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ABSTRACT

Three computer software packages were written in the C++ language for the

analysis of numerical phenetic, 16S rRNA sequence and pyrolysis mass

spectrometric data. The X program, which provides routines for editing binary data,

for calculating test error, for estimating cluster overlap and for selecting diagnostic

and selective tests, was evaluated using phenotypic data held on streptomycetes.

The AL16S program has routines for editing 16S rRNA sequences, for determining

secondary structure, for finding signature nucleotides and for comparative sequence

analysis; it was used to analyse 16S rRNA sequences of mycolic acid-containing

actinomycetes. The ANN program was used to generate backpropagation-artificial

neural networks using pyrolysis mass spectra as input data.

Almost complete 1 6S rDNA sequences of the type strains of all of the validly

described species of the genera Nocardia and Tsukamurel!a were determined

following isolation and cloning of the amplified genes. The resultant nucleotide

sequences were aligned with those of representatives of the genera

Corynebacterium, Gordona, Mycobacterium, Rhodococcus and Turicella and

phylogenetic trees inferred by using the neighbor-joining, least squares, maximum

likelihood and maximum parsimony methods. The mycolic acid-containing

actinomycetes formed a monophyletic line within the evolutionary radiation

encompassing actinomycetes.

The "mycolic acid" lineage was divided into two clades which were equated

with the families Coiynebacteriaceae and Mycobacteriaceae. The family

Coiynebacteriaceae contained the genera Cotynebacterium, Dietzia and Turicella

and the family Mycobacteriaceae the genera Gordona, Mycobacterium, Nocardia,

Rhodococcus and Tsukamurella. It was clear from the 1 6S rDNA sequence data

that Nocardia pinensis was misclassified in the genus Nocardia and that

TsukamurelIa wratislaviensis belonged to the genus Rhodococcus. The genus

Nocardia formed a distinct dade that was clearly associated with the genus

Rhodococcus. Two sublines were recognised within the Nocardia dade; one

consisted of Nocardia asteroides and related taxa and the other of Nocardia

otitidiscaviarum and allied species. The two sublines are distinguished by nucleotide

differences in helix 37-1. The type strains of all of the Nocardia species contained



hexahydrogenated menaquinones with eight isoprene units in which the two end

units were cyclised.

Actinomycetes selectively isolated from an activated sludge plant showing

extensive foaming were the subject of a polyphasic taxonomic study. The sludge

isolates, which clearly belong to the genus Tsukamurella on the basis of 1 6S rRNA

data, contained highly unsaturated long chain mycolic acids and unsaturated

menaquinones with nine isoprene units, properties consistent with their classification

in the genus Tsukamurella. Six representative isolates and marker strains of

Tsukamurella paurometabola were the subject of a numerical phenetic taxonomic

study. The test strains were assigned to four groups in the simple matching

coefficient, unweighted pair group method with arithmetic averages analysis. The

sludge isolates formed a homogeneous cluster with the three remaining clusters

composed of Tsukamurella paurometabola strains. Excellent congruence was found

between these numerical taxonomic data and results derived from corresponding

studies based on Curie point pyrolysis mass spectrometric and whole-organism

protein electrophoretic analyses. The combined data suggest that the sludge

isolates form the nucleus of a new species of the genus Tsukamurella and that

Tsukamure!!a paurometabola is a heterogeneous taxon.

Representatives of three putatively novel streptomycete species isolated

from soil were used to develop and evaluate an identification system based on

Curie point pyrolysis mass spectromety and artificial neural network analysis. The

test strains consisted of sixteen target Streptomyces strains and one hundred and

thirty-eight actinomycetes belonging to the genera Actinomadura, Mycobacterium,

Nocardia, Nocardiopsis, Saccharomonospora and Streptosporangium. It was clear

from the identification results that artificial neural network analysis was superior to

conventional procedure based on principal component and canonical variate

statistics. The problem of misidentification of some of the non-target strains was

solved by the development of a neural network topology which contained an output

neuron designed to detect non-target pyrolysis mass spectrometric patterns. The

pyrolysis mass spectrometry-artificial neural network system was evaluated using

thirteen fresh streptomycete isolates and found to be capable of long-term

identification of the target strains.
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CHAPTER I.

MODERN BACTERIAL SYSTEMATICS: THEORETICAL

BACKGROUND AND DEVELOPMENT OF SOFTWARE

TOOLS

A. Introduction

1. Phylo genetic reconstruction from molecular sequence data

Phylogeny is the study of the evolutionary history of organisms. Cladistic

relationships indicate the degree of relatedness between microorganisms as shown

by pathways of ancestry (Cain & Harrison, 1960). Consequently, classifications

which are based on perceived evolutionary relationships between organisms reflect

the extent of change over time. Phylogenetic relationships between organisms are

represented by evolutionary trees and are inferred from various types of phenetic

relationships based on assumptions of how evolution occurs. Evolutionary systems

are sometimes seen merely as simple branching over time but this is an

oversimplification as in vivo hybridisation and lateral gene transfer lead to

conceptual as well as to computational difficulties (Sneath 1 974a, 1975; Maynard

Smith, 1990).

Bacterial systematics is increasingly being based on phylogenetic

information, notably that derived from macromolecules such as DNA, RNA and

proteins (Woese, 1987; Stackebrandt, 1992; Ludwig et a!., 1993; Ludwig &

Schleifer, 1994; Olsen eta!., 1994a). Classification, the one of basic disciplines of

bacterial systematics, is becoming increasingly dependent on the use of molecular

sequence data, notably on information generated from 1 6S rRNA analyses

(Stackebrandt, 1992; Woese, 1992). Since classification is a prerequisite of

1



2	 CHAPTER!

accurate identification it is perhaps not surprising that identification of unknown

bacteria is also increasingly focused on molecular sequence data. These

revolutionary changes in microbial systematics are mainly based on improvements

in nucleotide sequence acquisition and on the development of methods for

phylogenetic analysis. Classifications based on molecular sequence data are often

considered to be "natural' (Woese, 1992).

Nucleotide sequence similarity values now widely serve as one of the

standard taxonomic criteria used at the species level along with estimates of DNA

relatedness values (Stackebrandt & Goebel, 1994). Phylogenetic relationships at

higher taxonomic rank are mainly determined by constructing phylogenetic trees,

that is, by what is known as phylogenetic reconstruction. This procedure involves

three sequential steps, namely choice of macromolecule, alignment and

construction of phylogenetic trees. A detailed review of ribosomal RNA techniques

used in microbial systematics is given in Chapter II. This chapter is limited to

considerations of numerical methods used to handle molecular sequence data.

1.1. Choice of molecule

An ideal molecular chronometer have meet the following specifications: (i)

sequence changes should occur as randomly as possible, that is, by clock-like

behaviour; (ii) rates of change should be commensurate with the spectrum of

evolutionary distances measured; and (iii) the macromolecule should be large

enough to provide sufficient information and should be a "smooth-wnning'

chronometer (Woese, 1987).

Sequence information that is not under any selective constraint is ideal but

only for comparisons between recently evolved organisms since mutation rates are

so high. Woese (1987) pointed out that small and large subunit ribosomal (r) RNA

sequences provide the most useful and suitable chronometer for phylogenetic
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analyses as they: (i) show a high degree of functional constancy which assures

relatively good clockwise behaviour; (ii) occur in all organisms; (iii) show different

rates of mutation along different parts of the macromolecule thereby allowing distant

phylogenetic comparisons to be made; and (i can be sequenced directly using the

reverse transcriptase sequencing technique (Lane eta!., 1985). The development

and application of the polymerase chain reaction (PCR; Saiki et a!., 1988) has made

the reverse transcriptase redundant.

Prokaryotes contain three types of ribosomal RNA, namely 5S, 1 6S and 23S

rRNAs. 5S rRNA is not usually considered to be a suitable molecule for

phylogenetic analyses since its small size, that is, Ca. 120 nucleotides, does not

allow statistically significant sampling (Woese, 1987; Hillis & Dixon, 1991).

Nevertheless, comparative 5S rRNA sequencing studies can be used to clarify fine

evolutionary relationships between closely related prokaryotes (Hon & Osawa,

1986; Van den Eynde et a!., 1990) as witnessed by studies on coryneforrn bacteria

(Park et a!., 1987), micrococci (Dekio et a!., 1982), mycobacteria (Dams et a!.,

1987), streptomycetes (Park et a!., 1991), streptosporangias (Kim, 1995) and

members of the family Microbacteriaceae (Park et a!., 1993).

Until recently, deductions about the evolution of prokaryotes were almost

exclusively based on data derived from 16S rRNA; this macromolecule consists of

approximately 1500 nucleotides. Relatively little work has been done on the more

complex 23S rRNA which consists of approximately 3300 nucleotides. Reasonably

good agreement has been found between evolutionary trees based on 1 6S and 23S

rANA sequence data (Ludwig et a!., 1992). To date, 1 6S rRNA from more than 2000

prokaryotes has been examined with much of the resultant information held in the

GenBank/EMBL database and by the nibosomal database project (RDP; Larsen et

a!., 1993).
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It is important to check phylogenies generated from analyses of 16S rRNA in

order to ensure that they reflect the evolution of organisms and not their own

evolutionary history. Alternative macromolecules, usually proteins, have been used

to generate phylogenies. These alternative molecules include elongation factors

(Ludwig eta!., 1990; Morden et a!., 1992; Ludwig et a!., 1993), ATPase subunits

(Amman eta!., 1988; lwabe et a!., 1989; Gogarten et a!., 1989; Klugbauer et a!.,

1992; Morden et a!., 1992; Ludwig eta!., 1993), RNA polymerases (Pühler et a!.,

1989; Zillig eta!., 1989), and ribosomal proteins (Ochi eta!., 1993; Liao & Dennis,

1994; Ochi & Hiranuma, 1994; Ochi, 1995). In addition, phylogenies have been

generated by analyses of GroEL (Viale et a!., 1994) and gyrB (Yamarnoto &

Harayama, 1995) gene products. Phylogenies deduced from these macromolecules

showed good congruence with those derived from nbosomal RNAs (Ludwig &

Schleifer, 1994).

The choice of the molecule to be sequenced depends on the aims of the

study, notably on the taxonomic rank under consideration. Thus, highly variable

genes, such as the intergenic spacer region in ribosomal RNA operons, are most

appropriate for comparisons between strains at species and subspecies levels

(Frothingham & Wilson, 1993). In contrast, more conserved genes, such as 16S

rDNA and those coding for elongation factors and RNA polymerases, are used to

unravel relationships at higher taxonomic rank. Genes coding for proteins generally

show more variability than ones coding for ribosomal RNA (Olsen & Woese, 1993;

Yamamoto & Harayama, 1995).

1.2. Alignment

The first step in phylogenetic reconstruction from molecular sequence data is

sequence alignment. This involves finding homologous sites, that is, positions

derived from the same ancestral organism, in the molecules under study. A set of
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sequences can be aligned against one another by introducing 'alignment gaps'.

The general rule underpinning multiple sequence alignment is that the increase in

sequence similarity due to the introduction of alignment gaps must be greater than

that which would be expected due to random alignment (Olsen, 1988). Several

workers have developed multiple sequence alignment procedures (Bains, 1986;

Higgins & Sharp, 1988, 1989; Barton & Stemberg, 1987; Feng & Doolittle, 1987;

Santibenez & Rohde, 1987; Sobel & Martinez, 1986; Taylor, 1987). Since these

alignment methods are purely computational it is necessary to check alignments

manually and, if possible, in light of biological function in order to clarify ambiguous

regions (e.g., Vohra eta!., 1992; Viale eta!., 1994).

In general, protein sequences are obtained indirectly by determining the

responsible gene sequences though small proteins may be sequenced directly (e.g.,

ribosomal protein AL-30; Ochi, 1995). Phylogenies can be inferred from both types

of molecular sequences, namely amino acid and nucleotide sequences. However,

studies based on amino acid sequences are preferable since the evolutionary

behaviour and constraint on individual codon positions in protein coding genes may

vary (e.g., Klenk and Zillig, 1994).

Most attention has been given to studying sequence alignment of RNAs,

especially ribosomal RNAs (Olsen, 1988; James et a!., 1989). It is possible to fit

sequenced regions which have little primary structural similarity into a common

secondary structure since the secondary structure of rRNA5 are largely known

(Woese et a!., 1983; NolIer, 1984; Gutell, 1993; Olsen & Woese, 1993). This

biologically meaningful alignment procedure has been widely used because of the

ready availability of pre-aligned rRNA sequences held by the ribosomal database

project (RDP; Larsen et a!., 1993). The secondary structures of 1 6S and 23S rRNA

of prokaryotes have recently been compiled (Gutell, 1993; Gutell et a!., 1993; Neefs
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et a!., 1993). A method for automated detection of secondary, or higher order

structure, in rRNA sequences was developed by Winker eta!. (1990).

1.3. Construction of phylogenetic trees

The results of phylogenetic analyses are usually presented in the form of an

'unrooted tree' in which the earliest point in time, the location of the common

ancestor, is not identified. Members of present day taxa correspond to 'terminal

nodes', or tips, while branching points within a tree are called 'internal nodes'. A

strictly bifurcating unrooted tree has T terminal nodes, which correspond to taxa,

and T-2 internal nodes. Such a tree has 2T-3 branches. The total number of

possible unrooted trees for Ttaxa is:

Number of trees -	 — 5) (Felsenstein, 1 978a)

where Tis the number of taxa.

The number of possible rooted trees is increased by a factor of 2T-3 since

the root of the tree can be placed along any of the 2T-3 branches. The aim of

phylogenetic reconstruction is to find the best estimated tree. Three tree-making

procedures are commonly used in bacterial systematics, namely the distance,

parsimony and maximum likelihood methods.

1.3.1. Methods based on pairwise distances

These methods involve two consecutive procedures, namely transformation

of sequence similarity data to evolutionary distances and construction of trees from

information in distance matrices. Evolutionary distance data are generally

categorised into two types, namely additive and ultrametric distances (Swofford &

Olsen, 1990). Additive distances mathematically satisfy the four point condition.

Thus, for four taxa A, B, C and a
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rnax(d lH +dcD , dAc +dgD ,dAD +dBc ) = mid(d 4B +dcD , dAc +dBD , dAD +d8)

where d1 is the distance between taxa I and j, max is the maximum value function,

and mid is the middle value (median) function. This formula can be recast using the

more standard rn/n function as:

2max(dAB + dcD , dA c +dBD ,dAD +dBC )+min(d 4B +dcD ,d4c + dgD , d4D +dBc)

= d4B + dcD + dA c + dBD + dAD + dBc

Additive distances can be fitted to an unrooted tree so that all pairwise distances are

equal to the sum of the branch lengths that connect the respective taxa or external

nodes (Figure 1-la). Relationships are displayed in an unrooted format as additive

trees are not based on any assumptions about tree rooting. Many of the available

tree-making methods are used to estimate the additive model, these include the

neighbor-joining (Saitou & Nei, 1987) and weighted least-squares methods (Fitch &

Margoliash, 1967).

Ultrametric distances are the most constrained and are defined

mathematically by meeting the three-point condition. Ultrametric inequality requires

that for any three taxa, such as A, B and C:

dAc ^ max(dAB ,dBC ) or

max(dAB ,dBC ,dAC ) = mid(dAB,dBC,dAC)

that is, the two greatest distances are equal. This equation can be recast as:

2max(dAB ,dBC , dAC )+ min(dAH , dBC ,dAC ) = dAB +dBc +dAc

Ultrametric distances are fitted to form a tree so that the distance between any two

taxa is equal to the sum of the branches joining them and the tree can be rooted so

that all of the taxa are equidistant from the root (Figure 1-1 b). This latter assumption

is based on the universal 'molecular clock' theory (Kimura, 1983), namely that all
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CHAPTER 1	 9

lineages are equafly diverged. Methods based on ultrametric distances include

cluster analysis techniques such as the unweighted pair group method using

arithmetic averages (UPGMA; Sneath & Sokal, 1973) and the weighted pair group

method using arithmetic averages (WPGMA). These clustering algorithms have

been used to analyse data on antibody cross-reactivity, DNA/DNA hybridisation,

pairwise sequence similarities and 1 6S rRNA catalogue similarities. These methods,

which would work perfectly if data were only generated by a clock-like evolution

(Felsenstein, 1988), are relatively sensitive to lineage-to-lineage differences in

evolutionary rates (Colless, 1970).

Transformation of sequence data to evolutionary distances. The simplest way

of representing relationships between members of two taxa is by determining their

molecular sequence similarity. The most frequently used method for calculating

similarities from aligned sequences is based on the equation:

SM/L (Olsen, 1988)

where L M+U+wGG, S is the sequence similarity, Mis the number of alignment

positions with synonymous residues, L is an effective sequence length, U is the

number of alignment positions with nonsynonymous residues, wG is the weight given

to alignment gaps, and G is the number of alignment positions with a gap in one

juxtaposed with a residue in the other sequence. The weighting value (wG) varies

from zero (ignoring gaps) to one (equivalent to a substitution). A value of 0.5 is a

reasonable compromise though gaps are usually ignored in phylogenetic analyses

of bacteria (Swofford & Olsen, 1990).

Different alignment positions can be differentially weighted. Stahl et a!.

(1984) used different weights (wG) in an analysis of 5S rRNA sequence data in

which nucleotide positions representing Watson-Crick pairing were assigned half the

weight of unpaired nucleotides thereby reflecting their lack of independence. The
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same principle can be applied to assign different weights on the basis of inferred

substitution rates of individual positions thereby allowing emphasis to be placed on

the more conserved regions (Ludwig & Schleifer, 1994). Similarities based on

sequence data provide a simple way of recognising closely related taxa. However, it

is generally more informative to infer an evolutionary tree from nucleotide sequence

data with the exception of identical or nearly identical sequences (Olsen, 1 988).

The observed number of nucleotide sequence differences is not

synonymous with the number of fixed mutations. This is primarily a consequence of

the occurrence of multiple mutations at a sequence position. The one-parameter

model proposed by Jukes and Cantor (1969) assumes that there is independent

change at all of the positions hence there is an equal probability of ending up with

each of the other three bases. This model is also based on the assumption that

base composition does not vary over time. The transformed evolutionary distance

(d), which represents the number of substitutions per sequence position, is given in

the following equation:

(D
d= —b1og1---

where D is the dissimilarity between two sequences, that is, (1-S), and b is a

coefficient that varies with the particular model and data type. In the Jukes and

Cantor model, b is 3/4, which means that the fractions and substitution frequencies

of the four different bases are equal throughout evolution and thereby evolutionary

distance cannot be calculated when dissimilarity is over 0.75.

Several other distance transformation methods based on this equation have

been generated. The two-parameter model (Kimura, 1980) provides for differences

between transition and transversion rates. In the Kimura model, evolutionary

distance is expressed as:
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d = —1og[(1— 2P— Q)/1— 2Q]

P = U / L

Q U / L

L = M + U + UQ

where P is the fraction of sequence positions differing by transition; 0 is the fraction

of sequence positions differing by transversion; U is the number of positions

differing by transition; U0 is the number of positions differing by transversion; and M,

the number of positions in which two sequences have identical nucleotides.

Each of the models outlined above is based on the assumption that all four

nucleotides occur with equal frequency. A more general formula can be applied

when the four nucleotides are present in unequal proportions:

d = —bln(1 -	 and b 1— f,2 (Tajima & Nei, 1984)
b	 iR

where R is a set of possible residue types (e.g., {A,C,G,T} for the DNA sequence)

and f, is the frequency of the ith type of residue in the sequences under comparison.

Base composition values can be determined separately for each pair of sequences

(Woese et a!., 1990a) or can be the mean composition for all of the analysed

sequences (Swofford & Olsen, 1990). When transversions are considered alone

the transversion distance is:

d=—b1n(1—) (Woese eta!., 1991)

and

b = ' — [(fA + fG)2 (f +fT)]

where D is the dissimilarity between two sequences and f,, is the frequency of the

base N. Jin and Nei (1990) developed a method based on the Kimura model of



12	 CHAPTER!

base substitution where the rate of substitutions was assumed to vary from site to

site according to a gamma distribution.

Another approach used to estimate evolutionary distances with consideration

of gaps was introduced by Van de Peer et a!. (1990). In this method:

3 [ 4( U YY Q'\ G

d=_1_M+UJj1_LJ+E

where M is the number of identical nucleotides, U is the number of positions

showing a substitution, G is the number of gaps in one sequence with respect to the

other, and L is the sum of I, S and G. This approach has been applied to infer the

phylogenies of strains of Candida (Hendriks et a!., 1991), basidiomycetous yeasts

(Van de Peer et a!., 1992) and all life forms (Neefs et a!., 1993; Van de Peer et a!.,

1994).

Neighbor-joining method. The neighbor-joining method (Saitou & Nei, 1987) is an

algorithm for inferring additive trees. It is theoretically related to clustering methods,

such as the UPGMA, but is not based on the assumption that data are ultrametric

and that all lineages have equally diverged. In contrast to cluster analysis, the

neighbor-joining method keeps track of nodes on the tree rather than taxa or

clusters of taxa. The evolutionary distance matrix is provided as input data and a

modified distance matrix is constructed in which the separation between each pair of

nodes is adjusted on the basis of their average divergence from all of the other

nodes. This procedure leads to the normalisation of the divergence of each taxon

for its average clock rate. As the neighbor-joining algorithm seeks to represent the

data by an additive tree, a negative length can be assigned to a branch. The

computational steps involved in this method are shown below:

(a) Given a matrix of pairwise distances (ce, for each terminal node i calculate its net

divergence (r) from all other taxa using the formula:
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r1

where N is the number of terminal nodes in the matrix.

(b) Create a rate-corrected distance matrix (M) in which the elements are defined by

the equation:

M =d—(r,+r)/(N-2)

for all I and with j>i (the matrix is symmetrical). Only the values i and j, for which

M,7 is minimum, need to be kept for the next step.

(c) Define a new node, u, with the three branches that join nodes i, j and the rest of

the tree. Define the lengths of the tree branches from u to I and j using the

equation:

d	 (i—t,)

2 2(N-2)

= d - S

where S11, is the length of the path connecting nodes land u.

(d) Define the distance from u to each of the other terminal nodes (for all k ^ I orj):

(cIk+djk—dY)

2

(e) Remove distances to nodes i and j from the data matrix and decrease N by 1.

(19 Go back to step 1 if more than two nodes remain. Otherwise, the tree is finally

defined apart from the length of the branch joining the two remaining nodes

(I and j) . Let this remaining branch be S = d.
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Least-squares methods. A variety of techniques are available for fitting a given set

of pairwise evolutionary distance estimates to an additive tree. A concrete definition

of the net disagreement between the tree and the original data, as an objective

function to be minimised, is required. Fitch and Margoliash (1967) introduced the

first distance matrix method; Cavalli-Sforza and Edwards (1967) independently

invented a similar algorithm.

The error (E) of fitting distance estimates to a tree is defined as:

T-1 T

E	 wzjk 
_pja 

(Swofford & Olsen, 1990)
i1 j-i+l

where T is the number of taxa, w is the weight applied to the separation of taxa I

and j, d, is the distance between taxa land j, p is the length of the path connecting i

and fin a given tree, and a is 1 or 2. The value of a and a weighting scheme must

be chosen for the analysis.

Setting a to 2 represents a weighted least-squared criterion, that is, the

weighted square deviation of the tree path lengths from the distance estimates will

be minimised. If a is 1, the weighted absolute differences will be minimised. The

least-squares criterion is preferred if the errors in the distance estimates are

distributed uniformly across the data (Swofford & Olsen, 1990).

Four possible weighting schemes can be used:

w 1 (Cavalli-Sforza & Edwards, 1967), w = d ' (Fitch & Margoliash, 1967),

w =d 2 , and w,	 -2

where ois the expected variance of measurements of d,..

Two procedures are generally required to find the phylogenetic tree with the

lowest E value, namely optimising the branch lengths given a tree topology and

finding a tree topology with the lowest E value of all of the possible trees. De Soete
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(1983) proposed a method in which these two steps were combined into a single

step.

The equation can be recast in terms of the branch lengths in order to find the

branch lengths that minimise the E value. There are 2T-3 independent branches

that define the p , vaIues in an unrooted tree with Textemal nodes. Let A be a matrix

such that the element A(&k is equal to 1 if branch k is part of the path connecting taxa

land j otherwise A(k is equal to 0. Using this definition:

2T-3

Pu =

T-1 T

Combining this equation with E =	 -	 yields,
i=1 j=i-l-1

T-1 T	 I	 2T-3	 I

A(U)kSk
i=1 j=i+1	 I	 k=1	 I

The branch lengths, Sk, remain undetermined after the value of a and a weighting

scheme have been chosen. The solution for the minimal E value involves linear or

quadratic programming either by using iterative successive refinement techniques or

by solving a set of simultaneous equations using ordinary linear algebra (Olsen,

1988).

1.3.2. Parsimony methods

If each site in a set of nucleotide sequences has changed only once in the

evolution of a group then the newly-arisen base will be shared by all members of

species descended from the lineage in which the change occurred. If this were the

case at all of the sites, the sets of species having the new bases would be either

perfectly nested or disjointed, that is, they would not overlap unless one set of

species was included in the other. It would ,therefore, be possible to construct a
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phylogenetic tree on which the evolutionary traits of the group could be explained

with only a single change at each site. There would be a conflict between the

information provided by different sites if some of these sequences overlapped

without being nested. The different parsimony methods provide a means to resolve

these problems.

The concept of parsimony, introduced by Edwards and Cavalli-Sforza (1964)

using gene frequency data, was first applied to molecular sequence data by Eck

and Dayhoff (1966). In general, parsimony methods for inferring phylogeny operate

by selecting trees that minimise the total tree length, that is, the number of

evolutionary steps (base substitutions) required to explain a given set of data.

Different parsimony methods apply different constraints on character-state

changes. The parsimony method developed by Fitch (1971) was based on the

simplest model and applied disordered multistate-characters, such as nucleotide

and protein sequences. In contrast, Wagner parsimony, formalised by Kluge and

Farris (1969) and Farris (1970), assumes that transformation of one character state

to another implies a transformation through any intervening state, as defined by the

ordering relationship. Both methods permit the reversibility of the tree, that is,

transformation in character states can be in either direction between nodes. The

trees generated by these methods , therefore, are unrooted and the different

rootings do not cause changes in the branch lengths, as represented by the number

of steps.

The Fitch and Wagner parsimony criteria are based on the assumption that

the probabilities of character changes are symmetrical (e.g., the probabilities of

transformations from character 0 to 1 and 1 to 0 are the same). The Dollo parsimony

method (Farris, 1977) is used to find the most parsimonious tree using an

asymmetrical criterion on transformation. This model is based on the assumption
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that if a hypothetical ancestor is included in the analysis each character state

originates once on the tree and that any required homoplasy (i.e., convergence,

parallelism or reversal) takes the form of reversals to a more ancestral condition.

The Dollo parsimony method is usually applied in the analysis of restriction site data

in which the gain of bands is more difficult than the loss of bands (DeBry & Slade,

1985). It is also possible to construct an unrooted tree using the Dollo parsimony

method.

Transformations based on transversion can be weighted by coding pridine (A

and 0) as R and pyrimidine (C and T) as Y so that the transitions are not

considered. This procedure is not appropriate when closely related taxa are

compared (Swofford & Olsen, 1990).

Parsimony methods are subject to systematic errors when large lineage-to-

lineage variations in evolution rate are combined with large amounts of sequence

change (Felsenstein, 1 978b).

1.3.3. Maximum likelihood method

The most general method of deriving statistical estimates is the maximum

likelihood method (Felsenstein, 1988). The concept was introduced by Cavalli-

Sforza and Edwards (1967) for restriction data and by Felsenstein (1981a) for

molecular sequence data. The method has been reviewed by Saitou (1990).

The likelihood of a tree (7) can be defined as P(D;T,M) given a model of

evolution (A, and actual data (D). Likelihood can, therefore, be considered as a

function of the tree. The probability of all possible sets of data must add up to one.

However, the different values of P(D;T,M) need not add up to one when the data

are held constant and the tree is varied. In such cases, the probabilities are called

likelihoods (Felsenstein, 1988). A maximum likelihood approach to phylogenetic
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inference is used to evaluate the net likelihood that the given evolutionary model will

yield the observed sequences; the inferred trees are those with the highest

likelihood.

The least-squares and parsimony methods define the optimal tree in terms of

an optimal criterion when an evolutionary tree is inferred from multiple sequences.

In the maximum likelihood method, the tree is given and the task is to determine

how good it is. The method for evaluating the likelihood of a given tree proceeds

from a hypothetical root node at any convenient location in the tree and it combines

the likelihoods of each of its daughter trees, that is, descendant trees. The choice of

root location does not change the likelihood of the tree.

The mathematical expression of a model of evolution can be given as a table

of substitution rates per unit evolutionary distance at each site, R. In order to

convert rates to a model of evolution each matrix is defined as a set of four

simultaneous, linear differential equations:

[Al [RRRGARTATA1

oC RACRCCRRTC'C'
âi G 1 = 1 R AGR CGR GQRTG G

[TI [R ATR CTR GTR TT IT]

where A, C, G and Tare the probabilities that the nucleotide at the given site is A,

C, G and T, respectively. These probabilities are analytically integrated with respect

to evolutionary distance, d, to give a matrix, M(d), in which element M,(d) is the

probability that a nucleotide of initial identity i has identity j after evolving through a

distance d. This integration accounts for all possible series of substitutions linking

the initial and final residues, providing an intrinsic correction for multiple

substitutions. For instance, the integrated substitution matrix for Jukes and Cantor's

one parameter model (1969) is:
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When two nucleotide sequences are involved, the likelihood of observing that a

nucleotide x11 in the first sequence will be changed to a nucleotide x 21 in the second

sequence at a site j under the condition that the sequences are separated by

distance dcan be calculated as:

L(x11 ,x21 ;d) =

where	 is the probability that the first sequence has a nucleotide x1

If all of the sites are independent, the overall likelihood of finding sequence x, and

sequence x2 separated by distance d is the product of the likelihoods at each

position:

N

L(x1 ,x2 ;d) =
j=L

The equation is usually presented in its logarithmic form:

N

log L(x1 , x2 ; d) =	 log[f 1j 	(d)]
fri

where N is the number of sites in the compared sequences. For cases involving

three or more sequences overall likelihoods between nodes are computed for a

given tree topology and the combination shows the highest likelihood chosen as the

solution (the best tree or maximum likelihood tree).
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Methods for finding optimal branch lengths have been proposed by

Felsenstein (1981b). Fukami and Tateno (1989) demonstrated that for the Jukes

and Cantor model of evolution there was no problem of local minima while finding

optimal branch lengths. Tillier (1994) developed a multiple-parameter model of the

maximum likelihood method and applied it to the three-parameter case of RNA

sequence data.

The maximum likelihood method is the most statistically sound way of

reconstructing phylogeny (Felsenstein, 1988). However, the use of the method is

mainly hampered by its computational cost as demonstrated by Olsen eta!. (1 994b).

The number of taxa analysed at a time is normally below twenty (Olsen et a!.,

1994b). The significance of this approach to bacterial systematics has been

emphasised by Ludwig and Schleifer (1994).

1.4. Rooting the phylogenetic tree

Most methods outlined above do not specify the root in the tree, that is, they

are used to generate unrooted trees, If a rooted tree is desired, the root must be

located using extrinsic information (Swofford & Olsen, 1990). The most commonly

used method for rooting an unrooted tree is to include single or many outgroups that

are assumed to lie cladistically outside a presumed monophyletic group (Olsen,

1988; Ludwig & Schleifer, 1994). If there is a single branch on the unrooted tree that

partitions the ingroup taxa from the outgroup taxa then the tree is consistent with

the assumption of ingroup monophyly.

It is well known that most methods of estimating pairwise distance tend to

underestimate long branches and hence cause fundamental errors (Swotford &

Olsen, 1990). It is, therefore, important for distance methods to include an outgroup,

which is not too far away from the ingroup and to use the minimum number of
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outgroups. In contrast, for parsimony methods, the inclusion of multiple outgroups

can be more effective than the use of a single outgroup (Swofford & Olsen, 1990).

The appropriate rooting procedure may be essential in bacterial classification

where it is important that the ingroup is monophyletic. There is some confusion on

this matter. It was mentioned earlier that the outgroup taxa used to identify the root

should be as close as possible to the ingroup (Swofford & Olsen, 1 990). However,

Ludwig and Schleifer (1994) argued that only a moderately related taxon should be

used as the outgroup though they did not clearly specify why this was so. It is far

from clear what is meant by terms such as close and moderately close. In addition,

it is not always possible to find the closest outgroup. In practice, it is sound to

evaluate tree topologies with various combinations of outgroup strains in order to

identify the position of the root.

A major rooting problem is apparent in the case of relationships between

Archaea, Bacteria and Eukarya (Woese eta!., 1990b). In this case, the position of

the root, that is, the universal ancestor, cannot be identified by the approach

outlined above as it is clearly impossible to use outgroup taxa. Iwabe eta!. (1989)

and Gogarten et a!. (1989) suggested that the universal root be placed between the

Archaea and Bacteria on the basis of duplicated genes, namely those coding for

elongation factors and ATPases; these genes are believed to have evolved before

the separation of the three domains. The three-domain concept is widely accepted

amongst biologists though minor disagreements are found between different

molecular data and phylogenetic analyses (Lake, 1 987a,b; Rivera & Lake, 1992).

An alternative method for rooting trees is midrooting where the root is simply

the mid-point within the unrooted tree. This method is not valid when sampling

nucleotide sequences that are not distributed equally and hence its application to

most bacterial phylogenetic studies is not to be recommended.
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1.5. Evaluation of evolutionary trees

An evolutionary tree should be evaluated to assess the significance of the

tree topology and the length of branches. The procedures underlying statistical tests

of phylogenies have been extensively reviewed (Felsenstein, 1988; Li & Gouy,

1990; Swofford & Olsen, 1990).

Bootstrap analysis is the most frequently used method for evaluating

phylogenies. The technique was developed by Efron and Gong (1 983) and

introduced to phylogenetic studies by Felsenstein (1 985). This method is also called

the 'resampling method' as it involves the generation of new data sets by random

resampling of positions in the original data set. Some positions in the original data

set are included one or more times in the derived data set but some are not

considered at all. Felsenstein (1985) suggested that bootstrap values of over 95%

can be regarded as significant support for monophyly.

The number of resamplings is an important factor in bootstrap analyses. Li

and Gouy (1990) argued that the use of 100 replications was not sufficient to

provide confidence of the test on the 95% bootstrap limit. Using binomial

distribution, Hedges (1992) found that the minimum number of resamplings needed

to obtain ±1 % of significance at a bootstrap level of 95 % was 2000 replications and

at a bootstrap level of 99% it was 400 replications. Resampling 1000 times is a

possible compromise between accuracy and efficacy on cost of computing and is

generally accepted by most bacterial taxonomists (Ludwig & Schleifer, 1994).

Several methods have been proposed to evaluate the significance of

likelihood values. Felsenstein (1988) suggested that a one-degree of freedom x2

test on twice the difference in log-likelihoods was a conservative test. Kishino and

Hasegawa (1989) provided an alternative test and obtained the same confidence

interval as with a bootstrap analysis. The bootstrap approach for estimating
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confidence intervals of branch lengths in an evolutionary tree was proposed by

Dopazo (1994). It is widely accepted that the bootstrap method is the most

adequate technique for evaluating branching patterns in an evolutionary tree,

especially one that contains more than four taxa (Li & Gouy, 1990).

The jackknife method (Miller, 1974) is closely related to the bootstrap

approach. In this method, the resampling of the original sequence dataset is

dropped by k positions at a time and the level of support on each branch pattern

calculated from the trees based on the resampled data. A typical value for k is one.

The jackknife approach has rarely been used and has not been studied extensively.

1.6. Simulation studies on different phylogenetic inference methods

Huelsenbeck and Hillis (1993) examined the consistencies between sixteen

phylogenetic inference methods under three different evolutionary processes by

using computer simulations of a four-taxon case (in this instance, consistency

means convergence on the true tree as the sample size becomes infinite). They

found that the neighbor-joining and least-squares methods were consistent when

evolutionary processes match assumptions made on evolutionary distances but

when these assumptions were violated the two methods show inconsistencies. The

parsimony method gave inconsistencies throughout the simulation thereby

confirming the results of a previous study (Felsenstein, 1978b). The UPGMA

method also gave inconsistent results irrespective of the distance model used. The

inconsistencies of the different methods were generally increased with the number

of sites included in the simulation.

Kim (1993) carried out a simulation study on an eight-taxon case using three

methods, namely the UPGMA, neighbor-joining and maximum parsimony methods.

He considered that a tree topology given by three different methods was likely to be

a 'true tree' and went to on to argue that sequence data should be analysed by
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more than one method. Neither Huelsenbeck and Hillis (1993) nor Kim (1993)

examined the maximum likelihood method.

Kuhber and Felsenstein (1994) examined five methods, namely the

parsimony, compatibility, maximum likelihood, Fitch-Margoliash and neighbor-joining

methods. They found that all of the methods performed well given equal rates of

evolution, a fundamental assumption for all of these approaches. The maximum

likelihood method was superior to the other methods given unequal rates of

evolution per branch or per site though the distance methods performed better with

short nucleotide sequences. Nevertheless, none of the methods provided accurate

estimations of branch lengths under unequal evolution rates per site. It was also

noted that the parsimony method gave the worst estimation under low and unequal

evolutionary rates.

It is generally accepted from simulation studies that the neighbor-joining

method provides a better estimation of phylogenies than the parsimony method

given unequal rates of evolution per branch (Li et a!., 1987; Sourdis & Nei, 1988; Jin

& Nel, 1990; Kubber & Felsenstein, 1994). Similarly, the maximum likelihood

method slightly outperforms the other methods, especially given unequal rates of

evolution in branches (Hasegawa & Yano, 1984; Saitou & Imanish, 1989; Kuhber &

Felsenstein, 1994).

Comparative studies of phylogenetic methods based on simulated or actual

four-taxon data sets are often misleading because the performance of a method

may be quite different for a four-taxon data set than for a larger data set. Generally,

the results from simulation studies should be carefully evaluated since the

evolutionary process is much more complex than simulated ones!
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1.7. Misconceptions in bacterial phylogenies: a review of the recent literature

Felsenstein (1988) pointed out that most molecular evolutionists who use

methods for inferring phylogenies do not take much interest in discussions of the

properties of the mathematical methods since they focus on the difficult task of

collecting data, that is, nucleic acid sequencing. Bacterial taxonomists often seem to

regard phylogenetic analyses as a 'blackbox' integrated into computer software.

Examples of this phenomenon can readily be found in the literature. The following

examples of inaccurate or incomplete presentation of methods used for

phylogenetic analyses are taken from the International Journal of Systematic

Bacteriology, volume 44, 1 994:

(a) "The ODEN program package was used to align the sequences, and

phylo genetic distances were calculated by using both the unweighted pair group

method and the neighbor-joining method' (Ezaki et al., 1994, page 130). In this

study, the authors did not say how evolutionary distances were calculated.

(b) "Evolutionanj distance values were determined by using the neighbor-joining

method' (Briglia et a!., 1994, page 494). The method used in this study was

designed for constructing trees from distance matrices not for generating

distances!

(C) "The dendro gram was constructed by using the software program PILEUP

obtained from the Genetic Computer Group, Inc." (Robertson et aL, 1994, page

836). The authors did not give any information on how data were analysed.

(d) "An unrooted phylo genetic tree was produced by using the DNADIST and FITCH

programs in the PHYLIP packagd' (Dupuy et a!., 1994, page 461). It is not clear

which distance method was used as the DNADIST program contains four

different distance methods.
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(e) A common omission in several papers was the failure to specify the distance

models used (Cai & Collins, 1994, page 583; Collins et a!., 1994a, page 523;

Collins eta!., 1994b, page 674; Collins et a!., 1994c, page 812; Ennght et a!.,

1994, page 387; Jagoueix et a!., 1994, page 379; Postic et al., 1994, page 743;

Takewaki etal., 1994, page 159; Willems & ColLins, 1994, page 591).

(1) Evolutionary distance and sequence similarity were confused by Enright et a!.

(1994, page 387).

Confusion is also apparent over the use of bootstrap analyses. Two levels of

replications, namely 100 and 1000 resamplings, are most widely used. It is clear

from the heuristic nature of bootstrap analyses that as the numbers of resamplings

increase the accuracy of evaluation on the resultant phylogenies also increases.

However, Ruimy et aL (1994a) justified the use of 100 replications over 1000

resamplings since "their experience showed that increasing the number of

bootstrap replications above 100 usually had only a small influence on the results

compared with the choice of species".

Some investigators have constructed phylogenetic trees using all of the

aligned sites and applied only polymorphic sites for bootstrap evaluation (Rainey et

a!. 1 995a; Yurkov et a!., 1994). It is evident from the algorithms that the parsimony

method is not affected by the selection of polymorphic sites though this is not the

case for the distance matrix and maximum likelihood methods. The effect of

reducing data size by selecting polymorphic sites for phylogenetic analysis is

illustrated in Figure 1-2. It is evident that the neighbor-joining tree based on all of

the aligned sites (Figure 1-2a) differs significantly from the one based on the

polymorphic sites (Figure 1-2b), especially with respect to the positions of
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FIGURE 1-2. COMPARISON OF PHYLOGENETIC TREES BASED ON ANALYSES OF FULL
NUCLEOTIDE POSITIONS AND POLYMORPHIC SITES. DISTANCE MATRICES WERE
GENERATED ACCORDING TO JUKES AND CANTOR (1969), TREES CONSTRUCTED USING
THE NEIGHBOR-JOINING METHOD (SAITOU & NET, 1987) WITH BACILLUS SUBTILISAS THE
OUTGROUP. BOOTSTRAP VALUES WERE BASED ON 1000 RESAMPLINGS AND VALUES
DERIVED FROM THE POLYMORPHIC SITES ARE INDICATED IN PARENTHESES. (a) ANALYSIS
OF ALL POSSIBLE SITES (1371 NUCLEOTIDES) AND (b) ANALYSIS OF POLYMORPHIC SITES
(528 NUCLEOTIDES). MAJOR DIFFERENCES ARE INDICATED IN BOLD TYPE.
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Bifidobacterium bifidum and "Streptomyces ambofaciens". It is, therefore, clear that

the bootstrap values derived from the different tree topologies are not the same.

The bootstrap values that were significantly reduced are indicated in bold type

(Figure 1-2a). It is evident that in two cases the bootstrap values were reduced from

over 95% to below 90%. This misuse of bootstrap evaluation may be due to the

confusion seen between the parsimony and distance matrix methods whereby the

former method gives identical results irrespective of whether all or just the

polymorphic sites are used but the latter method does not.

Over one hundred methods are available to estimate phylogenetic

relationships but it is not always clear what their strengths and weaknesses are or

which method should be used in a given situation (Swofford & Olsen, 1990; Hills

eta!., 1993). Simulation studies can be used to address such questions but the final

choice has to be made by molecular systematists. However, it is clear that bacterial

phylogenies should be interpreted with care as all estimates of phylogeny are based

on relatively simple assumptions when compared with the complexity of the natural

evolutionary process. It has been shown that the assumption of symmetry of

nucleotide substitutions is violated for actual sequence data (Gojobori eta!., 1982;

Li et aL, 1984). It has also been shown that compensatory mutations in stem

regions of ribosomal DNA may violate the assumption of character independence

(Wheeler & Honeycutt, 1988; Dixon & Hillis, 1993). Those engaged in generating

phylogenies should remember the words of Francis Lord Bacon (1605), as quoted

by Sneath (1986):

'if a man will begin with certainties he shall end in doubts; but if he will be constant to

begin with doubts he shall end in certainties.
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2. Computer-assisted classification and identification based on
phenotypic/phenetic properties

2.1 .Computer-assisted classification

Classification is the process of ordering organisms into groups (taxa) on the

basis of their relationships (not confined to relationships by ancestry). The product is

an orderly arrangement or system of classification designed to express

interrelationships of organisms and to serve as an information storage and retrieval

system. Early bacterial classifications relied heavily on a few morphological and

staining properties that were sometimes supplemented by a small number of

physiological features. Taxonomies based on single characters, or a series of single

characters, are termed monothetic classifications (Sneath, 1962). Such artificial

classifications are usually very unreliable as they have a low information content

and cannot accommodate strain variation or test error.

The structural weaknesses of monothetic classifications led some bacterial

systematists to believe that stable taxonomies could only be achieved when

classifications were derived from the analysis of large numbers of bacteria for many

properties. Numerical taxonomies have a high information content and are often

described as general purpose classifications sensu Gilmour (1937) since they are of

potential value to many bacteriologists.

A reliable way of establishing centers of variation in poorly circumscribed

genera is to examine many strains for large numbers of equally weighted

characters. This is the foundation of the numerical taxonomic procedure introduced

to bacteriology by P. H. A. Sneath (1957a,b) and subsequently widely applied

(Sneath & Sokal, 1973; Goodfellow & Dickinson, 1985; McDonnell & Colwell, 1985;

Sackin & Jones, 1993). In essence, numerical classifications are formed when large

numbers of strains are examined for many characters then classified on the basis of
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overall similarity (Figure 1-3). Classifications generated in this way are polythetic as

they have a high information content and are based on a complete set of recorded

characters not on the presence or absence of single subjectively weighted features.

Numerical classifications can generally accommodate strain variation and are

objective in the sense that they are not overtly sensitive to the addition of more

strains or characters. The relationships between the test strains and any hierarchies

based on them are phenetic not phylogenetic (Goodfellow & O'Donnell, 1993).

The strength of the numerical taxonomic procedure relies on the ability of

computers to handle large amounts of data on large numbers of strains. Thus, the

cvc cQp' pocte souci be, an eneray are, stable because they are

based on large amounts of information with no single character being either

essential for membership or sufficient to exclude a strain from a group (Jones &

Sackin, 1980). Theoretically, the more phenetic characters that are examined the

better will be the measure of the expressed, and hence probably the genomic,

relatedness between test strains.

Choice of strains. The objects to be classified, usually strains, are called

operational taxonomic units (OTU; Sneath & Sokal, 1973). Where possible, strain

collections should include type strains, representatives of additional well studied

cultures, marker strains outside the area of study and duplicated cultures to provide

an internal check on test reproducibility. It is also advisable to include newly isolated

strains since organisms which have been repeatedly subcultured may not be good

representatives of established taxa (Logan, 1994; Goodfellow, 1 995a). At least ten

percent of strains should be duplicated and treated as separate operational

taxonomic units. In theory, about twenty-five strains are needed to accurately define

the centre and radius of a numerically defined species (Sneath, 1977).
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Selection of strains

Selection of characters

1
Collection of data

¶1!
Coding of characters

	

4,	 Omit tests without discriminatory power
or with poor test reproducibility

Final matrix

	

4,	 Hierarchical cluster analysis
Ordination methods

Defining clusters

'I,
Frequency matrix

Taxospecies

Selection of characters CHARSEP - DIACHAR - MOS1TYP

Identification matrix

Theoretical evaluation DIA CHAR - MAT/DEN - MOS1TYP - OVERMAT

4,	 Practical evaluation + MA TIDEN

Routine identification

FIGURE 1-3. MAJoR STEPS INVOLVED IN NUMERICAL CLASSIFICATION AND

IDENTIFICATION. , PROGRAMS WRITTEN BY SNEATH (1 979d, e, 1 980a, b, c).
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Choice of characters. The characters used in numerical taxonomy are based on

results of tests performed on test organisms. It is important to use characters that

are genetically stable and not overtly sensitive to experimental or observational

uncertainties. The usual procedure is to take a selection of biochemical, cultural,

morphological, nutritional and physiological characters to represent the entire

phenome, that is, the genotype and the phenotype. It is also important to have

sufficient information to discriminate between taxa. Sackin and Jones (1993)

recommended at least fifty unit characters but preferably several hundred tests are

needed though with high numbers of features any gain in information falls off

disproportionally to the effort involved in securing data. In addition, tests need to be

carefully chosen and performed under rigorously standardised conditions (O'Brien &

C1'V, tT ., Lcac, 94; GoccSeow, 995a).

Coding of data. Data must be coded into a format suitable for computation. The

results obtained from various tests are usually coded as binary form. In general, unit

characters are coded as two state characters where the possession of the character

is scored as plus (^) or 1 and its absence as minus (-) or 0. Multistate characters,

such as colonial colour, are converted into two states by using the mutually

exclusive method of coding (Sneath & Sokal, 1973) where an OTU possessing a

particular state for a property is coded positive (1) for that character state and

negative (0) for all of the remaining character states. A disadvantage of this method

of coding is that the weight given to each complex character increases

proportionately with the number of character states. It is for this reason that the

number of mutually exclusive characters are usually kept to a minimum in numerical

taxonomic studies (Goodfellow eta!., 1990; White eta!., 1993).

Estimation of test error. Determination of test reproducibility is essential given the

effect of test error on the structure of numerical classifications (Sneath, 1972,
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1974b; Sneath & Johnson, 1972; Goodfellow, 1977; Sackin & Jones, 1993). By

examining duplicated cultures, initially under code, and treating them as individual

OTUs, the mean probability of test error can be estimated from an analysis of test

variance. The reproducibility of a two-state test i, can be estimated using the

following equation:

p =(1_J1_4s) (Sneath & Johnson, 1972; equation 4)

where p. is the estimated error rate of the test and s is its estimated variance which

is given by:

s,2 =f (Sneath & Johnson, 1972; equation 15)

where n is the number of OTUs with discrepancies and t is the total number of

duplicated strains. Individual test variances may be averaged to give the pooled

variance (S2):

S2

where N is the total number of tests.

Test error has the general effect of lowering similarities between strains and

when high of eroding taxonomic structure. Sneath and Johnson (1972) found that

there is a rapid erosion of taxonomic structure when p> 0.1. They also pointed out

that it is generally better to employ many tests even if they are not as reproducible

as desired rather than to use only a few extremely reproducible tests. Tests of

historical importance can be included in final data matrices even though they are not

reproducible (Barrett & Sneath, 1994). It is important to balance the detrimental

effect on taxonomic structure of individual tests with a high error against information

loss of test results deleted from data matrices.
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Values for test error range from less than four percent for within laboratory

studies (McCarthy & Cross, 1984; GoodfeHow eta!., 1991; Whitham et a!., 1993;

Barrett & Sneath, 1994) to as high as fifteen percent for results between

laboratories (Sneath, 1 974b). Clearly, standardised methods are required to

generate inter-laboratory databases for diagnostic purposes (Sneath, 1 974b).

Computation of resemblance. A number of ways of measuring similarity and

dissimilarity between a pair of OTUs have been devised (Sneath & Sokal, 1973;

Austin & CoIwell, 1977) but only those commonly used in bacterial taxonomy are

considered here.

The simple matching coefficient (SSM), which is only valid with binary data, is

simply the proportion of characters that two organisms have in common. The

symbols a and d are used to account for the number of shared positive and

negative matches with b and c accounting for the number of differences between a

pair of OTUs:

Results for OTU1

+

Results for	 +	 a	 b
OTU2

-1	 c	 d

The S coefficient is calculated as:

a+d
= a + b + c + d

This coefficient has the great virtue of simplicity and is equal to 1 -d 2 where d is the

taxonomic distance. Principal coordinate analysis can be performed on a matrix

based on S coefficients so that the resulting values are taxonomic distances

between OTUs (Sackin & Jones, 1993). The SSM coefficient also satisfies the
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conditions for the statistical examination of cluster overlap using the method

described by Sneath (1 979b).

Similarly, Jaccard's coefficient (Sc) may be defined as:

a
sJ = a+b+c

that is, the ratio of the total number of positive matches to the total number of

characters minus the sum of the negative matches. The S coefficient is often

applied to ensure that relationships detected using the SSM coefficient are not based

on negative correlations. Negative matches are not necessarfly a measure of

similarity as some strains may fail to give a positive response whereas others may

simply be unable to do so under the test conditions. The S coefficient is particularly

useful in studies where relatively fast- and slow-growing organisms are compared

(Goodfellow & Wayne, 1982; Ridell & Goodfellow, 1983; Whitham et a!., 1993).

Cower's similarity coefficient (S G) is a weighted average of all similarity

values between pairs of OTUs and can be used to analyse binary, quantitative and

disordered multistate data. For binary data, the SG coefficient is equivalent to the S

coefficient whereas for disordered multistate characters it is identical to the SSM

coefficient. In the case of quantitative data, the SG coefficient is defined as:

V 1— v2
S=1

where r is the range of values for the character and vi and v2 the values of OTU1

and OTU2, respectively.

Sneath (1968) considered that the total difference between OTUs was a

reflection of two components, namely pattern and vigour differences. The latter may

be equated with shape and size differences, respectively, in animals and plants.

The aim of separating these two components was to reduce the apparent
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dissimilarity between OTUs that could be attributed to differences in growth rate,

that is, the vigour difference. Thus, slow-growing strains may be scored as negative

in a test, such as acid production from sugars, not because they lack the necessary

catabolic pathway but because they do not grow fast enough for a positive reaction

to be recorded within a given period of time. The pattern coefficient (Dr) is useful

when strains of widely different metabolic activity are being studied.

The vigour of an OTU is defined as the proportion of its characters that show

a positive response in the tests. The vigour difference, Dv' is the difference in vigour

between two OTUs:

c—b

D = a+b+c+d 
(Sneath, 1968)

using the notation described earlier. Similarly, the pattern difference, D, is defined

as:

D2 =D2 —D2 (Sneath, 1968)

where DT is the total difference. The latter can be defined either as	 - SSAf or

Applying the former definition, the pattern difference (Dr) can be derived

D	
2

- a+b+c+d

The D and D coefficients are dissimilarity coefficients which range from 0 to

1. The D coefficient has been successfully applied in numerical phenetic studies of

bacteria that grow slowly, particularly when comparisons are to be made with more

vigorous organisms (e.g., Goodfellow et a!., 1976; Whitham et al., 1993). However,

this coefficient tends to be unreliable when OTUs show a disproportionate number

of positive and negative matches (Goodfellow, 1 995a).
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Sackin (1981) derived an alternative form of the pattern difference coefficient

(Dp2) from the SG coefficient. The D 2 coefficient is defined as:

D2 =D 2 — D2 (Sackin & Jones, 1993)

1	 1
where D =—x —y , D2 =—(x —y,), x and y, are the ith character states,

n i=1	 ni=1

transformed into the range 0 to 1, in the two OTUs under comparison, and n is the

total number of characters.

The Euclidean distance coefficient, D, is useful for analyses of quantitative

data. It is defined as:

D2 =	 —y1)2

where x, and y are the values of the ith character for the two OTUs. The taxonomic

distance, often referred to as d, is the Euclidean distance divided by the square root

of the number of characters and hence ranges from 0 (OTUs identical) to 1

(maximum dissimilarity). Euclidean distances satisfy the conditions for many forms

of statistical analysis such as overlap statistics (Sackin & Jones, 1993).

Character weighting. Numerical taxonomists are generally in agreement in giving

all unit characters equal weight when creating taxonomic groups (Sneath & Sokal,

1973). However, there are few cases in which unequal weighting can be

considered. A way to weight characters according to reproducibility has been

developed (Sackin & Jones, 1993). The weight of the ilh character is defined as:

w, = (1-2p1 )2 (Sackin & Jones, 1993)

where p. is the estimated error rate. An advantage of this procedure is that it is not

necessary to choose an arbitrary cut-off point for estimated test error.
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Milligan (1989) recommended the weighting scheme of De Soete (1986,

1988) when Euclidean distance is applied to hierarchical clustering. This method

attempts to yield distances:

d=Jw,(x, —y1)2

that approximate to ultrametric inequality:

d S max(d,d)

where w, is the weight for the h character, x1 and y are the values of h character

for OTU5 x and y, and dr,, d and d are the distances between OTUs x, y and z

Milligan (1989) found that this method gave the best recovery of hierarchical

structure in a simulated dataset as it downweighted characters that are noisy in

relation to the hierarchy.

In practice, it is not necessary to weight unit characters in analyses which

are based on a large amount of binary data. It is also unlikely that a few correlated

features, or noisy data, will affect the taxonomic structure derived from analyses of a

hundred or more unit characters (Sackin & Jones, 1993).

Hierarchical clustering. The ordering of OTUs into groups of high overall phenetic

similarity is usually achieved by means of one of several commonly used sequential,

agglomerative, hierarchic, non-overlapping (SAHN sensu Sneath and Sokal 1973)

clustering methods. In general, these begin by searching similarity matrices for the

highest values between any pair of OTUs. This pair forms a group or cluster. The

similarities between this group and each of the remaining OTUs are considered for

the next agglomeration. This process proceeds so that at each cycle OTUs are

added to clusters or clusters join until all of the OTUs are included in a single

cluster. Consequently, t-1 cycles are required to cluster tOTUs.
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Clustering techniques vary in terms of the definition of the similarity between

an OTU and a group and, more generally, between groups. The single linkage

(SL; Sneath, 1957a) technique, which is also known as the nearest neighbor

method, defines the similarity between two groups as the similarity of the two most

similar OTUs, one in each group. In contrast, the average linkage (AL; Sokal &

Michener, 1958) technique takes the average of all of the similarities across the

groups. The most popular variant of the AL method, the unweighted pair group

method with arithmetic averages (UPGMA; Sokal & Michener, 1958), takes the

simple arithmetic average of the similarities across two groups, each similarity

having equal weight. The weighted pair group method with arithmetic averages

(WPGMA; Sneath & Sokal, 1973) differs from the UPGMA algorithm by weighting

the OTU most recently admitted to a cluster equal with all previous members. This

algorithm shares the properties of the UPGMA method but distorts overall

taxonomic relationships in favor of the most recent addition to a cluster.

The similarity levels at which clusters are defined are influenced by the

clustering algorithms (Goodfellow, 1995a). In general, clusters formed using the AL

algorithm are more compact than those based on the SL method (Sackin & Jones,

1993). The strengths and weaknesses of SAHN methods have been considered in

detail (Sneath & Sokal, 1973; Everitt, 1980).

Hierarchical clustering methods impose a structure on data which may or

may not be a true representation of relationships between OTUs as shown by their

observed similarity values. Intuitively, data are suitably hierarchical if a dendrogram

can be constructed in which most or all of the original resemblance scores between

the OTUs have values close to the corresponding scores, that is, the cophenetic

values, derived from the dendrogram alone. This is the basis of the cophenetic
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correlation coefficient (r Sokal & Rolf, 1962), which is the most common measure of

hierarchicalness of the SAHN clustering methods.

Typical cophenetic correlation values are in the range of 0.6 to 0.95 (Sackin

& Jones, 1993; Goodfellow, 1995a). Values at or above 0.8 are usually considered

to be good whereas those below 0.7 suggest that only limited confidence can be

placed in relationships presented in dendrograms. In practice, complete agreement

between dendrograms and resemblance matrices cannot be achieved given the

taxonomic distortion introduced when representing multidimensional data in two

dimensions. The UPGMA algorithm tends to give higher cophenetic correlation

values than other SAHN clustering methods. It is for this reason that this algorithm is

usually the method of choice in numerical phenetic surveys (Jones & Sackin, 1980;

Sackin & Jones, 1993; Goodfellow, 1995a).

The results of SAHN clustering are usually presented in the form of a

dendrogram where the tips of the branches represent OTUs and the axis at right

angles to the tips is the similarity axis which shows the similarity values at which

groups form. The results can also be used to produce ordered similarity matrices

where squares are shaded according to their similarity values so that the highest

values receive the darkest shading. The shaded diagram is a useful vehicle for

highlighting major groups and subgroups within a set of OTUs. It also gives a visible

diagrammatic representation of intra- and inter-group similarities (Goodfellow, 1977;

Sneath, 1978; Jones & Sackin, 1980).

Ordination methods. Ordination is the placement of t OTUs in an A-space of

dimensionality that varies from one to the number of unit characters or t-1 whichever

is less (Sneath & Sokal, 1973). With ordination methods, it is possible to view

relationships between OTUs directly in terms of taxonomic space. In contrast to

hierarchical clustering methods, OTUs are not divided into convenient groups using
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ordination methods although groups may be recognised by careful examination of

output. Two ordination methods, namely principal component analysis (PCA) and

principal coordinate analysis (PCO), are commonly used in bacterial taxonomy.

Principal component analysis (PCA) is a well known means of reducing

dimensionality from multivariate data. The guiding concept of PCA is to reduce the

multidimensional aspect of the distribution of OTUs in the A-space to just two or

three dimensions so that the positions of OTUs can be visualised. The theoretical

background of PCA is well documented (Dunn & Everitt, 1982; Manly, 1986).

Principal coordinate analysis, an alternative method to PCA, was developed

by Cower (1966). In contrast to PCA, which uses the raw data matrix (nxt), the

starting point for P00 is the dissimilarity matrix. Further unlike PCA, which is only

relevant when an Euclidean metric is considered, P00 is an ordination which is

applicable to relationships between a set of OTUs in taxonomic space irrespective

of whether distances are Euclidean or not (Alderson, 1985). However, when the

observed proximities are Euclidean the results of P00 are equivalent to those of

PCA (Cower, 1966; Everitt, 1980). Principal coordinate analysis is especially useful

when only dissimilarity matrices are available (e.g., DNA-DNA pairing data). The

method has been successfully applied to bacterial classification (Logan & Berkeley,

1981; Bridge & Sneath, 1983; Alderson et a!., 1984; Barrett & Sneath, 1994).

Ordination techniques have been successfully used to represent

relationships between large groups but such analyses can distort affinities between

close neighbors (Alderson, 1985). In contrast, hierarchical clustering methods are

reliable when depicting relationships between closely related, large heterogeneous

groups (Sneath & Sokal, 1973; Sneath, 1978, Sackin & Jones, 1993). Results from

ordination studies are generally represented as two or three dimensional plots.

Cluster overlap, due to reduction of dimensions, can be a limitation in the
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interpretation of results of ordination analyses as clusters that are distant in full

hyperspace may overiap in low dimensional plots (Sneath & Sokal, 1973; Clifford &

Stephensen, 1975; Sneath, 1980c; Logan, 1994).

2.2. Computer-assisted identification

Identification is the end-product of the taxonomic process and as such is

clearly dependent on the accuracy and data content of classification systems and

on the predictive value of names assigned to taxa. In general, the characters

chosen for identification schemes should be easy to perform and few in number.

Numerical taxonomic surveys provide data on test reactions of strains within each

taxon circumscribed in the classification. Results are usually expressed as

frequency matrices which consist of the percentage of strains in each cluster that

give a positive result for the unit characters. Diagnostic characters can then be

selected from percentage positive frequency tables, that is, by a posteriori

weighting, and used to generate dichotomous keys, diagnostic tables and computer

identification matrices. Computer-assisted identification is preferred to conventional

keys and tables as it is relatively quick and simple (Lapage eta!., 1973; Hill, 1974;

Priest & Williams, 1993).

Beers and Lockhart (1962) were first to suggest that bacterial identification

could be based on a mathematical model. The theoretical studies that followed

culminated in the introduction of a computer-based probabilistic system for the

identification of enterobacteria (Lapage et a!., 1970, 1973; Bascomb et a!., 1973;

Willcox et a!., 1973). Since then, probabilistic identification schemes based on

numerical classifications have been introduced for certain actinomycetes, including

slowly-growing mycobacteria (Wayne et a!., 1980, 1984), neutrophilic

streptomycetes (Williams et a!., 1983b; Langham et a!., 1989a; Kampfer &
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Kroppenstedt, 1991), streptosporangias (Kim, 1993; Whitham et aL, 1993) and

streptoverticillias (Locci eta!., 1 986).

The first step in the generation of an identification matrix is the selection of a

small number of diagnostic tests that are sufficient to differentiate all of the taxa in

the numerical taxonomic database. Programs available for this purpose include

CHARSEP (Sneath, 1979e) and DIACHAR (Sneath, 1980a). The CHARSEP

program is used to find the value of different unit characters in separating groups

where the percentage of positive values are known. Five separation indices can be

calculated for each unit character, namely Gyllenberg's sum of C, Gyllenberg's R,

Niemelä's index, the separation potential (VSP) index and the character separation

potential (CSP) index. These indices can be used to determine the value of each

unit character in turn in separating clusters in a frequency matrix. The DIACHAR

program (Sneath, 1980a) is used to calculate the diagnostic scores of each test for

each cluster given the frequency matrix; the tests are then ranked in order of

descending scores. An identification matrix should contain sufficient information to

define each taxon by several diagnostic properties.

The importance of evaluating frequency matrices has been repeatedly

stressed (Sneath, 1978; Williams et a!., 1983b; Priest & Williams, 1993). The

computer program OVERMAT (Sneath, 1980c) can be used to determine the

degree of overlap between clusters represented in frequency or identification

matrices. Unknown strains cannot be unambiguously identified when there is

considerable overlap between taxa. The OVERMAT program determines both the

disjunction index (W) for each pair of taxa and the corresponding nominal overlap

(VG) from the percentage positive data. Additional tests selected by using the

DIA CHAR program can be added to identification matrices in order to reduce cluster

overlap.
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A homogeneous taxon will contain strains that fall into a well defined

taxonomic space. Strains which do not fall within the boundary of a cluster are

sometimes referred to as 'outliers'. These organisms presumably represent atypical

strains or centers of variation that represent new taxospecies. The reliability of

identification matrices may be impaired if outliers are included in clusters. Sneath

and Langham (1989) developed a program for detecting outliers. This program,

QUTLIER, can be used to estimate the distances of strains from the centre of a

taxon and it draws a 2x distribution in the resultant graph. The Kolmogorov-Smirnov

test is used to assess the fitness of data to the 2 distribution and to list strains that

lie outside the taxon.

Sneath (1980b) introduced the computer program MOSTTYP to calculate

identification scores for the most typical organisms, that is, the hypothetical median

organism (HMO), in each of the clusters included in an identification matrix. When

identification matrices are sound the HMO of each cluster will be identified to its

taxon with high identification scores. Probabilistic identification matrices can be

further assessed by treating strains included in the original numerical taxonomic

study as known organisms then calculating identification scores using the original

classification data obtained for the diagnostic tests.

Practical evaluations of frequency matrices are also important as they allow

an assessment of test error (Priest & Williams, 1993). The usual approach to

practical evaluation is to first identify reference strains then field isolates. In general,

reference strains are identified with high scores to the correct taxon (Bascomb et a!.,

1973; Williams eta!., 1983b; Locci eta!., 1986; Priest & Alexander, 1988; Whitham

et a!., 1993). The second step involves identification of fresh isolates (Priest &

Alexander, 1988, Kim, 1993; Whitham eta!., 1993).
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Two types of computer-assisted identification schemes can be recognised

(Sneath, 1979a). The Bayesian model, is based on the concept that the probability

of an unknown strain belonging to a specific taxon is a function of the probability

that an individual chosen at random possesses a given series of character states. A

number of investigators have developed this model (Bascomb eta!., 1973; Lapage

eta!., 1973; Willcox eta!., 1973). This method involves the calculation of Wilicox

probabilities, that is, the likelihood of unknown character-state values against a

particular group divided by the sum of the likelihoods against all of the other groups.

Scores approaching 1 .0 indicate a good fit between unknown organisms and a

group in the identification matrix. Most commercial identification systems based on

phenotypic properties use Willcox probabilities (Priest & Williams, 1993).

The second approach to numerical phenetic identification is based on the

taxon-radius model, where a taxon is represented as a hypersphere in a space of

many dimensions, one dimension per unit character (Sneath, 1 979a). This approach

allows the taxon to be circumscribed by a critical radius drawn about the centre. The

centre represents the most typical individual and the circumference the limits of

possible variation. This method is only applicable when it is known that clusters are

close to being hyperspherical (Sneath, 1979a). Identifications are achieved by

calculating the distance between unknown OTUs and cluster centroids.

The two approaches to computer-assisted identification outlined above have

been implemented in the BASIC program developed by Sneath (program MATIDEN,

1979d); the computational details are given in the Materials and Methods section of

this chapter.

3. Software tools

Bacterial taxonomists have been engaged in two difficult tasks in recent

years, namely the generation of taxonomic information and the development of
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suitable data handling techniques. The first objective is increasingly being realised

due to the development of automated systems for the acquisition of phenotypic

(Logan & Berkeley, 1981; Gartand & Mills, 1991; Kämpfer eta!., 1991, 1992; Hamid

et a!., 1994), nucleic acid sequence (Xia et a!., 1994; Rainey et a!., 1995a) and

chemotaxonomic data (Stead, 1992; Vainshtein et a!., 1992; Haack et a!., 1994).

However, less attention has been devoted to the development of adequate software

tools.

In the late 1970's and 1980's, P. H. A. Sneath wrote several computer

programs for the analysis of phenotypic data. Software packages currently

recommended for the classification of bacteria have been reviewed by Sackin and

Jones (1993). The NTSys-pc (James Rohlf; Exeter Software, 100 North Country

Road, Building B, Setauket, New York 11733, USA) includes routines for most

cluster analysis and multivariate statistical methods, such as principal component

and principal coordinate analyses. The classical CLUSTAN package (Wishart,

1987) also contains several procedures relevant for bacterial classification.

Probabilistic identification of microorganisms can be achieved by using

different software packages, such as Bacterial Identifier (Bryant, 1991), MICRO-IS

(Bello, 1989) and TAXON (A. C. Ward, Department of Microbiology, University of

Newcastle upon Tyne, England, UK; unpublished). The development of software for

bacterial identification has been extensively reviewed (Sackin, 1987; Sackin &

Jones, 1993). In addition to these programs, most commercially available

phenotypic identification systems, such as BIOLOG (BIOLOG, 1992), implement the

identification routine in their packages.

Nucleotide sequence data, unlike the phenotypic data, can be used to

construct a universal database. Such data are currently managed by three different

gene databases, namely DDBJ (DNA Databank of Japan), EMBL (European
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Molecular Biology Laboratory) and GenBank (USA). The ribosomal database project

(RDP; Larsen et a!., 1993), headed by Carl Woese, provides aligned 1 6S and 23S

rRNA sequence data with software packages for alignment and phylogenetic

analysis. A detailed review of the databanks mentioned in the global international

network has been given by Canhos et a!. (1 993).

It is very interesting that the use of different types of data handling routines

is largely correlated with the availability of the corresponding software tools. The use

of fatty acid composition data, for example, was enhanced by the introduction of

automated systems, notably the MIDI identification system (Microbial ID, Inc.,

Newark, Delaware. USA). This system, which is especially useful in clinical

diagnostic laboratories, includes an automated data handling system suitable for

non-taxonomists. Similarly, the application of whole-organism protein fingerprinting

and Curie point pyrolysis mass spectrometry is increasing due to the availability of

suitable software tools (Magee, 1993, 1994; Pot et a!., 1994). The availability of the

PHYLIP package (Felsenstein, 1993) has provided a platform for a variety of

phylogenetic analyses of amino acid and nucleotide sequence data. It is not

surprising that the value of many statistical and numerical methods introduced for

the analysis of various types of taxonomic data have not been appreciated given the

lack of easy access to the necessary software.

In the present study, two programs specifically designed to handle

taxonomic data were written for personal computers. The first one, the AL16S

program, was developed for the management and comparative analysis of 1 6S

rRNA sequence data and the second, the X program, for handling phenotypic data.



48 CHAPTER!

<BLANK>



CHAPTER!
	

49

B. Materials and Methods

1. Computers and compilers

The software developed in the present study was written in the C++

language (Stroustrup, 1991) and complied by using Borland C++ version 3 (Borland

International, 1800 Green Hills Road, Scotts Valley, CA 95067-0001, USA). The

operating system was Microsoft-DOS version 6.0 (Microsoft Corporation, One

Microsoft Way, Redmond, WA 98052-6399, USA). The software was performed on

IBC-PC compatible personal computers.

2. The ALI6S program

2.1. Description

The AL16S program is integrated software that allows editing, alignment and

comparative analysis of 1 GS rRNA sequence data based on the sequence format

used in the nbosomal database project (RDP version 4.0; Larsen et a!., 1993). This

format comprises 2846 nucleotide positions per sequence which allows alignment of

almost all available small subunit rRNA sequences (more than 2000 sequences).

The numbering of the nucleotide positions can be chosen by the user; Escherichia

co/i numbering system (Appendix C) is set as default. For convenience, thymine (T)

is used for uracil (U). The use of degenerate bases, according to IUB codes

(Appendix B), are also possible with most analyses included in the AL16S program.

The AL16S program can be used to handle up to 150 16S rRNA sequences

at a time. However, there is no limit on the number of nucleotide sequences that can

be considered at any one time using the neighbor-joining method. Some analyses

are based on groups which correspond to clusters in numerical phenetic

classifications, the composition of which can be defined by the user. The

management of the 1 6S RNA database is carried out by using an accessory
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database program, namely the SSUrRNA program which is written in the FOXPRO

database language (Microsoft Corporation, One Microsoft Way, Redmond, WA

98052-6399, USA). The main steps in the analysis of 16S rRNA sequence data are

given in Figure 1-4.

2.2. Main functions

Importing sequence data. 1 6S rRNA sequences in a variety of file formats can be

imported to the program for alignment. These include the GenBank/EMBL formats

and text formats from automatic sequencers.

Alignment. Individual nucleotide positions of bacterial 16S rRNA are usually

indicated by using the Escherichia co/i 16S rRNA gene of the rrnB cistron

(accession number J01695; Brosius et a!., 1978; Appendix C). The numbering

systems from other bacterial strains can be also applied, if necessary. The helices

found in 16S rRNA molecules of Archaea and Bacteria can be named after the

nomenclature system of Neefs et a!. (1993; Appendix D).

The alignment of 16S rRNA sequences is achieved manually by using the

secondary structural information incorporated into the program. The secondary

structural information from Arthrobacter globiformis (accession number M2341 1),

Bacillus subtilis (K00673), Escherichia co/i (J01695) and ustreptomyces coelicolor"

strain A3(2) [Y00411J obtained from the RDP (Larsen eta!., 1993) was implemented

in the program. The program is used to display information on helical structures and

in tertiary structures in 16S rRNA molecules (e.g., positions 506-507 are

complementary to positions 524-526 of the Escherichia co/i numbering system, see

Appendix D).

Masking/selecting positions. The appropriate nucleotide positions should be

selected by the user prior to any kind of sequence analysis, especially for

phylogenetic inference analyses. It is important to select positions that have been
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SSUrRNA	 Maintanence of sequence data
program	 Documentation of sequence data

—Alignment

Retrieve	 Archive	 Base composition
Calculation of evolutionary distance
Calculation of similarity

Calculation of intra-qroup similarity
Calculation of inter-group similarity

Design of probes/primers
Determination of regional variability

T/	
I Group specific signature nucleotide

k00"Deposit	 I Masking/selecting positions

GenBankIEMBL databases	 Numbering system
I Restriction analysis
LSecondary structurePhylogenetic analysis

Neighbor-joining method (NEIGHBOR)
Fitch-Margoliash method (FITCH)

PHYLIP package1

Maximum parsimony (Wagner) method (DNAPARS)

Bootstrap analysis (SEQBOOT)
2

fastDNAml	 - Maximum likelihood method

FIGURE 1-4. MAJOR STEPS AND SOFTWARE TOOLS USED FOR ANALYSIS OF 16S RRNA

SEQUENCE DATA. , PHYLIP PACKAGE (FELSENSTEIN, 1993) AND 
2 FASTDNAML

(OLSEN et a!., 1 994b).
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aligned with confidence. When distantly related sequences are compared many of

the aligned positions can be masked and hence excluded from subsequent

analyses. However, all of the positions for sequence analysis can be included in

comparisons of closely related organisms.

Calculation of sequence similarity. The program can be used to calculate the

pairwise sequence similarity from the selected positions (module 'Similarity'). The

mean of the pairwise sequence similarities between members of the same group

can be determined by using the module 'Intra-group similarity'. The results

generated from this module provide a means of assessing the sequence variability

in different phyletic lines. In addition, the program contains the module 'Inter-group

similarity' that calculates the mean similarities between members of different

groups.

Calculation of evolutionary distances. The program can be used to compute two

evolutionary distances, namely the Jukes and Cantor (Jukes & Cantor, 1969) and

Olsen models (Swofford & Olsen, 1990) as incorporated in the module 'Distance'.

The output of this module can be used for tree-making methods implemented in the

PHYLIP package (Felsenstein, 1993).

Signature nucleotides. Some nucleotide positions in 1 6S rRNA can be used to

classify bacteria at different taxonomic ranks (Woese, 1987). The module 'Group

signature' can be used to produce the consensus nucleotide sequence from a

group of organisms and hence can be applied to find group specific nucleotides,

that is, signature nucleotides. The consensus base is presented as a degenerated

base according to tUB codes (Appendix B) when different bases occur in a given

nucleotide position. The output of this module is equivalent to the frequency matrix

(percent positive table) of numerical phenetic taxonomy.
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Regional variability. The degree of conservation in different parts of 1 6S rRNA

molecules varies in different phylogenetic lineages (Woese, 1987; Stackebrandt &

Goebel, 1 994). The degree of sequence variability of specific parts of the 1 6S rRNA

molecule within a group can be determined by using the module 'Regional

variability'. This module is used to calculate the mean value of pairwise similarities

within a certain region of 16S rRNA (e.g., between positions 401-500) from a

selected group.

Design of specific primers and probes. One of the useful end-products of 1 6S

rRNA sequence analyses is that specific group primers and oligonucleotide probes

are highlighted (Woese, 1987; Amman eta!., 1994, 1995). The program AL16S can

be used to check oligonucleotide sequences against 16S rRNA databases. Since

the program can be used to detect the secondary structure of the priming region,

the user can consider the interference made by intramolecular pairing.

Restriction analysis (module restriction analysis). The sizes of DNA fragments

derived from restriction analyses of PCR-amplified 16S rRNA genes vary among

organisms if appropriate restriction endonucleases are used. The user can append

or edit restriction sites. This module, which produces lists of restriction positions in

amplified 16S rDNA and displays simulated agarose gel images, can be used to

detect suitable endonucleases for the separation of members of different species.

Listing of raw nucleotide sequences. The module 'Profile' can be used to

produce lists of aligned sequences. The output file is useful for visual inspection of

nucleotide sequences and for the designation of oligonucleotide probes.
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3. TheX program

3.1. Description

This user-friendly, menu-driven software is suitable for the analysis of

phenotypic data for numerical taxonomic purposes. The software is designed both

to provide an integrated platform for the various numerical analyses that are

involved in the classification and identification of bacteria and to serve as an

automated interface with other software packages.

The program can hold binary data for up to 500 strains, 500 tests, 200

clusters (groups of strains) and 200 testsets (groups of unit characters). These limits

can easily be extended by recompiling the original source codes. The program only

contains modules specific for bacterial systematics as several commercial software

packages are available for multivariate statistical analyses. The steps and

corresponding software tools are shown in Figure 1 -5.

3.2. Main Functions

Generation of frequency matrix. The module 'Percentage positive table' can be

used to produce percentage positive tables (frequency matrices) that are the basis

for most statistical analyses. The module 'Plus table' can be used to list the number

of positive results if percentages are not required.

Estimating test reproducibility. The module 'Test error' can be used to calculate

the individual reproducibility of tests. Both the variances (sf) and estimated error

rates (p,) are computed according to Sneath and Johnson (1972). The overall

reproducibility is determined from the pooled variance.

Centre of clusters. The centre of a cluster can be represented in two different

ways, namely as a point representing an actual organism in taxonomic space or as

a point representing a hypothetical organism (Sneath & Sokal, 1973). The former,
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Data acquisition

Multivariate analysis	 Definition of clusters

Cluster analysis

[ 
NTS YS 1 	 Principal component analysis

Principal coordinate analysis

Management of binary data

Frequency matrix

Calculation of test error

Determination of centrotype

Calculation of character separation indexes (CHARSEP)
Selection of diagnostic tests (DIACHAR)

Calculation of hypothetical median organism (HMO)

Estimation of overlap (OVERMAT)

Identification (MATIDEN)

FIGURE 1-5. MAJOR STEPS AND SOFTWARE TOOLS USED IN THE ANALYSIS OF NUMERICAL

PHENOTYPIC DATA. 
1, COMMERCIALLY AVAILABLE FROM EXETER SOFTWARE (100 NORTH

COUNTRY ROAD, BUILDING B, SETAUKET, NEW YORK 11733, USA).
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the centrotype (Silvestri et a!., 1962), represents the OTU with the highest mean

resemblance to all of the other OTUs in the cluster. It is also the nearest OTU to the

centroid of the Euclidean distance model. The second representation, the centroid,

is a point in phenetic space whose coordinates are the mean values of each

character over the given cluster of OTUs, it can be derived from the frequency

matrix (Sneath & Sokal, 1973). The hypothetical median organism (HMO; Liston et

a!., 1963) is commonly used with binary data. This hypothetical organism possesses

the commonest state for each character hence it is sometimes called the

hypothetical modal organism (Sneath & Sokal, 1973).

The module Centrotype' can be used to provide information for detecting

the centrotype of a given cluster. The calculation of the mean pairwise dis/similanty

within a cluster (intra-cluster dis/similarity) and the mean values of three different

dis/similarities, namely the SSM, S and D, coefficients, for each OTU against the rest

of OTU's in a cluster are generated by using this module. The OTU that shows the

largest S and SSM coefficients and the smallest D coefficient can be selected as the

centrotype of a given cluster. The module can also be used to calculate the

taxonomic distance of each OTU from the HMO; in such a case, the OTU that is the

closest to the HMO is the centrotype. Usually only one OTU satisfies all four criteria.

Hypothetical median organism. The module 'Hypothetical median organism' is

used to display the HMOs from a frequency matrix and to identify the HMOs of given

clusters against all of the clusters. This procedure has been implemented in the

program MOSTTYP (Sneath, 1980b) and provides a useful means of evaluating

identification matrices (Priest & Williams, 1993). A sound identification matrix should

give excellent identification scores for the HMOs against their own clusters (Sneath,

1 980b).
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Character separation indices. Sneath (1979e) developed a BASIC program,

namely CHARSEP, for determining the value of each character as a potential

separator of groups defined in frequency matrices. The module 'CHARSEP' is a

C++ version of Sneath's CHARSEP program (Sneath, 1 979e). This module is used

to compute five character separation indices:

(a) Gyllenberg's sum of C(/)(Gyllenberg, 1963) is

where i is the character, q is the number of OTU's, P is the proportion of positive

values for the 'lh character in cluster J.

(b) Gyllenberg's rank measure R(i) (Gyllenberg, 1963) is q0q1 (Sum C(i)),

where q0 and q1 are the numbers of clusters for which character i is able to

allocate an unknown OTU either to a cluster for which the character is negative

orto one for which it is positive. This measure uses the given cutoff level Fas the

criterion of whether a cluster is considered positive or negative. That is, q0 is the

number of clusters for which P, <(1--F) and q1 is the number of clusters for

which I, ^F, where F lies between 0.5 to 1.0. Sneath (1979e) recommended

the cutoff level of 0.85 since characters with frequencies of positive values

between 15 and 85% were usually of little value in achieving a successful

identification (Lapage et a!., 1973). This cutoff level was successfully used in a

numerical taxonomic study of the genus Streptomyces (Williams et a!., 1 983b).

(c) Niemelä's separation index is lii(q0 +q1 )!—Inq0 !—lnq1 ! (Niemelä eta!., 1968).

(d)The index VSP is E /q_P /qJ (Sneath, 1979e).

(e) The index CSP is 1—	 - Pu2J/ q (Sneath, 1 979e).
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High usefulness of a character / is indicated by the following criteria (Sneath,

1 979e): high sum of C(i), which ranges from q/2 to q high value of the product of q0

and q, and of R(i), which ranges from 0 to q3/4; high value of Niemelä's separation

index, which ranges from 0 to high numbers depending on q; and high value of the

CSP and VSP indices, which range from 0 to 1. The latter indices are independent

of the cutoff value (F).

The output file of the module CHARSEP consists of the values of q0, q,, and

the separation indices outlined above.

Selection of diagnostic characters. Sneath (1 980a) developed a program, called

DIA CHAR, to determine diagnostic scores from frequency matrices. The diagnostic

scores are given as JCjJDj, , where C is the constancy of the character i in cluster

J and D the average difference between the proportion for character i in cluster J

and the proportions in all of the other clusters. The consistency is calculated as:

CU = (2P - 1)2

and the average difference is given as:

D =J(P,—P)2/(q-1).

The module 'Diagnostic' is the C++ version of Sneath's DIA CHAR program

(Sneath ,1980a).

Identification of unknown strains. Sneath (1 979d) compiled various identification

coefficients in a BASIC program, called MAT/DEN. The module 'Identification', a

modified version of the original program MAT/DEN, contains two basic identification

systems, namely the Baysian and taxon-radius models.
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Willcox probability, a Baysian approach, is the likelihood of an unknown

strain (u) against cluster J divided by the sum of the likelihoods of u against all q

clusters. The likelihood L ,, of u against cluster J is given as:

L =fJuj+P-1I

where m is the number of characters under consideration. The Wilicox probability is

calculated as shown below:

Wilicox probability = ç /	 (Willcox eta!., 1973).

The module can also be used to calculate several coefficients that are based

on the taxon-radius model. In this model, the taxonomic distance (C) between an

unknown strain u and the centroid of taxon J is given as:

(Sneath, 1979d)

and the mean of squared distances from OTUs to the taxon centroid, dj, is

calculated as:

= P(1—P)Im

which is the variance in hyperspace about the centroid uncorrected for the number

of OTUs in the sample used to represent the taxon (Sneath, 1974b). The mean of

distances from OTUs in taxon J to the centroid (d1 ), and its standard deviation

(SD), can be approximated on the assumption that the taxa are hyperspherical

normal clusters as:

= Iii(2m - i)dj / 2m]



60
	

CHAPTER 1

and

SD = J72rn (Sneath, 1 979d).

The standard error score of d, s.e.(C), is the constant c in the equation:

d = d + cSD.

The module can also be used to calculate the Gaussian integral of s.e.(ci), where

Gau(s.e.(a)) is over 0.5 for the negative s.e.(ci). The Gaussian integration is

achieved by using the algorithm of Hill (1985) which was originally developed by

Aiams (l99)

Sneath (1979d) also provided an algorithm for calculating the pattern

distance coefficient, d, from frequency matrices:

d =/5

D=D—D,

where D, is taxonomic distance (ci), and D is (u -	 -	 m.

The 95% taxonomic radius can be defined on the assumption that there is a

normal distribution of OTUs in hypersphencal space. The 95% taxonomic radius of

taxon J is given as:

d=d +1.645xSD.

This radius is specific to the taxon and hence independent of unknown strains. A

diagrammatic representation of the taxon-radius model is given in Figure 1-6.

Wilicox probability scores provide the straight-forward answers for the

identification of unknown strains whereas careful considerations are required for the

coefficients derived from the taxon-radius model. The level of Wiilcox probability
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centrotype

0	
°Centroid,

d

Gaus[s.e.(d)]

Centroid

95% taxonomic radius

Centroid

FIGURE 1-6. A DIAGRAMMATIC PRESENTATION OF THE TAXON-RADIUS MODEL BASED ON

THE ASSUMPTION THAT THE TAXON IS A HYPERSPHERICAL NORMAL CLUSTER. FOR

DETAILS, SEE TEXT.
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needed to achieve a successful identification is somewhat subjective (Williams et

a!., 1985; Priest & Williams, 1993).

However, in the taxon-radius model, the taxonomic distance from each of the

taxa in the identification matrix should be compared with the 95% taxon-radius. In

most cases organisms will lie close to, or within 2 to 3 standard deviations, of the

mean, that is, s.e.(d) ranges from 2 to 3. Since a s.e.(d) score of 2 implies that very

few strains (2.275%; equivalent to the 97.275% taxon radius) can be expected to lie

further away from the taxon centroid, scores below 2, or preferably negative scores

give successful assignment to a taxon. The Gaussian integration of the s.e.(d)

scores means that the percentage of OTUs in a taxon lie further away from the

centroid than the unknown organism. These scores should be regarded primarily as

a test of excluding the null hypothesis that an unknown strain belongs to a given

taxon. It is important to note that even if a high Wilicox probability score is obtained

for a taxon it is still possible that the unknown strain lies further away from the 95%

taxonomic radius. It is, therefore, important to consider both identification systems.

Estimation of overlap. The module 'OVERMA T' incorporated in the X program is a

direct translation from the original BASIC version of Sneath's OVERMAT

(Sneath, 1980c) to the C++ version. This module can be used to calculate the

phenetic overlap between clusters or taxa as they are represented by the vectors of

character values together with a test of significance of the observed overlap

(Sneath, 1980c).

The statistical background of overlap between clusters in taxonomic space

has been well documented (Sneath, 1977). It is assumed that there are two

samples of OTUs which form two clusters, L and M, that contain L and tiM members,

respectively. The projections, q, of the OTU5 onto the line joining the sample

centroids of clusters L and M yield two q-distributions (q, and q) [Figure 1-7].
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0
	 q

dui

FIGURE 1-7. ILLUSTRATION OF THE METHOD USED TO DERIVE W STATISTICS. FOR

SYMBOLS, SEE TEXT. WHEN SqL IS EQUAL TO Sq W is q,. MODIFIED FROM SNEATH

(1977).
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If these distributions do not overlap, it is evident that there cannot be overlapping in

the hyperspace. The q value for OTU j of cluster L is given as:

= (d +d —dM)/2dLf

and similarly, the q value for each OTU k of cluster M is calculated as:

= (d1 +4 —d)I2df

where the q1 and q, values are the distributions q and qM respectively and dLM is the

intercentroid distance between taxa L and M. The mean of q will be zero and that of

q will be dLM. The standard deviations of q and q, SqL and SqM are also required for

estimating overlapping clusters (Figure 1-7)

A convenient index of overlap in the q-distributions is the area of q that lies

to the right of the point of intersection of the curves, plus the area of q that lies to

the left of this point in relation to the total area of both curves (Sneath, 1977). When

applying normal distribution statistics, these curves will intersect at the point

q =5LdLM/(sL +S %f ) and the overlapping area between two curves can be defined

as 2P(q) where P(q) is the one-tailed Gaussian integral of q/sq . This index of

overlap, VG I varies from 1 when the means coincide, to zero when they are infinitely

apart.

Sneath (1977) also derived an index of disjunction, W, which corresponds to

the critical value for the two-tailed normal distribution provided variances of two

given clusters, namely s and s, are identical. For example, V is 0.01 when Wis

2.576. When two variances are unequal this correspondence is not exact, but for

the ratio of variances up to 1:10 it is fairly close (Sneath, 1977). In such cases, Wis

equivalent to a value of VG that is greater than 2P(q), so that Wwill be conservative

in the sense that it will not mislead one into believing the overlap is less than the

true value.
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The module 'OVERMAT' is used to compute the variances and standard

deviations for each taxon as follows:

var(J) = 11[I,(1— P)]/m(n —1)

and

sd(J) =

where m is the number of characters and n, is the number of OTUs in taxon J. The

index of disjunction between taxa L and M (Sneath, 1977) is given as:

Wf = 

J(11L +flMXS L 'L +Sqj. M)

and

d 
= _(f_p)2

where dLM is the intercentroid distance between taxa L and M, and s and	 are

taken as var(L)/m and var(M)/m, respectively. The latter calculations are based on

the assumption that the clusters are hyperspherical and hence the variance of a

cluster J along any single axis, the intercentroid axis, is var(J)/m. Since the

intercentroid distance, d, is biased by application of finite numbers of OTUs, a

corrected estimate of d can be achieved by subtracting a correction factor which

is:

qL 'L + M 'M

In cases where distances are corrected to give negative values, distances are set to

zero.
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The index of disjunction, W, ranges from 0 for complete overlap to infinity for

complete disjunction. The index of overlap, VG, is twice the standardised Gaussian

integral for Wwhich means that index VG ranges from one for complete overlap to

zero for complete disjunction.

The significance of W is tested by a noncentral t-test using Welch's t-test

(Welch, 1947) and the approximation method of Johnson and Welch (1937). The

value of t corresponding to the observed W is:

=	 +

This is tested by using F "effective degrees of freedom" where

1
F=2

C /(nL-1)+(1-c)2/(nMl)

and

flMSL + flLSM

The module is used to calculate the noncentral t0 values for the critical t/ ,given by

the user, at the confidence levels of P=0.90, 0.95 and 0.99. For example, if one

considers that the critical V0 is given as 0.05 (5%), the observed t is 8.72 and the t0

values are 7.71, 8.76 and 9.34 for P of 0.90, 0.96 and 0.99, respectively. The result

indicates that the overlap is significantly less than 5% at the 90% confidence level,

but t, does not reach the t0 values required for confidence levels 95 or 99%.
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C. Results and Discussion

1. The ALI6S program

The AL16S program is not evaluated in detail in this Chapter as most of the

functions of the program were used in the molecular systematic studies described in

Chapters II and III.

2. The X program

The functionality and accuracy of the X program were evaluated by using a

small dataset given by Sneath (1979d, 1979e, 1980a, 1980b, 1980c) and a larger

dataset generated by Williams et a!. (1983a). The outputs from the former dataset

were identical to those given in the original publications of Sneath (data not shown).

The latter dataset is considered in detail. The performances of each of the analyses

are summarised in Table 1-1. The times required for the numerical analyses

implemented in the X program were reasonably short, that is, within three minutes.

This level of performance is appropriate for the analysis of multiple datasets with

different choices of strains.

The clusters and unit characters used to evaluate the X program are shown

in Tables 1-2 and 1-3. The frequency matrix generated from the original data matrix

consisted of 307 strains and 139 unit characters; the strains were assigned to 26

taxa, that is, 18 major (> 5 strains), 5 minor clusters and 3 subclusters. All of the

data were stored as a file which served as the source of input to most of the

numerical analyses.
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TABLE 1-1. PERFORMANCE OF NUMERICAL ANALYSES IMPLEMENTED IN THE X

PROGRAM1.

Analysis	 Data size	 Time (second)

Percent positive table 	 307 OTUs; 139 unit characters; 26	 40

(frequency matrix) 	 clusters

Plus table	 307 OTUs; 139 unit characters; 26	 38

clusters

Centrotype	 307 OTU5; 139 unit characters; 26	 90

clusters

CHARSEP	 26 clusters; 139 unit characters	 0.77

Diagnostic (DIACHAR) 	 26 clusters; 139 unit characters	 2.31

OVERMAT	 26 clusters; 139 unit characters	 0.66

Hypothetic median	 26 clusters; 139 unit characters	 2.97

organism

Identification	 26 clusters; 139 unit characters	 2.212

The results were obtained using an 1MB-PC compatible personal computer (486-DX2;

50 MHz).

2 Time required for identification of ten unknown strains.
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TABLE 1-2. CLUSTERS USED TO EVALUATE THE XPROGRAM.

Cluster	 Cluster name	 Number of strains
number

1A	 Streptomyces albidoflavus, subcluster A 	 20

1 B	 Streptomyces anulatus, subcluster B 	 38

1 C	 Streptomyces halstedii, subcluster C 	 13

3	 Streptomyces atroolivaceus	 9

5	 Streptomyces exfoliatus	 18

6	 Streptomyces violaceus	 8

10	 Streptomyces fulvissimus	 9

12	 Streptomyces rochei 	 26

15	 Streptomyces chromofuscus 	 9

16	 Streptomyces a/bus	 6

17	 Streptomyces griseoviridis	 6

18	 Streptomyces cyaneus	 38

19	 Streptomyces diastaticus	 20

20	 Streptomyces olvaceoviridis 	 7

21	 Streptomyces griseoruber	 9

23	 Streptomyces microflavus	 5

29	 Streptomyces /ydicus	 11

30	 Streptomyces fillpinensis	 4

31	 Streptomyces antibioticus	 5

32	 Streptomyces violaceoniger	 6

33	 "Streptomyces chromogenus" 	 5

37	 Streptomyces griseoflavus	 6

40	 Streptomyces phaeochromogenes 	 6

42	 Streptomyces rimosus	 7

61	 Streptomyces /avendulae 	 12

65	 Streptomyces (Kitasatoa) sp.	 4

, Clusters defined according to Williams et aL (1 983a). Names in inverted commas were not

included in the Approved Lists of Bacterial Names (Skerman et aL, 1980) and have not been

validly published subsequently.
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TABLE 1-3. UNIT CHARACTERS USED TO EVALUATE THE XPROGRAM.

Code	 Unit characters

Morphology and pigmentation:

SPS
	

Presence of spores on aerial mycelium

A FS
	

Rectiflexibiles

RAS
	

Retinaculiaperti

SPI
	

Spirales

BIV
	

Verticillati

SMO
	

Smooth spores

WRT
	

Warty spores

SPY
	

Spiny spores

HRY
	

Hairy spores

RUG
	

Rugose spores

AMY
	

Aerial mycelium production

RED
	

Red aerial spore mass

YEL
	

Yellow aerial spore mass

Gray aerea? spore mass

GRN
	

Green aerial spore mass

BLU
	

Blue aerial spore mass

yb
	

Violet aerial spore mass

WH I
	

White aerial spore mass

YBS
	

No distinctive substrate mycelial pigments

ROS
	

Red/orange substrate mycelial pigments

GNS
	

Green substrate mycelial pigments

BLS
	

Blue substrate mycelial pigments

VIS
	

Violet substrate mycelial pigments

PIG
	

Production of diffusible pigments

ROP
	

Red/orange diffusible pigments

YBP
	

Yellow/brown diffusible pigments

GNP
	

Green diffusible pigments

BLP
	

Blue diffusible pigments

VIP
	

Violet diffusible pigments

PHS
	

Sensitivity of substrate pigment to pH

PHP
	

Sensitivity of diffusible pigment to pH

MPI
	

Melanin production on peptone/yeastliron agar

MTY
	

Melanin production on tyrosine agar

FRG
	

Fragmentation of mycelium

SCL
	

Sclerotia formation

SBS
	

Sporulation on substrate mycelium

Enzyme activity

LEC	 Lecithinase (on egg-yolk medium)

PRT	 Proteolysis (on egg-yolk medium)

LIP	 Lipolysis (on egg-yo lk medium)

HIP	 Hippurate hydrolysis
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TABLE 1-3. CoNTINUED.

Code	 Unit characters

PEC	 Pectin hydrolysis

CHI	 Chitin hydrolysis

NO3	 Nitrate reduction

H2S	 Hydrogen sulphide production

YPG	 13-lactamase production on YPG agar

BFS	 f3-lactamase production on Beechams FS agar

KLE	 Production of Klebsiella -Iactamase inhibitor

Antimicrobial activity against:

SUB	 Bacillus subtilis NCIB 3610

PSE	 Pseudomonas fluorescens NCIB 9046

CDL	 Escherichia coliNCIB 9132

LUT	 MicrococcusluteusNClB 196

ALB	 Candida albicans CBS 562

CER	 Saccharomyces cerevisiae CBS 1171

MUR	 Streptomyces murinus ISP 5091

NIG	 Aspergillus niger LIV 131

Degradation of:

HYP
	

Hypoxanthine

GUA
	

Guanine

ELA
	

Elastin

TYR
	

L-Tyrosine

AD E
	

Adenine

XAN
	

Xanthine

DNA
	

DNA

RNA
	

RNA

180
	

Tween 80

STA
	

Starch

XYN
	

Xylan

CAS
	

Casein

TES
	

Testosterone

URE
	

Urea

ALL
	

Allantoin

GEL
	

Gelatin

AES
	

Aesculin

ARB
	

Arbutin

Resistance to antibiotics (!Jglml):

GEN
	

Gentamicin (100)

NEO
	

Neomycin (50)

STR
	

Streptomycin (100)

TOB
	

Tobramycin (50)

RI F
	

Rifampicin (50)

CEP
	

Cephaloridine (100)
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TABLE 1-3. CONTINUED.

Code	 Unit characters

VAN	 Vancomycin (50)

DM0	 Dimethyichlortetracycline (500)

OLE	 Oleandomycin (100)

LIN	 Lincomycin (100)

PEN	 Penicillin 0 (10 lu.)

Growth at:

40C	 4°C

100	 10°C

37C	 37°C

450	 45°C

4.3	 pH 4.3

Growth in the presence of (%, wlv, v/v):

4NA
	

Sodium chloride (4)

7NA
	

Sodium chloride (7)

1 ON
	

Sodium chloride (10)

1 3N
	

Sodium chloride (13)

O1z
	

Sodium azide (0.01)

02Z
	

Sodium azide (0.02)

1OH
	

Phenylethanol (0.1)

30H
	

Phenylethanol (0.3)

PHN
	

Phenol (0.1)

01 T
	

Potassium tellurite (0.001)

1 TL
	

Potassium tellurite (0.01)

TH 1
	

Thallous acetate (0.01)

TOl
	

Thallous acetate (0.001)

XVI
	

Crystal violet (0.0001)

Growth on sole nitrogen source (0.1%, w/v):

BUT
	

DL-c-amino-n-butyric acid

POT
	

Potassium nitrate

CYS
	

L-Cysteine

VAL
	

L-Valine

TH R
	

L-Threonine

SER
	

L-Serine

PHE
	

L-Phenylalanine

MET
	

L-Methionine

HIS
	

L-Histidine

ARC
	

L-Arginine

HYD
	

L-Hydroxyproline

Growth on sole carbon source (1%, w/v):
ARA	 L-Arabinose

SUC	 Sucrose
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TABLE 1-3. CONTINUED.

Code	 Unit characters

XYL
	

D-Xylose

NO
	

meso-inositol

MAN
	

Mannitol

FRU
	

D- Fructose

RHA
	

L- Rh am nose

RAF
	

Raffinose

MEZ
	

D-Melezitose

MNS
	

D-Mannose

LAC
	

D-Lactose

INU
	

Inulin

ADO
	

Adonitol

SAL
	

Salicin

TRE
	

Trehalose

MEB
	

D-Melibiose

DEX
	

Dextran

GAL
	

D-Galactose

CEL
	

Cellobiose

XYT
	

Xylitol

Growth on sole carbon source (0.1%, w/v):

ACE	 Sodium acetate

CT	 Sodium citrate

MAL	 Sodium malonate

PRO	 Sodium propionate

PYR	 Sodium pyruvate

, In order of the appearance in the data file.
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The extent of overlap between clusters was estimated by using the module

OVERMAT. None of clusters showed overlap greater than 0.01% (VG) using the

uncorrected intercentroid distances. However, two pairs of clusters showed overlap

over 0.01% ( VG) when the intercentroid distances were corrected for estimated

sampling error (Sneath, 1980c); the output is given in Figure 1-8. It is evident that

overlap occurred between clusters 18 (Streptomyces cyaneus) and 30

(Streptomyces filipinensis), and between clusters 18 (Streptomyces cyaneus) and

31 (Streptomyces violaceonige,). The VG values for these overlaps, namely 0.01 32

and 0.0128, were slightly higher than the given cutoff value (1%). When the critical

overlap value (V0) of 5% was applied, the t value from both pairs of clusters failed

to reach the t0 values required for confidence levels of 90, 95 and 99%, respectively.

The module CHARSEP was used to select tests for the generation of an

identification matrix. The output shows the list of unit characters in order of the VSP

values (Figure 1-9). The unit characters that represent VSP values of at least 25%,

that is, 47 out of the 139 unit characters, were used to construct the identification

matrix. The cutoff value for the CHARSEP analysis, F, was set at 0.85.

The frequency matrix was examined by using the module DIA CHAR to

select few additional tests to help differentiate poorly defined clusters. The detailed

output of this analysis is given in Figure 1-10. The sums of the diagnostic scores

ranged from 23.96 (cluster 18; Streptomyces cyaneus) to 35.63 (cluster 65;

Streptomyces [Kitasatoa] sp.). An additional 22 unit characters were added to the

identification matrix constructed on the basis of the output from the CHARSEP

analysis.

The identification matrix, which consisted of 26 clusters and 69 unit

characters, was evaluated theoretically first by using the module Hypothetical

median organism. The output of this analysis is shown in Figure 1-11. All of the



ChAPTER 1	 75

HMOs were identified correctly to the parental clusters with high Willcox probability

scores (> 0.9999) and negative s.e.(d) coefficient values thereby indicating that the

identification matrix was sound. The matrix was evaluated further by employing the

module OVERMAT using the uncorrected intercentroid option; the results of this

analysis are summarised in Table 1-4. Six pairs of clusters showed overlap values

over 1% (VG); the highest overlap value , 2.17%, was found between clusters 18

(Streptomyces cyaneus) and 31 (Streptomyces antibioticus). One pair of taxa,

namely clusters 18 (Streptomyces cyaneus) and 19 (Streptomyces diastaticus),

showed a significant overlap at the 95% confidence level when the 5% critical VQ

value was applied.

Ten strains randomly selected from the original Streptomyces database

(Williams et a!., 1983a) were identified using the identification matrix generated in

the present study; the results are summarised in Table 1-5. Eight out of the ten

strains were correctly identified to the corresponding taxon with high Wilicox

probability scores (>0.9999) and small s.e.(d) values (<1 .0). One organism, namely

Streptomyces strain C1S.S (S. T. Williams lab. no. Cl) from cluster lB

(Streptomyces anulatus), was correctly identified albeit with a slightly low Willcox

probability score of 0.9883 but the s.e.(d) coefficient was very small (0.4). The

remaining organism, Streptomyces fumanus strain 154FU (ISP 5154) from cluster

18 (Streptomyces cyaneus), was assigned to cluster 12 (Streptomyces rochei) with

a Willcox probability score of 0.8926 and a small s.e.(d) coefficient of 1 .4854. The

next best alternative for this strain was its assignment to the parental taxon (cluster

18; Streptomyces cyaneus), with a low Willcox probability score (0.0948) though the

corresponding s.e.(d) value of 1.5127 was very close to that for cluster 12

(Streptomyces rochei; 1.4854). It is noteworthy that the Streptomyces fumanus

strain (154FU) showed little DNA relatedness with two representative strains of
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cluster 18 (Streptomyces cyaneus) [Labeda & Lyons, 1991]. It would seem,

therefore, that this organism is an atypical member of the Streptomyces cyaneus

cluster.
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FIGURE 1-8. COMPUTER GENERATED OUTPUT OF THE MODULE OVERMAT OBTAINED
WITH 26 STREPTOMYCES TAXA (18 MAJOR CLUSTERS, 5 MINOR CLUSTERS AND 3

S UBCLUSTERS). THE INTERCENTROID DISTANCES WERE CORRECTED ACCORDING TO
SNEATH (1980C).

Overmat analysis (Max. Matrix	 Cluster 100 x Test 500)
Number of taxa	 : 26
Number of tests : 139

OPTION = 1: INTERCENTROID DISTANCE IS
CORRECTED FOR ESTIMATED SAMPLING ERROR

	

TAXON	 N[J]	 VAR[J]	 I

1A	 20	 0.086812	 0.294638
lB	 38	 0.093141	 0.305190
1C	 13	 0.085551	 0.292490

	

3	 9	 0.099454	 0.315363

	

5	 18	 0.105691	 0.325102

	

6	 8	 0.101952	 0.319299

	

10	 9	 0.089100	 0.298496

	

12	 26	 0.103926	 0.322375

	

15	 9	 0.108446	 0.329311

	

16	 6	 0.082055	 0.286452

	

17	 6	 0.101672	 0.318860

	

18	 38	 0.105089	 0.324174

	

19	 20	 0.105099	 0.324189

	

20	 7	 Q.O99045	 0.314714

	

21	 9	 Q.O93026	 0.305002

	

23	 5	 0.103251	 0.321327

	

29	 ii	 0.100781	 0.317460

	

30	 4	 0.101662	 0.318845

	

31	 5	 Q.111172	 0.333424

	

32	 6	 .098523	 0.313884

	

33	 5	 0.097763	 0.312670

	

6	 0.097335	 0.311985

	

40	 6	 0.104763	 0.323672

	

42	 7	 0.098747	 0.314241

	

61	 12	 0.105517	 0.324833

	

65	 4	 0.087339	 0.295532

Cutoff level of V(G) = 0.010000

	

M	 Q	 C	 -

	

139	 26	 2.575813

RITICAL OVERLAP v(o) FOR WO =0.050000
ORRESPONDING TO W(0) OF 1.959967
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FIGURE 1-8. CONTINuED.

Overlap statistics are printed as follows
on 1st line : names of taxa[number of OTtJ's]
on 2nd line : D(L,M)	 W	 V(G)
on 3rd line : T(w), and three values for T(0) at P = 0.90, 0.95,
0.99, respectively.

(18138] vs. 30[4])
IJ(LM)= 0.2287 W= 2.4780 V=0.0l32
T(w) = 16.0594 , 25.7708, 31.6348, 47.0337

(18[38] vs. 3l[5])
D(LM)= 0.2188 W= 2.4883 V=0.0128
T(w) = 16.3169 , 22.6789, 26.7892, 37.8363

TOTAL CPU TIME: 0.66 SECOND(S)
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FIGURE 1-9. COMPUTER GENERATED OUTPUT FROM THE CHARSEP ANALYSIS OBTAINED

USING THE STREP TOMYCES DATABASE (WILLIAMS et a!., 1 983a). ONLY TESTS SHOWING

AT LEAST A 20% VSP COEFFICIENT ARE LISTED.

Character Separation Index Analysis (Max. Matrix Cluster 100 x Test 500)
Number of taxa : 26

Number of tests : 139

Cutoff Value : 0.85

Sorted on VSP values

Name qO ql	 VSP(%)	 CSP	 C(j)	 R(j)	 Niemela 4var	 Cons.	 Pot.

MPI 11	 5	 55.78 0.6011 22.670	 1246.850 8.382 0.5843 0.6297 0.9546
RFS 12	 5	 53.80 0.6074 23.000	 1380.000 8.730 0.5816 0.6566 0.9250
ADO 10	 5	 53.52 0.5655 22.360	 1118.000 8.007 0.5525 0.5838 0.9687

SPI	 6	 7	 53.25 0.5340 21.410	 899.220 7.448	 0.5333 0.5348 0.9985
LUT	 6	 7	 52.76 0.5372 21.760	 913.920 7.448 0.5327 0.5424 0.9903

GRY 10	 4	 49.57 0.5166 21.480	 859.200 6.909 0.5065 0.5278 0.9786

NO3	 6	 5	 49.16 0.4926 21.470	 644.100 6.136 0.4921 0.4931 0.9990
MUR	 4	 7	 47.38 0.4785 21.040	 589.120 5.799 0.4760 0.4808 0.9952

ALL	 6	 5	 47.27 0.4727 20.790	 623.700 6.136 0.4727 0.4727 1.0000
MTY 11	 4	 46.95 0.5563 22.510	 990.440 7.219 0.5194 0.6155 0.9039
OLE	 9	 2	 45.30 0.4862 21.450	 386.100 4.007 0.4692 0.5035 0.9656

7NA	 4	 5	 45.10 0.4570 21.010	 420.200 4.836 0.4537 0.4598 0.9940

RHA	 2	 6	 44.55 0.4697 21.470	 257.640 3.332 0.4568 0.4817 0.9751

RAF	 3	 9	 44.13 0.4758 21.340	 576.180 5.394 0.4577 0.4935 0.9642

PEC 10	 4	 43.96 0.4744 20.890	 835.600 6.909 0.4561 0.4922 0.9639

CER 13	 5	 41.49 0.5559 23.060	 1498.900 9.056 0.4998 0.6698 0.8300

O1Z	 7	 4	 41.13 0.4281 20.460	 572.880 5.799 0.4184 0.4355 0.9829

NIG 12	 3	 37.21 0.5014 22.220	 799.920 6.120 0.4391 0.5918 0.8473

PIG 14	 4	 36.71 0.5207 22.580	 1264.480 8.026 0.4529 0.6425 0.8104

LEC 13	 2	 36.57 0.4732 21.430	 557.180 4.654 0.4167 0.5392 0.8775

ppN	 3 11	 36.26 0.4553 21.300	 702.900 5.897 0.4044 0.5078 0.8966

UB	 5	 3	 36.00 0.3809 19.780	 296.700 4.025 0.3678 0.3892 0.9786

ALB 15	 4	 35.81 0.5429 23.550	 1413.000 8.263 0.4741 0.7188 0.7554

45C	 9	 2	 35.72 0.4546 21.360	 384.480 4.007 0.4011 0.5105 0.8906

BUT	 5	 4	 35.66 0.3726 20.040	 400.800 4.836 0.3625 0.3788 0.9837

VAL	 3	 4	 34.63 0.3545 19.500	 234.000 3.555 0.3492 0.3574 0.9918

BFS	 4	 5	 34.21 0.3468 19.280	 385.600 4.836 0.3437 0.3485 0.9952

40C 10	 3	 33.61 0.4534 21.310	 639.300 5.656 0.3889 0.5246 0.8642

PEN	 1 10	 33.06 0.4213 20.890	 208.900 2.398 0.3677 0.4686 0.8991

HIP 10	 2	 32.95 0.3915 20.370	 407.400 4.190 0.3529 0.4193 0.9336

HIS	 2	 8	 32.84 0.4437 21.580	 345.280 3.807 0.3787 0.5117 0.8671

LIP	 1 13	 32.78 0.4643 21.810	 283.530 2.639 0.3917 0.5548 0.8369

PHE	 2	 5	 32.32 0.3439 19.690	 196.900 3.045 0.3302 0.3513 0.9789

SUC	 3	 3	 31.91 0.3226 19.410	 174.690 2.996 0.3202 0.3237 0.9965

INO	 2	 8	 31.67 0.3978 20.680	 330.880 3.807 0.3476 0.4367 0.9109

O1T	 2	 7	 31.31 0.3854 20.120	 281.680 3.584 0.3398 0.4182 0.9216

MEB	 1	 8	 31.08 0.3977 20.830	 166.640 2.197 0.3439 0.4400 0.9039

CYS	 2	 3	 30.93 0.3197 19.170	 115.020 2.303 0.3126 0.3231 0.9895

HYD	 6	 2	 30.90 0.3752 20.510	 246.120 3.332 0.3327 0.4040 0.9288

XAN	 2 12	 30.74 0.4774 22.600	 542.400 4.511 0.3927 0.6100 0.7827

TH1 10	 3	 30.70 0.4033 20.490	 614.700 5.656 0.3442 0.4520 0.8921

ElF	 2	 9	 30.54 0.3984 20.650	 371.700 4.007 0.3407 0.4446 0.8961

YPG	 1	 6	 29.67 0.3033 19.120	 114.720 1.946 0.2986 0.3053 0.9934

SMO	 3 17	 29.50 0.5073 23.430	 1194.930 7.039 0.4250 0.7309 0.6941

1OC	 2 13	 29.45 0.4753 22.490	 584.740 4.654 0.3860 0.6231 0.7629

NEZ	 2	 2	 29.16 0.2963 18.970	 75.880 1.792 0.2930 0.2976 0.9953

ELP.	 1 10	 26.75 0.3438 19.450	 194.500 2.398 0.2918 0.3750 0.9168

H2S	 3 15	 24.14 0.4500 22.920	 1031.400 6.704 0.3432 0.6398 0.7034

DEX 10	 1	 22.92 0.3895 21.260	 212.600 2.398 0.2866 0.4871 0.7996

ACE	 1	 4	 22.41 0.2322 18.230	 72.920 1.609 0.2260 0.2341 0.9919

CHI	 9	 0	 21.26 0.3432 19.990	 0.000 0.000 0.2514 0.4060 0.8455

YBP 20	 3	 21.14 0.4584 24.620	 1477.200 7.479 0.3814 0.8272 0.5542

MAN	 2 19	 20.85 0.4487 23.790	 904.020 5.347 0.3480 0.7488 0.5992

Total CPU time : 0.88 second(s)
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FIGURE 1-10. COMPUTER GENERATED OUTPUT FROM THE DIACHAR ANALYSIS

OBTAINED USING THE STREP TOMYCES DATABASE (WILLIAMS et al., 1 983a).

DIACHAR analysis (Max. Matrix : Cluster 100 x Test 500)
Number of Taxa : 26
Number of Tests : 139
Number of unit characters to be listed 	 5

Taxon	 LA (S. albidoflavus)
Character State	 Score

TH1	 +	 0.716554
SPI	 -	 0.626547
RAF	 -	 0.588427
LOT	 -	 0.571904
GRY	 -	 0.547805

Sum of all scores 29.495970

Taxon : lB (S. anulatus)
Character State	 Score

40C	 +	 0.694738
RFS	 +	 0.517379
GRY	 -	 0.511014
SPI	 -	 0.489543
TH1	 +	 0.459932

Sum of all scores 25.714769

Taxon : lC (S. halstedii)
Character State	 Score

OLE	 ^	 0.675484
TH1	 +	 0.560010
MPI	 -	 0.541084
GRY	 +	 0.520892
MTY	 -	 0.491710

Sum of all scores 28.667791

Taxon : 3 (S. atroolivaceus)
Character State Score

4OC	 +	 0.742395
RFS	 +	 0.733349
INO	 -	 0.703517
SPI	 -	 0.626547
MEZ	 -	 0.589615

Sum of all scores 28.454195

Taxon	 5 (S. exfoliatus)
Character State Score

MAN	 -	 0.858272
RFS	 +	 0.733349
SPI	 -	 0.626547
INO	 -	 0.591281
ADO	 -	 0.546801

Sum of all scores 24.301828

Taxon	 6 (S. violaceus)
Character State	 Score

MTY	 +	 0.738390
NO3	 +	 0.615125
PHE	 +	 0.506352
MPI	 +	 0.479528
PHN	 +	 0.457441

Sum of all scores 26.465982

Taxon : 10 (S. fulvissimus)
Character State	 Score

	

OLE	 +	 0.675484

	

ROS	 +	 0.644697

	

EO	 +	 0.624288

	

VAL	 +	 0.611143

	

PHS	 +	 0.608466
Sum of all scores 30.746105

Taxon : 12 (S. rochei)
Character State	 Score

DEX	 +	 0.511940
MTY	 -	 0.491710
MPI	 -	 0.488426
7NA	 +	 0.487585
RHA	 +	 0.477929

Sum of all scores 23.717859

Taxon	 15 (S. chromofuscus)
Character State Score

OLE	 -	 0.524229
HYD	 -	 0.458309
CER	 -	 0.453078
NIG	 -	 0.443107
PHE	 -	 0.433234

Sum of all scores 25.356756

Taxon	 16 (S. albus)
Character State	 Score

lOC	 -	 0.796057
45C	 +	 0.727437
ADO	 +	 0.687147
OlZ	 +	 0.642312
7NA	 ^	 0.626615

Sum of all scores 33.343311
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FIGURE 1-10. CONTINUED.

Taxon : 17 (S. riseoviridis)
Character State	 Score

YBP	 +	 0.879291
RED	 +	 0.827626
PIG	 +	 0.783157
LUT	 +	 0.650732
O1Z	 +	 0.642312

Sum of all scores 27.676605

Taxon : 18 (S. cyaneus)
Character State	 Score

MPI	 +	 0.663091
RAF	 +	 0.520025
SUC	 +	 0.455069
RFS	 -	 0.452835
HIP	 -	 0.433620

Sum of all scores 23.965408

Taxon	 19 (5. diastaticus)
Character State	 Score

MUR	 -	 0.545979
O1Z	 -	 0.461229
RHA	 +	 0.460712
CER	 -	 0.453078
LEC	 -	 0.450736

Sum of all scores 23.123320

Taxon : 20 (S. olvaceoviridis)
Character State	 Score

ARB	 -	 0.848189
MUR	 -	 0.627506
LUT	 -	 0.571904
RHA	 +	 0.531904
OLE	 -	 0.524229

Sum of all scores 28.528778

Taxon : 21 (S. griseoruber)
Character State	 Score

PHP	 ^	 0.903630
PHS	 +	 0.859797
YBS	 -	 0.849847
PIG	 +	 0.783157
PEC	 +	 0.675057

Sum of all scores 30.408241

Taxon	 23 (S. rnicroflavus)
Character State	 Score

PEC	 +	 0.675057
LUT	 +	 0.650732
BFS	 -	 0.600599
ALL	 -	 0.598526
YPG	 -	 0.596620

Sum of all scores 29.133127

Taxon : 29 (5. lydicus)
Character State Score

H25	 -	 0.816161
NIG	 +	 0.760818
LUT	 +	 0.650732
SPI	 +	 0.595114
MUR	 +	 0.570962

Sum of all scores 27.885382

Taxon	 30 (S. filipinensis)
Character State Score

SPY	 +	 0.884596
URE	 -	 0.849872
SMO	 -	 0.832474
ALE	 +	 0.813249
CER	 +	 0.780297

Sum of all scores 32.307411

Taxon	 31 (S. antibioticus)
Character State Score

H2S	 -	 0.816161
ALB	 0.813249
CER	 +	 0.780297
LIP	 -	 0.758945
ELA	 -	 0.688937

Sum of all scores 27.857637

Taxon : 32 (S. violaceoniger)
Character State Score

RUG	 +	 0.960400
SMO	 -	 0.832474
1OC	 -	 0.796057
XAN	 -	 0.787579
PHN	 -	 0.723869

Sum of all scores 29.726505

Taxon : 33 ("S. chromogenus")
Character State Score

YEP	 +	 0.879291
ALE	 +	 0.813249
PIG	 +	 0.783157
CER	 +	 0.780297
MTY	 +	 0.738390

Sum of all scores 30.774645

Taxon : 37 (S. griseoflavus)
Character State Score

RAS	 +	 0.868756
SMO	 -	 0.832474
XAN	 -	 0.787579
XVI	 -	 0.770048
CIT	 -	 0.765020

Sum of all scores 31.162279
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FIGuRE 1-10. CONTINUED.

Taxon : 40 3. phaeochrornogenes)
Character State	 Score

XYT	 0.845646
INU	 -	 0.811426
ADO	 -	 0.687147
MtJR	 -	 0.627506
VAL	 0.611143

Sum of all scores 29.751490

Taxon : 42 (S. rirnosus)
Character State	 Score

STR	 0.904310
NEO	 +	 0.878351
NIG	 0.760818
ADO	 -	 0.687147
RHA	 -	 0.661270

Sum of all scores 32.140282

Total CPU time: 0.25 second(s)

Taxori : 61 (S. lavendulae)
Character State	 Score

LEC	 +	 0.738754
ADE	 -	 0.718133
MPI	 +	 0.708054
MAN	 -	 0.679657
STA	 -	 0.590818

Sum of all scores 29.239372

Taxon : 65 (S. 1KitastoaJ sp.)
Character State	 Score

LAC	 -	 0.893001
YBP	 +	 0.879291
XYL	 -	 0.807118
PIG	 +	 0.783157
HIS	 -	 0.738943

Sum of all scores 35.629147

, Details on the unft characters are given in Table 1-3.
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FIGuRE 1-11. COMPUTER GENERATED OUTPUT FROM THE MODULE 'HYPOTHETICAL

MEDIAN ORGANISM' OBTAINED WITH THE STREPTOMYCES DATABASE (WILLIAMS et a!.,

1 983a).

Hypothetic Median Organism (Max. Matrix : Cluster 100 x Test 500)
Number of taxa	 26
Number of tests	 69
Coefficient for sorting	 = Wilicox Probability

Worked with	 1A (Streptomyces albidoflavus)
	Taxori	 Willcox	 95 %	 Taxonomic	 Dp	 s.e. (d)	 Gauss(s.e. (d))

Prob.	 Radius	 Distance

	

1A	 0.9999	 0.3525	 0.2071	 0.2028	 -3.86	 0.9999
	18	 0.0000	 0.4057	 0.4041	 0.3966	 1.59	 0.0557

	

1C	 0.0000	 0.3656	 0.4134	 0.4132	 3.39	 0.0003

Worked with	 lB (Streptornyces anulatus)
	Taxon	 Willcox	 95 %	 Taxonomic	 Dp	 s.e. (d)	 Gauss(s.e. (d))

Prob.	 Radius	 Distance

	

lB	 0.9999	 0.4057	 0.2267	 0.2265	 -4.25	 1.0000
	3	 0.0000	 0.4236	 0.3472	 0.2719	 0.72	 0.2351

	

1C	 0.0000	 0.3656	 0.3880	 0.3841	 2.47	 0.0068

Worked with	 1C (Streptomyces halstedii)
	Taxon	 Willcox	 95 %	 Taxonomic	 Dp	 s.e. (d)	 Causs(s.e.(d))

Prob.	 Radius	 Distance

	

1C	 0.9999	 0.3656	 0.1798	 0.1774	 -5.14	 1.0000
	lB	 0.0000	 0.4236	 0.3704	 0.3701	 0.48	 0.3145

	

3	 0.0000	 0.3525	 0.3941	 0.3623	 2.40	 0.0082

Worked with	 3 (Streptomyces atroolivaceus)
	Taxon	 Willcox	 95 %	 Taxonomic	 Dp	 s.e. (d)	 Gauss(s.e.(d))

Prob.	 Radius	 Distance

	

3	 0.9999	 0.4245	 0.2173	 0.2167	 -3.93	 1.0000
	1C	 0.0000	 0.3525	 0.3657	 0.3237	 1.65	 0.0493

	

lB	 0.0000	 0.4236	 0.3921	 0.3474	 1.20	 0.1158

Worked with	 5 (Streptomyces exfoliatus)
	Taxori	 Willcox	 95 %	 Taxonomic	 Dp	 s.e. (d)	 Gauss(s.e.(d))

Prob.	 Radius	 Distance

	

5	 0.9999	 0.3865	 0.2605	 0.2544	 -3.44	 0.9997
	lB	 0.0000	 0.3525	 0.4026	 0.3840	 1.54	 0.0613

	

6	 0.0000	 0.4210	 0.4027	 0.3818	 2.21	 0.0137

Worked with	 6 (Streptomyces violaceus)
	Taxon	 Wjllcox	 95 %	 Taxonomic	 Dp	 s.e.(d)	 Gauss(s.e.(d))

Prob.	 Radius	 Distance

	

6	 0.9999	 0.3711	 0.2331	 0.2298	 -3.65	 0.9999
	5	 0.0000	 0.4033	 0.3875	 0.3856	 0.58	 0.2796

	

lB	 0.0000	 0.3525	 0.4607	 0.4601	 3.46	 0.0003

Worked with	 10 (Streptomyces fulvissimus)
Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e.(d)	 Gauss(s.e.(d))

Prob.	 Radius	 Distance

	

10	 0.9999	 0.3736	 0.2111	 0.2089	 -4.29	 1.0000
	18	 0.0000	 0.4057	 0.5173	 0.5166	 4.07	 0.0000

	

5	 0.0000	 0.4210	 0.5056	 0.4990	 4.33	 0.0000
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FIGURE 1-11. CONTINUED.

Worked with	 12 (Streptornyces rochei)
	Taxon	 Willcox	 95 %	 Taxonomic	 Dp	 s.e.(d)	 Gauss(s.e.(d))

Prob.	 Radius	 Distance

	

12	 0.9999	 0.3865	 0.2549	 0.2444	 -3.67	 0.9999
	15	 0.0000	 0.3525	 0.3710	 0.3500	 0.58	 0.2822

	

1C	 0.0000	 0.4210	 0.4220	 0.4125	 3.71	 0.0001

Worked with	 15 (Streptomyces chromotuscus)
	Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e. Cd)	 Gauss(s.e. (d))

Prob.	 Radius	 Distance

	

15	 0.9999	 0.3381	 0.2252	 0.2206	 -4.25	 1.0000
	20	 0.0000	 0.3716	 0.4072	 0.3918	 2.42	 0.0077

	

12	 0.0000	 0.4057	 0.4479	 0.3881	 2.41	 0.0079

Worked with	 16 (Streptornyces albus)
	Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e.(d)	 Gaussls.e.(d))

Prob.	 Radius	 Distance

	

16	 0.9999	 0.3636	 0.1933	 0.1779	 -3.79	 0.9999
	12	 0.0000	 0.4033	 0.4601	 0.4273	 2.80	 0.0026

	

15	 0.0000	 0.3525	 0.4501	 0.4500	 3.19	 0.0007

Worked with	 17 (Streptomyces griseoviridis)
	Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e.(d)	 Gauss(s.e.(d))

Prob.	 Radius	 Distance

	

17	 0.9999	 0.3656	 0.2276	 0.2173	 -3.80	 0.9999
	12	 0.0000	 0.4378	 0.4505	 0.4503	 2.49	 0.0063

	

15	 0.0000	 0.3802	 0.4733	 0.4346	 3.96	 0.0000

Worked with	 18 (Streptomyces cyaneus)
	Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e.(d)	 Gauss(s.e.(d))

Prob.	 Radius	 Distance
18	 0.9999	 0.4210	 0.2627	 0.2614	 -3.69	 0.9999

	19	 0.0000	 0.4057	 0.3993	 0.3970	 0.85	 0.1963

	

12	 0.0000	 0.3525	 0.4381	 0.4381	 2.10	 0.0177

Worked with	 19 (Streptomyces diastaticus)
	Taxon	 Wilicox	 95 %	 Taxoriomic	 Dp	 s.e. (d)	 Gauss(s.e. Cd))

Prob.	 Radius	 Distance
19	 0.9999	 0.3907	 0.2474	 0.2433	 -3.92	 1.0000

	20	 0.0000	 0.4236	 0.3780	 0.3767	 1.41	 0.0793

	

18	 0.0000	 0.3936	 0.3957	 0.3804	 0.36	 0.3590

Worked with	 20 (Streptomyces olvaceoviridis)
	Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e.(d)	 Gauss(s.e.(d))

Prob.	 Radius	 Distance
20	 0.9999	 0.3137	 0.2297	 0.2290	 -3.74	 0.9999

	15	 0.0000	 0.3730	 0.3904	 0.3884	 1.22	 0.1114

	

19	 0.0000	 0.3636	 0.4321	 0.4263	 1.89	 0.0297

Worked with	 21 (Streptomyces griseoruber)
	Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e.(d)	 Gauss(s.e.(d))

Prob.	 Radius	 Distance
21	 0.9999	 0.3842	 0.2014	 0.2013	 -4.31	 1.0000

	19	 0.0000	 0.3525	 0.4308	 0.4229	 1.84	 0.0327

	

12	 0.0000	 0.3711	 0.4341	 0.4318	 1.98	 0.0240
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FIGURE 1-11. CONTINUED.

	

Worked	 with	 23 (Streptornyces microflavis)
	Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e.(d)	 Causs(s.e.(d))

Prob.	 Radius	 Distance

	

23	 0.9999	 0.4210	 0.2310	 0.2297	 -3.45	 0.9997
	18	 0.0000	 0.3936	 0.4776	 0.4767	 2.86	 0.0021

	

19	 0.0000	 0.4057	 0.4694	 0.4643	 3.06	 0.0011

	

Worked	 with	 29 (Streptomyce.s lydicus)
	Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e.(d)	 Gauss(s.e.(d))

Prob.	 Radius	 Distance

	

29	 0.9999	 0.3736	 0.2229	 0.2229	 -4.04	 1.0000
	12	 0.0000	 0.3711	 0.4540	 0.4489	 2.61	 0.0046

	

18	 0.0000	 0.3882	 0.4926	 0.4873	 3.32	 0.0005

	

Worked 	with	 30 (Streptomyce.s filipinen.sis)
	Taxon	 Wilicox	 95 %	 Taxonoinic	 Dp	 s.e.(d)	 Gauss(s.e.(d))

Prob.	 Radius	 Distance

	

30	 0.9999	 0.3758	 0.2555	 0.2206	 -2.51	 0.9940
	31	 0.0000	 0.3907	 0.4430	 0.4250	 3.32	 0.0004

	

29	 0.0000	 0.4236	 0.4538	 0.4534	 3.90	 0.0000

	

Worked 	with	 31 (Streptomyces antibioticus)
	Taxon	 Wilicox	 95 %	 Taxonornic	 Dp	 s.e.(d)	 Gauss(s.e.(d))

Prob.	 Radius	 Distance

	

31	 0.9999	 0.3848	 0.2348	 0.2346	 -3.74	 0.9999
	18	 0.0000	 0.3711	 0.4090	 0.4076	 0.77	 0.2213

	

19	 0.0000	 0.3716	 0.4202	 0.4059	 1.51	 0.0654

	

Worked 	with	 32 (Streptomyces violaceoniger)
	Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e. (d)	 Gauss(s.e. (d))

Prob.	 Radius	 Distance

	

32	 0.9999	 0.3730	 0.2387	 0.2236	 -3.14	 0.9992
	15	 0.0000	 0.3610	 0.4504	 0.4311	 3.20	 0.0007

	

29	 0.0000	 0.4236	 0.4608	 0.4608	 4.14	 0.0000

	

Worked 	with	 33 ("Streptomyces chromogenus)
	Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e. (d)	 Causs(s.e. (d))

Prob.	 Radius	 Distance

	

33	 0.9999	 0.3736	 0.2273	 0.2271	 -3.54	 0.9998
	19	 0.0000	 0.3721	 0.4672	 0.4655	 2.99	 0.0014

	

15	 0.0000	 0.3711	 0.4952	 0.4740	 4.69	 0.0000

	

Worked	 with	 37 (Streptomyces griseoflavus)
	Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e.(d)	 Gauss(s.e.(d))

Prob.	 Radius	 Distance

	

37	 0.9999	 0.3865	 0.2105	 0.2005	 -3.92	 1.0000
	12	 0.0000	 0.3258	 0.4582	 0.4186	 2.74	 0.0031

	

19	 0.0000	 0.4378	 0.4585	 0.4457	 2.71	 0.0033

	

Worked	 with	 40 (Streptornyces phaeochrornogeries)
	Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e.(d)	 Causs(s.e.(d))

Prob.	 Radius	 Distance

	

40	 0.9999	 0.3848	 0.2231	 0.2128	 -3.78	 0.9999
	12	 0.0000	 0.3636	 0.4284	 0.4273	 1.80	 0.0361

	

19	 0.0000	 0.4057	 0.4492	 0.4367	 2.42	 0.0077
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FIGURE 1-11. CONTINUED.

Worked with	 42 (Streptornyces rirnosus)

	

Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e.(d)	 Gauss(se.(d))
Prob.	 Radius	 Distance

	

42	 0.9999	 0.3656	 0.1850	 0.1642	 -4.40	 1.0000
	29	 0.0000	 0.3721	 0.4560	 0.3853	 3.98	 0.0000

	

10	 0.0000	 0.3882	 0.4717	 0.4581	 4.86	 0.0000

	

Worked	 with	 61 (Streptomyces lavendulae)

	

Taxon	 Wilicox	 95 %	 Taxonomic	 Dp	 s.e. (d)	 Gauss(s.e. (d))
Prob.	 Radius	 Distance

	

61	 0.9999	 0.3802	 0.2358	 0.2225	 -3.65	 0.9999
	5 	 0.0000	 0.3258	 0.5019	 0.4820	 4.21	 0.0000

	

33	 0.0000	 0.3907	 0.5019	 0.4839	 6.33	 0.0000

	

Worked	 with	 65 (Streptornyces (Kitasatoaj sp.)

	

Taxon	 Willcox	 95 %	 Taxonomic	 Dp	 s.e.(d)	 Gauss(s.e.(d))
Prob.	 Radius	 Distance

	

65	 0.9999	 0.3736	 0.1881	 0.1758	 -3.70	 0.9999
	5 	 0.0000	 0.3636	 0.5167	 0.4976	 4.68	 0.0000

	

61	 0.0000	 0.4245	 0.5035	 0.5023	 5.50	 0.0000

Total CPU time: 2.03 second(s)
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TABLE 1-4. OVERLAP VALUES ESTIMATED FROM THE IDENTIFICATION MATRIX GENERATED

FROM THE STREPTOMYCES DATABASE (WILLIAMS eta!., 1 983a)1.

Cluster pair2	 D3	 W	 V	 Tw	 10=0.90	 T=0.95	 T0=0.99

	

1B(38):3(9)	 0.268	 2.496	 0.0125	 17.116	 18.627
	

20.478	 24.871

	

18(38):19(20)	 0.248	 2.542	 0.0110	 19.360	 17.895
	

18.838	 20.811

18(38):23(5)	 0.348	 2.505	 0.0122	 16.427	 22.328	 26.257	 36.784

	

18(38):30(4)	 0.361	 2.331	 0.0197	 15.108	 25.676	 31.488	 46.781

	

18(38):31(5)	 0.334	 2.296	 0.0217	 15.055	 22.539	 26.577	 37.418

	

18(38):40(6)	 0.318	 2.482	 0.0131	 16.464	 20.609	 23.590	 31.309

',The identification matrix consisted of 26 clusters and 69 unit characters.

2 The number of strains are presented in parentheses.

, Uncorrected intercentroid distances.
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TABLE 1-5. IDENTIFICATION OF TEN RANDOMLY CHOSEN STRAINS TAKEN FROM THE

ORIGINAL MATRIX OF WILLIAMS et a!. (1 983a). THE STRAINS WERE IDENTIFIED USING THE

IDENTIFICATION MATRIX WHICH CONSISTED WITH 26 CLUSTERS AND 69 UNIT

CHARACTERS.

Coefficients

Identified	 Willcox 95% Taxon- Taxonomic
	

D	 s.e.(d) Gaus[s.e.(d)]
as	 probability	 radius	 distance

Strain
(Cluster)

537SA(1 A)

C1S.S(1B)

T1S.S(5)

470V1(1 2)

154FU(18)

309 VA(1 9)

357NA(29)

0.9999
0.0000
0.0000

0.9883
0.0069
0.0038

0.9999
0.0000
0.0000

0.9999
0.0000
0.0000

0.8926
0.0948
0.01 26

0.9999
0.0003
0.0000

0.9999
0.0000
0,0000

0.3525
0.4057
0.4236

0.4057
0.4236
0,3936

0. 3730
0.4236
0.3802

0.4033
0.3842
0.4236

0.4057
0.3882
0.3711

0.3525
0.3865
0. 3736

0.3381
0.4236
0 .3 802

0.2735
0.3846
0.4777

0.3680
0.4091
0.41 57

0.2703 -1.3490
0.3755 0.9506
0.4759 3.3509

0.3680 0.4057
0.4080 3.2365
0.4016 1.3693

0.9113
0.1709
0.0004

0.3425
0.0006
0.0855

0.5394
0.0015
0.0001

0.7716
0.0348
0.0016

0.0687
0.0652
0.0024

0.5816
0.0336
0.1085

0.7811
0.0007
0.0000

	

0.3660	 0.3658 -0.0990
	0.4460	 0.4450 2.9717

	

0.4876	 0.4864 3.6299

	

0.3478	 0.31 55 -0.7442
	0.4433	 0.4320 1.8151

	

0.4450	 0.4361 2.9395

	

0.4185	 0.41 81 1.4854
	0.4334	 0.4311	 1.5127

	

0.4619	 0.4579 2.8235

	

0.3656	 0.3622 -0.2059
	0.4294	 0.4289 1.8301

0.4243 0.4229 1.2344

	

0.3178	 0.2965 -0.7758
0.4725 0.4411 3.1874

	

0.4682	 0.4296 4.1740

	

563Vl(32)	 32	 0.9999	 0.3936	 0.2679	 0.2654 -2.0928	 0.9818
15	 0.0000	 0.3137	 0.4712	 0.4512 3.8914	 0.0000
12	 0.0000	 0.3865	 0.4864	 0.4841 3.6257	 0.0001

	

098PR(37)	 37	 0.9999	 0.4210	 0.2707	 0.2667 -1.6918	 0.9547
12	 0.0000	 0.4245	 0.4521	 0.4167 2.5452	 0.0055
19	 0.0000	 0.3730	 0.4505	 0.4405 2.4638	 0.0069

	

K280D(65)	 65	 0.9999	 0.3907	 0.2935	 0.2921 0.7834	 0.2167
5	 0.0000	 0.3865	 0.5228	 0.5066 4.8754	 0.0000

61	 0.0000	 0.3381	 0.5033	 0.5015 5.4927	 0.0000

, The three taxa showing the highest Wilicox probabilities are listed.



CHAPTER II.
PHYLOGENETIC ANALYSIS OF THE FAMILY

NQcARDIA CEAE AND RELATED ACTINOMYCETES
USING 1 6S RIBOSOMAL RNA GENE SEQUENCES

A. Introduction

1. Phylogeny inferred from 16S ribosomal ribonucleic acid

1.1. 16S rRNA as molecular chronometer

It was pointed out in Chapter I that sequencing of 16S rRNA provides a

useful means of unravelling phylogenetic relationships between representatives of

bacterial taxa (Woese, 1987; Stackebrandt, 1992; Woese, 1992; Ludwig & Schleifer,

1994). The information held in 16S rRNA molecules has been extensively used to

determine genealogical relationships between actinomycetes, especially at the

suprageneric level (Goodfellow 1 989a; Embley & Stackebrandt, 1994).

1.2. Molecular biological properties of ribosomal RNA gene clusters

Ribosomal RNA genes are amongst the most extensively studied genes in

bacteria. In members of most bacterial species, genes that encode for the three

rRNA types are closely linked in gene sets (operons) in the order 16S-23S--5S

rDNAs. However, exceptions to this pattern are found in Mycoplasma

hyopneumoniae (the 5S rRNA gene is separated from the genes coding for the 1 6S

and 23S RNAs; Taschke et a!., 1986), Thermus thermophilus (the genes coding for

the 16S and 23S rRNAs are separated by several kilobases; Ulbrich eta!., 1984)

and Vibrio harveyi (the gene set is in the order 23S-1 6S-5S rDNAs; Lamfrom et a!.,

1978). With respect to actinomycetes, the rRNA operons of Frankia (Normand et a!.,

89
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1992), Mycobacterium (Bercovier et a!., 1986; Suzuki et a!., 1988a; Sela et a!.,

1989; Ji et a!., 1 994a,b) and Streptomyces strains (Baylis & Bibb, 1988; Suzuki et

a!., 1988b; van Wezel et a!., 1994) have been studied in some detail. All

actinomycetes examined so far show the typical bacterial gene organisation, that is,

the gene set is in the order of 1 6S-23S-5S rDNA5.

The number of rRNA operons in bacterial genomes vary from one

(Mycobacterium tuberculosis) to eleven (some Bacillus species; Gottlieb et a!.,

1985). There seems to be a broad correlation between the rate of growth of a

bacterial strain and the number of constituent ribosomes (Winder & Rooney, 1970;

Bremer & Dennis, 1987). The rate at which mature rRNAs are produced in bacteria

depends on several factors which include the number of rRNA (rrn) operons, the

strength of their promoters and the efficiency with which the operons are transcribed

and processed. Codon et a!. (1992) examined all seven rRNA operons of

Escherichia co/i and was unable to find any significant difference in their

transcriptional efficacy under fast growth conditions though considerable differences

were observed in response to stress, including nutritional shift-down. Van Wezel et

al. (1994) found that one out of six rRNA operons in "Streptomyces coelicolo," strain

A3(2) contained four different promoters with strengths that varied in response to

the growth phase.

There are a few examples where more than one rRNA operon per organism

has been sequenced. In most of these cases the nucleotide sequences of the

different operons in the same strain have been found to be either identical to or

show a low level of heterogeneity (about 0.1% or few differences in nucleotide

positions; Maden et a!., 1987; Dryden & Kaplan, 1990; Heinonin et a!., 1990). In an

analysis of bulk 23 rRNA from Escherichia coil, only eight nucleotide differences

were observed in the seven copies of the rRNA operons; this corresponds to
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approximately one heterogeneous nucleotide per operon (Branlant et a!., 1981).

Dryden and Kaplan (1990) found that the three 16S rRNA gene sequences in the

genome of Rhodobacter sphaeroides were identical though one nucleotide

substitution and three deletions were found in the corresponding 23S rRNA gene

sequences. The greatest heterogeneity was found in the 5S rRNA coding region

where five nucleotide differences were found in one of the three rRNA operons.

The halophilic archaebacterium, Haloarcula marismortui, is exceptional as it

has two nonadjacent rRNA operons, namely rrnA and rrnB, in which the two 16S

rRNA coding regions contain 1472 nucleotides but differ in nucleotide substitutions

at seventy-four positions (5% nucleotide sequence dissimilarity; Mylvaganam &

Dennis, 1992). These investigators found that each of the rRNA operons were

transcribed and that the resultant 16S rRNA molecules were present in intact 70S

ribosomes. Mylvaganam and Dennis (1992) noted that none of the seventy-four

heterogeneous nucleotide positions were related to positions seen as functionally

important for interactions with tRNA, mRNA or translational factors during protein

synthesis. Oren et a!. (1988) directly determined the 16S rRNA sequence of

Haloarcula marismortui by using the reverse transcriptase sequencing method.

These workers did not know that the organism contained mixtures of two 16 rRNAs

hence their nucleotide sequence comprised twenty-four nucleotides from the rrnA

operon and twenty-six nucleotides from the rrnB operon.

It is evident from the results of the two independent sequencing studies

outlined above that nucleic acid sequencing methods which do not include a cloning

step may be flawed in cases where rRNA operons are heterogeneous. However,

Haloarcula marismortui is the only prokaryote found so far which shows appreciable

heterogeneity in its 16S rRNA genes. In addition, the rRNA operons of Plasmodium

berghei, a blood parasite, were found to have a dissimilarity of 3.5% in two different
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small subunit rRNA genes (Gunderson eta!., 1987). The two operons were found to

be differentially regulated; one expressed in sporozoites in the insect host and the

other in the asexual stage in mammaHan blood streams.

It is evident both from the literature and from the success of direct

sequencing of PCR-amplified rRNA genes that multiple copies of 1 6S rRNA genes

found in microorganisms do not differ significantly. This phenomenon of

homogenisation is called 'concerted evolution' (Amheim et a!., 1980). Several

biological processes appear to be responsible for concerted evolution, the most

important of these seem to be unequal crossing over (Perelson & Bell, 1977; Fetes,

1980; Szostak & Wu, 1980) and gene conversion (Nagylaki & Petes, 1982;

Nagylaki, 1984; Enea & Corredor, 1991). The relative contributions of these two

genetical mechanisms have been discussed (Dover, 1 982a, b) but little

experimental data are available to discriminate between their impact (Hillis & Dixon,

1991).

Intergenic spacer regions, which are typically found between 16S and 23S

rRNAs, can be used as a source of phylogenetic information on closely related

organisms, typically those at and below species rank since these regions show

more variability than corresponding rRNA coding regions (Frothingham & Wilson,

1993; Postic eta!., 1994). Intergenic spacer regions often differ in length and show

high nucleotide sequence dissimilarity between operons. In some cases, only

certain rRNA operons have the tRNA gene(s) in the intergenic spacer region

between the 16S and 23S rRNA genes (e.g., East et a!., 1992). The nucleotide

sequence information in these regions has been used to underpin phylogenetic

relationships between members of closely related taxa, including Borrella

burgdorferi (Postic et a!., 1994) and members of the "Mycobacterium avium

complex' (Frothingham & Wilson, 1993). Several molecular identification systems
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based on variation in intergenic spacer regions have been developed; these include

PCR (Uemori et a!., 1992; Dolzani et a!., 1994) and restriction endonuclease

analyses of PCR-amplified spacer genes (Harasawa et a!., 1993).

1.3. Methods used to determine 16S rRNA sequences

DNA-rRNA hybridisation. Hybridisation methods have been developed to measure

the degree of binding between rRNA and rRNA cistrons and the resultant data used

to determine relatedness at both generic and suprageneric levels (Kilpper-Balz,

1991; Goodfellow & O'Donnell, 1993). Members of diverse taxa can be compared in

DNA-rRNA hybridisation studies since the nucleotide sequences of rANA cistrons

are considered to be more highly conserved than those of most genes forming the

bacterial genome (Doi & Igarashi, 1965; Dubnau eta!., 1965; Moore & McCarthy,

1967; Nomura eta!., 1968). Members of over three hundred and fifty archaeal and

bacterial species have been studied by using this method (Stackebrandt, 1992).

Several techniques have been developed for DNA-rRNA hybridisation

(Palleroni et al., 1 973; Johnson & Francis, 1 975; Baharaeen et a!., 1983; Klenk et

a!., 1986). The most widely used procedure is the saturation hybridisation technique

(De Ley & De Smedt, 1975) which is a modification of the original membrane

hybridisation technique of Gillespie and Spiegelman (1965). The results of DNA-

rRNA hybridisation studies are usually presented as two dimensional similarity maps

where Tm(e) values are plotted against percentage DNA-rRNA binding (e.g.,

Mordarski et a!., 1 980a) or as dendrograms based on Tm(e) values (e.g., Vandamme

eta!., 1994).

Highly related strains belonging to the same taxon have been found to have

Tm1) values of about 80°C under experimental conditions used by De Ley and his

colleagues (De Smedt & De Ley, 1975; Gillis & De Ley, 1980). Good resolution can
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be achieved with Tm(s) values within the range 65°C to 80°C; this range of Tm(s) values

usually allows the establishment of intergeneric or interfamily relationships. The

limitation of the technique is reached at Tm(s) values of about 60 °C where its has

been shown that resolution of relationships between the subclasses of the class

Proteobacteria is not possible (Stackebrandt et a!., 1988).

The relatedness between labelled rRNA and DNA is dependent on a number

of factors which include genome size and the number of rRNA operons

(Kilpper-Balz, 1991). Only a few reference strains can be examined in DNA-rRNA

hybridisation studies so that results are usually presented in an incomplete

triangular format. In general, good congruence has been found between DNA-DNA

and DNA-rRNA hybridization data for closely related organisms; the Tm(s) values for

strains of species that show more than 60% DNA homology differ by less than 2 00

(Stackebrandt, 1992).

Few DNA-rRNA hybridisation studies have been focused on actinomycetes.

However, ribosomal RNA cistron similarity data show that acid-fast actinomycetes

are phylogenetically close (Mordarski eta!., 1980a, 1981). It has also been shown

that sporoactinomycetes fall into at least three major phylogenetic clades which

correspond to the genera Actinoplanes, Ampu!IarieI!a and Micromonospora; to the

genera P!anobispora, Pianomonospora and Streptosporangium; and to the genus

Streptomyces (including Chainia, Elytrosporan glum, Kitasa toa, Microe!!obosporia

and Streptovertici!Iium )[Stackebrandt et aL ,1981].

The primary impact of rRNA cistron similarity studies has been on the

classification of Gram-negative bacteria at family and suprafamily ranks, notably in

the rearrangement of taxa within the class Proteobacteria (De Vos et a!., 1989). In

recent times, the DNA-rRNA hybridisation method has been replaced by more
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sensitive methods, mostly by the development and application of rRNA cataloguing

and sequencing techniques.

16S rRNA oligonucleotide cataloguing. The application of 1 6S rRNA

oligonucleotide cataloguing provided a more exacting way of detecting phylogenetic

relationships between prokaryotes (Fox et a!., 1977; Woese & Fox, 1977;

Stackebrandt & Woese, 1981a, b). The cataloguing method was introduced by

Sanger et a!. (1965) and its value for unravelling evolutionary relationships

developed by Woese and coworkers (Woese et a!., 1975; Fox et aL, 1977). The

importance of the 1 6S rRNA cataloguing method was that it could be used to obtain

a lot of phylogenetic information without the need to sequence the whole 1 6S rRNA

molecule. An additional advantage of the method was that it provided a way of

generating databases thereby enabling comparisons of new catalogues with those

held in databases (Sobieski et aL, 1984). Over 600 microorganisms were examined

using the 16S rRNA cataloguing method (Stackebrandt, 1992).

The procedure underpinning the cataloguing method involved enzymatic

digestion of purified 16S rANA by the guanosine-specific ribonuclease T1,

separation of oligonucleotide fragments by two-dimensional electrophoresis and

alkaline digestion of fragments followed by nucleotide sequencing of fragments

longer than five bases by two dimensional thin-layer-chromatography (Fowler et aL,

1985; Fox & Stackebrandt, 1987). Oligonucleotide sequences longer than five

bases were considered to be position specific within the 16S rRNA molecule and

hence were seen to be appropriate for comparisons between homologous

nucleotide positions. A typical catalogue consisted of about 80 fragments (7 to 20

nucleotides in length) that were evenly distributed over the primary structure of the

16S rRNA. Consequently, about 35 to 45% of complete nucleotide sequences were

compared using the cataloguing procedure.



96
	

CHAPTER 11

The relationship between any two given strains was expressed as a Jaccard-

type similarity coefficient (S AG) which was calculated on the basis of the proportion of

identical oligonucleotides in the respective catalogues:

2N8 
(Fox eta!., 1977)AB 

NA+NB

where NA is the total number of residues in oligonucleotides of length at least L in

catalogue A, N8 is the total number of residues in oligonucleotides of length at least

L in catalogue B and N, is the number of residues represented by all of the

coincident oUgonucfeotides between two catalogues, A and B, of length at least L.

The choice of L was governed by statistical considerations; a figure of six was taken

for all but the most closely related organisms (Fox et a!., 1977). A matrix of SAG

values was constructed and the similarity values sorted using the UPGMA algorithm

(Sneath & Sokal, 1973).

Data derived from 16S rRNA cataloguing studies suggested that

Gram-positive bacteria formed a distinct phyletic line that could be split into two

branches on the basis of DNA base composition values (Stackebrandt & Woese,

1981b). The actinomycete-coryneform line included bacteria with a guanine(G) plus

cytosine(C) content above about 55 mol% and the Clostridium-Bacil!us-

Streptococcus branch strains with relatively low G^C values (below 50 mol%).

Several taxa previously associated with actinomycetes were found to belong

to the Clostridium-Bacil!us-Streptococcus group. The genus Eubacterium was found

to be related to the genus Ciostridium, the genus Kurthia to the lactic acid bacteria,

and the genus Thermoactinomyces to aerobic, endospore-forming bacilli (Ludwig et

a!., 1981; Tanner eta!., 1981; Stackebrandt & Woese, 1981 b). In contrast, members

of coryneform taxa, notably Arthrobacter, Brevibacterium, Ce!Iu!omonas,

Corynebacterium, Curtobacterium and Microbacterium, which rarely, if ever, form a
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primary mycelium, were seen to be phylogenetically intermixed with classical

actinomycetes (Stackebrandt & Woese, 1981 a, b). It is clear from such studies that

the possession of branched hyphae can not automatically be used to place a

bacterium with actinomycetes. Conversely, the inability of a strain to form branching

filaments does not necessarily exclude it from this group of bacteria. The 16S rRNA

cataloguing data bear eloquent testimony to the inherent dangers of constructing

taxonomies solely on the basis of morphological features (van Niel, 1946).

Direct sequencing of 16S rRNA using the reverse transcriptase method. The

16S rRNA cataloguing method was superseded by the development and application

of the reverse trancriptase sequencing method (Qu et aL, 1983; Lane et al., 1985).

The introduction of the reverse transcriptase method made it possible to determine

almost complete 1 6S rRNA sequences by using primers complementary to the

conserved regions in 16S rRNA molecules. The reverse transcriptase method was

used to underpin the phylogenetic coherence of several actinomycete taxa, notably

the families Frankiaceae (Hahn et a!., 1989), Mycobacteriaceae (Stahl & Urbance,

1990), Nocardiaceae (Collins et a!., 1988a; Stackebrandt et a!., 1988b),

Nocardioidaceae (Collins & Stackebrandt, 1988; Collins et a!., 1989a),

Propionibacteriaceae (Charfreitag et aL, 1988), Pseudonocardiaceae (Embley et a!.,

1 988a, b; Warwick et a!., 1994), Streptomycetaceae (Stackebrandt et a!., 1992) and

Streptosporangiaceae (Kemmerling et a!., 1993).

The reliability of nucleotide sequences determined by using the reverse

transcriptase method is influenced by strong posttranscnptional base modifications

and by the secondary structure of rRNA (Stackebrandt, 1992). However, DNA

sequencing methods which involve the polymerase chain reaction (PCR) were

subsequently found to give better quality sequence data. The relatively errorfree
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polymerase chain reaction(PCR)-based DNA sequencing methods replaced the

reverse transcnptase method.

Comparisons between SAB values and corresponding values from complete

nucleotide sequences were congruent when relationships were based on complete

rRNA sequence data and SAB values greater than 0.5. However, relationships found

between bacteria showing SAB values below 0.4 were found to be underestimated

(Woese, 1987). Good congruence was found between actinomycete phylogenies

derived using the two approaches as SAB values for these organisms were greater

than 0.5 (Embley & Stackebrandt, 1994).

16S rRNA sequencing methods based on the polymerase chain reaction. The

development and application of the polymerase chain reaction (PCR; Saiki et a!.,

1988) had an enormous impact on molecular biology, including molecular

systematics. Indeed, the application of the PCR to 1 6S rRNA sequencing coupled

with the development of automated nucleotide sequencers, notably those employing

non-radioactive labelling (e.g., Applied Biosystems Prism sequencing kits), and

computer-assisted data acquisition has helped to revolutionise modem bacterial

systematics.

Two procedures are commonly used to determine PCR-amplified 1 6S rRNA

gene (rDNA) sequences. In each case, the first step involves amplification of 16S

rDNA using the PCR. The amplified rDNA can either be sequenced directly,

following a suitable DNA purification step (Bottger, 1989; Embley, 1991), or cloned

into a vector followed by sequencing the resultant recombinant vector (Stackebrandt

& Liesack, 1993). The main differences between these two procedures are outlined

below:
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(i) The cloning method involves an extra step, namely cloning.

(ii)The cloning method provides better sequencing templates since either circular

DNA (for the plasmid vector) or single-strand DNA (for the bacteriophage vector)

are more suitable for the Sanger sequencing procedure than the PCR products

which are linear and double-stranded.

(iii)The direct sequencing method determines the nucleotide sequences of mixtures

of all of the rRNA operons present in genomes whereas only one operon is

sequenced with the cloning method thereby avoiding the generation of chimeric

nucleotides.

However, despite these differences the two procedures are equally suitable for

phylogenetic analyses given the limited heterogeneity found between rRNA

operons. Detailed procedures for 16S rRNA sequencing are available (Ludwig,

1991; Stackebrandt & Liesack, 1993).

Reliability of 16S rRNA sequencing. It is well known that 1 6S rRNA sequences

determined using the reverse transcriptase method include errors due to the strong

secondary structure of the rRNA template (Lane eta!., 1988) and the presence of

non-dideoxynucleotide-terrninated elongation products (DeBorde et a!., 1986). It is

possible to get a rough estimate of sequencing errors generated using the reverse

transcriptase method as corresponding nucleotide sequences derived from the

application of the more accurate DNA sequencing procedures are available for

several actinomycetes (Table 2-1).

Representatives of the genus Mycobacterium have been the subject of three

major 16S rRNA sequencing studies (Stahl & Urbance, 1990; Rogall eta!., 1990;

Pitulle et a!., 1992). Stahl and Urbance (1990) used the reverse transcriptase



Accession	 Reference	 % Dissimilarityb

number

X80736 Koch eta!. (1994)	 0(0/1464)

X84249

X79287

X79286

X55604

X55595

X55603

X52932

X52923

X52928

Pascuat et a!.
(unpublished)

Klatte eta!.
(1 994c)

Kiatte eta!.
(1 994c)

Pitulle eta!.
(1992)

Pitulle eta!.
(1992)

Pitulle etaL
(1992)

Rogall et aL
(1990)

flog all et a!.
(1990)

Rogall et aL
(1990)

0(0/1329)

1.51 (12/794)

0.3 (4/1 320)

0.22 (3/1 353)

0 (0/1 323)

12.75c

(169/1326)

0.23 (3/1 302)

0 (0/131 6)

0 (0/1 31 8)
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TABLE 2-1. COMPARISON OF 16S rRNA SEQUENCES OBTAINED BY USING THE REVERSE

TRANSCRIPTASE AND DNA SEQUENCING METHODS.

Reverse transcriptase	 DNA sequencing method
sequencing method

Straina

An'hrobacter
globiformis

Corynebacterium
renale

Gordona
bronchialis

Gordona terrae

Mycobacterium
asiaticum

Mycobacterium
aurum

Mycobacterium
chitae

Mycobacterium
flavescens

Mycobacterium
gordonae

Mycobacterium
nonchromogenicum

Accession	 Reference
number

M23411	 Woese
(unpublished)

M29553 Stahl & Urbance
(1990)

X53201	 Stackebrandt
eta!. (1988b)

X53202	 Stackebrandt
et a!. (1 988b)

M29556 Stahl & Urbance
(1990)

M29558 Stahl & Urbance
(1990)

M29560 Stahl & Urbance
(1990)

M29561 Stahl & Urbance
(1990)

M29563 Stahl & Urbance
(1990)

M29565 Stahl & Urbance
(1990)

Mycobacterium	 M29568 Stahl & Urbance X52925	 RogaU et aL	 0 (0/1315)
terrae	 (1990)	 (1990)

Mycobacterium	 M29570 Stahl & Urbance X55602	 Pitulle et aL	 0.45 (6/1343)
thermoresistible	 ( 1990)	 (1 992)

Nocardia	 X53205	 Stackebrandt	 X57949	 Rogall et a!.	 1.65 (22/1332)
asteroides	 eta!. (1988b)	 (1990)
DSM43005

Nocardia	 M59056 Yang & Woese, M59056	 This study	 0.07 (1/1417)
otitidiscaviarum	 (unpublished)

Saccharo-	 X54286	 Embley et aL	 Z38007 Kim et a!. (1995) 2.52 (34/1348)
monospora viridis 	 (1 988b)

Tsukamurel!a	 X53206	 Collins eta!.	 Z46751	 This study	 0.69 (9/1305)
paurometabo!a	 (1 988a)

Tsukamurel!a	 X53207	 Collins etaL	 Z36933	 This study	 1.28 (1 6/1251)
paurometabola	 ( 1 988a)
NCTC 10741

a Type strains were used unless strain numbers are given; b the numbers of differences and
total number of nucleotides are given in parentheses; and C the sequence reported by Stahl
and Urbance (1990) was of a mislabelled strain which was later found to show a 16S rRNA
sequence similarity of 99.78% with Propionibacterium acnes (accession number M61 903).
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method, Rogall eta!. (1990) directly determined PCR-amplified rDNA and Pitulle et

a!. (1992) sequenced cDNA derived from 16S rRNA using the reverse transcriptase

technique. Five out of nine 16S rRNA sequences determined by Stahl and Urbance

(1990) were identical to those obtained using the DNA sequencing method (Rogall

eta!., 1990; Pitulle eta!., 1992).

Three out of the four remaining common rRNA sequences exhibited low

nucleotide sequence dissimilarities which ranged from 0.22 to 0.45% (Table 2-1). If,

for the sake of argument, the nucleotide sequences determined using the DNA

sequencing methods (Rogall et a!., 1990; Pitu lIe et a!., 1992) are taken to be error

free then the mean experimental error of the direct sequencing method, based on

the reverse transcriptase technique in the study by Stahl and Urbance (1990), was

0.13% with the greatest error set at 0.45%. It is now evident that the strain which

Stahl and Urbance (1990) considered to be the type strain of Mycobacterium chitae

(accession number M29560) was mislabelled since the primary structure of the 1 6S

rRNA of this strain is almost identical to that of the type strain of Propionibacterium

acnes (99.78% similarity)!

Additional cases of duplicated 16S rRNA sequences can be found in the

GenBank/EMBL nucleotide sequence database (Table 2-1). The 16S rRNA

sequences of the type strains of Arthrobacter globiformis and Noca rd/a

otitidiscaviarum determined by Woese (unpublished data) and Yang and Woese

(unpublished data) show good congruence, namely 0% and 0.07% error,

respectively. Higher error rates are evident when 1 6S rRNA sequences determined

by Collins et a!. (1 988a), Embley et a!. (1 988b) and Stackebrandt et a!. (1 988b) are

considered; the error in these latter studies ranges from 0.3 to 2.52% (Table 2-1).

The error level of over 1 .5%, evident in corresponding studies on Gordona

bronchialis, Noca rd/a asteroides (DSM43005) and Saccharomonospora v/rid/s
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strains, is serious, especially if the 97% sequence similarity guideline is taken to

define genomic species (Stackebrandt & Goebel, 1 994).

The quality of 16S rRNA sequence data deduced from its encoding gene

can also be assessed by comparing nucleotide sequences in the public domain, that

is, in the GenBankJEMBL database, since many workers have independently

sequenced the same strain, typically type strains (Table 2-2). It is evident from the

presented information that 16S rDNA sequence discrepancies range from 0%

(Gordona amarae and Rhodococcus equl) to 0.98% (Corynebacterium kutscheri).

Particularly high levels of disagreement are apparent between nucleotide

sequences generated by Takahashi et a!. (unpublished) and Pascual et a!.

(unpublished). However, it is not clear from these studies which investigators are

responsible for the high experimental errors. In general, it can be said that

experimental errors in 16S rDNA sequencing studies are relatively low compared

with those found using other taxonomic methods, including the numerical taxonomic

procedure.

The source of nucleotide sequencing errors may be in the initial PCR and/or

in the subsequent DNA sequencing steps. Comparisons of nucleotide sequences of

cloned 1 6S rDNAs from the same organism show that the amplification errors in the

polymerase chain reaction are less than 0.02% per 30 to 35 amplification cycles

(Liesack et a!., 1991; Weisburg et a!., 1991). Most of the discrepancies in the PCR

step have been attributed to transitional substitutions (Dunning et al., 1988). Since

errors caused by PCR are negligible the main cause of experimental error resides in

the DNA sequencing step. Several different sequencing procedures are available to

determine 1 6S rDNA sequences but comparative studies on their reliability have yet

to be undertaken (Stackebrandt & Liesack, 1993).
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TABLE 2-2. SEQUENcING ERRORS FOUND IN ENTRIES TO THE GENBANK/EMBL

DATABASE .

Sequence 1	 Sequence 2

Strainb	 Accession	 Reference	 Accession	 Reference	 % Dissimilarityc

number	 number

Co,ynebacterium D3791 4 Takahashi et a!. X84252	 Pascual et a!.	 0.70 (10/1426)

cystidis	 (unpublished)	 (unpublished)

Corynebacterium X80629	 Rainey eta!.	 X84257	 Pascual eta!.	 0.43 (6/1388)

glutamicum	 (1 995a)	 (unpublished)

Corynebacterium D37802 Takahashi eta!. X81 871	 Pascual eta!.	 0.98 (13/131 9)

kutscheri	 (unpublished)	 (unpublished)

Corynebacterium D37915 Takahashi eta!. X84246	 Pascual eta!.	 0.86 (1 1/1278)

piosum	 (unpublished)	 (unpublished)

Gordona amarae X80635	 Klatte et a!.	 X80601	 Ruimy et a!.	 0 (0/1390)

	

(1 994c)	 (1 994b)

Gordona	 X79287	 Klatte eta!.	 X75903 Stubbs & Collins 0.83 (11/1 329)

bronchialis	 (1 994c)	 (unpublished)

Mycobacterium	 X79292	 Rainey eta!.	 X79094	 Briglia eta!.	 0.41 (6/1466)

chloropheno!icum	 (1 995a)	 (1994)

Rhodococcus equi X80614	 Rainey eta!.	 X80603	 Ruimy eta!.	 0 (0/1395)

	

(1995a)	 (1994b)

Rhodococcus	 X80619	 Rainey eta!.	 X77779	 Asturias eta!.	 0.23 (3/1323)

globeru!us	 (1 995a)	 (1994)

Tsukamure!Ia	 X80628	 Rainey et a!.	 Z46751	 This study	 0.27 (4/1 474)

paurometabo!a	 (1 995a)

',The comparable sequences were determined by DNA sequencing methods.

, Type strain.

The number of differences and the total number of nucleotides are given in parentheses.
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1.4. Species concept and place of 16S rRNA sequencing in bacterial systematics.

The bacterial species concept is still a difficult issue in microbial systematics

(Goodfellow & O'Donnell, 1993; Claridge & Boddy, 1994; O'Donnell et al., 1994).

Early definitions of bacterial species were mostly based on monothetic groups,

described using a subjectively selected set of phenotypic characters. This

phenotypic species concept has several limitations, notably the fact that strains

which vary in key characters cannot be accommodated. In addition, monothetic

classifications often lack uniformity in the sense that different taxonomic criteria are

frequently used to delineate species within diverse genera (Goodfellow & O'Donnell,

1993; O'Donnell eta!., 1994).

A universal species concept is still awaited in Bacteriology. Nevertheless, it is

important to remember that the bacteria species is unique in the sense that it is the

only taxonomic rank, apart from intraspecific categories, which corresponds to a

taxon that 'exists' in a population sense. It is often useful to distinguish a

taxospecies, a group of strains that share a high proportion of similar properties

(Sneath, 1989a); from a genospecies, a group of strains capable of genetic

exchange (Ravin, 1961); from a genomic species, a group of strains which share

high DNA homology values (Wayne et a!., 1987). In some circumstances it is

convenient to maintain the species name of a taxon so that it can be distinguished

from other taxa whatever its validity on other grounds. Such pooriy circumscribed

species are known as nomenspecies (Sneath, 1 989a).

The subjective nature of the traditional species concept was recognised by

Cowan (1978), who defined a species as:

"... a group of organisms defined more or less subjectively by criteria, chosen by the

taxonomist to show to best advantage and as far as possible put into practice his

individual concept of what a species is."
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However, more objective definitions based on well defined and universally

applicable criteria have been proposed, such as estimations of genetic relatedness

between organisms by measuring the degree of homology between their genomes.

This DNA relatedness approach is the basis of the phylogenetic species concept

introduced by Wayne eta!. (1987):

The phylo genetic definition of a species generally would include strains with

approximately 70% or greater DNA-DNA relatedness and with 5°C or less zl T. Both

values must be considered."

DNA-DNA relatedness values are often seen as the gold standard for the

circumscription of bacterial species (Wayne et a!., 1987; Goodfellow & O'Donnell,

1993). However, DNA relatedness data need to be evaluated in light of results

deved from the application of independent taxonomic techniques. Indeed, it is now

recommended that novel taxa be described using both genotypic and phenotypic

properties (Wayne et a!., 1987; Murray et a!., 1990). These workers also

recommended that distinct genomic species which cannot be separated from one

another on the basis of phenotypic properties should not be named until they can be

distinguished by a number of phenotypic properties.

The major drawback of DNA-DNA pairing methods involves the cost and

effort of securing a complete matrix of relatedness values between all pairs of test

strains (Goodfellow & O'Donnell, 1993). The usual practice is to employ only a few

organisms as reference strains and to compare all other strains against this

resthcted set. However, such a process may result in the loss of information on the

undeying taxonomic structure (Sneath, 1983; Hartford & Sneath, 1988).

A stable and lasting classification of novel species is possible when test

organisms are compared with type strains of all relevant validly described species

using the DNA-DNA pairing procedure. This comprehensive approach is desirable
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(e.g., Labeda, 1 995) but, in practice, comparative studies are usually restricted to an

examination of type strains of species established using phenotypic properties (e.g.,

Kudo etal., 1988; Eguchi eta!., 1993). Comparisons with type strains of all validly

described species are not practical in the case of taxa, notably the genera Bacillus,

Mycobacterium and Streptomyces, which encompass many species.

Data derived from 1 6S rRNA sequencing studies are increasingly being used

to define bacterial species (Stackebrandt, 1992; Ludwig & Schleifer, 1994). Two

assumptions underlie this approach, namely that lateral gene transfer has not

occurred between 1 6S rRNA genes and that the amount of evolution or dissimilarity

between 16S rRNA sequences of given pairs of organisms is representative of the

variation shown by the corresponding genomes. Woese et a!. (1980) considered

that lateral gene transfer between 1 6S rRNA genes was probably very rare since

this gene is responsible for maintaining functional and tertiary structural consistency

and is rich in information. The two assumptions form the basis of a reasonable

hypothesis though horizontal gene transfer in 1 6S rDNA may have been recognised

between members of the genus Aeromonas (Sneath, 1993).

Fox et a!. (1992) were the first to realise that 16S rRNA molecules of

members of closely related species may not always show molecular clock behaviour

since they are so conserved. This important observation meant that strains of

related species with almost identical 1 6S rRNA sequences may belong to different

genomic species. The relationship between 16S rRNA sequence and DNA

relatedness data is illustrated in Figure 2-1 using data derived from studies on

representatives of mycolic acid-containing taxa; the raw data used to plot Figure 2-1

are presented in Appendix E.
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Figure 2-1. Comparison of 1 6S rRNA sequence similarity and DNA relatedness

values. Based on data taken from studies on mycolic acid-containing actinomycetes

(the original data and corresponding references are given in Appendix E).
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It is evident from Figure 2-1 that a comparison of the 1GS rRNA sequence

and DNA relatedness data does not demonstrate a linear relationship. However,

16S rRNA sequence similarity values below 97% always correspond to DNA

relatedness values below 60% though the reverse is not true. A similar relationship

between 1 6S rRNA sequence and DNA relatedness data was presented by

Stackebrandt and Goebel (1994) who argued that organisms assigned to a genomic

species could be expected to show a 97% or more similarity value in light of

corresponding 16S rRNA sequence data. This cut-off value is plausible given the

results shown in Figure 2-1 for mycolic-acid containing actinomycetes.

DNA sequencing studies are more cost-effective and less laborious than

DNA-DNA reassociation studies given developments in molecular biology, notably

the use of the PCR and the introduction of automatic DNA sequencers

(Stackebrandt & Goebel, 1994). However, the two methods should be seen as

complementary for the circumscription of bacterial species. 1 6S rDNA sequencing

studies are useful for underpinning taxonomic relationships at species or higher

taxonomic ranks whereas DNA relatedness studies are only valid at the species or

subspecific level (Goodfellow & O'Donnell, 1993). When closely related organisms

are compared genomic species cannot be recognised only by using 16S rDNA

sequence data. In such cases DNA-DNA pairing studies need to be carried out.

An useful compromise is to involve both molecular methods to delineate

closely related species. Initial 16S rRNA sequencing studies can be undertaken to

show the broad relationships between closely related organisms with DNA-DNA

pairing studies used to detect the finer taxonomic structure. Deoxyribonucleic acid

relatedness values can be determined using two well established procedures,

namely by using filter-binding and spectrophotometric techniques (Huss et a!., 1983;

Johnson, 1991). The spectrophotometric method is preferred as it gives more
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reproducible results and eliminates the need for the use of isotopes (Huss et a!.,

1983; Hartford & Sneath, 1993). The sequential use of the 16S rDNA sequencing

and DNA-DNA pairing methods should prove to be of particular value in unravelling

the taxonomic structure of genera, such as Bacillus, and Streptomyces, which

encompass many species.

2. Chemosystematics

2.1. Introduction

Chemosystematics or chemotaxonomy is the study of the distribution of

chemical components, such as cell wall amino acids, lipids, proteins, isoprenoid

quinones and sugars, amongst members of microbial taxa and the use of such

information for classification and identification (Goodfellow & O'Donnell, 1994). This

definition can be extended to include information derived from whole-organism

chemical fingerprinting techniques, such as pyrolytic (pyrolysis gas chromatography,

pyrolysis mass spectrometry and pyrolysis tandem mass spectrometry) and

spectroscopic methods (infrared and ultraviolet-resonance Raman spectroscopy;

Helm eta!., 1991; Magee, 1993, 1994; Naumann eta!., 1994).

Amino acids, lipids, proteins and sugars are important structural constituents

of bacterial cell envelopes. Chemical data derived from analyses of cell components

can be used to classify bacteria at different taxonomic ranks according to the

pattern of distribution of various chemical markers within and between members of

different taxa. Chemotaxonomic analyses of chemical macromolecules, particularly

amino acids and peptides (e.g., from peptidoglycans and pseudomureins), lipids

(e.g., fatty acids, lipopolysaccharides, mycolic acids and polar lipids),

polysaccharides and related polymers (e.g., wall sugars, methanochondroitins,

teichoic and teichuronic acids), proteins (e.g., bacteriochiorophylls, cytochromes,
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fimbriae, glycoproteins, protein sheaths and whole-organism protein patterns) and

enzymes (e.g., hydrolases, lyases, oxidoreductases) and other complex polymeric

compounds, such as isoprenoid quinones and sterols, all provide grist to the

taxonomic mill. The base composition of DNA is also a chemical property sensu

stricto though it is usually considered with other information derived from analyses

of nucleic acids. Similarly, data derived from enzyme tests are usually dealt with as

phenotypic characters (Manafi et a!., 1991; Goodfellow & James, 1994).

The taxonomic value of different types of chemical markers in bacterial

systematics has been considered in detail (Goodfellow & ODonnell, 1994; Suzuki et

a!., 1993). Consequently, this section is restricted to a consideration of

chemotaxonomic markers that have been shown to be of particular value for the

classification and identification of actinomycetes.

2.2. Specific chemical markers

The most commonly used chemical characters in actinomycete systematics

are cellular fatty acids, menaquinones, muramic acid types, phospholipids, whole-

organism amino acids and sugars and the base composition of DNA (Goodfellow,

1989a; Williams et a!., 1989). Some of the methods used to detect these

chemotaxonomic markers can be used to provide quantitative or semi-quantitative

data, as in the case of DNA base composition, cellular fatty acid and menaquinone

analyses, but other methods yield qualitative data, as in the case of muramic acid,

peptidoglycan, phospholipid and whole-organism sugar determinations.

DNA base composition. Actinomycetes form a distinct phyletic branch in the Gram-

positive line of descent based on the results of 16S rRNA sequence analyses

(Stackebrandt & Woese, 1981 b; Woese, 1987; Embley & Stackebrandt, 1994).
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Most actinomycetes contain DNA within the range of 50 (Arcanobacterium and

Mobiluncus spp.) to approximately 75 mol% G+C (Geodermatophilus spp.). DNA

base composition values have proved to be of particular value in the assignment of

organisms to genera (Tamaoka, 1 994).

Cellular fatty acids. Fatty acids can be defined as carboxylic acid derivatives of

long-chain aliphatic molecules. In bacteria, they range in chain length from two (C2)

to over ninety (C90) carbon atoms. Fatty acids in the range C 10 to C24 are of the

greatest taxonomic value (Suzuki et a!., 1993). Cellular fatty acid composition is

usually determined by gas-liquid-chromatography with the resultant data suitable for

multivariate statistical analyses, notably using principal component and SIMCA

routines (O'Donnell, 1985; Saddler eta!., 1987).

Actinomycetes show three major types of fatty acid profile (Table 2-3;

Kroppenstedt, 1985). Members of the same genus usually have the same fatty acid

type though a number of exceptions exist (e.g., Cotynebacterium bovis contains

10-methyl-C 18). Quantitative analyses of cellular fatty acids are increasingly being

used to compare members of closely related species (e.g., Kroppenstedt et a!.,

1990; Kom-Wendisch eta!., 1995).

Mycolic acids are especially long chain 3-hydroxy fatty acids with an alkyl

branch at position 2. These molecules are only present in members of the genera

Cotynebacterium, Dietzia, Gordona, Mycobacterium, Nocardia, Rhodococcus and

Tsukamurella (Goodfellow, 1992; Rainey et a!., 1995c) The variations in chain

length and the degree of saturation are especially useful for the classification of

members of mycolic acid-containing taxa (Goodfellow & Lechevalier, 1989;

Goodfellow, 1992).
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Menaquinones. Several types of isoprenoid quinone have been detected in

bacteria (Collins, 1994) but menaquinones (MK) are the most common type found in

actinomycete envelopes (Kroppenstedt, 1985; Suzuki et a!., 1993; Collins, 1994).

These compounds have a chemical structure analogous to that of vitamin K2(MK-7;

unsaturated menaquinone with seven isoprene units) and are classified according to

the number of isoprene units, which can vary from one up to fifteen, and the degree

of saturation or hydrogenation. The structure and composition of bacterial

menaquinones are determined either semi-quantitatively by mass spectrometry or

quantitatively by high-performance liquid chromatography (Kroppenstedt, 1985;

Collins, 1 994). The typical structures of actinomycete menaquinones are illustrated

in Figure 2-2.

The position or point of hydrogenation in isoprenoid side-chains can be very

specific and hence of taxonomic value (Collins, 1994). Sophisticated techniques,

such as silver-phase high-performance liquid chromatography (Kroppenstedt, 1985)

and tandem mass spectrometry (Collins et a!., 1988c; Ramsey et a!., 1988) are

needed to determine the points of hydrogenation in isoprene units. Such studies

have provided valuable information for the classification of Actinomadura

(MK9[l 1,111 ,Vl I l-HJ), Microtetraspora (MK9[l I ,Vl I l,lX-H 6]) and Streptomyces strains

(MK9[ll,lll,IX-H 6]) [Yamada et a!., 1982; Collins eta!., 1988c; Kroppenstedt et a!.,

1990].

An unique hexahydrogenated menaquinone with eight isoprenoid units in

which the end two units were cyclised was discovered in Nocardia brasi!iensis by

Howarth et aL (1986); a dihydrogenated isomer was subsequently found as a minor

component (Collins et aL, 1987). These cyclic menaquinones are characteristic of
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(a) Unsaturated menaquinone

cç

2	 5

(b) MK-9 (II, III, IX-H6)

2	 2

(C) MK-8(I/, Ill-H4) cyclic

FIGURE 2-2. STRUCTURES OF (a) UNSATURATED MENAQUINONES CHARACTERISTIC OF

TSUKAMURELLA STRAINS, (b) PARTIALLY SATURATED MENAQUINONES CHARACTERISTIC

OF STREPTOMYCES STRAINS AND (c) CYCLIC MENAQUINONES CHARACTERISTIC OF

NOCARDIA STRAINS.
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members of the genus Nocardia sensu stricto (Kämpfer et a!., 1990; Goodfellow

1992) though fully saturated cyclic menaquinones have also been reported for the

archaebacterium, Pyrobaculum organotrophum (Tindall et aL, 1991).

Peptidoglycan. Peptidoglycans provide the basic structure of the bacterial cell wall.

Although there is considerable inter-species variation in the detailed structure of

peptidoglycan, its chemical architecture remains constant, that is, it consists of p1-4

linked disaccharides of N-acetylglucosamine and N-acetylmuramic acid (Figure 2-3).

These glycan chains (up to 100 units) are covalently cross-linked by oligopeptides

which connect 3-0-lactoyl groups of muramic acid residues in glycan chains

(Hancock, 1 994). Structural variation in peptidoglycans mainly occur in the position

and type of diamino acid involved in the cross-linkage of the peptide chains at

position 3, and on the presence and composition of interpeptide bridges.

Peptidoglycans are usually classified according to the system proposed by Schleifer

and Kandler (1972; Table 2-4).

Most actinomycetes have the type A peptidoglycan though members of the

family Microbacteriaceae exhibit the distinctive type B form (Schleifer & Kandler,

1972). 5S and 16S rRNA sequence data have shown that members of the family

Microbacteriaceae form a distinct phyletic line within the evolutionary radiation

encompassed by actinomycetes (Park eta!., 1993; Rainey etai'., 1994b). Variation

in peptidoglycans provides useful information for the classification of actinomycetes

at and above the genus level. The muramic acids of actinomycete peptidoglycans

can be either N-acetylated (A) or N-glycolated (G) [Uchida & Aida, 1977, 1984].

Most actinomycetes contain N-acetylated muramic acids though members of the

families Micromonosporaceae, Mycobacteriaceae and Nocardiaceae are

characterised by the presence of N-glycolated muramic acid residues.
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N-acetylglucosamine

CH2OH

N-acetylmuramic acid

CH2OH

LiU	 Position

L-aI anine
	

1

L-glutamate
	

2

meso-diaminopimelic acid 3

D-alanine
	

4

FIGURE 2-3. FRAGMENTS OF THE PRIMARY STRUCTURE OF A TYPICAL PEPTIDOGLYCAN.



A: Cross-linkage between 1. None
positions 3 and 4 of two
peptide subunits

a	 L-lysine

p	 L-ornithine

meso-diaminopimelic acid
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TABLE 2-4. CLASSIFICATION OF PEPTIDOGLYCANS SENSU SCHLEIFER AND KANDLER

(1972)a.

Position of cross-link	 Peptide bridge	 Amino acid at position 3

2. Polymerised units 	 a	 L-lysine

3. Monocarboxylic L-amino a L-lysine
acids or glycine or both	 p	 L-ornithine

..,,	 LL-diaminopimelic acid

4. Contains a dicarboxylic a	 L-lysine
amino acid	 p	 L-ornithine

meso-diaminopimelic acid
L-diaminobutyric acid

5. Contains a dicarboxylic a	 L-Iysine
amino acid and lysine	 p	 L-ornithine

B: Cross-linkage between
positions 2 and 4 of two
peptide subunits

1. Contains a L-amino acid

2. Contains a D-amino acid

a	 L-Iysine
p L-homoserine

,	 L-glutamic acid
L-alanine

a	 L-ornithine
p L-homoserine

L-diaminobutyric acid

',Modified from Rogers et aL (1980), Schleifer and Kandler (1972) and Schleifer and Seidi

(1985). b The variation is marked by a prime in cases where alanine is replaced by glycine at

position 1.
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Phospholipids. Phospholipids are the most common polar lipids found in bacterial

cytoplasmic membranes (Suzuki et a!., 1993). The structural variations found in

bactenal phospholipids are illustrated in Table 2-5. The different types of

phospholipids are discontinuously distributed in actinomycetes and hence provide

useful taxonomic information. Acylated ornithine and polar, amphipatic glycolipids or

lysine amides, can be also considered as polar lipids (Minnikin & O'Donnell, 1984).

Lechevalier et a!. (1977, 1981) classified actinomycetes into five

phospholipid groups based on 'semi-quantitative' analyses of major phospholipid

markers found in whole-organism extracts. Phospholipids extracted from

actinomycetes by using organic solvent systems (Minnikin et a!., 1984) can be

separated by two dimensional thin-layer-chromatography (e.g., Embley et a!., 1983)

and detected using non-specific (5%, w/v, ethanolic molybdophosphoric acid;

Suzuki et a!., 1993) or specific spray reagents. The latter can be used to detect a-

glycols (periodate-Schiff; Shaw, 1968), amino groups (0.2% ninhydrin, w/v, in water-

saturated butanol; Consden & Gordon, 1948), choline (Dragendorff reagent;

Wagner et a!., 1961), lipid phosphates (Dittmer & Lester, 1964) and sugars (a-

naphthol; Jacin & Mishkin, 1965). Actinomycetes can be assigned to established

phospholipid patterns according to the presence or absence of specific or

combinations of specific phospholipid markers (Table 2-6). In general, members of

the same actinomycete genus have the same phospholipid type. Phospholipid

patterns can be important for the recognition of actinomycete genera (Goodfellow,

1 989a; Williams et a!., 1989). Proposals for the recognition of Aeromicrobium

(Tamura & Yokota, 1994) and Dietzia (Rainey et a!., 1 995c) were partly based on

polar lipid data.
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Sugar composition. Neutral sugars, which are major components of actinomycete

cell envelopes, are useful taxonomic markers at the suprageneric level. Sugar

composition can be determined by simple paper chromatography (Schaal, 1985) or

by using gas-liquid chromatography (Saddler et a!., 1991) following full hydrolysis of

purified cell walls or whole-organisms (Hancock, 1994). In the latter case,

quantitative sugar profiles can be used for multivariate statistical analyses

(St-Laurent et a!., 1 987). The source of the sugars is largely unknown (Hancock,

1994) with only those of mycobacteria having been studied in some detail (Besra &

Chatterjee, 1994). In the mycobacterial cell wall, sugars are present in various

polysaccharide polymers, including arabinogalactan, lipoarabinomannan,

lipomannan and phosphatidylinositol mannosides (Daffé et a!., 1990; Chatterjee et

a!., 1992). Information derived from analyses of sugar composition provides fairly

crude data for understanding cell wall structure as the presence of a particular sugar

in different strains does not necessarily mean that it is derived from the same

macromolecule. More detailed analyses of cell wall polysaccharide polymers, such

as so-called linkage analyses, can be used to provide additional information on the

structure and function of actinomycete envelopes (Daffé et a!., 1993).

Actinomycetes can be assigned to five groups on the basis of the

discontinuous distribution of major diagnostic sugars, namely: group A, arabinose

plus galactose; group B, madurose (3-O-methyl-D-galactose); C, no diagnostic

sugars, 0, arabinose plus xylose; and E, galactose plus rhamnose (Lechevalier &

Lechevalier, 1970; Labeda et a!., 1984). A few "rard' sugars have also been

reported to be diagnostic for members of some actinomycete taxa, notably the

occurrence of 3-0-methyl-rhamnose in Catellatospora (Asano et a!., 1989) and

tyvelose in Agromyces (Maltsev et a!., 1992).



120
	

CHAPTER!!

TABLE 2-5. MAJOR PHOSPHOLIPIDS FOUND IN ACTINOMYCETES.

CH200C-R'

R-COOCH o

II
CH2O-P-OY

OH

R, R' = long-chain alkyl

Overall	 Polar head group substituent	 Name and abbreviation
charge	 (Y)

1+	 Glycerol	 Phosphatidylglycerol

2+	 Phosphatidylglycerol 	 Diphosphatidylglycerol

1 +	 Butane-2,3-diol	 Phosphatidylbutanediol

1+	 Inositol	 Phosphatidylinositol

1 +	 Acylated mannosylinositols	 Phosphatidylinositol mannosides

o	 Ethanolamine	 Phosphatidylethanolamine

O	 Choline	 Phosphatidylcholine

o	 Methylethanolamine 	 Phosphatidylmethylethanolamine

Modified from Minnikin and O'Donnell (1984).
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TABLE 2-6. CLAssIFIcATIoN OF ACTINOMYCETE PHOSPHOLIPIDS SENSU LECHEVALIER et

aI.(1977, 1981).

Type	 Characteristics +

Nitrogenous phospholipids absent, phosphatidyiglycerol variable

II	 Only phosphatidylethanolamine

Ill	 Phosphatidylcholine, phosphatidylethanolamine,

phosphatidylmethylethanolamine and phosphatidylglycerol variab'e;

phospholipids containing glucosamine absent

IV	 Phospholipids containing glucosamine with phosphatidylethanolamine

and phosphatidylmethylethanolamine variable

V	 Phospholipids containing glucosamine, phosphatidyiglycerol with

phosphatidylethanolamine variable

, Most actinomycetes contain phosphatidylinositol (Suzuki et a!., 1993); this component is

absent in Dietzia strains (Rainey et a!., 1 995c).
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Wall chemotypes. The widespread use of simple chemical methods to highlight

diagnostic chemical markers proved to be of particular value in actinomycete

systematics. The introduction of wall chemotypes by Lechevalier and Lechevalier

(1970) provided a much needed practical way of assigning actinomycetes to a

number of groups using qualitative chemical data. The system is based on the

discontinuous distribution of major diagnostic amino acids and sugars in whole-

organism hydrolysates (Table 2-7). Members of most actinomycete genera and

families usually have the same wall chemotypes.

3. The order A ctinomyc eta/es

3.1. The order Actinomycetales Buchanan 1917"

The order Actinomycetales, which is the only member of the class

Actinomycetes Krassilnikov 1 949, currently encompasses over ninety validly

described genera. The order, first introduced to accommodate members of the

family Actinomycetaceae, was designed mainly on morphological and pigmentation

properties:

"Mold-like organisms, not typically water forms, saprophytic or parasitic. Sheath not

impregnated with iron, true hyphae with branching often evident, conidia may be

developed, but never endospores. Without granules of free sulphur without

bacteriopurpurin. Never producing a pseudoplasmodium. Always non-motile."

(Buchanan, 1918).

The order remained morphological concept for many years. In 1973, Gottlieb

considered that actinomycetes encompassed 'varied groups of bacteria whose

common feature is the formation of hyphae at some stages of developmenr but he

went on to say that, in some organisms hyphal formation was tenuous and required

imagination to believe in it. Subsequently, Gottlieb (1974) defined members of the

order Actinomycetales as 'bacteria that tend to form branching filaments which in

some families developed into a mycelium'. However, he conceded that filaments
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Table 2-7. Classification of actinomycetes based on wall chemotypes sensu

Lechevalier and Lechevalier (1970).

Wall	 Diagnostic amino acids and sugars

chemotype

LL-Diaminopimelic acid and glycine

II	 meso-Diaminopimelic acid and/or hydroxy-diaminopimelic acid

with glycine

Ill	 meso-Diaminopimelic acid and madurose

IV	 meso-Diaminopimelic acid, arabinose and galactose

V	 Lysine and ornithine

VI	 Lysine with aspartic acid and galactose variable

VII	 Diaminobutyric acid and glycine with lysine variable

VIII	 Omithine

lX	 LL- and meso-diaminopimelic acids

, Wall chemotype proposed for kitasatosporiae (Wellington eta!., 1992).
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might be short, as in members of the families Actinomycetaceae Buchanan 1918AL

and Mycobacteriaceae Chester 1 897AL, and that in members of certain taxa they

underwent fragmentation and consequently could only be observed at some stages

in the growth cycle.

The relatively simple morphology of mycobacteria partly explains why these

organisms were sometimes omitted from classifications of actinomycetes

(Waksman, 1961, 1967). Other workers questioned whether actinomycetes formed

a natural group preferring to regard them as a convenient but artificial taxon

(Sneath, 1970; Prauser, 1970, 1978, 1981; Goodfellow & Cross, 1974). The

difficulty of distinguishing between nocardioform actinomycetes and coryneforrn

bacteria was also widely recognised (Williams eta!., 1976; Goodfellow & Minnikin,

1981a,b; Locci, 1981).

The morphological concept of an actinomycete has been challenged by

information derived from the application of chemical and molecular taxonomic

methods. Data from 16S rRNA cataloguing studies showed that most morphological

features were poor markers of phylogenetic relationships and that the traditional

morphological definition of an actinomycete could not be sustained (Stackebrandt et

a!., 1980a, b, 1983; Ludwig et a!., 1981; Stackebrandt & Woese, 1981a, b). It is

perhaps not too surprising that the morphologically simple corynebacteria were

found to have a close evolutionary relationship with the more highly differentiated

mycobacteria, nocardiae and rhodococci as this grouping is consistent with the

results of chemotaxonomic (Minnikin & Goodfellow, 1980, 1981a), comparative

immunodiffusion ([md & Ridell, 1976) and numerical phenetic studies (Goodfellow &

Minnikin, 1981 b,c; Goodfellow & Wayne, 1982).

The traditional practice of separating the more highly differentiated

actinomycetes from the relatively morphologically simple coryneform bacteria no
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longer holds as strains of Actinomyces, Oerskovia and Promicromonospora show a

closer phylogenetic affinity to members of the genera Arthrobacter, Brevibacterium,

Cellulomonas, Curtobacterium and Microbacterium than to mycelium-form

organisms such as Nocardia and Streptomyces (Goodfellow & Cross, 1984). In

addition, members of the mycelium forming genus Thermoactinomyces have been

reclassified in the family Bacillaceae (Park et a!., 1993) whereas Arthrobacter and

Micrococcus strains have been considered to be indistinguishable on the basis of

16S rRNA cataloguing data (Stackebrandt & Woese, 1979, 1981 a, b; Stackebrandt

et a!., 1980a). It is evident from these findings that the possession of branched

hyphae should not automatically place a strain with the actinomycetes. The order

Actinomycetales has yet to be formally redefined in light of recent advances in

actinomycete systematics. However, the term, "actinomycetes" is now used to refer

to Gram-positive bacteria with DNA rich in G+C (over 55mo1%).

Stackebrandt and Woese (1981 b) considered that Gram-positive bacteria

could be divided into two major subgroups which corresponded to 'the high G+C

i.e., over 55%) actinomycete-type of organisms and the low G+C (i.e., below 50%)

endospore -forming organisms and their asporongenous relatives'. The genera

Actinomyces, Bifidobacterium, Cotynebacterium, Mycobacterium, Propionibacterium

and Streptomyces and related taxa were assigned to the high G+C subgroup

("actinomycete?). However, these workers recommended that the order

Actinomycetales should not encompass bifidobacteria and propionibacteria as these

organisms were anaerobic and only loosely associated with aerobic actinomycetes

on the basis of I 6S rRNA catalogue data. A similar definition of "actinomycetes" and

the order Actinomycetales based on 1 6S rRNA catalogue data was given by

Stackebrandt and Schleifer (1984).
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Goodfellow and Cross (1984) attempted to redefine actinomycetes in

phylogenetic terms as 'Gram-positive bacteria with a high G+C content in their DNA

(above 55 mol°o) which are phylogenetically related from the evidence of 16S rRNA

oligonucleotide sequencing and nucleic acid hybridisation studies (thus excluding

the genera Bifidobacterium, Kurthia and Propionibacterium)'. None of the authors

mentioned above considered the genera Bifidobacterium and Propionibacterium as

members of the order Actinomycetales. Murray (1992) proposed the class

Thallobacteria to accommodate 'Gram-positive bacteria showing a branch habit, the

actinomycetes and related organisms' but did not give a precise definition of the

taxon.

Complete nucleotide sequences of 1 6S rRNA have revealed that members

of the genus Propionibacterium are closely related to the genus Nocardioides.

Consequently, the genus Propionibacterium is now considered to belong to the

order Actinomycetales (Embley & Stackebrandt, 1994). In contrast, the position of

the genus Bifidobacterium in the phylogenetic tree based on complete 1 6S rRNA

sequence data is similar to its location in the trees derived from 1 6S rRNA catalogue

data (Embley & Stackebrandt, 1994).

Several Gram-positive bacteria with DNA rich in G+C have been excluded

from but are considered to be closely related to the actinomycetes. Embley and

Stackebrandt (1994) preferred to restrict the term "actinomycetes" to the phyletic

line that included bifidobacteria and propionibacteria, and introduced the phrase

"actinomycete line of descent' to encompass Coriobacterium glomerans and

Sphaerobacter thermophilus. A precise definition of actinomycetes based on the

G+C content of DNA is complicated by the close relationship found between

Coriobacterium glomerans and the genus Atopobium (Rainey et a!., 1 994a).
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Members of the genus Atopobium contain DNA which falls within the range 35 to 46

mol%. A precise definition of the order Actinomycetales is still awaitedl

3.2. Suprageneric dassification of actinomycetes and related taxa

Actinomycetes. The GenBank/EMBL database presently contains more than three

hundred 1 6S rRNA sequences on actinomycetes. Many of these sequences were

added to the database after 1993 by investigators who used DNA sequencing

procedures which give more accurate data than the reverse transcriptase technique.

It is, therefore, now possible to compare suprageneric relationships found between

actinomycetes and their neighbors based on 16S rRNA sequence data since

members of most actinomycete genera have been sampled (Figure 2-4; Appendix

F). A similar phylogenetic tree was generated by Embley and Stackebrandt (1994).

The distribution of some morphological and chemical markers against the

suprageneric taxa highlighted in the present study is shown in Tables 2-8 and 2-9.

The tree generated by Embley and Stackebrandt (1994) is largely based on

unpublished 1 6S rRNA sequences whereas the one presented here is derived from

nucleotide sequences that are in the pubLic domain. Consequently., members of the

genera Actinomadura, Micromonospora, Microtetraspora, Planomonospora and

Planobispora are included in this tree though it does not include information on

members of the genera Arthrobacter (Koch et a!., 1994), Brevibacterium (Cal &

Collins, 1994), Micrococcus (Koch et a!., 1994), Nocardia (this study), Rhodococcus

(Rainey et a!., 1995a) and Saccharomonospora (Kim et a!., 1995) or on newly

described genera, notably Thermocrispum (Kom-Wendisch eta!., 1995).

The organisms considered by Embley and Stackebrandt (1994) as authentic

actinomycetes are shown in Figure 2-4. These workers were also of the view that

the phylogenetic relationships found between most of the different actinomycete
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Figure 2-4. An abridged phylogenetic tree showing the actinomycete line of descent

based on 1371 16S rRNA nucleotide positions on two hundred and ninety-five

strains. The evolutionary distances were calculated according to Jukes and Cantor

(1969) and the tree constructed by using the neighbor-joining method (Saitou & Nei,

1987) with Bacillus subtilis (K00637) as outgroup. A comprehensive tree is given in

Appendix F.
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Actinomycetes line of descent

Sphaerobacter the rmophilus
Sulfate reducing strain Th3

Microthrix parviceIIa

Atopobium
Coriobacterium glomerans

Actinomycetes

Insertion element
in 23S rRNA

II
I
I
I

I

Bifidobacteriaceae

Actinomycetaceae

Microbacteriaceae

-	 Trophetyma whippelii

Sporichthya polymorpha

Dermatophilus congolensis

Terrabacter tumescens

Kineococcus aura ntiacus

Micrococcaceae

I Brevibacterium

Kilasatosporia

Sirepiomyces

Sireptosporangium

Micromonosporaceae
Acidothermus cellulolyticum

Frankia
Actinopolyspora halophila
Luteococcus japonicus
Propioniferax innocua
Microlunatus phosphovorus

Propionibacterium
Aeromicrobium
Nocardioides

Actinokineospora halophila
Saccharothrix
Kutzneria viridogrisea

Pseudonocardia

Amycolatopsis

Thermocrispum

Saccharomonospora
Kibdelosporangium aridum

I Saccharopolyspora

Cotynebacterium/ruricella

Dietzia mans
Tsukamurella paurometabola

Nocardia
Rhodococcus equi dade

Rhodococcus rhodochrous dade
Gordona
Nocardia pinensisI Mycobactenium

Bifidobacteriaceae

Actinomycetaceae

Microbacteriaceae

Dermatophilaceae

Micrococcaceae

Brevibacteniaceae

Streptomycetaceae

Sireptosporangiaceae

Micromonosporaceae

Frankiaceae

Propionibacteniaceae

Nocardioidaceae

Pseudonocardiaceae

Corynebacteriaceae

Nocardiaceae

Mycobacteniaceae
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lineages were uncertain. Bifidobacteria, including Gardnerella vagina/is, formed the

deepest phylogenetic line of descent and the families Nocardioidaceae and

Propionibacteriaceae were seen to fomi a dade. Embley and Stackebrandt (1994)

also considered that the family Actinomycetaceae and the multimembered dade

which contains the families Arthrobacteriaceae, Ce//ulomonadaceae,

Microbacteriaceae and Dermatophllaceae formed a distinct phyletic lineage.

It is apparent from Figure 2-4 that bifidobacteria, including Gardnerel/a

vagina/is, and the families Nocardioidaceae plus Propionibacteriaceae each form a

monophyletic line. However, members of the family Actinomycetaceae and the

phyletic line that encompasses the families Acthrobacteriaceae,

Ce/Iuiomonadaceae, Microbacteriaceae and Dermatophilaceae were recovered in

separate clades (Figure 2-4).

Good correlation exists between most of the suprageneric groups and the

distbution of chemical markers (Table 2-8). The family Microbacteriaceae

encompasses organisms with a type B peptidoglycan (Park et a!., 1993; Rainey et

a!., 1 994b), members of the Conjnebacterium-Mycobacterium-Nocardia phyletic

group have a wall chemotype IV and mycolic acids (Ruimy et a!., 1 994b; Rainey et

a!., 1 995a) and organisms assigned to the family Pseudonocardiaeae have a wall

chemotype IV without mycolic acids (Embley et a!., 1 988a,b; Warwick et a!., 1994).

It is evident from Table 2-8 that wall chemotypes can be useful in

distinguishing families or higher taxonomic ranks whereas menaquinone and

phospholipid types are of particular value in separating actinomycete genera.

Several actinomycete taxa, notably the families Actinoplanaceae Couch 1 955AL,

Brevibacteriaceae Breed 1 953AL, Corynebacteriaceae Lehmann and Neumann

1 907M, Frankiaceae Becking 1 970AL and Micromonosporaceae Krassilnikov 1 938AL

were described on the basis of morphological and phenetic properties. The
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descriptions of these taxa need to be re-evaluated in light of chemical and molecular

systematic data.

The actinomycete line of decent. Organisms assigned the 'actinomycete line of

decent' by Embley and Stackebrandt (1994) include members of the genus

Atopobium Collins and Wallbanks 1992, Coriobacterium glomerans Haas and KOnig

1988 (Rainey et a!., 1 994a) and Sphaerobacter the rmophilus Demharter et a!. 1989.

"Microthrixparvicel!a" is now considered to be a member of the 'actinomycete line of

decent' (Blackall et a!., 1994).

Members of the genus Atopobium are Gram-positive, non-motile, non-

sporeforming organisms which are obligate anaerobes. The major fermentation

products produced from glucose are acetic, formic and lactic acids; trace amounts of

succinic acid may also be formed. The G+C content of DNA from Atopobium strains

falls with the range 35 to 46 mol% (Collins & Wallbanks, 1992). Atopobium minutum

lacks the homologous insertion of about 100 nucleotides, that lies between helices

54 and 55 of the 23S rRNA, which has been found in all actinomycetes examined so

far (Roller eta!., 1992; Embley & Stackebrandt, 1994). Rainey et a!. (1 994a) found a

relatively close suprageneric relationship between the genus Atopobium and

Coriobacterium glomerans.

Coriobacterium g!omerans was proposed by Haas and KOnig (1988) for a

Gram-positive, anaerobic organism that forms long chains of irregular pear-shaped

cells with large spherical involutions and has DNA rich in G+C (60 to 61 mol%). The

organism was isolated from the intestinal tract of red soldier bugs, Pyrrhocoris

apterus (Haas & KOnig, 1987). The genus Atopobium and Coriobacterium

glomerans were also found to be related in the present study (Figure 2-4).

A Gram-intermediate, facultatively thermophilic iron-oxidising organism,

labelled strain TH3, was isolated from a copper mine spoilage dump (Brierley, 1978)
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and sequenced by Lane et a!. (1992). The resultant 1 6S rRNA sequence data form

the only available taxonomic information on this strain. Blackall eta!. (1994) found

that a "Microthrix paniice!Ia" strain isolated from activated sludge foams in Australia

showed a loose phylogenetic relationship to strain TH3. 16S rDNA sequences

directly amplified from nucleic acids extracted from Australian soil were found to

have a close phylogenetic relationship with strain TH3 and "Microthrix parvicella'

(Liesack & Stackebrandt, 1992; Stackebrandt et. a!., 1993; Blackall et a!., 1994).

The final member of the 'actinomycete line of decent' is Sphaerobacter

thermophilus, a pleomorphic Gram-positive organism which has a high G+C content

(66 mol%); this organism was isolated from heat-treated sewage sludge (Demharter

eta!., 1989).

It is clear that additional comparative taxonomic studies are needed to

resolve the relationships between organisms assigned to the 'actinomycete line of

decent'.

4. Family Nocardiaceae and related taxa

4.1. Suprageneric classification of mycolic acid-containing taxa

Actinomycetes with meso-diaminopimelic acid, arabinose and galactose in

the wall peptidoglycan (wall chemotype iv sensu Lechevaiier and Lecheva))er '97D)

fall into two well separated suprageneric groups (Goodfellow, 1992; Figure 2-4).

Wall chemotype IV actinomycetes which contain mycolic acids belong to the genera

Corynebacterium, Dietzia, Gordona, Mycobacterium, Nocardia, Rhodococcus and

Tsukamurella (Goodfellow, 1992; Rainey et a!., 1 995c) and the their mycolateless

counterparts to the family Pseudonocardiaceae (Embley eta!., 1988a,b; McVeigh et

a!., 1994; Warwick eta!., 1994).
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Mycolic acid-containing actinomycetes are currently assigned to three

suprageneric taxa, namely the families Coiynebacteriaceae Lehmann and Neumann

1 907, Mycobacteriaceae Chester 1 897AL and Nocardiaceae Castellani and

Chalmers 1919. The family Cotynebacteriaceae currently contains the genus

Conjnebacterium Lehmann and Neumann 1 896AL, the family Mycobacteriaceae the

genus Mycobacterium Lehmann and Neumann 1896AL and the family Nocardiaceae

four genera, namely Gordona (Tsukamura 1971) Stackebrandt et a!. 1988AL

Nocardia Trevisan 1 889, Rhodococcus Zopf 1891 AL and Tsukamurella Collins eta!.

1988.

The suprageneric positions of some mycolic acid-containing taxa, notably the

genera Dietzia Rainey et a!. 1995 and Tsukamure!Ia Collins et a!. 1988, are not

clear. The genus Dietzia was proposed by Rainey et al. (1 995c) for organisms which

had previously been classified as Rhodococcus mans Nesterenko et a!. 1982.

Tunicel!a otitidis Funke et a!. 1994 contains organisms which lack mycolic acids but

are morphologically and phylogenetically related to corynebacteria (Figure 2-4;

Appendix F). It is interesting that Turicella otitidis shows a relatively close

relationship with Cotynebacteuium amycolatum Collins et a!. 1988, a taxon that also

encompasses mycolateless organisms (Collins et a!., 1 988b).

Members of most mycolic acid-containing taxa can readily be distinguished

from one another and from related actinomycetes using a combination of chemical

and phenotypic properties (Tables 2-10 and 2-1 1). The taxonomy of the genera

Cotynebactenium and Mycobactenium have been reviewed recently (Liebl, 1992;

Von Graevenitz & Krech, 1992; Hartmans & De Bont, 1992) and hence will not be

considered in detail here.
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4.2. The family Nocardiaceae Castellani and Chalmers 1919"

The family Nocardiaceae is mainly classified on the basis of

chemotaxonomic criteria. Goodfellow (1992) recommended that the taxon should be

restricted to actinomycetes that show the following characteristics: (I) A

peptidoglycan composed of N-acetylglucosamine, D-alanine, L-alanine, and D-

glutamic acid with meso-diaminopimelic acid as the diamino acid and muramic acid

in the N-glycolated form (Uchida & Aida, 1979); (ii) a polysaccharide fraction of the

wall peptidoglycan rich in arabinose and galactose (whole-organism sugar pattern A

sensu Lechevalier and Lechevalier 1970); (iii) a phospholipid pattern consisting of

diphosphatidylglycerol,	 phosphatidylethanolamine	 (taxonomically	 significant

nitrogenous phospholipid), phosphatidylinositol and phosphatidylinositol

mannosides (phospholipid type II sensu Lechevalier eta!., 1977); (iv) a fatty acid

profile showing predominant amounts of straight chain and unsaturated fatty acids

plus tuberculostearic acid (fatty acid type lb sensu Kroppenstedt 1985); (v) mycolic

acids with 48 to 78 carbons; and (vi) DNA within the range 66 to 74 mol% GC.

The type genus is Noca rd/a Trevisan 1 889AL.

Validly described species currently classified in the family Nocardiaceae are

shown in Table 2-12.

The genus Nocardia Trevisan 1889. Nocardiae are aerobic, catalase-positive

actinomycetes which form rudimentary to extensively branched, substrate hyphae

that often fragment in situ, or on mechanical disruption, into rod-shaped to coccoid,

nonmotile elements. Aerial hyphae, at times visible only microscopically, are almost

always present. Short-to-long chains of well-to-poorly differentiated conidia may

occasionally be found on aerial hyphae and, more rarely, on both aerial and

substrate hyphae. In addition to these morphological properties, nocardiae contain
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Table 2-12. Validly described species classified in the family Nocardiaceae

Castellani and Chalmers 1919AL.

Taxon	 Name cited in the
Approved Lists of Bacterial

Names':

Genus: Gordona(Tsukamura 1971) Stackebrandt eta!. 1988

G. aichiensis (Tsukamura 1 982) Klatte et a!. 1 994cIP

G. amarae (Lechevalier and Lechevalier 1974) Klatte et a!. 1 994cIF

G. bronchialls' (Tsukamura 1971) Stackebrandt eta!. 1988P

G. rubropertincta ( Hefferan 1904) Stackebrandt et al. 1 988w'

G. sputi (Tsukamura 1978) Stackebrandt et a!. 1 988P

G. terrae (Tsukamura 1971) Stackebrandt et a!. 1 988'

Nocardia amarae

Rhodococcus bronchialis

Rhodococcus
rubropertinctus

Rh odococcus terrae

Genus: Nocardia Trevisan 1889AL

N. asteroides (Eppinger 1891) Blanchard 1896

N. brasiliensis ( Lindenberg 1909) Pinoy 191 3

N. brevicatena (Lechevalier et aL 1961) Goodfellow and Pirouz 1 982P

N. carnea (Rossi Doria 1891) Castellani and Chalmers 1913

N. farcinica Trevisan 1 889

N. nova Tsukamura 1 g82

N. pinensis Blackall et a!. 1 989

N. otitidiscaviarum Snijders 1 924

N. petroleophila Hirsch and Engel 1956

N. seriolae Kudo et aL 1 988w

N. transvalensis Pijper and PuUinger 1 927

N. vaccinii Demaree and Simth 1 952

Genus: RhodococcusZopf 1891A1

R. coprophi!us Rowbotham and Cross 1 977

R. equl (Magnusson 1923) Goodfellow and Alclerson 1 977

R. eiythropo!is (Gray and Thornton 1928) Goodfellow and Alderson
1977k

R. fascians (Tilford 1936) Goodfellow 1 984w

R. globerulus Goodfellow et aL 1 982P

Nocardia

Nocardia asteroides

Nocardia brasiliensis

Micropolyspora
brevicatena

Nocardia carnea

Nocardia farcinica

Nocardia otitidiscaviarum

Nocardia petroleophilab

Nocardia transvalensis

Nocardia vaccinii

Rhodococcus

Rhodococcus coprophilus

Rhodococcus equi

Rhodococcus etythropolis

Corynebacterium fascians



Nocardia coeliaca"

Nocardia
co,ynebacteroide.?
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TABLE 2-12. CONTINED.

R. marinonascens Helmke and Weyland l984

R. opacus KIatte t a!. 1994 VP

R. rhodniiGoodfellow and Alderson 1977A1

R. rhodochrousIsP (Zopf 1891) Tsukamura 1974

R. ruber (Kruse 1896) Goodfellow and Alderson 1 977

R. zopfii Stoecker et at 1994 VP

"Rhodococcus (Nocarclia) coeliaca" (Gray & Thornton 1928) Waksman
& Henrici 1 948

"Rhodococcus (Nocardia) coiynebacteroides" Serrano et al. 1 972AL

Genus: Tsukamure!!a Collins eta!. 1988 VP

Tsukamurella paurometaboIaT (Steinhaus 1941) Collins et al. 1988 VP

Tsukamurella wratislaviensis" Goodfellow et at 1991 VP

Rhodococcus rhodnii

Rhodococcus rhodochrous

Rhodococcus ruber

Cotynebacterium
paurometabolum

Abbreviations: , Cited in the Approved Lists of Bacterial Names (Skerman et at, 1980);

valid publication; TSP type species.

', Listed references are effective publications; b, Nocardia petroleophila is a member of the

genus Pseudonocardia (Ruimy et at., 1994b; Warwick et at., 1994) ; and C Nocardia coeliaca

and Nocardia corynebacteroides are members of the genus Rhodococcus (Goodfeltow,

1989b). For details see text.
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mycolic acids with 40 to 60 carbons and up to three double bonds; the fatty acid

esters released on pyrolysis gas chromatography of mycolic acid esters contain 12

to 18 carbon atoms and may be saturated or unsaturated. The predominant

menaquinone corresponds to a hexahydrogenated menaquinone with eight

isoprenoid units which the end two units cyclised. The major phospholipids are

diphosphatidyiglycerol, phosphatidylethanolamine, phosphatidylinositol and

phosphatidylinositol mannosides. The G+C content of the DNA is 64 to 72 mol%.

The type species is Nocardia asteroides (Eppinger 1891) Blanchard 1 896.

Nocardiae are widely distributed and abundant in soil. Some strains are

opportunistic pathogens for animals including man.

Historically, the genus Nocardia was a dumping ground for "nocardioforrn

actinomycetes" (Lechevalier, 1976). Twenty species of Nocardia were cited on the

Approved Lists of Bacterial Names (Skerman et a!., 1980). Nocardia autotrophica

(Takamiya and Tubaki 1956) Hirsch 1961 , Nocardia cellulans Metcalf and Brown

1 957k, Nocardia hydrocarbonoxydans Nolof and Hirsch 1 962, Nocardia

mediterranei (Margalith and Beretta 1960) Thiemann et a!. 1969, Nocardia

orientalis (Pittenger and Brigham 1956) Pridham and Lyons 1969 and Nocardia

saturnea Hirsch 1 960 were subsequently reclassified as Pseudonocardia

autotrophica (Takamiya and Tubaki 1956) Warwick et a!. 1994, Cellulomonas

cellulans Stackebrandt and Woese 1981, Pseudonocardia hydrocarbonoxydans

(Nolof and Hirsch 1962) Warwick et a!. 1994, Amycolatopsis mediterranei (Margalith

and Beretta 1960) Lechevalier et a!. 1986, Amycolatopsis oriental/s (Pittenger and

Brigham 1956) Lechevalier et a!. 1986 and Pseudonocardia saturnea (Hirsch 1 960)

Warwick et a!. 1994, mainly on the basis of chemotaxonomic and 16S rRNA

sequence data.
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The taxonomic status of Nocardia petroleophila Hirsch and Engel 1 956AL is a

source of confusion. This organism was cited in the Approved Lists of Bacterial

Names (Skerman et a!., 1980) but was listed as a 'species incertae sedis' in the last

edition of izgey's Manual of Systematic Bacteriology (Goodfellow & Lechevalier,

1989) as it did not have a wall chemotype IV (Hirsch, 1960). The 16S rRNA

sequence of the type strain of Nocardia petroleophila (Hirsch laboratory number

[IFAM] 78 DSM43193 = ATCC15777) was determined by Wersing et a!.

(unpublished; accession number X55608; deposited on September 1990) who

inadvertently mislabelled the type strain "Amycolata petrophilea". However, the

proposal of Wersing et a!. (unpublished) to transfer Nocardia petroleophila to the

genus Amycolata as Amycolata petroleophila has not been effectively published.

Ruimy eta!. (1994b) also determined the 16S rDNA sequence of the type

strain of Nocardia petro!eophila (ATCC1 5777T=IFAM 78; accession number

X80596). These authors compared their sequence with that of Wersing et a!. and

concluded that:

"The type strain N. petroleophila ATCC 15777T ... was clearly closely related to

Amycolata petrophilea (IFAM 78) with which it formed a monophyletic taxon."

It is clear that strains ATCC 15777 and IFAM 78 refer to the same strain and

that the proposition forwarded by Ruimy et al. (1994b) is misplaced. In contrast,

Warwick et a!. (1994) recommended that Nocardia petroleophila should be

transferred in the genus Pseudonocardia as Pseudonocardia petroleophila citing the

16S rRNA sequence data of Wersing et a!. (unpublished; accession number

X55608) as the sole line of evidence. It is clear that the taxonomic status of

Nocardia petro!eophila needs to be clarified!

Five of the remaining validly described species of Nocardia should probably

be reclassified in the genus Rhodococcus. Thus , in the latest edition of Bergey
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Manual of Systematic Bacteriology (Goodfeflow, 1989b) it was proposed that (i)

Nocardia ca/carea Metcalf and Brown 1957AL should be reduced to a synonym of

Rhodococcus erythropolis (Gray and Thornton 1928) Goodfellow and Alderson

1 977k; ( ii) Noca rd/a coiynebacteroides Serrano et a!. 1 972 and Nocardia globerula

(Gray 1928) Waksman and Henrici 1948 should become synonyms of

Rhodococcus globerulus Goodfellow et a!. 1982; (iii) Nocardia restricta (Turfitt 1944)

McClung 1974AL should be seen as a synonym of Rhodococcus equi (Magnusson

1923) Goodfellow and Alderson 1977; and Nocardia coeliaca (Gray and Thornton

1928) Waksman and Henrici 1948 should be transferred to the genus

Rhodococcus as Rhodococcus coeliaca. However, none of these recommendations

have been validly published. It was left to Rainey eta!. (1995b) to formally propose

that Nocardia ca/ca rea and Noca rd/a restricta be reduced to synonyms of

R/iodococcus eythropolls and Rhodococcus equ respectively. The inclusion of

Nocardia coiynebacteroides in the genus Rhodococcus is supported by 1 6S rONA

sequence data which showed that the strain forms an unique lineage within the

evolutionary radiation encompassed by the genus Rhodococcus (Rainey et aL,

1 995a).

The inclusion of Nocardia amarae Lechevalier and Lechevalier 1 974AL in the

genus Nocardia has frequently been questioned since this organism contains

dihydrogenated menaquinones with nine isoprene units, releases C 16 and C18

monounsaturated esters on pyrolysis of methyl mycolates, and is unable to grow in

lysozyme broth (Goodfellow, 1992). All of these properties are consistent with

proposals to transfer Nocardia amarae to the genus Gordona as Gordona amarae

on the basis of both chemical and 1 6S rDNA sequence data (Goodfellow et a!.,

1994; Klatte eta!., 1 994c; Ruimy et a!., 1 994b). The proposal of Klatte et a!. (1 994c)

has been validated (IJSB, 1995, page 199).
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The proposals outlined above leave the genus Nocardia as a homogeneous

taxon for the first time in its turbulent taxonomic history. The genus currently

contains eleven validly described species, namely Nocardia asteroides (Eppinger

1891) Blanchard 1896 ,Nocardia brasiliensis (Lindenberg 1909) Pinoy 1913

,Nocardia brevicatena (Lechevalier et a!. 1961) Goodfellow and Pirouz 1982,

Nocardia carnea (Rossi Doria 1891) Castellani and Chalmers 1913, Nocardia

farcinica Trevisan 1 889AL, Nocardia nova Tsukamura 1982, Nocardia pinensis

Blackall et a!. 1989, Nocardia otitidiscaviarum Snijders 1 924AL, Nocardia seriolae

Kudo et a!. 1 988, Nocardia transvalensis Pijper and Pullinger 1 927AL and Nocardia

vaccinhi Demaree and Simth 1 952.

Some nocardiae are opportunistic pathogens which can cause actinomycete

mycetoma and nocardiosis (Schaal & Lee, 1992; McNeil & Brown, 1994). The

predominant agents of nocardiosis are Nocardia asteroides, Nocardia farcinica and

Nocardia nova; organisms assigned to these taxa are difficult to distinguish on the

basis of recommended diagnostic phenotypic properties (Gordon et a!., 1974;

Goodfellow, 1971; Kudo etal., 1988).

The genus Gordona (Tsukamura 1971) Stackebrandt et a!. 1988. Gordonae are

aerobic, catalase positive actinomycetes which form rods and cocci. They have an

oxidative type of metabolism and are arylsulphatase negative. Gordonae have an

Al 1 type peptidoglycan and contain mycolic acids with 48 to 66 carbon atoms and 1

to 4 double bonds. The fatty acid esters released on pyrolysis gas chromatography

of mycolic esters contain 16 to 1 8 carbon atoms. Gordonae contain dihydrogenated

menaquinones with nine isoprene units as the predominant isoprenologue and

diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and

phosphatidylinositol mannosides as major phospholipid. The G+C content of the

DNA is within the range 63 to 69 mole %.
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The type species is Gordona bronchialis (Tsukamura 1971) Stackebrandt et

a!. 1988.

Gordonae are widely distributed and are common in soil. Some strains have

been associated with foams in activated sludge of sewage treatment plants; others

have been isolated from sputum with pulmonary disease.

The genus Gordona has had a somewhat checkered taxonomic history. The

taxon was initially proposed by Tsukamura (1971) for slightly acid-fast

actinomycetes isolated from soil and sputa of patients suffering from pulmonary

diseases. The three founder species of the genus, namely Gordona bronchialis,

Gordona rubra and Gordona terrae, were subsequently reclassified in the

redescribed genus Rhodococcus (Tsukamura, 1974; Goodfellow & Alderson, 1977).

In the last edition of Bergey's Manual of Systematic Bacteriology, rhodococci

were assigned to two aggregate groups based primarily on chemical and serological

properties (Goodfellow, 1989b). Members of species originally classified in the

genus Gordona Tsukamura 1971 contained mycolic acids with 48 to 66 carbon

atoms and major amounts of dihydrogenated menaquinones with nine isoprene

units (MK-9[H2]). The remaining strains were characterised by shorter mycolic acids

(34 to 52 carbon atoms) and dihydrogenated menaquinones with eight isoprene

units (MK-8[H2]; Alshamaony et a!., 1976; Collins et a!., 1977, 1985). The two

aggregate groups were also recognised by their antibiotic sensitivity profiles

(Goodfellow & Orchard, 1974), delayed skin reaction on sensitised guinea pigs and

polyacrylamide gel electrophoresis of cell extracts (Hyman & Chaparas, 1977).

The discovery that the two rhodococcal groups were phylogenetically distinct

led Stackebrandt et a!. (1988b) to revive the genus Gordona Tsukamura 1971 for

organisms classified as Rhodococcus bronchialis, Rhodococcus rubropertincta,

Rhodococcus sputi and Rhodococcus terrae. In addition, Hall and Ratledge (1986)
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had found that gordonae contained mycobactins whereas rhodococci were unable

to synthesise these compounds under growth conditions where iron was limited.

The mycobactins of Gordona rubropertincta and Gordona terrae were found to be

quite similar and readily separated from those of Gordona bronchialis.

Nocardia amarae Lechevalier and Lechevalier 1 974AL and Rhodococcus

aichiensis Tsukamura 1982 were subsequently found to have properties consistent

with their classification in the genus Gordona. They were transferred to the genus

Gordona as Gordona amarae and Gordona aichiensis mainly on the basis of

chemical and 16S rDNA sequence data (Goodfellow et a!., 1994; Klatte et a!.,

1994c; Ruimy eta!., 1994b).

The genus Gordona currently contains six validly described species (Table

2-12). It forms a homogeneous taxon which can readily be distinguished from

members of other mycolic acid-containing taxa (Tables 2-10 and 2-1 1).

The genus Rhodococcus Zopf 1891AL Rhodococci are aerobic, Gram-positive,

catalase positive, partially acid-fast, nonmotile actinomycetes which can exhibit rods

and extensively branched substrate hyphae. The growth cycle starts with the coccus

or short rod stage, different organisms then show a more or less complex series of

morphological stages; cocci may germinate only into short rods, or form filaments

with side projections, or show elementary branching, or in the most differentiated

forms produce branched hyphae. The next generation of cocci or short rods is

produced by fragmentation of rods, filaments, and hyphae. Some strains produce

sparse, microscopically visible, aerial hyphae that may be branched or form aerial

synnemata which consist of unbranched filaments that coalesce and project

upwards (Goodfellow, 1992). Rhodococci are sensitive to lysozyme, arylsulfatase

negative, and produce acid from glucose oxidatively.
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The cell wall peptidoglycan contains major amounts of meso-diaminopimelic

acid, arabinose and galactose. The organisms also contain diphosphatidylglycerol,

phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol

mannosides as the major polar lipids, dihydrogenated menaquinones with eight

isoprenoid units as the predominant isoprenologue, large amount of straight-chain,

unsaturated, and tuberculostearic acids, and mycolic acids with 32 to 52 carbon

atoms and 0 to 4 double bonds. The fatty acid esters released on pyrolysis gas

chromatography of mycolate esters contain 12 to 18 carbon atoms. The G+C

content of the DNA is 63 to 73 mol%.

The type species is Rhodococcus rhodochrous (Zopf 1891) Tsukamura

1974.

The organism is widely distributed but particularty abundant in soil and

herbivore dung. Some strains are pathogenic for animals including man.

Rhodococci have had a long and confused taxonomic pedigree (Cross &

Goodfellow, 1973; Bousfield and Goodfellow, 1976; Goodfellow & Wayne, 1982;

Goodfellow & Cross, 1984; Goodfellow & Lechevalier, 1989). The epithet

rhodochrous (Zopf, 1891) was reintroduced by Gordon and Mihm (1957) for

actinomycetes that had properties in common with both mycobacteria and nocardiae

but which carried a multiplicity of generic and specific names. The taxon was

provisionally assigned to the genus Mycobacterium but later found to be

heterogeneous on the basis of chemical, molecular genetic and numerical phenetic

data. The genus Rhodococcus was subsequently resurrected and redefined to

encompass rhodochrous strains (Tsukamura, 1974; Goodfellow & Alderson, 1977).

Ten species of Rhodococcus were cited on the Approved Lists of Bacterial

Names by Skerman et a!. (1980). Three of these species, namely Rhodococcus

bronchial/s (Tsukamura 1971) Tsukamura 1 974AL, Rhodococcus rubropertinctus
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(Hefferan 1904) Goodfellow and Alderson 1979 and Rhodococcus terrae

(Tsukamura 1971) Tsukamura 1974AL, were subsequently transferred to the genus

Gordona as Gordona bronchialis (Tsukamura 1971) Stackebrandt et a!. 1988,

Gordona rubropertincta (Hefferan 1904) Stackebrandt et a!. 1988 and Gordona

terrae (Tsukamura 1971) Stackebrandt eta!. 1988. Mordarski eta!. (1980b) found

that Rhodococcus coral!inus (Bergey et a!. 1923) Goodfellow and Alderson 1 979AL

and Gordona (Fihodococcus) rubropertincta belonged to the single DNA homology

group. Goodfellow (1989b) subsequently consider9d that Rhodococcus cora!!inus

should become a subjective synonym of Gordona (Rhodococcus) rubropertincta but

his proposal was never effectively published.

Thirteen new species were subsequently assigned to the genus

Rhodococcus, namely Rhodococcus aichiensis Tsukamura 1982, Rhodococcus

aurantiacus Tsukamura and Yano 1985, Rhodococcus chiorophenolicus Apajalahti

et a!. 1986, Rhodococcus chubuensis Tsukamura 1982, Rhodococcus fascians

Goodfellow 1984, Rhodococcus globerulus Goodfeflow et a!. 1982, Rhodococcus

luteus Nesterenko et a!. 1982, Rhodococcus marinonascens Helmke and Weyland

1984, Rhodococcus mans Nesterenko et aL, 1982, Rhodococcus obuensis

Tsukamura 1982, Rhodococcus opacus Klatte et a!. 1994, Rhodococcus roseus

Tsukamura et a!. 1991 and Rhodococcus zopfii Stoecker et a!. 1994. Rhodococcus

aichiensis Tsukamura 1982, Rhodococcus aurantiacus Tsukamura and Yano 1985,

and Rhodococcus chloropheno!icus Apajalahti et aL 1986 have been reclassified as

Gordona aichiensis Kiatte et a!., 1994, Tsukamurella paurometabola Collins et aL

1988 and Mycobacterium chlorophenolicum Haggblom et a!. 1994, respectively, and

the new genus Dietzia Rainey et a!. 1995 proposed for Rhodococcus mans

Nesterenko et a!. 1982.
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Several rhodococci described using phenotypic properties were reduced to

subjective synonyms of established taxa. Rhodococcus chubuensis Tsukamura

1982 and Rhodococcus obuensis Tsukamura 1982 were transferred to the genus

Gordona and reduced to synonyms of Gordona sputi (Tsukamura 1978)

Stackebrandt et a!. 1988 (Riegel et a!., 1994). In addition, Rhodococcus luteus

Nesterenko et a!. 1982 and Rhodococcus roseus Tsukamura et aL 1991 became

synonyms of Rhodococcus fascians Goodfellow 1984 (Klatte et a!., 1994a), and

Rhodococcus rhodochrous (Zopf 1891) Tsukamura 1974 (Rainey et a!., 1995b),

respectively.

The proposals outlined above leave the genus Rhodococcus as a distinct

taxon which encompasses eleven validly described species (Table 2-12). However,

evidence from 16S rRNA sequencing studies indicated that that the genus is

polyphyletic (Rainey et a!., 1 995a; see Figure 2-4 and Appendix F).

The genus Tsukamurella Collins et aL 1988. The genus Tsukamurella was

introduced to accommodate organisms previously classified as Cotynebacterium

paurometabolum and Rhodococcus aurantiacus. Cotynebacterium paurometabolum

was proposed by Steinhaus (1941) for bacteria isolated from the mycetome and

ovaries of the bedbug (Cimex lectularis) but its assignment to the genus

Coiynebacterium was questioned (Jones, 1975; Collins & Jones, 1982). The

organism has an Aly peptidoglycan (Schleifer & Kandler, 1972) but was

distinguished from corynebacteria by the presence of long, highly unsaturated

mycolic acids (Collins & Jones, 1982). A similar series of unsaturated mycolic acids

were detected in Rhodococcus aurantiacus (Goodfellow et aL, 1978; Tomiyasu &

Yano, 1984), the generic status of which was also considered to be equivocal.

Rhodococcus aura ntiacus, first described as Gordona aura ntiacus

Tsukamura and Mizuno 1971, was transferred to the genus Rhodococcus by
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Tsukamura (1985). However, Goodfellow et aL (1978) considered that "aurantiaca"

strains merited generic status as they contained characteristic mycolic acids and

unsaturated menaquinones with nine isoprene units (MK-9). Corynebacterium

paurometabolum also contains the same type of predominant menaquinone (Collins

& Jones, 1982). Corynebacterium paurometabolum and Rhodococcus aurantiacus

were subsequently reduced to a single species and reclassified in the new genus

Tsukamurella on the basis of 1 6S rRNA sequence and chemical data outlined

above (Collins et aL, 1988a). An additional species, namely Tsukamurella

wratislaviensis, was subsequently assigned to the genus by Goodfellow et aL

(1991).

Phylogenetic studies on the family Nocardiaceae. The extensive 1 6S rRNA

sequencing studies that have been carried out on representative mycobacteria have

helped to clarify the internal structure of the genus Mycobacterium and provide a

sound basis for the molecular identification of mycobacteria (BOddinghaus et a!.,

1990; Stahl & Urbance, 1990; RogaIl eta!., 1990; Pitulle eta!., 1992). In contrast,

relatively few representatives of Gordona, Nocardia and Rhodococcus species have

been the subject of 1 6S rRNA sequencing analyses.

In the present investigation, almost complete 16S rRNA gene sequences

were determined for the type strains of validly described species of the genera

Nocardia and Tsukamurella. The resultant data were compared with corresponding

16S rRNA sequence data held in the GenBank/EMBL database on representatives

of the genera Corynebacterium, Gordona and Rhodococcus. The combined data

were used to establish relationships between members of the families

Corynebacteriaceae, Mycobacteriaceae and Noca rd/a ceae with four different

phylogenetic inference methods being used to evaluate the suprageneric taxonomy

of mycolic acid-containing actinomycetes. The type strains of all validly described



156
	

CHAPTER!!

species of the genera Nocardia and Tsukamurelia were examined for the presence

of menaquinones.
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B. Materials and Methods

1. Test strains

The sources and histories of the tests strains are given in Table 2-13. All of

the strains were maintained as glycerol suspensions (20%, v/v) at -20 °C. Strain

N1170, the designated type strain of a putatively novel species named "Nocardia

crassostrae", is a pathogen of Pacific oysters (Crassostrea gigas) and has been

distinguished from other nocardiae using phenotypic criteria (Friedman & Hedrick,

1991; C. S. Friedman, personal communication).

2. Chemo taxonomy

2.1. Preparation of biomass.

The test strains were grown in modified Sauton's broth (Mordarska et a!., 1972;

Appendix A) for 10 days at 30 °C, checked for purity, killed by shaking with formalin

(1 %, v/v) overnight and harvested by centrifugation. The resultant pellets were

washed twice with distilled water and freeze-dried.

2.2. Analysis of menaquinones

Isolation of isoprenoid quinones. The method described by Minnikin et a!. (1984)

was used to extract and purify isoprenoid quinones from the test strains. Dried

biomass (Ca. 50 mg) was placed in a test tube fitted with a Teflon-lined screw cap

and 2 ml of aqueous methanol (10 ml of 3% ,w/v aqueous sodium chloride in 100 ml

of methanol) and 2 ml of petroleum ether (b.p. 60-80 °C) added. The contents of the

tube were mixed for 15 minutes using a tube rotator then centrifuged for 5 minutes

at low speed. The upper organic phase, which contained the isoprenoid quinones,

was transferred to a small glass vial and dried under nitrogen at room temperature.
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TABLE 2-13. TEST STRAINS.

Laboratory	 Species	 Source
number

	

JC51 1	 Corynebacterium
glutamicum

	N31 7T	 Nocardia asteroides

	N31 81	 Nocardia brasiliensis

	Ni 2011	 Nocardia brevicatena

	Ni 2001	 Nocardia carnea

	N 1170	 "Nocardia crassostrae"

	N8981	 Nocardia farcinica

	N11121	 Nocardia nova

	N361	 Nocardia otitidiscaviarum

	Ni 1641	 Nocardia pinensis

	N11161	 Nocardia seriolae

	Ni 2021	 Nocardia transvalensis

	Ni i ggl	 Nocardia vaccinii

JC7T	 Tsukamurella
paurometabola

N 8051	 Tsukamurella
wratislaviensis

NCIMB 10025

R. E. Gordon, IMRU 727; Garden soil, Thailand.
=ATCC 19247

R. E. Gordon, IMRU 854; J. D. Schneidau Jr.,
381; A. Batista, 631. =ATCC 19296

DSM 43024; A. Seino KCC A-0029; H.
Lechevalier, RIA 709; sputum of patient with
tuberculosis

DSM 43397; R. E. Gordon IMRU 3419

C. S. Friedman, Bodega Marine Laboratory,
California, USA, NB4H; nocardiosis of oyster

M. Tsukamura, 231 02(R-33i 8). =ATCC 3318

JCM 6044; M. Tsukamura 23095; R. E. Gordon
R443; I. B. Christison; N. F. Conant 2338

NCTC 1934 (Nocardia caviae); E. P. Snidjers;
middle-ear of guinea-pig. =ATCC 14629

lFO 15059; L. L. Blackall, UQM 3036

JCM 3360; K. Hatai, NA 8191; spleen of a
yellowtail (Serbia quinqueradiata), Nagasaki,
Japan

DSM 43405; R. E. Gordon, IMRU 3426;
mycetoma pedis

DSM 43285; K. Kieslich, Schering 245; ATCC
11092; stem galls on blueberry

DSM 20162 (Cotynebacterium paurometabolum)

R. E. Gordon, IMRU 878; D. M. Powelson, J-17.
=NCIMB 13082

I Type strains. Abbreviations: ATCC, American Type Culture Collection, 12301 Parklawn
Drive, Rockville, Md., USA; DSM, Deutsche Sammlung von Microorganismen und
Zellkulturen, Mascheroder Weg ib, D-38124, Braunschweig, Germany; IFO, Institute for
Fermentation, Osaka, Japan; IMRU, Institute of Microbiology, Rutgers State University, New
Brunswick, N.J., USA.; JCM, Japan Collection of Microorganisms, Saitama, Japan; NCIMB,
National Collection of Industrial and Marine Bacteria, St. Machar Drive, Aberdeen, Scotland,
UK; NCTC, National Collection of Type Cultures, Central Public Health Laboratory, London,
UK; and UQM, University of Queensland, Brisbane, Australia.
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The preparations were stored in the dark at -20 °C as isoprenoid quinones are

susceptible to strong light and high temperatures (Collins, 1994).

Preparative thin-layer-chromatography of isoprenoid quinones. The extracts

containing the isoprenoid quinones were resuspended in 50 p1 of petroleum ether

(b.p. 60-80 °C) and applied as 2 cm bands on plastic-backed silica gel plates (10

cmxl0 cm; Merck 5735). The thin-layer-chromatographic plates were developed in

petroleum ether/acetone (95/5, v/v) and the single bands containing the

menaquinones visualised and located under UV light at 254 nm. A standard

menaquinone (MK-4; Sigma) was co-migrated to help identify the position of

extracted menaquinones. The latter were detected as dark brown bands on a

fluorescent yellow-green background. The bands were scraped from the plastic

plates and deposited in 1.5 ml tubes containing 1 ml of diethyl ether. The

preparations were mixed thoroughly by vortexing and centrifuged at 13,000 rpm for

5 minutes. The supematants were transferred to small vials, dried under nitrogen

and stored in the dark at -20 °C.

Analysis of isoprenoid quinones by high-performance liquid chromatography.

The purified menaquinones were resuspended in 50 p1 of n-hexane and 10 p1 of

each sample injected into a HPLC (Pharmacia LKB) fitted with a reverse-phase

column (Spherisorb octadecylsilane [ODS] 5 pm; Jones Chromatography Ltd., Mid

Glamorgan, Wales, UK). Acetonitrile-isopropanol (75:25, v/v) was used as the

mobile phase and the samples were detected at 254 nm. Retention times and peak

areas were determined using an integrator (HP3396A; Hewlett Packard Ltd., Nine

Mile Ride, Wokingham, Berkshire, England, UK).
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3. Sequencing of 16S rRNA gene

3.1. Preparation of biomass

The test strains were grown on glucose-yeast extract agar (Gordon & Mihm,

1962; Appendix A) plates for 7 days at 30 °C. Biomass was scrapped from the

surface of the medium by using plastic loops, carefully transferred to sterile 1 .5m1

test tubes, and either immediately used for DNA punfication or kept at -20 °C until

required.

3.2. Reagents and basic procedures

Unless otherwise specified, all solutions were prepared from dilutions of

stock solutions of the main reagents. Molecular biology grade reagents and

enzymes, including antibiotics, enzyme inducers and substrates, and lytic, modifying

and restriction enzymes, were obtained from commercial suppliers (Boehringer

Mannheim Biochemical, 1994; Sigma Chemical Company, 1994). Stock solutions

were prepared according to Sambrook et aL (1989). All buffers and solutions were

made up using autoclaved distilled and deionised Milli-Q reagent grade water

(Millipore [UK] Ltd., Watford, England, UK) and stored in autoclaved glass bottles.

Disposable plasticware and glassware were either autoclaved or oven-baked to

eliminate possible contamination with nucleases (Sambrook et aL, 1989).

The sequencing method was based on the blunt-end cloning procedure

(Promega Co. Southampton, England, UK). The steps involved in sequencing the

16S rRNA genes are summarised in Figure 2-5.

Preparation of competent cells. Escherichia coil strain JM1 09 (Promega Co.) was

grown in 300 ml of LB broth (Appendix A) in a flask at 37 °C until an 00 600 value of

about 600 was obtained. The flask was then placed in ice-cold water for 5 minutes
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and centrifuged at 12,000xg for 10 minutes at 4 °C. The resultant pellet was

resuspended in 100 ml of chilled TFB I buffer (Appendix A) by gentle shaking on ice,

reharvested by centrifugation and resuspended in 20 ml of chilled TFB II buffer

(Appendix A). The resultant bacterial suspension was aliquoted by 200 p1 into

chilled sterile 0.8 ml tubes, snap-freezed in a mixture of ethanol and dry-ice and

stored at -70 °C.

Preparation of pGEM-T vector. The pGEM-T vector was initially purchased from

the manufacturer (Promega Co.) but was later prepared in the laboratory using the

following protocol. Approximately 5Opg of purified pGEM-5Zf(+) vector (Promega

Co.) was digested with 50 units of EcoRV restriction enzyme (Boeringer Mannheim

Ltd.) at 37 °C overnight. Complete digestion of the plasmids was confirmed by using

0.8 %, w/v agarose gel electrophoresis and the resultant linearised plasmids further

purified using an Ultrafree-MC filter unit (0.45 pm; Millipore Ltd., Watford, England,

UK) following the manufacturer's protocol.

A reaction mixture (total volume 100 p1) was prepared with the solution

containing the linearised pGEM-5 plasmid, Taq polymerase buffer (10 %), Taq

polymerase (2.5 units; Hoefer Scientific Instruments, Newcastle upon Tyne,

England, UK) and dTTP (1 mM) in a 0.8 ml tube. One drop of mineral oil was added

to the tube which was then incubated at 72°C for 3 hours. The oil was removed

carefully from the tube and the resultant linearised plasmid with T-overhangs

(pGEM-T vector Figure 2-5) extracted with phenol-chloroform, precipitated in the

presence of 3 volumes of ethanol, washed twice with 70% ethanol and dried under

vacuum. The pellet was resuspended in 50pl of distilled water and the amount of

vector determined spectrophotometrically at 260 nm (Sambrook et a!., 1989). The

solution was diluted with water to give a final concentration of 50 ng/ml prior to

storage at -20 °C.
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3.3. Isolation of chromosomal DNA

Chromosomal DNA was isolated using a method slightly modified from

Pitcher et a!. (1 985). A small amount of biomass, that is, approximately the size of a

ce grain, was taken from the GYEA plate and placed in a 1 .5 ml tube containing

100 p1 of lysozyme solution (50 mg/mI in TE buffer; pH 8.0). The solution was

homogenised thoroughly using a sterile plastic loop and incubated at 37 °C

overnight. Guanidine-Sarcosyl solution (500 p1; Appendix A) was then added and

the mixture left at 37°C for 10 minutes. The lysate was cooled in ice for 5 minutes

and 250pl of cold 7.5M ammonium acetate (Sambrook et a!., 1989) added. The

contents of the tube were mixed, kept for 10 minutes in ice when 500p1 of

chloroform/2-pentanol (24:1, v/v) was added. The resultant solution was thoroughly

mixed by hand, centrifuged at 13,000 rpm for 5 minutes and the supernatant

transferred to a fresh tube followed by the addition of 0.54 volume of ice-cold

isopropanol.

The contents of the tube were mixed, kept at -20 °C for at least 30 minutes

and centrifuged at 13,000 rpm for 10 minutes. The pellet was washed twice with 70

% aqueous ethanol and dried under vacuum. It was then resuspended in 90 p1 of

TE buffer and 10 p1 of RNase A solution (10 mg/mI; Sambrook et a!., 1989),

incubated at 37 °C overnight and the same amount of phenol solution added. The

preparation was then thoroughly mixed, centrifuged at 13,000 rpm for 5 minutes, the

supematant transferred to another tube, further extracted using the same amount of

chloroform, the DNA precipitated by adding 2.5 volume of cold ethanol followed by

centrifugation at 13,000 rpm for 10 minutes. The pellet was washed twice with 70%

aqueous ethanol, dried under vacuum, resuspended in 30 to lOOpI of Milli Q water

and stored at -20 °C.
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3.4. Amplification of 16S rRNA genes

Approximately 100 ng of the purified chromosomal DNA was used for

polymerase chain reaction (rCA). Two universal primers (27f and 1525r;

Table 2-14) were used to amplify almost all of the 16S rDNA. The reaction mixture

was prepared as follows:

Taq polymerase buffer x 10	 10 lii

dNTP mixture (25mM for each dNTP) 	 0.8 p1

Template chromosomal DNA	 100 ng

Mull Q water	 up to 100 p1

Taq polymerase (2.5 units; Hoefer Scientific Instruments) and a drop of mineral oil

were then added to the tube and the mixture subjected to the following PCR

programme using a thermal cycler (Omnigene; Hybaid Ltd., Middlesex, England,

United Kingdom):

Steps	 Temperature	 Time

Initial extensive denaturation	 94 °C	 2 minutes

(1 cycle)

Main amplification (30 cycles) 	 Denaturation	 94 °C	 1 minute

Annealing	 55 °C	 1 minute

Extension	 72 °C	 3 minutes

Final extension (1 cycle)	 72 °C	 10 minutes

Cool down (1 cycle)	 30 °C	 1 minute

The tube was kept at 4 °C and the presence of the 1 .5kb long DNA fragment coding

for 1 6S rRNA confirmed using 0.8 %, w/v agarose gel electrophoresis.
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TABLE 2-14. OLIGONUCLEOTIDE PRIMERS USED IN POLYMERASE CHAIN REACTION

AMPLIFICATION AND SEQUENCING OF 1 6S rDNA.

Primer	 Sequence (5' to 3')'	 Size	 Binding sit?	 Usagec	 Source

5'	 3'	 FOR Seq

27f	 AGAGTTTGATCMTGGCTCAG	 20	 8	 27	 -.1	 Lane (1991)

MG2f	 GAACGGGTGAGTAACACGT	 19	 107	 125	 This study

MG3f	 CTACGGGRSGCAGCAC	 16	 342	 357	 Lane (1991)

MG4f	 AATTCCTGGTGTAGCGGT 	 18	 675	 692	 -'I	 This study

782r	 ACCAGGGTATCTAATCCTGT	 20	 801	 782	 This study

MG5f	 AAACTCAAAGGAATTGACGG 	 20	 907	 926	 This study

MG6f	 GACGTCAAGTCATCATGCC	 19	 1190 1208	 -.1	 This study

1525r	 AAGGAGGTGWTCCARCC	 17	 1544 1525	 'J	 Lane (1991)

'Degeneracies according to IUB code (Appendix B).

bBinding site on the 16S rRNA molecule. Numbering according to the Escherichia co/i system
(Brosius et a!., 1978; Appendix C).

CPCR primers used in PCR amplification of 16S rDNA; Seq, primers used in dye-deoxy cycle
sequencing of cloned 1 6S rDNA.
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3.5. Isolation of 16S rDNA

The resultant PCR products (Ca. 95 p1) were mixed with 10 p1 of loading

buffer (Sambrook et a!., 1989) and added to a 5 cm-long well on an 0.8%, wlv

agarose gel containing ethidium bromide (0.5 pg/mI; Sambrook et a!. 1989). Gel

electrophoresis was carried out in a horizontal submarine Pharmacia gel

electrophoresis apparatus. A Multidrive XL power supply (Pharmacia LKB Biochem

Ltd., Science Park, Milton Road, Cambridge, England, UK) was used to apply a

voltage of 100V for an hour. The band containing the 16S rDNA was visualised

under UV light, isolated using a clean knife and DNA extracted from the gel slice

using the Ultrafree-MC filter unit (0.45 pm; Millipore Co. Watford, England, UK)

according to the manufacturers instruction.

3.6. Cloning of 16S rDNA

Ligation of PCR-amplified 16S rDNA into the pGEM-T vector was achieved

following the standard method (Sambrook et a!., 1989).

A ligation reaction mixture (10 p1) was prepared as follows:

T4 DNA Ligase 1 Ox buffer (Promega Co.) 	 1 p1

T4 DNA Ligase (Promega Co.) 	 1 p1

pGEM-T Vector (50 ng/pl) 	 1 p1

PCR product	 x p1(100-300 ng)

Mliii 0 water	 up to 10 p1

The mixture was incubated at 15 O for 3 hours, heated for 10 minutes at 70°C,

allowed to cool to room temperature and either examined immediately or stored at -

20 °C. Two p1 of the mixture containing the ligated plasmid was transferred to a

fresh 0.8 ml tube and 50 p1 of high-efficiency competent Escherichia coil JM1O9

suspension added. The preparation was then flicked gently to mix it, kept in ice for
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20 minutes and heat-shock carried out using either a heating block or a PCR

thermal cycler at 42 °C for 45 to 50 seconds. The preparation was returned and kept

in ice for 2 minutes, transferred to a 1 .5 ml tube containing 450 p1 of sterile LB broth

and incubated at 37 °C for 1 hour. A 50 p1 aliquot of transformed Escherichia co/i

cells was dispersed over an LB agar plate supplemented with ampicillin (100 pg/mI),

isopropyl-13-D-thiogalactopyranoside (IPTG) and 5-bromo-4-chloro-3-indolyl-13-D-

galactopyranoside (X-Gal). The plate was incubated overnight and kept at 4 °C for

an hour in order to enhance the colour reaction in the colonies. The recombinants,

represented by white colonies, were selected using a sterile toothpick. These

inocula were used to seed flasks containing 10 ml of fresh LB broth supplemented

with ampicillin (50 pg/mI), the inoculated media were incubated at 37 °C overnight.

3.7. Isolation of plasmids

The recombinant Escherichia co/i cells were harvested after approximately

18 hours by centrifugation at 13,000 rpm for 5 minutes. The resultant pellet was

resuspended in 100 p1 of ice-cold Mini-Prep Lysis Buffer (Appendix A) and kept at

room temperature for 5 minutes. A freshly prepared solution (200 p1) of 0.2N NaOH

and SOS (1%) was added to the tube, mixed gently by inversion and incubated for 5

minutes in ice. Potassium acetate solution (150 p1; pH 4.8; Sambrook et a/., 1989)

was added to the preparation which was mixed gently, incubated in ice for 5

minutes, centrifuged at 13,000 rpm for 10 minutes when the supernatant was

carefully transferred to another tube avoiding the addition of white precipitate

(chromosomal DNA). Plasmid DNA was extracted by using phenol-chloroform,

precipitated by the addition of a 2.5 volume of cold ethanol, centrifuged at 13,000

rpm for 1 0 minutes, washed twice with 70 % ethanol and dried under vacuum. The

dried pellet was redissoived with 90 p1 of TE buffer; 10 p1 of RNase A solution

(10mg/mi) was added to the tube which was incubated at 37 °C overnight, extracted
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with phenol-chloroform, precipitated with 3 volumes of ethanol, twice washed with

70 % ethanol, dried and finally resuspended in 30 p1 of water. The amount of

purified plasmid DNA was determined both spectrophotometrically and by agarose

gel electrophoresis.

3.8. Sequencing of 16S rDNA

Cloned 16S rDNA was sequenced by using a PRISM DyeDeoxy

Terminator cycle sequencing kit (Applied Biosystems, California, USA) and an

Applied Biosystems DNA sequencer (model 373A) following the manufacturers

instructions. The primers used for sequencing were M13 forward/reverse universal

primers and specially designed primers for actinomycete 1 6S rDNA (Table 2-14).

3.9. Alignment of 16S rDNA sequences

The partial sequences obtained from the sequencing reactions were

recorded on IBM-PC disks and incorporated to the AL16S program (Chapter I). The

partial nucleotide sequences were aligned to get full sequences of the 16S rDNA.

The original sequencing gel image was reexamined in cases where ambiguities

were seen. Once complete nucleotide sequences were obtained they were aligned

against possible phylogenetic neighbours using secondary structural information as

implemented in the AL16S program.

3.10. Data analysis

The aligned 16S rDNA sequences were visually checked to select the

homologous alignment positions. Regions which showed ambiguities or were not

determined were excluded from further analysis. Most of the sequence analyses

discussed in Chapter I were carried out by using the AL16S program. The PHYLIP

package (Felsenstein, 1993) was used for the neighbor-joining (Satou & Nei, 1987),

Fitch and Margoliash (Fitch & Margoliash, 1967) and maximum parsimony methods.
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The maximum likelihood method (Felsenstein, 1981a) was also carried out by using

the fastDNAml program (Olsen et aL, 1994b). Bootstrap analysis (Felsenstein,

1985) was achieved by using the SEQBOQT program which forms part of the

PHYLIP package. The resultant tree was rerooted as required by using the

RETREE program in the PHYLIP package.

Phylogenetic trees were presented both as unrooted radial trees and as

rooted dendrograms. In the latter case, unrooted trees were generated and the

position of the root identified by adding one or more outgroups. This procedure

allows the detection of the internal tree topology without noise effects caused by

adding distantly related outgroup organisms (Swofford & Olsen, 1990).
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C. Results

1. Chemotaxonomy

The isoprenoid quinones of the test strains were identified as menaquinones

as they co-migrated with the standard (MK-7; Sigma). All of the type strains of the

validly described Nocardia species contain hexahydrogenated menaquinones with

eight isoprene units in which the two end units were cyclised (MK-8[H 4] w-cycl). The

type strain of	 Tsukamurella wratislaviensis contained dihydrogenated

menaquinones with eight isoprene units (MK-8[H2]). Details of the menaquinone

profiles of the test strains are given in Table 2-15.

2. 16S rRNA gene sequences

2.1. Sequencing errors

The number of nucleotides determined in the present study together with the

accession numbers for the EMBlJGenBank database are given in Table 2-15.

Almost complete 16S rDNA sequences of the test strains were determined (1472-

1477 nucleotides; positions between 28 and 1524 using Escherichia coil numbering

system [Brosius et a!., 1978; Appendix C]).

Nine out of the fifteen 16S rRNA gene sequences were compared with

corresponding nucleotide sequences independently examined by Ruimy et aL

(1994b) and Rainey eta!. (1995a) in order to get a notional idea of experimental

error. The results of these comparative studies are summarised in Table 2-16. With

a single exception, good congruence was found between all of the nucleotide

sequence data. The exception involved the type strain of Nocardia otitidiscaviarum

which had been the subject of previous 16S rRNA sequencing studies (Ruimy eta!.,

1994b; Rainey et a!., 1995a). The nucleotide sequence obtained in the present

study was found to be identical to the one examined by Ruimy et a!. (1994b).
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TABLE 2-15. PREDOMINANT MENAQUINONES AND NUCLEOTIDE SEQUENCE ACCESSION

NUMBERS OF THE TEST STRAINS.

Laboratory	 Species	 Menaquinones	 Accession Nucleotides
number	 number	 determined

JC51 T	 Corynebacterium glutamicum	 Not determined	 Z46753	 1479

N3171	 Nocardia asteroides	 MK-8(H4, 0)-cyclic)	 Z36934	 1472

N31 81	 Nocardia brasiliensis	 MK-8(H4, 0)-cyclic)	 Z36935	 1474

N1201 1	 Nocardia brevicatena	 MK-8(H4, o-cyclic)	 Z36928	 1474

N12001	 Nocardia carnea	 MK-8(H4, 0)-cyclic)	 Z36929	 1472

N1170	 "Nocardia crassostrae"	 Not determined	 Z37989	 1473

N8981	 Nocardia farcinica	 MK-8(H4, 0)-cyclic)	 Z36936	 1474

Ni 1121	 Nocardia nova	 MK-8(H4, 0)-cyclic) 	 Z36930	 1472

N361	 Nocardia otitidiscaviarum	 MK-8(H4, 0)-cyclic)	 Z46885	 1472

Ni 1641	 Nocardia pinensis 	 MK-8(F-l4, 0)-cyclic) 	 Z35435	 1477

Ni 1161	 Nocardia seriolae	 MK-8(H4, 0)-cyclic) 	 Z36925	 1472

Ni 2021	 Nocardia transvalensis	 MK-8(H4, 0)-cyclic)	 Z36926	 1474

N11991	 Nocardia vaccinii	 MK-8(H4, 0)-cyclic) 	 Z36927	 1472

JC71	 Tsukamurella paurometabola	 MK-9	 Z46751	 1474

N 8051	 Tsukamurella wratislaviensis	 MK-8(H2)	 Z371 38	 1474

I Type strain.
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but it differed substantially from the nucleotide sequence determined by Rainey et

a!. (1995a). The experimental error found between the nucleotide sequence

determined in the present study and that reported by Rainey eta!. (1995a) for the

type strain of Nocardia otitidiscaviarum was 3.82%.

All of 1 6S rDNA sequences generated by Ruimy et a!. (1 994b) differed from

the corresponding nucleotide sequences generated both in the present study and

by Rainey eta!. (1 995a). Ruimy et a!. (1 994b) found only two G residues in the stem

region of helix 6 whereas in the two corresponding studies three consecutive G

residues were detected in helix 6. The presence of three consecutive G residues in

helix 6 would be seen to be correct as this fits with the secondary structural model.

The computerised sequencing gel image for Nocardia asteroides strain N3171

clearly shows the presence of three G residues in this region (Figure 2-6).

2.2. Phylogeny of the family Nocardiaceae and related actinomycetes

2.2.1. Dataset and alignment

Fifty-three 16S rDNA sequences were aligned manually using the AL16S

program (Chapter I), their accession numbers are given in Appendix G. The 16S

rDNA sequences of the Gordona sputi and Rhodococcus opacus strains showed

almost identical primary structures with Gordona aichiensis (99.7%) and

Tsukamurella wratis/aviensis (99.6%), respectively and hence were excluded from

the final dataset in order to reduce the number of sequences (see Appendix H).

Positions which could not be aligned with confidence, or were incomplete (positions

between 1-37, 76-94, 187-190, 199-218, 455-477, 1448-1455, and 1485-1542),

were deleted from the dataset. The final aligned dataset contained information on

1396 nucleotide positions.
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2.2.2. Evolulionaiy trees

Evolutionary trees were generated using the neighbor-joining (Saitou & Nei,

1987), least-squares (Fitch & Margoliash, 1967), maximum likelihood (Felsenstein,

1981) and maximum parsimony methods (Eck & Dayhoff, 1966; Kluge & Fars,

1969). The correction of Jukes and Cantor (1969) was applied for the distance

matrix methods, that is, for the neighbor-joining and Fitch-Margoliash methods.

Bootstrap evaluations were carried out for the neighbor-joining and maximum

parsimony methods. It was not practical to perform bootstrap resampling for the

Fitch-Margoliash and maximum likelihood methods as such analyses require

excessive computing time. For convenience, all of the unrooted trees were depicted

in the form of dendrograms. The position of the root of the tree was arbitrarily set

between Dietzia mans and Tsukamurella paurometabola.

The neighbor-joining tree. The unrooted evolutionary tree generated using the

neighbor-joining method (Saitou & Nei, 1987) is shown in Figure 2-7 together

bootstrap (BP) values based on 1000 resamplings (Felsenstein, 1985). In most

cases, the representatives of the validly described genera formed monophyletic

groups with high bootstrap values. The five Gordona strains were recovered as a

tight dade with a BP value of 100. Similarly, the seven Mycobacterium strains and

the ten Nocardia strains formed clades defined by bootstrap values of 100 and 93,

respectively. It is particularly interesting that the type strain of Nocardia pinensis was

loosely associated with the Gordona dade showing a BP value of 80. The six

Cotynebactenium strains and the type strain of Tunicella otitidis formed a

monophyletic dade with a BP value of 100. Dietzia mans and Tsukamurella

paurometabola represented separate lineages.
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The Rhodococcus strains formed several phyletic lines one of which gave

rise to the Nocardia dade. The type strains of Rhodococcus coprophilus,

Rhodococcus rhodochrous and Rhodococcus ruber formed a monophyletic group

with a BP value of 93. This dade was designated the Rhodococcus rhodochrous

dade since it contains the type species of the genus, Rhodococcus rhodochrous.

Similarly, the Rhodococcus eiythropolis dade encompassed four Rhodococcus

species, namely Rhodococcus e,ythropolis, Rhodococcus fascians, Rhodococcus

globe ru/us and Rhodococcus marinonascens, and Tsukamurellae wratisla viensis

albeit with a relatively lower BP value of 66. The phylogenetic affiliations of the

remaining three rhodococci, "Rhodococcus (Nocardia) corynebacteroides",

Rhodococcus equi and Rhodococcus rhodnil are not clear.

The Fitch-Margoliash tree. The topology of the unrooted tree (Figure 2-8)

generated by using the least squares method of Fitch and Margoliash (1967)

showed few differences when compared with the neighbor-joining tree. The

branching points of "Rhodococcus (Nocardia) corynebacteroides" and Rhodococcus

rhodnii differed from those seen in the neighbor-joining tree.

The maximum likelihood tree. The product of the maximum likelihood method

(Felsenstein, 1981a) is shown in Figure 2-9. The branching patterns of the major

clades were more or less the same as those shown in the trees based on the

neighbor-joining and Fitch-Margoliash methods. The clades corresponding to the

genera Coiynebacterium/Turicella, Gordona, Mycobacterium and Nocardia were

recovered though the branching patterns within the clades were different to those

seen in the neighbor-joining and Fitch-Margoliash trees. The relationships of Dietzia

mans, Nocardia pinensis, Tsukamurella paurometabo/a to the major clades were
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FIGURE 2-7. AN UNROOTED EVOLUTIONARY TREE DERIVED FROM THE 1 6S rDNA

SEQUENCES. THE TREE WAS GENERATED BY USING JUKES AND CANTOR'S CORRECTION

(JUKES & CANTOR, 1969) AND THE NEIGHBOR-JOINING METHOD (SAITOU & NEI, 1987).
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FIGURE 2-8. AN UNROOTED EVOLUTIONARY TREE DERIVED FROM 16S RNA

SEQUENCES. THE TREE WAS GENERATED BY USING THE JUKES AND CANTOR DISTANCE

METHOD (JUKES & CANTOR, 1969) AND THE LEAST SQUARES ALGORITHM (FITCH &

MARGOLIASH, 1967).
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FIGURE 2-9. AN UNROOTED MAXIMUM LIKELIHOOD TREE DEPICTING RELATIONSHIPS

BETWEEN REPRESENTATIVES OF THE MYCOLIC ACID-CONTAINING TAXA.
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FIGURE 2-10. THE MOST PARSIMONIOUS TREE GENERATED BY USING THE MAXIMUM

PARSIMONY CRITERION; THE BRANCH LENGTHS ARE INVALID (FELSENSTEIN, 1993).
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also seen in the product of the maximum likelihood analysis. The Rhodococcus

etythropolis and Rhodococcus rhodochrous c!ades were again evident. However,

the branching points of Rhodococcus equi, Rhodococcus rhodnii, "Rhodococcus

(Nocardia) coiynebacteroides"differed from those found in the other two trees.

Maximum parsimony tree. The unrooted phylogenetic tree based on the maximum

parsimony criterion (equivalent to Wagner parsimony; Eck & Dayhoff, 1966; Kluge &

Farris, 1969) was generated by using the DNAPARS program in the PHYLIP

package (Felsenstein, 1993). Five of the trees that were generated were found to

be equally most parsimonious; the consensus tree is given in Figure 2-10. It was not

possible to derive the lengths of the branches that indicate evolutionary distances

hence only the topology found in this analysis was examined.

The major phylogenetic clades corresponding to Corynebacterium/Turicella

(BP value 100), Gordona (BP value 98), Mycobacterium (BP value 100) and

Nocardia (BP value 88) were, once again, evident. Nocardia pinensis was loosely

associated with the phyletic line formed by the Gordona and Mycobacterium strains.

The positions of Dietzia mans and Tsukamureila paurometabola were the same as

in the earlier analyses. The Rhodococcus erythropolis (BP value 60) and

Rhodococcus rhodochrous (BP value 92) clades were again recovered;

"Rhodococcus (Nocardia) corynebacteroides" and Rhodococcus rhodnll formed

separate lineages. In general, it can be said that the bootstrap values obtained

using the neighbor-joining and maximum parsimony methods are in good

agreement.
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Placement of the root. A variety of outgroup strains were used with the neighbor-

joining method to establish the position of the root in the evolutionary tree; the

branching point in the original tree in relation to the outgroup(s) is regarded as the

position of the root (Swofford & OLsen, 1990). The phylogenetic tree depicting

relationships found between the test strains and the outgroup strains is shown in

Figure 2-1 1. The nearest neighbors to the mycolic-acid containing actinomycetes

were Actinoplanes strains and members of the family Pseudonocardiaceae (Embley

& Stackebrandt, 1994); the most distant outgroup was Bacillus subtilis. The root

positions identified using the various outgroup strains are summarised in

Table 2-17.

It is evident from Table 2-17 that the position of the root in the evolutionary

tree of the mycolic acid-containing actinomycetes cannot be determined with

confidence as there is little congruence between the root positions identified by

using the different outgroup(s). Nevertheless, a number of interesting points are

evident, (I) root position 1, that is, the root position between the

Cotynebacterium/Turicella dade and Dietzia mans, was identified using all of the

taxonomically distantly related outgroups; (ii) several root positions were found

using the more closely related outgroups; (iii) root positions determined by an

individual outgroup organism and by pairs of organisms may differ (e.g.,

"Streptomyces coelicolo?' and Kitasatosporia setae); (iv) different root positions

were found using individual members of the same genus (e.g., Sacchanomonospora

azurea, Saccharomonospora cyanea and Saccharomonospora vinidis); and (v) the

use of multiple outgroups favoured root position 4, that is, the root position between

the GordonalNocardia pinensis and Mycobacterium clades.
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Bacillus subtilis (K00673)

Bifidobacterium bifidum (M380 18)

Arthrobacter globiformis (M234 11)

- Brevibacterium linens (X77451)
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FIGURE 2-11. A PHYLOGENETIC TREE DEPICTING RELATIONSHIPS BETWEEN

REPRESENTATIVES OF MYCOLIC ACID-CONTAINING TAXA AND SELECTED OUTGROUP

STRAINS. THE ACCESSION NUMBERS OF THE OUTGROUP STRAINS ARE GIVEN NI

PARENTHESIS.
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TABLE 2-17. EFFECTS OF DIFFERENT OUTGROUP STRAINS ON POSITIONS OF THE ROOT

IN PHYLOGENETIC TREES BASED ON MYCOLIC ACID-CONTAINING AND RELATED

ACTINOMYCETES.

Mycobacterium

Cotynebactorium
Turicella otifidis

Gordona

Dieezia mans -	 Nocardia pinensis

Tsukamurella paurometabola
RhOdOcOccU3 thodnhi

Rhodococcus lube(
Rhodococcus rhodochmus

Rhodococcus coprophilus

0.01	 Nocardia

Rhodococcus

Position of root
	

Outgroup(s)

1	 Arthrobacter globiformis, Bacillus subtilis, Bifidobacterium b/fidum,
Brevibacterium ilnens

2	 Saccharomonospora cyanea

3	 Saccharomonospora azurea, (Saccharomonospora azurea+
Saccharomonospora cyanea+ Saccharomonospora viridis)

4	 All of the outgroup strains shown in Figure 2-11, Actinoplanes utahensis,
Saccharomonospora viridis, Thermocrispum agreste, (Amycolatopsis
orientalis+Saccharomonospora viridis+Pseudonocardia^thermophila
^Saccha rothrix australlensis^Thermocrispum agreste [All of the family
Pseudonocardiaceae and related taxa])

5	 Amycolatopsis orientalis, ("Streptomyces coellcolo(+Kitasatosporia
setae), (Actinoplanes philippiensis+Actinoplanes utahensis)

6	 "Streptomyces coellcolor", Kitasatosporia setae

7	 Actinoplanes philippiensis

8	 Pseudonocardia thermophila, Saccharothrix australlensis

, Multiple outgroups are indicated in parentheses.
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2.2.3. Comparative n ucleotide sequence analyses

16S rRNA sequence similarities. The results obtained using the modules

'Intragroup similarity' and 'Intergroup similarity' of the AL16S program are

summarised in Table 2-18. The smallest mean pairwise sequence similarity found

within a group was 93.8% for the Corynebacterium/Turice/la dade; the Gordona

dade showed the highest intragroup similarity, namely 97.8%. The intragroup

similarities for the genera Mycobacterium, Nocardia and Rhodococcus are around

97%. The intergroup similarity values, that is, the mean of the pairwise sequence

similarities between members of phyletic lines ranged from 90.9%

(Cotynebacterium/Turice/la and Nocardia) to 95.4% (Nocardia and Rhodococcus).

Nocardia pinensis was most closely related to the Gordona dade (95.2%). The

closest group to the Coiynebacterium/Turicella dade was Dietzia, a result in good

agreement with the phylogenetic relationship depicted in the four unrooted

evolutionary trees (Figures 2-7, 2-8, 2-9, 2-10).

Regional sequence variations in the individual phyletic lines. The module

'Regional similarity' of the ALI6S program (Chapter I) was used to detect the

extent of nucleotide sequence variations in different parts of the 16S rRNA

molecules of strains in the phyletic lines corresponding to the genera

Cotynebacterium/Turicella, Gordona, Nocardia and Rhodococcus. Variations were

calculated as the mean value of pairwise sequence similarities within each of these

groups for particular regions of 16S rRNA molecules. It is evident from Figure 2-12

that members of the different phylogenetic groups showed essentially similar

patterns of nucleotide sequence variation.

However, considerable differences were found in the region between

positions 1 and 100 (Escherichia coil numbering system; Appendix C) for the

Corynebacterium/Turicella and Nocardia clades. This variation was mainly
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TABLE 2-18. MEAN 1 6S rRNA SEQUENCE SIMILARITIES FOUND BETWEEN DIFFERENT

PHYLETIC LINEAGES (INTERGROUP SIMILARITY).

E

o E-	 (tj	 0
-

00

0

0

Number of
	

7	 1
	

6	 7	 10
	

1	 11
organisms

Mean intragroup
	

93.8	 -
	 97.8	 97.1	 97.0	 -	 96.7

similarity

Dietzia	 92.7	 100.0

Gordona	 91.5	 93.5	 100.0

Mycobacterium	 91.6	 93.3	 93.5	 100.0

Nocardia	 90.9	 92.9	 93.9	 93.7	 100.0

N. pinensis	 91.8	 93.2	 95.2	 94.0	 94.8	 100.0

Rhodococcus	 92.2	 94.6	 94.1	 93.9	 95.4	 95.0	 100.0

Tsukamurella	 92.2	 95.1	 94.0	 93.9	 93.9	 93.5	 94.9	 100.0

, Calculations based on 1396 nudeotide positions.
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FIGURE 2-12. SUMMARY OF THE REGIONAL VARIATION ANALYSIS ON FIVE PHYLETIC

CLADES. THE MEAN VALUE OF PAIRWISE SEQUENCE SIMILARITIES BETWEEN MEMBERS OF

A GIVEN CLADE WAS DETERMINED FOR THE GIVEN REGION OF 16S rRNA MOLECULE BY

USING THE 'REGIONAL SIMILARITY' MODULE OF THE AL16S PROGRAM (CHAPTER I). SEE

TEXT FOR DETAILS.
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located in the Vi region (Neefs et a!., 1993; Appendix 0) where all ten Nocardia

strains showed identical primary structures, hence an identical secondary structure,

whereas members of the Conjnebacterium/Turicella lineage exhibited a remarkably

different primary structure. A similar phenomenon was observed between the

Corynebacterium/Turicella and Nocardia clades in three other regions, namely

between positions 401 and 500, 1001 and 1100, and 1201 and 1300. However,

members of the Nocardia dade showed the greatest nucleotide variation in the

region of the macromolecule between positions 601 and 700.

Group signatures. The module 'Group Signature' of the AL16S program

(Chapter I) was used to determine signature nucleotides that differentiated between

the Cotynebacterium/ Turicella, Die tzia, Gordona, Mycobacterium, Nocardia,

Nocardia pinensis, Rhodococcus and Tsukamure!!a clades. The results of this

analysis are summarised in Table 2-19. This information is analogous to that in

frequency matrices derived from numerical phenetic studies.

Some of the well conserved nucleotide positions are unique to particular

phyletic clades: (i) paired positions 316:337 (T:G) and 408:434 (G:T) for the

Cotynebacterium/Turicella dade; (ii) paired positions 41 8:425 (T:A) and 987:1218

(A:T) for Dietzia mans; (iii) unpaired position 843 (T) for the Gordona line; and (iv)

paired position 580:761 (T:A) and independent position 1336 (T) for the Nocardia

dade. Positions specific for the Cotynebactenium/Tunicelia and Dietzia clades were

771:808 (A:T) and 1059:1198 (T:A). The phylogenetic relatedness of Nocardia

pinensis to the Gordona dade was supported by a distinctive nucleotide signature

found in paired positions 1124:1149 (A:T).
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TABLE 2-19. GROUP SPECIFIC NUCLEOTIDE SIGNATURES THAT DIFFERENTIATE BETWEEN

THE PHYLOGENETIC LINEAGES DETECTED WITHIN REPRESENTATIVES OF THE MYCOLIC

ACID-CONTAINING TAXA.

Co,yne- Dietzia Gordona Mycoba- Nocardia Nocardia Rhoda- Tsuka-
bacterium	 cterium	 pinensis COCCUS mure i/a
ITurice/la

No.of	 -_________________________
sequences!	 7t	 6d	 56	 12	 -	 12h
Positions

	

66:103	 A:T	 A:T	 A:T	 A:T	 G:C	 A:T	 R*Y	 A:T

	

70:98	 W*W	 T:A	 A:T	 WW	 T:A	 T:A	 T:A	 T:A

	

76:94	 A*C	 C:G	 C:G	 Y*R	 C:G	 C:G	 Y*G	 C:G

	

293:304	 G:T	 G:T	 A:T	 G:T	 R*Y	 G:T	 R*Y	 G:C
307	 A	 T	 T	 C	 Y	 C	 Y	 C

	

31 6:337	 T:G	 C:G	 C:G	 C:G	 C:G	 C:G	 C:G	 C:G
328	 Y	 C	 C	 I	 C	 C	 C	 C

	

407:435	 G:C	 G:C	 A:T	 RY	 M*K	 G:T	 A:T	 A:T

	

408:434	 G:T	 G:C	 G:C	 G:C	 G:C	 G:C	 G:C	 G:C

	

41 8:425	 C:G	 T:A	 C:G	 C:G	 C:G	 C:G	 C:G	 C:G
508	 1	 T	 C	 C	 Y	 C	 Y	 C

	

580:761	 C:G	 C:G	 C:G	 C:G	 T:A	 C:G	 C:G	 C:G

	

586:755	 T:G	 C:G	 C:G	 YG	 C:G	 C:G	 C:G	 C:G

	

601 :637	 T:G	 T:G	 T:G	 1:0	 N*K	 A:T	 T:G	 T:G

	

603:635	 T:A	 T:A	 T:A	 C:G	 Y*R	 C:G	 Y*R	 T:A
610	 K	 T	 I	 W	 A	 A	 W	 A
611	 Y	 C	 T	 B	 C	 C	 C	 C

	

613:627	 YG	 C:G	 T:A	 SS	 B*V	 C:G	 H*D	 C:G

	

61 6:624	 G:T	 G:C	 A:T	 R*Y	 R*Y	 A:T	 R*Y	 G:C
620	 1	 1	 Y	 V	 C	 C	 C	 T

	

661:744	 G:C	 A:T	 A:T	 G:C	 B*M	 cc	 KM	 G:C

	

662:743	 T:G	 C:G	 C:G	 YG	 C:G	 C:G	 C:G	 T:G

	

771 :808	 A:T	 A:T	 G:C	 G:C	 G:C	 G:C	 G:C	 G:C

	

824:876	 C:G	 C:G	 T:A	 W*A	 YR	 C:G	 C:G	 T:A

	

825:875	 G:C	 G:C	 A:T	 A:T	 R*Y	 G:C	 G:C	 A:T
843	 C	 C	 T	 C	 C	 c	 C	 C

	

987:1218	 G:C	 A:T	 G:C	 G:C	 G:C	 G:C	 G:C	 G:C

	

997:1044	 T*R	 T:A	 T:A	 T:G	 T:A	 T:A	 T:A	 T:A

	

998:1043	 R*Y	 A:T	 A:T	 G:T	 A:T	 A:T	 R*K	 A:T

	

1001:1039	 N*B	 A:T	 C:G	 A:T	 C:G	 C:G	 C:G	 A:T

	

1002:1038	 R*Y	 G:T	 A:T	 G:C	 R*Y	 A:T	 G:C	 G:T

	

1003:1037	 G*Y	 G:C	 G*Y	 G:C	 G:T	 G:T	 GY	 G:C
1005	 Y	 C	 C	 Y	 A	 C	 H	 T
1024	 T	 I	 T	 I	 C	 I	 V	 T

	

1059:1198	 T:A	 T:A	 C:G	 C:G	 C:G	 C:G	 C:G	 C:G

	

1120:1153	 T:A	 T:A	 C:G	 VR	 Y*R	 C:G	 V*R	 T:A

	

1122:1151	 WY	 A:T	 G:C	 A:T	 R*Y	 G:C	 R*Y	 A:T

	

1124:1149	 G:C	 G:C	 A:T	 G:C	 G:C	 A:T	 G:C	 G:C

	

1133:1141	 A:T	 A:T	 G:C	 G:C	 G:C	 RB	 A:T

	

1134:1140	 C:G	 C:G	 G:C	 SS	 SS	 C:G	 C:G	 C:G
1189	 T	 T	 I	 T	 C	 C	 Y	 I
1256	 1	 C	 C	 C	 C	 T	 C	 C
1336	 C	 C	 C	 C	 I	 C	 C	 C
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Table 2-1 9. Continued.

, Escherich/a co/i numbering (Brosius et al., 1978); b based on sequence data from

Corynebacterium amycolatum, C. bovis (D38575), C. cystitidis (D37914), C. g/utamicum

(Z46753). C. variabilis (X531 85), C. xerosis (M59058) and Turice//a otitidis (X73976); ',from

Dietzia mar/s (X79290); d from Gordona aichiensis (X80633), G. amarae (X80635), G.

bronchial/s (X79287), G. rubropertinctus (X80632), G. sputi (X80634) and G. terrae (X79286);

, from Mycobacterium aichiense (X55598), M. asiaticum (X55604), M. aurum (X55595), M.

av/um (X52918, X52934), M. boy/s (M20940, X55589), M. ce/atum (Z46664, L08170,

L08169). M. chelonae (M29559, X52921), M. chitae (X55603), M. chiorophenolicum

(X79094). M. chubuense (X55596), M. confluentis (X63608), M. cookii (X53896),

M. diernhoferi (X55593), M. Ia//ax (M29562), M. farcinogenes (X55592), M. flavescens

(X52932). M. fortuitum (X52933), M. gadium (X55594), M. gastri (X5291 9), M. geneveuse

(X60070). M. gilvum (X55599), M. gordonae (X52923), M. haemophilum (L24800), M.

hiberniae (X67096), M. intermedium (X67847), M. intracellu/are (X52927), M. kansasii

(X15916, M29575), M. komossense (X55591), M. /eprae (X53999), M. madagascariense

(X55600), M. malmoense (X52930), M. marinurn (X52920), M. neoaurum (M29564),

M. nonchromogenicum (X52928), M. obuense (X55597), M. ph/el (M29566), M. scrofulaceum

(X52924), M. senega/ense (M29567), M. shimoidei (X82459), M. simiae (X52931), M.

smegmatis (X52922), Mycobacterium sp. (M29554), M. sphagni (X55590), M. szu/gai

(X52926), M. terrae (X52925), M. thermoresistibile (X55602), M. tubercu/osis (X52917), M.

ulcerans (Zi 3990), M. vaccae (X55601) and M. xenopi (X52929); ',from Nocardia asteroides

(Z36934, X57949), N. brasiliensis (Z36935), N. brevicatena (Z36928), N. carnea (Z36929),

"N. crassostrae" (Z37989), N. farcinica (Z36936), N. nova (Z36930), N. otitidiscaviarum

(Z46885), N. seriolae (Z36925), N. transvalensis (Z36926) and N. vaccinll (Z36927); , from

Nocardia pinensis (Z35435); h Rhodococcus coprophi/us (X80626), R. equl (X8061 4), R.

erythropo/is (X79289), R. fascians (X791 86), R. g/oberulus (X80619), R. marinonascens

(X80617), R. opacus (X80630), R. rhodnii (X80621), R. rhodochrous (X79288), R. ruber

(X80625), "Rhodococcus (Noca rd/a) corynebacteroides" (X80615) and Tsukamure//a

wrat/slaviensis (Z37138);', from Tsukamure/Ia paurometabo/a (Z46751).
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Secondary structure. The unique secondary structure found in helix 18 (Appendix

D) in the 16S rRNA sequence of the type strain of Nocardia pinensis is shown in

Figure 2-13.

2.3. iPhylogeny of the genus Nocardia

Dataset and alignment. Twelve Nocardia strains, which included the type strains of

ten out of the eleven validly described species together with Nocardia asteroides

strain DSM43005 and "Nocardia crassostrad' strain Ni 170, were examined. The

1 6S rDNA sequence of Nocardia asteroides DSM 43005 was generated by Rogall

et a!. (1990). The 1 6S rDNA sequences of all of the test strains were readily aligned

as there were no unalignable positions; the final dataset contained 1448 nucleotide

positions. The primary structure of the 16S rDNA sequences of the test strains are

given in an aligned form (Appendix H). The remaining organism, the type strain of

Nocardia pinensis, was excluded from the dataset as it has been shown to be

unrelated to typical nocardiae.

Nucleotide sequence similarity. The pairwise similarity values for the 1 6S rDNA

sequences of the twelve nocardiae are given in Table 2-20. The mean similarity

recorded for all of the twelve test strains is 97.1 ± 0.7%. The corresponding value

for the ten type strains is 97.0 ± 0.6%. The most phylogenetically distant pair of

organisms was Nocardia farcinica N8981 and Nocardia seriolae Ni 11 6T (95.6%), the

smallest nucleotide difference, 98.4%, was found between the type strains of

Nocardia nova and Nocardia otitidiscaviarum.

Phylogenetic analyses. The aligned 1 6S rDNA sequences of the twelve nocardiae

were corrected for multiple mutations (Jukes & Cantor, 1969) and unrooted

evolutionary trees generated by using the neighbor-joining (Saitou & Nei, 1987) and

least squares (Fitch & Margoliash, 1967) methods. The nucleotide sequence data

were also examined using the maximum likelihood (Felsenstein, 1981a) and
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maximum parsimony methods (Eck & Dayhoff, 1966; Kluge & Farris, 1969).

Bootstrap analyses were carried out by applying 1000 resamplings for the neighbor-

joining, least-squares and maximum parsimony methods. The resultant phylogenetic

trees with corresponding bootstrap values are given in Figure 2-14.

The twelve nocardiae were assigned to two rRNA subgroups in all of the

phylogenetic analyses; one subgroup corresponded to Nocardia asteroides and

related taxa and the other to Nocardia otitidiscaviarum and allied species (Figure

2-14). The validity of the two phyletic lines was supported by high bootstrap values

for the maximum parsimony, neighbor-joining and Fitch-Margoliash methods,

namely 84, 87 and 92, respectively.

The Noca rd/a asteroides subgroup encompassed Nocardia asteroides

strains N3171 and DSM43005, Nocardia brevicatena N12O1 T, Nocardia carnea

N12001, Nocardia brasiliensis N31 81, Nocardia farcinica N898T and Nocardia

transvalensis Ni 2021. The type strains of Nocardia brasiliensis, Nocardia farcinica

and Nocardia transvalensis formed a subclade in all four trees with relatively low

bootstrap values for the maximum parsimony, Fitch-Margoliash and neighbor-joining

methods, that is, 74, 77 and 79, respectively. The Nocardia otitidisca via rum

subgroup encompassed "Nocardia crassostrae" strain Ni 170, Nocardia nova

Ni 1121, Nocardia otitidiscaviarum N36T, Nocardia seriolae Ni 1161 and Nocardia

vaccinhi Ni 1991. These species were recovered as a distinct dade in all four

analyses though branching patterns inside the subgroup varied (Figure 2-14).

The separation of the two rRNA groups was largely based on differences

found in helix 37-1 (Appendix D), as shown in Figure 2-15. Nucleotide signatures

that differentiate the nocardiae are shown in Table 2-21.
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Nocardia crassostrae

Nocardia camea

Nocardia brevicatena	
Nocardia otitidi.scaviarum

Nocaniia senolae

Nocardia transva!en.sis 0.01

Nocardia minica /	
Nocardia brasiliensis

(a) Neighbor-joining tree

Nacardia vaccinii

/	 Nocardia seiriolae
Nocardia brevicatena

Nocardia aste1roides

Nocardia carnea
	 DSM 43005

	
Nocardia otitidiscaviarum

L

Nocardia asternides
	 Wocardia crassostrae

79
	

Nocardia nova

0.01

Nocardia brasiliensis / Nocardia transva/ensis

Nocardia farcinica

(b) Fitch-Margoliash tree

FIGURE 2-14. PHYLOGENETIC TREES DEPICTING RELATIONSHIPS FOUND BETWEEN

REPRESENTATIVE NOCARDIAE. THE TREES WERE BASED ON THE DIFFERENT TREE-MAKING

METHODS. THE TEST STRAINS WERE TYPE STRAINS UNLESS OTHERWISE SPECIFIED.

BOOTSTRAP VALUES ARE INDICATED AT THE CORRESPONDING BRANCHES.
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Nocardia seriolae

Nocardia brevicatena

Nocardia camea
Nocardia asteroides

DSM43X

Nocardia otitidiscavianim

Nocardia vaccinii

Nocardia nova

Nocardia asteroides

Nocardia cras.sostrae

0.01

Nocardia brasiliensis	

/	

\Nocardia farcinica
Nocardia transvalensis

(c) Maximum likelihood tree

Nocardia 8sf eroides

79
Nocardia asteroides

DSM43cS
59

Nocardia braIie4

Nocardia farcinica

Nocardia transvalensis 	 Nocardie crassos free

Nocardia camea

- Nocardia brevicatena

Nocardia otitidiscaviarum

Nocardia se&ae

Nocardia vaccinii
Nocardia nova

(d) Maximum parsimony tree

FIGURE 2-14. CONTINUED.
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a. Nocardia asteroides rRNA subgroup b. Nocardia otitidiscaviarum rRNA subgroup

FIGURE 2-15. OLIGONUCLEOTIDE SIGNATURES THAT DISTINGUISH THE TWO NOCARDIA

rRN4 S(JEGO(JPS. THE P37-i' HELIX (APPENDIX 0) LIES BETWEEN ESCHERICHIA CDLI

NUCLEOTIDE POSITIONS 1006 AND 1023 (APPENDIX C); THE PAIR OF NUCLEOTIDES

ENCLOSED IN THE BOX IS G-C IN NOCARDIA TRANS VALENSIS Ni 202T AND THE A-RESIDUE

IN THE CIRCLE IS REPLACED BY G IN "NOCA RD/A CRASSOSTRAE" Ni 170.
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0. Discussion

1. Supra generic classification of mycolic acid-containing
actinomycetes and related strains

It is possible to re-evaluate the taxonomic status of the families

Co,ynebacteriaceae, Mycobacteriaceae and Nocardiaceae given marked

improvements in the classification of the genera Gordona, Nocardia, Rhodococcus

and Tsukamurella following the application of modem taxonomic techniques. It is

clear from both the present and eatlier studies that members of these families form

a monophyletic dade (Embley and Stackebrandt, 1994; Ruimy et a!., 1 994b; Rainey

eta!., 1995a; Figure 2-4). In the present study, Turicella otitidis was found to be a

member of the Corynebacterium dade.

Members of the genera Coiynebacterium, Dietzia, Gordona, Mycobacterium,

Nocardia, Rhodococcus and Tsukamurella can be divided into two groups on the

basis of the discontinuous distribution of certain chemical markers. Corynebacteria

and dietziae contain short chain mycolic acids (22-38 carbon atoms) and

N-acetylated muramic acid in their peptidoglycans (Goodfellow, 1992; Rainey et a!.,

1995c) whereas gordonae, mycobacteria, nocardiae, thodococci and tsukamurellae

are characterised by the presence of relatively long chain mycolic acids (34 to 90

carbons atoms) and N-glycolated muramic acid (Goodfellow, 1992). It is , evident

from the phylogenetic analyses based on 1 6S rDNA sequence data that

Corynebacterium amycolatum and Turicella otitidis, which lack mycolic acids, belong

to the first group.

The taxonomic status of the two broad chemical groupings was underpinned

by the 1 6S rDNA sequence data though it was not possible to unequivocally identify

the position of root in the evolutionary tree. The two groups were recognised in the

analyses based on four tree-making methods. Bootstrap values of 70 and 82 were
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obtained in the case of the groupings derived from the neighbor-joining and

maximum parsimony analyses.

A case can be made for the classification of Cotynebacterium amycola turn

and Turice/la otitidis in the family Corynebacteriaceae based on 1 6S rRNA

sequence and morphological data. It is possible that these organisms contain silent

"mycolic acid" genes and hence have lost the ability to synthesise mycolic acids.

Such a situation would be analogous to that of certain rhizobia and other nitrogen

fixing bacteria which are unable to form effective nodules as they have lost their

nitrogenase genes during the course of evolution (Hennecke et a!., 1985). It is

important that the phylogenetic position of Coiynebacterium amycolatum and

Turicella otitidis is clarified by sequencing genes, such as those coding for ATPases

and elongation factors, which are independent of the ribosomal RNA genes.

The status of the genus Turicella is a matter for debate as organisms in this

taxon are closely related to members of the genus Coiynebacterium on the basis of

16S rDNA sequence and morphological data (Funke eta!., 1994). However, unlike

corynebacteria, Turicella otitidis strains contain unsaturated menaquinones (i.e.,

MK-1O and MK-11) and lack mycolic acids. These chemical data lend support of the

continued recognition of the genus Turicella.

The "mycolic acid" phyletic line encompassed representatives of the families

Mycobacteriaceae and Nocardiaceae. It is apparent from the chemotaxonomic and

16S rRNA sequence data that the separation of the families Mycobacteriaceae and

Nocardiaceae is rather artificial. A case can be made for reducing the family

Nocardiaceae Castellani and Chalmers 191 9ftL to a synonym of the family

Mycobacteriaceae Chester 1 897. In deed, it is apparent from the present study

that mycolic acid-containing actinomycetes can readily be classified into either the

families Cotynebacteriaceae Lehmann and Neumann 19O7 or Mycobacteriaceae
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Chester 1 897AL The family Corynebacteriaceae provides a niche for the genera

Corynebacterium, Dietzia and Turicella, and the family Mycobacteriaceae

encompasses the genera Gordona, Mycobacterium, Nocardia, Rhodococcus and

Tsukamurella.

2. Phylogeny of Nocardia

The results of the present study together with those from earlier studies

show that nocardiae, apart from Nocardia pinensis, form a monophyletic group that

can be defined by using a combination of phenotypic and chemotaxonomic

properties (Goodfellow, 1992; Ruimy et aL, 1994b; Rainey et aL, 1995a). The

detection of hexahydrogenated menaquinones with eight isoprene units in which the

two end units were cyclised in the type strains of Nocardia nova, Nocardia seriolae

and Nocardia vaccinhi is in excellent agreement with corresponding data on

representatives of the remaining validly described species of Nocardia (Howarth et

a!., 1986; Collins et a!., 1987; Kampfer et a!., 1990).

In general, the 16S rRNA sequences generated in the present study and

corresponding nucleotide sequences reported by earlier investigators showed good

congruence (Ruimy et a!., 1994b; Rainey et a!., 1995a). The differences found

between corresponding nucleotide sequences ranged from 0 to 0.5%, such

differences should not affect the products of phylogenetic analyses, especially the

position of organisms in evolutionary trees. However, it is clear both from the

present study and from that of Ruimy et a!. (1994b) that the organism claimed by

Rainey et a!. (1 995a) to be a Nocardia otitidiscaviarum strain was in fact a

contaminant. Consequently, the report by Rainey et a!. (1 995a) that the type strains

of Nocardia farcinica and Nocardia otitidiscaviarum had almost identical primary

structures in their 16S rDNA (one nucleotide difference out of 1464 positions) and

shared a high level of DNA relatedness (85%) is erroneous. Similar errors have
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been uncovered for other organisms, notably Mycobacterium chitae (Stahl &

Urbance, 1990; Pitulle et a!., 1991) and Rhodoplanes palustris (Orso et a!., 1994;

Hiraishi & Ueda, 1994).

A complete 16S rDNA database on nocardiae was generated in the present

study. The information in this database should prove to be useful for the molecular

identification of unknown nocardiae and for the recognition of novel nocardiae

isolated from natural environments. The designation of species-specific and genus-

specific oligonucleotide probes and PCR primers can readily be achieved by using

specialised software, such as the AL16S program (Chapter I).

3. Taxonomic status of Nocardia pin ensis

The taxonomic status of Nocardia pinensis has been controversial from the

begining. The organism was assigned to the genus Nocardia given a combination of

chemical, morphological and physiological properties (Blackall et a!., 1 989b).

However, atypical nocardial features included the slow-growth rate of the organism,

mycolic acids that were monounsaturated in the two position and a distinctive

antimicrobial sensitivity pattern (see Tables 2-10 and 2-1 1). Representative strains

were considered to be most closely related to Nocardia amarae, an organism

subsequently transferred to the genus Gordona as Gordona amarae (Goodfellow et

a!., 1994; Klatte eta!., 1994c; Ruimy eta!., 1994b).

In the present study, the type strain of Nocardia pinensis was found to be

most closely related to the genus Gordona in light of the 1 6S rDNA sequence data.

However, this relationship was based on relatively low bootstrap values in the

analyses based on the maximum parsimony and neighbor-joining methods.

Nocardia pinensis strains, like gordonae, have unsaturated mycolic acids and are

sensitive to 5-fluorouracil (20 pg/mI), lysozyme (50 pg/mI) and mitomycin C (5 pg/mI)

[Blackall et a!., 1 989b]. However, unlike gordonae, Nocardia pinensis strains
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produce aerial hyphae and contain hexahydrogenated menaquinones with eight

isoprene units in which the end two units are cyclised (MK-8[HJ, co-cyclic).

t can be conciuded that Nocardia pinensis has a combination of chemical

and morphological properties that clearly distinguishes it from gordonae. In addition,

Nocardia pinensis can be separated from members of both the genera Gordona and

Nocardia given the unique secondary structure found in helix 18 (Figure 2-13). It

seems likely that further comparative taxonomic studies will show that Nocardia

pinensis merits the generic status in the family Nocardiaceae.

4. Taxonomic status of Tsukamurella wratislaviensis

It is clear from the results of the present study that Tsukamurella

wratislaviensis Goodfellow et a!. 1991 should not be retained in the genus

Tsukamurella. The assignment of this organism to the genus Rhodococcus is

supported by the both chemical and 1 6S rDNA sequence data (Ridell et a!., 1985). It

is evident from the present study that Tsukamurella wratislaviensis contains

dihydrogenated menaquinone with eight isoprene units (MK-8[H 2}) not major

amounts of unsaturated menaquinone with nine isoprene units (MK-9) as reported

by Goodfellow et a!. (1991).

The primary structures of the 16S rRNA5 from the type strains of

Tsukamurella wratislaviensis and Rhodococcus opacus Klatte et a!. 1994 are almost

identical (99.59% similarity; 6 nucleotide differences out of 1470 positions; see

Appendix H). In addition, both organisms have mycolic acids with 48 to 54 carbon

atoms (Ridell et a!., 1985; Klatte et a!., 1994b) but have yet to be the subject of

comparative taxo nomic studies. Representatives of Tsukamure!Ia wratisla viensis

and Rhodococcus opacus need to be the subject of comparative phenotypic and
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DNA-DNA pairing studies in order to determine whether or not each of these taxa

merit species status.



CHAPTER III.
ISOLATION AND CHARACTERISATION OF
ACTINOMYCETES ASSOCIATED WITH
ACTIVATED SLUDGE FOAMING

A. Introduction

1. Activated sludge treatment

The activated sludge process is the most widely used secondary waste

water treatment process in the world (Jenkins et aL, 1993). The efficiency of the

process relies on the performance of two major treatment units, the aeration basin

(biological reactor) and the solids separation device (secondary clarifier) which is

usually a gravity sedimentation basin. The aeration basin is designed to promote the

removal and biotransformation of both soluble and particulate pollutants by a mixed

and variable consortium of micro- and macro-organisms, the 'activated sludge'.

Similarly, the secondary clarifier is designed to allow activated sludge solids to

separate by flocculation and gravity sedimentation from treated wastewater. The

outcome of these processes is a clarified (low suspended solids, low turbidity)

overflow, the secondary effluent, and a thickened underfiow which forms the

returned activated sludge.

It is important that both the aeration basin and the secondary clarifier work

satisfactorily. To this end factors that affect biological oxidation and the separation

of solids are important in determining the overall efficiency of the process. A typical

scheme for the treatment of activated sludge is shown in Figure 3-1. The most

common problems associated with the activated sludge separation process are

summarised in Table 3-1.
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Aeration basin	 Secondary clarifier

Returned activated sludge 	 Waste activated sludge

FIGURE 3-1. SCHEMATIC REPRESENTATION OF A TYPICAL ACTIVATED SLUDGE

TREATMENT PLANT. MODIFIED FROM JENKINS et a!. (1993).



Abnormality

Dispersed growth

Slime viscous bulking
(non-f ilamentous
bulking)

Pin or pinpoint floc

Filamentous bulking

Blanket rising

Foaming/scum
formation

Effect

Turbid effluent. No zone
settling of the activated
sludge.

Reduced settling and
compaction rates.

The smaller flocs settle
slowly. Low sludge volume
index and a turbid effluent.

Very clear supernatant. In
severe cases the sludge
blanket overflows the
secondary clarifier.

A scum of activated sludge
forms on the surface of the
secondary clarifier.
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TABLE 3-1. CAUSES AND EFFECTS OF ACTIVATED SLUDGE SEPARATION PROBLEMS .

Cause

Microorganisms do not form flocs
but are dispersed forming only
small clumps or single cells.

Microorganisms are present in
large amounts of extracellular
slime.

Small, compact, weak and roughly
spherical flocs are formed.

Filamentous organisms extend
from flocs to the bulk solution and
interfere with compaction, settling,
thickening and concentration of
activated sludge.

Denitrification in secondary clarifier
leads to the release of poorly
soluble nitrogen gas which
attaches to activated sludge flocs
propelling them to the secondary
clarifier surface.

Caused by (I) non-degradable
surlactants and by (ii) the
presence of filamentous organisms
such as "Microthrix pan/ice/Ia" and
mycolic acid-containing
actinomycetes.

Foams float large amounts of
activated sludge solids to the
surface of treatment units.
Foams accumulate and can
putrefy.

, Modified from Jenkins eta!. (1993).
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Most activated sludge solids separation problems can be attributed to the

nature of the activated sludge flocs. The latter are made up of two basic elements, a

biological component which consists of a variety of bacteria, fungi, protozoa and

some metazoa, and a non-biological component composed of inorganic and organic

matter particles. The core of the floc appears to be a number of heterotrophic

bacteria that belong to genera such as Achromobacter, Alca/igenes, Arthrobacter,

Citromonas, F/a voba cterium, Pseudomonas and Zoog!oea (Dias & Bhat, 1964; Pike,

1972; Tabor, 1976; Jenkins et a!., 1993). It has been suggested that microbial

extracellular polymers, typically polysaccharides, play an important role in the

bioflocculation of activated sludge (Tago & Aiba, 1977; Jenkins et a!., 1993).

It is evident from visual observation and physical measurements that there

are two levels of structure in activated sludge flocs which are known as the

'micro-structure' and the 'macro-structure' (Sezgin et a!., 1978). The micro-

structure is a product of microbial adhesion, aggregation, bioflocculation and the

action of extracellular polymers. This process is the basis for floc formation because

without the ability of microorganisms to stick to one another large microbial

aggregates would not be formed. Flocs that show this micro-structure are usually

small (up to about 75 pm in dimension), spherical and compact and are responsible

for turbid supematants in activated sludge. The larger compact flocs settle rapidly

though smaller aggregates sheared off from them settle slowly thereby creating

turbid supematants.

The macro-structure of activated sludge flocs can be attributed to

filamentous microorganisms that form a network(backbone)-like structure within the

floc onto which floc-forming bacteria cling (Sezgin et a!., 1978). When activated

sludge contains filamentous organisms, large floc sizes are possible as the

backbone of filamentous organisms provides the floc with the strength needed to
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hold it together in the turbulent environment of the aeration basin. The filamentous

network influences the shape of the floc as the latter grows in the same direction as

the filamentous organisms. Most of the activated sludge solids separation problems

outlined in Table 3-1 can be interpreted in terms of failures in either the

micro-structure or macro-structure of activated sludge flocs.

2. Bulking and Foaming

Bulking. This is a macrostructure failure due to the presence of large numbers of

filamentous microorganisms in the activated sludge. These organisms interfere with

the compaction and settling of activated sludge either by producing a very diffuse

floc structure or by growing in profusion beyond the confines of the activated sludge

floc into the bulk medium thereby causing bridging between flocs. The most

common casual agents of activated sludge bulking are "Microthrix parvicella",

"Nostocoida jim/cola", Thiothrix spp., "Haliscomenobacter hydrossis" and

unidentified organisms (e.g., types 0041, 0092, 021N, 0675, 0803, 0961, 1701 and

1851;Jenkins eta!., 1993; Hudson eta!., 1994).

Foaming. The formation of scum or foam in the activated sludge process is also

caused by filamentous bacteria, notably "Microthrix parvicella" and mycolic acid-

containing actinomycetes (Soddell & Seviour, 1990; Blackall et a!., 1994;

Eikelboom, 1994). These bacteria have hydrophobic cell surfaces and when present

in sufficient numbers in activated sludge they render flocs hydrophobic and hence

amenable to the attachment of air-bubbles. The air bubble-floc aggregate is less

dense than water and hence floats to the surface of the sludge. The hydrophobic

flocs tend to stay at the surface of the sludge where they accumulate to form a thick,

chocolate-brown coloured foam or scum. Activated sludge foams cause a number of

problems, namely extra-house keeping on the part of the operator; blockage of

scum removal systems; reduction of oxygen transfer at the surface of mechanically
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aerated basins; carriage and dispersal of pathogens in wind blown scum; drying of

scum with resultant cleaning and possibly odour problems, and reduction of effluent

quality through an increase in effluent suspended solids and Biological Oxygen

Demand if the scum reaches the final effluent (Soddell & Seviour, 1990).

3. Actinomycetes associated with activated sludge foaming

The first serious attempt to isolate and identify actinomycetes associated

with activated sludge foaming was made by Lechevalier et a!. (1976). A variety of

actinomycetes were isolated from twenty-one sewage-treatment plants, located in

nine states of the USA, using Czapek's agar supplemented with yeast extract (YCZ;

Higgins & Lechevalier, 1969) and glycerol agar (Gordon & Smith, 1953). The

isolated strains were characterised on the basis of phenotypic properties. The

predominant species were Gordona (Nocardia) amarae, which was isolated from

fifteen plants, and "Nocardia rhodochrous" which was recovered from seven plants.

In addition, a number of isolates were identified as Nocardia asteroides and

Nocardia otitidiscaviarum (uN. caviae') and others were assigned to the genera

Actinomadura, Micromonospora and Streptomyces.

Lechevalier and his colleagues concluded that foaming caused by

actinomycetes was evident in widely different areas in the USA though thick foams

were not invariably associated with the presence of these organisms. They also

noted that actinomycete foams were associated with warm weather, high aeration

rates and thick mixed liquors. Filamentous "nocardioform" actinomycetes have also

been implicated in foaming in anaerobic digesters (Van Niekerk et aL, 1987) but this

is unlikely as such organisms are obligate aerobes.

Lemmer and Kroppenstedt (1984) studied the occurrence of actinomycetes

in scums of fourteen sewage-treatment plants in Berlin, southern Germany and

Switzerland. The causal organisms were isolated either on Columbia agar base
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(Oxoid) or mineral agar (Ratzke, 1965) supplemented with paraffin and thiamin, and

representative strains identified by using a combination of chemical and phenotypic

properties. Eleven rhodococci, two tsukamurellas and a single strain of Gordona

(Nocardia) amarae were isolated but only one species was associated with any one

plant. In contrast, Sezgin et a!. (1988) found that the most common isolate in

activated sludge scum samples collected from two sewage treatment plants in the

USA was Gordona (Nocardia) amarae (51 strains) followed by Nocardia asteroides

(24 strains). Other isolates were assigned to the genera Amycolatopsis, Dietzia

(Rhodococcus mans), Micromonospora, Mycobactenium, Nocardia, Oersko via and

Rhodococcus.

A microorganism with a pine-tree like morphology was first reported in

activated sludge from an Australian sewage treatment plant (Blackall et a!., 1 989b).

The organism, which was isolated directly from foam by using a micromanipulation

technique (Skerman, 1968), was assigned to the genus Nocardia as Nocardia

pinensis mainly on the basis of chemical and morphological properties (Blackall et

a!., 1989a). Nocardia pinensis strains were subsequently isolated from activated-

sludge sewage-treatment plants in New South Wales, Queensland and Victoria in

Australia (Seviour et a!., 1990; Soddell & Seviour, 1994). The isolation of this

relatively slow-growing actinomycete can be attributed to the successful use of the

micromanipulation technique first applied to an examination of activated sludge

samples by Blackall eta!. (1985).

The limitations of the conventional dilution plating technique for the isolation

of actinomycetes from activated sludge samples were discussed by Soddell and

Seviour (1994). They argued that only Nocardia pinensis could be microscopically

distinguished from other UnocardioformI actinomycetes, including Gordona

(Nocardia) amarae, and that the dilution plating technique was inadequate for the
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isolation of slow-growing organisms such as Nocardia pinensis. They also isolated a

number of mycobacteria from Australian activated sludge sewage-treatment plants.

It is interesting that Gordona (Nocardia) amarae and Nocardia pinensis

strains have only been isolated from activated sludge. It also appears from the

literature that other actinomycetes containing mycolic acids, notably members of the

genera Gordona, Nocardia, Rhodococcus and Tsukamure!/a, may be responsible

for the formation of foams and scums in activated sludge. It is also interesting that

Sphaerobacter thermophilus, a therrnophilic actinomycete, has been isolated from

high-temperature treated sewage sludge (Demharter et a!., 1989). This organism

belongs to the actinomycete subline of descent (see Figure 2-4).

The primary aim of the present investigation was to isolate, characterise and

identify actinomycetes associated with extensive foaming at the Stoke Bardolph

sewage treatment plant near Nottingham, England, UK.
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B. Materials and Methods

1. Test strains

1.1. Sample collection

Foam and scum samples were collected from six different sites, including the

aeration basins and secondary clarifiers, at Stoke Bardolph Sewage Works

(Figure 3-2). The samples were stored at 4 °C.

1.2. Isolation and maintenance of strains

Each sample was serially diluted down to io using sterile quarter-strength

Ringer's solution. Five aliquots (Ca. 0.1 ml) of each dilution were plated onto glucose

yeast extract agar (GYEA; Gordon & Mihm, 1962; Appendix A) supplemented with

cyclohexamide (50 pg/mI). The inoculated plates were incubated at 30 °C for 5

days. All of the incubated plates were found to support the growth of orange-reddish

actinomycete-like colonies which were reminiscent of Tsukamurella strains. One

colony derived from each of the sampling sites was transferred onto fresh GYEA

plates using sterile tooth-picks. All six isolates were subcultured several times and

checked for purity by acid-fast and Gram-staining (Hucker & Conn, 1923). The

isolates were designated as Ni 171 to Ni 176. The six isolates were maintained on

GYEA slopes at 4 °C and as glycerol suspensions (20 %, v/v) at -20 °C (Wellington

& Williams, 1978).

1.3. Test strains

The six isolates were studied together with six reference strains of

Tsukamurella paurometabola (Table 3-2).
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FIGURE 3-2. STOKE BARDOLPH SEWAGE WORKS: (a) AERATION BASIN SHOWING

EXTENSIVE FOAMING AND (b) SECONDARY CLARIFIER.
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TABLE 3-2. DESIGNATION AND SOURCE OF THE REFERENCE STRAINS.

Lab. No.	 Designation	 Source

JC7T

M333

M334

M337

Tsukamurella

paurometabola

Tsukamurella

paurometabola

Tsukamurella

paurometabola

Tsukamure/la

paurometabola

DSM 20162 (Corynebacterium paurometabolum)

R. E. Gordon, IMRU 1283 (Mycobacteriumsp.);

G. Altmann, 4479; human eye

A. E. Gordon, IMRU 1520 (Mycobacterium

album); C. McDurmont, R456

A. E. Gordon, IMRU 1505 (Mycobacterium

album); C. McDurmont, R161

M343
	

Tsukamurella	 R. E. Gordon, IMRU 1312 (Mycobacterium

	

paurometabola	 rhodochrous); L. K. Georg, 44329-65; iceballs,

Hong Kong

N663
	

Tsukamurella	 NCTC 10741 (Rhodococcus aurantiacus); M.

	

paurometabola	 Tsukamura, 3462; A. Kruse; sputum

Type strain. Abbreviations: DSM, Deutsche Sammiung von Mikroorganismen und

Zelikulturen GmbH, Braunschweig, Germany; NCTC, National Collection for Type Cultures,

Central Public Health Laboratories, Colindale, London, UK.
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2. Chemotaxonomy

2.1. Preparation of biomass

Dned biomass was prepared from the test strains as described in Chapter II.

2.2. Analysis of fatty acids, including mycolic acids

Preparation of methyl esters. Fatty acid and mycolic acid methyl esters were

prepared using the whole-organism acid methanolysis technique described by

Minnikin eta!. (1980) and modified by Luquin etal. (1989). Small amounts of dried

biomass (Ca. 50 mg) in 8.5 ml test tubes fitted with a Teflon lined screw caps

(Aldrich Ltd., The Old Brickyard, New Road, Gillingham, Dorset, England, UK) were

treated with a mixture (3 ml) of dry-methanol-toluene-suiphuric acid (30:15:1, vlvlv),

and the closed test tubes kept at 80 °C in a hot air oven overnight. After cooling to

room temperature, 2 ml of n-hexane was added to each preparation and the

mixtures shaken and centrifuged for 10 minutes at low speed. The hexane extracts

were transferred to clean test tubes and mixed with an equal volume of 0.3M

phosphate buffer (42.57g of N;HPO 4 and 12.Og of NaOH per litre of distilled water

pH 11 to 12). In each case the upper organic layers, which contained the fatty acid

and mycolic acid methyl esters, were transferred to clean test tubes and evaporated

to dryness on a heating block at 50 °C under a stream of nitrogen.

Analytical and preparative thin-layer-chromatography. Analytical one-

dimensional thin-layer-chromatography (TLC) of mixtures of fatty acid methyl esters

(FAMES) and mycolic acid methyl esters (MAMEs) was performed using pieces of

aluminum sheet (10 cm x 10 cm; Merck 5554 silica gel 60 F254). Each dried lipid

sample was dissolved in 50 p1 of diethyl ether and an aliquot of Ca. 5 pt applied to

an aluminum sheet. The preparation was developed in petroleum ether

(b.p. 60-80 °C)/acetone (95/5, v/v) and the positions of the separated components



CHAPTER III	 219

revealed by spraying with ethanolic molybdophosphoric acid (5 %, wlv) followed by

heating at 1 80 00 for 1 5 minutes.

Fatty acid and mycolic acid methyl esters were purified on plastic-backed

TLC sheets (10 cmxl0 cm; Merck 5735) and developed using the solvent system

mentioned above. The positions of the FAMEs and MAMEs were visualized by

spraying with ethanolic rhodamine (0.1 %, w/v) and examining under UV light. The

bands containing the FAMEs and MAMEs were scraped from the TLC plates and

each band transferred to a 1 .5 ml tube. Diethyl ether (Ca. 1 ml) was added to these

preparations and the contents of the tubes centrifuged at 10,000 rpm for 5 minutes.

The supernatants were transferred to small glass vials, dried under a stream of

nitrogen and stored at -20 00.

Gas-liquid chromatographic analysis of fatty acid methyl esters. Purified

FAMEs were separated and quantified using a gas chromatograph (Shimadzu Mini-

3 Gas Chromatograph, Kyoto, Japan) equipped with a SPB-1 fused silica capillary

column (30 m x 0.25 mm ID; Supelco Ltd., Shire Hill, Saffron Walden, Essex,

England, UK). The temperature for both the injector and flame-induced-detector

(FID) was kept at 270 00. The column was programmed to operate from 150 to

250 °C with increases of 4 00 per minute; nitrogen was used as the carrier gas.

Peak areas and retention times were recorded using a Trio integrator (Trio Ltd.,

Trivector, Sandy, Bedfordshire, England, UK) and eluted components identified by

using a FAME standard mixture (Supelco CP Mix; Supelco Ltd.). Peak identities

were confirmed using a Hewlett Packard Gas Chromatograph-Mass Spectrometer

(HP5890 and HP5972; Hewlett Packard Ltd., Nine Mile Ride, Wokingham,

Berkshire, England, UK).
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Mass spectrometry of mycolic acid methyl esters. Purified MAMEs were subject

to electron-impact mass spectrometry using a mass spectrometer (Kratos MS 8ORF)

with an ionisation energy of 70 eV.

Pyrolysis gas chromatography of mycolic acid methyl esters. The pyrolysis

products of the MAMEs were analysed using a Hewlett Packard gas chromatograph

(HP5890) coupled to a mass selective detector (HP5972). The purified MAMEs were

redissolved in 200 p1 of hexane and injected into the gas chromatograph using an

automated sampler (HP7673). Fatty acid methyl esters derived from pyrolysis were

separated using a capillary column (HP-5MS cross-linked 5% Ph Me silicone, 30m x

0.25 mm ID) that was programmed from 150 to 250 °C at 5 °Clminute and

maintained for 10 minutes thereafter. The injector was kept at 310°C and helium

used as the carrier gas. Individual peaks were identified according to their mass

spectra and retention times. The size and degree of saturation of the side chain in

the MAMEs were determined by calculating molecular weights (M) from the mass

spectra using the following equation:

ml z =60 + (number of carbons x 14)— (number of double bonds x 2)

In the case of monounsaturated fatty acid side chains, the molecular ion minus

methanol (M-MeOH; m/z-32) shows a stronger intensity than the molecular ion (Mt).

Precipitation test for mycolic acid methyl esters. The procedure used was that

described by Hamid et a!. (1993). Dried crude MAMEs extracted from the test

strains were dissolved in dichloromethane (0.5 ml) and the preparations transferred

to 1.5 ml polypropylene microcentifuge tubes (Treff, Dagersheim, Switzerland) and

the contents evaporated to dryness under nitrogen at 37 °C. The residues were

mixed with acetonitrile (0.1 ml) and toluene (0.2 ml) until they were completely
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dissolved. Further 0.2 ml aliquots of acetonitrile were added to these preparations;

turbidity indicates the insolubility of MAMEs.

2.3. Analysis of menaquinones

Menaquinone profiles of the test strains were examined by using the method

described in Chapter Il.

2.4. Analysis for diaminopimelic acid isomers

Whole-organism hydrolysis. Dried biomass (Ca. 30-40 mg) was hydrolysed with 1

ml of 6N HCI in Bijoux bottles at 100 °C for 20 hours. After cooling, the hydrolysates

were filtered (Whatman No. 1 Filter Paper, Whatman Ltd., Maidstone, England, UK)

and washed twice with sterile distilled water (1 ml). The combined filtrates were

concentrated to dryness using a vacuum pump (Genevac CVP 100/2; Edward's

High Vacuum, Sussex, England, UK). The dried extracts were dissolved in sterile

water (1 ml), dried again and the process repeated until the smell of hydrochloric

acid was lost. The residues were then redissolved in distilled water (0.3 ml) and

transferred to Bijoux bottles.

Thin layer chromatography. An aliquot (5 p1) of the resultant sample was applied

to a cellulose TLC plate (20 cmx20 cm; Merck 5716). An aqueous mixture (5 itl) of

the isomers of cx,s-DAP (Sigma) was used as a standard. The plates were

developed in methanoVwater/1ON HCl/pyridine (80:26.25:3.75:10, v/v/v/v) until the

solvent front had reached the top of the plate. The plates were dried in a fume

cupboard and spots visualised by spraying with 0.2% (w/v) ninhydrin in acetone

followed by heating at 100 °C for five minutes. The DAP isomers, which appeared

as blue-violet coloured spots after 2 to 3 minutes, were identified by comparison to

the standard. The spots corresponding to the DAP isomers became yellow after 24

hours.
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2.5. Analysis of whole-organism sugars

Whole-organism hydrolysis and derivatisation. Freeze-dried bi om ass (Ca. 50mg)

placed in screw-capped tubes was treated with lml of 0.5M hydrochloric acid. The

tubes were sealed and autoclaved at 121°C for 20 minutes. After cooling, the

resultant acid hydrolysates were filtered (451i.m; Millipore) and 0.2 ml of a 12M

ammonia solution added to each of the filtrates. After the addition of 0.lml of a

freshly prepared solution of sodium borohydride (100mg/mi in 3M ammonia), each

preparation was shaken for 5 minutes and incubated at 37°C for an hour. Glacial

acetic acid was then added dropwise until effervescence was no longer visible. The

preparations were then cooled to 4°C, kept on ice, and 0.3m1 of 1 -methylimidazole

(Sigma) and 2 ml of acetic anhydride slowly added. The resultant preparations were

shaken and allowed to stand for a further 15 minutes when 5 ml of distilled water

was added. After cooling to room temperature, lml of dichloromethane was added

to each preparation and the tubes shaken vigorously for 2 to 3 minutes. The upper

layers were discarded and the lower layers evaporated to dryness under nitrogen

gas and stored at -80°C until required. The residues were redissolved in

dichioromethane (50.tl).

Gas chromatography. The alditol acetate preparations (1 .il) were analysed using a

model Shimadzu gas chromatograph fitted with a flame ionisation detector.

Separation was achieved using a 0.25 mm x 30-rn SP 2380 (Sulpelco) fused silica

capillary column with a film thickness of 0.25 m. The initial column temperature, 230

°C, was maintained for 5 minutes then it was increased to 270°C at 10°C/minute.

The final temperature was maintained for 20 minutes. The injector and detector

temperatures were set at 260 and 300°C, respectively. The total elution time for

each sample was seventeen minutes.
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3. Pyrolysis mass spectrometry

3.1. Test strains

The ten strains included in the chemical investigations were studied.

3.2. Growth conditions

The test strains were inoculated onto GYEA (Gordon & Mihm, 1962) plates

from cultures grown on the same medium and stored at 4 °C. The inoculated plates

were incubated at 30 °C for 3 days. All of the media were prepared from the same

batch of ingredients.

3.3. Preparation of samples

Ferro-nickel alloy foils and pyrolysis tubes (Horizon Instruments Ltd.,

Heathfield, West Sussex, England, UK) were washed in acetone and dried at room-

temperature. The clean foils were inserted, using clean forceps, into the pyrolysis

tubes so as to extend about 6 mm out of the ends of the tubes. In order to reduce

the effect of colonial variation, the inocula applied to the foils were prepared from a

mixture of several colonies. Inoculum from each plate was used to seed three foils.

In addition, four strains were examined in duplicate to determine experimental

reproducibility. The assembled tubes plus foils were dried in an oven at 80 °C for 10

minutes.

3.4. Curie-point pyrolysis mass spectrometry

Curie-point pyrolysis mass spectrometry was carried out using a Horizon

RAPyD-400 mass spectrometer (Horizon Instruments Ltd.). The inlet heater was set

at 160 °C and the heated tube loader at 120 °C. Curie-point pyrolysis was carried

out at 530 °C for 2.4 seconds under vacuum with a temperature rise time of 0.6 of a

second. The pyrolysates were ionised by collision with a cross-beam of low energy

electrons (20 eV) and the ions separated in a quadrupole mass spectrometer at
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scanning intervals of 0.35 of a second. Integrated ion counts, recorded for each

sample at unit mass intervals from 51 to 200, were stored on a hard disk.

3.5. Multivariate statistical analysis

The multivariate statistical analyses were achieved using the PYMENU

(Horizon Instruments) and GENSTAT (Nelder, 1979) programs. In brief, mass

spectra were normalised to compensate for variations in sample size and the 100

masses showing the highest characteristicity values examined first by principal

component analysis then by canonical variate analysis (PC-CVA). A Mahalanobis

distance matrix (Mahatanobis, 1936) generated from the analysis was transformed

to a similarity matrix using Gower's coefficient (SG; Gower, 1971) and a dendrogram

generated from these data using the unweighted pair group method with arithmetic

averages algorithm (Sneath & Sokal, 1973). Details of the multivariate statistical

analyses are given in Chapter IV.

4. Whole-organism protein electrophoresis

4.1. Cultivation of test strains and sample preparation

The ten test strains were inoculated onto GYEA plates (Gordon & Mihm,

1962) and incubated at 30 °C for 3 days. Biomass scraped from the plates was

suspended in 600 p1 of cold GMT buffer (0.125 M Tns, 20% [v/v] glycerol, 10% [vlv]

-mercaptoethanol, pH 6.8) prior to sonication for one minute in two 30 seconds

pulses with a 20 second interval between the pulses. The tubes containing the

samples were held in crushed ice throughout the sonication treatment. The

sonicated cell suspensions were mixed with 400 p1 of a sodium dodecyl sulphate

(SDS) solution (10%, w/v) and boiled for 5 minutes at 100°C in a water bath. The

tubes were quickly cooled in ice for 10 minutes then centrifuged for 15 minutes at
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13000 rpm. The clear supematants, which contained soluble denatured whole-

organism proteins, were transferred to clean tubes and stored at -20 °C.

4.2. Denaturing polyacrylamide gel electrophoresis

Sodium dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-PAGE)

was carried out following the manufacturer's instructions using a Hoeffer SE 600

Vertical Slab Gel Unit (Hoeffer Scientific Instruments, Newcastle-under-Lyme,

England, UK). The electrophoretic system consisted of a discontinuous 10%

separation polyacrylamide gel and a 4% stacking gel.

Gels were cast and run in a Hoeffer SE 600 Vertical Slab Gel Unit using 1 .5

mm spacers and sample combs with 10 wells. The gel casting unit was assembled

according to the manufacture's instructions using glass plates thoroughly cleaned

with ethanol. The separating gel (polyacrylamide 10% T 2.7% C) was prepared and

degassed in a 125 ml side arm vacuum flask according to a recipe (Table 3-3) that

omitted the SOS, TEMED (N,N,N',N',tetramethylethylenediamine) and ammonium

persuiphate; these reagents were added to the degassed flask contents and mixed

by gentle swirling. The separating gel solution was aspirated with a 20 ml syringe

and gently dispensed into the glass plate assembly unit until the gel was

approximately 2.0 cm from the top. A gel former was inserted into the gel assembly

unit to prepare the necessary space for the stacking gel. Gels were allowed to

polymerise at room temperature for an hour. The gel farmers were then carefully

removed and the surfaces of the gels rinsed once with approximately 2 ml of the

stacking gel solution by rocking the casting stand. The rinse solution was then

discarded and the stacking gel poured over the solidified separating gel.

The stacking gel (polyacrylamide 4% T, 2.7% C) was prepared and

degassed in a 50 ml side arm flask according to a recipe (Table 3-3) that omitted

SDS, TEMED and ammonium persuiphate; as before the latter were added to the
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TABLE 3-3. COMPOSITION OF SDS-PAGE GELS.

Stock solutions / reagents

Monomer solution (30% T, 2.7% C)

4 x Running gel buff erb

4 x Stacking gel buff erc

10% SDS (w/v)

Mili-Q water

Ammonium persulphate (10%, wlv)

TEMEDd

Separating gel

10% T, 2.7% C

20.0 ml

15.0 ml

0.6 ml

24.1 ml

300 p1

20 p1

Stacking gel

4% T, 2.7% C

2.66 ml

5.0 ml

0.2 ml

12.2 ml

100 p1

10 p1

, The monomer solution was prepared by mixing 58.4 g of acrylamide and 1.6 g of bis-

acrylamide in a final volume of 200 ml of autoclaved Mili-Q water. The solution was filtered

and stored at 4°C in the dark.

4 x running gel buffer consisted of 1.5 M Tris, pH 8.8 (autoclaved).

4 x stacking gel buffer consisted of 0.5 M Tris, pH 6.8 (autoclaved)

,TEMED, N,N,N',N',tetramethylethylenediamine.
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degassed solution and mixed by gentle swirling. The resultant mixture was aspirated

in a 20 ml syringe and used to rinse the surface of the gels as described earlier. The

remaining stacking gel solution was poured into the gel casting unit. A 10-well

Teflon comb was introduced into the stacking gel which was allowed to polymerise

for an hour at room temperature. The stacking gel comb was then removed and the

wells rinsed with distilled water.

The gel casting slabs were attached to the upper buffer tank and the

application of samples performed with the gels still in the casting stand. The wells

were filled with tank buffer (0.025 M Tris, 0.0192 M glycine, 0.1% [wlv] SDS, pH 8.3)

and the thawed protein samples applied using sterilised 20 p1 gel loading tips

(Sigma Ltd.). The upper buffer tank assembly unit (with gel slabs) was inserted into

the lower buffer tank which had been previously filled with cold (10°C) tank buffer.

The top reservoir was carefully filled with cold tank buffer and air bubbles from

underneath the gel assembly unit were removed using a thin glass rod. The buffer

was circulated by using a magnetic stirrer with the cooling unit remaining connected

to a cold water supply during the entire run.

Electrophoresis was carried out at a constant current of 30 mA per gel until

the indicator dye front had migrated 10 cm (approximately 4 hours). The gels were

removed from the gel assembly and stained using Coomassie Blue stain, as

described on the manufacturer's protocol (Hoefer Scientific Instruments, 1992).

Stained gels were dried on a gel drier at 80 °C under vacuum for approximately an

hour. The gels were allowed to cool before removal from the gel drier then stored

flat away from strong light.

4.3. Data analysis

The gels were scanned using a flat bed scanner (HP Scanjet Plus; Hewlett

Packard) at 300 dots-per-inch (dpi) using the 256 gray-scale mode. Images were
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stored on floppy-disks in the non-compressed Tag Image File Format version 5

(TIFF). Computer-assisted analysis was carried out using GelCompar version 3.1

(Applied Maths BVBA, Risquons-Toutstraat 38, B-851 1, Kortrijk, Belgium) as

described elsewhere (Vauterin & Vauterin, 1992; Pot et a!., 1994). The GelCompar

package was run on an 1MB-PC compatible computer (Elonex 486-66).

Digitised gel images were normalised by choosing reference peaks from

different gels. The background of the resultant normalised gel images were

subtracted by applying the rolling disk algorithm as recommended the by

manufacturer. The pairwise calculations of similarities between samples were

carried out by using the Pearson product-moment correlation coefficient (r Sneath &

Sokal, 1973). To optimise matching between pairs of traces, the program performed

a secondary alignment of traces before the computation of similarities (Vauterin et

a!., 1991). This alignment involved a lateral displacement of one trace up to five

points on either side of the initial alignment. The highest r-value was retained for the

cluster analysis. Clustering was achieved by applying the unweighted pair group

method with arithmetic averages algorithm (Sneath & Sokal, 1973).

5. Numerical phenetic classification

5.1. Data acquisition

The six sludge isolates and the six Tsukamurella paurometabola strains

(Table 3-2) were examined for 96 unit characters. The organisms were inoculated

onto GYEA plates (Gordon & Mihm, 1962) from GYEA slopes stored at 4°C, and

incubated for 3 days at 30 °C. Biomass scraped from the GYEA plates was

suspended in a Bijoux bottle containing sterile quarter-strength Ringer's solution

and approximately 7 to 10 glass beads (Jencon Scientific Ltd., Leighton Buzzard,

Bedfordshire, England, UK); the preparations were then shaken to obtain

homogeneous inocula.
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When possible, the tests were carried out following a procedure that involved

the use of an automatic multipoint inoculator (Denley-Tech, Denley Instruments Ltd.,

Daux Road, Billingshurst, Sussex, England, UK). This apparatus allows the

standardised, multiple surface inoculation of 90 mm diameter Petri dishes (Sterilin

Ltd., Teddington, Middlesex, England, UK) with up to 20 different strains. In this

study plates were inoculated with either five or six strains. The inoculated plates

were incubated at 30 °C unless otherwise stated and the results recorded after 7,

14, 21 and 28 days. The final test readings were used to code data for computation.

Four strains, namely isolate Ni 171 and Tsukamurella paurometabola JC7T, M334

and N663, were studied in duplicate to assess test reproducibility.

5.2. Morphology and staining

Cultural and colonial properties of the test strains were determined from

GYEA plates (Gordon & Mihm, 1962) incubated at 30°C for 5 days. After

incubation, colonies were examined both with the naked eye and microscopically at

a magnification of x400 using a Nikon Optiphot binocular light microscope (Nikon,

Tokyo, Japan) fitted with a long distance working objective.

5.3. Degradation tests

The degradation of hypoxanthine (0.5 %, wlv), tyrosine (0.5 %, w/v) and

xanthine (0.5 %, w/v) were detected in GYEA; clearing of the insoluble compounds

from under and around areas of growth was scored as a positive result.

5.4. Nutritional tests

The organisms were examined for their ability to use thirty-six compounds as

sole sources of carbon for energy and growth. Similarly, nine compounds were

examined as sole sources of carbon and nitrogen. The carbon, and carbon plus

nitrogen, compounds were prepared as aqueous solutions, sterilised by filtration
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using disposable filters (0.45 pm; Acrodisc, Gelman Sciences, 600 South Wagner

Road, Ann Arbor, Michigan, USA) and added to the molten basal media (Boiron et

a!., 1993; Appendix A). When scoring plates, growth on the test medium was

compared with that on positive and negative control plates. The positive control

plate contained glucose as the sole carbon source or glucose plus yeast extract as

the sole carbon and nitrogen source; the negative control plates lacked a carbon

source or a carbon plus nitrogen source, respectively. Strains were scored positive if

growth on the test plate was greater than that on the negative control plate.

Com'arse)y, negative results were recorded where growth was less than or equal to

that on the negative control plate.

5.5. Resistance to antibiotics

The ability of the test strains to grow in the presence of eleven antibiotics

was examined. All but one of the antibiotics were sterilised by filtration of aqueous

solutions. The exception, nfampicin, was dissolved with an aliquot of

dimethylsuiphoxide (DMSO; Sigma Ltd.) and the volume made up to the desired

concentration with distilled water prior to filtration. The results were scored after 7

and 14 days. The growth of the test strains was compared with that on GYEA plates

(Gordon & Mihm, 1962) lacking any antibiotic, cultures showing resistance were

scored as positive.

5.6. Growth in the presence of chemical inhibitors

The test organisms were examined for their ability to grow on GYEA (Gordon

& Mihm, 1962) supplemented with crystal violet and on GYEA supplemented with 5-

fluorouracil. Aqueous solutions containing crystal violet and 5-fluorouracil were

sterilised by autoclaving and filtration, respectively, then added to the molten GYEA

medium to give the desired concentrations. The plates were read after 7 and 14
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days. A positive result was scored when growth on the test plate was greater than

or equal to that on the control plate which lacked a chemical inhibitor.

5.7. Growth at 45 °C

The test strains were examined for their ability to grow on GYEA plates

(Gordon & Mihm, 1962; Appendix A) after incubation for 7 day's incubation at 45 °C.

5.8. Data analysis

The raw binary data were typed into the X program (Chapter I) in a ^1-

format. Test error for individual tests was calculated according to Sneath and

Johnson (1992) using the 'Test Erro? procedure implemented in the Xprogram. A

similarity matrix was calculated and clustering carried out using the procedures

'SIMQUAL' and 'SAHN' from the NTS VS-pc program written by F. J. Rolf (Exeter

Software, 100 North Country Road, Building B Setauket, New York 11733, USA).

The cophenetic correlation coefficient (Sokal & Roil, 1962) was calculated using the

NTSYS procedures 'COPH' and 'MXCOMP'. Three similarity/dissimilarity

coefficients, namely the simple matching (S SM), Jaccard (Sd) and pattern (Dr)

coefficients, were used. Since the NTSYS package does not contain the procedure

for the D coefficient, the pattern distance matrix was calculated by using the X

program, and clustering achieved by using the NTSYS package. Principal

component analysis was carried out using the NTSYS procedure 'EIGEN'

6. Sequencing of 16S rDNA

6.1. Test strains and procedure

16S rRNA genes of isolate N1171 and Tsukamurella paurometabola strains

JC7T M334 and N663 were sequenced by following the procedure described in

detail in Chapter II.
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6.2. Data analysis

The primary structures of the resultant nucleotide sequences were aligned

manually by using the AL16S program (Chapter I). The reference sequences were

obtained from the ribosomal database project release 4.0 (RDP; Larsen et a!., 1993)

and from the GenBank/EMBL database. The sequence similarities and evolutionary

distances of Jukes and Cantor correction (1969) were calculated by using the

AL16S program which was run on an IBM-PC compatible computer. The

phylogenetic tree was constructed using the neighbor-joining method (Saitou & Nei,

1987) employing the program NEIGHBOR as implemented in the PHYLIP package

(Felsenstein, 1993). The resultant phylogenetic tree was heuristically evaluated by

using the bootstrap method (Felsenstein, 1985) which is also included in the

PHYLIP package.
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C. Results

1.Selective isolation

The GYEA isolation plates supported the growth of many orange-reddish

colonies after 5 days incubation at 30 °C. Six representative strains taken from the

isolation plates were found to be pure when samples were stained using the

Zeihl-Neelson and Gram stains.

2.Morphology and staining

All six isolates were Gram-positive and weakly acid-alcohol fast. The isolates

formed straight and slightly curved rods, which occurred singly, in pairs and in

masses, but did not differentiate into substrate or aerial hyphae. The colonies were

large (diameter over 5mm), orange to red in colour with irregular edges and an

irregular elevation.

3.Chemotaxonomy

Fatty acids.	 Thin-layer-chromatog raphic 	 analysis	 of	 whole-organism

methanolysates of the isolates revealed the presence of single spots (R 0.4-0.6)

corresponding to mycolic acid methyl esters. It is evident from Table 3-4 that both

the isolates and Tsukamurella paurometabola strains M334 and N663 showed

qualitatively similar cellular fatty acid profiles which consisted mainly of saturated

and unsaturated straight chain fatty acids and tuberculostearic acid (fatty acid type

lb sensu Kroppenstedt 1985; Table 2-3). In all cases hexadecanoic and

monounsaturated octadecanoic acids were the predominant components. Isolate

N1176 contained proportionally less tuberculostearic acid than the remaining

activated sludge isolates.
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TABLE 3-4. CoMPosITION OF CELLULAR FATTY ACIDS OF SLUDGE ISOLATES AND

REPRESENTATIVE STRAINS OF TSUKAMURELLA PAUROMETABOLA.

Fatty acid composition (%)

Strain	 0140	 C161	 C160	 C, 9.,	 C180 TSA 0191	 C .l	 C200

T. paurometabola M334	 2	 4	 36	 30	 11	 10	 6	 tr.

T paurometabo/a N663	 2	 8	 31	 22	 12	 21	 2	 2

Isolate N1171	 3	 11	 37	 28	 3	 15	 2	 tr.

Isolate N1172	 12	 7	 32	 25	 2	 20	 tr.	 2

Isolate N1173	 13	 9	 30	 31	 tr.	 16

Isolate N1174	 10	 8	 30	 34	 tr.	 16

Isolate N1175	 11	 7	 33	 28	 2	 19

Isolate N1176	 2	 7	 44	 43	 4

Abbreviations: C 14.0 , straight chain tetradecanoic acid; C, 61 , monounsaturated

hexadecanoic acid; C 1 , hexadecanoic acid; C, 8 . 1 , monounsaturated octadecanoic

acid; C19.0 , octadecanoic acid; TSA, tuberculostearic acid (1 0-methyloctadecanoic

acid); C191 , monounsaturated nonadecanoic acid; C. 1 , monounsaturated eicosanoic

acid; and C O 3 eicosanoic acid. tr., trace (less than 1 %).
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Mycolic acids. Methyl esters of mycolic acids fragment on mass spectrometry in

competing pathways depending on their overall size and structural features (Figure

3-3). The mass spectra of the MAMEs of isolate N1171 showed medium sized

peaks at m/z 292 and 320 corresponding to C 20 .1 and C unsaturated fatty acids

(fragments X; Figure 3-4). Fragments corresponding to aldehydes were seen with

m/z values 736 (C52:4 ) and C762 (C545). In the higher mass range, fragments

corresponding to anhydromycolates, formed by elimination of a molecule of water,

were detected at m/z 984 (C 6), 1010 (C70 :7) and 1 03 (C72:7)

Fatty acid methyl esters released from MAMEs at high temperatures (over

300 °C) can be detected by gas chromatography. The major species of side chains

(long chain ester in Figure 3-3) revealed by gas chromatographic-mass

spectrometric analysis of the MAMEs extracted from isolate Ni 171 were C 20., and

C 1 (Figure 3-5). This result is in good agreement with the data derived from the

mass spectrometric analysis.

The mycolic acid methyl esters of the isolates were not precipitated when

solutions in acetonitrile/toluene (1:2, v/v) were treated with additional acetonitrile.

isoprenoid quinones. The isoprenoid quinones of the six isolates were identified

as menaquinones as they were comigrated with the vitamin K (Sigma). All of the

strains contained unsaturated menaquinones with nine isoprenoid units (MK-9) as

the major isoprenologue though significant amounts of MK-7 were also found

(Figure 3-6).

Isomers of diaminopimelic acid. The meso- and LL-diaminopimelic acid isomers

in the standard were well separated on the TLC plates. Whole-organism

hydrolysates of all six isolates contained meso- diaminopimelic acid.
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- CH3OH

R 2 -CHO 4	 R1-CH2-COOCH3	 - FragmentX

MeroaIdehde	 Long-chain ester

O)H
I	 -H20

R2 -f CH -- CH-COOCH3

Mycolate

0H

CH - CH - CHCOOCH3

R1

Fragment Y

R2-CH = COOCH3

R1

Anhydromycolate

FIGURE 3-3. MASS SPECTRAL FRAGMENTATION PATHWAYS CHARACTERISTIC OF MYCOLIC

ACID METHYL ESTERS. THE MOLECULAR MASSES OF ANHYDROMYCOLATES WERE

CALCULATED USING THE EQUATION:

m/z= 86 + [(NUMBER OF CARBONS-3) x 14] - (NUMBER OF DOUBLE BONDSx2)

MODIFIED FROM COLLINS eta!. (1982).
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FIGURE 3-4. PARTIAL MASS SPECTRUM OF THE METHYL ESTERS OF MYCOLIC ACIDS

EXTRACTED FROM ISOLATE Ni 171.
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(a) Pyrolysis gas chromatogram

FIGURE 3-5. PYROLYSIS GAS CHROMATOGRAPHIC ANALYSIS OF MYCOLIC ACID METHYL

ESTERS EXTRACTED FROM ISOLATE Ni 171. (a) GAS CHROMATOGRAM SHOWING TWO

MAJOR PEAKS THAT CORRESPOND TO THE FATTY ACID METHYL ESTERS C 1 (RETENTION

TIME, 17.2 MINUTES) AND C (20.3 MINUTES), (b) CORRESPONDING MASS SPECTRA OF

THE PEAKS AT THE RETENTION TIMES OF 17.2 MINUTES, AND (c) 20.3 MINUTES.
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WhoIeorganism sugars. All six isolates contained major amounts at arabinose

and galactose in the whole-organism hydrolysates.

4. Numerical phenetic classification

4.1. Final data matrix and calculation of test error

The preliminary data matrix contained information on twelve test strains,

including the four duplicated cultures, namely isolate N1171 and Tsukamurella

paurometabola strains JC7T, M334 and N663, and ninety-six unit characters. Fifty

unit characters were excluded from the raw data set as they gave either all positive

or all negative results.

All of the test strains used D(-)-fucose (1 %, w/v), D(+)-galactose (1 %, wlv),

D(+)-turanose (1 %, w/v), amyl alcohol (0.1 %, v/v) and sodium pyruvate (0.1 %,

w/v) as sole carbon sources and L-asparagine (0.1 %, w/v) as a sole carbon and

nitrogen source. They also grew in the presence of crystal violet (0.001%, w/v) and

5-fluorouracil (20 pg/mI), and were resistant to bekanamycin (16, 32 and 64 pg/mI),

erythromycin (2, 4 and 8 pg/mI), gentamycin sulphate (16 and 32 pg/mI), kanamycin

(4, 8, 16 and 64 pg/mI), neomycin sulphate (4, 8 and 16 pg/mI), oleandomycin

phosphate (16 and 32 pg/mI), rifampicin (0.5 and 2 pg/mI) and vancomycin

hydrochloride (1, 2 and 4 pg/mI).

In contrast, none of the test strains used adonitol (ribitol; 1%, w/v), L(+)-

arabinose (1%, w/v), dulcitol (galactitol; 1%, w/v), meso-erythritol (1%, w/v), D(+)-

fucose (1%, w/v), D-galacturonic acid (1%, w/v), D(+)-glucosamine (1%, w/v), D-

glucuronic acid (1%, w/v), methyl-a-D-mannopyranoside (1 %, w/v), cL-L-rhamnose

(1 %, w/v), D(^)-xylose (1 %, w/v), p-aminosalicylic acid (0.1 %, w/v), methanol

(0.1 %, v/v), DL-norleucine (0.2 %, w/v), resorcinol (0.1 %, w/v) or sodium tartrate

(0.1 %, w/v) as sole sources of carbon for energy and growth or L-lysine (0.1 %,
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wlv) as a sole carbon and nitrogen source. None of the test strains grew at 45 °C or

in the presence of novobiocin (64 pg/mI).

The test variance (Si, formula 15; Sneath & Johnson, 1972) and the

probability of error (], formula 4; Sneath & Johnson, 1972) between the four

duplicated cultures were calculated to determine test error. The duplicated cultures

gave the same responses in 84 out of the 96 tests. One test, namely

chlortetracycline hydrochloride (4 pg/mI) showed a high test variance, 0.25, and was

deleted from the data set. Five tests, namely the ability to grow in the presence of

rifampicin (8 pg/mI) and crystal violet (0.01 %, w/v), and L-serine (0.1 %, wlv), L-

leucine (0.1 %, w/v) and L-valine (0.1 %, w/v) as sole carbon and nitrogen sources,

showed test variances of 0.125. The overall test variance was 0.014 and the

average probability of an erroneous test result (p) calculated from the pooled

variance (S2 ) for the tests in the final matrix was 1.41%. The final data matx

contained information on twelve strains and forty-five unit characters.

4.2. Cophenetic correlation coefficient

Cophenetic correlation coefficients were determined for dendrograms based

on the Jaccard (Sd), simple matching (SSM ) and pattern (Dr) coefficients with both the

single linkage and the unweighted pair group method with arithmetic averages

(UPGMA) algorithms. In all cases, the highest cophenetic correlation values were

obtained with the UPGMA algorithm (Table 3-5). The highest cophenetic correlation

value, 0.89797, was found in the UPGMA analysis. It is also worth noting that

the cophenetic correlation values based on the D coefficient were significantly

smaller than those based on the S and S coefficients.
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TABLE 3-5. COMPARISON OF DENDROGRAMS AND CORRESPONDING SIMILARITY

MATRICES USING THE COPHENETIC CORRELATION COEFFICIENT.

Coefficient	 Clustering algorithm	 Cophenetic correlation

S	 Single linkage	 0.84458

UPGMA	 0.85661

S,	 Single linkage	 0.88797

UPGMA	 0.89797

Single linkage	 0.55207

UPGMA	 0.60412

, unweighted pair group method with arithmetic averages algorithm.
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4.3. Numerical phenetic classification based on the Ssii coefficient and the

unweighted pair group method with arithmetic averages algorithm

The numerical classification based on the SSM, UPGMA analysis is

considered in detail because it showed the highest cophenetic correlation value.

The twelve test strains were assigned to two multimembered and two single

membered clusters defined at the 80% similarity level (S-level; Figure 3-7a). The six

activated sludge isolates formed cluster 1 at the 81 .7% S-level. Four out of the six

Tsukamurella paurometabola strains formed cluster 2 at the 83.7% S-level; the two

remaining Tsukamurella paurometabola organisms, strains JC7T and M334, formed

single membered clusters which were loosely associated at the 75.6% S-level.

It is evident from the dendrogram that the strains isolated from the activated

sludge foams formed a distinct cluster that can readily be distinguished from all of

the clusters containing the Tsukamurella paurometabola strains. The distribution of

positive characters to the four numerically defined clusters is shown in Table 3-6.

Characters which can be given presumptive weight to separate the four numerically

circumscribed taxa are marked with an asterisk.

4.4. Other numerical phenetic classifications

The two multimembered and two single membered clusters were also

recovered in the dendrograms based on the S$M, single linkage (SL), the S,

UPGMA, and the S, SL analyses; the cut-off points used in these analyses were

84%, 68% and 75% S-levels, respectively. In contrast, the six sludge isolates and

the six Tsukamurella paurometabola strains were assigned to two distinct clusters in

both the S, UPGMA and the S r,, SL analyses; in each case the clusters were

defined at the 0.79 S, level. However, less confidence can be placed on the results

of these two analyses given the very low cophenetic correlation values (Table 3-5).
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FIGURE 3-7. (a) DENDROGRAM AND (b) ORDINATION PLOT SHOWING RELATIONSHIPS
BETWEEN THE SLUDGE ISOLATES AND THE TSUKAMURELLA PAUROMETABOLA STRAINS
BASED ON 45 PHENOTYPIC CHARACTERS. THE DENDROGRAM WAS GENERATED BY USING
THE SIMPLE MATCHING COEFFICIENT AND THE UNWEIGHTED PAIR GROUP METHOD WITH
ARITHMETIC AVERAGES ALGORITHM. THE ORDINATION PLOT WAS BASED ON THE RESULTS
OF A PRINCIPAL COMPONENT ANALYSIS; THE FIRST THREE AXES ACCOUNTED FOR 69.09%
OUT OF THE TOTAL VARIATION. TYPE STRAIN.
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TABLE 3-6. DISTRIBUTION OF POSITIVE CHARACTERS TO CLUSTERS DEFINED AT THE 80%

SIMILARITY LEVEL IN THE S$M, UPGMA ANALYSIS.

Cluster 1	 Cluster 2	 Tsukamurella
(isolates)	 (T. pauro-	 paurometabola

metabola
strains)

Number of organisms/strain number	 6	 4	 JC7T	 M334
Character

Morphological tests:

Colony colour, white/creamy
	

0
	

4
	

1
	

1

Colony colour, orange/red
	

6
	

0
	

0
	

0

Colony edge, entire
	

0
	

0
	

1
	

0

Colony edge, irregular
	

6
	

4
	

0
	

1

Colony elevation, convex
	

0
	

0
	

1
	

0

Colony elevation, irregular
	

6
	

4
	

0
	

1

Colony size, small (<2mm)
	

0
	

0
	

1
	

0

Colony size, large (>5mm)
	

6
	

4
	

0
	

1

Degradation (% wlv):

Hypoxanthine (0.5)
	

6
	

4
	

0
	

0

Tyrosine (0.5)
	

6
	

4
	

0
	

0

Xanthine (0.4)
	

6
	

4
	

0
	

0

Resistance to antibiotics (pg/mi):

Chlortetracycline hydrochloride (2)
	

1
	

4
	

1
	

1

Chlortetracycline hydrochloride (8)
	

0
	

3
	

0
	

0

Erythromycin (16)
	

0
	

4
	

1
	

1

Gentamicin sulphate (64)
	

4
	

4
	

1
	

1

Neomycin sulphate (32)
	

5
	

4
	

1
	

1

Novobiocin (16)
	

5
	

4
	

1

Novobiocin (32)
	

2
	

4
	

I
	

1

Oleandomycin phosphate (64)
	

5
	

4
	

1
	

1

Penicillin G (16)
	

0
	

4
	

1
	

1

Penicillin 0 (32)
	

0
	

4
	

0

Penicillin G (64)
	

0
	

4
	

1
	

0

Rifampicin (16)
	

0
	

2
	

1
	

1

Rifampicin (4)
	

2
	

4
	

1
	

1

Rifampicin (8)
	

3
	

1

Vancomycin hydrochloride (8)
	

2
	

4
	

1
	

1
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TABLE 3-6. CONTINUED.

Cluster 1	 Cluster 2	 Tsukamurella
(isolates)	 (T. pauro-	 paurometabola

metabola
strains)

Number of organisms/strain number	 6	 4	 JC7T	 M334
Character

Growth in presence of chemical
inhibitor:

Crystal violet (0.01 %, w/v)
	

4
	

3
	

0
	

0

Sole carbon and nitrogen source (0.1%,
wlv):

L-Histidine
	

0
	

4
	

0
	

0

L-/so-Leucine
	

3
	

4
	

1

L-Leucine
	

3
	

3
	

1

L-Phenylalanine
	

6
	

4
	

0
	

0

L-Serine
	

6
	

4
	

0
	

0

Succinamide
	

0
	

0
	

0
	

1

L-Valine
	

0
	

2
	

0
	

0

Sole carbon source (1 %, w/v:)

D(-)-Arabinose
	

0
	

2
	

0
	

0

D(+)-Arabftol
	

5
	

4
	

0
	

1

-Gentibiose
	

0
	

0
	

0

meso-lnositoi
	

6
	

4
	

0
	

1

D(+)-Melezitose
	

6
	

4
	

0
	

0

Salicin
	

0
	

4
	

0
	

1

D-Sorbitol
	

6
	

4
	

0
	

1

Xylitol
	

5
	

4
	

0
	

1

Sole carbon source (0.1 %, w/v or v/v):

Butane-i 3-did	 2	 2	 0	 0

Butane-i 4-diol	 0	 1	 0	 0

Butane-23-diol	 6	 4	 0	 0

Ethanolamine	 0	 4	 1	 1

Propane-i 2-diol	 2	 4	 0	 0

Sodium benzoate	 1	 2	 0	 0

Tn-sodium citrate 	 5	 4	 1	 1

Characters that can be weighted to differentiate between the four clusters.
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4.5. Principal component analysis

It is evident from the three-dimensional ordination plot based on the first

three principal component axes (Figure 3-7b) that the test strains fall into two

multimembered and two single membered groups that correspond to the four

clusters recovered in the SSM, UPGMA classification. The first three axes accounted

for 36.43 %, 23.65 % and 9.00 % out of the total variance.

5. Molecular systema tics

Almost complete 16S rRNA gene sequences were obtained for sludge

isolate Ni 171 and for Tsukamurella paurometabola strains JC7T, M334 and N663

(1474 to 1476 nucleotides; positions between 28 and 1524 using Escherichia coli

numbering [Appendix C]; Table 3-7); the corresponding nucleotide sequence

accession numbers are given in Table 3-7. The primary structures of the 16S IDNA

sequences of the test strains are given in the aligned form in Appendix I.

The 16S rDNA sequence similarities found between the four test strains are

shown in Table 3-7. Similarities of over 99% were found between all four nucleotide

sequences. Tsukamurella paurometabola strains JC7T and M334 showed the

highest similarity (99.59 %). Isolate Ni 171 was most closely related to Tsukamurella

paurometabola strain N663 (99.53 %). Dissimilarities due to different secondary

structures in helices 6 and 49 (Appendix D) were found in the length of the four 16S

rDNA sequences (Figure 3-8). A evolutionary distance matrix generated according

to Jukes and Cantor (1969) was used to construct an unrooted phylogenetic tree by

applying the neighbor-joining method (Saitou & Nel, 1987; Figure 3-9). The four test
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TABLE 3-7. MATRIX OF SIMILARITY VALUES (LOWER PART) AND THE NUMBER OF

DIFFERENCES (UPPER PART) IN THE 1 6S RDNA SEQUENCES OF SLUDGE ISOLATE Ni 171

AND TSUKAMURELLA PAUROMETABOLA STRAINS JC7T, M334 AND N663.

Strain Accession Numbers of	 Strains

number	 nucleotides	 JC7T	 N663	 M334	 Ni171

determined

JC7T	Z46751
	

1474	 8/1 474	 6/i 472	 9/1 472

N663	 Z36933
	

1476	 99.46	 9/1 474	 7/1 474

M334	 Z37151
	

1476	 99.59	 99.39	 10/1472

N1i71	 Z37150	 1474	 99.39	 99.53	 99.32
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FIGURE 3-8. DIFFERENCES IN THE SECONDARY STRUCTURE OF THE 16S rRNA OF

ISOLATE Ni 171 AND TSUKAMURELLA PAUROMETABOLA STRAINS JC7T, M334 AND N663.

HELIX NUMBERING ACCORDING TO NEEFS eta!. (1993; APPENDIX D).
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Dietzia mar/s
Tsukamurella paurometabola JC7T
Tsukamurella paurornetabola M334

Tsukamurella paurometabola N663

Activated sludge Isolate N1171

_________________r Gordona aichiensis
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Gordona bronchialis
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Gordona terrae
Gordona am arae

- Nocardia pin ensis
Mycobacterium smegmatis
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-HIIIE	
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obacterium tuberculosis
Mycobacterium simiae

Rhodococcus rhodnii
Rhodococcus Tuber

- Rhodococcus
- Rhodococcus coprophilus

Rhodococcus fascians
Rhodococcus (Tsukamurella) wratisIaviensis
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FIGURE 3-9. AN UNROOTED PHYLOGENETIC TREE SHOWING RELATIONSHIPS BE1WEEN ISOLATE

N1171 AND REPRESENTATIVES OF MYCOLIC ACID CONTAINING TAXA. THE TREE WAS CONSTRUCTED

BY USING THE JUKES AND CANTOR DISTANCE (1969) AND THE NEIGHBOR-JOINING METHOD (SAIT0u &

NEI, 1987). THE NUMBERS AT THE NODES INDICATE THE LEVELS OF BOOTSTRAP SUPPORT BASED ON

1000 RESAMPLINGS. THE SCALE BAR INDICATES 0.01 SUBSTITUTIONS PER NUCLEOTIDE POSITION.

ORGANISMS ASSOCIATED WITH FOAMS ARE INDICATED IN BOLD TYPE. CORRESPONDING ACCESSION

NUMBERS ARE GIVEN IN APPENDIX G.
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strains formed a tight dade, with 100% bootstrap support, that was distinct from

clades composed of representatives of mycolic acid containing genera. Two

subgroups, namely isolate Ni 171 plus Tsukamurella paurometabola strain N663

and Tsukamurella paurometabola strain JC7T plus M334, were supported by low

bootstrap values, that is, 74% and 50%, respectively.

6. Chemical fingerprints

6.1. Curie point pyrolysis mass spectrometry

The six sludge isolates were compared with the six representative strains of

Tsukamurella paurometabola by using Curie point pyrolysis mass spectrometry. The

pyrolysis mass spectra derived from sludge isolate N1171 and Tsukamurella

paurometabofa strains JC7T, M334, N663 are given in Figure 3-10. It is evident from

both the dendrogram (Figure 3-ha) and the three dimensional diagram (Figure

3-11 b) that all four of the duplicated cultures, namely JC7T, M334, N663 and Ni 171,

clustered together.

It is also evident from Figure 3-1 1 that the test strains formed two

multimembered and two single membered groups which corresponded to the

numerical phenetic clusters highlighted in the S, UPGMA analysis. Cluster 1

encompassed the six sludge isolates and cluster 2 the Tsukamure!!a paurometabola

strains M333, M337, M343 and N663. Tsukamurella paurometabola strains JC7T

and M334, which were loosely associated at the 70% S-level in the numerical

phenetic classification, were recovered separately as outliers. The type strain of

Tsukamurella paurometabola (JC7T) was sharply separated from all of the other

Tsukamurel!a paurometabola strains.
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6.2. Whole-organism protein electrophoresis

Whole-organism protein profiles of the twelve test strains obtained from the

SOS-PAGE analysis were analysed by using the GelCompar package (Vauterin &

Vauterin, 1992). The relationships found between the test strains based on the

normalised gel images are given in Figure 3-12. The two sets of duplicated cultures,

namely sludge isolate Ni 171 and Tsukamurella paurometabola strain JC7T, each

clustered together. All of the sludge isolates were assigned to the same group

defined at a correlation coefficient (r) level of 67% though the protein profile of

sludge isolate Ni 171 differed from those of the other isolates. Tsukamurella

paurometabola strains M333, M337, M343 and N663, that is, the members of

cluster 2 defined in the numerical phenetic study based on the S SM , UPGMA

analysis, formed a fairly heterogeneous group defined at a r-level of 54% Two

remaining organisms, Tsukamurella paurometabola strains JC7T and M334, joined

together at the 54% r-level.
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FIGURE 3-10. PYROLYSIS MASS SPECTRA DERIVED FROM THE ANALYSIS OF

(a) TSUKAMURELLA PAUROMETABOLA STRAIN JC7T, (b) TSUKAMURELLA

PAUROMErABOLA STRAIN M334, (c) TSUKAMURELLA PAUROMETABOLA STRAIN N663,

AND (d) SLUDGE ISOLATE Ni 171.
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FIGURE 3-11. (a) DENDROGRAM REPRESENTING RELATIONSHIPS FOUND BETWEEN THE
SLUDGE ISOLATES AND TSUKAMURELLA PAUROMETABOLA STRAINS BASED ON PYROLYSIS
MASS SPECTRAL DATA. THE DATA WERE ANALYSED USING THE GENSTAT PACKAGE WITH
CLUSTERING ACHIEVED BY APPLYING THE UNWEIGHTED-PAIR GROUP METHOD WITH
ARITHMETIC AVERAGES. (b) THREE DIMENSIONAL ORDINATION PLOT DERIVED FROM THE
PYROLYSIS MASS SPECTRAL ANALYSIS. THE FIRST THREE CANONICAL VARIATE AXES
REPRESENT 45.46%, 39.42% AND 4.58% OUT OF THE TOTAL VARIATION. THE
DUPLICATED CULTURES ARE INDICATED BY d.
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D. Discussion
There have been surprisingly few taxonomic studies on microbial agents that

cause or are associated with foaming in activated-sludge sewage-treatment plants

(Soddell & Seviour, 1990; Jenkins et a!., 1993). In most studies, sludge isolates

have merely been characterised and identified by using a few phenotypic properties

(Lechevalier et a!., 1976; Sezgin et a!., 1988). It has, therefore, been difficult to

determine the precise taxonomic status of microorganisms associated with activated

sludge foaming.

The species is usually considered to be the primary, basic and stable unit in

bacterial systematics but there is no universally accepted definition of the bacterial

species (Goodfellow & O'Donnell, 1993, 1994). In practice, a somewhat fluid

species concept is emerging based on the use of both genotypic and phenotypic

data. The term 'polyphasic taxonomy' was introduced by CoIwell (1970) to signify

successive or simultaneous taxonomic studies on groups of organisms using an

array of techniques designed to provide both genotypic and phenotypic data.

Polyphasic taxonomic studies can be expected to yield well defined species, a

stable nomenclature and improved species definitions. In practice, it is not always

possible for individual research groups to gain access to a variety of taxonomic

techniques. Consequently, few polyphasic taxonomic studies have been carried out

on actinomycetes (e.g., De Boer et a!., 1990; Kroppenstedt et a!., 1990; Goodfellow

ef a!., 1991). In the present investigation, representative strains isolated from

activated sludge foams were examined using the polyphasic taxonomic approach.

The speed and cost of 1 6S rDNA sequencing methods is now comparable to

that of other taxonomic methods mainly due to improvements in molecular biology,

notably the invention and application of automated DNA sequencing procedures. It

is evident from the 1 6S rDNA sequence data generated in the present study that the
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sludge isolates not only belong to the genus Tsukamurella but are closely related to

Tsukamurella paurometabola. Indeed, all of the test strains, namely Tsukamurella

paurometabola JC7T, M334 and N663 and sludge isolate Ni 171, shared nucleotide

sequence similarities of over 99%. It has been pointed out in Chapter II that

Tsukamure//a wratislaviensis Goodfellow et a!. 1991 should be transferred to the

genus Rhodococcus leaving Tsukamurel/a paurometabola as the only

representative of the genus Tsukamurella Collins et a!. 1988.

Collins et a!. (1988a) determined the partial 16S rRNA sequences of

Tsukamurella paurometabola strains JC7T (1305 nucleotides; X53206) and N663

(1287 nucleotides; X53207) by using the reverse transcnptase sequencing

technique (Lane et aL, 1985). The comparison between the two strains was limited

to a consideration of only 1198 nucleotides as the authors had to cope with

experimental difficulties. A number of differences were noted when the 1 6S rDNA

sequences determined in the present study for Tsukamurei!a paurometabola strain

JC7T were compared with those of the corresponding sequence prepared by Collins

et a!. (1988a). Nine nucleotide differences were recorded for the corresponding

sequences of Tsukamureiia paurometabola strain JC7T, that is, a dissimilarity value

of 0.69%. In the corresponding analysis, sixteen nucleotide differences were

observed for Tsukamurella paurometabola strain N663 giving a dissimilarity value of

1.28%.

Only four nucleotide differences out of a total of 1474, that is, a dissimilaty

value of 0.27%, were found between the 1 6S rDNA sequences obtained for

Tsukamurella paurometabola strain JC7T and the corresponding sequence

generated by Rainey eta!. (1995a). The four differences were found in nucleotide

positions 720, 1000, 1002 and 1003 using the Escherichia coil numbering system

(Brosius et a!., 1978; Appendix C). The last three nucleotide positions mentioned
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above form part of the stem of helix 37; the secondary structure of this region is

shown in Figure 3-13. It is clear from the figure that the nucleotide sequence

determined in the present investigation makes more sense than the one presented

by Rainey eta!. (1995a) given the estimated secondary structure of the 16S rRNA

molecule of Tsukamure!!a paurometabola strain JC7T.

The results of the chemotaxonomic studies provide further evidence of a

close phylogenetic relationship between the activated sludge isolates and the genus

Tsukamurel!a. Indeed, all six activated sludge isolates contained meso-

diaminopimelic acid as the major wall diamino acid and major amounts of arabinose

and galactose (wall chemotype IV sensu Lechevalier and Lechevalier 1970), were

ch in straight chain, unsaturated and tuberculostearic acids (fatty acid type 1 b

sensu Kroppenstedt 1985), contained fully unsaturated menaquinones with nine

isoprene units (MK-9) as the predominant isoprenologue and had highly

unsaturated long chain mycolic acids with 68 to 72 carbon atoms which were not

precipitated by the procedure of Hamid et a!. (1993). All of these chemical properties

are consistent with the assignment of the sludge strains to the genus Tsukamurella

(Collins et a!., 1 988a; Goodfellow, 1992; see Table 2-1 1).

It is clear from the numerical taxonomic analyses that the sludge isolates

formed a homogeneous cluster that was readily distinguished from clusters

containing the Tsukamurella paurometabola strains. The isolates also formed a

distinct homogeneous group in the Curie point pyrolysis mass spectrometric and

whole-organism protein electrophoretic analyses. These data strongly suggest that

the sludge isolates form the nucleus of a novel species in the genus Tsukamure!!a.
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FIGURE 3-13. DIFFERENCES IN SECONDARY STRUCTURE FOUND BETWEEN 16S rDNA

SEQUENCES OF TSUKAMURELLA PAUROMETABOLA JC7 T WHEN DATA FROM THE PRESENT

STUDY WERE COMPARED WITH CORRESPONDING DATA FROM RAINEY et a!. (1 995a). THE

BASES WHICH WERE FOUND TO DIFFER ARE HIGHLIGHTED BY THE USE OF BOLD-ITALIC

CHARACTERS.
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Tsukamurella paurometabola was proposed by Collins et al. (1988a) to

accommodate members of two morphologically distinct but chemotaxonomically and

phylogenetically related species, namely Coiynebacterium paurometabo/um

Steinhaus l94l and Rhodococcus aurantiacus (Tsukamura and Mizuno 1971)

Tsukamura and Yano 1985. The proposal that these taxa be transferred to

Tsukamurella gen. nov. as Tsukamurella paurometabola was primarily based on

16S rRNA sequence similarity (over 99%) and supporting chemotaxonomic data.

However, it has already been outlined in Chapter Il that it is not unusual for

organisms which belong to different genomic species to have almost identical 16S

rRNA sequences (Fox et a!., 1992; Stackebrandt & Goebel, 1994; see Figure 2-1).

Within this context it was interesting that in the present study Tsukamurella

paurometabola strains M334 and N663 had an almost identical primary structure

(99.39% similarity; nine nucleotide differences out of 1474 positions) but show only

a moderate amount of DNA relatedness (44%; Goodfellow et a!., 1991).

Auerbach et a!. (1992) compared tsukamurellas from hospital outbreaks with

marker strains of Tsukamurella paurometabola. They found that Tsukamurella

paurometabola strain JC7T, the original type strain of Cotynebacterium

paurometabolum, and Tsukamurella paurometabola strain N663, the original type

strain of Rhodococcus aura ntiacus, showed different phenotypic and ribotype

profiles. They concluded that their outbreak isolates were similar to Tsukamurella

paurometabola strain N663 but not Tsukamurella paurometabola strain JC7T! The

conclusions drawn by Auerbach et a!. (1992) are very interesting for in the present

study Tsukamurella paurometabola strain JC7T (flee Conjnebacterium

paurometabolum) and Tsukamurel!a paurometabola strains M333, M337, M343 and

N663 (flee Rhodococcus aurantiacus) were readily distinguished by a number of

phenotypic properties.
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It is also evident from the present study that the representatives of

Tsukamurella paurometabola, namely strains JC7T, M333, M334, M337, M343 and

N663, showed considerable phenotypic heterogeneity. Thus, the Tsukamurella

paurometabola strains were recovered in one multimembered group (cluster 2) and

two single membered clusters, namely Tsukamure!Ia paurometabola strains JC7T

and M334. The recovery of Tsukamurella paurometabola strains M333, M337, M343

and N663 in a distinct cluster is in line with an earlier numerical taxonomic study

(Goodfellow et aL, 1991). However, in the present study Tsukamurella

paurometabola strain M334 was sharply distinguished from the Tsukamurella

paurometabola strains assigned to cluster 2. The separation of strain M334 from

those assigned to cluster 2 is in good agreement with DNA-DNA pairing data, but

not with the results of the previous numerical taxonomic study (Goodfellow et a!.

,1991).

In the present investigation, the separation of Tsukamurella paurometabola

strains into three phena was strongly supported by the results of the Curie point

pyrolysis mass spectrometric and whole-organism electrophoretic analyses. It

seems likely, therefore, that Tsukamurella paurometabola Collins et a!. 1988 is

heterogeneous and contains organisms that should be assigned to three species.

DNA-DNA pairing studies on representatives of the different kinds of Tsukamure!!a

paurometabola strains need to be carried out to determine the detected taxonomic

relationships that exist between these organisms.

The results of the present study provide further evidence that members of

the genus Tsukamurelia occur in activated sludge (Lemmer & Kroppenstedt, 1984).

The consistent isolation of one organism from the foam samples was in good

agreement with the results of Lemmer and Kroppenstedt (1984) who also found that

a single predominant actinomycete predominated in each of fourteen activated
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sludge sewage treatment plants. Tsukamurellas have also been isolated from soil

and have been implicated as human pathogens (Shapiro et aL, 1991; Lai, 1993;

Jones et a!., 1994; McNeil & Brown, 1994).

The present study provides further evidence of the value of the polyphasic

taxonomic approach in bacterial systematics. The sludge isolates and the

representatives of Tsukamure!!a paurometabo!a were assigned into four taxa using

the polyphasic taxonomic data. The four phenons can be tentatively equated with

distinct species though DNA-DNA pairing studies are required to confirm this given

the low resolution of the 16S rDNA sequence data. However, the 16S rRNA

sequence data can be used to generate species-specific probes for in situ

recognition of tsukamurellas in the environment, notably in activated sludge sewage

plants. Several rapid chemical fingerprinting techniques are available for the

characterisation of large numbers of organisms from natural and manmade habitats,

notably Curie point pyrolysis mass spectrometry (Magee, 1993, 1994; Goodfellow,

1 994c), quantitative fatty acid analysis (Embley & Wait, 1994) and whole-organism

protein electrophoresis (Pot et a!., 1994). The speed and reproducibility of Curie

point pyrolysis mass spectrometry and its applicability to a wide range of bacteria

make it a particular attractive method for evaluating the integrity of taxa

circumscribed in numerical taxonomic studies (Sanglier et al., 1992; Goodfellow,

1994c). In addition, pyrolysis mass spectrometry coupled with artificial neural

network analysis should provide an excellent strategy for identifying and monitoring

microbial fluxes in the activated sludge plants.
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CHAPTER IV.
IDENTIFICATION OF STREPTOMYCETES USING

CURIE POINT PYROLYSIS MASS SPECTROMETRY
AND ARTIFICIAL NEURAL NETWORKS

A. Introduction

1. Pyrolysis mass spectrometry

1.1. Introduction

The need to classify, identify and type microorganisms is an ever present

theme in microbiology, notably in clinical and industrial microbiology. Identification is

cñtical for distinguishing between potential pathogens or spoilage organisms and

between commensals or contaminants. The choice of microorganisms for industrial

screening programmes, especially those with low throughputs, is primarily a problem

of distinguishing between known organisms and recognising new ones. Further,

reliable techniques are needed for inter-strain comparisons for epidemiological

tracing and in eliminating sources of microbial contamination. Conventional

techniques used for such purposes are often taxon specific, require a varied

assortment of methods, media and reagents and are generally slow given the time

constraints within which decisions have to be made. This is not the case with

analytical chemical technique, notably Curie point pyrolysis mass spectrometry

(Magee, 1993, 1994; Goodfellow, 1995c).

Pyrolysis is a chemical process that involves the breakdown of complex

organic material, such as whole organisms or cell fractions, in an inert atmosphere

or vacuum to produce a series of volatile, lower molecular weight molecules, the

'pyrolysate' (Irwin, 1982), using heat alone. The breakdown of test material is
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reproducible under controlled conditions and the resultant fragments are

characteristic of the original material. The fragments are ionized and separated by

mass spectrometry on the basis of their mass-to-charge ratio (m/z) to give a

pyrolysis mass spectrum which can be taken as a 'chemical fingerprint' of the

original material. The resultant data are complex and need to be analysed using

suitable statistical routines (Gutteridge, 1987; Magee, 1993, 1994).

One of the major advantages of pyrolysis mass spectrometry (PyMS) over

comparable taxonomic methods, such as conventional chemotaxonomic procedures

(Suzuki et al., 1993; Embley & Wait, 1994; Pot et a!., 1994) and nucleic acid probing

(Stahl & Amman, 1991; Schleifer et a!., 1993; Amman et al., 1995), is that it is rapid

with respect to single and multiple samples. Typical sample times are less than 2

minutes and up to 300 samples can be analysed per batch. Pyrolysis techniques,

notably Curie-point pyrolysis mass spectrometry, are currently being introduced to

diagnostic and industrial screening laboratories (Sanglier et a!., 1992; Sisson et aL,

1 992a).

The steps involved in Curie-point pyrolysis mass spectrometric analyses

have been considered in detail by Magee (1993, 1994). The procedure can be

divided into four stages: sample preparation, smearing a small sample (Ca.

10-1 00 pg dry weight) onto a metal carrier; pyrolysis, in which the carrier and

sample are heated rapidly under vacuum to a fixed temperature in the range of 358

to 1000 °C resulting in the thermal degradation of the sample to a mixture of volatile

compounds; mass spectrometry, in which the volatile components are separated by

molecular weight to charge ratios and quantified; and computation, in which the

spectra are compared using multivariate statistical methods. A schematic

representation of an automatic Curie-point pyrolysis mass spectrometer is shown in

Figure 4-1.
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MASS SPECTROMETER.
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1.2. Pyrolysis mass spectrometry

Pyrolysis was first applied to mass spectrometry by Zemany (1952) who

showed that complex biological materials degrade in a reproducible way given

carefully standardised pyrolysis conditions. Interest soon waned in the technique as

workers turned to a less expensive system, namely pyrolysis gas chromatography

(PyGC). This technique involves the controlled thermal degradation of organic

materials followed by analysis of pyrolysates using gas chromatography. The

resultant 'pyrogram' consists of a series of peaks which may be used for the

identification of the original specimen. The chemical nature of each peak may be

further determined by mass spectrometry (Simmonds, 1970) but, more usually, the

profile is taken as a 'fingerprint' characteristic of the test material.

The first application of PyGC was by Davison et a!. (1954) who obtained

characteristic patterns when they pyrolysed chemical polymers at 650 °C. The

driving force for the application of pyrolysis to microbiological problems came from

the United States space exploration programme when a miniaturised automated

pyrolysis system was designed to test for the presence of extraterrestrial life (Wilson

eta!., 1962).

It was not until the work of Reiner and his colleagues (Reiner, 1965; Reiner

& Ewing, 1968; Reiner et a!., 1973) that the potential value of PyGC in microbiology

was appreciated. The technique was subsequently applied to the classification and

identification of several microorganisms including aerobic, endospore-forming bacilli

(O'Donnell et a!., 1980), dermatophytes (Carmichael et a!., 1973), pseudomonads

(French et a!., 1980), staphylococci (Magee et a)., 1983) and streptococci (Stack et

a!., 1981; French eta!., 1989). It is also proved possible to distinguish between

serotypes of Escherichia coil (Reiner & Ewing, 1968), between different subgroups



C!-IAPTERIV	 271

of Vibrio cholerae (Haddadin et aL, 1973) and between streptococcal mutants which

differed only in polysaccharide capsular antigens (Huis In't Veid et a!., 1973).

Despite the attractive features of PyGC outlined above, the technique

proved to be of limited value in microbiology given problems with long-term

reproducibility, low throughput and inadequate data handling routines (Gutteridge,

1987). Improvements have been made to the technique, especially in the longevity

and performance of chromatographic columns (Eudy et aL, 1985) and in data

handling routines (Magee et a!., 1983), but PyMS proved to be superior to PyGC in

terms of speed, reproducibility and ease of automation.

The first dedicated PyMS system was designed and built by Meuzelaar and

Kistemaker (1973) at the FOM Institute in Amsterdam. Further technical

development led to the construction of the first fully automated instrument, the

Autopyms, which involved the use of high-speed ion counting and computerised

data processing technology (Meuzelaar et a!., 1976). This system served as a

model for the production of two commercial instruments, the Extranuclear 5000

(Extranuclear Laboratories, Pittsburgh, USA) and the Pyromass 8-80 (VG Gas

Analysis Ltd., Middlewich, Cheshire, UK). However, these commercial instruments

were expensive, costing upwards of £100,000 (Gutteridge, 1987). The Pyromass 8-

80 has been described in detail (Gutteridge eta!., 1984; Shute eta!., 1985).

At this stage of development PyMS was seen to offer the prospect of

processing large numbers of samples rapidly for microbiological purposes. These

eay systems were used to classify and identify several groups of clinically

significant bacteria, notably mycobacteria (Meuzelaar et a!., 1976; Wieten et aL,

1979, 1981, 1982, 1983). Other early taxonomic studies included those on Bacil!us

(Shute et a!., 1984), Escherichia (Haverkamp et a!., 1980), Legionel!a (Kajiooka &

Tang, 1984) and Neisseria (Borst et a!., 1978). The technique was also successfully
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used in fungal systematics (Weijman, 1977), in quality control of vaccines

(Haverkamp eta!., 1980; Windig eta!., 1980) and in the analysis of bacterial wall

polymers (Haverkamp eta!., 1980; Boon eta!., 1981).

These early investigations showed the potential of PyMS though a number of

problems prevented the widespread use of the technique as a routine tool in

microbiology (Gutteridge, 1987). Manual loading of samples coupled with a

prolonged processing time meant that the technique was labour-intensive with a low

sample throughput per day. Attempts to compare new spectra with those held in

data libraries were frustrated by inherent machine instability which led to poor

reproducibility over time. Additional problems included the expensive, cumbersome

hardware and lack of suitable computer software to fully analyse the complex

pyrolysis data.

The breakthrough came with the introduction of the Horizon PYMS-200X

(Horizon Instruments, Heathfield, West Sussex, England, UK), an instrument based

on the PyMS quadrupole mass spectrometric system of Prutec Ltd. (Aries et a!.,

1986). The superior performance of this machine over earlier models can be

attributed to an improved electron multiplier, which allowed faster analysis times (2

minutes per sample), enhanced reproducibility and fully integrated software

implemented on a personal computer (Gutteridge, 1987; Goodfellow, 1995c).

However, the development of a reliable automated inlet system which allowed high-

volume throughput was the major achievement of the PYMS-200X (Gutteridge,

1987).

The PYMS-200X instrument has been extensively used to characterise and

classify a variety of microorganisms. These include Actinomadura (Trujillo, 1995),

Aeromonas (Magee et a!., 1993), Bacteroides (Duerden et a!., 1989), Clostridium
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(Wilkinson et a!., 1995), Cotynebacterium (Hindmarch et a!., 1990), Fusobacterium

(Magee et aL, 1 989a), Mycobacterium (Hamid, 1993), Prop/on/bacterium (Goodacre

et a!., 1 994b), Rhizobium (Goodacre et aL, 1991), Streptococcus (Winstanley et a!.,

1992) and Streptomyces (Sanglier et a!., 1992). Most of these applications were

designed to evaluate the integrity of taxa circumscribed using conventional

taxonomic criteria. In general, good agreement has been found between the

pyroclassifications and corresponding conventional classifications. Strategies to

confirm the homogeneity of taxa highlighted in such comparative studies have been

discussed by Magee (1993). It has also been shown that PyMS and DNA-DNA

pairing procedures give similar profiles of relatedness (Goodacre et aL, 1991;

Sanglier et a!., 1 992).

To date, the most important application of Curie point pyrolysis mass

spectrometry has been in microbial epidemiology (Magee, 1993; Goodfellow,

1995c). Pyrolysis mass spectrometry is not a typing method perse as a permanent

type designation is not assigned to test strains but it has proved to be a quick and

effective method for inter-strain comparisons of bacteria that commonly cause

outbreaks of disease. This conclusion is based on studies of clinically significant

bacteria, recent examples include Bacteroides ureolyticus (Duerden et al., 1989),

Campylobacterjejuni (Orr eta!., 1995), Coiyneba cterium jeikeium (Hindmarch eta!.,

1990), Legionella pneumoniae (Sisson et a!., 1991 b), Listeria monocytogenes

(Freeman et a!., 1991 a; Low et a!., 1992), Pseudomonas aeruginosa (Sisson et aL,

1991c), Pseudomonas cepacia (Corkhill et aL, 1994), Salmonella enteritidis

(Freeman et a!., 1990), Streptococcus pneumoniae (Freeman et aL, 1991b),

Staphylococcus aureus (Gould et al., 1991), Staphylococcus pyogenes (Magee et

a!., 1989b, 1991; Freeman eta!., 1990) and Xanthomonas maltophilia (Orr eta!.,

1991).
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It is evident that PyMS can be used to discriminate between strains as

accurately as routine typing systems (Freeman et a!., 1991 a; Sisson et a!., 1991 c).

Indeed, in some cases it has been used to separate isolates beyond the resolution

of such systems (Freeman et a!., 1991b; Gould et a!., 1991). The results of PyMS

analyses have also been shown to correspond to those from molecular based

techniques, including restriction length fragment polymorphism (Sisson eta!., 1991c;

Low et a!., 1992) and random amplification of polymorphic DNA analyses (Kay et a!.,

1994). Similarly, PyMS studies on isolates from outbreaks of infection due to

untypable isolates have been shown to agree with epidemiological data that have

subsequently become available (Orr et a!., 1991; Cartmill et a!., 1992).

The discriminating capacity of PyMS has also been used to distinguish

between very closely related strains of bacteria, notably to detect small genotypic

changes in Escherichia co/i (Goodacre & Berkeley, 1990). It has also proved

possible to distinguish between representatives of staphylococcal species by PyMS

of extracted DNA (Mathers et a!., 1995). These results challenge previous

assumptions that PyMS is restricted to detecting phenotypic differences though the

basis for the differentiation of the DNA extracts has still to be determined.

Pyrolysis mass spectrometry has also been used to classify and identify

industrially significant actinomycetes (Saddler et a!., 1988; Sanglier et a!., 1992). In

this latter study, members of representative actinomycete genera were pyrolysed in

order to determine the effects of medium design, incubation time and sample

preparation on experimental data; it was concluded that reproducible results could

be obtained given rigorous standardisation of growth and pyrolysis conditions.

Sanglier and his colleagues also showed that PyMS data could be used to

objectively select strains for pharmacological screens, as unknown or putatively

novel actinomycetes appeared as outliers on ordination diagrams. They were also
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able to distinguish between actinomycetes at and below the species level. In

particular, representatives of three closely related Streptomyces species, namely

Strep tomyces albido f/a vus, Streptomyces anulatus and Streptomyces halstedii,

were distinguished. The separation of these numerically circumscribed

streptomycete species indicated that PyMS can provide a rapid way of establishing

the taxonomic integrity of established or putatively novel actinomycete species.

1.3. Reproducibility of pyrolysis mass spectrometric data

Short-term reproducibility. The 'destructive' nature of pyrolysis and the

undefinable multiple sources of masses led many workers to the view that the

technique could not be expected to give highly reproducible results. However, it has

been shown that pyrolysis has little effect on reproducibility provided temperature

rise and total heating times are strictly controlled and pyrolysates are rapidly

removed from the pyrolysis zone to prevent secondary reactions (Schulten &

Lattimer, 1984).

Windig eta!. (1979) showed that reproducible spectra were obtained using

pyrolysis temperatures between 510°C and 610°C; the total heating time of samples

was not found to be a crucial parameter provided that the pyrolysate was driven off

rapidly nor was the temperature rise time critical as long as it was fast enough to

avoid secondary reactions. In contrast, sample size was shown to influence the

short-term reproducibility of pyrolysis mass spectra. When samples were too large

secondary reactions occurred and when they were too small spectra were

susceptible to background noise that did not originated from the sample (Windig et

a!., 1979).

A number of investigators studied the role of the interface between the

pyrolyser and mass spectrometer in the short-term reproducibility of PyMS (Windig

et a!., 1979; Schulten & Lattimer, 1984). It was considered that the expansion
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chamber should allow efficient pyrolysate transfer between the pyrolyser and the

mass spectrometer so as to prevent loss of information and irreproducible catalytic

reactions. These requirements were met by gold-plating the inner surfaces of

expansion chambers and heating to reduce condensation. Windig et a!. (1979)

considered that the optimal temperature for expansion chambers was 15000 for this

temperature allowed a reduction in condensation and facilitated reproducible

electron impact fragmentation.

The short-term reproducibility of PyMS has been examined by several

investigators working with microorganisms. Eshuis et a!. (1977) showed that the

intensities of some masses in the replicate spectra of a Listeria strain differed by

over 10% when the automated system developed by Meuzelaar et a!. (1976) was

used. Shute et a!. (1984) found a mean dissimilarity of 4% between replicated

Bacillus samples over an eight week period using the Pyromass 8-80 system though

they also noted that some of the mass spectra showed far less reproducibility than

this mean value. However, such levels of variability were not considered to be an

obstacle in microbiological work, notably for the identification and typing of

microorganisms (Gutteridge, 1987).

Long-term reproducibility. Relatively few studies have been carried out to

determine the long-term reproducibility of PyMS. Wieten eta!. (1981) generated a

database for the identification of members of the 'Mycobacterium tuberculosis

complex' and were able to assign fresh isolates to the complex over a one year

period. However, not a lot of credence can be given to this study as only seven

masses were compared.

Shute et a!. (1988) examined the long-term reproducibility of the Pyromass

8-80 instrument over a fourteen month period using a set of aerobic, endospore-

forming bacilli and found that within each dataset the test strains were assigned to



CHAPTER IV	 277

the correct groups though the characteristic masses involved differed in the

corresponding studies. However, when two datasets derived from runs at the

begining and end of a fourteen month interval were combined and analysed by

using multivariate statistics not only were the mass spectra not directly comparable

but the two groups obtained corresponded to the time of the analysis. Shute and her

colleagues concluded that the overall spectral patterns had changed over time even

though the relationships found between samples pyrolysed at the same time

remained. The lack of reproducibility over time was attributed not to variations in

pyrolysis conditions but to 'mass spectrometer drift', that is, to changes in ion

transmissivity due to contamination and ageing of the ion source of the mass

spectrometer (Windig et aL, 1979; Meuzelaar et aL, 1982).

The view that long-term comparisons of pyrolysis mass spectra derived from

microorganisms are impossible has been widely accepted (Gutteridge, 1987;

Berkeley et a!., 1990). Consequently, the use of PyMS in microbial identification and

inter-strain comparisons is largely restricted to the use of a procedure known as

'operational fingerprinting' (Meuzelaar et aL, 1982) whereby unknown strains are

pyrolysed with reference strains in the same batch experiment. However,

operational fingerprinting should be seen as a temporary strategy not as an end in

itself.

Phenotypic and genotypic variation. Pyrolysis mass spectrometry has also been

used to detect phenotypic variation. Boon et a!. (1981) showed that PyMS could be

used to detect changes in cell wall components attributed to differences in the

composition of growth media. Shute et a!. (1984) found that sporulation made it

difficult to discriminate between members of some Bacillus species, namely Bacillus

amylollquefasciens, Bacillus subtilis and Bacillus pumilus. Discrimination between

representatives of selected Bacillus species was not affected by batch to batch
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variations in growth media though different media formulations caused marked

changes in pyrolysis mass spectra (Shute et a!., 1988). Voorhees et a!. (1988)

examined Bacillus subtilis, Escherichia co/i and Proteus vulgaris strains to determine

the effect of culture age on pyrolysis mass spectra and found that samples were

correctly discriminated despite differences in culture age.

Colonial variation shown by a single strain can also effect the discriminatory

ability of PyMS. Freeman et a!. (1994b) showed that phenotypic variations found

between three sets of pyrolysis mass spectra derived from a single strain of

Staphylococcus aureus were so different that they hampered inter-strain

discrimination or strain definition on multivariate statistical analysis. However,

variations based on the different subcultures did not affect species or subspecific

differentiation.

In practice, phenotypic variation between closely related strains can be

minimised by standardising media and growth conditions. It is not always possible to

meet these requirements, notably in ecological studies involving diverse organisms

which grow on the different media and require different growth conditions. Suitable

data handling methods need to be developed to overcome these limitations.

The studies outlined above have been designed to study the effects of

genotypic changes on PyMS data. Goodacre and Berkeley (1990) demonstrated

that Escherichia co/i strains which differed only in the presence or absence of a

single plasmid could be distinguished though it was not clear whether this

differentiation was due to genotypic or phenotypic variation. More work needs to be

carried out to determine the effect of genotypic variation on pyrolysis mass spectra.



CHAPTER IV
	

279

2. Artificial neural networks

2.1. Introduction

Artificial neural networks (ANNs), which are also referred to as neural

networks, neurocomputers, adaptive systems and parallel distributed processors,

are widely used to determine complex, non-linear relationships in multivariate data

(Simpson, 1990; Hertz eta!., 1991; Freeman & Skapura, 1991). The primary aim in

developing ANNs is to explore and reproduce human information processing tasks,

such as knowledge processing, motor-control, speech and vision (Simpson, 1990).

In addition, ANNs are used for data compression, near-optimal solution to

combinatorial optimisation problems, pattern recognition, system modelling and

function approximation (Pao, 1989; Simpson, 1990; Freeman & Skapura, 1991).

Artificial neural networks have a multiple-processor architecture which has

been described as 'parallel distributed processing', and which is highly

interconnected. Artificial neural networks, like the human brain, can learn and

memoilse. These brain-like features of ANNs allow this computing technique to

outperform conventional computation methods based on single-processors. A

general, albeit rigorous, definition of an ANN was given by Hecht-Nielsen (1988):

UA neural network is a parallel, distributed information processing structure consisting

of processing elements (which can process a local memory and carry out localized

in formation processing operations) interconnected together with unidirectional signal

channels called connections. Each processing element has a single output connection

which branches ("fan out") into as many collateral connections as desired (each

carrying the same signal - the processing elements output signal). The processing

element output signal can be of any mathematical type desired. All of the processing

that goes on within each processing element must be completely local; that is, it must

depend only upon the current values of the input signal arriving at the processing

element via impinging connections and upon values stored in the processing

element's local memory."



280
	

CHAPTER IV

Artificial neural networks can be divided into two types on the basis of the

learning mechanism, that is, into supervised and unsupervised models. These

models learn from examples but exhibit different concepts in learning. In supervised

learning the connections (weights) between neurons are adjusted according to the

outputs required by the user whereas in unsupervised learning ANNs are exposed

only to input stimuli and are allowed to organised by themselves. The supervised

learning model is considered here since all of the ANN5 developed in the present

study were trained by using a supervised learning algorithm, namely the

backpropagation algorithm (Rumelhart eta!., 1986).

2.2. History of artificial neural networks

The first neural network model, which was formulated by McCulloch and Pifls

(1943), featured digital neurons but did not have any ability to learn. Donald Hebb, a

psychologist, introduced the concept of 'Hebbian learning' whereby changes in

synaptic strengths (connections between neurons) were proportional to the

activation of the neurons (Hebb, 1949). This concept formed the basis for the

creation of neural networks since it described a rule for updating synaptic strengths

in two-layered networks thereby enabling the networks to learn.

The learning concept was incorporated into a two-layered network, the

'perceptron', by Rosenblatt (1957). He not only formulated a learning rule based on

weights adjusted in proportion to error between output neurons and target outputs,

but also proposed a three-layered perceptron into which he attempted to incorporate

a learning mechanism. However, Rosenblatt was unable to derive a sound way of

adjusting the weights between input and hidden layer neurons in the three layered

network but, even so, many problems were solved by using two-layered perceptrons

(Simpson, 1990).
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The lack of a mathematically rigorous procedure to allow learning in multi-

layered networks was a major stumbling block in the development and application of

neural networks. Minsky and Papert (1969) pointed out the limitations of

perceptrons but acknowledged the possibility that multi-layered networks could

overcome these limitations. However, they were unable to show that three-layered

networks could learn and concluded that multi-layered networks were not a viable

proposition.

Interest in multi-layered ANNs was rekindled by the invention of the

'backpropagation' algorithm which allows training of multi-layered networks.

Several investigators working in wide-ranging disciplines developed this algorithm.

The first gradient approach to training multi-layered ANN5 was introduced by Amari

(1967) who developed a system to perform nonlinear classification. However,

Amari's approach, while on the right lines, did not provide a complete description of

how multi-layered mapping could be developed. Werbos (1974) independently

discovered the backpropagation algorithm, which he called 'dynamic feedback',

when working on his doctoral thesis in statistics (Werbos, 1974). This algorithm was

rediscovered by Paker (1982), a student at Stanford University, who called his

algorithm 'learning logic'. Nevertheless, it was not until Rumelhart et a!. (1986)

introduced the backpropagation algorithm in their work on stimulating cognitive

processes that the use of ANNs was introduced to various industrial and scientific

fields (Simpson, 1990; Crick, 1989; Casey Klimasauskas, 1992).

2.3. Structure of artificial neural networks

A comparison can be made between the structures of biological neurons and

processing elements (Figure 4-2). Neurons are the fundamental cellular elements of

the nervous system and human brain. The average human brain has about 1011

interconnected neurons (Boddy et aI.,1 990). A single neuron can receive inputs
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FIGURE 4-2. STRUCTURAL COMPARISON OF THE BIOLOGICAL NEURON AND THE

PROCESSING ELEMENT (PE). SUMMATION OF THE WEIGHTED INPUTS OCCURS WITHIN THE

PROCESSING ELEMENT, s = EWUJ) Xi . A TRANSFER FUNCTION IS APPLIED TO THE

SUMMATION, y 1 = f(s,). MODIFIED AFTER BOODY et a!. (1990).
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from 5000 to 10000 adjacent neurons through dendrites and can send output

signals to adjacent neurons via axons. The signals are in the form of short pulses of

electrical activity that occur at about 1000 Hz. The junctions between axons and

dendrites are called synapses; signals are transferred across synapses as

chemicals, that is, by neurotransmitters. The strength of the signal transferred

depends on the amount of these chemicals. This synaptic function provides the

basic memory mechanism of the brain but also provides the basic concept for

ANNs.

The building blocks of ANNs, 'processing elements (PE)', are analogous to

neurons. A FE receives many input signals from other PEs. Each element has two

mathematical functions, that is, the sum and transfer functions. The signals

accepted from other PEs are summed and passed on to other PEs via transfer

functions. The role of the transfer function is to transform the summed signal to

values between zero and one. A variety of transfer functions are available, but the

most popular ones are the sigmoid and step functions (Figure 4-3). Each connection

between two adjacent PEs is given a weight that is equivalent to the synapse of the

neuron. The magnitude of the weight is analogous to the synaptic strength or to the

amount of neurotransmitters. The typical topology of an ANN is shown in Figure 4-4.

Network learning can be improved by adding bias neurons (PEs) which receive one

as an input value.
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Sigmoid function f(x) = (1+e_x)
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FIGURE 4-3. THE SIGMOID AND STEP TRANSFER FUNCTIONS.
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FIGURE 4-4. TYPICAL STRUCTURE OF A MULTI-LAYERED ARTIFICIAL NEURAL NETWORK

WHICH CONSISTS OF THREE LAYERS, NAMELY INPUT, HIDDEN AND OUTPUT LAYERS.
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2.4. Application of artificial neural networks to biology and chemistry

Artificial neural networks have been widely used in disciplines that require

pattern recognition (Table 4-1). Spectral patterns generated from the application of

techniques such as infrared spectroscopy, mass spectrometry, laser-induced

fluorescent spectrometry, nuclear magnetic resonance spectroscopy, pyrolysis mass

spectrometry, Raman spectroscopy and ultraviolet spectroscopy have been

identified by using ANNs. Artificial neural networks are especially useful for

distinguishing between minute differences within complex patterns. Sellers et a!.

(1990) were able to differentiate between the isomers of partially methylated alditol

aceas y s)ng mass specrDme'1Ty; this process is difficult to achieve using

conventional pattern recognition methods.

Goodacre and his colleagues used ANNs to derive qualitative and

quantitative information from pyrolysis mass spectra of chemical and biological

mixtures using an Horizon Instruments PyMS-200X mass spectrometer (Goodacre

et a!., 1992, 1 993a, 1 993b, 1 994c; Goodacre & Kell, 1993). The first application of

ANNs to PyMS data was designed to differentiate between adulterated and non-

adulterated virgin olive oil samples (Goodacre et a!., 1992; 1993b). The system

basically gave crude quantitative results.

Artificial neural networks were subsequently used to quantify the content of

casamino acid in a mixture with glycogen (Goodacre, 1993a) and to determine the

amount of indole produced by an Escherichia co/i strain (Goodacre & Kell, 1993).

The same strategy was used to quantify the amount of ampicillin in fermentation

broths of Escherichia coil and Staphylococcus aureus strains (000dacre et a!.,

1994c) and to determine the amount of a single component in artificial mixtures

which include glycogen and lysozyme, glycogen and nucleic acid, and a mixture
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TABLE 4-1. SOME APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN BIOLOGY AND

CHEMISTRY.

Applications	 References

Chemical process engineering and fermentation

Clinical diagnosis

Ecological modelling

Infrared spectroscopy

Laser induced fluoroscent spectrometry

Mass spectrometry

Nuclear magnetic resonance spectroscopy

Nucleic acid analysis

Protein sequence analysis

Pyrolysis mass spectrometry

Raman spectroscopy

Ultraviolet spectroscopy

Cleran etaL (1991)
Willis eta!. (1991)
Collins (1993)
Glassey eta!. (1994a,b)
Morris et aL (1994)

Jervis et aL (1994)
Siebler etaL (1994)
Wilding etaL (1994)

Colasanti (1991)
Fu & Poch (1995)

Rob & Munk (1990)
Fessenden & Gyorgyi (1991)
Munk etaL (1991)
Tanabe etaL (1992)
Klawun & Wilkins (1995)

Andrews & Lieberman (1994)

Sellers et aL (1990)
Werther etaL (1994)

Meyer et aL (1991)
Kjaer & Poulsen (1991)
Anker & Jurs (1992)
Radomski et aL (1994)

Delmeler & Zhou (1991)
Snyder & Stormo (1993)
Taylor et a!. (1994)

Qian & Sejnowski (1988)
Vieth & Kolinski (1991)
Cohen et aL (1993)
Wu (1993)
Schneider & Wrede (1994)

Goodacre et aL (1992)
Goodacre etaL (1993a,b)
Goodacre et aL (1 994a,c)

Lewis et aL (1994)
Schuize et aL (1994)

Mittermayr et aL (1994)
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containing biomass from Bacillus subtills, Escherichia co/i and Staphylococcus

aureus strains (Goodacre etal., 1994a).

Artificial neural networks have also been used to recognise sequence

patterns within macromolecules such as DNA, RNA and proteins (Qian & Sejnowski,

1988; Delmeler & Zhou, 1991; Vieth & Kolinski, 1991; Snyder & Stormo, 1993).

Complex biological interactions that occur in fermentors and bioreactors can be

monitored and the output (normally biomass) predicted by using ANNs (Willis et a!.,

1991 ;Glassey et al., 1 994a,b). The advantages and prospects of the use of ANN5 in

biotechnological fields has been reviewed by Montague and Morris (1994).

2.5. Artificial neural networks and microbial systematics

Microbial systematics is markedly data dependent. It is, therefore, not

surprising that many of the more recent taxonomic advances have resulted from the

ways in which data are collected and analysed. In bacterial systematics there is a

continuing trend towards automation with an ever increasing reliance placed on

analytical instrumentation, notably on the use of gas chromatography, high-

performance liquid chromatography and mass spectrometry. A common feature of

such instruments is that they generate data rapidly, often involving multiple

measurements on individual samples. Artificial neural networks are recognised as

an appropriate way of handling such data (Simpson, 1990).

Artificial neural networks have been successfully used for the identification of

algae, bacteria and fungi (Table 4-2). The distinctive patterns produced by the

application of various chemical, molecular and physical fingerprinting methods to

microorganisms can be detected by using ANNs following suitable a priori

digitisation and normalisation steps. Artificial neural networks are especially useful

when dealing with fairly 'noisy' or 'incomplete' data.
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TABLE 4-2. APPLICATION OF ARTIFICIAL NEURAL NETWORKS IN MICROBIAL SYSTEMATICS.

Source of fingerprints

Microscopic image analysis

Flow cytometry

Phenotypic or phenetic data

Target organisms

Phytoplankton

Algae

Basidiomycetes

Phytoplankton

Gram-negative bacteria

Haemophllus

Enterobacteriaceae and

Vibrionaceae

References

Culverhouse etaL (1994)

Balfoort et a!. (1992)

Smits etaL (1992)

Morris et a!. (1992)

Wilkins et a!. (1994)

Rataj & Schindler (1991)

Kennedy & Thakur (1993)

Schindler et aL (1994)

Pyrolysis mass spectrometry	 Mycobacterium tuberculosis 	 Freeman et a!. (1 994a)

Propionibacterium acnes	 Goodacre et aL (1 994b)

Whole-organism protein	 Aeromonas and	 Millership (1993)

electrophoresis	 Mycobacterium
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Schindler et a!. (1994) used ANNs for the identification of Gram-negative

bacteria belonging to the families Enterobacteriaceae and Vibrionaceae. In this

study, which was an extended version of previous work (Rataj & Schindler, 1991),

over 95% of the test strains were correctly identified to species and nearly 98% to

genera. Polyacrylamide gel electrophoresis of cellular proteins, a well established

technique for classification and identification of bacteria (Pot et a!., 1 994), has also

been coupled with ANNs. Millership (1993) showed that members of species

belonging to the genera Aeromonas and Mycobacterium can be distinguished by

ANN analysis of Fourier-transformed electrophoretic data. The application of ANNs

to flow cytometric data is interesting as this approach opens up the prospect of

achieving a large throughput system of organisms for identification. This approach

should be suitable for ecological studies that involve many diverse microorganisms

(Balfoort eta!., 1992; Morris eta!., 1992; Smits etal., 1992; Wilkins eta!., 1994).

Artificial neural networks have also been used to identify pyrolysis mass

spectra derived from clinically significant bacteria. Freeman et a!. (1 994a) were able

to differentiate between Mycobacterium bovis and Mycobacterium tube rcu!osis

isolates by training an ANN with mean spectra derived from triplicated samples. A

combination of PyMS and ANNs was used to distinguish between PropionIbacterium

acnes strains isolated from dogs (Goodacre et a!., 1994b). These workers

successfully identified isolates to species both by using an ANN constructed with the

backpropagation algorithm, that is, by a supervised learning process, and by using a

conventional statistical procedure.

The primary aims of the present study were to generate ANN5 for the

analysis of pyrolysis mass spectral data to see whether this approach could be used

to overcome problems that currently impede multivariate statistical analyses of

PyMS data and to evaluate whether the system could be applied to long-term
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identification of streptomycetes. The test strains were representatives of three

putatively novel Streptomyces species, provisionally labelled Streptomyces species

A, B and C (Atalan, 1993; Manfio, 1995). Members of these taxa have repeatedly

been isolated, using a standard dilution pTate procedure (Goodfellow eta!., 1990),

from soil taken from the Palace Leas site at Cockle Park Experimental Farm,

Northumberland, England, UK (Grid reference NZ200913). Streptomyces group A

and B strains were isolated from raffinose-histidine agar plates supplemented with

cyclohexamide (50 pg/mI) and nystatin (50 pg/mI) and incubated at 25 °C for 14

days (Vickers et a!., 1984), and the group C strains from similarly treated starch-

casein plates supplemented with the two antifungal antibiotics and novobiocin

(25 pg/mI). Representatives of these taxa form homogeneous taxa on the basis of

numerical phenetic, whole-organism protein electrophoretic, fatty acid, DNA pairing

and 1 6S rDNA sequencing data (Atalan, 1993; Manfio, 1995).
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B. Materials and Methods

1. Test strains

The test strains consisted of sixteen well studied representatives of

Streptomyces groups A, B and C and thirteen fresh isolates putatively identified to

these taxa solely on the basis of morphological criteria (Table 4-3). The test strains

were maintained as glycerol suspensions (20 %, v/v) at -20 00 (Wellington &

Williams, 1978). In addition, information from earlier PyMS analyses on

representative strains belonging to the genera Actinomadura, Mycobacterium,

Nocardia, Nocardiopsis, Saccharomonospora and Streptosporangium was used

(Appendix J).

2. Datasets

2,1. Streptomyces (target) strains

The twenty-nine streptomycete strains were analysed on six different

occasions over a period of twenty months in order to investigate the long-term

reproducibility of the PyMS system. The results from each of the batch experiments

were assigned to different datasets (Table 4-3). The first experiment was carried out

in duplicate at different times of the day and the datasets designed 1 A and 1 B.

2.2. Non-Streptoniyces (non-target) strains

The pyrolysis mass spectra of members of non-target taxa were obtained

from previous studies carried out in the Newcastle laboratory (Kim, 1993; Hamid,

1994; Trujillo, 1994; Kim, 1995) and the database maintained by using the FoxPro

database language (version 2.0; Fox Software Inc., 134 W. South Bounary,

Perrysburg, Ohio 43551, USA).
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TABLE 4-3. STREPTOMYCES STRAINS AND DATASETS.

Dataset

Strain	 IA,1B	 2	 3	 4	 5	 6

No.ofdays	 0	 241	 510	 518	 619	 622

• Reference strains

Streptomyces group A
A2
A34
A35
A40
A41	 -1

A42	 -1	 .1

Streptomyces group B
B41
B42	 'I

B43	 -.1

B76	 -1

B77	 -.1

Streptomyces group C
C51	 'I

C54
C55
056	 'I	 -'I

058

Putatively identified isolates

Streptomyces group A
A2102
A2108
A46R47
A46R51
A46R62	 '.1

A5843
A62BR2
A81319

Streptomyces group B
B7316
B7324	 'I

B7342

Streptomyces group C
C765	 '.1

C768

Represents the number of days from the analysis of the first dataset.
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3. Curie-point pyrolysis mass spectrometry

3.1. Growth conditions and sample preparation

Glycerol stock cultures of the streptomycete and streptosporangia strains

were used to inoculate sterile polyvinyl membrane filters (0.45mm, HV type; Millipore

Ltd., Watford, England, UK) placed over a non-sporulating medium designed to

inhibit sporulation of streptomycetes (Sanglier et a!., 1992; Appendix A). The

inoculated plates were incubated for 3 days at 25 °C. The same procedure was

used for the Actinomadura and Nocardiopsis strains grown on modified Bennett's

agar (Jones, 1949; Appendix A) for 3 days at 30°C, for the Nocardia and

Mycobacterium strains grown on glucose-yeast extract agar (GYEA; Gordon &

Mihm, 1962; Appendix A) for 3 days at 30 °C, and for the Saccharomonospora

strains on GYEA for 3 days at 45 °C. After incubation, biomass was taken from the

whole surface area of the filter and applied, using sterile disposable loops, onto

clean ferro-nickel alloy foils that had been inserted into pyrolysis tubes (Horizon

Instruments Ltd.). Triplicate samples were prepared for each strain. The assembled

tubes plus foils were dried in a hot air oven at 80 °C for 5 minutes to ensure that the

biomass adhered to the foils.

3.2. Pyrolysis mass spectrometry

Curie point pyrolysis mass spectrometry was carried out at 530 °C for 2.4

seconds using a Horizon Instrument PyMS-200X mass spectrometer (Horizon

Instruments). The spectrometer was left to stabilise for at least an hour before the

analyses. The inlet heater was set at 11 0 °C and the heated tube loader at 120 °C.

Curie point pyrolysis was carried out under vacuum with a temperature rise time of

0.6 of a second (Windig et a!., 1979). The pyrolysate was lonised by collision with a

cross-beam of low energy (20 eV) electrons and the ions separated in a quadru pole
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mass spectrometer that scanned pyrolysates at 0.35 second intervals. Integrated

ion counts were recorded for each sample at unit mass intervals from 51 to 200

using an 1MB-PC compatible computer and software provided by the manufacturer.

Masses between 11 and 50 were not included in the dataset given their poor

reproducibility (Berkeley et a!., 1990); these mass ions tend to be derived from low

molecular weight compounds such as methane (m/z 15, 16), ammonia

(m/z 16, 17), water (m/z 17, 18), methanol (m/z- 31, 32) and hydrogen suiphide

(m/z 34).

4. Statistical analyses

The PYMENU program (Horizon Instruments) and GENSTAT statistical

package (Nelder, 1979) were used to carry out the statistical analyses as described

by Gutteridge eta!. (1985) and Goodfellow (1995c). The major steps involved are

outlined in Figure 4-5.

The first stage in the analysis of data was normalisation which is also known

as pattern scaling. Each mass intensity is expressed as a percentage of the total ion

intensity to compensate for variations caused by factors unrelated to the analytical

problem such as sample size and instrument sensitivity. The norrnalised data were

subject to the 'characteristicity' test (Eshuis eta!., 1977), a procedure which allows

the selection of masses which show good reproducibility within a group of sample

replicates (in this case the triplicate samples), and good specificity compared with

other groups (that is, other strains). The characteristicity values were calculated

using the following equations:
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Raw Data

4
Pre-Processing

4
Normalisation

4
Mass Selection

4
Data Reduction

4

Choice of mass range

Characteristicity

Principal component analysis

Discrimination	 Canonical variate analysis

Classification	 Identification

Ordination diagrams
	

Operational fingerprinting

Dendrog rams

FIGURE 4-5. MAJOR STEPS INVOLVED IN MULTIVARIATE STATISTICAL ANALYSIS OF

PYROLYSIS MASS SPECTRA.
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Inner variance or reproducibility (Kruscal, 1 964a)

fl

R,. = [1 / flT/,J)]
j1

where n is the number of strains (groups); R, is the reproducibility of peak I; and V

is the variance of peak I in strain j.

• Outer variance or specificity (Kruscal, 1 964b)

Si = 1/nE(M(j.J)_M)2

where n is the number of strains (groups); S is the specificity of peak I; M(1) is the

mean of peak i in strain and M, is the mean of M(,D for all strains.

• Characteristicity (C)

ci = x S1

One hundred masses with the highest characteristicity values were selected and

processed for all of the analyses.

The normalised data were analysed by using principal component analysis

(PCA), a well known means of data reduction, to reduce the number of variables

before discriminant analysis. Principal components accounting for over 0.1 % of the

total variance were used as input data for the canonical variate analyses (CVA;

MacFie et aL, 1978) in which successive axes are derived that are independent and

seek to maximise the ratio of variation between a priori groups to that within these

groups assuming that the structure of variation within the groups is the same. The

results from the combined multivariate statistical procedure (PC-OVA) were

presented as two or three dimensional ordination diagrams projecting the first two or

three canonical variates (CVs). The data from the PC-OVA analyses were also
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presented as Mahalanobis distances (Mahalanobis, 1936) using GENSTAT

software. The resultant Mahalanobis distance matrices were converted to similarity

matrices using Gower's coefficient SG (Cower, 1971) and used to generate

dendrograms by applying the UPGMA algorithm (Sneath & Sokal, 1973).

5. Artificial neural network analysis

5.1. Computer programs

The raw mass spectral data were transformed into a text-format file using the

PYMENU program (Horizon Instruments). The text files containing the integrated ion

counts were then transferred into a database program, PYMSFQX, written in the

FoxPro language (version 2.0; Fox Software Inc.). Creation of training and test data

files, and training of the ANNs, were achieved by using the ANN program written in

the C++ language and complied by using the Borland C++ package (version 3.0;

Borland International Ltd., 100 Borland Way, Scotts Valley, CA 95067-3249, USA).

IBM-PC compatible computers were used to train the ANNs.

5.2. Pre-processing

The raw data were normalised before training in order to ensure that all input

variables were below one. The norrnalisation methods shown below were compared

for training efficiency:

• Normalisation	 i	 / VSUM

• Scaling	 iJVj/VM

where is the input value of peak v)s the raw ion count of peak VSUM is the sum of

ion counts of the mass spectra; and VM is the biggest peak of the spectrum.
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5.3. Training of artificial neural networks

All of the ANNs were trained using the epoch-based backpropagation

algorithm (Rumeihart et a!., 1986) with a constant learning rate of 0.1 and a

momentum of 0.9 as outlined in Figure 4-6. The efficacy of training was expressed

as the root mean squared (RMS) error between the output (o) and target (t) vectors:

RIvIS error = aj[(o _t)2]

where n is the number of training data; o the output vector of the mass spectra

(data)]; and tthe target vector for spectra].

The initial values of the weight matrix in the ANNs were set randomly

between -0.5 and +0.5. The initial RMS errors were always around 0.5 given this

random assignment. When an RMS error of 0.005 was reached the ANNs were

considered to be trained. The time taken to train ANNs is called an 'epoch', that is,

the period for all of the input data to propagate the ANN. Root mean squared errors

during training were recorded at intervals of 10 epochs and then used to construct a

'training curve'. The weight matrix was also saved with a certain interval (e.g., 100

epochs) to calculate the RMS errors from the test data. The number of hidden layers

and hidden neurons were set as 1 and 5, respectively, throughout the study.

5.4. Identification of mass spectra

Simple artificial neural network. The ANN topology consisted of 150 input, 5

hidden and 3 output neurons (150-5-3). The target vectors for the Streptomyces

groups were set as (1,0,0) for the group A strains, (0,1,0) for the group B strains and

(0,0,1) for the group C strains. The threshold value of 0.8 was used for strain

identification. Strains were considered to be identified to one of the three

streptomycete groups when only one of the three output neurons showed activity
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Step 1	 Set values of weights with small random values.

Step 2	 Set 6 (learning rate) and 1 (momentum term).

Step 3	 Present a single set of inputs, and propagate data forward to obtain the predicted

output (o).

h=f(W1 i+biasl) o=f(W2h+bias2)

Step 4	 Calculate output layer error vector.

d=o(1 -o)(o-t)

Step 5	 Calculate hidden layer error vector.

e=h(1 -h)W2d

Step 6	 Adjust weights and bias between hidden and output layers.

LW2t=öhd+PW2t..i, bias2=Sd

W2=W2+W2

Step 7	 Adjust weights and bias between input and hidden layers.

tW1 t=6i e+pW1 t..i, biasl=6e

W1W1+iW1

Step 8	 Repeat steps 3 to 7 until the error between output and target vectors is within the

desired tolerance.

• The weight adjustments can be made after the entire set of input vectors has been

propagated (Epoch-based backpropagation; Leonard & Kramer, 1990).

FIGURE 4-6. THE BACKPROPAGATION ALGORITHM (RUMELHART et a!., 1986). SYMBOLS:

I, INPUT LAYER; h, HIDDEN LAYER; 0, OUTPUT LAYER; t, TARGET VECTOR; d, OUTPUT; e,

HIDDEN LAYER ERROR VECTORS; bias 1 AND bias2, BIAS VECTORS; AND Wi AND W2,

WEIGHT MATRICES.
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over the threshold value. The topology of the simple ANN is illustrated in Figure 4-7.

Artificial neural network with an additional neuron (complex ANN). A network

topology was developed to try and overcome the problem of strain misidentification,

that is, assignment of non-streptomycete marker cultures to Streptomyces groups A,

B and C. The complex ANN included a fourth neuron designed to accommodate

members of the non-target taxa. The target vectors were (1, 0, 0, 1) for

streptomycete group A strains, (0,1,0,1) for streptomycete group B strains, (0,0,1,1)

for streptomycete group C strains and (0,0,0,0) for members of the non-target taxa.

The network topology is given in Figure 4-7 and the identification scheme outlined in

Figure 4-8. The threshold of the system was set at 0.8 for all of the output neurons.

The identification scheme was implemented in the ANN program which allowed

automated identification.

5.5. Generation of artificial neural networks

Six ANNs were constructed and evaluated (Table 4-4).
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1	 2	 149	 150

Target vectors

Group A

Group B

Group C

Unknown

Target neurons

	

(1	 0

	

(0	 1

	

(0	 0

	

(0	 0

(A) SIMPLE ANN

I i	 12	 1149	 150

Target vectors

GroupA	 ( 1
GroupB	 ( 0
GroupC	 ( 0
Unknown	 ( 0

Target neurons

0
	

0

1
	

0

0
	

1

0
	

0

Additional neuron

1)

1)

1)

0)

(B) ANN WITH AN ADDITIONAL NEURON (COMPLEX ANN)

FIGURE 4-7. TEST TOPOLOGIES OF THE NEURAL NETWORKS.
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<Threshold

Additional neuron activity 	 Unknown

> Threshold
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A, B AND C STRAINS USING AN ARTIFICIAL NEURAL NETWORK WITH AN ADDITIONAL

NEURON. THE ORGANISMS WERE CONSIDERED TO BE UNIDENTIFIED WHEN MORE THAN
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VALUE OF 0.8.
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150-5-4

150-5-4
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TABLE 4-4. ARTIFICIAL NEURAL NETWORKS.

Networks	Training dataset	 Type of artificial neural	 Topologyb

(No. of spectra)	 network

NET-C	 iA (48), 2 (42), 3 (45)	 Complex	 150-5-4

& NT (33)

Abbreviation: NT, non-target database.

'All of the networks were trained using the backpropagation algorithm (Rumelhart et a!.,

1986).

,Topology 150-5-3 represents 150 input neurons, 5 hidden neurons and 3 output neurons.
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C. Results and Discussion

1. Pyrolysis mass spectra

Typical pyrolysis mass spectra of representatives of the three Streptomyces

groups are shown in Figure 4-9.

2. Effect of scaling on learning

Three ANNs were trained with normalised and scaled spectra from

dataset 1A. The six resultant training curves are shown in Figure 4-10. The ANNs

trained with the normalised data converged at 7760, 7540 and 8470 epochs given a

RMS error of 0.005, and the ANNs with the scaled data at 1600, 790 and 1090

epochs, respectively. It is clear from Figure 4-10 that the scaling procedure

facilitates training hence all spectral data for the subsequent ANN analyses were

scaled prior to training. The advantage of scaling individual mass spectra was also

observed by Goodacre et a!. (1 994a).

3. Comparison of datasets IA and lB in multivariate statistical and
artificial neural network analyses

Datasets 1A and 1 B (Table 4-3) were the subject of separate PC-CVA

analyses (Figure 4-11). The Streptomyces strains from dataset 1A were assigned to

three groups which corresponded to Streptomyces groups A, B and C. A similar

result was obtained in the analysis of dataset 1 B though in this case Streptomyces

strain A35 was recovered as a single membered cluster. It is evident that a

substantial amount of noise is present in the mass spectra of Streptomyces strain

A35 though the cause of this is not clear. It can be concluded that Streptomyces

strain A35 was not identified when the 'operational fingerprinting' procedure was

applied to dataset 1 B.
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m/z
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m/z

FIGURE 4-9. PYROLYSIS MASS SPECTRA OF REPRESENTATIVES OF STREPTOMYCES

GROUPS A, B AND C.
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FIGURE 4-10. TRAINING CURVES OF SIX NEURAL NETWORKS. THREE WERE TRAINED WITH

IRE NORMALISED DATA AND THE OTHER THREE WITH THE SCALED TRAINING DATA IN EACH

CASE USING THE FORTY-EIGHT PYROLYSIS MASS SPECTRA FROM DATASET 1A. RMS,

ROOT MEAN SQUARED.
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STREP TOMYCES STRAINS BASED ON: (a) DATASET 1 A AND (b) DATASET 1 B. DATA WERE

ANALYSED USING GENSTAT SOFTWARE WITH CLUSTERING ACHIEVED BY APPLYING THE

UNWEIGHTED-PAIR GROUP METHOD WITH ARITHMETIC AVERAGES ALGORITHM.
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An ANN (NET-lAS; Table 4-4) was constructed using twenty-seven of the

pyrolysis mass spectra from dataset 1A, namely information on Streptomyces

strains A2, A34, A42, B42, B43, B76, C51, C55 and C56 (Table 4-3). The network

was used to identify the remaining mass spectra held in dataset 1A and all of the

mass spectra from dataset 1 B; the results of the strain identifications are

summarised in Table 4-5. The twenty-one mass spectra from dataset 1A and the

forty-eight mass spectra from dataset 1 B were identified correctly, including those

deved from Streptomyces strains A35, A40, A41, B41, B77, C54 and C58 which

were not been used to train the network.

The correctness and overall performance of the strain identifications were

assessed by using the mean RMS error of all of the tested mass spectra. The mean

RMS error of NET-lAS with respect to the streptomycete strains was

0.0081±0.0094. The highest error was with the spectra of Streptomyces strain B42

(0.0404) and the lowest error with those of Streptomyces strain B43 (0.0013). It is

very encouraging that Streptomyces strain A35, which was not identified using the

'operational fingerprinting' procedure, was accurately identified in the ANN

analysis. It can also be said that the ANN ignored the noise in the mass spectra of

Streptomyces strain A35 in dataset 1 B and hence was able to detect the specific

pattern exhibited by members of streptomycete group A. It can be concluded from

these results that the analysis of the pyrolysis mass spectral data using the ANN

provides a relatively robust way of identifying the streptomycete isolates.



A2
	

lB

A34
	

lB

A35
	

1A

A35
	

lB

A40
	

1A

A40
	

lB

A4 1
	

1A

A4 1
	

lB

A42
	

lB

B4 1
	

1A

841
	

lB

B42
	

lB

B43
	

lB

B76
	

lB

B77
	

1A

B77
	

lB

A

A

A

A

A

A

A

A

A

312
	

CHAPTER IV

TABLE 4-5. IDENTIFICATION RESULTS OBTAINED FOR TEST SET 1 USING NET-lAS BASED

ON TRIPLICATE PYROLYSIS MASS SPECTRA.

Activity of output neuron	 Identification:

Strain	 Dataset	 1	 2	 3	 Streptomyces
group

0.998±0.001

0.998±0.000

0.998±0.000

0.999±0.000

0.999±0.000

0.997±0.001

0.998±0.001

0.994±0.005

0.999±0.000

0.001±0.000

0.001±0.000

0.001±0.001

0.002±0.000

0.008±0.005

0.001±0.000

0.044±0.025

0.003±0.000

0.003±0.000

0.002±0.000

0.002±0.000

0.004±0.000

0.003±0.000

0.003±0.000

0.003±0.001

0.004±0.001

0.990±0.006

0.991±0.002

0.977±0.015

0.998±0.001

0.997±0.001

0.970±0.005

0.992±0.004

0.003±0.001

0.003±0.000

0.006±0.002

0.003±0.001

0.001±0.000

0.003±0.001

0.003±0.001

0.006±0.003

0.002±0.000

0.014±0.010

0.010±0.003

0.039±0.027

0.001±0.001

0.001±0.000

0.035±0.005

0.000±0.000

B

B

B

B

B

B

B

C51	 lB	 0.002±0.001	 0.008±0.001	 0.995±0.001	 C

C54	 1A	 0.007±0.003 0.005±0.000 0.990±0.003 	 C

C54	 lB	 0.003±0.000 0.009±0.001 0.991±0.001 	 C

C55	 lB	 0.016±0.012 0.005±0.001 	 0.983±0.009	 C

C56	 lB	 0.002±0.000 0.012±0.003 0.993±0.001 	 C

C58	 1A	 0.003±0.001 0.007±0.002 0.994±0.001	 C

C58	 lB	 0.001±0.000 0.010±0.001 	 0.996±0.001	 C

, Activity values are shown as the mean and standard deviations of triplicate spectra.
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4. Comparison of simple and complex artificial neural networks

Network NET-i AS (Table 4-4) consisted of only three output neurons and

was only trained using data from streptomycete (target) strains. The network was

also used to examine 414 pyrolysis mass spectra derived from the non-target

actinomycetes in order to see whether the system could recognise new patterns.

The three training curves of network NET-lAS based on the training data, the

additional streptomycete test data and on the non-streptomycete test data, as well

as on the strain identification results, at the corresponding epochs are shown in

Figure 4-12. It is clear from this figure that the level of identification of the target

strains, presented as the RMS error, improves along the training curve. However,

the mean RMS error for the non-target strains was constant around 0.5 and the

identification rates for non-target strains, that is, the per cent of non-target test

strains that were recognised as unknown decreased from 100% to 7% based on the

414 pyrolysis mass spectra from the database containing information on the

non-streptomycete strains. The results of the strain identification are summarised in

Table 4-6.

It is evident from the results that network NET-i AS has the ability to identify

members of the target streptomycete groups but is unable to recognise non-target

strains. The network tried to assign all input pyrolysis mass spectral data, including

those derive from non-target strains, to one of the three target taxa. These results

are not unexpected as it is well known that the supervised learning algorithm,

notably the backpropagation algorithm, generates neural networks which behave

poody when challenged by unknown patterns outside the range of the training data

(Freeman & Skapura, 1991).

An ANN topology was developed to facilitate the rejection of non-target

strains. The improved ANN contained a fourth neuron designed to help distinguish
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FIGURE 4-12. TRAINING CURVES OF NETWORK NET-lAS. THE WEIGHT MATRIX WAS

SAVED AT 0, 100, 200, 500, 1000 AND 1500 EPOCHS AND THE CORRESPONDING RMS

ERRORS CALCULATED FROM TEST DATA SETS CONSISTING OF TARGET (STREPTOMYCES

GROUPS A, B AND C) AND NON-TARGET DATA, RESPECTIVELY. THE PER CENT OF

UNIDENTIFIED PYROLYSIS MASS SPECTRA (AS CORRECT ANSWER) IN THE NON-TARGET

DATA (414 SPECTRA) ARE INDICATED AT THE POINTS OF CORRESPONDING RMS ERROR.
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target streptomycete groups from members of non-target taxa. This complex ANN,

named NET-1AA, was constructed using training data which consisted of the

twenty-seven mass spectra used to train NET-lAS and additional pyrolysis mass

spectra from Actinomadura strains A9, Al 6 and A32, Nocardia strains N36, N31 7,

N318, N898 and N1116, and Nocardiopsis strains A14 and Al20. The results

obtained using the NET-1AA network are summarised in Table 4-6; the training

curves obtained for this network are presented in Figure 4-13. It is evident from the

training curves that the ability of NET-1AA to recognise non-target patterns was

gained in the early stages of training (before 500 epochs), that is, at around a AMS

error of 0.11 for the non-target pyrolysis mass spectra; this level of RMS error was

constant until the training of the network ceased at 3070 epochs.

It is very encouraging that the complex ANN, namely NET-1AA, was

successfully used to identify the target strains following the identification scheme

outlined in Figure 4-8. The network also recognised differences between the target

mass spectral patterns and those held in the non-target database, the latter

included data new to the network on representatives of the genera Mycobacterium,

Saccharomonospora and Streptosporangium. Complex ANNs, such as the one

generated in this investigation, should prove to be very useful for detecting novel

organisms and in circumstances where mis-identification needs to be avoided,

particularly in identification of clinically significant microorganisms (Freeman et aL,

1 994a).

5. Statistical comparison of pyrolysis mass spectral data from
datasets IA, 2 and 3

The pyrolysis mass spectral results from the first three datasets, namely

datasets 1A, 2 and 3, were analysed separately using the multivariate statistical

procedure. The three Streptomyces groups were recovered consistently without

exception (data not shown). The results from the three datasets were then
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combined and analysed to statistically evaluate the long-term reproducibility of the

system (Figure 4-14). It is evident that the resultant groups correspond not to the

three taxonomic groups but to the times when the organisms were pyrolysed. It is

also clear from the dendrogram that the variation found within the different datasets

was more significant than that found between members of the three test taxa. It can

be concluded from this study, and from the earlier investigation of Shute et aL

(1988), that pyrolysis mass spectra derived from different batch analyses cannot be

compared directly using conventional statistical analyses. It has already been

pointed out that Shute et a!. (1988) attributed this problem to instrumental instability.

It can also be seen from Figure 4-14 that the pyrolysis mass spectra held in

dataset 3 were no closer to the corresponding results from dataset 2 than to those

from dataset 1. These results imply that there may not be any consistent time-

dependent drift in the performance of instrument. However, it is important to realise

that despite the lack of long-term reproducibility of PyMS, the system can still be of

value in the classification and identification of micro-organisms provided that test

strains are analysed in the same batch analysis (Gutteridge, 1987; Goodfellow

1995c). Thus, in the present preliminary investigation, the three Streptomyces

groups were consistently recovered in each of the batch analyses. Nevertheless, it

is also clear that the Streptomyces strains cannot be identified by comparison with

reference mass spectra derived from different batches. This means that the

generation of a conventional pyrolysis mass spectral database is not feasible for

long-term studies.

6. Artificial neural network comparison of pyrolysis mass spectral
data of datasets IA, 2 and3

Three ANNs showing the complex topology described in the previous section

were constructed using the training data given in Table 4-4. The mass spectra held
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% Similarity
40	 60	 80	 100 Taxa	 Dataset

FIGURE 4-14. RESULTS OF MULTIVARIATE STATISTICAL ANALYSIS OF THE COMBINED

DATASET WHICH WAS COMPOSED OF DATASETS 1 A, 2 AND 3. NUMBERS IN PARENTHESES

INDICATE THE NUMBER OF PYROLYSIS MASS SPECTRA.
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in each dataset, namely datasets 1,2 and 3, were identified using two ANNs which

were trained using the remaining two datasets; this process can be called 'cross

identification' since the three datasets were composed of the same strains (see

Table 4-3). The cross identifications are summarised in Table 4-7.

When the pyrolysis mass spectra of dataset 2 were examined using network

NET-i, which was trained using the mass spectra held in dataset 1 A and those from

representatives of the non-target taxa, all of the Streptomyces group C strains were

correctly identified. In contrast, none of representatives of the Streptomyces groups

A and B were identified. Similarly, only the Streptomyces group A strains of

dataset 3 were correctly identified using network NET-i. In contrast, none of the

organisms in datasets 1 and 3 were identified by using network NET-2. These poor

results may be due to the fact that the mass spectra held in dataset 2 are

completely different from those held in the other two datasets (Figure 4-14). Only

Streptomyces group A spectra of dataset 1 were recognised using network NET-3.

This result was anticipated as network NET-i only recognised the Streptomyces

group A strains of dataset 3 (Table 4-7).

Some of the test strains were identified using the ANNs but none of them

were identified statistically. It can, therefore, be concluded from Table 4-7 that ANNs

trained with pyrolysis mass spectra from only one dataset (batch) are not sufficiently

robust to identify the same streptomycete strains pyrolysed at different times.

However, all of the non-target strains were correctly recognised as unidentified with

all three networks when members of the non-target taxa were pyrolysed in the

different batches.
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7. Spectral identification of data in datasets 4, 5 and 6 using
'operational fingerprinting' and artificial neural network analysis

Network NET-C was trained on the combined pyrolysis mass spectra from

datasets 1A, 2 and 3 in order to construct a more generalised neural network

(Table 4-4). The information held in dataset 4 was derived from reference

Streptomyces strains whereas the mass spectral data held in datasets 5 and 6 were

from reference Streptomyces strains and soil isolates putatively assigned to

Streptomyces groups A, B and C (Table 4-3). The information held in the three test

datasets were used to identify the Streptomyces strains by using conventional

'operational fingerprinting' and ANN procedures.

All of the reference strains of Streptomyces, apart from Streptomyces strains

A35 and B76, formed three groups when the information held in dataset 4 was the

subject of multivariate statistical analysis (Figure 4-15). Streptomyces strains A35

and B76 were not assigned to any of the target groups and hence were not correctly

identified using the 'operational fingerprinting' procedure. Most of the

Streptomyces group A and B strains, apart from Streptomyces strains A34 and B76,

were correctly identified using networks NET-i and NET-3. In contrast, none of the

Streptomyces strains were correctly identified using network NET-2. All thirteen

reference strains were successfully identified when network NET-C was used. The

identified organisms included Streptomyces strains C51 and C58 which were not

identified using networks NET-i, 2 and 3.

Two mechanisms may account for the improvement in the predictive ability of

neural network NET-C. One is 'summation', which can be seen in the cases of

Streptomyces strains A2, B76 and C55, whereby network NET-C gained the

combined pattern recognition knowledge of networks NET-i, NET-2 and NET-3. In

the case of Streptomyces strains C5i and C58 the mechanism can be explained in
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FIGURE 4-15. DENDROGRAM OBTAINED FROM THE PC-CVA ANALYSIS OF INFORMATION

HELD IN DATASET 4. THE IDENTIFICATION RESULTS OBTAINED WITH NETWORKS NET-i,

NET-2, NET-3 AND NET-C ARE INDICATED ON THE RIGHT-HAND SIDE OF THE

DENDROGRAM. ALL OF 414 NON-TARGET MASS SPECTRA WERE IDENTIFIED AS UNKNOWN.

AN INDICATES THAT ONLY N OUT OF TRIPLICATE SPECTRA WAS/WERE ASSIGNED TO

STREPTOMYCES GROUP A WHERE N IS 1 OR 2.
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terms of 'generalisation', that is, when ANNs generalise they can predict patterns

beyond the ones previously seen by the network provided the training data spans

the data space (Freeman & Skapura, 1991).

Datasets 5 and 6 were designed to facilitate practical 'operational

fingerprinting' since fresh soil isolates were pyrolysed together with reference

strains of Streptomyces groups A, B and C (Figures 4-16 and 4-17). All of the fresh

isolates were correctly identified using the 'operational fingerprinting' technique.

Only some of the Streptomyces strains in dataset 5 were correctly identified using

networks NET-i, NET-2 and NET-3 (Figures 4-16). Network NET-i performed

relatively well but NET-2 and NET-3 were poorly predictive. In contrast, all of the

streptomycete pyrolysis mass spectral data held in dataset 5 were correctly

identified using network NET-C. It is particularly encouraging that Streptomyces

strains B42, B73i 6, C54, C56 and C58, which were mis-identified with at least one

of the three other networks, namely NET1, NET-2 and NET-3, were correctly

identified by using network NET-C.

The Streptomyces strains used to generate dataset 6 were examined by the

'operational fingerprinting' and ANN procedures (Figure 4-17). As expected, all

nine of the representative strains of Streptomyces groups A, B and C were assigned

to groups corresponding with these taxa indicating that all of the test strains were

correctly identified using the 'operational fingerprinting' procedure. When the

mass spectra held in dataset 6 were examined by the ANNs all of the spectra were

correctly identified using networks NET-i and NET-C whereas only one out of the

nine strains was correctly recognised by networks NET-2 and NET-C. The close

relatedness found between the mass spectra held in datasets 1 and 6 was also

evident from the multivariate statistical analysis of the combined dataset, that is, the

dataset which consisted of information derived from datasets 1 and 6 (Figure 4-18).
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FIGURE 4-16. DENDROGRAM SHOWING RELATIONSHIPS BETWEEN REPRESENTATIVE

STREPTOMYCES STRAINS BASED ON MULTIVARIATE STATISTICAL ANALYSIS OF THE

PYROLYSIS MASS SPECTRA RESULTS HELD IN DATASET 5. THE IDENTIFICATION RESULTS

OF THE ANN ANALYSES ARE INDICATED AT THE RIGHT-HAND SIDE OF THE DENDROGRAM.

ALL OF 414 NON-TARGET MASS SPECTRA WERE IDENTIFIED AS UNKNOWNS. FOR DETAILS

SEE LEGEND TO FIGURE 4-15.
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IDENTIFICATION RESULTS OF THE ARTIFICIAL NEURAL NETWORK ANALYSES ARE SHOWN AT

THE RIGHT-HAND SIDE OF THE DENDROGRAM. ALL 414 NON-TARGET MASS SPECTRA

WERE IDENTIFIED AS UNKNOWNS. FOR DETAILS SEE LEGEND TO FIGURE 4-15.
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This result implies that the nature of the variation caused by 'instrumental drift' is

random rather than time-dependent.

It has already been mentioned that the development of rapid, reliable and

cost-effective methods are at a premium for the classification, identification and

typing of microorganisms. Curie point pyrolysis mass spectrometry is increasingly

being used for such purposes as it allows rapid automated acquisition of data

derived from whole organism components and requires minimal sample preparation

(Magee, 1993, 1994). The system can, therefore, be used to evaluate taxonomic

structures derived from the application of other taxonomic procedures as well as for

the selection of representative strains prior to the use of more time-consuming and

laborious methods, notably numerical taxonomy and nucleic acid sequencing. The

use of the system for identification purposes has been hampered by the relatively

high cost of the instrument and by inappropriate data handling techniques which

have not been able, until now, to overcome the lack of long-term reproducibility of

the system.

It can be concluded from the present investigation that the combined use of

PyMS and ANN provided an effective procedure for the identification of members of

Streptomyces groups A, B and C. In addition, the identification of streptomycete

isolates was achieved a twenty month period. This new procedure eliminates the

necessity for 'operational fingerprinting', that is, the need to analyse reference

and test strains at the same time, as well as the requirement to duplicate samples

which is current practice in conventional PC-CVA analyses. However, it must be

emphasised that the confidence that can be placed in the identification of unknown

strains using ANNs depends on the topology of the network, the training algorithm,

and eventually on the quality of the training dataset (Freeman & Skapura, 1991). In
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addition, the performance of trained ANNs should be carefully checked before being

applied to real situations.

U wiU be interesting to see whether ANNs applied for purposes other than for

the identification of bacteria, such as in chemical quantification studies (Goodacre et

a!., 1992, 1993a, 1993b, 1994a; Goodacre & Kell, 1993), highlight the need to

address the long-term reproducibility problems found in the present study whereby

networks trained using data from a single batch were unable to recognise pyrolysis

mass spectra derived from different batches. Studies on ANN analysis of PyMS data

for chemical quantification have yet to address long-term reproducibility problems.

Goodacre et a!. (1994b) attempted to use the self-organising network

(Kohonen, 1989) to classify pyrolysis mass spectra derived from Propionibacterium

acne strains. The result was promising though there is a need for more comparative

studies before this approach can be considered as a standard clustering technique,

such as the UPGMA algorithm (Sneath & Sokal, 1973).
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CHAPTER V..
OVERVIEW AND PERSPECTIVES FOR FUTURE WORK

Developments in modern bacterial systematics are dependent on three

fundamental processes, namely generation of high quality information, development

of appropriate data handling techniques, and compilation and management of

taxonomic databases. The focus in recent years has been on the generation of

good quality taxonomic information, notably numerical phenetic and nucleotide

sequence data. There is now a need to pay greater attention to the other two

processes, especially since the generation of genotypic and phenotypic data is

becoming increasingly automated and hence relatively straightforward (Felsenstein,

1988; O'Donnell eta!., 1993; Kämpfer, 1995). It is also clear that developments in

bacterial systematics will increasingly depend upon gaining rapid access to

taxonomic information through international electronic networks (Canhos et a!.,

1993).

Computer software designed for phylogenetic analyses of molecular

sequence data are regarded as 'blackboxes' by some taxonomists. It is clear from

the review of relevant publications in the recent issue of the International Journal of

Systematic Bacteriology (see pages 25-28) that misuse of phylogenetic terms and

lack of understanding of the theoretical background on the algorithms used to

generate microbial phylogenies are not unusual amongst bacterial systematists. In

contrast, the theory and practice of numerical phenetic taxonomy is now relevantly

well understood (Gyllenberg, 1965; Sneath & Sokal, 1973; Lapage et a!., 1973;

Priest & Williams, 1993; Sackin & Jones, 1993; Goodfellow, 1 995a). It is also fair to

say that the success of numerical phenetic taxonomy was partly based on the

availability of computers and on the development of a series of computer programs
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(Sneath, 1979b,c,d,e, 1980a,b,c; Sneath & Langham, 1989). It is, therefore,

important that suitable and cost-effective software tools are developed to handle

information held in taxonomic databases.

The popularity and success of the ribosomal RNA database (Larsen et a!.,

1993) is a paradigm for future work in microbial systematics. In this database, all of

the available small and large subunit rRNA sequences are compiled and constantly

released in a ready aligned form. This database project provides a number of

additional services which include routines for the determination of rRNA targeted

oligonucleotide probes, for detecting chimeric PCR products and for phylogenetic

analyses. Other types of taxonomic knowledge bases integrated in global networks

are also available, these include ones on strains, nomenclature, amino acid and

nucleotide sequences, and chemosystematic data (Canhos et a!., 1993). In the near

future, global taxonomic databases with high information contents together with

appropriate data handling techniques will prove to be invaluable for all

microbiologists, not just for taxonomists.

Topics which need further investigation in light of the present study are

outlined below.

• Software tools

1.The AL 16S program.

- Routines for displaying secondary structures.

- Routines for detecting chimeric molecules and products of possible lateral gene transfer.

2. The Xprogram

- Incorporation of the routine OUTLIER (Sneath & Langham, 1989).

- Improved strategy for handling multistate data.

- Routines for artificial neural network analyses, notably the backpropagation, radial-basis

function and Kohonen self -organising network algorithms.
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- Designing phenotypic databases for the internet.

• Classification

- Evaluation of the taxonomic status of Nocardia pinensis, Corynebacterium amycolatum

and Turicella otitidis strains by sequencing genes independent of the 1 6S rRNA

macromolecules, notably genes encoding for ATPases, elongation factors and RNA

polymerases.

- Polyphasic study to unravel the taxonomic structure of the Wocardia asteroides complex'.

- Chemotaxonomic analyses on biopolymers present in the walls of chemotype IV

actinomycetes, notably arabinogalactans and lipopolysaccharides.

• Identification

- Monitoring population fluxes of tsukamurellae in activated sludge by in situ probing and

by the use of artificial neural network analysis of pyrolysis mass spectrometric data.

- Comparative studies need to be carried out to determine the reproducibility of pyrolysis

mass spectrometric data derived from different instruments.
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APPENDIX A
CULTURE MEDIA AND BUFFERS

1. Bennett's Agar, modified (Jones, 1949)

Yeastextract (Difco) ...............................................1 .0 g

Lab-Lemco (Oxoid) .................................................0.8 g

Bacto-Casitone (Difco) ...........................................2.0 g

Glucose................................................................10.09

Agar ( Difco) ..........................................................12.0 g

.............................................pH7.3

The medium components were dissolved in 1 litre of cold distilled water and the pH adjusted

with diluted (0.1 M) NaOH or HCI. The agar was then added and the medium liquefied by

steaming prior to autoclaving.

2. Carbon Source Utilisation Medium (Boiron et al., 1993)

AmmoniumSulphate ............................................2.64 g

PotassiumDihydrogen Phosphate .........................0.5 9

MagnesiumSulphate ..............................................0.5 g

Agar (Oxoid No. 1) ...............................................15.0 g

.............................................pH7.0

The medium was dissolved in 1 litre of distilled water and pH was adjusted by using 10%

KOH solution. The agar was then autoclaved. The carbon source compounds were sterilised

separately by using filtration or tyndallisation.

3. Carbon and Nitrogen Source Utilisation Medium (Boiron et
a!.,, 1993)

Potassium Dihydrogen Phosphate .........................0.5 g

MagnesiumSulphate ..............................................0.5 g

Agar (Oxoid No. 1) ...............................................15.0 g

..............................................pH7.0
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The medium was dissolved in 1 litre of distilled water and pH was adjusted by using 10%

KOH solution. The agar was then autoclaved. The carbon and nitrogen source compounds

were sterilised separately by using filtration or tyndallisation.

4. Glucose Yeast-extract Agar (Gordon & Mihm, 1962)

Glucose................................................................10.0 g

Yeast-extract ........................................................10.0 g

Agar ( Difco) ..........................................................18.0 g

pH 7.0

The medium components were dissolved in 1 litre of cold distilled water and the pH adjusted

with diluted (0.1 M) NaOH or HCI. The agar was then added and the medium liquefied by

steaming prior to autoclaving.

5. Guanidine-Sarkosyl Solution (Pitcher et a!., 1989)

Guanidinethiocyanate (Sigma) ............................60.0 g

EDTA(0.5 mM) pH 8 ..............................................20 ml

Deionisedwater ...................................................... 20 ml

The preparation was heated at 65 °C until dissolved. After cooling, 5 ml of 10%, v/v sarkosyl

(GES reagent) were added, the solution was made up to lOOmI with deionised water, filtered

through a 0.45 pm filter and stored at room temperature.

6. LB Agar (Sambrook et a!., 1989)

Bacto-Tryptone ........................................................10 g

Bacto-Yeast extract....................................................5 g

NaCl..........................................................................5g

Agar..........................................................................15g

pH 7.5

The pH was adjusted with 1 N NaOH prior to autoclaving.
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7. Non-Sporulating Agar (San glier et a!., 1992)

Casaminoacids(Difco) .........................................20.0 g

Solublestarch (BDH) ............................................20.0 g

Yeastextract (Difco) ...............................................4.0 g

Agar ( Dilco ) ..........................................................18.0 g

pH 6.5

The ingredients, apart from the starch and agar, were dissolved in 900 ml of distilled water

and the pH adjusted with diluted (0.1 M) NaOH or HCI. The agar was then added and the

preparation liquefied by steaming. The starch, which was made into a paste with 100 ml of

cold distilled water, was incorporated into the hot medium with constant stirring prior to

autoclaving.

8. Sauton's Broth, modified (Modarska eta!., 1972)

L-Asparagine ..........................................................5.0 g

Casaminoacid ........................................................2.0 g

Glucose................................................................15.0 g

SodiumCitrate ........................................................1.5 g

PotassiumDihydrogen Phosphate .........................5.0 g

MagnesiumSulphate ..............................................0.5 g

PotassiumSulphate ...............................................0.5 g

FerricAmmonium Citrate ........................................trace

............................................pH7.2

The medium components were dissolved in 1 litre of cold distilled water and the pH adjusted

with diluted (0.1 M) NaOH or HCI. The medium and glucose were autoclaved separately.

9. TFB I buffer

Potassium acetate, 30 mM; CaCl 2 2H20, 10 mM; KCI, 100 mM; glycerol, 15% (v/v).

Dissolved in 900 ml of water and autoclaved. Made up to 1 litre by adding 100 ml of

autoclaved 500 mM MnCl2.

10. TFB II buffer

CaCl2 2H20, 75 mM; KCI, 10 mM; glycerol, 15% (v/v). Dissolved in 900 ml of water

and autoclaved. Made up to 1 litre by adding 100 ml of autoclaved 100 mM Na-MOPS (pH

7.0).
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APPENDIX B.
INTERNATIONAL UNION OF BIOCHEMISTRY

NUCLEOTIDE CODE

Code	 Degeneracy

R	 A+G

Y	 C+T

M	 A+C

K	 G+T

S	 G+C

W	 A+T

H	 A+T^C

B	 G+T+C

D	 G+A^T

V	 A+C+G

N	 A+C^T+G



Domain: Bacteria

Kingdom: Puiple Bacteria

Order: gamma

February 15, 1993 v2.O

(JO 1695)
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APPENDIX C. 16S rRNA NUMBERING SYSTEM BASED ON EscHERIcHIA COLI

(BRoslus et a!., 1978). OBTAINED FROM THE RIBOSOMAL DATABASE PROJECT

(LARSEN et a!., 1993)

Secondary Structure: small subunit ribosomal RNA
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APPENDIX 0. HELIX NOMENCLATURE BASED ON ESCHERICHIA CDLI (NEEFS et a!.,

1993).
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APPENDIX E. 16S rRNA SEQUENCE SIMILARITY AND CORRESPONDING DNA

RELATEDNESS VALUES FOR MYCOLIC ACID-CONTAINING ACTINOMYCETES 1 . THIS

DATA WERE USED TO DRAW THE GRAPH SHOWN IN FIGURE 2-1 (PAGE 107).

Taxa compared2	1 6S rRNA	 DNA	 Reference3

Strain 1

M. gastri

N. restricta

a sputi

M. malmoense

R. eiythropolis

M. farcinogenes

R. chubuensis

T. paurometabola N663

R. fascians

M. tuberculosis

R. rhodochrous

M. avium

M. gastri

M. kansasii

M. marinum

M. chelonae

M. intracelluare

M. intracelluare

M. scrofulaceum

C crrcgñ7/ey

M. asiaticum

M. avium

M. haemophilum

M. malmoense

M. tuberculosis

M. avium

M. gastri

M. gastri

M. asiaticum

M. gastri

M. kansasii

M. malmoense

M. avium

M. avium

M. avium

C. sp. (COC group-G)

M. tuberculosis

M. asiaticum

Strain 2

M. kansasii

R. equi

G. aichiensis

M. szulgai

N. calcarea

M. senegalense

G. sputi

T. paurometabola M334

R. luteus

M. marinum

R. rose us

M. intracelluare

M. malmoense

M. szulgai

M. ulcerans

M. fortuitum

M. malmoense

M. scrofulaceum

M. szulgai

C. acco)ei,s

M. gordonae

M. ma/moense

M. malmoense

M. tuberculosis

M. kansasii

M. gastri

M. intracelluare

M. scrofulaceum

M. szulgai

M. marinum

M. scrofulaceum

M. scrofulaceum

M. marinum

M. scrofu!aceum

M. tuberculosis

C. accolens

M. ulcerans

M. avium

Similarity homology

	

100.00	 62

	

99.90	 96

	

99.73	 38

	

99.60	 36

	

99.50	 93

	

99.50	 49

	

99.46	 97

	

99.38	 44

	

99.30	 79

	

99.24	 11

	

99.20	 80

	

99.20	 59

	

99.20	 46

	

99.00	 45

	

99.00	 86

	

98.96	 8

	

98.90	 48

	

98.90	 48

	

98.90	 39

	

98.85	 25

	

98.80	 44

	

98.80	 46

	

98.80	 55

	

98.80	 53

	

98.71	 32

	

98.70	 53

	

98.70	 41

	

98.70	 57

	

98.66	 30

	

98.60	 51

	

98.60	 47

	

98.60	 42

	

98.50	 45

	

98.50	 41

	

98.40	 30

	

98.35	 11

	

98.30	 34

	

98.25	 49

lmaeda eta!. 1988

Rainey et a!. 1 995b

Zakrzewska-Czerwinska et
a!. 1988

lmaeda etal. 1988

Rainey et a!. 1 995b

lmaeda eta!. 1988

Riegel et a!. 1994

Goodfellow et a!. 1991

Klatte et a!. 1994

lmaeda, 1985

Rainey etaL 1995b

Imaeda etaL 1988

Imaeda eta!. 1988

Imaeda eta!. 1988

lmaeda eta!. 1988

Lévy-Frébault et a!. 1986

lmaeda eta!. 1988

Imaeda eta!. 1988

lmaeda eta!. 1988

Riegel et a!. 1995

lmaeda eta!. 1988

Imaeda etaL 1988

Imaeda eta!. 1988

Imaeda eta!. 1988

Imaeda, 1985

Imaeda et aL 1988

Imaeda eta!. 1988

Imaeda eta!. 1988

Imaeda etaL 1988

Imaeda eta!. 1988

Imaeda etaL 1988

Imaeda eta!. 1988

Imaeda etaL 1988

Imaeda eta!. 1988

Imaeda eta!. 1988

Riegel et a!. 1995

Imaeda eta!. 1988

Imaeda eta!. 1988



98.20

98.20

98.11

98.03

98.00

97.95

97.94

97.90

97.80

97.70

97.70

97.55

97.50

97.50

97.46

97.46

97.40

97.30

97.28

97.10

97.00

97.00

96.90

96.90

96.89

96.86

96.84

96.80

96.80

96.76

96.70

96.61

96.60

96.60

96.50

96.33

96.33

96.29

47	 Imaeda et a!. 1988

32	 Imaedaetai. 1988

49	 Imaeda eta!. 1988

1	 Riegel et aL 1995

12	 Zakrzewska-Czerwinska et
a!. 1988

£	 Lévy-Frébault et a!. 1986

33	 Irnaeda et aL 1988

46	 Imaeda etaL 1988

7	 Riegel et aL 1994

51	 Imaeda etaL 1988

9	 Riegel et aL 1994

36	 Imaeda et a!. 1988

35	 Imaeda etaL 1988

56	 Imaeda eta!. 1988

20	 Yano et a!. 1990

18	 Zakrzewska-Czerwinska et
al. 1988

53	 Imasda, 1985

44	 lmaeda et aL 1988
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APPENDIX E. CONTINUED.

Taxa compared	 16S rRNA	 DNA	 Reference

Strain 1
	

Strain 2
	

Similarity homology

48

52

9

37

49

17

22

44

47

50

62

28

39

53

39

23

44

39

7

59

26

M. avium	 M. nonchromogenicum	 96.20

M. tuberculosis

M. asiaticum

M. tuberculosis

M. asiaticum

M. haemophilum

M. tuberculosis

M. tuberculosis

M. asiaticum

M. gordonae

M. asiaticum

M. avium

N. asteroides

R. rhodochrous

M. asiaticum

N. asteroides

N. asteroides

R. roseus

M. intracelluare

R. chubuensis

M. malmoense

M. chelonae

M. haemophilum

M. a vium

M. terrae

C. macgin!eyi

R. luteus

M. che!onae ssp.
abscess us

M. gordonae

M. nonchromogenicum

R. chubuensis

M. malmoense

R. chubuensis

M. asiaticum

M. terrae

M. asiaticum

N. farcinica

R. globeru!us

M. tuberculosis

M. intracelluare

M. malmoense

M. asiaticum

M. gastri

M. marinum

M. haemophi!um

M. scrofulaceum

M. scrofulaceum

M. scrofulaceum

M. simae

M. ulcerans

N. farcinica

R. ruber

M. ulcerans

N. nova

N. nova

R. ruber

M. ulcerans

G. bronchialis

M. simae

M. chelonae ssp.
abscessus

M. ulcerans

M. shimoidei

M. tuberculosis

C. jeikeium

R. globerulus

M. fortuitum

M. ulcerans

M. trivale

G. rubropertincta

M. shimoidei

G. terrae

M. nonchromogenicum

M. trivale

M. triviale

N. nova

R. rhodnll

M. nonchromogenicum

Imaeda, 1985

Imaeda eta!. 1988

Imaeda, 1985

lmaeda et a!. 1988

Imaeda eta!. 1988

Imaeda, 1985

Imaeda, 1985

lmaeda eta!. 1988

Imaeda et a!. 1988

Imaeda etaL 1988

lmaeda et aL 1988

Kudo etal. 1988

Rainey et al. 1 995b

Imaeda eta!, 1988

Yano eta!. 1990

Kudo et a!. 1988

Rainey et aL 1 995b

Imaeda etaL 1988

Riegel et aL 1994

Imaeda et a!. 1988

Lévy-Frébault et a!. 1986
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APPENDIX E. CONTINUED.

Taxa compared	 1 6S rRNA	 DNA	 Reference

Strain 1	 Strain 2	 Similarity	 homology

M. malmoense	 M. terrae	 96.20	 30	 Imaeda et al. 1988

R. luteus	 R. rhodnii	 95.90	 11	 Zakrzewska-Czerwinska et
a!. 1988

M. kansasii	 M. senegalense	 95.90	 37	 Imaeda et al. 1988

M. avium	 M. farcinogenes	 95.80	 36	 Imaeda et a!. 1988

M. trivale	 M. tuberculosis	 95.80	 49	 lmaeda et a!. 1988

M. gastri	 M. triviale	 95.70	 52	 Imaeda et a!. 1988

T. paurometabola N663 T. wratislaviensis 	 95.66	 16	 Goodfellow et al. 1991

M. intracelluare	 M. triviale	 95.60	 43	 Imaeda et a!. 1988

M. ma/moense	 M. trivale	 95.60	 58	 Imaeda et a!. 1988

R. globerulus	 0. mans	 95.03	 12	 Zakrzewska-Czerwinska et
a!. 1988

C. macgin!eyi	 C. dip htheriae	 95.02	 5	 Riegel et a!. 1995

M. intracelluare	 M. xenopi	 95.00	 30	 Imaeda et a!. 1988

C. sp. (CDC group-G) 	 C. jeikeium	 94.74	 1	 Riegel et a!. 1995

T. paurometabola N663 M. chlorophenolicum	 94.30	 10	 Goodfellow et a!. 1991

G. sputi	 R. rhodnii	 94.29	 11	 Zakrzewska-Czerwinska et
a!. 1988

R. luteus	 0. mans	 94.11	 8	 Zakrzewska-Czerwinska et
a!. 1988

T. paurometabola N663 G. branchialis	 93.80	 9	 Goodfellow eta!. 1991

T. paurometabola N663 G. aichiensis	 93.69	 13	 Goodfellow et a!. 1991

0. sputi	 0. mans	 93.27	 11	 Zakrzewska-Czerwinska et
a!. 1988

R. globeru!us	 G. aichiensis	 93.17	 11	 Zakrzewska-Czerwinska et
a!, 1988

G. sputi	 R. globerulus	 93.06	 12	 Zakrzewska-Czerwinska et
aL 1988

R. !uteus	 0. aichiensis	 92.67	 8	 Zakrzewska-Czerwinska et
aL 1988

R. luteus	 0. sputi	 92.54	 9	 Zakrzewska-Czerwinska et
a!. 1988

Abbreviations: C., Corynebacterium; D, Dietzia; 0., Gordona, M. Mycobacterium; N. Nocardia; R,

Rhodococcus; and T., Tsukamure!!a.

',Data were listed in order of 16S rRNA sequence similarity.

, Type strains unless specified.

, References in which DNA pairing studies were carried out.
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APPENDIX F. A PHYLOGENETIC TREE DEPICTING RELATIONSHIPS BETWEEN
REPRESENTATIVES OF ACTINOMYCETES AND RELATED TAXA Two HUNDRED NINETY-FIVE
SEQUENCES WERE ALIGNED USING THE AL16S PROGRAM, THE EVOLUTIONARY
DISTANCES WERE CALCULATED USING THE JUKES AND CANTOR' CORRECTION (JUKES &
CANTOR, 1969) AND TREE GENERATED USING THE NEIGHBOR-JOINING METHOD (SAITOU
& NEI, 1987). THE TREE WAS BASED ON 1371 NUCLEOTIDE SITES AND BACILLUS
SUBTILIS (ACCESSION NUMBER K00637) USED AS OUTGROUP. CORRESPONDING
ACCESSION NUMBERS ARE GIVEN IN PARENTHESES.

Sphaerobacter thermophilus (X53210)
_________ strain TH3 (M79434)

I -	 _____ "Microthrix parvicella" (L.L. Blackall)
Atopobium parvulum (S44206)

Atopobium rimae (S44205)
_____	 Atopobium minutum (M59059)

-	 Coriobacterium glomerans (X79048)
Bifidobacterium adolescentis (M58729)
Bifidobacterium catenulatum (M58732)
Bifidobacterium dentium (M58735)
Bifidobacterium bifidum (M38018)
Bifidobacterium breve (M58731)
Bifidobacterium indicum (M58737)
Bifidobacterium infantis (M58738)

Bifidobacterium longum (M58739)
Bifidobacterium pseudolongum (M58742)

Bifidobacterium suis (M58743)
Bifidobacterium asteroides (M58730)
Bifidobacterium coryneforme (M58733)
Bifidobacterium minimum (M58741)

Gardnerella vaginalis (M58744)
Bifidobacterium animalis (X70971)
Bifidobacterium globosum (M58736)

Bifidobacterium cuniculi (M58734)
Bifidobacterium magnum (M58740)

Actinomyces birnadii(X79224)
Actinomyces pyogenes (M29552)

Arcanobacterium haemolyticum (X73952)
Actinomyces suis (S83623)

Actinomyces hyovaginalis (X69616)
Actinomyces odontolyticus (X53227)

Actinomyces neuii subsp. anitratus (X7 1862)
Actinomyces neuii subsp. neuii (X71861)

Mobiluncus curtisii (X53 186)
Actinomyces bovis (X53224)

Actinomyces israelii (M33912)
Actinomyces naeslundii (X53226)
Actinomyces viscosus (X53225)

F1avobacteum" marinotypicum (rdp)
Aureobacterium liquefaciens (X77444)

Aureobacterium testaceum (X77445)
Microbacterium lacticum (X77441)

Aureobacterium esteroaromaticum (rdp)
Aureobacterium barkeri (X77446)
Microbacterium arborescens (X77443)
Microbacterium imperiale (X77442)
"Corynebacterium aquaticum" (X77450)

Clavibacter michiganense ssp. michiganense (X77435)
p{Clavibacter michiganense ssp. nebraskense (X77434)
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APPENDIX F. CONTINUED.

Rathayihacter rathayi (X77439)
I [ Rathayibacter tritici (X77438)

[jL	 Brevibacterium helvolum (X77440)
I Curtobacterium citreum (X77436)

-] 1 Curtobacterium luteum (X77437)
I	 "Corynebacterium mediolanum (X77449)

Agromyces cerinus (X77448)
Agromyces ramosum (X77447)

fl	 Tropheryma whippelii (M87484)
I	 Sporichthya polymorpha (X72377)

Dermatophilus congolensis (M59057)
Terrebacter tumescens (X53215)

L	 Kineococcus aurantiacus (X77958)
Micrococcus luteus (M38242)

pL Micrococcus lylae (20315T;X80750)
Renibacterium salmoninarum (X51601)

Arthrobacter globiformis (M2341 1)

iIH Arthrobacter pascens (X80740)
1 Arthrobacter ramosus (X80742)

Ui- Arthrobacter polychromogenes (X80741)

9 ' Arthrobacter nicotinovorans (X80743)
'1 Arthrobacter ureafaciens (X80744)

Arthrobacter citreus (X80737)
[jI_ Arthrobacter crystallopoietes (X80738)
L_ Micrococcus agilis (X80748)

Arthrobacter nicotianae (X80739)
L Arthrobacter protophormiae (X80745)

Arthrobactcr atrocyaneus (X80746)
Rothia dentocariosa (M59055)
Micrococcus kristinae (X80749)
Micrococcus halobius (X80747)

Brevibacterium casei (X76564)
Brevibacterium epidermidis (X76565)

[jt Brevibacterium iodinum (X76567)
L Brevibacterium linens (X77451)
"Kitasatosporia griseola" (M55221)

r-H,- "Kitasatosporia phosalacinea' (M55223)
L "Kitasatosporia setae" (M55220)

Streptomyces albus subsp. albus (X53 163)
Streptomyces bikiniensis (X79851)
Streptomyces galbus (X79325)

L Streptoverticillium luteoreticuli (X53 172)
I-ti r Streptomyces griseus (X61478)

II r1 Streptomyces ornatus (X79326)

III	 Streptomyces Iavendulae (X53 173)

[1 Fl Streptomyces subrutilus (X80825)

1 L Streptomyces purpureus (X53 170)
Streptomyces galbus (X79852)

[ft Streptomyces hygroscopicus ssp. limoneus (X79853)
L Streptomyces lincolnensi s (X79854)

Streptoverticillium abikoense (X53 168)
Streptoverticillium baldacii (X53 164)

it	 Srrentnvertir.illiiim ci nnamnneiim iihsn izirn1iitiim (X5 I 6
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APPENDIX F. CONTINUED.

]L Streptoverticillium cinnamoneum subsp. azacolutum (X53 165)
Streptoverticillium olivoreticuli subsp. cellulophilum (X53 166)

L Streptoverticillium salmonis (X53 169)
Streptoverticillium cinnamoneum subsp. cinnamoneum (X53171)

L Streptoverticillium ladakanum subsp. ladakanum (X53 167)
Streptomyces rimosus (X62884)

i_ Streptoverticillium mashuense (X79323)
Streptomyces ambofaciens (M27245)
Streptomyces coelicolor (X60514)
Streptomyces coelicolor A3(2) (Y0041 1)
Streptomyces lividans (Y00484)
Streptomyces pseudogriseolus (X80827)
Streptomyces caelestis (X80824)
Streptomyces glaucescens (X79322)

Streptomyces bluensis (X79324)
Streptomyces brasiliensis (X53 162)
Streptomyces diastaticus (X53 161)

Streptomyces espinosus (X80826)
Streptomyces sp. 3890 (X81574)
Streptosporangium nondiastaticum (X70426)
Streptosporangium pseudovulgare (X70428)

L,	 Streptosporangium roseum (X70425)
L_ Streptosporangium corrugatum (X70427)

Actinoplanes philippinensis (X72864)
Actinoplanes utahensis (X80823)

Catenuloplanes japonicus (D14642)
Couchioplanes caeruleus subsp. caeruleus (D14645)

Frankia sp. str. G48 (LI 1306)
Frankia sp. str. L27 (M59075)

Dactylosporangium auranticum (X72779)
Acidothermus cellulolyticum(X70635)

Frankia sp. str. AcNl4a (M88466)
Frankia sp. str. Ar14 (Li 1307)

Frankia sp. str. CeD (M55343)
Frankia sp. str. Ag45IMutl5 (X53208)

Actinopolyspora halophila (X54287)
Luteococcus japonidus (D21245)
Propioniferax innocua (S93388)
Microlunatus phosphovorus (D26170)
Propionibacterium acidipropionici (X5322 1)
Propionibacterium jensenii (X532 19)
Propionibacterium thoenii (X53220)

Propionibacterium acnes (M61903)
Propionibacterium freudenreichii (X53217)

Propionibacterium propionicum (X532 16)
Aeromicrobium erythreum (M37200)
Aeromicrobium fastidiosum (X76862)

Nocardioides albus (X53211)
Nocardioides luteus (X53212)

Nocardioides jensenii (X53214)
Nocardioides simplex (X53213)

Arthrobacter simplex (M37693)
Nocardioides plantarum (X69973)
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APPENDIX F. CONTINUED.

L_ Nocardioides plantarum (X69973)
Actinoki neosporia riparia(X76953)

Saccharothrix australiensis (X53 193)
Saccharothrix mutabilis ssp. capreolus (X76965)
Saccharothrix mutabilis ssp. mutabilis (X76966)
Saccharothrix coeruleofusca (X76963)

- Saccharothrix longispora (X76964)
- Kutzneria viridogrisea (X70429)

"Pseudonocardia (Nocardia) petroleophila" (X55608)
Pseudonocardia hydrocarbonoxydans (X76955)

Pseudonocardia alni (X76954)
Pseudonocardia saturnea (X76956)
Pseudonocardia thermophila (X53 195)
Pseudonocardia autotrophica (X54288)

Pseudonocardia compacta (X76959)

9	 Pseudonocardia halophobica (Z141 11)
LL_. Pseudonocardia nitrificans (X55609)

Amycolatopsis azurae (X53 199)
Amycolatopsis orientalis (X76958)

_t Amycolatopsis.sp str. MG 417 (X77959)
L_ Amycolatopsis mediterranei (X76957)

Amycolatopsis fastidiosa (X53200)
Amycolatopsis methanolica (X54274)

Thermocrispum agreste (X79 183)

H	 Thermocrispum municipale (X79 184)
L Thermocrispum municipale (X79 185)
Sacchromonospora sp. K180 (Z38020)

i Sacchromonospora azurea (Z3 8017)
ft Saccharomonospora caesia (X76960)

JL Saccharomonospora cyanea (Z38018)
I! r Saccharomonospora glauca (Z38003)
I Li Saccharomonospora sp. Al206
L Saccharomonospora viridis (Z38007)
- Kibdelosporangium aridum (X53 191)

p	 Saccharopolyspora erythraea (X53 198)
Saccharopolyspora hirsuta (X53196)

1	 Saccharopolyspora hordei (X53 197)
Saccharopolyspora gregorii (X76962)

- Saccharopolyspora rectivirgula (X53 194)
Saccharopolyspora sp. J.Lacey A215 (X76967)

________ Turicella otitidis (X73976)

I	 Corynebacterium bovis (D38575)
1JrL_ Corynebacterium variabilis (X53 185)

I	 Corynebacterium cystitidis (D37914)
Corynebacterium pilosum (D37915)

- Corynebacterim glutamicum (Z46753)

I	 Corynebacterium kutscheri (D37802)
Corynebacterium amycolatum (M.D. Collins)

L Corynebacterium xerosis (M59058)
- Tsukamurella paurometabola (Z46751)
- Dietzia mans (X79290)

Nocardia asteroides (Z36934)
Nocardia asteroides (X57949)
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Nocardia asteroides (X57949)
Nocardia carnea (Z36929)
Nocardia brevicatena (Z36928)
Nocardia brasiliensis (Z36935)
Nocardia farcinica (Z36936)
Nocardia transvalensis (Z36926)
Nocardia nova (Z36930)
Nocardia otitidiscaviarum (Z46885)
Nocardia seriolae (Z36925)
Nocardia vaccinii (Z36927)

Rhodococcus fascians (X87340)f Rhodococcus luteus (X79 187)
Rhdococcus (Tsukamurella) wratislaviensis"

Rhodococcus opacus (X80630)
Rhodococcus marinonascens (X80617)
Rhodococcus sp. DSM43943 (X80616)
Rhodococcus erythropolis (X79289)
"Nocardia calcarea" R. erythropolis(X80618)

• Rhodococcus globerulus (X80619)
Rhodococcus equi (X80614)
Nocardia corynebacteroides (X80615)

- Rhodococcus rhodochrous (X70295)
Rhodococcus roseus (X80624)
Rhoclococcus rhodochrous (X79288)
Rhodococcus coprophilus (X80626)
Rhodococcus ruber (X80625)
Rhodococcus rhodnii (X80621)

Gordona aichiensis (X80633)
Gordona sputi (X80634)

'1. Rhodococcus chubuensis (X80627)
Gordona bronchialis (X79287)
• Gordona amarae (X80635)

Gordona rubropertinctus (X80632)
Gordona terrae (X79286)
Nocardia pinensis (Z35435)
Mycobacterium asiatidum (X55604)
Mycobacterium gordonae (X52923)
Mycobacterium avium subsp. avium str. chester (X52918)

ji Mycobacterium avium subsp. paratuberculosis (X52934)
I Mycobacterium intracellulare (X52927)

Mycobacterium gastri (X52919)
Mycobacterium kansasii (M29575)
Mycobacterium scrofulaceum (X52924)

Mycobacterium haemophilum (L24800)
Mycobacterium malmoense (X52930)
Mycobacterium szulgai (X52926)
Mycobacterium leprae (X53999)

Mycobacterium bovis str. BCG (M20940)
Mycobacterium tuberculosis (X52917)
Mycobacterium marinum (X52920)L Mycobacterium ulcerans (Z13990)

- Mycobacterium intermedium (X67847)
I Mycobacterium geneveuse (X60070)
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APPENDIX F. CONTINUED.

Mycobacteriurn geneveuse (X60070)
Mycobacteriurn sp (M95488)

Mycobacterium simiae (X52931)
Mycobacterium celaturn (L08 169)

L Mycobacterium sp. H52 157 (X82234)
Mycobacterium cookii (X53896)

Mycobacterium shimoidei (X82459)
L Mycobacterium xenopi (X52929)
- Mycobacterium triviale (M29571)
- Mycobacteriurn chitae (X55603)
- Mycobacteriurn fallax (M29562)

Mycobacteriurn hiberniae (X67096)
{ Mycobacteri urn nonchromogenicum (X52928)
- Mycobacterium terrae (X52925)
- Mycobacterium confluentis (X63608)
- Mycobacteri urn madagascariense (X55600)
- Mycobacterium flavescens (X52932)
- Mycobacteriurn smegmatis (X52922)

Mycobacteriurn sp. sir. chromogen (M29554)
L Mycobactenurn thermoresistibile (X55602)
- Mycobacterium phlei (M29566)

Mycobacterium gadium (X55594)
- Mycobacterium chelonae subsp. abscessus (M29559)
- Mycobacteriurn diernhoferi (X55593)
- Mycobacterium neoaurum (M29564)

Mycobacterium aichiense (X55598)
Mycobacteriurn sphagni (X55590)

- Mycobacteriurn aurum (X55595)
Mycobacterium vaccae (X55601)

- Mycobacterium chiorophenolicum (X79094)
- Mycobacterium chubuense (X55596)

Mycobacteriurn gilvum (X55599)
Mycobacterium obuense (X55597)
Mycobacterium chelonae (X52921)
Mycobacterium farcinogenes (X55592)
Mycobacteriurn senegalense (M29567)
Mycobacterium fortuitum (X52933)
Mycobacterium komossense (X55591)

0.10
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APPENDIX G. ACCESSION NUMBERS OF 1 6S rRNA SEQUENCES FOR MYCOLIC ACID-

CONTAINING ACTINOMYCETES AND RELATED TA)(A.

Species 1	Accession	 Reference
numb ers

Corynebacterium amycolatum

Corynebacterium bovis

Corynebacterium cystitidis

Cotynebacterium giutamicum

Corynebacterium variabi/is

Coiynebacterium xerosis

Dietzia mans

Gordona aichiensis

Gordona amarae

Gordona bronchialis

Gordona rubropertincta

Gordona sputi

Gordona terrae

Mycobacterium chiorophenolicum

Mycobacterium fortuitum

Mycobactenium intermedium

Mycobacterium leprae

Mycobacterium simiae

Mycobacterium smegmatis

Mycobacterium tuberculosis

Nocardia asteroides

Nocardia asteroides DSM43005

Nocardia brasiliensis

Nocardia brevicatena

Nocardia carnea

Wocardia crassostraea

Nocardia farcinica

Nocardia nova

Nocardia otitidiscaviarum

Nocardia pinensis

Nocardia seriolae

Noes rdia transvalensis

ND

D38575

D37914

Z46753

X53185

M59058

X79290

X80633

X80635

X79287

X80632

X80634

X79286;

X79094

X52933

X67847

X53999

X52931

X52922

X5291 7

Z36934

X57949

Z36935

Z36928

Z36929

Z37989

Z36936

Z36930

Z46885

Z35435

Z36925

Z36926

M. D. Collins unpublished

Takahashi et a!. unpublished

Takahashi et a!. unpublished

This study

Collins eta!. 1989b

Yang & Woese unpublished

Rainey eta!. 1995c

KIatte eta!. 1994c

Klatte et aL 1 994c

Klatte etaL 1994c

Klatte et aL 1 994c

Klatte et aL 1 994c

Klatte etaL 1994c

Briglia etaL 1994

Bottger unpublished

Meier et aL 1993

Liesack et aL 1990

Rogall et aL 1990

Rogall eta!. 1990

Rogall et a!. 1990

Tt1IS study

ogalI etaL 1990

ThIS study

jiiis study

-1-t' study

i-his study

study

study

study

study

study

.sstudY
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APPENDIX G. CONTINUED.

Species	 Accession	 Reference
numbers

Nocardia vaccinii	 Z36927	 This study

Rhodococcus coprophilus 	 X80626	 Rainey et a!. 1 995a

"Rhodococcus (Nocardia)	 X8061 5	 Rainey et a!. 1 995a
coryneba ctero ides"

Rhodococcus equi	 X80614	 Rainey eta!. 1995a

Rhodococcus erythropolis	 X79289	 Rainey et a!. 1 995a

Rhodococcus fascians	 X87340	 Klatte et a!. 1 994a

Rhodococcus globerulus	 X8061 9	 Rainey et a!. 1 995a

Rhodococcus marinonascens 	 X8061 7	 Rainey et a!. 1 995a

Rhodococcus opacus	 X80630	 Kiatte et aL 1 994b

Rhodococcus rhodnll	 X80621	 Rainey et a!. 1 995a

Rhodococcus rhodochrous	 X79288	 Rainey et a!. 1 995b

Rhodococcus ruber	 X80625	 Rainey et a!. 1 995a

Rhodococcus sp.DSM 43943	 X80616	 Rainey eta!. 1995a

Tsukamure!!a paurometabo!a 	 Z46751	 This study

Tsukamurel!a wratislaviensis	 Z37138	 This study

Turicella otitidis	 X73976	 Funke et a!. 1994

',Type strains unless indicated.
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APPENDIX

APPENDIX J. TEST STRAINS HELD IN THE NON-TARGET DATABASE.

Laboratory	 Taxa	 Strain histories
numbers

. Genus Actinomadura

A9
	

A. pelletieri 	 C. Philpot (London School of Hygiene and Tropical Medicine,
Keppel St., London, UK; LSHTM), 368

Al 1
	

A. madurae	 C. Philpot, 393

Al 0
	

A. pelletieri	 C. Philpot, 1065; Nigeria; mycetoma of the arm (=DSM 43382)

Al 3
	

A. pe/letieri	 C. Philpot, 388H (=DSM 44039)

A161
	

A. madurae	 NCTC 5654; mycetoma pedis (=ATCC 19425; CCM 136; DSM
43067; IMRU 1190)

A22
	

A. madurae	 F. Mariat (Institut Pasteur, 24 Rue du Dr. Roux, F75015, Paris,
France), IP 725 (=DSM 44021)

A31
	

A. madurae	 F. Mariat, IP 363; madura foot, Tunis (=DSM 44024)

A32
	

A. madurae	 F. Mariat, IP 364; madura foot (=DSM 43380)

. Genus Mycobacterium

M263T

M259

M264

M265

M266

M268

M279

M282

M283

N71 4

N71 7

N71 8

N721

N723

N726

N728

M262T

M5

M9

M30

M39

M. senegalense

M. senegalense

M. senegalense

M. senegalense

M. senegalense

M. senegalense

M. senega/ense

M. senegalense

M. senegalense

M. senegalense

M. .senegalense

M. senegalense

M. senegalense

M. sane galense

M. senegalense

M. senegalense

M. farcinogenes

M. farcinogenes

M. farcinogenes

M. farcinogenes

M. farcinogenes

NCTC 10956

NCTC 4524

E.H. Runyon, R397; bovine farcy, Dakar, Senegal

E.H. Runyon, R408; bovine farcy, Dakar, Senegal

E.H. Runyon, R409; bovine farcy, Dakar, Senegal

E.H. Runyon, R410; bovine farcy, Dakar, Senegal

E.H. Runyon, R148

E.H. Runyon, R455

E.H. Runyon, R456

M. Ridell, GB045; R.E. Gordon, Ri 363, bovine farcy, Dakar,
Senegal

M. Ridel!, GB048; bovine farcy, Dakar, Senegal

M. Ridell, GB049; bovine farcy, Dakar, Senegal

M. Ridell, GB053; bovine farcy, Dakar, Senegal

M. Ridell, GA816

M. Ridell, GA881

M. Ridell, GA883

NCTC 10955

M. Abdulle (Serum and Vaccine Institute, P.O. Box 919,
Mogadishu, Somalia), MA5; bovine farcy, skin lesion, Somalia

M. Abdulle, MA9,

M. Abdulle, MA3O

M. Abdulle, MA39



M54	 M. farcinogenes

M55	 M. farcinogenes

M57	 M. farcinogenes

• Genus Nocardia

N97	 N. asteroides

N. asteroides

N. asteroides

N. asteroides

N. asteroides

N. asteroides

N. asteroides

N. asteroides

N. asteroides

N. asteroides

N. asteroides

N. asteroides

N. asteroides

N. asteroides

N. asteroides

N. asteroides

N. asteroides

N. asteroides

N105

N3171

N668

N688

N692

N695

N900

N 901

N902

N907

N911

N91 2

N 1132

N 1134

Ni 135

Ni 139

Ni 140
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APPENDIX J. CONTINUED.

Laboratory	 Taxa	 Strain histories
numbers

M191
	

M. farcinogenes

M192
	

M. farcino genes

M217
	

M. farcinogenes

M612
	

M. farcinogenes

M768
	

M. farcinogenes

M555
	

M. farcinogenes

M687
	

M. farcinogenes

M785
	

M. farcinogenes

M52
	

M. farcinogenes

M. Abdulle, MA191

M. Abdulle, MA192

M. Abdulle, MA217

M. Abdulle, MA612

M. Abdulle, MA768

M. Abdulle, MA555, bovine farcy, mammary gland, Somalia

M. Abdulle, MA687, bovine farcy, liver, Somalia

M. Abdulle, MA785, bovine farcy, lung, Somalia

S.M. El-Sanousi, (Department of Microbiology, Faculty of
Veterinary Science, P.O.Box 32, Khartoum North, Sudan), KHF9;
bovine farcy, lymph nodes, Sudan

S.M. El-Sanousi, KHF1; bovine farcy, lymph nodes, Sudan

S.M. El-Sanousi, KF8; bovine farcy, lymph nodes, Sudan

SM. El-Sanousi, KF6; bovine farcy, lymph nodes, Sudan

R.E. Gordon (Rutgers Univeristy, New Brunswick, USA), N659
(N. caprae); =NCTC 659

R.E. Gordon, 9969; =ATCC 9969

R.E. Gordon, IMRU 727; =ATCC 19247; Garden soil, Thailand

S.G. Bradley (Virginia Common-Wealth University, Georgia,
USA), VAC 462

K.P. Schaal (Hygiene Institute, Cologne, Germany), N2

K.P. Schaal, N23; H. Mordarski, strain Copenhagen

K.P. Schaal, N67

J.L. Stanford (Middlesex Hospital, London, UK), N36, general
nocardiosis in an immunosuppressed female

J.L. Stanford, N37; pulmonary nocardiosis

J.L. Stanford, N38; pulmonary nocardiosis

K.P. Schaal, N60; M. Tsukamura, M-129, 23046

K.P. Schaal, N199; R.E. Gordon, IMRU 3419 (N. carnea);
replicate of ATCC 3847

K.P. Schaal, N228; V.A. Orchard, 255, soil isolate

K.P. Schaal, N3

K.P. Schaal, Nil

K.P. Schaal, N19

K.P. Schaal, N89

K.P. Schaal, N129; soil isolate
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APPENDIX J. CONTINUED.

Laboratory	 Taxa
	

Strain histories
numbers

N14

NuB

N318T

N428

N467

N471

N474

N475

N477

Ni 146

N1148

Ni 3

N233

N669

N670

N671

N687

N690

N699

N701

N898T

N1116T

N. brasiliensis

N. brasiliensis

N. bras/liens/s

N. bras/liens/s

N. bras/liens/s

N. brasiliensis

N. brasiliensis

N. brasiliensis

N. brasiliensis

N. brasiliensis

N. brasiliensis

N. farc/nica

N. farc/nica

N. farcinica

N. farcinica

N. farcinica

N. farcinica

N. farc/nica

N. farcinica

N. farcinica

N. farcinica

N. seriolae

R.E. Gordon, IMRU 744; A. Gonzáles-Ochoa, 409

CBS 438.64; AM. Klokke, 300

R.E. Gordon, IMRU 854; J.D. Schneidau Jr., 381; A. Batista, 631;
=ATCC 19296

R.E. Gordon, IMRU 1336; Nocardia spp., M.P. Lechevalier, L-36;
soil isolate

IP 708

A. Gonzáles-Ochoa (Instituto de Salubridad y Enfermedades
Tropicales, Mexico City, Mexico), 4115; mycetoma lower leg

A. Gonzáles-Ochoa, 4212; mycetoma ankle

A. Gonzáles-Ochoa, 4023; mycetoma forearm

A. Gonzáles-Ochoa, 4204; mycetoma heel; K.P. Schaal, N219

K.P. Schaal, N214

K.P. Schaal, N224

NCTC 8595

R.J. Olds (University of Cambridge, UK), CN 470

K.P. Schaal, N200

K.P. Schaal, N201

S.G. Bradley, VAC 330; M. Tsukamura, E-7549

K.P. Schaal, Ni

K.P. Schaal, N5

M. Ridell (University of Goteborg, Sweden), N58; =ATCC 3318

M. Ridell, N67

M. Tsukamura, R-3318, 23102; =ATCC 3318

JCM 4826

• Genus Nocardiopsis

Al 41	 N. dassonvillei

A27	 N. dassonvillei

Al20	 N. dassonvillei

A147	 N. dassonvillei

A150	 N. dassonvilei

NCTC 10488; R.E. Gordon, IMRU 509 (Nocardia dassonv/lle,);
(=ATCC 23218; DSM 43111)

F. Mariat, IP 395; M. André, Fort Lamy, Chad; mycetoma of the
arm (=DSM 40928)

H. Prauser (Zentralinstitut für Mikrobiologie und Experimentelle
Therapie, Jena, Germany); RE. Gordon, IMRU 1250 (=ATCC
23219; DSM 43235)

J. Lacey (Department of Plant Pathology, Rothamsted
Experimental Station, Harpenden, Hertforshire, UK), Al 441
(=DSM 44045)

J. Lacey, Al 460, cotton dust, Cramlington, UK (=DSM 44046)
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APPENDIX J. CONTINUED.

Laboratory	 Taxa
	

Strain histories
numbers

A202	 N. dassonvilei	 J. Lacey, Al 505, cotton dust, Cramlington, UK (=DSM 44047)

A204	 N. dassonvillei	 J. Lacey, Al 507, cotton dust, Cramlington, UK

A205	 N. dassonvillei	 J. Lacey, Al 509, cotton dust, Cramlington, UK

A2l1	 N, dassonvillei	 J. Lacey, A1515, cotton dust, Cramlington, UK

. Genus Streptosporan glum

TWOO6T
	

Str. albidum

TWOO1T
	

Str. amethystogenes

TWOO4T
	

Str. pesudovulgare

TWO21T
	

Str. viridogriseum
ssp. viridogriseum

TWO 071
	

Str. vulgare

TWO 021
	

Str. corrugatum

TWOO9T
	

Str. fragile

TWO22T
	

Str. nondiastaticum

TWO 05T
	

Str. roseum

TWOO6T
	

Str. viridialbum

HJ166
	

Str. sp.

HJ167	 Str. sp.

HJ256	 Str. sp.

HJ100	 Str. sp.

HJ1O1	 Str.sp.

HJ1 09	 Str. sp.

HJ117	 Str.sp.

HJ118	 Str.sp.

HJ121	 Str. sp.

DSM 43870

DSM 43179

DSM 43181

DSM 43850

DSM 43802

DSM 43316

ATCC 31519

DSM 43848

DSM 43021

DSM 43801

H.-J. Kim; Cockle Park Experimental Farm, Northumberland,
England, UK

H.-J. Kim; Cockle Park Experimental Farm, Northumberland,
England, UK

H.-J. Kim; Cockle Park Experimental Farm, Northumberland,
England, UK

H.-J. Kim; Oak copse, Corbridge, Northumberland, England, UK

H.-J. Kim; Oak copse, Corbridge, Northumberland, England, UK

H.-J. Kim; Oak copse, Corbridge, Northumberland, England, UK

H.-J. Kim; Oak copse, Corbridge, Northumberland, England, UK

H.-J. Kim; Oak copse, Corbridge, Northumberland, England, UK

H.-J. Kim; Oak copse, Corbridge, Northumberland, England, UK

. Genus Saccharomonospora

K168T
	

Sac. cyanea	 H. Runmao (New Antibiotic Research Department, Sichuan
Industrial Institute of Antibiotics, Chengdu, Sichuan, People's
Republic of China), NA-i 34 (SIIA 86134); soil, Guangyuan City,
Sichuan, People's Republic of China

K2O 1
	

Sac. sp.	 J. Ruan (Institute of Microbiology, Academia Sinica, Zhong Guan
Cun, Beijing 100080, People's Republic of China), 4029; soil

K1691
	

Sac. glauca	 DSM 43769
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APPENDIX J. CONTINUED.

Laboratory	 Taxa	 Strain histories
numbers

K170	 Sac. glauca

Ki 71
	

Sac. .g!auca

Ki 72
	

Sac. glauca

Ki 73
	

Sac. glauca

Ki 74
	

Sac. glauca

Ki 75
	

Sac. glauca

Ki 76
	

Sac. glauca

K194
	

Sac. viridis

Ki 95
	

Sac. viridis

E. Greiner-Mai (Institut für Mikrobiologie, Technische Hochschule
Darmstadt, 0-6100 Darmstadt, Germany), AA1O

E. Greiner-Mai, Ani

E. Greiner-Mai, Avi

E. Greiner-Mai, KE4

E. Greiner-Mai, Ko29

E. Greiner-Mai, MK18a

E. Greiner-Mai, R15

J. Lacey, A66; hay, Rothamsted (CUB 62)

J. Lacey, Al 450; air sample, cotton mill, Cramlington, England,
UK

K179	 Sac. viridis	 A. J. McCarthy (School of Biological Sciences, University of
Bradford, UK), BD-125; hay, Rothamsted (A969; CUB 614)

K202	 Sac. sp.	 J. Ruan, 350 ; soil

K731	Sac. viridjs	 E. KUster (Thermomonospora viridis), P101 ; peat, Ireland

Kl97	 Sac. viridjs	 J. Lacey, Al 905, Al 906; mushroom compost, Avon, England, UK

K198	 Sac. viridis	 J. Lacey, Al 905, Al 906; mushroom compost, Avon, England, UK

K177	 Sac. viridis	 A.J. McCarthy, BD-42, BD-89 ; grass compost

K178	 Sac. viridis	 A.J. McCarthy, B0-42, BD-89 ; grass compost

K18l	 Sac. viridjs	 E. Greiner-Mai, E13

Kl83	 Sac. viridis	 E. Greiner-Mai, Ko27

K184	 Sac. viridis	 E. Greiner-Mai, Ko33

Kl85	 Sac. viridis	 E. Greiner-Mai, Llv

K186	 Sac. viridis	 E. Greiner-Mai, MK5v

Kl 87	 Sac. viridis	 E. Greiner-Mai, MK22

K188	 Sac. viridis	 E. Greiner-Mai, Rl8

Kl 89	 Sac. vfridis	 E. Greiner-Mai, R22

Kl 90	 Sac. viridis	 E. Greiner-Mai, R24

Type strains. Abbreviations: ATCC, American Type Culture Collection, 12301 Parklawn
Drive, Rockville, Md., USA; DSM, Deutsche Sammiung von Microorganismen und
Zellkulturen, Mascheroder Weg ib, 0-38124, Braunschweig, Germany; IFO, Institute for
Fermentation, Osaka, Japan; IMRU, Institute of Microbiology, Rutgers State University, New
Brunswick, N.J., USA.; JCM, Japan Collection of Microorganisms, Saitama, Japan; NCIMB,
National Collection of Industrial and Marine Bacteria, St. Machar Drive, Aberdeen, Scotland,
UK; NCTC, National Collection of Type Cultures, Central Public Health Laboratory, London,
UK; and UQM, University of Queensland, Brisbane, Australia.
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