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Abstract

Perinatal ischemic stroke (PIS) in humans occurs mostly at full term and is a significant cause
of hemiplegic cerebral palsy. A suitable animal model is needed to test early intervention
therapies. Firstly, we developed and compared two PIS Models; middle cerebral artery
occlusion (MCAO) at the level of the temporal bone, and the injection of reversible
vasoconstrictor endothelin-1 (ET-1) into the sensorimotor cortex (SMC), at postnatal day (P)
12. Appropriate sham procedures were performed. Animals underwent behavioural testing
(cylinder and grid walking tests) at P35-40 followed by immunohistological examination of the
brain for markers of inflammation and hypoxia. We found that MCAO is a poor stroke model
in P12 rat pups with minimal involvement of the SMC, a major site of damage in human
neonates, however ET-1 models did induce focal ischemia in the SMC. However, no significant
behavioural deficits were detected in either model although there was a trend towards a deficit

in the ET-1 animals.

In a second study, ET-1 or sham treated animals received a unilateral injection of retrograde
tracer into the contralesional cervical spinal cord at P40. There was depletion of corticospinal
(CS) neurons in the ipsilesional hemisphere but an increase in labelled CS neurons in the
contralesional cortex. An upregulated ipsilateral corticospinal pathway is a feature of human
hemiplegic CP again suggesting that ET-1 model is an appropriate model. We found

preliminary evidence that this nervous system plasticity could rescue behavioural performance.

Finally, we attempted an intervention therapy to repair the corticospinal tract by grafting human
neural stem cells into the SMC of ET-1 lesioned animals. Cells were dispersed in a semi-
synthetic extracellular matrix (1x10° cells per pl) and either cultured in vitro or transplanted in
vivo to the lesioned SMC at P14. Rosettes of cells resembling cerebral organoids and
expressing human specific NCAM were observed in vivo at the graft site after a month but not
in in vitro cultures. The organoids comprised a dense cellular layer expressing neural progenitor
cell markers arranged around a small lumen surrounded by more loosely packed cells with
neurites expressing markers for post-mitotic neurons. Some host cells and blood vessels
infiltrated the graft and after three months the organoids had broken down and very few

transplanted neurons had integrated with host tissue.



Animal modelling of hemiplegic cerebral palsy continues to present a significant challenge but
some progress has been made. The feasibility of using neural stem cells for perinatal brain

repair has been tested with unexpected results.
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Chapter 1. Introduction

Stroke during the perinatal period of life is a leading cause of cerebral palsy (Kirton et al., 2011)
and holds second place in terms of incidence after elderly stroke (Raju et al., 2007). Up to sixty-
eight percent (68%) of children who experience perinatal stroke develop cerebral palsy, of
whom hemiplegic cerebral palsy occurs in 87% (Golomb et al., 2008). It affects 1/2300 full
term neonates and 7/1000 preterm infants (Benders et al., 2008, Schulzke et al., 2005). It is
therefore a common condition that causes disability throughout life.

In fact, the perinatal stroke led to hemiplegic cerebral palsy that is progressive in its nature. In
cerebral palsy children, there is a progressive loss of corticospinal projections from the affected
cortex two years after the stroke resulting in progressive appearance of hemiplegic cerebral
palsy sign and symptoms over the first two years of life (Eyre et al., 2007). Thus, perinatal
stroke results in a major health condition that requires an effective therapy. Such a therapy,

however, remains unavailable.

Although there are no current recommended treatments for PIS (Basu, 2014), there are some
experimental approaches such as applying hypothermia at the time of the stroke. Hypothermia
decreases the risk of disability in neonates with hypoxic ischemic encephalopathy (Jacobs et
al., 2013) and reduces the lesion size by 44% in neonates with ischemic stroke (van der Worp
et al.,, 2007). However, this approach has side effects such as bradycardia and
thrombocytopenia. Also it has some limitations: treatment should be administered within
around 6 hours after the onset of the stroke and more randomized clinical trials are needed in
the acute stage of the ischemic stroke (Jacobs et al., 2013, van der Worp et al., 2007) . Another
experimental approach is the systematic administration of Erythropoietin which is a cytokine
that contributes to immunomodulation, angiogenesis and cell death inhibition (Xiong et al.,
2011). As yet there are insufficient experimental investigations to judge the safety of

erythropoietin treatment and its effectiveness in treating stroke (Souvenir et al., 2015).

Experimental models have been developed to mimic human perinatal stroke under specific
criteria (Hsu, 1993). Such models vary in terms of the techniques used to develop perinatal
stroke and the age of the animal.



In order to test potential therapies, extensive research has been carried out with animal models
of adult stroke, but such studies in neonatal animals are far more limited. In this introduction |
will describe in more detail the effects of perinatal arterial stroke in humans, how we might
model the condition in rodents. Then I will go onto describe the rationale for using stem cell
grafts as a therapy for treating perinatal brain injury and how this might be approached in an

animal model.

1.1 Perinatal arterial ischemic stroke (PIS)

As proposed by participants in the perinatal stroke workshop of the United States National
Institutes of Health in 2006, perinatal ischemic stroke is defined as ‘a vascular event causing
focal interruption of blood supply, occurring between 20 weeks of foetal life through 28th
postnatal day (P28), and confirmed by neuroimaging or neuropathology studies,’ and it involves
either arterial or venous occlusion (Raju et al., 2007). PIS is one of five subcategories of
neonatal stroke: PIS, Neonatal arterial ischemic stroke, cerebral sinovenous thrombosis,
intracerebral hemorrhage, and periventricular venous infarction (Kirton and Deveber, 2013).
Focal ischemia in human neonates has higher incidence than global cerebral ischemia resulting
from hypoxia (Lynch, 2009), and PIS occurs mainly at, or close to, full term (Kirton and
Deveber, 2013). The arterial injury most involved in PIS, based on diffusion-weighted imaging,
is left middle cerebral artery occlusion (MCAO) with focal injury or multi focal injury at
cortical and sub-cortical regions, leading to long-term disabilities (Kirton and Deveber, 2013)
and limitations in hand use (Golomb et al., 2008).

Clinical diagnosis is usually based on cranial imaging triggered by the presence of seizures
and/or encephalopathy during the first few days of life, yet it is not a symptom for all PIS

victims’ especially preterm infants

The mechanisms underlying neuronal death in PIS is complex. The activation of the apoptotic
pathways depends on intrinsic factor, mitochondria, and extrinsic factors, cell death receptor
such as caspases, after the neonatal stroke (Fernandez-Lopez et al., 2014). Neuronal apoptosis
or caspase-3 activation is a crucial mechanism in focal ischemia occurred after the necrosis in
the infarction core and decreases with brain maturation (Hu et al., 2000, Manabat et al., 2003).
The Coexistence of these mechanisms resulted in continuum cell death that occurs only in
neonatal stroke (Northington et al., 2011). Although microglia activation after neonatal stroke
shows harm effect in term of producing inflammatory and toxic mediators, they contribute to

2



endogenous brain defences in acute stage, reduces infarction size and apoptotic debris removal
size (Faustino et al., 2011, Woo et al., 2012).

Permanent MCA occlusion results in severe ischemic injury, as indicated by caspase-3 activity,
transient occlusion can produce lower injury severity, depending on occlusion duration with
apoptosis (Derugin et al., 2000, Manabat et al., 2003). Apoptosis-like cell death also occurs
during the first 24 hours in permanent occlusion models (Wen et al., 2004).

In many children with cerebral palsy, the descending pathways, including the corticospinal
tract (CST), is affected (Eyre et al., 2007). Although it has often been proposed that the
developing motor system has increased plasticity with which to compensate for these deficits
(Choi et al., 2010, Kennard, 1938) there is also abundant evidence that aberrant plasticity leads
to the increased and different symptoms seen in cerebral palsy compared to similar lesions in
adults (Kolb and Gibb, 2007). The human situation only provides opportunities for
observational and non-invasive research, highlighting the need for an animal model. In neonatal
stroke models, although rodents do not suffer spasticity or severe locomotor impairment in
response to SMC lesions, there is evidence of subtle, CST dependent sensorimotor deficits that

can be quantified (Clowry et al., 2014).

It is important to know that differences between human and rodent CST exist (Clowry et al.,
2014). One difference is the number of decussating CST fibers. The CST fibers descend from
the cortical level of the brain and decussate at the level of the medulla oblongata before
descending to the spinal cord (Kuypers, 1981). In rodents, only 2-3% of these descending axons
do not decussate, whereas in human and primates, non-crossing fibers make up 13% (Kuypers,
1981, Rouiller et al., 1991). Another difference is the anatomical location of the descending
CST in the spinal cord. In human, the CST descends in the white matter laterally whereas in
rodent it descends in the dorsal funiculus (Figure 1.1A) (Armand, 1982). Despite these
differences there are similarities that make rats a good species to model PIS. For example, in
both humans and rodents, the CST projects the full length of the spinal cord (Armand, 1982,
Bareyre et al., 2005, Lemon, 2008) whereas in other animals such as sheep the CST fails to

project below the upper cervical level (Nieuwenhuys et al., 2014).
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Figure 0.1 corticospinal tract and cerebral arteries schematic diagrams.

(A) Simplified illustration of the SMC, motor cortex, and CST pathway in human/primate
and rat central nervous system (CNS). (B) View of ventral surface of brain. Intraluminal
filament MCAO. The cerebral arteries forming the circle of Willis: Anterior circulation
consists of internal carotid artery (ICA), posterior cerebral artery (PCA), middle cerebral

artery (MCA), and anterior cerebral artery (ACA).



1.2 PIS model via MCAO

In human neonates, PIS events occur mostly in the middle cerebral artery (MCA), while
occlusion of the cortical branch occurs in preterm infants (Kirton and Deveber, 2013, Lee et al.,
2005b). Focal MCAO models reflect the vascular distribution seen in human neonates that
experience ischemic stroke, in contrast to other ischemic-hypoxia models, such as Rice-
Vannucci’s model (Hagberg et al., 2002, Rice et al., 1981), of unilateral carotid ligation and
hypoxia (Ashwal et al., 2007), where the injury distribution extends beyond the MCA territory.
Furthermore, ischemic-hypoxia models lead to injuries in both cerebral hemispheres, since
these models involve global hypoxia in addition to arterial occlusion (Ashwal et al., 2007). This
leads to a massive injured area that includes the striatum, hippocampus, cortex, and white matter
(Ashwal et al., 2007, Derugin et al., 2000). As such, the pathophysiological and histological
events that occur with focal MCAO infarcts are different from those in a hypoxic-ischemia
model (Derugin et al., 2000, Tsuji et al., 2013).

Unilateral infarction in perinatal stroke occurs on the left MCA by (63%) and on the right MCA
by (61%) whereas bilateral arterial distribution infarcts occurs only by (7-8%) in both term and
preterm infants. The MCA is involved in 91% of PIS term neonates and 81% in preterm infants

and only few have another cerebral artery territory (Husson et al., 2010, Lee et al., 2005a).

1.2.1 Transient and permanent MCAO

The heterogeneous nature of PIS in humans leads to two types of studies. Some investigators
use permanent focal MCAO in animal models, while others apply transient occlusion that
allows for reperfusion of occluded vessels; the decision about which to use is based on the
study’s purpose. The pathology in both types is similar, as both involve neuronal cell death.
Conversely, injury pattern and severity of brain injury differ between the types. Whereas
permanent occlusion results in severe ischemic injury, as indicated by caspase-3 activity and
Apoptosis-like cell death (Wen et al., 2004) , transient occlusion produces lower injury

severity, depending on occlusion duration (Derugin et al., 2000, Manabat et al., 2003).

Two zones of ischemic injury are present after introducing transient MCAO lesion in rat pups.
The most severe injury zone, with little possibility of recovery, is at the center of the injured
area and involves necrosis. The zone with less severity is at the periphery and involves

apoptosis; it is called a penumbra. It is vulnerable but has some scope for recovery in the right



environment (Bouet et al., 2010, Derugin et al., 2000, Manabat et al., 2003, Renolleau et al.,
1998)

Studies using transient MCAO (Ashwal et al., 1995, Ashwal et al., 2007, Derugin et al., 1998,
Derugin et al., 2000) have claimed that the model reflects neonatal PIS, since reperfusion
mimics what happens to neonates when collateral circulation is permitted to the penumbral part
of the ischemic lesion (Kahvecl et al., Liebeskind, 2003). On the other hand, studies not using
reperfusion in their MCAO model have argued that either the reperfusion timing or the chance
of reperfusion occurrence itself differs among patients (Tsuji et al., 2013). Since the nature of
PIS is heterogeneous in neonates, both transient and permanent MCAQO methods can be utilized

according to the study aim.

Different techniques that utilize either permanent or transient occlusion of the left MCA to
produce focal ischemic injury will be reviewed here (Kirton and Deveber, 2013, Lee et al.,
2005b). One method is intraluminal MCAO. In this technique, the internal carotid artery is
catheterized by monofilament suture to occlude the MCA permanently by retaining the
filament, or temporarily by removing the filament at the desired time (Belayev et al., 2010)

(Figure 1.1B). This model was developed by Koizumi in 1986 in adult rats (Koizumi, 1986).

Another method is transient MCAO via the carotid artery. This approach was first applied in
1995 on young P14-18 rats (Ashwal et al., 1995), with transient occlusion at the proximal MCA
induced by inserting a nylon filament through the external carotid artery into the internal carotid
artery, followed by reperfusion. Cytotoxic edema occurred in the ischemic region immediately
after occlusion, and severe injury occurred in a similar region after perfusion (Derugin et al.,
2000). Regarding infarction volume, one study that used high-field magnetic resonance imaging
(MRI) in neonatal animals over a 28-day period demonstrated that transient filament MCAO
models induce infarction with maximum volume at days 1-3 (Ashwal et al., 2007). Using this
technique for a period of 3 hours yielded infarct volumes of around 38-54% and may resemble
human stroke in terms of injury type and necrosis located in the caudate and putamen(Ashwal
et al., 1995). When MCAOQ induced via transient (60-90 min) occlusion of the carotid artery
was combined with permanent ligation of the middle cerebral artery, only neocortical injury
occurred (Renolleau et al., 1998). Using transient MCAO for 3 hours via external carotid artery
yielded infarct volumes around 38 to 54% and it may resemble human stroke; injury type and
location necrosis in the caudate and putamen (Ashwal et al., 1995).
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Mechanical damage to the blood vessels and hemorrhage during insertion of the nylon filament
is one complication that can occur (Ashwal et al., 1995). Also, reliability of the infarction is
questionable since it is measured 24 hours after injury; many events can happen within this
period of time, such as decreased edema size after 24 hours (Dirnagl, 2010). Using this model
for a longer period yields a high mortality rate. Only 21% of rat pups survived for 28 days using
this model (Ashwal et al., 2007).

Another study was conducted on 7-day-old rats (Derugin et al., 1998). A suture with a silicone-
coated tip was used to cause transient occlusion of the MCA (through insertion into internal
carotid artery via the external carotid artery) followed by reperfusion. This technique was
developed to decrease the perfusion complications that occurred in (Ashwal et al., 1995)
transient MCAO model by measuring insertion length to increase infarction reliability. The
model might be avoided by other researchers, however, because of the difficulty of inserting
the size 7-0 suture into the tiny external carotid artery of P7 rat pups. Furthermore, vessel sizes
vary within similar species at certain ages, leading to incomplete perfusion of the occluded

artery when using a fixed-size inserted suture (Belayev et al., 2010, Li et al., 1999).

In both Ashwal et al. (1995) and Renolleau et al. (1998), perfusion complications may occur
due to the skills needed to perform the procedure. The time required to perform such a surgery
results in issues with temperature control, which is important for reducing the variability of the
lesion size. In addition, direct damage to the vascular endothelium occurs. The mortality rate
may reach 7% (Belayev et al., 2010, Derugin et al., 2000).

1.2.2 Transient MCAO by transient common carotid artery (CCA) ligation and permanent
MCA ligation

After Ashwal et al. (1995) developed their transient focal ischemia model in rats aged between

P14 and P18, Renolleau et al. (1998) claimed to have overcome the difficulty of applying

Ashawl’s model on P7 rats by developing another model for transient focal ischemia. The

model involves a permanent electroligation of the left MCA at its distal part, combined with

transient CCA occlusion (Renolleau et al., 1998). Rennollau et al. (1998) occluded both arteries

because they found that permanent ligation of only the MCA resulted in no ischemic lesion.

The resulting infarction volume is less than that from intraluminal MCAOQ via the carotid artery

(Ashwal et al., 1995, Renolleau et al., 1998), and the ischemic area involves neocortical



infarction and small variability at the level of the striatum (Renolleau et al., 1998). This model
can lead to sensorimotor and cognitive impairments in early adulthood, including postural
asymmetry, motor coordination, cognitive impairments, and a cone shape ischemic lesion that

contains only glial cells and no neurons and macrophages at P40 (Bouet et al., 2010).

Although Renolleau et al. (1998) intended to develop a model for transient unilateral ischemia
that included perfusion and could mimic what happens to the human neonate in the intensive
care unit, the perfusion was not complete due to permanent MCAO. In addition, ligation of an
extra cranial vessel to reflect events that occur in humans is a questionable practice. Similar to
the intraluminal MCAO technique, Renolleau et al.’s model requires considerable time to

perform, leading to a high mortality rate.

1.2.3 Permanent MCAO by carotid artery ligation

The MCA was occluded permanently when the carotid artery in rat pups by inserting an
embolus into the external carotid artery and then advancing it to the internal carotid artery until
it reached the MCA (Derugin et al., 2000). The technique was improved by Wen et al. (2004),
who inserted silicon-coated suture emboli into the CCA to occlude the middle cerebral artery.
The authors claimed that the infarction pattern in their model mimics that of the MRI pattern in
the human neonate (Govaert et al., 2000). Infarcts in this model are located in the cortex and
the striatum, and the cortical infarcted area is 51-56% of the ipsilateral hemisphere in the

forebrain, with apoptosis-like cell death occurring during the first 24 hours (Wen et al., 2004).

Variation in the cerebrovascular structures within the same rat species leads to varied
histological outcomes in term of anatomical location after inducing ischemic lesion in stroke
models. Wen et al. (2004) claimed that their model overcomes the complications experienced
in previous studies (Ashwal et al., 1995, Derugin et al., 1998, Renolleau et al., 1998) by
demonstrating a 0% mortality rate. In Wen et al.’s study, the inserted suture embolus was
individualized to the rat’s size. It was inserted into the left CCA instead of the external carotid
artery in order to make the procedure easier. Although the infarction was noted in all rats with
no mortality, bleeding occurred in 9% of the animals in this model, indicating that such an
invasive technique requires skills that may affect the selection of this model. Also, the study

only showed MCAOQO outcomes for 24 hours; a longer period is needed to observe outcomes.

1.2.4 Direct occlusion of the middle cerebral artery



Direct occlusion of the MCA is performed by occluding the MCA by inserting intraluminal
filament or by electrocauterization to produce permanent MCAOQO. In immature rats, occlusion
of the left MCA leads to no ischemic lesion (Coyle, 1982, Renolleau et al., 1998). Recently, the
technique was applied in neonatal CB-17 mice (Tsuji et al., 2013), where the distal part of the
left MCA was electrocauterized, resulting in an infarction volume of 73+3.2 mm?®. In this model,
selective and consistent cortical injury, mild corpus callosum atrophy, and mild thalamic injury
were reported, all of which also occur in infant stroke (Tsuji et al., 2013). Behaviourally, this
model leads to significant sensorimotor defects, such as in rotarod and open-field tests (Tsuji et
al., 2013).

Variation in the cerebrovascular structures within the same rat species leads to varied
histological outcomes in term of anatomical location after inducing ischemic lesion in stroke
models. For example, Wistar rats exhibited no infarction after receiving a similar injury to CD-
17 mice because of a different vascular distribution that provides collateral supply to the injured
area (Kahvecl et al., Liebeskind, 2003).

In CB-17 mice, the advantages of this model include high reproducibility, less needed time to
perform (e.g. 15 minutes), and high survival rate (100%) (Tsuji et al., 2013). However, the
reproducibility is due to using the CB-17 strain, which has little variation in cerebrovascular
structure (Taguchi et al., 2010). This limitation could be reduced by avoiding the use of strains
with high collateral blood supply (Macrae, 2010). Furthermore, infarction volume cannot be

increased or decreased, since the occlusion is permanent.

1.2.5 MCAO via the photo thrombotic technique

The photothrombotic technique was developed in 1985 by Watson et al; it produces thrombosis
by injecting the animal with a photosensitive dye and exposing it to a laser, resulting in
permanent focal ischemia(Watson et al., 1985). When the photosensitive dye is exposed to a
green laser light, a photochemical reaction occurs that leads to brain infarction (Witte, 2010).
Permanent MCAO was achieved by Kuluz et al. (2007), who exposed the MCAto a laser beam
over 15 minutes and 4 hours (Kuluz et al., 2007). Their aim was to develop a new model of
ischemic stroke in infant piglets. Severe reduction in cerebral blood flow and grey and white
matter injury with a 7.1-12.3% infarction volume of ipsilateral hemisphere occurred in this
piglet model. Recently, a 7-day-old rat model was developed by directly injuring the SMC via
application of a green laser beam over 30 seconds and 5 minutes (Brima et al., 2013). As laser
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exposure duration increased, the severity and size of injury increased, as did the deficit in motor
performance (Brima et al., 2013).

1.3 PIS model via Endothelin-1 (ET-1)

The potent vasoconstriction peptide ET-1 was first used in 1990 (Robinson et al., 1990) to
produce an ischemic lesion in the brain by temporally reducing the cerebral blood flow. This
reduction was followed by a gradual return over 3 days when ET-1 was injected intrastriatally
into juvenile rat brains (Saggu, 2013). The ET-1 application method is being increasingly used
because of its advantages over other methods. When ET-1 was injected into P1 rat
hippocampus, it caused a temporary reduction in oxygen saturation 10 minutes post injection,
before ET-1 produced a significant reduction in oxygen saturation and cerebral blood flow
lasting one and a half hours (Tsenov et al., 2015).

1.3.1 ET-1 application adjacent to the MCA

To occlude the MCA and at the same time avoid manipulating the cerebral vessels, which
complicates the surgical procedure, researchers injected ET-1 adjacent to the MCA in adult
models of stroke (Sharkey and Butcher, 1995, Sharkey et al., 1994, Windle et al., 2006, Yager
et al., 2006). Yager et al. (2006) aimed to produce ischemic lesions at three different ages (P10,
P63, P180) by injecting ET-1 intracerebrally adjacent to the MCA. Windle et al. (2006) tested
4 methods for delivering ET-1 to produce focal cerebral ischemia: topical, intracortical,
adjacent to MCA, and intracortical plus intrastriatal application. They concluded that the last

method is most effective in terms of inducing focal ischemia.

1.3.2 ET-1 application into specific brain regions

ET-1 can be applied topically on the cortical surface. For example, applying ET-1 on the surface
of the SMC produces dorsal ischemic lesions (Adkins et al., 2004, Fuxe et al., 1992, Hsu and
Jones, 2005, Windle et al., 2006). However, topical application leads to diffuse non-focal
ischemic lesions. To produce more focal ischemia, ET-1 was injected via stereotaxic injection
into several brain regions (Frost et al., 2006, Fuxe et al., 1992, Gilmour et al., 2004, Windle et
al., 2006).

In addition to the use of topical ET-1 in ischemia studies, ET-1 has been also used
intracerebrally in adult stroke models. Intracerebral injection of ET-1 resulted in focal ischemia
in adult and aged rat brains (Soleman et al., 2010, Windle et al., 2006).
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Only very recently has a model of cerebral ischemia in neonates been developed. Neonatal focal
stroke was produced via intracerebral injections of ET-1 into the motor cortical region of P14
rat pups (Gennaro et al., 2017). ET-1 has also been delivered intracerebrally into the
hippocampus of P12 and P25 rats, with greater damage seen in the younger group (Mateffyova
et al., 2006, Tsenov et al., 2015).

1.3.3 Advantages of using ET-1

Endotheline-1 overcame some challenges that are present in other stroke modelling methods.
For example, infarction volume cannot be increased or decreased after permanent MCAO by
electroligation while the infarction size is dose-dependent when using ET-1 (Tsenov et al.,
2015). Also, the ET-1 method avoids the invasive technique that requires skills when inserting
an embolus into the external carotid artery and then advancing it to the internal carotid artery
until it reached the MCA in rat pups by (Derugin et al., 2000). The various uses of ET-1, in
addition to the quick and less invasive procedure because there is no need to manipulate the
cerebral vessels, make ET-1 a compelling tool for stroke modelling studies (Windle et al.,
2006).

Another important advantage of using ET-1 is that the gradual reperfusion induced by the ET-
1 is more related to the PIS pathology (Mecca et al., 2009, O'Neill and Clemens, 2001, Saggu,
2013, Sharkey et al., 1993). The use of apparent diffusion coefficient MRI to investigate the
ischemic pathology induced by intrastriatal microinjection of ET-1 in 3-week-old and adult rats
showed a reduction in blood flow in the younger rat group at 2.5 h, followed by recovery by 72
hours, yet persisted in the adults (Saggu, 2013). However, variability in the resulting infarction

between animals was observed using this method.

1.4  Age-dependent patterns of injury

Events of perinatal ischemia in human are suggested to occur anytime over a period of 20 weeks
during the foetal or neonatal periods (Raju 2008). Clinicians and scientists thus adopt human
perinatal stroke subtypes according to the infant age when the diagnosis is made, and according
to radiological readings, which detail patterns of injury (Kirton and Deveber, 2013, Raju et al.,
2007). The first week of life is the most common period of PIS occurrence (Kirton and Deveber,
2013).
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The use of animal models, mainly rodent, to reflect ischemic stroke during the perinatal human
period, requires matching the ages between human neonate and animal based on neuronal
events that occur during maturation in both species. Correlating the human full term infant age
PO to animal postnatal age is an area of conflict in the literature. Based on different criteria,
authors have claimed that the human PO corresponds to either P7 (Hagberg et al., 1997) or P8-
14 in rat age (Hagberg et al., 2002, Romijn et al., 1991, Tucker et al., 2009).

Animal models developed to mimic PIS show different responses according to the animal age
(Comi et al., 2008). For example, injury severity within the ipsilateral hemisphere is 35% at P7
and 49% at P14-18 (Ashwal et al., 1995, Derugin et al., 1998). Knowing that immature models,
mainly rats, exhibit different vascular maturation patterns, such as in local cerebral blood flow
(Nehlig et al., 1989), different injury responses and PIS events can occur during the period of
immaturity (Comi et al., 2008). Considering differences in brain maturation, usage of models
of different ages to reflect PIS is open to debate. Therefore, knowing the animal age that best

reflects human PO is crucial for developing a valid PIS animal model.

Studies used different neonatal age and rodent strains to model stroke (Table 0.1). Several
studies have used P7 rats (Bouet et al., 2010, Brima et al., 2013, Derugin et al., 1998, Derugin
et al., 2000, Renolleau et al., 1998, Wen et al., 2004) (Table 0.1). Some of those studies were
based on Hagberg et al.’s (1997) study, which suggested that rats P7-P14 is comparable to term
human neonates in terms of brain development. However in a later study, Hagberg et al. (2002)
used P7 rat pups for a model of preterm white matter injury, and reported rat/mouse P8-12 as
the age reflecting a full-term human neonate. Other studies (Ashwal et al., 1995, Ashwal et al.,
2007) have used rats older than P7 due to the difficulty of performing occlusion techniques in
younger animals. Similarly, other studies (Gennaro et al., 2017, Tsuji et al., 2013, Yager et al.,

2006) have used rats/mice aged beyond P7 to model neonatal stroke.
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Ao Rodent | Rodent type Modelling Perfusion | Histological assessment
age method time
Ashwal et al., 1995, | P>7 Spontaneously | Intrafilament+ | 24h mitochondrial stain, TTC
Ashwal et al., 2007 hypertensive Hypoxia 2-3 h
rats Over 28
days
Derugin et al., 1998, | P7 Sprague— Intrafilament 24h TTC
Dawley rats
Derugin et al., 2000 | P7 Sprague— Intrafilament 4, 8, 24, | TTC
Dawley rats and 72 h
MRI  before and 20
minutes after
reperfusion, GFAP, ED-
1, cresyl violet
Gennaro etal., 2017, | P>7 Wistar rats intracerebral propidium iodide.
injection of ET- anterograde dye
1 Biotinylated Dextran
Amine, DAB staining
Yager et al., 2006 P>7 Wistar rats 60 hematoxylin and eosin,
GFAP
Wen et al., 2004 P7 SD rats Intrafilament 24h TTC, TUNEL
Tsuji et al., 2013 pP>7 CB-17 mice Intrafilament 48 h, 8| TTC, hematoxylin—eosin
weeks
Bouet et al., 2010, P7 Wistar rats Intrafilament 33days Astrocytic and neuronal

CCA1h+MCA
electroligation

pattern
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Brima et al., 2013,

P7

Wistar rats

photothrombotic

67 days

cresyl violet

Renolleau et al,,
1998

P7

Wistar rats

Intrafilament

48 h

4 to 96
hours, 7
and 14
days, 1
and 3

months

TTC, cresyl violet, Silver
Staining, TUNEL

Table 0.1 Rodents in PIS models
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Studies matching neuronal maturation are needed to confirm which rodent age is the most
appropriate for a PIS model. Many studies have adopted rodent age P7 to model humans at 32-
34 weeks of gestation, and rodent P12-13 as the equivalent of full-term human infant, based on
histological findings such as cerebral layering of cortical neurons (Rice et al., 1981). More
recent studies have considered rodent P8-12 as the age that reflects the timing of PO human PIS
in terms of cortical maturation events(Romijn et al., 1991) and electrophysiological readings
(Tucker et al., 2009).

Since radiographic methods are considered the gold standard for differentiating between PIS
subtypes in human neonates, studies using these methods to determine the animal age that
matches the human neonate at term are important to consider. Hagberg et al. (2002) claimed
that human term is comparable to P8-12 in the rat/mouse, while human 24-30 weeks gestational
age is comparable to rat/mouse P4 in terms of white matter maturation. Electroencephalography
(EEG) background activity strongly correlates with human (Burdjalov et al., 2003) and rat age
(Tucker et al., 2009). In a study correlating human brain maturity with rat pups aged from PO
to P21 using a “gold standard” method, EEG, human term PO neonates were found to be
equivalent to P10-12 rats pups in terms of their longest interval of burst activity and voltage
(Tucker et al., 2009). The authors suggested that cortical EEG activity in P1 rat pups
corresponds to 23 weeks gestational age in human neonates, P7 corresponds to 30-32 weeks,

and P10 corresponds to 40-42 weeks.

Rats are common stroke model in term of using the ET-1 because it induces a reproducible
focal cerebral lesion in their brains (Frost et al., 2006, Fuxe et al., 1992, Gilmour et al., 2004,
Sharkey and Butcher, 1995, Windle et al., 2006) but this is not the case in mice. Different mice
strains show no cerebral lesion after using the ET-1 and this is due to the less potent effect of
ET-1 on the injected brain area in mice. When the ability of the ET-1 to induce ischemic
infarction in rat and mice strains, all tested mice strains showed no ischemic lesion unlike rat
models that showed focal cerebral ischemia (Wang et al., 2007). Even when higher ET-1 dose
were given to mice to induce cerebral ischemic lesion, only mortality rate increased but no

ischemic lesion was found (Horie et al., 2008).

Rodent strain is another factor that can affect the PIS models. Comi et al. (2009) found that the
strain strongly influences the ischemic injury pattern in mice. For instance, following post-

carotid-ligation at P12, CD1 mice are more vulnerable to epilepsy than C57BI/6 mice (Comi et
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al., 2008). Also, differences exist between rats and mice. For example, the consistency of infarct
size observed in Tsuji et al.’s (2013) study is due to the use of CD-17 mice, which are known
for their similarity between individuals in terms of vascular distribution. When using other
strains, differences in blood cerebral flow and vascular distribution lead to different infarction

patterns.

Rats provide a common stroke model when using ET-1 because it induces a reproducible focal
cerebral lesion in their brains (Frost et al., 2006, Fuxe et al., 1992, Gilmour et al., 2004, Sharkey
and Butcher, 1995, Windle et al., 2006) but this is not the case in mice. Different mice strains
show no cerebral lesion after using the ET-1 and this is due to the less potent effect of ET-1 on
the injected brain area in mice. When the ability of the ET-1 to induce ischemic infarction in
rat and mice strains was tested, all tested mice strains showed no ischemic lesion unlike rat
models that showed focal cerebral ischemia (Wang et al., 2007). Even when a higher ET-1 dose
were given to mice to induce cerebral ischemic lesion, only the mortality rate increased but no

ischemic lesion was found (Horie et al., 2008).

Many factors can strongly influence PIS models, including technique, age, and strain. Both the
techniques used to develop these models and the age at which the injury is induced yield PIS
models with different outcomes, as does the animal and strain used. The pathogenesis in some
models is vastly different from the human clinical situation. The electroligation and
photothrombotic techniques have the lowest mortality rate and shorter surgery duration, while
the intraluminal and CCA/MCAOQ methods have higher mortality rates and longer duration. The
day on which the injury is induced in the animal is crucial; the most recent and reliable studies
confirm that the most widely-used PIS models use P10-12 rats/mice to reflect human neonates

at full term.

1.5 Stem cells in stroke repair

There are some interventional trials for neonatal hypoxic ischemia that could reduce the lesion
size but also produces some side effects and their safety is questionable such as Erythropoietin
(Jacobs et al., 2013, Souvenir et al., 2015, van der Worp et al., 2007, Xiong et al., 2011). Early
interventions such as hypothermia during the acute stage of the ischemic stroke in neonate
decreases the ischemic infraction but lead to bradycardia and thrombocytopenia (van der Worp
et al., 2007). Another effective early intervention that could provide therapeutic effects in
neonatal stroke is the use of the stem cell (Kiasatdolatabadi et al., 2017).
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Stem cell therapy is a compelling current approach that is being investigated extensively in
neurological disorder research due to its therapeutic effects. Interventional experiments for
cerebral palsy were covered in a recent review (Kiasatdolatabadi et al., 2017), which showed
that stem cells have the ability to reduce neurological symptoms. For example, transplanted
stem cells secrete trophic factors that help in brain plasticity, attenuate the inflammatory
response to brain lesions, stimulate endogenous neuroprotection, neurogenesis, angiogenesis,
axonal sprouting, and synaptogenesis, and most importantly, replace damaged cells (Castillo-
Melendez et al., 2013, Englund et al., 2002, Jablonska et al., 2010).

Neural stem cells (NSCs) are multipotent cells that are able to self-renew and ultimately
produce neurons, astrocytes, and oligodendrocytes. NSCs can be derived from foetal or adult
brain, such as from the subventricular zone (Alvarez-Buylla and Temple, 1998). NSCs can also
be derived from pluripotent stem cells such as human embryonic stem cells (ESCs) and human

induced pluripotent stem cells (hiPSCs) (Figure 0.2).
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NSCs derived from human ESCs have the ability to differentiate and to provide a functional
circuit with the host cell, and they display healthy cellular electrophysiological characteristics
when transplanted directly into normal P1-P2 rat cortex or hippocampus (Englund et al., 2002).
Furthermore, embryonic NSCs have been found to reduce brain atrophy when transplanted into
the neonatal stroke animal model (Comi et al., 2008). The P12 stroke mouse model was induced
via unilateral carotid ligation. ESCs derived NSCs were injected intrastriatally 2 days after
inducing the ischemic lesion and brain atrophy was assessed 4 weeks later. The authors found
that embryonic NSCs attenuated brain atrophy, although 30% of the treated animals developed
a local tumour (Comi et al., 2008). In addition to tumour formation, the use of the human ESCs
have some associated obstacles, such as the immune reaction of the host body as well as ethical
issues (Lo and Parham, 2009). These drawbacks make the use of the NSCs derived from human

ESCs less attractive.

The recent revolution in stem cell studies has made the production of NSCs from autologous
hiPSCs (iPSCs-NSCs) possible (Takahashi et al., 2007). NSCs derived from autologous hiPSCs
are generated by reprogramming autologous somatic cells using specific transcription factors
delivered by a viral vector, thus providing promising personalized stem cell therapy in the
clinic. An additional advantage is the ability to generate iPSCs directly and more safely by
direct delivery of reprogramming proteins and without even the use of the viral vector (Ban et
al., 2011, Kim et al., 2009), making hiPSCs a compelling source to use in cell replacement
therapies.

In neonatal brain injury studies, hiPSCs are considered a non-tumourigenic alternative source
of NSCs (Gruen and Grabel, 2006, Hess, 2009, Lepore et al., 2006, Low et al., 2008). One
source of iPSC-NSC cell lines is umbilical cord blood (UCB) (Ali et al., 2009, Buzanska et al.,
2002, Kogler et al., 2004, McGuckin et al., 2004, Sanchez-Ramos et al., 2001). An NSC cell
line derived from hiPSCs originating in human UCB (Buzanska et al., 2002, Jablonska et al.,
2010) was found to be safe and reliable in interventional studies using in vitro and in vivo adult
and neonatal models of neurological disorders. hiPSCs-NSCs transplanted into neonates
showed their ability to survive, migrate, and differentiate into neuronal cells, with no signs of

tumour formation in normal rat neonates (Jablonska et al., 2010).

In stroke studies, stem cells can be delivered via many methods but they have been mainly used

for mesenchymal stem cells. intravenous and intranasal delivery are examples of these delivery
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routes however most of stem cell engraftments die after being delivered in vivo (Bliss et al.,
2007). Although intravenous delivery of stem cells is a common systemic administration
method in stroke research, it requires a vast amount of cells to be administered because only
few of them reach the brain, possibly due to the non-permeability of the blood-brain barrier
(BBB) (Detante et al., 2009, Gonzales-Portillo et al., 2014). Yet, these stem cells delivery routes

have been mainly used for mesenchymal stem cells.

Alternatively, injecting stem cells directly into the stroke infarction or pre-infarction, the
location of neuroplasticity in stroke (Carmichael, 2006), leads to cells that are located in the
target area and that survive (Comi et al., 2008). However, the stroke infarction is a hostile
environment for transplanted cells, often leading to grafted cell death (Bakshi et al., 2005). The
absence of trophic factors in the infarction cavity, a damaged BBB and the loss of extracellular
matrix (ECM) proteins due to stroke lead to the accumulation of extracellular fluid and the
leakage of plasma proteins into the infarction cavity (Baeten and Akassoglou, 2011). For these
reasons, the use of compatible biomaterials that fill the infarction cavity to provide the grafted
cells with a stimulatory environment for survival and enhance the efficacy of stem cell therapy
is a crucial aim in treating stroke (Wang et al., 2014).

1.5.1 ECM and stem cells

The ECM in the CNS has three main components: the basement membrane, the perineuronal
net, and the neural interstitial matrix. First, the basement membrane or basal lamina
components, such as laminin, fibronectin and heparin sulphate proteoglycan, serve as a sheath
that surrounds the cerebral blood vessels and separates it from the brain parenchymal tissue.
The second component is a condensed mesh-like layer called the perineuronal net; it surrounds
the neuronal cell bodies and dendrites and contains hyaluronic acid. It is believed that this layer
is crucial for maintaining neuronal health and synaptic plasticity (Ethell and Ethell, 2007, Kwok
et al., 2011, Murphy et al., 2017a). The third layer, the neural interstitial matrix, consists of a
network of ECM components in the parenchyma located furthest away from the first and the
second layers; it contains a dense network primarily composed of hyaluronic acid and link

proteins.

Natural biomaterials such as hyaluronan (HA) (which is a crucial component in ECM in the
developing brain), chitosan, and collagen are able to be utilized clinically (Pakulska et al., 2012,
Rauch et al., 2004, Van Zelst et al., 2006). However, synthetic biomaterials such as Puramax
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are more advantageous because their components mirror the characteristics of natural ECM
while provoking a milder immune reaction, and they confer the ability to modify the
biocompatibility of the hydrogel to suit the application purposes (Aurand et al., 2012).

Biomaterials such as hydrogels have recently become common for use as vehicles of neural cell
delivery in neurological disorder research. A hydrogel is a polymer that has chemical properties
such as high water content (>90% water); its physical characteristics can be tuned and
controlled to produce a variety of textures ranging from rigid to soft (Aurand et al., 2012).

The hydrogel matrices used in interventional studies can be natural, synthetic, or semi-synthetic
(zarembinski et al., 2011). Figure 0.3 provides an example of available hydrogel matrices that
are commonly used in research. Zhong et al. (2010) used the semi-synthetic hydrogel (HyStem-
HP) that was constructed by modifying purified natural biopolymers (HA) (Zhong et al., 2010).
The authors’ results demonstrated a focal presence of the graft with a high survival rate and less

immune reaction in the host brain cells.
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Figure 0.3 Types of hydrogel matrices.
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In vitro and in vivo neuro-regeneration studies using stroke models have shown that hydrogel
application is feasible when used as scaffold for the transplanted stem cells (Bible et al., 2012,
Burdick and Prestwich, 2011, Liang et al., 2013, Thonhoff et al., 2008, Zhong et al., 2010). An
in vitro study compared human NSCs incubated in two-dimensional (2D) standard culture and
in 3D ECM culture. After seven days, the 3D culture demonstrated an advantage over the 2D
in terms of NSC differentiation assessed by axonal outgrowth (Stevanato et al., 2015).

Recent advances in tissue engineering research have shown that biomaterials can function as
compatible ECM in vivo and support transplanted stem cell viability in experimental adult

stroke models.

Transplanting a hydrogel such as Matrigel in vivo into a focal ischemic model in rat showed
efficient results. Jin et al.’s (2010) study showed cellular survival and differentiation, reduction
in infarction volume and improved functional outcomes after transplanting a combination of
Matrigel and human ESC neuronal precursor cells 3 weeks post induction of an ischemic lesion
in rats (Jin et al., 2010). However, a downside to Matrigel, which is derived from mouse

sarcoma, is that its components are poorly defined.

HyStem (HA-Heparin-Collagen) contains HA and collagen that bio-mimics the brain
microenvironment and stimulates angiogenesis, host cell infiltration, and synaptic plasticity,
and reduces the innate immune response of the host when delivered in vivo in rat models,
indicating its feasibility in stem cell transplantation therapy (Fraser et al., 1997, Hou et al.,
2005).

HA hydrogel is a good choice for stem cell transplantation experiments because it has the ability
to co-exist with no inflammatory response of the transplanted stem cells in the brain (Nih et al.,
2017). Administration of HA alone immediately following removal of the SMC of adult rat
brains led to significant reduction in the glial scar, as indicated by a decreased number of GFAP
positive cells in immunohistological analysis (Lin et al., 2009). Similarly, Yu et al (2010)
demonstrated that NSC transplanted with collagen type-I in a transient ischemia rat model
resulted in new synapse formation and led to better functional outcomes 30 days post
implantation, a time when collagen was completely degraded (Yu et al., 2010).

23



HA causes the encapsulated neural progenitor cells derived from iPSCs to differentiate into
neuroblasts one week after transplantation into the infarct cavity of stroke model mice (Lam et
al., 2014).

A study using HyStem hydrogel, with neural progenitor cells transplanted intracerebrally into
the infarction cavity 7 days after inducing ischemic stroke in rats, demonstrated beneficial
effects, including improved stem cell survival and a reduced number of inflammatory cells
infiltrating the infarction (Zhong et al., 2010). Injecting HyStem with NSCs resulted in a
significant increase in the number of the viable cells in mice brains at day 7 post transplantation.
This study highlighted the importance of gelling time in the success of intracerebral NSC
transplantation, suggesting that a 25-minute delay prior to injecting the cells-ECM will allow
the mixture to maintain its shape in vivo and not be absorbed by the brain tissue (Jiang et al.,
2005). However, biodegradation of the hydrogel is difficult to control and the weak mechanical
structure prevented the transplanted cells from migrating out of the graft (Kai et al., 2012, Skop
et al., 2014). This indicates the importance of performing further investigations to overcome

these weaknesses.
1.6 Research project

1.6.1 Rationale of the study

In human neonates, PIS is a significant cause of hemiplegic cerebral palsy (Golomb et al., 2008,
Kirton et al., 2011). The diagnosis of hemiplegia reaches 87% in children with PIS (Golomb et
al., 2008). Early interventions using stem cell therapy can provide support to the infarcted motor
cortex, or perhaps even replace lost cortical cells. However, the invasive nature of our proposed

interventions requires that they first be tested in a rodent model.

Although MCAO is a common method for inducing neonatal stroke (Ashwal et al., 1995,
Ashwal et al., 2007, Derugin et al., 1998, Derugin et al., 2000, Tsuji et al., 2013), intracerebral
injection of reversible vasoconstrictor ET-1 has advantages over the MCAO method, such as
gradual reperfusion that mimics the clinical symptoms in human neonates (Saggu, 2013,
Tsenov et al., 2015) and the reliability of using a CST disturbance to produce an interventional
model in developing rats (Gennaro et al., 2017).

Interventional stroke studies have shown the ability of stem cells to improve neurological

outcomes post stroke and promote endogenous neuroprotection, neurogenesis,
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neovascularization, axonal sprouting, and synaptogenesis (Castillo-Melendez et al., 2013,
Englund et al., 2002, Jablonska et al., 2010).

Several types of stem cells have been used for cerebral palsy treatment in previous studies
(Kiasatdolatabadi et al., 2017). One of these stem cell types is NSCs, which are multipotent,
able to self-renew, and ultimately produce neurons, astrocytes, and oligodendrocytes, and most
importantly, replace damaged cells (Jendelova et al., 2016). NSCs derived from ESCs have the
ability to reduce brain atrophy when transplanted into a neonatal stroke model, although they
also generate tumourigenic cells (Comi et al., 2008). A non-tumourigenic alternative source of
NSCs is iPSCs (Gruen and Grabel, 2006, Hess, 2009, Lepore et al., 2006, Low et al., 2008).

Among in vivo stem cell administration methods, intracerebral transplantation is considered
one of the most convenient routes. Grafted cells have been found to survive in the lesion site,
usually the infarction cavity, after intracerebral transplantation. Yet most of these engraftments
die due to the hostile environment of the infarction site (Bliss et al., 2007).

In fact, stem cell transplantation studies have failed to fill the infarction site or produce a well-
developed, organised formation of regenerated cerebral cells in vivo due to the accumulation
of extracellular fluid and proteins in the local post-stroke lesion site (Baeten and Akassoglou,
2011). This indicates the need to administer an additional supporting component that works as
a scaffold for the transplanted stem cells. Recent advances in tissue engineering have shown
that hydrogel works as a compatible ECM in vivo and supports transplanted stem cell survival

in the infarction cavity in adult stroke models (Zhong et al., 2010).

1.6.2 Aims of the study

The objectives of the present study are as follows:

(1) To develop a model of focal sensorimotor cortical stroke in P12 rats using MCAO or

ET-1 injection at specific coordinates to ensure high reproducibility with a low mortality rate.

(2) To induce acute and chronic histological responses that resemble the SMC in the PIS

brain.

(3) To produce chronic functional disabilities that resemble the sensorimotor deficits

associated with PIS.
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4 To compare between the survival and development hNSCs-ECM in vitro and following
grafting to a rat model of perinatal infarction damaging SMC at P14.
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Chapter 2 Materials and Methods

2.1 Overview

This chapter describes the methods used in the three main experiments performed to achieve
our research aims (Figure 2.1). The respective methods used for the first and the second
experiments were middle cerebral artery occlusion (MCAQ) and intracerebral injection of
Endothelin-1 (ET-1).

The first experiment involved methods that were applied in order to develop a model of
perinatal ischemic stroke (PIS) in postnatal age 12 (P12) rats with cortical ischemic lesion to
the sensorimotor cortex (SMC) and resulting behavioural dysfunction. The results and

discussion of these experiments will be presented in chapter three.

The second experiment consisted of an additional surgery to inject Fluorogold (FG) retrograde
tracer into the contralesional side of the cervical spinal cord at P45 to investigate the possible
anatomical reorganisation of the corticospinal tract (CST) after intracerebral injection of ET-1

at P12. The results and discussion of these experiments will be presented in chapter four.

The third experiment’s methods included culturing neural stem cells (NSCs) in a 2-dimensional
(2D) monolayer or in a 3D semi-synthetic extracellular matrix (ECM) in vitro to test for
spontaneous differentiation into neuronal lineages. Then, in vivo NSCs-ECM transplantation
into the ET-1-ischemic SMC was performed in P14 rats to investigate the potential therapeutic
effects of the transplanted complex. The results and discussion of these experiments will be
presented in chapter five.
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2.2 Animals

The Wistar rats used in all experiments were purchased from Charles River Laboratories and
were housed in the Newcastle Comparative Biology Centre at Newcastle University. All animal
procedures were performed with the approval of the Newcastle University Animal Welfare and
Ethics Review Board and under project license number 60/4266 from the UK Government
Home Office.

All rat neonates were kept with their mother in the same cage until weaning at around P21, and
were then separated into two cages according to gender. All rats shared the same room with the
same care routine and light/dark cycle. Surgeries were carried out in the Newcastle Comparative

Biology Centre theatres at Newcastle University under aseptic conditions.

2.3 PIS model methodology
Two main experiments were performed: a MCAO experiment and an ET-1 experiment. In both
experiments, 29 male and female P12 immature Wistar rats were used in each experiment to

conduct the PIS modelling surgery, with PO being the day of birth.

2.3.1 MCAO surgical procedure

Three surgeries were performed on three groups of rats. The first group underwent one-spot
electroligation proximal to the middle cerebral artery (MCA) bifurcation. However, this method
was discontinued due to a lack of brain injury observed in histological sections. The second
group received a modified method consisting of electroligation along the MCA between the
inferior cerebral vein and the olfactory tract. The third group was the sham group and only
received craniectomy. All three groups were assessed histologically and behaviourally. A
decision was made not to occlude the MCA by inserting a filament through the external carotid
artery for two reasons. Firstly, we wished only to lesion the cortex as the eventual plan was to
graft stem cells programmed to become cortical neurons. Occluding the MCA via the external
carotid will cause damage to the striatum as well and so any repair strategy would become more
complicated. Secondly, occlusion via the external carotid with reperfusion requires the filament
to remain in situ for 2 hours before it is removed. This reduces the number of animals that can
be operated on in one day and so if all animals are to be operated on at the same age more litters

have to be used.
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Two main experiments were performed: a MCAO experiment and an ET-1 experiment. In both
experiments, 29 male and 29 female P12 immature Wistar rats were used to conduct the PIS
modelling surgery, with PO being the day of birth.

One-spot electroligation for MCAO surgery

Eight P12 rat pups received a subcutaneous injection of the anaesthetic agent Hypnorm
(Janssen, UK; 0.3 ml/kg body weight 0.126 mg/kg body weight fentanyl citrate and 4 mg/kg
body weight fluanisone) injected subcutaneously. After testing the depth of anaesthesia by
pinching the tail and paws, each rat was positioned on its side and a skin incision was made
between the left eye and the left ear to expose the temporal muscle, which then underwent
careful blunt dissection using a surgical microscope. Attempts were made to observe the MCA
before peeling the semi-transparent fragile skull, and then a craniectomy just above the expected
area of the MCA route was performed with fine forceps. Electroligation proximal to where the
MCA bifurcates into parietal and frontal branches was performed once (Figure 2.2A), and then

the cranial bone was returned and the skin was sutured (Tsuji et al., 2013).

Post-surgical care was given to each rat. Anaesthesia was reversed but analgesia maintained by
injecting 1% butorphanol (Torbugesic) (10mg/ml) subcutaneously, and the rat pups were kept
in a thermal incubator and observed until they woke up. P12 rats usually need to stay for a few
hours in the warm incubator. After checking the rat pups, they were taken to their mother’s cage
in the rodent area. There was no need to give soft food because they were suckling. On the next
day, observations were made of any signs of pain or stress; if present, the animals received a
subcutaneous analgesic such as buprenorphine. The rats were checked daily for possible

complications from surgery, such as infection or severe pain.

We needed to modify our surgical procedure because the one-spot electroligation method was
not sufficient to occlude the MCA in P12 rat pups.

Extended electroligation for MCAO surgery

Thirteen P12 rat pups underwent a similar surgery to the one-spot MCAO group, but with a
modification guided by the results of the MCAQO model performed previously. The ligation area
was increased by ligating along the MCA trunk, proximally from the olfactory tract level and

distally to the inferior cerebral vein level as far as possible to prevent the collateral cerebral
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arteries from supplying the sensorimotor area (Taguchi et al., 2010) in order to produce cortical
ischemia (Figure 2.2B).
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Figure 2.2 MCAO surgery via electroligation.

(A) Cartoon diagram of lateral view of the rat brain and the location of the electroligation.
(B) Extended method of MCAO from distal to proximal MCAO rats, main and minor MCA
branches are indicated by arrows and in the right photo is the MCAQO along the MCA
trunk(Tsuji et al., 2013).
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Sham surgery

Sixteen rat pups were assigned to the sham group. The rats underwent a similar protocol under
similar conditions as the experimental group, up to the point of craniectomy. After craniectomy
was performed, the cranial bone was returned and the skin was sutured. The rats did not receive

electroligation. Animals also received the same post-operative care and analgesia.

2.3.2 ET-1intracerebral injection surgical procedure
In this study, total of 29 of P12 immature Wistar rats were assigned into ET-1 experimental

group and sham operated group.

A total of 17 rats were assigned to the experimental group and received ET-1 injections
intracerebrally into the SMC. We employed a stereotactic frame with inset and ear bars
designed for rat pups and a special nosepiece to allow the administration of gaseous anaesthetic.
We therefore anesthetised the animals with isoflurane, and injected 0.03 mg/kg buprenorphine

to provide long term analgesia.

ET-1 dose was 400 Picomole (Pmol) (0.1mg Endothelin-1, Human and Porcine, 117399-94-7
— Calbiochem) dissolved into 0.9% Sodium chloride (NaCL) at each site (Soleman et al., 2010).
Three direct intracerebral ET-1 injections were done to cause infarction in the sensorimotor
area. A syringe pump and a narrow needle Hamilton syringe (neuros™ Hamilton syringe 7000,
33 gauge) that attached to the stereotactic frame was used over a period of about 20 minutes
(Figure 2.3A, B and C). Injections were made following the sequence of slowly injecting half
the ET-1 (0.5uL), waiting a minute, and then injecting the rest (0.5uL) using an Ultra
micropump with microcontroller (World Precision Instruments, Sarasota, FL, USA) (Figure 2.3
D). Under anaesthesia, a flap in the skull bones was cut and hinged at the midline over the right
hemisphere and three injections were made into the exposed cortex (Figure 2.3E) at the
following co-ordinates, +2.00 mm anterior of bregma and +2.00 mm lateral of the midline,
+0.75 mm anterior and +2.00 mm lateral, and -0.50 mm posterior of bregma and +1.00 mm
lateral, all to a depth of 1 mm. Each rat received 3uL of ET-1 solution, 1 pL for each cortical
injection co-ordinate. A careful injecting protocol using an electronic timer/stopwatch and
following a precise checklist (Table 2.1) was performed.
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Then, the skull and scalp was repaired and the animals allowed to recover before returning to
their mother’s cage for 24 hours. Post-surgery care was carried out as described in the MCAO

surgical procedures.
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Figure 2.3 Surgical procedures of the intracerebral ET-1 injection.

(A) Three injection sites (asterisks) (B) at three coordinates (blue arrow) two of them are
anterior to the bregma (orange arrow) and one posterior to the bregma. (C) ET-1 intracerebral
injection surgical setting with and a rat lay down in stereotactic frame with Hamilton syringe
attached to it. (D) Ultra Micropump with microcontroller to injectluL of ET-1 per injection
site. (E) The needle is inserted in the SMC (surrounded by dashed line) during the first

minute of injecting ET-1.
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Intracranial injections

Rats

First intracranial injection (1uL) at AP
+2.00mm, ML 2.00mm, DV +1mm

1st 0.5uL of ET-1

pause 1 min

2nd 0.5pL of ET-1

pause 3 min

remove the needle up

Second intracranial injection (1uL) AP
+0.75mm, ML 2.00mm, DV +1mm

1st 0.5pL of ET-1

pause 1 min

2nd 0.5uL of ET-1

pause 3 min

remove the needle up

Third intracranial injection (1uL): AP
(-0.5)mm, ML +1.00mm, DV +1mm

1st 0.5pL of ET-1

pause 1 min

2nd 0.5pL of ET-1

pause 3 min

move the needle up

Table 2.1 ET-1 injection check list
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To investigate the effects of ET-1 injection at P12 on normal growth in the PIS model, body
weight was recorded at regular intervals starting from the day of surgery until the perfusion
day. The relative body weight was calculated and expressed as a percentage as follows: (body
weight at the end of the experiment P45 /body weight on surgery day P12) x 100 (Mateffyova
et al., 2006).

Sham surgery

Twelve rats were assigned to the sham group and received saline injections intracerebrally into
the SMC. The rats underwent a similar protocol under similar conditions as the experimental
group up to the point of craniectomy. Then, instead of injecting ET-1 intracerebrally into the

SMC, saline was injected using the same ET-1 surgical and post-surgical protocol.

2.3.3 Retrograde tracing surgical procedure

Rats in both ET-1 and sham groups were tested behaviourally after P30 and then a random
subgroup of them were assigned to be injected with the FG for CST retrograde tracing at the
spinal cord level of cervical (C)7-8 contralateral to the lesion at P40.

Previous studies used a retrograde tracer to investigate the CST projection from the spinal cord
to the cortical level of the brain. The use of an injectable tracer that has unique
immunofluorescence properties, such as FG, is one of the most useful methods in central
nervous system (CNS) tracing studies (Willenberg and Steward, 2015, Yoshikawa et al., 2011).
Once tracers/dyes are injected, they accumulate in the neural cells bodies and express intense
fluorescence under ultraviolet illumination that is resistant to bleaching or fading over time.
The use of available commercial antibodies to label stained FG cells adds another advantage to

using FG as a retrograde tracer (Lanciego and Wouterlood, 2011).

In this surgery different anesthetic regime was given to the Juvenile rats at P40 than all other
surgeries that were done at a neonatal age. Fifteen PIS model rats were anaesthetized by
intraperitoneal injection (dose 0.3 ml/100g) with a mixture of Hypnorm and midazolam (1.25
mg/ml midazolam, 2.5 mg/ml fluanisone and 0.079 mg/ml fentanyl citrate) at P40. Oxygen was
given throughout the surgery at 500ml/min to avoid hypoxia. Opticare was applied to protect

the rats’ eyes (eye lube and hyaluran 155¢/0.53 0z.)

FG (3% dissolved in 0.9% saline, Sigma,) was injected using Hamilton syringe which was

driven by a micromanipulator with two axis (Figure 2.4A). Each rat was placed prone with a
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flexed neck. The most prominent vertebra at thoracic level (T) 1, was palpated as a guide to the
location of the injection site which was made between C6 and C7 vertebrae. Under the
microscope, the skin, fat, and muscles overlying the cervical spinal cord were retracted and
ligaments between the sixth and seventh vertebrae were removed to expose the spinal cord
unilaterally. To inject the FG, a Hamilton syringe (26 gauge) was driven into the dorsal horn of
the cervical spinal cord contralateral to the cortical lesion and inserted diagonally away from
the midline to a depth of 1.00 mm. Cautions were taken to avoid crossing the midline. The
syringe was attached into a manipulator stand. FG solution (0.5 pL per rat) was slowly injected
over three minutes then the needle was left for 5 minutes before withdrawing to avoid fluid
drawback (Figure 2.4B). Then, muscles and skin were sutured. Antibiotic (Calmoxyl
150mg/ml) was given (dose 0.1 ml/g) subcutaneously and subcutaneous injection of the pain

killer Buprenorphine (0.1mg/100g) were given post-surgery.
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Figure 2.4. FG surgical settings.

(A) The manipulator stand (arrow), Hamilton syringe, and the microscope (star). (B)
Magnified image of the surgical site the exposed spinal cord and the needle (arrow) is
inserted in it.
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2.3.4 Behavioural outcome assessments

The behavioural tests for all animals started on P30, and continued until about 2-3 weeks after
MCAO induction or ET-1 injection. This age was chosen because weaning has already
occurred, as well as maturation of the sensorimotor system. Rats can perform skilled reaching
before one month of age and can walk on a grid with few errors after P21 (Schallert and
Woodlee, 2005b). All rats were tested under similar conditions to ensure comparability. The
tester was the same for all tests and was blind to whether the animals had received an ischemic
lesion or sham. Assessments involved four tests: reaching test, grid walk test, asymmetry
placement test, and pasta test. Each animal was tested and placed in the assessment apparatus
individually and tests were done at approximately the same time each day. All experimental
and sham groups in the MCAO and ET-1 PIS models followed the same behavioural test

protocol.
Reaching test

The reaching test was used to assess skilled forepaw usage and motor function (Chen et al.,
2010, Schaar et al., 2010). Food was withdrawn 12 hours prior to the beginning the test. The
rat was placed in a transparent Plexiglas box and reached through a small window to get food
(single pellets) presented on an external shelf (Figure 2.5A). A successful attempt was counted
when the rat reached, grasped, and brought food to its mouth. If the food piece dropped during
this process, the attempt was counted as failed. The test ended when the number of trials reached
40 or when 30 minutes had passed; testing was conducted at P30, P35, P40, and P45.

The asymmetry placement (cylinder) test

This test is reliable for assessing limb asymmetry in neonatal and adult rodent models using
ischemic brain lesions (Adkins et al., 2004, Grow et al., 2003). It was undertaken at P34
(Schallert et al., 2000). The cylinder test was used to assess forelimb use and neglect. The rat
was placed in a transparent cylinder box and allowed to explore the box (Figure 2.5B). The
number of times each forelimb was placed on the cylinder wall as the rat explored its
environment was observed using a Samsung Camera at 2.6 zoom positioned above the cylinder
at the centre of the opening (Figure 2.5C) and recorded using a slow motion video player over

2 minutes.
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The number of placements and contacts of single and both limbs on the cylinder wall were
counted. The asymmetry score for the contralesional limb was calculated as follows: contra-
limb contacts + %2 both-limb contacts + (total limb contacts) x 100 (Schallert and Woodlee,
2005a). Normal animals score near 50%; a lower percentage indicates diminished usage of

independent contralateral paw movement relative to the ipsilateral paw usage and co-usage.
Grid walk test

This test was done 35 days after inducing the cortical lesion to evaluate motor coordination and
placing deficits during locomotion (Gold et al., 2013). Using a webcam attached to a laptop,
we counted the steps taken on the grid (Figure 2.5D) and the number of foot or hindlimb faults
(Schaar et al., 2010) occurring when the whole limb fell in between the grid (Figure 2.5E), but
not when the limb hung on with one or two digits. After 5 minutes, the test was ended and the
counting was done visually by watching the video recording. Calculation of the footfault ratio
was performed by dividing the total number of foot faults by the number of steps. The forelimb
fault (FLF) percentage was calculated by dividing the contralesional FLF by the number of total
steps, multiplied by 100%. The hindlimb fault (HLF) percentage was calculated

correspondingly.
Pasta test

The pasta test described by (Whishaw and Coles, 1996) is a useful test for assessing the manual
dexterity symmetry in the fine motor movements used in gripping and manipulating a piece of
thin dry pasta in models of upper extremity impairment (Allred et al., 2008). Food was
withdrawn 12 hours prior to the beginning of the test. In the test, the rat was placed in a
transparent cylinder box and given four pieces of pasta, one piece at a time (4.0 cm strands of
dry thin spaghetti), and was filmed using the same apparatus used in the asymmetry placement
test. The rat holds the pasta with both paws symmetrically then uses coordinated asymmetrical
paw movements to eat the pasta (Figure 2.5F). One paw, called the grasp paw, is placed further
away from the rat’s mouth, whereas the paw that is closer to the rat’s mouth is called the guide
paw. As the pasta is eaten, the rat moves the paws in a symmetrical holding pattern by adjusting
one paw on top of the other. This symmetry is expressed as a percentage by counting the number
of adjustments made with the forepaw ipsilateral to the lesion for each pasta piece, dividing it

by the total adjustments, and then multiplying it by 100. Also, the amount of time that the rat
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took to eat the pasta was recorded. Following unilateral hemisphere injury, one paw should be
used less or not at all during this process (Allred et al., 2008).
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Figure 2.5. Behavioural tests started at P30 in PIS models.
(A) A rat performing the reaching test task of reaching for a food pellet (arrow) on an external
tray attached to the test box. (B) Exploratory activity of a rat while being tested in a cylinder
box with the asymmetry placement test. (C) Videotape setting was prepared prior
commencing the test. (D) A rat walking in the grid walk test. (E) An example of hindlimb

fault (arrow). (F) A normal rat holds the pasta with both paws.
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2.3.5 Transcardial perfusion

Rats were perfused transcardially with a fixative (4% paraformaldehyde (PFA) in phosphate
buffered saline (PBS)) for histological assessment. Perfusion was done at P45 for long-term
histological analysis in all animal groups. For acute stage analysis, perfusion was done at P2 -
9. Following perfusion, all fixed brains were sectioned. First, the rats were anesthetized deeply
with Euthatal (0.3 ml for P12-20 pups) and placed in a fume hood or specific perfusion table.
Then, 50 ml of 0.1 M PBS (Sigma-Aldrich) at pH 7.4 was flushed in via cannula attached to a
blunt needle inserted into the left ventricle of the animal heart (Figure 2.6A). Following the
PBS, buffered fixative consisting of 4% PFA in 0.1 PBS, (pH 7.4) was infused gradually via
the cannula using an electrical pump (Figure 2.6 B and C). The rat brain and spinal cord were
then gently extracted. The rat tissue was preserved in the same PFA used for perfusion at 4°C
overnight, followed by washing three times with PBS and preservation in PBS containing 30%

SUCrose.
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Figure 2.6. Transcranial perfusion protocol.
(A) A blunt needle (arrow) injecting the 4% fixative into the left ventricle of the animal heart.

(B) The perfusion setting, including the table fume hood, solutions, and electrical pump. (C)

The electrical pump used in the perfusion procedure.
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2.3.6 Immunohistological outcome assessments

Parallel sets of coronal brain sections (50um) from fixed brains were collected from the frontal
two-thirds of the brain (using a freezing sliding microtome) as free-floating sections. Eight
coronal sections per brain were made serially from the two-thirds of the forebrain for
immunohistochemistry (IHC) procedures. This was done for all animals in all animal groups.
For FG+ and (Parvalbumin) PV+ cell counting, eight brain sections were collected from
locations +2.50, +2.00,+1.50, +1.00, +0.50, 0.00, -0.50, -1,00 mm from the bregma according

to the Paxinos and Watson atlas (Paxinos and Watson, 1998).

The sections were then either stained with cresyl violet or underwent IHC. For Nissl staining,
the sections were mounted on gelatine-coated glass slides and incubated in cresyl violet solution
for 5-20 minutes. They were then rinsed with distilled water before being dehydrated in a series
of diluted ethanol in water and were finally dipped in Histoclear twice for 10 minutes each and

coverslipped.

For IHC, sections were incubated at 4°C overnight with gentle agitation in a cocktail containing
PBS, 0.3% Triton X-100 (TPBS) for permeabilization, 3% appropriate blocking serum (Vector
Laboratories, UK) and primary antibody (Table 2.2). The sections were then washed 3 times
with PBS for 10 minutes each and were incubated in biotinylated secondary antibody (1:200
Vector Laboratories, UK) for 2 hours at room temperature with gentle agitation following by 3
washes with PBS for 10 minutes each. Next, the sections were incubated in streptavidin
horseradish peroxidase (HRP) (1:200, Vector Laboratories, UK), for one hour with gentle
agitation and then washed with PBS as above. Following this, the sections were incubated with
3, 3-Diaminobenzidine (DAB) and peroxide for 5 to 10 min which reacts with HRP to produce
a colour reaction. Then, the sections were washed with PBS as described above. Finally, the
sections were mounted on slides, dehydrated in gradual ethanol (Table 2.3), dried and then
coverslipped for light microscopy.
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Primary antibodies Antibody dilution Company
HIF-1 1:1000 Abcam
IBAL 1:500 Abcam
GFAP 1:1000 Sigma
PV 1:2000 Sigma
FG 1:50 Merck Millipore
SMI-32 1:1000 Biolegend
Pax6 1:500 Covance
DCX 1:1000 Abcam
TUJ1 1:500 Merck Millipore

Table 2.2. Names and dilutions of primary antibodies used in IHC research assessments.

Solution IHC and lectin histochemistry dehydration
protocol

70% ethanol 5 minutes

90% ethanol 5 minutes

100% ethanol 10 minutes
100% ethanol 10 minutes
histoclear 10 minutes
histoclear 10 minutes

Table 2.3. Dehydration protocol of the coronal brain sections.
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The following primary antibodies were used for the IHC assessments: hypoxia-inducible
transcription factor (HIF-1) for hypoxia reaction (Sharp et al., 2001), a marker for microglia
(ionized calcium-binding adapter molecule 1) (IBA1), which recognizes microglia in both
normal (Ito et al., 1998) and ischemic perinatal rat brain; a marker for astrocytes (glial fibrillary
acidic protein) (GFAP) to detect any inflammatory reaction (Burtrum and Silverstein, 1994), a
marker for calcium-binding protein and inhibitory interneuron marker (PV) to detect functional
interneurons (Araki et al., 1994) and a marker for non-phosphorylated neurofilaments (SMI-
32) to identify neuronal cell bodies, thick axons, and dendrites (Merigo et al., 2005). To detect
the traced CST neurons in the cortex (Sarkar et al., 2014), anti-fluorescent gold antibody was
used (FG). A separate set of sections was incubated overnight following the same primary
antibody incubation protocol described above, but using biotinylated B4-isolectin (1:1000,
Vector Laboratories) to detect microglia (Genade and Lang, 2011). Primary antibody details
are listed in Table 2.2.

All sections were visualized under light microscopy at different magnifications to study the

morphological changes in the cortex in both brain hemispheres in all animal groups.
Histological Quantification of FG+ cell

All FG+ neurones were counted after Immunoperoxidase staining using an anti-fluorogold
antibody. Scanned images of sections immunostained with anti-FG antibody were processed in
ImageJ software (v 1.48r, Wayne Rasband, National Institute of Health, USA). The cyto-
architectural landmarks at the borders of the cortical regions were detected to outline the

following regions: medial, motor, somatosensory, and lateral cortex.

Only animals with FG immunopositivity confined to the spinal cord contralateral to the brain
lesion were included for cell counting. Lines separating cortical regions in both hemispheres
were drawn in each coronal brain section, and automated quantifications of FG+ neurons were
done using ImageJ software. Each cortical region was processed individually for all
experimental and sham rat brains. Then, the cells were automatically detected by the software
and counted (Figure 2.7). These analyses were conducted blind for both the experimental and

sham groups.
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Figure 2.7 Quantification of FG+ cells using ImageJ.
(A) A coronal section with FG+ cells in grey scale before (B) subtracting the background and

adjusting the threshold. (C) An example of the cell counting processes.
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Histological Quantification PV+ cell

Following the same protocol as for FG+ cell counting, all sections were immunostained with
anti-PV antibody, imaged and processed to automatically quantify PV+ neurons. The cortical

regions that were assigned to count PV+ cells were the medial, motor, and lateral cortices.

2.3.7 Statistical analyses

Behavioural and histological quantitative data were analysed using IBM SPSS Statistics version
24. The groups were first analysed for a normal distribution using a normality test, and then
parametric or non-parametric statistical tests were performed as appropriate. For the normally
distributed data, parametric tests were conducted to compare between means, with independent
sample t-test used for non-paired groups and dependent sample t-test used for paired groups.
For the non-normally distributed data, the Mann Whitney U non-parametric test was used to
compare between two non-related pairs of experimental groups. A non-parametric paired test,
the Wilcoxon signed ranks test, was used to compare between two related groups. Significance
was defined as P < 0.05.

2.4  Stem cell experiment methodology

2.4.1 Experimental design

We first tested the viability and number of hNPCs after culturing them overnight in preparation
for cell encapsulation for in vitro and in vivo experiments the next day. We then characterized
the cells after an in vitro differentiation experiment in 2 dimensions (D) versus 3D culture at
three time points using immunocytochemistry. Biosafety hazard and contamination regulations
were followed strictly, according to the protocols of the stem cell laboratory at Newcastle

University.

In parallel to the in vitro experiment, two in vivo experiments were performed to study the
transplanted NSCs/ECM and the host’s cellular behaviour at two time points: one and three
months. The sham group received only ECM transplantation and underwent a similar procedure
as the NSC/ECM groups for the one-month time point. Behavioural tests were then performed
at P33, before the animals were perfused transcardially. All brains were cryopreserved and
microsectioned for immunohistochemical characterization by fluorescence microscopy (Figure
2.8).
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Figure 2.8. Experimental design diagram of the stem cell experiment.
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2.4.2 Cells culturing and encapsulation for in vitro and in vivo experiments

One vial containing 1.5 million frozen human induced pluripotent stem cells (hiPSCs) derived
neural stem cells (iPSC-NSCs, ax0015) was purchased from Axol Bioscience (Cambridge,
UK). The hiPSC derived NSCs were obtained from a male newborn cord blood donor (CD34+)
and reprogrammed. More information about the donors is readily available online
(https://www.axolbio.com/). The NSCs were derived from hiPSC under fully defined neural

induction conditions.

Procedures for thawing and plating cells for the first 24 hours and then 2D differentiation into
the neural lineage, and the details of all reagents used, were as stated by the manufacturer (Axol

Bioscience, Cambridge, UK) and available online (https://www.axolbio.com). The 3D in vitro

differentiation and the transplantation protocol were adopted and modified from the Axol
Bioscience protocol by Melissa R Andrews that is available online https://www.axolbio.com)
and (Liang et al., 2013, Zhong et al., 2010). Frozen hiPSC -NSCs (1.5 x 10°) were quickly

thawed in a 37°C water bath and transferred into a 50 mL sterile conical tube in a sterilized

biological safety cabinet. Then, 10 mL of pre-warmed, 37°C, Neural Plating—XF Medium (Axol
Bioscience, ax0033) was added to the conical tube before the tube was centrifuged at 200 x g
for 5 minutes at room temperature. After centrifuging, the supernatant was aspirated and the
cell pellet was re-suspended in the Neural Plating—XF to achieve a density of 200,000 cells/cmz2.
Finally, the NSCs were plated on a 6¢cm petri dish (Sigma) coated overnight at 37°C, 5% CO2
with SureBond (Axol Bioscience, ax0041) at a volume of 200 ul per cm2. The plated cells were
then checked under the light microscope in the lab to ensure cell adherence to the substrate and

even cellular distribution in the culture plate (Figure 2.9A).

On the following day, NSC viability and general conditions were observed under the lab
microscope to check that the cells reached 70-80% of confluency. Figure 2.9B shows an
example of 80% confluency. The cells were then rinsed once with Dulbecco’s-PBS without
calcium or magnesium (BSS-1005-A , MilliTrace), 2 mL D-PBS per 10 cm2 culture surface
area, and 1 mL per 10cm2 of detachment solution Unlock-XF (Axol Bioscience, ax0044XF) at
room temperature was added immediately and kept for 5 minutes at 37°C. The Unlock-XF
solution was then diluted by adding four volumes of pre-warmed, 37°C, Neural Expansion-XF
Medium followed by centrifugation at 200 x g for 5 minutes at room temperature. After

centrifuging, the supernatant was aspirated and the cell pellet was re-suspended.
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Figure 2.9 Routine lab check-up for the cultured hNSCs prior to in vitro culture
and in vivo transplantation.

Examples of NSC check-up on (A) plating day, to check for adherence and (B) after
24 h, to check for 80% confluency.
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For the 2D in vitro experiment, the cell pellet was re-suspended with Neural Plating—XF
Medium (Axol Bioscience, ax0033), Axol Sure GrowthX Recombinant Human FGF2 (Axol
Bioscience, ax0047X) and EFG (Axol Bioscience, ax0047) at appropriate concentrations to

achieve a seeding density of 200 pl per cm?.

For the 3D in vitro experiment and transplantation surgery, the NSC/ECM complex was
prepared. The cell pellet was re-suspended with freshly prepared HyStem-C hydrogel from a
HyStem®-C cell culture scaffold kit containing three vials of hyaluronan, gelatine, and cross-
linker (HYSCO020, Sigma Aldrich) at a concentration of 100,000 NSCs. To achieve this
concentration, hiPSC-NSCs (1.5 x 108) were resuspended in a mixture of 12.5 ul hyaluronan,
12.5 ul gelatine, and 7ul cross-linker to form a NSC/ECM complex (H:G:P=2:2:1). This
complex was used for both the in vitro 3D differentiation and in vivo grafting. A similar mixture

was used immediately after in preparation for the transplantation surgery.

2.4.3 The invitro 2D differentiation protocol

Collagen IV (C6745, SIGMA) coated, 12-chamber, sterilized glass microscopy slides (81201,
IBIDI), and with well dimensions of 7.5 x 7.5 x 8 mm were used. 100 pL of the re-suspended
NSC pellet was plated in each chamber at a seeding density of 70,000 cells/cm? and incubated
in at 37°C, 5% CO2. On the next day, the medium was replaced with fresh, pre-warmed, 37°C,
Neural Maintenance-XF Medium without growth factors FGF2 or EFG, and after a further 24
hours, only two-thirds of the medium was replaced. Then, half of the medium was replaced
every two days. A daily microscopic observation routine was performed to check cell viability
and differentiation (Figure 2.10). Contamination-free culture was maintained throughout the
experiment by using sterile procedures and performing a daily microscopic inspection in the
lab.
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o ST * %
Figure 2.10 Routine observation of NSCs in 2D culture.
Examples of the NSC observation routine under the microscope to ensure cell
differentiation and check morphology. (A) NSCs attaching to the 2D substrate and
extending short processes (arrow) after 24 hours, (B) NSCs starting to gather in
clusters (arrows) after 48 hours, and (C) NSCs form large clusters (starts) that are
(D) connected (arrow) by 10 days after the start of differentiation.
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The NSCs in 2D culture were then fixed and immunostained at three time points: 10, 14, and
17 days after initiation of differentiation. For fixation, NSCs in the 12-chamber slide were
rinsed twice with PBS, and then incubated with 4% PFA in PBS (pH 7.4) for 15 minutes at
room temperature with gentle agitation followed by two PBS rinsing steps. The slides were kept

at 4C° until immunofluorescence assessment.

2.4.4 The in vitro 3D differentiation protocol

The NSC/ECM complex was plated in four micro-inserts (Culture-Insert 4-Well, ibidi, 80409)
that were placed in a 2-chamber slide (80281, ibidi) in a 100 mL petri dish. The NSC pellet was
re-suspended in HyStem-C hydrogel at a concentration of 1x10° cells/5 ul. Next, 5 pL of the
NSC/ECM complex was plated in each micro-insert (Figure 2.11A and B) and incubated at
37°C, 5% CO2 for one hour to ensure a successful gelling process. Once the appropriate gel
texture was achieved, 140 pL of pre-warmed, 37°C, Neural Maintenance-XF Medium with
growth factors FGF2 and EFG was added into each insert and the dish was returned to the warm
incubator. The same protocols for changing the medium and performing microscopic
observations were followed as described in the section on 2D differentiation. Figure 2.11C-F
shows examples of the routine for observing NSCs under the microscope to ensure cell

differentiation and check morphology in the ECM.
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Figure 2.11 Observation routine for NSCs in 3D culture.

Examples of the NSC observation routine under the microscope to ensure cell
differentiation and check morphology in the ECM. (A) Low magnification image of the 2
sets of 4 micro-insert (red arrows) placed in two chambers slide (yellow arrow), including
NSCs-ECM. (B) Magnified image of the 4 micro-insert with NSCs-ECM. (C) NSCs with
a rounded shape and no extended processes (arrows) after 24 hours. (D) NSCs starting to
gather in clusters (arrows) after 6 days. (E) NSCs extend long processes (arrows). (D)
Larger cell bodies within the clusters 14 days after start of differentiation.
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Cell fixation was done as described in the 2D differentiation section at 4 time points; 10, 14,
17, and 43 days after initiation of differentiation. However, the rinsing steps were longer, 30

minutes, to ensure PBS penetration into the hydrogel.

2.4.5 The NSCs/ECM transplantation protocol

NSCs/ECM complex was transplanted into the lesioned SMC of the PIS model at P14. Only
the hyaluronan and gelatine hydrogel components were mixed and added to the NSC cell pellet.
Samples were aliquot into 8 sterilized vials then taken out of the sterilized hood in an ice
container to the surgery room. The cross-linker was added just before transplantation due to the
small time window for gelling (20 minutes for the hydrogel ratio that we used). Next, 2 ul of
the NSC/ECM complex was injected into the SMC (AP1.3, MD2, and DV1.8) at a rate of 0.5
p/min. Each rat received a 100,000 cells in 2l of NSC/ECM complex (Table 2.4).
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Rats
Intracranial injection at

AP1.3, MD2, DV1.8

2 ul of hNSCs-ECM/ or
ECM for 4 min

Pause 1 min

remove the needle up

Table 2.4. Stem cells injection check list.
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Six sham operated animals received ECM only with no NSCs following the same surgical
procedure as the experimental group. The experimental group included fifteen P14 rat pups.
Rats in both groups received the NSCS/ECM intracerebral injections two days after receiving
the ET-1 injections. Each animal was anesthetised by nasal inhalation of isoflurane and
underwent the same surgery procedure described in the ET-1 surgery (section 2.3.2). For
furthered gelling time confirmation, a quick simple test was performed just prior to starting the
surgery. The gelling time of a drop of the hydrogel was tested by turning on a timer once the
cross-linker was added. A pipette tip (Volume 1,000 pL) was taken and inserted into the drop
allowing the fluid to get inside the tip via capillary action. Once gelling started, the hydrogel
was no longer taken up by the tip and the timer was stopped to set this point of time. Gelling

time was found to be 12 minutes after adding the cross linker in our hands (Figure 2.12).
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Figure 2.12 ECM gelling time test prior to grafting.
(A)The hydrogel in a fluid state being taken up into the pipette tip (arrow) 4 minutes
after the cross-linker was added. (B) Hydrogel is in gel form at 12 minutes after

adding the cross-linker, as indicated by no fluid inside the pipette tip.
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The size of the autoclaved Hamilton syringes used in the surgery to deliver the NSCs/ECM
while in liquid form were 26 gauge to allow for the flow of the suspension. Prior to injection,
the cross-linker agent of the HyStem-C was added to one of the eight NSC/ECM vials and the
timer was started. The needle was lowered after breaking the dura with fine tip needle. Injection
of the NSCs/ECM began 4 minutes after adding the cross-linker and continued for 6 minutes.
Then, the needle was kept in its place for an additional minute to prevent flow back and was
then withdrawn slowly. The Hamilton syringes were cleaned with sterilized saline and 70%
ethanol after each injection. Suturing and post-surgical care were conducted as described in the

ET-1 surgical protocol (Section 2.3.2).

We did not use immunosuppression to ameliorate the immune reaction, that occurs due to the
immediate reaction of microglia after grafting (Glezer et al., 2007), as some studies have argued
that using immunosuppression will prevent neural repair, or lead to deterioration in the
underlying disorder and prevent the beneficial role of microglia in the repair of the lesioned
brain tissue (Glezer et al., 2007, Kulbatski, 2010). Furthermore, the immune system is too
immature and less able to mount an immunogenic response to xenogeneic transplants in neonate
rodents (Coenen et al., 2005, Englund et al., 2002, Jablonska et al., 2010).

2.4.6 Immunohistological assessments

Parallel sets of coronal brain sections (50um) from fixed brains were collected serially and
stained with cresyl violet or Immunoperoxidase following the same protocol described before
for the immunohistological outcome assessments in the PIS model (Section 2.3.6). In addition,
immunofluorescent staining for IHC and immunocytochemistry (ICC) was done by incubating
the sections or cells with one or two primary antibodies (double labelling) in a blocking buffer
at 4°C overnight. The sections or cells were then washed and incubated for two hours in the
dark with one (or two, if performing double labelling) of the secondary antibodies: Alexa Fluor
488-conjugated goat anti mouse 1gG and Alexa Fluor 594-conjugated goat anti- rabbit (1:200—
500; Abcam). Nuclei were counterstained with 4',6-diamidino-2-phenylindole (DAPI) using a
hard set of mounting medium with DAPI (Vectashield). Fluorescence signals were detected
with a Nikon (Melville, NY) PCM-2000 laser-scanning confocal microscope at
excitation/emission wavelengths of 650/668 nm (Alexa Fluor 647, far red), 590/617 nm (Alexa
Fluor 594, red), 495/519 nm (Alexa Fluor 488, green), or 360/400 nm (DAPI, blue). Sections

or cells were subjected to imaging.
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The primary antibodies described for IHC assessments in the PIS model (Section 2.3.6) were
used in this experiment as well. These primary antibodies were for IBA1, GFAP, PV (Nodari
etal., 2010), and biotinylated B4-isolectin (1:1000 for IHC, 1:200 for ICC, Vector Laboratories)
to observe neovascular formation (Benton et al., 2008). Additional primary antibodies used in
this experiment included antibodies to neural cell adhesion molecules (NCAMs)(Smith et al.,
2017b); markers for human cell cytoplasm but not rodent or non-human primate cells
(STEM121); markers for Ku80 Protein located in human cell nucleus only (STEM101)
(Guzman et al., 2007, Sareen et al., 2014, Tornero et al., 2013); a marker for human GFAP, a
marker for astrocytes and radial glial cells, but not rodent GFAP (STEM123) (STEM123)
(Sareen et al., 2014); paired box protein (PAX6), a marker for proliferating cortical progenitor
cells including radial glia (Bayatti et al., 2008); doublecortin (DCX), a marker for migrating
neuroblasts and neurogenesis (Lam et al., 2014); Beta-I11-Tubulin (TUJ1), a marker for neuron-
specific class Il B-tubulin in post-mitotic neuroblasts and neurons (Stevanato et al., 2015);
MAP2, which has neuron-specific expression in dendrites and soma (Guzman et al., 2007);
neural synaptic vesicle marker (synaptophysin) (Smith et al., 2017b); TBR1, an early post-
mitotic cortical glutamatergic neuron marker (Ali et al., 2012, Bayatti et al., 2008); and CTIP2,
a marker for deep layer cortical neurons (Ip et al., 2011). Details for the primary antibodies are
listed in Table 2.5.
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Primary

antibodies Antibody dilution Company
IHC ICC
IBA1 1:500 - Abcam
GFAP 1:1000 1:200 Sigma
PV 1:2000 - Sigma
Pax6 1:500 1:100 Covance
NCAM 1:1000 1:100 Santa Cruz
Biotechnology

STEM121 1:3000 1:500 Stem Cells, Inc.
STEM101 1:1000 1:50 Stem Cells, Inc.
STEM123 1:2000 1:250 Stem Cells, Inc.
DCX 1:1000 1:250 Abcam
TUJ1 1:500 1:100 Merck Millipore
Map2 1:500 1:200 Abcam
Synaptophysin 1:5000 1:200 sigma
TBR1 - 1:100 Abcam
CTIP2 1:300 - Abcam

Table 2.5 Names and dilutions of primary antibodies used in IHC and ICC

research assessments.

64




2.5 Image acquisition

Coronal brain sections with Immunoperoxidase staining were imaged using upright light
microscopy (Olympus, BX6) and an attached colour digital camera (Axiocam Zeiss). Images
were viewed in Axiovision 4.8 software. For quantitative analyses, images of FG-traced, anti-
PV, and cresyl violet stained sections were scanned using the Leica SCN400 Slide Scanner
(Newcastle Biomedicine Biobank Imaging facility) at 20x magnification and 3.08 zoom.

The facilities of the Bio-Imaging Unit at Newcastle University were used for fluorescent image
acquisition. Images of coronal brain sections were captured using the upright fluorescent
microscope Zeiss Axiolmager with an automated stage. Ultraviolet incident light was used to

visualize FG+ cells in the spinal cord and validate the success of unilateral FG injections.

To obtain 3D fluorescence images of the double-labelled sections, a fully motorized, confocal-
based upright Nikon Ni was used. Inverted light and fluorescent confocal microscopy (Nikon
AlR) was used to capture images of fluorescent double-labelled cells cultured in vitro. Both
microscopes had a colour digital camera (Nikon, DS-Fil 2560 x 1920) that was used to image

the in vitro cultured cells.

Image acquisition was done at 4, 10, 20, 40, 100 (Oil) magnification and viewed and produced
in NIS-Elements Viewer 4.2. Adobe Photoshop CS6 was used to prepare figures, with
resolution set at 300 pixels per inch.
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Chapter 3 .Perinatal Ischemic Stroke Model: MCAO and ET-1

3.1 Introduction

In rodents, inducing focal ischemia utilizing the middle cerebral artery occlusion (MCAQ) or
application of endothlin-1 (ET-1) methods results in vascular distribution of the SMC. The
MCAO method involves permanent occlusion that results in severe ischemic injury, as
indicated by caspase-3 activity where apoptosis-like cell death also occurs during the first 24
hours (Manabat et al., 2003, Wen et al., 2004). PIS can be modeled by the intracerebral ET-1
using the stereotaxic frame to produce focal ischemia in adult and aged rat brains (Gennaro et
al., 2017, Soleman et al., 2010, Windle et al., 2006).

It is widely accepted that research with animal models is crucial to developing and testing new
therapies. Different methods have been utilized to model perinatal ischemic stroke in rodents
considering the extent the animal model reflects humans in terms of the way the nervous system

functions and develops.

The aim of this experiment was to develop and compare two separate models of perinatal
ischemic stroke (PIS) capable of causing anatomical lesion to the limb sensorimotor cortex
(ISMC) and sensorimotor behavioural dysfunction in P12 Wistar rat neonates: 1) MCAO at the
level of the temporal bone, and 2) injection of reversible vasoconstrictor ET-1 directly into the
ISMC. Sham operations were performed for each model.

3.2 Results

All animals underwent three behavioural tests. Firstly, a weekly reaching test was done at four
time points: postnatal (P) P31, P38, P45, and P51. Then, cylinder and grid walking tests were
performed on experimental and sham animals at P35-40 before they were perfused at P40-45.
Finally, all brains were sectioned coronally prior to being processed histologically for
assessment by immunohistochemistry (IHC).

3.2.1 MCAO Model

Animal numbers

P12 Wistar rats underwent three separate MCAO/sham surgeries; the total number and the
subcategory values of the participating rats are detailed in Table 3.1. The MCAO surgery

involved craniectomy at the level of the temporal bone and electroligation of the distal middle
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cerebral artery (MCA) on the left side of the brain; 13 P12 rats underwent this surgery. One
died during the MCAO surgery and two were excluded due to surgical errors during
craniectomy that led to mechanical brain damage. The exclusion was done immediately after
the surgery and before performing any IHC. Animals were transcardially perfused with fixative
(4% buffered paraformaldehyde (PFA)) at different time points post-surgery to test for hypoxia
and inflammation by IHC in the acute stage: one rat on Day 2, two rats on Day 5, one rat on
Day 9, and one rat on Day 20. Five MCAO rats were perfused at P40-45 following behavioural

outcome assessments and the brains processed for IHC.

The sham surgery involved only craniectomy with no MCAO; this was done to 16 P12 rats, one
of which was excluded due to a technical error during craniectomy that led to mechanical brain
damage. The exclusion was done immediately after the surgery and before performing any IHC.
Perfusion for IHC assessment was done at time points parallel to those for the MCAO rats: two
rats on day 2, two rats on day 5, one rat on day 9, one rat on day 20, and 9 rats on day 33 after

surgery. Five sham rats were tested behaviourally between P40-45.
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L Perfusion time points for IHC BEEIOUTEL
number assessment | Number
of
Groups excluded
P12 | 2D/P14 | 5D/P17 | 9D/P21 | 20D/P32 | 33D/P45 |  P40-45 rats*
MCAO 13 1 2 1 1 5 5 3
Sham 16 2 2 1 1 9 5 1

Table 3.1 The number of animals included and excluded in each time point of the MCAO
model and sham groups.

* Exclusion reasons were described in the text.
D= days post-surgery, P=postnatal age.
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Behavioural Results and the Quantitative Analyses

A total of 10 rats (sham n=5, MCAO n=5) underwent behavioural testing. Three behavioural
tests were applied using similar procedures for both the MCAO and sham group. The reaching
test was performed 3 times for each group, and the asymmetry placement test and the grid
walking test were done once for each group. Statistical comparisons were carried out using non-

parametric tests due to the small sample size.
Grid walk test

Data from this test were recorded as described in Chapter Two. The forelimb fault (FLF)
percentage was calculated by dividing the contralesional FLF by the number of total steps and
multiplied by 100%. The hindlimb fault (HLF) percentage were calculated correspondingly.
Overall, we found that MCAO did not adversely affect the placement of forelimb (FL) and the
hindlimb (HL) contralateral to the lesion (p=0.69; Mann Whitney U test) (Figure 3.1A) and
ipsilateral to the lesion (p=0.84; Mann Whitney U test) (Figure 3.1B) compared to the sham

group.

The figure shows no detectable difference or trend between the two groups was in the
percentage of FLF and HLF in the limb contralateral to the lesion (Figure 3.1A).

Interestingly, the median total steps for the forelimb and hindlimb contralateral and ipsilateral
to the lesion demonstrated a similar trend between the MCAO and sham groups. The MCAO
animals showed a tendency to take more steps than sham animals; this reached statistical
significance for the forelimb (p=.05; Mann Whitney U test), but not for the hindlimb (p=.15;
Mann Whitney U test) (Figure 3.1C).
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Figure 3.1 The grid walk test outcomes in MCAO model and sham animals.
(A) MCAO caused a small but not significant increase in FLF contralateral to the
lesion compared to sham animals but a small but not significant decrease in HLF.
Black bars show the median values. (B) MCAO did not significantly affect footfaults
ipsilateral to the lesion. (C) MCAO caused a statistically significant increase in FL
steps taken (p<0.05) and a small but not significant increase in HL steps taken.
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The Asymmetry Placement Test

Data from this test were recorded as described in Chapter 2. The number of placements and
contacts made by single and both forelimbs on the cylinder wall was counted for both sham and
MCAO animals. The asymmetry score of the contralesional limb was calculated as follows:
contra-limb contacts + % both-limb contacts + (total limbs contacts) x 100 (Schallert and
Woodlee, 2005a). No significant difference was found in the median asymmetry score between
groups (p=0.60; Mann Whitney U test). The typical score is around 50% (Schallert and
Woodlee, 2005a), and rats in both groups mainly used both forelimbs symmetrically (Figure
3.2A).

Similarly, the number of limb contacts showed no significant differences between MCAOQ and
sham animals for the limb ipsilateral to the lesion, the limb contralateral to the lesion, or for
both limbs touching the wall (p=0.26, 0.30, 0.45 respectively; Mann Whitney U test) (Error!
Reference source not found.) (Figure 3.2B). Non-parametric tests were used because of the

small sample size in this experiment.
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Median
Groups _ i
Asymmetry | Ipsilesional | Contralesional Both paw | Total paw
score paw contact | paw contact contact contact
MCAO 53% 28 35 6 67
(n=5)
sham 46% 275 25 5 56
(n=5)

Table 3.2 The median scores of the asymmetry placement tests and the limb contacts

in MCAQO and sham animals.
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Figure 3.2 Average of the asymmetry placement test and limb contacts in
MCAO model and sham animals.

(A) Non-significant deficit in the symmetry score for MCAO animal models
compared to the sham animals, the dashed line marks 50% where the number of
using both limb is equal. (B) Also, no significant difference in the number of
contacts made by the forelimbs in MCAO compared to sham animals was found.

Black lines are the median values.
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In conclusion, is that there was no detectable difference between the MCAQ and sham groups,
so we decided not to pursue these experiments further. The following behavioural tests were

excluded:
Reaching test

The reaching test was eventually omitted from our protocol due to the challenges in
distinguishing the motive for limb use, as it was noticed that rats might use the limb ipsilateral
to the lesion due to limb preference; animals start using one limb and continue to do so until
they become accustomed to this limb choice. This bias is usually avoided in adult rat studies by
training them to use only the limb contralateral to where the lesion will be made for reaching
as a baseline, or by performing a baseline test prior to the lesion surgery However, these pre-
surgery protocols were inapplicable in our study since our rats were newborns during the pre-
surgery period. Moreover, the corticospinal tract (CST) is not myelinated until P28 and the pups
aren’t weaned before P21-28 so have no motivation to reach (Schallert and Woodlee, 2005a).

Thus, no training or behavioural investigations could be conducted before the surgery.

Figure 3.3 shows the reaching test for the MCAO and sham groups, and an additional normal
rat group added to compare the laterality index, at four time points: P31, P38, P45, and P51. To
assess limb preference, the laterality index for each group was calculated as follows: (ipsilateral
limb reaches - contralateral limb reaches) / (ipsilateral limb reaches + contralateral limb
reaches). Scores are between 1 and -1, with 1 considered to be ipsilateral limb preference, -1
contralateral limb preference, and 0 no preference. We found a shift toward using the ipsilateral
limb (left limb) that could have been a result of the lesion. However, the shift toward using the
left limb was observed even in normal (unoperated) rats which might indicate a bias toward left
limb usage. It also was noticed that during the tests, the rats started their reaching using both

limbs, and then they chose the limb with more successful reaches as a preference.

When this preferred limb is the ipsilateral one, the lesion effect on the contralateral limb will
be confounded (Allred et al. 2008). In a trial done to avoid this bias, the reaching box cage was
modified by inserting a wall into the reaching test box a few mm from the window to try and
force the rats to use the contralateral limb. However, this was unsuccessful since the rats, at this
age, were still able to fit their small bodies against the wall and then use either limb for reaching.

Thus, the bias was unavoidable, unless perhaps we were prepared to wait longer until the rats
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gained more weight, and so we consequently omitted the reaching test from the behavioural
tests.

Pasta test

The test was not found to be suitable for testing cortical asymmetry deficits. A trial for normal
rats was performed and we found that non-experimental rats can use only one paw to hold the
pasta independently without using the other hand which will confound the comparison to

lesioned rat performance (Figure 3.4). Therefore, this test was not included in our protocol.
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Figure 3.3 Laterality index in MCAO, sham and normal successful reaching
attempts over 4 weeks reaching tests.

The laterality index showed the preference limb in each of the three groups.There was
only one rat with right (contralateral) limb preference among five rats with left
(ipsilateral) limb preference in each group. In all groups, most rats showed a preference
toward using their left (ipsilateral in lesion or sham groups) limb in all reaching attempts.

Error bars are standard deviation.

Figure 3.4 Pasta test.

Normal rat (A) holds the pasta with both paws, and (B) holds the pasta with one paw.
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Histological observations

At the beginning of our experiment, no histologically detectable infarction occurred when
MCAO was applied to the distal part of the MCA at one spot (Figure 3.5 A and B), which is a
method adopted from (Coyle, 1982, Renolleau et al., 1998). Thus, we stopped this occluding
method and excluded it.

Then, we ligated along the MCA trunk from the olfactory tract level proximally to the inferior
cerebral vein level distally as much as possible to prevent collateral cerebral arteries from
supplying the sensorimotor area (Taguchi et al., 2010) . At 2, 5, 9 and 20 days after occlusion,
we studied the expression of a hypoxia-inducible transcription factor (HIF-1), which we
predicted would show brain regions deprived of a blood supply by MCA occlusion. We also
looked at expression of the microglial marker IBA1, which shows the innate inflammatory

response of the host tissue due to induced hypoxia

At Days 2 and 5 post occlusion, expression of HIF-1 was increased in the lateral cortex close
to the site of occlusion, including barrel field somatosensory cortex (bfSSC) and the secondary
somatosensory cortex (S2), while the more dorsal primary ISMC controlling the limbs showed
little or no expression (Figure 3.5C).

We also found that permanent MCAO in immature rats rapidly induced microglial activation
and subsequent accumulation of activated microglia in lesioned forebrain structures. IBA1
expression in the MCAO group showed a similar pattern to HIF-1 (Figure 3.5D). These data
demonstrate that perinatal ischemic brain injury induces rapid accumulation of activated

microglia, as detected by IBAL.

No immunoreactivity was detected with either antibodies at Days 9 or 20 post occlusion in the
MCAO group nor at any of the four time points in the sham group.
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Figure 3.5 Immunoreactivity for HIF1 and IBA1 5 days after inducing MCAO
in rat pups.

No increased expression of HIF-1 when MCAOQ was applied to the distal part of the
MCA (A) and (B) at one spot. Increased expression of HIF-1 (C) and IBAL (D) in
the lateral cortex close to the site of occlusion in the bfSSC, but the more dorsal

ISMC showed little or no expression in rat pups at P17.
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At P45, animals were perfused for chronic-stage IHC assessment. Eight coronal sections
through the forebrain of each animal were stained with cresyl violet, anti-calcium-binding
protein (parvalbumin) antibody, and the anti-IBA1 antibody.

Cresyl violet was used to visualize the neuronal distribution. Inspections of forebrain structures
in both the MCAO and sham groups revealed cortical tissue damage in the bfSSC (Figure 3.6A).
However, no tissue alterations of cerebral cortex in the ISMC were seen (Figure 3.6B). In all
sham brain sections, normal cell morphology was seen in the sensorimotor cortex (SMC) when

using cresyl violet staining (Figure 3.6C and D).
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Figure 3.6 Representative images of brain tissue in the IH using cresyl violet
staining in coronal sections.

Neuronal morphology from P45 MCAOQO model brains showed (A) cortical lesion
(asterisk) in the bfSSC but no lesion in the ISMC. (B) No abnormal morphology in
the ISMC (C) or the bfSSC (D) in sham brains.
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Parvalbumin (PV) immunoreactivity was present in a normal distribution in ISMC of the in the
contralateral cortex in MCAO rats, and in sham animals (Figure 3.7A and B). However, an
obvious decrease in PV immunoreactivity was observed in the bfSSC of the IH after MCAO

when compared to the normal PV expression in the adjacent ISMC (Figure 3.7A).

Few activated (ameboid) microglia immunopositive for IBAL1 were found in the bfSSC at 33
days after MCAO (Figure 3.7C and D). However, the normal ramified phenotype of microglia
with small bodies and long, thin processes were present throughout the cortical tissue of MCAO

and sham animals (Figure 3.7E).
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Figure 3.7 Representative images of PV and IBAl1 Immunoperoxidase
reactivity at P45 of brain tissue in the IH following MCAO.

(A)Loss of PV immunoreactivity in the bfSSC but not in the ISMC in MCAO
models, the dashed line represent the border between the ISMC and the bfSSC. (B)

No decrease in PV staining in sham animals’ bfSSC. (C) Few activated microglia
immunoreactive for IBA1 in the bfSSC (arrow) but not in the ISMC (asterisk) in
MCAO models. (D) Magnified image of IBA1+ microglia (arrow) in bfSSC after
MCAO and (E) in sham animals displaying ramified microglia (arrow).
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3.2.2 ET-1 Model

Animal numbers

ET-1 or saline was injected into the SMC of 37 Wistar rat pups at P12. The total number of
operated rats and the subcategories of these numbers are detailed in Table 3.3. A total of 17 rats
were assigned to the experimental group and received ET-1; 12 rats were assigned to the sham
group and received saline injections intracerebrally into the ISMC. One rat from the ET-1 group
and one rat from the sham group died during the retrograde tracer surgery due to anaesthesia-
related causes. Another rat was excluded from the ET-1 group due to post-operation swelling
at the incision site over the head that was fluid-filled, non-painful and superficial at P20. When
the swelling did not subside after being given the anti-inflammatory Meloxicam (Metacam,
0.5mg/kg) orally, the animal was humanely terminated.

Eleven rats from the ET-1 group and 11 rats from sham group were tested behaviourally at the
same time points between P40 and P45. Four days before transcardial perfusion with fixative,
a retrograde tracer, fluorogold dye, was injected into the cervical spinal cord on the side
contralateral to the lesioned cortex to count and record the number and location of corticospinal

neurons (chapter four).

Transcardial perfusion with fixative was performed at three time points post-surgery. For IHC
assessment of hypoxia and the inflammatory reaction in the acute stage, two rats in the ET-1
group were perfused on Day 2 post surgery, and one on Day 9 post surgery. Also, one rat from
the sham group was perfused on Day 9 post surgery. For the chronic-stage IHC assessment, 12

rats from the ET-1 group and 10 rats from the sham group were perfused at P45.
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il Perfusion time points for IHC BB Number
number assessment of
iz excluded
P12 2D/P14 9D/P21 33D/P45 P4A0-45 i
ET-1 17 2 1 12 11 p*n
Sham 12 0 1 10 11 1*

Table 3.3 The number of animals included and excluded in each time point of the ET-1

model and sham groups.

~died at P21. *died at P45 after the performing the behavioural tests and during the retrograde

tracer surgery. Exclusion reasons were described in the text, and D= days post-surgery,

P=postnatal age.
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Behavioural Results and the Quantitative Analyses

A total of 22 rats (ET-1=11, sham=11) underwent behavioural testing. Two behavioural tests
were applied using the same procedures for the ET-1 and sham groups. The asymmetry
placement test and the grid walking test were performed once for each group. Statistical

comparisons were carried out using non-parametric tests.
Grid walk test

When performing this test, one rat from the ET-1 group escaped from the grid walk test grid
and escaped again 3 times during repeat tests before it was excluded. Thus, the total number of

animals in this test was 21 rats (ET-1 =10, sham=11).

The FLF and HLF scores were calculated using the formula described in Section 3.1.2. Overall,
we found that FLF and HLF scores for the limb contralateral to the lesion were slightly higher
in ET-1 than in the sham group, and this more pronounced for the forelimb than for the
hindlimb. However, no significant differences were found between ET-1 and shams rats in
terms of the FLF (p=.86; Mann Whitney U test) or HLF scores (p=.81; Mann Whitney U test)
for the limb ipsilateral to the lesion, or for the FLF (p=0.7; Mann Whitney U test) or HLF scores
(p=0.8; Mann Whitney U test) for the limb contralateral to the lesion (Figure 3.8Figure 3.9A
and B).

Interestingly, ET-1 animals showed a strong tendency to take fewer steps than shams; however,
no statistical significance was found between the median total steps for forelimb (p=0.08; Mann
Whitney U test) or hindlimb (p=0.13; Mann Whitney U test) (Table 3.4) (Figure 3.8C).
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Median

Groups Contra | Contra Ipsi FLF _ Total steps | Total steps
. Ipsi HLF %
FLF% |HLF % & FL HL
ET-1 (n=10) 6% 4% 3% 2% 143 54
Sham (n=11) 5% 4% 2% 2% 192 72

Table 3.4 The median % of FLF, HLF, and FL steps and HL steps in ET-1 and sham animals.
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Figure 3.8 The grid walk test outcomes in ET-1 stroke model and sham
animals.

There is a trend towards having more faults with fewer steps in ET-1 rats than
sham ones with non-significant difference in the median of the FLF ratio and HLF
ratio in (A) the contralateral limbs and (B) the ipsilateral limbs between ET-1
animal and sham animals. (C) Also, there was no significant difference in the
median of the total step number in the ipsilateral and contralateral limbs between

ET-1 and sham animals. Black lines are medians.
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Asymmetry placement test

In this test, the asymmetry score for the contralesional forelimb was calculated using the
formula described in Section 3.1.2. The number of single-limb and both-limb contacts on the
cylinder wall were counted for the sham and ET-1 groups.

No significant difference was found in the number of limb contacts between groups (p=0.16.;
Mann Whitney U test) and rats in both groups mainly used both forelimbs symmetrically
(Figure 3.9A).

Similarly, there was no significant difference in the number of limb contacts between ET-1
and sham animals for the limb ipsilateral to the lesion, the limb contralateral to the lesion, or
total wall touch counts (p=0.21, 0.26, 0.10, respectively; Mann Whitney U test). However, there
was a trend towards lesioned animals making fewer contacts (Figure 3.9B).

Interestingly, the ET-1 stroke group did have significantly fewer cylinder wall contacts using
both limbs than sham (p=0.01; Mann Whitney U test) (Table 3.5) (Figure 3.9B).
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Median

Group | Asymmetry | Ipsilesional | Contralesional | Both paw | Total paw

score paw contact | paw contact contact | contact
ET-1

45% 12 17 0 28
(n=11)
Sham

0,

(n=10) 42% 24 21 2 49

Table 3.5 The median of the asymmetry placement tests and the limb contacts in

ET-1 and sham animals.
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Figure 3.9 Average of the asymmetry placement test and limb contacts in ET-
1 model and sham animals.

(A) Non-significant deficit in the symmetry score for ET-1 animals compared to the
sham animals, dash line equals 50% where the use of each limb is equal. (B) Also,
no significant difference in the number of contacts in ET-1 compared to sham

group. Black lines mark the medians.
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Weight Results

Throughout the experiment, the weights of 18 rats (7 sham, 11 ET-1) were monitored every 2-
3 days starting from the day of surgery at P12. Generally, a significant difference in weight gain
between ET-1 and sham rats was found when measured over the 22 days post-surgery. The
mean weight was around 24 g on the day of surgery in both groups. The weight of rats in both
groups increased with time; however, the weight of rats in the sham group increased steadily
and to a greater extent than that of ET-1 rats (Figure 3.10A).

The mean weight of sham animals was significantly higher than in the ET-1 lesioned animals
(p=.02; Independent Sample t Test). Although the weight scores calculated by dividing the final
weight by the 1% weight were higher in sham than in ET-1 animals, no significant difference

was found between the groups (Figure 3.10B).
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Figure 3.10 The weight change in ET-1 and sham animals.

(A) Effect of ET-1 injection on rat weight compared to the sham operated weight
over 9 time points. (B) There was a significant difference between the mean
weight of ET-1 lesioned rats and sham animals but a comparison of scores derived
by dividing the weight on P34 by the weight on P12 demonstrated no significant

difference.
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Histological observations

We made precise injections of ET-1 at 3 sites in the ISMC over a period of about 20 minutes
using a stereotactic frame with a syringe pump and a narrow needle Hamilton syringe. We
observed an immediate whitening of the superficial area of the SMC surrounding the needle

while we were injecting the ET-1 (Figure 3.11A).

In the first set of experiments performed 2 and 10 days after ET-1 injection, we studied the
expression of a hypoxia-inducible transcription factor (HIF-1) and a microglia marker (IBA1)
that shows the innate inflammatory response of the host tissue due to induced hypoxia. On Day
2, we observed a localised but extensive induction of hypoxic damage indicated by increased
expression of HIF-1 in the ISMC and accumulation of activated microglia, indicated by IBA1
immunoreactivity. No immunoreactivity was detected with either antibody on Day 10 post ET-

1 injection or in shams.

Figure 3.11B compares the use of MCAO and ET-1 for modelling PIS histologically using the
anti-HIF and IBA1 antibodies as indicators of hypoxia and the inflammatory reaction two days
after surgery. In immature rats injected with ET-1, we found rapidly-induced hypoxia and
subsequent accumulation of activated microglia in the ISMC controlling the limbs in rats and

to a lesser degree in the S2.
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Figure 3.11 Representative images of neonatal rat brain in PIS models.

(A) Immediate brain discolouration around the first injection site (arrow) after
injecting the ET-1 into the SMC. (B) Comparison between the Immunoperoxidase
staining at P14 rat pups for HIF1 and IBAL in MCAO and in ET-1 experimental
groups. In the MCAO model, immunoreactivity for HIF-1 and IBA1 was restricted

to lateral cortex close to the occlusion site including S2 but in the ET-1 model they

were expressed in the ISMC.
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To assess the histological changes at P45, animals were perfused and eight coronal sections
through the forebrain for each animal were stained with cresyl violet. Immunoperoxidase
staining was carried out using IHC with antibodies to PV (calcium-binding protein and
inhibitory interneuron marker); GFAP (astrocyte marker); IBA1 (activated microglia and

vascularization marker); and SMI-32 (antibody to non-phosphorylated neurofilaments).
Effects of ET-1 on Brain tissue in PIS model

Cresyl violet staining revealed tissue alterations in the ISMC of the ipsilesional hemisphere (IH)
in ET-1 animals. Overall, a consistent ISMC lesion was observed in all experimental rats;
however, the infarction size varied between the lesioned rats (Table 3.6 ). The variation in
infarction size was determine subjectively as follows: Mild to moderate infarction where a
disturbance in cellular morphology occurs but with no tissue loss, Moderate to severe infarction
where the cellular morphology occurs in addition to cortical tissue loss, and Ventricular
dilatation where an observable dilatation in the ventricle occurs.
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Mild to Moderate to . .
Ventricular Subcortical
Group moderate severe dilatation lesion
infarction infarction
ET-1 (n=10) 6 3 5* 1
_ One rat had a small infarction. No infarction was detected in the
sham (n=9)

remaining animals.

Table 3.6 infarction types in the ISMC of the ET-1 stroke animals.
*3 rats had moderate to severe infarction, one had mild to moderate infarction and one had

subcortical lesion in addition to the ventricular dilatation.
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ET-1 lesion resulted in a thinner cortex of the IH compared to the cortex of the contralesional
hemisphere (CH), as well as in dilatation of the lateral ventricle (Figure 3.12A). Also, some
shrunken neurons and pyknotic or fragmented nuclei were observed (Figure 3.12B), suggesting
neuronal degeneration in the ISMC of the IH. By contrast, intact neuronal morphology with no
tissue damage was observed in all other cortical regions in the IH and CH (Figure 3.12C) and
in the ISMC of sham animals (Figure 3.12D). Variation in infarction volume and morphology
was found across ET-1 injected rats. For example, Figure 3.12B shows a mild to moderate
infarction in one rat while Figure 3.12E represents an example of severe cortical loss in another

rat.
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IH in the ET-1 stroke and sham rats at P45.

(A) Thin cortex (arrow) of the ipsilateral hemisphere (right) with ventricular
dilatation (asterisk), (B) mild to moderate cortical infarction (asterisk) surrounded
with pyknotic or fragmented nuclei (arrowhead) and dead cells (arrow), (C) normal
appearing density in the contralateral cortex, (D) needle track in the ISMC of shams,

and (E) cortical loss due to severe cortical infarction.
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Effects of ET-1 on neuronal activity in PIS model

PV is a marker for active neural circuitry and reveals a widespread effect of lesions; thus, PV
immunoreactivity was examined in both IH and CH in ET-1 stroke animals. Quantitative
analysis of the effect of ET-1 injection on the number of cortical PV neurons in both IH and
CH was performed in six animals. All immunopositive PV neurons were counted in eight serial
coronal sections using Image hub and Image-J software. Overall, there was a reduction in

immunoreactivity in the ISMC ipsilateral to ET-1 lesion.

PV counts in the IH and CH were compared using the paired test (Wilcoxon Signed Ranks
Test), revealing that the ET-1 lesion caused a significant reduction in the number of PVV-positive

neurons in IH compared to the CH of the same animals (Figure 3.13).
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Figure 3.13 Parvalbumin (PV) immunopositive cells quantitave analysisin ET-
1 stroke model.

ET-1 injection into the SMC resulted in a significant loss of PV expression in
interneurons of the ISMC in the lesioned hemisphere compared to the contralateral

side not only at the lesion site but at more distant locations (A, B).
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Effects of ET-1 on Glial and neuronal Response in PIS Model

A few activated astrocytes and microglia immunopositive for GFAP and IBA1 were observed
in the ISMC of the IH in P45 ET-1 rats. Figure 3.14A and B shows GFAP staining of astrocytes
that sealed the infarction or trajectory of the injection needle in the ISMC of the IH. A few
hypertrophic microglial cells were observed at the lesion site and at the needle trajectory (Figure
3.14C and D). Otherwise, the normal ramified phenotype of microglia with small bodies and
long, thin processes and appeared to be present throughout the cortical regions of both the ET-

1 and sham animals (Figure 3.14 D).

Neuronal immunoreactivity for non-phosphorylated neurofilaments (NPNF) showed a decrease
at the ET-1 injection site. From observation of the sections, there appeared to be neuronal loss
in the ISMC of the IH in ET-1 stroke animals (Figure 3.14E). Intact distribution of the ISMC
cortical neurons was observed consistently throughout the cortex of sham animals (Figure
3.14F).
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response
(A) Activated astrocyte at the injection site of ET-1, and (B) magnified image of

swollen bodies of the GFAP+ astrocytes. (C) Activated microglia immunoreactive
for IBAL in the ISMC (arrow). (D) Magnified image of IBA1+ microglia in ISMC,
ramified microglia (arrowhead) and activated microglia (arrow) (D). (E) Loss of
NPNF+ neurons (asterisk) at the injection site in ISMC in ET-1 rat, and normal
neuronal NPNF expression and morphology (arrow) adjacent to the infarcted site
(F) in sham animals.
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3.3 Conclusion

The MCAO model of PIS resulted in acute hypoxia and an inflammatory response in the brain
that persisted for 5 days after occlusion and cortical tissue loss, with suppression of neuronal
activity 33 days after the occlusion in the bfSSC but not in the ISMC that controls limb function.
Injection of ET-1 to model PIS resulted in a similar pattern of lesion to the MCAO but instead
localised to the ISMC, suggesting that ET-1 is a more appropriate model of PIS in terms of
histopathology. Behavioural tests revealed no defects in either model, except in the use of both
forelimbs at the same time in the asymmetry placement test in the ET-1 model. This conclusion
leads us to the next chapter (chapter four), where the possible plasticity that might underlie the
absence of behavioural dysfunction in the ET-1 model was explored.

3.4 Discussion

In this chapter, two methods by which the P12 immature brain rat pups were lesioned to model
PIS were used, namely middle cerebral artery occlusion (MCAO) and ET-1 injection into the
SMC. The MCAO method resulted in an ischemic cortical lesion principally in the, but not the
ISMC. Thus, we utilized the second method instead. This latter method resulted in cortical
ischemia in the ISMC, which controls limb movements. There was no significant loss of
sensorimotor function during juvenile age P45 with either model. To our knowledge, this is the

first time these two techniques that have been used to model PIS in P12 neonatal rats.

3.4.1 Anatomical and behavioural response to MCAO

All animals with permanent MCAO showed acute cortical lesions at P5 and chronic cortical
lesions at P40-50 that were restricted to the bfSSC but did not extend into the adjacent ISMC.
HIF-1 immunopositive cells were clearly present in the bfSSC at 3 to 5 days post MCA
occlusion, indicating acute hypoxia (Lai et al., 2003). Permanent MCAO occlusion studies in
neonatal rodents have revealed similar lesion location (Bonnin et al., 2011, Tsuji et al., 2013,
Wen et al., 2004, Yager et al., 2006)

At the beginning of our experiment, the MCA was occluded by applying one spot
electroligation at the distal part of the MCA. This technique revealed no cortical infarction,
suggesting that collateral blood vessels continued to supply the brain so that infarction was

avoided. Studies have shown similar results when using filament ligation of the left MCA in
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immature rats to induce permanent MCAO (Coyle, 1982, Renolleau et al., 1998). However,
ligation along the MCA, starting from its origin or proximal to the olfactory tract and extending
to the level of the inferior cerebral vein, occludes all supplying arteries from the distal to the
proximal portions of the MCA (Bederson et al., 1986, Tsuji et al., 2013). For example, the MCA
in neonatal CB-17 mice was permanently electroligated, resulting in cortical infarction that
affected the lateral cortex with mild corpus callosum atrophy, mild thalamic injury, and
sensorimotor defects in rotarod and open-field tests (Tsuji et al., 2013). Another study on
permanent MCAO was conducted using suture embolus introduced into the MCA in immature
rat pups (P7), resulting in a large infarcted area that was not restricted to the ISMC, affecting
about 51-56% of IH in the forebrain with apoptotic-like cell death during the first 24 hours
(Wen et al., 2004). Thus, to produce an infarction, we performed electroligation along the MCA
from the distal part of the left MCA until the proximal part, a surgical procedure adopted from
(Tsuji et al., 2013).

Immature rodent models show inconsistency in terms of the behavioural outcomes of
permanent MCAQO. In our study, MCAO stroke resulted in bfSSC ischemic lesion, but did not
lead to significant behavioural dysfunction, similar to previous studies (Coyle, 1982, Renolleau
et al., 1998, Yager et al., 2006). MCAO using ET-1 adjacent to the MCA to induce stroke in
rats at three different ages; P10, 63, 180 showed no significant differences in behavioural tests
such as the grid walk test in rats that were lesioned at P10, but in older groups, behavioural
dysfunctions were reported (Yager et al., 2006). On the other hand, some immature stroke
models using permanent MCAO have shown behavioural deficits. A neonatal stroke study
showed that transient occlusion of MCA in P7 rats resulted in motor deficits during early
adulthood in sensorimotor performances including asymmetries in the corner test, the staircase
test, and adhesive-removal test (Bouet et al., 2010). This discrepancy among studies might be
due to many factors. Possible reasons include the extent of brain damage, the involvement of
subcortical regions in the lesion, and the different rodent strains and behavioural tests utilized
(Tsuji et al., 2013). Also, the different procedures for inducing PIS, such as the photo
thrombotic and intrafilament occlusion techniques (Brima et al., 2013), as well as the lesion
type, such as transient MCAO (Ashwal et al., 1995, Ashwal et al., 2007, Bouet et al., 2010,
Derugin et al., 1998, Derugin et al., 2000, Larpthaveesarp and Gonzalez, 2017) and different
neonatal ages at the time of lesion induction (Tsuji et al., 2013, Wen et al., 2004) could have
contributed to the different results.
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Although there was increased expression of markers for hypoxia and microglial activation in
the lateral cortex close to the site of occlusion, the more dorsal ISMC showed little or no
expression. These results suggest that MCAO caused hypoxia and microglial activation as a
result of ischemia, but that this did not occur in the ISMC; it did, however, affect the face
somatosensory cortex (SSC), S2 and insular cortex. Therefore, the small but statistically non-
significant differences in forelimb and hindlimb behavioural outcomes might have arisen from
a lesioned S2 or neglect of the right side due to loss of whisker sensitivity, but not from a lesion
of limb SMC.

MCAO proved to be a poor PIS model in P12 rat pups, as there was minimal involvement of
the ISMC, a major site of damage in human neonates. Therefore, we decided to inject ET-1
directly into the ISMC in order to produce stroke damage.

3.4.2 Anatomical site of lesion in response to ET-1 in the acute stage

In this experiment, the ET-1 intracerebral injection into the SMC of P12 rat pups established a
disturbance of the ISMC tissue morphology in the acute and chronic stages. Although there was
some evidence of functional disabilities in the ET-1 group compared to sham animals using the
grid walk and the asymmetry placement test at P45, these differences were not statistically
significant. The low-mortality rate following the injection of ET-1 provided another advantage
to using this method to produce PIS.

For the first time, the anatomical damage in the PIS model was compared between the MCAO
and ET-1 methods in the acute stage in P12 rat pups. We found that the first model revealed an
ischemic lesion in the bfSSC while the second model led to ischemic damage in the ISMC. The
main advantage of the use of ET-1 to model PIS over the MCAO is the appropriate lesion

location.

Our result is consistent, in terms of the location of the resultant cortical ischemia, with a similar
study in adult stroke models (Windle et al., 2006). In the later study, the outcomes of two
methods were compared; the MCAO and direct ET-1 application into the SMC and the striatum.
The MCAO method produced the PIS model with a bfSSC lateral cortex lesion whereas the
ET-1 application resulted in a confined lesion in the forelimb motor region in an adult stroke
model (Windle et al., 2006).
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In our study, injecting ET-1 into SMC at P12 caused hypoxia and an inflammatory reaction in
the ISMC for at least five days post inducing the lesion before it diminished after nine days
post-lesion. The HIF-1 immunopositive cells were clearly present two to five days in the bfSSC
post MCA occlusion, and in the ISMC after injecting the ET-1 indicating hypoxia and ischemia
exposure in our immature rats (Lai et al., 2003). In agreement with our study, Saggu et al (2013)
found the reperfusion after occlusion of the MCA using ET-1 in 3-week-old rats occurred over
three days (Saggu, 2013). The Hypoxia-inducible factor-1 (HIF-1) expression was also studied
in a neonatal stroke model study following interfilament advancement through the carotid
arteries for 1.5 h to induce transient MCAO in immature rodents. Using IHC and Western blot
analysis their results showed that HIF-1 expression peaked at 8 h post MCAO but hours but it
could still have been present one or 2 days later (Mu et al., 2003). The discrepancy between the

later study and ours is possibly due to the differences in the lesion-inducing techniques.

Our study revealed obvious activation of microglia in the ischemic ISMC. The highest
immunoreactivity was seen within ischemic brain areas on days two to five. Consistent with
previous investigations of the inflammatory response in neonatal ischemic injury, microglia
with short-ramified processes progressing to round amoeboid morphology were observed in our

results, suggesting a gradual activation of the local microglia (Raivich et al., 1999).

In an acute neonatal (P7) stroke study, microglia have been shown to play both beneficial and
destructive roles in the neural tissue. Microglia help in the defense mechanism, but at the same
time exacerbate inflammation and secrete neurotoxic factors in the lesion site, resulting in
neuronal death (Faustino et al., 2011). Changes in morphology and inflammatory factor release
in response to inflammation in cultured microglia from neonate rats was found to be similar to
the response of microglia from older adult rats, but different to microglia from embryos or
young adults, suggesting an age-dependent microglial response (Lai et al., 2003). Also, in line
with adult stroke studies, our results showed that microglial activation is an indicator of the
immediate inflammatory response after ischemic stroke peaking at 3—4 days (Annunziato et al.,
2013, Nowicka et al., 2008). The dense expression of IBA1+ cells in the acute stage in our
study suggested that microglia were participating in forming scar tissue at the lesion site. On
the other hand, a beneficial role for the microglia might be present at this site (Denes et al.,

2007). They work as a first barrier and to remove the cell debris at the inflammatory site to
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protect the neural tissue after acute neonatal focal stroke (Denes et al., 2007, Faustino et al.,
2011).

3.4.3 Anatomical response to the ET-1 injection in the chronic stage

Cresyl violet staining at P45 in our study showed that injecting ET-1 into SMC of P12 rats
produces cortical tissue damage in the ISMC of the coronal forebrain sections. However, an
inter-animal variability in the infarction size was observed in our study. There are several
possible reasons that might underlie this variability. The cerebral vascular structures differ
slightly from rat to rat, which results in variable infarctions according to the affected cerebral
vessels (Comi et al., 2005, Macrae, 2010). Also, different rodent strains that are used to model
the stroke revealed different results. When specific rodent strains that were characterized by
minor variation in the vascular distribution in the cerebral cortex, such as the mice CB-17 strain
are used, a more consistent cortical lesion size is observed (Taguchi et al., 2010, Tsuji et al.,
2013).

Another possible factor is the isoflurane-exposure duration. Immature rats displayed a more
consistent brain lesion with shorter exposure to isoflurane in surgery to induce the ischemic
lesion that lasted for 5 min rather than 20 min (Chen et al., 2011). Our 20-minute duration for
the surgery protocol is inevitable because of the gradual pumping of ET-1 into the SMC to
avoid any flow back. These factors might explain in our study the heterogeneity of the resultant

cortical infarction after injecting ET-1.

The cellular response in our PIS after injecting ET-1 into the ISMC involved significant loss of
PV expression by inhibitory interneurons with mild defects in the excitatory cortical neurons
(NPNF+). However, we don’t know if the interneurons have disappeared or have merely
stopped expressing PV, as PV is a marker for activity in neuronal circuits. The extent of
neuronal activity suppression in the ischemic lesion was revealed from counting the PV+
interneurons at P45 coronal sections of the rat forebrain. PV is a calcium binding protein that
influences the excitability of nerve cells. In developing rat the first PV+ interneurons are seen
at P8 in the hippocampus and at P14 in the cortex (Solbach and Celio, 1991). PV-interneurons
are one of three main subtypes of the inhibitory cortical interneurons that release the
neurotransmitters gamma-aminobutyric acid (GABA) and it have a crucial role in maintaining
the brain circuitry and activity(Dreifuss et al., 1969, Kelsom and Lu, 2013). In previous

neonatal rat studies with motor cortex lesion at P7 and under muscimol implants, a reduction
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in the PV positive neurons in the cervical spinal cord contralateral to the lesion and in the cortex
under the implant were reported in the contralateral side compared to the sham animals when
assessed at P28 (Clowry et al., 1997) and persisted into adulthood (Gibson et al., 2000a). In
agreement to our results, another study reported a persistent loss in PV+ and GABAergic
interneurons in the chronic stage after inducing perinatal hypoxia in P3-10 mice (Fagel et al.,
2009).

In addition to the neural activity inhibitory effect of ET-1 on the ISMC, we observed some loss
of the cortical excitatory neurons SMI-32+ in ISMC of all coronal sections in our PIS model
compared to the shams. Consistent with our results in the chronic stage, perinatal hypoxia in
P3-10 mice revealed a 30% loss of SMI-32+ neurons that completely recovered after one month
(Fagel et al., 2009). Another study in immature rats confirmed the reduction in neuronal nuclei
compared to sham animals at P40 after transient MCAO (Bouet et al., 2010). On the contrary,
a study in Kittens to model neonatal stroke reported a decreased cortical volume due to failure
of axonal and dendritic growth, but not due to neuronal loss in the SMC (Martin et al., 2000).
This discrepancy in the results might be due to the distinct species used to model the neonatal

stroke.

We employed anti-GFAP IHC to show that astrocytes exhibited changes in their morphology
at P45 and contributed to scar formation. In pathological conditions such as stroke, astrocyte
activation is considered as a sensitive indicator for astrocyte response to the brain lesion (Yang
and Wang, 2015). After a stroke, astrocytes express GFAP excessively in the acute stage and
seal the infarction site in the chronic stage (Kawano et al., 2012, Nowicka et al., 2008). In
agreement with a previous neonatal stroke study in P7 rat, astrocytes that were immunopositive
for GFAP at P40 were restricted in separating the ischemic lesion area from the normal adjacent
cortical tissue in the chronic stage in our study(Bouet et al., 2010). Adult rodent stroke studies
demonstrated the neuroprotective role via the inhibitory effect of GFAP+ astrocytes on
recovery in the chronic stages (Li et al., 2008) , yet reactive astrocytes might not participate in
the neuroprotection role. For example, no improvement was found to have no effect on reducing
the infarction volume in acute or subacute stages after neonatal brain hypoxic ischemia in mice
with inhibited astrocyte reaction (Jarlestedt et al., 2010).Thus, we suggest that the presence of
reactive astrocytes in the chronic stage might have no positive effect on reducing the resultant

infarction volume in our study.
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3.4.4 Behavioural response to the ET-1 injection in the chronic stage

The behavioural outcomes that were assessed at P45 after injecting ET-1 were similar to the
outcomes after occluding the MCA in our study. Unexpectedly, the resultant ischemic lesion in
the ISMC did not lead to significant sensorimotor defects. Although the sensorimotor
dysfunction was non-significant, there was a trend towards finding reduced performance in the
affected contralateral limb compared with sham animals after injecting the ET-1. On the
contrary, intracerebral injection of ET-1 caused ischemic lesions and behavioural defects in
neonatal rats at P14 when tested in adulthood (Gennaro et al., 2017). There are several reasons
that might affect the behavioural outcomes in neonatal brain lesion studies. The anatomical
regions that are involved in the lesion, the animal’s age when the lesion was induced and the
type of the behavioural assessment used might have a role in the non-significant motor

dysfunction in our neonatal stroke model.

The location of the cortical ischemia could affect the severity of the functional disability. Our
resultant ischemic lesions in the ISMC after ET-1 and in the bfSSC lesion after the MCAO were
cortical and did not involve subcortical structures. Compared to our purely-cortical lesion,
studies that involved the cortex and the striatum in the induced focal ischemia found significant
behavioural defects, as shown in neonatal and adult stroke studies (Brima et al., 2013, Windle
et al., 2006)). For example, a perinatal SMC lesion in P7 rats induced by photothrombosis over
5 minutes led to cortical and subcortical structure (e.g. striatum) lesions (Brima et al., 2013).
Furthermore, direct ET-1 application into the SMC and the striatum resulted in motor defects
in immature rats (Windle et al., 2006). However, we had one rat with cortical and subcortical
lesions in the striatum but it did not affect the asymmetry forelimb placement or the number of
the footfaults in the grid-walk test, which were similar to those for other rats in the lesioned
group. This involvement of the striatum in our study was due to a technical error during
injection of the ET-1.

Another probable reason behind having nearly normal limb-function outcomes is the animal’s
age at the day of the lesion. It was found that adult rodents demonstrated normal function in the
affected limb if the stroke was induced during the neonatal period, but not when the lesion was
induced during adulthood (Yager et al., 2006). It was also shown that adult rodents with

neonatal cortical lesions exhibited a normal tactile-placing reflex and few faults in the grid-
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walk test in the contralesional forelimbs, whereas animals with a similar injury at maturity
showed poor recovery (Alaverdashvili and Whishaw, 2008, Brima et al., 2013, Schallert et al.,
2000, Windle et al., 2006, Yager et al., 2006). Some studies of lesioned immature rats at P12
or less showed no behavioural deficits, in contrast to rats lesioned at an older age than P13.
Cortical lesioning at 7-10 days of age in immature rats has revealed nearly normal outcomes
behaviourally and spontaneous filling of the lesion cavity with new cells when assessed in
adulthood (Dallison and Kolb, 2003). Although we found no performance deficit, no cells were
observed to be generated in the infarction in our study. Also, Yager et al (2006) found that P10
rats which received MCAO, induced by injecting ET-1 adjacent to the MCA, had recovered
behaviourally when tested in adulthood. On the other hand, when adult and immature stroke
models that received ET-1 intracerebral injection into the SMC were compared, the adult rats
showed significant behavioural deficits but these were not present in the immature rats (Windle
et al., 2006).

In a very recent study, behavioural deficits were observed after injecting ET-1 intracerebrally
in P14 rat pups to produce ischemic stroke under intraperitoneal anaesthesia (Gennaro et al.,
2017). In addition to the animals’ age differences between this later study and our study,
Gennaro et al. (2017) used intraperitoneal anaesthesia whereas we used inhalation anaesthesia
in our ET-1 model surgery. It has been shown that the use of isoflurane as an inhaled anaesthetic
improves the neurological outcome after the ischemic lesion (Chen et al., 2011). In contrast,
another neonatal stroke study in mice used isoflurane for permanent MCAOQO surgery but the
operated animals showed sensorimotor defects in the rotarod treadmill and open-field tests.
Unlike our study, the latter study used the permanent method of inducing a stroke, different
species, involvement of cortical and subcortical tissue lesion, and used different behavioural

assessments (Tsuji et al., 2013).

Furthermore, the variety of the available outcome assessments is a considerable factor that leads
to different behavioural results for post-ischemic lesions in many studies. In our assessment
method, we utilized the grid-walk and the asymmetry-placement test because of their reliability
in testing unilateral SMC damage (Rogers et al., 1997, Schallert, 2006), though not unilateral
bfSSC damage (Stiittgen and Schwarz, 2010). Some studies utilized different tests to assess the
behavioural outcomes in immature stroke models (Bouet et al., 2010, Brima et al., 2013). For

example, applying the laser directly on the SMC in P7 led to deficits in motor performance in
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the bar-holding test and in the open-field test (Brima et al., 2013). Yet, in the Brima et al (2013)
study, non-significant behavioural dysfunction in the ladder-rank walking test was reported
which is similar to the grid-walk test in our study. It seems that the differently utilized

behavioural tests affect the assessment outcomes in immature stroke studies.

3.4.5 Mortality rate and body weight after the ET-1 injection at the chronic stage

We reported a 5% accidental death rate during ET-1 injection surgery using isoflurane
anaesthesia and 7% during MCAO surgery; in both surgeries rats died mainly due to
anaesthesia-related causes during the surgery. We had no incidence of animal death after the
surgery and all rats survived until the perfusion day, except that one animal was humanely

terminated at P20 due to inflammation at the incision site that did not subside with treatment.

Comparing our animal mortality rate with other studies is inappropriate because of the lack of
similar studies that inject ET-1 at P12 to produce the PIS model. A very recent, similar study
injected ET-1 intracerebrally into P14 rats but did not report the mortality rate (Gennaro et al.,
2017). However, in a P12 neonatal study, ET-1 was injected into the hippocampus which led
to a 20% death rate that occurred only during the first 24-hours post-surgery using halothane
anesthesia (Mateffyova et al., 2006). Also, injecting ET-1 at the level of MCA in P10 rats led
to a 46.5% death rate, with the authors claiming that the resultant brain damage caused the high
mortality rate (Yager et al., 2006). In our study, the mortality rate was much lower, and

therefore, ethically, more acceptable than other studies.

Different procedures of inducing stroke are associated with different complications. Studies
showed that the method we used (injecting ET-1 directly into the SMC) to induce the cortical
ischemic lesion resulted in a lower mortality rate than the other methods. When MCAO is
occluded, either by the direct electroligation (Renolleau et al., 1998) or by injecting ET-1 near
the MCA (Ansari et al., 2011, Yager et al., 2006), the mortality rate is high. For example, in a
study by (Renolleau et al (1998), a high percentage of P7 rat pups died during the MCAO with
transient carotid occlusion surgery. In another more recent study mentioned above, P10 rats
who underwent MCAO via ET-1 injection showed a 46.5% death rate, but not the older rats
(P63 and P180) (Yager et al., 2006). However, when the induced focal ischemia was due to
injecting ET-1 into the SMC in immature rodent as in our study or in an aged rodent as in a

previous study (Soleman et al., 2010), a low mortality rate was recorded.
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However, it is not always the case that MCAO results in high mortality. In a study that used
immature mice, the mortality rate was low (15%) two days after the surgery with no animal
deaths occurring during the surgery when isoflurane was used. In the previous section (3.7) we
indicated that the anesthetic type used in the modelling surgery might affect the behavioural
outcomes. Similarly, the mortality rate could be affected by the type of the used anesthetic. For
example, Tsuji et al (2013) suggested the beneficial effect of the use of isoflurane in reducing
the infarction severity (Chen et al., 2011). In our study, we used isoflurane as a gaseous
anesthetic during the surgery. In agreement with our results, a low mortality rate (13.35%) was
reported in an adult rat study that injected ET-1 into the SMC using isoflurane during surgery
(Soleman et al., 2010). On other hand, a considerable number of rat deaths was reported after
intraperitoneal injection of chloral hydrate in P7 rats during MCAO surgery (Renolleau et al.,
1998). We suggest that the anesthesia used during the surgery might also have a role in this

high mortality.

In our ET-1 stroke model experiment, each rat pup was weighed at the day of the ET-1 injection
surgery and then weighed regularly until P34. Generally, ET-1-injected rats exhibited a
significantly lower absolute weight gain than the sham-operated animals over 22 days, post

insult.

There is no similar study to compare our results against. Even the very recent study that injected
ET-1 in the SMC of P14 rats did not weigh their animals (Gennaro et al., 2017). In a neonatal
study of rats undergoing a hippocampus lesion at P12 by ET-1, the relative and absolute body
weight measured on day 65 post lesion did not differ significantly(Mateffyova et al., 2006).The
low mortality rate and the weight loss suggest that our ET-1 method to produce PIS is safer
than other methods though it affects the body weight adversely which is in agreement with the

below average weight recorded in cerebral palsy children (Day et al., 2007, Krick et al., 1996).

3.5 Conclusion

The experiments in this chapter have shown that inducing an ischemic lesion in P12 neonatal
rats using ET-1 or MCAO leads to histological changes in different cortical regions. We
occluded the MCAO resulting in hypoxic damage to the bfSSC, but not to the ISMC that
controls limb function. The MCAO model failed to show evidence of an inflammatory reaction
or hypoxia in the ISMC in the acute phase, or a neuronal loss in the chronic phase. The MCAO

proved to be a poor stroke model in P12 rat pups as the ISMC is, a major site of damage in
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human neonates. On the other hand, injecting ET-1 directly into the SMC did result in focal,
unilateral hypoxic damage to the ISMC. However no significant behavioural dysfunction
resulted from either method which led us to trace the CST arising from the ET-1 lesioned
hemisphere and compare it to the tract arising contralateral hemisphere. In the next chapter, the

possibility of cortical plasticity of the CST in our PIS model was addressed.
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Chapter 4. Plasticity of the CST in PIS Model

4.1 Introduction

Perinatal ischemic stroke (PIS) leads to hemiplegia that is progressive in its nature and affects
more than 80% of the infants that have CP following perinatal stroke (Golomb et al., 2008). In
hemiplegic cerebral palsy, there is a progressive loss of corticospinal projections from the
affected cortex for up to two years after the stroke resulting in the progressive appearance of

neurological signs and symptoms (Eyre et al., 2007).

The behavioural outcome in those affected children is determined by the extent of the
corticospinal projection from the infarcted cortex. The outcome of adult-onset stroke is largely
determined by the extent of the initial brain injury, and motor recovery occurs if a critical
portion of corticospinal system function has been spared at the time of the lesion (Hendricks et
al., 2003). However, this is not the case in a perinatal stroke, and infants with a significant
corticospinal projection from the infarcted cortex present soon after the stroke, as detected by
transcranial magnetic stimulation, can still exhibit poor motor outcomes (Eyre et al., 2007).

Several studies showed that rat is a good model to investigate the corticospinal tract (CST)
alteration in neonatal stroke studies. Despite some existing differences, crucial similarities such
as CST pathway and full length projections into the spinal cord between human and rats CST
attracts researcher to use rats as stroke models (Armand, 1982, Bareyre et al., 2005, Eyre et al.,
2007, Kuypers, 1981, Lemon, 2008, Rouiller et al., 1991). Moreover, using rodent as a model
that have short life span and mature in a matter of weeks rather than over months and years as

in humans is an additional important advantage (Clowry et al., 2014).

The aims of this experiment were: firstly to look for possible anatomical re-organisation of the
corticospinal tract (CST) from both the ipsilesional hemisphere (IH) and contralesional
hemispheres (CH) in our perinatal ischemic stroke (PIS) model, compared to sham operated
animals, after injecting the retrograde tracer Fluorogold (FG) into the left (contralesional) side
of the cervical spinal cord at P45 (Juvenile age) to label both forelimb (FL) and hindlimb (HL)
regions of IH and any other cortical areas projecting to the spinal cord from the IH and CH
(Nielson et al., 2011), and secondly, to explore the relationship between any behavioural defect

and corticospinal plasticity, in our PIS model..

4.2 Results
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We injected 20 rats at P40 with FG and only animals in which the tracer was confined to the
left side of the spinal cord were included in this study (Figure 4.1). For this reason, five animals
from the sham group and 6 rats’ from the ET-1 group had to be excluded. Also, two animals
died during surgery (Table 4.1). For each lesioned (n=4) and sham (n=5) animal, all positive
FG neurons, detected by Immunoperoxidase staining, were counted in eight serial coronal
sections using the Image hub and imageJ software.
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Figure 4.1 Unilaterality of the injected FG into the spinal cord at the cervical level.

Transverse sections of the injected spinal cord. (A) Cresyl violet staining shows unilateral
successful FG injection (asterisk). (B) FG fluorescence under UV light shows successful FG
injection unilaterally (arrows). (C) Cresyl violet shows unsuccessful injection site crossing
(asterisk) the midline (dashed red line). (D) Immunostaining for CST neurons using anti-FG
antibody showing unilateral injection (asterisk). The midline of the spinal cord is marked by
a dashed red line. (E) The cortex of coronal rat brain sections stained for FG in the

sensorimotor cortex (SMC).

117



Total

Number Number of excluded rats
before Number
the Crossed FG . - of
Groups surgery labelling at dD"_%d included
at the spinal suurrlgrg rats
P40 cord level gery
ET-1 10 6 1 4
Sham 10 5 1 5

Table 4.1. The number of animals included and excluded after retrograde tracer

surgery the in each the ET-1 model and sham groups.
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4.2.1 Counts of the FG+ neurons

The number of FG+ neurons in the IH and CH for each rat in both endothelin-1 (ET-1) models
and sham animals was counted. To compare between the ET-1 and the sham groups, we used
non-parametric statistics because of the small size of the sham (n=5) and ET-1 (n= 4) groups
and also because the assumptions of the t-test were violated. Two comparisons were made: first
the counts of FG+ neurons in the CH were compared between ET-1 and sham groups and
second the numbers of FG+ neurons in the IH were compared between ET-1 and sham groups.
Overall, larger numbers of FG+ neurons were found in the CH of the PIS model than in the
sham animals. Although the number of FG+ neurons varied greatly between animals, the
percentage of total FG+ neurons in the CH was invariably smaller than in the IH in sham

animals (Figure 4.2).

The difference in numbers of FG+ neurons between sham and ET-1 groups in the CH and then
in the IH was tested. Interestingly, we found a borderline significant difference in the CH
between sham and ET-1 groups (p=.05; Mann Whitney U test). Conversely, no significant
difference was found in the IH for FG+ neuron counts between sham and ET-1 groups.

Secondly, we compared the difference in the numbers of FG+ neurons between the CH and IH
within sham group and correspondingly within the ET-1 group using paired data (Wilcoxon
signed ranks test). Interestingly, we found a significant difference in the FG+ neuron counts in
the sham group between CH and IH (p=.0.04) while in the ET-1 group, we correspondingly
found no difference in the FG+ neuron counts between CH and I1H .
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Figure 4.2 Counts of FG+ neurons summarized in plotting charts.

Counts of FG positive neurons in IH and CH of sections from 8 serial coronal sections of
each ET-1 and sham animals. A significantly lower number of FG+ neurons was counted in
CH ET-1 animals than shams (Mann Whitney U test) and in CH compared to IH within sham

animals using paired data (Wilcoxon signed ranks) test).
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4.2.2 Proportions of FG+ neurons

The proportion of FG+ neurons in each hemisphere and each compartment of each hemisphere
as a percentage of total corticospinal (CS) neurons labelled was calculated for each rat to
normalize the data. Overall, a smaller proportion of FG+ neurons were found in the motor
cortex (MC), somatosensory cortex (SSC), and lateral cortical regions of the IH in the PIS
model than in the sham animals. Conversely, there was a three-fold increase in the percentage

of FG+ neurons found in the CH of the ET-1 animals compared to sham (Figure 4.3).
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Figure 4.3 Percentage of Immunoperoxidase stained neurons for the retrograde tracing FG
for brain coronal sections in both ET-1 and sham groups.

Lower mean percentage of FG+ neurons in the motor, somatosensory, and lateral cortex of the IH
in ET-1 group but an increase in percentage of FG+ neurons in the medial IH and all regions on the
CH compared to sham. The percentage of the neurons immunopositive for FG in the sham group
was smaller in the non-lesioned cortex compared with lesioned one. percentage=number of FG+

neurons in one region of the cortex divided by the total number of FG+ neurons and multiplied by
100.
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When the mean % of FG+ CS neurons in the CH and IH were compared between the ET-1 and
sham animals, a larger proportion of FG+ neurons was found in the CH than in the IH
particularly in the MC, in the ET-1 group (Figure 4.3 and Figure 4.4). The difference in
proportion of FG+ neurons in each cortical compartment of the CH revealed that in shams
approximately a half of FG+ CS neurons were localised to the MC whereas in the ET-1 group
less than a third of total FG+ neurons were in the MC in CH. Similarly, on average, in shams
a third of FG+ neurons were located in the contralesional SSC, but only a fifth in ET-1 animals
(Figure 4.3).

When the mean of the FG+ neuron percentages of the CH and IH were compared within sham
animals, a higher percentage was found in the IH (84%) than in the CH (16%). However, in the
ET-1 group, the mean FG+ neuron percentage in the IH was (51%) and in the CH (49%) (Figure
4.3).
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Figure 4.4. Immunoperoxidase staining of the CST at P45 after injecting ET-1 at P12
in the PIS model in the MC

In the motor cortex, neuronal loss indicated by the depletion of some of the FG+ neurons in
the IH (asterisk) compared to the CH.
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FG+ percentage in the et-1 vs sham group

To compare between the ET-1 and the sham groups, we used non-parametric statistics because
of the small group sizes.

The proportion of FG+ cells found in the CH in ET-1 animals was statistically significantly
higher than in the sham lesioned animals in total, and in the MC and SSC when considered
separately (p= 0.05; Mann Whitney U test). In the IH, we correspondingly found a significantly

smaller percentage of FG+ neurons in ET-1 animals compared to sham (p= 0.05) (Figure 4.5).
FG+ percentage in the ipsilesional vs contralesional hemisphere

We compared the percentage of the FG+ cells in the IH vs CH in the ET-1 and sham group
using the paired data (Wilcoxon signed ranks test). In the ET-1 group, the percentage of FG+
cells in the CH did not differ significantly from the percentage of FG+ cells in the IH in any
cortical region. However, in the sham group, the percentage of FG+ neurons in the CH was
statistically significantly lower than the percentage of FG+ cells in the IH in total, and in the
MC and SSC (p= 0.04) (Figure 4.5) as would be expected, as the normal rodent CST shows a
high degree of crossover (Joosten et al., 1992, Rouiller et al., 1991).
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A Relative proportion of FG+ cells in IH and CH
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Figure 4.5. Percentage of FG-positive neurons summarized in plotting charts.

A summary of the % FG positive neuron in IH and CH from 8 serial coronal sections from
each of the ET-1 and sham animals. A significantly lower number of FG+ neurons in IH
compared to CH within sham animals in all cortical regions using paired data (Wilcoxon
signed ranks test). (A) A significant lower % in IH and higher % in CH in ET-1 animals
compared to shams (Mann Whitney U test). (B) and (C) a significant higher % of FG+ neuron
in CH than IH in MC and SSC cortical regions (Mann Whitney U test) and a trend towards a
reduction in FG+ neuron % in IH of ET-1 animals compared to shams was seen but this was
not significant (Mann Whitney U test).
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4.2.3 Correlation of the FG+ neurons in the ipsilesional and contralesional hemisphere

The percentage of the FG+ neurons in one hemisphere and the total number in both hemispheres
were plotted in Figure 4.6. Figure 4.6, shows, disregarding the one outlier that the proportion
of labelled neurons in IH increased as the total number of neurons labelled increased while in

CH the proportion decreased as the total number of neurons labelled increased.
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Figure 4.6. Correlation between the total number of FG+ neurons in both hemispheres
and the proportion of FG+ neurons in the CH in ET-1 and in sham groups

There is a trend towards more labelled neurons in the CH as the total number of cells labelled

increases.
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4.2.4 The relationship between the percentage of the FG+ neurons and the behavioural
outcomes

We found above that the proportion of neurons immunopositive for FG was higher in the IH
than in the CH in the sham group (Figure 4.2). Moreover, after inducing the ischemic lesion in
the ET-1 group, this distribution was reorganised giving a higher proportion of neurons in the
CH with a smaller proportion of FG+ neurons in the IH compared to sham (Figure 4.2). Thus,
in this section we investigated whether there was a relationship between a possible relative
increase in the ipsilateral tract and the smaller than behavioural deficits previously observed
(see Chapter 3).

FG+ neuron percentage in each hemisphere in sham and ET-1 groups was plotted against the
score for the contralesional limb performance in the cylinder and the grid walk tests. Three

lesioned rats and 5 shams were included.

Generally, we found better functional performance if the FG+ neuron percentage in the CH was
higher in the ET-1 model. In the sham group, there was a much higher proportion of FG+

neurons in the IH than the CH regardless of behavioural performance, as expected.
Grid walk test

In this test we calculated the percentage of forelimb faults (FLF) by dividing the contralesioned
FLF by the number of total steps. The hindlimb faults (HLF) percentages were calculated
correspondingly. Overall, we found better functional outcomes for FLF and HLF when there
were higher proportions of FG+ neurons in the CH in the ET-1 model, but this was not observed
in the sham group (Figure 4.7A and Figure 4.8A).

Interestingly, in the ET-1 animals, we found that the largest percentage of FG+ neurons in CH
and the smallest percentage of FG+ neurons in IH was found in the rat where the FLF

percentage was the smallest (i.e. the best performing) (Figure 4.7B).

In the CH of the ET-1 group, we found that the rat with the best performance had a much higher
proportion of FG+ neurons in the MC compared with the SSC while the FG+ neurons in the rat

with the worst performance had almost similar percentage (Figure 4.7C).
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A FLF score versus % FG+ neuron per hemisphere in sham group
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Figure 4.7. Correlation between FLF scores and proportion of FG+ neurons in each
hemisphere.

The graph shows the relationship between the percentage of FG+ neurons in both
hemispheres and the contralesional FLF score in sham (A) and ET-1 group (B). The
relationship between the percentage of FG+ neurons in MC and SSC in ET-1 group and the

contralesional FLF score (C).
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The relationship between the distribution of FG+ neurons in the cortex and the HLF score was
similar to the relationship seen for the FLF score (Figure 4.8A). In the ET-1 animals, the greater
the HLF score, the smaller the percentage of FG+ neurons in CH. The rat with worst
performance had the smallest proportion of FG+ neurons in the CH compared to the rats with

better performance (Figure 4.8B).

In the ET-1 group, we found that better performance was associated with a greater positive
difference between FG+ neurons in the MC versus SSC (Figure 4.8C).
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A HLF score versus % FG+ neuron per hemisphere in sham group
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Figure 4.8. Correlation between proportion of HLF scores and FG+ neurons in
each hemisphere

The graph shows the relationship between the percentage of FG+ neurons in both
hemispheres and the contralesional HLF score in % in sham (A) and ET-1 group (B).
The relationship between the percentage of FG+ neurons in MC and SSC in ET-1 group

and the contralesional HLF score (C).
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Asymmetry Placement Test

All animals tested in the grid walk were tested for forelimb placement asymmetry using the
cylinder test. Generally, we found better functional outcomes for the asymmetry test with an
increased proportion of FG+ neurons in the CH in the ET-1 model, while in the sham group, all
rats had more FG+ neurons in the IH than the CH regardless of behavioural performance as
expected (Figure 4.9A and Figure 4.9B).

We found that as the FL performance in the asymmetry test tended toward the 50% score (the
point at which both lesioned and non-lesioned limbs performed equally), the percentage of FG+
neurons in the CH in the ET-1 group increased (Figure 4.9B).

The proportion of FG+ cells in the MC and in the SSC (Figure 4.9C) was studied in relation to
forelimb asymmetry test performance. Interestingly, similar to the grid walking test, we found
that in the rat with better performance, there were many more FG+ neurons detected in MC
than in SSC (Figure 4.9C).
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Figure 4.9. Correlation between asymmetry placement scores and proportion FG+
neurons in each hemisphere

The relationship between the percentage of FG+ neurons in both hemispheres and
asymmetry placement scores in % in sham (A) and ET-1 group (B). The relationship
between the percentage of FG+ neurons in MC and SSC in ET-1 group and the
asymmetry score (C).
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4.3 Discussion

The experiments described in this chapter and in Chapter Three have shown that inducing focal
ischemic lesion in the SMC of P12 neonatal rats using ET-1 results in hypoxic damage to the
limb sensorimotor cortex (ISMC) unilaterally resulting in a smaller proportion of retrogradely
labelled CS neurons in the IH and a larger proportion in CH than in a sham group. To our
knowledge, this is the first time retrograde tracing of the CST has been studied in a PIS model
at P12 using ET-1.

Although ET-1 resulted in a smaller proportion of labelled CS neurons in the IH and larger
proportion in CH than in sham, we also tended to find a higher absolute number of labelled CS
neurons in both IH and CH in the ET-1 group than in the sham group. There were, on average,
considerably more FG+ CS neurons in the CH of the ET-1 group than in the sham group but
also more CS neurons on average in the IH in ET-1 group than in sham group. There was a
tendency for a higher proportion of neurons to be labelled in the CH as the total number of CS
neurons labelled increased regardless of whether it was a sham or ET-1 experiment suggesting
that the number of neurons labelled in any hemisphere was to some degree dependent upon
some variable to do with the experimental procedure, perhaps how close to the midline the FG
was injected. Nevertheless it doesn’t seem likely that this would not account for all of the very
large increase in relative contralesional cortical labelling observed in these experiments; two

other factors are likely to also contribute.

The smaller proportion of CS neurons in the IH of ET-1 animals could be due to a loss of some
neurons in the IH because of the PIS and/or because of an increase in labelled neurons in the
CH due to plasticity. Previous studies indicate that a large unilateral cortical lesion in the SMC
leads to a decrease in CS neuron projections from that hemisphere. (Gibson et al., 2000b) have
reported substantial loss of direct CS projections in the cervical spinal cord originating from
the MC in the IH after a MC ablation in P7 neonatal rats. In our study our subtle lesion kept the

SMC intact but perhaps with fewer CS neurons projecting to the spinal cord.

Corticospinal axons of developing rodents originate in cortical layer V of the SMC; 96-98% of
them cross to the contralateral side of the spinal cord, while the remaining 2-3% stay on the
ipsilateral side (Joosten et al., 1992, Rouiller et al., 1991). However, many experiments have
found that lesioning (Jansen and Low, 1996, Joosten et al., 1992, Kartje-Tillotson et al., 1985,
Kartje-Tillotson et al., 1986) or merely inactivating (Clowry et al., 2004, Staudt et al., 2004)
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the SMC unilaterally during development leads to an increased ipsilateral projection to the
spinal cord from the spared hemisphere. Itis likely that the ET-1 induced lesion may have killed
some CS neurons in the SMC but also suppressed activity in the surviving neurons. As Figure
4.10 in Chapter Three shows, parvalbumin expression is greatly reduced at the lesion site.
Parvalbumin is expressed by highly active interneurons within functioning networks suggesting
suppression of network activity in the lesioned cortex. It has been proposed that surviving, but
not very active, CS projections may lose out, after unilateral stroke, in competition for spinal
cord synaptic space, leading to these projections being withdrawn as their potential targets are
taken over by more active ipsilateral CS projections from the unaffected hemisphere and also
by proprioceptive muscle afferents (Clowry, 2007, Eyre, 2007, Martin, 2005). The result is a
higher proportion of CS neurons projecting from the CH via the ipsilateral CS pathway, with a
smaller proportion arising from the IH. However, the current study cannot address whether the
loss of CS projections from IH was progressive as in human PIS or non-progressive(Eyre et al.,
2007).

Our finding of a likely increased ipsilateral projection from the CH complements previous
studies conducted at younger ages (P1-P7) (Chen et al., 2004, Eyre, 2007, Jansen and Low,
1996). In rat neonate study, more contralateral projections from the MC of the CH were
observed after inducing hypoxia unilaterally and after unilateral SMC lesion (Jansen and Low,
1996). We have shown that this type of plasticity extends until to lesions mad at a later
developmental stage (P12) than has been studied previously, although the extent of plasticity
seem less than has been observed in other studies, for instance (Clowry et al., 2004) maintained
the ipsilesional pathway by inhibiting the SMC pharmacologically, but induced an ipsilateral
projection of the same size as the normal contralateral projection as judged by retrograde
labelling. The reorganisation seen in the present study is not as dramatic and may reflect a

declining plasticity with age.

After neonatal rats (PO) received a unilateral SMC lesion, no deficit was observed in the
forelimb placement test at P32-43. The authors suggested that the intact contralesional SMC
provided part of the behavioural recovery mechanism that could be mediated by the formation
of indirect ipsilateral pathways (Barth and Stanfield, 1990) via the ipsilateral red nucleus and
not via direct ipsilateral CS projections (Z'Graggen et al., 2000).
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Electrophysiological studies have been conducted to confirm the finding of increased ipsilateral
projections originating from the CH. Research has confirmed the functionality of this pathway
formed after unilateral cortical ablation in neonate rats, via microstimulation of the SMC in the
CH intracortically at abnormally low current thresholds, which resulted in movement of the
lesioned limb during adulthood. These movements were abolished by medullary pyramidotomy
(Kartje-Tillotson et al., 1985, Kartje-Tillotson et al., 1987). Nevertheless, the timing of the SMC
lesion in humans is crucial for the functionality of the plastic CS neurons in the CH. For
instance, the paretic hand in a patient with hemiparesis was found to be controlled by the CST
originating from the CH only if the lesion (such as MCAQ) occurred prior to the late third
trimester, using transcranial magnetic stimulation (TMS) and diffusion-tensor imaging to assess
the CS pathways(Staudt et al., 2004). However, our neonatal rat study showed that inducing
ischemic lesion into the SMC at P12, which represents the time of birth in human newborn, can

lead to an increased proportion of CS neurons projecting to the ipsilateral tract from the CH.

The mechanism of structural plasticity after early unilateral cortical lesion in the developing
brain is proposed to arise from the preservation of the aberrant CS projections originating from
the CH. These projections do not arise from newly generated CS neurons, but instead are
transient CS pathways generated during development. Normally, these aberrant CS connections
projecting from the SMC withdraw by 2 years old in humans (Eyre, 2007). In rodents, there is
no much evidence for transient ipsilateral projections indicated by a retrograde labelling study
(Clowry et al., 2004). However, these transient connections were detected in developing rodents

recently (Gu and Kalambogias, 2017).

In humans, there is evidence for an extensive transient ipsilateral projection, where, in the
newborn, TMS is as likely to produce ipsilateral contractions in arm muscles as it is
contralateral muscles, only with a shorter latency, suggesting a direct projection (Eyre et al.,
2007). These ipsilateral projections are down-regulated during normal post-natal development,
however in patients with hemiplegia derived from a pre- or perinatal lesion, or developmental
malformation, these ipsilateral connections are retained (Eyre, 2007). We propose this
underlying mechanism could explain our finding. In neonatal rats, the CS axons from the CH
may remain as a compensatory reaction to the lesion allowing control of the lesioned limb to
be retained (Gu and Kalambogias, 2017). In our experiment, retrograde tracing of the CST in
the PIS model showed more CS neurons in the SMC at P45 in the CH, especially the MC,
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compared to sham animals which might correlate to the better behavioural outcomes. We
observed better functional performance when the proportion of FG+ neurons in the CH was
larger than in the IH in our PIS model. Our findings would suggest that the structural plasticity
in the CH contributed to the functional recovery described in Chapter Three. Because the CST
is involved in limb function in rodents (Whishaw and Kolb, 2004), we suggest that the CST
plasticity observed in response to the ET-1 lesion might be functionally advantageous. For
instance,(Jansen and Low, 1996) suggested that motor regions such as SMC and striatum in the
CH that underwent compensatory hypertrophic changes in the neonatal hypoxic model might
be the reason for the normal functional results on rotarod test outcomes during adulthood.
Moreover, good reaching and grasping performance were achieved in a neonatal
hemidecortication study (Takahashi et al., 2009) as well as in an electrophysiological study that
demonstrated that aberrant CS neurons located in the SMC in CH mediated pyramidal
excitation to the affected limb (Umeda et al., 2010), and in a retrograde tracing study that
suggested that CH plasticity underlies the good performance in these neonatal rats (Yoshikawa
et al., 2011) . In fact, rodents do not show severe locomotor impairment in response to SMC
lesions, but there is evidence of subtle, CST dependent sensorimotor deficits that can be found
(Clowry et al., 2014, Nathan, 1994).

Electrophysiological studies have investigated the IH control over the affected limb. Studies
have suggested that such plasticity is mediated either by a direct CS pathway, as found in
hemiplegic patients (Eyre et al., 2001), or by an indirect pathway via the IH red nucleus in
neonate animals (Z'Graggen et al., 2000) . following hemi-decortication in rats at P5, aberrant
connections were formed from the surviving MC to contralateral red nucleus, superior
colliculus, pontine nuclei, and the ipsilateral dorsal column nucleus and cervical spinal cord,
which preserved FL function, but no aberrant projection to reticulospinal neurons was seen
(Takahashi et al., 2009).

Recently, (Zewdie et al., 2017) studied the electrophysiology characteristics of the M1in CH in
PIS children aged from 8-12y. They found that poor motor function was associated with
persistence of ipsilateral projections after recording the MEPs. CST originating from CH was
found hypertrophy in sub-primate animals after a substantial SMC lesion (Hicks and D'Amato,
1970, Hicks and D'Amato, 1977, Uematsu et al., 1996) and there was significant increase in
CST axons from the CH in PIS children detected by the MRI (Eyre, 2007, Scales and Collins,
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1972). To test the functionality of these ipsilateral CST axons from the CH Eyre (2001) utilized
TMS to excite the CH motor cortex in PIS children. They found that the function of the paretic
hand was limited when the CST of the CH was excited (Eyre et al., 2001). This was
contradictory to our result suggesting that the increase in CS projections in the ipsilateral
pathway does not improve the function of the affected paw and the best outcome when the CS

projection originating from IH (Staudt et al., 2004).

In our model, although no significant dysfunction in motor behaviours was found, there was a
constant trend of achieving lower outcomes in PIS models than sham animals. In fact, we could
not validate whether the increase in FG+ neurons in the CH was linked to the improved
behavioural performance due to the small sample size. Further researches with a larger sample
size are needed to validate the correlation between improved behavioural outcomes and
compensatory reorganisation of CS neurons from the CH. Thus, our findings suggest with

caution that greater plasticity of CST in the CH leads to more recovery of functionality.

4.4 Conclusion

We have been able to show a likely anatomical reorganisation of the CS projections from the
IH and CH in our PIS model. There was possibly a small loss of CS neurons in the IH in
response to a developmental lesion of the SMC, coupled with an increase in ipsilaterally
projecting CS neurons in the CH. Some evidence was found that surviving aberrant CS
projections from the CH could be related to positive behavioural outcomes in the lesioned

animals.
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Chapter 5. Transplantation of NSCs/ECM into Ischemic SMC in
Neonatal Rat

5.1 Introduction

Stem cells are multipotential cells that have the ability to renew themselves and to differentiate
into mature cell types such as neurons and have been used for cerebral palsy treatment in
previous studies (Kiasatdolatabadi et al., 2017). Certain stem cell types such as neural stem
cells (NSCs) have shown their capability to support the tissue structure and protect neurons at
the lesion site in cerebral ischemia (Jendelova et al., 2016). Furthermore, stem cells have the
ability to improve neurological outcomes post stroke in rodent models and promote endogenous
neuroprotection, neurogenesis, neovascularization, axonal sprouting, and synaptogenesis
(Castillo-Melendez et al., 2013, Englund et al., 2002, Jablonska et al., 2010).

In stroke models, grafting stem cells within an extracellular matrix (ECM) that mimics the brain
niche in adult brain resulted in better results than transplanting stem cells alone in term of cell
survival and improved cells viability and differentiation selectively in vivo (Bliss et al., 2007).
The use of hydrogel that works as a compatible ECM adds an additional supporting that works
as a scaffold for the transplanted stem cells and reduces the hostile environment in the ischemic

infarction post stroke (Baeten and Akassoglou, 2011, Zhong et al., 2010).

We hypothesise that NSC transplantation along with HyStem hydrogel will protect and repair
the lesioned SMC by reducing the inflammatory process resulting from the lesion in the host
brain, inducing neurogenesis and angiogenesis or neovascularization at the site of the cortical
infarction. The aim of this experiment was to compare between the survival and development
of human neural stem cells (hNSCs) suspended in semi-synthetic extracellular matrix (ECM)
in vitro and following grafting in vivo to a P14 rodent model of perinatal infarction damaging
the sensorimotor cortex (SMC).

5.2 Results

5.2.1 Overview

In the in vivo experiment, we injected twenty-two P14 PIS model rats, which was developed in
Chapter 3, with hNSCs-ECM/ECM-only. Fifteen rats were assigned to the hNSCs/ECM group
and seven rats to the ECM-only transplants group. Three animals from the ECM-only group

had to be excluded due to error in the ECM injection coordinates that led to anatomical location
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error of the graft. Also, one animals died during the ECM-only surgery. All animals were
transcardially perfused with fixative (4% buffered paraformaldehyde (PFA)) at different time
points post-grafting to test for survival and development of the hNSCs by
immunohistochemistry (IHC) at one week, one month and three months post-transplantation.

The total number and the subcategory values of the participating rats are detailed in Table 5.1.
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Total Perfusion time points for IHC
Number of

number
Groups excluded rats*
P14 6D/P22 14D/P44 D76/P90
hNSCs-ECM 15 1 6 8 -
ECM-only 7 1 2 - 4

Table 5.1. The number of animals included and excluded in each time point of the in

vivo hNSCs/ECM and ECM-only groups.
* Exclusion reasons were described in the text. D= days post-surgery, P=postnatal age.
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5.2.2 Invitro experiment

The hNSCs were cultured in a 2D monolayer or in a 3D semi-synthetic ECM were investigated
by IHC prior to the in vivo NSCs transplantation to test the ability of NSCs to spontaneously
differentiate into neuronal lineages. Immunolabeling was carried with antibodies to: PAX6
(neuroprogenitor cells (NPCs) proliferation and corticogenesis marker); hNCAM (human
neural cell adhesion molecule); cytoplasmic protein of human cells (STEM121): DCX
(migrating neuroblasts and neurogenesis marker); GFAP (astrocyte marker); neuron-specific
marker Beta-I11-Tubulin (TUJ1); MAP2 (neuron specific expression in dendrites and somata);
TBR1 (early post-mitotic neuron marker of the neocortex); synaptophysin (neural synaptic
vesicle marker). Cells were counterstained with the fluorescent nuclear marker 4',6-diamidino-
2-phenylindole (DAPI).

2D NSCs culture

NSCs in 2 dimension (D) culture were fixed and immunostained at three time points: 10, 14,
and 17 days after initiation of differentiation. Ten days after initiation of differentiation, NSCs
expanded in number to form a mixed population of neural progenitor cells that were
immunopositive for PAX6 and hNCAM (Figure 5.1A), new post-mitotic neurons that co-
expressed TBR1 and STEM121 (Figure 5.1B), and the astrocyte marker GFAP (Figure 5.1C).
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Figure 5.1 Immunofluorescence of NSCs in 2D culture ten days after spontaneous
differentiation in vitro.

(A) NSCs expressed the cytoplasmic human marker ANCAM (green), and some of them co-
expressed the neuronal progenitor marker PAX6 (red). (B) NSCs expressed the cytoplasmic
human marker STEM121 (green), and some of them co-expressed the early post-mitotic
neuron marker in the cortex TBR1 (red). (C) Few NSCs differentiated into the immature

neurons DCX that co-expressed with the astrocyte marker GFAP (green).
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14 Days after the initiation of differentiation PAX6/hNCAM+ progenitor cells were still
observed (Figure 5.2A) in addition to post-mitotic neurons immunopositive for TBR1 (Figure
5.2B) and immature neurons immunopositive for DCX (Figure 5.2C). However, we observed
more post-mitotic maturing pyramidal neurons expressing strong anti-MAP2 immunoreactivity
(Figure 5.2D).

After Seventeen days of differentiation, NSCs individual cells were observed. However, cells
also formed clumps close to the plate well's wall containing heterogeneous cell phenotypes.
Figure 5.3A shows some cells that still stained with PAX6+ neuronal progenitors as single cells
and in a sphere forming an immature neuronal clump. Furthermore, cells in the sphere expressed
the marker DCX for immature neurons (Figure 5.3B) and MAP2 for more mature neurons
(Figure 5.3C).PAX6 + progenitors and MAP2 + neurons were seen as single cells as well
(Figure 5.3A and C). Also, cells in the sphere were immunopositive for synaptophysin
suggesting that functional immature synapses may have been formed (Figure 5.3D). Finally,

more pyramidal shaped TBR1 + cortical neurons presented at this time point (Figure 5.3E).
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STEM121/

Figure 5.2. Immunofluorescence of NSCs in 2D culture 14 days after spontaneous
differentiation in vitro.

(A) NSCs expressed the cytoplasmic human marker ANCAM (green), and some of them co-
expressed the neuronal progenitor marker PAX6 (red). (B) NSCs expressed the cytoplasmic
human marker STEM121 (green), and some of them co-expressed the early post-mitotic
neuron marker in the cortex TBR1 (yellow). (C) Some NSCs differentiated into the immature
neurons that expressed DCX (red). (D) NSCs differentiated into MAP2+ pyramidal neurons
in chain form and single cell form (arrow). Cells were counterstained with the fluorescent

nuclear marker DAPI (blue).
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Figure 5.3. Immunofluorescence of NSCs in 2D culture 17 days after spontaneous
differentiation in vitro.

(A) Both hNCAM+ (green), and a few PAX6+ (red) cells were observed dispersed within
spherical clumps of cells. Also, few single cells co-expressed the cytoplasmic human marker
hNCAM (green) and PAX6+ (red). (B) Some NSCs differentiated into the immature neurons
that expressed DCX both in spheroid and as single cells (red). (C) NSCs differentiated into
MAP2+ neurons in NSCs sphere and as single cells (red). (D) The neural synaptic vesicle
marker synaptophysin in the NSCs sphere. (E) NSCs co-expressed the cytoplasmic human
marker STEM121 (green), and the nuclear post-mitotic neuron marker in the cortex TBR1

(yellow). Cells were counterstained with the fluorescent nuclear marker DAPI (blue).
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3D NSCs culture

NSCs in 3D culture were fixed and immunostained at four time points: 10, 14, 17 and 43 days
after initiation of differentiation. Many DCX+ immature neurons presented in the 3D culture
after ten days (Figure 5.4A). Although only a few neural progenitor cells immunopositive for
PAX6 were noted after fourteen days of differentiation (Figure 5.4B), many DCX and Beta-111-
Tubulin (B-TUB) positive immature neurons were observed extending long processes through
the gel that were over 200pum in length and connected to each other (Figure 5.4C-E). Similarly,
MAP2 immunopositive pyramidal neurons extended long processes over 50um in length in the
3D culture (Figure 5.4F). Interestingly, the neural synaptic vesicle marker synaptophysin was
expressed highly around some neuronal cell bodies that could be synaptic terminals around the
small cell body, suggesting synaptogenesis as shown in Figure 5.4G.
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Figure 5.4. Immunofluorescence of NSCs in 3D culture 10 and 14 days after spontaneous
differentiation in vitro.

After ten days, (A) many NSCs expressed DCX (red) with short processes. After 14 days, (B)
few PAXG6 positive cells still existed (red) (arrows) and (C) more DCX+ immature neurons
generated and (D) connected to each other. (E) Long processes of B-TUB + neurons and their
somata in the 3D culture (F).NSCs differentiated into MAP2+ neurons and extended their
dendrites. (G) Some of the DAPI+ nuclei (blue) were surrounded by synaptophysin
immunopositivity (green). Cells are counterstained with the fluorescent nuclear marker DAPI
(blue).
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In the 3D NSCs culture, neurons existed at different neuronal maturation stages. At 17 days,
DCX stained the long processes and the somata of immature neurons that were distributed
throughout the semi-synthetic ECM (Figure 5.5A). Fewer MAP2 immunopositive neurons were
present (Figure 5.5B). Later on, after 43 days, few DCX+ immature neurons were observed
(Figure 5.5C) while more MAP2+ maturing neurons that extended neurites and appeared
connected to each other were present (Figure 5.5D). Only a few NSCs differentiated into
astrocytes through all time points. Figure 5.5E, shows that few cells expressed GFAP after 17

days of differentiation.
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Figure 5.5. Immunofluorescence of NSCs in 3D culture 17 and 43 days after spontaneous
differentiation in vitro.

After ten days, (A) Three-dimensional image obtained from confocal microscope shows
DCX+ neurons with long processes, (B) more mature neurons expressed MAP2 strongly.
After 43 days, (C) fewer DCX+ neurons in the 3D culture and more (D) MAP2+ neurons
extended processes through the ECM. (E) Few cells were immunopositive for GFAP (green).
Cells were counterstained with the fluorescent nuclear marker DAPI (blue). Images are at

maximum intensity projection and obtained from confocal microscope.
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5.2.3 Invivo experiment
Two main experimental groups were compared; hNSCs/ECM and ECM-only transplants to the
PIS model, at one week, one month and three months post-transplantation. The grafting site

was investigated by IHC on brain sections.

Endothelial cells and microglia were identified by labelling with biotinylated wisteria
floribunda lectin visualised with streptavidin peroxidase histochemistry. IHC was carried out
with antibodies to: PAX6 (NPCs proliferation and corticogenesis marker ); human astrocytes
(STEM123); DCX (migrating neuroblasts and neurogenesis marker) ; GFAP (astrocyte marker)
; IBAL (activated microglia); neuron-specific marker Beta-111-Tubulin (TUJ1); MAP2 (dendrite
and soma neuron-specific marker); Parvalbumin (calcium-binding protein and inhibitory
interneuron marker) ; CTIP2 (deep layer cortical neuron marker) ; synaptophysin (neural
synaptic vesicle marker) . Sections were counterstained with the fluorescent nuclear marker
DAPI.

Antibodies to ANCAM, a nuclear protein of human cells (STEM101) and cytoplasmic protein
of human cells (STEM121) were used to test the presence of the transplanted hNSCs. Also,
anti-STEM 101 and STEM121 were used to validate hNCAM immunoreactivity in presumptive
hNSCs.

The following figures show examples of the human cell marker immunostaining one month
post-transplantation. Figure 5.6 A demonstrates that, after one month, anti-hnNCAM successfully
immunostained the transplanted complex of artificial ECM and cells. Similarly anti-STEM121
stained hNSCs/ECM in adjacent sections of the same brain (Figure 5.6B). Also, anti-hNCAM
and STEM101 labelled the same mass of hNSCs in the same brain (Figure 5.6C and D).
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Figure 5.6. Immunofluorescence of transplanted human cell markers after one month.
Cytoplasmic cell markers (A) hNCAM and (B) STEM121. (C) Cytoplasmic cell marker
hNCAM (arrow and asterisk). (D) Nuclear cell marker STEM101 (arrow and asterisk).
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Immunoreactivity for transplanted cell markers either appeared as small discs using the nuclear
marker STEM 101 or as a meshwork of processes using the cytoplasmic markers STEM 121
and hNCAM. Thus, it could be concluded that the antibodies we used are valid for identifying
the injected hNSC cells.

One week post-transplantation

Immunostaining of the transplanted hNSCs/ECM was studied one week post grafting.
Transplanted hNSCs in the gel scaffold exhibited a labyrinthine morphology which appeared
similar to an early stage of cerebral organoid formation (Qian et al., 2016) . This structure had
thin layers of PAX6 positive cells which co-expressed hNCAM (Figure 5.7A). The generated
cell formation expressed markers of human radial glial cells demonstrated by co-localization of
PAX6/ hNCAM+ (Figure 5.7B). Also, some host PAX6+ but hNCAM- cells surrounded the
graft (Figure 5.7B). Human grafted cells expressing hNCAM but not PAX6 were also found in
the graft site (Figure 5.7C).
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Figure 5.7. Morphological features of the grafted hNSCs/ECM after one week detected
by IHC.

The graft had an early organoid formation that expressed both (A) hNCAM+ (green) and (B)
PAX6+ (red) in the labyrinthine formation (arrowhead) and around the graft (arrow). (C)

hNCAM+ cells in the graft were adjacent to host cortex.
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As early as one week, transplanted cells appeared to be present away from the xenograft. Figure
5.8A shows hNCAM expressing cells in the striatum. Human astrocytes were detected by anti-
STEM123 IHC and had small somata and a few thin processes, both within the transplant site
and away from it (Figure 5.8B). Furthermore, we found some cells immunopositive for
hNCAM located away from the graft close to the contralateral hemisphere of the brain. Newly
host generated migrating neuroblasts expressed DCX in their somata and leading processes are
likely to be attracted toward the transplant and invade it (Figure 5.8C and D).
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Figure 5.8. Placement of the grafted hNSCs/ECM after one week detected by IHC.

Human cells (A) expressed hNCAM+ (arrow) in the striatum. Human astrocytes (B) expressed
STEM123+ (green) at the posterior end of the transplant site (dashed rectangle) and in the
subcortical region at higher magnification (two squares). DAPI (blue) is nuclear counter
staining. In the hippocampus (C) DCX-/ hNCAM+ (green) and DCX+/ hNCAM- (red) cells
located between the graft and contralateral hemisphere (in the square). (D) hNCAM+ cells
(arrowhead) and DCX+ (arrows) in the hippocampus at higher magnification. (C and D)

sections were counter stained with the fluorescence nuclear marker DAPI (blue).
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Using immunofluorescence labelling, we found host cells with other phenotypes had
surrounded and infiltrated the xenograft. First, GFAP+ but hNCAM- host astrocytes surrounded
the graft and extended their long processes toward the centre of the xenograft with some
appearing to have started to migrate toward the centre (Figure 5.9A). Similarly, abundant
microglia accumulated at the boundary of the graft and a few blood vessels invaded the
transplant, as indicated by wisteria floribunda lectin labelling (Figure 5.9B). Figure 5.9C shows
activated microglia with an ameboid morphology, (bulbar shape) and immunopositive for IBA1
present within the transplant. Another type of cell that invaded the gel expressed MAP2, they
had a more rounded shape than the elongated MAP2 positive pyramidal neurons found in the
host cortex (Figure 5.9C and D).

Host cells that infiltrated the transplanted gel in the ECM-only group were tested as a control
group using similar immunolabeling protocols. We found that astrocytes immunoreactive for
GFAP surrounded and invaded the gel but with fewer of them having long processes in contrast
to the astrocytes in the hNSCS/ECM group (Figure 5.10A). Also, a few host DCX
immunoreactive neuroblasts presented in both the subventricular zone (SVZ) of the lateral
ventricles and the xenograft (Figure 5.10B). DCX+ cells presented in the SVZ of the lateral
ventricles in both hemispheres (Figure 5.10C). Figure 5.10D demonstrates that more microglia
and fewer blood vessels were present in the ECM-only transplants, as indicated by anti-lectin
histochemistry. Interestingly, parvaloumin (PV) expressing cells were also found in the ECM
transplant (Figure 5.10E and F).
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Figure 5.9. Host cells phenotype that infiltrated the hNSCs/ECM transplant detected by
IHC.

(A) Host GFAP+ cells around the transplant (arrows), and within the transplant (arrowhead).
DAPI (blue) is a nuclear counter stain. (B) Using histochemistry for anti-lectin, host lectin+
microglia were found located around the transplant and host blood vessels within the
transplant (arrowhead). (C) Bulbar morphology of microglia within the xenograft and resting
microglia in SMC. (D) Magnification of the dashed box in the bottom left corner shows host
MAP2+/STEM101 presumptive neurons within the transplant (arrows) with short processes
and small somata.
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Figure 5.10. Phenotype of cells that infiltrated the ECM-only transplant detected by
IHC.

Host (A) GFAP+ cells (red) around the gel transplant, DAPI (blue) is a nuclear counter stain.
(B) Host DCX+ cells (red) in the gel transplant and(C) in the ventricular zone in both
hemisphere. (D) Host lectin+ microglia (arrow) around the transplant and many small host
blood vessels within the transplant (arrowhead), using histochemistry for anti-lectin. (E-F)

host cells expressing PV+ in the cortex (E), and invading the gel transplant (F).
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One month post-transplantation

In 5 brains out of 6, transplanted hNSCs formed neural tube-like rosettes with a morphology
resembling cerebral organoids observed to form from NSCs in culture (reference to cerebral
organoid formation) while the 6th brain lost its transplant mechanically during brain sectioning.
In all 6 brains, the phenotype of a variety of host cells that infiltrated the xenograft was tested
by immunofluorescence. Although hNCAM was highly expressed in human cells at the
injection site, only a few of these human cells were observed away from the transplant one

month post grafting (Figure 5.11).

First, we examined human cell markers for co-expression with the following markers; PAX6,
DCX, B-TUB, hGFAP, and the forebrain-specific cortical layer V neuron marker CTIP2.

The transplanted hNSCs expanded in number to form both NPCs that were immunopositive for
PAX6 and hNCAM and post-mitotic immature neurons which co-expressed DCX and hNCAM.
Figure 5.12A shows columns of tightly packed NPCs uniformly expressing PAX6 in rosette
structures. These progenitor cells surrounded an empty space “Lumen” that resembled the
neural tube or ventricle of a developing brain (Figure 5.12A and B). PAX6+ cells at the
ventricular surface only expressed low levels of ANCAM, which is a cell-adhesion molecule
and may form intercellular junctions holding the structure together (Figure 5.12C). This also
indicates that these cells were of transplant origin. No other post-mitotic markers for neurons

or neuroblasts were expressed by these PAX6+ cells.
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Figure 5.11.Transplanted human cells located away from the graft site.
(A) hNCAM+ cells (arrow) presented inferior to the transplantation site (star) detected by IHC
for anti-nNCAM antibody.
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!:igl_Jre 5.12. Human progenitor cells in the cerebral organoid formation after one month
in vivo.

Immunofluorescent double labelling for PAX6 (red) and hNCAM (green). (A) Shows dense
layers of radial arrangements of columnar PAX6+/hNCAM+ cells were around a space
resembling the neural tube or ventricle of a developing brain (arrows). (B) Layers of
PAX6+/hNCAM+ cells of a magnified inset from image A “Progenitor cellular layer (PCL)”
resembled VZ in the human developing brain cortical layers. (C) Three-dimensional
reconstructed confocal images of transplanted PAX6+/hNCAM+ human progenitor cells.
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Around this “PCL” existed a looser network of heterogeneously distributed cells that were
positive for immature neuron markers including doublecortin and 3-TUB “Neural cellular layer
(NCL)” (Figure 5.13A). These markers were co-expressed with hNCAM indicating that these
cells were of human origin. DCX+/hNCAM+ (Figure 5.13A-C) B-TUB +/hNCAM+ (Figure
5.13D) immature neurons occupied the space surrounding the tightly packed PAX6+ cells. It is
noteworthy that DAPI was strongly expressed by tightly packed cells (Figure 5.13E) that were

positive for progenitor cell marker PAX6 as shown previously (Figure 5.12).
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Figure 5.13. Human immature neurons in the cerebral organoid formation after one
month in vivo

Immunofluorescent double labelling for DCX (red) and hNCAM (green). (A) Demonstrates
loose layers of DCX+/hNCAM+ cell markers (yellow) in the graft. (B) Shows layers of
DCX+/hNCAM+ cells in the space of “NCL” resembling the SVZ layer in the developing
human brain. (C) Three-dimensional reconstructed images were obtained with a confocal
microscope. (D) Demonstrates loose layers of co-localized B-TUB +/hNCAM+ cell markers
(yellow). (E) Shows dense layers of DAPI within the PCL area
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Moreover, cells in these organoids expressed CTIP2. Transplanted cells were immunopositive
for CTIP2/STEM121 in the organoid formation, accumulating in the zone of the immature
neurons (Figure 5.14A and B). A few of the transplanted cells differentiated into astrocytes
detected by anti- STEM123 IHC and located in the neuronal layer close to the PCL (Figure
5.14C). Strong MAP2 expression was noted in the cytoplasm around the human nuclear marker
STEM101 in cells of the organoid formation, with a weak MAP2 expression of host neurons

adjacent to the transplanted human cells (Figure 5.14D).

Second, we examined some of the host cell phenotypes that infiltrated the graft of the cerebral
organoid structures and were positive for the following markers; IBA1, GFAP, and PV.
Angiogenesis was detected by anti-lectin histochemistry staining which labels endothelial and
microglial cells. Host blood vessels, detected by lectin staining, were uniformly distributed
through the organoids. lectin staining also showed reactive microglia around the graft but not
inside it (Figure 5.15A and B). Figure 5.15B demonstrates that blood vessels vascularized the

deep layers of the organoids of containing closely packed DAPI + cells.

Host microglia, either ramified or in the resting bipolar form that was immunopositive for IBA1
exhibited a distribution within the cerebral organoid in a similar way to the host cortex,
however, a much higher density of expression of IBA1 from amoeboid microglia appeared
around and in the gel adjacent to the organoids (Figure 5.15C, and D). Similarly, a dense layer
of endogenous cells expressing the astrocyte marker GFAP+ but STEM121- were nested at the
boundary between the organoids and the host cortex. They infiltrated the graft and extended
their long processes toward the centre of the xenograft with some appearing to have started to
migrate toward the centre (Figure 5.15E). It is noteworthy that reactive astrocytes
immunopositive for GFAP, and activated microglia immunopositive for IBAL, did not
completely surround all the graft boundaries. This suggests that the graft was not totally isolated
from the host cortex and trajectories for cells to exchange between the graft and host cortex
existed. Finally, a few cells immunopositive for PV entered the periphery of the organoid

structures (Figure 5.15F).
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Figure 5.14. Transplanted hNSCs in the cerebral organoid formation after one month
detected by IHC in vivo.

Immunofluorescent double labelling for transplanted cells. (A) CTIP2+/STEM121+ (arrows)
cells around the “lumen” space called PCL, (B) CTP2+ cells (red) that resembled the deep
layer SVZ in developing the mammalian brain. (C) Transplanted human cells differentiated
into STEM123+ astrocytes (green) adjacent to lectin+ host blood vessels (red), using
histochemistry for anti-lectin. (D) Shows a mixture of weak expression of MAP2+ (red) only
on the left (arrowhead) and strong MAP2+ (red)/ STEM101+ (green) on the right bottom

corner (arrow) and in the magnified white rectangular.
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Figure 5.15. Endogenous cells and angiogenesis in the cerebral organoid formation after
one month detected by IHC in vivo.

(A) The host blood vessels penetrated (arrows) the xenograft surrounding the dense DAPI+
cells (B) of the organoids (lectin histochemistry). (C) host resting microglia (arrowhead)
invaded the organoid structures and had a similar density as the host resting microglia in the
cortex (small box on the top right corner), and host ramified microglia predominantly located
in the gel regions of the transplant (arrows). (D) a magnified inset from image C, the resting
microglia in the organoid structures (arrowhead) had similar morphology and distribution as
the host cortical microglia.(E) some host reactive GFAP+ (red) astrocytes with swollen cell
bodies accumulated at one side (arrow) of the graft while some (in the magnified white
rectangular) had long processes nested between the organoids. (F) Host cortical PV+ cells

(arrow) in the cortex and in the graft with smaller cell bodies (arrowhead).
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Third, we examined some of the endogenous cell phenotypes that infiltrated the graft, but not
the cerebral organoid structures, and were immunopositive for the following markers; DCX,
MAP2, B-TUB, PAX6, GFAP, and PV and positive for lectin histochemistry staining.

Endogenous DCX immunoreactivity was found in three regions of the frontal cortex. First, in
the SVZ of the lateral ventricles in both hemispheres, second, between the graft and the
xenograft site and third around and inside the transplant. Host neuroblasts immunoreactive for
DCX but not hNCAM were located in the lateral SVZ of both hemispheres and along a
migratory trajectory between the SVZ and the xenograft, (Figure 5.16A). Also, DCX positive

cells were found between the corpus callosum and the graft (Figure 5.16B).

The DCX+ cells surrounded the transplant and intermingled with hNCAM immunopositive
transplanted neurons. DCX positive neuroblasts surrounded the transplant and formed a dense
network at the inferior boundary where it contacted the SVZ (Figure 5.16C). Some of these
cells had an elongated cell body and extended long processes that reached the xenograft and
intermingled with hNCAM positive transplanted neurons (Figure 5.16C). Similarly, extended
long processes were seen in the bottom border of the ECM-only transplant yet fewer immature

neurons with shorter processes invaded the ECM (Figure 5.16D).

176



B

Ipsi 1 Contra Graft/ lesion
hemisphere hemisphere site

e

‘?‘;\.gwc»\w hNCAM/
! \

\

hNSCs/ECM

hNSCs/ECM

f

striatum

hNSCs/ECM ventricle

100 ym

Figure 5.16. Endogenous immature neurons in the hNSCs/ECM and ECM-only
transplants one month after in vivo xenograft.

In non-cerebral organoid regions of the hNSCs/ECM xenografts: (A) endogenous newly
formed neuroblasts expressed DCX in their soma, their leading process in the SVZ
(arrowhead) and toward the graft/lesion site (arrows) and (B) in the corpus callosum toward
the contralateral hemisphere, while (C) maximum intensity projection image of confocal
microscope shows some DCX+/hNCAM- cells surrounded and infiltrated the graft with long
thin processes (arrow), and more dense DCX expression in the SVZ with migrating neurons
into the graft (rectangle).(D) Host DCX+ cells with an elongated morphology surrounded the
ECM-only graft, yet only a few with short processes infiltrated the ECM.
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Transplanted cells gave rise to MAP2+ and B-TUB + neurons. Rodent cortical neurons that
were immunopositive for MAP2 (Figure 5.17A and B) and B-TUB (Figure 5.17C), but not for
the human cell markers STEM101 and hNCAM, entered the xenograft and preserved their
elongated shape (Figure 5.17A and B). Neurones that were 3-TUB + but hANCAM- were located
between the cortex and the graft as shown in (Figure 5.17C) suggesting they were migrating
toward the graft. In ECM-only groups, MAP2+ but STEM101- neurons surrounded the graft
but failed to invade it (Figure 5.17D).

Progenitor cells that were immunoreactive to PAX6 but not hNCAM were found around and
inside the transplant, in the SVZ of both lateral ventricles, and along a migratory pathway
between the xenograft and the SVZ (Figure 5.18).
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Figure 5.17. Endogenous neurons in the hNSCs/ECM and ECM-only transplants one
month after in vivo xenogratft.

Immunofluorescent double labelling for MAP2 (red) and STEM101 or hNCAM (green). (A)
Demonstrates MAP2+/STEM101- dendrites of host neurons in the graft (arrow). (B) A
magnified inset from image A, demonstrating the absence of the human nuclear marker
STEM101 in the MAP2+ cells. (C) Shows host MAP2+/hNCAM- cells in the corpus callosum
(arrowhead), the periphery of the graft, and in graft centre (arrow). (D) Shows
MAP2+/hNCAM- only in the inferior margin of the ECM-only graft
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Figure 5.18. Endogenous progenitor cells in the hNSCs/ECM after one month detected
by IHC in vivo

Immunofluorescent double labelling for PAX6 (red) and hNCAM (green). (A) Shows
endogenous PAX6+/hNCAM- around the graft (arrowhead) (B) around the VZ (arrows) and
(C) between the SVZ and the transplant site, host progenitor cells expressed PAX6+ marker

(arrows).
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Denser GFAP immunoreactivity was observed around the hNSCs/ECM transplant (Figure
5.19A) than what was observed around the hNSCs/ECM transplant containing cerebral
organoids (Figure 5.15E). Figure 5.19A shows host astrocytes predominantly nested around the
xenograft region that had no cerebral organoids. Figure 5.19B demonstrates that astrocytes
highly expressed GFAP and were characterised by a variety of shapes; long, short, or multiple
processed. While some astrocytes had a stellate morphology, only a few had enlarged cell
bodies and thick processes suggesting that they were reactive astrocytes. Some of these GFAP
immunopositive cells invaded and reached to the core of the xenograft and some of them
extended processes that surrounded blood vessels (Figure 18B). Interestingly, a similar host
astrocyte distribution was seen when an ECM-only graft was made. Figure 5.19C shows strong

GFAP immunoreactivity around the ECM-only transplant.

In an additional investigation, in brains with no transplant of either kind, we found that only
reactive astrocytes and microglia were present and that they expressed high levels of GFAP and
lectin around the ischemic infarction. Also, a small number of blood vessels were located

around but not inside the lesion cavity (Figure 5.19D).
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Figure 5.19. Endogenous astrocytes in the hNSCs/ECM transplant after one month
detected by IHC in vivo

Immunofluorescent double labelling for GFAP (red) and hNCAM or STEM121 (green). (A)
Shows GFAP+ cells present around the transplant (arrows). (B) GFAP+ astrocytes in the graft
exhibiting stellate, bulbar, or long processes morphology. (C) Demonstrates GFAP+ cells
around but not within the ECM-only graft, the ECM gives a faint green signal as background.
(D) Shows high levels of GFAP+ reactive astrocytes (green) and lectin+ ameboid microglia
(red) expression in only lesioned brain around the infarction site, using histochemistry for

anti-lectin. DAPI (blue) is nuclear counter staining.

182



Moreover, more blood vessels infiltrated the graft and fewer microglia were observed one
month (Figure 5.20A) compared to one week post grafting of hNSCs/ECM using anti-lectin
histochemistry (Figure 5.20B). Intriguingly, a large blood vessel could be seen running
vertically in the middle of the graft (Figure 5.20A). As was found at the one week time point, a
few cells that were immunopositive for PV appeared within the transplant at this time point
(Figure 5.20B) which displayed a more elongated somata morphology. Similarly, PV
immunopositive cells were seen within the transplanted ECM-only (Figure 5.20C), but we

failed to detect any in the infarction site in the ET-1 model with no transplant (Figure 5.20D).
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Figure 5.20. Endogenous cells in the hNSCs/ECM after one month in vivo.

Using histochemistry staining for anti-lectin (A) the host vascularized (arrows) the xenograft
and host microglia (arrowhead) invaded the transplant as well. The small box shows large
vertical blood vessels inside the xenograft. Using IHC, (B) And (C) shows migrating host
PV+ cells from the cortex to the graft (arrow), while (D) demonstrates no PV+ cells inside the

infarction in lesioned brain with no transplant
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Three months post-transplantation

Most of the transplanted human cells were seen within the xenograft. Only a few of human cells
were observed away from the transplant at this time point post grafting. We observed few
human cells in the ipsilateral lateral ventricle (Figure 5.21A) immunopositive for STEM121
and with long processes. Also, we found a clump of cells ventral to the transplant (Figure 5.21B
and C).
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Figure 5.21. Human cells located away from the graft site three months post-
transplantation.

Immunofluorescent labelling for cytoplasmic markers STEM121 and hNCAM. STEM121+
cells (green) presented in the lateral ventricle of the ipsilateral hemisphere (A) and inferior to
the transplantation site in the striatum. (B, C) Another human cell clump was found inferior

to the graft detected by IHC for anti-nNCAM antibody (green).
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The host brain continued to produce new neurons in the SVZ. These neuroblasts continued
migrate toward the xenograft. Figure 5.22A shows endogenous neuroblasts immunopositive for
DCX located in the SVZ of the lateral ventricles in both hemispheres. These host immature
neurons were strongly immunoreactive for DCX and located in the migratory trajectory

between the VZ and the graft site in the ipsilateral hemisphere (Figure 5.22B).

Transplanted and host neuroblasts were distributed through the graft but fewer of them
surrounded the xenograft, compared to one week and one month. Neuroblasts, either host or
human, were distributed throughout the graft reaching the centre of it. Moreover, the DCX +

cells were connected to each other and exhibited elongated processes (Figure 5.22C).

Host neuroblasts exhibited regenerative activity at the graft/ infarction observed three months
post-grafting. Endogenous neuroblasts, expressing strong anti-DCX labelling of neurites,
started to rebuild the conical bottom of the lesion/graft site (Figure 5.22D). Also, these DCX+
cells connected the upper ends of the infarction margins in some brains while in others they
started to fill the ventral region of the lesion/graft site (Figure 5.22D). No MAP2
immunolabeling was observed within the transplant site suggesting no mature neurons of either

host or graft origin were present (Figure 5.22E).
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Figure 5.22. Immature neurons in the hNSCs/ECM three months post-transplantation
in vivo.

Immunofluorescent double labelling for DCX (red) and hNCAM (green). (A) Shows
endogenous newly formed neuroblasts expressed DCX in their somata and leading processes
in the SVZ (rectangle) and around both lateral ventricles (arrows) and (B) toward the
graft/lesion site. In (C) DCX+ host cells have migrated towards the transplantation site and
intermingled with hNCAM?+ cells (green) some of which are also positive for DCX (yellow).
(D) Examples of cortical regeneration by host DCX+ cells, the arrows show DCX+ neurons
filling some regions of the gaps in the lesion/graft site. (E) Shows no host MAP2+ or human
STEM101/MAP2+ neurons within the xenograft.
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Similar to DCX, the host brain continued producing progenitor cells that were immunopositive
for PAX6 around both lateral ventricles. Figure 5.23A demonstrates PAX6+ but not ANCAM
cells presented in the trajectory between the SVZ and the graft site. Within the graft, cells
immunopositive for PAX6 and hNCAM spread sparsely and connected to the host cortex and
each other in a similar way to DCX+ cells. Also, some PAX6/hNCAM+ cells attached to the
cortex at the upper boundary of the transplant (Figure 5.23B).

We observed that few hNSCs differentiated into astrocytes detected by anti- STEM123 IHC
(Figure 5.24A). Host astrocytes immunopositive for GFAP but not for STEM101 reached the
centre of the transplant. Compared to one week and one month post-grafting, fewer host reactive
and resting astrocytes with elongated processes were found around and in the graft (Figure
5.24B). Furthermore, a few host amoeboid and resting microglia immunopositive for IBA1
surrounded and infiltrated the graft (Figure 5.24C). Finally, we found some cells within the
xenograft stained with anti-synaptophysin (Figure 5.24D) indicating the functionality of the

differentiated neurons within the graft.
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Graft/ lesion site

Figure 5.23. Neural progenitor cells in the hNSCs/ECM three months post-
transplantation in vivo.

Immunofluorescent double labelling for PAX6 (red) and hNCAM (green). (A) Shows
endogenous PAX6+/hNCAM- cells between the SVZ and the graft/lesion site, and in both
lateral ventricles (arrows in the box). (B) Shows PAX6+/ hNCAM + cells within the

transplant and at the superior margin of the xenograft.
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Figure 5.24. Immunofluorescence for cells in the hNSCs/ECM three months post-
transplantation in vivo.

(A) A few STEM123+ (green) human astrocytes (arrows) were around the graft. (B)
Immunofluorescent double labelling for GFAP (red) and STEM101 (green) shows GFAP+
only cells within the transplant exhibited bulbar morphology (arrowhead), or extended
processes in space and around blood vessels (arrow). (C) shows host resting microglia
(arrows) surrounded and invaded the organoid structures, and host ramified microglia
(arrowhead) located in and around some boundaries of the xenograft. (D) Synaptophysin

expression (green) within the transplant.
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5.3 Discussion

5.3.1 Invitro experiment

The aim of this study was to make qualitative observations, using double-label
immunofluorescence with light and confocal microscopy, of the ability of human induced
pluripotent stem cells (hiPSCs) derived NSCs cultured in a 2D monolayer or in a 3D semi-
synthetic ECM to spontaneously differentiate into neuronal lineages. The starting cells of the
hiPSCs derived NSCs were originally from a umbilical cord blood (UCB) CD34+. Umbilical
cord blood cells would make an excellent source of cells for transplantation in perinatal stroke
as they could be derived from the umbilical cord of the babies that suffered stroke allowing an

autologous transplant.

In the 2D NSCs culture, we found some neural progenitors as well as early and late post-mitotic
neurons detected by the antibodies to PAX6 (neural progenitors) DCX (post-mitotic
neuroblasts) and TBR1 (post-mitotic neurons) at the following time points: 10, 14, and 17 days
after the beginning of differentiation. Over the period of the 3-time points, we noticed more
PAX6+ neural progenitors in the early stages and more DCX+ and TBR1+ post-mitotic neurons
toward the later stages. Similarly (Ali et al., 2012) found a significant increase in post-mitotic
neuron number on day 24 in culture when compared to 10 days in the 2D in vitro culture while
PAXG6+ progenitors were 45% of all cells on day ten decreasing to 15% on day 24. This
difference in marker expression followed the expressed marker pattern during human cortical
neurogenesis s in which PAX6 was expressed first by neural progenitors, followed by TBR2
then TBR1 at 12 postconceptional weeks (PCW) (Ali et al., 2012, Bayatti et al., 2008).

We reported a clump of cells at the last time point. It had heterogeneous mixture of cells positive
for PAX6 and DCX and we also found them immunopositive for synaptophysin. After the last
time point in our 2D in vitro experiment, cells started to show the very limited life span of post-

mitotic cells in 2D culture.

After we confirmed the differentiation ability of NSCs in the 2D culture, we aimed to conduct
qualitative observations of the NSCs differentiation ability in a 3D culture over 4-time points;
10, 14, 17, and 43 days using the same ECM, HyStem-C hydrogel we planned to incorporate
the cells into for in vivo grafting. The most prominent difference between the 2D and the 3D

culture results was that the NSCs in the 3D culture survived for more than 2.5 fold longer than
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in 2D culture. This increase in survival rate supports the finding that the hydrogel we used
increased NSCs survival in vitro in a previous study (Zhong et al., 2010). Interestingly, in our
study, cells in the 3D culture seem to be able to survive beyond the last time point indicating
that the 3D culture promotes NSCs survival and differentiation more than the 2D culture.
Likewise, (Liang et al., 2013) found that culturing NSCs in hydrogel scaffold improved the
survival rate significantly suggesting that the hydrogel component has a crucial rule in the

increased NSCs viability.

In addition to the fewer pre-mitotic radial glial cells and many post-mitotic immature and
mature neurons at later time points of the 3D culture, we demonstrated longer neuronal
neurites than in the 2D culture that reflected a complicated networking pattern between cells
which might have occurred due to the extra space provided by the 3D scaffold (Lam et al.,
2014). Unlike the differentiated NSCs in the 2D culture that had short processes, the NSCs in
the 3D culture in our study differentiated into immature neurons with around 50um processes
in length as early as ten days in culture and over 200um after 14 days. We also observed fewer
immature neurons and more mature neurons that were immunopositive for MAP2 with more
than 50um of dendritic length with complicated morphology and connections than earlier time
points. Similarly, shown in the study by(Carlson et al., 2016) the 3D in vitro culture promoted
the differentiation of neural cells with marked expression of MAP2 and B-TUB and complex
neurite outgrowth after 12 days, while radial glia that expressed PAX6 were hardly observed at
day 14 and diminished at the later time points. Thus, our NSCs in the 3D culture had more
division activity into neural progenitors at earlier time point and more post-mitotic neurons with
complicated neurites at the later stages. This finding suggests that the NSCs in the 3D culture

were differentiating toward mature neurons over time.

Our result is consistent with a study that cultured differentiated NSCs in 2D and 3D culture and
found that neurons in the 3D culture had longer processes than in the 2D culture. They found
that the axonal process outgrowth was 200 um and 250 pm at week one and two respectively
post culturing(Stevanato et al., 2015). Indeed the use of 3D culture provided a scaffold for the
cultured NSCs to survive and differentiate (Carlson et al., 2016, Wu et al., 2017) demonstrated
that the 3D scaffold guided neurite growth of the human induced neuronal cells derived from

hiPSCs and improved their survival rate.
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In our study, NSCs in 3D and 2D culture had potentially functional neurons as we detected
expression of the neural synaptic vesicle marker synaptophysin which is similar to a recent
study that reported that synaptophysin was robustly expressed on day 28 in the 3D
culture(Carlson et al., 2016). Moreover, a recent study demonstrated that the 3D culture
enhanced the differentiated NSCs to form a functional synaptic network indicated by the

presence of synaptophysin (Smith et al., 2017a).

Only a few cells in the ECM were stained by the GFAP marker suggesting that our NSCs
cultured in vitro were dedicated to produce more neurons than astrocytes in both 2D and 3D
cultures. A similar in vitro study showed only a few astrocytes after culturing NSCs with nerve
growth factor (NGF) (Arien-Zakay et al., 2011). This may be due to the type of ECM (Thonhoff
et al., 2008) or the NSCs origin (Brannvall et al., 2007). Different ECM types have various
effects on the neural fate of the cultured cells. For instance, human foetal cells cultured in
Matrigel, an ECM protein in a solubilized basement membrane extracted from sarcoma in mice
(Hughes et al., 2010), differentiated into GFAP+ astrocytes while when they cultured in
Puramax they gave rise into 17% B-TUB+ cells and 27%GFAP+ cells (Thonhoff et al., 2008).

Thus, similar to the recent review that reported the advantages of the 3D in vitro culture over
the 2D on the neuronal cell expansion and differentiation(Murphy et al., 2017b), we found that
the 3D culture of NSCs in 3D hydrogel culture in our study showed advantages over the
conventional 2D monolayer culture which make the NSCs suspended in ECM a better choice
for our in vivo NSCs transplantation.

5.3.2 Invivo experiment

After we confirmed the ability of the NSCs derived from hiPSCs to survive and differentiate in
the vitro 3D culture using the semi-synthetic ECM, HyStem-C hydrogel, we aimed to transplant
NSCs/ECM complex into the lesioned SMC of the PIS model at postnatal age (P) 14 and study
the development and survival of NSCs qualitatively at 3 time points: 1, 4, and 10 weeks post

transplantation.
Cerebral organoid formation in vivo

The most prominent result in our in vivo experiment one month after transplantation in the PIS

model was the formation of cerebral organoids. A cerebral organoid is a specific patterning of

cells into a neural rosette formation that mimics the features of the neural tube in the developing
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human foetal brain during the fourth week of development (Murphy et al., 2017b). The laminar
phenotypes of our resultant cerebral organoids were as follows: first the central space (lumen)
in each rosette formation resembled the ventricle of a developing brain, surrounded by a layer
of condensed hiPSCs derived NPCsimmunopositive for PAX6, resembling the VZ of certain

regions of the developing

central nervous system (CNS) including the cerebral cortex which we named “PCL” , and
finally an outer layer that contained proliferating cells and post-mitotic human neurons that
were immunopositive for DCX and B-TUB which we named “NCL”, four weeks after

transplantation.

In addition to DCX and B-TUB+ neuroblasts, transplanted cells gave rise to more mature
MAP2+ neurons. We found more mature post-mitotic neurons which stained with MAP2 in the
organoid formation, however, we could not specify at what layer due to technical difficulties.
In a previous study, transplanted NSCs derived from human ESC with Matrigel differentiated
into MAP2+ cells three weeks after inducing focal cerebral ischemia in adult rats (Jin et al.,
2010). This might highlight one of the advantages of the use of the ECM as a vehicle for in

vivo transplantation in promoting cell differentiation.

To our knowledge, our transplantation method is the first that was able to generate such
formations recapitulating some of the characteristics of the developing cortex in the human
brain in vivo. Thus, our results are not comparable to any previous study. However, two aspects
could be compared to our cerebral organoids. Firstly, the features of the neural tube in the
developing human brain, and secondly, the features of the cerebral organoids generated in vitro

in previous studies.

The neural tube can be defined as “a single layer of proliferating columnar neuroepithelial cells
that eventually give rise to the CNS (brain and spinal cord)”. In mammalian brain formation,
neuroepithelial progenitors are located around the inner surface of the neural tube called the
ventricular zone (VZ). These human progenitors divide symmetrically generating radial glial
cells that later divide asymmetrically producing daughter progenitors (McConnell, 1995)
immunopositive for PAX6 in the VZ (mainly) although some of them translocate to the SVZ
(Britz et al., 2006, Miyata et al., 2004, Rakic, 1988, Tan and Shi, 2013) and either neurons or

intermediate progenitor cells that can divide further to give neurons. In mammalian
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corticogenesis, newborn neurons migrate towards the pial surface forming the layers of neurons
observed in the adult cerebral cortex. Each cortical layer shares a laminar phenotype (Stiles and
Jernigan, 2010) with the deepest layer generated first and the superficial ones formed
subsequently (McConnell, 1995, Tan and Shi, 2013). Corticogenesis in human starts with the
formation of cortical plate (CP) at 8 at PCW and the cortical progenitor layer at 12.5 PCW
(Bayatti et al., 2008). In rodents, cortical generation starts on day 10 and finishes on day 18
(Levers et al., 2001), and the cell cycle is five times shorter than in human and non-human
primates (Kornack and Rakic, 1998).

Likewise, similar morphology and organisation of PCL and NCL layers occurred in our
organoids. We found a significant amount of neural progenitors with PAX6 gene expression
around the central lumen of the generated cerebral organoids. Furthermore, DCX
immunoreactive neuroblasts were found in a layer surrounding these progenitors suggesting
that they were post-mitotic daughters of the asymmetric division of the progenitor cells (Luskin
etal., 1988).

Cerebral organoids were generated recently for the first time from pluripotent stem cells in vitro
(Lancaster et al., 2013) and called “cerebral or whole brain organoids” and “Brain in a dish”.
More recent advances have been achieved improving the methods for generating these

organoids in vitro (Mason and Price, 2016, Qian et al., 2016).

To generate these organoids in vitro, researchers used Matrigel as a scaffold in a 3D culture
within rotating vessels to enhance nutrients and oxygen reaching the core of the organoid
avoiding necrosis and growth size limitation (Lancaster et al., 2013). Since then, the number of
studies has expanded in this area of research giving better results than with simple in vitro
protocols (Qian et al., 2016). This achievement has had a significant impact especially in
modelling disease and introducing drugs in vitro without the need for animal models (Lancaster
et al., 2013, Mason and Price, 2016, Qian et al., 2016). All these factors are crucial to generate
in vitro cerebral organoids however in our in vitro experiment we did not propose to produce
cerebral organoids, but we intended to test the NSCs ability to differentiate in hydrogel before
we transplanted them. As a result, cerebral organoids were absent in our in vitro experiments

due to the lack of some essential procedures such as the spinning vessels.
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Contrary to the organoids generated in vitro in previous studies that have shown variability and
heterogeneity (Lancaster et al., 2013), our organoids were consistent in their morphology. All
the cerebral organoids that resulted from our experiments shared similar patterns of gene and
protein expression with mammalian developing cortical layers (Noctor et al., 2004). We
identified PAX6 gene expression in the inner layer and DCX protein expression in the outer
layer in all generated organoids. Researchers have been able to generate brain organoids in vitro
that have the PCL (Lui et al., 2011) and the NCL which is important in cerebral cortex
development (Mariani et al., 2012, Qian et al., 2016).

Recently (Qian et al., 2016) have developed a protocol that produces organoids containing
neural progenitors in the PCL and more maturing cells in the NCL and even the CP-like layer
where the deep layer cortical neuron marker CTIP2 is expressed at day 70. In At the 4 week
time point, our cerebral organoids were homogenous and robustly generated the cerebral-
specific progenitor markers PAX6 exclusively in the PCL and the immature neuronal marker
DCX in the NCL. Also, we observed some CTIP2+ cells in the outer part of the organoid after
four weeks post-grafting, similar to (Renner et al., 2017) who found CTIP2+ cells in this

location in vitro.

The timing of our cerebral organoids formation was consistent with studies of in vitro generated
organoids. Cerebral organoids have been formed 20-30 days after encapsulating hiPSCs in
Matrigel, an ECM protein derived from tumours in mice (Hughes et al., 2010), in an in vitro
study (Lancaster et al., 2013). In our study, fully formed cerebral organoids were found 4 weeks
after transplantation.

It is noteworthy to report that we found that one week after the transplantation the transplant
formed a labyrinthine structure that was similar to what (Qian et al., 2016) observed in their in
vitro cerebral organoids one week after the transplantation. This structure could be the
beginning of the cerebral organoid formation detected by immunopositivity for the gene marker

PAX6. We did not detect any mature neurons with a MAP2+ marker at this early time point.

Several factors probably contribute to the resultant cerebral organoids 4 weeks post grafting in
our study. Our in vitro protocol to prepare cells was different from the previous in vivo
transplantation study protocols (Lam et al., 2014, Nih et al., 2017, Zhong et al., 2010). We

directly grafted the NSCs in vivo instead of passaging cells in vitro to transform the NSCs into
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NPCs because it has been shown that the intrinsic environment in the brain and the transplanted
ECM will act together to provide the growth factors to the grafted NSCs to differentiate into
NPCs and neurons (Park et al., 2014).

Also, we transplanted NSCs with hydrogel as a vehicle and this combination had not been
utilised before this study. The ECM mimics the brain niche and provides a scaffold that might
support the transplanted cells physically to organise themselves into organoid structures
(Gjorevski et al., 2014). Beside the mechanical support, it has been demonstrated that the
hydrogel 3D scaffold is an important factor in providing a beneficial environment for the NSCs.
For instance, when UCB and NSCs were cultured in vitro with hydrogel, the hydrogel enhanced
the UCB provided beneficial environment for the NSCs by enhancing the secretion of
neurotrophic factors such as NGF, brain-derived neurotrophic factor (BDNF) and promoting

cell differentiation and metabolic activities (Park et al., 2014).

In vitro, studies have suggested that organoid formations are self-dependent (Elkabetz et al.,
2008, Lancaster et al., 2013). However, the underlying mechanism of self-organising of
organoids in vitro is not yet fully understood, given the fact that the generation of the cerebral
organoids in vitro is a recent finding. The developing embryonic human brain has different
signalling centres that secrete morphogens patterning the neural tube. These centres are the
anterior neural ridge, cortical hem, and the antihem for the telencephalic portion of the neural
tube. When no extrinsic patterning cues are available in the 3D in vitro culture, human
embryonic stem cell -derived NSCs organoids will be committed to being anterior neural
ectoderm (Elkabetz et al., 2008, Renner et al., 2017).

A recent in vitro study has indicated that the generated cerebral organoids themselves contain
some of the signalling centres that have been found in the developing foetal forebrain (Renner
et al., 2017). These are the cortical hem and the antihem centres that are patterning the dorsal
brain in Telencephalic vesicles of the foetal brain (Camp et al., 2015, Renner et al., 2017).
However, it still unknown when they are active, and how long is their life span. Indeed further
investigation must be done to understand the underlying mechanism of how grafted cells self-

organise into organoid formations in vivo.

We found that our transplanted NSCs survived, proliferated, and differentiated at the four week

time point. One possible reason behind this result is the use of the hydrogel, HyStem-C, as an
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ECM. This hydrogel has three components; hyaluronic acid (HA), gelatin, and the cross linker
Polyethylene (glycol) Diacrylate (PEGDA), which promoted transplanted human cell survival
and proliferation in stroke models previously (Liang et al., 2013). The high molecular weight
of the HA that we used enhances the survival of the cells and mitigates the host inflammatory
response in vivo. A previous study has shown that the use of this hydrogel supported the
transplanted human cells in term of surviving and proliferating in stroke model in rodents(Liang
2013) which could be as a result of the ability of the high molecular HA in reducing the cell
apoptosis activity (Jiang et al., 2005, Liang et al., 2013).

Moreover, the molar ratio of this component that we used ( HA, gelatin, and PEGDA = 2:2:1)
and the injection timing protocol that was just prior to the gelling time of the hydrogel (20
minutes) were demonstrated to produce the perfect environment in vivo at least for 12 days post
grafting in normal mice in a previous study (Liang et al., 2013). This molar proportion yielded
a sponge-like ECM with mild stiffness that gave the transplanted cells more room to exchange
the essential surviving factors such as nutrients and oxygen by avoiding the grafted cells
accumulating along the injection needle trajectory (Liang et al., 2013). Furthermore, the
mechanical properties of the hydrogel may contribute to the transplanted cell differentiation.
(Seidlits et al., 2010) have found that the soft hydrogel which comparable to neonatal brain
promoted rodent NPCs to differentiate into post-mitotic B-TUB+ neurons while they mainly

differentiated astrocyte when cultured with stiffer hydrogel.

The underlying mechanism of cell survival and division in organoids has been studied
previously in vitro. Researchers have explored active notch signalling, which is a cell to cell
signalling pathway that is crucial to maintain the grafted NSCs derived from rosette formation,
and found that this enhances NSCs division (Elkabetz et al., 2008, Shen et al., 2004) and
decreases cell death (Androutsellis-Theotokis et al., 2006) in vivo.

It seems that our NSCs rarely differentiate into astrocytes when transplanted with ECM in PIS
model. In our study, we did not see any astrocytes stained for human specific GFAP, except for
4 or 5 cells on one occasion. Consistent with our results, studies that have transplanted a similar
cell source to ours in neonate rodents, but not suspended in a gel, have produced no or few
astrocytes immunopositive for GFAP. Transplanted NSCs had not differentiated into GFAP
positive cells five weeks post grafting (Jablonska et al., 2010). Furthermore, when NSCs were
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grafted with ECM intracerebrally into the striatum of ischemic model (MCAO) of adult rats,
no differentiated astrocytes were seen (Bible et al., 2012).

On the other hand, astrocytes were presented in some in vivo neonatal rat studies that grafted
different stem cell than ours without ECM for instance after grafting human embryonic stem
cells into a normal P2 rat neonate(Denham et al., 2012) and mesenchymal stem cells into a
neonatal rat model of hypoxic ischemic brain (Xia et al., 2010), resulted in differentiation into
mature glial cells expressing GFAP, particularly ten weeks post grafting in normal rats
(Denham et al., 2012, Xia et al., 2010). These conflicting results might be due to the different
cell type, different animal models, or histology assessment timing. For example, in focal
ischemic adult rats, (Zhong et al., 2010) found that NSCs from human embryonic cortex can
survive and differentiate into astrocytes and a few DCX neurons by two weeks from the grafting
while the NSCs from human embryonic stem neural progenitor cells remain undifferentiated

with a lower survival rate.

Another surprising result we found was the even vascularization of the cerebral organoids from
the adjacent cortical tissue of the host brain. Anti-lectin histochemistry showed many host blood
vessels invading the in vivo organoids in a well-distributed manner. In vitro, a spinning culture
vessel is required to promote organoid survival, by forcing the oxygen and the fluid to reach
the centre of the organoids physically (Lancaster et al., 2013, Qian et al., 2016). However, our
in vivo experiment it appears that the cerebral organoids overcame the limitation in oxygen and
nutrient supply by permitting ingrowth of vessels from the host tissue. Angiogenesis in our
experiments provided a natural alternative to the rotating vessels for the in vitro organoids to

keep them nourished at least for four weeks.

Previous in vivo studies have shown that angiogenesis occurred at the pre-lesion area after
inducing stroke (Krupinski et al., 1993, Senior, 2001) but not in the transplant as in our results.
This angiogenesis could happen due to a limited development of scar tissue at the infarction
site because of the use of hydrogel. Although some studies used hydrogels, including the one
we used, as a vehicle for in vivo transplantation, they have not stimulated angiogenesis (Bible
et al., 2012, Zhong et al., 2010). However, other researchers have considered that hydrogels
enhanced vascularization (Ju et al., 2014, Peattie et al., 2004). One explanation of the

angiogenesis is the transplant itself. A study has reported that grafted cells secrete a vascular
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endothelial growth factor that stimulates vessel formation (Horie et al., 2011) suggesting our
cells enhanced neovascularization into the graft.

An important question is whether the cerebral organoids in our study survived or evolved into
more defined cortical layers at ten weeks post grafting. To answer this question, we examined
the graft histologically 75 days from grafting. Although we noticed regenerative activity by the
endogenous cells, unexpectedly we could find barely any human cells either within the graft or
away from it. An in vitro study had similarly generated organoids to ours which survived more
than 84 days and exhibited the PCL and NCL layers of the developing human cortex. Then,
after 100 days from the onset of cerebral organoids, the progenitor cells in the PCL depleted
and the CP layer, which is a cortical layer containing CTIP2+ neurons located above the PCL
and NCL, expanded (Qian et al., 2016). In our study, at the four week time point, we saw a few
CTIP2+ neurons were located around the PCL and NCL suggesting the beginning of forming
the CP layer.

At the ten week time point, we noticed graft regression occurred alongside a lack of ECM at
the graft site. The survival rate of the transplanted cells was similar to a previous study
transplanting stem cells into rodent neonate lesioned brain in which grafted human cells
survived for five weeks with no ECM before they diminished (Jablonska et al., 2010). There
are two possible explanations behind this ECM-related observation. First, the fast degradability
of the thiolated hydrogel used in our ECM (Hahn et al., 2007, Prestwich et al., 2012) and second,
the transplanted cells themselves or the host infiltrating cells might contribute to hydrogel
dissolution (Moshayedi et al., 2016) have reported that the grafted hydrogel degraded faster
when mixed with 100,000 NSCs than when it was grafted alone in vivo. The resultant delayed
gelling time allows grafted cells to settle down in the graft rather than being distributed evenly
within the ECM (Martens et al. 2009) in vivo and subsequently results in low survival rate as
demonstrated in a previous study (Zhong et al. 2010).

Moreover, possible unbalanced intrinsic cues of the host brain and the cues needed by the graft
might contribute to organoid degeneration. First, the xenograft transplantation method might
result in a lack of the needed trophic factors to keep the grafted human cells alive in the rat
brain as shown in a previous study (Glover et al., 2009). Second, the mismatch between rodent
(host) and grafted human cells in the cell cycle timing could be another reason. The cell cycle
duration affects the cortical layer phenotype (Dehay and Kennedy, 2007, Pilaz et al.), and in
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our study we transplanted human cells into rodent brains while the human cell cycle is 5 times
longer and needs an over 7 times longer period than rodents to produce the CP (Bayatti et al.,
2008, Kornack and Rakic, 1998). Together, these are some of the possible reasons behind the

regression of the cerebral organoids at ten week time point from transplantation in our study.

Finally, we found that at ten weeks human cells that were still immunopositive for DCX, -

TUB and PAX6 but not for MAP2+ suggesting a decreased number of maturing cells survived.

Now that we have discussed in detail the generation of cerebral organoids in vivo we can move
on to the second interesting result which is the innate immune response by host cells toward the
graft and endogenous brain regeneration in response to the NSCs/ECM transplantation.

Host Immune Response to the Transplant

We found that astrocytes and microglia infiltrated the cerebral organoids but they mainly
displayed resting morphology and there was no evidence of harm to the organoids at the 4 week
time point. This suggests that the host brain did not initially recognise the graft as a foreign
body. In the same way, when hydrogel and NSCs were grafted intracerebrally in adult rodents,
few inflammatory cells invaded the graft (Zhong et al., 2010) suggesting that the hydrogel
worked as a shield to protect the transplanted cells. Thus, our result provided an in vivo cerebral
organoid that not only mimicked the developing brain but also did not trigger the host innate

immune system.

The immediate reaction of microglia serves as the first line in defence against the transplant
(Glezer et al., 2007). We did not use immunosuppression to ameliorate the immune reaction as
some studies have argued that using immunosuppression will prevent neural repair, or lead to
deterioration in the underlying disorder and prevent the beneficial role of microglia in the repair
of the lesioned brain tissue (Glezer et al., 2007, Kulbatski, 2010). Furthermore, the immune
system is too immature and less able to mount an immunogenic response to xenogeneic

transplants in neonate rodents (Coenen et al., 2005, Englund et al., 2002, Jablonska et al., 2010).

Although we transplanted the NSCs/ECM into immature rodents at age P14, we found that
reactive microglia surrounded and invaded the ECM which semi-surrounded the organoids and
the ECM-only brain group at the one and 4 week time points. Likewise in other intracerebral
transplantation studies (Bible et al., 2012, Liang et al., 2013, Zhong et al., 2010), graft areas

with ECM alone have been easily detected by the brain to be attacked suggesting that grafted
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ECM trigger the immune system of the host. The mechanical properties of ECM are believed
to trigger the innate immune system of the host (Lam et al., 2014).

Grafting hydrogel can cause an inflammatory reaction because of its mechanical properties, but
still less than the reaction resulting from our stroke model which is similar to previous studies
(Lam et al., 2014, Zhong et al., 2010). Furthermore, this was consistent with the previous study
that used the exact same hydrogel as we used (Liang et al., 2013) suggesting that the stiffness
of the hydrogel, Hystem-C, will mitigate the inflammatory reaction at the insult site. The
hydrogel component HA, which we used in our study, is a high molecular weight polymer and
previously has been demonstrated to be an excellent support for the transplanted human cells
in terms of surviving and proliferating following grafting to a stroke model in rodents (Liang et
al., 2013) unlike the low-molecular weight polymer which enhances inflammatory gene

expression (Jiang et al., 2005).
Endogenous brain regeneration

In our study host neuroblasts and neural progenitors were located in the SVZ of the lateral
ventricles in both hemispheres and along a migratory pathway between the SVZ and the
xenograft in the ipsilateral hemisphere at all three time points. In a similar study that
transplanted hydrogel and NSCs in focal ischemic stroke model, the host neuroblasts migrated
to the graft two weeks after transplantation whether the grafted cells had been injected with or
without hydrogel (Zhong et al., 2010).

Neurogenesis and migration of host neuroblasts after inducing stroke occurs at several sites
including the adult SVZ around the lateral ventricle (Kadam et al., 2008, Kokaia and Lindvall,
2003, Ohab and Carmichael, 2008). Studies have shown that a NSCs xenograft in MCAO stroke
model in adult rats enhanced neurogenesis in the SVZ and vascularization in the pre-infarcted
area (Zhang et al., 2011b). It has been demonstrated that after inducing stroke the generated
neovessels promoted host neurogenesis in the SVZ by secreting trophic factors (Mine et al.,
2013). However, this neurogenesis occurred in the first week then decreased significantly
(Arvidsson et al., 2002, Ohab et al., 2006, Zhang et al., 2001).

At the 4 week time point, we found that the host neural progenitors and immature neurons
surrounded the graft and intermingled with the human grafted neurons at the periphery of, but

not centre of, the cerebral organoids. A similar cellular distribution was observed in the ECM-
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only transplant but with fewer cells with shorter processes invading the ECM. Rodent cortical
neurons, which were immunopositive for MAP2 and B-TUB, infiltrated parts of the ECM which
were not populated with human cells, yet we did not see this in the ECM-only group. At ten
weeks, the host neuroblasts exhibited regenerative activity at the graft/ infarction, , and started
to rebuild the conical bottom of the lesion/graft site connecting the upper ends of the infarction
margins in some brains. This suggests that transplanted ECM and NSCs activated the host

endogenous regeneration activity.

Studies have shown that transplanted stem cells enhance endogenous axonal sprouting and
dendritic branching (Horie et al., 2015). The suggested underlying mechanism is that the grafted
cells travel along the host vessels showing the crucial role of neovascularization in the cellular
exchange between the host and the graft (Horie et al., 2015).

It has been previously shown that after ischemic insult in the rodent brain, neurogenesis took
place in different brain regions including the SZV and there was migration of new cells to the
lesion site. However, these cells died within a week (Jin et al., 2001, Nakagomi et al., 2009). In
our study, the host DCX+ neurons were capable of being produced, migrating and surviving

through all the three time points; 9, 32, 77 days after inducing the insult.

It is noteworthy to report that we observed positive PV+ cells in the organoid area as well as in
other areas of the graft at both the one and four week time points. Moreover, we observed PV
immunopositive cells within the transplanted ECM-only, but none presented at the infarction
site in the ET-1 model. Interestingly, a study has reported for the first time that neuroepithelial
stem cells differentiated into an inhibitory cortical interneuron PV+ cells in vitro but not when
transplanted in neonate mouse in vivo (Zhu et al., 2016). Thus, our study is the first to report
PV+ cells within the graft. Although they were reported to be in the ECM and the graft and
looked as though they migrated from the cortex, whether they were host or human will be

addressed in future studies.

Since synaptogenesis is an advanced form of plasticity leading to restoration of neural circuit
function in the lesioned brain, we tested our graft for anti-synaptophysin immunoreactivity, and
we found that transplanting NSCs with ECM enhanced synaptogenesis. Likewise, studies of
transplanting stem cells after ischemic lesions recorded some synaptogenic activity using

electronic microscopy (Daadi et al., 2009, Ding et al., 2013). Also, synaptophysin
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immunoreactivity has been demonstrated previously in ischemic rats after human umbilical

tissue-derived cell transplantation at four weeks (Zhang et al., 2011a).

Overall, this experiment was primarily intended to address the challenges of transplanted cells
survival and integration in the host brain. Our data suggest that when the IPSC derived NSCs
that were originally from a UCB CD34+ were suspended in hydrogel and transplanted
immediately into ischemic SMC of P14 rats, they will be capable of producing cerebral
organoids and respond to the intrinsic cues of the rat developing brain at least for 4 weeks as

long as the ECM is not degraded.

5.4 Conclusion
This chapter has demonstrated that:

1. NSCs cultured in 3D hydrogel in vitro showed a higher survival rate and denser pre
and post-mitotic marker expression with longer and more complex morphology of
neuronal processes than NSCs in the 2D culture.

2. NSCs grafted with hydrogel in vivo into the SMC of the PIS model at P14 resulted
in cerebral organoid formation, neovascularization, host cell migration toward the
graft and infiltration with milder inflammatory reaction than in the PIS model but
did not extend axons to towards internal capsule or migrate into host cortex, and 4
weeks post transplantation.

3. NSCs grafted with hydrogel in vivo into the SMC of the PIS model at P14 resulted
in stroke cavity reduction and neurogenesis by the host cells, but by 6 weeks post

transplantation however the ECM degraded.
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Chapter 6 . General Discussion, Limitation and Future Work

6.1 Modelling perinatal stroke in the rat: middle cerebral artery occlusion versus
Endothelin-1 injection to the sensorimotor cortex

In human neonates, perinatal ischemic stroke (PIS) is a significant cause of hemiplegic cerebral

palsy, and the incidence of stroke is higher perinatally compared to any other time of life

(Benders et al., 2008). As was reviewed in Chapter One, a suitable animal model is needed to

test early intervention therapies.

In this research, we first compared middle cerebral artery occlusion (MCAOQ), performed via
electroligation, with direct intracerebral injection of reversible vasoconstrictor Endothelin-1
(ET-1) into the sensorimotor cortex (SMC). This was done during the developmental stage, at
postnatal day 12 (P12), which is comparable to birth in humans, to model human PIS. Either
the left middle cerebral artery was exposed by craniotomy (temporal bone) or electro-
coagulated, or 400 Picomole (Pmol) of ET-1 was unilaterally injected into three sites in the
SMC (Chapter Two).

The results presented in Chapter Three showed that the MCAO model did not primarily affect
the SMC, a major site of damage in human neonates. Expression of Hypoxia inducible
transcription factor and activation of microglia at 2-5 days following lesioning was restricted
to the lateral cortex close to the occlusion site at the barrel field somatosensory cortex (bfSSC).
At one month post lesion, cellular immunoreactivity assessments revealed a cortical ischemic
lesion present mainly in the bfSSC. Furthermore, no significant behavioural deficits were
detected in this model at P45. ET-1 intracerebral injection, on the other hand produced a more
appropriate model, including immunoreactivity for hypoxia inducible transcription factor and
activated microglia immunoreactivity more dorsally in the limb sensorimotor cortex (ISMC).
However, although we found some evidence of functional disabilities in the ET-1 group
compared to sham animals at P45, these differences, again, were not statistically significant. It
is possible that the induced SMC lesion had recovered by P45 due to high plasticity during
development. Alternatively, the behavioural test used to measure the behavioural defects after
SMC lesioning in P12 rat neonates might not be sensitive enough for our model (Clowry et al.,
2014). However, the low mortality rate observed using ET-1 to produce PIS is an advantage of
this method.
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Loss of corticospinal tract (CST) neurons in the SMC was investigated by injecting Fluorogold,
a retrograde tracer, into the contralateral cervical spinal cord to trace the CST (Chapter Two).
The results presented in Chapter Four showed a small loss of corticospinal neurons at the ET-
1 induced lesion site, but an increase in labelled corticospinal neurons in the contralateral
cortex, compared to sham animals. Evidence has been found that surviving aberrant
corticospinal projections from the contralateral hemisphere to the lesion could be related to
positive behavioural outcomes in the lesioned animals (Jansen and Low, 1996). Thus, we
suggest that in our ET-1 injection PIS model, corticospinal plasticity during development might
have overcome the behavioural disability and led to only limited behavioural dysfunction that

did not reach statistical significance at one month after insult.

Although there was no measurable behavioural deficit, there was loss of corticospinal neurons
in response to the ET-1 lesion so, in Chapter Five, we tested the potential therapeutic effect of
intracerebrally injecting human neural stem cells (hNSCs) derived from human induced
pluripotent stem cells (hiPSCs) and suspended in semi-synthetic extracellular matrix (ECM)
into the ET-1 PIS model perinatal rat brain. The aim was to replace missing corticospinal
neurons with new neurons derived from the graft. Prior to the in vivo experiment, we
differentiated the hNSCs into 2 and 3 dimensions (2D and 3D) in in vitro culture in order to

compare it with the grafted cells in vivo.

6.2 hNSCs-ECM organise into cerebral organoids after transplantation into stroke-
lesioned perinatal rat brain.
In this experiment, we compared the survival and development hNSCs-ECM in vitro and
following grafting into a rodent model of perinatal infarction damaging the SMC. The
prediction was that grafted stem cells would develop into cortical neurons and replace neurons
killed by the infarction. To test this hypothesis, ET-1 PIS model surgery was performed at P12,
following our previous ET-1 protocol. Two days following the lesion surgery, 100,000 hNSCs
were transplanted directly into the sensorimotor cortex. Cells were suspended in ECM as a
transplantation vehicle. Also, a sham group that was injected only with ECM during the ET-1
surgery protocol, was assigned to be compared with the intervention group and a control group
that received only ET-1 surgery followed by craniectomy. Another hNPC cell line was cultured

in vitro to be tested for differentiation (chapter two).

208



A mixture of cell types was tested for in vitro by immunocytochemistry (ICC), including
PAX6-positive neural progenitor cells and doublecortin-positive neuroblasts in 2D in vitro
culture after starting the differentiation protocol for hANSCs-ECM described in Chapter Five.
In the 3D culture, however, the hNSCs in ECM survived longer than cells in the 2D culture,
and were composed of neurons in various states of maturity that expressed doublecortin, beta-
tubulin, and MAP2 in addition to the PAX6-positive neural progenitor cells. Cells in 3D culture

also extended long neurites, and synaptophysin was observed at the contacts between neurites.

The results in Chapter Five led us to hypothesize that transplanting hNSCs along with ECM
possibly results in cortical regeneration via the development and integration of cortical neurons.
Surprisingly, transplanted hNSCs formed neural tube-like rosettes with a morphology
resembling the cerebral organoids one month after transplantation previously only observed in
3D in vitro neural stem cell culture using special culture conditions not employed in our 3D
study. To our knowledge, our transplantation method is the first to be able to generate
formations that recapitulate the characteristics of the developing cortex in the human brain in
vivo. Immunofluorescent double labelling showed dense layers of radially arranged columns
of PAX6-positive cells around a lumen resembling the neural tube, or a ventricle with PAX6-
positive cells bordering the lumen, which were also expressing human neural cell adhesion
molecule (hNNCAM), a marker of exclusively human neural cells. PAX6 is a marker for neural
progenitor cells of the ventricular zone of the developing cerebral cortex. Double labelling for
DCX/hNCAM revealed an outer layer of post-mitotic neurons that also expressed other
markers for neurons, including CTIP2 characteristic of corticofugal neurons. The organoid
structures remained largely self-contained, however, with few grafted cells or axons integrating
with the surrounding host tissue. Host cells also penetrated the grafts — principally blood
vessels, microglia and astrocytes, but also a few neurons. Three months post-grafting, the

organoid structures had broken down and grafted cells had largely disappeared.

As discussed in Chapter Five, the most prominent result was the formation of cerebral
organoids within the mature cerebral cortex but not in vitro. These organoids have previously
been generated in vitro (Qian et al., 2016, Mason and Price, 2016, Lancaster et al., 2013),

suggesting that some factors are produced in the host brain that induce this behaviour.

To conclude, we were able to provide reproducible PIS model by injecting ET- intracerebrally
into the SMC of P12 rat neonates. Then, we were able to produce for the first time structures
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which are “cerebral organoids like” that was formed after injecting hNSCs suspended in 3D
hydrogel into the resulted ischemic infarction in the SMC. Furthermore, the stem cell

intervention we applied, enhanced neurogenesis, neovascularization, and integration by
invading the cortical infarction in the host brain (Figure 6.1).
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6.3 Moving toward clinical trials

A recent review indicated the promising nature of stem cell therapy, as shown in neonatal
experimental studies, and highlighted its application in clinical settings (Wagenaar et al., 2017).
In our study, we utilized human neural stem cells derived from induced pluripotent stem cells
that were suspended in semi-synthetic extracellular matrix (hNSCs-ECM) and injected
intracerebrally into P14 PIS rat model. The source of the induced pluripotent stem cells was
umbilical cord blood cells; this has been shown to be a safe and feasible stem cell source for
treating human neonates (Sun et al., 2015, Cotten et al., 2014). The umbilical cord blood
derived cells have been reported to be safe for clinical use, unlike other NSC sources. For
example, NSCs derived from embryonic cells resulted in teratoma formation (Elkabetz et al.,
2008, Blum et al., 2009). Also, there are no ethical conflicts with using umbilical cord blood
derived cells in the clinic. Moreover, there is a non-invasive collection protocol that could be
autologous (Singh and Kashyap, 2016). These advantages have allowed umbilical cord blood
derived cells to reach Phase 1 clinical trials for PIS (ClinicalTrials.gov Identifier
NCT01700166) and neonatal encephalopathy (ClinicalTrials.gov Identifier NCT01506258)
(Basu, 2014).

ECM has long been used in vivo in other fields, such as a filler in dermatology clinics
(Zarembinski et al., 2011). Our study showed that grafted ECM causes no adverse reactions in
animals that receive only ECM. We believe that ECM helps the grafted cells organise
themselves in particular pattern, forming the in vivo cerebral organoids. Indeed future
optimization to enhance the survival of these organoids in vivo and to help them continue

differentiate into cortical neurons.

It is unpredictable how NSCs/ECM will integrate to the host cortex or establish connections to
the ascending pathways in the long term. Myelination of the new generated neurons post
grafting will be another challenge. However, a recent study has shown that applying
ontogenetic electrical stimulation on the premotor cortex in awake mice results in adaptive
myelination for neurons through promoting the local oligodendrogenesis (Gibson et al., 2014).
Thus, preclinical trails combining our method with other therapeutic methods such as the
electrical stimulation are needed to enhance the long term differentiation and integration

abilities of the NSCs/ECM in vivo before reaching clinic trails.
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6.4 Limitations and future work

The MCAO model of PIS has some weaknesses compared with the ET-1 model. Firstly, the
degree of brain injury is fixed and cannot be increased or decreased in this model. Secondly,
MCAO mainly lesions the bfSSC, while it is the SMC region responsible for limb movement
is a more clinically relevant target. Thirdly, at P12, the cerebral arteries are small and the brain

tissue beneath the occluded MCA can be easily burned by the tip of the electroligation device.

All these limitations are overcome in the ET-1 model. However, the ET-1 model has high
variability in infarction volume, even with the use of a precise injection protocol. This
variability can be reduced by using laser Doppler flowmetry to verify cerebral ischemia during
ET-1 infusion.

In both the MCAO and ET-1 models, the underlying brain tissue can be injured mechanically
by the craniotomy. We knew that this could be avoided by performing small intracortical
injections (Windle et al., 2006), yet the use of a drill or even the tip of a needle to form holes
in the skull could press the underlying brain tissue underneath due to the soft skull bone of rat
neonates at P12. Thus, we performed the craniectomy with care rather than making skull holes

for the intracortical injections.

The advantages of using ET-1 intracerebral injection at P12 to model PIS include the simple
procedure, the focal localization of ISMC lesion and 100% long-term survival rate, enabling
neuropathological examination in the chronic stage. However, we were not able to determine
whether the non-significant behavioural deficits reflect a poor choice of behavioural tests or
nervous system plasticity. The type of behavioural assessments used after lesioning might be
not sensitive enough for our model (Zhang et al., 2002, Clowry et al., 2014), although they
have been found to be sensitive for use in adult stroke models (Stroemer et al., 1995, Schallert
et al., 2000). Also, the number of animals analysed after injecting the retrograde tracer was
very low. This was due to the difficulty of avoiding spread of tracer across the spinal cord
midline during injection, which resulted in the exclusion of many animals from the assessment
of corticospinal cell count. Thus, more sensitive behavioural tests need to be developed, or

electrophysiological assessment must be used for future work.
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The generation of neurons in the last cortical layer in the in vitro cerebral organoids has been
shown to peak at day 60 from the start of differentiation (Qian et al., 2016). Thus, we
recommend adding more time points for immunohistochemistry (IHC) with shorter intervals.
For example, further investigation about the cell phenotype within the resultant cerebral
organoids can also be done by using additional cellular markers, such as a marker for cortical
neurons that are differentiating from the neural progenitor (TBR1) (Zhu et al., 2016), as well
as the upper-layer cortical neuron marker SATB2, which localises close to the pial surface of
the generated in vitro cerebral organoids (Qian et al., 2016).

Furthermore, more advanced assessment methods, such as Magnetic resonance imaging (MRI),
are recommended in order to study the pathology occurring after ET-1 injection and the
formation of cerebral organoids after transplantation of the NSCs-ECM complex. In our study,

utilizing such equipment was beyond the research budget.

It was disappointing that the resulting in vivo organoids disappeared by the time the rats reached
3 months of age. Undoubtedly, the hydrogel used should be modified to further support the
long-term survival of the grafted cells. In addition, it may be necessary in future experiments
to maintain the survival of the grafts by providing immunosuppression. Although there are no
FDA-approved hydrogels for stem cell therapy, the hydrogel we used, HyStem-C, is one of the
matrices that can be used for clinical applications (Zarembinski et al., 2011).

ECM has long been used in vivo in other fields, such as a filler in dermatology clinics
(Zarembinski et al., 2011). Our study showed that grafted ECM causes no adverse reactions in
animals that receive only ECM. We believe that ECM helps the grafted cells organise
themselves in particular pattern, forming the in vivo cerebral organoids. In our future studies,
we need to optimize a protocol for ECM to enhance the survival of these organoids in vivo and
to help them continue differentiate into cortical neurons.

Also in our future studies, we will combine additional factors that can enhance neuronal
integration with the host neighbor tissue. It is unpredictable how NSCs/ECM will integrate to
the host cortex or establish connections to the ascending pathways in the long term.
Myelination of the new generated neurons post grafting will be another challenge. However, a
recent study has shown that applying ontogenetic electrical stimulation on the premotor cortex

in awake mice results in adaptive myelination for neurons through promoting local
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oligodendrogenesis (Gibson et al., 2014). Thus, preclinical trails combining our method with
other therapeutic methods such as electrical stimulation are needed to enhance the long term

differentiation and integration abilities of the NSCs/ECM in vivo before reaching clinic trails.

Finally, the success of generating a 3D construction of cerebral organoids that somewhat
mimics the developing brain in the neonatal ischemic brain model in vivo is significant. It is
the first step toward a new prospective stem cell therapy that is initiated by forming two main
cortical layers of the developing brain. Further improvements to our protocol that will ensure
long-term cellular survival, followed by integration of the neurons into the host circuitry
including extension of axons to sub-cortical targets; outcomes that are needed in order to move

toward clinical application.
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