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ABSTRACT

A study of velocity and turbidity distributions in the separation zone of dissolved air

flotation (DAF) tanks was carried out at Franldey and Trimpley Water Treatment

Works of Severn Trent Water. Sampling of velocity was made using an Acoustic

Doppler Velocimeter (ADV). The instrument is capable of measuring velocities as

low as 1 mmlsec and producing three dimensional velocity data. Sixty-four points set

at equal intervals within the tank were monitored and the flow rate corresponding to

the velocity for each point was recorded. The same points were used for the sampling

of turbidity within the tank and the corresponding flow rate for each sampling point

was also recorded. The aim of the study was to establish the relative importance of

tank design parameters within the separation zone.

The ADV probe was found suitable to be used in the investigation based on the data

quality obtained. The study indicated that there are some differences in the flow

patterns compared to Computational Fluid Dynamics (CFD) models found in the

literature. The plan view contour plots indicated that velocities in the x, y and z

directions at a quarter depth from the surface of the tank were unstable with irregular

velocity patterns. However the CFD models indicated that the flow at this depth was

uniform. Also at this depth the vertical velocity was predominantly downward which

suggested that the solid liquid separation process is inefficient.

Tank physical parameters were found to have a highly significant effect on the

velocity distribution using analysis of variance (ANOVA) and analysis of covariance

(ANCOVA). These analyses involved higher order interactions and independent

predictor variables. The results from the higher order models are difficult to interpret.

Thus simple second-order empirical models were used. Empirical models were

developed using regression analyses to describe the observed velocity within the tank.

These models are appropriate for design purposes. Although the models are not

precise, the standard statistical techniques used for data analyses are found to be
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useful to compare, analyse and develop the appropriate model from the velocity data

obtained during the investigation.

In terms of turbidity removal, there was no significant difference in the average

turbidity readings between different depths of the tank. Comparison of turbidity at

different lengths of the tank indicated that the average turbidity readings were

identical between three quarter length of the tank from the baffle and at the extreme

end of the tank. The results confirm that there were not enough air bubbles within the

separation zone for turbidity removal. The size of tank at Franidey can also be

reduced by 15% so that the difference between the average flow rate and the surface

area between the tank at Frankley and Trimpley is the same. It is expected that the

reduction in size will not affect the turbidity within the separation zone due to non

significant turbidity removal within this zone.
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CHAPTER 1

INTRODUCTION

Dissolved air flotation (DAF) is one of the methods used in water treatment to

separate solids from a body of liquid. The DAF process was initially used for the

recovery of fibres and white water in the paper industry (Gregory, 1997). Its

suitability for potable water clarification was realised in the mid-1960's in Finland

and Sweden. One of the first people to initiate the use of the DAF process for potable

water treatment in the United Kingdom was Dr. Packham. The programme of

investigation was then intensified by the Water Research Centre. DAF technology

was brought into the United Kingdom from Sweden during the 1975-76 drought. In

the early days the development of the process appeared to be more of an art rather

than science due to too many design and operation variables (Gregory, 1997).

Interest in the process arises due to its higher surface loading rate than conventional

gravity sedimentation which results from a shorter retention time. Further advantages

include rapid start-up, effective removal of algae, its suitability to treat soft, low

alkalinity upland waters, stored lowland waters and low turbid water. Experience in

South Africa indicated that the DAF process was capable of treating raw water

turbidity of 500 NTU with the treated water turbidity not exceeding I NTU (Kolbe,

1997).

Longhurst and Graham (1987) reported that there is a great variation of DAF tank

sizes and shapes found in the United Kingdom. They indicated that the surface

overflow rate (rise rate or surface loading or sometimes hydraulic loading) is the

fundamental design cnterion for the tank. There are two different methods of

calculating the surface loading. In the first, the calculation is calculated based on the

surface area of the separation zone and in the second, on the total surface area of the

flotation cell. Longhurst and Graham (1987) indicated that the latter was normally

used in practice. They also indicated that there was no clear evidence to suggest that

a certain aspect ratio (i.e. length:width ratio) is superior to the others. However
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Franklin et a!. (1997) suggested that higher aspect ratios work better. It is therefore

rather difficult to make any judgement based on two contradictory reports.

Although DAF technology has been widely used for potable water treatment,

discussions with Severn Trent Water (Noone, 1995) indicated that there was a lack of

information on the suitable design procedures for the DAF tanks. In fact at Severn

Trent Water various tank configurations have been used. There is no standard

procedure to design the tank. Noone (1995) also indicated that the roles of

flocculation and flotation are extremely important to maximise the removal of

particles before filtration. The water industry felt that a fundamental understanding

of different tank configurations is important in order to develop a standard tank

design procedure.

In early 1995 a meeting was held with the technical staff of Severn Trent Water to

identify the problems faced by the treatment plant managers and process advisors on

the existing flotation plants. The results from this meeting indicated that there was a

lack of understanding on flow encountered within the flotation tanks. A number of

other questions were also raised, an extremely important one was regarding the

effectiveness of particle removal. This indicated that there was a lack of information

on the characteristic of turbidity distribution within the tank.

It is therefore considered necessary to investigate the actual flow and turbidity

characteristics within the separation zone of a DAF tank with the possibility of

developing appropriate models to describe the velocity distribution within the tank for

design purposes. To achieve this, it is considered necessary to investigate a full scale

treatment works rather than using a laboratory model so that the uncertainty factor

can be addressed appropriately. Discussions with Severn Trent Water also indicated

that a full plant study must be carried out under normal operational conditions so that

the outcome of the results are based on the actual day to day operation and relevant to

the industry. A collaboration programme was established between the University of

Newcastle and Severn Trent Water. Five treatment works with different sizes and
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shapes were identified and two were considered feasible with respect to cost and

safety.

The present study was carried out on a full scale dissolved air flotation plant of

Severn Trent Water with the main objective being to develop the design procedures

within the separation zone of the DAF tank.

This thesis was structured with different chapters in accordance with the sequence of

activities carried out during the study period. In Chapter 2, a literature review was

written to provide a general background of the present technology. Chapter 3

includes a summary of the literature review and an outline of the research objective.

This is followed by a description of the methods and equipment used in the

investigation (Chapter 4). It was also felt necessary to describe the statistical

techniques used during data analyses so that its application can be properly

understood (Chapter 5). Velocity data were analysed in Chapter 6. Chapter 7 is

concerned with an analyses of the relationship between tank dimensions, flow and

velocity distributions. It describes and proposes appropriate statistical models for the

design of flotation tanks. In Chapter 8, turbidity distributions in the DAF tanks were

analysed and the appropriateness of the statistical models (i.e. models developed in

Chapter 7) in relation to turbidity removal were discussed. Finally in Chapter 9 the

conclusions of the study were made and further research work proposed.
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CHAPTER 2

LITERATURE REVIEW ON DISSOLVED AIR FLOTATION (DAF)

2.1 INTRODUCTION

There are many types of flotation process available for different applications. The

technology has been applied in industries such as in mineral processing (Gaudin,

1939; Merrill and Pennington, 1962), wastewater clarification (Travers and Lovett,

1985; Krofta et aL, 1987, 1988; Wang et a!., 1989), artificial recharge (Puffelen et

al.,1995) and potable water treatment (Childs et a!., 1977; Nickols et a!., 1995).

Basically the flotation process is used to separate solids from a body of liquid.

This chapter discusses the historical development of flotation processes and the

kinetics of bubble-floe attachments for potable water treatment. Theoretical aspects

of bubble-floc attachments are initially reviewed followed by the design and

operation parameters currently used in the water treatment process. At the end of the

chapter a summary on the current knowledge is given which identifies the gaps in

knowledge in flotation tank design.

2.2 HISTORY

In the field of water treatment, flotation processes involve separation of solids from

liquid using gas bubbles. They have been used in the mining and chemical processing

industries for over 100 years (Edzwald and Walsh, 1992). However the history of

flotation goes back even earlier. The ancient Greeks used this process to separate

minerals from the gangue over 2000 years ago (Gregory and Zabel, 1990). The

development of the process to modem practices took many years. According to

Kitchener (1984), Haynes was able to separate minerals using oil in 1860. His

method was patented. In 1905 Salman, Picard and Ballot developed a process to

separate sulphide grains from water by adding air bubbles and a small amount of oil

to enhance the process. This was called 'froth flotation'. In 1910 T. Hoover

developed the first flotation machine which was not much different from today's

equipment. A few years later, in 1914 Callow introduced a new process called 'foam
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flotation'. This process involved the introduction of air bubbles through submerged

porous media. In fact froth and foam flotation processes are generally known as

dispersed-air flotation and are used widely in the mineral industry at the moment.

The development of the electrolytic flotation process can be traced back to 1904. The

process was suggested by Elmore who showed that electrolysis could produce bubbles

for flotation. It was not used commercially at that time.

Dissolved-air flotation was patented in 1924 to Niels Peterson and Carl Sveen in

Scandinavia (Lundgren, 1976). It was initially used to recover fibres and white water

in the paper industry. The use of DAF in the treatment of waste water and potable

water began in the late 1960's. Edzwald and Walsh (1992) reported that dissolved air

flotation has been used for water clarification in Europe especially in the

Scandinavian countries for more than 20 years. Heinanen, (1988) in his survey on the

use of flotation in Finland indicated that the first dissolved air flotation plant for

potable water clarification was constructed in 1965 and by 1988 there were 34 plants

in operation. However the first application of flotation for a water reclamation plant

was introduced in the early 1960s in South Africa (Longhurst and Graham, 1987). In

the United Kingdom, the first full-scale water treatment plant using this process was

commissioned in 1976 at the Glendye Treatment Works of the Grampian Regional

Council, Scotland (Zabel, 1978). Experiments carried out by researchers at the Water

Research Centre showed that flotation is a more rapid method of solid-liquid

separation than sedimentation (Packham and Richards, 1975).

2.3 TYPES OF FLOTATION

Flotation may be defined as the transfer of a solid from the body of a liquid to the

surface by means of bubble attachment (Zabel and Hyde, 1977; Zabel, 1978).

Different methods of bubble generation give rise to different types of flotation

processes (Zabel and Melbourne, 1980). There are three types of flotation process

and these are as follows:-

1. Electro- or electrolytic flotation.
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2. Dispersed air flotation.

3. Dissolved air flotation.

2.3.1 Electro-flotation

Under this process, bubbles (oxygen and hydrogen) are generated by passing an

electric current between two electrodes in a dilute aqueous solution (Ward, 1992).

The material used for the electrode is normally made of aluminium or steel (Zabel

and Melbourne, 1980). The anodes are prone to corrosion while the cathodes are

subject to scaling by carbonate deposition (Degremont, 1991). As a result, frequent

problems were encountered with sacrificial electrodes leading to high maintenance

and replacement costs together with delay in the operation of the system.

The bubbles produced by the electro-flotation process are normally small and do not

create a turbulent environment to the flocs (Barrett, 1975; Coulson eta!., 1991). Thus

the removal of low density particles is expected to be efficient under appropriate

conditions (Zabel and Melbourne, 1980). This process is suitable for effluent

treatment (Ho and Chan, 1986), sludge thickening and water treatment installations of

10 to 20 m3/hour. Figure 2.1, shows a typical arrangement of an electro-flotation

tank.

water level
	 sludge removal belt

raw water
	 sludge trough

- 0000	 0	 -—	 Ooo0 0
J 000 0 0 y p	 p	 -

- 0 p 0 0	 0
- 0 oO 0 OOo% _____

IlIlli'''' clarified
water
effluent

electrodes

Figure 2.1 - Electro-flotation tank (Source: Zabel, 1978)
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2.3.2 Dispersed Air Flotation

This process has two different systems to generate bubbles namely, foam flotation and

froth flotation. In the foam flotation system, bubbles are generated by forcing the air

through a porous media made out of ceramic, plastic or sintered metal (Zabel and

Melbourne, 1980). Figure 2.2 shows a typical arrangement for bubble generation

through a media or diffuser.

Influent —k

Air

•	 •	 So0 0 0.00.0,0

- QoO
- 0000

0 0000
o0-

—1000C

Foam
concentrate

Effluent

Diffuser

Figure 2.2 - Foam flotation (Source: Zabel, 1978)

In the froth flotation system (as shown in Figure 2.3) a high speed impeller or turbine

blade rotating in the solution is used to produce air bubbles.
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Figure 2.3 - Froth flotation (Source: Zabel, 1978)

Dispersed air flotation normally produces large air bubbles of more than 1mm in

diameter (Barnes eta!., 1981). Its application is mainly for the separation of minerals

and removal of hydrophobic materials such as fat emulsions in selected waste water

treatment. This process has been assessed for potable water treatment but was not

suitable (Zabel and Hyde, 1977).

2.3.3 Dissolved Air Flotation (DAF)

There are three main types of dissolved air flotation processes available. These are as

follows:

1. Vacuum flotation

2. Micro-flotation

3. Pressure flotation

2.3.3.1 Vacuum Flotation

Kalinske (1958) indicated that vacuum flotation was the original form of dissolved air

flotation. It is used for the recovery of fibres in the pulp and paper industry. In this

process, water is saturated with air under atmospheric pressure and then a vacuum is

applied to the flotation tank. Small air bubbles will be released in the tank and they
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will agglomerate with the particles and move up to the surface of the liquid. There

are at least three main disadvantages associated with the process. These are as

follows:

1. Batch process instead of continuous

2. Sophisticated equipment required to maintain the vacuum

3. Amount of air available is limited by the capacity of the vacuum

2.3.3.2 Micro-flotation

This process was developed in Sweden and has been used widely in the Scandinavian

countries for the treatment of domestic sewage and industrial effluents. Prior to

micro-flotation, sewage is normally treated by screening, grit removal, primary

settlement and chemical treatment. In the micro-flotation process, water is passed

down and up a shaft of approximately 10 metres deep. The whole water column will

be subjected to hydrostatic pressure (Hemming et al., 1977; Zabel and Melbourne,

1980). Water will be aerated as it passes the down-flow section and air dissolves in

the water due to an increase in hydrostatic pressure. Polyelectolytes may be added in

the down-flow section to aid floe agglomeration and increasing the hydrophobility of

the solids. In the up-flow section, the pressure is decreased and some fine air bubbles

will be released. The quantity of air is dependent on the depth of the shaft. Figure

2.4 shows a typical arrangement of a micro-flotation system. This process is

restricted to small sewage and effluent treatment. It is an effective process for the

separation of humic acid, organic colloids, silica and bacteria from water (Rubin and

Lackey, 1968; Cassell et a!., 1971, 1975; Mangravite et a!., 1975; Edzwald and

Walsh, 1992). This process is not practical in water treatment due to the high cost

incurred in chemical collectors (e.g. laurie acid) and frothers (e.g. ethanol). Besides

that an unacceptable limit of organic and surfactant content will be left in the drinking

water (Malley, 1988).
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1. Waste water intake 2. Precipitation chemical 3. Flocculation tank

4. Compressed air 5. Polymer dosage 6. Shaft for aeration 7. Aeration

8. Riser 9. Flotation tank 10. Sludge tank 11. Effluent 12. Sludge outflow

Figure 2.4 - Micro-flotation system (Source: Hemming et al., 1977)

2.3.3.3 Pressure Flotation

Pressure flotation is the most common process used in dissolved air flotation.

Initially air is dissolved in water under pressure. Then a reduction of pressure to

atmospheric is made. This enables air bubbles to be produced. There are three basic

types of pressure dissolved air flotation processes. These are as follows:

1. Full-flow pressure flotation

2. Split-flow pressure flotation

3. Recycle-flow pressure flotation

If the entire influent is pressurised and aerated, it is called full-flow pressure flotation.

If part of the influent is pressurised while the rest flow directly to the

flocculationlflotation tank, it is called split-flow pressure flotation. Full-flow and

split-flow processes are not suitable for surface ater treatment due to high shear at

the saturation stage which would break up the preformed floes (Rees ci a!, 1980;

Krofta and Wang, 1982; Wang and Wang, 1989). In the recycle-flo%\ flotation, the

influent is not pressurised hut part of the effluent is pressurised and saturated with air.
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The disadvantage of this system is the need to resize the flotation tank if an additional

recycle-flow is made (Rees et a!., 1980). Figures 2.5, 2.6 and 2.7 show general

arrangements for different types of pressure dissolved air flotation processes.

Tibke and Beaumont (1993) indicated that the most widely accepted flotation process

to treat potable water is by coagulation and flocculation followed by recycled

dissolved air flotation. Malley and Edzwald (1991b) reported that researchers at the

Water Research Centre (WRc) in England found that recycle dissolved air flotation

was the most practicable process to treat potable waters.

Sludge

Clarified
effluent

Flocculating	 Flotation
agent	 chamber

(if required)

Figure 2.5 - Full-flow pressure flotation (Source: Zabel, 1980)

Flocculation chamber	

Sludge Flotation
(if reu1red\	

I -chamber
Influent	 Clarified

effluent
Air

Flocculating
agent

(if required)	 Saturator

Figure 2.6 - Split-flow pressure flotation (Source: Zabel, 1980)
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Flocculation
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Sludge Flotation(if required)	
'1' .. chamber

Influent	 Clarified
effluent

Flocculating
agent
	

Recycle
(if required)	 pump

Saturator

Figure 2.7 - Recycle-flow pressure flotation (Source: Zabel, 1980)

2.4 RESEARCH WORK ON DAF FOR POTABLE WATER

CLARIFICATION

A number of research works to assess the effectiveness of DAF for the clarification of

potable water were carried out by different organisations and researchers, particularly

in the United Kingdom, South Africa and United States. These include research done

by Water Research Centre (Packham and Richards, 1972a, 1972b, 1975; Hyde, 1975;

Hyde et a!., 1977; Rees et a!., 1979), universities and research institutes in the United

Kingdom (Urban, 1978; Swailes, 1979; Lister, 1982; Repanas, 1992), South Africa

(Vuuren et a!., 1965; Bratby and Marais, 1974, 1977; Offringa, 1995) and in the

United States (Vrablik, 1959; Eftelt, 1964; Cassell et a!., 1975; Krofta and Wang,

1985; Malley and Edzwald, 199 Ia)

2.4.1 Bench-scale and Plant Studies

2.4.1.1 Research Works in United Kingdom and Europe

The first bench-scale flotation apparatus by Packham and Richards (1972b) was

constructed from perspex, with a capacity of 1.2 litres, 75mm in diameter and with a

stainless steel paddle driven at variable speed by an electric motor. The capacity of

the pressurised air saturation vessel was 1 litre, filled with 700ml of distilled water

and maintained at a pressure of 340 KN m 2. The air was released into the vessel

through a needle valve. The results of this study showed that surface active agents
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could be discarded for water treatment using dissolved air flotation. Efficient

flotation could be achieved by the addition of 5% by volume or less, of water

saturated with air at 340KNIm2. The process retention time for water clarification

was found to be shorter than sedimentation. Packham and Richards (1975) concluded

that the dissolved air flotation process could be considered for water clarification due

to possible advantages over sedimentation in terms of algal removal, lower capital

cost and the ability to produce sludge with higher solids content. Algal removal is

important because its presence may cause some problems such as taste, odour and

blocking of filters (Eades and Brignal, 1995).

Packham and Richards (1975), later tried to determine the effects of chemical

treatment of the flocculation process using aluminium sulphate and ferric sulphate

based on the design parameters of a pilot plant in South Africa (van Vuuren et al,

1967). They also investigated the air requirement for DAF, characteristics of sludge,

the effects of skimming on treated water quality, algal removal as compared to

sedimentation and the ability of DAF to treat turbid waters. The flotation unit which

had been used in South Africa consisted of a conical tank with a feed flow of 15

gallons per minute (gpm), total retention time of 20 minutes, upward flow of 15

feet/hour (i.e. 4.S7mIhr), horizontal flow 15 feet/hour and downward flow of 15

feet/hour (van Vuuren et a!., 1967). Air was introduced prior to the impeller of the

centrifugal pump so that micro-bubble aeration could be achieved. The tank was used

to purify sewage works effluents. Prior to this investigation, van Vuuren et al. (1965)

had made an assessment on the removal of algae in water reclamation by flotation.

Two types of flotation tanks were investigated i.e. vertical and radial flow tanks. The

vertical tank was 4 feet deep and 3 feet internal diameter. The depth from the surface

to the distributor arms was 12 inches. The retention period was 8 minutes at a flow

rate of 22gpm with a vertical flow velocity of approximately 28 feet/hour. The radial

flow tank was 8 feet in diameter, 23 inches deep with an energy dissipator-cum-air

escape tank situated in the centre having a diameter of 23 inches, 16 inches deep with

its brim 4 inches above the water level of the main tank. For an influent flow of 90

gpm, the retention time was less than 7 minutes and the flow over the brim of the

inner tank amounted to 15 gpmlft run of its circumference. A comparison of the
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performance of both tanks was made and the results showed that the radial flow tank

had the advantage of consistently better removal of faecal E.Coli. There were no

significant differences in the physical and chemical performance of the two tanks.

The flotation tank used by Packham and Richards (1975) was designed with a flow

rate of 1.8 m3/hour and retention times of 7 minutes and 20 minutes in the

flocculation and flotation tanks respectively. Coagulants were added in the flash

mixer with a capacity of 0.055m 3 prior to four-stage flocculation followed by

flotation. The capacities of the four-stage flocculator and flotation tank were 0.22

and 0.6 cubic metres respectively. These tanks were connected in series by 80mm

PVC pipes. The flotation tank was 0.9m in diameter of cylindrical shape with a

conical bottom section. The overall depth was 1.45m. The tank had a conical

bottomed inner tank at the centre with a 0.65m diameter and 0.95m depth. Flexibility

in the flow rate for raw water was allowed between 1.2 and 2.4 m 3/hour. Water from

the River Thames was used for the study. There was a considerable variation in raw

water quality during the study period. The turbidity varied between 1.8 and 78 FTU

(i.e. Formazin turbidity unit), the colour between 0.22 and 0.128 (expressed as an

optical density measurement at 400nm), pH 7.7 to 8.4 and the water temperature was

between 2.5 and 18°C. Maximum algal count of 72,000 cells/mi was recorded during

peak turbidity and colour due to occasional flood.

The outcome of the studies showed that performance at the flotation stage was very

dependent on the efficiency of flocculation. There was no significant difference

between using ferric sulphate and aluminium sulphate in the flocculation process.

The clarification process could be improved if aluminium sulphate was combined

with polyelectrolyte. The efficiency of DAF with respect to colour, turbidity and

residual coagulation concentrations was equivalent to sedimentation. In terms of

algal removal, DAF performed better than sedimentation. On the air requirement

using Thames water, the addition of 4 to 6° o by volume of water saturated with air at

340 KPa could produce a good flotation process. Other advantages learned from this

study include a low rate of head loss at the filter bed, good filtered water quality and

sludge with a higher solid content of 2 to 10°o.
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Hyde (11975) used a similar design to Packham and Richards (1975) but altered the

shape of the flotation tank in the form of a flat bottomed rectangular basin with a

capacity of 8.2 m 3/hour. His pilot plant consisted of a flash mixer tank, a four stage

flocculation tank, a 2.4m x 0.3m x 1.2m deep flotation tank and a 0.3m diameter

rapid-gravity filter. The objectives of the study were to investigate the effects of

flocculation, dissolved air addition, coagulant dose, plant throughput and raw water

quality on treated water quality. The results of the study showed that the retention

times in the flash mixer, flocculator and flotation tank were 14, 9 and 54 minutes

respectively. This would produce a desirable treated water quality. However when

the raw water turbidity rose to 100 FTU and colour to 450 Hazen, the retention time in

the flotation tank had to be increased to 64 minutes to get a similar result on treated

water quality. The increased retention time in the flotation tank may not be necessary

due to the fact that residual turbidity is a function of the length of the rapid-mix

period as reported by Letterman et a!. (1973). This observation is based on their

investigation of the influence of rapid-mix parameters on flocculation where the

measurements of residual turbidity were carried out after a fixed sedimentation

process of 30 minutes. On algal removal, after adding 5 mg/litre of chlorine prior to

coagulation, algae concentration would normally be less than 1500 cells ml in the

flotation treated water. This result was based on raw water having algal counts of

30,000 to 150,000 cells ml and predominantly the 'Stephanodiscus Hant:schii'

species. The air requirement for the flotation process to produce an optimum treated

water turbidity was 6 to 8° o recycle at 345 KPa. The optimum quantity of air required

was 5 to 7gm air m3 of raw water. This result confirmed the earlier work done by

Packham and Richards (1975). A comparison between packed and unpacked

saturators at water temperature of 11 ° C, showed that the efficiency of the unpacked

saturator was 60 to 65° o of the efficiency of the packed saturator. Finally Hyde

(1975) suggested that further investigations need to be carried out in the following

areas:

1. Optimisation of the flocculation process to give efficient flotation

2. Sludge removal methods for large-scale plants and

3. Operating experience with different types of water.
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In the Netherlands, Stork (1977) reported that a pilot plant study was carried out on

river and well water using a flotation process for the treatment of potable water. The

length, width and depth of the flotation tank were 3.60m, 1.Om and 1.8m respectively.

The recycle ratio was 2.5 to 10% and the applied saturator pressure was 7

atmospheres. Prior to flotation, the raw water was coagulated with chlorinated

ferrous sulphate and rapidly mixed using a mechanical mixer. This was followed by

two-stage flocculation in an equal tank volume of 5.04m 3 . The outside diameter of

the paddle used for flocculation was 1 .22m. The dimensions of the paddle blade were

1.5m high, 0.115m wide and 0.04m thick. Tapered flocculation was employed. In

the first compartment, the mixing speed was 6 rpm (revolutions per minute) and in

the second compartment 5 rpm. The results of the study for surface water showed

that algal removal was effective without any increase in coagulant dose. There was

also no clear influence of coagulant dose on turbidity and flotation treated water.

Results from the treatment of deep well water showed that the residual coagulant in

the flotation treated water was rather high due to the shorter length of the flotation

tank. The dimensions of the tank used in this study were 1 .425m length, 0.97m width

and 1.8m depth. Further research work in the Netherlands indicated that there is a

need to investigate the capability of DAF to remove micro-organisms in order to

reduce chlorine or ozone dosage (Puffelen et a!., 1995).

In Sweden and Finland, case studies performed on a drinking water treatment plant

showed that the flotation process was superior to sedimentation (Rosen and Morse,

1977). The advantages of flotation included shorter flocculation time, higher surface

loading and filtration rate, longer backwash interval for the filter (longer filter run),

drier sludge content and better algal removal. However turbidity removal was not

effective during winter due to the extreme temperatures encountered in the

Scandinavian countries. The reason could be explained from Equation 2.4 (Section

2.4.2.1) where at a lower temperature, the viscosity is higher, causing lower rising

rate of the bubbles. Thus a longer time would be required to separate the particles

from the liquid.
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In England, Rees et al. (1979) continued with further investigations on five different

types of water from different water undertakings. Five plants, each with a capacity of

95m 3 Ihour were constructed to treat the following waters:

1. Three-day stored water with algal problem (Langham Treatment Works, Essex

Water Company)

2. Water from a flashy, hard stream (Bukiesham Pumping Station, Anglian Water

Authority)

3. Turbid river water (Strensham Treatment Works, Severn-Trent Water

Authority)

4. Low turbidity, highly coloured water (Arnfield Treatment Works, North West

Water Authority)

5. Nutrient-rich, long-term stored water with algal problems (Ardleigh Treatment

Works, Ardleigh Reservoir Committee)

The objectives of the study were to assess the effectiveness of the process for

different types of water, to develop full-scale plant design criteria and to look for

proper methods of sludge removal.

The result of the investigation for stored water with algal problems showed that

aluminium sulphate performed better than ferric sulphate. Algal removal could be

further enhanced by pre-chlorination. When compared to sedimentation, DAF

performed much better, for example 'Aphani:omenon' algal species with 179,000

cells ml in raw water was found to have 23,000 cells/mi in water treated by

sedimentation and only 2,800 cells ml when treated by flotation. Process comparison

reported by Rosen and Morse (1977) showed that 95% removal of algae could be

achieved using DAF compared with 650 o using sedimentation. However the pilot

plant experienced by Kaur et a!. (1994) indicated that the DAF plant was not

particularly effective for the removal of algae compared to a sand/anthracite filter.

For high turbidity river water and low turbidity highly coloured water, the

performance of DAF could be improved if a slightly higher dose of coagulant is

added. At higher raw water turbidity of 140 to 155 FTU, turbidity could be reduced

by reducing the flow rate at the treatment plant from 95 to 85.5 m3 /hour. However

there was no attempt to find the relationship between turbidity removal and different
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output capacities of the plant. In terms of colour removal, it was found that

sedimentation was better than flotation. Raw water of 450 Hazen became 20 Ha.zen

after flotation and zero after sedimentation. However the output (surface loading) of

sedimentation tanks was only 0.9 mlhour compared with 12 rn/hour (i.e. m3/m2/hr)

using flotation. Rees and co-workers also indicated that a three-stage flocculation of

12 minutes without tapering was sufficient to produce a good flotation process. The

same idea of non-tapering was suggested by Zabel and Melbourne (1980) except for

those plants treating turbid river water. They indicated that the mean velocity

gradient should be 7Osec'. In chemical waste water treatment, ødegaard (1995) also

indicated that tapered flocculation was not suitable and suggested the optimum

velocity gradient for flocculation/flotation should be 60 to 8Osec'. However the

importance of tapered mixing has long been used for flocculation design (Hudson and

Wolfner, 1967) and its effectiveness has been recognised by many authors

(Kawamura, 1976). Experimental works by Kiute et a!. (1995) and pilot and full-

scale plants studies by Schofield (Schofield et al., 1991; Schofield, 1995a; Schofie1d,

1995b) indicated that tapered G (velocity gradient) values between 25 to 80 sec' are

favourable. However their findings may only be appropriate to the particular type of

water used. The finding by Rees et a!. (1979) may form another option in water

treatment design particularly with the coagulation and flocculation processes. Further

work may be needed to confirm those conflicting results. Pressures between 350 and

420 KPa (i.e. between 3.5 and 4.2 bar) and recycle of 7 and 8 0 o were adequate for an

optimum performance (Rees et a!, 1979). The total air requirement was between 7 to

10gm of air per cubic metre of treated water. This result was in an agreement with

the works of Vosloo et a!. (1986). For sludge removal, a mechanical device was

recommended so that sludge with high solid content could be removed.

2.4.1.2 Research Work in United States

In the United States a flotation process for water clarification was suggested by

Hopper (1945). He investigated 34 different raw water surface supplies which were

normally used in North Carolina. A wetting agent was employed for foam flotation

and his results indicated that the average reductions in turbidity, suspended solids and

bacteria were approximately 70° 0, 7900 and 90° o respectively. The figure on turbidity
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removal reported by Wang and Mahoney (1989) was only around 45% and colour

removal was at approximately 50%. Further investigations were conducted by

Hopper and McCowen (1952) on the toxicity of certain surface-active agents, the

chemistry of the process, the bacteriology, the parasitology, the effects of temperature

as well as the use of an electron microscope assisted in the determination of how

small a particle could be removed. The results of the investigation may be

summarised as follows:

1. The quaternary ammonium compound could be used as a surface-active agent

provided that its residual concentration after treatment is less than 1 part per

million (ppm).

2. The surface-active agent used worked very well in the flotation process for the

purification of water.

3. The removal of bacteria achieved could be up to 99%, computed by the plate

count method.

4. 10000 cyst (E.histolytica) removal could be achieved in treating water with a

turbidity of 300ppm.

5. The process could work for both hot and cold water (34°F).
6. 95°o.ofparticles measuring 259 t m could be removed.

7. The water should be chlorinated in the usual manner before leaving the treatment

plant.

Recently Edzwald and Walsh (1992) made laboratory and pilot plant investigations on

dissolved air flotation under the sponsorship of the American Waterworks

Association Research Foundation. The primary objectives of this research work were

as follows:

1. To look into the air requirement for the process (in terms of percentage recycle or

bubble volume concentration) as a function of raw water quality and flocculated

turbidity for clay waters, waters containing fulvic acid (FA) or natural colour and

waters containing algae.

2. To make a comparison between dissolved air flotation and conventional gravity

settling (plain sedimentation) processes for the above waters for different

pretreatment conditions, flocculation times and overflow rates.
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3. To investigate the effects of flocculation time on dissolved air flotation

performance.

In order to proceed efficiently with the objectives, typical design and operation

parameters for dissolved air flotation process were compiled from various sources.

These parameters are listed in Table 2.1.

Table 2.1-Typical design and operation parameters for DAF
(Source: Edzwald and Walsh, 1992)

PARAMETER	 DESIGN VALUES	 DESIGN VALUES
________________	 RANGE	 TYPICAL

CHEMICAL
PRETREATMENT: ________________ ________________

Coagulation dose	 Determine from jar test _________________________
Flocculation time	 5 - 30	 20
(minutes)	 ___________________________ ___________________________
G value (per second)	 10 - 150	 70

FLOTATION TANK
DESIGN:	 ________________ ________________

Detention time (minutes)	 5 - 15	 10
Depth(m)	 1.0-3.2	 2.4
Overflow rate (rn/hr.)	 5 - 15	 8
Freeboard (m)	 0.1 - 0.4	 0.3

AIR SATURATION
SYSTEM:	 ___________________ ___________________

Operating pressure (KPa)	 350 - 620	 485
_______________________	 (50 - 90psi)	 (7opsi)
Recycle ratio (°o)	 6 - 30	 6 - 12
Bubble size (.tm) 	 10 - 120	 40 - 50
Saturator	 efficiency,	 90
packed(°o) -	 ______________________ ______________________
Saturator efficiency,	 70
unpacked(°o) -	 ______________________ ______________________
SLUDGE:	 __________________ __________________
Percent solid (°o)	0.2 - 6	 3

Three phases of studies were conducted by Edzwald and co-workers. In phase 1, it

was to vary the recycle or bubble volume concentration for three synthetic waters

20



(clay water, aquatic fulvic acid water and water containing algae). In phase 2, an

examination of air requirements at two concentrations for each synthetic water at a

temperature of 6±2°C was carried out. While in phase 3, side-by-side comparisons of

DAF with conventional gravity settling (plain sedimentation) were done.

Bench-scale studies were conducted using a DAF system manufactured by Aztec

Environmental Control Ltd., United Kingdom. For pilot plant studies, a continuous

flow DAF unit manufactured by PURAC, Inc., was used.

Results of bench-scale studies showed that for a bubble volume concentration of 4600

ppm or less it was able to treat all types of water used. This included fuivic acid with

dissolved organic carbon of 2 to 15 mg/I, clay with 20 to 100 mg/i and algae of 2x104

to 5x105 cells/mi. However cold water of 6±2°C gave higher turbidity than warm

water of 20±2°C. Comparisons of DAF to conventional gravity settling (plain

sedimentation) showed that the overflow rate was in the ratio between 6:1 and 12:1.

Large-size flocs were not required because it has been shown that by using pinpoint-

size flocs for water spiked with iO4 cells ml higher turbidity removal could be

achieved. Further works by others (Klute ci' a!., 1995; Bunker ci' a!., 1995) showed

pinpoint-size flocs were favourable. Fioc size in the range of 30 to 45im at pH 6.0

was reported to have given the best particle removal efficiency. Removal of

ultraviolet absorbance, dissolved organic carbon and true colour at the same pH and

coagulant dose indicated that the performance of DAF and conventional gravity

settling were the same.

In the pilot plant studies flocculation times of 8 or 16 minutes gave good results for

floated and filtered water quality. Long periods of flocculation are not necessary for

the DAF process (Edzwald et a!., 1992). These results are probably appropriate to the

pilot plant and have limited application. Survey works by Haarhoof and Vuuren

(1995) on 12 treatment works in South Africa showed that flocculation times vary

from 5 to 120 minutes whereas in Finland the range was 20 to 127 minutes for 30

treatment plants (Heinanen,1988). The flocculation period is very much dependent

on water temperature and therefore shorter times could be achieved in South Africa

21



compared to Finland. Further results from Edzwald et a!., (1992) indicated that a

particle size of approximately 20 p.m with 8 minutes of flocculation was reported to

produce an excellent performance for flotation. If the flocculation process was

abandoned, then a poor performance on flotation was observed. However other

workers (Ho and Tan,1989) reported that the removal of suspended solids was only

increased marginally from 94.4% to 97% when flocculation was introduced prior to

flotation for the treatment of palm oil mill effluent. The study (Edzwald et a!., 1992)

also revealed that the reduction of ultraviolet absorbance and removal of dissolved

organic carbon were not dependent on flocculation time but on coagulation. Further

works by Plummer et a!. (1995) on the same pilot plant showed that 10 minutes of

flocculating time was good enough for DAF to produce a lower water turbidity than

sedimentation. The removal of cryptosporidium (i.e. protozoa that causes diarrhoea!

disease) was found to be more effective using DAF than plain sedimentation under a

variety of treatment conditions.

Prior to the above investigation, extensive laboratory studies (Edzwald and Wingler,

1990; Malley and Edzwald, 1991b) were made to examine the fundamentals of DAF

for the treatment of drinking water and to develop a rational basis for facility design

and operation. These studies showed that DAF performance was dependent on raw

water quality, pretreatment, bubble size and bubble volume concentration. However

the actual laboratory measurement of bubble size was not conducted during the study

period (Edzwald, 1996). A conceptual model was developed by Malley and Edzwald

(1991 a) to describe the performance of DAF for drinking water treatment. The

removal of particles from water by collisions between bubbles and particles as the air

bubbles rise in the tank was discussed and Stokes equation was applied. In fact the

same equation had been used by other researchers and authors to describe the

terminal velocity in flotation (Li and Lam, 1964; Chorlton, 1967; Packham and

Richards, 1972a; Reay and Ratcliff, 1973; O'Melia, 1985; MacConnell et a!., 1991;

Ward, 1992 etc.). The work of Yao et a!. (1971) on a transport model in water and

waste water filtration helped to form the basis of the above conceptual model together

with the work by O'Melia (1980,1985), Flint and Howarth (1971), Reay and Ratcliff

(1973), Spielman and Goren (1970, 1971) and Spielman and Fitzpatrick (1973).
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2.4.1.3 Research Work in South Africa

In South Africa, besides the work done by van Vuuren et a!. (1967), Bratby and

Marais (1974, 1975a, 1975b) contributed considerable knowledge to the field of

flotation studies. Bratby and Marais made an attempt to identify parameters

influencing the flotation process and determine their inter-relationships. The

objectives of their investigation were generally as follows:

1.	 Development of an efficient flotation system.

2	 Determination of parameters which influence the bubble-particle attachment.

3	 Establishing any relationship between the fundamental parameters that

influence solid removal and thickening of floated solids.

The bench-scale system investigated by Bratby and Marais, (1974) consisted of a

saturation and flotation unit. For the saturation unit, three methods of air dissolution

were investigated i.e. using sparged air system, pump suction air injection system and

packed column system. The latter was found to be superior. The flotation unit used

by Bratby and co-worker consisted of two chambers namely upper and lower

chambers. The upper chamber of the tank had a constant cross-sectional area and was

attached to the lower chamber in which the cross-sectional area increased with depth.

According to the authors, this shape gave several advantages such as an increase in

opportunity for contact between rising bubbles and particles, providing a rolling effect

for the agglomerates as they rise up the slope and thus helping to produce larger

agglomerates, and finally the thickened agglomerates at the top could discharge freely

into the trough without any mechanical assistance.

The water sample used throughout the experiment was algal-laden waste water from

an oxidation pond. Tests were carried out to determine the effect of pH and anions on

bubble-particle adhesion. Different pH values were tested for three different

coagulants (i.e. ferric chloride, ferric sulphate and aluminium sulphate) for optimum

coagulation and flotation. Comparisons of turbidities obtained from the jar test and

the actual floated water turbidity (effluent turbidity) with different pH and chemical
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dosages were made using a nephelometer. The results showed that the optimum

coagulant dose for flotation was 50mg/i as Fe3 at pH 5.65 when ferric chloride was

used. This value was not much different from the result of the jar test. The effluent

turbidity recorded was 6 on the nephelometer scale. When ferric sulphate was used as

a coagulant with an optimum dose of 50mg/i as Fe 3 based on a jar test, the optimum

pH value for flotation was 5.8 with an effluent turbidity of 11. The increase in

turbidity reading suggested that sulphate anions may impair the bubble-particle

adhesion. In order to confirm this hypothesis, Bratby and Marais (1974) used

aluminium sulphate as a coagulant for the next test. It showed that the effluent

turbidity was 18.5 at an optimum dosage of 25mg/i as Ai 3 and with optimum pH of

5.5. This confirms the hypothesis.

2.4.1.4 Summary of Findings

The results of research on dissolved air flotation which were related to water quality

parameters are summarised in Table 2.2 (a). Table 2.2 (b) presents a summary of

findings on DAF process performance.
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3. Residual coagulant

concentration

4 Bacteria

5. Protozoa

Table 2.2 (a) - Summary of DAF performance related to water quality characteristics

PARAMETERS

I Algae Removal

2. Colour and turbidity

removal

FINDINGS

(a) Better than sedimentation

(b) Alum performed better than

ferric sulphate

(c) 95% removal compared

with 65% from sedimentation

(a) DAF performed same as

sedimentation

AUTHORS

Packham and Richards (1 972b, 1975),

Hyde (1975), Edzwald and Walsh

(1992), Rosen and Morse (1977), Rees

eta!. (1979), Van Vuuren eta!. (1967)

Reese/a!. (1979)

Rosen and Morse (1977)

Packham and Richards (1975)

(b) Colour of 45° Hazen and

turbidity less than 100 FTU is

Hyde (1975), Rees eta!. (1979)

limiting point for DAF

(c) DAF removed 700o of Hopper(1945)

turbidity and 790 o of suspended

solids

(d) Removal of true colour at

the same pH and coagulant

dose, DAF performed same as

sedimentation

(e) Not much different in result

using femc sulphate or alum

(f) Turbidity removal not

effective in extreme wintei

conditions

(g) DAF removed 30 to 45 7°o

of turbidity and 40.8 to 50.5°o

of colour

(a) DAF performed the same as

sedimentation

(a) 99° o could be removed

(a) Cryptosporidium removal

more effective using DAF

compared with sedimentation

Edzwald and Walsh (1992)

Packham and Richards (1975)

Rosen and Morse (1977), Edzwald and

Walsh (1992)

Wang and Mahoney (1989)

Packham and Richards (1975)

Hopper (1945)

Plummer eta!. (1995)
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PARAMETERS

1.. Performance at

flotation stage

2. Velocity gradient in

flocculation

Table 2.2 (b) - Summary of DAF performance related to process parameters

3. Retention times

4 Overflow rate

FINDINGS

(a) Dependent on the efficiency

of flocculation

(a) Non-tapering:

(i) 70 per sec.

(ii) 60 to 80 per sec.

(b) Tapered (25 to 80 per sec.)

(a) In flash mixer:

1 1/2 minutes

(b) In flocculation tank:

7 mm ;9 mm ;12 min.;8 min.;20

to 127 mm ;5 to 120 mm.

(c) In flotation tank

20 mm ,5 1/2 mm.

(a) 2 to 4 mm/sec by flotation

and 0.3 to 13 rnm/secby

sedimentation

(b) DAF:Sedimentation by the

ratio 6 ito 12.1

AUTHORS

Packham and Richards (1975), Edzwald

etal. (1992)

Reesetal. (1979)

Zabel & Melbourne (1980)

ødegaard (1995)

Stork (1977), Klute eta!. (1995);

Schofield eta!. (1991); Schofield

(1995a, 1995b)

Hyde (1975)

Packham and Richards (1975); Hyde

(1975); Rees eta!. (1979); Edzwald et

a!. (1992); Heinanen (1988); Haarhoff

and Vuuren (1995)

Packham and Richards (1975); Hyde

(1975)

Packhani and Richards (1972)

Edzwald and Walsh (1992)

2.4.2 Theory of Flotation

The principles of flotation based on bubble generation, bubble attachment and solid

separation were discussed by Packham and Richards (11972a). They indicated that

different techniques of aeration would give rise to different types of flotation system.

In the case of bubble-particle attachment several theories were forwarded by various

researchers on how the process could take place. These can be summarised as

follows:

I. Bubbles grow by precipitation from a supersaturated solution on the surface of the

particles (Taggart, 1945)
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2. Bubble-particle attachment involves chemical and physical aspects such as

surface energy, surface tension, adsorption, contact angle, polarity, surface

reactivity, surface condition and adding air-adhering agents to some minerals

(Gaudin, 1939)

3. An 'induction time' is required to allow the thin liquid layer between bubble and

particles to drain away so that coalescence can occur (Sutherland, 1948)

4. If the surface conditions of the particles are appropriate, the bubbles will collide

and coalesce with the particles (Kiassen and Mokrousov, 1963)

5. The particle follows its trajectory as it approaches a bubble and this trajectory will

be dependent on viscous effects and Reynolds number (Flint and Howarth, 1971)

Vrablik (1959) however indicated that the following mechanisms are important for

the bubble attachment process to take place:

1. Adhesion of gas bubbles with the suspended phase as a result of collisions or by

nucleation.

2. The trapping of gas bubbles in a floc structure

3. The absorption of gas bubbles into a floc structure as it is formed

In dissolved air flotation, bubble attachment could proceed by all of the aboe

methods. This is due to small bubble size which rise slowly under a small Reynolds

number. The adhesion process relies heavily on the application of colloid surface

chemical phenomena (Shaw, 1991). The significant effect of electrical potential in

adhesion has been discussed by some workers (Collin and Jameson, 1976, 1977, Usui

and Sasaki, 1978; Usui et al., 1981). For the bubble-particle attachment process to

take place, Bratby and Marais (1974) indicated that it has to be proceeded with

destabilisation. Mechanism 1 in principle does not require flocculation but

destabilisation between bubbles and particles. Mechanisms 2 and 3 require

destabilisation between particles and a certain degree of flocculation before or during

flotation Hoever, J.A.Kitchener in his review on flotation (Kitchener, 1984)
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indicated that flotation should be viewed as a stochastic event where the chance of a

given particle arriving at the froth level is the product of three probability terms:

Chance of flotation probability of X probability of X probability of

particle! bubble	 attachment
	

retention of

collision	 attachment

2.4.2.1 Kinetics of Flotation

Harper,(1972) indicated that experiments seldom agree with the prediction that a

bubble rising in a Newtonian liquid can be treated as if isolated, unless great care is

taken to remove impurities. A bubble with constant surface tension rising under

gravity will rise steadily if:

1. Its motion is stable relative to random small disturbances

2. The time taken to approach very close to terminal velocity is very much less than

the time required for the bubble to change its size significantly.

At a low Reynolds number, the retarding or drag force is parallel and opposite to the

terminal velocity with a magnitude of:

D 6iza,uU
	

(2.1)

where D - drag force

a = radius of bubble

p= dynamic viscosity

U=r terminal velocity

Equation 2.1 was obtained by Stokes for the slow motion of a sphere in viscous fluid

(Li and Lam, 1964; Gaudin, 1939). The expression is usually known as Stokes' law

for the resistance to a moving sphere (Batchelor, 1988). The derivation of Stokes'

law is based on the assumption that the motion of the spherical particle is extremely

slow, the liquid medium boundary is at an infinite distance from the particle and also

is of a large volume compared with the dimensions of the particle (Shaw, 1991). Clift
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et a!. (1978) indicated that bubbles are closely approximated by spheres if the

interfacial tension and/or viscous forces are much more important than inertia forces

and the 'spherical' term can be used if the minor axis to major axis ratio lies within

10% of unity.

When a solid sphere falls vertically in a liquid, the viscous liquid produces a terminal

velocity U By equating the weight of the sphere to the upthrust plus drag (Choriton,

1967), the following equation is obtained:

4'ia3 og 4-,za3pg+6,apU

U -('o—p)a2gp	 (2.2)

where a = radius of sphere

= density of sphere

p = density of liquid

Packham and Richards (1972a) indicated that the alum sludge from a DAF water

treatment plant rose at a rate of 20 to 35 mmlsec. The rising velocity is far greater

than the settling velocity of an aluminium or iron floc encountered in a water

treatment works (i.e. normally less than 0.5 mmlsec). Basing their judgement on the

fact that the rising rate of the floe in flotation was far greater than the settling rate,

Packham and Richards (1 972a) considered the rate of separation of suspended matter

in the flotation process from the viewpoint of the Stokes' equation governing the

motion of a sphere through a viscous medium and thus indicated that Equation 2.2

was appropriate to describe the rise rate of the particle in the flotation process.

Packham and Richards (1972a) in reviewing Equation 2.2 were of the opinion that if

the size of the suspended matter is increased, a higher separation rate may be

achieved. This is due to the fact shown by Equation 2.2 that the rate of separation is

directly proportional to the square of the radius of the particles, the difference in the

densities of liquid and the suspended particles and inversely proportional to the liquid

viscosity.

Research carried out in Russia (Levich, 1962) showed that at small Reynolds

numbers, gas bubbles moved like solid spheres. Theoretical values of bubble rise
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velocity in water were not in agreement with much experimental data. For a gas

bubble which is assumed to behave like a solid, its surface can sustain a finite shear

stress, the tangential velocity of the surface is everywhere zero relative to the centre

of the bubble, and the conventional Stokes solution applies. According to Jameson

(1984) a force balance equation will result as follows:

6izpUa	 7a3(p-pg)g
	

(2.3)

When the density of gas i is negligible compared with the density of liquid p. the

terminal velocity is given by,

= 
2pga2

9i
	 (2.4)

Equation 2.4 shows that the rise velocity of a bubble is controlled by the size of the

bubble and the viscosity of the fluid. If the radius of the bubble is increased, the rise

velocity will be increased. The kinematic viscosity is affected by the density and the

temperature of the fluid. An increase in temperature will result in the decrease in

viscosity and hence an increase in bubble rising velocity. Shannon and Buisson

(1980) indicated that bubble rise rates at 80°C increased three times compared to

those at 200C.

Force balance is presented in terms of drag coefficient CD by Harper, (1972) as

follows:

force.on.bubble -	 rpga 3 = 4gd	
(2.5)CD=	

pU2a	 - pU2a2 3U2

This coefficient is the force per unit cross-sectional area, made dimensionless by the

dynamic pressure . pug . Substituting from Equation 24 into Equation 2.5 yields:

CD =24 Re
	

(2.6)

where Re is the Reynolds number. Equation 2.6 is used for viscous resistance at low

Reynolds numbers, Re less than 0.5 (Fair et al., 1968). The same equation was used
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by Vrablik (1959) to determine the maximum bubble size of 130 microns for a

complete viscous flow. He indicated that the maximum value of Reynolds number

for laminar or viscous flow is 1.13. The relationship governing bubble size, laminar

flow, bubble rising velocity (as per Equation 2.4) and temperature has been

established. This relationship is shown in Table 2.3. The optimum bubble rise

velocity for the DAF system is about 300mm/minute (Krofta and Wang, 1989). The

rising velocity should not be below 125 mm/minute or more than 500 mm/minute.

Table 2.3 - Relationship between bubble size, rise velocity, temperature and laminar
flow (Source: Malley, 1988)

Bubble	 Rise Velocity (rn/br) Above Terminal Rise Velocity (rn/br)

	

size (nm)	 Which Turbulent Flow Exists* Based on Stokes' Law

_____________	 4°C	 20°C	 4°C	 20°C

	

10	 565	 360	 0.125	 0.1%

	

20	 283	 180	 0.499	 0.783

	

30	 188	 -	 120	 1.12	 1.76

	40	 141	 90	 2.00	 3.13

	50	 113	 72	 3.12	 4.89

	

80	 70.7	 45	 7.99	 12.5

	

110	 51.4	 32.7	 15.1	 23.7

	

120	 47.1	 30	 18.0	 28.2

	

130	 43.5	 27.7	 21.1	 33.1.

	

140	 40.4	 25.7	 24.5	 38.3.

	

160	 35.3	 22.5	 31.9	 50.1.

	170	 33.2	 21.2	 36.1.	 56.5.

* Based on a critical Reynold's Number of 1.0 for the upper limit of laminar flow.

• Indicates the terminal rise velocity will result in turbulent flow.

Experimental work by Fukushi et a!. (1995) showed that Equation 2.4 could not be

used to describe bubble rise velocity. This is due to the turbulent environment which

occurs in the mixing zone (reaction zone) of the DAF tank. They suggested that the

following equation is more appropriate and agreed with their experimental results:

pga	
(2.7)
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Table 2.4 - Models developed by Fukushi eta!. (1985) and Edzwald et al. (1990),
(Source: Fukushi et al., 1995)

Models	 Fukushi et a!. (1985)	 Edzwald et a!. (1990)

GeneratedAir Bubbles: _____________________________ ________________________

Size range da (pm) 	 10-120 (average 60)	 10-100 (average 40)

Rise velocity (cmlsec) 	 gd 2/12v	 gd2/18v

Zeta potential (mV)	 -150 at pH 7	 not measured

Pressure P (kPa)	 392	 345-585

Recycle ratior	 0.1	 0.08

Concentration na (cm 3) iO4-i05	 iO4-i05

Producedflocs:	 ____________________________ _______________________

Size range d-(um)	 i°-iø	 100_102 (10-3Opm is best)

Density pf (g/cm 3 )	 floc density function	 101 (assumed)

Suitable mobility 	 0 - +1 (clay floc) 	 0.5 or less

(pmlsecVcm)	 -1 - +1 (colour floc)	 _______________________

Bubble-floe collision and attachment 	 ________________________I

Collision model 	 population balance model 	 single collector collision

Flow regime	 turbulent flow	 laminar flow

Mechanism	 locally isotropic turbulence, 	 Brownian diffusion,

viscous subrange diffusion	 interception, gravity

____________________ ___________________________ settling

Attachment mechanism electrical-charge interactions	 electrical-charge

(coverage of precipitated	 interaction, water layer at

_____________________ coagulant on a floe surface)	 floc surface

Rise velocity of	 0.1 - 2.6 (observed)	 about 0.3 (nearly equal to

agglomerate (cmlsec) _____________________________ bubble rise velocity)

g—gravity	 da=diameter of bubble 	 v=kinematic viscosity

df—diameter of floe p=density of floc

A comparison on the properties of air bubbles produced in the dissolved air flotation

process was made by Fukushi et a!. (1995) to those developed by Edzwald et a!.

(1990). There are many discrepancies existing between both models. These are

shown in Table 2.4. The model which was developed in 1985 by Fukushi and co-

workers was based on the population balanced model of bubbles and flocs in a

turbulent flow environment (PBT model). However the model developed by Edzwald
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was derived from a single collision theory in a laminar flow condition (SCC model).

In the SCC model collision occurs due to Brownian diffusion, interception and gravity

settling. Fukushi et al. (1995) indicated that Brownian diffusion and gravity settling

cannot be dominant for a normal floe (10-1000 j.tm) and bubble size range in

flotation. Interception also cannot be dominant because in practice the mixing zone is

apparently in a turbulent flow where a certain energy dissipation occurs.

In fact the literature survey indicated that Equation 2.7 was originally suggested by V.

G. Levich in 1962. Levich (1962) indicated that Equation 2.7 is applicable for small

Reynolds numbers, Re<<1 and when the following inequality holds:

ga3
--LL1
3v	 (2.8)

where v 1w2 (i.e. kinematic viscosity equals dynamic viscosity divided by density of

liquid). If the medium is water, the size of moving bubbles will be a<<2x10-2 cm.

Levich also indicated that the theoretical value of the drag coefficient for a gas bubble

in water is equal to -j-- (i.e. one and one-half times smaller than for a solid sphere).

This value is not in agreement with Equation 2.6. However Levich indicated that

Allen's experimental results (Levich, 1962) with small Reynolds numbers completely

disagree with the theory and lead to values for the drag coefficient which coincide

exactly with the drag on a solid sphere.

A mathematical equation for solid/liquid separation was developed by Howe

(Packham and Richards, 1 972a) limited to flotation of discrete particles without the

interference of surface active forming agents. It was derived from a differential

equation of motion which was expanded to give solutions for the rising velocity of a

particle with changes in the applied rising force, particle diameter, liquid viscosity

and particle density (Howe, 1958). The equation is as follows:

R= 1—e
	

(2.9)
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where R = ratio of total removal of solid concentration after flotation to the inflow

solid concentration

= 1-CJCi

C0= the effluent suspended solids

C1 = the influent suspended solids

Vr = the rising velocity of a single particle/air bubble

Q = the flow applied to the flotation unit

Ah = the horizontal area of the unit

Equation 2.9 is limited to discrete particles without the interference of surface-active

forming agents.

Karamanev (1994) in his article on the rise of bubbles in quiescent liquid indicated

that equations based on the model of bubble with internal circulation often fail to

describe the real systems adequately. This is because even highly purified liquids

(such as triple distilled water) contain enough surface-active components to affect

internal bubble recirculation. Recirculation is normally due to the presence of

surface-active substances and the resulting variable surface tension leads to a change

in boundary conditions of the bubble (Levich, 1962). According to Karamanev

(1994) the most reliable semi-empirical equation is that of Davies and Taylor:

U 25V
	

(2.10)

where V is the volume of the bubble. However this equation works only for large,

spherical cap-shaped bubbles. The drag coefficient CD of the gas bubble calculated

on the basis of equivalent sphere diameter by most authors was found to have a large

deviation of CD as a function of Reynolds number when different liquids are used.

The assumption made by most authors for free-falling heavy spheres behaving exactly

like free rising solid spheres is found to be incorrect especially for particles with

densities less than 0.3gmlcm 3 and Re>130 rising in water. Karamanev (1994)

suggested the following equation based on the balance of forces acting on a rising

bubble:

-f CD SPU2 = zpgV
	

(2.11)
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where p is the liquid density, Ap is the difference of density between liquid and gas

and S is the area of bubble. In order to obtain CD based on real bubble geometry, the

area S should be determined from the diameter projected on the horizontal plane

circle, dh; S	 4. Then the volume of the bubble is calculated using the equivalent

diameter; V ,zd 6. These values are substituted into Equation 2.11 and become:

- 4gAçxJ

D - 3çx42U2
Equation 2.11 can be written in terms of U:

U=I_8gV 
'I2

Ddh)

By substituting from Equation 2.12, then:

2
8g	 V16P

623 ..v' 3" dh

(2.12)

(2.13)

(2.14)

For Re less than 130, Karamanev suggested that CD can be calculated using the

following equation:

24(1+0.173Re0657) 	 0.413	
(2.15)CD	

Re	 1+16300Re°

For spherical bubbles at Re less than 1, then CD 24 Re and d/dh-1 and Equation

2.12 transforms to Stokes equation.

2.4.2.2 Solubility of Air

In flotation, the quantities of air used are normally expressed in terms of volume of

air supplied per volume of water treated (Edzwald and Walsh, 1992) and Henry's Law

is used when treating saturated water as a dilute solution of air in water (Vrablik,

1959). It must be remembered that Henry's law was originally based on his

experiment with N 2, 02, N20, H2S and CO2 and only with water at one temperature.

The concept that the law could be used for general application is unfounded (Gerrard,

1980). However experimental work on wastewater with dissolved solids up to

1000mg/i with pressures up to 500KPa showed that Henry's law constant could be
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used to calculate the mass of dissolved air (Lovett and Travers, 1986). For ideal-

dilute solutions where the solute obeys Henry's law but not Raoult's law and the

solvent obeys Raoult's law, then the use of Henry's law is applicable (Backhurst et

a!., 1974; Atkins, 1994).

PB XBKB	 (2.16)
where PB is the vapour pressure, XB is the mole fraction of the solute and KB is

constant.

Based on Henry's law, Edzwald and Walsh (1992) suggested the following equation:

c5 =f-	 (2.17)

where c5 is the concentration of air in the saturated liquid, p is the absolute pressure, k

is the Henry's Law constant and! is the efficiency factor which is about 70% for

unpacked saturators and up to 9000 for packed systems. Values of k at 0°C and 25°C

are 2.72 and 4.53 KpaJmgfl respectively.

However, others (Takahashi et a!., 1979; Ward, 1992) indicated that Henry's Law is

not strictly applicable when treating saturated water. The equation has to be modified

(Ward, 1992) with an exponent m on the pressure p as follows:

Cs 
= 

Ptm
	

(2.18)

Klassen and Mokrousov (1963) in their review on the solubility of gases in water

were of the opinion that the solubility of gases depends on the partial pressure,

temperature and concentration of other substances in the solution. If the partial

pressure is increased then the solubility of gas will be increased. However if the

concentration of soluble substances in water is increased, gas solubility will be

decreased as a result of complexing definite quantities of water molecules in the form

of hydrated ions. Edwards (1984) added that if the total pressure is less than 507 Kpa

(5 atmospheres), the solubility for a particular partial pressure of solute gas is

normally independent of the total pressure of the system. In its relationship to

temperature, the solubility of a gas will be decreased when the temperature is
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increased (Vrablik, 1959; and Eckenfelder et aL, 1958). This is as illustrated in

Figure 2.8. In the case of distilled water, when the temperature is increased from zero

to 30°C, the solubility of air is reduced by 45%. Liquid solubility of the gases varies

as shown in Table 2.5.

SOLUBILITY OF AIR IN WATER
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Figure 2.8 - Solubility of Air in Water (Source: Zabel and Melbourne, 1980)

Bratby and Marais (1975b) in their studies on saturator performance indicated that it

would be difficult to achieve full saturation at a saturator pressure less of than

35OKPa. From an economic point of view, the efficiency of the saturator system was

important. They found that by using a packed system of 0.5m depth with Raschig

rings of 25mm diameter, full saturation was achieved at saturator pressures beyond

25OKPa for a surface loading up to 2SOOmIday. A similar level of saturation was

found by Zabel and Hyde (1977) using a packed saturator of 0.75m depth with 25mm

Ben saddles.

For design purposes Bratby and Marais (1977) suggested that at a temperature of 20°C

with a pressure of 3 atmospheres, the concentration of air precipitated on reducing the

pressure to atmospheric is given by the following equation:
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19.5P mg litre	 (2.19)

where P is the saturator pressure in atmospheres.

Table 2.5 - Solubility of various gases at 200C and 760mm Hg (Source: Vrablik, 1959)

Types of Gas	 Cubic cm gas/Cubic cm	 Gram of gas/100 gm of

________________________	 water	 water

Nitrogen	 0.015	 0.0019

Oxygen	 0.03 1	 0.0043

Hydrogen	 0.018	 0.00016

Carbon dioxide	 0.88	 0.17

Carbon monoxide	 0.023	 0.0028

Air	 -	 1.87

Hydrogen sulphide 	 2.58	 0.38

Sulphurdioxide	 39.4	 11.28

2.4.2.3 Bubble Generation

Rykaart and Haarhoff (1995) indicated that the geometrical design and operating

conditions of the injection nozzles were important determining factors for bubble

size. They reported that saturation pressure does not have a consistent effect on

nozzle efficiency. There were contradicting claims regarding whether a higher

pressure produces smaller bubbles (Takahashi et a!., 1979; Gulas et a!., 1980) or a

higher pressure produces bigger bubbles (Ramirez, 1980; Lovett and Travers, 1986).

But Jone and Hall (1981) reported that there was no significant relationship between

pressure variation and bubble size.

Studies by Bratby and Marais (1975b) showed that the shape and roughness of the

valve, the degree of turbulence and dilution of saturator feed downstream of the valve

and the concentration of particulate nuclei in the dilution water had a negligible effect

on the precipitation of air from a solution (i.e. mass of air precipitated to unit volume

of saturator feed). However these findings were contradicted by those reported by

others (Takahashi et al., 1979; Rykaart and Haarhoff, 1995) in terms of the shapes

and roughness of the valves. Rykaart and Haarhoff (1995) showed that at a saturator
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pressure of 500 Kpa nozzle with a bend in its channel produced a bubble size of 49.4

pm (median diameter) compared to a nozzle with a tapering outlet which produced

29.5 pm. When the saturator pressure was reduced, the bubble sizes were reduced.

For a continuous flow dissolved air flotation plant, Edzwald and Walsh (1992)

predicted that the concentration of air released in the tank (C r) would be as follows:

Cr [5JRr_K]
	

(2.20)

where Ca is the concentration of air that remains in solution at atmospheric pressure,

Rr is the recycle ratio which is equal to the recycle flow rate divided by the influent

flow rate, and K is the influent saturation factor defined as (Ca C,) where C0 is the

concentration of air in the influent water. In most cases C0 is saturated and this

means K 0. In order to find the bubble volume concentration (q5,), Edzwald and

Walsh (1992) suggested that C should be divided by the saturated density of air (,üsa)

as shown in the following equation:

b C,iPsar
	 (2.21)

In order to get the generated air volume at the same temperature under atmospheric

pressure Takahashi et a!. (1979) used the following equation by considering air as an

ideal gas:

V 1PwI14PoRT
A 

I. MW A 0 )HE
(2.22)

where p is the density of water in gmlcm 3, A is the dissolved pressure in dyne cm2,

P0 is the atmospheric pressure in dyne cm 2, R is the gas constant in erg/K.mole, T is

the absolute temperature in Kelvin, M is the molecular weight of water in glg.mole,

and HE is the Henry's Law constant in dyne cm2.

By assuming all the dissolved air in water changes into bubbles, then from Equation

2.18, the theoretical generated flow rate will be obtained. The experimental results

by Takahashi ci a!. (1979) showed that the generated air flow rate increased with an

increase in dissolved pressure and also with an increase in liquid flow rate. In order
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GQ
Nb— TI

Vb

(2.24)

to obtain the volume of air occupied by a single spherical bubble,Vb, Takahashi and

co-workers suggested the following equation:

_1Po +Pwgh+4 d

b	
Po	

2V
(2.23)

where; h is the depth from the liquid surface to the bubble in cm, is the surface

tension in dyne/cm and d is the volumetric mean diameter of bubble in cm.

According to the authors the effect of liquid depth is negligible thus the measurement

of bubble diameter was carried out at the top of flotation tank. The number of

bubbles generated per cubic cm of water could be obtained from Equation 2.24:

where G is the volumetric flow rate of air generated under decrease in pressure (cubic

cmlsec) and Q is the volumetric flow rate of liquid (cubic cmlsec). Their

experimental results showed that by increasing the dissolved pressure and liquid flow

rate, the number of bubbles will be increased. The geometry of nozzle also affects the

bubble size. By using a needle valve, Takahashi and co-workers obtained the

following equation:

	

Nb -	
- PQJQ

	

-	 0
(2.25)

Comparisons of the calculated and experimental values of the number of bubbles

were made and the results were claimed to be remarkably In agreement with the

equation used.

For an efficient solid-liquid separation process, small bubbles are needed (Cassell et

a!., 1975; Collin and Jameson, 1976; Rovel, 1977). Bubble sizes in the range of 20 to

80 microns are capable of good attachment to floc particles. Larger bubbles will

create a hydraulic disturbance along their rising path towards the surface and a

decrease in the surface area. For example one 2mm bubble contains the same amount
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of air as 64,000 bubbles of 50 microns in size. Cassell et a!. (1975) reported that the

optimum bubble size in the microflotation process is approximately 50 microns.

2.4.2.4 Collision

Reay and Ratcliff, (1973) in their studies of dispersed air flotation defined the

collection efficiency of a bubble as the fraction of particles in the bubble's path which

are actually picked up by the bubble. Particles of about 3 microns diameter or larger

will not be affected by Brownian motion. They will be in contact with the bubble

only if their hydrodynamically determined trajectories come within one particle radius

(rp) of the bubble. This region is called the collision regime. By considering the

collision regime in which the Brownian diffusion is negligible (Gochin, 1990), the

collection efficiency of a bubble can be expressed as:

T1=71i X '72
	 (2.26)

where ,' = collision efficiency,.i.e. the fraction of particles in the bubble's path

which actually collided with the bubble

772 - aftachment efficiency, i.e. the fraction of particles colliding with the

bubble which actually stick to it

Equation 2.26 indicates that 12 will depend mainly on the chemical nature of the

particle surface, the bubble surface and the thin film of liquid draining from between

them. Reay and Ratcliff (1973) also reported on the predicted collision efficiency

together with a graph drawn and 1i =1.25(7 ') for ( 1°7J=l and

i =3J for 7) 2.5 and	 is roughly proportional to 	 over the

density range used. The symbols used in the above expression are interpreted as

follows:

r particle radius (cm)

Rb bubble radius (cm)
- particle density (gm/mI)

= fluid density (gm/inl)
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av1 - G + Cd(UJ -' at
(2.27)

Since 7) is proportional to Rb2, the average number of particles picked up by a bubble

(by assuming is constant) should be roughly independent of bubble size and the

flotation rate should be proportional to bubble frequency (i.e. the amount of bubbles

rather than bubble diameter over the entire range of particle sizes). This prediction is

applicable to bubbles of diameter up to 0.1 mm (Reay and Ratcliff, 1975). However

when latex particles (3 to 9 microns) having almost the same density as water and

larger zeta potential (+10.6mV) were used in the experiments, they could not get so

close to the bubble surface (Reay and Ratcliff, 1975). This means the bubble-particle

collision model is not appropriate for latex particles.

Flint and Howarth (1971) in their review on the collision efficiency of small particles

with spherical air bubbles reported that the collision of a particle with a bubble would

depend on the balance of viscous, inertial, and gravitational forces acting on the

bubble. Besides that the form of streamlines around the bubble also play an important

role in whether or not collision takes place. Flint and Howarth (1971) formulated an

equation of motion of a small spherical particle relative to a spherical bubble rising in

an infinite pool of liquid in thejth direction as follows:

where G - the body force acting on the particle, for raindrop collision., G=O. In

flotation there is clearly a component of relative acceleration due to

gravity because the bubble and particle are of distinctly different

densities.

Cd - dimensional drag coefficient for the particle, depending on the shape of

the particle and the Reynolds number past it. For a spherical particle, the

drag will be the same in all directions.

V1 - particle velocity.

= the velocity the fluid would have at the position of the particle if no

particle were there. For fine particles in flotation, it is assumed that the

flow around the particle has an insignificant effect compared with the
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flow pattern due to the bubble; u then depends on the shape of the bubble

and the Reynolds number around it.

t time

By considering the relative two dimensional motion of a spherical bubble and particle

where the bubble is held stationary at the origin of the co-ordinate system by a liquid

flow equal to the bubble rise velocity in the negative direction (Figure 2.9), then Flint

and Howarth, (1971) suggested the equation of motion for the particle as follows:

4izr,p -- = 6irp	 uy -	 (2.28)

- pj)g_6ir1ujr(u_v)
	

(2.29)

Reducing the above equations to dimensionless form and introducing the variable v, u

and t, and parameters K and G:

vy =

uy= ;;'

vx =

* lix!
= /u

Is

andK 2pr,u 9p1r,

G=2(p- p1)rg

a	 a
i.e. K--=u -v,

a	 a
K-+= -G-u +v

where: r0 = particle radius

p0 = particle density

p( fluid density

9

v component of particle velocity

t=time

p( fluid viscosity

u = component of velocity field due to bubble

x, y - cartesian position co-ordinates

u - dimensionless component of bubble velocity field

v = dimensionless component of particle velocity
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r = dimensionless time

K = particle inertia parameter

G = dimensionless settling velocity of particle

y

Figure 2.9 - Geometry of bubble-particle system (Source: Flint and Howarth 1971)

Note: rb - radius of bubble, r = radial coordinate, G = dimensionless settling velocity

of particle, U = bubble rise velocity, c = spherical coordinate, v = component of

particle velocity.

According to Flint and Howarth (1971) calculation for K down to 0.001 shows that

the collision efficiency remains substantially constant for 0.00 1<K<0.1, meaning that

collision efficiency is virtually independent of K and independent of whether Stokes

or potential flow is assumed. They suggested that for a fine particle characterised by

K less than 0.1, inertial effects of the particle may be neglected and single bubble

collision efficiency i, can be calculated from:

rrG/(J+ G)
	

(2.30)

However Flint and Howarth (1971) indicated that in the flotation tank the collision

efficiency may be several times as great as those predicted from single bubble

calculations. This may be due to at least three reasons:
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I. The presence of hindering effects of the neighbouring bubbles which reduced the

rising velocity of the bubble. For fine bubbles this could lead to an increase in

collision efficiency

2. Difference in the shape of liquid stream-lines around the bubble. The greater the

number of bubbles, the closer the assemblage and the straighter the stream-lines.

This result in the increase of collisions between the particles and bubbles

3. The motion of particles upstream from the target bubble is influenced by the

layers of bubbles ahead and thus is no longer parallel to the direction of bubble

motion.

The above opinion which was expressed by Flint and Howarth is found to be in

agreement with Fukushi et al. (1995) as the latter showed that a single-collector

collision model was not appropriate in the dissolved air flotation process.

Furthermore King (1982) indicated that the calculated collision efficiency based on

the works of Sutherland (1948), Flint and Howarth (1971), Woodburn et al. (1971)

and Reay and Ratcliff (1973) were not in agreement with each other.

2.4.2.5 Interception and Diffusion

According to Yao ef al. (1971), a single particle of filter media is a collector and if

any suspended particle is in contact with the collector then a process known as

interception occurs. The contact efficiency of a single media particle or collector is

the ratio of the rate at which the particles strike the collector to the rate at which

particles flow toward the collector, which can be expressed as follows:

rate at which particles strike the collector 	
(2.31)

uoc0(	 )

where u0 water velocity

c0 suspended particle concentration upstream from the collector where the

flow is undisturbed by the presence of the grain

d - grain diameter
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(2.34)

(2.35)

In the case of flotation the single collector efficienc y (ri) may be defined as follows

(Malley and Edzwald, 1991a; Edzwald eta!., 1990):

particle - bubble collision rate

particle bubble approach rate
(2.32)

Reay and Ratcliff (1973) indicated that sub-micron particles will reach the bubbles

mainly by Brownian diffusion. In the diffusion regime, collection efficiency will be

decreased with the increasing particle radius, r. Flotation of these sub-micron

particles could be improved if they were agglomerated into flocs of suitable size in

the collision regime. Theoretical calculations were made on particles with diameter

less than 0.2 microns and bubbles size of 75 microns. At normal temperatures and

pressures, particles smaller than 1 micron in diameter suspended in gases or water

will exhibit a Brownian motion which is sufficiently intense to produce collision with

a surface immersed in the fluid (Friedlander, 1967). Yao et a!. (1971) in describing

basic transport mechanisms in water filtration explained that when a particle in

suspension is subjected to random bombardment by molecules of the suspending

medium, then a Brownian movement of the particle known as diffusion takes place.

Numerical and analytical determinations of single-collector efficiency were discussed

by Yao and co-workers based on the works of previous investigators and the

following equations were established:

( kT 
\23

7lD = 4.04 Pe 2 =0. 
¶ pddv0 J

2

'i'

(pr—p)
gd

18 uv0

(2.33)

where ,, 7', and are the theoretical values for single collector efficiency when the

sole transport mechanisms are diffusion, interception and gravity settling respectively.

Pe is the Peelet number (i.e. 
Pe = 2RbU,, 

where Rb is bubble radius, Ub is bubble

rising velocity and D1 is particle diffusivity in cm2/sec) , k is the Boltzmann's
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constant, T is the absolute temperature, d is the diameter of suspended particle, d is

the diameter of collector or bubble which is equal to db, v0 is the approach velocity of

fluid and p is the density of fluid which is equal to p1.

Then for the total single collector efficiency of a media grain, the expression can be

written as follows (Yao eta!., 1971; O'Melia, 1985):

tlr 71D+11r71G
	 (2.36)

Edzwald and Walsh (1992) used the same theoretical approach used in filtration (Yao

et a!., 1971;O'Melia, 1985) to developing a conceptual model for flotation. Thus the

following equations are introduced:

I	 \23
I	 kbT	 1

1D _O9(J/aldUJ

I

- 
d

t7J_27)

gd
hG

(2.37)

(2.38)

(2.39)

By comparing the equations used in filtration to the above equations, the approach

velocity of fluid and Boltzmann's constant have been changed to U, (bubble rise

velocity) and kb (Boltzmann's constant for bubble) respectively. This is done to suit

the mechanisms involved in flotation.

Ward (1992) in his review on capture mechanisms introduced a new form of

equations for 'iD and 'iG by substituting the bubble rise velocity U from Equation 2.4

into Equation 2.37 and 2.39 with the following result:

(kT
=6. M pjgdp) 1iJ (2.40)

'	 "2
1G-I) (p—p)

	

db )	 Pt
(2.41)
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Results on single collector efficiency by Edzwald and Walsh (1992) show that a

minimum in efficiency occurs at a particle size of around 1 micron.

For removal efficiency, Edzwald and co-worker used the same principle used in

Equation 2.26, changing only the symbols of the expression as follows:

Rab77T(J00%)
	

(2.42)

where ab is the attachment efficiency.

If the total number concentration of bubbles (Nb) is considered, then Edzwald and co-

worker suggested the following equation for particle removal:

Yf__ —(aPb?7T)AbUbN6NPdi -
(2.43)

where A,, is the projected area of bubble and N is the particle number concentration.

By having a bubble volume concentration of b 1Tc43Nb /6 and substituting into

Equation 2.43 then;

=—(aPblJT) 4 Ub NP -'3di Ub

{3)a7TUbb N)db
(2.44)

The particle number concentration removal in terms of flotation tank depth can be

rewritten as:

dN	
3IaPbrb1P

dH 2	 db
(2.45)

Edzwald and co-worker also produced a summarised table of their model parameters

for DAF facilities. This is as shown in Table 2.6. However this model has not been

tested or verified (Edzwald and Walsh, 1992).
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Table 2.6 - Model parameters for DAF facilities (Source: Edzwald and Walsh, 1992)

Parameter	 Affected by	 Comments

Pretreatment	 _________________________ _________________________

pb (particle-bubble	 Particle-bubble charge	 Improve cLPb by chemical

attachment efficiency)	 interaction and hydrophilic pretreatment, coagulation

______________________ nature of particles	 and pH conditions

N (particle number	 Coagulation addition and 	 Coagulant may add

concentration)	 flocculation time	 particles, flocculation may

_________________________ _________________________ reduce N0 and increase d

11T (single collector	 Diffusion and interception Minimum IIT for d0 of 1 p.m

efficiency)	 ___________________________ __________________________

Flotationtank	 _________________________ _________________________

db (bubble diameter) 	 Saturator pressure 	 Small bubbles produce

large interfacial areas and

surface forces between

bubbles and particles.

______________________ ______________________ Small bubbles, improve TIT

ct (bubble volume	 Saturator pressure and	 Large I ensures collision

concentration	 recycle ratio	 opportunities and lowering

______________________ ______________________ of floe density

Ward (1992) in his article on dissolved air flotation made an improvement on

Equation 2.45 by integrating it over the tank depth H from N N0 at the surface H=O

to N n at the tank base H H. Thus the overall particle removal equation becomes:

f3a,,i4H

N N0e' 
2d
	

(2.46)

Then the overall efficiency is given by:

N
17 

1-n-	
(2.47)
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2.4.2.6 Tank design

The usual design procedure for any flotation unit can be based on Figure 2.10. All the

suspended solids in the flotation chamber should have a sufficient rise velocity to

travel the effective depth D within the specified detention time T. This means, the

rise rate V must be at least equal to the effective depth D divided by the detention

time T, or equal to the flow divided by the surface area:

V DT QA 5	 (2.48)

where	 V=vertica1 rise rate of suspended solids, rn/sec.

D =effective depth of flotation chamber

T =detention time, sec.

Q influent flow rate, m 3/sec. and

A5 —surface area of flotation chamber

The particles to be removed must also have a horizontal velocity;

VH QAc
	 (2.49)

where	 VH horizontal velocity

Across-sectional area of flotation chamber, m2

L

Figure 2.10- Basic design concept of flotation unit (Source: Wang and Wang, 1989)
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If the flotation chamber is in a rectangular shape, then the following equations can be

established:

WAC/D
	

(2.50)

L A/W A.5/(Ac/D)

= VHDA5/Q
	

(2.51)

where W is the width of the flotation chamber (m), L is the effective length of the

flotation chamber, Q is the influent flow rate (m3/sec.) and the value ofD/Wis usually

between 0.3 to 0.5.

The size of the flotation tank can be reduced if the separation rate is increased (Katz

and Wullschleger, 1957). Their studies showed that a particle with a bi.?bb) a#ac)2c/i

to it would increase in its rising rate with an increase in the particle size. This finding

is similar to that reported by Packham and Richards (1972a). However other factors

such as pressure, recycle ratio, temperature, pH, zeta potential of the particles,

number and size of bubbles produced, types of nozzles, flocculation process, flow

condition and configuration of the tank are believed to have a significant affect on the

separation process (Eckenfelder and O'Connor, 1961; Fukushi et a!., 1995; Noone,

1995; Gregory and Zabel, 1990)

Longhurst and Graham (1987) reported that the surface overflow rate (SOR) or rise

rate is the fundamental criterion for tank design. It is defined as the flow rate divided

by the surface area of the flotation tank. In practice the surface area is based on the

interfacial area between clarified water and sludge and not the total area of the

flotation tank (Longhurst and Graham, 1987). The characteristics of water and bubble

size will determine the air floe aggregate rise velocity. For normal design purposes,

rise velocities between 3 and 8 mlhour have been used (Rove!, 1977). For laminar

flow the maximum size of bubble is 130 micron, for bubbles less than 130 micron

Stokes' Law applies (Gregory and Zabel, 1990) and Equation 2.2 can be used to

calculate the rise rate. The maximum bubble size for laminar flow can be calculated

from Equation 2.3 by assuming limited laminar flow, Re=1 and using the relationship
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between bubble size and rise rate of air bubble which has been established in

graphical form (Gregoiy and Zabel, 1990). A survey done by Longhurst and Graham

(1987) showed that the average normal operating SOR is below 6 to 9mi'hr with a

maximum rate up to 1 lmlhr.

Bratby and Marais (1975a) in their investigation on the application of dissolved air

flotation in activated sludge were of the same opinion as indicated by Longhurst and

Graham (1987) regarding the design of flotation units. Instead of SOR, Bratby and

co-workers used the term downflow rate which is defined as the total flow into the

unit divided by the plan area at the outlet. It is the value of limiting downflow rate

(VL), where the bubble-particle aggromerates are just carried down with the effluent,

that controls the design of the tank.

Recently data published by Edzwald (1995) on the design and operation parameters of

DAF showed that there were still considerable variations in retention time, hydraulic

loading and recycle ratio between different treatment works in different parts of the

world. These are shown in Table 2.7.

In terms of shape, Zabel et a!. (1980) indicated that a rectangular shape has gained

greater acceptance due to advantages such as simple design, easy introduction of

flocculated water, easy float removal, small area and flexibility of scale-up. In

addition to that floc break-up is minimised, hydraulic efficiency is maximised and

engineering and construction is simplified (Longhurst and Graham, 1987). A tank

with SOR in the range of 6 to 12m!hr would have a depth of 1.2 to 1.6m and a

residence time of 5 to 15 minutes (Hyde, 1975). Results from survey works

(questionnaire) done by Longhurst and Graham (1987) in Great Britain showed that in

practice tank depths range 1 to 3.2m with a mean value of 2.4m, while tank shapes

vary from 'squarish' to 'long and thin' and there is a continuing debate in this area.

Gregory and Zabel (1990) indicated that tank depth of about 1.5m with an overflow

rate of 8 to 12 rn/hr (depending on the type of water) are normally used. An effective

flotation unit could be between 1.5 to 9 feet deep (Wang and Wang, 1989). The angle

for the inlet baffle is approximately 600 to the horizontal which ensures minimum

disturbance to the bubble-floc agglomerate (Zabel, 1985). However Longhurst and
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Graham (1987) reported that in theory the baffle angle can range from 450 to 900 to

the horizontal. 'Purac' have used a vertical baffle in the production of the 'Flofilter'

tank in order to avoid an eddying current during clarification and hydraulic

congestion during filter backwash. But for conventional filter they preferred to use an

inclined baffle.

Table 2.7 - Summary of DAF design and operation parameters
(Source: Edzwald, 1995)

Parameter	 South	 Finland	 Nether-	 UK'	 1JK2	 Scandi-

_________________ Africa _________ lands	 _________ _________	 navia

Flocculation___________ __________ __________ __________ __________ ____________

Intensity____________ __________ ___________ ___________ ___________ ____________

Time (mm)	 4-15	 20-127	 8-16	 20-29	 18-20	 28-44

Flotation___________ __________ __________ __________ __________ ____________

Reaction_zone S __________ _________ _________ _________ _________ ___________

Time(mm)	 1-4	 ________ 0.9-2 1 _________ _________ __________

HydLoad (m/hr)	 40-100 ________ 50-100 _________ _________ __________

Separation_zone __________ _________ _________ _________ _________ ___________

HydLoad (m/hr)	 5-1 1	 2 5-8	 9-26	 __________ __________ ___________

Total Flotation

Area.	 ____________ __________ ___________ ___________ ___________ ____________

Hyd Load (rn/br) __________ ________ 	 10-20	 5-12	 8.4-10	 6.7-7

Time(mm)	 _________ ________ _________ _________ 11-18 __________

Recycle (%)	 6-10	 5 6-42	 6 5-15	 6-10	 5-10	 10

Unpacked_Sat. __________ ________ _________ _________ _________ __________

Pressure (KPa)	 400-600 _________ _________ _________ 400-550	 460-550

HydLoad.(m/hr)	 20-60	 _________ _________ _________ _________ ___________

Time(sec)	 20-60	 _________ __________ __________ __________ ___________

Packed_Sat. 	__________ ________ _________ _________ _________ __________

Pressure(KPa)	 300-600 _________ _________ _________ 400-500 -___________

HydLoad.(m/hr)	 50-80	 _________ _________ _________ _________ ___________

PackingDepth,m	 0 8-1.2 ________ _________ _________ _________ __________

Saturators*	 ___________ __________ __________ __________ __________ ____________

Pressure (KPa)	 __________ 300-750	 400-800	 3 10-830	 480-550 ___________

* Unspecified with respect to unpacked or packed saturator. (1) Longhurst and
Graham (1987) and (2) Edzwald eta!., 1994.
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The depth of water below the water surface is found to vary across treatment plants

and greater depths than those recommended by the Water Research Centre of 0.3 to

O.4m are normally used (Longhurst and Graham, 1987). In South Africa the depth

varies from 1,5m to 3.5m and in the United Kingdom from 1.Om to 3.2m (Haarhoff

and Vuuren, 1995). This means there is still no agreement in practice to the extent

with which depth affects the optimisation of design criteria. On the width of the tank,

it was observed that widths of between 2.4 to 9.4m are found in practice. However

Gregory and Zabel (1990) reported that tank widths are less significant to hydraulic

flow and are sometimes restricted by the sludge removing device. A study carried out

by Heinanen (1988) on the use of dissolved air flotation for potable water treatment in

Finland showed that the design parameters for the process are still far from ideal and

this has resulted in high construction costs. He indicated that the situation could be

avoided if research institutes had played an important part in the design works.

Recent discussions with Noone (1995) indicated that there is a need to investigate the

optimum shape of the tank. This means further investigations would be useful to

justify the arrangements of the nozzles, the distance between the inlet and the baffle,

the baffle angle, and the depth of water surface from the baffle.

Longhurst and Graham (1987) indicated that if the length of the tank runs only up to

point A (Figure 2.11), the tank may be too short and the floc will not achieve its

optimum flotation which occurs at point B. At point C, the tank is too long and it will

cause the floc to settle down.

Reaction zone	 Area (Separation zone)

u 0 0 0 ° 0 O 0 0 0 1u	 VI 00
00

/'	 "Airnozzle
Inlet zone

Figure 2.11-Arrangements in flotation tank (Source: Longhurst and Graham, 1987)
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Noone (1995) indicated that even in Severn-Trent Water, there is a range of tank sizes

with varying rectangular shapes, and different arrangements of air nozzles, baffles,

depths and operational procedures with no evidence to prove their effectiveness.

Thus it is worth investigating these parameters so that a better fundamental

understanding can be developed towards the achievement of an optimisation of tank

dimensions and the flotation process in practice. This could result in the saving of

power, chemicals, operation times and the development of standard design

procedures.

55



CHAPTER 3

SUMMARY OF LITERATURE AND RESEARCH OBJECTIVES

A survey of literature has indicated that the dissolved air flotation process has gained

considerable acceptance and popularity for potable water clarification. DAF is a

rapid process compared to conventional gravity settling. A considerable number of

water treatment plants using dissolved air flotation are found in the United Kingdom,

Netherlands, Australia, Scandinavian countries, the United States, South Africa and in

the Far East. Recently an international conference on dissolved air flotation for water

clarification held in London (16-18th April, 1997) indicated that more water

treatment works will be constructed using the DAF process. A number of

sedimentation processes have already been or will be converted to this process in the

near future.

In Section 2.4.1.4 (Chapter 2) the performance of dissolved air flotation process was

shown to be effective in the removal of algae, colour, turbidity, residual coagulant,

bacteria and protozoa. Extensive research has been carried out in the laboratory, pilot

plants and full-scale plants on the performance of dissolved air flotation for the

removal of the above parameters. Effective removal of algae in the water treatment

process is vital because its presence is associated with tastes, odours and the need to

clean the filter beds more frequently. Colour in water is due to the presence of

impurities from dissolved minerals, plants, animal by-products and industrial wastes.

Coloured water may be associated with potability and health hazard. The same

problems are true for turbidity. The latter is due to the presence of small particles in

water. Small particles hinder the ability of chlorine to kill pathogenic organisms

including bacteria and protozoa which may be present within the particles rather than

on the surface. Thus the removal of turbidity is important. Noone (1995) indicated

that for potable water clarification, a rapid and effective process is needed for the

turbidity removal before filtration. This is vital to minimise the risk of pathogenic

organisms entering the filter beds. Once the pathogens are in the filters there is a risk

that these organisms will enter into the distribution system. Future trends in water
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treatment will be more concerned with the removal of undesirable substances rather

than disinfection.

To date, studies referenced in the literature on turbidity removal were carried out

using samples collected in the flocculation tanks or at the raw water inlet and

compared with the turbidity samples collected at the outlet of the flotation tank.

Hitherto no study has been undertaken to investigate the variation of turbidity within

the flotation tank and to evaluate the effectiveness of the tank physical parameters in

relation to turbidity removal and the flow rates within the tank. This indicates there

are gaps in knowledge on the understanding of turbidity variation within the

separation zone and the effect that the tank physical dimensions have on it.

In Chapter 2, the performance of DAF processes based on the research carried out by

numerous workers has been summarised (Table 2.2b). Performance of DAF (as

shown in Table 2.2b in Chapter 2) is linked with flocculation processes such as the

velocity gradient, requirement for tapered flocculation and the size of flocs. Edzwald

and Walsh (1992) indicated that pinpoint size (10 to 30 tm) flocs were favourable for

a DAF process in water treatment. Their proposition was in agreement with Kiute et

a!. (1995) and Bunker et a!. (1995) who indicated that floc size in the range of 30 to

45gm was appropriate. From their results (Edzwald and Walsh, 1992; Kiute et

a!., 1995; Bunker et al., 1995) an assumption may be made in the full-scale plant

operation that for floc sizes below 300 1um may be used as a fixed factor to model the

performance of the DAF tank.

Section 2.4.2.6 in Chapter 2 also indicated that there is a great variation in the sizes

and shapes of DAF tanks (Longhurst and Graham, 1987). However the rectangular

shape has gained greater acceptance due to simplicity of design, easy introduction of

flocculated water, easy float removal, required small area and flexibility of scale-up

(Zabel and Melbourne, 1980). There is also no clear evidence to suggest that a

certain aspect ratio (i.e. length to width ratio) is superior to any other. Franidin et a!.

(1997) indicated that in Yorkshire Water aspect ratios of 0.5:1 and 3:1 are used and

suggested that the higher aspect ratios work better. Survey work done at Frankley,
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Trimpley, Draycote, Cropston, and Melbourne Water Treatment Works of Severn

Trent Water showed that each treatment works has different tank configurations. To

date no attempt has been made to study the effect of tank dimensions on the velocity

distribution within the tank and its effect on turbidity removal except by computer

simulation. Discussions with Severn Trent Water and the literature review in Chapter

2 (Section 2.4.2.6) confirmed that there are gaps in knowledge on the appropriate

design procedures for the DAF tanks. There are no clear answers to the question of

why different shapes are adopted at different treatment plants except by using the

surface loading theory. However the latter is based on a constant flow rate whereas in

the actual plants the flow rate may be changed from time to time. Details on the

actual velocity characteristics within the tank are not known.

The present study was carried out on full scale dissolved air flotation plants run by

Severn Trent Water with the main objective being to identify the important design

parameters within the separation zone of the DAF tank and their relationships with

the velocity and turbidity distributions. In order to achieve the objective several

procedures were identified and proposed. These were as follows:

1. To investigate the suitability of the Acoustic Doppler Velocimeter (ADV) to

measure low flow in a dissolved air flotation tank by analysing and comparing the

collected velocity data using appropriate statistical techniques.

2. To investigate the velocity distributions in the x, y and z directions in the

separation zone of the dissolved air flotation tanks at Frankley and Trimpley Water

Treatment Works using the ADV probe.

3. To investigate the effects of width, depth, length and the interactions between

them on the velocity distributions in the tank using appropriate statistical

techniques.
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4. To develop statistical models to describe the velocity distribution in the tank and to

develop a general statistical model which can be applied to a range of tank sizes

and flow rates.

5. To investigate the effectiveness of turbidity removal at different positions within

the separation zone of the DAF tank.

6. To compare the performance of DAF tanks at Frankley and Trimpley in terms of

turbidity removal within the separation zone of the DAF tanks.

7. To identify any redundancy in the tank dimensions based on the turbidity and flow

rate studies on the DAF tanks at the Frankley and Trimpley Water Treatment

Works.
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CHAPTER 4

EQUIPMENT AND METHODS

4.1. INTRODUCTION

A survey of literature has indicated that the flow in the separation zone of a dissolved

air flotation tank is designed to be laminar with Reynolds number normally less than

one. The rising velocity of the bubble was reported between 125mm/minute to

500mmlminute (Krofta and Wang, 1989). No direct measurement of specific bubble

size rising in a water column was made. Krofta and Wang (1989) only measured the

volume of air obtained at a specific interval rising at a specific depth through a water

column. An inference was made to the data using Stokes' law to obtain the bubble

size and rising rate. The average horizontal velocity (design) of water in the dissolved

air flotation tanks is approximately 9.5mm/sec at the Frankley Treatment Works. It is

not possible to measure these low velocities with conventional propeller type velocity

meters. A survey of instruments to measure low velocity was made from various

manufacturers around the world.

There are three types of velocity meter which are capable of measuring low flow.

These are as follows:

1. Acoustic Doppler Velocimeter

2. Laser Doppler Velocimeter (LDV)

3. Propeller Vector Averaging Current Meter (VACM)

LDV is quite expensive in the region of £80,000 (Elliott, 1997). It required a

complicated set up in a transparent tank and is considered inappropriate for site

investigation in concrete tanks at Severn Trent Water. VACM is the cheapest but

cannot measure velocity components in the y and: directions. It is not good for low

flow measurement especially where there is a sludge blanket in the tank which can

disturb the efficiency of the propeller.
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4.2 EQUIPMENT

4.2.1 Acoustic Doppler Velocimeter (ADV)

The SonTek Acoustic Doppler Velocimeter was originally developed and tested for

velocity measurements at the United States Army Engineer Waterways Experiment

Station (Kraus et a!., 1994). It can be used for scientific research, hydraulic

engineering and general flow problems in environmental science. It has advantages

of high sampling rate and requires only a small sampling volume. The latter makes it

possible to measure the velocity profile to within a few millimetres from the

boundary. When compared to the acoustic travel-time and electromagnetic

techniques, it has the advantages of being inherently drift free, not requiring routine

recalibration and the acoustic pulses do not suffer the range limitation of optical

pulses in turbid water (Lohrmann et a!., 1995). In terms of cost, this instrument is

much cheaper than the Laser Doppler system. The types of probe used depend on the

types of investigation anticipated. For operating in a shallow water, a 2-D side-

looking probe would be suitable. A 3-D side-looking probe requires water of at least

6cm depth. To measure flow close to the surface layer a 3-D up-looking probe may

be used. A 3-D down-looking probe is ideal for measuring velocity close to the

bottom of the boundary layer.

The velocity measuring equipment consists of an ADV sensor, probe, signal

conditioning module, high frequency cable and processor in a splashproof box. The

ADV sensor has three acoustic receivers and a transmitter. The probe is made up of a

sensor, stem and an endbell. The signal conditioning module is placed inside a

waterproof housing and holds the receiver. The system used in this study was

operated on site using a laptop computer. Software for the operation of the ADV was

supplied by the manufacturer. A sketch diagram of the system is shown in Figure 4.1.
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4.2.2 ADV Probe

The probe used in this investigation was a three-dimensional down-looking type

consisting of a 5cm sensor mounted on a 40cm stem. The red receiver arm points in

the direction of the x-axis. The directions of the y-axis and z-axis are based on the

definition of a right-handed co-ordinate system where z is pointing upwards. The

centre of sampling volume is approximately 5cm below the transmitter. The exact

position is encoded in a probe-specific configuration file. The distance to the

boundary shown on the computer display is the distance from the middle of the

sampling volume to the nearest boundary. Maximum and minimum water depth

specified for this equipment is 30m and 60mm respectively. Measurements as close

as 5mm from the sampling volume to the boundary can be made but it cannot

measure the velocity in the upper 5cm of the water column. The sampling volume is

3-9mm long and approximately 6mm in diameter. It is defined by the interception of

the signal beams together with the width of the transmitted pulse. Figure 4.2 indicates

the operation mechanism of the transducer. The receive transducers are mounted on

short arms around the transmit transducer at 120° azimuth intervals. The angle

between each receiver, sampling volume and the transmitter is fixed at 30 degrees.

This was developed by the manufacturer based on the balance between probe size and

statistically induced variance in the horizontal velocity components (Kraus et a!.,

1994). The velocity is derived from signals scattered by small particles present in the

natural bodies of water. For laboratory models, microscopic bubbles will act as

natural seeding. For models which involve clean water, seeding materials must be

added at a concentration of about 1 Omgll so that signals can be transmitted to the

transducers. The acoustic frequency used is at 10 MI-Iz with a velocity range of

±0.03, 0.10, 0.30, 1.0, or ±2.5mlsec and a resolution of O.lmmlsec. The operating

temperature of the probe is between 0 to 40°C. The sampling rate can be

programmed from 0.1 to 25Hz. This means at the higher rate one sample reading is

recorded at every 0.04 second but the computer screen only displays one sample

reading per second.
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4.2.2.1 Accuracy of Probe

A comparison of the horizontal component of the wave orbital velocity under random

surface waves using three dimensional ADV and Laser Doppler Velocimeter (LDV)

showed that good agreement was obtained over a velocity range of 10 to 250cm/sec

(Kraus et a!., 1994). The slope of the linear regression line from these data gave a

value of 1.03. Similar agreement was obtained for the vertical velocity component

which had a lower velocity. Validation of slow moving velocity (means of Vx, Vy and

Vz were -0.8 cmls, -2.2cm/s and 0.08cm/s respectively) showed that ADV data were

in agreement with qualitative observations of the movement of dye injected near the

meter.

Different types of velocity meters which used the same acoustic technique were tested

for measuring velocity distribution in a closed conduit (Vermeyen, 1994). The result

of the analysis of the path velocities indicated that there was very liftle cross flow

component. Velocities measured on a similar acoustic path agreed very well.

However the evaluation of the acoustic velocity meters was carried out at high flow

conditions which involved velocities in the regions of 3 to 4mls. No tests were made

at low velocities. Lohrmann et al. (1995) reported that a comparison of Reynolds

stress was carried out over a velocity range and indicated that at low flows of less

than 10cm/s the ADV data has a slight bias.

Direct comparisons of the SonTek ADV with a Vector Averaging Current Meter

(VMCM) were reported to have been carried out at the Woods Hole Oceanographic

Institute in the United States (Anderson and Lohnnann, 1995). The VMCM is a

propeller type current meter capable of recording data internally with an averaging

interval of 7.5 seconds. At a low frequency evaluation, data were collected at 1Hz for

a period of 43 consecutive hours. The current speed measured used in the study was

that of the horizontal velocity vector. The result indicated that the mean current

speed from ADV was 23.23 cm/s whereas from VMCM was 23.14 cm/s. A small

deviation in velocity could be due to the difference in temperature. The water

temperature was 5°C warmer for the VMCM than as set up in the ADV processing.
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When a second comparison for low frequency evaluation was carried out on the two

current meters, the result showed that the correlation coefficient between them was

0.955 with a mean difference of 1.8 cm/s. However if the last 50 minutes of the

records were used, the mean difference dropped to 0.04 cm/s.

Recently, Brunk et al. (1996) indicated that pulse-to-pulse interference can produce

an inaccurate result of velocity measurement by using the ADV. This is because

ADV analysed the echoes returning from the sonic burst and any interference due to

echoes from the apparatus walls may affect the accuracy of velocity readings.

However it would be possible to recognise any data arising from pulse-to-pulse

interference by looking at any sharp increased in the signal noise level.

Lohrmann et a!. (1994) indicated that a small deformation in the receiver arm will

only result in very small errors in the horizontal velocity. A change in angle as large

as S 0 o to the receiver arm produces a calibration error of less than 1%. A simple

visual inspection can be made to detect any damage to the receiver arm. Software

utilities can also be used for the same purpose. If the signal strength during data

collection reduces significantly, there are some problems with the receiver arm. The

instrument needs to be calibrated during data collection procedures by entering the

actual temperature and salinity of the water. Without this a nominal speed of sound at

1490ms 1 is used.

Care has to be taken not to damage the sensor. When operating in salt water for a

period of more than 24 hours, a zinc-anode has to be mounted on the stem. Physical

damage of the probe can be easily detected by simple inspection (Lohrmann et a!.,

1994). If the receiver is twisted or bent, the receiver elements cannot focus on the

sampling volume. Hardware diagnostics can be used to check out whether the sensor

is in a correct working order. The output from this test shows the signal strength in

each of the three receiver as a function of time. A damaged receiver will display

significantly reduced signal strength compared to undamaged receiver arms.
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4.2.3 ADV Processor

The ADV processor requires an AT-compatible PC with a 386 processor or higher

with one 16-bit full-sized card slot for each processor board installed, VGA colour

graphics and a hard disk drive which are installed in a splash-proof box. Data are

collected using digital (RS-232) transfer which allows real-time data acquisition. A

direct current (DC) supply (12 - 24 volts) is connected to the processor and the battery

has to be charged for a duration of at least 11 hours before operating the probe for

field investigation. The connector on the splash-proof box is designed to be used with

110 or 220V AC/DC adapters supplied for standard notebook computers. The

positive terminal has to be on the inside of the coaxial connector. The power

consumption is between 3 to 4 watts depending on the input voltage level.

4.2.3.1 Mechanical Switches

Three circuit boards are installed inside the ADV field enclosure. The upper board

consisting of several mechanical switches whose functions are clearly printed with

white letters. These switches are intended for setup, mode, sampling rate, velocity

range and synchronisation functions. The 'setup' switch can be set to hardware or

software positions. If the switch is set to hardware, the CPU will read the switch

settings when power is on and data collection will start. At this setting, software

communication is not possible. When the switch is set to software control, it will

override the mechanical switches. The 'mode' switch determines whether the system

is under a normal operation (RUN) or in the calibration mode (CAL). The 'sampling

rate' switch has dual functions. If the 'mode' switch is under RUN, the switch sets

the sampling rate to either 25Hz, 1Hz, or 0.1Hz. If it is set under CAL, the switch

enables the three analog outputs Vx, Vy and V: to be calibrated. The 'range' is used

to set the velocity range to either ±3OcmIs, ±lOOcmIs, or ±2SOcmls. The

synchronisation switch can be set to either 'asynchronous', for external

synchronisation to be disabled, 'start' for starting data collection when the first
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synchronisation pulse is received, or 'sample' to get the average velocity between

each synchronisation pulse.

The default setting on the mechanical switches is set for software control. The

settings override the mechanical switches even after a power down or up. Once the

power is connected, the system is run using the 'ADF.EXE' file.

4.2.4 Cables and Connectors

Cables and connectors are basically used for communication, data collection and

control lines. Analog outputs (velocities in x, y and z directions) generate voltages

proportional to the velocity components measured by the ADV. These outputs are

smoothed by a one-pole RC filter with a corner frequency of 25Hz. The output

voltage range is O-5V.

The splash-proof box has three connectors and one power jack. The coaxial power

connector is configured with a positive tenninal on the inside and negative tenninal

on the outside. It takes an input power in the range of 12-24V. The diode will light

up when the external switch is powered up.

The high frequency cable which is connected to the ADV signal conditioning module

has a 25-pin connector plugged onto the splash-proof box. A RS-232 serial cable with

a DB-9 connector connects between the computer serial port and the processor board

in the splash-proof box. The DB-9 connector provides a number of signals for

interfacing the ADV to other instrumentation.

4.2.5 Calibration of Analog Outputs

Calibration of the analog output is required if the system is connected to another data

acquisition software or data logger (Shephard, 1997). It is also necessary to

recalibrate if the standard cable has been altered in its length or replaced.
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No recalibration was required during the data collection period for this thesis,

however a description of the required procedure is given in Appendix A for

completeness.

4.2.6 ADV Software

The ADV field data acquisition program is supplied together with the equipment.

Hardware requirements for field investigation is 33MHZ 386 or 486SXIDX desktop

or laptop computer with 640K RAM, hard disk, colour VGA graphics and one serial

port per ADV. It has the following functions:

a) To enable the user to set up data collection parameters which include sampling

rate, recording file, velocity range, water temperature and salinity, unit system and

external synchronisation.

b) To control the operation of up to 8 ADVs simultaneously

c) To provide real-time display in the forms of graphic and alphanumeric for the

velocity data, signal to noise ratio, recording file, correlation coefficient for each

of the receiver and other information useful to the operator.

d) To record the data into compressed binary files on hard disk.

4.2.6.1. Installation of ADV Software

To install the software into the lap-top computer, the following procedures were

carried out in the laboratory at the University of Newcastle:

1. A directory was made for the ADV software in the c-drive. This was done by

typing the following commands:

a) C:\>md—sontek(R) where is for space and (R) is for return

b) C:\>cd\sontek(R)

c) C:\sontek>

2. The ADV software disc was copied onto the C drive in the sontek directory by

using command copy.a:*.*c:(R). By using command C:\sontek>dir-.ip(R), a list
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of files appeared on the screen. One of them was the calibration file 1137.PRO.

The latter file has to be deleted because the ADV signal conditioning module

which was purchased from SonTek Inc. has a calibration file '1239' stamped on

the end plate. File 1 137.PRO on the hard disc was deleted and file 1239.PRO was

copied onto the C drive. A command dir-ip was made as before to check the right

calibration file installed. 'advprobe.def' was edited for the correct probe number.

3. The correct serial port on the lap-top was checked to make sure it was configured.

By using a command C:\sontelc>type—advprobe.def and pressed return, the output

was in the form of PROBE 1 1239.PRO. Number 1 referred to the

communication port in use for the computer. Port number 1 of the lap-top was

used. This may be required to be edited if another port is used. The term

1239.PRO is the probe number and the calibration file reference. Serial line cable

RS232 was used for connection between the computer port and the splash proof

box.

4. To check whether the system was working, the probe was lowered into a bucket of

water, the power on the splash proof box was switched on and the command

C:\sontek>adf was made. It took a few seconds for the system to 'wake up' the

probe and then showed a setup mode screen. This screen showed parameters

needed to be entered such as water temperature and salinity, sampling rate,

velocity range, file name to store the data, date and time of sampling. When the

arrow was pointed to the word 'start data collection' and pressed enter, the next

screen appeared was 'ADV probe adjustment for boundaries'. By moving the

probe in a bucket of water up and down, the screen showed some changes on the

distance of the probe tip to the boundary. By pressing the FlO key, initial

familiarisation on data acquisition was made.

4.3 TRIMPLEY WATER TREATMENT WORKS

The water treatment works at Trimpley has seven dissolved air flotation tanks for the

solid-liquid separation process. These tanks were commissioned in 1995 to

incorporate the existing hopper bottom clarifiers. Normally three to four dissolved air
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flotation cells are used at a time. The maximum design output from each cell is

approximately 7.4 million litres per day (mid).

The raw water is abstracted from River Severn and impounded in a reservoir next to

the treatment works. Prior to flotation, the water undergoes coagulation and

flocculation processes. In the coagulation process aluminium sulphate is added and

hydraulic mixing is employed. Flocculation is done in two stages which involved

further mixing of water and chemicals using mechanical flocculators to achieve

suitable flocs for the flotation process. A retention time of 30 minutes is allowed in

the flocculation tank. Under most circumstances, a retention time of 20 minutes is

considered sufficient depending on energy input. In the dissolved air flotation

process, air bubbles are injected through 112 air nozzles in the reaction zone of the

flotation tank in order to promote the bubble-floc attachment process to take place.

The saturator pressures employed in the process is between 4.7 to 6 bar with a recycle

ratio of approximately 1000 of the outflow. Sludge is removed by the mechanical

scraper in a 30 minute sequence for each tank or as deemed necessary depending on

the incoming water quality. The effluent from the flotation tank is discharged into

rapid gravity filters for final clarification. Finally the filtered water flows into a

contact tank for disinfection.

4.3.1 Tank Configuration

All dissolved air flotation tanks at the Trimpley Water Treatment Works have the

same configuration. Figure 4.3 shows the tank configuration at Trimpley. The

nominal size of the tank is 7870mm length, 5 120mm width and 2250mm depth. The

nominal depth of water is 1650mm. The tanks were constructed parallel to each other

so that the middle tanks share a common T-shape wall. This means both sides have a

cantilever platform. The rails of the bridge scraper were built along the cantilevered

platform on the dividing wall. The presence of these cantilever structures and the

launder at the outflow end of the tank prevent measurement of velocity near the wall.

This means that the measurement of velocities across the width of the tank has to be

carried out directly from the edge of the cantilever floor. Velocity measurements
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4.4. FRANKLEY WATER TREATMENT WORKS.

The treatment works has twenty dissolved air flotation cells, each having two sub-

tanks with a common inlet but different outlets. Figure 4.4 illustrates the

configuration of each cell at the Frankley Treatment Works which indicates the inlet

is situated in the middle section of the tank. At this section the flocculated water is

saturated with air from the nozzLes and subsequently flow over the baffles in two

directions towards the flotation tanks. The maximum plant output is 450 million

litres per day (mid) with a design average of 365 mld. The raw water is abstracted

from the Elan Valley in the mid-Wales and impounded at Bartley and Frankley

reservoirs. Additional water demand is met by pumping the raw water at a rate up to

180 mId from the River Severn at Tnmpley.

Clarification processes involve hydraulic rapid mixing, flocculation, dissolved air

flotation and rapid gravity sand filtration. Lime and/or carbon dioxide may be added

to modify the hardness of the water and to ensure that the pH following the addition

of coagulant is in the optimum band. Ferric sulphate is used as the main coagulant or

alternatively aluminium sulphate or polyaluminium chloride (PAC) may be used.

Three stages of flocculation are employed at this treatment plant to ensure the

following objectives:

1. To allow completion of the coagulation reaction and initiate flocculation in the

first stage.

2. To promote flocculation in the second stage

3. To encourage final floc development and to produce an equal flow regime across

the outlet of the flocculation tank in the third or final stage.

The technical specification for the flocculation process can be summarised as shown

in Table 4.1.
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Table 4.1 - Technical specification for flocculation

Process Parameters	 Specification

Retention time at cell output of 26.4mld 	 30 minutes

Mean velocity gradient 	 25-80 per second

Maximum tip speed	 1 mIs

Flow pattern	 Diagonal

In the dissolved air flotation process 7 to 10 g/m 3 of air is injected through a needle

valve which has a double diffuser. The same type of valve is used in the flotation

tanks at the Trimpley Water Treatment Works. The saturator is designed with a

surface loading of 26.5 m3/m2/h to cope with maximum recycle flow of 10%. Air

nozzles are spaced at 180mm centres in the reaction zone. The maximum flow

through each nozzle is 0.2 litres per second (ips) with a total of 162 nozzles in each

cell. However 14 nozzles were shut down during the investigation. The minimum

and maximum working pressures of the saturator are 220 and 5SOkpa respectively.

4.4.1 Tank Configuration

All the tanks at this treatment works have the same configuration. Figure 4.4 shows

the configuration of each DAF cell. Measurement on site showed that the width of

the dissolved air flotation tank is 7m. The length of the separation zone on each side

of the tank is 8.4m. The separation zone is the distance measured in plan view

between the outlet of the tank and the top end of the baffle. The reaction zone is

2.37m and in this case it is the distance between the tip of the two baffles. The

distance between the foot of the baffles where the nozzles were installed is 780mm.

The floor of the tank is constructed at a gradient of 1:84 sloping down from the outlet

wall towards the baffles. The nominal depth of water at the outlet end during

operating conditions was found to be 2.lm.

The raw water is fed to the DAF cells through two channels where rapid hydraulic

mixing occurs. Each raw water channel branched into two smaller channels.

Coagulated water from each smaller channel is then fed into the flocculators and DAF
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tanks. There are five flocculators laid parallel to each other for every stage of

flocculation. The five DAF tanks receiving the flocculated water are also constructed

parallel to each other. The method of construction is similar to those at Trimpley as

per section 4.3.1 and this presents a similar restriction for velocity measurement.
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Figure 4.4 - Grid system in a dissolved air flotation tank at Franidey Works
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4.5. WATER SAMPLER

A water sampler made from rigid polypropylene with a capacity of 60m1 was used to

collect water samples from the same points where velocity measurements were taken.

Plate 4.1 shows a photograph of the water sampler used in the investigation. It has a

heavy weighted base with a spring mechanism attached at the upper section of the

equipment. When a sharp pull was made on the cord, the two small inlets situated on

the upper part of the bottle opened (was closed initially) and this allowed water to be

admitted into the bottle. As the water entered the bottle, air bubbles were displaced

from the bottle. The bottle was assumed full when there was no sign of air bubbles

on the surface of the tank. The absence of sludge in the water sample may indicate

that the sample was acceptable for use in the study.

Minor adjustments were made to the water sampler to achieve maximum performance

for collecting 64 samples in one run or set of experiments. A new spring was

fabricated in the workshop at the University of Newcastle to replace the original

spring supplied with the equipment. The original spring was found to be too soft and

snap easily due to extensive use. A plastic bottle cap was found to be invaluable on

site. It was installed at the upper end of the spring. It was used to prevent the sludge

blanket from getting into the water sample when the sampler was pulled up through

the surface of the sludge blanket. Initial work without a bottle cap on the rope showed

that the time taken just to take one sample without the interference of sludge was

between 10 to 30 minutes. The use of a bottle cap helped to reduce the time taken to

take water samples. This would enable a reduction of disturbances on the water body

due to less repetition. The diameter of the bottle cap was smaller than the diameter of

water sampler and therefore a minimum disturbance to the turbidity distribution in the

tank was achieved.

The water sampler was attached to a strong nylon cord. A knot was made on the

string to mark the required depths for sampling points to be taken. Initial markings

were made by allowing the sampler to be placed in a bucket of water so that its

buoyancy would be taken into account.

75



4.6. STATISTICAL METHODS FOR DATA COLLECTION

4.6.1. Formatting Factors and Levels

Statistically the parameters width, depth and length of the tank can be called 'factors'

in the experiment. Once the factors have been established, the experimenter can

divide these factors into different 'levels'. In this case the different positions where

the velocity and turbidity were measured are called levels. Figures 4.3 and 4.4 clearly

indicate that the width, depth and length are assigned at four different levels in

accordance to the mesh system. Each level was designated at a distance of one-

quarter of each factor. Subsequently for any tank size in the investigation, the level

can be considered fixed. The format used in this study to assign three factors, each at

four different levels satisfies standard statistical procedure to carry out data analysis

such as an analysis of variance (ANOVA) and other techniques.

4.6.2. Experimental Design

In order to obtain meaningful conclusions from the data, a statistical approach to

experimental design is essential. Montgomery (1991) defined the statistical design of

an experiment as a process of planning the experiment so that appropriate data, that

can be analysed by statistical methods, will be collected, resulting in valid and

objective conclusions. The experimental design incorporates three basic principles

namely replication, randomization and blocking. Replication means a repetition of

the basic experiment. For the purpose of this research work the term 'run' has been

used for each set of tank data. Three runs were carried out at each tank to provide the

required replication. It is an important process due to the following reasons:

1. To obtain an estimate of the experimental error. This estimate will be a basic unit

of measurement to determine whether the observed differences in data are really

statistically different.
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2. To obtain a more precise estimate on the effect of a factor on the sample mean.

During the investigation, two tanks were chosen from each site (Frankley and

Trimpley Treatment Works). Velocity measurements from each tank were taken in

three different runs. The order of measurement carried out for different points in the

tank was based on a randomization procedure over the 16 points in plan view of the

tank. The decision not to randomise all the 64 points in the tank was made due to the

following reasons:

1. To reduce disturbances to the on-going dissolved air flotation process at the

treatment plants.

2. To reduce any risk of contamination or failure to the water supply system and to

safeguard Severn Trent Water Company from any complaint.

3. To reduce the time of moving the sludge scraper forwards and backwards in the

tank and the danger of running up and down from the control room (to switch on

the sludge scraper) to the tank in order to stop the bridge scraper at the required

position.

The randomization process can reduce systematic error arising from measurement or

investigation being carried out repeatedly in the same order (Chatfield, 1992). It can

help in averaging out the effects of factors which have not been or cannot be

controlled by the experimenters. Examples of those experiments which cannot be

controlled are those involved with raw materials which vary in quality, changes which

occurred at different times of the day or with any other environmental conditions.

A technique to increase the precision of the experiment is called blocking. This

technique involves making comparisons within matched pairs of experimental data.

By having two tanks from each site, the result can be compared using an appropriate

statistical test. For example, the average velocities of the two tanks were compared

and subsequently the confidence interval on the average velocities were evaluated.
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4.6.3. Methods for Velocity Measurements

The methods involved in velocity measurement were divided into three different

phases. These can be summarised as follows:

1. Identifying the appropriate statistical technique to be used for data collection

2. Initial preparation works on site before data collection and

3. Data collection

4.6.3.1. Statistical Technique

In order to carty out measurement of the velocity profile along the width, length and

depth of the tank, a grid system of equal intervals for each tank dimension was

chosen. The distance between the baffle to the outlet wall was divided into four equal

intervals. This can be seen from Figures 4.4 and 4.5 (plan view) for the Trimpley and

Frankley Water Treatment Works respectively. The length is divided into sections A,

B, C and D. The width is divided into sections 1, 2, 3, and 4 with an equal interval

between each section. The points of intersection between cross sections and

longitudinal sections are those points where velocity measurements were taken. In

plan view, there were 16 number of points to be monitored. However the depth is

also divided into four equal interval as can be seen from the side elevation view of

Figures 4.4 and 4.5. The four different depths are indicated at levels dl, d2, d3 and

d4. Thus the total number of points to be investigated for velocity measurement were

64.

The decision to divide the length, width and depth at equal interval was made for the

following reasons:

1. It gave a better understanding of the velocity distribution in the tank.
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2. It helped to develop a proper statistical model when comparisons were made

between different runs or replications. An analysis of variance on the model was

readily carried out when there were fixed factors on each tank parameter.

3. It was easy to remember and prevent unnecessary errors during data recording and

collection.

4.6.3.2. Preparation Works

Initially drawings of the dissolved air flotation tanks were obtained from the site

managers of each treatment works. The dimensions on the drawings were checked

based from an available tank which had been emptied.

The difficult problem during site measurement was to transfer points from the floor of

the tank to the top wall so that the marking and setting up any dimensions for any

particular parameter could be taken. For example it was necessary to measure the

length of the mixing zone i.e. in plan view between the tip of the baffle to the outlet

wall of the tank. In reality the tip of the baffle was not accessible. It is located within

the tank which is below the walking platform. The same problem occurred for the

outlet wall of the tank. It was constructed from the floor of the tank to a depth below

the walking platform. The solution was made by using a plumb-bob. The positions

of any inaccessible points were marked on the upper wall of the tank using a plumb-

line. Marking for the different in length position where samplings are required were

made on the kerb situated at the upper wall of the tank. For the width of the tank, the

marking of the positions were made on the side of the bridge scraper.

The following procedures were undertaken before actual data collection on velocity

distribution was made:

1. The batteries of the ADV and lap-top computer were charged. A charger was

provided with the ADV equipment and it took at least 10 to 12 hours to get the

battery fully charged. The battery of the lap-top computer used in the

investigation needed at least 4 hours to be charged. The batteries of the ADV and
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lap-top computer can be used for a maximum operation period of 11 and 3 hours

respectively.

2. The clamps to hold the ADV probe were installed on the upper and lower side

rails of the bridge scraper. The clamps were aligned using a plumb-line. An

Allen key was used to screw the clamp to the side rails and to the rod of the ADV

probe.

3. A trolley for the ADV processor and the lap-top computer was placed on the

platform of the bridge scraper. Connections between the processor and the

computer were made accordingly.

4. A bucket of water and a roll of tissue papers were made available on the bridge

scraper for cleaning purposes.

5. A log-book was placed on the trolley to record any significant events during data

collection.

4.6.3.3. Data Collection

For data collection, the conditioning module was attached with a mounting bracket.

This bracket was mounted on the stem made up of galvanised iron pipe of 20mm

nominal diameter. The stem was made into segments and joined together by

fastening the stud at one end to threaded hole at the other. Experience of using the

aluminium cylindrical stem showed that the thread at the joint was easily damaged

due to the soft property of aluminium and the extensive connecting and disconnecting

of the stem segments. When a steel thread connection was used, it did not create any

problem on site. The stem used for data collection was a strong cylindrical hollow

tube which is robust, light and easily handled on site. If the stem is too heavy, it is

difficult to handle and there is a great possibility that the probe might be dropped into

the tank damaging the transmitter and receivers. Plate 4.2 shows how the ADV signal

conditioning module was clamped to the bracket and the stem was held in a vertical

position by clamping it to the side rails of the bridge scraper. Without the bridge

scraper it would be expensive and difficult to carry out any measurement in the

middle areas of the flotation tank.
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The procedures involved during data collection are described and summarised as

follows:

1. The ADV probe was lowered to the prescribed point according to the

randomization procedure. The power of the battery at the splash proof box and

the computer were switched on. Then the ADV software was operated as

described in section 4.2.6.1.

2. The values of water temperature in the tank, the salinity (zero), the sampling rate

and the velocity range were entered. In the experiment a sampling rate of 25Hz

was used initially at Frankley and 1Hz was used later at Trimpley. A different

sampling rate was made because the earlier work at Frankley showed that large

quantities of data were captured at a rate of 0.04 second for each reading. This

occupied a large amount of hard disk storage capacity. There is a restriction of

140,000 lines if the data is to be transferred onto the EXCEL software. A decision

was made to record velocity data at each point for a period of 2 to 3 minutes. A

longer recording time was considered inappropriate because initial tests at several

points for a period of 25 minutes at each point indicated that there was no

significant difference of velocity variation in the time series curves. At the

Trimpley Works, a sampling rate of 1Hz was considered appropriate following the

first meeting of ADV users within the United Kingdom when it was found that the

ADV processor would automatically average the velocity for a period of one

second. A velocity range of 3cmlsec was used in the experiment based on the low

flow anticipated in the tank of 1 Ommlsec.

3. The file name of the point to be measured was entered onto the software and the

command to start data collection was entered. The file name for each point was

based on the grid measurement positions (Figures 4.4 and 4.5) for the Trimpley

and Frankley Treatment Works respectively. For example in run number one at

the Trimpley Works, a file name of R1A1d1 was made and entered into the

software. Ri indicated that it was in run number one, Al was the point in plan

view where the vertical line A met the horizontal line 1 of the grid system and dl

indicated that it was at a depth dl based from the side elevation view of Figure
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4.3. The outflow from the tank was recorded when velocity measurements were

taken. This data was used at later stage for data analysis.

4. Any features which may give some impact on the data were normally recorded.

5. No movement on the bridge scraper was made to prevent the probe from being

disturbed. The probe is very sensitive and any movement can produce a bias in

the result.

4.6.4. Method for Water Sampling

The procedures to identify the water quality sampling points using statistical

techniques are the same as those for velocity measurements as per section 4.6.3.1.

However the preparation works were different and these can be summarised as

follows:

1. A compartment for 64 bottles samples was prepared on the upper tray of the

aluminium trolley. A hard cardboard paper was used to separate the sampling

bottles. On the sides of the compartment, identification for the sampling points

was made based on the rows of bottles to be placed inside the compartment. This

helped to avoid mistakes during sampling.

2. Markings on the side and on the top of the bottle cap were made according to the

sampling points to be taken. Then the bottles were arranged in a proper order in

the compartment. In the experiment, the order of arrangement was made from

point Al, A2, A3, A4, Bi and so on. This sequential arrangement was useful to

prevent any mistake occurred during sampling operation. For marking purposes a

water resistant marker was used.

3. The trolley together with its contents was placed on the platform of the bridge

scraper.

4. A bucket of water and a roll of tissue paper were provided on the bridge scraper for

cleaning purposes.

5. A log-book was put on the trolley to mark the sampling time for each point.
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4.6.4.1. Sampling for Turbidity

During data collection water samples were collected from 64 points in the tank where

the velocities were measured. The time of collection of each sample was recorded.

At the Trimpley Works, the time and the quantity of outflow from the tank were

recorded and monitored automatically by the computer. At the Frankley Works

manual recording of the outflow from the tank had to be made because the on-line

computer was not programmed to store the outflow data. Water samples from three

different stages of flocculation were also taken for each run. Water temperature was

recorded in the log-book.

All turbidity measurements were made using a 21 OOA Hach turbidimeter which was

standardised with latex suspension supplied by the manufacturer.
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Plate 4.1 - Photograph of bottle sampler used for the investigation
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Plate 4.2 - Photograph taken at Trimpley Works showed the ADV was held in
position for velocity measurement
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CHAPTER 5

A REVIEW OF STATISTICAL METHODS

5.1 INTRODUCTION

In order to achieve the objectives of the study, velocity and turbidity data collected

from the two treatment plants at Frankley and Trimpley were analysed using

appropriate statistical techniques. Statistical methods employed during data

collection have been described in Chapter 4. This chapter provides a review of the

statistical approach to data analysis. A detailed explanation of each statistical

technique is given in this chapter to provide a clear understanding on the statistical

concepts employed. The results of the statistical analysis will be described and

explained in Chapters 6, 7 and 8.

A detailed description on how the samples were extracted from the binary files into

ASCII files using the WinADV software will also be explained in this chapter. This

is followed by a step by step statistical procedure which has been undertaken to

analyse the data. Basically this procedure describes the techniques used to analyse

the data collected from the field for the purposes of estimation and comparison to test

the reliability of the data.

The word 'statistic' can be described as a measure obtained by using the data values

from a sample, whereas a measure obtained by using all the data values for a specific

population is called a 'parameter' (Blunian, 1992). As statistics are involved with the

science of making decisions in the face of uncertainty (Chatfield, 1992), this chapter

will consider and discuss the robustness of each statistical method used in the data

analysis. The procedures and limitations of each method will be explained.

Particular emphasis will be given to data estimation and prediction.
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5.2 DATA 1ST1MATION

5.2.1 Summarising Velocity Data

Velocity data collected by the ADV software for each point was in the form of a

binary file. Each file has an extension of 'adv'. A point Aldi was put under a file

name of R1A1d1 to indicate that the data was collected during 'Run 1'. The default

system in the software assigned this point under a file name of 'R1A1d1.adv'. This

was converted into an ASCII format by the following procedures:

1. The ADV software, which was named 'Sontek', was run in the C:\cd\sontek

directory. To see the files which have been recorded during site investigation, a

command C:\sontek>dir was made. The screen showed all the files under

'Sontek' in the C drive.

2. Each file was then converted to an ASCII file using format

C:\sontek>getvel-(data file)-(output file)-(probe)--(first sample}-{last sample)

where is for space. For example, file R1A1d1 was converted by entering a

command C:\sontegewel-R1A1d1-4RlAld1--all.  The probe number was not

entered because only one probe was used in the investigation. The default system

in the software will override it if the word 'all' is used. This is also applicable

when it is required to get all the values of the velocity samples in a file.

3. The results of the conversion files in ASCII format were designed to be extracted

only by LOTUS or EXCEL software. Using EXCEL software each file was read

and saved. Sixty-four files were saved from each run. For a total of four tanks

from the Trimpley and Frankley Water Treatment Works, 768 files were saved in

EXCEL. These numbers were based on three runs for each tank.

For velocity samples of size n^30, an estimate of a population variance, o is

provided by calculating the sample variance s2. When the sample size increases the

sample mean () will get closer to the population mean p (Chatfield, 1992). For

87



each point at the Trimpley Treatment Works a sample size of more that 200 was

made. As for the Frankley Treatment Works a sample size of not less than 1,000 was

collected for every point.

Discussion by Metcalfe (1996) and Martin (1996) has indicated that the velocity data

of each point in the file can be considered as a sample of the population and can be

analysed by averaging the whole sample. MINITAB software was employed.

Basically the calculation was made based on the following equation:

xI

sample mean,	 1=1
	

(5.1)
n

where x, is a sample of size n from some population.

Since the sample was random, x1, x2.........., x,, can be interpreted as n independent

random variables. Each sample was also drawn from the same population and thus

the expected E(x) =p and var(x) = The proof can be written as follows (Chatfield,

1992):

E()==E{' 
+X2+..........xn}

.........

n n	 n

=1'

For the variance of ( );

(,
variance (1) =varj

= -4- [var(x 1 ) + var(x2 )+......+ var(x)]
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In

The standard deviation or standard error of V is equal to 	 This indicates that

as the number of observations n increases the standard error will decrease. This

confirms the idea that the more observations taken the more accurate will be the

sample mean.

When the ADV software for velocity data screening was developed by the US Bureau

of Reclamation and then supplied to the ADV users, velocity data were screened for

poor quality readings. It was found that there was no significant difference in the

average velocity between using 'M[NITAB' and ADV data screening software. This

was due to the fact that during data collection the values of the signal correlation for

each of the three receivers were more that 70% and considered good. These values

are given as a percent and a value of 100 means a perfect correlation.

Contact was made with the manufacturer (Lohrmann, 1997) of the equipment and the

author (WahI, 1997) of the software for velocity screening (WinADV) on how exactly

the correlation parameter was calculated. Lohrmann (1997) indicated that the ADV

velocity is estimated by measuring the phase shift between the echo from two

successive pulses. According to the manufacturer the phase shift was estimated by a

signal processing technique called "complex covariance estimation between pulse-

pairs" which generates a covariance function that has a phase and magnitude. The

phase is directly proportional to the distance the particles have travelled during the

time between the pulses. The magnitude is a measure of the similarity of the echoes

described by Lohrmann (1997) in terms of a normalised correlation. If the echo from

the two pulses are identical the correlation will be perfect. If the echoes are

dissimilar the correlation will be reduced.
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By using the WinADV, the quality of each sample was estimated by an

autocorrelation parameter. Samples with a value of less than 70 were removed from

the series. Samples that were tagged with communications error flags (i.e. samples

not properly received by the ADV program) were removed and replaced with

interpolated values. The latter was carried out by clicking on the 'Filter out

communications errors' option on the filtering options screen of the WinADV. The

filtering process that was carried out was based on the average correlation parameter

from amongst the three channels. The filtering process can also be based on a

minimum correlation parameter for all three channels. Additional filtering techniques

were based upon the signal-to-noise ratio, the removal of samples within a specified

range, or the removal of data which were marked with communication error flags.

During the filtering process it was found that four out of 768 files were unable to be

processed using an autocorrelation parameter. The velocity data of these files were

collected from the Trimpley Water Treatment Works. The four files were R2D4d4 of

run number 2 from tank Cl, R1D4d4 of run number 1 from tank Cl, R2D1d4 and

R2D4d4 of run number 2 from tank Cl. The output from the WinADV screen only

stated 'Sampling window does not specify any valid sample for this flag arrangement'

and 'Review sampling options'. Since the software indicated that there was a need to

review the sampling option, an average signal-to-noise ratio filtering option was tried

and was able to filter the velocity data. The signal-to-noise ratio is the ratio of the

signal strength to the background acoustic noise level inherent in the ADV

instrument. The measurement values are in dB (decibel) relative to the noise level.

WinADV specified that for measuring mean velocities the signal-to-noise ratio should

be 5dB or higher. Low signal-to-noise ratio indicated that the water sample has low

concentration of scatterers (particles in the flow that reflect acoustic signal back to

the probe receivers).

The following procedures were carried during the filtering process using WinADV:

1. The WinADV program was opened using 'winadv.exe' from the file manager.
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2. Raw data for each file was opened and the screen displayed the unfiltered time

series graphs for velocity components in the x, y and z directions. Velocity

components in the x, y and z directions were marked in black, blue and red

colours respectively. Checking for aliasing in the velocity data was made visually

from the output graphs. Aliasing is represented by ADV as a spike in the velocity

data that biases the average velocities and makes instantaneous velocity

measurements uncertain. To assist in identifying aliasing, WinADV computed the

skewness of the velocity distribution for each file and reported the maximum

skewness in the '.sum' file. Skewness greater than 1.5 has to be investigated for

evidence of aliasing.

3. A filtering command was clicked and this gave the percentage of good data which

has been filtered. 100% indicates that all the raw data in the file were good with

correlation more than 70%. A 'redraw' command was clicked to see the time

series graphs for all velocity components.

4. A 'process' command was made from the screen to process the filtered velocity

data so that summary statistics and sample-by-sample files were computed and

stored in the C drive. Summary statistics and sample by sample data were given

with extension files '.sum' and '.vf' respectively. An output format was clicked

under 'EXCEL' so that the above files can be read under EXCEL software.

5.2.2 Comparing Data

In order to reach a subjective conclusion as to whether there is a significant difference

of mean velocities between different runs, the use of a descriptive method was

employed. For this purpose MTNITAB software was used to analyse the data.

Velocity data from three different runs in the tank were compared using a boxplot. A

rectangular box was plotted for each run which represented the middle 50% of the

data. The general extent of the data was represented by lines on both sides of the box.

The median value of the data was marked across the box. The outliers or

observations which were far from the rest of the data were marked by an asterisk.
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MINITAB considers outliers as any value lying between one and a half and three

times the spread of the middle 50% of the data above and below the average values.

Any more remote value is considered an extreme outlier and marked as '0'.

5.2.3 Analysis of Variance (ANOVA)

The statistical procedure used to compare different components of variation is called

the analysis of variance. It is always linked with the analysis of designed

experiments. This procedure aftempts to analyse the variation of the response

variable (the variable to be predicted), which is in this case the velocity and turbidity.

The rationale of the problem is that the response variable will only vary because of

the variability associated with a set of unknown independent variables. For example,

velocity at different points in the tank may vary due to unknown independent

variables such as the flow into the tank, the dimension of the tank, the temperature of

the fluid and many others. In reality, the experimenter will rarely include all the

variables affecting the response in the experiment because of the overall cost,

development time or the practicality of the investigation. Hence random variation

will also be observed even if all the independent variables considered were held

constant. The main objective of ANOVA is to identify the independent variables

which cause significant variation in the response variable and to determine how they

interact and subsequently affect the response.

During the investigation three runs (treatments) were performed for each tank. The

observed response from each of the three runs or treatments was a random variable.

The velocity data appeared in the form that can be generally formatted as in Table

5.1.
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Table 5.1 - The formatted form of velocity data

Observations Total	 Sample	 Population Sample

mean	 mean	 variance

Treatment 1	 x11,x12....... .x1,, T1	 /tj	 s

Treatment 2 x21,x22....... . X2n 	 T2	 P2	 s

Treatment c x,x2........x	 T	 Pc

It is useful to describe the observations based on Table 5.1 with the following linear

statistical model:

p+r, +
	

(5.2)

where x, was the (/)th observation, p was a parameter common to all treatments

(conditions or processes whatever being compared) called the overall mean, z was a

parameter unique to the ith treatment called ith treatment effect and e, was a random

error component. This model is called one-way or single-factor analysis of variance

because only one factor (i.e. the treatment effect) is considered. The model was

considered to be a fixed effects model because the treatments or runs have been

specifically chosen during the investigation and in this case the experimenter was

only trying to see the variation in velocities between different runs from one tank.

Montgomery (1991) has indicated that in the fixed effects model the treatment effects

ç can be defined as deviations from the overall mean where,

a	
=
	

(5.3)

where a is the level of the factor.

One-way analysis of variance was performed to test the hypothesis that there was no

difference between a number of treatments or runs for velocity data. Here the F test
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was used to test a hypothesis concerning the means of three or more populations. The

t test cannot be used because its application is limited to comparing two means at a

time, and the rest of the means under study are ignored (Bluman, 1992). The second

reason is that the probability of rejecting the null hypothesis when it is true is

increased, since the more the t tests are being conducted the greater the chances of

getting significant differences by chance alone. The third reason is that a greater

number of t tests will be required when comparing a large number of means. The

assumptions for the F test for comparing three or more means are as follows:

1. The underlying sample populations must be normally distributed.

2. The samples must be independent of each other.

3. The variances of the population must be constant.

Under this test two different estimates of the population variance were made. The

first estimate of variation was made between runs or treatments by measuring the

variability between the run means,	 The second estimate of variation

was made within each run by computing the variance of all the data and was not

affected by differences in the means. For velocity data where there is no difference in

the means, the between-run estimate will be approximately equal to the within-run

variance estimate and the value of F-test will be 1. However when the means differed

significantly the between-run variance will be much larger than within-run variance;

consequently the F-test value will be larger than 1 and the null hypothesis will be

rejected.

MINITAB software was used for the analysis of variance. The data computed by the

software were given in a tabulated format and the calculations were based on the

following table:
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Table 5.2 - One-way ANOVA (Source: Chatfield, 1992)

Source of variation Sum of squares 	 Degrees of freedom Mean square

Between runs	 C	 c-i	 s
n(	 )2

I=1

Within runs	 C	
c(n-i)

1=1 j1

Total variation	 C	
cn-i

/=1 j=1

n sample size	 c—Trun or treatment	 =sample mean
i=ith run	 j=jth observation
s =estimate of c/based on (c-i) degrees of freedom

s 2 —combined estimate of o (population variance) from the variation within runs
x, is thejth observation in the sample from population I, x.

The mean squares for s and s 2 were obtained by dividing the appropriate sum of

squares by the appropriate number of degrees of freedom (Ryan and Joiner, 1994).

The degrees of freedom are the number of values which are free to vary after a

computation on a sample statistic is made, and are associated with the specific curve

to be used when a distribution consists of a family of curves. The F ratio was

obtained by dividing the mean square between runs with the mean square within runs.

The software also produced the significance level denoted as p in the ANOVA table

based on the F ratio with the appropriate degrees of freedom.

A 95% confidence interval for the means from three runs were plotted to give a

subjective conclusion on the velocity data. This estimation means 95% of the time

we have a certain confidence that the interval does contain the mean value. Each

confidence interval was calculated based on the following equation:

; —tsp /..j to x +ts,, ij
	

(5.4)

where	 and n, are the sample mean and sample size for level I , s is the pooled

standard deviation and equal to the square root of mean square error which is the
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pooled estimate of the common standard deviation o and t is the value from a t-table

corresponding to 95% confidence and the degrees of freedom associated with the

mean square error.

5.2.3.1 Model Adequacy

The observations described by the model in Equation 5.2 were based on the

assumptions that the errors were normally and independently distributed with mean

zero and constant but unknown variance o2, i.e. normally written as NTD(O,o). If the

assumptions were valid then the ANOVA procedure was an exact hypothesis test of

no difference in the treatment means. To check that these assumptions were not

violated the residuals were investigated. Montgomery (1991) defined the residual for

observation] in treatment i for the one-way model as follows:

e, = -
	

(5.5)

= Xy -

where	 is an estimate of the corresponding observation x and	 is the overall

mean in the i treatment. The derivation of the above equation can be found in

Montgomery (1991).

The residuals from the ANOVA of each tank were examined for model adequacy.

Plots of residuals versus fitted values were made. The model is only valid when the

plot shows a structureless pattern. The residuals should be unrelated to any other

variable, including the response x,. If the plot looks like an outward-opening funnel,

the implication is that the error or the background noise in the experiment was a

constant percentage of the size of the observation. This means that the variance of the

observations increases as the number of observations increased.

A check on the normality assumption can be made by constructing a normal

probability plot or by plotting a histogram of the residuals. If the NTD(O,o2)
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assumption on the errors is satisfied the normality plot will resemble a straight line.

When visualising the straight line more emphasis on the central values of the plot

should be made (Montgomery, 1991). As for the histogram plot, it will look like a

sample from a normal distribution centred at zero.

Velocity data from the investigation were checked using a normal plot. The residuals

from each observation were arranged in the increasing order and a plot of the ordered

residuals versus probability was made using MINITAB software. In the fixed effects

ANOVA model, moderate departures from normality are of little concern

(Montgomery, 1991). An error distribution with thicker or thinner tails than normal

will be of greater concern than a skewed distribution whereby the plot showed the

right tail longer than the left. A skewed distribution has little effect on the true

significance level. However for a random effects model non-normality can severely

affect the true significance levels on interval estimates of variance components.

5.2.4 Randomized Block Design

During the investigation two out of several tanks of the same size from each treatment

works were randomly selected at the initial stage and then investigated for velocity

and turbidity distributions. A measurement for each run or treatment from the same

tank was made on different days. Thus the experiments were extended for several

days. It is possible that observations made on the same day may show better

agreement than those made on different days. In this case there was a danger of

introducing a systematic error if only one tank was investigated. Two tanks of the

same size were utilised with an equal number of measurements being made in each

tank or block, and the order of tests within a block are randomized, then the

experiment is called a randomized block experiment. A blocking technique is

considered a useful method of increasing the precision of comparative experiments

(Chatfield, 1992).
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For a randomized block experiment at the Trimpley and Frankley Water Treatment

Works, the data collected from each site can generally be described and formatted in

a universal form as shown in Table 5.3. In this case the term 'run' which was used in

the experiment can be considered as the treatment.

Table 5.3 - General form of data for the randomized block experiment
(Source: Chatfield, 1992)

Treatment 1..........Treatment c Row total 	 Row average

Tank 1	 x11	 T1

Tank 2	 x2,	 2.

Column total	 T1

Column average	 x

5.2.4.1 Two-way ANOVA

The data in Table 5.3 are classified into two characteristics i.e. treatment (run) and

tank. Thus the procedure to analyse the data is called two-way analysis of variance.

Three runs or treatments were carried out on each tank. The average velocity of each

run was calculated and the value was entered under the 'Treatment' column

according to Table 5.3. There were no missing velocity data encountered during the

investigation. If there were any missing velocity data the design would be

unbalanced. MINITAB software was used to analyse the data. For one average

observation of velocity on each run in each tank, the statistical model of the design

was as follows:

x	 u + r. +	 +
	

(5.6)

where i1,2,...r, j1,2.... . C, u is the overall mean, z is the effect of the ith run

(treatment), / is the effect in the jth tank (block) and & is the usual NID(O,o2)

random error term. Runs and tanks were initially considered as fixed factors. The

run and tank effects were defined as deviations from the overall mean so that:
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and

I3=o

The hypothesis tests involved were to find the equality of the treatment means and

then to see any significant difference between the observed run (treatment) effects.

The total corrected sum of squares for Equation 5.6 and its derivation can be found in

Montgomery (1991). This can be expressed as the total variation in velocity equals

the sum of variation due to run, variation due to tank and variation due to random

error.

MINITAB software was used for hypothesis testing of the experimental data. This

was done using two-way ANOVA with balanced designs. The outputs from the

software were based on Table 5.4.

Table 5.4 - Two-way ANOVA (Source: Chatfield, 1992)

Source of	 Sum of squares	 Degrees of Mean	 F-ratio

variation	 (SS)	 freedom(dJ) squares(MS)

Treatments or	 C	 c-i	 SSfrea,,,e,	 TreatmentMS
- )2	

ResidiialMs
dfRuns (columns)	 j=l

Blocks or Tanks	 r	 r-i	 SSb,0C	 B1ock

c( -	
df	

ResidualMS

(rows)	 i=i

Residuals(error) 	 (x - -	
+ ) 2 	(r-i)(c-i)

df

Total	 (x - ) 2 	rc-i
If

Note: c=runs	 r=tanks

Model adequacy checks for two-way ANOVA are similar to those procedures found

in Section 5.2.3.1. Normal probability plots of residuals were carried out on the data
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from both treatment works. Similarly plots of residuals versus fitted values were also

made.

5.3 MAKING PREDICTIONS FROM VARIABLES

5.3.1 Factorial Designs

The full-plant study was concerned with the investigation of the effects of width,

depth and length on the velocity and turbidity distributions of the DAF tank. The

physical parameters of the tank (width, depth and length) were called 'factors' and the

fixed positions where the velocities and turbidities have been measured were called

'levels'. In general factorial designs were most efficient for this type of

experimentation. By using factorial designs all possible combinations of the levels of

the factors were investigated.

The effect of a factor can be defined as the change in response produced by a change

in the level of a factor (Montgomery, 1991). Normally this is called the 'main effect'

because it refers to the primary factors of interest in the experiment. Factorial designs

have the following advantages:

1. To provide a more efficient method of experiment than one-factor-at-a-time.

2. To avoid misleading conclusions on the results when interactions between factors

are present.

3. To allow the effects of a factor to be estimated at several levels of the other

factors and to give conclusions that are valid over a range of experimental

conditions.

5.3.1.1 Multifactor Balanced Designs

In the experiment three factors were investigated. Each factor was set at four

different levels. This type of experiment is called the 'three-factor factorial design'.
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In general this type of factorial design can be described as having a levels of factor A,

b levels of factor B and c levels of factor C. For n replicates of the experiment there

will be a total of abcn observations.

For one site where all the tanks have the same size then the physical dimensions are

considered fixed. The model to be developed will fall under a category of a fixed

effects model. If there are many water treatment sites to be investigated with various

tank configurations within each site, and the tanks chosen from each site are based on

randomization procedures, then the model to be developed will be called a random

effects model. The latter model will enable the experimenter to draw conclusions

from a wider population than that covered by the experiment.

When comparisons on the effects of velocity distribution at different levels of width,

depth and length are made on the same tank size, then the fixed effects model for the

three-factor analysis of variance can be written as follows:

(5.7)

where Xykl is the observed response when factor A is at the ith level (1=1,2.....,a),

factor B at thejth level (/=1,2.....,b), factor C at the kth level (k=l,2..... ,c) for the lth

replicate (1-1,2.....,n), p is the overall mean, z, is the effect of the /th level of factor

A, / is the effect of the jth level of factor B, is the effect of the kth level of factor

C, (rfl), (TY)ik, (.f-3T)jk and (zfiy) k are the interaction terms between them and kl is the

random error component.

Multifactor balanced designs were conducted using MINTTAB software based on the

model in Equation 5.7. For the three-factor fixed effects model, the analysis of

variance carried out by the computer package was based on Table 5.5. The detailed

equations 'the sum of squares for all factors' and their interactions can be found in

Montgomery (1991).
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Table 5.5 - ANtYVA for the three-factor fixed effect model
(Source: Montgomery, 1991).

Source of variation Sum of squares Degrees of	 Mean square F-ratio

freedom (dJ)	 (MS)

A	 SSA	 a-i
MSE

df

B	 SSB	 b-i	 SSB

df	 MS

C	 SSc	 c.-i	 SS	 !
MSEdf

AB	 SS	 (a-1)(b-J)	 SS

df	 MS

AC	 SSAC	 (a-i)(c-i)	 SSAC	 MSAC

MSEdf

BC	 SSBC	 (b-i)(c-1)	 SSBC

df	 MSE

ABC	 SS	 (a-1)(b-i) (c-i) SS	 MS

df	 MSE

Error	 SSE	 abc(n-i)	 SSE
df

Total	 SST	 abcn-i

Note: a = levels of factor A b = levels of factor B	 c = levels of factor C
n = number of replicate (run)

5.3.2 Analysis of Covariance

This technique is used to improve the precision of the experiment (Montgomery,

1991). During the investigation, the levels of each factor (i.e. width, depth and

length) can be controlled. However the discharge from the tank cannot be controlled.

The discharge is a covariate or concomitant variable. The analysis of covariance

involved adjusting the response variable (i.e. the velocity) for the effect of the

discharge. According to Montgomery (1991), the covariate could inflate the error
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mean square and make true differences in the response due to treatments difficult to

detect.

For the experiment which has three factors with one covariate as described in the

previous section (Section 5.3.1), the model for the analysis of covariance can be

written as follows:

X,ffrJ_/4+rl+/3J+7k+(r/3)Y+(),k+(/3y)Jk+(3y)Yk+yJ(u1_co)+eJ(5.8)

where all the temis in the equation are the same as in Equation 5.7 except that üy•k/ S

the measurement made on the discharge corresponding to Xykl when factor A is at the

ith level, factor B at thejth level, and factor C at the kth level for the lth replicate.

is the mean of the co,j j values and w is a linear regression coefficient indicating the

dependency of X,k1 on The assumptions made (on Equation 5.8) are that the

errors ekl are NID(0,o), the slope of ü^0 and the relationship between xykj and (Dyki

are linear, the regression coefficients for each treatment are identical, the treatment

effects sum is equal to zero and the concomitant variable is not affected by the

treatment. Further details regarding this model and the calculations on the sum of

squares can be found in Montgomery (1991). The analysis of covariance model (i.e.

Equation 5.8) is a combination of the linear model employed in the analysis of

variance (see Equation 5.7) and regression.

5.3.3 Regression Analysis

The word 'regression' was first introduced by Sir Francis Galton in his Presidential

address of the British Association in 1885 at Aberdeen, Scotland (Draper and Smith,

1981). However the analysis he made at that time would only be called a 'correlation

analysis' today. The method used in regression is the same as the method of analysis

called the 'method of least squares'. It was reported that this method of analysis was

discovered independently by C.F.Gauss and A.M.Legendre (Draper and Smith, 1981).
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Regression is a method used to describe the nature of the relationship between

variables. There are two types of variables involved in any regression analysis. The

first one is called the independent variable or the predictor variable. These variables

are those that can be controlled or manipulated, or else take values that can be

observed but not controlled. Normally the independent variable is designated as the x

variable in a simple linear regression equation. In the case of this investigation the

independent variables were the width, depth and length of the tank. The second type

of variable is called the dependent or response variable. This variable cannot be

controlled or manipulated. The velocity or turbidity data from the full-plant studies

were considered as the response variables. For a simple linear regression equation the

dependent variable is normally designated as the y variable. In general, the objective

of regression analysis is to find out how changes in the predictor variables affect the

values of the response variables (Draper and Smith, 1981). The distinction between

independent and dependent variables is not always a straightforward or a clear-cut

case, but is sometimes arbitrary and depends on the objective of the study.

An overview of a simple linear regression will be described in the next section. The

objective is to clarify the basic principle in regression analysis so that the idea of

correlation and the coefficient of determination can be explained before moving into

a complex method of analysis, where the latter will be used extensively when every

regression analysis is carried out. For this reason it is felt that the principle of a

simple linear regression has to be reviewed.

5.3.3.1. Linear Regression

Linear regression normally deals with a straight line relationship between two

variables. To check whether there is any strength and direction of a relationship

between the two variables, a simple test on correlation coefficient (r) can be made by

using Equation 5.9. It is meaningless to make a prediction using a regression line

when the correlation coefficient is not significant. For a strong positive or negative
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relationship between the two variables, the value of r will be close to +1 and -1

respectively.

n(xy)_ ( xX y)r 
=	 ( x)2]{fl(y2) - ()2J

For a response variable Y and predictor variable X where each has n number of

observations, a first-order model can be written as:

Y/30 + fi1 X+e
	

(5.10)

where e is the increment by which any individual Y may fall off the regression line

(refer to Draper and Smith, 1981).

Referring to Equation 5.10, ho, /3., and s are unknown and in fact e changes for each

observation of Y, but ho and /3., remain fixed and can be found by examining all

possible occurrences of Y and X. To give the estimates of b0 and b 1 of /3, /3, from

Equation 5.10, the following equation can be written:

l=b0 +b 1 X	 (5.11)

where ) is the predicted value of Y for a given X when b0 and b1 are determined.

For n sets of observations (Xj, 1',), (X2, Y2), (X3 , 1'3),	 (X, Y), then Equation 5.10

can be written as:

= fl + fl 1 X +
	

(5.12)

where i=1,2......... n, then the sum of squares of deviation S from the true line is

S=6	 (Yfl fix)2
	

(5.13)
1=1	 1=1

(5.9)
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-
b1 — (5.14)

By choosing b0 and b 1 as the estimate to be the values which, when substituted for 13o,

and f3, will produce the least possible value of S, then b0 and b 1 can be found by

differentiating Equation 5.13 with respect to 180, and then /3 and setting the results

equal to zero. The details of the differentiation can be found in Draper and Smith

(1981). The value of b 1, which is the slope of the fitted straight line, will be as

follows:

where 7='y and

The value of b0 in Equation 5.11 refers to the value at the intercept of X=O of the

fitted straight line of the least squares method. This value can be found as follow

(Draper and Smith, 1981):

b0 = Y - b 1 X
	

(5.15)

By substituting Equation 5.15 into Equation 5.11, the estimate of regression equation

will be

Y= Y+b1 (X—X)
	

(5.16)

For a fitted line as per Equation 5.10, the sum of squares of deviation of the ith

observation from the overall mean will be equal to the sums of squares of the

deviation of the predicted value of the ith observation from the mean plus the sum of

squares of the deviation of the ith observation from its predicted value (Draper and

Smith, 1981). This expression can be written with the following equation:

(5.17)
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The expression from Equation 5.17 has normally been shortened with the following

wording:

Sum of squares
	

Sum of squares due
	

Sum ofsquares

about mean	 to regression
	

+ about regression

In order to check how useful the regression line is as a predictor variable, an

assessment has to be made on how much the sum of squares (SS) about the mean has

fallen into the SS due to regression and how much into the SS about regression. This

is done using the following expression:

R2—SS due to regression/SS about the mean
	

(5.18)

where R2 is called coefficient of determination and often expressed as a percentage.

SS due to regression and SS about the mean are sometimes called explained variation

and total variation respectively. For a strong relationship between response and

predictor variables the ratio of R2 is not far from unity. In fact the other interpretation

of R2 is the squares of the correlation between the observed y values and the fitted y

values.

5.3.3.2. Developing Regression Models

Since the data collected from the full-plant studies consisted of three predictor

variables (namely width, depth and length), the use of a simple linear regression with

one predictor variable as explained in the previous section is not appropriate.

However its basic principle can be extended by having a first-order linear model with

three independent variables. This model can be written as follows:

Y=fl0 +f3X +fl2 X2 +/33 X3 +e
	

(5.19)

where f3, /32, and /33 are the coefficient for the width X1 , depth X2, and length X13

respectively and e is the random error component.
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The basic assumptions behind the multiple regression model of Equation 5.19 can be

explained as follows:

1. The underlying population regression line is approximately Y=/30+/31X1+

/32X2+/33X3.

2. For all values of X1 , X2 and X3, the Ys have approximately the same or constant

variance, os?.

3. The Yvalues for each X1 , X2 andX3, are approximately normal distributions.

4. The Yvalues are approximately independent.

5. Finally b0, b 1 , b2, b3, and s are used for the estimated values of fib, /3, /32, /33 and a

respectively.

Equation 5.19 was the first initial model developed during regression analysis for

each tank. Tests on R2 showed that the model was not appropriate because the

percentage of explained variation was very low and was considered not to fit the data.

In order to improve the model, a series of transformations was incorporated into the

model. These trials were carried out in an ordered way and the sequence of trials

were based on Table 5.6. These trials were found to be unproductive as there was not

much improvement on the value of R2.
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Table 5.6 - A series of transformation trials carried out during data analysis:

Logarithms transformation on the

response and predictor variables

Test the R-squared, if low move to the next
model

Reciprocal transformation on the
predictor variables and the on the

response variable

Test the R-squared, if low move to the next
_______________________________ model
Exponential transformation on the I

predictor variables

Test the R-squared, if low move to the next
model

Taking reciprocal of the exponential

of the predictor variables

Since the first-order model was found to be unacceptable, a second-order model was

postulated. At this stage another predictor variable, i.e. the outflow from the tank,

was added thus making the total number of predictor variables into four. The outflow

from the tank cannot be controlled during the full-plant studies. Any variation in the

flow would affect the velocity and turbidity distributions in the tank. However,

without taking the outflow into the model it will violate the basic principle of

regression i.e. to develop the relationship of all the known variables in the tank. The

following second-order model for four predictor variables was tried:

Y—/30 +fl 1 X +fl2X2 +,83X3 + fl4X4 + fl11 X 2 +/322 X2 +

/333X +/344X +/312X1 X2 +/313X1 X3 +/314X1 X4 +	 (5.20)

,823x2x3 + /324X2X4 +	 +

where Xj, X2, X3, and X4 are the width, length, depth and the flow out of the tank

respectively and all the /3s are the coefficients for respective variables.
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The basic assumptions of the model in Equation 5.20 were fundamentally the same as

the previous model (Equation 5.19). The only difference in this model from the

previous one was an increased number of variables to be analysed.

The above model was found to have a better value of R2 than the first-order model for

all the tanks under investigation. A trial was made to improve this model by having a

third-order model. However it was found with the latter model that no significant

improvement was achieved. Hence the second-order model was adopted.

5.3.3.3 Interpreting the Output

Computations of the response and predictor variables based on the model in Equation

5.19 were made using 'MILNITAB' software. The outputs from the software enabled

the significance of all the predictor variables to be checked. The results were

arranged into five columns. The first column consisted of the predictor variables

followed by their coefficients, standard deviations, t-ratio and level of significance.

Th coefficients were the values of all the 18s terms in the model. Tests of

significance for each predictor variable were based on the hypothesis that the value of

the hypothesised coefficient was zero. This t-test is equivalent to testing whether the

population correlation coefficient is zero. This can be written as follows:

= coefficient - (hypothesised. value)	
(5.21)

(estimated. stdev . of. predictor. variable)

where t is given in the column headed 't-ratio'.

The last column denoted by p indicates the level of significance for a particular

predictor variable. A step-by-step trial was made to eliminate the first most non-

significant predictor variable from the model (Metcalfe, 1997). Then the value of R2

was checked to see whether any improvement had been made. If there was an

improvement, then the next least significant variable was eliminated and again the

value of R2 was checked for the new model. The same procedure was made to the

next predictor variable unless no improvement was achieved.
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It should be noted that care has to be taken in the use of R2 as a criterion for judging

the quality of the regression equation. Draper (1981) demonstrates that by selecting a

sufficient number of variables, the value of R2 can be made equal to 1. He also

demonstrates that an improvement in R2 can occur simultaneously with an increase in

the standard error, which implies a reduction in the precision of the estimate.

The standard deviation of y, or the response variable about the regression line, or the

standard error of estimate was carried out by the software based on the following

equation:

s 
= 1J(Y —jitted.y)2	

(5.22)

The value of s is a measure of how much the observed y value differs from the

corresponding average y value as given by the least square line. The t-test (Equation

5.21) was based on the value of s in Equation 5.22 with (n-2) degrees of freedom.

5.3.3.4 Model Adequacy

An analysis of residuals from a linear regression model is necessary in order to

determine the adequacy of the least squares fit (Montgomery, 1991). The residuals

can be defined as the differences between what is actually observed and what is

predicted by the regression equation. In fact this is the amount which the regression

equation has not been able to explain. If the model is correct, then the residual e can

be treated as the observed errors.

When the regression analysis was carried out, the following assumptions on the errors

were made. The errors were independent with mean zero, having constant variance

d, and followed normal distribution. If the fitted models were correct, the residuals

must exhibit tendencies to confirm the assumptions made. The basic tests that had

been carried out were the same as those found in section 5.2.3.1.
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CHAPTER 6

VELOCITY DATA CHARACTERISTICS ANALYSIS

6.1 INTRODUCTION

In Chapter 4 statistical tecimiques were used to carry out velocity measurement on

each of the 64 points in the tank. Detailed descriptions on the equipment, DAF tanks,

and the way in which the velocity measurements were carried out on site have been

described. In Chapter 5 the methods of extracting raw velocity data from the ADV

data logger were described. This was followed with the descriptions of the WinADV

software to filter the data. The statistical methods to analyse the velocity and

turbidity data obtained from the site investigation are also described in Chapter 5,

these include comparing the data (velocity or turbidity) between runs, within runs,

between tanks, and between sites using the appropriate statistical technique. The

techniques of developing suitable models from the velocity and turbidity data were

also explained.

This chapter deals with the results obtained from the full-scale plant studies of

Trimpley and Frankley Water Treatment Works (WTW) of Severn Trent Water. The

first part of the chapter describes and compares the velocity obtained by averaging the

observed velocities for each point with the average velocity obtained by a filtering

method using the WinADV software. The terms 'average velocity' or 'averaging

velocity' described in this chapter refer to the total sum of all velocity samples

observed during the investigation divided by the number of observations. The

average filtered velocity method described in this chapter refers to the total sum of

velocity samples which have been selected according to the filtering criteria of the

WinADV divided by the number of filtered velocity samples. The filtering criteria of

the WinADV can be found in Chapter 5 (Section 5.2.1).

Velocity data at different depths in the tanks are also analysed and compared by

plotting the velocity surface profiles. This method enables the visualisation of the

characteristics of each velocity component and thus gives a better understanding of
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the flow in the dissolved air flotation tank. In order to facilitate the presentation, the

discussion of the results follows after using each method of data analysis.

6.2 CHECKING DATA QUALITY

The ADV probe used to measure velocity distribution in the tank is a new piece of

equipment. It has never been used to measure velocity in a dissolved air flotation

tank (i.e. at the time when data collection was made). The initial recommendation by

the manufacturer was to use a sampling rate of 25Hz for data collection. This has

resulted in a large amount of data stored in the hard disk during velocity data

collection at the Frankley WTW. During the 'First ADV Users Meeting' within the

United Kingdom at the Hydraulic Research Station, Wallingford in September 1996,

the problem of requiring large disk space was raised with the manufacturer. The

latter suggested that a sampling rate of 1Hz may be used because the probe will

average the reading for any sampling rate (Lohrmann, 1996). The suggestion led to

the use of a sampling rate (frequency) of 1Hz at the Trimpley WTW. Two tanks were

investigated at the Frankley WTW, namely Tanks A3 and C2. For the Trimpley

WTW another two tanks were investigated, namely Tanks Cl and C7.

This section checks statistically to see whether the difference in sampling rate affects

the quality of velocity data. The software provided with the equipment called the

WinADV (for details see Section 4.2.6.1 of Chapter 4) was used to check data quality.

Two approaches were used and these are as follows:

1. WinADV identifies the percentage of good data based on a correlation more than

70% as explained in Section 5.2.1 of Chapter 5.

2. WinADV identifies skewness of more than 1.5 for the velocity data as explained in

Section 5.2.1 of Chapter 5. Skewness (i.e.more than 1.5) may be due to actual

velocity distribution or due to aliasing as explained in Chapter 5.
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This section also identifies the positions where the skewness (>1.5) occurs and tries to

provide reasons for the occurrence. Finally, this section attempts to relate whether

there is any straight line relationship between the skewness and the velocity in the x

direction. The process involved in this section can be summarised as shown in Figure

6.1.

DATA QUALITY CHECK1NGS BETWEEN SAMPLING
RATE 25HZ AND 1HZ

CHECK PERCENTAGES
	

CHECK SKEWNESS
OF GOOD DATA
	

MORE THAN 1.5

CHECK USING ANOVA
Are there any significant

differences between tanks and sites

COMPARE BETWEEN TWO	 COMPARE BETWEEN TWO
SITES	 I	 SITES

IDENTIFY POSITIONS IN
TANK & EXPLAIN WHY

ANY POSIBILITY OF
RELATIONSHIP WITH Vx?

Figure 6.1 - Flow chart for data quality checking

During the full-scale plant studies different numbers of velocity observations were

taken at each point in the tank for different runs or replications. These observations

have been summarised in Table 6.1. Each run comprises observation at 64 points in

the tank. At each point several hundreds of velocity samples were taken. The

number of velocity measurements taken at each point was not constant. The average

number of observations at each point is the total observations per run divided by 64.
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From Table 6.1, it can be seen that the average numbers of velocity readings taken at

Frankley were between 1189 to 2899 and at Trimpley between 202 to 207. The

higher number of observations at Frankley was mainly due to the use of a higher

sampling rate (25Hz) during data collection whereas at Trimpley a lower sampling

rate of 1Hz was used.

Table 6.1 - Data on the minimum and maximum numbers of observations
carried out at each sampling point conducted at each tank

Frankley________ Tank A3 ________ ________ Tank C2 ________
Run	 1	 2	 3	 1	 2	 3
Maximum	 2058	 2053	 4584	 4766	 4773	 10597
observations
(number)	 _________ _________ _________ _________ _________ _________
Minimum	 921	 866	 1027	 1165	 1592	 1663
observations

umber)	 _________ _________ _________ _________ _________ _________
Average	 1232	 1189	 1932	 2127	 2760	 2899
observations
(number)	 _________ _________ _________ _________ _________ _________
Trimpley_______ Tank Cl _______ _______ Tank C7 _______
Run	 1	 2	 3	 1	 2	 3
Maximum	 257	 236	 300	 236	 232	 237
observations
(number)	 _________ _________ _________ _________ _________ _________
Minimum	 152	 199	 200	 199	 200	 203
observations
(number)	 _________ _________ _________ _________ _________ _________
Average	 203	 202	 203	 207	 203	 203
observations
(number)	 _________ _________ _________ _________ _________ _________
Note: 64 points in the tank were investigated for each run (refer to Figures 4.4 and 4.5
of Chapter 4 to see the position of each point in the tank)

Data quality was checked using WinADV software. The detailed procedures and

guidelines on data screening using the software can be found in Section 5.2.1 of

Chapter 5. Two criteria can be used for the purpose of checking data quality from the

two different sampling rates. Firstly, comparing the percentage of good velocity data

obtained after data screening may provide an indication of which sampling rate has a

lesser number of bad velocity data. The percentage of good velocity data was based

on the signal correlation of more than 70 as described in Section 5.2.1 of Chapter 5.

115



Secondly, by comparing the skewness of the filtered data from the two different

sampling rates, it is possible to make an evaluation of which sampling rate can be

regarded as more reliable than the other. A maximum skewness of more than 1.5 is

regarded as suspicious and uncertain as explained in Chapter 5.

6.2.1 Discussions on the Percentage of Good Data

This section attempts to compare the results of the percentages of good data between

Frankley and Trimpley WTW. Sampling rates of 25Hz and 1Hz were used at

Frankley and Trimpley WTW respectively. The comparison enables us to suggest

which sampling rate has produced better velocity data. This section also discusses the

results from the ANOVA (refer to Section 5.2.3 of Chapter 5) of the percentage of

good velocity data between tanks and between sites. Here the use of ANOVA is to

find out whether there is any significant difference in the percentage of good velocity

data between tanks. It is also used to evaluate whether there is a significant

difference in the percentage of good velocity data between sites. The former attempts

to find out variability of percentage of good velocity data between tanks while the

latter attempts to find out whether sampling rates affect data quality (velocity data).

Table 6.2 shows the percentage of good data for each run from Tanks A3, C2, Cl and

C7, which were obtained using the W1nADV software. There were three runs carried

out at each tank. Observed velocity samples for each run are shown in Table 6.1

(Section 6.2). The average percentage of good velocity data collected at the Franidey

WTW is 94.33% with a standard deviation of 3.56%. The calculation was made by

adding all the percentages of good velocity data obtained at Frankley and then

dividing by 6. The same procedure was used to calculate the average percentage of

good velocity data at Trimpley. The value at Trimpley is 91.17% with a standard

deviation of 2.99%. This indicates that the sampling rate of 25Hz which was used at

Frankley WTW has produced a better velocity data than at Trimpley with a sampling

rate of 1Hz.
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Statistical evaluation using analysis of variance (ANOVA) was also made to see the

variability of the percentage of good velocity data between four different tanks. Table

6.3 shows that there are highly significant differences in the percentage of good

velocity data collected between the four tanks at Frankley and Trimpley WTW. Also,

if comparison is made by blocking (separate the tanks into two sites) the tanks into

Frankley and Trimpley WTW, the significance level is 0.126 as shown in Table 6.3.

This indicates that for 87% of the time a significant difference in the percentage of

good velocity data between the two sites will occur.

6.2.2 Discussion of Skewness (i.e. >1.5)

Skewness is a non-dimensional measure of symmetry calculated by dividing the

average cube deviation from the mean by the cube of standard deviation. Skewness

values near zero indicate symmetry in the histogram. Large positive values imply a

long tail to the right and large negative values indicate a long tail to the left.

WinADV calculated the skewness based on the following equation:

=	 - (3V V) / n - 2(V) /
Skewness	

(n-2)s3	
(6.1)

Checking and discussions of skewness (i.e. >1.5) in this section can be divided into

three parts as follows:

1. The first part of this section tries to compare the number of occurrences of

skewness (i.e.>1.5) obtained using a sampling rate of 25Hz at the Frankley WTW

and that of 1Hz at the Trimpley WTW. The main objective is to find out which

sampling rate is better than the other.

2. The second part is to compare the skewness (>1.5) between tanks and between

sites. ANOVA was used to find any significant difference of skewness between

tanks and between sites. The objective of comparing skewness (>1.5) between

tanks is to find out whether skewness is based on real velocity distribution or
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experimental error. The objective of comparing skewness (>1.5) between sites is

to find out which sampling rate is better than the other.

3. The third part is to identif\j where and why the skewness (>1.5) occurred in the

tank. This part also tries to find out whether there is any possibility of direct

relationship between skewness and velocity in the x-direction.

6.2.2.1 Comparison of Occurrence of Skewness (>1.5) Between Two Sites

Table 6.2 shows the characteristics of skewness of velocity samples for each run in

each tank at the Frankley and Trimpley WTW. Maximum skewness for each run

refers to the maximum amount of skewness at one out of the 64 points observed. The

same principle applied for the minimum skewness. The average skewness is the total

sum of the skewness of all the points divided by 64. The number of skewness more

than 1.5 refers to the number of sampling points in the tank where the skewness

(>1.5) occurred during each run out of a total of 64 points observed. The positions of

skewness (>1.5) are the points where the skewness (>1.5) occurred in the tank for

each run (refer to Figures 4.4 and 4.5 in Chapter 4 for the position of each point).

At Frankley 12 sampling points were found to exhibit skewness (>1.5) in the velocity

distribution (Table 6.2). The skewness calculation was based on 12,139 velocity

observations spread over the 12 points. At Trimpley 7 sampling points exhibited

skewness (>1.5). The latter was based on 1,221 velocity observations spread over 7

points. This suggests that the higher sampling frequency observation (25Hz) at

Frankley produces less skewness than the lower sampling frequency (1Hz) at

Trimpley. Table 6.2 also shows that the maximum value of skewness at the Trimpley

WTW was 14.1 compared with 8.39 at the Frankley WTW. This again indicates the

possibility that a sampling rate of 25Hz results in lower values of skewness than at

1Hz.
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Table 6.2 - Comparison of data quality between Frankley and Trimpley WTW

Frankley_______ Tank A3 _______ _______ Tank C2 _______
Run	 1	 2	 3	 1	 2	 3
%Good	 93	 92	 89	 97	 97	 98
Maximum	 8.39	 1.86	 1.4	 3.14	 1.21	 4.5
skewness___________ ___________ ___________ ___________ ___________ ___________
Minimum	 0.08	 0.11	 0.09	 0.08	 0.12	 0.03
skewness___________ __________ __________ __________ __________ __________
Average	 0.77	 0.61	 0.65	 0.61	 0.55	 0.60
skewness___________ __________ __________ __________ __________ __________
Skewness	 5	 2	 0	 4	 0	 1
No.> 1. 5	_______ _______ _______ _______ _______ _______
Positions of C1d18.39 A1d2186	 nil	 D3d13.15	 nil	 D4d14.50

skewness	 D1d12.15 A1d31.60	 D3d22.16

A2d2= 1.73	 B3d2=2.03
more than	 D1d2=1.68	 B3d1=1.84
1.5	 C3d1=1.60 __________ __________ __________ __________ __________
Trimpley________ Tank Cl ________ ________ Tank C7 ________
Run	 1	 2	 3	 1	 2	 3
%Good	 88	 88	 90	 92	 95	 94
Maximum	 9.27	 1.67	 1.53	 2.42	 14.14	 1.52
skewness__________ __________ __________ __________ __________ __________
Minimum	 0.12	 0	 0	 0.06	 0.19	 0
skewness__________ __________ __________ __________ __________ __________
Average	 0.83	 0.58	 0.64	 0.65	 0.79	 0.63
skewness___________ ___________ ___________ ___________ ___________ ___________
Skewness	 2	 1	 1	 1	 2	 1
No.> 1.5	 _______ _______ _______ _______ _______ _______
Positions of A2d49.27 C4d31.67 D2d1=153 D4d12.42 D3d414.1 D4d11.52
skewness	 D4d47.35	 D4d11.75

more than
1.5	 _________ _________ _________ _________ _________ _________
Note: No.=number; 64 points in the tank were investigated for each run (refer to
Figures 4.4 and 4.5 of Chapter 4 to see the position of each point in the tank).

6.2.2.2 Comparison of Skewness (>1.5) Between Tanks and Sites

In this section ANOVA is use to identify whether there is a significant difference in

the skewness (>1.5) of velocity data between all the tanks at Frankley and Trimpley

WTW. ANOVA is also used in an attempt to find any significant difference in the

skewness (>1.5) of velocity data between the sites (Frankley and Trimpley). A

significant difference indicates that sampling rates may affect velocity data (quality).
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Table 6.3 shows that there is no significant difference in the value of skewness of

more than 1.5 either between all the tanks or between the tanks from the two sites.

However the significant level for the tanks between different sites is nearly half of

that between all the tanks from both sites. This may indicate that the difference in

skewness could be highly significant if an equal number of observations is made at

each site.

Table 6.3 - ANOVA for percentage of good and skewness of velocity data

Tests	 Source of variation	 Level of significance

Percentage good velocity	 Between tanks	 0.000

Between sites	 0.126

Skewness>1.5	 Between tanks	 0.869

Between sites	 0.467

6.2.2.3 Positions of Skewness

From Table 6.2, it can be seen that at the Frankley WTW the skewness (>1.5)

occurred at section D of the tank 5 times whereas at the Trimpley WTW it occurred 6

times at D. Section D was located at a quarter length of the mixing zone from the

baffle and this position can be found from the diagrams in Figures 4.4 and 4.5 of

Chapter 4. The occurrence at section D in the separation zone of DAF tanks at

Frankley and Trimpley represents 42% and 75% of the total occurrence (skewness

more than 1.5) respectively. Table 6.4 shows that the occurrence tends to be more

frequent at depth dl of section D. The total number of points with excess skewness

was 7 at depth dl, two at depth d2, none at depth d3 and two at depth d4. The highest

value of skewness was 14.1 at a position D3d4 from run 2 of tank C7 of the Trimpley

WTW. This indicated that although the occurrence of skewness was more frequent at

depth dl their values are lower compared with that at depth d4. It can also be seen

that the occurrences were greater at position D4, which is near the wall of the tanks.

In order to see whether there is any relationship between higher values of skewness

and the velocity in the tank at different positions, a number of graphs were drawn.
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Figure 6.2 (DAF tank A3 at Frankley for run 1) indicates that at width Dl, the velocity

for different depths is mostly in the negative regions. This may be the reason for

points Didi and D1d2 having skewness of more than 1.5. The same characteristic

was found on point D4d1 (width D4) based on run 3 from tank C2 at the Frankley

WTW. The latter can be seen from Figure 6.3. Here at depth dl the velocity Vx was

highly negative. Further data from Figure 6.4 shows that the same characteristic was

encountered for points D3d1 and D4d1 at width D3 and D4 respectively.

Table 6.4 - Positions and number of skewness (>1.5) at section D of the tanks

Positions	 Tanks at Frankley	 Tanks at Trimpley
Depth dl	 3	 4
Depth d2	 2	 0
Depth d3	 0	 0
Depthd4	 0	 2
WidthDl	 2	 0
WidthD2	 0	 1
WidthD3	 2	 1
WidthD4	 1	 4

Graph of velocity versus depth at section D
of DAF tank at Frankley(run 1)

—4—Width Dl

--Width D2

Width D3

X WidthD4

Figure .2 - Average velocity mx direction at section D of tank A3 at Frankley (run 1)
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Graph of velocity versus depth at section
0 of DAF tank C2 at Frankley(run 3)

—4—Width Dli

—*-- Width D2

—8—Width D3

Width D4

Figure 6.3 - Average velocity in x direction at section D of tank C2 at Franidey (run 3)

Graph of velocity versus depth at section 0 of
OAF tank C7 at Trimpley(run 2)

•—Width Dl

—-Width D2

—8— Width D3

Width D4

Figure 6.4- Average velocity in x direction at section D of tank C7 at Trimpley (run 2)

Further checks were also made to see whether there is any form of relationship

between the skewness and the velocity Vx (velocity in x-direction). The results are as

shown in Figures 6.5, 6.6, 6.7 and 6.8. These graphs indicate that there is no evidence

to suggest that there is any direct relationship between the velocity Vx and the

maximum skewness encountered in the tank. However it can be concluded that the

maximum skewness at Frankley WTW occurred at the negative values of Vx whereas

at the Tnmpley WTW the maximum skewness occurred at a low value of Vx. The

low and negative values of Vx and the positions (as discussed earlier) where the
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maximum skewness occurred may indicate that the flow at these points was under a

transition regime.
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Figure 6.5 - Plot of Maximum skewness
versus Vx (run 1, 2 and 3) for tank C2,
Frankley WTW

Figure 6.6 - Plot of Maximum skewness
versus Vx (run 1, 2 and 3) for tank A3,
Frankley WTW

-35 .25 .15 -05 05 15 25 35

Vx3F

Figure 6.7 - Plot of Maximum skewness
versus Vx (run 1, 2 and 3) for tank Cl,
Trimpley WTW

45

Vx23F

Figure 6.8 - Plot of Maximum skewness
versus Vx (run 1, 2 and 3) for tank C7
Trimpley WTW

6.3 COMPARING AVERAGE FILTERED AND AVERAGE RAW VELOCITY

DATA USING BOXPLOTS

Sixty-four points at different locations in each tank were investigated for each

experimental run. At each sampling point several hundreds of velocity readings were

taken. During data analysis WinADV was used to filter the velocity data at each

point, using the filtering criteria as described in Section 5.2.1 in Chapter 5. The
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output from the WinADY programme is called the average filtered velocity data for

each point. Samples which do not fulfil the filtering criteria are discarded by the

WinADV. The average filtered velocity data of 64 points in the tank for each

experimental run is the sum of the average filtered velocity data at each point divided

by 64. This is called the average filtered velocity for each run.

Raw velocity data are the actual velocity samples collected during the investigation

which are not subjected to the WinADV filtering process and may be called unfiltered

velocity data. Section 5.2.1 in Chapter 5 has described the method to extract the raw

velocity samples of each point in the tank. The average raw velocity data at each

point is the sum of all the velocity samples at each point divided by the number of

velocity samples. The average raw velocity data or sample for each run is the sum of

the average raw velocity data at each point in the tank divided by 64 (there are 64

points in the tank for each run). This can be called the average unfiltered velocity

sample (data) for each run.

The objectives of comparing the average velocity data (filtered and unfiltered)

between each experimental run at each tank are as follows:

1. To investigate the variability between the average filtered and unfiltered velocity

data of all the average samples within each run and to compare them between

different runs in the same tank. To achieve this purpose boxplots diagrams are

used (refer to Section 5.2.2 in Chapter 5). The boxplots will show the variation of

the average velocity from all the 64 points in the tank and indicate the average

velocity for each run based on the 64 points. This enables the velocity data

characteristics from the two types of data to be compared and analysed.

2. To investigate the difference between the average filtered and unfiltered velocity

data between each run in the same tank. In this section the boxplot method is

used. This can provide a subjective impression of the results. ANOVA is carried

out in Section 6.5 to confirm the results from the boxplots. If there is no difference

in the average data of the filtered and unfiltered velocity samples between different
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runs in the same tank, this may imply that the velocity samples collected at each

tank are consistent and the performance of the ADV probe is fairly good. This

suggests that the probe is suitable to be used for the flow measurement in the

dissolved air flotation tank. The other technique which may be used to check the

suitability of the probe to be used for flow measurements in a dissolved air

flotation tank is checking the overall percentage good data from all the points in

the tank. The disadvantage of this technique is that the velocity mean of all the 64

points in each run cannot be compared and the characteristics of the points in the

tank cannot be ascertained.

In order to reduce repetition on the technique of presenting results from the data

analysis, only the results from tanks C2 and Cl from the Franidey and Trimpley

WTW will be presented here. The results from tank A3 of the Frankley WTW can be

found in Appendix Al and the results from tank C7 of the Trimpley WTW are

presented in Appendix A2.

6.3.1 Frankley WTW

6.3.1.1 Boxplots

Table 6.1 in Section 6.2.1 indicates that there is a great variability in the numbers of

observations taken during the period of data collection. In order to see whether these

large variations in the numbers of observations for different runs have any significant

effect on the velocity distribution in the tanks, a subjective impression of velocities in

the x, y and z directions are made using boxplots. The results of these subjective

comparisons of velocities in the x, y, and z directions for tank C2 are shown in Figures

6.9, 6.10 and 6.11 respectively. For the tank A3, the results are shown in Figures

A1.1, A1.2 and Al.3 of Appendix Al for the velocities in the x, y and z directions

respectively. It can be seen from all the boxplots that there appears to be no

significant difference between the mean velocity of filtered data using WinADV

software and that of using the average unfiltered velocity data for tanks C2 and A3 at

the Frankley WTW. The variances are approximately the same (i.e.one of the criteria
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needed in the F test as mentioned in Section 5.2.3 of Chapter 5). However some

outliers can be seen in each of the boxplots. In the context of the application these

outliers can be explained as follows:

1. Data collected near the baffle and outlet of the tank normally have higher

velocities than at other points due to the presence of constrictions across the cross-

sectional area of the tank which hindered the flow. For example in Run 2 (boxplot

of Group 3 in Figure 6.9), velocities in the x direction(Vx) at points Aldi and

D2d3 were 4.62 and 4.1 9cm/sec respectively. These values are found to be

significantly higher than those found at other points in the tank. The details of the

positions of maximum velocity components in the tank are shown in Table 6.5.

2. The flow in and out of the tank was unsteady. The flow was a function of water

demand, filter head-loss, and the cleaning of DAF and filter tanks. This means that

at certain times the flow tends to be higher or lower than average and thus affects

the velocity in the tank.

The subjective impression from all the boxplots for the velocity components in the x,

y and z directions (i.e. Vx, Vy and Vz in Figures 6.9 to 6.11 and Figures A1.1 to A1.3

in Appendix Al) indicates that the velocity range is higher in the x direction, followed

by y and z directions respectively.

The velocity component in the z-direction from the boxplots of Figure 6.11 indicates

that outliers occur at the top and boftom parts of the boxplots and these represent the

positive and negative velocity components respectively. A positive velocity

component of Vz implies that the particles in the DAF tank move upward whereas a

negative component indicates the particles move towards the floor of the tank. The

latter may possibly indicate the following problems:

1. The length of the tank is too long, which may allow the sludge flocs to settle. This

has implications for tank design.
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2. Desludging is delayed causing the sludge to break-up and settle. This is an

operational problem.

3. The water moves out from the tank through the outlet compartment, which is

located near the floor of the tank. The area near this outlet will have a negative

velocity component of Vz.

Table 6.5 indicates that the negative velocity components of Vz occurred along the

cross-section A, which is at 0.5m from the outlet channel of the tank (see Figure 4.5

in Chapter 4). The occurrences of the maximum negative Vz seem to be more

frequent at depth d2 which is at one-quarter depth from the floor of the tank (total

depth 2. im). This seems to be plausible since depth d2 is near the outflow chamber.

Figure 6.9 - Boxplots for velocity
components in x direction using filtered
and averaging methods for runs 1, 2 and 3
(Cell C2, Frankley)
Note: Groups 1,3 and 5 are the average
filtered velocities for runs 1, 2 and 3
respectively and Groups 2, 4 and 6 are the
average unfiltered velocities for runs 1, 2
and 3 respectively.

Figure 6.10 - Boxplots for velocity
components in y direction using filtered
and averaging methods for runs 1, 2 and
3(Cell C2, Frankley).
Note: Group s 1,3 and 5 are the average
filtered velocities for runs 1, 2 and 3
respectively and Group s2, 4 and 6 are the
average unfiltered velocities for runs 1, 2
and 3 respectively.

Since the subjective impressions from the boxplots do not show any significant

difference between the average filtered and unfiltered velocity data, further analysis

may be carried out by using the filtered velocity data which has been obtained using

WinADV software. However the results from the boxplots need to be confirmed

using the analysis of variance (ANOVA) before conclusions can be made on the
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Figure 6.11 - Boxplots for velocity
components in z direction using filtered
and averaging methods for runs 1,2 and 3
(Cell C2, Frankley).
Note: Groups 1,3 and 5 are the average
filtered velocities for runs 1, 2 and 3
respectively and Group 2,4 and 6 are the
average unfiltered velocities for runs 1, 2
and 3 respectively.

appropriateness of using the filtered velocity data. The analysis will be carried out in

Section 6.4 of this chapter.

6.3.1.2 Normal Plots

As described in Section 5.2.3 of Chapter 5, testing of velocity data using an F-test can

be made only if the assumptions on the samples are true. One of the assumptions is

that the velocity samples are derived from a normal distribution. For this purpose,

normal plots were used to validate the assumption on the velocity data. The results

for velocity samples in th x, y and z components for different runs for tank C2 are as

shown in Figures 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19 and 6.20. The results

from tank A3 are as shown in Figures A1.4, A1.5, A1.6, A1.7, A1.8, A1.9, A1.10,

Al .11 and Al.12 of Appendix Al. All of these Figures indicate that the velocity

samples are derived from normally distributed random variables.
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Figure 6.12 - Normal probability plot of
velocity in x direction (filtered) for run 1
(Cell C2, Frankley).
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Figure 6.13 - Normal probability plot of	 Figure 6.14 - Normal probability plot of
velocity in x direction (filtered) for run 2. velocity in x direction (filtered) for run 3.
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Figure 6.15 - Normal probability plot of Figure 6.16 - Normal probability plot of
velocity (y component) in run 1	 velocity (y component) in run 2
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Figure 6.17 - Normal probability plot of Figure 6.18 - Normal probability plot of
velocity (y component) in run 3 	 velocity (z component) in run 1
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Figure 6.19 - Normal probability plot of	 Figure 6.20 - Normal probability plot of
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Table 6.5 - Details of maximum and minimum velocity in the DAF
tank at Frankley WTW

Tanks_______ Tank A3 ______ _______ Tank C2
Runs	 Run 1	 Run 2	 Run 3	 Run 1	 Run 2	 Run 3
Max. Vx	 3.73	 3.05	 4.26	 4.68	 4.62	 4.5
Pos. of max. Vx	 A4d1	 C4d3	 A2d1	 A2d1	 Aid!	 A4d1
Miii. Vx	 -2.17	 -1.19	 -1.26	 -1.50	 -1.67	 -1.39
Pos. of mm. Vx	 D4d3	 Did2	 Did3	 D4d1	 C1d3	 B1d3
Max. Vy	 1.89	 1.52	 2.25	 2.51	 1.63	 1.56
Pos. of max. Vy	 A4d3	 A3d4	 A3d4	 C3d4	 C2d4	 B3d3
Mm. Vy	 -1.55	 -1.35	 -1.91	 -2.41	 -2.49	 -2.29
Pos. of mm. Vy	 C3d4	 B2d4	 D2d4	 A2d4	 A2d4	 A2d4
Max. Vz	 0.80	 0.54	 0.41	 0.56	 0.51	 0.43
Pos. of max. Vz	 D2d4	 C2d4	 D3d2	 D3d2	 B4d2	 C3d1
Mm. Vz	 -1.38	 -1.30	 -1.62	 -1.04	 -1.05	 -1.03
Post. of mm. Vz	 A4d3	 A2d2	 A4d2	 A2d2	 A3d2	 A3d1
Max.= maximum	 Min.=minimum	 Pos. = position
Vx, Vy and Vz are the velocity in the x, y and z directions measured in cmlsec.

6a3.2 Trimpley WTW

6.3.2.1 Boxplots

Referring to Table 6.1 of Section 6.2.1, there is not much variability in the average

observation (value) for velocity carried out at the Trimpley WTW. There is however

a need to compare and see whether there is any significant difference between the

filtered and averaging velocity data. Subjective comparisons for velocities in the x, y

and z directions for three different runs between the filtered and average velocities
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were made using boxplots. Figures 6.21, 6.22 and 6.23 for tank Cl indicate that there

is no significant difference between the velocity mean of filtered and that of average

data. The same criterion was observed from tank C7 based on the boxplots from

Figures A2.1, A2.2 and A2.3 in Appendix A2. Some outliers were captured in the

boxplots and their presence is due to the reasons explained in Section 6.3.1.

Referring to Figures 6.21 and A2.1(Appendix A2), the outliers in the upper side

represent the higher velocity encountered during each run. The details of the outliers

for Vx from each run are as follows:

1. Almost all the highest velocity Vx for each run was encountered at section D (one-

quarter length of the mixing zone from the baffle) of both tank Cl and C7. The

detailed result can be seen from Table 6.6. These results are significantly different

from those found at the Frankley WTW where the highest velocity occurred at

section A (Table 6.5).

2. All lowest velocity Vx was encountered at section D of the tank (Table 6.6). These

results are almost identical with those found at the Frankley WTW except for two

runs at tank C2.

3. The results of the outliers for Vx have the same causes as explained in Section

6.3.1.1.

The boxplots also indicate that the velocity range Vx is higher than Vy and the latter is

higher than Vz. These results are similar to those found at the Frankley WTW. The

subjective impressions from the boxplots do not show any significant difference

between the average filtered and unfiltered velocity data between different runs of the

experiment within the same tank. Further analysis may be carried out using the

filtered data. In order to confirm the results from the boxplots, hypothesis testing

using ANOVA needs to be done. The latter will be described in Section 6.4 onwards.
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Figure 6.21 — Boxplots for velocity
components in x direction using filtered
and averaging methods for runs 1, 2 and
3.
Note: Groups 1,3 and 5 are filtered
velocities for runs 1, 2 and 3 respectively
and Groups 2, 4 and 6 are the average
velocities for runs 1, 2 and 3 respectively

Figure 6.22 — Boxplots for velocity
components in y direction using filtered
and averaging methods for runs 1, 2 and
3.
Note: Groups 1,3 and 5 are filtered
velocities for runs 1, 2 and 3 respectively
and Groups 2, 4 and 6 are the average
velocities for runs 1, 2 and 3 respectively.
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Figure 6.23 - Boxplots for velocity
components in z direction using filtered
and averaging methods for runs 1, 2 and
3.
Note: Groups 1,3 and 5 are filtered
velocities for runs 1, 2 and 3 respectively
and Groups 2, 4 and 6 are the average
velocities for runs 1, 2 and 3 respectively.
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Figure 6.24 — Normal probability plot of
velocity in x direction (filtered) for Run
1.

6.3.2.2 Normal Plots

To test the normality of the velocity data as described in Section 6.3.1.2, the same

procedure is again used here. Figures 6.24 to 6.32 for tank Cl and Figures A2.4 to

A2. 12 (Appendix A2) for tank C7 indicate that the velocity samples in the x, y and z
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directions for different runs are considered to be derived from normal distributions.

This means standard statistical techniques can be used to analyse the velocity data.

Table 6.6 - Details of maximum and minimum velocity in the DAF
tank at Trimpley WTW

Tanks_______ Tank Cl _______ _______ Tank C7 _______
Runs	 1	 2	 3	 1	 2	 3
Max. Vx	 1.59	 3.19	 2.38	 4.37	 4.18	 3.96
Position of	 D1d4	 D4d4	 D2d4	 D1d4	 D1d4	 C1d4
max. Vx	 ________
Mi Vx	 -3.19	 -3.04	 -3.09	 -2.26	 -2.93	 -2.37
Position of	 D1d3	 D2d3	 D1d3	 D1d3	 D2d3	 D2d3
min.Vx	 ______ ______ ______ ______ ______ ______
Max. Vy	 0.89	 0.70	 0.92	 0.87	 0.92	 1.01
Position of	 D3d3	 D2d1	 D4d3	 A4d4	 A4d2	 A4d1
max.Vy ______ ______ ______ ______ ______ ______
Mm. Vy	 -1.12	 -1.10	 -1.01	 -1.31	 -1.49	 -1.28
Position of	 B3d3	 D3d4	 B3d4	 C3d3	 C2d3	 C3d3
min.Vy	 _______ ______ _______ _______ ______ _______
Max. Vz	 0.42	 0.31	 0.45	 0.14	 0.13	 0.19
Position of	 C4d4	 D3d4	 D3d4	 D2d4	 C2d4	 D4d4
max.Vz	 ________ ________ ________ ________ ________ ________
Mi Vz	 -0.56	 -0.60	 -0.65	 -0.67	 -0.58	 -0.99
Position of	 A3d1	 Aldi	 Aldi	 Aldi	 A2d2	 A4d1
min.Vz	 ______ ______ ______ ______ ______ ______
Max.= maximum	 Min.=minimum
Vx, Vy and Vz are the velocities in the x, y and z directions measured in cm/sec.
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Figure 6.25 - Normal probability plot of Figure 6.26 - Normal probability plot of
velocity in x direction (filtered) for run 2. velocity in x direction (filtered) for run 3.
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Figure 6.27 - Normal probability plot of
velocity in y direction (filtered) for run 1
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Figure 6.29 - Normal probability plot of
velocity in y direction (filtered) for run 3
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Figure 6.28 - Normal probability plot of
velocity in y direction (filtered) for run 2.
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Figure 6.30 - Normal probability plot of
velocity in z direction (filtered) for run 1.
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Figure 6.31 - Normal probability plot of Figure 6.32 - Normal probability plot of
velocity in z direction (filtered) for run 2. velocity in z direction (filtered) for run 3.
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6.4 COMPARING AVERAGE FILTERED AND AVERAGE RAW VELOCITY

DATA USING ANOVA

In Section 6.3 comparisons of the average filtered and average raw (unfiltered)

velocity were made using a boxplot technique. In this section the same data as have

been compared using boxplots are analysed again using AINOVA. ANOVA was

carried out by comparing the average filtered and the average unfiltered velocity

samples of each run. The average filtered and unfiltered data from runs 1, 2 and 3 are

set into different 'groups'. The average filtered velocity data from runs 1, 2 and 3

were assigned into groups 1, 3 and 5 respectively whereas average unfiltered velocity

data from runs 1, 2 and 3 were put under groups 2, 4 and 6 respectively. This

technique (ANOVA) is used to analyse and compare the average filtered and

unfiltered velocity data from the Frankley and Trimpley WTW.

The objective of ANOVA is to test the null hypothesis that there is no difference

between the mean velocity of each group of data. The ANOVA is used to confirm the

subjective impressions from the boxplots.

6.4.1 Frankley WTW

Tables 6.7, 6.8 and 6.9 (results from tank C2) show that the null hypothesis is true,

which indicates that there is no significant difference of mean velocity between runs

1, 2 and 3 for the average filtered and the average unfiltered velocities. Similar

results are obtained from tank A3 as shown in Tables Al. 1, A1.3 and Al.5 (Appendix

Al). This test confirmed the earlier subjective impression using boxplots. This test

provides an important tool in deciding which velocity data (filtered or unfiltered) to

be used for further analysis. Further details on the variability of filtered and unfiltered

velocities in the x, y and z directions from runs 1, 2 and 3 are shown in Tables 6.10,

6.11 and 6.12 for tank C2 and in Tables A1.2, A1.4 and Al.6 for tank A3

respectively. These tables show and compare the velocity mean from the average

filtered and unfiltered velocities together with their respective 95% confidence

intervals based on pooled standard deviation. The word 'pooled' means the standard

135



deviations from the samples are pooled to get an estimate of the common standard

deviation (Ryan and Joiner, 1994). The equation for pooled standard deviation can be

found in Ryan and Joiner (1994).

The results from Tables 6.10, 6.11 and 6.12 for tank C2 and Tables A1.2, A1.4 and

A1.6 for tank A3 (Appendix Al) show that the values of standard deviations of each

run are higher than the velocity mean. This is due to the presence of positive and

negative values of velocity mean in the tank. Table 6.5 shows the maximum positive

and negative velocities with their positions in the tank.

Since the test does not show any significant difference between the average filtered

and unfiltered data, it can be concluded that the ADV probe used is in good condition

and there were enough scattered particles in the dissolved air flotation tank for the

probe to operate satisfactorily. If there was a significant difference between the two

sets of velocity data then there would be some doubts concerning the equipment and

the quality of data collected. For further analysis filtered velocity data will be used.

The observations of velocity for each run based on Tables 6.7, 6.8 and 6.9 (or Tables

A1.1, A1.3 and A1.5 in Appendix Al) can be described based on a linear statistical

model of Equation 5.2 in Chapter 5. In order to check whether this model is

appropriate (i.e. the ANOVA procedure is an exact test of no difference between

velocity means), a plot of residuals versus fitted values from the ANOVA was made.

Figures 6.33, 6.35 and 6.37 show that the residuals from the respective ANOVA of

the velocity in the x, y and z directions are unrelated and this indicates the velocity

samples have constant variance. Similar results are obtained for tank A3 (Figures

A1.13, A1.15 and A1.17 in Appendix Al). In Figures 6.34, 6.36 and 6.38 for tank C2

and Figures A1.14, A1.l6 and A1.18 (Appendix Al) for tank A3 the plots of residuals

show that the velocity samples were from a normal distribution. Hence these plots

confirm that the model from Equation 5.2 in Chapter 5 is appropriate.

Table 6.11 indicates that the velocity mean Vy is rather low and not significant

compared with Vx and Vz from Tables 6.11 and 6.12 respectively. Data from
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Appendix Al (Table Al .4) for the tank A3 also indicates that a similar situation was

encountered with Vy. Since Vy in both tanks is not significant compared with Vx and

Vz, it is appropriate to discard it from further analysis. Vy is also not significant

compared to bubble rise velocity of approximately 2.7mm/sec for bubble size of 70

microns (Fawcett, 1997).

Table 6.7 - ANOVA for velocities (x direction) Vx in run 1, 2 and 3.

Source	 DF	 SS	 MS	 F	 p
Group	 5	 2.74	 0.55	 0.28	 0.925
Error378	 744.97	 1.97	 __________ __________
Total383	 747.71	 ___________ ___________ ___________
DF=degrees of freedom	 SS=sum of squares MS=mean squares
F =ratio using F-test	 p=level of significance

Table 6.8 - ANOVA for velocities (y direction) Vy in run 1, 2 and 3.

Source	 DF	 SS	 MS	 F	 p
Group	 5	 1.848	 0.370	 0.55	 0.739
Error378	 254.666	 0.674	 ___________ ___________
Total383	 256.5 14	 ____________ ___________ ____________

Table 6.9 - ANOVA for velocities (z direction) Vz in run 1, 2 and 3.

Source	 DF	 SS	 MS	 F	 p
Group	 5	 0.175	 0.035	 0.34	 0.891
Error - 378	 39.495	 0.104	 __________ __________
Total383	 39.670	 ____________ ___________ ___________

Table 6.10 - Confidence interval (CI) for velocity mean Vx

LEVEL N
1 64
2 64
3 64
4 64
5 64
6 64

INDIVIDUAL 95% CI'S FOR MEAN
BASED ON POOLED STDEV

MEANSTDEV ----------+---------+---------+------

	

0.865	 1.388 (-------------*------------)

	

0.884	 1.401	 (------------* -------------)

	

1.072	 1.455	 (-------------* ------------)

	

1.088	 1.462	 (-------------*------------)

	

0.954	 1.341	 (-------------*-------------)

	

0.969	 1.373	 (-------------* -----------)
+---------+---------+------

POOLED STDEV = 1.404	 0.75 1.00 1.25
Note: see note at the end of Table 6.12
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Table 6.11 - Confidence interval (CI) for velocity mean Vy

INDIVIDUAL 95% CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV ---+---------+---------+---------

1
	

64
	

0.1452 0.8041	 (------------*------------)
2
	

64
	

0.1567 0.8072	 (------------* -----------)
3
	

64
	

0.158 1 0.8713	 (------------* -----------)
4
	

64
	

0.1539 0.8854	 (-----------*-----------)

5
	

64
	

0.0064 0.7717	 ( --------*------------)

6
	

64
	

0.0067 0.7781	 (-----------*------------)
+---------+---------+---

POOLED STDEV 0.8208	 -0.160.00 0J6__02
Note: see note at the end of Table 6.12

Table 6.12 - Confidence interval (CI) for velocity mean Vz

LEVEL N
1 64
2 64
3 64
4 64
5 64
6 64

INDIVIDUAL 95% CI'S FOR MEAN
BASED ON POOLED STDEV

MEANSTDEV -----+---------+---------+---------

	

-0.1972	 0.3006	 (------------*------------)

	

-0.2003	 0.3007	 (-------------* ------------)

	

-0.2366	 0.3347	 (-------------*)

	

-0.245 1	 0.3263	 (------------*------------)

	

-0.2456	 0.3395	 (------------*------------)

	

-0.2467	 0.3352	 (------------* ------------)
+---------+---------+---------+_

POOLED STDEV = 0.3232	 -0.300 -0.240 -0.180 -0.120
Note: Level 1,3 and 5 are filtered velocity for runs 1, 2 and 3 respectively and Level 2,
4 and 6 are the average velocity for run 1, 2 and 3 respectively.
N = number of observation points in the tank 	 STDEVstandard
deviation
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Figure 6.33 - Plot of residual versus fitted
values from the ANOVA for velocities
(filtered and average) in x direction
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Figure 6.34 - Normal probability plot of
residuals from the ANOVA for velocities
(filtered and average) in x direction
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Figure 6.35 - Plot of residual versus fitted
values from the ANOVA for velocities
(filtered and average) in y direction
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Figure 6.36 - Normal probability plot of
residuals from the ANOVA for velocities
(filtered and average) in y direction

Table 6.13 - Details of velocity and discharge for the tanks at the Frankley WTW

Frankley	 Tank A3	 Tank C2

Run	 1	 2	 3	 1	 2	 3

Vx (Max.)	 3.73	 3.05	 4.26	 4.68	 4.62	 4.50

Vx(Min.)	 -2.17	 -1.19	 -1.26	 -1.50	 -1.67	 -1.39

Vy(Max.)	 1.89	 1.52	 2.25	 2.51	 1.63	 1.56

Vy(Min)	 -1.55	 -1.35	 -1.91	 -2.41	 -2.49	 -2.29

Vz(Max.)	 0.80	 0.54	 0.41	 0.56	 0.51	 0.43

Vz(Min.)	 -1.38	 -1.30	 -1.62	 -1.04	 -1.05	 -1.03

Max.Q	 21.47	 17.69	 21.25	 21.80	 22.68	 21.25

(mid)

Min.Q	 18.10	 15.25	 19.66	 15.93	 15.31	 16.41

(mid)

Average	 19.68	 16.35	 20.83	 18.35	 20.52	 19.76

Q(mld)

Vx, Vy and Vx are the velocities in the x, y and z directions respectively
Max. = maximum Mm. = minimum 	 Q = discharge
mid = million litres per day

139



9i I

FbrnI RobabIfty Rot

-025 -024 -023 -022 -0.21 -0.20

FI1S(Vz)

Figure 6.37 - Plot of residual versus fitted
values from the ANOVA for velocities
(filtered and average) in z direction
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Figure 6.38 - Normal probability plot of
residuals from the ANOVA for velocities
(filtered and average) in z direction

6.4.2 Trimpley WTW

Similar procedures as described in Section 6.4 were used to analyse the average

filtered and unfiltered velocity samples from the Trimpley WTW. The results of the

ANOVA from tank Cl are shown in Tables 6.14, 6.15 and 6.16 for the velocity

components in the x, y and z directions respectively. Additional results from tank C7

are shown in Tables A2.l, A2.3 and A2.5 (Appendix A2). The results from these

tables indicate that there is no significant difference in velocity mean between the

average filtered and unfiltered velocity data. This confirms the earlier subjective

impression of the boxplots. The results also conclude that there is no significant

difference of velocity mean between different runs in each tank.

The results of the confidence interval for the velocity mean in the x, y and z directions

from Tank Cl (Tables 6.17, 6.18 and 6.19) and Tank C7 (Tables A2.2, A2.4 and A2.6

in Appendix A2) indicate that 95% of the time there is no difference in the velocity

mean between different runs in each tank.

In order to check whether the observation on velocity is following the linear statistical

model as described in Equation 5.2 of Chapter 5, similar checks as described in

Section 6.4.1 were made. Figures 6.39 to 6.44 (tank Cl) and Figures A2. 13 to A2. 18

(Appendix A2 for tank C7) confirm that the underlying velocity samples have

constant variance and are derived from a normal distribution.
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POOLED STDEV 1.28

N
64
64
64
64
64
64

LEVEL
1
2
3
4
5
6

MEAN
0.042
0.255
0.143
0.306
0.119
0.300

Table 6.14 - ANOVA for velocities (x direction) Vx in run 1, 2 and 3.

Source	 DF	 SS	 MS	 F	 p
Group	 5	 3.77	 0.75	 0.46	 0.808
Error378	 623.35	 1.65	 ___________ ___________
Total383	 627.12	 __________ ___________ ___________

Table 6.15- ANOVA for velocities (ydirection) Vy in run 1,2 and 3.

Source	 DF	 SS	 MS	 F	 p
Group	 5	 0.115	 0.023	 0.13	 0.985

Error378	 65.204	 0.172	 __________ __________
Total383	 65.3 18	 ____________ ___________ ___________

Table 6.16 - ANOVA for velocities (z direction) Vz in run 1, 2 and 3.

Source	 DF	 SS	 MS	 F	 p
Group	 5	 0.0527	 0.0105	 0.34	 0.890
Error	 378	 11.8041	 0.0312
Total	 383	 11.8568

Table 6.17 - Confidence interval (CI) for velocity mean Vx

INDIVIDUAL 95% CI'S FOR MEAN
BASED ON POOLED STDEV

STDEV-+---------+---------+---------+-----
1.083 (------------*-----------)

	

1.369	 (-----------*-----------)

	

1.174	 (------------*-----------)

	

1.435	 (-----------*------------)

	

1.167	 (------------*-----------)

	

1.431	 (------------*------------)
-+---------+---------+---------+-----

-0.25	 0.00	 0.25	 0.50
Note: Level 1,3 and 5 are filtered velocity for runs 1, 2 and 3 respectively and Level 2,
4 and 6 are the average velocity for run 1, 2 and 3 respectively.
N = number of observation points in the tank 	 STDEV=standard
deviation
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Table 6.18 - Confidence interval (CI) for velocity mean Vy

LEVEL N
1 64
2 64
3 64
4 64
5 64
6 64

INDIVIDUAL 95% CI'S FOR MEAN
BASED ON POOLED STDEV

MEANSTDEV ----+---------+---------+---------+--

	

-0.0814 0.4197	 (-------------*--------------)

	

-0.0922 0.4425	 (--------------*-------------)

	

-0.1322 0.4138	 (-------------*--------------)

	

-0.1164 0.3905	 (-------------*--------------)

	

-0.1208 0.4050	 (--------------*-------------)

	

-0.1132 0.4187	 (--------------* -------------)
+---------+---------+--

POOLED STDEV= 0.4153 	 -0.210 -0.140 -0.070 0.000
Note: Level 1,3 and 5 are filtered velocity for runs 1, 2 and 3 respectively and Level 2,
4 and 6 are the average velocity for run 1, 2 and 3 respectively.
N = number of observation points in the tank 	 STDEV=standard
deviation

Table 6.19 - Confidence interval (CI) for velocity mean Vz

INDIVIDUAL 95% CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEANSTDEV ---------+---------+---------+-------
1
	

64	 -0.1977	 0.2086	 (------------*-----------)
2
	

64	 -0.2313	 0.1779 (------------*)
3
	

64	 -0.2011	 0.1714	 (------------*-----------)
4
	

64	 -0.2131	 0.1564	 (-----------*	 ------)

5
	

64	 -0.2016	 0.1826	 (-----------*	 -------)

6
	

64	 -0.2176	 0.1582	 (------------*-----------
---------+------_-+---------+

POOLED STDEV= 0.1767 	 -0.245 -0.210 -0.175
Note: Level 1,3 and 5 are filtered velocity for runs 1, 2 and 3 respectively and Level 2,
4 and 6 are the average velocity for run 1, 2 and 3 respectively.
N = number of observation points in the tank 	 STDEV=standard
deviation
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Figure 6.41 - Plot of residual versus fitted
values from the ANOVA for velocities
(filtered and average) in y direction
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Figure 6.40 - Normal probability plot of
residuals from the ANOVA for velocities
(filtered and average) in x direction
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Figure 6.42 - Normal probability plot of
residuals from the ANOVA for velocities
(filtered and average) my direction
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Figure 6.43 - Plot of residual versus fitted
values from the ANOVA for velocities
(filtered and average) in z direction
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Figure 6.44 - Normal probability plot of
residuals from the ANOVA for velocities
(filtered and average) in z direction
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6.5 COMPARISON OF TANK VELOCITY DISTRIBUTION

6.5.1 Frankley WTW

6.5.1.1 Velocity Distribution Vx (velocity in x direction)

Further analysis of velocity data Vx was made by comparing the filtered velocity

distribution for each run at four different levels of depth. The same average filtered

velocity data at each point of the tank as described in Section 6.4 are used to plot the

velocity distribution for each run. Four different levels of depth refer to depths dl,

d2, d3 and d4, which correspond to 2.125m, 1.650m, 1.lOOm and 0.550m from the

top water level of the dissolved air flotation tank. The contour diagrams of the

average filtered velocity are as shown in Appendix B 1 and B2 for tanks C2 and A3

respectively. Comparisons of velocity distribution Vx at depth dl for different runs

from tank C2 indicate a similar flow pattern. These can be seen from Figures B 1.4,

B 1.8 and B 1.12 of Appendix B 1. The higher velocity values are found near the outlet

of the tank. This confirms the earlier impression from the boxplots. Velocity

distribution Vx at depth d2 (Figures B1.3, B1.7 and Bl.11 in Appendix Bi) are found

to have an approximately similar pattern between each run. At depth d3 (Figures

B 1.2, B1.6 and B 1.10 in Appendix B1), only velocity distribution from nms 2 and 3

can be considered to have an approximately similar pattern. At depth d4 (Figures

B 1.1, B 1.5 and B 1.9 in Appendix B 1), there appears to be some differences in

velocity distributions (Vx) between different runs. These diagrams however indicate

overall that the velocity Vx was higher across one diagonal of the tank (in plan view)

and lower at the other diagonal. These velocity distributions confirm that the flow at

depth d4, which is at 0.55m (one-quarter of the depth of the tank) from the surface of

the tank, was not uniform. This suggests that the effect of unsteady flow into the tank

is effectively experienced in the upper one-quarter depth of the tank.

If comparisons of velocity distributions Vx are made between tank C2 and A3, the

results indicate that at depth d3 and d4 the velocity distributions of the two tanks are

not similar. These comparisons are based on the diagrams in Figures B1.1, Bl.2,
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B1.5, B1.6, B1.9 and B1.1O from Appendix Bi, and B2.1, B2.2, B2.5, B2.6, B2.9 and

B2.1O from Appendix B2. At depths dl and d2, the velocity distributions Vx from

both tanks can be approximately considered to have some similar patterns (Figures

B1.3, B1.4, B1.7, B1.8, B1.11 and B1.12 from Appendix Bi, and B2.3, B2.4, B2.7,

B2.8, B2.1 1 and B2.12 from Appendix B2).

6.5.1.2 Velocity Distribution Vy (velocity in y direction)

Comparison of Vy for different runs at different depths within tank C2 based on

Figures B 1.13 to B 1.24 (Appendix B 1), indicates that there appears to be no similarity

in velocity patterns except for runs 2 and 3 at depths d3 and d4. In the case of tank

A3, Figures B2. 13 to B2.24 (Appendix B2) indicate that there is no similar velocity

distribution between different depths in the tank for three different runs. In the

contour diagrams (Appendices B 1 to B4) the positions of Vy were plotted at a specific

distance from the wall of the tank (refer to Figures 4.3 and 4.4 in Chapter 4).

6.5.1.3 Velocity Distribution Vz (velocity in z direction)

Figures B1.25 to B1.36 and B2.25 to B2.36 (Appendices Bi and B2) show the

velocity distributions Vz for tanks C2 and A3 respectively. At depth d4, the overall

positive Vz covers only a small proportion of the surface area of the tank. This means

fewer particles moving upward in the upper one-quarter depth of the tank. The flow

distributions between tanks C2 and A3 at different depths do not show any significant

similarity.

6.5.2 Trimpley WTW

6.5.2.1 Velocity Distribution Vx (velocity in x direction)

Velocity distributions Vx for tanks Cl and C7 are as shown in Figures B3. 1 to B3. 12

and Figures B4.1 to B4.12 in Appendices B3 and B4 respectively. There are some

similarities in the flow patterns at depths dl, d2 and d3 between runs 1, 2 and 3 for
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tank Cl. Higher Vx dominates the flow near the outlet of the tank whereas low Vx

appears near the baffle of the tank. At depth d4, Figures B3. 1, B3.5 and B3.9 indicate

that there is no similarity in the flow pattern between runs 1, 2 and 3. This may be

due to unstable conditions prevailing at depth d4.

In the case of tank C7, there appears to be some similarity in the flow pattern at

depths dl, d2, d3 and d4 between runs 1, 2 and 3 except at depth d4 run 3. These

velocity distributions can be seen from Figures B4. 1 to B4. 12 in Appendix B4.

6.5.2.2 Velocity Distribution Vy (velocity in y direction)

Figures B3.13 to B3.24 and B4.13 to B4.24 in Appendices B3 and B4 show the

velocity distributions Vy for tanks Cl and C7 respectively. For tank Cl, there appear

to be no distinctive flow patterns between three different runs for various depths

except as follows:

1. At depth dl, runs 1 and 2 can be considered to follow an approximately similar

pattern.

2. At depth d3, runs 1 and 2 show a weak form of similarity.

The results from tank C7 (Figures B4. 13 to B4.24 in Appendix B4) indicate that only

velocity distributions Vy at depth d3 from runs I and 2 are similar.

6.5.2.3 Velocity Distribution Vz (velocity in z direction)

Velocity distributions Vz for tank Cl and C7 are as shown in the diagrams in

Appendices B3 and B4 respectively. For the tank Cl, it can be said that at depths d2

and d3 for runs 1, 2 and 3 there exists a poor similarity in the flow patterns between

different runs (Figures B3.27, B3.31 and B3.25 at depth d2, and Figures B3.26, B3.30

and B3.34 at depth d3). Positive velocity at depth d4 (Figures B3.25, B3.29 and

B3.33) appears to cover a small surface area of the tank and seems to be

predominantly near the baffle of the tank. The same condition applies for tank C7
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(Figures B4.25, B4.29 and B4.33 in Appendix B4). However the latter does not seem

to have any form of similarity in its flow patterns between different runs for a

specified depth.

6.5.3 Discussions on Velocity Distributions

The overall results from both treatment plants indicate that at depth dl (i.e. the flow

in the x-direction) similar patterns of velocity distributions were observed. At the

outlet of the tank the velocity Vx is higher (positive) whereas near the baffle the

velocity Vx is negative. This result is in agreement with the works of O'Neill et al.

(1997) which used a CCTV camera to monitor the flow from a physical model of a

dissolved air flotation tank. However it is not in agreement with the Computational

Fluid Dynamics (CFD) model (Fawcett, 1997; Ta and Brignal, 1997). The latter

indicated that a simple flow pattern (i.e. no recirculation of flow in the x direction)

was encountered within the depth dl. Fawcett's work was based on a model

simulation of two-dimensional flow in a dissolved air flotation tank based on uniform

discharge. In reality it is in a three-dimensional flow regime with an unsteady flow

rate. If the diagrams of velocity distributions Vx and Vz at depth dl are analysed

together (i.e. Figures B1.4, B1.8, B1.12, B1.28, B1.32 and B1.36), the resultant

velocity components for different runs are not the same.

For the velocity in the z-direction, the overall results from this investigation are not in

agreement with O'Neill et a!. (1997) and Fawcett (1997). The former indicated that

the flow below the datum of the baffle (datum refers to the horizontal elevation of the

upper end of the baffle) is in the downwards direction except in the area near the

baffle (i.e between the tip of the baffle and the floor). The results from this study

however indicate that a more complex situation occurred in the tank (i.e. Figures

B 1.25 to B 1.36 in Appendix B 1). Although Vz is moving upwards near the baffle, it

does not occur at all sections across the width of the tank. The CFD model (Fawcett,

1997) indicated that the flow at the far end of the tank is in the downward direction.

The result is in agreement with the velocity distribution observed at Frankley and

Trimpley.
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6.6 COMPARING AVERAGE FILTERED VELOCITY VARIATIONS

BETWEEN RUNS, TANKS AND SITES

Velocity data from the average filtered velocity at each point in the tank as described

in Section 6.3 were used to compare the velocity variations between different runs,

between different tanks and between different sites. Only Vx and Vz were used for

the analysis (Section 6.4.1 indicates Vy is not significant). In order to compare the

average filtered velocities between different runs and between different tanks of the

same size from the same site, the average filtered velocity at each of the 64 points in

the tank from each run was used in accordance with the statistical procedures

described in Section 5.2.4 of Chapter 5.

Two-way analysis of variance (ANOVA) was carried out to see the effects of tanks

and runs on the observed velocity obtained during the experiments. Two-way

ANOVA calculated the total variation in the average velocity data based on the sum

of variation from several sources:

Total variation in average velocity (variation due to different tanks)

+(variation due to different runs)

+(vanatjon due to random error)

If the variation due to different tanks is much greater than the variation due to random

error, there will be statistically significant evidence of a difference in velocity

between the two tanks at the same site. Similarly, if the variation due to different

runs is much greater than the variation due to random error, there will be statistically

significant evidence of a difference in velocity between runs.

Statistical tests were conducted on the average filtered velocity data at Frankley and

Trimpley WTW. The main objectives of the tests were to answer the following

questions:

1. Is the difference in the velocity means (if any) due to the tanks effects?
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2. Is the difference in velocity means (if any) due to the runs effects?

In order to compare the average filtered velocity between different sites (i.e at

Frankley and Trimpley), the same velocity data which were used to compare different

runs were used. The analysis was carried out using one-way ANOVA (Section 5.2.3

in Chapter 5). The factor used in the ANOVA was the sites (i.e. using the MINITAB

software). A one-way ANOVA attempts to calculate the total variation in the average

filtered velocity based on the variation due to sites and the variation due to random

error. If the variation due to sites is much greater than the variation due to random

error, there will be statistically significant evidence of a difference between sites

(Frankley and Trimpley). The objective of the test is to see whether there is any

significant difference in the velocity mean between different sites. In other word this

test is trying to answer the question, "Do different sites have different velocity

means?".

The analysis carried out in this section can be summarised as shown in Figure 6.45.

Average filtered velocity
data at each point in the tar

Frankley WTW	 Trimpley WTW

TankA3	 TankC2	 Tank Cl	 TankC7
Runs 1, 2 &3	 Runs 1, 2 &3	 Runs 1, 2 &3	 Runs 1, 2 &3

I	 I	 I	 I

Compare between	 Compare between
runs and tanks	 runs and tanks

Compare between
sites

Figure 6.45 - Schematic diagram of the analysis to compare variation
of velocity mean between runs, tanks and sites
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6.6.1 Frankley WTW

The results of the tests for velocity components in the x and z directions are shown in

Tables 6.20 and 6.21 respectively. Table 6.20 indicates that there was a significant

difference of velocity mean between different tanks (Tanks A3 and C2). This result

suggests that the tank physical parameters may affect the velocity mean and the

velocity distribution in the tank. The velocity mean Vx for Tank A3 was 0.632cm/sec

whereas for Tank C2 was 0,964cmlsec. However there is no evidence to suggest any

significant difference in velocity mean between different runs (Table 6.20). This

result implies that different runs which were carried out on different days did not

influence the velocity mean in the tank.

The results for velocity components in the z direction (Table 6.21) indicate that there

was no significant difference in velocity mean between the tanks and between

different runs. The results suggest that different tanks of the same site and different

runs carried out at different times do not contribute any changes in velocity mean in

the dissolved air flotation tanks. The velocity means Vz for tanks A3 and C2

were-0.256 cmlsec and -0.226 cmlsec respectively.

A linear statistical model on the average observation of velocity on each run in each

tank is described in Equation 5.6 of Chapter 5. To check whether this model is

appropriate with the ANOVA as tabulated in Tables 6.20 and 6.21, model adequacy

checking is made. Figures 6.46, 6.47, 6.48 and 6.49 indicate that the model is

appropriate for velocity components in the x and z directions.

Table 6.20 - Two-way ANOVA (balanced design) for Vx based on runs 1,2 and 3

Source	 DF	 SS	 MS	 F	 p

Tanks	 1	 10.547	 10.547	 6.52	 0.011

Runs	 2	 3.600	 1.800	 1.11	 0.330

Error	 380	 614.410	 1.617

Total	 383	 628.557

p = level of significance
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Figure 6.46 - Plot of residual versus fitted Figure 6.47 - Normal probability plot of
values from two-way ANOVA for Vx	 residuals from two-way ANOVA for Vx

Table 6.21 - Two-way ANOVA (balance design) for Vz based on runs 1,2 and 3

Source	 DF	 SS	 MS	 F	 P

Tanks	 1	 0.0814	 0.0814	 0.67	 0.414

Runs	 2	 0.0081	 0.0040	 0.03	 0.967

Error	 380	 46.1854	 0.1215

Total	 383	 46.2749

Ntwnal RObabIdy IRat

-028	 -025	 .024	 -023	 -022

Fl 1S(V 2)

-1	 0	 1

I	 (t/z)
Average -00000000	 Anderuair-Darlrng Normality T88
StdOev:0347259	 A-Squared 2841
Not data 384	 p-value 0000

Figure 6.48 - Plot of residual versus fitted Figure 6.49 - Normal probability plot of
values from two-way ANOVA for Vz	 residuals from two-way ANOVA for Vz

6.6.2 Trimpley WTW

Similar procedures as described in the previous section (Section 6.6.1) were carried

out to find the effects of tanks and runs on the observed velocity from the full-plant

studies at the Trimpley WTW. The results from Tables 6.22 and 6.23 indicate there

was no significant difference of velocity means between tanks and between runs for
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the velocity components in the x and z directions respectiveLy. The observed velocity

means of Vx for tanks Cl and C7 were 0. l0lcmlsec and 0.241cm/sec respectively. In

the case of Vz, the velocity mean for the tank Cl was -0.200cm/sec whereas tank C7

was -0.232cm/sec.

Figures 6.50 to 6.53 indicate that the linear statistical model as described in Equation

5.6 of Chapter 5 and Section 6.6.1 is appropriate for velocity components in the x and

z directions.

Table 6.22 - Two-way ANOVA (balance design) for Vx based on runs 1,2 and 3

Source	 DF	 SS	 MS	 F	 P

Tanks	 1	 1.876	 1.876	 1.44	 0.231

Runs	 2	 0.095	 0.048	 0.04	 0.964

Error	 380	 495.391	 1.304

Total	 383	 497.362

tbrnl Robabilhty Rot

--	 0

-	 11

0.

0
0	 0

I	 I

0.	 015	 020

FUS(Vx)

0
00

II
0

0

02

I

-35 -25 -1.5 -05 05 1.5 2.5 35 45

___	 I(Vx)
Average0	 Anderson-Darhng NormahtyTeS
StdDev 113730	 A-Squared 2826
Not data 384	 p-value. 0.

Figure 6.50 - Plot of residual versus fitted Figure 6.51 - Normal probability plot of
values from two-way ANOVA for Vx	 residuals from two-way ANOVA for Vx

Table 6.23 - Two-way ANOVA (balance design) for Vz based on runs 1,2 and 3

Source	 DF	 SS	 MS	 F	 P

Tanks	 1	 0.09882	 0.09882	 2.66	 0.104

Runs	 2	 0.01051	 0.00525	 0.14	 0.868

Error	 380	 14.13517	 0.03720

Total	 383	 14.24450
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values from two-way ANOVA for Vz	 residuals from two-way ANOVA for Vx

6.6.3 Comparison Between Two Sites

Comparison of velocity means between the tanks at Franidey and Trimpley WTW was

made. Table 6.24 shows that variation of velocity mean Vx between Frankley and

Trimpley WTW was highly significant. Velocity means at Frankley and Trimpley

WTW were at 0.79 8cnVsec and 0. l7lcmlsec respectively. This result is plausible

because from the empirical calculations based on the average flow rate divided by the

cross-sectional area for the tanks at Franldey and Trimpley indicated that the average

velocity at Frankley was higher than at Trimpley (Table 6.26). Comparisons of the

average flow rate and the average velocity for the tanks at Frankley and Trimpley are

shown in Table 6.26.

For the velocity in the z component, Table 6.25 indicates that there is no evidence to

suggest any significant difference of the velocity mean between the two sites.

Velocity mean Vz at Frankley was at -0.24 lcmlsec and at Tnmpley was -0.2l6cmlsec.

This result shows that the average velocity mean Vz at Frankley and Trimpley was in

a downwards direction. Although the flow rate (Table 6.26) at Frankley and Trimpley

differed significantly, both sites have negative Vz.

Comparisons of velocity means based on data obtained from the ADV probe and that

of using the average flow rate divided by the average cross-sectional area of the tanks

(hereinafter called a simplified method) were also made. Table 6.26 indicates that
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there were significant differences in velocity means of Vx between that obtained by

using the ADY probe and the simplified method for all the tanks at Frankley and

Trimpley. The differences are plausible since the boxplots (Figures 6.9 to 6.11, 6.21

to 6.23, Al. ito A1.3 in Appendix Al and A2. 1 to A2.3 in Appendix A2) indicate that

there was a large variation in the velocity mean for each run of the experiment. Table

6.26 also indicate that there was a considerable variation in the flow rate for each run.

This demonstrates that a simplified method cannot be used to ascertain the value of

Vx for design purposes.

Table 6.24 - ANOVA for Vx to identify variation between sites

Source	 DF	 SS	 MS	 F	 P

Sites	 1	 75.46	 75.46	 51.34	 0.000

Error	 766	 1125.919	 1.470

Total	 767	 1201.382

Table 6.25 - ANOVA for Vz to identify variation between sites

Source	 DF	 SS	 MS	 F	 P

Sites	 1	 0.1188	 0.1188	 1.50	 0.221

Error	 766	 60.5194	 0.0790

Total	 767	 60.63 82
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Table 6.26 - Variation of discharge during velocity data collection

Frankie3y	 Tank A3	 Tank C2
Vol.(m )	 _________	 134.5	 _______ _________ 134.5 _________
Run	 1	 2	 3	 1	 2	 3
Max. Q2	 21.47	 17.69	 21.25	 21.80	 22.68	 21.25
(mid)	 ______ _______ ____ ______ ______ ______
Min.Q2	18.10	 15.25	 19.66	 15.93	 15.31	 16.41
(mid)	 ______ _______ _____ ______ ______ ______
Average Q2	 19.68	 16.35	 20.83	 18.35	 20.52	 19.76
(mid)	 ______ _______ ____ _____ _____ _____
Average Qi	 9.840	 8.175	 10.415	 9.175	 10.260	 9.880
(mid)	 ______ _______ ____ ______ ______ ______
RTAvage	 19.7	 23.7	 18.6	 21.1	 18.9	 19.6
(minutes)	 ___________ _____________ ________ __________ __________ ___________
Average Vx	 0.711	 0.591	 0.753	 0.663	 0.742	 0.714
(cmlsec)*	___________ _____________ ________ __________ __________ ___________

Average Vx	 0.537	 0.454	 0.906	 0.865	 1.072	 0.954
(cmlsec)* *

Trimpley	 Tank Cl ______	 Tank C7 _______
Voi(m3)	 _________ 66.50	 _______ _________ 66.50 _________
Run	 1	 2	 3	 1	 2	 3
Max. Q	 6.00	 5.87	 6.40	 5.90	 6.90	 7.57
(mid)	 ______ _______ _____ ______ ______ ______
Mi Q	 5.05	 4.22	 4.40	 5.31	 5.13	 5.11
(mid)	 _________ ____________ _______ _________ _________ _________
Average Q	 5.50	 5.96	 5.40	 5.67	 5.93	 5.60
(mid)	 ______ _______ ____ ______ ______ ______
RTAverae	 17.4	 16.1	 17.7	 16.9	 16.1	 17.1
(minutes)	 ___________ _____________ ________ __________ ___________ ___________
Average Vx	 0.641	 0.694	 0.629	 0.661	 0.691	 0.653
(cmlsec)*	___________ _____________ ________ __________ ___________ ___________

Average Vx	 0.042	 0.143	 0.119	 0.266	 0.241	 0.216
(cmlsec)** ___________ _____________ ________ __________ __________ __________

Max. = maximum Mm. = minimum 	 mid = million litre per day
Q2 =f iow based on two tanks	 Qi = flow based on one tank
Q = flow based on one tank RTAverage = average retention time
Vx* average flow rate divided by the average cross-sectional area of the tank
Vx** = velocity mean obtained using an ADV probe

6.7 SUMMARY OF RESULTS AND FINDINGS

1. Comparisons of velocity data collected using sampling rates of 25Hz and 1Hz were

made. The results indicate that the velocity data collected at 25Hz has a higher

percentage of good velocity data than at 1Hz. In terms of skewness (>1.5), the
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results suggest that the higher sampling frequency observation (25Hz) at Frankley

produce less skewness than the lower sampling frequency (1Hz) at Trimpley.

Velocity data exhibiting higher skewness occurred at a lower or negative velocity

which may suggest that the flow is under a transition regime. The occurrence of

the skewness (>1.5) is predominantly at depth dl (at one quarter depth of the tank)

and d2 (at half depth of the tank) at a distance of one-quarter length of the tank

from the baffle.

2. Comparisons of the variation of the average filtered and average raw velocity data

indicate that there is no significant difference between data at Frankley or

Trimpley WTW. This suggests that the raw data was as good as the filtered data

and the ADV probe is suitable to be used for flow measurements in the separation

zone of the dissolved air flotation tank. In fact it can be claimed that this is the

first research work which has measured and analysed the velocity distribution in

the separation zone of DAF tanks using appropriate statistical techniques.

3. Comparison of measured velocity distribution in the tank with the output from

Computational Fluid Dynamics (CFD) models produced by Fawcett (1997) and Ta

and Brignal (1997) indicates that there are some differences in the flow patterns

except near the tank outlet (the works of Fawcett, Ta and Brignal cannot be

reproduced here but can be found as indicated in the reference). Present CFD

models are based on two dimensional flow with the assumptions that the flow in

the y direction is uniform (zero), a constant inflow into the tank and the velocity

patterns are independent of time. In reality the inflow into the tank is unsteady.

The inflow into the tank is subjected to the desludging of other tanks, cleaning of

the filters and changes in water demand. When one of the DAF cells is under a

desludging process, the outlet gate will be closed which results in the increase of

the water level in the tank. At the same time the sludge scraper will move forward

to push the sludge into the collecting channel. During this process (desludging),

the other tanks will be subjected to a higher input flow rate. In fact it has been

observed that during the collection of velocity and turbidity data at the Frankley

and Trimpley WTW, the output flow rate of each tank changes every second.
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Tables 6.5 and 6.6 indicate that the velocities in the x, y and z directions were very

low, which suggests that the flow within the tank was laminar. The plan view of

contour diagrams in Appendices Bi to B4 (i.e. based on the measured velocity)

showed that significant variations in time occurred within the tank for the

velocities in the x, y and z directions. These variations may induce short circuiting

and indicate a non-uniform spatial flow and also with respect to time. The

significance of velocity variation Vx at depth d4 may affect the performance of the

DAF tank in terms of turbidity removal. For example in Figures B1.1 and B1.25

(in Appendix Bi) at depth d4 (one quarter depth from the surface), higher values

of Vx were related to positive values of Vz (i.e. on the right hand side of the baffle).

Positive values of Vz indicate that the flow moved upward. This suggests that the

particles were moving up toward the surface of the tank. The results from the

research work suggest that this is the first work which enables us to show the

actual three-dimensional velocity distribution in a DAF tank and also helps to

analyse the effective positions of turbidity removal within the separation zone.

Future CFD approaches should have stochastic input and output for good

representation of tank velocity distribution.

4. The plan view contour diagrams of Vz indicate that the flow is predominantly

moved downwards at depths dl, d2, d3 and d4 (Figures 4.4 and 4.5 in Chapter 4).

This suggests that the separation process in the separation zone is only effective in

the upper one-quarter depth of the tank. Particles not captured in this zone will

exit with the bulk flow.

5. At the Frankley WTW, it was found that there was no significant difference of

velocity in the x direction (Vx) for different runs for each tank but there was a

significant difference of Vx between the tanks of the same size. This suggests that

there was a significant difference in the flow rates between the tanks at Frankley.

The results at the Trimpley WTW show that there was no significant difference of

Vx between runs and between tanks.
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6. There was no significant difference of velocity mean in the z direction (Vz)

between different runs and between different tanks of the same size at Frankley

and Trimpley WTW. This may suggest that the velocity mean in the vertical

component of any DAF tank may be approximately the same. The present results

were based on two tanks of different sizes. There is a need to investigate more

tanks of different sizes to confirm this hypothesis.

7. Comparisons of velocity components in the x direction between the tanks at

Frankley and Trimpley indicate that there was a significant difference of Vx

between both sites. The difference in Vx may be due to a higher flow rate at

Frankley than Trimpley.
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CHAPTER 7

ANALYSIS OF THE RELATIONSHIP BETWEEN TANK DIMENSIONS,

FLOW AND VELOCITY DISTRIBUTION

7.1 INTRODUCTION

In Chapter 5 statistical techniques using factorial designs and regression analysis have

been explained. These techniques have been used in this chapter to develop the

relationship between tank dimensions, flow rate and velocity distribution in the tank.

Chapter 5 also explained the initial steps which have been taken during data analysis

prior to developing second-order models in the regression analysis. These include an

attempt to use first-order linear regression and a series of logarithmic, reciprocal and

exponential transformations to develop relationships between the predictor and

response variables.

In Chapter 6 the quality of velocity data at each of the 64 points in the tank for each

run was checked. Velocity samples at each point were averaged. Extensive statistical

techniques were used to compare the average velocity data (from each point in the

tank) between different sampling rates, between different runs, between tanks,

between sites and between different velocity components. The results indicate that

the velocity samples collected at each point were normally distributed and have

constant variance. The average filtered velocity sample distributions were consistent

with the average unfiltered velocity sample distributions. Statistical tests on the

velocity data indicate that the velocity samples were reliable and hence can be used

for the development of models to describe the velocity distribution in the tank. The

velocities in the x and z directions were more significant than in they direction.

This chapter examines the velocity component in the x and z directions. Statistical

techniques such as the analysis of variance (ANOVA), analysis of covanance

(ANCOVA) and regression analysis are used to develop models to describe the

velocity distribution in the tank. The process of developing the models required the

velocity data to be analysed in stages. The stages can be summarised as follows:
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1. To check the effects of tank dimensions on the velocity distribution in the tank

using ANOVA with an appropriate statistical model. If the physical tank

dimensions were found to have a significant effect on the velocity distribution in

the tank, checks on the model adequacy were made (Section 5.2.3.1 in Chapter 5).

2. To check whether the discharge may affect the velocity distribution in the tank.

Since the discharge was a concomitant variable which was continuous in nature,

another test statistic called ANCOVA was used.

3. The final stage was to use regression analysis to develop suitable models to

describe the velocity distribution in the tank. The ANOVA and ANCOVA which

were used at the previous stage were important so that comparison can be made on

the relative significance of the predictor variables between different methods.

7.2 CIIECKING THE EFFECTS OF TANK DIMENSIONS ON VELOCITY

7.2.1 Velocity in thex Direction

A fixed effects model as described in Section 5.3.1.1 was investigated for its

suitability to describe velocity distribution based on the data collected during the

investigation. The main objective was to find out whether the tank physical

parameters, i.e. width, depth and length, have any significant effect on the velocity

distribution in the dissolved air flotation tank. Since there are three factors (width,

depth and length) to be investigated in this research work, three-factor analysis of

variance with interaction terms as described in Section 5.3.1.1 of Chapter 5 was used

to analyse the data. The fixed effects model applies only to the tanks from which the

data was collected. Some of the variation in velocity is due to the fluctuation in flow

rate over the sampling period.

Tables 7.1, 7.2 and C1.2 (Appendix C) indicate that the effects of width, depth, length

and all the interaction terms have a highly significant effect on the velocity
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component in the x direction. However the results from Tank A3 at Frankley indicate

that all the physical dimensions and the interaction terms are highly significant except

the interaction term between width and depth. The results are shown in Table C 1.1

(appendix C). This means the cross-sectional area of the dissolved air flotation tank

at A3 does not show any significant effect on the velocity distribution in the tank

based on the three runs carried out during the investigation. There is no apparent

reason why there was a difference in the result between Tank C2 and A3 at the

Frankley WTW. The analysis of variance (Table 7.3) did not show any significant

difference of flow rate between both tanks.

The statistical model describing the observed velocity in the x direction as shown in

equation 5.7 of Chapter 5 will be appropriate if the checks on model adequacy satisfy

the requirements as set up in Section 5.2.3.1 of Chapter 5. Figures 7.1 to 7.4, Cl.!,

Cl.2, C1.3 and C1.4 (Appendix C) indicate that the requirements are satisfied. The

plots of residual versus fitted values and normal probability plots of residuals indicate

the underlying velocity samples have constant variance and are normally distributed.

Table 7.1 - Analysis of variance for velocities in x direction (runs 1,2 & 3) using
multifactor balanced designs (Tank C2, Frankley WTW)

Source	 DF	 SS	 MS	 F	 P
Width	 3	 5.2637	 1,7546	 5.54	 0.001
Depth	 3	 35.3713	 11.7904	 37.24 0.000
Length	 3	 78.6516	 26.2172	 82.81	 0.000
Width*Depth	 9	 18,1186	 2.0132	 6.36	 0.000
Width*Length	 9	 23.0394	 2.5599	 8.09	 0.000
Depth*Length	 9	 129.4741	 14.3860	 45.44 0.000
Width*Depth*Length 27	 38.905 1	 1.4409	 4.55	 0.000
Error	 128	 40.5219	 0.3166	 ______ _______
Total191	 369.3457 ________ ______ _______
Note: * is for interaction
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Figure 7.1 - Plot of residuals versus fitted
values from the analysis of variance for
velocities in x direction (Tank C2,
Frankley WTW)
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Figure 7.2 - Normal probability plot of
residuals from the analysis of variance for
velocities in x direction (Tank C2,
Frankley WTW)

Table 7.2 - Analysis of vanance for velocities in x direction (runs 1,2 & 3) using
multifactor balanced designs (Tank Cl, Trimpley WTW)

Source	 DF	 SS	 MS	 F	 P
Width	 3	 14.7350	 4.9117	 26.70 0.000
Depth	 3	 129.7573	 43.2524	 235.13 0.000
Length	 3	 19.7734	 6.5911	 35.83	 0.000
Width*Depth	 9	 6.6063	 0.7340	 3.99	 0.000
Width*Length	 9	 7.3864	 0.8207	 4.46	 0.000
Depth*Length	 9	 35.1050	 3.9006	 21.20 0.000
Width*Depth*Length 27	 9.9521	 0.3686	 2.00	 0.005
Error	 128	 23.5460	 0.1840	 ______ _______
Total191	 246.8615 _________ ______ _______
Note: * is for interaction
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Figure 7.3 - Plot of residuals versus fitted
values from the analysis of variance for
velocities in x direction (Tank Cl,
Trimpley WTW)
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Figure 7.4 - Normal probability plot of
residuals from the analysis of variance for
velocities in x direction (Tank Cl,
Trimpley WTW)
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Table 7.3 - ANOVA on the flow rate between Tanks C2 and A3 at Frankley WTW

Source	 DF	 SS	 MS	 F	 P
Tanks	 1	 0.131	 0.131	 0.16	 0.712
Error4	 3.313	 0.828	 __________ __________
Total 5 	3.444	 ___________ ___________ ____________

7.2.1.1 Analysis of Covariance (Vx)

Since the output flow from the dissolved air flotation tank is a continuous process and

cannot be controlled during the investigation, an attempt to find out whether the

output flow has any relationship with the velocity distribution in the tank has to be

made by using an analysis of covariance. This method enables the effect of the

continuous variable (output flow or discharge) to be analysed alongside the fixed

variables (width, depth and length of the tank). Section 5.3.2 in Chapter 5 explained

further details on the analysis of covariance.

The results for velocity in the x-direction on Tank C2 and A3 at Frankley WTW are

shown in Tables 7.4 and C1.3 (Appendix C) respectively. These results indicate that

the discharge (covariate) from the tank is affecting the velocity distribution in the

tank.

Table 7.4 - Analysis of Covariance for Vx (Tank C2, Frankley WTW)

Source	 DF	 ADJ. SS	 MS	 F	 P
Covanate(discharge) 	 1	 2.8960	 2.8960	 9.78	 0.002
Width	 3	 4.9613	 1.6538	 5.58	 0.001
Depth	 3	 35.0584	 11.6861	 39.44 0.000
Length	 3	 76.7177	 25.5726	 86.32 0.000
Width*Depth	 9	 18.1335	 2.0148	 6.80	 0.000
Width*Length	 9	 23.5030	 2.6114	 8.81	 0.000
Depth*Length	 9	 129.9672	 14.4408	 48.74 0.000
Width*Depth*Length 27	 38.1224	 1.4119	 4.77	 0.000
Error127	 37.6259	 0.2963	 ______ ________
Total191	 369.3457 _________ ______ ________
Note: * is for interaction

163



The results for the Trimpley WTW are shown in Table 7.5 for Tank Cl and Table

C1.4 (Appendix C) for Tank C7. These results are not in as good agreement as those

for the tanks at Frankley WTW. The covariates or the discharges from both tanks are

not significant. The reason may be due to the low variability of the discharges

between different runs during the investigation. Boxplots in Figures 7.5 and 7.6

indicate that the ranges overlap to a large extent between different runs for each tank

indicating no significant difference in the discharge between each run.

Table 7.5 - Analysis of Covariance for Vx (Tank Cl, Trimpley WTW)

Source	 DF	 ADJ. SS	 MS	 F	 P
Covariates	 1	 0.0179	 0.0179	 0.10	 0.757

Width	 3	 12.8033	 4.2678	 23.04 0.000
Depth	 3	 129.7680	 43.2560	 233.49 0.000
Length	 3	 19.7745	 6.5915	 35.58	 0.000
Width*Depth	 9	 6.6117	 0.7346	 3.97	 0.000
Width*Length	 9	 7.3714	 0.8190	 4.42	 0.000
Depth*Length	 9	 35.1165	 3.9018	 21.06 0.000
Width*Depth*Length 27 	 9.9155	 0.3672	 1.98	 0.006
Error	 127	 23.5281	 0.1853	 ______ _______
Total191	 246.8615 _________ ______ _______
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Figure 7.5 - Boxplots for discharge at	 Figure 7.6 - Boxplots for discharge at
different runs (Tank Cl, Trimpley WTW) different runs (Tank C7, Trimpley WTW)

7.2.2 Velocity in the z Direction

A similar procedure as in Section 7.2.1 was carried out on the velocity data in the z

direction to see the effects of the tank physical parameters on Vz. The results of the

analysis are shown in Tables 7.6 and C1.5 (Appendix C) for the tanks at Franidey

WTW and in Tables 7.7 and Cl .6 (Appendix C) for the tanks at Trimpley. Table 7.8
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is a summary of the results from all the tanks under the investigation. Table 7.8

indicates that the factors depth and length and the interaction between them have a

significant effect on Vz. Thus it can be concluded that the upward and downward

velocity in the tank is affected by the depth and length and the interaction between

them.

Table 7.6 - Analysis of variance for velocities in z direction (runs 1,2 & 3) using
multifactor balanced designs (Tank C2, Frankley WTW)

Source	 DF	 SS	 MS	 F	 P
Width	 3	 0.25169	 0.08390	 1.66	 0.178
Depth	 3	 3.06513	 1.02171	 20.27 0.000
Length	 3	 5.10617	 1.70206	 33.77 0.000
Width*Depth	 9	 0.78739	 0.08749	 1.74	 0.087
Width*Length	 9	 0.67401	 0.07489	 1.49	 0.160
Depth*Length	 9	 1.55491	 0.17277	 3.43	 0.001
Width*Depth*Length 27	 2.20649	 0.08172	 1.62	 0.040
Error	 128	 6.45200	 0.05041 ______ _______
Total191	 20.09779 ________ ______ _______
Note: * is for interaction

Table 7.7 - Analysis of variance of velocities (z direction) for runs 1, 2 and 3 using
multifactor balanced designs (Tank Cl, Trimpley WTW).

Source	 DF	 SS	 MS	 F	 P
Width	 3	 0.075 17	 0.02506	 2.32	 0.078
Depth	 3	 1.93422	 0.64474	 59.81	 0.000
Length	 3	 2.05779	 0.68593	 63.63 0.000
Width*Depth	 9	 0.12704	 0.01412	 1.31	 0.238
Width*Length	 9	 0.25492	 0.02832	 2.63	 0.008
Depth*Length	 9	 0.49534	 0.05504	 5.11	 0.000
Width*Depth*Length 27	 0.36885	 0.01366	 1.27	 0.191
Error	 128	 1.37987	 0.01078 ______ _______
Total191	 6.69320	 ________ ______ _______
Note: * is for interaction
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Table 7.8 - Summary of results on significant effects of tank physical parameters

Sites	 Frankley WTW	 Trimpley WTW
Sources	 Tank C2	 Tank A3	 Tank Cl	 Tank C7
Width	 0	 0	 0	 0
Depth	 x	 x	 x	 x -
Length	 x	 x	 x	 x
Width and depth	 0	 0	 0	 0
Width and length	 0	 0	 x	 0
Depth and length	 x	 x	 x	 x
Width,depth and length	 x	 0	 0	 0
Note: Symbol '0' is not significant whereas 'x' is highly significant.

Model adequacy evaluations were made with the same procedures as described in the

previous section (Section 7.2.1). Figures 7.7 to 7.10, C1.5, C1.6, C1.7, and C1.8

(Appendix C) indicate that the observed velocity in the z direction can be described

according to Equation 5.7 of Chapter 5. Plots of residuals versus fitted values from

the ANOVA have constant variance and normal probability plots of residuals indicate

the underlying assumption that velocity samples Vz were derived from normal

distributions is satisfied.
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Figure 7.7 - Plot of residuals versus fitted
values from the analysis of variance for
velocities in z direction (Tank C2,
Frankley WTW)
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Figure 7.8 - Normal probability plot of
residuals from the analysis of variance for
velocities in z direction (Tank C2,
Frankley WTW)
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7.2.2.1 Analysis of Covariance (Vz)

A similar statistical technique to that described in Section 7.2.1.1 was used to check

whether the discharge from the tank affects the velocity in the z direction. The results

from Tanks C2 and A3 at Frankley show that the discharge does not affect the

velocity distribution in the z direction (Table 7.9 and Table C1.7 in Appendix C).

The same result was obtained for Tank Cl at the Trimpley WTW (Table 7.10).

However the result from Tank C7 (Trimpley WTW) from Table C 1.8 in Appendix C

is surprisingly different. The discharge appears to affect the velocity in the z

direction. Table 7.11 indicates that the correlation coefficient between Vz and the

discharge in Tank C7 was -0.346. This tank also has a less significant correlation

coefficient between Vx and Vz as shown in Table 7.11.

Table 7.9 - Analysis of Covanance for Vz (Tank C2, Frankley WTW)

Source	 DF	 ADJ. SS MS	 F	 P
Covariates	 1	 0.00844	 0.00844	 0.17	 0.684
Width	 3	 0.24363	 0.08121	 1.60	 0.193
Depth	 3	 3.06492	 1.02164	 20.14 0.000
Length	 3	 5.11448	 1.70483	 33.60	 0.000
Width*Depth	 9	 0.78683	 0.08743	 1.72	 0.090
Width*Length	 9	 0.64411	 0.07157	 1.41	 0.190
Depth*Length	 9	 1.54831	 0.17203	 3.39	 0.001
Width*Depth*Length 27	 2.20800	 0.08178	 1.61	 0.042
Error	 127	 6.44356	 0.05074 ______ _______
Total191	 20.09779 ________ ______ _______
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Table 7.10 - Analysis of Covariance for Vz (Tank Cl, Trimpley WTW)

Source	 DF	 ADJ. SS	 MS	 F	 P
Covariates	 1	 0.00491	 0.00491	 0.45	 0.502
Width	 3	 0.07971	 0.02657	 2.45	 0.066
Depth	 3	 1.93198	 0.64399	 59.48 0.000
Length	 3	 2.05561	 0.68520	 63.29 0.000
Width*Depth	 9	 0.12836	 0.01426	 1.32	 0.234
Width*Length	 9	 0.25773	 0.02864	 2.65	 0.008
Depth*Length	 9	 0.49403	 0.05489	 5.07	 0.000
Width*Depth*Length _27	 0.36862	 0.01365	 1.26	 0.196
Error	 127	 1.37495	 0.01083 ______ _______
Total191	 6.69320 _________ ______ _______

Table 7.11 - Correlation coefficient between Vx, Vz and the discharge.

Tanks	 Correlation coeff. Vx Correlation coeff. Vz

and Vz	 and discharge

Tank C2(Frankley)	 -0.065	 0.034

Tank A3(Frankley)	 -0.187	 -0.0 16

Tank C1(Tnmpley) 	 0.235	 0.079

Tank C7(Trimpley)	 -0.005	 -0.346

Note: coeff. is for coefficient

7.3 DEVELOPING SUITABLE MODELS FROM REGRESSION ANALYSIS

In Section 7.2 the effects of tank dimension on velocity distribution in the tank were

analysed for each tank site, namely Frankley and Tnmpley Water Treatment Works.

Since the physical dimensions of the tank have significant effects on the velocity in

the tank (as found in Section 7.2), it is important to express their relationship by

developing suitable models, which have been discussed in Section 5.3.2.2 of Chapter

5. This Section will focus on the results of data analysis based on the regression

model as discussed in Chapter 5.

To get a good estimate of regression analysis, there is a need to look for a strong

relationship between the response and predictor variables. Higher values of R2 as
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described in Section 5.3.2.1 of Chapter 5 are an indication of a strong relationship.

Several attempts were made to develop suitable regression models for Tanks C2, A3,

Cl and C7 from the Frankley and Trimpley WTW. Tests were made using up to 4th

order models with interactive response variables. The value of R2 was used to

evaluate the predictive ability of each model. However with higher-order models it

becomes difficult to interpret the physical meaning of the interactive response

variables. Velocity in the x and z directions are used as the response variables in the

models. The order of the predictor variables used in the analysis is shown in Table

7.12.

Table 7.12 - Predictor variables used for regression analysis

Several different approaches are available for determining appropriate combinations

of predictive variables. Some of these approaches are summarised below.

1. The actual width, depth and length co-ordinates of each sampling point relative to

a datum may be used. This approach is called 'Method 1' in this chapter.

2. The sampling points may be referenced to the datum by a simple numerical

ranking system (at different levels) in each dimension based on factorial design

theory. There were four different levels of each factor. The point nearest to the

reference datum was marked as level 1 and the furthest was marked as level 4.

This method may reduce the precision of the estimate due to higher cumulative

values when the order of the regression model is increased. This approach is

called 'Method 2' in this chapter.

3. Using a transformation of the numerical levels in approach (2) above. For example

levels 1, 2, 3 and 4 may be represented by -3, -1, +1 and +3. This approach
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eliminates errors in the regression. This approach is called 'Method 3' in this

chapter.

Approaches 1 and 3 above are presented in this chapter.

7.3.1 Velocity in thex Direction (Vx)

Filtered velocities in the x-direction from runs 1, 2 and 3 of each tank were used to

develop an appropriate model using regression analysis. A combination of 40

predictor variables with their interactions based on Table 7.12 were used in the

regression analysis. The results of regression analysis for velocity in the x-direction

using 40 combinations of predictor variables are shown in Tables 7.13. It can be seen

that Method 3 produced a better value of R2 (coefficient of determination) than

Method 1. The significant variables based on the regression analysis from both

methods are not consistent but vary considerably for the same velocity data. However

the 'depth' factor seems to be significant in most cases. Results from Method 2 have

not been presented because of large cumulative errors as noted earlier (Section 7.3).

The source of velocity data has a considerable influence on the value of R2 in the

regression analysis. Velocity data for each point in the tank which has been averaged

over the three runs gives better R2 than the use of separate velocity data values from

runs 1, 2 and 3 regressed together. For example in Table 7.13, Tanks A3 and C2 have

an R2 of 67.3% from Method 1 based on the separate velocity data values from runs 1,

2 and 3. The R2 value improves to 77.7% using the average data from the three runs.

Although this value was better than for Method 1 it was decided not to pursue this

approach because the independent variables used were not seen to be helpful in

assisting in the tank design process. Method 3 was used to demonstrate that R2 can be

improved by suitable choice of independent variables, which gives confidence in the

use and interpretation of the regression analysis. At this stage Method 1 was felt to be

appropriate since the tank dimensions had been substituted directly into the model to

describe the observations carried out during the investigation.
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Table 7.13 - Results from the various techniques and velocity data in the regression
analysis of Vx using a combination of 40 predictor variables.

Tanks	 Methods Velocity	 R2	 s	 Variables highly
_______________ _________ data	 ________ _________ significant
A3 and C2	 1	 Runs 1, 2 & 67.3% 0.7577	 W, D, W3, D3 , DL2,
(Frankley)	 3 for both	 LD2, LD4, L2D2,
______________ ________ tanks 	 ______ ________ DQ mdv.
A3 and C2	 3	 Runs 1, 2 & 68.3% 0.7536	 D, W2, D2, D3, DL,
(Frankley)	 3 for both	 DL2, DQ mdv.
______________ ________ tanks 	 _______ _________ _________________
Cl and C7	 1	 Runs 1, 2 & 66.2% 0.6872	 W, D, W3 , D3 , LD2,
(Trimpley)	 3 for both	 LD4.
______________ ________ tanks 	 _______ _________ _________________
Cl and C7	 3	 Runs 1, 2 & 75.3% 0.5917	 W, L, W2, D2, D3,
(Trimpley)	 3 for both	 L2, WD, WD2,

tanks	 WD3, DW2, DL,
___________ ______ _________ _____ _______ LD 2, LD3.
A3 and C2	 1	 Average	 77.7% 0.6275	 W3 , LD4, mdv.
(Frankley)	 from runs

1,2&3 for
______________ ________ both tanks _______ ________ _________________
A3(Frankley)	 1	 Average	 88.3% 0.4265	 W3 , LD2, LD3.

from runs
1,2&3 for

______________ ________ the one tank _______ ________ _________________
C2(Frankley)	 1	 Average	 83.1% 0.6645	 D3 , DL2, LD4, L2D2,

from runs	 WQ.
1,2 &3 for

_______________ ________ the one tank _______ _________ __________________
Cl and C7	 1	 Average	 72.7% 0.6434	 W3 , L2, L3, WD3,
(Trimpley)	 from runs	 LD2.

1,2&3 for
______________ ________ both tank _______ ________ ________________
C1(Trimpley)	 1	 Average	 82.4% 0.5580	 LD4, DQ.

from runs
1,2 &3 for

______________ ________ the one tank _______ ________ _________________
C7(Trimpley)	 1	 Average	 74.5% 0.6992	 W3.

from runs
1,2 &3 for
theone tank _______ ________ -

Note: R2 = coefficient of determination 	 s = standard deviation of the errors.
W, D, L, and Qv are the width, depth, length, discharge of the tank respectively
mdv. = indicator variable
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Table 7.13 indicates that if each tank is modelled separately (using an average

velocity from runs 1, 2 and 3), the values of R2 seem to be improved compared with

modelling together two tanks of the same size. It can be seen that the value of R2 is

77.7% when Tanks A3 and C2 were used together but when the tanks were analysed

separately the values of R2 improve to 88.3% and 83.1% for Tanks A3 and C2

respectively. The same characteristic also was observed for the tanks at Trimpley

WTW.

The regression analysis using 40 predictor variables was carried out to see if a better

description of tank performance could be obtained compared with a simpler second-

order model as described in Equation 5.18 (Chapter 5). The higher-order model order

is difficult to interpret from a design point of view and was discarded in favour of the

second-order model which is described below. A regression analysis using an

indicator variable was used to model the velocity in the x direction. The results of the

analysis for second-order models of Tank A3 and C2 at the Frankley WTW and Tanks

Cl and C7 at the Trimpley WTW are shown in Equations 7.1 and 7.2 respectively.

The indicator variables (refer to Draper and Smith 1981 or Metcalfe, 1994) are

applied for Tanks C2 (Frankley) and C7 (Trimpley).

V -82.4+1.28W-li. JD-3. 16L+9. 85Q-0.O77i W2+ 1.24D+ 0.04891!

-0. 277Q 2 + 0.060 WD-0. 0009 WL-0. 0406 WQ+ 0. 482DL

+ 0.2 75DQ+ 0.1 18LQ+ 0.363 VAR	 (7.1)

Vr19. 13. 05W8. 30D+ 1. 09L5. 20Q+ 0. 0984 W2^4. 26D 2 0. 0398L2

+ 0. 490 Q 2-0.1 00 WD+ 0.0058 WL+ 0. 456 WQ+ 0. 395DL

-0. 402DQ-0. i91LQ-0 . 065 VAR	 (7.2)

where W, D, L and Q are the width, depth, length in metres for each point and flow

rate in million litres per day of the dissolved air flotation tank respectively. VAR is

the indicator variable where its coefficient is used to describe the velocity in the

appropriate tank (only applicable for Tank C2 or C7). The value of R2 for Equations

7.1 and 7.2 are 69.5% and 67.2% respectively and the corresponding standard
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deviations of the errors are 0.6964 and 0.6665. The details of the results of Equations

7.1 and 7.2 are tabulated in Tables 7.14 and 7.15 respectively.

Comparison of velocities at individual points relative to the regression line identified

certain points with large differences between the observed and predicted values

(standard residuals). The points with large standard residuals are as follows:

1. At Frankley points C3d4 and D1d4 from Tank A3 and points B1d4, B4d4, C1d4

and D2d4 from Tank C2

2. At Trimpley points C1d3, D1d3, D2d3 and D2d4 from Tank Cl and points C2d3,

D1d3, D1d4, D2d3 and D4d4 from Tank C7.

At Frankley all these points are at depth d4 which is in the observed high horizontal

velocity zone of the tank. At Trimpley the majority of high standard residuals

occurred at d3, with some at d4. This may be due to the smaller depth of Trimpley

tanks which create a relatively larger zone of higher velocities in the upper layer of

the tank.

Table 7.14 and 7.15 summarise the regression analyses which show the effects of

each predictor variable based on the Student t-test. The interpretation of the low t-

ratio for the flow (Tables 7.14 and 7.15) is that the coefficients are not determined

with much precision. Earlier tests using analysis of covariance (Table 7.4) indicated

that the flow or discharge was highly significant. The covariate model has a t-value

of 3.127 with a coefficient of 0.08027 (standard deviation 0.0257) and the regression

model has t-value of 1.23 with a coefficient of 9.854 (standard deviation 7.983). This

is not contradictory. The covariate model involves many terms, high-order

interactions and levels are treated independently as an individual category rather than

on a continuous scale. The problems with the full covariate model are difficult to

interpret physically and more importantly it does not appear to generalise compared to

the second-order model (regression analysis).
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Table 7.14 - Summary of results from regression analysis based on Equation 7.1
for the Frankley WTW

Predictor	 Coefficient	 Std. deviation	 t-ratio	 p
Constant	 -82.35	 77.94	 -1.06	 0.293
Width(m)	 1.283	 1.594	 0.81	 0.422
Depth(m)	 -1 1.051	 3.712	 -2.98	 0.004
Length(m)	 -3.162	 1.192	 -2.65	 0.009

Flow Qv(mld)	 9.854	 7.983	 1.23	 0.220
Width2	-0.07709	 0.02343	 -3.29	 0.001
Depth2	1.2350	 0.2269	 5.44	 0.000
Length2	0.04890	 0.01777	 2.75	 0.007

Q\	 -0.2770	 0.2056	 -1.35	 0.181
Width*depth	 0.06003	 0.05147	 1.17	 0.246
Width*length	 -0.00091	 0.01418	 -0.06	 0.949

Width*Qv	 -0.04061	 0.07838	 -0.52	 0.605
Depth*length	 0.48237	 0.04796	 10.06	 0.000

Depth*Qv	 0.2751	 0.1891	 1.45	 0.149
Length*Qv	 0.11835	 0.06041	 1.96	 0.053

Indicatorvariable	 0.3625	 0.1507	 2.40	 0.018
Note: * is the interaction term	 std. = standard	 t = t-test
p level of significance

Table 7.15 - Summary of results from regression analysis based on Equation 7.2
for the Trimpley WTW

Predictor	 Coefficient	 Std. deviation	 t-ratio	 p
Constant	 19.15	 14.59	 1.31	 0.192
Width(m)	 -3.054	 1.407	 -2.17	 0.032
Depth(m)	 -8.301	 2,374	 -3.50	 0.001
Length(m)	 1.0873	 0.7386	 1.47	 0.144

FlowQv(mld)	 -5.198	 5.119	 -1.02	 0.312
Width2	0.09844	 0.04703	 2.09	 0.039
Depth2	4.2572	 0.3456	 12.32	 0.000
Length2	-0.03981	 0.02640	 -1.51	 0.134

Q 2	0.4898	 0.4738	 1.03	 0.303
Width*depth	 -0.0996	 0.1034	 -0.96	 0.337
Width*length	 0.00583	 0.03074	 0.19	 0.850

Width*Qv	 0.4562	 0.2323	 1.96	 0.052
Depth*length	 0.39547	 0.07520	 5.26	 0.000

Depth*Qv	 -0.4015	 0.3954	 -1.02	 0.312
Length*Qv	 -0.1908	 0.1250	 -1.53	 0.130

Indicator variable	 -0.0645	 0.1679	 -0.38	 0.702
Note: * is the interaction term 	 std. standard

	
t = t-test

p = level of significance

174



0

000	

&

11 0 o0Q°p

5
4

3

&

999	 -
99	 -.
.95	 -

= 95

.1	 0	 1	 2
91S(Vx)

Figure 7.13 - Plot of standard residual
versus fitted values from regression
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Model adequacy checking (Figures 7.11, 7.12, 7.13 and 7.14) for Equations 7.1 and

7.2 indicates that the sample population for velocity in both cases are of constant

variances and from normal distribution. Thus the modelling approach for each

equation is valid. This confirms that the assumptions underlying the residuals are

correct,
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7.3.2 Velocity in the z Direction(Vz)

Similar procedures to analyse the velocity in the x direction as described in Section

7.3.1 are used in the regression analysis of the response variable in the z direction.

The summary of the results of regression analysis of Vz are shown in Table 7.16.

Again Method 3 produces a better value of R2 than Method I for velocity data from

runs 1, 2 and 3. If these data are averaged so that only one set of data is used in the

regression analysis, the values of R2 are considerably increased. These results are in

agreement with the previous analysis on the velocity in the x direction. If however

comparisons of R2 are made between the tanks at the same site on whether Vx and Vz

have the same trend (i.e. R2 at Tank A3 or Cl is always higher than at Tank C2 or

C7), the results are not in agreement. This indicates that a good relationship of Vx

with the predictor variables in a particular tank is not necessarily true for Vz. The

significant variables obtained from the regression analysis of Vz are also found not to

be in agreement with the significant variables from the analysis of Vx. The

differences of significant variables either from the regression of Vx or Vz (in Table

7.13 or 7.16) may be due to the standard deviations of errors within a tank being less

than the standard deviations of errors between tanks. So the assumptions that the

errors (&) have a common variance may not be satisfied. In practical terms the runs

within tanks are less informative than runs using different tanks. Also as for the Vz,

the 4th order analysis will tend to lead to too many statistically significant variables,

which are physically difficult to interpret.
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Table 7.16 - Results from the various techniques and velocity data in the regression
analysis of Vz using a combination of 40 predictor variables.

Tanks	 Methods Velocity	 R2	 s	 Significant
________________ _________ data 	 ________ _________ variables
A3 and C2	 I	 Runs 1, 2 & 5 1.3% 0.2508	 Constant, W3 , D3,
(Frankley)	 3 for both	 L3, DL4, LD2.
________________ _________ tanks 	 ________ _________ ____________________
A3 and C2	 3	 Runs 1, 2 & 53.5% 0.2477	 Constant, W2, D2,
(Frankley)	 3 for both	 L2, L3, DL2, DL3,
_______________ _________ tanks	 _______ _________ D 2L2, Q.
Cl and C7	 1	 Runs 1 • 2 & 69.1% 0.1113	 DL, DL2, LD2,
(Trimpley)	 3 for both	 D2L2, Q,, Q.,2, mdv.
_______________ _________ tanks 	 _______ _________ ___________________
Cl and C7	 3	 Runs 1, 2 & 69.5% 0.1113 	 Constant, W, D2, L
(Trimpley)	 3 for both	 DL2, LD2, D2L2.
________________ _________ tanks 	 ________ _________ ____________________
A3 and C2	 1	 Average	 75.1% 0.1645	 W, W3, L2, L3 , DL4,
(Franidey)	 from runs	 LQ.

1,2 &3 for
_______________ ________ both tanks _______ _________ __________________
A3(Frankley)	 1	 Average	 83.6% 0.1585	 W, W3.

from runs
1,2 &3 for

_______________ ________ the one tank _______ _________ __________________
C2(Frankley)	 1	 Average	 75.6% 0.1625	 D, D3, L3,DW2,

from runs	 DW3, DL2, DL4,
1,2&3 for	 LD2.

______________ ________ the one tank _______ ________ _________________
Cl and Cl	 1	 Average	 84.2% 0.07808 Constant, DL, DL2,
(Trimpley)	 from runs	 LD2, D2L2, Q. Q2.

1,2 &3 for
______________ ________ both tank _______ ________ _________________
C1(Trimpley)	 1	 Average	 88.5% 0. 06970 DL, DL2, LD2,

from runs	 D2L2, Q.
1,2 &3 for

_______________ ________ the one tank _______ _________ __________________
C7(Trimpley)	 1	 Average	 89.6% 0.0732 1 Constant, D3 , L3,

from runs	 DL, DL2, LD2,
1,2 &3 for	 D2L2.

_______________ ________ the one tank _______ _________ __________________
Note: R2 coefficient of determination	 s=standard deviation of the errors.
W, D, L, and Qv are the width, depth, length and discharge of the tank respectively
Indv.=indicator variable

In order to simplify the model for the velocity in the z-direction, a similar technique to

that described in Section 7.3.1 was used. The results of the second-order regression

177



analysis of Vz are shown in Equations (7.3) and (7.4) for the dissolved air flotation

tanks at Frankley(Tanks A3 and C2) and Trimpley(Tanks Cl and C7) respectively.

The regression analysis of both tank sites(Frankley and Trimpley WTW) indicate that

the same predictor variables namely width, depth, length, discharge and the

interaction of the discharge with the dimension of the tanks are highly correlated with

other predictor variables.

V =-29. 5 + 0.751 W-3. 1 9D-0. 722L + 3.2 7Q-0. 0208 W2 + 0. 465D2-0. 019 7L2

-0.0888Q2+0.0185WD+0.00342WL-0.0332WQ+0.0155DL

+ 0. 0940DQ+ 0.041 9LQV-0. 0066 VA R	 (7.3)

V=-0. 52-0.455 W-0. 579D+ 0. 024L + 0. 6Q+ 0.005 75 W2+ 0. 384D2 -0. 008 73L2

-0. 0787 Q 2-0.0068 WD+ 0.00322 WL + 0.0719 WQV-0. 02 7JDL

-0.03 70DQ+ 0. 0006LQ-0 . 0152 VAR	 (7.4)

where W, D, L and Q are the width, depth, length in metres at each point in the tank

and flow rate in million litres per day of the dissolved air flotation tank respectively.

VAR is the indicator variable where its coefficient is used to describe the velocity Vz

in the appropriate tank (applicable for Tank C2 or C7).

The value of R2 from Equation 7.3 for the tanks at Frankley is 66% with the standard

deviation of the errors 0.1826. For the tanks at Trimpley the value of R2 from

Equation 7.4 is 74.9% and the standard error of the estimate is 0.09315. The results

for Vz indicate that the velocity data collected at the Trimpley WTW produce better

results than at the Frankley WTW. The low value of the standard deviation of the

errors at Trimpley is mainly due to a lower range of Vz encountered at the Tnmpley

WTW. The models for Equations 7.3 and 7.4 are only valid for the dissolved air

flotation tanks, which have the same size and flow rates as at the Frankley and

Trimpley WTW respectively.

Tables 7.17 and 7.18 are the summary of the results of the regression analysis which

correspond to Equations 7.3 and 7.4. Inspection of Table 7.17 indicates that at

Frankley the width , depth and length are fairly significant. Table 7.18 (for Trimpley)
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shows width and depth are fairly significant. The expected variables affecting Vz are

width and length rather than width and depth (surface loading theory Section 2.4.2.6

in Chapter 2). The reason for the difference may be due to the sampling at Trimpley

not giving the same quality of data as Frankley (Section 6.2 in Chapter 6). Thus the

'noise' in the experimental data has masked the relationship between length and

velocity to such an extent that it cannot be confirmed statistically.

It is fairly reasonable to say that Equation 7.3 has some form of relationship with

Equation 2.48 of Section 2.4.2.5 in Chapter 2 where the vertical rise rate of the

suspended solids depends on the influent flow rate and the surface area of the

flotation chamber. Equation 7.3 demonstrates that there is some evidence that the

surface area (i.e. width x length) and the discharge are fairly significant. The

significance of the indicator variable is fairly low which means there is no difference

in Vz between Tanks A3 and C2. Thus Equation 7.3 can be used to predict Vz for the

tanks at the Frankley WTW but cannot be used for other sizes of tank.

Table 7.17 - Summary of the results from regression analysis based on Equation 7.3
for the Frankley WTW

Predictor	 Coefficient	 Std. deviation	 t-ratio	 p
Constant	 -29.52	 20.44	 -1.44	 0.151
Width(m)	 0.7506	 0.4180	 1.80	 0.075
Depth(m)	 -3.1880	 0.9731	 -3.28	 0.001
Length(m)	 -0.7222	 0.3 124	 -2.31	 0.023

FlowQv(mld)	 3.268	 2.093	 1.56	 0.121
Width2	-0.020822	 0.006143	 -3.39	 0.001
Depth2	0.46468	 0.05950	 7.81	 0.000
Length2	-0.019745	 0.004659	 -4.24	 0.000

Q%,	-0.08875	 0.05390	 -1.65	 0.102
Width*depth	 0.01853	 0.01350	 1.37	 0.173
Width*length	 0.003417	 0.003719	 0.92	 0.360

Width*Qv	 -0.03318	 0.02055	 -1.61	 0.109
Depth*Iength	 0.01553	 0.01258	 1.23	 0.219

Depth*Qv	 0.09403	 0.04959	 1.90	 0.061
Length*Qv	 0.04194	 0.01584	 2.65	 0.009

Indicator variable 	 -0.00660	 0.03952	 -0.17	 0.868
Note: * is the interaction term 	 std.=standard	 t t-test
p=level of significance
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The results from Table 7.18 indicate that the effects of width and depth of the tank on

Vz are fairly significant for a simple model of Equation 7.4. The length seems to be

not significant. However by using more predictor variables, the results of regression

analysis based on Table 7.16 indicate that the length is highly significant. Thus it is

reasonable to say that Equation 7.4 can be used to describe the tanks at the Trimpley

WTW and can be generalised for other tanks of the same size, since the indicator

variable does not show any significant difference between the Tanks Cl and C7.

Model adequacy checking for Equation 7.3 and 7.4 are shown in Figures 7.15 to 7.18.

The results from these figures indicate that the validation of the models is

satisfactory.

Table 7.18 - Summary of the results from regression analysis based on Equation 7.4
______________	 for the Trimpley WTW	 ___________

Predictor	 Coefficient	 Std. deviation	 t-ratio	 p
Constant	 -0.520	 2.039	 -0.25	 0.799
Width(m)	 -0.4549	 0.1967	 -2.31	 0.023
Depth(m)	 -0.5793	 0.3318	 -1.75	 0.084
Length(m)	 0.0240	 0.1032	 0.23	 0.816

Flow Qv(mld)	 0.5996	 0.7 154	 0.84	 0.404
Width2	0.005750	 0.006572	 0.87	 0.384
Depth2	 0.38356	 0.04830	 7.94	 0.000
Length2	-0.008728	 0.003690	 -2.37	 0.020

_______________	 -0.07870	 0.06621	 -1.19	 0.237
Width*depth	 -0.00675	 0.01445	 -0.47	 0.641
Width*length	 0.003218	 0.004296	 0.75	 0.455

Width*Qv	 0.07193	 0.03246	 2.22	 0.029
Depth*length	 -0.02712	 0.01051	 -2.58	 0.011

Depth*Qv	 -0.03697	 0.05526	 -0.67	 0.505
Length*Qv	 0.00058	 0.01746	 0.03	 0.973

Indicator variable	 -0.01515	 0.02347	 -0.65	 0.520
Note: * is the interaction term	 std.=standard	 t = t-test
p=level of significance
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7.3.3 Random Effects Model

In the previous sections (i.e. Sections 7.3.1 and 7.3.2) the development of the physical

models from the full-plant studies of the dissolved air flotation tanks were mainly

concentrated on the fixed effects models. This means the model can only be applied

on the same tank size with the same operating conditions, assuming the liquid in the

tank has the same temperature, bubble size and baffle configuration. However by

having two sites of rectangular tanks of different sizes and baffle configurations, it is

possible to make a prediction of the velocity based on a suitable model if the

following criteria are fulfilled:

1. Randomisation procedures as described in Chapter 5 are done.

2. Data collected are normally and independently distributed with constant variance.
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3. Data collected from different sizes of tanks.

4. There is no external condition which gives significant impact on the performance

of the tanks for example extreme differences in operating temperatures or different

types of fluid. Any predictor variables which may have a large significant effect

on the velocity may influence the suitability of the model.

For the velocity in the x direction, Table 7.19 indicates that variability exists between

the tanks. The variance of any observation of velocity in the x direction calculated

from Table 7.19 is equal to 3.40. This test concluded that there is a great variation of

Vx between the four tanks at Frankley and Trimpley WTW. In the case of Vz, Table

7.20 indicates that there is no evidence to suggest any significant variation of velocity

in the z direction between the tanks at Frankley and Tnmpley WTW.

Table 7.19 - Analysis of variance for Vx

Source	 DF	 SS	 MS	 F	 p
Tanks	 3	 29.23	 9.74	 7.53	 0.000
Error252	 326.08	 1.29	 ________ __________
Total 255 	 355.32	 _________ _________ __________

Table 7.20 Analysis of variance for Vz

Source	 DF	 SS	 MS	 F	 p
Tanks	 3	 0.0996	 0.0332	 0.57	 0.638
Error252	 14.8006	 0.0587	 ________ __________
Total 255 	14.9002	 _________ _________ ___________

In order to develop a model which could describe all the tanks within the range of

sizes and flow rates as those found at the Frankley and Trimpley WTW, regression

analysis was carried out for the velocity in the x and z directions. The results are

shown in Equations 7.5 and 7.6 for Vx and Vz respectively.

V-=-1. 04+0.043 W-6. 14D-0. 48L+ 0. 442 Q-0.0413 W2+2. 0 7D2 + 0. 0257L2

-0. 00532 Q+0. OJ9WD+ 0.0015 WL+ 0. 0132 WQ+ 0. 456DL

-0. 0799DQ-0. 00792L	 78 VAR	 (7.5)
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V-0. 842+0.0088W-i. 01D+ 0. 0476L-0. 0891Q-0. 00952 W2 -F 0.43 7D2-0. 016L2

+ 0.0035 7Q 2+ 0.0099 WD+ 0.00099 WL+ 0.00271 WQ-F 0.004 76DL

-0.0102DQ+0. 00i16LQ-0. 055 VAR 	 (7.6)

where W, D, L and Q are the width, depth, length in metres at each point in the tank

and flow rate in million litres per day respectively of the dissolved air flotation tank.

VAR is the indicator variable where its coefficient is used to describe the velocity at

the Trimpley WTW. The R2 for Equations 7.5 and 7.6 are 58.5% and 63.4% with the

corresponding standard deviations of the errors of 0.7841 and 0.1508 respectively.

Tables 7.21 and 7.22 are the detailed results from the regression analysis of velocity

in the x and z directions respectively. In Table 7.21 the first-order predictor variables

which are highly significant are the depth, length, the interaction of depth and length

and the interactions between the discharge with the width and with the depth of the

tank. This result subsequently indicates that for the velocity in the x direction there is

a need for caution when designing these factors. If the tank were too long and too

deep or too short and too shallow then it would affect the velocity distribution and

hence the performance of the dissolved air flotation tank. The interactions between

the output flow rate (discharge) of the tank with the width, depth and length are fairly

significant (Table 7.21). Thus in mathematical terms the products (i.e.

multiplication) between each tank dimension and the discharge would have a

significant effect on Vx in Equation 7.5. The second-order predictor variables are

difficult to interpret but are important factors in the development of a suitable model.
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Table 7.21 - Summary of the results from regression analysis based on Equation 7.5
for velocity in the x direction.

	

Predictor	 Coefficient	 Std. deviation	 t-ratio	 p

	

Constant	 -1.043	 2.992	 -0.35	 0.728

	

Width(m)	 0.0433	 0.1340	 0.32	 0.747

	

Depth(m)	 -6.1363	 0.4920	 -12.47	 0.000

	

Length(m)	 -0.4805	 0.1385	 -3.47	 0.001
FlowQv(mld)	 0.4415	 0.2953	 1.50	 0.136

Width2	-0.04132	 0.01840	 -2.25	 0.026
Depth2	2.0663	 0.2159	 9.57	 0.000

	

Length2	0.02572	 0.01619	 1,59	 0.113

Q	 -0.005316	 0.008639	 -0.62	 0.539
Width*depth	 0.01903	 0.05045	 0.38	 0.706
Width*length	 0.00154	 0.01362	 0.11	 0.910

	

Width*Qv	 0.013248	 0.005529	 2.40	 0.017
Depth*length	 0.45638	 0.04575	 9.98	 0.000

	

Depth*Qv	 -0.07988	 0.01738	 -4.60	 0.000

	

Length*Qv	 -0.007916	 0.004637	 -1.71	 0.089
Indicatorvanable	 2.779	 1.675	 1.66	 0.098
Note: * is the interaction term	 std.=rstandard	 t = t-test
p=level of significance

For the velocity in the z-direction, Table 7.22 indicates that the first-order predictor

variables of the depth and the interaction between the discharge with the width and

the discharge with the depth of the tank are highly significant. The interpretation of

the results implies that the depth of the tank greatly affects the velocity in the vertical

direction (Vz) of the dissolved air flotation tank. The ADV probe was able to operate

with the presence of small particles or air bubbles in the body of the liquid (Section

4.2.2 Chapter 4). If the assumption is made that the probe is also measuring the

movement of the small particles in the liquid then Vz is related to the movement of

the particles in the dissolved air flotation tank. This may suggest that Equation 7.6 is

also describing the movement of the particles in the vertical direction. If this

hypothesis is true, it implies that if the tank were too shallow or too deep, the removal

of particles would be affected (since the depth is significant in Equation 7.6).
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Table 7.22 - Summary of the results from regression analysis based on Equation 7.6
for velocity in the z direction.

Predictor	 Coefficient	 Std. deviation	 t-ratio	 p
Constant	 0.8417	 0.5754	 1.46	 0.145
Width(m)	 0.00181	 0.02578	 0.07	 0.944
Depth(m)	 -1.01246	 0.09463	 -10.70	 0.000
Length(m)	 0.04760	 0.02664	 1.79	 0.075

FlowQv(mld)	 -0.08913	 0.05680	 -1.57	 0.118
Width2	-0.009519	 0.003540	 -2.69	 0.008
Depth2	0.43683	 0.04153	 10.52	 0.000
Length2	-0.015976	 0.003114	 -5.13	 0.000

	

0.003574	 0.001662	 2.15	 0.032
Width*depth	 0.009904	 0.009704	 1.02	 0.308
Width*length	 0.000994	 0.002620	 0.38	 0.705

Width*Qv	 0.002711	 0.001064	 2.55	 0.011
Depth*length	 0.004756	 0.008799	 0.54	 0.589

Depth*Qv	 -0.010181	 0.003342	 -3.05	 0.003
Length*Qv	 0.0011552	 0.0008919	 1.30	 0.197

Indicator variable 	 -0.0550	 0.3222	 -0.17	 0.865
Note: * is the interaction tenn	 std.=standard	 t = t-test
p=level of significance

By assuming the tanks at both sites (Frankley and Trimpley) working satisfactorily,

Equations 7.5 and 7.6 may be applicable to the DAF tanks which have an output flow

rate of 4.64 to 10.22 million litres per day. For design purposes the mean velocity of

Vz should be between -0.20 and -0.25cmlsec and the mean velocity of Vx should be

between 0.1 and 0.9cm/sec. The mean velocities for Vz and Vx were obtained based

on the mean velocities found at Frankley and Trimpley WTW. The limitation on the

mean velocities have to be used as a guideline because a departure from these figures

may effect the flow in the DAF tank. If the flow were affected there would be a

possibility that the turbidity removal may be affected.

For design purposes, the application of Equations 7.5 and 7.6 involves the following

procedures:

1. Identif' the proposed dimensions of the tank and the flow rate.
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2. Divide the tank into a grid system that has 64 point as shown in Figures 4.3 and 4.4

(Chapter 4).

3. Calculate the values of Vx and Vz at each of the 64 points in the tank using

Equations 7.5 and 7.6. The calculation can be carried out by inserting the values

of the Width, depth and length at each point in the tank for each value of Vx or Vz.

A constant value of flow rate can be used for each point.

4. Calculate the average velocity means of Vx and Vy based on the 64 points in the

tank and compare with the recommended velocities range proposed (as mentioned

earlier) in this chapter.

The problem with Equations 7.5 and 7.6 is the low values of R2 (58.5% for Equation

7.5 and 63.4% for Equation 7.6). This suggests that the unexplained variations for

Equation 7.5 and 7.6 are 41.5% and 36.6% respectively. Large percentages of

unexplained variations indicate that both equations are not accurate but fairly

empirical. The values of R2 can be improved by increasing the number of predictor

variables as discussed and described in Sections 7.3.1 and 7.3.2. However this

procedure lends itself to a complicated model rather than simple models to describe

the velocity observation in the tank. In order to refine or improve the model so that

R2 will be more than 90% the following methods for data collection may be

recommended:

1. Using a constant flow rate at each point in the tank throughout the experiment.

Ideally at least two runs are required for each constant flow rate. Three values of

constant flow rate (namely at maximum, minimum and average flow rates) may be

required so that the model to be developed can be applied for a wider range of flow

rate.

2. Using 64 ADV probes to monitor the velocity at each point in the tank. In this

case the flow can be subjected to variation. The problem of using this method is

186



the cost of the probes. It is too expensive to have 64 probes for the investigation

since each probe is approximately at £14,000.

3. Increasing the levels of the tank physical dimensions (width, depth and length)

from the existing one (at 4 levels) to 5 or more. For a tank dimension at 5 level

each, the total number of points to be investigated will be 125. By having more

points in the tank, the velocity profile in each component (Vx, Vy and Vz) can be

described more explicitly and will improve on the precision of the estimate

(regression analysis).

Method 1 above has been proposed but was not accepted by the Severn Trent Water

due to operational problems and the reasoning that in reality the flow in the DAF tank

is not constant, and hence modelling of fictitious conditions may not be an

appropriate undertaking.

Although Equations 7.5 and 7.6 are not perfectly precise, it has been shown that a

standard statistical approach is possible to analyse and model the flow problems in a

DAF tank. The unexplained variations in the regression analysis may be due to

several other factors which may not be taken into account during data collection.

These factors may be the concentrations of particles and bubbles in the water, the

water temperature and 'noise' from the desludging of other tank during data

collection. The latter may be apparent because the acoustic signal may be slightly

disturbed due to some noise generated during the desludging process in the

neighbouring tanks.

Normal procedures for model adequacy checking were made for Equations 7.5 and

7.6 and the results from Figures 7.19 to 7.22 indicate that the assumptions on constant

variance and normality of the velocity samples were satisfied.
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7.4 SUMMARY OF RESULTS AND FINDINGS

1. Analysis of variance for Vx indicates that the tank physical dimensions (width,

depth and length) and the interactions between them are highly significant. These

terms may affect the velocity distribution in the tank. However the only exception

is Tank A3 at Frankley where the interaction between the width and the depth is

not significant. Analysis of variance for 17: indicates that the depth and length of

all the tanks are highly significant. The results suggest that the tank physical

dimensions are affecting the velocity in the x-direction and are important criteria

for design purposes.
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2. Analysis of covariance indicates that the flow rate of the dissolved air flotation

tanks at Frankley has a significant effect on the velocity in the x-direction but not

in the z-direction. The discharge is not significant for both velocity components at

the Trimpley WTW except for Vz in Tank C7. The results indicate that the

significance of the flow rate depends on its variability. Low variation in the flow

rate does not affect the velocity distribution in the tank.

3. Fixed effects models for the tanks at the Frankley and Trimpley WTW from the

regression analysis are shown in Equations 7.1 to 7.4. These models are only

applicable to the same tank configuration and flow conditions as found at Frankley

and Trimpley.

4. Generalised and more flexible models which can be applied within the ranges of

tank sizes and the flow rate found at both sites (Franidey and Trimpley WTW) are

as presented in Equations 7.5 and 7.6. The R2 for Equations 7.5 and 7.6 are 58.5%

and 63.4% with the corresponding standard deviations of the errors of 0.7841 and

0.1508 respectively. This suggests that the unexplained variations for Equations

7.5 and 7.6 are 41.5% and 36.6% respectively. Higher values of unexplained

variation are associated with the models because these models have been

simplified. Earlier models using ANOVA and ANCOVA, which used higher order

interactions and independent predictor variables, indicate that the physical

dimensions of the tank and the interaction between them are highly significant

(Tables 7.6 to 7.10). The problem with higher-order interactions between the

predictor variables is the difficulty in interpreting them. A simple model is more

plausible and appropriate for design purposes than a complicated model.

Equations 7.5 and 7.6 may be used to design the appropriate dimensions of a DAF

tank. Caution has to be taken if these models are to be applied outside the range of

sizes and flow rates mentioned in this thesis. It is also important to check that the

overall velocity means in the x and z directions are within the specified ranges as

described in Section 7.3.3, when these models are adopted.
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5. Although Equations 7.5 and 7.6 are not exactly precise in describing the velocity

distribution in the dissolved air flotation tank, the standard statistical techniques

used for data analyses are found to be useful for comparing the velocity data from

the dissolved air flotation tanks. Statistical techniques are also an important tool in

developing an appropriate model to describe the velocities observed in a DAF tank.

The present work with the CFD model found in the literature is limited to

modelling uniform inflow into the dissolved air flotation tank, as described and

discussed in Section 6.7 (Chapter 6).
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CHAPTER 8

TURBIDITY DISTRIBUTION IN DISSOLVED AIR FLOTATION TANKS

8.1 INTRODUCTION

In Chapter 6 velocity data from 64 points in the tank were analysed and compared

using statistical techniques to determine the quality and the characteristics of the

velocity data. Statistical tests were made to find out whether different runs, tanks and

sites contribute to any significant variation in the velocity distribution in the tanks.

In Chapter 7 the effects of tank dimensions and the discharge on the velocity

distribution in the tanks were analysed using balanced designed ANOVA (analysis of

variance) and ANCOVA (analysis of covariate). Since the above factors are

significant, models have been developed to describe the velocity distribution in the

tanks. The models may be appropriate if they were related and applicable to the

turbidity removal in the tank. Thus it is necessary to find out the characteristics of the

turbidity distribution in the tank within the investigated flow regime.

This chapter is concerned with the presentation of the results of data analysis on the

turbidity distribution at the Frankley and Trimpley Water Treatment Works. The

points in the tanks where the turbidity data were collected are at the same points

where the velocity were observed. The position of these points have been described

in Chapter 4. The effects of discharge (the output flow rate) on the turbidity variation

in the tank were analysed so that the characteristics of the turbidity at various points

in the tank can be understood. Turbidity removals at different depths and lengths in

the dissolved air flotation tanks were also analysed and compared. The objective of

the analysis is to find out whether the tank dimension has any significant effect on the

turbidity removal in the tank.
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8.2 COMPARING TURBIDITY DATA

There were sixty-four points (refer to Figures 4.4 and 4.5 in Chapter 4 for the

positions of the 64 points) in each tank where the samplings of turbidity were taken.

Three runs were carried out in each tank. A total of four tanks were investigated, two

at Frankley and two at the Trimpley Water Treatment Works (WTW). For each run of

the experiment in each tank, one sample of turbidity at each point was taken. Hence

the number of samples collected at each point was different from the velocity

measurements as discussed and presented in Chapters 6 and 7. The main reason that

the procedure similar to velocity sampling was not carried out is due to the

unavailability of the equipment to monitor the turbidity readings in-situ within a

resolution of ±0.1 NTU. The only option is to collect more than one turbidity sample

from each point during each run. This is a perfect option but not appropriate to be

applied on site due to the following reasons:

1. During the collection of the first sample, there was a disturbance in the area within

the point where the sample was collected. Since the flow within each point was

laminar and the Reynolds number was normally less than one as described in

Chapter 2 (Section 2.4.2.1), it will take sometime for the same point to recover

from the disturbance. There is also uncertainty about the size of the area under the

disturbance and the duration it takes to recover. If a retention time of 20 minutes

were used as an approximate basis for the recovery period then it will take 200

minutes to have 10 turbidity samples from one point in the tank.

2. It was not always possible to collect a turbidity sample in one operation.

Sometimes the sludge was trapped in the sampling bottle and the sample had to be

discarded. To collect the replacement sample, it would need at least an interval of

15 minutes so that the area around the sampling point in the tank stabilised.

Since only one turbidity sample was collected at each point, the sample cannot be

tested for its normality and variability at each point in the tank. This suggests that it

is not appropriate to develop a model to describe the observation of turbidity in the
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tank. However the turbidity samples can be analysed by comparing the characteristics

of the turbidity data between different runs, between different depths and between

different lengths in the tank.

The analyses carried out in this section can be summarised as follows:

1. To compare the variation of turbidity samples between different runs in each tank.

The main aim is to check the characteristics of turbidity samples between different

runs.

2. To find out the effects of the discharge on the turbidity characteristics in the tank.

The was made by comparing the variations of turbidity and discharge between the

tanks. Subjective comparisons were made using boxplots.

3. To compare the turbidity at different depths of the tank for each run. The

objective is to find out whether there was a significant difference in turbidity

removal between different depths for each run in the tank.

4. To compare the turbidity samples between different runs and between different

depths for each tank. The main aim is to establish whether there is any

relationship between runs and between depths on the turbidity distribution in each

tank.

5. To compare turbidity removal at different lengths in tanks based on all the runs

carried out during the investigation. The main aim is to assess the effectiveness of

turbidity removal at different stages along the length of the tank.

8.2.1 Comparing Between Runs

1. In order to see the variation of turbidity between different runs in each tank,

boxplots were drawn. Turbidity data at each point in the tank from each run was

used to compare the variation of turbidity between different runs. Figures 8.1 to
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8.4 indicate that the variations of turbidity for different runs within the same tank

at Frankley and Trimpley were significant. The results are plausible in the context

of the application. Tables Dl. 1 to Dl .4 (Appendix D) indicated that there were

significant differences in the flow rate between different runs. This suggests that

the variation in turbidity between different runs may be due to the variation of flow

rate between runs.
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8.2.2 Turbidity and Discharge Between Tanks

Turbidity readings at the same point from runs 1, 2 and 3 in each tank were averaged.

Since in each run there was only one turbidity reading at each point in the tank, the

average turbidity for each point from the three runs was calculated based on three

turbidity readings. Turbidity data from all the 64 points in the tank were averaged
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according to this procedure. Then the average turbidity data of the 64 points in each

tank from the same site was compared. The objectives are to see the overall variation

of turbidity within the same tank and the difference in the turbidity mean between two

tanks of the same size. The results are shown in Figure 8.5 for the tanks at the

Frankley WTW and in Figure Dl. 1 of Appendix D for the tanks at the Trimpley

WTW. The results indicate that there are significant differences in turbidity means

between the two tanks of the same size at Frankley and Trimpley.

The next step of the analysis was to compare the average discharge which occurred

during turbidity sampling between different tanks from the same site. The

characteristics of the average discharge were compared with the characteristics of the

average turbidity in order to find out any relationship between them. During the

sampling of turbidity at each point, at least five discharge readings were taken at

Frankley. These readings which corresponded to a point in the tank were averaged.

At Trimpley the discharge from each tank was monitored through an on-line

computer. To obtain the discharge when the turbidity sampling was taken at each

point, the time and duration of the sampling were recorded and then matched with the

readings of time versus discharge produced by the computer. Then the discharge

readings during the turbidity sampling were averaged. These procedures enable the

average discharge to be compared at the time when the turbidity sample was taken.

The objectives are to find out the difference in the discharge between the tanks and

the relationship between the variations of discharge and turbidity distribution in the

tank.

The results are shown in Figure 8.6 for the tanks at Frankley and in Figure Dl.2

(Appendix D) for the tanks at Trimpley. The results indicate that there was a

significant difference in the mean discharge between the tanks of the same size when

samplings of turbidity were carried out.

When the boxplots of turbidity and their respective discharge at the same site are

compared (i.e. Figures 8.5 with 8.6 and Figures D1.l with Dl.2 in Appendix D), there

is some evidence that higher turbidity was related to a higher range of discharge. This
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result may not be in agreement with Shawcross et a!. (1997). He and co-workers

indicated that different surface loading rates (1 5mlhr, 2OmIhr and 25rnlbr) would not

effect the effluent turbidity of the plant. Their studies were limited to measuring the

turbidity readings at the outlet of the DAF plant. There was no indication that a study

on the effects of the variation of discharge on turbidity was carried out. Measuring of

turbidity at the outlet may not give the same indication as measurement of turbidity at

various points in the tank. As reported in Section 2.4.1.1 of Chapter 2, literature

review indicated that there has been no previous study to find out the effect of the

variability of discharge on the turbidity removal in the tank. These results can be

regarded as new findings but must be treated cautiously because only two different

sizes of dissolved air flotation tanks were studied. Furthermore the results were

limited to the conditions and parameters as explained in the next paragraph.
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Figure 8.5 - Boxplots of turbidity between
Tanks A3 and C2 (Frankley WTW)
Note: Tank 1Tank A3, Tank 2Tank C2
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Tanks A3 and C2 (Frankley WTW)
Note: Tank 1=Tank A3, Tank 2Tank C2
and y-axis=discharge in million litres per
day.

The floes entering the dissolved air flotation tanks at the Frankley and Trimpley

WTW during the investigation were approximately below 300im. This type of floe is

found to be favourable for the solid-liquid separation process to take place (Edzwald

eta!., 1992; Edzwald, 1995; Klute eta!., 1995; Bunker eta!., 1995). The relationship

between the discharge and the turbidity removal which was obtained from this study

is limited to pinpoint-size floe with an average water temperature of 11°C at Frankley

and 20°C at the Trimpley WTW. The results are based on the parameters within the

specified range as shown in Table 8.1.
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Table 8.1 - Parameters used during the data collection for turbidity removal

Parameters	 Frankley WTW	 Trimpley WTW

Surface area (separation zone) 8400mmX7000mm	 6780mmX5 120mm
Surface area (flotation cell)	 95 SOmmX7000mm	 7870mniX5 120mm
Depth of water (m)	 2.1 m(outiet),2 .475m(inlet) 2. 23m(outiet), 1. 65m(inlet)
Volume (m3)-separation zone	 134.5	 67.3
Minimum flow (mid)	 13. 13' or 6.572)	 39
Maximum flow (mid) 	 27.83' or 13.92(2)	 8.187
Average flow (mid) 	 17.36' or 8.68(2)	 5749
Minimum SL (mlhr)	 4.10 or 4.65*	 4.03 or 4.68*
Maximum SL (mlhr)	 8.67 or 9.86*	 8.47 or 9.83*
Average SL (m/hr)	 5.41 or 6.15 *	 5.94 or 6 90*
Minimum DT (minutes) 	 13.9	 11.8
Maximum DT (minutes)	 29.5	 24.8
Average DT (minutes) 	 22.3	 16.9
Flocs size required	 Pinpoint	 Pinpoint
Saturator pressure (bar)	 4.3 to 5.9	 4.7 to 5.27
Recycle ratio**	 6 to 10%	 6 to 10%
Air dose rate (g/m3)**	 7 to 10	 7 to 10
Flow from one nozzie**	 0.2 ips (maximum)	 0.2 ips (maximum)
Number of nozzles	 162 (14 were not used)	 112
Note: * is the surface loading based on the surface area in the separation zone and **
is the specifications given by John Brown Engineering (1991), (1) = two tanks,
(2) - one tank, ips - litre per second
DT detention time in the separation zone of the flotation tank = volume/flow
SL surface loading in the flotation cell = flow/surface area of flotation unit

The results from the boxplots (Figures 8.5, 8.6; D1.1 and D1.2 in Appendix D)

indicated that the overall turbidity is relatively lower at a lower range of flow rate.

An increase in the flow rate will also result in a decrease of detention time in the tank.

A smaller detention time may suggest that the particles within the separation zone do

not have enough time to be floated but are dragged down to the tank outlet or initially

recirculated within the tank before leaving through the tank outlet.

The average bubble size was expected approximately at 64i.im, 66J2m and 68p.m for

saturation pressures of 60 (4.14 bar), 70 (4.83 bar) and 80 (5.52 bar) pound per square

inch (psi) respectively. This was based on the results of the investigation carried out

in the laboratory by Sebau (1997) for the same type of nozzle used on site. The actual
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bubble size in the treatment plants may be in the smaller range because the

measurement in the laboratory was done over a period of 15 minutes during which the

bubble will generally be expanded.

8.2.3 Turbidity Removal at Different Depths for Individual Run

Data analysis of turbidity removal at different depths was carried out by averaging the

turbidity observation across the width of the tank based on each run. For example in

run 1, for a point at length B and depth d4 (Figures 4.4 or 4.5 of Chapter 4), the

turbidity was calculated by averaging the values of the observed turbidity across the

width B of the tank. The same procedures were used for the other points on the

longitudinal section (length) of the tank. The idea is to simplif' data analysis by

using only average values from one longitudinal section of the tank rather than

analysing at four longitudinal sections. The term 'longitudinal section of the tank' is

defined as the section which shows the length of the tank on the horizontal axis and

the depth of the tank on the vertical axis.

The values of the average turbidity for each run at different depths were analysed to

see the characteristics of turbidity removal along the length of the tanks. The

turbidity readings were compared based on the source turbidity observed at the inlet

of the tank. The results of turbidity readings at different depths for each run along the

length of the tank are shown in Figures 8.7 to 8.10 for the tanks at Frankley and in

Figures D1.3 to D1.6 (Appendix D) for the tanks at the Trimpley WTW. The

turbidity readings at the inlet of the dissolved air flotation tank shown in the graphs

(Figures 8.7 to 8.10) is labelled with length '0'.

It can be seen from Figures 8.7 to 8.10 that the turbidity readings at the inlet of the

dissolved air flotation tanks at the Franidey WTW varied considerably from 1.6 to 5.1

NTU. However the removal of the turbidity was almost the same for all depths for

each different run of the experiment. This result may not be in agreement with the

results from the laboratory work obtained by Katz and Wullschleger (1957). The

laboratory flotation cell used in their experiments was 40 cm deep by 9 cm long and 4
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cm wide. The results from Katz and co-worker implied that the removal of particles

was higher at the bottom than at the upper part of the flotation cell. Smaller particles

were found at the lower part of the tank whereas the larger at the upper section. The

measurements of particle size were made between 3 to 11 inches (i.e. 75mm to

275mm) from the bottom of the flotation cell.
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Figure 8.7 - Turbidity removal along the length of the tank at depth d4, Frankley
WTW
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Figure 8.8 - Turbidity removal along the length of the tank at depth d3, Frankley
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Turbidity removal at depth D2(Tanks A3 and
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Figure 8.9 - Turbidity removal along the length of the tank at depth d2, Frankley
WTW
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Figure 8.10 - Turbidity removal along the length of the tank at depth dl, Frankley
WTW

Since the water at the inlet of the flotation tanks at the Frankley WTW was

predominantly a low turbid water, the results of the above analysis are restricted to

the water within the turbidity regime under consideration. The results of turbidity

removal may be different if a high turbidity were found at the inlet of the tank. Hence

the limitation of the results at the Frankley WTW are within the specified inlet

turbidity, the range of flow rate and the other parameters as specified in Table 8.1.

Further analysis was carried out on the turbidity removal (at different depths) at the

Trimpley WTW. The results indicate that the turbidity levels at different depths for

each different run were approximately the same (Figures Dl.3 to D1.6 in Appendix

D). The range of turbidity at the inlet of the tank was from 1.4 to 3.5 NTU. The

200



levels of turbidity at the inlets of the dissolved air flotation tanks at Trimpley were

lower than those found at the Frankley WTW. Again the results are applicable for

less turbid water. In fact the raw water turbidity (0.55 to 0.76 FTU) from the

impounding reservoirs at Frankley and Trimpley was normally less than the turbidity

at the inlets of the tanks. The turbidity is normally increased due to the coagulation

and flocculation process. Longhurst and Graham (1987) reported that the raw water

turbidity in the range of 0.5 to 29 NTU was reduced to 0.5 to 8.5 NTLJ after flotation,

but they made no comparison between the level of turbidity at different depths of the

tank for particular range of inlet turbidity. Table 8.2 confirms the evidence from the

graphs (Figures 8.7 to 8.10 and Dl. 3 to Dl. 6 in Appendix D) that there was no

significant difference in turbidity between different depths for any individual run.

Table 8.2 - Results on the tests of significance for turbidity on depth.

Runs and Tanks	 Levels of significance
Frankley	 Between depth
Run 1 (Tank A3)	 0.499
Run 2(TankA3)	 0.904
Run 3 (Tank A3)	 0.129
Run 1 (Tank C2)	 0.903
Run 2 (Tank C2)	 0.291
Run 3 (Tank C2)	 0.423
Trimpley:	 __________________________
Run 1 (Tank Cl) 	 0.936
Run2(TankCl)	 0.687
Run3(TankCl)	 0.057
Run 1 (Tank C7)	 0.076
Run 2 (Tank C7)	 0.158
Run 3 (Tank C7)	 0.709

Although there was no statistical evidence of any significant difference of turbidity

removal at different depths of the tank for each run, inspection of Figures D1.3 to

D1.6 (Appendix D) indicate that the removal from Run 1 (Tank Cl) was less than the

removal from the other five runs. The plotted graph of turbidity removal from Run 1

(Tank Cl) did not follow the general trend of line patterns as plotted from the other

runs. During Run 1 (Tank Cl), the turbidity at the inlet of the tank was 3.5 NTU and
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this was the highest turbidity level occurred at the Trimpley WTW during the

investigation. However this value is still considered low when compared with the

inlet turbidity at the Frankley WTW. Inspection of results from Figures 8.7 to 8.10

for the Frankley WTW indicate that even with a higher inlet turbidity (i.e. more than

3.5 NTU), the graphs show that the line patterns were similar, which suggest that

there was no significant difference in the turbidity removal between different runs.

The second highest turbidity reading at the inlet of the flotation tank at the Trimpley

WTW was 3.2 NTU (refer to Figures D1.3 to D1.6 in Appendix D). This reading

came from Tank C2 but the results of turbidity removal still follow the general trend

(similar lines patterns in the graphs as from the other runs) from the other runs. This

means higher turbidity at the inlet of the flotation chamber cannot be used as evidence

to substantiate the reason for inefficient turbidity removal. Further analysis was made

to find out whether a higher turbidity range may contribute to inefficient turbidity

removal during Run 1. The results are as shown in Figures D1.7 to D1.l0 (Appendix

D). These results indicate that the turbidity range (range between maximum and

minimum) was not significantly high which may affect the average turbidity readings.

The only reason which may cause this problem was the variability of the discharge

during Run 1. The results of data analysis show that the standard deviations of the

discharge during Run 1, 2 and 3 were 0.6528, 0.4690 and 0.0329 respectively. Run 1

seems to have a higher standard deviation and hence higher variability which results

in less efficient turbidity removal. The latter seems to be in agreement with the

results from the boxplots in Figures 8.5 and 8.6 which have been described in Section

8.2.2. It can be concluded that higher variability in the discharge or flow rate may

cause less efficient turbidity removal in the dissolved air flotation tank.

8.2.4 Turbidity Removal Between Different Runs and Between Different Depths

Further analysis was made to find out whether there is any significant difference in

turbidity removal between different runs and between different depths of the tank.

The test statistics were made by comparing the turbidity sample mean between
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different runs for each tank and simultaneously comparing the turbidity mean at each

depth of the tank based on the samples obtained from all the three runs.

The results of the test statistics are shown in Table 8.3 and Tables Dl.5, D1.6 and

D1.7 in Appendix D. The results indicate that there is a difference in the mean

turbidity between different runs for each tank. However the results indicate that there

is no significant difference of turbidity mean between different depths in the tank.

The results from all the tanks are in agreement to each other. The outcome of the

results implies that for a given range of turbidity (1.9 to 5.1 NTU at Frankley and 1.4

to 3.5 NTU at Tnmpley) at the inlets of the dissolved air flotation tanks, there is no

significant difference in the average turbidity readings at different depths of the tank.

Table 8.3 - ANOVA between runs and depths for Tank A3 (Franidey WTW)

Source	 DF	 SS	 MS	 F	 P
Run	 2	 0.98602	 0.49301	 11.18	 0.000
Depth	 3	 0.06785	 0.02262	 0.51	 0.676
Error42	 1.85164	 0.04409	 __________ __________
Total47	 2.90551	 __________ __________ __________

8.2.5 Turbidity Removal at Different Lengths

The approach of the analysis on the turbidity removal at different lengths of the tank

is divided into four parts. The length specified in this section is defined as a

measurement made from the baffle towards the outlet of the tank. The end of the

tank is defined as the positions at cross-section A in plan view of Figures 4.3 and 4.4

in Chapter 4. The first part of the analysis is done by comparing the turbidity

readings between three-quarter length of the tank and at the extreme end (near the

outlet of the tank) of the tank. The second part of the analysis is to compare the

turbidity readings between half length and three-quarter length of the tank. The third

part of the analysis is to compare the turbidity readings between one-quarter length

and half length of the tank. Comparisons of turbidity readings are made by visual

interpretation of the results obtained from the graphs (i.e. Figures 8.7 to 8.10 and
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Figures D1.3 to D1.6 in Appendix D). These results are checked using appropriate

statistical techniques. The final part is to discuss and compare the overall

performance of the dissolved air flotation tanks at Frankley and Trimpley WTW.

8.2.5.1 Turbidity Between Three-quarter Length and the Extreme End

Graphs drawn in Figures 8.7 to 8.10 (in Section 8.2.3) and in Figures D1.3 to D1.6

(Appendix D) can be used to evaluate the effect of the length of the flotation tanks on

the turbidity removal for the tanks at the Frankley and Trimpley WTW respectively.

In Figure 8.7, at depth d4 (one-fourth of the total depth from the surface), the turbidity

removal at 6.3m from the baffle seems to be as effective as at the end of the tank.

However the variation of turbidity is more at the length 6.3m due a less effective

turbidity removal from Run 3 (Tank A3) and a more effective turbidity removal from

Run 1 (Tank A3). It can be concluded that at depth d4 (Franidey WTW), the removal

at length 6.3m can be as effective as the removal at the end of the tank. For the

Trimpley WTW, Figure Dl. 3 indicates that the result is the same as for the Franidey

WTW except for the turbidity removal from Run 1 (Tank Cl) where the problem is

isolated and has been explained in Section 8.2.3.

At depth d3 (at one-half of the total depth of the tank), Figure 8.8 indicates that the

turbidity readings at a distance of three-quarter length from the baffle (6.3m length)

are more varied than at the end of the tank. As for the depth d2 and dl (Figures 8.9

and 8.10) the turbidity readings at length 6.3m are the same as at the end of the tank.

For the tanks at the Trimpley WTW, Figure D1.4 (Appendix D) indicates that the

turbidity readings at three-quarter length from the baffle (in the separation zone) were

as good as at the end of the tank with the exception of Run 1 (Tank Cl). The same

results occurred at depths d2 and dl.

The interpretation of the results from the graphs (turbidity removal along the length of

the tanks) indicates that the removal of turbidity at a distance of three-quarter length

from the baffle for different depths is similar to the end of the tank. Comparison of

findings from other workers cannot be made with these results because in most
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publications (Longhurst and Graham, 1987; Malley and Edzwald, 1991a; Edzwald,

1997; Shawcross et al., 1997) the turbidity readings were reported before and after the

flotation process.

Visual interpretation of the results from the graphs by comparing the turbidity

readings at 6.3m from the baffle and at the end of the tank may subject to debate.

Hence a statistical technique using the analysis of variance was used to find out

whether there was any significant difference between the turbidity at 6.3m from the

baffle and at the end of the flotation tank. The average turbidity at three-quarter

length from the baffle was compared with the average turbidity at the end of the tank.

The results are shown in Tables 8.4 and 8.5 for the turbidity at Frankley and Trimpley

WTW respectively. The null hypothesis test indicates that there was no difference in

turbidity readings between three-quarter length and at the extreme end of all the tanks

(i.e. at Frankley and Trimpley).

Table 8.4 -ANOVA on turbidity readings between the turbidity at three-quarter length
and at the end of the tank for the tanks at the Frankley WTW.

Source	 DF	 SS	 MS	 F	 P
Length	 1	 0.0092	 0.0092	 0.43	 0.536
Error6	 0.1278	 0.0213	 __________ __________
Total 7	0.1370	 __________ __________ __________

Table 8.5 -ANOVA on turbidity readings between the turbidity at three-quarter length
and at the end of the tank for the tanks at the Trimpley WTW.

Source	 DF	 SS	 MS	 F	 P
Length	 1	 0.00128	 0.00128	 0.63	 0.456

Error6	 0.01214	 0.00202	 __________ __________
Total7	 0.01342	 ___________ ___________ ___________

8.2.5.2 Turbidity Between Half Length and Three-quarter Length

Figures 8.7 to 8.10 and D1.3 to D1.6 (Appendix D) show the results of turbidity

readings at the Frankley and Trimpley WTW respectively. From these Figures there
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is compelling evidence that some differences in turbidity existed between those found

at half length from the baffle and those at three-quarter length from the baffle.

A statistical approach was used to confirm the interpretation of the results from the

graphs. Turbidity data obtained at four positions across the width of the tank was

averaged according to each depth and length. Comparison of all the average turbidity

data (from runs 1, 2 and 3) between the half length and three-quarter length from the

baffle was made using ANOVA. The results of the analysis are shown in Tables Dl.8

to Dl. 11 in Appendix D. The results indicate that the difference in turbidity readings

between the two positions (at half and three-quarter length of the tank) for all the

tanks are highly significant. This suggests that there was a significant difference in

mean turbidity between half length and three quarter length from the baffle.

8.2.5.3 Turbidity Between One-quarter Length and Half Length

The same graphs which were used in the previous section (Section 8.2.5.2) are used

again to analyse the turbidity removal in the tank between one-quarter length and half

length of the tank from the baffle. Figure 8.7 provides some indications of a

significant difference in turbidity between the two positions in the tanks at the

Frankley WTW. However the differences at depth d3, d2 and dl are difficult to

identify from Figures 8.8, 8.9 and 8.10 respectively. It is more likely that there is no

difference in the average turbidity readings between the two positions at depth d3, d2

and dl. For the tanks at the Trimpley WTW, Figures Dl.3 to Dl.6 in the Appendix D

were used to differentiate the difference in turbidity readings between the two

positions in the tanks. It is rather difficult to identify any significant difference

between them.

To verify the interpretation from the graph, an analysis of variance was carried out.

The results are shown in Tables D1.12 to Dl.15 (Appendix D). There are no

significant differences in turbidity readings between one-quarter length and half

length of the tank except for the Tank A3 (Frankley WTW). Velocity readings from

the latter position indicated that these positions may be under unstable conditions.
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8.2.6 Discussions on the Overall Performance of OAF Tanks

Comparison on the performance of the dissolved air flotation tanks at the Frankley

and Trimpley WTW can also be made based on Figures 8.7 to 8.10 and Figures D1.3

to D1.6 (Appendix D). It can be seen from Figures 8.7 to 8.10 that the turbidity

removal at the Frankley WTW was less efficient for low turbid water (1.6 to 2.3

NTU). At the final stage of the turbidity removal, the average turbidity was still

between 1.1 to 1.6 NTU (Table Dl. 16 in Appendix D). The thoroughness of the

investigation and data analysis provide strong evidence that the minimum residual

turbidity achievable at the Frankley WTW was between 1.1 to 1.6 NTU for low turbid

water.

The performance of the dissolved air flotation tanks at the Trimpley WTW to treat

low turbid water was better than at Frankley (Figures D1.3 to Dl.6). Water with a

turbidity of 1.4 to 2.2 NTU was reduced to 0.48 to 0.68 NTU at the extreme end of

the tank (Table Dl. 17). Since both treatment works have the same types of nozzles,

the same range of bubble sizes and floe characteristics, it may be assumed that the

amount of bubbles used in each tank and the design criteria (such as the flow and the

tank dimensions) may affect the turbidity removal.

Table 8.1 indicates that the number of air nozzles used at Frankley was 148 and at

Trimpley was 112. These nozzles are of the same type and size. The discharge for

the tank at Frankley was from 13.13 to 27.83 mId (flow rate for two tanks with 148 air

nozzles) and at Trimpley from 3.9 to 8.187 mId (Table 8.1). This demonstrates that

the flow rate at Frankley was 240% more than at Trimpley (calculated based on the

maximum flow rate observed from both treatment plants). However the number of

air nozzles used at Frankley was only 32% more than Trimpley. This may be one of

the reasons that the turbidity removal at Frankley was less efficient than at Trimpley.

Recent discussions with Meher (1997) indicated that the air flow rate at Frankley was

increased to a range of 9 to 16 mg/litre and the residual turbidity was reported to be

improved down to 0.5 NTU.
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Table 8.1 indicates that the maximum flow rate from the nozzle is 0.2 litres per

second. This suggests that the maximum recycle flow rate from 148 nozzles at the

Frankley WTW will be 2.56 mId. For a 10% recycle ratio, the output from each

flotation cell cannot exceeded 25.6 mid. If the flow rate from the flotation tank

exceeded this figure then the amount of dissolved air required has to be adjusted.

During the investigation the flow rate was varied from 13.13 to 27.83 mid (Table 8.1)

and the air dose was between 7 to 10 g/m 3 . To have an air dose of 10 gfm 3 with a

recycle ratio of 10% based on a flow rate of 27.83 mid would be impossible. This is

because the maximum amount of water that can be delivered from the nozzles is

limited to 2.56 mId. This means the air dose in the recycle flow has to be increased.

The minimum vertical rise rate of suspended solids at Frankley and Trimpley were

found to be identical. Table 8.6 indicates that the minimum vertical rise rate of

suspended solids (based on the depth divided by the average detention times) at

Frankley was 1.293 mm/sec and at Trimpley was 1.300 mm/sec. The maximum

vertical rise rates of suspended solids between Frankley and Trimpley were 2.74

mm/sec and 2.73 mm/sec respectively. These values were also identical. If the

evaluation were made by dividing the average flow rate with the surface area of the

tank, the minimum vertical rise rates of suspended solids at Frankley and Trimpley

were 1.709 and 1.917 mm/sec respectively. These results indicate that the average of

vertical rise rates of suspended solids at both sites were different. Under the design

criteria established by Wang and Wang (1989), the vertical rise rate of suspended

solids is equal to the depth of the water in the tank divided by the detention time

(refer to equation 2.48 in Chapter 2) and this also equals to the flow rate divided by

the surface area of the flotation chamber. The results in Table 8.6 for each tank site

are in agreement with equation 2.48 in Chapter 2.

The term 'vertical rise rate of suspended solids' used by Wang and Wang (1989) is

similar to the overflow rate used by Edzwald and Walsh (1992) or the surface loading

used by Shawcross et al. (1997). This is because the overflow rate or the surface

loading is calculated based on the flow rate divided by the surface area of the

flotation tank. Hence the results from Table 8.7 imply that the minimum and
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maximum surface loadings at Frankley were quite similar to that at Trimpley.

However the average surface loading at Frankley was 6.25 mlhr and at Trimpley was

6.90 mlhr (from Table 8.7). The average surface loading at Frankley was 12% less

than at Trimpley. This result indicates that the DAF plant at Frankley was less

efficient in term of surface loading compared with Trimpley. Furthermore the surface

loadings at both treatment works were found to be at the lower end of the range

compared with the surface loadings reported by Edzwald (1995). Table 2.6 in

Chapter 2 indicates that the surface loading of DAF plants in the United Kingdom was

between 5 and 12 rn/hr and in the Netherlands was between 10 to 20 rnlhr.

Table 8.6 - Comparison of vertical rise rate of suspended solids

Parameters	 Frankley	 Trimpley

Average depth D (m)	 2.2875	 1.94
Vol. in Separation zone (m3)	 134.505	 67.344
Mm. detention time T (sec) 	 835 (13.9minutes)	 711 (1 1.9minutes)
Max. detention time T (see) 	 1769 (29.5minutes)	 1492 (24.9minutes)
Aver, detention time T (see)	 1339 (22.3minutes)	 1012 (16.9minutes)
Qmin. (m3/sec)	 0.076 (6.57m1d) 	 0.045 (3.9Omld)
Qmax. (m3/sec)	 0.161 (13.92m1d)	 0.095 (8.l9mid)
Qaver. (m3/sec)	 0.100 (8.68m1d) 	 0.067 (5.75m1d)
Separation surfa area (As)	 58.8	 34.714
Vt = D/Tmin.(mmlsec)	 2.740 (9.86mIhr)	 2.730 (9.83ni/hr)
Vt = D/Tmax. (mmlsec) 	 1.293 (4.6SmIhr)	 1.300 (4.68mIhr)
Vt = D/Taver.(mmlsec)	 1.709 (6.lSmIhr)	 1.9 17 (6.90m/hr)
Vt = Qmin./As(mmls)	 1.293 (4.65mIhr)	 1.300 (4.68mIhr)
Vt = Qmax./As (mm!s)	 2.740 (9.86m/hr)	 2.730 (9.83nVhr)
Vt=Qaver./As (mmls)	 1.709 (6.15m!hr) 	 - 1.917 (6.9OmIhr)
Note: mm. = minimum	 max. maximum	 aver. = average

Q = flow rate	 Vt = minimum vertical rise rate of suspended solids
As = surface area of flotation tank D = depth of water in the tank

The average flow rate at Franldey was 8.68 mid and at Trimpley was 5.75 mid. The

average flow rate and the surface area of the tank at Frankley were more than

Trimpiey by 51% and 66% respectively (Table 8.1). Since the average surface

loading at Frankley was lower than at Trimpiey, this suggests that the surface area of

the DAF tanks at Frankley was rather large which results in a lower surface loading

rate. Section 8.2.5.1 indicates that there was no significant difference in turbidity
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between three quarter length of the tank from the baffle and at the extreme end of the

tank (Table 8.4). There was also no significant difference in the turbidity between

different depths of the tank (Table 8.2). The results from the turbidity studies

between three quarter length of the tank from the baffle and at the extreme end of the

tank suggest that the surface area of the tank can be decreased by decreasing the

length of the tank so that the surface loading between Frankley and Trimpley are the

same.

The minimum detention time at Trimpley was 18% lower than at Frankley (Table

8.1). The minimum detention time at Trimpley was 11.8 minutes and at Frankley was

13.9 minutes. The average detention times at Frankley and Trimpley were 22.3 and

16.9 minutes respectively (i.e. a difference of 32%). There is a possibility to decrease

the detention time at Frankley so that the vertical rise rate of the suspended solids

between Frankley and Tnmpley is the same. It is expected that with the same rise

rate of suspended solids between Frankley and Trimpley the variation of turbidity will

be within the turbidity levels shown in Figures 8.7 to 8.10 (i.e. within the turbidity

level found during the investigation).

8.3 COMPARING DISCHARGE DURING SAMPLINGS OF VELOCITY AND

TURBIDITY

This section compares the variation of discharge (flow rate) observed during the

sampling of velocity at each of the 64 points in the tank with the variation of

discharge observed during the sampling of turbidity at each of the 64 points in each

tank. The objective of the comparison is to determine whether there is a significant

difference in the range of discharge during the sampling of velocity and turbidity. If

the range of discharge were approximately the same, this suggests that the regression

models (the models which described velocity observation in the tank) developed in

Chapter 7 can be related to the turbidity observed in the tank.

During the sampling of velocity and turbidity data at each point, the discharge

readings from the tanks were recorded. At Frankley the discharge readings were
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recorded manually whereas at Trimpley the readings were recorded automatically by

an on-line computer. For the manual readings, at least five readings were registered

for each point and then these readings were averaged. The discharge readings from

the computer were produced in a graphical print out of time versus discharge and also

in a tabulated form of an average discharge over a period of 15 minutes. In order to

match the discharge occurring at each point during the sampling of velocity and

turbidity, the discharge data was averaged based on the time and duration of the

sampling at each point in the tank.

The average discharge readings at each point in the tank from runs 1, 2 and 3 during

velocity and turbidity samplings for each tank were compared. The results are shown

in Figures 8.11 to 8.14. Figures 8.11 and 8.12 indicate that the ranges of average

discharge were overlapped to a large during the samplings of velocity and turbidity.

The same characteristics were observed in Figures 8.13 and 8.14 for the tanks at

Trimpley. The results suggest that the regression models developed in Chapter 7 can

be used to predict the turbidity removal in the tank within the turbidity range found in

this chapter (Chapter 8). In other words by having the same parameters as specified

in Table 8.1, the expected turbidity in the tank may be based on the velocity

distributiona described by equations 7.1 to 7.6 in Chapter 7. However if the raw

water quality is different, the expected turbidity in the tank may be different from the

turbidity data found in this Chapter.

In Chapter 6 (Sections 6.6.1 and 6.6.2) the velocity means, Vz, for Tanks C2, A3, Cl

and C7 were -0.226, -0.256, -0.200, and -0.232 cmlsec respectively. Negative

velocities indicate that the overall particles within the study regime are moving down.

For a bubble to move up it requires a terminal velocity higher than Vz. Fawcett

(1977) reported that a bubble with a diameter of 7Opm has a vertical rise rate of 0.267

cmlsec. This means the presence of such bubbles in the separation zone may not be

capable of canying some particles to the surface of the tank. The evidence from the

diagrams for the flow contours of Vz in Appendix B 1 to B4 (Chapter 6) indicate that

at one quarter depth of the tank from the surface, Vz was predominantly in a
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downward direction. Hence it can be confirmed that the area within the study regime

did not have enough bubbles which could float the particles.
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Figure 8.11 - Boxplots of discharge during Figure 8.12 - Boxplots of discharge during
velocity and turbidity samplings at velocity and turbidity samplings at
Frankley (Tank A3). Refer to 'Note' below Franidey (Tank C2). Refer to 'Note' below
Figures 8.13 and 8.14 for further details on Figures 8.13 and 8.14 for further details on
the boxplots	 the boxplots

Figure 8.13 - Boxplots of discharge during Figure 8.14 - Boxplots of discharge during
velocity and turbidity samplings at velocity and turbidity samplings at
Trimpley (Tank Cl). Refer to 'Note' below Trimpley (Tank C7). Refer to 'Note' below
Figures 8.13 and 8.14 for further details on Figures 8.13 and 8.14 for further details on
the boxplots	 the boxplots

Note: On x-axis, 1 = discharge when velocity data was collected and 2 = discharge
when turbidity data was collected. On y-axis, discharge in mld.

8.4 SUMMARY OF RESULTS AND FDWINGS

1. Turbidity data for all 64 points in each tank were averaged to obtain a single value

for each run. It was found from the boxplot analysis that the differences in the
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average values between runs were significant. The results suggest that there were

significant variations of turbidity during the course of the experiment. The

possible reason may be due to the significant variation of flow rates between each

run during samplings. Boxplots of flow rates showed that the flow rates varied

significantly between different runs (Tables D1.1 to D1.4 in Appendix D). It is

therefore reasonable to conclude that the main variation in turbidity between

different runs was due to the variation of flow rate during each run.

2. In order to investigate the overall effect of flow rate on the turbidity removal in the

tank, the values of turbidity at each point were averaged from data collected in

three separate runs. Each of the 64 points was treated in the same way. As each

turbidity sample was gathered 5 discharge readings were taken. These readings

were averaged over the 3 runs to obtain an average discharge reading associated

with each average turbidity reading. Inspection of the boxplots in Figures 8.5 to

8.6 and Dl.l to Dl.2 in Appendix D demonstrates that high average discharge

rates are associated with high average turbidity readings. Also the range of

turbidity readings exhibit the same characteristics. A high flow variation would

seem to imply a high variation in turbidity. This suggests that turbidity removal is

sensitive to the applied flow rate. The model in Chapter 7 takes account of the

variability in the discharge in the context of turbidity removal. The above findings

are also relevant to the attempts in the literature to develop CFD models of DAF

systems. At present the CFD models have assumed constant inflow to develop

velocity distributions in the tank. The CFD models also considered that the

multiphase flow regime was comprised of air and water. However the presence of

particles in the flow regime have not been considered. Predictions have been made

on the characteristics of air in the flow regime rather than the actual particles.

Such predictions may be of limited value because of the lack of stochastic input to

the modelling process. Also the literature review found that all published papers to

date are based on average turbidity concentration in the tank inflow and outflow.

3. ANOVA and graphical techniques were used simultaneously to find out the

differences in the average turbidity readings between different depths in the tank.
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The results from the analyses indicate that there was no significant difference in

the average turbidity readings between different depths of all the tanks under the

investigation. This result suggests that the depth of the tank in the separation zone

is not critical for design purposes. This may be in agreement with the literature.

Fawcett (1997) indicated that in the literature, tank depth greater than 1 m did not

give significant improvement for solids removal. However in practice most of the

tanks are more than im depth (Haarhoff and Vuuren, 1995). Fawcett (1997)

reported that when the depth of the tank was reduced to im the CFD model

demonstrated that the velocities were increased in the separation zone with a

greater recirculation flow pattern. It may be possible that higher velocities could

disrupt the floated sludge.

4. Comparisons of the average turbidity readings at different lengths of the tanks

from the baffles indicate that there was no significant difference in the average

turbidity between the positions at three quarter length from the baffles and at the

extreme end of the tanks. Some differences in turbidity readings were observed

between half length and three quarter length of the tank from the baffle. The same

differences were also observed between one quarter length and half length of the

tank from the baffle. Comparison of findings from others cannot be made because

in the published papers the turbidity reading were reported before and after the

flotation process.

5. The performance of DAF tanks at Franidey was inferior to Trimpley when dealing

with a low turbid water. At Franidey the inlet water turbidity of 1.6 to 2.3 NTU

was reduced to only 1.1 to 1.6 NTU. At Trimpley the inlet water turbidity was

reduced to 0.48 and 0.68 NTU from an inlet turbidity range of 1.4 to 2.2 NTU.

Data analysis and discussions in Section 8.2.6 indicated that the average flow rate

and the number of nozzles at Franidey was 240% and 32% more than Trimpley

respectively. For a maximum flow rate at Frankley, the capacity of the nozzles

cannot delivered a 10% recycle ratio with an air dose of 10 g/m3. Recent

communication with Meher (1997) indicated that the air dose has been increased

between 9 to 16 g/m3 and the outlet water quality was reported to be increased up
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to 0.5 NTU. This suggest that during the investigation there were not enough air

bubbles at the Frankley WTW.

6. The average surface loading (QIA) at Frankley was 12% less than Trimpley. The

average flow rate (Q) and the surface area (A) at Frankley were 51% and 66%

more than Trimpley. These comparisons suggest that the surface area in the

separation zone at the Frankley WTW may be reduced to 15% which is the same

with the difference in the percentage of the average flow rate between Frankley

and Trimpley (i.e. at 5 1%). Earlier discussions (in summary of result number 4

above) indicated that there was no significant difference in turbidity data between

three quarter length of the tank from the baffle and that at the extreme end of the

tanks at Frankley and Trimpley. This suggests that the length of the tank may be

reduced by 1.4m (i.e. based on a reduction of 15% of the surface area with a

constant width of 7m). If the length was reduced by 1.4m, the new surface loading

would be 6.34 m/hr (1.76 1 mm/see). The reduction in length was calculated based

on one side of the tank at Frankley. Since each tank was made up of two sides as

shown in Figure 4.4 (Chapter 4), the total reduction in length for each tank will be

2.8m. The average surface loading encountered during the investigation was 6.15

rn/hr (Table 8.6). Table 8.6 indicates that the new surface loading of 6.34 rn/hr is

within the surface loading range found at Frankley. The reduction in length may

also not interfere with the turbidity removal because in the previous discussions

there was not enough air bubbles found in the separation zone to lift the particles

(Section 6.7, Chapter 6).

7. The average detention time at Frankley was 32% more than Trimpley. There is

also a possibility to decrease the detention at Frankley so that the 'vertical rise rate

of suspended solids' (i.e. depth/detention time) or the surface loading at Frankley

and Trimpley will be the same (Table 8.6). However there is a need to monitor the

turbidity at the outlet of the tank if this suggestion is to be adopted.
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CHAPTER 9

CONCLUSIONS AND SUGGESTION FOR FURTHER RESEARCH

9.1 CONCLUSIONS

The main objective of the research was to investigate the relative importance of the

design parameters within the separation zone for the dissolved air flotation (DAF)

tank. To date, the literature review has indicated that there is no concrete evidence to

substantiate the relationship between tank dimensions and the velocity and turbidity

distributions in the tank. In order to develop the design parameters extensive works

were carried out to understand the flow and turbidity patterns within the separation

zone of the DAF tank. Extensive flow and turbidity measurements within the tank

were made. Since the liquid velocity within the separation zone is very small and the

flow is laminar, an appropriate velocity meter was required. An Acoustic Doppler

Velocimeter (ADV) was used for this purpose. The instrument was adopted after a

long search for appropriate equipment within the United Kingdom, United States,

Canada, Continental Europe and Japan. Its application in the field of flotation during

the investigation was new, based on discussions in the first meeting of the ADV users

within the United Kingdom which was held on October 1996 at HR Wallingford. No

physical velocity measurement within the separation zone was reported in the

literature, hence its appropriateness was to be proven.

A summary of results and findings from this research work can be found at the end of

Chapters 6, 7 and 8. The overall conclusions can be summarised as follows:

1. The ADV probe was found to be suitable to measure low velocity in the separation

zone of the DAF tank. A sampling rate of 25 liz exhibited a higher percentage of

good velocity data than at 1 Hz. Statistical tests on the skewness (>1.5) of velocity

samples indicated that samples collected with sampling frequency of 25 Hz

produced less skewness than with 1 Hz. The presence of skewness (>1.5) may be

due to 'aliasing' or the actual situation within the flow regime. In Chapter 5, the
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term 'aliasing' was used by the manufacturer of the WinADV software to describe

a spike in the velocity data that biased the average velocities and made the

instantaneous velocity measurements uncertain. Velocity data exhibiting higher

skewness occurred at a lower or negative velocity which may suggest that the flow

is under a transition regime.

Comparisons of the variation of the average filtered and average raw velocity data

indicated that there was no significant difference between data at Franidey or at the

Trimpley Water Treatment Works (WTW). This suggests that the raw data was as

good as the filtered data and hence the ADV probe is suitable to be used for

velocity measurement in a DAF tank. The results on the quality of velocity data

indicated that only 2.6% of the data has a higher skewness (>1.5). This

demonstrates that the quality of velocity data collected was good. The statistical

procedure called randomization was used during velocity data collection to reduce

systematic error arising from measurement or investigation carried out repeatedly

in the same order. A method called blocking has enable velocity data to be

compared between tanks of the same size and subsequently skewness or average

velocities can be compared and evaluated. It can be concluded that in order to

obtain a representative velocity data statistical methods of randomization and

blocking may be useful. The appropriateness of data collection not only came

from the equipment but also from the methodology and procedures involved during

the data collection. Comparison on the used of ADV probe with other users within

the flotation field cannot be made due to unavailable reference in the literature.

2. Plan view contour diagrams for velocities in the x, y and z directions for different

runs were developed based on the average velocity at each point in the tank

(Appendices Bi, B2, B3 and B4). The diagrams for each run were based on 64

points set at four different width, depth and length of the tank (Figures 4.4 and 4.5

in Chapter 4).

For velocity in the x direction (Vx) at the Frankley and Trimpley WTW, the

velocity distributions from three different runs of each tank at depths dl, d2 and d3
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were identical. However at depth d4 (one quarter depth from the surface of the

tank) the velocity distributions in the x direction were irregular and difficult to

interpret. This may suggest that the area within one quarter depth from the surface

of the tank was unstable. For the velocity in the y direction (Vy), plan view

contour plots indicated that there were irregularities in the flow patterns at

different depths for different runs. It can be concluded that there is no relationship

between Vx and Vy for all the tanks under the investigation. Velocity in the z

direction (Vz) indicated that the flow predominantly moved downwards at depth

dl, d2, d3 and d4. Vz is also associated with the movement of the particles or

bubbles within the tank. This is because the measurement of velocity using the

ADV probe is based on the scattered particles or bubble presence in the water. It

can be concluded that the studied area within the tank does not have enough

bubbles to lift the particles and therefore is not effective for the solid liquid

separation process to take place. It was found that at depth d4 some higher values

(positive values) of Vx were related with positive values of Vz, only at certain

positions. In general at the baffle there was no relationship between Vx and Vz

across the width of the tank. This suggests that fundamentally the solid liquid

separation process took place at the reaction zone of the flotation cell and only a

small fraction of positive separation occurred in the separation zone.

Computational Fluid Dynamic (CFD) models (Fawcett, 1997; Ta and Brignal,

1997) found in the literature were compared with the results from this study.

There were some differences in the flow patterns except at the outlet of the tank.

The present CFD models (Fawcett, 1997) describe the flow in two dimensions with

a constant flow rate and a uniformity of flow across the width of the tank. The

contour plots (plan view) from this research indicate that there was no uniformity

of velocity across the width of the tank especially at depth d4 (i.e. at one quarter

depth of the tank from the surface). Within one quarter depth from the surface of

the tank, the CFD model produced by Fawcett (1977) indicated that the velocity in

the x direction was uniform with the same magnitude and moving horizontally all

the way along the length of the tank except near the baffle and at the extreme end
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of the tank. This result (CFD model) is not in agreement with the results produced

in this research as shown in diagrams in Appendices Bi, B2, B3 and B4.

At Frankley there was no significant difference in the velocity mean of Vx between

different runs in each tank but there was significant difference of the velocity mean

of Vx between different tanks. There was also significant difference of Vx between

Frankley and Trimpley. This suggests that there was a significant difference in the

flow rate between the tanks and between the sites. Vx was higher at Frankley than

Trimpley due to a higher flow rate. It can be concluded that the contour plots of

velocity mean Vx were based on a significant variation of flow rate in the DAF

tanks. The plots represent the actual full plant operational characteristics within

the limited range of tank sizes. The repetition work based on three runs at each

tank is more than enough to suggest strong evidence and representation of velocity

distribution from Frankley and Tnmpley WTW.

Vy was found to have a lower mean velocity than Vx and Vz and hence can be

considered to have a lesser impact on the movement of particles within the

separation zone. In terms of Vz, it was found that there was no significant

difference of Vz between Frankley and Trimpley. This suggests that the difference

in tank dimensions and Vx between the two sites does not affect Vz. An inference

can be made that Vz for different sizes of tanks may be identical. Further tests on

different sizes of tank are required to prove this hypothesis.

3. Analyses of variance (ANOVA) and covanance (ANCOVA) for Vx indicated that

the tank physical dimensions i.e. width, depth and length and the interactions

between them are highly significant and affect the velocity distribution in the x

direction. Only the interaction between the width and the depth for Tank P3 was

not significant. However the results from three other tanks indicated that the

interaction between the width and depth were significant. The possible reason for

Tank A3 to behave differently may be due to the present of greater number of

skewed (>1.5) velocity data (Table 6.2 indicates that Tank A3 has 7 number of

skewness (>1.5) and the occurrence was greater than other tanks). In ANCOVA
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the continuous variable (i.e. the flow rate) was modelled together with the tank

physical dimensions. The results indicated that the flow rate at Franldey was

significant but not at Trimpley. The significance in the flow rate depends greatly

on its variability. Table 6.24 (Chapter 6) indicates that the average flow rate at

Frankley varied from 8.175 to 10.145 mid (24.1%) whereas at Tnmpley from 5.40

to 5.96 mld (10.4%). It can be concluded that low variation in the flow rate at

Trimpley does not effect the velocity distribution in the tank.

The statistical model represented by equation 5.7 in Chapter 5 is found to be

appropriate to describe the velocity observed in the tank based on statistical tests

on the standard residuals versus fitted values and the normality of the standard

residuals.

4. Fixed effects models were developed and applicable to the tanks which have the

same configuration and flow conditions as found at Frankley and Trimpley (i.e.

equations 7.1 to 7.4 in Chapter 7). Generalised and more flexible models were

also developed to describe the velocity distribution in the tank within the sizes and

flow rates found at Franidey and Trimpley (i.e. equations 7.5 to 7.6 in Chapter 7).

The R2 for equation 7.5 and 7.6 are 58.5% and 63.4% respectively. This suggests

that the unexplained variations for equations 7.5 and 7.6 are 41.5% and 36.6%

respectively. Higher values of unexplained variations are due to the fact that the

models have been simplified into the second-order models. Regression analysis

using 40 predictor variables in a higher order model was found to have higher R2.

ANOVA and ANCOVA indicated that the tank physical dimensions are highly

significant by using higher order interactions with an independent predictor

variables. The problem with the higher order model is the difficulty to interpret

the results. It can be concluded that a simple model is more plausible and

appropriate for design purposes than a complicated model.

Equations 7.5 and 7.6 described the velocity at each point in the tank within the

range of tank sizes and flow conditions found at Frankley and Trimpley. For

design purposes the overall average velocity of Vx based on the 64 points in the
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tank must be within 0.101 cm/sec and 0.964 cmlsec. The overall average velocity

of Vz based on 64 points in the tank must be between -0.2 cmlsec and -0.256

cmlsec. The flow rate must be between 4.64 to 10.22 million litres per day.

Although equations 7.5 and 7.6 do not fully describe the velocity distribution in a

DAF tank, this research has shown that standard statistical techniques which have

never been applied before to study the velocity in a DAF tank are useful and

relevant to describe the velocity observed in the tank.

5. The relationship between the variations in the average flow rate and the average

turbidity in the tank was analysed. Inspection of boxplots indicate that high

average flow rates are associated with high average turbidity readings. Also the

variation or range of turbidity readings exhibit the same characteristics. A high

average flow variation seems to imply a high variation in turbidity (refer to Figures

8.5 and 8.6 in Chapter 8 and Figures D1.1 and D1.2 in Appendix D for further

details). It can be concluded that the average turbidity removal is sensitive to the

applied flow rate. The model in Chapter 7 takes account of the variability in the

flow rate in the context of turbidity removal. At present the CFD models described

in the literature assume a constant flow rate and the prediction may be limited due

to lack of stochastic input.

To date, no extensive turbidity measurements have been carried out in the

separation zone of the DAF tank. In this study turbidity readings from 64 points in

the tank were investigated (refer to Figures 4.3 and 4.4 in Chapter 4). There were

four different depths or layers within the tank. Each depth or layer comprised of

16 points. Turbidity reading at each point was averaged based on turbidity

readings from the three runs. This study indicates that there were no significant

differences in average turbidity readings between different depths in each tank.

The study also indicates that there was no difference in the average turbidity

between different depths for each run at each tank. It can be concluded that

turbidity removal is not effective within the studied area (i.e. from the floor of the

tank to one quarter depth from the surface of the tank) and it can also be suggested
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that there is not enough air bubble within the studied area to lift the particles. The

presence of significant amount of air bubbles may be attributed to the difference in

the average turbidity readings between different depths. The result which

indicated no difference in the average turbidity for different depth also suggests

that the sampling procedure used during the investigation by taking one sample at

each point for each run can be considered adequate since the average turbidity

readings are identical.

The turbidity readings were also averaged based on each length position (see

Figures 4.3 and 4.4 to see the positions for different lengths along the tank) along

the tank. Each length has 16 points at four different depth. The turbidity readings

at each length in the tank were averaged based on three different runs. The four

different lengths were identified as one quarter length from the baffle, half length

from the baffle , three quarter length from the baffle and at the extreme end of the

tank. The study indicates that there was no differences in the average turbidity

readings between three quarter length from the baffle and at the extreme end of the

tank. However there were some differences in average turbidity readings between

the other three positions of different lengths (i.e. one quarter, half and three quarter

lengths from the baffle). This suggests that the length of the tank may be reduced

but can only be confirmed when the results from the analysis are presented later in

the conclusion (i.e. in conclusion 7).

6. The performance of DAF tanks at Frankley was less efficient than Trimpley for

low turbid water where the turbidity was between 1.6 and 2.3 NTU. The turbidity

was reduced to only 1.1 to 1.6 NTU. Earlier data analysis indicated that the

average flow rate and number of nozzles at Frankley were 240% and 32% more

than Trimpley. The number of nozzles at Frankley cannot meet the required 10%

recycle ratio with an air dose of 10 g/m3 based on the maximum flow rate

occurred. This suggests that at the maximum flow rate not enough air was injected

through the nozzles. Recent communication with Meher (1997) indicated that the

air dose at Frankley is now between 9 to 16 g/m3 and the turbidity reading at the

tank outlet has improved to 0.5 NTU. It can be concluded that enough amount of
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air must be injected through the nozzles for an efficient solid liquid separation

process to take place.

7. The average flow rate and surface area at Frankley were 51% and 66% more than

Trimpley. However the average surface loading at Franidey was 12% less than

Trimpley. This suggests that the surface area at Frankley may be reduced up to

15%. A reduction in 15% of the surface area implied that the length of the tank at

Frankley can be reduced by 1 .4m (based on one side of each tank). A 15%

reduction in length does not affect the surface loading (Chapter 8). The reduction

in length may also not interfere with the turbidity removal because from the

previous discussions there was not enough air bubbles in the separation zone to lift

the particles. In terms of saving, a reduction of 2. 8m length from each tank could

save a total of 56m length by 7m width of dissolved air flotation tank at Frankley

(based on a total of 20 tanks found at Frankley WTW).

9.2 SUGGESTION FOR FURTHER RESEARCH

Since one of the results in the conclusions (refer to conclusion 5) indicated that the

area within the studied regime was not efficient for the turbidity removal, this

suggests that the separation zone was acting as a sludge collecting chamber and also

as a stilling basin to maintain the flow within an appropriate velocity regime to

prevent the breaking up of the floes. For further improvement of the flotation tank

design, the following proposals may be worth considering:

1. Since the separation zone is not efficient for turbidity removal and has the same

property as found in the sedimentation tank (i.e. the presence of any particles

within this zone may descend to the floor or be carried away with the effluent), it

may be appropriate to introduce a series of inclined plates a few centimetres from

the floor to at least one-quarter depth of the tank. Further studies are needed

before this suggestion can be put into practice. For future construction of the same

type of tanks found at Frankley, it may be appropriate to reduce the length of the

tank as suggested in this thesis.
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2. It can been seen from this study that much of the area within the separation zone

was redundant. In order to optimise the area within the separation zone, it may be

possible to improve the existing tanks (or for any tanks to be constructed in the

future) by having a series of inclined baffles or vertical baffles across the width of

the tank with the air nozzles installed between these baffles (Figure 9.1). The

influent water can be introduced from the side of the tank or from the bottom of

the floor. The effluent can be collected through perforated pipes or a channel

constructed below the floor level of the tank. The average velocity range over the

baffle may be based on the velocity found at the Frankley WTW, that is between

0.038 mlsec and 0.021 m!sec (John Brown Engineering, 1991). For a given

influent flow rate Qi through each set of baffles, the discharge over each baffle

may be designed as Qi/2. The range of velocity over the baffle may be calculated

as Q 1 12A, where A is the cross-sectional area between the tip of the baffle and the

mean water level in the tank.

The above suggestion has the same concept as the counter-current DAF used by

Thames Water at Walton, London (Eades et al., 1977). However in a counter-

current DAF the influent water flows upward into the DAlE tank through a number

of conical structures (act as baffles) and air bubbles are injected from outside these

structures. The effluent is directed down so that as the water moves down the air

bubbles will move up against the flow.

tin of the baffle

air nozzle	 perforated pipe
(final effluent)

Figu1e 9.1 - Flotation tank with two sets of inclined baffles
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3. Further improvement may be made by incorporating rapid sand filters (either as an

initial filter or as a final filtration process) into the flotation tank (Figure 9.2). This

concept is parallel to the DAF tanks found at Walton, Thames Water. The initial

filtration is carried out using dual-filter media before final filtration using slow

sand filters (Eades et al., 1997). In the case of Frankley, filtered water may be

collected through a series of pipes installed underneath the sand filters or through a

clear water channel constructed below the filters. The typical loading rate of rapid

sand filters is between 4.68 rn/hr and 14.4 rnlhr (Barnes et al., 1981). This value is

within the range of the surface loading rate of the flotation tanks found at Frankley

and Trimpley (refer to Table 8.1 in Chapter 8). Hence the introduction of a rapid

sand filter within the flotation tank may be possible. The use of vertical baffles

can be considered if there is any operational problem with the inclined baffles.

au LIULL1 
washing channel

Figure 9.2 - DAF tank with filtration process

Further suggestions for future research based on the effects of tank dimensions on the

velocity and turbidity distribution within the tank can be summarised as follows:

Further research should be carried out to refine the existing works by increasing the

number of levels for each factor (i.e. tank physical dimension). The existing study

was based on 4 different levels of width, depth and length. If the levels are increased,

the precision of the estimate (statistical modelling) may be increased. In addition to

that it may be useful to investigate more closely the area between one quarter depth

from the surface of the tank to the surface of the tank in order to understand the

behaviour of the particles within this regime.
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This research work also indicated that only two different sizes of tank were

investigated. An investigation should be carried out with more tanks of different sizes

so that better model with a higher range of tank sizes and flow rate can be developed.

The use of CFD models should be considered to look at the in-tank variation of

turbidity in relation to the independent variable such as the variation of flow rate.

The CFD model should be in three dimensions since this study indicated that the

velocity across the width of the tank was not uniform. Further research should also be

carried out to compare the CFD model in the reaction zone with the stochastic model

based on full plant studies in the reaction zone.

The separation zone was found to be ineffective for solid liquid separation to take

place. Future stochastic modelling also should be concentrated in the reaction zone of

the flotation cell. The controlled variables may be the velocity gradient, air dose,

baffle angles and the physical dimensions of the reaction zone. Flocs size range may

be used as a fixed variable. The possible use of ADV probe should be considered for

the investigation.

It was claimed in the literature (Rees et al., 1979, 1980) that an air dose of 8 to 10

gim3 is favourable in the mixing zone. However lessons learnt from the Frankley

WTW indicate that the increase of air dose produces a better effluent. This result

indicates the need for further research to determine the optimum air dose within the

mixing zone.

Lastly but not least, further research for novel solutions to the tank configuration

should be carried out, especially those of counter-current DAF used by Thames Water

and the tank configurations suggested in Figures 9.1 and 9.2.
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APPENDIX A

Calibration of the analog output.

Calibration of the analog outputs is divided into two parts. The first part deals with

the conversion from output voltage to velocity. This is done by scaling the velocity

range set by the operator in the 'Main menu' of the ADV/ADF software or changing

the mechanical switches in the ADVField processor module. The following equation

is used to calibrate the velocity:

V—[(Vmax—vmin)/2J
V	

(Vmax—Vmin)/2 xVrange

where v is the velocity, V is the voltage output, Vmax is the maximum voltage, Vmin

is the minimum voltage and Vrange is the velocity range set by the operator in the

'Main Menu' of the ADV data acquisition software or by using mechanical switches

in the ADVFieId system. The velocity ranges in the software are 3, 10, 30, 100 or

25OcmIs whereas by using mechanical switches the ranges are 30, 100 and 2SOcmIs.

The output voltage range as indicated from the previous section is 0-5 Volt. For

example, the velocity range is set to ±lOcmIs, a 3 Volt output from the ADVFie1d

means the velocity can be computed as follows:

3-[(5--0)/21= (5-0)12 xlO=2cm/s

There is a possibility that there is a slight difference in voltages between the user-

supplied AID system and the output from ADV. This may be due to temperature

changes or to variations in the impedance of cables and the digitising circuit. This

leads to the second part to the calibration of analog outputs which can be performed

by running the program ADVCALAQ.EXE. The analog outputs are set to three

predetermined voltage settings that correspond to the maximum negative velocity,

zero and maximum positive velocity. In the data acquisition system, the voltages of

these settings can be designated as Vneg, Vzero and V. The voltages measured during

data collection	 can be converted to velocity by using equation 2.

(1)
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(2 x Vines - Vieg - V05)
Veloczly(cm I see) =	 x Vrange

(Vpos Vneg)

This is done by combining the correction for the voltage drop over the cable with the

conversion from voltage output to velocity (equation 1). The actual output of voltage

is measured by either a central data acquisition system or an accurate

voltmeter/multimeter. Checking on the linearity of the analog outputs is done by

running the zero-velocity calibration in ADVCALAO.EXE provided with the

software. The result was checked using the following expression:

VP05

Vzero - O.5( V05 - Vneg) L
2048

(2)

(3)
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Results from tank A3 of Frankley WTW

*	 :
3€ •	 *	 *	 *

1	 2	 3	 4	 5	 6

GcoLp

Figure Al.! - Boxplots for velocity
component in x-direction using filtered
and averaging methods for run 1, 2 and 3
Note: Group 1, 3 and 5 are filtered
velocity for run 1, 2 and 3 respectively
and Group 2, 4 and 6 are the average
velocity for run 1, 2 and 3 respectively.

I	 I

1	 2	 3	 4	 5	 6

ot

Figure Al.2 - Boxplots for velocity
component in y-direction using filtered
and averaging methods for run 1, 2 and 3.
Note: Group 1, 3 and 5 are filtered
velocity for run 1, 2 and 3 respectively
and Group 2, 4 and 6 are the average
velocity for run 1, 2 and 3 respectively.

NbmeI Aobabllhty Rot

>

1	 2	 3	 4	 5	 6

.0I.4,

Figure Al.3 - Boxplots for velocity
component in z-direction using filtered
and averaging methods for run 1, 2 and 3.
Note: Group 1, 3 and 5 are filtered
velocity for run 1, 2 and 3 respectively
and Group 2, 4 and 6 are the average
velocity for run 1, 2 and 3 respectively.
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StdDev 117438	 A-Surd 1364
Nofd,ta 64	 p.vaiue 0001

Figure Al.4 - Normal probability plot of
velocity in x-direction(filtered) for Run I
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NbcnI Robability flc*
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StdOev:0.93982	 A-Squared 0930
Not data 64	 p-value 0017
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.9 –	—S

Average;0.906094	
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Andern-Oarlung NormattyTe&
Stdt)ev125187	 A-Squared 1790
Not data 64	 p-value. 0000

Figure A1.5 - Normal probability plot of Figure Al.6 - Normal probability plot of
velocity in x-direction(filtered) for Run 2 velocity in x-direction(filtered) for Run 3

Nbrrml obabiIity Rot

-1	 0	 1	 2
Vy-FR1

Average 00348875	 Anderarn-Darlung NornralityTed
StdDev 0640109	 A-Squared'O 580
Not data 64	 p-value 0128

ftmul Robability Rot

-

-15	 -0.5	 05	 16
V y.Ff

Average -0.074375	 Andern-Darling NormalityTeat
StdDev 0542428	 A-Squared 0548
Not data 64	 p-vatue 0152

Figure Al.7 - Normal probability plot of Figure A1.8 - Normal probability plot of
velocity in y-direction(filtered) for Run 1. velocity in y-direction(filtered) for Run 2.

NbrrTnl Robaby Rot

-2	 -1	 0	 1	 2

Average 002	
Vy-FRS 

Andern-DarlingNormatrtyTeat
Std0ev 0640325	 A-Squared 1.815
Not data 84	 p-value. 0000

1'bnral Robability Rot
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Average.-0 278906 	
Vz-FR1 

Andevn-Darl ngNormalutyTeat
StdDev 0417858	 A-Squared 0761
Not data 64	 p-value 0045

Figure A1.9 - Normal probability plot of Figure Al. 10 - Normal probability plot of
velocity in y-direction(filtered) for Run 3 velocity in z-direction(filtered) for Run I.
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POOLED STDEV = 1.14c

N
64
64
64
64
64
64

LEVEL
1
2
3
4
5
6

MEAN
0.537
0.562
0.454
0.457
0.906
0.907

05	 0.6	 07	 0.8	 0.9

FI1S(Vx)

Figure Al.13 - Plot of residual versus
fitted values from the ANOVA for
velocities(filtered and average) in x-
direction.

APPENDIX Al

NbrnI Robabifity Rot

.

-10
	 -05	 00	 05

Average -D 238438
	 Vz-FI	

Anderson-Darling Normality Teat
Stdbev 0347203
	

A-Squared 1168
Not date 64
	

p-value 0004

F'bniul Robabfltty Rot

Average. 0 249375	
Vz-F	

Anderson-Darling NormalityTed
StdDev'034.4032	 A-Squared 0919
Not data 64	 p-value 0018

Figure Al. 11 - Normal probability plot of Figure Al. 12 - Normal probability plot of
velocity in z-direction(filtered) for Run 2. velocity in z-direction(filtered) for Run 3.

Table A1.l - ANOVA for velocities(x-direction)Vx in run 1, 2 and 3.

Source	 DF	 SS	 MS	 F	 p
Group	 5	 14.51	 2.90	 2.20	 0.054
Error378	 498.70	 1.32	 __________ __________
Total383	 513.22	 ___________ ___________ ___________

Table Al .2 - Confidence interval for velocity mean Vx

INDIVIDUAL 95% CI'S FOR MEAN
BASED ON POOLED STDEV

STDEV-----+---------+---------+---------

	

1.174	 (---------*--------)

	

1.285	 (---------*--------)
0.940 (--------*---------)
0.936 (--------*)

	

1.252	 (--------* --------)

	

1.248	 (--------*---------)
+---------+---------+---------+_
0.30	 0.60	 0.90	 1.20

NbrnI Robabity Rot

0

00

I
	

0

-3	 -2	 -1	 0	 1	 2	 3	 4

Average:0 (9)0Q	 Anderson-Darling NorrnalityTeat
StdDev.114116	 A-Squared 7690
Not data 384	 p-value: 0.000

Figure Al. 14 - Normal probability plot of
residuals from the ANOVA for
velocities(filtered and average) in x-
direction.
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Table Al.3 - ANOVA for velocities(y-direction) Vy in run 1, 2 and 3.

Source	 DF	 SS	 MS	 F	 p
Group	 5	 0.984	 0.197	 0.52	 0.760
Error378	 142.716	 0.378	 ___________ __________
Total383	 143.700	 ___________ ____________ ___________

Table Al .4 - Confidence interval for velocity mean Vy

LEVEL N
1 64
2 64
3 64
4 64
5 64
6 64

INDIVIDUAL 95% CI'S FOR MEAN
BASED ON POOLED STDEV

MEANSTDEV ---------+---------+---------+-------

	

0.0347	 0.6401	 (------------*-----------)

	

0.0471	 0.6709	 (------------*------------)

	

-0.0744	 0.5424 (------------* ----------)

	

-0.0752	 0.5414 (------------*-----------)

	

0. 0200	 0. 6403	 (------------*-----------)

	

0.0218	 0.6389	 (------------*-----------)
+---------+---------+-------

POOLED STDEV = 0.6145	 -0.12 -0.00 0.12

Nbm-nI Robabildy Rot

©
00

00

III
005

-

I

-2	 -1	 0	 1	 2

FE (Vy)
Average:-0 0005000	 Andern-DarlurrNormaltyTe
StdDev:0.610431	 A-Squared 4344
No! data 384	 p-value 0000

Figure A 1.15 - Plot of residual versus
	

Figure Al. 16 - Normal probability plot of
fitted values from the ANOVA for	 residuals from the ANOVA for
velocities(filtered and average) my- 	 velocities(filtered and average) in y-
direction.	 direction.

Table A1.5 - ANOVA for velocities(y-direction)Vz in run 1, 2 and 3.

Source	 DF	 SS	 MS	 F	 p
Group	 5	 0.077	 0.015	 0.11	 0.990
Error378	 52.599	 0.139	 __________ __________
Total383	 52.676	 ___________ ___________ ___________
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p-value 0.000
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Table Al .6 - Confidence interval for velocity mean Vz

LEVEL N
1 64
2 64
3 64
4 64
5 64
6 64

INDIVIDUAL 95% CI'S FOR MEAN
BASED ON POOLED STDEV

MEANSTDEV ---+---------+---------+---------+---

	

-0.2789	 0.4176 (------------*------------)

	

-0.2587	 0.4277	 (------------*------------)

	

-0.2384	 0.3472	 (------------*	 ---------)

	

-0.2372	 0.3473	 (------------* -----------)

	

-0.2494	 0.3440	 (------------*------

	

-0.2476	 0.3435	 (------------*------------)
+---------+---------+--_

POOLED STDEV 0.3730	 -0.350 -0.280 -0.210 -0.140

N.bnral Robabildy Pot

Figure Al. 17 - Plot of residual versus
	

Figure A 1.18 - Normal probability plot of
fitted values from the ANOVA for	 residuals from the ANOVA for
velocities(filtered and average) in z- 	velocities(filtered and average) in z-
direction.	 direction.

Table Al .7 - Analysis of variance for velocities in x-direction(run 1,2 & 3) using
multifactor balanced designs

Source	 DF	 SS	 MS	 F	 P
Width	 3	 14.8351	 4.9450	 11.59	 0.000
Depth	 3	 30.4302	 10. 1434	 23.77 0.000
Length	 3	 54.6521	 18.2174	 42.69 0.000
Width*Depth	 9	 2.0466	 0.2274	 0.53	 0.848
Width*Length	 9	 12.1903	 1.3545	 3.17	 0.002
Depth*Length	 9	 61.2139	 6.8015	 15.94 0.000
Width*Depth*Length 27	 18.5612	 0.6875	 1.61	 0.042
Error	 128	 54.6166	 0.4267	 ______ _______
Total191	 248.5461 ________ ______ _______
Note: * is for interaction
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Nbrrml A-obabffity A

0
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Not data 192	 p-value. 0 8

Figure A1.19 - Plot of residuals versus 	 Figure AL2O - Normal probability plot of
fitted values from the analysis of	 residuals from the analysis of
variance for velocities in x-direction	 variance for velocities in x-direction

Table A1.8 - Analysis of Covariance for Vx

Source	 DF	 ADJ. SS MS	 F	 P
Covariates	 1	 3.6043	 3.6043	 9.28	 0.003
Width	 3	 17.4492	 5.8164	 14.97 0.000
Depth	 3	 33.7177	 11.2392	 28.93	 0.000
Length	 3	 51.4815	 17.1605	 44.16	 0.000
Width*Depth	 9	 2.2111	 0.2457	 0.63	 0.768
Width*Length	 9	 12.9697	 6.9993	 18.01	 0.000
Depth*Length	 9	 62.9935	 6.9993	 18.01	 0.000
Width*Depth*Length 27	 16.4179	 0.6081	 1.56	 0.052
Error	 127	 49.3467	 0.3886	 ______ _______
Total191	 248.6640 _________ ______ _______
Note: * is for interaction

Table A1.9 - Analysis of variance for velocities in z-direction(run 1,2 & 3) using
multifactor balanced designs

Source	 DF	 SS	 MS	 F	 P
Width	 3	 0.18217	 0.06072	 0.96	 0.414
Depth	 3	 2.50115	 0.83372	 13.17	 0.000
Length	 3	 8.90787	 2.96929	 46.90 0.000
Width*Depth	 9	 0.78527	 0.08725	 1.38	 0.205
Width*Length	 9	 0.64891	 0.07210	 1.14	 0.340
Depth*Length	 9	 3.08185	 0.34243	 5.41	 0.000
Width*Depth*Length 27	 1.49904	 0.05552	 0.88	 0.642
Error	 128	 8.10347	 0.06331 ______ _______
Total191	 25.70972 _________ ______ _______
Note: * is for interaction
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Figure A1.21 - Plot of residuals versus
fitted values from the analysis of
variance for velocities in z-direction

Average. 0	
S-Vz

StdDev:O 205977	 A-Squared 0542
Nof data 192	 p-value 0 162

Figure Al.22 - Normal probability plot of
residuals from the analysis of
variance for velocities in z-direction

Table A1.10 - Analysis of Covariance for Vz

Source	 DF	 ADJ. SS	 MS	 F	 P
Covariates	 1	 0.00672	 0.00672	 0.12	 0.724
Width	 3	 0.36977	 012326	 2.29	 0.081
Depth	 3	 3.09192	 1.03064	 19.15 0.000
Length	 3	 10.28514	 3.42838	 63.70 0.000
Width*Depth	 9	 0.51924	 0.05769	 1.07	 0.388
Width*Length	 9	 0.66775	 0.07419	 1.38	 0.204
Depth*Length	 9	 2.76413 - 0.30713	 5.71	 0.000
Width*Depth*Length 27	 1.54876	 0.05736	 1.07	 0.390
Error	 127	 6.83501	 0.05382 ______ _______
Total191	 26.09574 _________ ______ ________
Note: * is for interaction
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Results from tank C7 of Trimpley WTW
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Figure A2. 1 - Boxplots for velocity
component in x-direction using filtered and
averaging methods for run 1, 2 and 3.
Note: Group 1, 3 and 5 are filtered velocity
for run 1, 2 and 3 respectively and Group 2,
4 and 6 are the average velocity for run 1, 2
and 3 respectively.
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Figure A2.2 - Boxplots for velocity
component in y-direction using filtered and
averaging methods for run 1, 2 and 3.
Note: Group 1, 3 and 5 are filtered velocity
for run 1, 2 and 3 respectively and Group 2,
4 and 6 are the average velocity for run 1, 2
and 3 respectively.
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Figure A2.3 - Boxplots for velocity
component in z-direction using filtered and
averaging methods for run 1, 2 and 3.
Note: Group 1, 3 and 5 are filtered velocity
for run 1, 2 and 3 respectively and Group 2,
4 and 6 are the average velocity for run 1, 2
and 3 respectively.
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Figure A2.4 - Normal probability plot of
velocity in x-direction(filtered) for Run 1
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Figure A2.5 - Normal probability plot of 	 Figure A2.6 - Normal probability plot of
velocity in x-direction(filtered) for Run 2 	 velocity in x-direction(filtered) for Run 3
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Figure A2.7 - Normal probability plot of 	 Figure A2.8 - Normal probability plot of
velocity in y-direction(filtered) for Run 1. 	 velocity in y-direction(filtered) for Run 2.
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Figure A2.9 - Normal probability plot of 	 Figure A2. 10 - Normal probability plot of
velocity in y-direction(filtered) for Run 3 	 velocity in z-direction(filtered) for Run 1
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Figure A2.11 - Normal probability plot of 	 Figure A2. 12 - Normal probability plot of
velocity in z-direction(filtered) for Run 2 	 velocity in z-direction(filtered) for Run 3.

Table A2. 1 - ANOVA for velocities(x-direction)Vx in run 1, 2 and 3.

Source	 DF	 SS	 MS	 F	 p
Group	 5	 0.80	 016	 0.11	 0.990
Error378	 545.19	 1.44	 ___________ __________
Total383	 546.00	 ___________ ___________ ___________

Table A2.2 - Confidence interval for velocity mean Vx

INDIVIDUAL 95% CI'S FOR MEAN
BASED ON POOLED STDEV

STDEV----+---------+---------+---------+--

	

1.161	 (-------------*)

	

1.265	 (--------------* --------------)
1.142 (--------------*--------------)

	

1.251	 (--------------*-------------)
1.137 (--------------*--------------)

	

1.242	 (-------------* --------------)

+---------+---------+__
0.00	 0.20	 0.40	 0.60

og

I E
0.35

Figure A2.13 - Plot of residual versus fitted Figure A2. 14 - Normal probability plot of
values from the ANOVA for 	 residuals from the ANOVA for
velocities(filtered and average) in x- 	 velocities(filtered and average) in x-
direction.	 direction.
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Table A2.3 - ANOVA for velocities(y-direction) Vy in run 1, 2 and 3.

Source	 DF	 SS	 MS	 F	 p
Group	 5	 0.081	 0.016	 0.06	 0.997
Error378	 94.291	 0.249	 ___________ ___________
Total 383	 94.371	 ___________ ___________ ____________

Table A2.4 - Confidence interval for velocity mean Vy

LEVEL N
1 64
2 64
3 64
4 64
5 64
6 64

INDIVIDUAL 95% CI'S FOR MEAN
BASED ON POOLED STDEV

MEANSTDEV ---------+---------+---------+-------

	

-0.0034	 0.4622	 ( ------------* --------------)

	

-0.003 1	 0.4788	 (---------------*--------------)

	

0.0219	 0.4984	 (---------------*	 ---------)

	

0.0077	 0.4954	 (--------------*--------------)

	

-0.0166	 0.5214	 (--------------*--------------)

	

-0.0216	 0.5368 (--------------*---------------)
+---------+---------+-------

POOLED STDEV = 0.4994	 -0.080 0.000 0.080

rrmI Robability Aot

Figure A2. 15 - Plot of residual versus fitted Figure A2.16 - Normal probability plot of
values from the ANOVA for velocities 	 residuals from the ANOVA for velocities
(filtered and average) in y-direction.	 (filtered and average) in y-direction.

Table A2.5 - ANOVA for velocities(y-direction)Vz in run 1, 2 and 3.

Source	 DF	 SS	 MS	 F	 p
Group	 5	 0.0647	 0.0129	 0.33	 0.893
Error	 378	 14.6767	 0.0388
Total	 383	 14.7414
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Table A2.6 - Confidence interval for velocity mean Vz

LEVEL N
1 64
2 64
3 64
4 64
5 64
6 64

INDIVIDUAL 95% CI'S FOR MEAN
BASED ON POOLED STDEV

MEANSTDEV -------+---------+---------+---------

	

-0.2475	 0.1844	 (-----------* -----------)

	-0.2588	 0.1845 (-----------* ----------)

	-0.2311	 0.1653	 (-----------*-----------)

	

-0.2350	 0.1684	 (-----------* )

	

-0.2180	 0.2377	 (------------*----------- )

	

-0.2320	 0.2296	 (-----------*-----------)
+---------+---------+---------

POOLED STDEV = 0.1970	 -0.280 -0.240 -0.200

NbmI A-obabibty Rot

Figure A2. 17 - Plot of residual versus fitted Figure A2. 18 - Normal probability plot of
values from the ANOVA for velocities 	 residuals from the ANOVA for velocities
(filtered and average) in z-direction.	 (filtered and average) in z-direction.

Table A2.7 - Analysis of variance for velocities in x-direction(run 1,2 & 3) using
multifactor balanced designs

Source	 DF	 SS	 MS	 F	 P
Width	 3	 9.3473	 3.1158	 21.85	 0.000
Depth	 3	 101.8784	 33.9595	 238.14 0.000
Length	 3	 15.3661	 5.1220	 35.92	 0.000
Width*Depth	 9	 20.9559	 2.3284	 16.33 0.000
Width*Length	 9	 3.2435	 0.3604	 2.53	 0.011
Depth*Length	 9	 48.6216	 5.4024	 37.88 0.000
Width*Depth*Length 27	 30.9588	 1.1466	 8.04	 0.000
Error	 128	 18.2530	 0.1426	 ______ _______

Total 191 	 248.6246 ________ ______ _______

Note: * is for interaction
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Figure A2.19 - Plot of residuals versus
fitted values from the analysis of variance
for velocities in x-direction
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Figure A2.20 - Normal probability plot of
residuals from the analysis of variance for
velocities in x-direction

Table A2.8 - Analysis of Covariance for Vx(Tank C7)

Source	 DF	 ADJ. SS	 MS	 F	 P
Covariates	 1	 0.0091	 0.0091	 0.06	 0.802
Width	 3	 9.3537	 3.1179	 21.70 0.000
Depth	 3	 101.8875	 33.9625	 236.42 0.000
Length	 3	 14.8565	 4.9522	 34.47 0.000
Width*Depth	 9	 20.9599	 2.3289	 16.21	 0.000
Width*Length	 9	 3.0053	 0.3339	 2.32	 0.019
Depth*Length	 9	 48.6069	 5.4008	 37.60 0.000
Width*Depth*Length 27	 30.8971	 1.1443	 7.97	 0.000
Error	 127	 18.2439	 0.1437	 ______ _______
Total191	 248.6246 ________ ______ _______
Note: * is for interaction

Table A2.9 - Analysis of variance for velocities in z-direction(run 1,2 & 3) using
multifactor balanced designs

Source	 DF	 SS	 MS	 F	 P
Width	 3	 0.061385 0.020462	 2.07	 0.107
Depth	 3	 0.990994 0.33033 1 33.45	 0.000
Length	 3	 3.286790 1.095597 110.96 0.000
Width*Depth	 9	 0.2023 52 0.022484 2.28	 0.02 1
Width*Length	 9	 0.346073 0.038453	 3.89	 0.000
Depth*Length	 9	 0.833481 0.092609	 9.38	 0.000
Width*Depth*Length	 27	 0.467540 0.017316	 1.75	 0.020
Error	 128	 1.263867 0.009874 ______ ________
Total191	 7.452481 ________ ______ _______
Note: * is for interaction
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Figure A2.21 - Plot of residuals versus
fitted values from the analysis of variance
for velocities in z-direction
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Figure A2.22 - Normal probability plot of
residuals from the analysis of variance for
velocities in z-direction

Table A2.10 - Analysis of Covariance for Vz(Tank C7,Tnmpley WTW)

Source	 DF	 ADJ. SS	 MS	 F	 P
Covariates	 1	 0.24166	 0.24166	 30.02	 0.000
Width	 3	 0.04785	 0.01595	 1.98	 0.120
Depth	 3	 0.98564	 0.32855	 40.82 0.000
Length	 3	 2.73531	 0.91177	 113.28 0.000
Width*Depth	 9	 0.21156	 0.02351	 2.92	 0.004
Width*Length	 9	 0.27872	 0.03097	 3.85	 0.000
Depth*Length	 9	 0.82851	 0.09206	 11.44 0.000
Width*Depth*Length 27	 0.46134	 0.01709	 2.12	 0.003
Error	 127	 1.02221	 0.00805 ______ _______
Total191	 7.45248 _________ ______ _______
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APPENDIX Bi (Tank C2 — Frankley WTW)

Figure B I. I — Velocity Vx(run 1) at depth Figure B 1.5 — Velocity Vx(run 2) at depth
D4	 D4
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Figure Bl.2 — Velocity Vx(run 1) at depth Figure Bl.6 — Velocity Vx(run 2) at depth
D3	 D3

Figure Bl.3 — Velocity Vx(run 1) at depth Figure Bl.7 — Velocity Vx(run 2) at depth
D2	 D2
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Figure B 1.4 — Velocity Vx(run 1) at depth
Dl

Figure B1.8 — Velocity Vx(run 2) at Depth
Dl

Note: Velocity scale is not the same for each diagram
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Figure B1.9 - Velocity Vx(run 3) at depth
D4
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Figure B 1.13 - Velocity Vy(run 1) at
depth D4

Figure B1.1O - Velocity Vx(run 3) at
depth D3

Figure B 1.14 - Velocity Vy(run 1) at
depth D3
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Figure B 1.15 - Velocity Vy(run 1) at
depth D2

Figure Bi. 12 - Velocity Vx(run 3) at
depth Dl

Figure B 1.16 - Velocity Vy(run 1) at
depth Dl

Note: Velocity scale is not the same for each diagram
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Figure B 1.17- Velocity Vy(run 2) at depth
D4
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Figure B 1.18 — Velocity Vy(run 2) at depth
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Figure B 1.19 - Velocity Vy(run 2) at depth
D2

Figure B 1.23 — Velocity Vy(run 3) at depth
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Figure B1.20 — Velocity Vy(run 2) at depth Figure B 1.24 — Velocity Vy(run 3) at depth
Dl	 Dl

Note: Velocity scale is not the same for each diagram
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Figure B 1.32 - Velocity Vz(run 2) at depth
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Note: Velocity scale is not the same for each diagram
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Figure B1.33 - Velocity Vz(run 3) at depth
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Figure B 1.34 - Velocity Vz(run 3) at depth
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Figure B 1.35 - Velocity Vz(run 3) at depth
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Figure B 1.36 - Velocity Vz(run 3) at depth
Dl

Note: Velocity scale is not the same for each diagram
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Figure B2.9 - Velocity Vx(run 3) at depth
D4
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Figure B4.1 - Velocity Vx(run 1) at depth
D4

Figure B4.5 - Velocity Vx(run 2) at depth
D4

Figure B4.2 - Velocity Vx(run 1) at depth
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Figure B4.6 - Velocity Vx(run 2) at depth
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Figure B4.3 - Velocity Vx(run 1) at depth	 Figure B4.7 - Velocity Vx(run 2) at depth
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Figure B4.4 - Velocity Vx(run 1) at depth
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Figure B4.8 - Velocity Vx(run 2) at depth
Dl

Note: Velocity scale is not the same for each diagram
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Figure B4. 17 - Velocity Vy(run 2) at depth
D4
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Note: Velocity scale is not the same for each diagram
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Figure B4.32 - Velocity Vz(run 2) at depth
Dl

Note: Velocity scale is not the same for each diTam

273



0

0,06

-006

.a1C

-015

-ax

-036

-ax

-036

-040

-040

-S

-'p

APPENDIX B4 (Tank C7 - Trimpley WTW)

010

::

Figure B4.33 - Velocity Vz(run 3) at depth
D4

Figure B4.34 - Velocity Vz(run 3) at depth
D3
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Figure B4.35 - Velocity Vz(run 3) at depth
D2
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Figure B4.36 - Velocity Vz(run 3) at depth
Dl

Note: Velocity scale is not the same for each diagram
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APPENDIX C

Table C 1.1 - Analysis of variance for velocities in x-direction(run 1,2 & 3)
using multifactor balanced designs (Tank A3, Frankley WTW)

Source	 DF	 SS	 MS	 F	 P
Width	 3	 14.8351	 4.9450	 11.59	 0.000
Depth	 3	 30.4302	 10. 1434	 23.77 0.000
Length	 3	 54.6521	 18.2174	 42.69 0.000
Width*Depth	 9	 2.0466	 0.2274	 0.53	 0.848
Width*Length	 9	 12.1903	 1.3545	 3.17	 0.002
Depth*Length	 9	 61.2139	 6.8015	 15.94 0.000
Width*Depth*Length 27	 18.5612	 0.6875	 1.61	 0.042
Error	 128	 54.6166	 0.4267	 ______ _______
Total191	 248.5461 ________ ______ _______
Note: * is for interaction

Table C 1.2 - Analysis of variance for velocities in x-direction(run 1,2 & 3) using
multifactor balanced designs (Tank C7, Trimpley WTW)

Source	 DF	 SS	 MS	 F	 P
Width	 3	 9.3473	 3.1158	 21.85	 0.000
Depth	 3	 101.8784	 33.9595	 238.14 0.000
Length	 3	 15.3661	 5.1220	 35.92	 0.000
Width*Depth	 9	 20.9559	 2.3284	 16.33 0.000
Width*Length	 9	 3.2435	 0.3604	 2.53	 0.011
Depth*Length	 9	 48.6216	 5.4024	 37.88 0.000
Width*Depth*Length 27	 30.9588	 1.1466	 8.04	 0.000
Error	 128	 18.2530	 0.1426	 ______ _______
Total191	 248.6246 _________ ______ _______
Note: * is for interaction
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Figure C1.1 - Plot of residuals versus
fitted values from the analysis of variance
for velocities in x-direction (Tank A3,
Frankley)
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Figure C1.2 - Normal probability plot of
residuals from the analysis of variance for
velocities in x-direction Tank A3,
Frankley)
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Nbml Roby Rot
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Figure C1.3 - Plot of residuals versus fitted Figure C1.4 - Normal probability plot of
values from the analysis of variance for 	 residuals from the analysis of variance for
velocities in x-direction (Tank C7,	 velocities in x-direction (Tank C7,
Trimpley)	 Trimpley)

Table C1.3 - Analysis of Covariance for Vx (Tank A3, Frankley)

Source	 DF	 ADJ. SS MS	 F	 P
Covariates	 1	 3.6043	 3.6043	 9.28	 0.003
Width	 3	 17.4492	 5.8164	 14.97 0.000
Depth	 3	 33.7177	 11.2392	 28.93	 0.000
Length	 3	 51.4815	 17.1605	 44.16	 0.000
Width*Depth	 9	 2.2111	 0.2457	 0.63	 0.768
Width*Length	 9	 12.9697	 6.9993	 18.01 0.000
Depth*Length	 9	 62.9935	 6.9993	 1801 0.000
Width*Depth*Length 27	 16.4179	 0.6081	 1.56	 0.052
Error	 127	 49.3467	 0.3886	 ______ _______
Total191	 248.6640 _________ ______ ________
Note: * is for interaction

Table C1.4 - Analysis of Covariance for Vx (Tank C7, Tnmpley)

Source	 DF	 ADJ. SS	 MS	 F	 P
Covariates	 1	 0.0091	 0.0091	 0.06	 0.802
Width	 3	 9.3537	 3.1179	 21.70 0.000
Depth	 3	 101.8875	 33.9625	 236.42 0.000
Length	 3	 14.8565	 4.9522	 34.47 0.000
Width*Depth	 9	 20.9599	 2.3289	 16.21 0.000
Width*Length	 9	 3.0053	 0.3339	 2.32	 0.019
Depth*Length	 9	 48.6069	 5.4008	 37.60 0.000
Width*Depth*Length 27 	 30.8971	 1.1443	 7.97	 0.000
Error	 127	 18.2439	 0.1437	 ______ _______
Total191	 248.6246 _________ ______ ________
Note: * is for interaction
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Table C1.5 - Analysis of variance for velocities in z-direction(run 1,2 & 3) using
multifactor balanced designs (Tank A3, Frankley)

Source	 DF	 SS	 MS	 F	 P
Width	 3	 0.18217	 0.06072	 0.96	 0.414
Depth	 3	 2.50115	 0.83372	 13.17 0.000
Length	 3	 8.90787	 2.96929	 46.90 0.000
Width*Depth	 9	 0.78527	 0.08725	 1.38	 0.205
Width*Length	 9	 0.64891	 0.07210	 1.14	 0.340
Depth*Length	 9	 3.08185	 0.34243	 5.41	 0.000 -
Width*Depth*Length 27	 1.49904	 0.05552	 0.88	 0.642
Error	 128	 8.10347	 0.06331 ______ _______
Total191	 25.70972 ________ ______ _______
Note: * is for interaction

Table C1.6 - Analysis of variance for velocities in z-direction(run 1,2 & 3) using
multifactor balanced designs (Tank C7, Trimpley)

Source	 DF	 SS	 MS	 F	 P
Width	 3	 0.061385 0.020462	 2.07	 0.107
Depth	 3	 0.990994 0.33033 1 33.45 	 0.000
Length	 3	 3.286790 1.095597 110.96 0.000
Width*Depth	 9	 0.202352 0.022484 2.28	 0.021
Width*Length	 9	 0.346073 0.038453 3.89	 0.000
Depth*Length	 9	 0.833481 0.092609 9.38 	 0.000
Width*Depth*Length	 27	 0.467540 0.017316	 1.75	 0.020
Error	 128	 1.263867 0.009874 ______ _______
Total191	 7.452481 ________ ______ _______
Note: * is for interaction

'bm obaby Fot

I	 0

nJ

:	
Oo 0j02'0

I	 oo8o°

.0.11
8

0	 00

10	 05	 00

FiS.Vz

Figure C1.5 - Plot of residuals versus
fitted values from the analysis of variance
for velocities in z-direction (Tank A3,
Frankley)
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Figure C1.6 - Normal probability plot of
residuals from the analysis of variance for
velocities in z-direction (Tank A3,
Frankley)

277



APPENDIX C
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Figure C1.7 - Plot of residuals versus fitted Figure C1.8 - Normal probability plot of
values from the analysis of variance for	 residuals from the analysis of variance for
velocities in z-direction (Tank C7,	 velocities in z-direction (Tank C7,
Trimpley)	 Trimpley)

Table C1.7 - Analysis of Covariance for Vz (Tank A3, Frankley)

Source	 DF	 ADJ. SS MS	 F	 P
Covariate(discharge)	 1	 0.00672	 0.00672	 0.12	 0.724
Width	 3	 0.36977	 0.12326	 2.29	 0.081
Depth	 3	 3.09192	 1.03064	 19.15	 0.000
Length	 3	 10.28514	 3.42838	 63.70 0.000
Width*Depth	 9	 0.51924	 0.05769	 1.07	 0.388
Width*Length	 9	 0.66775	 0.07419	 1.38	 0.204
Depth*Length	 9	 2.76413	 0.30713	 5.71	 0.000
Width*Depth*Length 27	 1.54876	 0.05736	 1.07	 0.390
Error	 127	 6.83501	 0.05382 ______ _______
Total191	 26.09574 _________ ______ _______
Note: * is for interaction

Table Cl.8 - Analysis of Covariance for Vz(Tank C7,Trimpley WTW).

Source	 DF	 ADJ. SS MS	 F	 P
Covariate(discharge)	 I	 0.24166	 0.24166	 30.02 0.000
Width	 3	 0.04785	 0.01595	 1.98	 0.120
Depth	 3	 0.98564	 0.32855	 40.82 0.000
Length	 3	 2.73531	 0.91177	 113.28 0.000
Width*Depth	 9	 0.21156	 0.02351	 2.92	 0.004
Width*Length	 9	 0.27872	 0.03097	 3.85	 0.000
Depth*Length	 9	 0.82851	 0.09206	 11.44 0.000
Width*Depth*Length 27	 0.46134	 0.01709	 2.12	 0.003
Error	 127	 1.02221	 000805 ______ _______
Total191	 7.45248	 _________ _______ ________
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Table Dl. 1 - ANOVA on flow rate between different runs (Tank A3, Frankley)

Source	 DF	 SS	 MS	 F	 P
Runs	 2	 103.31	 51.66	 30.70	 0.000
Error189	 318.02	 1.68	 __________ __________
Total191	 421.33	 ___________ ___________ ___________

Table D1.2 - ANOVA on flow rate between different runs (Tank C2, Frankley)

Source	 DF	 SS	 MS	 F	 P
Runs	 2	 331.21	 165.61	 160.60	 0.000
Error189	 194.89	 1.03	 ______________________
Total191	 526.11	 __________ _____________________

Table D1.3 - ANOVA on flow rate between different runs (Tank Cl, Trimpley)

Source	 DF	 SS	 MS	 F	 P
Runs	 2	 98.227	 49.113	 227.68	 0.000
Error	 189	 40.769	 0.216	 __________
Total191	 138.996	 ___________

Table D1.4 - ANOVA on flow rate between different runs (Tank C7, Trimpley)

Source	 DF	 SS	 MS	 F	 P
Runs	 2	 173.691	 86.845	 444.30	 0.000
Error189	 36.943	 0.195	 _____________________
Total191	 210.634	 _______________________

o p.	 -

oa	 I

	

II	
I

1	 2

Tais

Figure Dl.! - Boxplots of turbidity
between Tanks Cl and C7 (Trimpley
WTW)
Note: Tank 1=Tank Cl Tank 2=Tank C7
and y-axis=discharge in million litres per
day

Figure D1.2 - Boxplots of discharge
between Tanks Cl and C7(Trimpley
WTW)
Note: Tank 1=Tank Cl, Tank 2=Tank C7
and y-axis=discharge in million litres per
day.
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APPENDIX D

Turbidity removal at depth D4(Tanks Cl and
C7TrImolevl
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Figure D1.3-Turbidity removal along the length of the tank at depth D4, Trimpley
WTW
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Figure D1.4-Turbidity removal along the length of the tank at depth D3, Trimpley
WTW

Turbidity removal at depth D2(Tanks Cl and
C7,Trimpley)
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Figure Dl. 5-Turbidity removal along the length of the tank at depth D2, Trimpley
WTW
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Turbidity removal at depth D1(Tanks Cl and
C2,Tri m pley)
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Figure Dl. 6-Turbidity removal along the length of the tank at depth Dl, Trimpley
WTW

Variation of turbidity at depth D4 for Run I
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Figure Dl. 7- Turbidity variation at depth D4, Trimpley WTW

Figure Dl.8 - Turbidity variation at depth D3, Trimpley WTW
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Variation of turbidity at depth D2 for Run I
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Figure D1.9 - Turbidity variation at depth D2, Trimpley WTW

Variation of turbidity at depth Dl for Run I
(Tank CI,Trlmpley)
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Figure Dl .10 - Turbidity variation at depth Dl, Trimpley WTW

Table Dl .5 - ANOVA between runs and depths for Tank C2 (Frankley WTW)

Source	 DF	 SS	 MS	 F	 __________
Run	 2	 1.24414	 0.62207	 20.71	 10.000
Depth	 3	 0.11151	 0.03717	 1.24	 10.308
Error42	 1.26138	 0.03003	 __________ __________
Total47	 2.61703	 ___________ ___________ ___________

Table D1.6 - ANOVA between runs and depths for Tank Cl (Trimpley WTW)

Source	 DF	 SS	 MS	 F	 P
Run	 2	 5.4399	 2.7199	 328.72	 0.000
Depth	 3	 0.0092	 0.003 1	 0.37	 0.773
Error42	 0.3475	 0.0083	 __________ ___________
Total47	 5.7966	 ___________ ___________ ___________
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Table D1.7 - ANOVA between runs and depths for Tank C7 (Trimpley WTW)

Source	 I[DF 	 SS	 MS	 F	 P
Run	 1 2	 0.17007	 0.08503	 6.60	 0.003
Depth	 __________ 0.03266	 0.01089	 0.84	 0.477
ErrorJ42	 0.54108	 0.01288	 _________ _________
Total47	 0.74380	 ___________ ___________ ___________

Table D1.8 - Significant test for turbidity between half length and
three-quarter length from the baffle (Tank A3, Frankley)

Source	 DF	 SS	 MS	 F	 P
Length	 1	 0.35648	 0.35648	 30.32	 0.000
Run	 2	 0.47521	 0.23760	 20.21	 0.000
Error 20	0.23516	 0.01176	 __________ __________
Total23	 1.06685	 ___________ ___________ ___________

Table D1.9 - Significant test for turbidity between half length and
three-quarter length from the baffle (Tank C2, Frankley)

Source	 DF	 SS	 MS	 F	 P
Length	 1	 0.09065	 0.09065	 4.57	 0.000
Run	 2	 0.72859	 0.36430	 18.36	 0.000
Error20	 0.39677	 0.01984	 ___________ ___________
Total23	 1.21602	 __________ __________ __________

Table D1.10 - Significant test for turbidity between half length and
three-quarter length from the baffle (Tank Cl, Trimpley)

Source	 DF	 SS	 MS	 F	 P
Length	 1	 0.0394	 0.0394	 8.20	 0.010
Run	 2	 3.2022	 1.6011	 332.81	 0.000
Error20	 0.0962	 0.0048	 ___________ ___________
Total23	 3.3379	 ___________ ___________ ___________

Table Dl. 11 - Significant test for turbidity between half length and
three-quarter length from the baffle (Tank C7, Trimpley)

Source	 DF	 SS	 MS	 F	 P
Length	 1	 0.020126	 0.020126	 4.87	 0.039
Run	 2	 0.105470	 0.052735	 12.76	 0.000
Error20	 0.082632	 0.004132	 ___________ ___________
Total23	 0.208228	 ___________ ___________ ___________
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Table Dl. 12 - Significant test for turbidity between one-quarter length and
half length from the baffle (Tank A3, Franidey)

Source	 DF	 SS	 MS	 F	 P
Length	 1	 0.06253	 0.06253	 6.37	 0.020
Run	 2	 0.74266	 0.37133	 37.80	 0.000
Error20	 0.19646	 0.00982	 __________ __________
Total23	 1.00164	 __________ __________ __________

Table Dl. 13 - Significant test for turbidity between one-quarter length and
half length from the baffle (Tank C2, Frankley)

Source	 DF	 SS	 MS	 F	 P
Length	 1	 0.00940	 0.00940	 0.76	 0.395
Run	 2	 0.21937	 0.10969	 8.83	 0.002
Error20	 0.24849	 0.01242	 ___________ ___________
Total23	 0.47727	 ___________ ___________ ___________

Table Dl. 14 - Significant test for turbidity between one-quarter length and
half length from the baffle (Tank Cl, Trimpley)

Source	 DF	 SS	 MS	 F	 P
Length	 1	 0.0049	 0.0049	 0.63	 0.436
Run	 2	 3.3299	 1.6650	 214.40	 0.000
Error20	 0.1553	 0.0078	 __________ __________
Total23	 3.4901	 ___________ ___________ ___________

Table Dl. 15 - Significant test for turbidity between one-quarter length and
half length from the baffle (Tank C7, Trimpley)

Source	 DF	 SS	 MS	 F	 P
Length	 1	 0.002763	 0.002763	 0.87	 0.361
Run	 2	 0.010132	 0.005066	 1.60	 0.227
Error20	 0.063349	 0.003167	 __________ __________
Total23	 0.076243	 ___________ ___________ ___________
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Table Dl. 16 - Average turbidity at various positions in the tanks at Frankley WTW

Position POINTS Run 1	 Run 2 Run 3	 Run 1	 Run 2	 Run 3
(length in Tank A3 Tank A3 TankA3 Tank C2 Tank C2 Tank C2

_____ metre) (NTU) (NTU) (NTU) (NTU) (NT!]) (NT!])
Inlet	 0.000	 1.9	 4.5	 2.1	 5.1	 1.6	 2.3
D/D1	 2.100	 1.225	 1.45	 1.775	 1.575	 1.275	 1.225
CID1	 4.200	 1.5	 1.575	 1.9	 1.85	 1.225	 1.275
B/D1	 6.300	 1.05	 1.55	 1.575	 1.45	 1.3	 1.475
A/D1	 7.900	 1.35	 1.675	 1,825	 1.475	 1.1	 1.275
D/D2	 2.100	 1.65	 1.95	 1.475	 1.875	 1.2	 1.35
C/D2	 4.200	 1.7	 1.5	 1.625	 1.925	 1.425	 1.225
B/D2	 6.300	 1.15	 1.4	 1.525	 1.5	 1.15	 1.325
A/D2	 7.900	 1.125	 1.65	 1.475	 1.375	 1.25	 1.15
D/D3	 2.100	 1.45	 1.725	 1.875	 1.65	 1.45	 1.2
CID3	 4.200	 1.425	 1.575	 1.75	 1.7	 1.125	 1.475
B/D3	 6.300	 1.175	 1.4	 1.625	 1.75	 1.25	 1.125
A/D3	 7.900	 1.275	 1.475	 1.55	 1.425	 1.225	 1.35
DID4	 2.100	 1.725	 2	 2.3	 2.2	 1.6	 1.6
CID4	 4.200	 1.575	 1.55	 1.775	 1.775	 1.3	 1.425
B/D4	 6.300	 1.1	 1.325	 1.65	 1.325	 1.325	 1.275
A/D4	 7.900	 1.275	 1.475	 1.6	 1.425	 1.325	 1.4
Note: Position indicates point from the baffle and the depth, for example A/D4
indicates it is 7.9m from the baffle and at depth D4(refer to Figure 4.5 in Chapter 4).

Table Dl. 17 - Average turbidity at various positions in the tanks at Trimpley WTW

Position POINTS Run 1 Run 2 Run 3 Run 1 Run 2 Run 3
(length in Tank Cl Tank Cl Tank Cl Tank C7 Tank C7 Tank C7

_____ metre)	 (NTU) (NT!]) (NTU) (NTLJ) (NTU) (NT!])
Inlet	 0.000 3.500	 2.100	 1.400	 2.2	 3.2	 2.7
D/D1	 1.695 1.125	 0.698	 0.455	 0.565	 0.635	 0.7925

C/D1	 3.390 1.200	 0.465	 0.433	 0.655	 0.56	 0.8175
B/D1	 5.085 1.425	 0.538	 0.448	 0.64	 0.5575	 0.7
A!D1	 6.280 1.185	 0.535	 0.478	 0.68	 0.7125	 0.5875
D/D2	 1.695 1.1125	 0.6275	 0.4425	 0.5225	 0.595	 0.78
C/D2	 3.390 1.275	 0.505	 0.445	 0.665	 0.6025	 0.99
BID2	 5.085 1.3875	 0.5875	 0.44	 0.6775	 0.6025	 0.6925
A/D2	 6.280 1.075	 0.53	 0.4925	 0.655	 0.6775	 0.5675
D/D3	 1.695 1.125	 0.625	 0.4825	 0.5475	 0.545	 1.0225
CID3	 3.390 1.125	 0.51	 0.4375	 0.6425	 0.585	 0.7875
B/D3	 5.085 1.375	 0.5775	 0.4375	 0.655	 0.6525	 0.63
AID3	 6.280 1.1875	 0.5425	 0.525	 0.705	 0.7125	 0.605
D/D4	 1.695 1.225	 0.73	 0.51	 0.565	 0.665	 1.175
CID4	 3.390	 1.05	 0.55	 0.48	 0.7025	 0.665	 0.8125
BID4	 5.085	 1.25	 0.535	 0.4475	 0.6775	 0.6125	 0.6925
A/D4	 6.280	 1.5	 0.535	 0.52	 0.7875	 0.7575	 0.6
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