously described in Chapter 2), relative error ratios are calculated, based on 

Equation 2.2, for each experiment performed in this research as listed in Table 7.1. The 3D 

errors correspond to the 3D RMSEs computed at independent CPs and were exported from a) 

Table B.1 for Cockle Park; b) Table 5.6, 5.7 and Table 5.8 for Sandford; and c) Table 6.4, 6.5, 

6.7, 6.8 and 6.11 for Hollin Hill. Table 7.1 reports the highest estimated errors from the 

Sandford experiments and both highest and lowest errors from the Hollin Hill experiments. The 

relative error ratios indicate the magnitude of error in relation to the flying altitude (James and 

Robson, 2012; Woodget et al., 2015; Eltner et al., 2016). 
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Table 7.1: Relative error ratios per experiment.  

Experiment  3D 
error 
[m] 

Average 
flying 

height [m] 

Relative 
error ratio 

Highest/ 
lowest 
error 

GCP-based at Cockle Park (5 GCPs, Panasonic) 0.060 107 1:1783  
GCP-based at Cockle Park (15 GCPs, Panasonic) 0.043 107 1:2488  
GCP-based at Sandford (5 GCPs, Panasonic-E1) 0.050 124 1:2480  
MBR-GCP at Sandford (5 GCPs in E0, Panasonic-E2) 0.050 127 1:2540  
MBR-UAV at Sandford (without GCPs, Panasonic-E1) 0.058 124 1:2138  
GCP-based at Hollin Hill (5 GCPs, Panasonic-E4) 0.022 90 1:4091 Lowest  
MBR-GCP at Hollin Hill (5 GCPs in E0, Panasonic-E3) 0.067 83 1:1239 Lowest 
GCP-based at Hollin Hill (5 GCPs with Panasonic-E3) 0.045 83 1:1844 Highest 
MBR-GCP at Hollin Hill (5 GCPs in E0, Panasonic-E5) 0.108 84 1:778 Highest 
GCP-based at Hollin Hill (5 GCPs, Sony-E4) 0.037 79 1:2135 Highest 
MBR-GCP at Hollin Hill (5 GCPs in E4, Sony-E5) 0.066 79 1:1197  
MBR-UAV at Hollin Hill (without GCPs, Sony-E5) 0.078 79 1:1013  

 

Table 7.1 reports relative error ratios in the range 1:800-4000, with the lowest ratio attributable 

to biases in the E5 MBR solution (see Sections 6.2.2 and 6.3.2) and the highest ratio achieved 

with the GCP-based E4 solution. Apart from the extremes, a general consistency in the error 

ratios at various study sites was observed. Further, the error ratios are comparable to the error 

ratios computed for previous studies as described in Table 2.2. In particular, in the absence of 

GCPs the MBR workflow delivered relative error ratios (1:800-2000) in good agreement to the 

ratios 1:1600-1900 of two studies (Gerke and Przybilla (2016) and Dall'Asta et al. (2017)) that 

evaluated an RTK-GNSS integrated UAV (see Table 2.2). To date there have been few studies 

(Gerke and Przybilla, 2016; Benassi et al., 2017; Dall'Asta et al., 2017) investigating the 

accuracies of such UAVs. Moreover, the suitability of RTK-GNSS UAVs for monitoring 

without GCPs has not yet been comprehensively examined. Erroneous ambiguity resolution 

will possibly yield co-registration errors in subsequent UAV-derived products (Section 2.3.1). 

According to Benassi et al. (2017), in order to derive cm-level accuracies with RTK-UAVs, the 

establishment of at least one GCP is still a necessity. Moreover, the high-end UAVs augmented 

with RTK-GNSS and/or PPP solutions (Section 2.3.1) are at least an order of magnitude more 

expensive than consumer-grade UAVs (Carbonneau and Dietrich, 2016). In response to these, 

the presented research has demonstrated the potential of the MBR workflow as a low-cost, co-

registration solution providing accuracies commensurate to that of RTK UAV solutions.  

In addition, all relative error ratios listed in Table 7.1 reveal accuracies of acceptable level 

regardless of GCP inclusion, achieved with SfM-MVS processing coupled with off-the-shelf 

UAV mounted cameras. The levels can be considered acceptable as the ratios in Table 7.1 are 

in good agreement with the ratios 1:1080-9400 which were estimated from the use of DSLR 
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cameras and conventional photogrammetric procedures by James and Robson (2012). The use 

of off-the-shelf compact cameras, with their portability and low cost compared to DSLR 

cameras, is favourable for repeat surveys with fixed-wing UAVs. The engineering task to 

manufacture a camera case for a compact camera is also now a simple task, as demonstrated in 

Section 4.4.1, reducing the costs for logistics, which is a critical factor in a monitoring strategy.  

With respect to spatial resolution 
RMSE magnitudes at CPs resulting from the GCP-based and MBR Sandford experiments 

showed a general consistency. The planimetric and vertical RMSEs were estimated at 

approximately 1 x GSD. The highest error was delivered from the MBR-UAV experiment (i.e. 

0.058 m in Table 7.1), corresponding to 1.3 x GSD. For these particular experiments, the GSD 

(0.044 m, see Table 5.2) was equal to the DEM spatial resolution. For the Hollin Hill 

experiments, the MBR workflow estimated planimetric and vertical RMSEs in the region of 

1.9-3.3 x GSD and 1-1.6 x GSD respectively, for both the Panasonic DMC-LX5 and the Sony 

A6000 cameras (Table 6.7 and 6.8). It should be noted that GSD values of 0.03 m and 0.02 m 

were derived from Panasonic and Sony images respectively, and the corresponding DEMs had 

spatial resolution of 2 x GSD. The analysis presented in Sections 5.2.3 and 6.2.2 cross-validated 

the aforementioned uncertainties with benchmark TLS and total station observations. The MBR 

workflow provided better co-registration accuracies in elevation than in plan due to 

misalignment biases that are discussed in the following section. 

These uncertainties are comparable to uncertainties reported in previous studies (see Section 

2.3.3) with RTK-UAVs in the absence of GCPs (Woodget et al., 2015; Gerke and Przybilla, 

2016; Dall'Asta et al., 2017). For example, vertical errors of 1.4 x GSD and 2.4 x GSD were 

derived in Dall'Asta et al. (2017) and Gerke and Przybilla (2016) respectively. Moreover, errors 

higher than 5 x GSD, caused mostly by vegetation, were reported in Woodget et al. (2015). 

Overall, this discussion showed the potential of the MBR workflow to achieve adequate 

accuracy levels of 1 x GSD and provide cost-effective co-registration for the morphological 

monitoring of inaccessible areas. 

With respect to biases 
Perhaps the most significant weakness of the MBR workflow, compared to the benchmark SfM-

MVS pipeline with five GCPs, is that uncertainties were higher than 1 x GSD and propagated 

through the workflow to cause DEM deformations. These uncertainties reflect translational 

and/or rotational offsets that remained unresolved from the SfM-MVS workflow that even the 

ICP algorithm could not remove (Sections 5.3.2 and 6.2.2). The cause possibly stems from a 

combination of factors: the approximate camera exposure stations derived from the consumer-
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grade UAV sensors employed, the imaging network, the unstable SfM-MVS solution of camera 

distortion parameters and the actual landslide motion integrated into the workflow. Most errors 

are hidden in the SfM-MVS pipeline and they only become apparent as DEM deformations 

(Sections 3.2.5 and 3.2.6, also noted by Carbonneau and Dietrich (2016)). Because of this, to 

generate a budget per error source is a rather challenging task. However, the sensitivity 

estimation (Section 3.5) constitutes a quality index of the MBR workflow and accounts for all 

possible errors. The analysis in Chapters 5 and 6 supported the understanding of the error 

sources that influenced the MBR outcomes.  

Firstly, consumer-grade UAVs generally incorporate low-cost single frequency GNSS 

receivers and inertial navigation sensors that are capable of m-level positioning. In addition, the 

Quest-300 UAV used in this research did not provide reliable synchronisation of the camera 

triggering time which might have caused additional positional systematic offsets to the camera 

exposure stations (Rehak and Skaloud, 2017b), as discussed in Section 2.3.1. The camera 

exposure stations were used for coarse alignment in the MBR workflow (Section 3.4.2). 

Associated systematic errors could cause a suboptimal imaging network, adversely affecting 

the SfM-MVS results. For example, in the case of the E0-E2 epoch pair in the MBR-UAV 

experiment (see Section 5.2.2), significant rotational variations in the coarse absolute 

coordinates of the two epochs were observed. Even though multiple pseudo GCPs were 

generated across the site for both epochs, the SfM-MVS bundle adjustment could not resolve 

these rotations. A possible solution to this issue would be the post-processing of raw phase 

observations from the on-board GNSS receiver, in a similar manner to a real-time precise point 

positioning (e.g. Rehak and Skaloud (2017a) and Shi et al. (2017)). This post-process could 

refine the UAV trajectory, thereby improving the precision of the camera exposure stations. 

However, as the Quest-300 UAV was manufactured by a commercial company, raw sensor 

observations were unavailable for post-processing. An alternative solution to refine the coarse 

alignment could be the manual identification of at least three conjugate features appearing in 

E0 and E2 orthophotomosaics. Such a solution would require human intervention and would be 

impractical over unstable and/or grassy terrain. Nevertheless, the MBR workflow achieved the 

co-registration of the E0-E1 epoch pairs in the absence of GCPs with an adequate relative error 

ratio (see Table 7.1) as the two coarse alignments did not differ as significantly as the coarse 

alignment of the E0-E2 epoch.  

Apart from imprecise camera exposure stations, inferior imaging networks can be caused by 

other factors such as a sensor’s unstable focal length, low image overlap, parallel flight lines, 

blur and strong wind gusts, as discussed in Sections 2.3.1, 3.2.6 and 6.2.2. Especially for the 
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MBR results in E1 at Hollin Hill, large DEM deformations were observed that even the ICP 

algorithm could not account for. Characteristic is the 0.108 m remaining error computed with 

the M3C2 comparison after the ICP implementation (Table 6.10). Among all epochs, a few 

oblique images were acquired only at E1 (Section 6.1.2). DEM deformations occured at E1 

even with the inclusion of GCPs, as discussed in Section 6.2.2. It is noteworthy that, in many 

cases, DEM deformations exist with small magnitudes and because of that are often not reported 

in studies, as stated by Woodget et al. (2015). A possible approach to identify the particular 

cause of these uncertainties in E1 would be an additional investigation that examines systematic 

errors on each image. For instance, James et al. (2017a) plotted planimetric errors of tie points 

on each image after bundle adjustment to check for directional patterns. That way problems 

caused by particular tie points or images could be examined. James et al. (2017a) achieved this 

through their own dedicated software. However, such tools are still unavailable in PhotoScan. 

Analysis at image-level could be beneficial to the MBR workflow, thereby preventing error 

propagation in later stages of the monitoring strategy. 

In relation to the instability of SfM-MVS self-calibrating solutions, Sections 5.1.2 and 6.5.3 

demonstrated discrepancies in determined camera distortion parameters and focal length 

estimations. Various estimations (e.g. focal length differences exceeding 10 pixels) were 

observed even with the inclusion of GCPs. Discrepancies were also reported in previous studies 

(Remondino et al., 2012; Shahbazi et al., 2015). A UAV flying at different heights could reduce 

these variations, as demonstrated in Section 5.1.2. However, continuous and extensive use of a 

camera on-board a UAV can increase internal instability, particularly due to repetitive landings. 

This requires routine inspection, as seen in Section 6.5.3, especially when the camera is used 

for monitoring studies. The inspection can be carried out, for example, through indoor 

calibrations performed between UAV surveys. Calibrations with non-SfM-MVS software 

would be preferable in order to prevent introducing additional inconsistency into the results.  

Recent studies (Carbonneau and Dietrich, 2016; James et al., 2017b) suggested analytical 

approaches to quantifying the precision of the estimated IOPs within SfM processing. These 

included multiple Monte Carlo tests, either to derive optimal combinations of K1-K2 camera 

distortion coefficients (Carbonneau and Dietrich, 2016), or examination of the optimal SfM 

software parameters (i.e. marker/tie points accuracies) together with the strengthening of image 

observations (James et al., 2017b).  

With respect to morphological attributes and algorithms 
The MBR workflow implemented the SIFT algorithm alongside the morphological attribute of 

curvature (Section 3.3.2) to generate pseudo GCPs with curvature characteristics that were 



 200 

invariant through time (Section 3.4.2). This concept overcomes issues associated with optical 

images, such as illumination variations, shadows etc., thereby increasing the effectiveness of 

the co-registration. As this co-registration does not rely on the identification of manmade 

features, it can be applicable to natural environments, as demonstrated in chapter 6, therefore 

finding favour in the study of remote inaccessible areas. In addition, curvature grids of multiple 

kernel sizes were utilised, providing redundancy to the number of pseudo GCPs. Together with 

curvature, the morphological attribute of openness (Section 3.3.2) added reliability in selecting 

pseudo GCPs only over stable terrain. This was based on the assumption that active landslides 

deform the surface topography, thereby increasing its roughness (McKean and Roering, 2004; 

Tarolli, 2014). Candidate pseudo GCPs on hard surface edges were therefore excluded. This 

indicates that openness can support the detection of potential hazards over landslide 

environments. Apart from curvature and openness, the DEM standard deviation (Section 3.3.1) 

was useful for vegetation cleansing, thereby adding value in the workflow’s automation.  

Analysis presented in Chapters 5 and 6 identified two essential requirements for the MBR 

workflow: a) the site under investigation should have discrete surface characteristics over stable 

terrain, and b) a trial and error procedure is necessary for the choice of RANSAC threshold and 

curvature kernel sizes used with the SIFT algorithm (Section 3.4.2). The site dependency 

requirements limit the transferability of the MBR workflow to any natural environment site. 

For instance, no points were identified over smooth terrain on the inclined part of the slope at 

Sandford (Figure 5.6d), nor over the south part of the eastern lobe at Hollin Hill (Figure 6.5). 

However, the procedure of tuning settings per site in SfM-MVS software is a typical task, as 

seen in previous studies (Cook, 2017; Dall'Asta et al., 2017). 

7.1.2 Performance of the image cross-correlation function 

To derive surface deformation, morphological attributes were combined with the image 

normalised cross-correlation function (Section 3.5.3). Firstly, the comparative analysis of the 

NCC function with synthetic data (Section 6.4.1) was necessary to tune the function’s optimal 

settings. For example, if small displacements close to the UAV-derived sensitivity level do not 

fit within the specified window size, they cannot be precisely estimated (e.g. Region A in Figure 

6.14.a), as was noted by Fey et al. (2015). Small step and window sizes improved the spatial 

resolution of the surface displacement magnitude map but increased the computational time and 

noise. This occurred because features with similar / repetitive patterns within the vicinity of the 

specified window sizes generated false displacements (Travelletti et al., 2014; Fey et al., 2015). 

Hence, the choice of the function’s parameters is usually based on the required spatial 
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resolution, the computational effort and the displacement magnitude (Daehne and Corsini, 

2013; Travelletti et al., 2014; Fey et al., 2015).  

Analysis with synthetic data in Section 6.4.1, alongside that performed with real data in Section 

6.4.2, demonstrated that the various morphological attributes generated different displacement 

estimations and noise levels when used with the NCC function. Slope, openness and curvature 

outperformed shaded relief in terms of noise over stable terrain, even though all attributes are 

insensitive to illumination variations and shadows (Daehne and Corsini, 2013; Lucieer et al., 

2014; Fey et al., 2015). A possible error source could be grass cover, well known to affect the 

results of image cross-correlation (Lucieer et al., 2014; Stumpf et al., 2017). The additional 

analysis with various kernel sizes presented in Section 6.4.2, showed that noise levels caused 

by vegetation were not suppressed.  

The production of reliable surface displacements with the image cross correlation functions 

over vegetated terrain constitutes a significant challenge. As vegetation covers surface features, 

the NCC function generates additional noise. Conversely, grassy surfaces produce images with 

low texture and without distinctive surface features which can also affect the NCC function’s 

performance (Travelletti et al., 2014), as seen in Figures 6.17 and 6.19 around the eastern lobe.  

Independentl of the NCC function’s sensitivity to displacement magnitude and vegetation 

presence, analysis presented in Section 6.4 also revealed other limitations, already well reported 

in previous studies (Daehne and Corsini, 2013; Lucieer et al., 2014; Travelletti et al., 2014; Fey 

et al., 2015; Stumpf et al., 2017). A priori knowledge of the displacement magnitude is required 

for tuning the function’s settings, therefore somewhat limiting the automated fashion of the 

workflow. In addition, decorrelation occurs when a surface has significantly changed between 

two consecutive epochs, with implications for rapidly changing slopes. Finally, image cross-

correlation functions generate unreliable estimates over regions with rotational failures, 

creating spurious vectors or voids, whereas performance is much better over translational earth 

flow slides (Figure 6.19).  

This discussion revealed that the performance of image cross-correlation clearly depends on 

the site. However, the usage of UAV-derived slope and openness with image cross-correlation 

can offer an alternative solution compared to the standard use of shaded relief, or 

orthophotomosaics that other studies previously explored (Lucieer et al., 2014; Turner et al., 

2015). In addition, the analysis in Section 6.4 constitutes a fundamental basis for further 

research as image cross-correlation implementation with UAV-based surface derivatives has 

not previously been investigated. The potential of generating continuous multi-epoch surface 
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displacements (Figure 6.19) with directions (Figure B.12 in Appendix B) to provide higher 

spatial resolution than that obtained with point-based techniques, has been demonstrated. 

Moreover, a comparative analysis of other image cross-correlation functions than the NCC 

function (e.g in Rosu et al. (2015) and Dall'Asta et al. (2017)) could reveal extended capabilities 

of the UAV-derived morphological attributes.  

7.1.3 Implications for landslide monitoring 

In relation to the artificial surface change at Sandford (Section 5.3), a ± 0.120 m sensitivity 

level was detected independently of the presence of GCPs. This corresponds to 2.7 x GSD, 

setting the uncertainty level of the MBR solution. The volume of change was quantified with 

±2 % difference to the TLS datasets. In relation to the Hollin Hill landslide (Sections 6.3 and 

6.5), a ± 0.221 m minimum detectable change was estimated with the MBR-GCP workflow and 

the volume of change was quantified with ± 8.5 % from the GCP-based solutions. The 

discrepancies between the two sites are mostly attributable to the uncertainties discussed in the 

previous section. Moreover, the setup at Sandford was ideally designed to simulate change in 

the middle of a site surrounded by known stable terrain with little vegetation and acquire data 

with short revisit time. In comparison, the Hollin Hill landslide constitutes a real world scenario 

with vegetation producing additional noise. This has been documented as a problematic factor 

in other SfM-MVS workflows (Woodget et al., 2015; Carbonneau and Dietrich, 2016; Cook, 

2017). Perhaps a higher temporal frequency of UAV acquisitions could reassure the stability of 

the smooth terrain. However, to generate optimal results with the least amount of noise possible, 

accounting for the vegetation variation, winter would constitute the optimal annual period to 

conduct UAV surveys.  

In relation to the derivation of surface change time-series, six components were involved in the 

monitoring strategy, namely the morphological surface attributes of slope, openness and DEM 

standard deviation, the image cross-correlation function implemented in COSI-Corr and CIAS 

tools, the DEM differencing and the UAV-derived orthophotomosaics. The use of slope and 

openness, together with the COSI-Corr tool supported the quantification of movement over the 

whole site (Figure 6.19). The CIAS tool applied to openness tracked the evolution of discernible 

surface patterns in a semi-automated fashion (Figure 6.21). The exploitation of available image 

cross-correlation tools (COSI-Corr and CIAS) with openness decreased the intensive task of 

manual feature tracking. However, this task is still essential for cross-validation, especially in 

cases where ground truth observations are lacking over the monitoring period. DEM 

differencing was also applied to quantify the episodic surface ruptures and interpret the 

generated voids on displacement maps (Section 6.3.2). The DEM standard deviations used for 
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vegetation filtering (Section 6.1.3) and the orthomosaics supported the cross-validation of the 

results (Sections 6.4.2 and 6.5.2). The multiple uses of morphological attributes at different 

stages of the strategy facilitated the quantification of landslide kinematics and offered additional 

insight to understanding the landslide behaviour. 

Heterogonous landslide deformations were observed at Hollin Hill over the eighteen-month 

monitoring period. The morphology-based strategy estimated that the eastern lobe has surged 

forward 0.85 m/yr and the head at the back scarp have moved downwards 0.15 m/yr (Figure 

6.22d). Characteristic surface features over both regions were observed to have displaced more 

than 1.5 m in total since December 2014 (Figure 6.21). The comparison with rainfall datasets, 

presented in Section 6.5.2, supported the understanding of acceleration/deceleration periods. 

Hollin Hill landslide has been characterised by BGS investigations (Chambers et al., 2011) as 

a very slow moving multiple earth slide-earth flow (Table 1.1). It can be concluded that for 

such a complex landslide type, the morphology-based strategy can provide acceptable annual 

displacement rates with optimal results over winter periods.   

Overall, a UAV-based strategy without reliance on GCPs has been established, constituting a 

potential practical low-cost approach for monitoring hazardous terrain. This research has also 

offered a quantitative framework for time-series morphological surface changes with cm-level 

spatial resolution and dm-level minimum detectable change.  

7.2 Revisiting research objectives 

This research aimed to develop a strategy for handling UAV imagery that can provide multi-

temporal surface morphological information for landslide monitoring. The aim was achieved 

through the accomplishment of the original five objectives, as follows: 

Objective One: To evaluate the suitability of current UAV-based approaches for morphological 

monitoring. 

This objective was addressed in Chapters 2 and 3 through the critical literature review of 

emerging UAV-based approaches. These were compared against conventional geomatics and 

classical photogrammetric techniques in relation to accuracies, spatial resolution and logistics. 

Through examples from recent morphological studies (d'Oleire-Oltmanns et al., 2012; 

Niethammer et al., 2012; Lucieer et al., 2014; Eltner et al., 2015; Turner et al., 2015; Woodget 

et al., 2015; Carbonneau and Dietrich, 2016; Dall'Asta et al., 2017; James et al., 2017a), it was 

demonstrated that UAV-based approaches can produce DEMs, orthophotomosaics of high 
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spatial and temporal resolution. These can provide time-efficient and cost-effective 

morphological monitoring at inaccessible areas. 

Objective Two: To investigate the uncertainties associated with SfM-MVS processing of UAV 

imagery. 

Firstly, a description of the SfM-MVS pipeline, which constitutes the core workflow for post-

processing of UAV images, was addressed in Chapters 2 and 3. Further, an investigation of 

errors at various stages of the SfM-MVS pipeline was achieved in Chapter 3 through the review 

of previous research. In Section 5.1, a better understanding of a consumer-grade UAV system 

was gained through data acquisition and processing at Cockle Park. Additional analysis of the 

SfM-MVS uncertainties was demonstrated through the results of the presented work in 

Chapters 5 and 6. It was found that a series of errors stemming from various sources such as 

imaging network configurations, GCP and site characteristics etc., typically result in DEM 

deformations and unstable estimations of camera IOPs. In the context of landslide monitoring, 

these errors should be taken into consideration in order to derive actual terrain change. 

Objective Three: To propose and develop a monitoring strategy that establishes the rigorous 

alignment of spatio-temporal UAV-derived observations and quantifies landslide kinematics. 

This objective was reported in Chapter 3, which details the development of the morphology-

based monitoring strategy and its implementation through the description of relevant 

algorithms. The monitoring strategy consists of fpur main components, namely, the SfM-MVS 

pipeline, the morphological attributes of curvature and openness, the SIFT algorithm and the 

NCC function. The proposed strategy generates pseudo GCPs to co-register multi-temporal 

SfM-MVS products and then produces subsequent elevation differences and planimetric 

surface displacements. Uncertainties, investigated through the Objective Two are quantified 

with statistical tests deriving a global sensitivity threshold of the proposed strategy. 

Objective Four: To implement the monitoring strategy at appropriate tests sites and undertake 

quantitative evaluation with the aid of benchmark observations. 

In Sections 5.2 and 5.3 the morphology-based monitoring strategy was tested at Sandford, an 

experimental site with artificial surface change. In Chapter 6 the strategy was applied to an 

active landslide at Hollin Hill BGS observatory using two different cameras. Experimental tests 

at Sandford supported the strategy development and tests at Hollin Hill investigated its 

effectiveness to derive landslide motion. The quantitative evaluation was achieved with the aid 

of TLS, GNSS and total station observations at each stage of the monitoring strategy.  
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Objective Five: To evaluate the capabilities and uncertainties of the strategy, thereby ensuring 

its applicability for landslide monitoring. 

This objective was achieved through the analysis of results reported in Chapters 5 and 6. 

Various experiments, both with and without the inclusion of GCPs, analysed the strategy’s 

capabilities and uncertainties. It was shown that the proposed strategy could achieve acceptable 

accuracies with the inclusion of only five GCPs in the reference epoch, thereby retaining low 

operational costs. The discussion in Section 7.1 compared the strategy’s results with results 

from previous studies and demonstrated the merits and limitations with implications for the 

wider investigation of landslide motion.  
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7.3 Future work and outlook 

The core aspect of the developed monitoring strategy is the morphology-based co-registration 

workflow. This is based on the implementation of the SIFT algorithm with the morphological 

attribute of curvature to derive candidate pseudo GCPs in 2D. This concept relies on DEM 

generation from the SfM-MVS point cloud (Section 3.2.2). An interesting extension of this 

development would be the implementation of a 3D-SIFT algorithm to extract points of similar 

characteristics from subsequent point clouds, thereby minimising errors introduced by 

interpolation. A 3D-SIFT algorithm (e.g. that developed by Rusu (2009)) can identify points at 

surface edges or with specific geometric attributes (Hänsch et al., 2014). These attributes could 

include, for example, curvature values to match points of invariant curvature structures within 

subsequent point clouds. This processing would require high computational effort when 

applying to SfM-MVS point clouds of high density. However, relevant research has already 

been established within the computer vision community (Krig, 2014). Implementation with 

point clouds of the natural environment is yet to be explored. Integrating such algorithms within 

SfM-MVS software would further expand the potential of multi-temporal point cloud co-

registration and eliminate the requirement of GCP inclusion. In addition, monitoring 

investigation with co-registered 3D point clouds would potentially derive true 3D landslide 

information, linking each morphological structure with a 3D motion vector. By adding a fourth 

component, the time, this could expand to a 4D point cloud landslide information.  

With regard to transferability, the MBR workflow could be implemented with 

multi/hyperspectral UAV images, thereby extending its potential to the wider community of 

natural hazards and remote sensing. Specifically, near-infrared and thermal satellite/airborne 

images have long been used for soil water content and surface temperature mapping (Quattrochi 

and Luvall, 2004; Xiao et al., 2005), which are vital parameters for landslide investigation (Lee, 

2004). With the emerging technology of compact sensors, UAVs can carry small thermal and 

multi-spectral cameras, data from which can be post-processed using the SfM-MVS pipeline 

(Laliberte et al., 2011; Jensen et al., 2012). Further investigations to merge multiple datasets in 

the absence of GCPs with the MBR workflow could offer significant potential to accelerating 

assessment of hazardous environments.  

Interpreting a landslide mechanism is a challenging task, as it requires the integration of 

multiple surface/subsurface datasets, the understanding of errors associated with various 

techniques and expertise in geology, geomorphology and other environmental sciences. To that 

end, this research has established a quantitative basis of morphological information that can 

complement ground-based geotechnical and geophysical investigations. This basis appeals to 
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scientists who can utilise the outputs of this research and extract additional landslide 

information. For instance, co-registered UAV-derived surface displacements can serve as input 

for strain field estimations (an example with TLS-derived displacements is demonstrated in 

Travelletti et al. (2014)). The strain field reveal characteristics of ground material, such as 

extension/compression behavior that is caused by the landslide forces (Teza et al., 2008; 

Travelletti et al., 2014). The morphology-based monitoring strategy delivered SfM-MVS point 

clouds, DEMs, orthophotomosaics and other morphological attributes (curvature, openness, 

slope etc.) of cm-level spatial resolution (e.g. 0.02 m GSD from images captured with Sony 

A6000). This facilitates the derivation of length and width of surface of rupture and other 

dimensions of a slope failure, which are essential metrics for landslide assessment (Lee, 2004). 

The research deliverables can also contribute to the delineation and measurement of landslide 

fissures and surface openings that indicate slope instability. Previous studies (Barazzetti and 

Scaioni, 2009; Stumpf et al., 2013) investigated automatic solutions for detection of surface 

openings with the aid of optical images. Further implementations of these solutions with 

morphological attributes could assist in automated geomorphological map production. 

With regard to large-scale landslide assessment, the morphology-based monitoring strategy 

could be suitable for wider areas than those presented in this research. UAVs are easily 

deployable enabling multiple surveys per day that can cover areas of km2-level. In addition, this 

potential could be further extended with the integration of other type of observations than UAV 

imagery. For instance, a DEM derived from TLS or ground-based photogrammetry could be 

utilised for reference whereby the MBR workflow could extract pseudo GCPs to co-register 

this DEM with subsequent UAV DEMs. Similarly, DEMs derived from satellite remote sensing 

could be aligned with the UAV DEMs, offering the opportunity for upscaling. To that end, the 

morphology-based monitoring strategy could potentially bring together time-series of surface 

morphological information observed with various spatial resolutions and sensors.  
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Appendix A  

Python script to extract the approximate 3D camera exposure stations from UAV log file 

(Section 3.4.2) 

# -*- coding: utf-8 -*- 
""" 
Sources: 
https://pypi.python.org/pypi/ExifRead#downloads 
http://twigstechtips.blogspot.co.uk/2014/06/python-reading-exif-and-iptc-tags-from.html 
""" 
import numpy as np 
import exifread 
import ntpath 
startTime=time.time() 
inpath='C:\\b3059651\\Sandford_industrial_site\\RGB\\Epoch1\\tiffs' 
outpath='C:\\b3059651\\Sandford_industrial_site\\Logfiles' 
outfile=outpath+'\\'+'Epoch1_Exif_time.txt' 
 
def get_filelist(path): 
    return [os.path.join(path,f) for f in os.listdir(path) if (f.endswith('.tif'))] 
 
def get_exif(file): 
    exif = exifread.process_file(file) 
    
    if 'EXIF DateTimeOriginal' in exif: 
        #print "DatetimeTaken", exif['EXIF DateTimeOriginal'].values 
        exifInfo=exif['EXIF DateTimeOriginal'].values 
        return exifInfo 
 
def name_leaf(path): 
    head, tail = ntpath.split(path) 
    return tail or ntpath.basename(head) 
     
     
Flist=get_filelist(inpath) 
nbr=len(Flist) #number of files     
 
with open(outfile,"w") as file: 
    for input_file in Flist:       
            
            f=open(input_file,'rb') 
            exifInfo=get_exif(f) 
             
            h = int(exifInfo[11]+exifInfo[12]) 
            m = int(exifInfo[14]+exifInfo[15]) 
            s = int(exifInfo[17]+exifInfo[18]) 
            #to = datetime.time(h, m, s)   
            #tt=str(h)+':'+str(m)+':'+str(s)             
            tsec=h*3600+m*60+s 
            #print tt 
            outname=name_leaf(input_file) 
            file.write(outname+' '+str(tsec)+'\n') 
  



 210 

Python script to generate the candidate pseudo GCPs (Section 3.4.2) 

# -*- coding: utf-8 -*- 
""" 
Created on Mon Jan 04 17:04:40 2016,  
Sources: 
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html#matcher 
http://docs.opencv.org/master/da/de9/tutorial_py_epipolar_geometry.html#gsc.tab=0 
http://www.shogun-toolbox.org/static/notebook/current/Scene_classification.html 
http://docs.opencv.org/3.0-
beta/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#decomposehomographymat 
In order to work the tif should have 4 bit depth 
""" 
import cv2, os 
import numpy as np 
from matplotlib import pyplot as plt 
import gdal 
 
clear = lambda: os.system('cls') 
clear() 
 
def get_Imsize(filepath): 
    ds=gdal.Open(filepath, gdal.GA_ReadOnly) 
    width= ds.RasterXSize  # number of pixels in x 
    height = ds.RasterYSize 
    return width,height 
     
 
# get the list of all  images from the path provided 
def get_imlist(path): 
    return [os.path.join(path,f) for f in os.listdir(path) if (f.endswith('Sift.tif'))] 
     
def image_pairMatch(kp1,kp2,des1,des2,ratio_threshold,ransac_threshold): 
    pts1=[] 
    pts2=[]  
    good=[] 
    matches_final=[] 
    matches = bf.knnMatch(des1,des2,k=2) 
     
    for m,n in matches: 
        if m.distance <= ratio_threshold*n.distance: # Apply ratio test 
            good.append([m]) 
            pts1.append(kp1[m.queryIdx].pt) 
            pts2.append(kp2[m.trainIdx].pt) 
    pts111=np.float32(pts1).reshape(-1,1,2) 
    pts222=np.float32(pts2).reshape(-1,1,2) 
     
    H, mask = cv2.findHomography(pts111, pts222, cv2.RANSAC, ransac_threshold) ##Homography+RANSAC  
    matchesMask = mask.ravel().tolist() 
    x=np.ma.make_mask(matchesMask) 
    x1=x.nonzero() 
    for i in range(np.size(x1)): 
        matches_final.append(good[x1[0][i]]) 
    # We select only inlier points 
    pts1_final = pts111[mask.ravel()==1] 
    pts2_final = pts222[mask.ravel()==1] 
    return(matches,good,matches_final,H,pts1_final,pts2_final) 
 
def Pixel2World(geoMatrix,x,y): 
    ulX=geoMatrix[0] 
    ulY=geoMatrix[3] 
    xDist=geoMatrix[1] 
    yDist=geoMatrix[5] 
    coorX=(ulX+(x*xDist)) 
    coorY=(ulY+(y*yDist)) 
    coords=coorX,coorY 
    return coords 
     
def get_geoTrans(img): 



 211 

    gdal.AllRegister() 
    src=gdal.Open(img) 
    #get the GeoTransform object from the image 
    geoTrans=src.GetGeoTransform() 
    return geoTrans 
 
def xy2coords(geoTrans,pts): # I have to input the list of final points after matching  
    pix=[] 
    piy=[] 
    plist=pts.tolist() 
    for i in range(len(plist)): 
        p1=plist[i] 
        #pp1=p1[0]   
        #pp2=p1[1] 
        pp1=np.float(np.asarray(zip(*p1)[0])) 
        pp2=np.float(np.asarray(zip(*p1)[1])) 
        pix.append(pp1) 
        piy.append(pp2) 
    pix1=np.asarray(pix) 
    piy1=np.asarray(piy) 
    #perform the conversion 
    p2w=Pixel2World(geoTrans,pix1,piy1) 
    return p2w, pix1, piy1 
        
def get_error(pix1,piy1,pix2,piy2,H): 
    #Apply homography to correspondences and  
    #return the error for each transformed point 
    #from points (make homogeneous coords first) 
    fp=(np.vstack((pix1,piy1,np.ones(len(pix1))))) 
    #To points 
    tp=(np.vstack((pix2,piy2,np.ones(len(pix1)))))     
    #transform fp 
    fp_transformed=np.dot(H,fp) 
    # normalize hom. coordinates 
    for i in range(3): 
        fp_transformed[i] /= fp_transformed[2] 
    # return average error from all point 
    dist = tp-fp_transformed 
    dist2 = np.multiply(dist, dist) 
    err = np.sum(dist2) 
    rmse = np.sqrt(err/len(pix1)); 
 
    # return error per point 
    error_per_point=np.sqrt(np.sum((tp-fp_transformed)**2,axis=0) ) 
    return rmse, error_per_point 
   
# initialise OpenCV's SIFT 
sift=cv2.xfeatures2d.SIFT_create() 
# BFMatcher with default params 
bf = cv2.BFMatcher() 
imlistname=["Dec14","May16"] 
imlistdummy=[0,1] 
ratio_threshold=0.8 
ransac_threshold=0.9 
K_curv=35 
path='C:\\b3059651\\SIFT_Curvature\\Sony_Feb16_Reference_20161005\\4_Curvature_update\\K'+str(K_curv) 
print path 
imlist=get_imlist(path) 
nbr_images=len(imlist) #number of images 
matchscores=np.zeros((nbr_images,nbr_images)) 
 
##pairwise matching of all image combinations 
for i in range(nbr_images): 
    for j in range(i+1,nbr_images): 
        print"-------------------------------" 
        ##pairwise matching of all image combinations 
        print "comparing:",imlistdummy[i], imlistdummy[j] 
        img1 = cv2.imread(imlist[i])  
        img2 = cv2.imread(imlist[j])  
        #detect the SIFT keypoints and the descriptors. 
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        kp1, des1=sift.detectAndCompute(img1,None) 
        kp2, des2=sift.detectAndCompute(img2,None) 
        matches,good,matches_final,H,pts1_final,pts2_final=image_pairMatch(kp1,kp2,des1,des2,… 
ratio_threshold,ransac_threshold) 
        nbr_matches=len(matches_final) 
        matchscores[i,j]=nbr_matches 
         
        #to convert the points per pair from pixel to world coordinates 
        geoTrans1=get_geoTrans(imlist[i]) 
        p2w_ref,pix1,piy1=xy2coords(geoTrans1,pts1_final) #reference image1 
        geoTrans2=get_geoTrans(imlist[j]) 
        p2w_match,pix2,piy2=xy2coords(geoTrans2,pts2_final) #matching image2 
         
        rmse1,error_per_point1=get_error(pix1,piy1,pix2,piy2,H) 
        p2w=np.vstack((p2w_ref,p2w_match,error_per_point1)) 
        pixels_points=np.vstack((pix1,piy1,pix2,piy2,error_per_point1)) 
 
        scale=np.sqrt(H[0][0]**2+H[0][1]**2) 
        theta=np.degrees(np.arctan2(H[0][1],H[0][0])) 
        r11=np.cos(np.arctan2(H[0][1],H[0][0])) 
        r12=np.sin(np.arctan2(H[0][1],H[0][0])) 
        Rot=([r11,-r12],[r12,r11]) 
        print "initial matches=", str(len(matches)) 
        print "matches after test ratio=",str(len(good)) 
        print "final matches after ransac=", str(len(matches_final)) 
        print "final number pair-point inliers= " + str(len(pts1_final)) 
        print "Overall rms error of the matching= " + str(rmse1) 
                
                 
        #save it as a txt 
        
np.savetxt(path+'\\pair'+str(i)+str(j)+'K'+str(K_curv)+'_Ransac'+str(ransac_threshold)+'_Points_from_ref_to_match.csv', 
np.transpose(p2w), delimiter=',', fmt='%.10f') 
        np.savetxt(path+'\\pair'+str(i)+str(j)+'K'+str(K_curv)+'_Ransac'+str(ransac_threshold)+'_Points_from_to_pixels.csv', 
np.transpose(pixels_points), delimiter=',', fmt='%.10f') 
                 
        with open(path+'\\pair'+str(i)+str(j)+'K'+str(K_curv)+'_Ransac'+str(ransac_threshold)+'_matches_masked.txt','w')as file: 
            file.write('initial matches=' +str(len(matches))+'\n'+'matches after test ratio= ' +str(len(good))+'\n'+'_final matches after 
ransac= ' +str(len(matches_final))+'\n'+'final number pair-point inliers=  ' +str(len(pts1_final))+'\n'+'Overall rms error of the 
matching= ' + str(rmse1)) 
         
        np.savetxt(path+'\\pair'+str(i)+str(j)+'K'+str(K_curv)+'_Ransac'+str(ransac_threshold)+'_Homography_matrix.csv', H, 
delimiter=',', fmt='%.10f') 
        
np.savetxt(path+'\\pair'+str(i)+str(j)+'K'+str(K_curv)+'_Ransac'+str(ransac_threshold)+'_Angle.csv',np.vstack((scale,theta)),d
elimiter=',', fmt='%.5f') 
        np.savetxt(path+'\\pair'+str(i)+str(j)+'K'+str(K_curv)+'_Ransac'+str(ransac_threshold)+'_Rotation.csv',Rot,delimiter=',', 
fmt='%.5f') 
     
        #Save a pixture for every matching result 
        P=plt.figure(1) 
        img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,matches_final,None,(255,0,0),2) 
        plt.imshow(img3),plt.show() 
        P.savefig(path+'\\pair'+str(i)+str(j)+'K'+str(K_curv)+'_Ransac'+str(ransac_threshold)+'_matching_pic.png',dpi=200, 
format='png') 
        plt.close(P)   
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2D similarity transformation (Section 3.2.4) 

The mathematical expression of the 2D similarity transformation is  

𝑋𝑋 = 𝑥𝑥(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) − 𝑦𝑦(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) + 𝑇𝑇𝑥𝑥 

𝑌𝑌 = 𝑥𝑥(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) + 𝑦𝑦(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) + 𝑇𝑇𝑦𝑦 

where X, Y the coordinates of SIFT key-points of epoch i (Ei) curvature grid, x, y the 

corresponding points of Ej curvature grid, with S the scale factor, θ the rotation about X-axis 

and Tx, Ty the two translations between Ei and Ej curvature grids. After substitution  

𝑎𝑎 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑏𝑏 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

a system of linear equations can be formulated as: 

𝑋𝑋 = 𝑎𝑎𝑥𝑥 − 𝑏𝑏𝑦𝑦 + 𝑇𝑇𝑥𝑥 

𝑌𝑌 = 𝑏𝑏𝑥𝑥 + 𝑎𝑎𝑦𝑦 + 𝑇𝑇𝑦𝑦 

Python script for statistical outlier detection of Stage 2c (Section 3.4.2) 

# -*- coding: utf-8 -*- 
""" 
Created on Fri Jun 19 14:06:36 2015 
Sources: 
http://stackoverflow.com/questions/28242593/correct-way-to-obtain-confidence-interval-with-scipy 
""" 
import os 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import stats 
 
clear = lambda: os.system('cls') 
clear() 
 
start = time.time() 
os.chdir(r'C:\b3059651\SIFT_Curvature\FINAL_Dec14_Ref\2_Curvature\PseudoGCPs') 
 
def pdn(x,mu,sigma): 
    f= (1/(sigma * np.sqrt(2 * np.pi)))*(np.exp( - (x - mu)**2 / (2 * sigma**2) )) 
    return f 
 
#%% Import the csv for calculations from PhotoScan 
input_file='E5_errorsGCPs5_strictmasks11.txt' 
data=np.genfromtxt(input_file, dtype=float,delimiter=',',skiprows=2) 
label=data[:,0] 
XYZerr=data[:,4] 
Xerr=data[:,5] 
Yerr=data[:,6] 
Zerr=data[:,7] 
#planerror=np.sqrt(Xerr**2+Yerr**2) 
 
#%% Histograms 
H1=plt.figure(1) 
n, bins, patches = plt.hist(Xerr,15,weights=np.ones_like(Xerr)*100/Xerr.size,facecolor='green') 
# statistics 
Xmean, Xsigma = Xerr.mean(), Xerr.std(ddof=1) 
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Xconf_int68 = stats.norm.interval(0.68, loc=Xmean, scale=Xsigma) 
Xconf_int95 = stats.norm.interval(0.95, loc=Xmean, scale=Xsigma) 
Xconf_int99 = stats.norm.interval(0.99, loc=Xmean, scale=Xsigma) 
# add a 'best fit' line 
bw=bins[1]-bins[0] 
bins1 = np.linspace(bins.min(),bins.max(),300) #to smooth the curv I create more bins 
f = plt.plot(bins1,pdn(bins1,Xmean,Xsigma)*bw*100,'r-', linewidth=1) 
plt.axvline(Xmean, color='b', linestyle='dashed', linewidth=2) 
plt.axvline(Xconf_int68[0], color='k', linestyle='dashed', linewidth=2) 
plt.axvline(Xconf_int68[1], color='k', linestyle='dashed', linewidth=2) 
#textstr1 = '$\sigma=%.2f$'%(Xsigma) 
#plt.annotate(textstr1, xy=(0.02,12.3),fontsize = 16, color='black')     
 
#plt.annotate('-1sigma='+str(round(Xconf_int68[0],3)),xy=(Xconf_int68[0]-0.1,2.8),fontsize = 15, color='black',rotation=90) 
#plt.annotate('+1sigma='+str(round(Xconf_int68[1],3)),xy=(Xconf_int68[1]+0.03,2.8),fontsize = 15, 
color='black',rotation=90) 
plt.xlabel( 'Residual in Easting [m]' ) 
plt.ylabel( 'Relative frequency [%]' ) 
 
plt.xlim(-0.2,0.2) 
plt.ylim(0,15.1) 
plt.grid(True) 
plt.tight_layout() 
plt.show() 
 
H2=plt.figure(2) 
n, bins, patches = plt.hist(Yerr,18,weights=np.ones_like(Yerr)*100/Yerr.size,facecolor='green') 
# statistics 
Ymean, Ysigma = Yerr.mean(), Yerr.std(ddof=1) 
Yconf_int68 = stats.norm.interval(0.68, loc=Ymean, scale=Ysigma) 
Yconf_int95 = stats.norm.interval(0.95, loc=Ymean, scale=Ysigma) 
Yconf_int99 = stats.norm.interval(0.99, loc=Ymean, scale=Ysigma) 
# add a 'best fit' line 
bw=bins[1]-bins[0] 
bins1 = np.linspace(bins.min(),bins.max(),300) #to smooth the curv I create more bins 
f = plt.plot(bins1,pdn(bins1,Ymean,Ysigma)*bw*100,'r-', linewidth=1) 
plt.axvline(Ymean, color='b', linestyle='dashed', linewidth=2) 
plt.axvline(Yconf_int68[0], color='k', linestyle='dashed', linewidth=2) 
plt.axvline(Yconf_int68[1], color='k', linestyle='dashed', linewidth=2) 
#textstr1 = '$\sigma=%.2f$'%(Ysigma) 
#plt.annotate(textstr1, xy=(0.02,12.3),fontsize = 16, color='black')   
 
#plt.annotate('-1sigma='+str(round(Yconf_int68[0],3)),xy=(Yconf_int68[0]-0.1,2.8),fontsize = 15, color='black',rotation=90) 
#plt.annotate('+1sigma='+str(round(Yconf_int68[1],3)),xy=(Yconf_int68[1]+0.03,2.8),fontsize = 15, 
color='black',rotation=90) 
plt.xlabel( 'Residual in Northing [m]' ) 
plt.ylabel('Relative frequency [%]' ) 
plt.xlim(-0.2,0.2) 
plt.ylim(0,15.1) 
plt.grid(True) 
plt.tight_layout() 
plt.show() 
 
#H1.savefig(os.path.splitext(input_file)[0]+'East_residual_Hist.png',dpi=200, format='png') 
#H2.savefig(os.path.splitext(input_file)[0]+'North_residual_Hist.png',dpi=200, format='png') 
 
H3=plt.figure(3) 
n, bins, patches = plt.hist(Zerr,18,weights=np.ones_like(Zerr)*100/Zerr.size,facecolor='green') 
# statistics 
Vmean, Vsigma = Zerr.mean(), Zerr.std(ddof=1) 
Vconf_int68 = stats.norm.interval(0.68, loc=Vmean, scale=Vsigma) 
Vconf_int95 = stats.norm.interval(0.95, loc=Vmean, scale=Vsigma) 
Vconf_int99 = stats.norm.interval(0.99, loc=Vmean, scale=Vsigma) 
 
# add a 'best fit' line 
bw=bins[1]-bins[0] 
bins1 = np.linspace(bins.min(),bins.max(),300) #to smooth the curv I create more bins 
f = plt.plot(bins1,pdn(bins1,Vmean,Vsigma)*bw*100,'r-', linewidth=1) 
plt.axvline(Zerr.mean(), color='b', linestyle='dashed', linewidth=2) 
plt.axvline(Vconf_int68[0], color='k', linestyle='dashed', linewidth=2) 
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plt.axvline(Vconf_int68[1], color='k', linestyle='dashed', linewidth=2) 
#textstr1 = '$\sigma=%.2f$'%(Vsigma) 
#plt.annotate(textstr1, xy=(0.22,12.3),fontsize = 16, color='black')   
#plt.annotate('-1sigma='+str(round(Vconf_int68[0],3)),xy=(Vconf_int68[0]-0.04,6.6),fontsize = 15, color='black',rotation=90) 
#plt.annotate('+1sigma='+str(round(Vconf_int68[1],3)),xy=(Vconf_int68[1]+0.01,6.6),fontsize = 15, 
color='black',rotation=90) 
plt.xlabel( 'Residual in Height [m]' ) 
plt.ylabel( 'Relative frequency [%]' ) 
plt.xlim(-0.2,0.2) 
plt.ylim(0,15.1) 
plt.grid(True) 
plt.tight_layout() 
plt.show() 
 
#H3.savefig(os.path.splitext(input_file)[0]+'Height_residual_Hist.png',dpi=200, format='png') 
def outlier_detection(Xerr,Yerr,Zerr,Xconf,Yconf,Vconf): 
    #Find the indeces with values larger than the confidence level  
    X1idx=[i for i,val in enumerate(Xerr) if val>Xconf[1]] 
    X2idx=[i for i,val in enumerate(Xerr) if val<Xconf[0]] 
     
    Y1idx=[i for i,val in enumerate(Yerr) if val>Yconf[1]] 
    Y2idx=[i for i,val in enumerate(Yerr) if val<Yconf[0]] 
     
    V1idx=[i for i,val in enumerate(Zerr) if val>Vconf[1]] 
    V2idx=[i for i,val in enumerate(Zerr) if val<Vconf[0]] 
    label1=[] 
    label2=[] 
    label3=[] 
    label4=[] 
    label5=[] 
    label6=[] 
    for i in range(0,len(X1idx)): 
        ll=label[X1idx[i]] 
        label1.append([ll]) 
    for i in range(0,len(X2idx)): 
        l2=label[X2idx[i]] 
        label2.append([l2]) 
     
    for i in range(0,len(Y1idx)): 
        l3=label[Y1idx[i]] 
        label3.append([l3])    
 
    for i in range(0,len(Y2idx)): 
        l4=label[Y2idx[i]] 
        label4.append([l4])   
     
    for i in range(0,len(V1idx)): 
        l5=label[V1idx[i]] 
        label5.append([l5])    
 
    for i in range(0,len(V2idx)): 
        l6=label[V2idx[i]] 
        label6.append([l6])   
     
    label1.extend(label2) 
    label1.extend(label3) 
    label1.extend(label4) 
    label1.extend(label5) 
    label1.extend(label6) 
    label1.sort() 
    labels=[ii for n,ii in enumerate(label1) if ii not in label1[:n]] # to remove duplicates and keep the order 
    return labels 
 
# confidence level 
label68=outlier_detection(Xerr,Yerr,Zerr,Xconf_int68,Yconf_int68,Vconf_int68) 
label95=outlier_detection(Xerr,Yerr,Zerr,Xconf_int95,Yconf_int95,Vconf_int95) 
label99=outlier_detection(Xerr,Yerr,Zerr,Xconf_int99,Yconf_int99,Vconf_int99) 
 
print "For 68% confidence level the number of outliers are:"+ str(len(label68)) 
print "For 95% confidence level the number of outliers are:"+ str(len(label95)) 
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print "For 99% confidence level the number of outliers are:"+ str(len(label99)) 
 
print "Xmean=" +str(Xmean)+"  Xsigma="+str(Xsigma) 
print "Ymean=" +str(Ymean)+"  Ysigma="+str(Ysigma) 
print "Vmean=" +str(Vmean)+"  Vsigma="+str(Vsigma) 
print"................................................" 
rmsX=np.sqrt(np.mean(np.square(Xerr)),dtype=np.float64) 
rmsY=np.sqrt(np.mean(np.square(Yerr)),dtype=np.float64) 
rmsPlan=np.sqrt(rmsX**2+rmsY**2) 
rmsZ=np.sqrt(np.mean(np.square(Zerr)),dtype=np.float64) 
print "RMSE Easting=" +str(rmsX) 
print "RMSE Northing="+str(rmsY) 
print "RMSE plan=" +str(rmsPlan)+"    RMSE vertical="+str(rmsZ) 
print "Std Plan="+str(np.sqrt(Xsigma**2+Ysigma**2))+"    Std vertical="+str(Vsigma) 
 
#np.savetxt(os.path.splitext(input_file)[0]+'_2sigma_outliers.txt', label95, delimiter=',', fmt='%.0f') 
 
#Final check of normal distribution  outlier detection  
#for 95% t=1.96 
to=1.96 
Thres=(-to,to) 
#normalised residual 
Xres_norm=(Xerr-Xmean)/Xsigma 
Yres_norm=(Yerr-Ymean)/Ysigma 
Zres_norm=(Zerr-Vmean)/Vsigma 
label_normalised=outlier_detection(Xres_norm,Yres_norm,Zres_norm,Thres,Thres,Thres)     
len(label_normalised) 
 
np.savetxt(os.path.splitext(input_file)[0]+'_2sigma_outliers.txt', label_normalised, delimiter=',', fmt='%.0f') 
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Examples of analysis from experiment in Cockle Park (Section 5.1.2) 

Table A.1: Mean RMSEs at CPs after post processing with 0, 5, 10 and 15 GCPs. 

No of 
GCPs 

Project id 
(ft) 

RMSE in Plan [m] RMSE in 
Elevation 

[m] 

3D RMSE 
[m] 

0 1(250) 8.134 2.338 8.667 
0 2(300) 8.951 0.926 8.998 
0 3(350) 28.310 1.240 28.337 
0 4(combined) 15.527 12.483 19.923 
5 1(250) 0.048 0.040 0.062 
5 2(300) 0.041 0.066 0.078 
5 3(350) 0.060 0.098 0.115 
5 4(combined) 0.038 0.046 0.060 

10 1(250) 0.040 0.046 0.061 
10 2(300) 0.037 0.046 0.059 
10 3(350) 0.051 0.064 0.082 
10 4(combined) 0.032 0.040 0.051 
15 1(250) 0.034 0.060 0.069 
15 2(300) 0.032 0.029 0.044 
15 3(350) 0.037 0.043 0.057 
15 4(combined) 0.025 0.035 0.043 

 

 
Figure A.1: Boxplots of M3C2 comparison of three different disparity settings for dense point cloud 
reconstruction. Median is shown by the red rectangle and outliers by grey crosses.  
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Examples of analysis from experiments at Sandford Industrial Park (Section 5.2.2) 

 
Figure A.2: Histograms of final selected pseudo GCPs after bias removal in the MBR-GCP based experiment. 

 
Figure A.3: Polar plots of pseudo GCPs residuals before and after bias removal in the MBR-GCP based experiment 
for both epochs.  
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Appendix B  

DPC Pre-processing and vegetation cleaning (Section 6.1.3) 

 
Figure B.1: GCP-based Panasonic experiment: DEM standard deviations for (a) 05/14, (b) 12/14, (c) 02/16 and 
(d) 05/16 datasets. Linear artefacts were observed in 05/14 due to low image overlap.  

  



 220 

MBR-based implementation and analysis (Section 6.2.1) 

 
 
Figure B.2: MBR-GCP Panasonic experiment: Polar plots of E3 pseudo GCPs.  

 
Figure B.3: Polar plots of E5 pseudo GCPs error vectors resulted from Panasonic and Sony MBR-GCP based 
experiments.  
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Assessment of co-registration solutions (Section 6.2.2) 

 
Figure B.4: Panasonic image acquired in 09/15 (E3) over GP15 target showing how sun glare degraded black and 
white contrast of the target. 

 
Figure B.5: Panasonic image acquired in 06/15 (E2), over CP02 target. Blur altered the circular shape. 

  

Figure B.6: GCP-based Panasonic experiment: Elevation differences from DEM obtained with all available GCPs. 
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Estimation of elevation and volume change (Section 6.3.2) 

 
Figure B.7: GCP-based Panasonic experiment: Elevation differences between E0-E3 epoch pair showing 
vegetation changes mixed into the actual landslide deformation. This map shares the same colour scheme shown 
in Figure 6.13.  

 
Figure B.8: Elevation differences between May 2014 – May 2016 over back scarp and eastern lobe from GCP-
based observations. 

 
Figure B.9: Elevation differences between ALS 2011 DEM and UAV GCP-based E0 DEM.  
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NCC implementation with synthetic datasets (Section 6.4.1) 

Table B.1: Statistics of SNR values derived from morphological attributes over Region A and B and outside those 
constituting stable terrain of the synthetic datasets.  

Morphological 
attributes 

dE [m] dN [m] 
μ σ min max μ σ min max 

stable terrain 
Shaded relief 0.000 0.037 -1.145 1.169 0.000 0.055 -1.074 1.155 
Slope 0.000 0.018 -0.783 0.903 -0.000 0.039 -1.084 1.021 
Positive openness 0.000 0.030 -0.991 1.143 0.000 0.054 -1.163 1.144 
Curvature 0.000 0.025 -1.078 0.958 -0.000 0.053 -1.149 1.026 

region A  
Shaded relief 0.029 0.029 -0.022 0.085 -0.056 0.030 -0.111 -0.003 
Slope 0.036 0.032 -0.026 0.098 -0.053 0.028 -0.109 0.010 
Positive opennness 0.024 0.029 -0.029 0.085 -0.052 0.036 -0.109 0.002 
Curvature 0.034 0.020 -0.008 0.064 -0.055 0.025 -0.108 -0.007 

region B  
Shaded relief 0.427 0.114 -0.068 0.505 -0.528  0.131 -0.706 0.012 
Slope 0.433 0.141 -0.047 0.707 -0.505 0.156 -0.707 0.111 
Positive opennness 0.435 0.145 -0.059 0.848 -0.493 0.182 -0.697 0.537 
Curvature 0.432 0.115 -0.012 0.508 -0.513 0.140 -0.690 0.033 

 

Sensitivity analysis of the NCC function with real datasets (Section 6.4.2) 

Table B.2: RMSEs computed between the NCC estimations and manual observations. 

Epoch pairs 
RMSEs [m] 

slope openness 
E0-E1 0.087 0.042 
E1-E4 0.185 0.142 
E4-E5 0.185 0.372 

 

 

Figure B.10: COSI-Corr surface displacements with slope plotted against manual observations. 
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Figure B.11: COSI-Corr surface displacements with positive openness under various settings. 
 



  

 

Figure B.12: Vector fields estimated from the NCC function in COSI-Corr (see Figure 6.21). 
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Camera stability checks (Section 6.5.3) 

Table B.3: Calibration results post UAV flights for Panasonic DMC-LX5 and  
Sony A6000, as derived from DBAT (see Section 4.4.2 for description). 

 
Determined parameters Panasonic DMC-LX5- 

Calibration 22/07/2017 
Sony A6000-  

Calibration 22/07/2017 
 Value σ Value σ 
f-focal length [mm] 5.071 4.28 x 10-04 16.200 1.11 x 10-03 
xp-principal point [mm] 3.540 2.96 x 10-04 11.998 7.01 x 10-03 
yp-principal point [mm] 2.718 4.00 x 10-04 7.873 6.26 x 10-04 
Fw-format width [mm] 7.143 1.40 x 10-04 23.997 - 
Fh-format height [mm] 5.358 - 16.000 - 
K1-radial distortion 1 2.53 x 10-04 1.80 x 10-05 2.95 x 10-4 1.62 x 10-03 
K2- radial distortion 2 -6.52 x 10-05 2.39 x 10-06 -1.45 x 10-6 2.02 x 10-08 
K3- radial distortion 3 2.12 x 10-06 - -2.11 x 10-10 8.55 x 10-11 
P1- decentring distortion 1 2.98 x 10-04 4.00 x 10-06 4.07 x 10-5 8.94 x 10-07 
P2- decentring distortion 2 -8.77 x 10-05 3.63 x 10-06 3.04 x 10-5 7.91 x 10-07 
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