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Abstract 

Mitochondrial diseases due to mutations in the nuclear Polymerase gamma (POLG) 

gene, have emerged as a common group of disorders, collectively referred to as 

POLG-related disorders. 

POLG is responsible for mitochondrial DNA (mtDNA) replication and repair. Defects 

in POLG result in secondary mtDNA defects including mtDNA depletion and 

deletions, which result in respiratory chain deficiency in affected tissues. 

POLG-related disorders are characterised by phenotypic diversity with common 

neurological deficits such as epilepsy, which constitutes its predominant 

manifestation. Alpers’ syndrome is a severe form of POLG-related disorders and it is 

a rare, early-onset, progressive encephalohepatopathy characterised by: intractable 

seizures, developmental delay, ataxia, visual loss and liver dysfunction. It is 

particularly devastating as effective treatments do not currently exist, and little is 

known about its molecular pathophysiology downstream from POLG mutations. 

The aim of this work was to gain further insight into the pathogenesis of Alpers, 

through the characterisation of mitochondrial dysfunction in POLG-mutant fibroblasts, 

and neuropathological investigation of post-mortem brain tissue from affected 

patients. 

Fibroblast characterisation using quantitative methodologies, revealed no evidence of 

mitochondrial dysfunction in primary POLG-mutant fibroblasts derived from patients 

with Alpers. 

Neuropathological assessment of three cortical regions revealed extensive 

respiratory chain deficiencies in interneurons and to a lesser extent pyramidal 

neurons in patients with Alpers, which was associated with severe pyramidal neuron 

loss. A variable degree of astrogliosis, was also observed. Additionally, mtDNA 

depletion was found in tissue from adult patients with POLG-mutations as well as 

occasional mtDNA deletions.  

This study provides evidence that POLG mutations exert a tissue-specific effect in 

Alpers. Mitochondrial respiratory chain deficiencies in interneurons and pyramidal 

neurons, combined with extensive pyramidal neuron loss may result in altered 

neuronal dynamics and contribute to the underlying neuropathology and clinical 

manifestations of Alpers. 
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Chapter 1 Introduction 

1.1 Mitochondria 

 The Mitochondrion: A Brief Introduction 

Mitochondria are dynamic, intracellular organelles, present in the cytoplasm of all 

nucleated cells. Mitochondria are highly abundant in eukaryotic cells, comprising of 

approximately 20% of the total cell volume, (Martin and Mentel, 2010) highlighting 

their biological importance. Their major role involves energy production in the form of 

adenosine triphosphate (ATP), through the process of Oxidative Phosphorylation 

(OXPHOS). It is estimated that approximately 90% of cellular energy requirements 

are met by OXPHOS (Herrera et al., 2015). In addition to their role in energy 

production, mitochondria are major regulators of: apoptosis (Orrenius, 2004), iron-

sulphur (Fe-S) biogenesis (Rouault, 2012), production of Reactive Oxygen Species 

(ROS) (Sena and Chandel, 2012) and calcium handling (Rizzuto et al., 2012).  

Various theories exist regarding mitochondrial evolution, however these remain 

controversial. The ‘endosymbiosis theory’ is the most widely accepted theory of 

mitochondrial evolution and states that mitochondria have evolved from an alpha 

eubacterial ancestor, which originated from an Archaebacterium. This alpha 

proteobacterium, became engulfed by a host cell through a process known as 

‘endosymbiosis’; and eventually became a mitochondrion (Margulis, 1975).  

Alternatively, more recent evidence proposes that mitochondria have evolved after 

an endosymbiotic relationship between a Eubacterium, which produced hydrogen as 

a waste product and a hydrogen-dependent Archaebacterium. This theory is known 

as the ‘hydrogen hypothesis’ (Martin and Muller, 1998).  

The first association between mitochondria and cellular respiration was established in 

1953 (Lazarow and Cooperstein, 1953).  

 Mitochondrial Structure 

Mitochondria are dynamic, double-membraned organelles, typically oval or rod-like in 

shape. Mitochondria are 1-4µm in length and 0.3-0.7µm in diameter, as revealed by 

electron microscopy (EM) (Palade, 1953). Mitochondria comprise: a permeable outer 

membrane (OMM), the intermembrane space (IMS), the matrix and a selectively 
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permeable inner membrane (IMM); all of which exert specialised functions. A 

simplified structure of the mitochondria is illustrated in Figure 1.1.  

The OMM is a phospholipid bilayer which resembles the composition of a eukaryotic 

cell’s cytoplasmic membrane. The OMM allows diffusion of lipid soluble molecules 

into the IMS. In addition, the OMM has a high abundance of proteins known as 

‘porins’ or voltage-dependent anion channels (VDAC) which enable transfer of 

proteins under 5kDa to the IMS (Lemasters and Holmuhamedov, 2006).  

The IMS refers to the space between the OMM and the IMM. This space resembles 

the environment of the cytoplasm; however, this is highly specific to large proteins 

required for mitochondrial function. The IMS is pivotal as it is the site where protons 

are pumped from the Electron Transport Chain (ETC) to maintain the membrane 

potential and generate the proton gradient required for ATP synthesis.  

The IMM surrounds the mitochondrial matrix and is highly abundant in proteins 

including cardiolipin, which are required for the biochemical processes occurring in 

the organelle (Mitochondrial Dysfunction in Neurodegenerative Disorders, 2016). 

Consequently, the IMM is impermeable to polar molecules and anions compared to 

the permeable nature of OMM. The deep invaginations of the IMM give rise to highly 

folded structures (known as cristae) that project to surround the mitochondrial matrix 

(Palade, 1953). This is the site where both the mitochondrial DNA (mtDNA) and RNA 

lie and are attached to the IMM. The matrix is also the site where the Citric Acid 

Cycle (TCA) takes place during aerobic respiration. The presence of cristae 

increases the surface area over which OXPHOS and proton gradient maintenance 

occur; therefore, cristae morphology reflects the energy demands of the cell 

(Gautheron, 1984).  
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Figure 1.1: Mitochondrial structure.  A typical oval-shaped mitochondrion comprising of a double 
membrane (OMM and IMM) which is spaced by the inter-membrane space (IMS). The inner 
membrane (IMM) forms cristae (highly folded) which encloses the mitochondrial matrix which contains 
mitochondrial nucleoids. Key: OMM=outer mitochondrial membrane; IMM=inner mitochondrial 
membrane; IMS=intermembrane space. 

 Mitochondrial Biogenesis 

Mitochondrial number varies amongst tissues and they can increase their number 

and size to meet ATP requirements. The process through which mitochondria are 

generated from pre-existing mitochondria is known as ‘biogenesis’. Mitochondrial 

biogenesis is tightly controlled by the Peroxisome Proliferator-Activated Receptor γ, 

Coactivator 1 α (PGC1-α) (Jornayvaz and Shulman, 2010). In vivo experiments have 

shown that PGC1-α expression results in the increased expression of key 

mitochondrial proteins (Puigserver et al., 1998), which is also regulated by AMPK 

(AMP-Activated Protein Kinase). AMPK plays an important role as an energy sensor 

within the cell. Decreased AMPK activity with increasing age has been reported; 

suggesting reduced mitochondrial biogenesis with ageing (Reznick et al., 2007). 

Understanding the mechanisms regulating mitochondrial biogenesis may provide 

insight into the process of ageing and ageing-associated disease.  

 Mitochondrial Dynamics 

Mitochondria are highly dynamic organelles which frequently change shape and 

move around the cell to meet energy requirements. Mitochondria constantly undergo 

fission and fusion forming elongated tubular networks (Bereiter-Hahn, 1990; Huang 
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et al., 2011). Fission and fusion are two opposite processes that allow content 

exchange between mitochondria to maintain their size/number and location. 

Mitochondrial dynamics influence mtDNA stability and respiratory function and are 

vital for cell survival (Chan, 2012).  

Fission involves the division of a single mitochondrion into two mitochondria. This 

occurs under stress, when cellular ATP demand is increased. Fission and 

mitochondrial DNA (mtDNA) replication are synchronised so that both daughter 

mitochondria receive sufficient mtDNA copies. Key regulators of mitochondrial fission 

are Dynamin Related Protein 1 (Drp1) (Bleazard et al., 1999) and Endophilin B1 

(Karbowski et al., 2004).  

Mitochondrial fusion involves the integration of two or more mitochondria into a single 

mitochondrion. This assimilation results in the formation of a long interconnected 

network. Fusion is a multi-step process involving the fusion of the outer and inner 

mitochondrial membranes. Fusion of the outer membranes, is regulated by Mitofusin 

(Mfn) 1 and 2 (Chen et al., 2003a), whereas fusion of the inner membranes is 

controlled by Optic Atrophy 1 (OPA1) (Cipolat et al., 2004).  

Defects in mitochondrial dynamics have been associated with neurodegenerative 

diseases. For example, mutations in the fusion protein OPA1 are associated with 

autosomal dominant optic atrophy (Alexander et al., 2000), while mutations in Mfn2 

are the underlying genetic defect in Charcot-Marie-Tooth Type 2A (CMT2A); a 

hereditary motor and sensory neuropathy (Zuchner et al., 2004; Feely et al., 2011). 

Moreover, defects in mitochondrial dynamics have been linked to early disease 

stages in Alzheimer’s disease (AD) and Parkinson’s disease (PD) (Zhu et al., 2013; 

Bose and Beal, 2016). However, the relationship between neurodegenerative 

diseases and altered mitochondrial dynamics has not yet been elucidated.  

 Neuronal Mitochondria 

Neurons are polarized cells with very limited glycolytic capacity, therefore relying on 

OXPHOS for ATP production (Zsurka and Kunz, 2015). Neurons comprise a cell 

soma in one extremity and a pre-synaptic bouton at the other extremity, 

interconnected by a thin, long axon. The energy requirements vary between different 

neuronal regions, depending on their function. Evidence has shown that synaptic 

transmission is the highest energy consumption process (Harris et al., 2012).  
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Specialised machinery is essential to distribute mitochondria to distal regions, where 

the ATP requirements are high. Neuronal mitochondria are generated in the cell 

soma and are highly motile; travelling along the axon to meet variable ATP 

requirements (Sheng and Cai, 2012). 

Mitochondrial trafficking occurs through anterograde and retrograde motor protein-

assisted transport (Sheng and Cai, 2012). Anterograde movement involves the 

axonal movement of mitochondria from the cell soma towards the synaptic terminals 

via kinesin motors. Retrograde movement is facilitated by dynein motors and the 

process is described as mitochondrial transport from the axon back to the cell body in 

order to be degraded and recycled through mitophagy (Sheng, 2014).  

Efficient mitochondrial trafficking is vital not only for the recruitment and redistribution 

of mitochondria to sites of high ATP demand but also for the removal of depolarised 

mitochondria and their replacement with healthy mitochondria. Disruption of 

mitochondrial trafficking results in ATP depletion within neurons, insufficient 

mitochondrial recycling and altered Ca2+ buffering; all of which contribute to loss of 

synaptic transmission. Such defects have been associated with neurodegenerative 

disorders including AD, PD, Huntington’s disease and Amyotrophic Lateral Sclerosis 

(ALS) (Sheng and Cai, 2012).  

1.2 Oxidative Phosphorylation (OXPHOS) 

The most fundamental and, arguably, well-known role of mitochondria is ATP 

production via oxidative phosphorylation (OXPHOS). This involves the aerobic 

synthesis of ATP from ADP and inorganic phosphate during oxidation of NADH. The 

number of mitochondria per cell depends on the energy demand of the tissue.  

The OXPHOS machinery consists of five, multi-subunit enzyme complexes which are 

embedded in the IMM. These include: NADH: ubiquinone oxidoreductase (complex 

I), succinate: ubiquinone oxidoreductase (complex II), ubiquinol: cytochrome c 

oxidoreductase (complex III) and cytochrome c oxidase (complex IV). Complexes I-IV 

comprise the ETC and involve the transfer of electrons and reduction of water 

resulting in the generation of a proton gradient across the IMM. The proton gradient 

is then used by a fifth complex, F0 F1 ATP synthase (complex V) to drive ATP 

synthesis (Mitchell, 1961). As a result, 34 molecules of ATP are produced. The basic 

components of the OXPHOS machinery are illustrated in Figure 1.2. 
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Cellular respiration is initiated by the process of glycolysis, a form of anaerobic 

respiration, which occurs in the cytoplasm of eukaryotic cells. The process involves 

the breakdown of one glucose molecule into two pyruvate molecules. During 

glycolysis a number of intermediate substrates are generated resulting in the 

production of two ATP molecules. Although only two ATP molecules are produced 

through anaerobic respiration, these are generated 100 times faster than the ATP 

molecules produced by OXPHOS (Pfeiffer et al., 2001).  

The pyruvate molecules produced by glycolysis are then transported to the 

mitochondrial matrix where pyruvate decarboxylation takes place, generating Acetyl 

CoA, which then enters the TCA cycle with NAD+ and FADH substrates. Both NAD+ 

and FADH are reduced into NADH and FADH2, while Acetyl Co A is oxidised into 

Carbon Dioxide (CO2). Electrons from the reduced substrates are passed through 

complexes I and II, causing the reduction of ubiquinone (Q) to ubiquinol (QH2). 

Ubiquinol delivers the electrons to complex III where QH2 is oxidised to Q, causing 

the reduction of the electron carrier cytochrome c. The electrons are then passed 

from cytochrome c to complex IV leading to cytochrome c oxidation and reduction of 

½ O2 molecule to H2O. The transfer of electrons through the ETC results in the 

generation of protons. The latter are pumped from the matrix into the IMS, generating 

the electrochemical gradient used by complex V for ATP production (Lodish et al., 

2000). 
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Figure 1.2: The OXPHOS system. The five complexes of the OXPHOS system are located within the 
IMM and undergo a series of redox reactions. Electrons enter the OXPHOS machinery at complexes I 
and II and are passed to complex III through reduction of ubiquinone (Q) to ubiquinol (QH2). At 
complex III QH2 is re-oxidised to Q and the electrons generated are passed to complex IV via 
cytochrome c (cyt c). The proton gradient resulting from the transfer of electrons through complexes I, 
III and IV leads to proton pumping into the matrix. An electrochemical gradient is then generated which 
is used by Complex V for ATP synthesis. NADH: ubiquinone oxidoreductase. Image taken from 
(Nijtmans et al., 2004). 

 Complex I: ubiquinone oxidoreductase 

Mammalian Complex I NADH ubiquinone oxidoreductase mediates oxidation of 

NADH to NAD+. Two electrons are generated and passed to Q, reducing it to QH2, 

prior to oxidation by complex III. As electrons are passed, translocation of four 

hydrogen ions occurs across the IMM into the IMS, creating an electrochemical 

gradient, which is the motive-force driving ATP production by complex V. 

Complex I is the largest complex of the OXPHOS machinery with a molecular weight 

of approximately 1MDa. It exists in an L-shaped configuration with one arm 

embedded in the IMM and the other arm projecting into the mitochondrial matrix (see 

Figures 1.2 and 1.3). It consists of 44 protein subunits, from which one, NFUFAB1 is 

present as a dimer. Seven structural subunits are encoded by the mitochondrial DNA 

(mtDNA), while the remaining 37 subunits are nuclear-encoded (nDNA).  

Complex I is required for oxidation of NADH, reduction of ubiquinone and proton 

pumping. It consists of three functional modules including Q, proximal P (a)/(b), distal 

P (a)/(b) and N, resulting from the assembly of all 45 subunits, which exert different 

functions (Guerrero-Castillo et al., 2017). The N module is the site where NADH 

oxidation takes place. The N module harbours a Flavin Mononucleotide (FMN) which 
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is an electron acceptor binding to the flavoprotein NDUFV1 during NADH oxidation. 

Once FMN is reduced, the electrons are passed through Fe-S clusters in the N and 

Q modules. The Q module is the site where electron transfer to ubiquinone occurs. 

The P module is responsible for proton pumping. The structure of complex I and its 

three functional subunits are illustrated in Figure 1.3.  

 

Figure 1.3: Structure of mammalian complex I. It consists of three conserved functional modules 
(N, Q and P). The N module is required for NADH oxidation. The Q module is the site of electron 
transfer and P is the proton pumping module. Both N and Q modules project to the matrix while the P 
module is situated within the inner mitochondrial membrane. Figure modified from (Mimaki et al., 
2012). 

The catalytic ‘core’ of complex I comprises14 protein subunits. Seven protein 

subunits are encoded by the mtDNA including: ND1, ND2, ND3, ND4, ND4L, ND5 

and ND6 and the remaining subunits are encoded by nDNA (NDUFV1, NDUFV2, 

NDUFS1, NDUFS2, NDUFS3, NDUFS7 and NDUFS8) (Ugalde et al., 2004; Formosa 

et al., 2017). The remaining subunits are ‘accessory’ and there is evidence 

suggesting a role in the regulation of the assembly and stabilisation of complex I 

(Andrews et al., 2013).  

The biogenesis of complex I requires at least 11 assembly factors. (Formosa et al., 

2017; Guerrero-Castillo et al., 2017). The assembly of complex I occurs in a step-

wise fashion. The assembly of protein subunits (including mtDNA and nDNA-

encoded) is a coordinated process, where the assembly factors are required for 

maturation (Formosa et al., 2017; Guerrero-Castillo et al., 2017). The Q module is the 

first to be assembled and consists of two ‘core’ subunits (NDUFS2, NDUFS3). The 
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‘accessory’ subunits NDUFA5 and NDUFS7, NDUFA5 NDUFS7 and NDUFS8 

(Guerrero-Castillo et al., 2017).  

Following the Q module assembly, and Q/P (a) assembly starts, assisted by the 

assembly factors followed by the addition of the mtDNA-encoded ND1 subunit. 

Subsequently, NDUFA13, NDUFA8 and NDUFA3, NDUFA9 and NDUFA1 are 

incorporated (Guerrero-Castillo et al., 2017).  

The remaining subunits comprising the proximal P (b) and distal P (a)/(b) modules 

form independently. NDUFC1, NDUFC2 and ND2 form first mediated by the 

assembly factors NDUFAF1, ECSIT, ACAD9 and COA1. This is followed by 

incorporation of ND3, ND6 and ND4L, resulting in the formation of proximal P (b).  

The distal P (a) starts forming by the incorporation of NDUFB5, NDUFB10, NDUFB11 

and NDUFB6. AT5SL is thought to modulate early stages of the distal P (a) 

formation, although its exact function remains unknown (Guerrero-Castillo et al., 

2017).  

The formation of the distal P (b) module involves the incorporation of the following 

subunits: NDUFB2, NDUFB3, NDUFB8, NDUFB9, NDUFAB1 and ND5.  

The N-module is added to the Q-P sub-complex. The incorporation of subunits 

NDUFS1, NDUFA2, NDUFV1, NDUFV2, NDUFV3, NDUFA12, NDUFS4, NDUFA6, 

NDUFA7 and NDUFAB1 occurs. Maturation of complex I requires the dissociation of 

the assembly factors from the intermediate complexes (Formosa et al., 2017). The 

assembly of complex I is illustrated in Figure 1.4.  

Defects in complex I protein subunits are the most commonly reported abnormality in 

children with mitochondrial encephalopathies. A typical example of mitochondrial 

disease due to complex I deficiency is Leigh Syndrome (LS), which can be a result of 

defects in mtDNA and nDNA-encoded subunits or assembly factors (Koopman et al., 

2013). The large size of this complex involving several protein subunits requiring 

multiple factors for correct assembly may account for its vulnerability to deficiency 

states in mitochondrial disease (Darin et al., 2001).  
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Figure 1.4: Step-wise assembly of mitochondrial complex I.  Complex I consists of different modules 
which are assembled individually before formation of complex I and its association with complexes III 
and IV. The Q module involves incorporation of ND1. ND2 integrates with the Q module. ND4 and 
ND5 associate before they are integrated to Q/ND1/ND2 allowing the complete formation of the 
membrane arm of complex I. The integration of ND1 completes the assembly of complex I. The 
assembly factors required are indicated in red colour (Formosa et al., 2017). 

 Complex II: Succinate: ubiquinone oxidoreductase 

Complex II is required for the oxidation of succinate to fumarate during the Citric Acid 

Cycle (TCA). The electrons generated are then passed to Q which is reduced to QH2 

during OXPHOS (Cecchini, 2003). 

Complex II is the smallest complex of the OXPHOS system and consists of four 

protein subunits, including: SDHA, SDHB, SDHC and SDHD. All four subunits are 

encoded by nDNA. Hydrophilic SDHA and SDHB comprise the catalytic core of 

complex II, situated in the mitochondrial matrix. In contrast SDHC and SDHD are 

located in the IMM. Assembly of complex II is mediated by the SDHAF1 and SDHF2 

assembly factors (Rutter et al., 2010; Koopman et al., 2013). 

Complex II is characterised by the presence of three prosthetic groups including: 

FAD, iron-sulphur clusters (Fe-S) and haem. The [2Fe-2S] cluster is located at the N-

terminus, while the [4Fe-4S] and [3Fe-3S] clusters are linked to the C-terminus 

(Bezawork-Geleta et al.). The crystal structure of complex II is illustrated in Figure 

1.5.  

Complex II is required for the reduction of FAD+ to FADH2 through SDHA, which 

oxidises succinate to fumarate. SDHB then is used for the re-oxidation and of FADH2 

to FAD+ before electrons are passed from SDHC and SDHD to ubiquinone causing 
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its reduction to QH2 (Rutter et al., 2010). The passage of electrons through complex 

II is not involved in proton translocation (Cecchini, 2003). 

 

Figure 1.5: Crystal structure of complex II and the three prosthetic groups from porcine heart 
mitochondria. Illustration of SDH subunits including: SDHA (blue), SDHB (green), SDHC (light 
brown), SDHD (red). (B) Location of the three prosthetic groups in complex II. Image taken from 
(Bezawork-Geleta et al., 2017). 

 Complex III: Ubiquinol: cytochrome c oxidoreductase 

Complex III, ubiquinol:cytochrome c oxidoreductase exists as a homodimer and is 

responsible for the re-oxidation of QH2 .Complex III is approximately 500kDa and 

consists of 11 protein subunits, of which only one, cytochrome b, is mtDNA-encoded. 

Cytochrome b together with cytochrome c and the Rieske Fe-S cluster protein 

constitutes the catalytic core of complex III (Saraste, 1999).  

Following oxidation of QH2, two electrons are passed from complexes I and II to 

complex III. The electrons passing through complex III are donated to cytochrome c, 

in a two-step reaction. The first step involves the transfer of one electron to the Fe-S 

cluster, which then passes to cytochrome c through cytochrome c1. The second step 

involves the recycling of the other electron to Q via the Q-cycle. The Q-cycle involves 

the oxidation of two ubiquinol molecules causing the reduction of ubiquinone through 

the transfer of two electrons. During the Q cycle, two protons are pumped from the 

matrix across the IMM to the IMS (Mitchell, 1975). Cytochrome c, a mobile electron 

carrier, passes the electrons it accepts to complex IV (Iwata et al., 1998). The dimeric 

form of complex III in S. cerevisiae is illustrated in Figure 1.6.  
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Figure 1.6: Complex III in S. cerevisiae.  Individual monomer subunits are shown in the left. The 
dimeric form of complex III is shown on the right. Figure taken from (Smith et al., 2012).  

 Complex IV: Cytochrome c oxidase 

Complex IV is the terminal oxidase of the ETC and exists in a dimeric form. It is 

composed of 14 structural subunits; of which the three are the largest and are 

mtDNA-encoded (COXI, COXII and COXIII) and the remaining 10 are nuclear-

encoded. COXI is believed to have a major role in the assembly of complex I (Mick et 

al., 2011). Complex IV assembly is mediated by at least 18 assembly factors 

(Koopman et al., 2013). A schematic representation of complex IV is shown in Figure 

1.7. 

COXI and COXII constitute the catalytic ‘core’ containing haem α and α3 and two 

copper groups: CuA and CuB. Electrons are transferred through haem α and copper 

centres prior to the reduction of O2 to H2O. This process involves the translocation of 

four protons, resulting in a proton gradient, which is then used by complex V for ATP 

synthesis (Tsukihara et al., 1996).  
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Figure 1.7: Schematic representation of complex IV. The mtDNA-encoded COXI, COXII and 
COXIII are shown in the centre of the structure. Cytochrome c (labelled as Cyt c), which functions as 
an electron carrier is shown on the left (green circle). Complex IV receives electrons from cytochrome 
c to form water by the combination of molecular oxygen and hydrogen ions. Image modified from 
(Mandavilli et al., 2002).  

 Complex V: ATP Synthase 

Complex V, ATP synthase is a large complex consisting of multiple subunits. Two 

domains are encoded by the mtDNA including ATPases 6 and 8 (Anderson et al., 

1981). Complex V consists of two main subunits, both of which consist of numerous 

proteins: F0, which is embedded in the inner membrane and F1, the catalytic domain, 

located on the matrix side of the inner membrane. The structure of human complex V 

is illustrated in Figure 1.8. 

ATP synthase utilises the proton gradient generated from the transfer of electrons 

through the ETC (complexes I, II and IV). This electrochemical gradient is the force 

that drives protons to the F0 subunit of ATP synthase, causing it to rotate. The F1 

subunit rotates in the opposite direction, enabling ATP production from ADP and 

inorganic phosphate (Yoshida et al., 2001).  
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Figure 1.8: Human complex V. Complex V consists of two main subunits F0 and F1. F0 is composed 
of subunits c, a, b, d, F6 and OSCP and four accessory including e, f, g and A6L. F1 is comprised of 5 
subunits (α, β, γ, δ and ε). F1 uses the electrochemical gradient for generation of ATP from ADP. Key: 
OSCP=oligomycin-sensitivity conferring protein. Image taken from (Jonckheere et al., 2012). 

 Supercomplexes 

The organisation of the enzymes constituting the OPXHOS system has long been 

debated. One theory suggests that the complexes exist as individual ‘fluid-form’ 

structures within the IMM, allowing the passage of electrons between them. 

However, a more recent model proposes that the complexes exist in superorganised 

entities, known as supercomplexes or respirasomes (Acin-Perez et al., 2008). Blue-

native polyacrylamide gel electrophoresis (BN-PAGE) has resolved the presence of 

active supercomplexes (Schagger and Pfeiffer, 2000).  

Furthermore, electron microscopy (EM) studies have revealed defined interactions 

within the isolated supercomplexes (Schafer et al., 2006) which do not form when 

one component is absent (Acin-Perez et al., 2008). The stability of the large complex 

I is highly dependent on the interaction with complex III and IV (Schagger and 

Pfeiffer, 2000). Disruption of complex I and III is linked to oxidative stress and energy 

failure (Maranzana et al., 2013).  
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1.3 Other Mitochondrial Functions 

 Apoptosis and Cell Death Mechanisms 

Mitochondria have been associated with various cell death mechanisms including 

apoptosis, necrosis and autophagy. Mitochondrial function is crucial in all three 

pathways and plays a major role in neurodegenerative disease (Mitochondrial 

Dysfunction in Neurodegenerative Disorders, 2016).  

Apoptosis refers to programmed cell death, which occurs naturally in multi-cellular 

organisms. It is a mechanism which ensures the survival of the organisms by 

elimination of damaged cells. Apoptosis involves morphological changes including: 

cell shrinkage, blebbing of the cell membrane, nuclear fragmentation and chromatin 

condensation (Mitochondrial Dysfunction in Neurodegenerative Disorders, 2016).  

In mammalian cells, mitochondria are key players in two apoptotic pathways: the 

intrinsic pathway and the extrinsic pathway. The intrinsic pathway is highly regulated 

by proteins from the Bcl-2 family; enabling the release of pro-apoptotic factors from 

the IMS (Pradelli et al., 2010).  

Regulation of the extrinsic pathway is mediated by membrane-bound proteins of the 

tumour necrosis factor (TNF) receptor family including FAS and TNFR1. Once bound, 

these receptors form a signalling complex, which results in activation of caspase-8. 

Apoptosis is then driven by a cascade of protein interactions. These involve effector 

proteins of the Bcl-2 family, BAX and BK, resulting in the permeabilisation of the 

OMM and the release of cytochrome c from the IMS (Pradelli et al., 2010; 

Mitochondrial Dysfunction in Neurodegenerative Disorders, 2016).  

Necrosis is a form of premature cell death, which occurs in response to trauma or 

ischemia. Necrotic features include: cell swelling, disruption of cell membranes and 

ATP depletion. (Mitochondrial Dysfunction in Neurodegenerative Disorders, 2016).  

Autophagy is the least characterised form of cell death. It involves the delivery of 

cytoplasmic components to lysosomes for their degradation. To date, the autophagic 

pathway has not been completely understood, however cells that are lost via 

autophagy reveal autophagosome accumulation. Evidence suggests that the 

sodium/potassium ATPase pump facilitates autophagic cell death. A special form of 

autophagy exists, mitophagy, the process through which unwanted or dysfunctional 

mitochondria are degraded. Mitophagy is mediated via the Pink1-Parkin signalling 

cascade (Jin and Youle, 2012; Liu and Levine, 2015).  
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 Iron-Sulphur (Fe-S ) Cluster Biogenesis 

Iron-Sulphur (Fe-S) clusters are vital for the regulation of gene expression, DNA 

repair and enzyme catalysis. There are 12 different Fe-S clusters present in the ETC, 

which are crucial for OXPHOS as they function as electron donors and acceptors 

within complexes I, II and III (Wang and Pantopoulos, 2011). The process of Fe-S 

assembly is complex and requires multiple events. The first step involves the 

conversion of cysteine to alanine causing the release of sulphur by the cysteine 

desulphurase complex Nfs1-Isd11 (Lill et al., 2012). Reduction of sulphur (S) occurs 

from the transfer of electrons from NADH, catalysed by ferredoxin reductase. Iron 

(Fe), provided by frataxin is then imported to the mitochondria via mitoferrin, a 

mitochondrial solute carrier protein (Paradkar et al., 2009). Once Fe is transported to 

the IMM, the scaffold mitochondrial proteins IscU and Nfu mediate the assembly of 

Fe-S clusters (Tong et al., 2003; Mitochondrial Dysfunction in Neurodegenerative 

Disorders, 2016). 

 Production of Reactive Oxygen Species (ROS) 

The process of OXPHOS is a major source of reactive oxygen species (ROS) in the 

cell (Chen et al., 2003b). ROS are generated through the action of complexes I and 

III. In brief, electrons that leak from complexes I and III react with oxygen forming 

superoxide which can then bind to cells and disrupt important functions (Chen et al., 

2003b). ROS is released from complex I across the IMM to the matrix, whereas 

release of ROS from complex III is bi-directional, involving release across the IMM to 

the matrix and the IMS (Muller et al., 2004). The increased production of ROS can 

damage mtDNA, which is in close proximity to the ETC, where the free radicals are 

formed.  

Mitochondrial dysfunction and increased production of ROS have been linked to 

neurodegenerative disease and ageing (Loeb et al., 2005). The excessive production 

of ROS may lead to reaction with other molecules such as proteins, DNA and lipids, 

causing oxidative stress. The high metabolic activity of neurons makes them very 

susceptible to oxidative stress due to the deleterious effects of ROS (Mitochondrial 

Dysfunction in Neurodegenerative Disorders, 2016) and increase in ROS in 

conjunction with dysfunction of other important mitochondrial pathways, are believed 

to cause neuronal dysfunction and neuronal death (Zsurka and Kunz, 2015).  
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 Calcium signalling 

Mitochondria play a key role in the maintenance of calcium homeostasis. Intracellular 

calcium (Ca2+) uptake into the mitochondrial matrix is mediated via a membrane 

potential-driven carrier, the mitochondrial calcium uniporter (MCU) (Deluca and 

Engstrom, 1961). Ca2+ first enters the mitochondria through the OMM via the VDAC 

pore and is then imported into the mitochondrial matrix via MCU (Kirichok et al., 

2004).  

Ca2+ homeostasis is particularly important for maintaining normal neuronal function. 

Ca2+ buffering is critical to neuronal polarity, axon differentiation, neurotransmitter 

vesicle release and mitochondrial transport (Mattson and Partin, 1999; Macaskill et 

al., 2009; Mitochondrial Dysfunction in Neurodegenerative Disorders, 2016). 

Research has shown that Ca2+ buffering has a principal role in the modulation of 

neuronal excitability and synaptic transmission (Pan et al., 2013; Zsurka and Kunz, 

2015). Therefore, mitochondrial dysfunction may contribute to altered Ca2+ dynamics 

within neurons.  

1.4 The Mitochondrial Genome 

Mitochondria contain their own genome, known as mitochondrial DNA (mtDNA). In 

humans, mitochondrial DNA (mtDNA) exists as a 16.6kb double-stranded, circular, 

supercoiled molecule which accounts for 1% of total cellular DNA (Mitochondrial 

Dysfunction in Neurodegenerative Disorders, 2016). The mitochondrial genome was 

firstly sequenced in 1981 (Anderson et al., 1981), followed by a revision in 1999 

(Andrews et al., 1999). MtDNA resides in the mitochondrial matrix and consists of a 

guanine-rich heavy (H) strand and a cytosine-rich light (L) strand incorporating 37 

genes. These genes encode 13 polypetides required for OXPHOS, 22 tRNAs and 2 

rRNAs (12S and 16S) absolutely essential for mtDNA translation (Anderson et al., 

1981). A schematic diagram of the mitochondrial genome is illustrated in Figure 1.9.  

ND6 and the mitochondrial tRNA genes (MTTs) are transcribed from the L-strand 

(Anderson et al., 1981). The remaining 1,500 proteins required for mitochondria 

metabolism are synthesised in the cytosol and are imported into the mitochondria via 

specialised mechanisms including translocators of the inner and outer membranes 

(TIM and TOM) (Tuppen et al., 2010; Calvo et al., 2016).  

The mitochondrial genome is characterised by unique features, making it 

distinguishable from the nuclear genome. It lacks introns and contains only one non-
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coding region, a 1.1kb triple-strand displacement loop (D-loop). The D-loop 

incorporates promoters for transcription and is the site for heavy strand replication 

(Shadel and Clayton, 1997). These features account for the compactness of the 

mtDNA molecule. The close proximity of mtDNA to the OXPHOS machinery, makes it 

particularly susceptible to oxidative damage, accounting for its high mutation 

frequency compared to nDNA (Brown et al., 1979; Tuppen et al., 2010).  

MtDNA molecules are believed to be ‘naked’ and are packaged into stable protein-

DNA macromolecules, known as nucleoids which contain multiple mtDNA copies (6-

10) (Iborra et al., 2004). Nucleoids are associated with other proteins essential for 

mtDNA replication. These include mitochondrial single-stranded binding protein (mt-

SSB), the mitochondrial transcription factor A (TFAM) and the mitochondrial DNA 

Polymerase Gamma (POLG) (Holt et al., 2007).  

In addition, mtDNA is strictly maternally inherited, with only one case of paternal 

mtDNA transmission being reported to date (Schwartz and Vissing, 2002).  

 

Figure 1.9: The mitochondrial genome.  The mitochondrial genome is a 16.6kb circular, double 
stranded molecule. The outer circle represents the heavy (H) strand and the inner circle illustrates the 
light (L) strand. The two strands have their own replication origins: OH on H-strand and OL on L-strand. 
The mitochondrial genome consists of 37 genes which encode: 22 tRNAs (black), 2 rRNAs (red) and 
13 polypeptides (genes encoding subunits of: complex I are green, complex III are magenta, complex 
IV are yellow and complex V are blue. In contrast to nDNA, mtDNA is devoid of introns and 
transcription produces a polycistronic mRNA. Image taken from (Greaves et al., 2012). 
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1.5 Mitochondrial DNA (mtDNA) Transcription and Translation 

MtDNA transcription is a multi-step process and is pivotal for ATP production given 

that downstream translation will enable synthesis of key peptide subunits of the 

OXPHOS system (see section 1.2). 

Transcription is initiated at two sites, both at the Light Strand Promoter (LSP) and at 

the Heavy Strand Promoter (HSP). Mitochondrial RNA Polymerase (POLRMT) binds 

specific sequences at the LSP and HSP after specific sequences are unmasked by 

binding of Mitochondrial Transcription Factor A (TFAM) to mtDNA and an additional 

factor is required, specifically Mitochondrial Transcription Factor B2 (TFM2B) for 

transcription to start (see Figure 1.10) reviewed in (Gustafsson et al., 2016). 

 

Figure 1.10: Current model of transcription initiation in mtDNA. It is proposed that 1) TFAM binds 
mtDNA and introduces a 180 degree bend, followed by 2) recruitment of POLRMT which binds both 
specific sequences in the mitochondrial DNA and TFAM, 3) changing conformation and 4) allowing 
assembly of TFB2M into the DNA/POLRMT/TFAM complex thus initiating transcription. Key: TFAM = 
mitochondrial transcription factor A; POLRMT =mitochondrial RNA polymerase; TFB2M=mitochondrial 
transcription factor B. Image taken from (Gustafsson et al., 2016).  

Once transcription has been initiated, elongation is maintained by the interaction of 

Mitochondrial Transcription Elongation Factor (TEFM) with the catalytic C-terminal of 

POLRMT until termination occurs and a full length polycistronic transcript is 

produced. The latter is processed to release individual RNA molecules (Gustafsson 

et al., 2016). 

Individual mRNAs are translated by the mitoribosomes, which consist of two 

subunits; a 28S small subunit (12S RNA and 33 proteins) and a large 39S subunit 

(16S RNA and 48 proteins). All proteins are nuclear-encoded (with the exception of 

two mtDNA-encoded rRNAs) and are imported into the matrix via specialised 

transporters (Anderson et al., 1981). 
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A more extensive review of the incompletely understood processes of mitochondrial 

transcription and translation can be found in (Dennerlein et al., 2017; Pearce et al., 

2017).  

1.6 Mitochondrial DNA (mtDNA) Replication 

Mitochondrial DNA is continuously turned-over, independently of the nDNA. 

Interestingly, mtDNA replication and the cell cycle do not overlap, a process known 

as ‘relaxed replication’ (Birky, 1994) (Chinnery and Samuels, 1999). The major 

components of the replication machinery are the catalytic subunit of DNA 

Polymerase Gamma (POLG), Twinkle (unwinds mtDNA), POLRMT (required for RNA 

primer synthesis for initiation of mtDNA replication) and mitochondrial single-stranded 

binding protein (mt-SSB). The mt-SSB binds, protects and stabilises ssDNA during 

the process of replication but also enhances Twinkle function. Evidence suggests 

that POLG, mt-SSB and Twinkle constitute the minimum machinery required for the 

full replication of mtDNA in vitro (Korhonen et al., 2004). However, in vivo replication 

of mtDNA is facilitated by the presence and activity of POLRMT, absolutely essential 

for the synthesis of the required RNA primers (Fuste et al., 2010).  

Currently, several theories exist regarding the mechanism of mtDNA replication; 

however, the proposed models are still a matter of debate. The first model of 

replication was proposed by Clayton and colleagues and is known as the ‘strand-

displacement’ model. In brief, this theory suggests that replication is initiated from the 

LSP within the D-loop. POLG then extends the RNA primers resulting in the 

replication of the full heavy strand. Once the POLG has replicated two-thirds of the 

heavy strand, the OL region is reached on the lagging strand, forming a loop that 

prevents mtSSB from binding. This loop structure allows copying of the L-strand in 

the opposite direction. Once both strands have been synthesised, these are 

covalently ligated through their 5’ and 3’ ends to form two circular daughter mtDNA 

molecules (Clayton, 1982). 

An alternative model known as the ‘strand-coupled’ model states that replication 

starts at the OH region located on the H strand within the D-loop and replication 

occurs in a clockwise manner. Replication of the L strand occurs in the opposite 

direction shortly after initiation of replication. Replication is bi-directional involving the 

leading and lagging strands; hallmarked by the presence of intermediate segments 

known as Okazaki fragments (Holt et al., 2000).  
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The latest model of replication proposed is the ‘RNA Incorporated Through the 

Lagging Strand’ (RITOLS) model. This model is similar to the ‘strand-displacement 

model’ however it states that ribonucleotides are incorporated into the lagging strand, 

during leading strand synthesis (Yang et al., 2002; Yasukawa et al., 2006). The 

models of mtDNA replication are illustrated in Figure 1.11. 

 

Figure 1.11: The three models of mammalian mtDNA replication. The strand-displacement model, 
(B) the RNA incorporated throughout the lagging strand (RITOLS) model and (C) the strand-coupled 
model. OH and OL are replication origins for the H-strand and the L-strand respectively for all models. 
The black arrows within the circular mtDNA molecules indicate the 5’-3’ direction of mtDNA synthesis. 
In the RITOLS model, the dashed-line arrows represent RNA long-stretches. Image taken from 
(McKinney and Oliveira, 2013).  

1.7 Mitochondrial Genetics 

 Maternal inheritance and Bottleneck 

The mitochondrial genome is strictly inherited by the maternal germline in mammals, 

in the form of nucleoids. To date, only one case of paternal inheritance has been 

reported in humans in which, a 28-year old man with myopathy was found to harbour 

a 2bp mtDNA deletion in the ND2 gene; inherited from the father (Schwartz and 

Vissing, 2002). As paternal inheritance has not been described in any other case, 

there is a consensus that paternal inheritance in humans is an extremely rare event.  

The paternal mtDNA is believed to be eliminated by species-specific mechanisms 

which may occur pre- or post-fertilisation. For example, in mammals, paternal mtDNA 

is destroyed by proteolytic degradation; while in flies it is eliminated during 
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spermatogenesis. Several theories have been proposed to explain uniparental 

inheritance of mtDNA. Maternal inheritance can be explained from the fact that the 

sperm contains only 100 copies of mtDNA compared to 100,000 mtDNA copies 

existing in the unfertilised oocyte. This is known as the ‘dilution effect’. Another 

theory states that paternal mtDNA is eliminated by ubiquitylation during mammalian 

zygote formation (Chinnery and Hudson, 2013).  

Thus, pathogenic mutations are transmitted through the maternal line to the offspring. 

However, the number of mutated mtDNA molecules that are transmitted to the 

children vary considerably due to the ‘genetic bottleneck’. This refers to a process 

where mtDNA is dramatically reduced during embryonic development leading to the 

offspring having different mutation loads (heteroplasmy) (Chinnery and Hudson, 

2013).  

 Heteroplasmy and Threshold Effect 

Cells contain multiple mitochondria, which contain thousands of copies of mtDNA 

molecules. Homoplasmy refers to a state in which all mtDNA molecules share the 

same genotype (i.e. all mtDNA molecules are either wild type or mutant), whilst 

heteroplasmy applies when mutant mtDNA co-exists with wild type DNA in cells, 

tissues and organisms (Larsson and Clayton, 1995). When present, heteroplasmy is 

expressed as the percentage of mutant mtDNA copies per cell or tissue (Taylor and 

Turnbull, 2005).  

Heteroplasmy has major implications in mitochondrial disease. Specifically, the levels 

of heteroplasmy within a cell may significantly determine the clinical phenotype 

expressed by the genetic defect. The levels of heteroplasmy within cells are 

regulated by random genetic drift via clonal expansion (Elson et al., 2001), which 

involves the selective expansion of the mutant mtDNA. As a result, increased levels 

of heteroplasmy are reached in post-mitotic tissues (Chinnery and Hudson, 2013). 

However, a specific threshold of mutation load exists; which dictates the clinical 

phenotype presentation and the biochemical defect occurring. The threshold level 

varies considerably among individuals and is highly dependent on the metabolic 

demand of the tissue and the type of mutation. Typically, the threshold level for tRNA 

point mutations is approximately 90% (Yoneda et al., 1995), while for single large-

scale mtDNA deletions it drops to 70-80% (Sciacco et al., 1994). 
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 Mitochondrial DNA (mtDNA) Mutations and Repair Mechanisms 

Unique characteristics of the mtDNA, account for its increased vulnerability to 

pathogenic mutations. These include: compact mtDNA structure, close proximity to 

the ETC and the lack of protective histones (Clayton, 1982; Richter et al., 1988). 

Mutations affecting directly the mtDNA can cause wide range of disorders, however 

mutations in nuclear genes may occur and affect mtDNA maintenance; thus causing 

secondary defects in mtDNA. Mutations occurring in the mitochondrial genome can 

exist as: point mutations, single large-scale and multiple deletions, insertions or 

duplications. Mutations in mtDNA are believed to occur at a 10-fold higher rate 

compared to the nuclear genome (Brown et al., 1979). Although pathogenic mtDNA 

mutations are an important cause of mitochondrial disease, these are beyond the 

scope of this thesis.  

Mitochondrial DNA repair mechanisms exist, however these are believed to exist in 

reduced rates compared to nDNA and exert their function through different molecular 

pathways. Currently, mtDNA repair mechanisms are not fully understood, except the 

base excision repair (BER) (Stierum et al., 1999). These include: direct repair (which 

has only been confirmed in yeast and E.Coli) (Yasui et al., 1992) mismatch repair 

(MMR) (Mason et al., 2003) and single-strand break repair (Hegde et al., 2012).  

 Mitochondrial DNA (mtDNA) Depletion 

MtDNA depletion is defined as a quantitative reduction in the mtDNA copy number 

below 30% of normal mtDNA copy number (Rötig and Poulton, 2009). MtDNA 

depletion results in a group of rare heterogeneous disorders, known as mtDNA 

depletion disorders (MDS) which present in infancy/childhood. It has been estimated 

that approximately 8% of the paediatric patients with respiratory chain deficiency 

demonstrate mtDNA depletion (Rötig and Poulton, 2009). The first described MDS 

involved congenital myopathy or hepatopathy. Since then, numerous mtDNA 

depletion syndromes have been described and classified as: myopathic, 

encephalopathic, neurogastrointestinal and hepatocerebral. However, these 

syndromes are often overlapping due to the heterogeneous nature of the 

phenotypes.  

MtDNA replication occurs independently of the cell cycle and the process is highly 

dependent on constant supply of intra-mitochondrial 2’-deoxyribonucleoside 5’-

triphosphate (dNTP) pools. However, the mechanisms of dNTP synthesis required for 
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mtDNA replication are not well-defined to date. MtDNA depletion occurs as a result of 

mutations in nuclear-encoded genes involved in mtDNA replication (POLG, TWNK) 

and in mtDNA maintenance (TK2, FBXL4, MPV17, SUCLA2, SUCLG1, TYMP, 

DGUOK, ANT1 and RRM2B). It has been suggested that defects in some of these 

genes lead to limited mtDNA replication, with resulting daughter cells containing 

fewer copies of mtDNA (Rötig and Poulton, 2009).  

Interestingly, mtDNA depletion arising from mutations in the aforementioned genes 

seems to be tissue-specific. For example, mtDNA depletion is apparent in the liver 

and brain of patients with mutations in POLG and DGUOK (Naviaux et al., 1999; 

Mandel et al., 2001). In contrast, patients with mutations in TK2 or RRMB2 genes 

demonstrate depletion in the muscle (Dimmock et al., 2010). Although the reasons 

behind tissue-specific mtDNA depletion are not fully understood, there is evidence 

suggesting that dNTP pools are different among different tissues/organs (Song et al., 

2005). Specifically, dNTP pools regulate the fidelity of mtDNA replication. Therefore, 

an imbalance in dNTP pools may lead to alterations in POLG activity, restricting the 

incorporation of dNTPs and thus mtDNA extension, leading to mtDNA replication 

stalling.  
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1.8 Mitochondrial Disease 

Mitochondrial disease refers to a group of disorders characterised by genetic and 

phenotypic heterogeneity. Mitochondrial disease mainly arises from dysfunction in 

the mitochondrial respiratory chain due to mutations in either the mtDNA or nuclear 

genes affecting mtDNA synthesis and maintenance (Chinnery, 2014).  

Mitochondrial diseases are more common than originally postulated. According to the 

available data, prevalence of mitochondrial disease is estimated to be 1 in 8,500 

individuals (both children and adults with mtDNA or nDNA mutations) in Spain (Arpa 

et al., 2003). A recent study from the North East of England estimated that 1 in 4300 

individuals are at risk of developing adult mitochondrial disease (Gorman et al., 

2015). Interestingly, it has been estimated that 4.7 in 100,000 births in the Australian 

population may develop mitochondrial disease (Skladal et al., 2003). 

The first causative association of mtDNA defect and human disease was established 

in 1988 (Holt et al., 1988) and since then, a number of mtDNA and nDNA mutations 

have been linked to mitochondrial disease.  

Mitochondrial disease is clinically characterised by the following symptoms: 

neurological deficits (including epilepsy, encephalopathy and parkinsonism), proximal 

myopathy, exercise intolerance, external ophthalmoplegia, cardiomyopathy, diabetes 

mellitus, sensorineural deafness and optic atrophy. Some of the discrete clinical 

syndromes include: Kearns-Sayre Syndrome (KSS), Chronic Progressive External 

Ophthalmoplegia (CPEO), Mitochondrial Encephalomyopathy with Lactic Acidosis 

and Stroke-like Episodes (MELAS), Myoclonic Epilepsy with Ragged-red Fibres 

(MERRF), Neurogenic Weakness with Ataxia and Retinitis Pigmentosa (NARP), 

Leber’s Hereditary Optic Neuropathy (LHON) and Leigh Syndrome (LS) (Chinnery, 

2014). A summary of the clinical syndromes and their underlying genetic defects is 

given in Table 1.1.  

Mitochondrial disease may present at any age and affect single or multiple organs, 

giving rise to the heterogeneous nature of its clinical presentation. Often, the clinical 

phenotype does not correlate with the genotype, making clinical diagnosis and 

management extremely challenging. Furthermore, a specific genetic defect may 

cause more than one phenotype depending on mutation segregation and 

heteroplasmy (Lax et al., 2017). Currently there are no cures for mitochondrial 

disease; however recent research advances have enabled reproductive options 
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which prevent mitochondrial disease transmission to the progeny (Craven et al., 

2010; Hyslop et al., 2016).  

Neurons are highly dependent on OXPHOS for mediating synaptic transmission, as 

they form complex neuronal networks in the brain. This process requires a high 

metabolic activity; therefore neuronal cells are particularly vulnerable to energy 

depletion. Thus, it is not surprising that patients with mitochondrial disease manifest 

neurological deficits such as encephalopathy, seizures/epilepsy, migraine, stroke-like 

episodes, ataxia, cognitive impairment and dementia. These neurological deficits are 

the most frequently reported features in mitochondrial disease and account for the 

high morbidity and mortality rates (Lax et al., 2017).  

Epilepsy is a salient feature in mitochondrial disease, and frequently occurs as the 

presenting feature and is associated with poor prognosis (Lax et al., 2017). The exact 

incidence of epilepsy in patients with mitochondrial disease is unknown, however it 

has been estimated that it occurs in approximately 60% of patients with confirmed 

biochemical defects (Khurana et al., 2008). A study performed in the UK has shown 

that approximately 23.1% of 182 adults with confirmed genetic diagnosis of 

mitochondrial disease develop epilepsy (Whittaker et al., 2015). In the paediatric 

population, the prevalence of epilepsy is estimated to be approximately 32% (Debray 

et al., 2007). It has been shown that 45% of paediatric patients died within 9 months 

of the onset of epilepsy (Debray et al., 2007).  

Dissecting the pathogenesis of epilepsy in patients with mitochondrial disease can be 

difficult, as often the available tissue is harvested at post-mortem and epilepsy often 

coincides with other neurological deficits. Therefore, it is very challenging to depict 

primary and secondary changes when investigating post-mortem tissue.  

Neuropathological findings have shown prominent neuronal loss, astrogliosis and 

spongiform degeneration of grey and white matter (Hunter et al., 2011; Sofou et al., 

2012; Rouzier et al., 2014). Interestingly, a recent study performed in adult patients 

with mitochondrial disease has shown respiratory chain deficiencies (involving 

complexes I and IV) within GABAergic interneurons combined with reduced 

interneuron densities (Lax et al., 2016). These findings suggest that respiratory chain 

deficiency in the inhibitory GABAergic interneurons affects the neuronal networks 

which may contribute to lower the threshold of seizure activity. Mitochondrial epilepsy 

and its pathogenesis is the major focus of this thesis and this topic is discussed in 

more detail in subsequent chapters. 
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Syndrome Onset Main Features Additional Features Underlying Genetic Defects 

KSS <20 years PEO, retinitis 
pigmentosa and 
one of the 
following: 
cerebellar 
ataxia, heart 
block, CSF 
protein<1g/L. 

Myopathy, bilateral 
deafness, dysphagia, 
diabetes mellitus, 
hypoparathyroidism and 
dementia. 

Large single mtDNA deletion and/or 
duplication. 

CPEO Late-onset External 
ophthalmoplegia 
and bilateral 
ptosis 

Mild proximal myopathy. Single or multiple mtDNA deletions or POLG 
mutations. 

MELAS <20 years Stroke-like 
episodes, 
seizures and/or 
dementia, 
ragged-red 
fibres and/or 
lactic acidosis. 

Diabetes mellitus, 
cardiomyopathy, retinitis 
pigmentosa, cerebellar 
ataxia and bilateral 
sensorineural deafness. 

 

m.3243A>G mutation (80%) and other 
mtDNA mutations (20%) 

MERRF Typically in 
adolescence 

Myoclonic 
seizures, 
cerebellar ataxia 
and myopathy. 

Dementia, bilateral 
sensorineural deafness, 
optic atrophy, peripheral 
neuropathy and multiple 
lipomata.  

m.8344A>G 
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NARP Late-childhood 
or adult-onset 

Neuropathy, 
ataxia and 
retinitis 
pigmentosa. 

Motor and sensory 
neuropathy. 

m.8993T>G 

LHON Early-onset Bilateral visual 
failure 

Dystonia Point mutations in mtDNA m.11778G>A, 
m.3460G>A and m.14484T>C 

LS Infantile onset Encephalopathy
and seizures 

Dystonia and dysphagia  Deficiencies of NDUFS1, NDUFS4, 
NDUFS7, NDUFS8 and NDUFV1, SURF1, 
COX10, COX15, SDHA, MT-CO3, MT-ND1, 
MT-ND2, MT-ND4, MT-TI, MT-TK, MT-TL1, 
MT-TL2, MT-TV, MT-TW, ATP6, MT-ND3, 
MT-ND5, MT-ND6  

Table 1.1: Clinical syndromes of mitochondrial disease.  Key: KSS=kearns-sayre syndrome; CPEO=chronic progressive external ophthalmoplegia; 
MELAS=mitochondrial encephalopathy with lactic acidosis; MERRF=myoclonic epilepsy with ragged-red fibres; NARP=neurogenic weakness with ataxia and retinitis 
pigmentosa; LHON=leber hereditary optic neuropathy and LS= leigh syndrome; MT=mitochondrial.  
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1.9 Mitochondrial DNA Polymerase Gamma (POLG) 

 Polymerase Gamma (POLG): History, cloning and expression 

The first evidence of the role of DNA Polymerase Gamma (POLG) in mtDNA 

replication was provided in 1987 (Lestienne, 1987). POLG is believed to be the only 

DNA polymerase to act in mammalian mitochondria and is pivotal for embryonic 

development (Hance et al., 2005).  

In humans, POLG exists as a heterotrimer, comprised of a large catalytic subunit and 

two smaller accessory subunits. The catalytic subunit is encoded by POLG, which is 

composed of 23 exons and located on chromosome 15q25 (Walker et al., 1997). The 

accessory subunits are encoded by POLG2 which consists of 8 exons and is located 

on chromosome 17q23 (Yakubovskaya et al., 2006). 

Human POLG was cloned by Ropp and Copeland in 1996. The sequence of human 

POLG was found to be 1,239 amino acids long with a molecular weight of 139.5kDa. 

Human POLG’s amino acid sequence is 49%, 43% and 78% identical in Drosophila, 

S. Cerevisiae and G. gallus respectively (Ropp and Copeland, 1996; Lecrenier et al., 

1997).  

POLG is expressed and translated in the absence of mtDNA. Specifically, POLG is 

transcribed in the nucleus, translated in the cytosol and imported into the IMM where 

it associates with other proteins to form the apparatus required for mtDNA replication 

and nucleoids (Davis et al., 1996; Saneto and Naviaux, 2010).  
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 Polymerase Gamma (POLG) Structure and Functions 

POLG heterotrimer consists of: a 140kDa catalytic α subunit encoded by POLG and 

two 55kDa accessory β subunits which form a dimer; encoded by POLG2. The 

association of the catalytic subunit with one accessory subunit allows DNA synthesis 

(Lee et al., 2010). POLG’s structure seems to be variable among species; it exists in 

the form of a single catalytic subunit in yeast and as a homodimer in Drosophila 

(Yakubovskaya et al., 2006).  

The catalytic subunit is comprised of an N-terminal exonuclease domain which is 

linked through a spacer region (linker domain) to a C-terminus polymerase domain. 

POLG’s catalytic subunit retains three distinct activities: a 3’-5’ exonuclease activity, 

a DNA polymerase activity and a 5’-deoxyribose phosphate (dRP) lyase activity see 

Figure 1.12A).  

The exonuclease domain (aa 171-440) possesses a 3’-5’ proofreading activity and is 

located at the N-terminus of the catalytic subunit. It contains the highly conserved 

motifs I, II and III, which are essential for exonuclease activity (Olson and Kaguni, 

1992; Kaguni, 2004). Motif I contains the catalytic residues Asp198 and Glu200. 

Based on calculations the overall fidelity of POLG is estimated as 1 error in 280,000 

base pairs (Johnson and Johnson, 2001; Lee and Johnson, 2006).  

The DNA polymerase domain (aa 441-475; aa 789-1239) performs the mtDNA 

synthesising function and is divided into three subdomains: thumb (aa 441-475; 

aa768-815), palm (aa 816-910; aa 1096-1239) and finger (aa 911-1095). In addition, 

the polymerase domain contains three conserved motifs: A, B and C. These are 

crucial for polymerase activity as they bind to both template mtDNA and substrate 

nucleotide triphosphate and mediate formation of phosphodiester bonds 

(Kasiviswanathan et al., 2009; Lee et al., 2009; Saneto and Naviaux, 2010). The 

active site is housed in the palm subdomain which contains the catalytic residues 

(Asp890 located in motif A, Glu1136 and Asp1135 both located in motif C).  

The linker region is approximately 482aa in length in humans and is connected to the 

exonuclease and polymerase domains through long helices located at the thumb 

domain (Lee et al., 2009). The linker region is further divided into two subdomains: 

the global intrinsic processivity (IP; residues 475-510 and 571-785) and the extended 

accessory interacting determinant (AID; residues 511-570) (Lee et al., 2009). 

Analysis of POLG’s crystalline structure revealed that the linker domain of the 
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catalytic subunit physically interacts with only one accessory (p55) subunit (Lee et 

al., 2009) (Saneto and Naviaux, 2010). This feature distinguishes POLG from other 

DNA polymerases. The IP domain is the binding site for the upstream primer-

template DNA duplex, thus enhancing intrinsic processivity (Lee et al., 2009; Saneto 

and Naviaux, 2010).  

The accessory p55 subunit binds to the catalytic subunit through the AID, providing 

the interface for increased processivity of the holoenzyme. The AID contains the ‘L-

helix ’which interacts with the C-terminal of the p55 subunit via hydrophobic bonds. 

Mutations located in the ‘L-helix’ resulted in reduced polymerase activity and 

processivity in the presence of p55.  

Each of the p55 accessory subunits is divided into 3 domains: domain 1, 2 and 3. 

Domain 1 (aa 66-131; aa 183-353) is situated downstream of the Mitochondrial 

Targeting Sequence (MTS), located at the N-terminal), which is responsible for 

recognition and direction to the matrix. Domain 2 (aa 132-182) contains four helices 

which are important in the homodimerisation of p55.  Domain 3 (aa 354-485) is 

located at the C-terminal of the p55 subunit and is involved in catalytic subunit 

binding. It has been suggested that the proximal p55 subunit enhances the 

interaction with the DNA; whereas the distal p55 subunit accelerates nucleotide 

incorporation (Saneto and Naviaux, 2010).  

Both accessory p55 subunits serve as processivity factors which allow increased 

substrate binding and enhanced activity of the catalytic subunit. The proximal p55 

subunit associates with the catalytic subunit enhancing binding interaction of the 

holoenzyme with the DNA strand. At the same time, the distal p55 subunit increases 

the rate of polymerisation (Lee et al., 2010). In addition to their role as processivity 

factors the p55 subunits are thought to suppress exonuclease activity of the catalytic 

subunit, allowing integrity of the replisome at the replication fork to be maintained 

(Johnson and Johnson, 2001; Farge et al., 2007; Saneto and Naviaux, 2010). The 

tertiary structure of POLG can be seen in Figure 1.12. 

Despite the major role in mtDNA synthesis, POLG is crucial for 5’-3’ base-excision 

repair via 5’-dRP lyase activity. Although 5’-dRP-lyase activity is housed in the 

polymerase domain, its exact location remains unknown (Longley et al., 1998). The 

process involves a class II apurinic/apyrimidinic (AP) endonuclease which mediates 

cleavage of the DNA backbone on the 5' side of an abasic site. 
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A deoxyribophosphodiesterase then eliminates the 5' sugar-phosphate residue left by 

AP endonuclease. POLG then fills the gap with the incorporation of a new base, 

before an mtDNA ligase acts to repair the nick. Base excision repair (BER) is the 

predominant mechanism of mtDNA repair known to exist in mitochondria (Vasileiou 

et al., 2017). Recently, polymerase beta (β) has been detected in mammalian 

mitochondrial fractions (Sykora et al., 2017), suggesting that it is not only involved in 

the BER mechanism at the level of the nuclear genome, but also an important factor 

in mtDNA BER (Sykora et al., 2017). 

Although BER is the main mechanism known to exist in mitochondria, other repair 

mechanisms exist which include single-strand base repair (el-Khamisy and Caldecott, 

2007), double-strand break repair (Bacman et al., 2009) and mismatch repair (Mason 

et al., 2003). Nucleotide excision repair has not been yet detected in mitochondria 

(Vasileiou et al., 2017).  
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Figure 1.12: Tertiary structure of POLG catalytic subunit. The different domains are illustrated: 
exonuclease (grey), linker domain (orange) and polymerase (pol, blue). (B) Structure of the POLG 
heterotrimer containing the catalytic subunit p140 (orange) and the proximal (green) and distal (blue) 

p55 monomers. Figure modified from (Lee et al., 2009). 

 Polymerase Gamma (POLG) Mutations 

Pathogenic mutations occurring in the catalytic subunit of POLG are a major cause of 

human mitochondrial disease. To date over 200 POLG mutations have been reported 

and have been associated with an overlapping spectrum of disorders which differ in 

the age of onset, pattern of inheritance and clinical presentation (discussed in the 

subsequent section). Understanding the effects of POLG mutations on different 

domains and functions of the protein is crucial and may provide insight into the 

mechanisms accounting for phenotypic diversity. 
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Pathogenic mutations can be either autosomal recessive or autosomal dominant with 

the former mode of inheritance being the most frequently associated with disease. 

Dominant mutations are associated with adult-onset disease, while recessive 

mutations may occur throughout the life span (Saneto and Naviaux, 2010; Saneto et 

al., 2013). POLG mutations identified are listed on The Human DNA Polymerase 

Gamma Database (Figure 1.13) (Copeland, n.d.).  

Mutations located in the catalytic subunit of POLG are suggested to affect DNA-

binding affinity, and reduce catalytic efficiency (Euro et al., 2011). The function of the 

different POLG domains partially dictates the effect of the mutation. Mutations found 

in the AID destabilise POLG-DNA complex; while mutations found in the IP reduce 

processivity of the holoenzyme, DNA binding and polymerase activity (Chan et al., 

2006). POLG mutations harboured within the exonuclease region are believed to 

reduce the fidelity of the polymerase activity rather than diminishing exonuclease 

activity (Szczepanowska and Foury, 2010; Saneto et al., 2013).  

Mutations occur all throughout the domains of POLG. Three pathogenic mutations 

have been classified as the most common and result in a wide range of phenotypes 

ranging from severe early-onset disorders to milder adult-onset disorders. These 

mutations include: p.(Ala467Thr), p.(Trp748Ser) and p.(Gly848Ser) (Hakonen et al., 

2007).  
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Figure 1.13: Mutations identified in POLG. A schematic representation of the mutations that have 
been reported to date, their location within POLG and associated syndromes. Most mutations are 
missense point mutations. Image taken from: The Human DNA Polymerase Gamma Mutation 
Database (Copeland, n.d.).  

The incidence of p.(Ala467Thr) mutation has been estimated to be 0.6% in the 

Belgian population (Van Goethem et al., 2001), 0.69% in the British population 

(Horvath et al., 2006) and 1% in the Norwegian population (Winterthun et al., 2005). 

In another study p.(Ala467Thr) has been reported as the most common in the 

paediatric population (Horvath et al., 2006).  

The p.(Ala467Thr) mutation is located in the linker domain of POLG, and disrupts the 

interaction with the proximal p55 subunit. Evidence stems from the observation that 

p.(Ala467Thr) resulted in less than 4% POLG activity compared to the wild-type 

POLG in vitro. Interestingly, the p.(Ala467Thr) mutation resulted in poor binding of 

the p140 subunit to the p55 subunit as shown by co-immunoprecipitation, 

processivity and primer extension studies (Chan et al., 2005a). The p.(Ala467Thr) 

mutation is associated with a dramatic reduction in DNA polymerase activity, 
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however the exonuclease function is only reduced by a 2-fold (Chan et al., 2005a). 

Based on structure-function studies, the location of the mutation in the hydrophobic 

centre of the thumb sub-domain suggests that the Thr467 hydroxyl group may disturb 

the hydrophobicity of the region (Euro et al., 2011).  

The p.(Trp748Ser) (c.2243G > C, Exon 13) mutation is the second most common 

mutation reported and has been found to occur with the p.(Glu1143Gly) mutation in 

1:125 patients from Finland. The p.(Trp748Ser) mutation is the most common 

mutation reported in ataxia-neuropathy spectrum disorders and Alpers (Hakonen et 

al., 2007).  

The p.(Trp748Ser) mutation is located within the IP of the linker domain, and affects 

DNA-binding affinity. Biochemical characterisation of the p.(Trp748Ser) mutation 

alone revealed poor DNA-binding ability resulting in reduced processivity of mtDNA 

synthesis and primer extension. Interestingly, the interaction of p140 subunit with the 

p55 subunit remained intact; however, this failed to rescue the catalytic defect (Chan 

et al., 2006). In contrast the activity of the POLG containing the p.(Glu1143Gly) 

mutation was found to be 1.4-fold higher than the wild-type. The p.(Glu1143Gly) 

mutations is believed to modulate the deleterious effects of p.(Trp748Ser) when 

found with the p.(Glu1143Gly) increased overall DNA binding, catalytic activity and 

fidelity of POLG (Chan et al., 2006).  

The p.(Gly848Ser) is is the third most common POLG mutation that has been 

associated with Alpers, MELAS, CPEO and LS in a recessive state. There has been 

very little data reported on the prevalence of this mutation. The p.(Gly848Ser) is 

located in the thumb region of the polymerase domain of the p140 catalytic subunit. It 

results in a 5-fold decrease in the DNA-binding affinity compared to the wild-type in 

vitro. Interestingly, the holoenzyme retained only 0.03% polymerase activity of the 

wild-type (Kasiviswanathan et al., 2009); whereas POLG with mutations located in 

the palm sub-domain retained 50-70% of the polymerase activity. The p140-p55 

interaction was not affected and the fidelity of the enzyme remained normal 

(Kasiviswanathan et al., 2009). In agreement with the biochemical data Euro and 

colleagues demonstrated that the p.(Gly848Ser) variant affects the ‘RR loop’ of the 

p140 which interacts with the primer DNA template; thus leading to DNA-binding and 

polymerase activity defects (Euro et al., 2011).  
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 Polymerase Gamma 2 (POLG2) Mutations 

Mutations in POLG2, encoding the p55 accessory subunits have rarely been reported 

and are not as well characterised as POLG mutations. The first POLG2 mutation 

identified, c.1352G>A; p.(Gly451Glu) was reported in one patient with late-onset 

autosomal dominant progressive external ophthalmoplegia (adPEO) who had ptosis 

associated with mtDNA deletions in muscle. The p.(Gly451Glu) substitution is located 

in the region of p55 that interacts with p140 resulting in poor processivity of the 

holoenzyme due to disrupted interaction between p140 and p55 (Longley et al., 

2006).  

More recently, a study performed in 112 patients, identified 8 heterozygous (7 novel) 

POLG2 mutations in the absence of POLG mutations (Young et al., 2011). These 

mutations were associated with decreased binding affinity to the catalytic subunit 

combined with reduced enzyme processivity. For example, p.(Arg369Gly), was 

reported in another patient with adPEO and multiple mtDNA deletions. Biochemical 

analysis of the recombinant mutant p55 revealed a reduced affinity for p55 binding to 

p140 (Craig et al., 2012).  

Analogously to POLG, POLG2 function is crucial for embryogenesis and mtDNA 

replication; as revealed from POLG2 mouse knockouts. However, a single copy of 

wild-type POLG2 is sufficient to sustain life (Humble et al., 2013). A better 

understanding of structure-function relationships will provide more insight into the 

POLG2-related mitochondrial disease pathogenesis.  

 Polymerase Gamma (POLG) Related Disorders 

POLG-related disorders refer to a continuum of heterogeneous but clinical 

overlapping phenotypes (Cohen, 2014). The onset of POLG-related disorders is 

variable, ranging from infancy to late adulthood. Disease associated with infancy and 

childhood is more severe when compared to cases presenting later in life, albeit the 

reasons behind this observation remain unclear.  

POLG-related disorders include the following syndromes: Alpers, Myoclonic Epilepsy 

Sensory Ataxia (MEMSA), Ataxia Neuropathy Spectrum (ANS), 

Myocerebrohepatopathy Syndrome (MCHS) and adPEO or arPEO. Alpers is the 

most severe form of POLG-related disorders. A description of the POLG-related 

phenotypes is given in Table 1.2.  

  



38 
 

Disorder Clinical features Onset 

Alpers Seizures/epilepsy, psychomotor 
regression and liver 
dysfunction/failure. 

Infancy/childhood or 
adolescence/early 
adulthood 

MCHS Developmental delay, early-onset 
dementia, lactic acidosis and 
myopathy with failure to thrive. 

First months of life  

ANS Ataxia and neuropathy (seizures and 
ophthalmoplegia). 

Early to late-onset 

MEMSA Epilepsy, myopathy and ataxia. Early to teenage- 
onset 

adPEO Ophthalmoplegia, ptosis, generalised 
myopathy, depression, Parkinsonism, 
sensorineural hearing loss and ataxia. 

Late-onset 

arPEO Ophthalmoplegia and ptosis. Late-onset 

Table 1.2: Clinical description of mitochondrial disorders.  Key: MCHS=myocerebrohepatopathy 
spectrum; ANS=ataxia neuropathy spectrum; MEMSA=myoclonic epilepsy myopathy sensory ataxia; 
adPEO=autosomal dominant progressive external ophthalmoplegia; arPEO=autosomal recessive 
progressive external ophthalmoplegia. 

POLG-related disorders are linked to faulty mtDNA maintenance and expression. 

Although the exact mechanisms remain unclear, POLG mutations result in mtDNA 

depletion and/or multiple deletions in affected tissues, leading to OXPHOS 

dysfunction and ATP depletion. MtDNA depletion ultimately results in reduced 

number of complexes of the ETC (as the mtDNA-encoded subunits become rate-

limiting), thereby disrupting the ratio of complexes within the supercomplexes, and 

leading to reduced production of ATP (Saneto and Naviaux, 2010).  

Biochemical assays may show mtDNA depletion and respiratory chain deficiencies 

involving complexes I-V in both adults and children; however biochemical tests in 

muscle may be normal; suggesting the effects of POLG mutations are tissue-specific. 

Thus, normal respiratory chain function and mtDNA content in any given tissue, 

should not exclude the possibility of a POLG-related disorder and the genetic 

confirmation of biallelic POLG variants should be the gold standard for the diagnosis 

of POLG-related disorders (Saneto and Naviaux, 2010; Cohen, 2014; Anagnostou et 

al., 2016).  

Recessive POLG mutations have been described in the form of homozygous or 

compound heterozygous. Although no clear genotype to phenotype correlations 

exist, compound heterozygous mutations are associated with more severe early-
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onset phenotypes (Graziewicz et al., 2006). On the contrary, homozygous mutations 

are associated with late-onset milder disease. Further, homozygous p.(Ala467Thr) 

and p.(Trp748Ser) mutations have been linked to longer survival compared to 

p.(Ala467Thr)/p.(Trp748Ser) compound heterozygotes (Tzoulis et al., 2006). It is 

intriguing that both homozygous and compound heterozygous mutations occur in 

early-onset and late-onset POLG-related disease (Graziewicz et al., 2006); thus 

making genotype to phenotype correlations difficult to establish. The reasons for 

such a genotypic/phenotypic variation within a single or multiple syndromes remain 

unclear (Saneto et al., 2013).  
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 Polymerase Gamma (POLG) Mouse Models 

To date, many mouse models have been created to investigate mitochondrial 

disease. Models of nuclear gene modifications that alter mtDNA maintenance are 

currently being used. The POLG mutator mouse does not mimic the epileptic 

phenotype seen in human patients. In contrast, the POLG mutator mouse 

demonstrates a premature ageing phenotype.  

To better understand genotype to phenotype relationships, mice harbouring 

mutations in POLG have been created. A homozygous POLG mouse model (lacking 

exon 3) resulted in embryonic lethality (Hance et al., 2005); suggesting that POLG 

function is absolutely essential for survival. Another study performed on a mouse 

model with an insertion of a proof-reading-deficient version of POLG, resulted in a 

premature ageing phenotype with characteristic features including: weight and hair 

loss, kyphosis, osteoporosis, reduced fertility, cardiomyopathy and anaemia 

(Trifunovic et al., 2004). Interestingly, these models showed increased mutation rates 

which accumulated with time, resulting in extensive respiratory chain deficiencies 

without any observable increase in ROS (Trifunovic et al., 2005). However, despite 

the deficiency in the exonuclease activity of POLG, the mice remained viable. 

Studies with mouse models succinctly described above may expand our 

understanding of disease progression and the effect of POLG mutations on the 

catalytic function; however, these are not applicable to study the pathomechanisms 

of POLG-related epilepsy, given that the mice do not develop seizures. The reason 

for which mice with defective proofreading activity (Trifunovic et al., 2004) do not 

develop epilepsy despite accumulating mtDNA deletions and point mutations with 

age is unclear. However, mtDNA depletion has not been detected and it is therefore 

possible that mtDNA depletion is a key factor leading to downstream 

pathophysiological processes, which culminate in seizures. Therefore, despite the 

existence of mouse models with POLG mutations, the absence of a seizure 

phenotype, perhaps due to absence of mtDNA depletion leads to the conclusion that 

currently there is no mouse modelling for POLG-related epilepsy.  

1.10 Alpers’ Syndrome 

 Clinicopathological Description and History 

Alpers’ syndrome is an uncommon autosomal recessive cerebrohepatopathy with an 

estimated incidence of 1 in 100,000 births (Mangalat et al., 2012). It is clinically 
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characterised by a classical triad of: seizures/epilepsy, psychomotor regression and 

liver dysfunction/failure. The majority of patients are healthy before disease onset 

and seizures are the heralding manifestation of the disease. Disease onset has a 

bimodal distribution with the first peak occurring in infancy/childhood (2-4 years, 

range: 3 months to 8 years) and a second peak in adolescence/early adulthood 17-

24 years, range: 10 years to 27 years), albeit disease onset in infancy/childhood is 

most frequent (Saneto et al., 2013).  

Bernard Alpers was the first to describe a case of ‘diffuse progressive 

neurodegeneration of the grey matter of the cerebrum’ in a 4-month-old girl who 

presented with intractable seizures in the course of a one-month-illness (Alpers, 

1931). The acronym Alpers has since been used to describe the neurological 

involvement of the disease. The first report by Alpers led to the description of other 

cases with this disorder (Morse, 1949; Ford et al., 1951; Palinsky et al., 1954). The 

first evidence of liver involvement was reported by Blackwood and colleagues in two 

siblings who presented with diffuse cerebral degeneration and liver cirrhosis 

(Blackwood et al., 1963). It was only 10 years later that the first suggestion of 

dysfunctional neuronal mitochondria and autosomal recessive pattern of inheritance 

was made (Sandbank and Lerman, 1972). Autosomal recessive inheritance was 

confirmed by Peter Huttenlocher who also noted that hepatic involvement was not 

always present in previously described Alpers cases (Huttenlocher et al., 1976). The 

term ‘Huttenlocher’ was then used to describe hepatic involvement. The terms ‘Alpers 

and ‘Alpers-Huttenlocher’ (AHS) are considered synonymous (Harding, 1990). 

Alternative terms exist such as ‘Alpers-like’ and ‘Alpers’ syndrome type 1’, however 

these are not commonly used.  

The diagnosis of Alpers syndrome is based upon evidence from clinical assessment, 

and include EEG recordings, neuroimaging including Magnetic Resonance Imaging 

(MRI) and neuropathological investigations at post-mortem.  

 Early-onset Alpers 

Alpers is hallmarked by seizures, which are believed to be the first presenting 

symptom in 50% of the cases (Anagnostou et al., 2016). Once seizures occur the 

disease becomes rapidly progressive eventually leading to death within 4 years 

(Cohen, 2014). Seizures can be focal, primary generalised or myoclonic. Some 

patients may present with Epilepsia Partialis Continua (EPC) which may progress to 

status epilepticus (EPC) (Horvath et al., 2006; Tzoulis et al., 2006). Seizures may 
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initially be controlled through the use of anticonvulsive drugs, however some seizures 

may be refractory to treatment from the onset (Cohen, 2014).  

Infants/children with Alpers develop normally over the first weeks/months and years 

of their life. Some patients demonstrate psychomotor regression prior to the seizure 

onset (Saneto et al., 2013). A recent study demonstrated that anaemia is a common 

feature of patients with Alpers and MCHS harbouring POLG mutations. Interestingly, 

anaemia is present at disease onset in 35% of the cases (Hikmat et al., 2017a).  

Seizure onset is usually sudden and leads to death within a few months from the 

presentation, however some patients can survive up to four years. Seizures are 

accompanied by other features including: developmental delay, nausea, vomiting, 

jaundice, ataxia, neuropathy, headache, hemiparesis, cortical blindness and liver 

failure (Gordon, 2006). When liver dysfunction is present it will progress to end-stage 

liver failure unless disease progression is rapidly fatal (Stumpf et al., 2013).   

 Late-onset Juvenile Alpers 

The first signs of Juvenile Alpers are not as well-characterised as typical early-onset 

Alpers. Unlike early-onset Alpers cases, the majority of patients with Juvenile Alpers 

present with headache with or without visual impairment (Wiltshire et al., 2008; 

Saneto et al., 2013; Anagnostou et al., 2016). As with early-onset Alpers, seizures 

become the predominant manifestation of Juvenile Alpers. Neurological deterioration 

following seizure onset in Juvenile Alpers cases is not as rapidly progressive as in 

early-onset Alpers, and patients have a longer survival (Tzoulis et al., 2006). The 

reasons behind this observation remain unclear.  

 Alpers and POLG 

POLG mutations constitute the underlying genetic defect in over 90% of Alpers 

cases. Alpers is an mtDNA maintenance syndrome and is considered to be the most 

severe phenotype of POLG-related disorders. Recessive POLG mutations are 

thought to cause POLG dysfunction, resulting in secondary mtDNA defects (including 

mtDNA depletion and rarely deletions), which eventually lead to respiratory chain 

dysfunction. 

The first association between Alpers syndrome and POLG dysfunction was 

recognised in 1999 when Naviaux and colleagues reported a patient with Alpers and 

undetectable levels of POLG activity combined with mtDNA depletion in both skeletal 

muscle and liver (30% and 25% of normal controls respectively). In addition, 
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biochemical assays revealed a reduction in the activity of complexes I-IV (Naviaux et 

al., 1999). The link between genetic aetiology and molecular pathophysiology was 

established in 2004 when POLG mutations were described as the cause of Alpers 

syndrome (Naviaux and Nguyen, 2004). To date over 60 recessive POLG mutations 

have been reported and associated with Alpers; highlighting the frequency and 

importance of POLG mutations in Alpers pathogenesis (Saneto et al., 2013). As with 

other POLG-related syndromes, the most commonly identified mutations in Alpers 

are: p.(Ala467Thr), p.(Trp748Ser) and p.(Gly848Ser).  

Given the heterogeneous nature of the clinical symptoms and the wide spectrum of 

POLG mutations, there are no clear genotype to phenotype correlations to date. The 

common mutations such as p.(Ala467Thr) may occur in various syndromes ranging 

from severe early-onset to milder late-onset disease.  

One report identified a homozygous p.(Ala467Thr) mutation in a paediatric Alpers 

patient with a later disease onset (8 years of age) (Nguyen et al., 2005). Another 

study revealed that compound heterozygous p.(Ala467Thr)/p.(Trp748Ser) mutations 

are associated with shorter survival and more severe disease when compared to 

homozygous p.(Ala467Thr) and p.(Trp748Ser) mutations (Tzoulis et al., 2006). This 

finding is opposed to the previously mentioned study (Nguyen et al., 2005), where 

the paediatric patient died within one year from the disease onset. Thus, 

homozygous mutations do not lead exclusively to milder phenotypes. 

Another study, including 21 patients with Alpers, showed mtDNA depletion in the liver 

and/or muscle of patients with mutations in the polymerase and exonuclease 

domains of POLG. The patients exhibiting mtDNA depletion had a severe clinical 

phenotype with rapid progression. In contrast, patients harbouring two mutations in 

the linker domain did not exhibit mtDNA depletion and manifested a milder clinical 

phenotype with a later disease onset (childhood and adolescence). It is likely that 

defects in two different domains of POLG may further compromise POLG catalytic 

activity (Ashley et al., 2008).  

Overall, these findings imply that the location of the mutations within the catalytic 

subunit of POLG may modulate in part the clinical phenotype. It is generally accepted 

that homozygous mutations are associated with Juvenile onset and longer survival 

compared to compound heterozygous mutations. However, this hypothesis cannot 

explain why the same homozygous or compound heterozygous mutations can be 

found in severe early-onset Alpers and milder Juvenile Alpers or other POLG-related 
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disorders such as adPEO. A better understanding of the effects of these mutations 

on the clinical phenotypes is essential in order to understand the heterogeneity of 

POLG-related disorders. 

 Involvement of Other Genes than POLG in Alpers 

Despite POLG mutations constituting the major cause of Alpers, there is increasing 

evidence supporting that other genes are implicated in Alpers-like epileptic 

encephalopathies. Mutations in the gene encoding TWNK (Twinkle helicase) have 

been reported in a 4-year old patient with status epilepticus and an Alpers-like 

phenotype in the absence of POLG mutations (Hunter et al., 2011). More recently, 

defects in mitochondrial translation have emerged. Mutations in genes encoding 

tRNA synthetases including NARS2, FARS2, PARS2 and CARS2 have been 

identified as a cause of mitochondrial epileptic syndromes similar to Alpers (Coughlin 

et al., 2015; Sofou et al., 2015; Cho et al., 2017). Biochemical investigations have 

shown that such mutations have been associated with respiratory chain deficiencies 

and mitochondrial dysfunction. More research is required to completely understand 

Alpers and other mitochondrial encephalopathies.  

 Affected Tissues 

There is a general consensus that Alpers manifestations are tissue-specific. The 

most affected tissues include the brain and liver. The brain is largely affected as it 

requires a high ATP supply to function properly. When ATP production is 

compromised, neurons become particularly vulnerable as these are OXPHOS-

dependent given their limited glycolytic capacity (Zsurka and Kunz, 2015).  

Neuroimaging findings including MRI and Computerised Tomography (CT) from 

patients with Alpers reveal abnormalities such as generalised brain atrophy, oedema 

and inflammation (Flemming et al., 2002; Saneto et al., 2013). Generally, changes in 

the posterior brain areas (including the cerebellum and occipital lobes) are most 

prominent than in anterior areas. In some patients, neuroimaging findings can be 

normal, especially in early disease-stage. As the disease progresses degeneration 

and gliosis become evident (Saneto et al., 2013).  

Neuropathological investigations are in accordance with neuroimaging data showing 

a predilection for the occipital lobe and variable cerebellar involvement. Major 

abnormalities include: cortical neuron loss, astrogliosis, Purkinje cell loss and 

spongiform changes (reviewed in Chapter 3).  
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Liver dysfunction/failure is a characteristic feature of Alpers. Liver dysfunction can be 

variable among patients and can rapidly progress to liver failure, which can either 

occur before or after the seizure onset. Liver dysfunction can be a defining finding, 

taking into account following histological characteristics: microvesicular steatosis, bile 

duct proliferation, fibrosis, hepatic dropout, parenchymal disarray, regenerative 

nodules and collapse of liver plates (Nguyen et al., 2006; Stumpf et al., 2013). 

Liver failure can be triggered by the use of sodium valproate (an anticonvulsant drug) 

within 6 months. Therefore, the use of sodium valproate is contraindicated in cases 

with Alpers. Interestingly, the neurological deterioration is the most important aspect 

of the disease as patients who received liver transplants due to liver failure, 

eventually died from neurological complications (Delarue et al., 2000; Kayihan et al., 

2000).  

MtDNA depletion is frequently reported in the liver and muscle from patients suffering 

from Alpers; although muscle findings are not consistent. It is important to note that 

early in the disease course, mtDNA copy number may appear normal and will decline 

with disease progression. MtDNA depletion is accompanied by respiratory chain 

deficiencies involving single or multiple complexes. As the scope of this thesis 

involves the pathophysiology of Alpers and POLG-related epileptic disorders, a 

detailed systematic review of the published molecular genetics, biochemistry, 

neuropathology and mitochondrial dysfunction is provided in Chapter 3. 

 Treatment of Alpers Manifestations 

Currently, there are no existing therapies for Alpers and management is supportive. 

Supportive treatment strategies include: the use of anticonvulsant drugs, ketogenic 

diet and magnesium therapy. Anticonvulsants such as carbamazepine and 

levetiracetam can be used to treat seizures, however seizures often prove refractory 

to treatment and any early beneficial effects of treatment are usually not long-lasting. 

Ketogenic diet is frequently used as part of the management in paediatric epilepsy. It 

involves a diet with high fat, moderate protein and low carbohydrate content and 

helps control seizures in some individuals.  

The ketogenic diet mimics the state of starvation, in which fat is the major source of 

energy and undergoes mitochondrial β-oxidation of fatty acids in the liver, producing 

ketones. Ketones are then used by the brain instead of glucose as an energy source 

(Beth and Emily, 2008). The exact mechanisms by which ketogenic diet leads to 
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seizure inhibition are unclear, however several hypotheses have been proposed. 

Decanoic acid (C10), a component of the medium-chain fatty acid (MCT) diet has 

been found to down regulate transcription of genes involved in glucose metabolism 

and upregulate transcription of genes responsible for fatty acid metabolism 

(Paleologou et al., 2017). C10 has also been associated with increased mitochondrial 

biogenesis and increased complex I activity in neuronal cells (Hughes et al., 2014). 

Overall, since seizures are associated with ATP depletion, it is hypothesised that the 

ketogenic diet mediates anticonvulsant effects by increasing efficiency of ATP 

generation.  

The beneficial effect of ketogenic diet in patients with Alpers is questionable. One 

study has revealed a significant improvement in EEG and a termination of seizures 

for 7 months in a young girl with Alpers (Joshi et al., 2009). Another study performed 

in a larger cohort involving 32 infants with refractory epilepsy showed that ketogenic 

diet resulted in over 50% reduction in seizure frequency. However, these patients 

were not diagnosed with Alpers (Nordli et al., 2001). In contrast, a patient with 

Juvenile Alpers showed no improvement after being placed on a ketogenic diet 

(Wiltshire et al., 2008). Therefore, ketogenic diet may be beneficial for some patients, 

however more research is required to confirm whether ketogenic diet is effective in 

the management of Alpers.  

Alpers is a progressive and life-threatening condition which is particularly devastating 

for families. The lack of effective treatments targeting the underlying mitochondrial 

dysfunction makes it a challenging condition to manage. 

Although Alpers is fatal, some recent findings may provide hope for future therapy. A 

novel benzoquanine (EPI-743) drug modified disease progression in patients with 

mitochondrial disease including patients harbouring POLG mutations (Enns et al., 

2012). Another study performed in the mtDNA mutator mouse showed that 

endurance exercise (for 5 months) remarkably increased mitochondrial biogenesis, 

prevented mtDNA depletion and mutations, enhanced mitochondrial oxidative 

capacity and respiratory chain assembly and restored mitochondrial morphology 

(Safdar et al., 2011). However, the effect of endurance exercise on humans remains 

unknown.  
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1.11 Aims and Objectives of Study 

As demonstrated throughout this chapter, Alpers is a rare mitochondrial 

cerebrohepatopathy caused in the vast majority of the cases by recessive mutations 

in POLG, and is considered to be the most severe form of POLG-related disorders. 

Although POLG mutations are thought to cause mtDNA depletion with ultimate 

OXPHOS dysfunction, the exact mechanisms remain obscure. Alpers is hallmarked 

by the triad of seizures, psychomotor regression and liver failure; however, our 

understanding of Alpers pathophysiology remains incomplete. The limited 

understanding on how POLG mutations modulate disease phenotype combined with 

the severe seizure involvement and lack of treatment, makes Alpers a particularly 

challenging syndrome to investigate.  

The focus of this project is to further understand the effect of POLG mutations on 

mitochondrial function in patients suffering from Alpers. This study aims to test the 

hypothesis that POLG mutations cause mitochondrial dysfunction leading to Alpers 

and POLG-related epilepsy. To this purpose, POLG-mutant fibroblasts will be 

assessed and post-mortem brain tissue from patients with clinically and/or genetically 

defined Alpers will be used in order to understand the mechanisms leading to the 

characteristic neurological deficits (especially epilepsy) seen in these patients. To 

this aim the specific objectives are: 

1) To conduct a systematic review of the published literature to date, evaluating 

the effect of POLG mutations on the molecular and biochemical features of 

patients with Alpers and other POLG-related epileptic disorders. 

2) To characterise the baseline mitochondrial function in POLG-mutant 

fibroblasts derived from patients with early and late-onset Alpers. The specific 

objectives to this aim were to: 

 Assess bioenergetics and mitochondrial morphology/networks/nucleoids. 

 Assess mitochondrial motility and membrane potential. 

 Quantify mtDNA copy number using qPCR. 

 Evaluate the expression of POLG.  

3) Perform a detailed post-mortem neuropathological study in occipital, parietal 

and frontal lobe tissue from patients with clinically and/or genetically confirmed 

Alpers in order to investigate the mechanisms of mitochondrial epilepsy and 
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neurological deficits seen in these patients. The specific objectives to this aim 

were to: 

 Assess densities of neuronal sub-populations (interneurons and pyramidal 

neurons) by quantitative immunohistochemical assays. 

 Determine respiratory chain protein deficiency involving complexes I and IV in 

interneurons and pyramidal cells by quantitative immunofluorescence. 

 Characterise the neuropathology of Alpers, using a semi-quantitative 

approach to evaluate grey matter and white matter abnormalities such as 

astrogliosis via immunohistochemistry.  

 Achieve a genetic confirmation of POLG-mutations in patients where there 

was no available genetic diagnosis.  

 Assess mtDNA abnormalities using qPCR.  
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Chapter 2 Materials and Methods 

2.1 Equipment and Consumables 

 Equipment 

ABI Gen Amp 9700 Thermal Cycler Applied Biosystems 

Antigen Retriever 2100 Aptum Biologics 

AURA PCR UV Cabinet Bio Air Instruments 

Automated Plate Reader EIx800 Bio-Tek 

Axiovert 200 Zeiss Zeiss 

Bench-Top Centrifuge 3-15 Sigma 

Bench-Top Micro-Centrifuge 5418 Eppendorf 

Bench-Top pH Meter 3510 Jenway 

ChemiDoc MP Imaging System Bio-Rad 

Countess® Automated Cell Counter Life Technologies 

Dry Heat Block DB.3.A Techne 

Electrophoresis Power Supply Cleaver Scientific Ltd 

ErgoOne® Single & Multi-Channel 

Pipettes (2.5µl, 10µl, 20µl, 200µl, 

1000µl) 

Starlab 

Grant JB Series Water Bath Grant Instruments 

IKA Magnetic Stirrer Hotplate RCT 

Basic 

Fisher Scientific 

InCu Safe TM CO2 Incubator Sanyo 

Incubator (60oC) Genlab 

Light Microscope Leica 

Mini-ProteanR® Tetra Cell System Bio-Rad 

Nanodrop ND-1000  Spectrophotometer Labtech International 
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NANOpure II Water Purification System Barnstead 

Neubauer Improved Haemocytometer Millipore 

Nikon A1R Invert Imaging System Nikon 

Nikon A1R Scanning Confocal System Nikon 

OHAUS Adventurer® Balance OHAUS 

Olympus Microscope BHX51 Olympus 

Seahorse Extracellular Analyser XF24 Agilent 

SpectraMax M3 Plate Reader Molecular Devices 

StepOne Plus Real-Time PCR System Applied Biosystems 

Thermomixer C Eppendorf 

Vortex Genie 1 Touch Mixer Wolf Laboratories 

Vortex Genie 2 Scientific Industries 

 

 Software 

ImageJ Processing  and Analysis National Instutes of 

Health (NIH) 

ChemiDoc MP Imaging Software,  Image Lab 

(version 4.1) 

Bitplane 

GraphPad Prism (version 5.0) GraphPad 

IMARIS Scientific 3D/4D Image Processing 

and Analysis Software (version 7.2) 

Bitplane 

Matlab 2015b MathWorks 

Minitab  Pennsylvania State 

University (PSU) 

Nikon Imaging Sofware (NIS) Elements 

Viewer 

Nikon 

Seahorse XF24 Software Agilent 



51 
 

SPSS (version 17) International Business 

Machines (IBM) 

StepOne Software (version 2.1) Applied Biosystems 

StereoInvestigator Software MBF Bioscience 

Volocity® 3D Image Analysis and 

Quantitation 

Perkin Elmer 

 Consumables 

Coverslips (22x20mm, 22x32mm, 

22x40mm, 22x50mm) 

VWR Internationals 

0.2ml Thin-Walled PCR Tubes Thermo Scientific 

0.5ml PR Tubes Thermo Scientific 

96 Wel Optical Bottom Plates NUNC 

Cell Culture Plates (Plastic: 6-

Well, 24-Well, 69-Well) 

Greiner 

Cellstar® Disposable Pipettes 

(5ml, 10ml, 25ml) 

Greiner 

Cellstar® Tissue Culture Flasks 

(25cm2 and 75cm2) 

Greiner  

Countess® Cell Counting 

Chamber Slides 

Life Technologies 

Cryotube Vials  NUNC 

Falcon Tubes (15ml and 50ml) BD Biosciences 

iBIDI 35mm Glass Dishes Thistle Scientific 

Immobilon Transfer Membranes 

PVDF 

Millipore 

MILLEX Syringe-Driven Filters 

(0.22µm) 

Millipore 

PAP Pen Liquid Blocker-Super Newcomer Supply 
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Pasteur Pipettes (Glass) VWR Internationals 

Pasteur Pipettes (Plastic) Fisher Scientific 

PCR Plate Seals (Real-Time 

PCR) 

Starlabs 

PCR Plates (Real-Time PCR) Starlabs 

Pipette Tips (Including Filter Tips: 

10µl, 20µl, 200µl, 1000µl) 

Starlabs 

ProLongTM Gold Antifade 

Mountant 

Life Technologies 

QIAamp DNA FFPE Tissue Kit Qiagen 

QIAamp DNA Mini Kit Qiagen 

Seahorse XF24 Cell Culture 

Microplates 

Agilent 

Slide Racks CellPath 

Syringes DB Plastipak 

Weigh Boats Fisher Scientific 

2.2 Chemicals and Reagents 

 Solutions 

0.5M Tris-HCl pH 6.8 

(Stacking Buffer) 

30.275g Trizma Base,  500ml dH2O 

1% Acid-Alcohol Solution 500ml Ethanol,  5ml HCl, 485ml dH2O 

10mM Tri-Sodium Citrate 

pH 6.0 

2.941g Tri-Sodium Citrate, 1L dH2O 

1M Tris-HCl pH 8.0 

(Separating Buffer) 

60.55g Trizma Base, 500ml dH2O 

1mM EDTA pH 8.0 0.416g EDTA, 1L dH2O 

3% Hydrogen Peroxide 400ml dH2O, 12ml Hydrogen Peroxide 

3% Sudan Black B 0.3g Sudan Black B, 100ml 70% Ethanol 
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5% Milk Solution in TBST 5g Skimmed Milk Powder, 100ml TBST                  

DNA Loading Buffer  0.25% (w/v) Bromophenol Blue, 0.25% 

(w/v) Xylene Cyanol, 30% (v/v) Glycerol 

Electrophoresis Buffer 100ml 10x TAE, 900ml NANOpure 

Water, 80µl Ethidium Bromide                      

Lysis Buffer 100µl 0.5M Tris/HCl + 52µl 2.5M NaCl + 

4µl 0.5M MgCl2,                                                                                                                               

150µl 7x Roche Protease Inhibitors, 20µl 

Nonidet P-40, 674µl dH2O                                          

Phosphate-Buffered Saline 

(PBS) 

prepared from Tablets, 1 Tablet in 100ml 

dH2O 

Running Buffer x5 

(Westerns) 

15g Trizma Base, 72g Glycine, 5g SDS                           

Sample Buffer (Westerns) 10ml Stacking Buffer, 4ml Glycerol                               

Scott's Tab Water 2g Sodium Bicarbonate, 20g Magnesium 

Sulphate, 1L Tap Water 

Tris-Buffered Saline (TBS) 1.2g Trizma Base, 17g NaCl, 2L dH2O 

Tris-Buffered Saline-Tween 

(TBST) pH 7.4 

1.2g Trizma Base,  17g NaCl, 2L dH2O, 

1ml Tween20 

 

  



54 
 

 Antibodies 

Anti-GAD56/67 Sigma-Aldrich 

Anti-GFAP DAKO 

AlexaFluor® 405 Life Technologies 

AlexaFluor® 647 Invitrogen 

AlexaFluor® 647 Life Technologies 

AlexaFluorTM 488 Invitrogen 

AlexaFluorTM 546 Invitrogen 

AlexaFluorTM 546 Life Technologies 

Anti-Beta-Actin Sigma 

Anti-COX4l2 Abcam 

Anti-MTCOI Abcam 

Anti-NDUFA13 Abcam 

Anti-NDUFB8 Abcam 

Anti-Neurofilament H (NF-H, SMI-32P) BioLegend 

Anti-Polg Abcam 

Anti-SDHA Abcam 

Anti-VDAC1 Abcam 

Biotin-SP AffiniPure Fcγ Subclass 2b 

Specific 

Jackson 

ImmunoResearch 

Biotin-XX Life Technologies 

Streptavidin, AlexaFluor® 488 

Conjugate 

Life Technologies 

Streptavidin, AlexaFluor® 546 

Conjugate 

Life Technologies 
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 Histological Reagents 

3,3' Diaminobenzidine 

Tetrahydrochloride (DAB) 

Sigma 

30% w/v Hydrogen Peroxide Sigma 

Anti-Mouse/Rabbit PolyVue HRP Labe Diagnostic BioSystems 

DPXTM Merck 

Ethanol Fisher Scientific 

Ethylenediaminetetraacetic  Acid, 

Disodium Salt, Dihydrate (EDTA) 

Affymetrix 

HistoclearTM National Diagnostics 

Mayers haematoxylin TCS Biosciences Ltd 

Normal Goat Serum Sigma 

Polymer Penetration Enhancer Diagnostic BioSystems 

Sudan Black B RAL Diagnostics 

Tri-Sodium Citrate VWR Internationals 

Tween 20 Sigma 
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 Tissue Culture Reagents 

Accutase Thermo Fisher 

Scientific 

B27 Supplement (50x), Serum Free Gibco 

CHIR99021 Tocris 

DMEM/F-12 GlutaMAXTM 

Supplement 

Thermo Fisher 

Scientific 

Foetal Calf Serum (FCS) Gibco 

Human Leukemia Inhibitory Factor 

(hLIF) 

Cell Signalling 

Laminin Invitrogen 

L-Glutamine (100mM) Gibco 

MEM Vitamins Gibco 

Modified Eagle Medium (MEM) Gibco 

N2 Supplement (100x) Thermo Fisher 

Scientific 

Neurobasal® Medium Thermo Fisher 

Scientific 

Non-Essential Amino Acids (NEAA) Sigma 

Paraformaldehyde Solution 4% in PBS Santa Cruz 

Biotechnology 

Penicillin and Streptomycin Solution Gibco 

Phospathe-Buffered Saline (PBS) Gibco 

PicoGreen Invitrogen 

ROCK Inhibitor Sigma 

SB431542  Stemgent Inc. 

Sodium Pyruvate (100mM) Sigma 
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Tetramethyl Rhodamine Methyl Ester 

(TMRM) 

Invitrogen 

TripLE Gibco 

Uridine  Sigma-Aldrich 

 Seahorse Reagents 

Antimycin Sigma 

Oligomycin  Sigma 

Rotenone Sigma 

Seahorse Assay Medium Agilent 

Trifluorocarbonylcyanide Phenylhydrazone 

(FCCP) 

Sigma 

XF Cell Mito Stress Kit Agilent 

 Molecular Biology Reagents 

1kb DNA Ladder Norgen 

5x GoTaq® PCR Buffer Promega 

Agarose MP Roche 

Bromophenol Blue Sigma-Aldrich 

Deoxynucleotide Triphosphates 

(dNTPs) 

Rovalab 

DEPC-Treated H2O Ambion 

ECL-Plus Western Detection Kit Amersham 

Ethidium Bromide Merck 

GelRedTM Nucleic Acid Stain Biotium 

Glycerol Sigma 

GoTaq® Hot Start Polymerase Promega 

Immobilon-P Transfer Membrane Millipore 

Magnesium Chloride (MgCl2) Promega 
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Mouse anti-Rabbit HRP Conjugated DakoCytomation 

Pyro Gold Reagents Qiagen 

Rabbit anti-Mouse HRP conjugated DakoCytomation 

Skimmed Milk Powder Marvel 

TaqMan ND1/B2M Probes Applied Biosystems 

TaqMan Universal PCR Mastermix Applied Biosystems 

Tris-Acetate-EDTA (TAE 10x) Buffer Sigma 

Trizma Base Sigma 

Tween 20  Sigma 

Xylene Cyanol Sigma 
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2.3 Tissue Culture  

 Human Fibroblasts 

Human fibroblasts were obtained from skin biopsies from patients and controls. Full 

consent was provided.  

Case 
Code 

Age at 
Biopsy 

Gender Phenotype POLG 
Mutations 

Location in 
POLG Gene 

M0528-12 6 months Male Control N/A N/A 

M0465-11 5 months Male Control N/A N/A 

M1171-13 8 months Male Control N/A N/A 

M0857-15 24 years Male Control N/A N/A 

M0858-15 26 years Male Control N/A N/A 

M0859-15 34 years Male Control N/A N/A 

M1453-12 1 month Male Alpers p.(Ala467Thr)/
p.(Thr914Pro) 

Linker/Polym
erase 

M1059-10 1 year Male Alpers p.(Leu428Pro)/
p.(Ala467Thr) 

Exonuclease/
Linker 

M1936-13 15 years Female Alpers p.(Ala467Thr)/
p.(Ala467Thr) 

Linker/Linker 

M0174-17 16 years Female Alpers p.(Trp748Ser)/
p.(Cys418Arg) 

Linker/Linker 

Table 2.1: Human Fibroblasts used in this study. Key: N/A=not applicable. 
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 General Cell Growth and Maintenance 

Cells were removed from liquid nitrogen stores or -80oC freezer and thawed by 

trituration with 0.5ml pre-warmed medium (see Table 2.2). The aliquot containing the 

cells was re-suspended to 9.5ml of pre-warmed medium. The cells were spun at 

124g for 4 minutes to release DMSO from the cells into the supernatant. The 

supernatant was discarded and the cells were re-suspended in 5-10ml fresh pre-

warmed growth medium (depending on the number of flasks to be seeded). An 

appropriate volume (3-10ml) of medium was added in each flask. The flasks were 

placed in an incubator (37oC, 5% CO2) until they reached 70-80% confluency. For 

quiescence studies, when fibroblasts reached 80% confluency, medium was 

replaced by fibroblast growth medium containing 0.1% Fetal Calf Serum (FCS) for 7 

days, before being harvested as described in the following section. Medium 

formulations are summarised below. 

Fibroblast Growth 
Medium 

Neuroinduction Medium Freezing Medium 

433ml MEM 

50ml FCS 

5ml MEM-vits 

5ml NEAA 

5ml L-glutamine 

5ml Pen/Strep  

5ml Sodium Pyruvate 

1ml Uridine 

12ml DMEM/F-12 Glutamax 

12ml Neurobasal Medium 

500µl N-2 Supplement 

1ml B-27 Supplement 

3.75µl CHIR99021 

5µl SB431542 

25µl hLIF 

 

4.5ml Growth Medium 

500µl DMSO 

Table 2.2: Medium formulations.  Key: FCS=foetal calf serum; vits=vitamins; NEAA=non-essential 
amino acids; pen/strep=penicillin/streptomycin; hLIF=human leukaemia inhibitory factor; 
DMSO=dimethyl sulfoxide; CHIR99021=GSK-3 inhibitor; SB431542=TGF-β inhibitor. 

 Harvesting Cells 

When the cells reached the desired confluency the medium was discarded and cells 

were washed in 5ml Phosphate Buffered Saline (PBS) to remove all traces of FCS 

which inhibits trypsin. The PBS was aspirated and 2ml of trypsin were added in the 

flask ensuring coverage of the entire cell surface. The flask was incubated for 2-5 

minutes at 37oC with 5% CO2 and then gently tapped to ensure cell detachment. A 

total of 8ml of pre-warmed medium was added into the flask to inhibit trypsin and 

contents were transferred to a universal. Cells were spun at 124g for 5 minutes and 

fully re-suspended prior to being collected or divided into the appropriate number of 
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flasks. For collection of cell pellets, cells were re-suspended in 1ml medium, spun at 

124g for 5 minutes before the supernatant was discarded and pellets were snap-

frozen in liquid nitrogen and stored at -80oC. Flasks were incubated (37oC, 5% CO2) 

until confluent.  

 Freezing and Storage 

To freeze cells, cells were harvested as described above. The 10ml medium 

containing cells were collected and spun at 124g for 5 minutes. The medium was 

aspirated and cells were re-suspended in freezing medium (see Table 2.2). Cells 

were then aliquoted into cryotubes (1ml/vial). Tubes were sealed and stored at -80oC 

freezer. For longer storage cells were transferred to liquid nitrogen.  

 Conversion of POLG-Mutant Human Fibroblasts into induced Neuronal 

Progenitors (iNPC’s) 

The protocol used has been previously published (Lu et al., 2013). A total of 104 cells 

were seeded into one well of a six-well plate. Cells were left in the incubator (37oC, 

5% CO2) overnight to attach. On the following day 1ml of fibroblast growth medium 

containing 27.5µl of a mixture of Sendai virus (Thermo Fisher Scientific) containing 

the transgenes which express factors hKOS (polycistronic vector, 7.5µl), c-Myc (10µl) 

and hKlf4 (10µl) was applied to the cells. After transduction, these viral vectors will 

cause cells to express the aforementioned genes, resulting in reprogramming. Cells 

were incubated (37oC, 5% CO2) for 24 hours prior to being washed with 0.5ml 

neuroinduction medium (see Table 2.2). The washing step was repeated 3x before 

1ml of neuroinduction medium was applied on the cells. Cells were then placed in an 

incubator at 39oC with 5% CO2 (higher temperature assists faster elimination of the 

virus from the cells). Cells were monitored daily and 1ml neuroinduction medium was 

replaced every 2 days. On day 7, cells were collected and re-plated into one well of a 

6-well plate pre-coated (2 hours) with 50µg/ml laminin (Invitrogen). Firstly, cells were 

washed with 0.5ml PBS before application of 300µl accutase (Thermo Fisher 

Scientific). Cells were placed in the incubator (37oC, 5% CO2) for 1-2 minutes to 

ensure detachment of cells. To inhibit accutase 1ml of fresh neuroinduction medium 

was added before cells were centrifuged at 200g for 4 minutes. Cells were then re-

suspended in 1ml fresh neuroinduction medium containing 10µM ROCK Inhibitor 

(Sigma). Cells were placed in one well of pre-coated laminin 6-well plate and 

returned to the incubator (39oC, 5% CO2). Medium containing ROCK inhibitor was 

replaced every 2 days. Once cells changed in shape and formed large sphere-like 
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structures (neurospheres), these were collected using a pipette and each 

neurosphere was then placed in one well of pre-coated laminin 48-well plate to 

expand and form colonies.  

2.4 Live-Cell imaging 

 Growing Cells 

Cells were seeded at a density 30,000-100,000 cells (depending on cell type) in iBIDI 

dishes (Thistle Scientific). Cells were maintained in 2ml normal growth medium and 

incubated (37oC, 5% CO2) for at least 24 hours prior to experimentation.  

 Live Cell Dyes 

For PicoGreen (Invitrogen) staining, cells were incubated with 3µl of PicoGreen in 

1ml normal growth medium for 45 minutes at 37oC and 5% CO2 prior to imaging. For 

Tetramethyl Rhodamine Methyl Ester (TMRM) (Invitrogen) staining, cells were 

incubated with 1ul 5nM TMRM in 2ml medium for 30 minutes. Cells were washed and 

left in normal growth medium prior to imaging.  

 Confocal Imaging  

Live-cell imaging was undertaken on an inverted point scanning confocal microscope 

(Nikon, A1R), housed in a 37oC and 5% CO2 controlled chamber. The microscope is 

fully equipped with a heated environmental chamber with the ability to set, maintain 

and monitor temperature, humidity CO2 and O2 levels according to imaging 

conditions. Cells were monitored using a 60x oil immersion lens with a 3.09x further 

confocal zoom and Galvano scanning. Z-stacking was performed. The system is set 

up for achieving optical thickness of 0.17µm and at least 15 Z-stacks were captured 

prior to analysis.  

 Mitochondrial Network Analysis 

Analysis of mitochondrial networks was carried out using ImageJ. Individual z-stacks 

obtained from confocal imaging were merged into a single image using a maximum 

projection technique. To smooth the image signal, a filter using deconvolution was 

applied. Images were then binarized to allow the automatic quantification of 

mitochondrial morphological parameters. These include: aspect ratio (AR; ratio 

between major and minor axes of an ellipse equivalent to a mitochondrion), which 

indicates mitochondrial length, perimeter (mitochondrial outline length) and area 

(area of mitochondrion). Using the aforementioned morphological characteristics, 
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form factor (FF, a measure of mitochondrial length and degree of branching) was 

calculated using the formula: perimeter2/4pi x area. FF and AR from patient 

fibroblasts were compared to controls. Statistical analysis was carried out using 

Prism GraphPad software (version 5.0). 

 Nucleoid Analysis 

Nucleoids were analysed by ImageJ. As with analysis of mitochondrial networks 

described above, z-stacks were merged into a single image using maximum 

projection method. A filter was applied, prior to binarization of images and the 

automatic quantification of morphological parameters. The number of nucleoids per 

cell analysed was taken into consideration. The number of nucleoids per cell in 

patient fibroblasts was compared to controls. Statistical analysis was performed using 

Prism GraphPad software (version 5.0).  

 Mitochondrial Membrane Potential and Motility Analysis.  

Mitochondria were visualised by TMRM as described in section 2.4.2. Confocal 

imaging was performed every second for ten minutes. Movie files were analysed 

using Imaris (version 7.2, Bitplane). For mitochondrial tracking, mitochondria were 

defined as surfaces and using a touching components algorithm these were tracked 

through multiple time points. Mapping of individual mitochondria was facilitated by 

intensity and size parameters prior to tracking. Mitochondrial membrane potential 

quantification was based on TMRM intensity and motility analysis was based on 

information generated on bi-directionality, size, volume and distance travelled. All 

parameters were then assessed in controls compared to patient-derived fibroblasts. 

Statistics were carried out using Prism GraphPad software (version 5.0).  

2.5 Bioenergetics 

 XF Extracellular Flux Analysis Experiments 

Fibroblasts were seeded at an optimal density 30,000-50,000 cells/well in 20 wells of 

a 24-well seahorse plate, 24 hours prior to experimentation. Each well was filled with 

100µl fibroblast growth medium. Four wells were left blank as background controls 

for each run. To allow the formation of a monolayer, fibroblasts were incubated for 3 

hours (37oC, 5% CO2) prior to topping up with medium to a final volume of 250µl. 

Cells were then lest overnight in the incubator (37oC, 5% CO2). At this time the 

cartridge was rehydrated. Each well was filled with 1ml calibration buffer and left 

overnight at 37oC without CO2.  
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On the day of the run, experimentation medium was prepared by supplementing 

fibroblast growth medium with 1mg/ml glucose, 2% FCS and 1mM pyruvate. The pH 

of the medium was set to 7.4 and then was warmed to 37oC prior to use. The wells of 

the seahorse plate were gradually replaced with experimentation medium by 

removing and replacing 200µl at a time to ensure adequate cell covering. The 

washing procedure was repeated three times with the final volume in each well 

topped up to 500µl. The plate was then left to equilibrate for 1 hour at 37oC without 

CO2. At this time, experimentation injections were prepared. Adjusted volumes of a 

total of 4 compounds were injected sequentially from ports A, B and C at appropriate 

concentrations according to manufacturer’s instructions (Table 2.3). The injection 

cartridge was then removed from the incubator and 75µl of each compound was 

added in the appropriate port. The cartridge containing the injections was then placed 

in the Seahorse Extracellular Flux Analyser (Agilent Technologies) to calibrate (20 

minutes). Following calibration, the experimentation plate containing the cells to be 

investigated was added and the selected protocol was run.  

Port Solution Function Concentration Volume 

A Oligomycin ATP Synthase Inhibitor 1µg/ml 75µl 

B FCCP Respiratory Chain Uncoupler 2µM 75µl 

C Rotenone/
Antimycin 

Complex I/III Inhibitor 0.5µM 75µl 

Table 2.3: Compounds used in seahorse extracellular flux analyser.  To assess different 
parameters of mitochondrial baseline function injections of oxidative phosphorylation (OXPHOS) 
inhibitors were used at appropriate concentrations. Key: FCCP=carbonyl-cyanide-p-
trifluoromethoxyphenylhydrazone.  

To control for variations in cell growth, after completion of the assay, each well was 

washed in PBS prior to fixation with 4% PFA for 10 minutes and storage in 500ml 

PBS at 4oC. Cell nuclei were visualised through Hoescht staining (30 minutes; 1:200 

dilution in dH2O). Imaging was performed at 10x magnification using Axiovert 200M 

(Zeiss). The cell nuclei were then quantified using the Matlab software. All seahorse 

measurements were then normalised to cell number. Statistical analysis was 

performed using Prism GraphPad software (version 5.0).  
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2.6 Neurohistopathological Methods in FFPE Brain Tissue 

 Patient Cohort 

The patients included in this study all had a clinical diagnosis of epileptic 

encephalopathy and were suspected to have Alpers’ syndrome. Patients fulfilled the 

criteria of Alpers based on the presentation of defined clinical features. Patients 

included in this study were characterised by the presence of seizures based on the 

diagnosis given by the clinician noted on the medical notes. Patient material was 

obtained from multiple sources. The Institute of Neurology, University of Vienna 

(Austria) provided FFPE tissue for patients 1 and 2. The Newcastle Brain Tissue 

Resource (NBTR) provided formalin-fixed and paraffin-embedded (FFPE) tissue for 

patients 3 and 4. FFPE tissue for patients 5, 6 and 7 was provided by University of 

Bergen (Norway). The diagnosis of patients 3 and 4 was confirmed by the genetic 

identification of POLG mutations. Genetic diagnosis was not available for patients 1 

and 2, therefore diagnosis of Alpers’ syndrome was based upon the clinical 

characteristics and gross neuropathology findings. A summary of the clinical, genetic 

and neuropathological details of patients is provided in Table 2.4 (patient numbering 

is the same throughout the thesis for consistency). POLG mutations are specified 

where known. Newcastle and North Tyneside Local Research Ethics Committee 

(LREC/2002/205) approved this work, and full consent for brain tissue retention and 

research was obtained. Not all brain regions were available for each patient and 

control and this is indicated by Tables 2.4 and 2.5. The available clinical histories for 

the patients considered are detailed below. The clinical histories for patients 5-7 were 

limited. Information regarding patients 5-7 has been previously published (Tzoulis et 

al., 2014).  

Patient 1 

Patient 1 was the second child of the family. A sister had previously died at 4 months 

of age after a similar clinical course. Patient 1 was born 14 days preterm and at birth 

he presented with a 20 minute bradycardia combined with apnoea, generalised 

cyanosis and required resuscitation. At the time, he was diagnosed with neonatal 

respiratory distress syndrome. Episodes of apnoea occurred and these were 

identified as a consequence of epileptic seizures.  

At 2 months of age, he developed swallowing problems, cyanosis and epileptic 

seizures combined with apnoeic episodes. A CT scan showed symmetrical 
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hydrocephalus. At 5 months of age, he showed hypotonia, developmental regression 

and had no gaze fixation. He died at 5.5 months of age during an epileptic seizure 

due to heart and respiratory failure. Post-mortem macroscopic evaluation of the brain 

showed diffuse cerebellar and cerebral atrophy in the medio-basal and temporo-

occipital lobes. Genetic diagnosis of POLG was not confirmed and there was no 

conclusive diagnosis.  

Patient 2 

Patient 2 was a boy born by caesarean section after a normal pregnancy. At 4 

months, his parents noticed a poor interaction with various environmental stimuli with 

no interest in toys, rapid fatigue and difficulties with drinking. He showed a 

stereotypical mouth movement accompanied by spasms of the upper and lower 

extremities.  

At 9 months, he showed variable muscle tone, he had no head or trunk control, no 

gripping and no lifting of the body. At 11 months, he developed strabismus with no 

gaze fixation, showed motor retardation and dyskinetic movements of the eyes 

(movement coordination of a 3-month old baby).  

An EEG scan showed hypsarrhythmia. Adrenocorticotrophic hormone (ACTH) 

therapy was started at this time but this was withdrawn after 4 weeks due to 

development of tachycardia, high blood pressure and fever. An acute focal 

neurological deficit appeared and the patient experienced pneumonia. Penicillin and 

IV therapy was commenced, however the patient died at 13 months of age due to 

pneumonia, hydro pericardia and liver steatosis. Macroscopic evaluation of the brain 

showed medium diffuse atrophy with hydrocephalus internus as a consequence of 

white matter thinning. Histological findings revealed infantile spongio-neuronal 

dystrophy Alpers type. 

Patient 3 

Patient 3 was the first female child of healthy unrelated parents and was born at full 

term. Family history of epilepsy was noted on the mother’s side. The patient 

developed normally until 11 months of age, where she presented at hospital with 

continuous right focal seizures which were treated with sodium valproate 

(anticonvulsants). After a few months free of seizures, they recurred following her 

MMR (measles, mumps and rubella) vaccination and she developed regression and 

failure to thrive. At 13 months old, she showed drowsiness, irritation, weight loss and 
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became jaundiced.  Epileptic episodes with intermittent vomiting continued. At 13 

months of age, she became sleepy, irritable, lost weight and became jaundiced. The 

jaundice was accompanied by clinical evidence of the following: abnormal clotting 

(easy bruising and bleeding gums), hypoproteinaemia (oedema) and enterohepatic 

obstruction (dark urine and pale stools). 

The patient was admitted to Newcastle General Hospital with encephalopathy and 

required ventilation. She developed hypoglycaemia and liver function tests were 

abnormal: bilirubin 113, alkaline phosphatase 243, alanine transaminase 189, 

albumin 31 and ammonia 70. In addition, she showed coagulopathy: 

prothrombin>200, partial thromboplastin>180, fibrinogen<0.1, platelets 60, 

haemoglobin 8.9 and white cell count 6.6. She was then referred to Birmingham 

Children’s Liver Unit to be considered for liver transplant. A CT scan at this time 

showed mild generalised cerebral atrophy with a low attenuation area in the right 

frontal lobe. She was diagnosed with Alpers and transferred back to Newcastle 

General Hospital for terminal care. Molecular genetic investigations confirmed the 

patient was compound heterozygous for p.(Ala467Thr) and p.(Gly848Ser) POLG 

mutations. Biochemical investigations in the muscle showed 50% activity for complex 

I and 75% activity for other complexes compared to normal controls. Histochemistry 

showed 20% COX-negative fibres in the muscle.  

Patient 4 

Patient 4 was born at term following a normal pregnancy. He was the first child of the 

family and he had a clinically normal younger sister. He developed normally until 17 

months of age when following a day of vomiting, fever and drowsiness he 

experienced Status Epilepticus (SE). A right hemiparesis resolved but hemianopia 

continued. An EEG scan was performed after a few months and this was normal. At 

19 months of age he developed seizure combined with a convergent squint and left-

sided neurological deficits. His speech and motor functions returned to normal but 

again hemianopia continued. A CT scan revealed atrophy in left occipital lobe and an 

EEG scan showed deterioration. One month later a similar readmission with visual 

loss was noticed. He was discharged on a ketogenic diet with anticonvulsants 

including sodium valproate. A few months later the patient showed evident feeding 

deterioration and drowsiness. The patient’s condition continued to deteriorate as he 

became unable to walk, had poor vision and experienced seizures in the right upper 

limbs. A respiratory chain disorder was suspected and molecular investigations 
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confirmed the patient was compound heterozygous for p.(Ala467Thr) and 

p.(Thr914Pro) POLG mutations. The patient died at 27 months of age due to 

pulmonary haemorrhage and respiratory failure. A case report of this patient was 

published describing the clinical course, a partial COX-deficiency in muscle and 

reduced activity of this enzyme was below 30% of the normal controls (Morris et al., 

1996).  

Patient 5 

Patient 5 (AL-1A in the report by Tzoulis and colleagues) presented with epilepsy at 

11 months of age. He developed Epilepsia Partialis Continua (EPC) and died in 

status epilepticus at 13 months of age. Liver enzymes were abnormal at death. 

Genetic testing revealed compound heterozygous p.(Ala467Thr)/p.(Gly303Arg) 

mutations (Tzoulis et al., 2014).  

Patient 6 

Patient 6 (AL-2A in the report by Tzoulis and colleagues) was a 7-month old boy who 

presented with explosive epilepsy. He died in Status Epilepticus within 1 month from 

the onset. Liver function tests were abnormal terminally. Genetic testing confirmed 

the presence of compound heterozygous p.(Ala467Thr)/p.(Gly848Ser) (Tzoulis et al., 

2014).  

Patient 7 

Patient 7 (AL-1B in the report by Tzoulis and colleagues) presented at 2 years with 

failure to thrive, which was followed by epilepsy. He died at age of 8 years from 

terminal seizures after prolonged illness. Genetic testing confirmed the presence of 

compound heterozygous p.(Ala467Thr)/p.(Gly303Arg) mutations (Tzoulis et al., 

2014). 
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Code Patient Source Age at 
Death 

Sex Fixation 
Length 

PMI Cause 

of Death 

POLG 
Mutations 

Brain 
Region 

1977/0047 Patient 1 Vienna 5.5 months Male Unknown Unknown Cardiac 

and respiratory 
failure 

Unknown Parietal 

1978/0171 Patient 2 Vienna 13 months Male Unknown Unknown Pneumonia Unknown Parietal 

1993/0149 Patient 3 NBTR 14 months Female 1 month 12h Hepatic failure p.(Ala467Thr)/
p.(Gly848Ser) 

Parietal 

1994/0014 Patient 4 NBTR 27 months Male 5 weeks 12h Pulmonary 
haemorrhage 
and respiratory 
failure 

p.(Ala467Thr)/
p.(Thr914Pro) 

Parietal 

O-04/25 Patient 5 Bergen 13 months Male 2 weeks Unknown SE p.(Ala467hr)/p.
(Gly303Arg) 

Occipital 
(Tzoulis et 
al., 2014) 

O-134 Patient 6 Bergen 7.8 months Male 2weeks Unknown SE p.(Ala467Thr)/
p.(Gly848Ser) 

Occipital, 
Frontal 
(Tzoulis et 
al., 2014) 

0-09/36 Patient 7 Bergen 8 years Male 2 weeks Unknown SE p.(Ala467Thr)/
p.(Gly303Arg) 

Frontal 
(Tzoulis et 
al., 2014) 

Table 2.4: Patient details used in the neuropathology study.  Key: SE=status epilepticus. 
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 Control Tissue 

To determine the extent of neuropathological changes in patients with Alpers, FFPE 

brain tissue from neurologically normal controls were used. Control sections were 

obtained from the Newcastle Brain Tissue Resource (NBTR) (Control 1), Edinburgh 

(Control 2, 3 and 8) and Bergen (Control 4, 5, 6 and 7). Neuropathological details for 

the controls are summarised in Table 2.5.  
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Code Control Source Age Sex Fixation 
Length 

PMI Cause of Death Brain region 

1992-36 Control 1 NBTR 13 
months 

Female 2-4 
weeks 

72 hours Occipital 
porencephaly 

Parietal 

SD020-07 Control 2 Edinburgh 22 years Female 7 days 44 hours Poisoning Parietal 

SD023-08 Control 3 Edinburgh 24 years Female 7 days 47 hours Suspension by 
ligature 

Parietal 

R25-12 Control 4 Bergen 4.5 
months 

Female 2 weeks Unknown SIDS Occipital, 
Frontal 

R28-12 Control 5 Bergen 1 month Male 2 weeks Unknown SIDS Occipital, 
Frontal 

R266-11 Control 6 Bergen 8 years Male 2 weeks Unknown Asphyxia Frontal 

R303-11 Control 7 Bergen 6y Female 2 weeks Unknown Drowning Frontal 

SD001-06 Control 8 Edinburgh 16 years Male 2 weeks 47 hours Suspension by 
ligature 

Frontal 

Table 2.5: Neuropathological details of the controls used in this study.  Key: PMI= post-mortem interval; SIDS= sudden infantile death syndrome; NBTR= 
Newcastle brain tissue resource. 
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 Immunohistochemical Staining Protocol 

FFPE tissue sections (5µm) were deparaffinised in a 60oC incubator for 20 minutes 

followed by incubation in HistoclearTM (National Diagnostics) for 2x5 minutes. 

Sections were rehydrated through a series of graded ethanols (2x100%, 95% and 

70%) for 5 minutes and finally washed thoroughly in distilled water for 10 minutes. To 

allow access to epitopes, antigen retrieval was performed. This involved either 

immersion of sections in Ethylenediaminetetraacetic Acid (EDTA; Affymetrix) (1mM; 

pH 8.0) and pressure cooking for 40 minutes or microwaving in boiling Tris-Sodium 

Citrate (10mM; pH 6.0) for 10 minutes depending on the primary antibody used. 

Endogenous peroxidase activity was blocked by incubating in 3% hydrogen peroxide 

solution for 20 minutes at RT. Sections were washed (3x5 minutes) with Tris-Buffered 

Saline with 0.1% Tween (TBST) prior to primary antibody application at the 

appropriate dilution (see Table 2.6) overnight at 4oC. On the following day, sections 

were washed (3x5 minutes) with TBST prior to treatment with a Polymer Penetration 

Enhancer (Diagnostic Biosystems) for 30 minutes at RT. Sections were washed with 

TBST (3x5 minutes) prior to application of Anti-Mouse/Rabbit PolyVue Horseradish 

Peroxidase (HRP) (Diagnostic Biosystems) for 30 minutes at RT, followed by a 

thorough wash in distilled water. To detect antibody binding to the epitope of interest 

sections were incubated with 3,3’-Diaminobenzidine Tetrahydrochloride (DAB; 

Sigma-Aldrich) chromogen for 5 minutes at RT. Sections were then washed in 

running water and counterstained in Mayer’s Haematoxylin (TCS Biosciences Ltd) for 

15 minutes. To achieve ‘blueing’ of the nuclei samples were immersed in Scott’s tab 

water for 30 seconds. Sections were finally dehydrated in a series of graded ethanols 

(70%, 95%, and 2x100%), cleared in HistoclearTM (National Diagnostics) and cover-

slipped with Distyrene Plasticizer Xylene (DPXTM, Merck). 
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Primary Antibody Target Dilution Antigen 
Retrieval 

Host and 
IgG Isotype 

Manufacturer Catalog 
No. 

Anti- Glutamic Acid 
Decarboxylase 65-
67 (GAD65-67) 

GABAergic 
neurons-GAD 67 
and Inhibitory 
axonal terminals 
GAD 65 

1 in 6,000 Microwave, 
10mmol tris-
sodium 
citrate (pH 
6) for 10 
minutes 

Rabbit 
Polyclonal 
IgG 

Sigma G5163 

Purified anti-
Neurofilament H  

(NF-H) 
Nonphosphorylated 
antibody (SMI-32-P) 

Glutamatergic 
pyramidal neurons 

1 in 6,000 Pressure 
cooker, 
1mM EDTA 
(pH 8.0) for 
40 minutes 

Mouse 
Monoclonal 
IgG1 

BioLegend 801701 

Anti-Glial Fibrillary 
Acidic Protein 
(GFAP) 

Astrocytes 1 in 15,000 Microwave, 
10mM Tris-
sodium 
citrate (pH 
6.0) for 15 
minutes 

Rabbit 
Polyclonal 
IgG 

DAKO Z0334 

Table 2.6: Primary antibodies used for immunohistochemistry. 
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 Two-Dimensional Quantification of Neuronal Density 

To assess the degree of neuronal loss in the occipital, parietal and frontal cortex 

tissue from patients with Alpers, 5µm FFPE patient and control tissue sections were 

subjected to a two-dimensional neuronal density protocol as previously described 

(Lax et al., 2012a). Quantification was performed using a modified light microscope 

(Olympus BX51) with motorised stage for automatic sampling, CCD colour video and 

stereology software (StereoInvestigator, MBF Bioscience, Williston, VT). For each 

patient and control an area of at least 10mm2 along the cortical ribbon was outlined, 

encompassing cellular layer I-VI at 4x magnification. Within this area GAD65-67-

positive interneurons and SMI-32P-positive pyramidal neurons were counted at x20 

magnification in three cortical areas spaced by at least 10mm2. Positive neurons 

were detected by dark brown chromogen. Neuronal densities were calculated as 

number per mm2. Patient mean neuronal densities were then compared to mean 

neuronal densities of controls. Statistical analysis was performed using Prism 

GraphPad software (version 5.0) 

 Immunofluorescent Identification of Respiratory Chain-Deficient 

Interneurons and Pyramidal Neurons 

Immunofluorescent staining was performed on FFPE brain tissue sections (5µm). All 

patient and control sections were stained under the same conditions.  Sections were 

dewaxed for 20 minutes in a 60oC incubator and rehydrated through a series of 

graded ethanols (2x100%, 95% and 70%) for 5 minutes. Antigen retrieval was 

performed by immersion of the sections in 1mM EDTA pH 8.0 using the 2100 

retriever unit (Electron Microscopy SciencesC, Hatfiled) and pressure cooked for 40 

minutes. Following a thorough wash in distilled water, sections were blocked in TBST 

containing 10% goat serum for 1 hour at RT. Samples were washed with TBST (3x5 

minutes). Mouse monoclonal and rabbit polyclonal primary antibodies were applied in 

appropriate dilutions overnight at 4oC. Sections were washed 3x5 minutes in TBST 

prior to incubation with a biotinylated secondary antibody (where appropriate). 

Sections were washed 3x5 minutes in TBST prior to incubation with IgG subtype-

specific secondary anti-mouse or anti-rabbit antibodies conjugates with Alexa Fluor 

405, 488, 546 and 647 (Life Technologies), diluted 1:100 in TBST containing 10% 

goat serum for 2 hours at 4oC, followed by a further 3x5 minutes washes in TBST. 

Sections were washed again 3x with TBST. To reduce autofluorescence (inherent in 

formalin-fixed brain tissue) and increase the signal-to-noise ratio, all sections were 
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subjected to 3% Sudan Black B solution (RAL Diagnostics) for 10 minutes at RT. This 

was followed by a final wash in running water. All sections were mounted in Prolong 

Gold (Life Technologies) and stored at -20oC. To allow background correction, 

immunofluorescent staining was performed on positive controls (all antibodies) and 

no primary antibody (NPA). All primary and secondary antibodies used for this study 

are listed in Table 2.7. 
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Primary 
Antibody 

Target Host and 
Isotype 

Dilution Antigen Retrieval Manufacturer Catalog 
No. 

Glutamic acid 
decarboxylase 
65-67 (GAD65-

67) 

GABAergic neurons-GAD 
67 and Inhibitory axonal 
terminals GAD 65 

Rabbit 
polyclonal 
IgG 

1:500 Pressure cooker, 
1mM EDTA (pH 8.0) 
for 40 minutes in 
2100 antigen retriever 

Sigma G5163 

Purified anti-
Neurofilament H 

(NF-H) 
Nonphosphoryla

ted antibody 
(SMI-32-P) 

Glutamatergic pyramidal 
neurons 

Mouse 
Monoclonal 
IgG1 

1:800 Pressure cooker, 
1mM EDTA (pH 8.0) 
for 40 minutes in 
2100 antigen retriever 

Biolegend 801701 

Complex I 
subunit 

NDUFA13 

NDUFA13 Mouse 
monoclonal 
IgG2b 

1:100 

 

Pressure cooker, 
1mM EDTA (pH 8.0) 
for 40 minutes in 
2100 antigen retriever 

Abcam ab110240 

Complex I 
subunit NDUFB8 

NDUFB8 Mouse 
monoclonal 
IgG1 

1:100 

 

Pressure cooker, 
1mM EDTA (pH 8.0) 
for 40 minutes in 
2100 antigen retriever 

Abcam ab110242 

Complex IV 
subunit I 

COX1 Mouse 
monoclonal 
IgG2a 

1:200 

 

Pressure cooker, 
1mM EDTA (pH 8.0) 
for 40 minutes in 
2100 antigen retriever 

Abcam ab14705 

Complex IV 
subunit IV 

COX4+COX4L2 Mouse 
monoclonal 
IgG2a 

1:200 

 

Pressure cooker, 
1mM EDTA (pH 8.0) 
for 40 minutes 

Abcam ab110261 
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Voltage-
dependent 

anion channel 1 
(VDAC1) 

Outer mitochondrial 
membrane protein 
(VDAC1/Porin) 

Mouse 
monoclonal 
IgG2b 

1:200 Pressure cooker, 
1mM EDTA (pH 8.0) 
for 40 minutes 

Abcam Ab14734 

Secondary 
Antibody 

Target Host Dilution Antigen Retrieval Manufacturer Catalog 
No. 

Biotin-XX Mouse IgG1 Goat 1:100 N/A Life 
Technologies 

A10519 

Biotin-SP Affini 
Pure Fcγ 

subclass 2b 
specific 

Mouse IgG Goat 1:100 N/A Jackson 
ImmunoResea
rch 

115-065-
207 

AlexaFluor® 647 Mouse IgG1 Goat 1:100 N/A Life 
Technologies 

A21240 

Alexa FluorTM 
488 

Mouse IgG2a Goat 1:100 N/A Invitrogen A21131 

Alexa FluorTM 
546 

Mouse IgG2b Goat 1:100 N/A Invitrogen A21143 

Streptavidin, 
Alexa Fluor® 

488 Conjugate 

Biotin N/A 1:100 N/A Life 
technologies 

S11223 
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Alexa FluorTM 
546 

Mouse IgG2a Goat 1:100 N/A Life 
technlogies 

A21133 

Alexa Fluor® 
405 

Rabbit IgG Goat 1:100 N/A Life 
Technologies 

A31556 

Streptavidin, 
Alexa Fluor® 

546 Conjugate 

Biotin N/A 1:100 N/A Life 
Technologies 

S11225 

Alexa Fluor® 
647 

Mouse IgG2b Goat 1:100 N/A Life 
Technologies 

A21242 

Table 2.7: Primary and secondary antibodies used for immunofluorescence staining. 
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 Confocal Microscopy and Image Processing 

Immunofluorescently stained sections from patients and controls were imaged using 

a confocal system (Nikon A1R). The system is equipped with a fully motorised 

inverted point scanning confocal microscope (Nikon), four spectrally unmixed lasers 

(405nm, 488nm, 561nm and 647nm), six objectives (air and oil) and the NIS-

Elements software (version 4.2, Nikon). Neurons were detected using an immersion 

oil 60x objective with numerical aperture 1.2 by their GAD65-67 or SMI-32P positive 

signal. At least 40 interneurons and 35 pyramidal neurons were identified and images 

were captured using 4x line averaging and 3.09x electronic zoom. Microscope and 

laser settings were kept constant throughout each experiment. The resonant 

scanning mode was selected as this enabled fast scanning at high resolution 

(512x512 frames). The background signal for all antibodies was detected using a no 

primary antibody tissue section. To allow quantification of respiratory chain protein 

expression within GAD65-67-positive interneurons and SMI-32P-positive pyramidal 

neurons, Volocity software (PerkinElmer) was used. Neurons were outlined manually 

according to their GAD65-67-positive 405nm (interneurons) or SMI-32P-positive 

647nm signal (pyramidal neurons). These were selected as ‘regions of interest’ 

(ROI). A protocol was then applied to recognise mitochondria within this ROI as 

determined by Porin or COX4 signal. The mean intensities for each fluorophore 

within the mitochondria were recorded and background corrected. 

 Statistics 

The background corrected mean intensities obtained from the quantification of 

respiratory chain proteins were not normally distributed therefore the data were 

normalised using natural log transformation. Linear regression of transformed 

NDUFB8 data against transformed Porin data, transformed NDUFA13 data against 

transformed COX4 data and transformed COX1 data against transformed Porin
 

data 

were performed to ensure the residuals of the regression were normally distributed. 

NDUFA13, NDUFB8 and COX1 were corrected for mitochondrial mass by dividing 

the values by those obtained from the mitochondrial mass marker they were used in 

conjunction with (Porin or COX4). For each interneuron and pyramidal neuron, the z-

score for the mitochondrial mass-corrected NDUFA13 (NDUFA13Z), NDUFB8 

(NDUFB8Z) and COX1 (COX1Z) values were calculated. Finally, interneurons and 

pyramidal neurons were classified based on standard deviation (SD) limits (for 

NDUFA13 Z, NDUFB8 Z or COX1 Z: overexpression if z >2SD, normal if z >-2SD, low 
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if z <-2SD, deficiency if z <-3SD and severe deficiency if z <-4SD). All statistical 

analyses were carried out using Prism GraphPad software (version 5.0).  

2.7 Molecular Methods 

 Preparation of Whole Cell Lysate 

Cells were harvested and pellets were re-suspended in 80-100μl lysis buffer. Lysis 

buffer was prepared with 50mM Tris/HCl pH 7.4, 130mM NaCl, 2mM MgCl2, 1mM 

PMSF and 1% Nonidet P-40 and one EDTA-free protease inhibitor cocktail tablet 

(Pierce) in 10ml final volume and was stored at -20oC. Samples were vortexed for 30 

seconds and centrifuged at 1,000g for 2 minutes at 4oC to remove nuclei and 

unbroken cells. The supernatant was then transferred to a fresh pre-chilled micro-

centrifuge tube, snap-frozen in liquid nitrogen and stored at -80oC.  

 Bradford Assay  

Quantification of protein concentration was performed using the Bradford assay. 

Samples were added to a final volume of 800μl dH2O (1μl of cell lysate) before the 

addition of 200μl of Bradford reagents (Bio-Rad) to the cell lysate or BSA standard 

curve samples (0, 2μg, 5μg, 15μg and 20μg). The samples were thoroughly mixed, 

then incubated for 5 minutes at RT, followed by the addition of 200μl aliquots of each 

sample into a 96-well plate. Samples were prepared in duplicates. The absorbance 

for each sample was measured at 595nm using an EIx800 automated plate reader 

(BioTek). The optical density and the BSA standard curve were used to calculate the 

average protein concentration in the samples.  

 SDS-PAGE 

SDS-PAGE was used to separate proteins according to their molecular weight. 

Resolving gels were prepared with 12% polyacrylamide (see Table 2.8) before a 

water layer above the resolving matrix was added allowing a smooth meniscus to 

form. This was removed after polymerisation was reached and a 3.75% stacking gel 

was prepared (see Table 2.8) and added on top. At this time samples were incubated 

with dissociation buffer (final concentrations: 6.25mM Tris/HCl pH 6.8, 2% SDS, 10% 

Glycerol, 0.01% bromophenol blue and 10mM DTT) and incubated at either 95oC for 

5 minutes or at 37oC for 20 minutes depending on the antibody to be used. Samples 

were then loaded in appropriate volumes. Protein ladder (5μl) was also loaded in 

each gel. Protein separation was then performed by SDS-PAGE in 1x running buffer 
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(192mM glycine, 0.1% SDS and 25mM Tris) at 200V using the Mini-PoteanR®Tetra 

Cell system (Bio-Rad).  

 12% Resolving gel 3.75% Stacking Gel 

30% Acryl/Bisacrylamide 
(29:1) 

2ml 0.625ml 

3.75M Tris/HCl pH 8.5 0.5ml - 

0.5M Tris/HCl pH 6.8 - 1.25ml 

dH2O 2.395ml 3.02ml 

10% SDS 50µl 50µl 

TEMED 5µl 5µl 

10% APS 50µl 50µl 

Final volume 5ml 5ml 

Table 2.8: Reagents and volumes used for SDS-PAGE. 

 Western Blotting and Immunodetection 

To facilitate immunodetection the proteins separated by SDS-PAGE were transferred 

from the polyacrylamide gel to a PVDF membrane (Immobilon-P, Milipore). The gel 

was incubated in transfer buffer (192mM glycine, 25mM Tris, 0.02% SDS and 15% 

methanol) to equilibrate. The PVDF membrane was firstly activated in 100% 

methanol for 15 seconds before washing with dH2O and then placed in transfer 

buffer. The gel and membrane was placed between double thickness filter paper 

(8.5cm x 5.5cm) and sponges pre-soaked in transfer buffer in a cassette. The 

cassette was placed in the transfer tank (Mini Trans-BlotTM, Bio-Rad) and filled with 

transfer buffer. The transfer of proteins from the gel to the PVDF membrane was 

performed at 100V for 1 hour at 4oC with the Bio-Rad System. To block non-specific 

antibody binding, the PVDF membrane was incubated in 5% milk/TBST (Tris-

buffered saline with Tween 20: 50mM Tris, 150mM NaCl, 0.05% Tween 20) for 1 

hour at RT with gentle agitation. The membrane was then incubated overnight at 4oC 

with primary antibodies diluted in 5% milk-TBST (see Table 2.9 for antibody 

dilutions). The membrane was washed 3x in TBST for 10 minutes with gentle 

agitation at RT. Following washing, the membrane was incubated with the 

appropriate HRP-conjugated secondary antibody (Dako Cytomation) for 1 hour at 

RT. The membrane was then washed 5x in TBST for 5 minutes at RT with gentle 

agitation prior to detection using the WesternCTM kit (Bio-Rad) according to 
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manufacturer’s instructions. Chemiluminescent signals were visualised using the 

Chemi-DocTM MP system (Bio-Rad). 

Antibody Type Dilution Manufacturer 

Anti-Beta-actin Mouse 
Monoclonal 

1:10,000 Sigma; A1978 

Anti-Polg Rabbit 
Monoclonal 

1:2,000 Abcam; ab128899 

Table 2.9: Primary antibodies used for immunodetection. 

 DNA Extraction from Human Fibroblasts 

Fibroblasts from T75 flasks were harvested as described in section 2.3.3. DNA 

extraction from fibroblasts was performed using a silica column-based QIAmp DNA 

Mini Kit (QIAGEN) following the manufacturer’s specifications. In brief: Cell pellets in 

1.5ml micro-centrifuge tubes were washed in PBS before re-suspending in a final 

volume of 200µl PBS. A volume of 20µl of QIAGEN Proteinase K was added. 200µl 

of Buffer AL were added followed by pulse-vortexing for 15 seconds. Samples were 

then incubated for 10 minutes at 56oC. Samples were briefly centrifuged to remove 

drops from the inside of the lid. 200µl of 100% ethanol was added to the sample, 

followed by vortexing for 15 seconds and brief centrifugation. The mixture from each 

sample was transferred carefully to the QIAamp Mini spin column (in a 2ml collection 

tube) without wetting the rim. Centrifugation at 6,000g for 1 minute followed. The tube 

collecting the filtrate was discarded and the QIAamp Mini spin column was placed in 

a clean 2ml collection tube. A total volume of 500µl of Buffer AW1 was carefully 

added in the column, centrifuged at 6,000g for 1 minute. The tube containing the 

filtrate was discarded and the spin column was added in a clean 2ml collection tube. 

This step was followed by the careful addition of Buffer AW2. The columns were 

centrifuged at full speed (20,000g) for 3 minutes. The collection tube was discarded 

and replaced by a clean 2ml collection tube. Samples were then centrifuged at 

20,000g for 1 minute. The columns were then placed in clean micro-centrifuge tubes. 

To collect the extracted DNA, 50µl of distilled water was added to the columns, 

incubated for 1 minute at RT and centrifuged at 6,000g for 1 minute. DNA 

concentrations were measured using the nanodrop ND-1000 spectrophotometer 

(Labtech International). DNA samples were then stored in 10µl aliquots at -20oC.  

  



83 
 

 DNA Extraction from FFPE Brain Tissue 

DNA was extracted from FFPE tissue in patients where a POLG diagnosis had not 

been confirmed. A silica-column based QIAamp DNA FFPE Tissue Kit (QIAGEN) 

was used. Tissue sections of 20µm thickness were placed in 1.5ml micro-centrifuge 

tubes. 1 ml of HistoclearTM was added to each sample and vortexed vigorously for 10 

seconds. Samples were centrifuged at full speed (20,000g) for 2 minutes at RT and 

the supernatant was discarded. To remove residual HstoclearTM, 1ml of 100% 

ethanol was added to the pellet prior to vortexing for 10 seconds. Samples were 

centrifuged at full speed (20,000g) for 2 minutes at RT. The supernatant was then 

discarded and the tubes were incubated at 37oC with the lid open for 10 minutes to 

ensure complete evaporation of residual ethanol. The pellets were then re-

suspended in 180µl Buffer ATL. 20µl proteinase K were added, followed by vigorous 

vortexing. To ensure complete lysis of the samples, tubes were incubated for 1 hour 

at 56oC. Samples were then incubated at 90oC for 1 hour. Micro-centrifuge tubes 

were briefly centrifuged to remove the drops from inside of the lid. 200µl of Buffer AL 

were added to each sample followed by vigorous vortexing. Then 200µl 100% 

ethanol were added followed again by vigorous vortexing prior to brief centrifugation. 

The lysates were carefully transferred to QIAamp MinElute columns (in 2ml collection 

tubes) without wetting the rim. Samples were centrifuged at 6,000g for 1 minute. The 

tube was discarded and replaced by a clean 2ml collection tube. 500µl Buffer AW1 

were carefully added in the columns prior to centrifugation at 6,000g for 1 minute. 

The collection was again discarded and replace by a clean tube. A total volume of 

500µl Buffer AW2 was carefully added to the column, centrifuged at 6,000g for 1 

minute before the tube containing the filtrate was discarded. To dry the membrane 

completely centrifugation at full speed (20,000g) for 3 minutes followed. The QIAamp 

MinElute columns were added in clean 1.5ml eppendorf tubes and 50µl Buffer ATE 

were applied to the centre of the membrane. Samples were incubated for 1 minute at 

RT before centrifugation at full speed (20,000g). To check DNA concentrations, the 

DNA samples were tested on the nanodrop ND-1000 spectrophotometer (Labtech 

International). The DNA samples were then stored at -20oC.  

 DNA Extraction from Frozen Brain Homogenate Tissue 

20µm sections of frozen tissue were lysed in Tris-Tween-Proteinase K lysis buffer 

(0.5M Tris-HCl, 0.5% Tween 20, 1% Proteinase K, pH 8.5). Tissue was homogenised 

in 50µl of lysis buffer, vortexed, centrifuged briefly and incubated at 55oC for 3 hours, 
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followed by deactivation of proteinase K at 95oC for 10 minutes in Thermomixer C 

(Eppendorf). Details regarding patients and controls from whom frozen tissue was 

examined is summarised in Table 2.10.  
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Patient/Control Patient 
Code 

Age at 
Death 

Gender Clinical 
Phenotype 

Genetic Diagnosis Available Brain 
Region 

Patient 8 2001/0017 24 years Female Alpers POLG 
p.(Ala467Thr)/p.(Trp748Ser) 

Occipital, Parietal, 
Frontal (Lax et al., 
2016) 

Patient 9 1997/0064 6 years Male Encephalopathy 
similar to Alpers 
with liver failure 

IDH3A 

(p.(Arg178His)/p.(Ala330Val)) 

Occipital, Parietal 

Patient 10 4217 45 years Female PEO and Epilepsy POLG  

p.(Ala467Thr)/p.(Trp748Ser) 

Frontal 

Patient 11 110-05 59 years Male Parkinsonism POLG 
p.(Ser1104Cys)/p.(Gly848Ser) 

Occipital (Betts-
Henderson et al., 
2009) 

Patient 12 141-97 50 years Male CPEO POLG  

p.(Ala467Thr) and p.(X1240Gln) 

Occipital (Lax et al., 
2012b) 

Patient 13 958-10 79 years Male CPEO, Ataxia POLG 

p.(Thr251Ile)/p.(Pro587Leu) and 
p.(Ala467Thr) 

Occipital (Lax et al., 
2016) 

Patient 14 224-11 55 years Male CPEO, Epilepsy 
and Ataxia 

POLG  

p.(Trp748Ser)/p.(Arg1096Cys) 
and p.(Glu1143Gly) 

Occipital (Lax et al., 
2016) 

Control 9 1985-647 6 years Female N/A N/A Occipital, Parietal 

Control 10 729-10 70 years Male N/A N/A Occipital 
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Control 11 118-09 55 years Male N/A N/A Occipital 

Control 12 891-11 81 years Male N/A N/A Occipital 

Control 13 1993-173 19 years Male N/A N/A Parietal, Frontal 

Control 14 1993-179 27 years Male N/A N/A Parietal, Frontal 

Table 2.10: Details of patients and controls used in the study of mtDNA damage.  Key: N/A=not applicable. 
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 Polymerase chain reaction (PCR) 

Pyrosequencing PCR was performed on DNA extracted samples from human FFPE 

brain tissue. All reactions were set under a UV hood (Applied Biosystems). DEPC-

treated H2O and pipettes that had been left for 30 minutes in the UV hood prior to 

experimentation were used. A master mix for each assay (50µl volume) was 

prepared as follows: 10µl 5x reaction buffer, 5µl 2mM dNTPs (dATP, dTTP, dCTP, 

dGTP), 6µl 25mM MgCl2 , 2.5µl 10µM forward primer, 2.5µl 10µM reverse primer, 

0.2µl 10/U/µl Hotstart GoTaq G2 polymerase and 21.6µl DEPC-treated H2O. The 

primers are listed in Table 2.11. The mastermix was vortexed for 15 seconds. The 

master mix was aliquoted to each well of the PCR plate, before 2µl of DNA were 

added to each well according to the plate layout. DNA from a wild-type control was 

used. A negative control was also used. This sample contained 2µl DEPC-treated 

H2O instead of DNA. The plates were then sealed, briefly vortexed and centrifuged. 

PCR reactions were performed on a thermal cycler (GeneAmp® PCR System 9600) 

under the following conditions: 95ºC for 10 minutes then 32 cycles of 95ºC for 30 

seconds, 62°C for 30 seconds and 72°C for 30 seconds. The final extension was at 

72ºC for 10 minutes. In order to obtain more DNA to enable subsequent genotyping 

by pyrosequencing, another PCR reaction on the product obtained from the first PCR 

round was preformed using a biotinylated primer for each pair of primers under the 

PCR conditions stated above (primers listed in Table 2.12).  
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POLG 
Mutation 
Primers 

Primer Sequence 

Exon7 
p.(Ala467Thr) 

Forward: 5’-
TGTAAAACGACGGCCAGTATGGGATGATATTGTTCCCATTT-3’ 

 

Reverse: 5’-
CAGGAAACAGCTATGACCAGTCCACTAGGGCAGGGCTA-3’ 

Exon 13 
p.(Trp748Ser) 

Forward: 5’-
TGTAAAACGACGGCCAGTACAGTTTCAGGCCCTTTTCC-3’ 

 

Reverse 5’-
CAGGAAACAGCTATGACCTGTGCCTGAAATCACACTCTG-3’ 

Exons 15+16 
p.(Gly848Ser) 

Forward: 5’-
TGTAAAACGACGGCCAGTAGTGAGGCTGGGTAATGGAG-3’ 

 

Reverse: 5’-
CAGGAAACAGCTATGACCCAGGGTCCTTTTCATGATCC-3’ 

Table 2.11: Primer sequences used to amplify the nuclear DNA regions spanning the sites 
containing the individual point mutations in the POLG gene.   

POLG Mutation 
Primers 

Primer Sequence Expected 
Product Size 

c.1399G>A 

p.(Ala467Thr) 

Forward (Biotynylated): 5’-
CCAGCGGGAGATGAAGAA-3’ 

171bp 

Reverse: 5’-
TACAGAGCCAGTCCACTAGGG-3’ 

c.2243G>C 

p.(Tr748Ser) 

Forward: 5’-CTCACAGACTGCCCGTGGT-
3’ 

142bp 

Reverse (Biotinylated): 5’-
CAGGACAGGCCATGACCC-3’ 

c.2542G>A 

p.(Gly848Ser) 

Forward: 5’-CTGCCCCAAGTGGTGACT-3’ 106bp 

Reverse (Biotinylated): 5’-
AGGGGCCAGAGGTACAGAG-3’ 

Table 2.12: Primer sequences used to amplify the previous PCR product. The forward or reverse 
primer was biotinylated which resulted in a biotinylated PCR product in one direction, which would 
enable genotyping of single base pair changes by pyrosequencing.  
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 Gel Electrophoresis 

Following amplification, PCR products were run through a 1.5% agarose gel (1.5g 

agarose in 100ml TAE). The agarose was heated in a microwave, before 2μl of 

ethidium bromide were added. The gel was prepared and allowed to cool. After 

cooling, 2μl of each sample was loaded into each well with the addition of 0.5μl 

loading buffer (0.25% (w/v) bromophenol blue, 0.25% (w/v) glycerol). To confirm 

fragment size 2μl of 100bp DNA ladder (New England Biolabs) was loaded on the 

gel. The gel was ran in TAE buffer at 75V to separate products. Visualisation of the 

bands was performed using the UV gel documentation system after intercalation of 

ethidium bromide into the DNA. 

 Assessment of mtDNA Copy Number and Deletions 

Relative levels of mtDNA copy number in fibroblasts were determined by real-time 

PCR using singleplex Taqman assays designed to target the mitochondrial MT-ND1 

gene (rarely deleted) and the nuclear B2M gene (GenBank accession number: 

NG_012920) as previously described (Grady et al., 2014). Primers and probes are 

listed in Tables 2.13 and 2.14 respectively. The reaction mixture consisted of 10µl 

TaqMan Universal PCR Mastermix (Applied Biosystems), 0.6µl 10µM B2M/ND1 

forward primer, 0.6µl 10µM B2M/ND1 reverse primer, 0.4µl 5µM B2M/ND1 fluorgenic 

probe and 2.2µl DETC-treated H2O. Each 20µl B2M reaction was supplemented with 

3mM MgCl2. Each reaction was completed in triplicate (final DNA concentrations: 

10ng/µl) and performed using the ABI PRISM 7000 Sequence Detection System 

(Applied Biosystems). Amplification conditions were: 50°C for 2 minutes, 95°C for 10 

minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. 

Standard curves were included for analysis of data. MT-ND1 and B2M. Taqman 

assays were analysed sequentially on the same real time machine. To minimise well-

to-well error, samples were located in the same wells on paired plates. The MT-

ND1/B2M copy number ratio was calculated for each sample well on each plate.  

For determination of mtDNA copy number and levels of deletions in brain 

homogenates a multiplex Taqman assay designed to target mitochondrial MT-ND1 

(rarely deleted) and MT-ND4 (commonly deleted) genes and a singleplex Taqman 

assay designed to target the nuclear B2M gene were performed. Primers and probes 

are summarised in Tables 2.13 and 2.14 respectively. The reaction mixture 

preparation and amplification conditions were the same as described above. 

https://www.ncbi.nlm.nih.gov/nuccore/NG_012920
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The mtDNA copy number and deletions were compared to controls and statistical 

analysis was carried out using Prism GraphPad (version 5.0). 

Primer 
pair 

Primer Sequence Location 

B2M B2M 
forward 

5’-
CCAGCAGAATGGAAAGT
GGAAAGTCAA-3’ 

n.8969-8990 

B2M 
reverse 

5’-
TCTCTCTCCATTCTTCAG
TAAGTCAACT-3’ 

n.9064-9037 

MT-ND1 MT-ND1 
forward 

5’-
CCCGCCACTACATCTCC
CACTACC-3’  

chrM: 3485-
3504 

MT-ND1 
reverse 

5’-
GAGCGATGGTGAGAGC
TAAGGT-3’ 

chrM:3532-
3553 

MT-ND4 MT-ND4 
forward 

5’-
CCATTCTCCTCCTATCC
CTCAAC-3’ 

chrM: 12087-
12109 

MT-ND4 
reverse 

5’-
CACAATCTGATGTTTTG
GTTAAACTATATTT-3’ 

chrM: 12170-
12140 

Table 2.13: Primer locations and sequences used for real-time PCR.  All primer sequences are 
based on the revised Cambridge reference sequence (NC_012920.1). 

Probe Sequence Location 

B2M FAM 5’-
ATGTGTCTGGGTTTCATCCA
TCCGACA-3’MGB 

n.9006-9032 

MT-ND1 VIC 5’-
CCATCACCCTCTACATCACC
GCCC-3’ MGB 

chrM: 3506-
3529 

MT-ND4 FAM 5’-
CCGACATCATTCCGGGTTTT
CCTCTTG-3’ MGB 

chrM: 12111-
12138 

Table 2.14: Probe locations and sequences used for real-time PCR.  Primer sequences are based 
on the revised Cambridge reference sequence (NC_012929.1). 
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Chapter 3 Epilepsy due to Mutations in the Mitochondrial 

Polymerase Gamma (POLG) Gene: A Systematic Review 

3.1 Introduction 

Mutations in the POLG gene result in a heterogeneous group of mitochondrial 

disorders known as POLG-related disorders, which are characterised by overlapping 

clinical features.  

POLG-related disorders have been shown to display both autosomal dominant and 

autosomal recessive inheritance. Autosomal dominant disorders present in 

adulthood, whereas autosomal recessive disorders can present at any age and 

encompass the predominant phenotypes of POLG-related disorders (Cohen, 2014).  

Alpers’ syndrome is an autosomal recessive neurodegenerative disease, is believed 

to be the most severe phenotype of the POLG-related disorders spectrum (Cohen, 

2014), and it is classified as an mtDNA depletion syndrome arising from disrupted 

mtDNA replication.  

The clinical hallmarks of Alpers comprise the triad of refractory seizures, 

psychomotor regression and hepatic dysfunction with or without hepatic failure. 

Hepatic failure most often occurs in the terminal phase of the disease rather than as 

a presenting feature (Saneto et al., 2013). 

Seizures, refractory to treatment are the heralding feature of Alpers. With regards to 

seizure type, these are most often myoclonic or focal motor and progress into 

Epilepsia Partialis Continua (EPC). The disease onset is bimodal with a typical peak 

at 2-4 years (range 3 months 8 years). Usually, development is normal after birth until 

the disease onset (ranging from a few months after birth to years). In some cases, 

psychomotor regression may occur before the clinical signs appear, however it is 

unclear whether this is specific to the effect exerted by POLG mutations (Saneto et 

al., 2013; Cohen, 2014). 

A second disease peak occurs at 17-24 years (range 10-27 years) and this is termed 

Juvenile Alpers. As with infant/childhood onset, young adults develop normally at 

birth until the clinical signs occur. Clinical features of Juvenile onset Alpers involve 

seizures/epilepsy, visual defects and migraine-like headaches with seizures/epilepsy 

being the heralding manifestation. Patients with Juvenile Alpers survive longer 
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compared to those presenting in infancy/childhood, who have a poorer prognosis, 

with few children surviving into their teens (Saneto and Naviaux, 2010; Cohen, 2014). 

Pathological features of Alpers have been described in post-mortem brain and liver 

tissue.  

Myocerebrohepatopathy Spectrum (MCHS), which is the rarest of POLG-related 

syndromes and has overlapping features with Alpers including encephalopathy and 

liver dysfunction. However, disease onset in MCHS tends to occur earlier (median of 

1 year) with seizure activity being milder and liver failure more devastating when 

compared to Alpers (Saneto et al., 2013; Cohen, 2014).  

Other POLG-related syndromes include Myoclonic Epilepsy Sensory Ataxia 

(MEMSA), Ataxia Neuropathy Spectrum (ANS) and Autosomal recessive or dominant 

progressive External Opthalmoplegia (arPEO, adPEO). Despite the clinical variability 

of those phenotypes, these are caused by the same spectrum of POLG mutations 

which are associated with Alpers.  

POLG mutations result in disrupted mtDNA replication, through yet undefined 

mechanisms. However, it has been shown that POLG dysfunction results in mtDNA 

depletion ultimately leading to OXPHOS impairment and subsequent cellular failure.  

To date over 200 mutations have been identified as a cause of POLG-related 

disorders. The pathogenic variants p.(Ala467Thr) and p.(Trp748Ser) have been 

classified as the most common in Caucasians (0.5-1% prevalence) (Hakonen et al., 

2007). The p.(Ala467Thr) mutation has been also found as the most common in the 

paediatric population (Horvath et al., 2006).  

To date, over 60 POLG mutations have been described to be causative of Alpers, 

which can exist in either homozygous or compound heterozygous states. Research 

has provided some insight into genotype to phenotype correlations, although these 

remain poor. For example, homozygous p.(Ala467Thr) and p.(Trp748Ser) mutations 

have been associated with later onset and better survival when compared to 

compound heterozygous p.(Ala467Thr)/p.(Trp748Ser) mutations (Tzoulis et al., 

2006). The reasons behind this observation are unclear as homozygous mutations 

may also be present in patients with Alpers who present early and are severely 

affected by the disease (Horvath et al., 2006).  

In contrast, compound heterozygous mutations have been linked to more severe 

disease and worse prognosis. However, it is not understood how identical compound 
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heterozygous mutations can lead to mild phenotype in one patient but severe 

disease in another. It is believed that the location of the mutation within the domains 

of POLG may partly dictate the phenotype; however other unknown mechanisms are 

also involved. As such genotype to phenotype correlations are still lacking. 

Understanding the genotypic and phenotypic variability of POLG-related disorders 

remains challenging.  

3.2 Aims and Objectives 

This chapter systematically reviews the tissue-specific effects of POLG-mutations in 

patients with clinically and genetically confirmed (autosomal recessive POLG 

mutations) defined Alpers or similar encephalopathies with or without hepatopathy 

reported in the literature.  

The aim of this work is to better understand the molecular pathophysiology of Alpers 

and POLG-related epilepsy; through the evaluation of the genetic, histopathological 

and molecular characteristics of the disease.  

The systematic review was performed by myself and Dr. Yi Ng. Part of this work has 

been published in a peer-reviewed journal (Anagnostou et al., 2016). The article can 

be found in Appendix A. The specific objectives of this study are summarised below.  

1) Identify patients in the literature with Alpers or other POLG-related epilepsy 

syndromes with confirmed genetic diagnosis of POLG mutations. 

2) Review the POLG pathogenic variants identified. 

3) Summarise the macroscopic and microscopic findings of affected tissues 

(brain, liver and muscle).  

4) Evaluate and compare the effect of POLG mutations on mtDNA content and 

OXPHOS proteins on different tissue types (brain, muscle, liver, blood and 

fibroblasts). 

5) Compare childhood disease to Juvenile/adult disease.  

6) Identify any genotype to phenotype correlations.  
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3.3 Methods 

 Search strategy 

An electronic search using Ovid Medline and Scopus databases was performed. 

Search terms were ‘POLG’, ‘polymerase gamma’, ‘POLG’, ‘Alpers’ syndrome’ and 

‘Alpers- Huttenlocher syndrome’. The literature search was limited to studies 

published from January 2000 to January 2015 involving humans and written in 

English. A manual search on studies published from January 2015 to August 2017 

was also performed. Articles were selected if the title and/or abstract included one of 

the following terms: Alpers syndrome, hepatocerebral syndrome/disease, 

encephalopathy, seizures, epilepsy, status epilepticus or hepatic/liver 

dysfunction/failure. Only patients with recessive homozygous or compound 

heterozygous POLG mutations were considered. To confirm the pathogenicity of any 

given rare allelic variant the Human DNA Polymerase Gamma (POLG) Mutation 

Database webpage (Copeland, n.d.) was used for cross-reference. Patients with 

clinically diagnosed adPEO, PEO and/or Parkinsonism harbouring a single POLG 

variant in a heterozygous state were excluded from the study.  

 Data extraction and statistics 

Articles were screened for the following information: number of patients, clinical 

details (age of onset, age of death, gender), POLG variants, histopathology, mtDNA 

content and OXPHOS biochemistry in various tissue types where available. 

Statistical analysis was carried out using the statistical software Minitab version 17, 

SPSS version 23.0 and GraphPad Prism version 5.0. Descriptive statistics were used 

for summative information of data. Data were presented as mean ± standard 

deviation (SD). Kaplan-Meier survival analysis was also performed. Statistical 

significance level was considered when p<0.05.  

3.4 Results 

 Systematic search results 

The initial search resulted in 64,272 articles from combined databases (Ovid=22,721 

and Scopus=41,551). A total of 278 articles met the inclusion criteria and were used 

for further analysis. After removing the duplicates and only including cases with two 

pathogenic variants in POLG gene, 372 patients from 72 articles were selected for 

evaluation. (see Figure 3.1). An additional 5 patients were selected from a manual 

search from two publications, therefore a total of 377 patients from 74 articles were 
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selected for further evaluation. A complete list of the patients included in the analysis 

of POLG pathogenic variants can be found in Appendix B.  

 

Figure 3.1: Flow chart of literature search and selection. 

 Summary of clinical findings 

The age of onset ranged from infancy to late adulthood (<30 days to 64 years, 

n=270). The median age was 2 years. From the patients analysed 51% of the cases 

presented with seizures (n=191). With regards to the paediatric patients (n=281), 

26% of the cases (n=73) presented with the following features: hypotonia, 

developmental regression or failure to thrive. These features were evident prior to 

seizure presentation. Liver involvement was rarely reported as a presenting 

manifestation (5% of cases) and was usually associated with pre-terminal phase. 

From the patients considered, 48% (n=181) of the cases were reported as Alpers or 

encephalopathy fulfilling some of the diagnostic criteria of Alpers, including seizure 

and liver involvement.  

 POLG Genetics 

A total of 128 POLG pathogenic variants were identified in the patients considered. 

The 10 most common pathogenic variants with their frequencies and their location 

within the POLG gene are illustrated in Figure 3.2. The three most common POLG 
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variants identified were the p.(Ala467Thr), p.(Trp748Ser) and the p.(Gly848Ser). The 

frequency of the reported genotypes is depicted in Figure 3.3.  

 

Figure 3.2: The ten most common POLG pathogenic variants identified in literature and their 
location within POLG domains.  Domains include: exonuclease (pink), linker (yellow) and 
polymerase (green). N-terminal (blue). The three most common mutations are linker p.(Ala467Thr) 
(38%) and p.(Trp748Ser) (18%) followed by polymerase p.(Gly848Ser). (7%). Exonuclease 
p.(Thr251Ile)* (1%) and p.(Pro587Leu)* (1%) are commonly present in the same allele. Figure 
adapted from (Anagnostou et al., 2016). 

 

Figure 3.3: Pie chart demonstrating the frequencies (%) of pathogenic POLG recessive 
mutations identified in the literature.  Homozygous and compound heterozygous p.(Ala467Thr) 
mutations are the most commonly reported (58%). Homozygous and compound heterozygous 
p.(Trp748Ser) account for 19% of the reported cases. Compound heterozygous p.(Gly848Ser) are 
infrequently reported (2%). Compound heterozygous p.(Trp748Ser)/p.(Gly848Ser) are uncommon 
(4%). Other pathogenic recessive POLG mutations account for only 16% of the cases considered. 
Modified from (Anagnostou et al., 2016). 
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 Histopathology 

A. Brain 

Neuropathological information for 30 patients was extracted, of whom 26 were post-

mortem (Van Goethem et al., 2004; Kollberg et al., 2006; Uusimaa et al., 2008; Boes 

et al., 2009; Hunter et al., 2011; Scalais et al., 2012; Sofou et al., 2012; Tzoulis et al., 

2014; Montassir et al., 2015; Rajakulendran et al., 2016) and four were biopsies (Bao 

et al., 2008; Wiltshire et al., 2008; Nolte et al., 2013; Rajakulendran et al., 2016). 

From the 30 patients identified, 22 were infants/children at disease onset (0-9 years) 

and eight were adolescents/adults (12-39 years). The majority of the patients 

considered (n=24, 80%) had Alpers. 

Macroscopic findings from post-mortem brain of 12 patients were identified. Seven 

were infants/children (age of death: 0.67-5.5 years), three adolescents (age of death: 

14-17 years) and two adults (20 and 39 years) (Kollberg et al., 2006; Uusimaa et al., 

2008; Sofou et al., 2012; Montassir et al., 2015). The younger group exhibited a 

reduction in the cortical thickness with focal softening in the occipital lobes (Kollberg 

et al., 2006; Sofou et al., 2012). The brain of one infant demonstrated massive 

oedema with caudal necrosis (Montassir et al., 2015). The macroscopic examination 

from a 5.5-year old patient was unremarkable (Rajakulendran et al., 2016).  

The adolescent group demonstrated a decrease in cortical thickness with cortical 

softening in occipital and parietal lobes (Kollberg et al., 2006; Sofou et al., 2012). The 

hippocampus, basal ganglia and thalami were well preserved in one patient (Van 

Goethem et al., 2004) while in another, ischaemia of the thalamus was evident 

(Uusimaa et al., 2008). The brain of a 20-year old patient with Alpers revealed mild 

atrophy of the cerebellar vermis (Uusimaa et al., 2008), while the cerebellar and 

cerebral hemispheres in a 39-year old patient with other POLG-related epilepsy 

syndrome were preserved (Van Goethem et al., 2004).  

Microscopically, the posterior parts of the brain were most frequently affected 

comparatively to anterior brain areas. The majority of the patients demonstrated 

histologic changes in the brain cortex (n=22) (Kollberg et al., 2006; Bao et al., 2008; 

Uusimaa et al., 2008; Wiltshire et al., 2008; Boes et al., 2009; Hunter et al., 2011; 

Scalais et al., 2012; Sofou et al., 2012). Changes include: neuronal loss (specific 

neuronal subtype not provided), spongiosis (as a consequence of end-stage disease) 

and astrogliosis; which were reported to be most prominent in the occipital lobes 
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(n=8) (Kollberg et al., 2006; Bao et al., 2008; Hunter et al., 2011; Scalais et al., 2012; 

Sofou et al., 2012).  

Similar changes have been observed in the parietal lobes of three paediatric Alpers 

patients (Hunter et al., 2011; Sofou et al., 2012; Rajakulendran et al., 2016) and in 

the frontal lobes of an adolescent patient with Alpers (Kollberg et al., 2006); however 

to a lesser extent. White matter changes such as gliosis and swollen astrocytes 

known as Alzheimer Type II glia and spongiosis have also been reported (n=7) 

(Kollberg et al., 2006; Bao et al., 2008; Montassir et al., 2015; Sofou et al., 2015). 

Alzheimer Type II astrocytes are reactive astrocytes characterised by pale nuclei with 

a rim of chromatin, enlarged cytoplasm and decreased GFAP immunostaining 

(Aldridge et al., 2015). Alzheimer Type II astocytes have been reported in other 

diseases including hepatic encephalopathy (Norenberg, 1987) and Wilson’s disease 

(Bertrand et al., 2001).  

The hippocampus was well preserved in one patient with Alpers (Scalais et al., 

2012), however neuronal loss in CA1 was evident in three patients, all diagnosed 

with Alpers (Kollberg et al., 2006; Sofou et al., 2015; Rajakulendran et al., 2016). In 

addition, one of the patients exhibited gliosis of CA1 and a less severe neuronal loss 

in CA2, CA3 and CA4 (Rajakulendran et al., 2016).  

Histologic abnormalities of the cerebellum were commonly identified (n=19) (Van 

Goethem et al., 2004; Kollberg et al., 2006; Uusimaa et al., 2008; Hunter et al., 2011; 

Scalais et al., 2012; Sofou et al., 2012; Tzoulis et al., 2014; Montassir et al., 2015). 

These consist of: mild to severe Purkinje cell loss, spongiosis, proliferation of 

Bergmann glia, loss of granular cells and neuronal loss and gliosis of dentate and 

olivary nuclei. These changes were variable in terms of severity among patients. 

Spongiosis in the white matter of the cerebellar cortex was observed in two patients 

with Alpers (Boes et al., 2009; Sofou et al., 2012).  

Microscopic abnormalities of the thalamus and basal ganglia (substantia nigra and 

globus pallidus) have been commonly reported (n=11). These changes are milder 

compared to brain cortex and consist of: neuronal loss, spongiosis, gliosis, capillary 

proliferation and Type II Alzheimer astrocytes/glia. One patient demonstrated linear 

necrosis of the caudate nucleus. Normal histology of the basal ganglia is infrequently 

reported (n=3).  
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Changes in the brainstem have rarely been reported (n=2) (Wiltshire et al., 2008; 

Boes et al., 2009). However, these severe neuronal loss and bleeding have been 

detected in two Alpers patients 17.5 and 17.75 years old respectively. Interestingly 

the brainstem of a 5.5-year old patient with Alpers was unremarkable (Rajakulendran 

et al., 2016), suggesting that pathology of the brainstem may be a characteristic of 

older patients.  

Ultrastructural analysis by electron microscopy (EM) revealed evidence of 

mitochondrial dysfunction. Characteristic morphological alterations comprise 

increased number of mitochondria with atypically short, curved cristae with deep 

invaginations of the outer membranes. However, these features were detected in 

only one brain biopsy from a 17-year old patient with POLG-related epilepsy (Nolte et 

al., 2013). In addition, immunohistochemistry revealed complex I and IV deficiencies 

(n=5) in different brain areas, however deficiencies were more severe in the 

substantia nigra, dentate nucleus, hippocampus and cerebellum (Tzoulis et al., 

2014). The histological abnormalities found in patients with POLG-related epilepsy 

are summarised in Table 3.1. 
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Cerebral cortex Cerebellum Basal ganglia Thalamus Brainstem Hippocampus 

Neuronal loss, 
spongiosis and 
astrogliosis. Changes 
most prominent in 
occipital lobes (n=8). 
Parietal lobes affected 
to a lesser extent (n=3). 

Changes (n=19) 
including: 
Purkinje cell 
loss, spongiosis, 
proliferation of 
Bergmann glia, 
loss of granular 
cells 

Normal (n=3) 

Neuronal loss, 
spongiosis, gliosis, 
capillary 
proliferation. All 
these changes to a 
lesser extent 
compared to the 
cerebral cortex 
(n=6). 

Vacuolisation, 
neuronal loss, 
astrocytosis 
and 
astrogliosis 
(n=5). 

Normal 
(n=1) 

Severe 
neuronal 
loss and 
bleeding 
(n=2). 

Severe 
neuronal loss 
(n=3) and 
gliosis (n=1) in 
CA1. Moderate 
neuronal loss 
in CA2, CA3 
and CA4 
(n=1). 

Table 3.1: Summary of histological abnormalities identified in different brain regions (including cerebral cortex, cerebellum, basal ganglia, thalamus, 
brainstem and hippocampus) from patients with Alpers and POLG-related epilepsy.  Key: n=number of patients. 
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B. Liver 

Histological data from the liver of a total of 31 patients (11 biopsies and three post-

mortem) was available for review. The tissue source for 17 patients was not specified 

in the literature (Davidzon et al., 2005; Kollberg et al., 2006; Boes et al., 2009; Roels 

et al., 2009; Stewart et al., 2009; Hunter et al., 2011; Mangalat et al., 2012; Uusimaa 

et al., 2013; Simon et al., 2014; Montassir et al., 2015). Of the patients considered, 

29 were infants/children (0-8.5 years) with Alpers, one 12-year adolescent and one 

39-year old adult (Stewart et al., 2009).  

Only macroscopic analysis of the liver from 1 patient was available. Examination 

showed an atrophic liver (200g) with a hard, irregular surface (Montassir et al., 2015). 

Microscopically, prominent liver abnormalities were detected in 29 patients. These 

include: microvesicular fatty changes, microvesicular steatosis and fibrosis (Davidzon 

et al., 2005; Nguyen et al., 2005; Roels et al., 2009; Hunter et al., 2011; Uusimaa et 

al., 2013; Montassir et al., 2015). Other changes such as necrosis, bile duct 

proliferation, oncocytosis, cytoplasmic vacuolization and metaplasia of parenchyma 

were less frequently reported (Nguyen et al., 2005; Hunter et al., 2011; Uusimaa et 

al., 2013; Simon et al., 2014). Two paediatric patients with Alpers (aged 1.25 years 

and 10 years respectively) demonstrated normal liver histology (Stewart et al., 2009; 

Hunter et al., 2011).  

Immunohistochemistry revealed a mosaic of cytochrome c (COX) activity in the liver 

of 6 infants (0-5 years) and two older patients, 12 and 39 years old, respectively 

(Kollberg et al., 2006; Boes et al., 2009; Roels et al., 2009; Stewart et al., 2009). 

‘Ragged-red’ changes (which are a consequence of increased mitochondrial density 

accumulating at the periphery of hepatocytes) were only observed in the two older 

patients indicating that these features may be uncommon in the younger population 

(Stewart et al., 2009).  

Moreover, hepatic-specific ultrastructural abnormalities of the mitochondria in eight 

patients with early-onset Alpers (0-3 years) were observed by electron microscopy. 

These changes involved in all cases densely packed, enlarged and abnormally 

shaped mitochondria accompanied by pale matrix and displacement/absence of 

cristae (Roels et al., 2009; Hunter et al., 2011; Mangalat et al., 2012). The 

abnormalities in the liver of patients are summarised in Table 3.2. 
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C. Muscle 

In terms of muscle histology, a total of 41 biopsies or post-mortem tissue were 

considered, of whom 29 (74%) suffered from Alpers syndrome. The majority of the 

patients identified had early onset (0-6 years), while eight patients had later onset 

(11-64 years). Normal histological findings were detected in nine patients, of whom 

all were infants (0-2 years) except one Juvenile case (17 years) (McFarland et al., 

2009; Hunter et al., 2011; Isohanni et al., 2011; McCoy et al., 2011; Sofou et al., 

2012; Uusimaa et al., 2013; Rouzier et al., 2014). Interestingly, two patients with 

Alpers with severe histological abnormalities in the liver had normal muscle histology 

(Hunter et al., 2011; Uusimaa et al., 2013a).  

Microscopic, non-specific changes were detected in 29 patients including: mild to 

moderate lipid accumulation, myopathy, type II atrophy, increased glycogen, fibre 

necrosis and microvesicular steatosis. Mitochondrial abnormalities similar to those 

observed in the liver were also evident; as revealed by EM (n=5) (Van Goethem et 

al., 2004; Kollberg et al., 2006; Uusimaa et al., 2008; Stewart et al., 2009; Cardenas 

and Amato, 2010; Hunter et al., 2011; Isohanni et al., 2011; Cheldi et al., 2013; Nolte 

et al., 2013; Uusimaa et al., 2013; Rouzier et al., 2014; Simon et al., 2014). 

Histochemical investigations showed mosaic COX-negative fibres (n=11) and 

‘ragged-red’ fibres (n=8) (Kollberg et al., 2006; Stewart et al., 2009; Hunter et al., 

2011; Sofou et al., 2012; Cheldi et al., 2013; Uusimaa et al., 2013; Woodbridge et al., 

2013; Simon et al., 2014). The aforementioned histological abnormalities in muscle 

were observed in the presence of liver abnormalities (n=7) (Kollberg et al., 2006; 

Stewart et al., 2009; Hunter et al., 2011; Uusimaa et al., 2013; Simon et al., 2014). Of 

interest, the presence of fibre necrosis, COX-deficient fibres and ‘ragged-red’ fibres 

in a patient with MELAS-like phenotype (64 years); suggests that such histological 

features in the muscle are not specific to Alpers (Cheldi et al., 2013). All histological 

abnormalities found in the muscle of the patients considered are summarised in 

Table 3.2. 
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Brain Liver Muscle 

Histopathology: 
(n=22), neuronal loss, 

gliosis, spongiosis, 
astrocytosis (most 

prominent in occipital 
lobes and 

cerebellum), 
substantia nigra, 

thalamus, brainstem, 
degeneration of 
spinal cord and 

variable CI and CIV 
deficiencies. 

 

EM microscopy: 
(n=1), enlarged 

mitochondria with 
short cristae with 

deep invavigations of 
the outer membrane. 

Normal Histology : (n=2) 

 

Microscopic Abnormalities: 
(n=29), macro/micro-
vesicular steatosis, 

fibrosis, cirrhosis, necrosis, 
bile duct proliferation. 

 

Histochemistry: mosaic 
COX-deficient fibres (n=8), 

ragged-red fibre-like 
structures (n=2) 

 

Normal Histology: (n=9) 

 

Microscopic 
Abnormalities: (n=29), 
mild to moderate lipid 
accumulation, type II 
atrophy, myopathy, 

elevated 
lipofuscin/glycogen, fibre 
necrosis, microvesicular 

steatosis. 

 

Histochemistry: COX-
negative fibres (n=11) 
and ragged-red fibres 

(n=8). 

 

EM microscopy: (n=5), 
enlarged mitochondria 
with abnormal shape, 

cristae displacement and 
abnormal mitochondrial 

clustering. 

Table 3.2: Summary of histopathological findings in brain, liver and muscle from patients with 
Alpers and POLG-related epilepsy.  Key: EM=electron microscopy; CI= complex I; CIV= complex IV; 
COX=cytochrome c oxidase; n=number of patients. 

 MtDNA Copy Number 

A. Brain 

The mtDNA copy number from brain biopsies has not been reported to date. Post-

mortem analysis from the frontal cortex of a single patient with Alpers revealed a 

30% mtDNA copy number reduction (Ferrari et al., 2005). Interestingly this patient 

was homozygous for p.(Ala467Thr) with disease-onset at 7 years of age and died at 

the age of 19. Another study performed on grey matter tissue homogenates and 

micro-dissected neurons from multiple brain areas (including: frontal, hippocampus 

and cerebellum) showed marked mtDNA depletion (20-30% of age-matched control 

mean). There was no difference detected in the mtDNA depletion among different 

brain regions (Tzoulis et al., 2014).   
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B. Liver 

The findings of mtDNA copy number in liver tissue were reviewed for a total of 40 

patients (age of onset: 0-12 years), of whom 34 (85%) had Alpers. Liver samples 

examined were biopsies or taken at post-mortem.  

The mtDNA copy number was severely reduced in all cases. Depletion of mtDNA 

copy number (3-29% of control mean) was remarkable in 37 cases (92.5%) 

(Davidzon et al., 2005; Sarzi et al., 2007; Ashley et al., 2008; Wiltshire et al., 2008; 

Boes et al., 2009; Lutz et al., 2009; Taanman et al., 2009; Hunter et al., 2011; 

Schaller et al., 2011; Tang et al., 2011; Scalais et al., 2012; Montassir et al., 2015) 

and interestingly three patients with Alpers showed significant mtDNA copy number 

loss (30-36% of control mean) (Ashley et al., 2008; Rouzier et al., 2014). It is 

intriguing that the mtDNA copy number in one patient was 55% of control mean at 

the initial biopsy and dramatically depleted at post-mortem (10% of control mean). 

This patient with Alpers survived with the condition 12.5 years and was homozygous 

for p.(Ala467Thr) mutation (Boes et al., 2009). A significant correlation between early 

age of death and lower mtDNA copy number in liver was found (Spearman r=0.43, 

p=0.04, Figure 3.4A). In addition, a trend of positive correlation between short 

disease duration and reduced mtDNA copy number was observed, although it failed 

to reach significance (Spearman r=0.39, p=0.06, Figure 3.4B). 



105 
 

 

Figure 3.4: Correlation between mtDNA copy number in the liver and age of death/disease 
duration in patients with Alpers and POLG-related epilepsy reported in the literature. (A) Scatter 
plot showing a significant correlation between mtDNA depletion and early death (Spearman r=0.43, 
p=0.04). (B) Scatter plot showing a trend (albeit not significant) of decreased mtDNA copy number in 
liver with short disease course (Spearman r=0.39, p=0.06). 

C. Muscle 

The mtDNA copy number was reported in muscle samples of 41 patients, of whom 

26 (63%) were paediatric (0-9 years) diagnosed with Alpers. The findings of mtDNA 

copy number in the muscle of the patients considered was highly variable. Only four 

samples, taken from patients with Alpers were within the normal mtDNA copy number 

range (70-93% of control mean) (Kollberg et al., 2006; Bao et al., 2008; Schaller et 

al., 2011; Tang et al., 2011). A total of 14 patients showed mild to moderate mtDNA 

reduction (32-62% of control mean) (Ashley et al., 2008; Tang et al., 2011; Rouzier et 

al., 2014; Rajakulendran et al., 2016); whereas 18 (44%) samples demonstrated 
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depletion of mtDNA (3-29% of control mean) (Kollberg et al., 2006; Sarzi et al., 2007; 

Ashley et al., 2008; Taanman et al., 2009; Tang et al., 2011; Navarro-Sastre et al., 

2012; Scalais et al., 2012; Rouzier et al., 2014). Interestingly, an mtDNA copy 

number increase was detected in five patients (Kollberg et al., 2006; Ashley et al., 

2008; Tang et al., 2011). The mtDNA copy number in muscle of 14 patients was 

significantly higher compared to liver (paired t-test, p=0.0321; Figure 3.5). It is 

intriguing that mtDNA copy number from a muscle biopsy of one patient with Alpers 

taken late in the disease course was within the normal range (93% of control mean) 

(Boes et al., 2009). In contrast, an early muscle biopsy from another patient with 

Alpers demonstrated severe mtDNA depletion (7% of control mean) (Kollberg et al., 

2006). Statistical analysis did not reveal significant correlation between age of death 

and mtDNA copy number (Spearman r=0.18, p=0.57) in muscle. Similarly, there was 

no correlation between disease duration and mtDNA copy number (Spearman 

r=0.29, p=0.36).  
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Figure 3.5: Comparison of mtDNA copy number (% of control mean) in liver and muscle from 
patients with Alpers and POLG-related epilepsy patients.  Plot showing the mtDNA copy number 
in liver is significantly lower than in the muscle of the same patients (Student’s paired t-test; 
p=0.0321). 

D. Blood and Fibroblasts 

The mtDNA copy number findings in blood samples from 49 patients were available 

(Tang et al., 2011; Khan et al., 2012) and, in the samples analysed, mtDNA copy 

number was highly variable.  

A total of 23 patients (49%) exhibited a reduction in the mtDNA copy number; 

whereas depletion was uncommon as this was detected in the blood of only five 

patients (mtDNA 15-27% of control mean). A total of 13 samples were found to be 
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within the normal range (70-100% of control mean). As with the results reported in 

muscle, a total of eight patients showed an increase in mtDNA copy number (101-

167% of control mean), although the tissues analysed were not patient-matched.  

MtDNA copy number in fibroblasts has been rarely assessed. However, it has been 

reported in five paediatric patients with Alpers (Ashley et al., 2008; Schaller et al., 

2011). From the patients considered, three showed a decrease in the mtDNA copy 

number (37-62% of control mean), while the remaining two patients demonstrated 

normal mtDNA copy number (82-98% of control mean). One paediatric patient 

exhibited normal mtDNA copy number in fibroblasts; whereas in the liver, mtDNA 

copy number was severely depleted (Schaller et al., 2011). Overall, the mtDNA copy 

number findings in blood and fibroblasts were less consistent compared to muscle. 

Descriptive statistics and a summary of mtDNA copy number (% of control mean) in 

the aforementioned tissues can be found in Tables 3.3 and 3.4 respectively. 

Tissue Number of 
Cases (n) 

Mean 
mtDNA 
(% of 

control) 

SD mtDNA Median 
mtDNA 

Number of 
References 

Liver 40 13.13 9.21 10.00 14 

Muscle 41 47.85 41.70 37.00 12 

Blood 49 67.67 31.93 63.00 2 

Fibroblasts 5 63.9 27.4 62.00 2 

Table 3.3: Descriptive statistics for mtDNA copy number from liver, muscle, blood and 
fibroblasts from patients with Alpers and POLG-related epilepsy reported in the literature. 

MtDNA (%of 
control) 

Liver Muscle Blood Fibroblasts 

<30 
(depletion) 

N=37 (92.5%) N=18 (44%) N=5 (10.2%) N=0 

30-50 N=3 (7.5%) N=6 (14.6%) N=12 (24.5%) N=2 (40%) 

51-69 N=0 N=8 (19.5) N=11 (22.4%) N=1 (20%) 

>70 (normal 
or increased) 

N=0 N=9 (21.95%) N=21 (42.9%) N=2 (40%) 

Table 3.4: MtDNA copy number in liver, muscle, blood and fibroblasts from patients with Alpers 
and POLG-related epilepsy.  The mean mtDNA copy number is divided into four groups: <30% 
(depletion), 30-50%, 51-69% and >70% (normal or increased). N=number of cases. 
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 MtDNA Deletions/Rearrangements 

Multiple deletions were detected by Southern blotting or long-range PCR in muscle 

samples of 12 patients, of whom six were paediatric cases (0-5 years), three 

adolescents (1-15 years) and three adults (20-48 years) (Van Goethem et al., 2003; 

Kollberg et al., 2006; Naimi et al., 2006; Boes et al., 2009; Stewart et al., 2009; 

Hansen et al., 2012; Sofou et al., 2012).  

From the paediatric patients, five had Alpers of whom only three cases had mtDNA 

depletion in the presence of deletions (Kollberg et al., 2006; Boes et al., 2009; Sofou 

et al., 2012). Interestingly, from the aforementioned patients, two showed depletion, 

early in the disease course (Kollberg et al., 2006; Boes et al., 2009). 

Deletions/rearrangements in fast-dividing tissues (liver, blood and fibroblasts) of 

patients with Alpers or other POLG-related epilepsy have not been reported to date. 

Similarly, deletions/point mutations were not detected in the brain tissue of the 

patients considered.  

 Respiratory Chain (RC) Biochemistry 

To better understand the effect of POLG mutations on the OXPHOS machinery, RC 

and complex V biochemical data were evaluated from a total of 63 patients. Findings 

from liver (n=17), muscle (n=63), brain (n=1) and cultured fibroblasts (n=16) were 

considered. The RC activity was highly variable among different tissue types.  

With regards to liver samples, normal RC activity was rarely detected (n=3) (Nguyen 

et al., 2005; de Vries et al., 2008). RC deficiencies were identified (n=17), multi-

complex in the majority of the patients (n=9, involving complex I-IV) (Sarzi et al., 

2007; Wiltshire et al., 2008; Blok et al., 2009; Kurt et al., 2010; Mousson de Camaret 

et al., 2011; Schaller et al., 2011; Rouzier et al., 2014) and isolated complex I (n=1) 

or complex IV (n=3) (Nguyen et al., 2005; Lutz et al., 2009; Scalais et al., 2012). 

Isolated complex V deficiency was detected in the sample of a single patient (Sarzi et 

al., 2007). From the patients included, a total of nine patients (53%) showed mtDNA 

copy number reduction (mean mtDNA copy number range: 3-36% of control mean) 

when an OXPHOS defect was present (Sarzi et al., 2007; Wiltshire et al., 2008; Lutz 

et al., 2009; Schaller et al., 2011; Scalais et al., 2012; Rouzier et al., 2014).  

Conversely, the OXPHOS activity was normal in the majority (60.3%) of muscle 

samples (n=38) (Nguyen et al., 2006; de Vries et al., 2008; Uusimaa et al., 2008; 

Wiltshire et al., 2008; Blok et al., 2009; Lutz et al., 2009; McFarland et al., 2009; 
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Taanman et al., 2009; Hasselmann et al., 2010; Kurt et al., 2010; Isohanni et al., 

2011; Mousson de Camaret et al., 2011; Scalais et al., 2012; Sofou et al., 2012; 

Uusimaa et al., 2013; Rouzier et al., 2014; London et al., 2017). Multi-complex 

deficiencies were found in 18 muscle biopsies (de Vries et al., 2007; Roels et al., 

2009; Witters et al., 2010; Mousson de Camaret et al., 2011; Khan et al., 2012; 

Navarro-Sastre et al., 2012; Sofou et al., 2012; Horst et al., 2014; Rouzier et al., 

2014; Rajakulendran et al., 2016). Isolated complex I (n=2), complex III (n=1), 

complex IV (n=3) and complex V (n=1) were also detected (de Vries et al., 2007; 

Ferreira et al., 2011; Schaller et al., 2011; Sofou et al., 2012; Uusimaa et al., 2013). 

One patient showed normal RC activity in the muscle late in the disease course, in 

the presence of mtDNA depletion. In contrast another patient exhibited both mtDNA 

depletion and reduced RC activity late in the disease course (Kollberg et al., 2006).  

The muscle biopsies from 11 patients showed normal RC activity when deficiencies 

were detected in the liver of the same patients (Nguyen et al., 2005; Sarzi et al., 

2007; Wiltshire et al., 2008; Lutz et al., 2009; Kurt et al., 2010; Scalais et al., 2012; 

Rouzier et al., 2014). In contrast, only five patients showed low RC enzymes in both 

muscle and liver (Sarzi et al., 2007; Lutz et al., 2009; Mousson de Camaret et al., 

2011; Schaller et al., 2011; Rouzier et al., 2014). 

In addition, two patients exhibited OXPHOS deficiency when mtDNA copy number 

was depleted (mean mtDNA copy number: 3% and 25% respectively) (Sarzi et al., 

2007); however, three patients demonstrated normal RC enzymology when mtDNA 

was reduced (mean mtDNA: 21-39% of control mean) (Sarzi et al., 2007; Scalais et 

al., 2012; Rouzier et al., 2014). It is intriguing that the OXPHOS machinery was 

defective in a single patient with normal mtDNA copy number (78% levels when 

compared to controls) in muscle (Schaller et al., 2011). With regards to fibroblasts, 

the RC enzymology was normal except in one patient who showed complex III 

deficiency (Horst et al., 2014). Similarly, complex III deficiency was reported in tissue 

from a single brain biopsy (Blok et al., 2009). 
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 Genotype to Phenotype Correlations 

Homozygous p.(Ala467Thr) and p.(Trp748Ser) and compound heterozygous 

p.(Ala467Thr)/p.(Trp748Ser) mutations are associated with significantly longer 

survival when compared to other compound heterozygous mutations (p<0.001) 

(Figure 3.6). In addition, the presence of both pathogenic variants located in the 

exonuclease domain have rarely been reported (n=15, 3% of cases). 

 

Figure 3.6: Kaplan-Meier survival curves based on the different genotypes.  Censored data 
(patients that have been reported as alive) are represented as black vertical lines. 
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3.5 Discussion 

In this chapter, the clinical manifestations, genetics, histopathology and molecular 

features of patients with Alpers and POLG-related epilepsy were reviewed and 

analysed. A total of 377 patients and 128 disease-causing variants located in the 

POLG gene were identified in the literature. The variants identified were associated 

with seizures/epilepsy, however these findings were based upon single case reports 

or small number of pedigrees.  

Over 80% of patients with POLG-related epilepsy, harboured at least one of the three 

most common pathogenic variants, including p.(Ala467Thr), p.(Trp748Ser) and 

p.(Gly848Ser). In agreement with previous reports, homozygous mutations located in 

the linker domain of POLG are associated with later disease onset and longer 

survival (Tzoulis et al., 2006; Farnum et al., 2014).  

The milder phenotype exhibited in patients homozygous for p.(Ala467Thr) or 

p.(Trp748Ser) mutations is not well understood. It is likely that the location of the 

mutation within the POLG gene partly dictates phenotype; although this warrants 

further investigation.  

Functional studies have been reported suggesting that p.(Ala467Thr) and 

p.(Trp748Ser) mutations are associated with decreased catalytic efficiency of POLG. 

The p.(Ala467Thr)-mutant POLG retains only 4% of the wild-type activity in vitro and 

fails to bind efficiently to the p55 accessory subunit (Chan et al., 2005b). Similarly, 

the p.(Trp748Ser)-mutant POLG exhibited a severe catalytic defect, resulting in poor 

primer extension and defective DNA synthesis (Luoma et al., 2005). 

The reduced catalytic activity, combined with compromised interaction with the p55 

accessory subunits results in stalling of mtDNA replication in mutant POLG. 

However, DNA synthesis is enough to sustain life prior to and after the disease 

onset. Therefore, it has been suggested that in compound heterozygous patients, the 

mutation on the other allele determines the severity of the phenotype. In the case of 

homozygous p.(Ala467Thr) or p.(Trp748Ser) patients, POLG activity is inadequate to 

maintain functional mtDNA as the patient ages (Chan et al., 2005a; Chan et al., 

2005b; Luoma et al., 2005). Nevertheless, these hypotheses cannot explain the 

severe phenotype and early disease onset exhibited by patients homozygous for 

p.(Ala467Thr) or p.(Trp748Ser).  
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In addition, this work showed that mutations located in the exonuclease domain of 

POLG are uncommonly reported (3%). This observation could suggest that mutations 

associated with the exonuclease domain are embryonically lethal. This hypothesis is 

not supported by animal studies, given that mice with exonuclease-deficient POLG 

are viable (Trifuvonik 2004, Kujoth 2005). However, the POLG-mutator mouse 

exhibits a premature ageing phenotype and does not demonstrate epilepsy, therefore 

the POLG-mutator mouse model cannot be applied when considering human POLG-

related epilepsy.  

The findings of the current review are consistent with previous observations of a 

predisposition for occipital lobe involvement in POLG-related seizure disorders, in 

terms of clinical, radiological and histopathological findings, although this preferential 

involvement remains enigmatic (Engelsen et al., 2008; Janssen et al., 2015). 

Seizures increase neuronal energy demand thus accounting for the lesions observed 

in metabolically active areas such as occipital lobes, hippocampus and brainstem. In 

addition, the cerebellar lesions may be secondary to high epileptic activity of other 

cortical regions, however this remains controversial (Tzoulis et al., 2014). The stroke-

like lesions in POLG-related epilepsy appear to overlap with those observed in 

Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes 

(MELAS) caused by the m.3243A>G mutation and other primary mtDNA mutations 

(Deschauer et al., 2007; Tzoulis et al., 2010; Brinjikji et al., 2011). 

The findings of this work support the hypothesis of a tissue-specific predisposition 

associated with POLG-related epilepsy. Abnormalities including microscopic 

changes, mtDNA depletion and consequent OXPHOS dysfunction, are indeed 

molecular features characterising Alpers and POLG-related epilepsy. These 

abnormalities differ amongst tissue types.  

With regards to the brain, microscopic abnormalities such as neuron loss, spongiosis, 

and astrogliosis have all been frequently reported at varying degrees in different 

brain regions. Changes in the occipital lobe and the cerebellum have been the most 

frequently reported. Other brain regions have been rarely studied, most likely due to 

the scarcity of post-mortem brain tissue. Studies of the mtDNA content and OXPHOS 

activity are lacking. However, a study by Tzoulis and colleagues, has shown mtDNA 

depletion in young patients remained unchanged with disease progression. The 

lowest mtDNA copy number was detected in an infant, suggesting that POLG 
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mutations resulting in defective mtDNA synthesis is an early developmental feature 

(Tzoulis et al., 2014).  

Deletions and point mutations were not detected in the younger population but only in 

older patients; suggesting an age-dependent process. Although deletions were 

detectable in multiple brain regions, these were most predominantly observed in 

substantia nigra. This is not surprising as it has been reported that substantia nigra 

neurons accumulate deletions with ageing and neurodegenerative disorders. The 

point mutations combined with the pre-existing mtDNA depletion/deletions identified 

may further decrease the number of wt-mtDNA copies, thereby contributing to 

respiratory chain deficiency. Whether deletions/point mutations are secondary to 

depletion is a matter for further investigation. Indeed, these finding are based on 

post-mortem brain tissue; thus representative of the most severe features of the 

disease (Tzoulis et al., 2014).  

Liver dysfunction rarely occurs as a presenting feature and tends to precede the 

terminal disease stage. Liver dysfunction is accelerated by valproate (VPA)-exposure 

which frequently results in liver failure. Severe mtDNA depletion and OXPHOS 

dysfunction, coupled with microscopic abnormalities indicative of liver failure and 

Alpers, characterise POLG-related epilepsy (Nguyen et al., 2005). Interestingly, 

mtDNA depletion correlated with early age of death, suggesting that mtDNA 

depletion caused by POLG mutations is the mechanism underlying Alpers and 

POLG-related encephalohepatopathies. However, in the majority of the cases the 

biopsies were taken late in the disease or tissue was harvested at post-mortem, thus 

these findings may reflect the bias of severe liver involvement.  

Myopathy is not frequently involved in POLG-related epilepsy. In agreement with this 

observation, the histological appearances of muscle from many paediatric patients 

may appear normal. The mtDNA copy number and RC biochemistry in muscle 

samples can be variable, therefore these findings should be interpreted with caution 

when considering Alpers and POLG-related epilepsy. Moreover, mtDNA copy 

number in muscle is significantly higher than in liver of patients. It is intriguing that 

histological appearances of muscle tissue can be normal even at late disease stages.  

MtDNA reduction in muscle may characterise disease progression as the mtDNA 

copy number was 55% of the control mean in the initial biopsy of a p.(Ala467Thr) 

homozygous patient. However, this was reduced to 16% of residual mtDNA twelve 

years later, at post-mortem examination (Boes et al., 2009). Taken together these 



114 
 

findings highlight that changes in muscle tissue may be unreliable, especially in early 

disease stages. Therefore, POLG genetic testing should be the gold standard 

diagnostic test for Alpers and POLG-related epilepsy, and assessing muscle tissue 

either by histological analysis, RC enzymology or mtDNA copy number should not be 

used for diagnostic purposes. 

MtDNA abnormalities in blood and cultured fibroblasts were less consistent. 

Fibroblasts are characterised by high mitotic rate, which may mask any mtDNA 

abnormalities; thus mtDNA abnormalities may not be evident fibroblasts. Although it 

is still unclear, a possible explanation would involve a process of negative selection 

which may favour replication of cells with higher levels of mtDNA (van den Heuvel et 

al., 2004). In agreement with this hypothesis, fibroblasts did not mimic the 

biochemical phenotype even when the liver was severely affected (Schaller et al., 

2011).  

In summary, POLG mutations cause POLG dysfunction, resulting in mtDNA depletion 

with consequent OXPHOS dysfunction which is most predominant in the affected 

tissues. Epilepsy is a major manifestation of Alpers.  

Currently, the mechanisms of mitochondrial epileptogenesis are not well understood 

due to the lack of neuropathological studies and scarcity of post-mortem brain tissue. 

However, several hypotheses have been proposed to explain seizure generation in 

mitochondrial disease and these involve: defects in calcium uptake, ROS-induced 

oxidation of ion channels, defective neurotransmitter transport (causing increased 

synaptic glutamate concentration) and reduced inhibitory neurotransmission, which 

may contribute to increased excitability (Bindoff and Engelsen, 2012; Zsurka and 

Kunz, 2015). 

Furthermore, a recent post-mortem neuropathological study of adult patients with 

mitochondrial epilepsy demonstrated loss of GABAergic interneurons combined with 

severe mitochondrial respiratory chain deficiencies, resulting in impaired neuronal 

oscillations and an imbalance between inhibition and excitation, which may 

significantly contribute towards seizure development (Lax et al., 2016).  

The recent development of induced-pluripotent stem cell (iPSC) technology enables 

the conversion of human fibroblasts into pluripotent stem cells with the use of four 

transcription factors. These can be subsequently differentiated into neurons and glial 
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cells and used for further investigations aimed at unravelling molecular mechanisms 

and inform novel therapies. 

Whilst recent advances have shed light on our understanding of the effects of POLG 

mutations on mitochondrial disease, the mechanisms underlying neurodegeneration, 

tissue specific dysfunction and genotype to phenotype correlations remain 

challenging.  

 Limitations 

This study was based mostly on single case reports or small number of pedigrees. In 

addition, the tissue considered was not patient-matched in most of the cases and the 

available information regarding age/gender-matched controls was limited. Due to the 

limited data availability, cox-regression analysis for the identification of prognostic 

factors associated with differences in survival between different genotypes could not 

be performed. 

 Conclusions 

This work provided evidence that 128 pathogenic POLG variants are associated with 

POLG-related epilepsy. The p.(Ala467Thr) mutations is the most frequently reported 

and compound homozygous mutations located within the linker domain of POLG are 

associated with longer survival compared to compound heterozygous. 

Molecular and biochemical features vary amongst tissues, suggesting tissue-specific 

effects exerted by POLG mutations. Therefore, diagnosis should be based on POLG 

genetic testing.  
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Chapter 4 Characterisation of Human POLG-mutant Fibroblasts 

from Patients with Alpers 

4.1 Introduction 

Alpers is the most severe form of POLG-related disorders and occurs as a result of 

homozygous or compound heterozygous POLG mutations. Although the 

mechanisms remain unclear, POLG mutations result in POLG dysfunction, leading to 

reduced mtDNA replication and consequent reduction in the mtDNA copy number 

and/or deletions. When defects in the mtDNA reach a critical point, OXPHOS defects 

occur ultimately resulting in compromised ATP production. As a consequence, 

phenotypic manifestations become evident, especially in the affected tissues such as 

liver and brain (Saneto and Naviaux, 2010).  

To date, there are no precise genotype to phenotype correlations, although 

compound heterozygous mutations are associated with poorer prognosis compared 

to homozygous mutations which correlate with later onset and longer survival 

(Tzoulis et al., 2006). Increasing evidence suggests that the location of mutations 

within the catalytic subunit of POLG may play a role in the expression of the 

phenotype (Euro et al., 2011). However, the factors and underlying mechanisms 

modifying the phenotype within the same or other POLG-related syndrome remain 

elusive. 

The relentless progression of Alpers and the lack of treatment, makes it a challenging 

area to investigate. The scarcity of post-mortem brain tissue makes it difficult to 

proceed into further molecular studies; while patient cells from the affected tissues 

(brain and liver) are difficult to obtain and culture.  

Skin fibroblasts are neural crest-derived, generated from the ectoderm, the same 

germ layer which gives rise to neurons. Fibroblasts are easily accessible through skin 

biopsies, a minimally invasive procedure, are easily grown in culture, and stored, 

thus constituting a useful tool for molecular investigations. 

With regards to mitochondrial disease, the biochemical defects secondary to mtDNA 

mutations are often variable in fibroblasts, due to the differences in the heteroplasmy 

of mtDNA mutations, which are cell/tissue-specific (Rodenburg, 2011).  
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When the underlying mutation resides in nuclear-encoded genes, patient fibroblasts 

have been reported to show biochemical defects, as exemplified by fibroblasts from 

paediatric patients harbouring mutations in nuclear-encoded complex I genes, which 

demonstrate mitochondrial abnormalities. These abnormalities include: reduced 

complex I expression, increased ROS production, defects in mitochondrial 

morphology and depolarised membrane potential (Distelmaier et al., 2009; Koopman 

et al., 2012; Roestenberg et al., 2012). As mitochondrial network formation is crucial 

for mitochondrial homeostasis, a disruption in mitochondrial networks may lead to 

impaired mtDNA integrity and thus affect mitochondrial functions, such as respiratory 

chain activity.  

Similarly, fibroblasts from patients with mutations in the orphan F-box protein FBXL4, 

which have been found to cause mtDNA depletion syndromes, display abnormalities 

including: severe shortening of mitochondria and mitochondrial network 

fragmentation, aberrant distribution of nucleoids coupled with combined respiratory 

chain deficiencies, secondary to mtDNA depletion, thus implying a role of FBXL4 in 

modulation of mitochondrial dynamics (Bonnen et al., 2013; Gai et al., 2013).  

When considering POLG mutations, fibroblast findings are inconsistent and, in the 

majority of cases, they do not reveal biochemical abnormalities representative of the 

disease phenotype (reviewed in Chapter 3). Consistent with these observations 

fibroblasts with mutations in other nuclear genes such as DGUOK and MPV17, which 

also cause mtDNA depletion syndromes characterised by encephalopathy, often 

show normal enzyme activities (Mandel et al., 2001; Spinazzola et al., 2006).  

Furthermore, fibroblasts from patients with early-onset encephalopathy, 

characterised by intractable epilepsy due to mutations in the gene encoding tRNA 

synthetase FARS2, do not express a biochemical defect. However, biochemical 

defects were detected in the muscle of the same patient (Almalki et al., 2014).  

In contrast, one study performed in fibroblasts from four paediatric patients with 

Alpers syndrome, revealed mosaic mtDNA depletion associated with reduced COX 

activity and decreased membrane potential (Ashley et al., 2008). These findings may 

reflect disease stage and severity and location of the mutations, although it warrants 

further investigation.  
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4.2 Aims and Objectives 

This chapter will explore fibroblasts derived from patients with clinically defined early 

and late-onset Alpers with confirmed diagnosis of POLG mutations. The scope of this 

work is to characterise the baseline mitochondrial function of POLG-mutant 

fibroblasts from patients with Alpers and test whether they mimic the biochemical 

defects of the disease phenotype. If the fibroblasts express biochemical defects, then 

these can be used as a model for investigating the underlying mechanisms of POLG-

induced Alpers. To this aim my specific objectives are to: 

1) Investigate and analyse nucleoid morphology, dynamic mitochondrial 

networks, motility and membrane potential by live-cell imaging. 

2) Define bioenergetics by microscale oxygraphy. 

3) Assess mtDNA copy number using a qPCR assay. 

4) Assess steady-state levels of POLG by western blotting. 
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4.3 Results 

For the purposes of fibroblast characterisation, two patients with early-onset and two 

patients with late-onset Alpers harbouring POLG mutations in a compound 

heterozygous or homozygous state and controls were considered (Table 4.1). Three 

patients harbour the most common p.(Ala467Thr) mutation and one patient harbours 

the second most common mutations, p.(Trp748Ser). Fibroblasts were obtained from 

skin biopsies and the patients or legal guardians, all consented for the cells to be 

used for biomedical research (consented by Professor McFarland and his clinical 

team)-reference number 16/NE/0267 (favourable opinion given 14 Nov 2016 by 

NRES Committee North East – Newcastle & North Tyneside 1). The cells were kept 

and made available by the Newcastle Mitochondrial Diagnostic Service. 
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Cases Case code Age at 
biopsy 

Gender POLG mutations Location Status 

Patient 1 M1453-12 1 month Male p.(Ala467Thr)/p.(Thr914Pro) Linker/Polymer
ase 

Compound 
heterozygous 

Patient 2 M1059-10 1 year Male p.(Leu428Pro)/p.(Ala467Thr) Linker/Linker Compound 
heterozygous 

Patient 3 M1936-13 15 years Female p.(Ala467Thr)/p.(Ala467Thr) Linker/Linker Homozygous 

Patient 4 M0174-17 16 years Female p.(Cys418Arg)/p.(Trp748Ser) Linker/Linker Compound 
heterozygous 

Control 1 M0528-12 6 months Male N/A N/A N/A 

Control 2 M1171-13 8 months Male N/A N/A N/A 

Control 3 M0465-11 5 months Male N/A N/A N/A 

Control 4 M0857-15 24 years Unknown N/A N/A N/A 

Control 5 M0858-15 26 years Unknown N/A N/A N/A 

Control 6 M0859-15 34 years Unknown N/A N/A N/A 

Table 4.1: Characteristics of patient and control fibroblasts used in this study.  Key: N/A=not applicable.
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 Investigation of Mitochondrial Morphology and Dynamic Networks in 

POLG-mutant Fibroblasts from Patients with Alpers 

To test the hypothesis that POLG mutations disrupt mitochondrial morphology as 

reported in other mtDNA disorders, the dynamic mitochondrial networks were 

assessed in patient fibroblasts and appropriate controls. Mitochondrial networks were 

visualised by incubation of cells with Tetramethylrhodamine Methyl Ester (TMRM), a 

cell-permeant cationic dye which accumulates into mitochondria in a membrane 

potential-dependent manner. Specifically, TMRM accumulates in healthy 

mitochondria with high membrane potential, resulting in strong fluorescent signal. 

When the membrane potential drops, TMRM leaks from the mitochondria resulting in 

less fluorescence. 

Imaging was performed using an inverted point scanning confocal microscope (Nikon 

A1R). Images were processed and analysed using ImageJ as described in section 

2.4.4. 

Patients 1 (p.(Ala467Thr)/p.(Thr914Pro)) and 2 (p.(Leu428Pro)/p.(Ala467Thr)) with 

early onset were compared to gender matched controls 1 and 2. Controls showed 

normal mitochondrial morphology, characterised by complex reticular networks. 

Fibroblasts from patients 1 (p.(Ala467Thr)/p.(Thr914Pro)) and 2 

(p.(Leu428Pro)/p.(Ala467Thr)) did not display any differences in mitochondrial 

morphology when compared to the controls (see Figure 4.1A). Quantitative analysis 

of the aspect ratio (AR, measure of mitochondrial length) and form factor (FF, 

measure of mitochondrial network complexity) did not reveal significant differences in 

any of the patients when compared to controls (p=0.1430 and p=0.3364, respectively 

as revealed by One-Way ANOVA), as shown in Figures 4.1B and C.  

To investigate the effect of POLG mutations on mitochondrial membrane potential, 

TMRM intensity was measured using IMARIS as described in section 2.4.6. 

Statistical analysis did not reveal any significant alterations in mitochondrial 

membrane potential in fibroblasts from both patients relative to the control mean 

(p=0.1133, Kruskal-Wallis), as illustrated in Figure 4.1D.  
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Figure 4.1: Mitochondrial networks and membrane potential in POLG-mutant fibroblasts from 
paediatric individuals withAlpers.(A) Representative images of TMRM staining in control (left), 
patient 1 (p.(Ala467Thr)/p.(Thr914Pro)) (middle) and patient 2 (p.(Leu428Pro)/p.(Ala467Thr)) (right), 
showing a well-connected tubular mitochondria network in both patients compared to control 1. 
Images captured at 63x magnification. Scale bar=10µm. Quantitative analysis did not reveal significant 
differences in (B) aspect ratio (AR, p=0.1430) and (C) form factor (FF, p=0.3364) as shown by One-
way ANOVA. Data are represented as mean ± SD for n=30, obtained from triplicate experiments. (D) 
Statistical analysis using Kruskal-Wallis test did not reveal significant differences (p=0.1133) in the 
relative membrane potential in fibroblasts from both patients 1 (p.(Ala467Thr)/p.(Thr914Pro)) and 2 
(p.(Leu428Pro)/p.(Ala467Thr)) compared to the control mean. Membrane potential data are 
represented as mean ± SD from n=2. 

 

To confirm that POLG mutations do not interfere with mitochondrial networks in 

fibroblasts, POLG-mutant fibroblasts were compared to fibroblasts from an 8-month 

old patient with encephalopathy, psychomotor regression and lactic acidosis, 

resembling features of Alpers and genetic diagnosis of FBXL4 mutations. Mutations 

in FBXL4 have been previously been associated with impaired mitochondrial 

networks, suggesting a role of FBXL4 in the modulation of mitochondrial dynamics. 

(Bonnen et al., 2013). Therefore, FBXL4-mutant fibroblasts were selected as a 
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disease control when investigating the impact of POLG mutations on dynamic 

mitochondrial networks in fibroblasts from patients with Alpers.  

In contrast to POLG-mutant fibroblasts, FBXL4-mutant fibroblasts displayed marked 

differences in mitochondrial morphology (see Figure 4.2A). Analysis of the AR 

revealed significant mitochondrial shortening of FBXL4-mutant fibroblast networks 

when compared to controls (p<0.05, One-way ANOVA) and POLG-mutant fibroblasts 

from both patients (p<0.0001, One-way ANOVA) as seen in Figure 4.2B. Similarly, 

FF revealed significant hyper-fragmentation of mitochondrial networks in FBXL4-

mutant fibroblasts when compared to controls and POLG-mutant fibroblasts 

(p<0.001, One-way ANOVA) as presented in Figure 4.2C. There was no significant 

difference between POLG-mutant fibroblasts and controls (p=0.3763, One-way 

ANOVA).  

 

 

Figure 4.2: Mitochondrial morphology and networks in paediatric POLG and FBXL4-mutant 
fibroblasts. (A) Representative images of TMRM staining in control (left), patient 1 
(p.(Ala467Thr)/p.(Thr914Pro)) (middle left), patient 2 (p.(Leu428Pro)/p.(Ala467Thr)) (middle right) and 
FBXL4 patient (right) displaying a well-connected tubular mitochondrial network in both patients 
compared to control. Images captured at 63x magnification. Scale bar=10µm. One-way ANOVA 
revealed significant changes in (B) aspect ratio (AR) and (C) form factor (FF) in FBXL4-mutant 
fibroblasts compared to POLG-mutant fibroblasts and controls but not between POLG-mutant 
fibroblasts and controls (p=0.3763). All data are represented as mean ± SD for n=30, obtained from 
duplicate experiments. * =p<0.05, ***=p<0.001. 
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Similarly, in the older group results failed to reveal alteration in the dynamic 

mitochondrial in both adolescent patients with Alpers when compared to controls 

(see Figure 4.3A). Statistical analysis using One-way ANOVA confirmed no 

significant differences in AR (p=0.1331) and FF (p=0.0661) when compared to 

controls (see Figure 4.3B and C). Similarly, TMRM intensity was not different to 

controls (p=0.1017, Kruskal-Wallis), as shown by quantitative analysis in Figure 4.3D. 

 

Figure 4.3: Mitochondrial networks and membrane potential in POLG-mutant fibroblasts from 
adolescent individuals with Alpers. (A) Representative images of TMRM staining in control (left), 
patient 3 (p.(Ala467Thr)/p.(Ala467Thr)) (middle) and patient 4 (p.(Trp748Ser)/p.(Cys418Arg)) (right), 
showing a well-connected tubular mitochondria network in both patients compared to control. Images 
captured at 63x magnification. Scale bar=10µm. Quantitative analysis did not reveal significant 
differences in (B) aspect ratio (AR, p=0.1331) and (C) form factor (FF, p=0.0661) as shown by One-
way ANOVA. Data are represented as mean ± SD for n=30, obtained from triplicate experiments. (D) 
Quantitative analysis did not reveal significant differences (p=0.1017, Kruskal-Wallis) in the relative 
membrane potential in fibroblasts from both patients 3 (p.(Ala467Thr)/p.(Ala467Thr)) and 4 
(p.(Trp748Ser)/p.(Cys418Arg)) compared to the control mean. Membrane potential data are 
represented as mean ± SD from n=2.  
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 Analysis of Mitochondrial Nucleoids in POLG-Mutant Fibroblasts from 

patients with Alpers 

To investigate the effect of POLG mutations on nucleoid morphology cells were 

incubated with Picogreen (see section 2.4.2). The controls displayed small nucleoids 

which were evenly spread across the cells. POLG-mutant fibroblasts from young and 

older patients showed no difference in nucleoid morphology compared to the controls 

(see Figures 4.4 and 4.5).  

In contrast the fibroblasts from patient with FBXL4 mutations showed enlarged 

nucleoids characterised by perinuclear clustering when compared to controls (see 

Figure 4.4). Quantitative analysis of nucleoid number (method described in section 

2.4.5) revealed no difference in the POLG-mutant fibroblasts compared to the 

controls in both the younger group (p=0.6727) and older group (p=0.1522), however 

the nucleoid number was significantly lower in FBXL4 mutant cells compared to 

controls (p<0.0001), as shown in Figures 4.6A and B). 
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Figure 4.4: Nucleoid morphology and distribution in POLG and FBXL4-mutant fibroblasts 
derived from patients with early-onset Alpers. The upper panels show representative images of 
Picogreen staining of control (left), POLG patient 1 (p.(Ala467Thr)/p.(Thr914Pro)) (middle left), POLG 
patient 2 (p.(Leu428Pro)/p.(Ala467Thr)) (middle right) and patient with FBXL4 mutations (right). 
Fewer, enlarged, with perinuclear clustering nucleoids are noted in the patient harbouring FBXL4 
mutations. POLG patients show similar numbers and distribution of nucleoids across the cell. The 
middle panels show TMRM staining, revealing mitochondrial shortening and fragmentation only in the 
patient with FBXL4 mutations. The lower panels show representative merged images. Images were 
captured at 63x magnification. Scale bar=10µm. 
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Figure 4.5: Nucleoid morphology and distribution in POLG-mutant fibroblasts from patients 
with late-onset Alpers. The upper panels show representative images of Picogreen staining of 
control (left), POLG patient 3 (p.(Ala467Thr)/p.(Ala467Thr)) (middle), POLG patient 4 
(p.(Trp748Ser)/p.(Cys418Arg)) (right). Controls show normal morphology and distribution of nucleoids. 
POLG patients show similar numbers and distribution of nucleoids across the cell. The middle panels 
show TMRM staining, revealing normal mitochondrial networks in both POLG patients and controls. 
The lower panels show representative merged images. Images were captured at 63x magnification. 
Scale bar=10µm. 
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Figure 4.6: Quantitative analysis of number of nucleoids in early and late-onset POLG-mutant 
and early-onset FBXL4-mutant fibroblasts.  Data are representative of mean nucleoid number per 
cell ± SD. (A) In the younger patient group there is no significant difference in the number of nucleoids 
between POLG-mutant fibroblasts and controls (p=0.6727). However, FBXL4-mutant fibroblasts have 
significantly fewer nucleoids per cell compared to controls and POLG-mutant fibroblasts as revealed 
by One-way ANOVA and Bonferroni correction test. ***=p<0.0001. (B) There is no significant 
difference in the number of nucleoids in POLG-mutant fibroblasts from late-onset patients with Alpers 
(p=0.1522, One-Way ANOVA and Bonferroni correction test). The number of nucleoids per cell was 
determined on unprocessed images using ImageJ. Data are represented as mean ± SD for n=20, from 
2 biological repeats. 
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 Motility Analysis of POLG-Mutant Fibroblasts derived from Patients with 

Alpers 

Individual mitochondria from POLG-mutant fibroblasts were tracked by TMRM, 

videos were acquired on a confocal scanning point (NikonA1R) and motility 

parameters were calculated by IMARIS, as described in section 2.4.6. Motility 

tracking did not reveal any significant differences between patients and controls.  

Mitochondria tracked in the POLG-mutant fibroblasts from patients 1 

(p.(Ala467Thr)/p.(Thr914Pro)) and 2 (p.(Leu428Pro)/p.(Ala467Thr)) did not show any 

significant difference in speed compared to controls (p=0.1133, Kruskal- Wallis, 

Figure 4.7A). The average speed of the mitochondria tracked in patient 1 

(p.(Ala467Thr)/p.(Thr914Pro)) was 1.70 µm/sec, in patient 2, 1.28 µm/sec, and in 

controls, 1.83 µm/sec. Similarly, there was no significant difference in mitochondrial 

track length (movement from point of origin) (p=0.3292, Kruskal-Wallis, Figure 4.7B) 

and in the volume occupied by mitochondria (p=0.1737, Kruskal-Wallis, Figure 4.7C) 

in both patients when compared to controls.  

Motility analysis in the adolescent group did not reveal evidence of a difference in the 

speed (p=0.3679, Kruskal-Wallis, Figure 4.7D), mitochondrial track length (p=0.1561, 

Kruskal-Wallis, Figure 4.7E) and mitochondrial volume (p=1.0000, Kruskal-Wallis, 

Figure 4.7F).  
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Figure 4.7: Quantification of mitochondrial motility in POLG-mutant fibroblasts derived from 
patients with Alpers. Tracks generated from videos of mitochondria within fibroblasts revealed no 
differences in (A and D) speed of mitochondria, (B and E) track length and (C and F) mitochondrial 
volume in all patients compared to controls as revealed by Kruskal-Wallis statistical test. All data are 
represented as mean ± SD from n=3. 
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 Quantification of mtDNA Copy Number in POLG-mutant Fibroblasts from 

Patients with Alpers 

To test the hypothesis that POLG mutations result in mtDNA depletion in Alpers, a 

previously described QPCR assay using an mtDNA target Mitochondrially Encoded 

NADH Dehydrogenase 1 (MT-ND1) and the nuclear gene Beta-2-microglobulin 

(B2M) was performed in patient-derived fibroblasts as described in section 2.7.10.  

Analysis was firstly performed on serum-fed (10% FCS) conditions in patients and 

controls. The mtDNA copy number was found to be similar to age-matched controls 

in both young (p=0.1479) and older (p=0.2521) patients, without any evidence of 

mtDNA depletion (as revealed by Kruskal-Wallis test, Figure 4.8A and C). The 

mtDNA copy number of patients 1 (p.(Ala467Thr)/p.(Thr914Pro)) and 2 

(p.(Leu428Pro)/p.(Ala467Thr)) was 74% and 89% of the control mean respectively.  

In the older group mtDNA copy number of patients 3 (p.(Ala467Thr)/p.(Ala467Thr)) 

and 4 (p.(Trp748Ser)/p.(Cys418Arg)) was found to be 88% and 106% of the control 

mean, respectively (see Table 4.2). 

To overcome the limitation that the high mitotic rate of fibroblasts could mask any 

defects in the mtDNA, fibroblasts in serum-starved (0.1% FCS, 7 days) conditions 

were also analysed. Serum deprivation induces quiescence, therefore fibroblasts 

stop dividing and any defects may be unmasked.  

Although mtDNA copy number in both patient fibroblasts and age-matched controls 

appeared to be lowered compared to serum-fed conditions, there was no significant 

difference in the mtDNA copy number of young (p=0.1931) and older (p=0.0608) 

patients when compared to controls (as shown by Kruskal-Wallis test, Figure 4.8B 

and D). Patients from both groups exhibited mtDNA copy number within the normal 

control range. Patient 1 (p.(Ala467Thr)/p.(Thr914Pro)) showed 84%, patient 2 

(p.(Leu428Pro)/p.(Ala467Thr)) had 98% and patients 3 

(p.(Ala467Thr))/p.(Ala467Thr)) and 4 (p.(Trp748Ser)/p.(Cys418Arg)) exhibited 

mtDNA copy number of 71% and 76% of the control mean respectively, as 

summarised in Table 4.2. 
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Figure 4.8: Quantification of mtDNA copy number in POLG-mutant fibroblasts from Alpers 
patients. Quantitative analysis did not reveal a significant difference in the mtDNA copy number of 
fibrobasts from (A) young patients 1 (p.(Ala467Thr)/p.(Thr914Pro)) and 2 
(p.(Leu428Pro)/p.(Ala467thr)) in serum-fed conditions (10% FCS) compared to gender and age-
matched controls (p=0.1479), (B) young patients 1 (p.(Ala467Thr)/p.(Thr914Pro)) and 2 
(p.(Leu428Pro)/p.(Ala467Thr)) in serum-starved conditions (0.1% FCS) (p=0.1931). (C) Older patients 
3 (p.(Ala467Thr)/p.(Ala467Thr)) and 4 (p.(Trp748Ser)/p.(Cys418Arg)) in serum-fed conditions (10% 
FCS, p=0.2521) compared to age-matched controls and (D) older patients 3 
(p.(Ala467Thr)/p.(Ala467Thr)) and 4 (p.(Trp748Ser)/p.(Cys418Arg)) in serum-starved conditions (0.1% 
FCS, p=0.0608), as revealed by Kruskal-Wallis test. Data are represented as bars of mean absolute 
mtDNA copy number per cell ± SD from n=3.  
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mtDNA copy number (% of control mean) 

Patients Serum-Fed Serum-Starved 

Patient 1 74 ± 14.34 84 ± 8.18 

Patient 2 89 ± 15.14 98 ± 7.15 

Patient 3 88 ± 10.83 71 ± 10.48 

Patient 4 106 ± 6.13 76 ± 9.99 

Table 4.2: Summary of mtDNA copy number (% of control mean) in POLG-mutant fibroblasts.  
Table showing mtDNA copy number of POLG-mutant fibroblasts as a percentage of the control mean 
± SD from 3 biological repeats. 

 Bioenergetics of POLG-mutant Fibroblasts with Alpers 

Mitochondrial bioenergetics was measured using the Extracellular Flux XF24 

Seahorse Analyser (Agilent Technologies). Results did not reveal major changes in 

basal and maximal measurements between patients and controls (see Figures 4.9A 

and 4.10A).  

In the younger group there was no significant difference in the basal oxygen 

consumption rate (OCR, p=0.1146, Kruskal-Wallis, Figure 4.9,), maximal OCR 

(p=0.5213, Kruskal-Wallis, Figure 4.9C) and ATP production by OXPHOS (p=0.3049, 

Kruskal-Wallis, Figure 4.9D) when compared to paediatric controls. Similarly, the 

spare respiratory capacity of POLG-mutant fibroblasts from patients 1 

(p.(Ala467Thr)/p.(Thr914Pro)) and 2 (p.(Leu428Pro)/p.(Ala467Thr)) was not 

significantly different when compared to controls (SRC, p=0.7499, Kruskal-Wallis, 

Figure 4.9E).  

Likewise, the fibroblasts from older patient 3 (p.(Ala467thr)/p.(Ala467Thr)) did not 

reveal any significant differences in basal OCR (0.3355, unpaired Student’s t-test, 

Figure 4.10B), maximal OCR (p=0.8170, unpaired Student’s t-test, Figure 4.10C), 

SRC (p=0.1291, unpaired Student’s t-test, Figure 4.10D) and ATP production by 

OXPHOS (p=0.6629, unpaired Student’s t-test, 4.10F) when compared to adult 

controls. A summary of the findings can be seen in Table 4.3.  
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Figure 4.9: Bioenergetics of POLG-mutant fibroblasts derived from patients with early-onset 
Alpers. (A) Oxygen consumption rates (OCR) generated by the Seahorse XF24 Analyser. Injection 
1=Oligomycin, Injection 2: FCCP, Injection 3: Rotenone/Antimycin. There is no significant difference in 
(B) Basal OCR (p=0.1146, Kruskal-Wallis), (C) Maximal OCR (p=0.5213, Kruskal-Wallis), (D) ATP 
produced by OXPHOS (p=0.3049, Kruskal-Wallis) and (E) SRC (p=0.7499, Kruskal-Wallis) between 
patient with early-onset Alpers and paediatric controls. Data are represented as mean ± SD from n=4. 
Key: OCR=oxygen consumption rate; SRC=spare respiratory capacity.  



136 
 

 

Figure 4.10: Bioenergetics of POLG-mutant fibroblasts derived from a patients with later-onset 
Alpers. (A) Oxygen consumption rates (OCR) generated by the Seahorse XF24 Analyser. Injection 
1=Oligomycin, Injection 2: FCCP, Injection 3: Rotenone/Antimycin. There is no significant difference in 
(B) Basal OCR (p=0.335, unpaired Student’s t-test), (C) Maximal OCR (p=0.8117, unpaired Student’s 
t-test), (D) ATP produced by OXPHOS (p=0.6629, unpaired Student’s t-test) and (E) SRC (p=0.1291, 
unpaired Student’s t-test) between patient with later-onset Alpers and adult controls. Data are 
represented as mean ± SD from n=2. 
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Bioenergetic capacity (% of controls) 

Patients Basal OCR Maximal OCR SRC ATP by 
OXPHOS 

Patient 1 68 ± 29.47 78 ± 34.68 

 

85 ± 59.69 

 

83 ± 49.21 

 

Patient 2 105 ± 20.25 100 ± 28.25 

 

90 ± 27.40 

 

117 ± 12.82 

 

Patient 3 88 ± 10.77 

 

91 ± 44.90 

 

145 ± 2.69 

 

116 ± 44.81 

 

Table 4.3: Bioenergetic capacity of POLG-mutant fibroblasts.  Table illustrates OCR’s as mean 
percentages of the control mean ± SD. Key: OCR=oxygen consumption rate; SRC=spare respiratory 
capacity.  
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 Assessment of steady-state levels of POLG  

To characterise the nature of POLG mutations on protein levels, protein extracts from 

control and patient-derived fibroblasts were analysed by western blotting. Qualitative 

assessment revealed similar levels of steady-state POLG (adjusted to loading control 

GAPDH) in both patient-derived and control fibroblasts (see Figure 4.11). 

In lanes corresponding to controls 2 and 3 there is an impression of an additional 

band appearing on top of POLG, which could possibly suggest an additional isoform 

or that POLG is running as a doublet in the gel. However, the absence of such band 

in any other samples together with the fact that the two lanes referring to controls 2 

and 3 are smudged, make it more probable that this is an artefact associated with the 

electrophoresis in these lanes, particularly as it is obvious from SDHA and GAPDH 

that they have very large amounts of protein. Whilst it may warrant further 

investigation, it is also relevant to mention that in the Ensembl Genome Browser 

(https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000140521;r

=15:89305198-89334861) no protein isoform has been described with a higher 

molecular weight than 140kDa, which reinforces the concept of the apparent higher 

band being an artefact.  

 

Figure 4.11: Characterisation of POLG steady-state levels in fibroblast from patients with 
Alpers.  Western blot analysis of steady-state levels of POLG in fibroblast protein extracts (25µg) 
isolated from paediatric controls (C1, C2), adult controls (C3 and C4), early-onset patients with Alpers 
(P2, P3) and adolescent patients with Alpers (P3, P4). POLG bands corresponding to POLG, SDHA 
and GAPDH are marked by arrows. SDHA is a marker for mitochondrial respiratory chain complex II. 
GAPDH served as a loading control. 

https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000140521;r=15:89305198-89334861
https://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000140521;r=15:89305198-89334861
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4.4 Discussion 

Disorders of mitochondrial DNA (mtDNA) maintenance have emerged as major 

causes of mitochondrial disease. The commonest genetic defects responsible for 

autosomal recessive mtDNA depletion syndromes are considered to be mutations in 

the catalytic subunit of POLG, which lead to hepatocerebral and myopathic forms of 

disease (Cohen, 2014). 

To date, over 200 POLG mutations have been reported and these are located all 

throughout the POLG domains which exert distinct function, including: exonuclease, 

linker and polymerase domains. Genotype to phenotype correlations have not been 

well established so far, while the exponential growth of the newly identified POLG 

mutations makes functional consequences of these substitutions challenging to 

investigate (Saneto and Naviaux, 2010; Saneto et al., 2013).  

Alpers’ syndrome, is hallmarked by progressive deterioration and is considered to be 

the most severe form of mtDNA depletion, which is differentially expressed amongst 

tissues. The molecular mechanisms responsible for mtDNA depletion have not yet 

been identified. To date, most studies have focussed on post-mortem tissue from 

brain, liver and muscle biopsies from patients with POLG-related disease. 

Several animal models have been created (Trifunovic et al., 2004; Trifunovic et al., 

2005) to study the molecular effects of POLG mutations, however these models are 

limited as they do not recapitulate the epileptic phenotype seen in patients with 

Alpers and cannot explain the clinical heterogeneity caused by POLG mutations. 

Fibroblasts derived from patients with POLG mutations are more easily available and 

may be useful to study the molecular defects of Alpers and POLG-related disease in 

vitro. Most studies on POLG-mutant fibroblasts have been limited to date (Ashley et 

al., 2008; Schaller et al., 2011; Stewart et al., 2011), however there is some evidence 

supporting that the biochemical defects of POLG may be recapitulated in fibroblasts 

from some patients with Alpers (Ashley et al., 2008; Horst et al., 2014; Rouzier et al., 

2014).  

This chapter sought to answer whether fibroblasts from patients with early and late-

onset Alpers harbouring at least one of the most common POLG mutations in a 

homozygous or compound heterozygous state, express mitochondrial dysfunction. 

Investigation of the baseline mitochondrial function in all fibroblasts examined, did not 
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provide evidence of mitochondrial defects, hence supporting the hypothesis that 

POLG mutations lead to a phenotype through tissue-specific effects.  

Mutations in nuclear-encoded genes involved in mtDNA maintenance have been 

shown to affect patient fibroblasts. Specifically, such mutations have been shown to 

impact on the dynamic mitochondrial networks, membrane potential, nucleoid 

distribution and OXPHOS machinery, secondary to mtDNA depletion (Bonnen et al., 

2013). Studies on POLG-mutant fibroblasts have not been frequently reported, 

however it has been demonstrated that fibroblasts do not express biochemical 

defects representative of the disease phenotype (Schaller et al., 2011). In agreement 

with these observation, my findings did not reveal any evidence of mitochondrial 

dysfunction in POLG-mutant fibroblasts derived from patients with Alpers. 

Ashley et al., reported mosaic mtDNA depletion, reduced COXI expression and 

reduced membrane potential in fibroblasts from four paediatric patients with early-

onset Alpers (before 1 year of age) (Ashley et al., 2008). My findings are in 

disagreement with these observations as I found no evidence of disturbed 

mitochondrial dynamics, nucleoid number/morphology and mtDNA depletion. 

However, fibroblasts in Ashley et al., did not harbour any of the common mutations 

present in the patients included in this study, while mtDNA depletion was evident in 

the fibroblasts from patients who were most severely affected by the disease and 

died by the age of 16 months (Ashley et al., 2008). 

Although genotype to phenotype correlations are poor, it has been demonstrated that 

patients who harbour both mutations in the linker region are associated with later 

onset and milder disease (Horvath et al., 2006). Similarly, homozygous p.(Ala467Thr) 

mutations have been associated with later onset and longer survival (Tzoulis et al., 

2006; Ashley et al., 2008; Anagnostou et al., 2016). 

In agreement with my findings there was no evidence of mtDNA depletion in the 

fibroblasts of an Alpers patient harbouring the p.(Ala467Thr) mutation, although 

mtDNA depletion was found in liver and muscle tissue (Schaller et al., 2011). 

However, fibroblasts from a patient with a severe Alpers phenotype, harbouring the 

linker p.(Ala467Thr) mutation and the polymerase p.(Ser1095Arg) mutation in a 

compound heterozygous state, displayed CIII deficiency. This patient died at 7 years 

of age (Horst et al., 2014). The variability of the findings described suggest that there 

are several factors which may influence the expression of the cellular phenotype. 

These include: location of the mutations within POLG and severity of the disease, 
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which may influence the expression of the cellular phenotype. However, the 

mechanisms leading to the cellular phenotype remain unidentified.  

Further supporting the concept that fibroblasts are not always informative, mutations 

in other genes such as FARS2 which also cause an early onset encephalopathy 

resembling Alpers, did not express any biochemical defects in fibroblasts (Almalki et 

al., 2014). Interestingly, my findings showed that the steady state-levels of POLG in 

patient fibroblasts considered were not altered, suggesting that POLG is sufficiently 

expressed in fibroblasts. Although unclear, the different energy requirements in 

different tissue types may contribute to the tissue-specific effect.  

In addition, my findings did not reveal any evidence of significant mtDNA copy 

number reduction or depletion in POLG-mutant patient-derived fibroblasts, even 

when the fibroblasts were examined in a quiescent state. These results suggest that 

mtDNA turnover is not compromised in fibroblasts by POLG mutations. Consistent 

with this finding, the mtDNA copy number in quiescent fibroblasts from a patient 

harbouring the common p.(Trp748Ser) mutation was similar to controls (Stewart et 

al., 2011). Overall my findings suggest that POLG mutations do not mimic the 

biochemical phenotype of Alpers’ syndrome, are not suitable for diagnostic purposes 

and are of limited value when characterising mitochondrial defects, secondary to 

POLG mutations.  

Currently, it is not understood how POLG mutations exert a tissue-specific effect. The 

lack of biochemical phenotype in POLG-mutant fibroblasts could be explained by 

their fast-dividing nature, which may mask any mtDNA abnormalities. There are 

suggestions of a negative selection process occurring in fibroblasts, which tends to 

allow cells with high mtDNA copy number to divide, while the cells with the lowest 

levels do not survive (van den Heuvel et al., 2004). 

 Limitations 

A significant limitation of this work is the use of controls. These controls are disease-

controls as they had been submitted to the Diagnostics Service due to suspicion of 

mitochondrial disease, even though metabolic defects were not detected in these 

cases. Normal controls are not easily accessible, especially when considering young 

infants, as biopsy is an unpleasant procedure for the patient. In addition, the controls 

were not age-matched, which makes results from control and experimental samples 

more challenging.  
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Another limitation of this study, is the use of TMRM for the analysis of mitochondrial 

networks. TMRM localises to the mitochondria in a membrane potential-dependent 

way. Therefore, any mitochondria with low membrane potential will be missed out 

from the analysis due to low/absent fluorescent signal. As such, the results of the 

present study may underestimate mitochondrial shortening/fragmentation in the case 

of a mitochondrial defect due to POLG mutations. 

POLG levels assessed qualitatively by western blot in fibroblasts, did not show 

significant differences between patients and controls. However, it is noted that the 

blots were suboptimal with POLG appearing as a faint band at the expected 

molecular size (140kDa), and in addition in two lanes, there is a suggestion of an 

additional band higher than 140kDa. Whilst it is likely that POLG levels are similar in 

patients and controls, and that the additional band is due to artefact, further 

investigation is necessary in order to achieve a firm conclusion.  

To address the limitations of the western blots presented, these could be repeated 

both with the same antibody and additional commercially available POLG antibodies 

(e.g. Polyclonal POLG antibody from Invitrogen; PA1-21791). If after repeating the 

experiments doubts subsisted regarding additional bands these could be assessed 

by cutting the band from the acrylamide gel and perform mass spectrometry, to 

determine whether this is likely to be the POLG peptide. 

In summary, I report that POLG mutations do not cause significant alterations in 

POLG expression or significant mtDNA depletion. Therefore, mutant POLG is 

capable of synthesizing sufficient mtDNA in the fibroblasts from patients with Alpers 

harbouring the most common p.(Ala467Thr) or p.(Trp748Ser) mutations. As such, 

OXPHOS function is not impaired and energy production is sufficient to maintain 

mitochondrial networks. Consequently, fibroblasts are not a reliable model when 

investigating mitochondrial dysfunction seen in patients with Alpers. Considering 

using affected tissues may reveal biochemical defects, secondary to deleterious 

effects of POLG mutations.  

 Future Work 

The current study investigated fibroblasts at baseline level, showing that POLG-

mutant fibroblasts do not recapitulate the disease phenotype in the conditions 

described. Given the glycolytic nature of fibroblasts, galactose-medium has been 

established as a carbon source which forces cells to rely on OXPHOS rather than 
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glycolysis (Aguer et al., 2011). Interestingly fibroblasts from patients with chronic 

progressive external ophthalmoplegia (CPEO), encephalopathy and parkinsonism 

harbouring mutations in the OPA1 gene, showed increased mitochondrial 

fragmentation after 48 hours of incubation in galactose medium compared to controls 

(Carelli et al., 2015). This would be a possible strategy to see whether POLG-mutant 

fibroblasts demonstrate mitochondrial defects when cultured in galactose-medium.  

To verify the findings on mitochondrial networks, MitoTracker Green, a dye which 

localises into the mitochondria in a membrane potential-independent manner could 

be used in combination or as an alternative approach to TMRM. In this case, 

mitochondria regardless of membrane potential would be considered for 

mitochondrial network analysis giving a more accurate picture of the effect of POLG 

mutations on mitochondrial networks. 

To verify the findings on mitochondrial networks, MitoTracker Green, a dye which 

localises into the mitochondria in a membrane potential-independent manner could 

be used in combination or as an alternative approach to TMRM. In this case, 

mitochondria regardless of membrane potential would be considered for 

mitochondrial network analysis giving a more accurate picture of the effect of POLG 

mutations on mitochondrial networks.  

Although POLG-mutant fibroblasts are not suitable for understanding the tissue-

specific pathogenesis of Alpers, they can be converted into other cell lineage such as 

neurons and hepatocytes through induced pluripotent stem cell technologies (Li et 

al., 2015; Zurita et al., 2016) or direct differentiation methods (Huang et al., 2014; 

Meyer et al., 2014), which are discussed in more detail in the next chapter. Using this 

approach, the effect of POLG mutations on specific cell types can be investigated 

and provide insight into the molecular pathogenesis of Alpers.  

 Conclusions 

In this study the phenotypic characterisation of baseline mitochondrial function in 

POLG-mutant fibroblasts derived from patients with Alpers harbouring the common 

p.(Ala467Thr) or p.(Trp748Ser) mutation was performed. This is the only detailed 

study to date that investigated mitochondrial function in fibroblasts including 

OXPHOS activity, mtDNA depletion, mitochondrial morphology and POLG function. 

Collectively I report no evidence of significant mitochondrial dysfunction in POLG-

mutant fibroblasts from early and late-onset Alpers patients. I suggest that POLG 
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mutations do not cause mtDNA depletion in fibroblasts, therefore ATP is sufficiently 

produced, maintaining normal mitochondrial networks. These findings further support 

the idea that fibroblasts do not recapitulate POLG-disease and therefore are not 

suitable when investigating the molecular pathogenesis of POLG-related disease at 

least under the experimental conditions described. 
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Chapter 5 Conversion of POLG-mutant Fibroblasts derived from 

Patients with Alpers into Induced Neuronal Progenitor Cells 

(iNPC’s) 

5.1 Introduction 

The pathogenesis of mitochondrial disease and neurological disorders is particularly 

challenging to elucidate due to the scarcity of brain tissue and relevant cell types. 

The urgent need to understand pathological processes has led to the discovery of 

somatic cell reprogramming through various technologies (Takahashi et al., 2007; Yu 

et al., 2007; Vierbuchen et al., 2010). These discoveries, have allowed the 

development of in vitro disease models, which serve to elucidate specific functions of 

the Central Nervous System (CNS) (Mertens et al., 2016).  

A decade ago, Takahashi and Yamanaka developed the technology of induced 

pluripotent stem cells (iPSC’s), which enables the induction of pluripotency by the 

expression of specific transcription factors (Takahashi et al., 2007), thus creating new 

opportunities in disease modelling and regenerative medicine (Takahashi and 

Yamanaka, 2013).  

Direct conversion technologies (Lu et al., 2013; Meyer et al., 2014), are an extension 

to the iPSC reprogramming, however these involve the overexpression of 

transcription factors, which direct cellular identity towards specific cell lineages, 

bypassing the pluripotency state and most developmental stages (Takahashi and 

Yamanaka, 2013). Such techniques have been useful in elucidating disease 

mechanisms, nevertheless they have their own limitations such as the use of viral 

vectors, which are associated with tumourigenicity, limited proliferation capacity and 

limited cell type differentiation. (Lu et al., 2013; Kelaini et al., 2014).  

Direct conversion into induced neuronal progenitors (iNPC’s) is achieved using 

fibroblasts, which are neural-crest derived cells. iNPC’s can further be differentiated 

into neurons, oligodendrocytes and astrocytes, enabling the investigation of neural 

activity.  

To date, in vitro neuronal models of POLG-related disease do not exist; while animal 

models are limited in recapitulating the encephalopathic phenotype observed in 

patients. As such, in vitro models are useful in understanding the effects of POLG 

mutations on neuronal function.  
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5.2 Aims and Objectives 

Given that POLG-mutant fibroblasts (discussed in Chapter 4) did not demonstrate 

evidence of mitochondrial dysfunction, it was hypothesised that the effect of POLG 

mutations may be exacerbated in neurons and mutant neurons could recapitulate the 

disease phenotype. To test this hypothesis and create patient-specific in vitro models 

of Alpers secondary to POLG mutations, conversion of POLG-mutant fibroblasts into 

iNPC’s was attempted using direct conversion methodology.  
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5.3 Results 

 Conversion of Human Patient-derived Fibroblasts into iNPC’s using 

Retroviral and Sendai Virus Treatment 

In order to convert fibroblasts into iNPC’s a collaboration was established with 

Professor Rita Horvath and Dr. Veronika Boczonadi (Institute of Genetic Medicine, 

Centre for Life, Newcastle upon Tyne).  

Direct conversion was performed using retroviral treatment of vectors for the 

transcription factors OCT3, SOX2, KLF4 and c-MYC, following growth in neuronal 

progenitor medium containing Fibroblast Growth Factor 2 (FGF-2) and Epidermal 

Growth Factor (EGF) as previously described (Meyer et al., 2014). The retrovirus 

used was custom-made and a generous gift from Dr. Meyer’s lab at Nationwide 

Children’s Hospital (Columbus, Ohio) to Professor Horvath’s group. The details of the 

retrovirus have not been included in this thesis as they are at present confidential. 

The conversion of cells from two paediatric controls and two early-onset patients with 

Alpers (see Table 5.1) was performed by Dr. Veronika Boczonadi.  

Case Age at 
Skin 

Biopsy 

POLG 
Mutations 

Location Status 

Patient 1 1 month p.(Ala467Thr)/
p.(Thr914Pro) 

Linker/Polymerase Compound 
heterozygous 

Patient 2 1 year p.(Leu428Pro)/
p.(Ala467Thr) 

Linker/Linker Compound 
heterozygous 

Control 1 6 
months 

N/A N/A N/A 

Control 2 8 
months 

N/A N/A N/A 

Table 5.1:Characteristics of patient and control fibroblasts used in this study.  Key: N/A=not 
applicable.  

Briefly, the protocol involved the seeding of 1 x 104 fibroblasts into a well of six-well 

plate for one day. On the following day, a mixture containing the retroviral vectors 

was applied and cells were incubated overnight. On day 3, cells were washed with 

Phosphate Buffered Saline (PBS) and treated with regular fibroblast medium 

(DMEM+10% Fetal Bovine Serum (FBS)) to recover for three days. Cells were 

washed with (PBS) before the fibroblast medium was replaced by Neuronal 

Progenitor Cell (NPC) medium (DMEM/F12, 1% N2, 1% B27, 20 ng/mL FGF-2, 20 
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ng/ml EGF, and heparin (5 μg/mL)) on a daily basis. The cells were monitored and 

once sphere-like structures appeared, the cell culture was lifted with accutase, 

centrifuged and re-suspended in NPC conversion medium and re-plated in two wells 

pre-coated with fibronectin. Once the NPC culture was established (Day 10), the cells 

were cultured by myself in NPC medium containing DMEM/F12, 1% N2, 1% B27, and 

FGF-2 (40 ng/ml) only. 

Only fibroblasts from control 1 and patient 1 (p.(Ala467Thr)/p.(Thr914Pro)) 

underwent morphological changes as shown in Figure 5.1. On day 10, appeared 

neurosphere-like structures appeared, however these structures were lost later, on 

day 15 with eventual death of cells. Fibroblasts from control 2 and patient 2 

(p.(Leu428Pro)/p.(Ala467Thr)) did not form neurospheres, despite morphological 

changes being evident (day 8-10) as shown in Figure 5.1.  

 

Figure 5.1: Conversion of POLG-mutant fibroblasts into iNPC’s using retroviral treatment.  
Representative images of cells from controls and patients with POLG mutations and early-onset 
Alpers undergoing conversion from fibroblasts into iNPC’s. On day 2 post- transfection, control and 
POLG-mutant fibroblasts displayed typical fibroblast morphology. On day 8 morphological changes 
are evident in all fibroblasts. Neurosphere-like structures started forming in patient 1 
(p.(Ala467Thr)/p.(Thr914Pro)) and patient 2 (p.(Leu428Pro)/p.(Ala467Thr)). On day 10, neurospheres 
were formed in control 1 and patient 1. Fibroblasts from control 2 and patient 2 did not reach the state 
of neurosphere formation. Images were captured at 10x magnification using brightfield microscope 
(Axiovert 200 Zeiss). Scale bar=50µm. 

A second attempt by Dr. Veronika Boczonadi involved conversion of another batch of 

POLG-mutant cells using twice the amount of retroviral vectors; however 

morphological changes did not appear and iNPC’s were not formed (data not shown).  
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Given the unsuccessful conversions as described above, further attempts were 

performed by Dr. Veronika Boczonadi which involved replacing the retrovirus with the 

commercially available Sendai virus (ThermoFisher Scientific; AB34546). Sendai 

virus is a parainfluenza virus type I, 150-250nm in diameter, consisting of a single 

15,384 bases long chain of RNA.  

POLG-mutant fibroblasts successfully formed neurospheres on day 10 only for 

patient 1(p.(Ala467Thr)/p.(Thr914Pro)) (see Figure 5.2). Fibroblasts from patient 2 

(p.(Leu428Pro)/p.(Ala467Thr)) failed to form neurospheres. In the case of patient 1 

(p.(Ala467Thr)/p.(Thr914Pro)), although the culture was established and 

neurospheres were formed on day 10, the neurospheres failed to expand, started 

shrinking in size from day 15 and lost neurosphere-like morphology on day 20, 

eventually dying. Controls were not used at this attempt; as only late passage cells 

were available. 
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Figure 5.2: Conversion of POLG-mutant fibroblasts using Sendai virus.  Representative images 
of conversion of POLG-mutant fibroblasts from patients with early-onset Alpers into iNPC’s using 
Sendai virus. On day 2 post-treatment with Sendai virus, fibroblasts from both patients displayed 
fibroblast-like morphology. On day 10, neurospheres were formed in fibroblasts from patient 1. Patient 
2 showed some morphological changes although neurospheres were not evident. On day 15, 
neurospheres from patient 1 started shrinking and cells from patient 2 were lost. On day 20, cells from 
patient 1 lost neurosphere-like morphology and eventually died. Images were captured at 10x 
magnification using brightfield microscope (Axiovert 200 Zeiss). Scale bar=50µm. 
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 Conversion of POLG-mutant Fibroblasts into iNPC’s using Sendai Virus 

Given that the protocol discussed above failed to establish iNPC’s, an alternative 

protocol was used as previously published (Lu et al., 2013). In order to test whether 

the nature of the POLG mutations could be responsible for the unsuccessful 

conversion, fibroblasts from an adolescent patient with Alpers harbouring 

homozygous p.(Ala467Thr) mutations were selected for conversion. These 

fibroblasts were selected based on evidence that homozygous p.(Ala467Thr) 

mutations are associated with later disease onset and longer survival (Tzoulis et al., 

2006; Anagnostou et al., 2016). The treatment with Sendai virus was performed by 

myself under the supervision of Dr. Veronica Boczonadi. The protocol is detailed in 

section 2.3.5. Controls were not suitable for conversion due to late passage.  

Fibroblasts underwent morphological changes from day 1-7 post-transfection. On day 

9 neurospheres started forming as illustrated in Figure 5.3. On day 15, neurospheres 

were large enough to be selected using a pipette and transferred into wells pre-

coated with laminin for further expansion. However, the neurospheres did not attach 

to the wells, even when the concentration of laminin was increased (100µg/ml). The 

remaining neurospheres in iNPC culture started losing neurosphere morphology (day 

20), resembling fibroblasts and showing signs of cell death (Figure 5.3). 
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Figure 5.3: Timeline of conversion of fibroblasts with the homozygous p.(Ala467Thr) mutations 
from an adolescent patient with Alpers into iNPC’s using Sendai virus. Representative images of 
fibroblast conversion into iNPC’s. Fibroblasts underwent morphological changes from day 1-7 post-
transfection. On day 9 post-transfection, neurospheres started forming. On day 15, neurospheres 
were large enough to be selected and expanded. However, neurospheres did not attach to the wells 
and the remaining neurospheres in iNPC culture converted back into fibroblasts and eventually died. 
Images were captured at 10x magnification using brightfield microscope (Axiovert 200 Zeiss). Scale 
bar=50µm. 
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5.4 Discussion  

This chapter focussed on the attempt to directly convert POLG-mutant fibroblasts into 

induced neuronal progenitor cells (iNPC’s). Two different protocols were selected for 

direct conversion; however, these did not yield in iNPC colonies.  

Direct conversion has been shown to be an efficient and rapid technique in 

converting fibroblasts into specific cellular types including cardiomyocytes, 

hepatocytes and neurons. Direct conversion involves either the ectopic expression of 

lineage-specific transcription factors or micro-RNA’s (Vierbuchen et al., 2010; Pang 

et al., 2011; Xue et al., 2013).  

In this work, neurospheres were formed using both protocols, however failed to 

expand into iNPC colonies. Using the protocol by Meyer et al., where iNPCs’ were 

created with the potential of differentiating into neurons, astrocytes and 

oligodendrocytes (Meyer et al., 2014), fibroblasts underwent morphological changes 

and formed neurospheres. However, the latter failed to expand into iNPC colonies.  

The factors responsible for failure in establishing iNPC cultures is unclear. In the first 

attempt, the failure could be linked to the use of the retrovirus, however when a 

different batch of retroviruses was used for conversion, it also failed. As both control 

and patient fibroblasts did not convert into iNPC’s it is likely that the protocol requires 

optimisation. One explanation, as previously, could be the late passage of cells, 

especially in the case of control 2 and patient 2, which did not reach the state of 

neurosphere formation. Regrettably, at the time of conversion, earlier passage 

fibroblasts were not available.  

Since retroviral treatment was not effective in converting fibroblasts from the current 

work into iNPC’s, a different approach was used involving Sendai virus treatment. As 

with the previously mentioned approach, the use of Sendai virus did not result in 

successful conversion. The reasons behind the failure remain unclear. Nevertheless, 

one explanation could be the late passage of cells used, which is supported by the 

fact that control 2 (passage 12) and patient 2 (passage 10) did not form any 

neurospheres. At the time of conversion, earlier passage fibroblasts were not 

available.  

To overcome these limitations, an additional protocol subsequently to the one used 

after Sendai virus was considered, which involved mixture of different growth factors 

to directly convert into iNPC’s. Although this method initially seemed promising with 
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large neurospheres forming by day 15, the neurospheres did not reach the state of 

being large enough and could not be observed by eye. Therefore, I attempted to 

select the neurospheres by pipette and expand them further. However, when these 

were placed in wells pre-coated with laminin, the neurospheres failed to attach, even 

when the concentration of laminin was increased. It is unclear why the neurospheres 

did not attach, as the neurospheres were picked from a laminin-coated well. To test 

whether the coating was unsuitable, other coating reagents could be used in future 

(Zurita et al., 2016).  

It is important to note that in this attempt, controls were not used, therefore it is 

possible that the reason behind the inability of fibroblasts to successfully convert into 

iNPC’s is due to the nature of POLG mutations. The fibroblasts selected for 

conversion were early passage cells (passage 6) from a patient with a homozygous 

p.(Ala467Thr) mutation, which is associated with milder phenotype compared to 

compound heterozygous mutations (Tzoulis et al., 2006; Anagnostou et al., 2016). 

The fibroblasts from this patient were selected as it was hypothesised that if the 

homozygous p.(Ala467Thr) mutation has a milder effect, it would be easier to convert 

the cells into iNPC’s for further investigation. Unfortunately, this was not the case, 

highlighting the difficulty of creating in vitro models by direct differentiation methods.  

Direct conversion can be a rapid and cost-efficient method to create neurons, 

however it has its own limitations. These include: restricted proliferative capacity, 

senescence and limited cell type diversity.  

A recent study demonstrated the conversion of homozygous p.(Trp748Ser) 

fibroblasts into iPSC’s (Zurita et al., 2016). Although iPSC’s are more expensive and 

do not convert as rapidly as with direct conversion methodologies, using iPSC’s 

could be an alternative option to produce patient-specific neurons. Using the iPSC 

approach may be beneficial when considering differentiation into specific neuronal 

sub-types, given the limited cell type diversity achieved using the direct conversion 

methods. If neurons are successfully generated, then mitochondrial dysfunction in 

POLG-mutant neurons would be an interesting area to investigate and may result in 

a suitable model for initial testing of novel therapies. 

Finally, since this work could not expand further in the creation of a patient-specific 

POLG-mutant in vitro model, post-mortem tissue was selected as an alternative 

approach.  
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In the quest to understand the pathogenesis of epilepsy in Alpers’ syndrome, the 

following chapters will discuss the characterisation of mitochondrial dysfunction in 

post-mortem brain tissue from patients with Alpers.  
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Chapter 6 Mechanisms of Neurodegeneration in Patients with 

Alpers and POLG Mutations: Assessment of Respiratory Chain 

Deficiency and MtDNA Damage 

6.1 Introduction 

Currently, the molecular pathomechanisms underlying POLG-related encephalopathy 

are not well understood. The study of POLG-related encephalopathy is limited by the 

scarcity of brain tissue and the lack of accurate cellular models, particularly given that 

defects often detected in the tissue are not expressed in cell culture. Similarly, animal 

models recapitulating the phenotype of POLG-related encephalopathy are lacking. 

Patients with POLG mutations harbour mtDNA defects and respiratory chain 

deficiencies to a variable extent, depending on the tissue type (see Chapter 3). Most 

studies have focused on liver, muscle and fibroblasts. Respiratory chain deficiencies 

involving complexes I-IV and CV defects are common in liver and muscle with 

evidence of mtDNA depletion (Sarzi et al., 2007; Scalais et al., 2012; Rouzier et al., 

2014). However, mtDNA copy number and respiratory chain function in muscle and 

fibroblasts can often be inconsistent and may appear normal (Kollberg et al., 2006; 

Tang et al., 2011), even in late disease stage (Schaller et al., 2011). It is important to 

mention here that most studies are case studies involving a single patient or small 

number of patients and in the majority of these studies, the molecular investigations 

performed are not patient or tissue-matched. Therefore, reproducing and correlating 

the findings remains challenging.  

The defects occurring as a result of POLG mutations in the central nervous system 

have not been well characterised due to the lack of post-mortem brain tissue 

availability. To date, only a few reports exist on human neuronal mtDNA content and 

deletion levels, respiratory chain protein expression and POLG mutations. One study 

demonstrated a mild decrease (30% mtDNA reduction when compared to the control 

mean) in the mtDNA copy number in frozen frontal lobe homogenate from a patient 

with Alpers, harbouring homozygous p.(Ala467Thr) mutations (Ferrari et al., 2005).  

Another study by Hakonen and colleagues showed a mild reduction in mtDNA copy 

number in the cerebellum of a MIRAS patient with homozygous p.(Trp748Ser) 

mutations but mtDNA copy number was found to be within the normal range of 

controls in the frontal lobe of the patient (Hakonen et al., 2008). These findings were 
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coupled with complex I deficiency in neurons from both the cerebellum and frontal 

cortex. In addition, brain tissue from a patient with homozygous p.(Ala467Thr) 

mutations showed reduced complex III activity in another study (Blok et al., 2009).   

A more recent study described respiratory chain deficiencies involving complex I and 

to a lesser extent complex IV, associated with mtDNA depletion in brain 

homogenates and micro-dissected neurons (Tzoulis et al., 2014). Interestingly 

mtDNA deletions were detected only in patients with late- onset Alpers in the 

presence of depletion suggesting that deletions may accumulate with age. In 

agreement, neurons from the dorsal root ganglia from an adult patient with POLG-

related disorder showed a decrease of 50% in mtDNA content in the presence of 

deletions and respiratory chain deficiencies involving complexes I and IV (Lax et al., 

2012b). More recently Lax and colleagues used a quantitative, quadruple 

immunofluorescent method to assess complex I and complex IV respiratory chain 

protein expression in conjunction with mitochondrial mass within GABAergic 

interneurons of adult patients with mitochondrial disease, including adult patients 

harbouring POLG mutations (Lax et al., 2016). Results revealed extensive respiratory 

chain deficiencies, which were more profound for complex I, a finding consistent with 

previous reports (Hakonen et al., 2008; Tzoulis et al., 2014).  

GABAergic interneurons are believed to modulate excitation and inhibition in the 

cerebral cortex. Under normal conditions, interneurons exert their function by 

modulating pyramidal neurons via GABAergic neurotransmission. The role of 

interneurons in epileptogenesis has well been characterised, as it has been shown 

that interneuron loss disrupts neuronal networks in the epileptic hippocampus (Marx 

et al., 2013). Given their high metabolic activity to sustain oscillatory activity, 

interneurons are vulnerable to complex I and IV deficiencies, highlighting their 

dependence on OXPHOS (Kann et al., 2011; Whittaker et al., 2011). The findings 

from Lax and colleagues suggest mitochondrial dysfunction within GABAergic 

interneurons, which may contribute to impaired neuronal oscillations leading to the 

development of the neurological deficits seen in patients (Lax et al., 2016).  

Neurological involvement is a prominent feature of Alpers, thus it was hypothesised 

that mitochondrial dysfunction may underlie impairment of neuronal networks and 

contribute to epilepsy seen in Alpers. Dr. Hayhurst and Dr. Lax investigated 

respiratory chain deficiencies within GABAergic interneurons, pyramidal neurons and 

Purkinje cells from 12 patients with clinically and/or genetically defined Alpers using 
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the pre-validated protocol by Lax and colleagues (Lax et al., 2016). The occipital lobe 

was selected, due to the previously documented clinical involvement of this brain 

region. In addition, respiratory chain deficiency was examined in Purkinje cells of the 

cerebellum of the patients as this region has been reported to be affected to a 

variable extent. Results revealed deficiencies involving complex I and to a lesser 

extent complex IV, in interneurons of the occipital lobe and in Purkinje cells of the 

cerebellum. Pyramidal neurons of the occipital lobe were found to be complex I and 

IV deficient, however to a lesser extent when compared to interneurons (courtesy of 

Hayhurst and Lax).  

Patients with Alpers demonstrate mitochondrial respiratory chain deficiencies in the 

occipital lobe and cerebellum which correlate with the clinical picture. Specifically, the 

occipital lobe defects are associated with visual loss and epilepsy, and the 

cerebellum dysfunction explains ataxia seen in patients. The pathology of other brain 

regions including parietal and frontal lobes from patients with Alpers have rarely been 

investigated (Hunter et al., 2011; Sofou et al., 2012; Rajakulendran et al., 2016). 

These areas are important in coordinating cognitive functions and is important to 

investigate the extent of mitochondrial dysfunction within these regions to better 

understand the mechanisms of disease progression. 

6.2 Aims 

This chapter will test the hypothesis that mitochondrial respiratory chain deficiencies 

in interneurons and pyramidal neurons from the occipital, parietal and frontal lobes 

contribute to altered neuronal dynamics giving rise to epilepsy and cognitive 

impairment in patients with Alpers. The contribution of mtDNA damage as an 

underlying mechanism will also be examined. Cases 8, 13 and 14 have been 

previously studied by Lax and colleagues (Lax et al., 2016). This work aims to: 

1) Confirm a genetic diagnosis of mutations in POLG mutations in the cases 

where one is not available. 

2) Assess the degree of respiratory chain deficiencies between different brain 

regions (occipital, parietal and frontal lobes) using a robust, quantitative, 

immunofluorescent approach. 

3) Quantitatively assess mtDNA abnormalities (depletion and deletions) in brain 

tissue homogenates from occipital, parietal and frontal lobes from adult 

patients with POLG mutations by qPCR. 
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4) Correlate mtDNA depletion with respiratory chain deficiencies between 

different brain regions.  

6.3 Results 

 Molecular Investigations of POLG 

DNA was extracted from brain FFPE tissue blocks from patients 1 and 2, for whom a 

genetic diagnosis of POLG mutations had not been confirmed. DNA extraction was 

performed as described in section 2.5.6. DNA was quantified using the Nanodrop 

ND-100 Spectrophotometer. DNA appeared to be present in the samples in 

quantities of 3.2 ng/µl and 5.5ng/µl respectively. However, the PCR reactions 

performed using the primers for the three most common mutations p.(Ala467Thr), 

p.(Trp748Ser) and p.(Gly848Ser) did not return positive results (Figure 6.1). Thus, a 

genetic diagnosis for patients 1 and 2 could not be achieved.  
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Figure 6.1: Agarose gel electrophoresis showing no amplification of relevant POLG DNA 
regions. The figure is representative of a 1% agarose gel, where the bands were visualised with 
GelRedTM. A first round of PCR was performed spanning the region where the relevant single base 
mutation is present. A second PCR reaction was performed on the products from the latter in order to 
obtain more product using a biotinylated primer for each reaction to enable subsequent genotyping by 
pyrosequencing. The reactions were successful using wild type DNA, which suggests the absence of 
amplification in patient DNA is due to the poor quality of the DNA obtained after extraction. A negative 
control (water) for each mutations were tested. The wildtype DNA lanes show positive bands for 
amplified DNA. The lanes with DNA from patients 1 and 2 do not show positive bands. The negative 
control DNA lanes are clear. Key: Neg ctrl=negative control; 467= p.(Ala467Thr), 748= p.(Trp748Ser); 
848= p.(Gly848Ser); wt= wildtype. A 1bp ladder was used. 

 Mitochondrial Respiratory Chain Protein Expression within GABAergic 

Interneurons and Pyramidal Neurons of Patients with Alpers 

A previously optimised immunofluorescent assay (Lax et al., 2016) was used to 

determine the extent of mitochondrial dysfunction in GABAergic interneurons in 

patients with Alpers’ syndrome. The respiratory chain protein expression levels of 

subunits of complex I and complex IV were measured within GABAergic interneurons 

and pyramidal neurons within the occipital, parietal and frontal cortices from patients 

with Alpers’ syndrome (see Table 6.1) and controls (see Table 6.2). Different brain 

regions were examined in different patients due to the lack of available tissue. It is 

important to mention that the clinical findings including hypsarrhythmia and 
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hydrocephalus as well as the very early onset for patients 1 and 2 are not 

representative of classical Alpers phenotype. Taken this into account, as well as the 

lack of genetic diagnosis of POLG mutations in these cases, it is therefore doubtful 

that these are due to POLG mutations and any findings should be interpreted with 

caution. 

To detect mitochondrial respiratory chain protein expression within GABAergic 

interneurons, antibodies raised to NDUFB8 and COX1 subunit were employed in 

conjunction with VDAC1/Porin to detect mitochondrial mass within GAD65-67-

positive interneurons.  

To examine mitochondrial respiratory chain abnormalities in pyramidal neurons, two 

quantitative triple-based staining protocols were utilised due to conflicting isotype 

specificity cross-reactivity; in both assays an antibody raised against SMI-32P (non- 

phosphorylated neurofilaments) was used to visualise pyramidal neurons and 

hoescht to visualise nuclei, while antibodies raised against NDUFA13 and COX4I2 

were used to detect subunits of complex I and mitochondrial mass respectively. 

COX4l2 levels are comparable in patients and controls, thus this marker can be used 

to indicate mitochondrial mass. In the second assay, COX1 and VDAC1/Porin were 

used to visualise complex IV protein abundance and mitochondrial mass 

respectively.  

Downregulation of complex I or IV was observed visually as a loss or absence of 

NDUFB8/NDUFA13 and COX1 immunoreactivity in the presence of high 

VDAC1/Porin or COX4I2 immunoreactivity within either interneurons or pyramidal 

neurons. The optical densities for NDUFB8/NDUFA13, COX1 and Porin/COX4I2 

were measured within each GABAergic interneuron (n=40) and pyramidal neuron 

(n=35) using Volocity software (PerkinElmer), as described in section 2.6.6. The z-

scores were derived from the natural logarithm transformation of intensity data for 

NDUFB8/NDUFA13 vs Porin/COX4l2 and COX1 vs Porin, as detailed in section 

2.6.7. The z-scores were then categorised as: overexpression of respiratory chain 

proteins (z-score>2), normal (z-score<2), low (z-score<-2), deficient (z-score<-3) and 

severely deficient (z-score<-4). The percentages of interneurons and pyramidal 

neurons within each category were calculated for patients and controls. 
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Patient Age of 
Onset 

Age at 
Death 

Disease 
Duration 

Gender Genetic Defect Brain region 

Patient 1 2 months 5.5 months 3.5 months Male Unknown Parietal 

Patient 2 4 months 13 months 9 months Male Unknown Parietal, frontal 

Patient 3 11 months 14 months 3 months Female p.(Ala467Thr)/(p.Gly848Ser) Parietal 

Patient 5 11 months 13 months 2 months Male p.(Ala467Thr)/p.(Gly303Arg) Occipital 

Patient 6 7.2 months 7.8 months <1 month Male p.(Ala467Thr)/p.(Gly848Ser) Occipital, frontal 

Patient 7 2 years 8 years 6 years Male p.(Ala467Thr)/p.(Gly303Arg) Frontal 

Table 6.1: Details of patients used in the study of respiratory chain protein expression. Patients 1 and 2 were clinically diagnosed as Alpers cases, however 
the clinical findings were not representative of classical Alpers and genetic testing for POLG mutations was not available due to the historic nature of these samples. 
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Control Age at Death Cause of 
Death 

Gender Brain region 

Control 1 13 months Occipital 
porencephaly 

Female Parietal 

Control 2 22 years Poisoning Female Parietal, 
occipital 

Control 3 24 years Suspension 
by ligature 

Female Parietal, 
occipital 

Control 4 4.5 months SIDS Female Occipital, 
frontal 

Control 5 1 month SIDS Male Occipital, 
frontal 

Control 6 8 years Asphyxia Female Frontal 

Control 7 6 years Drowning 

 

Female Frontal 

Control 8 16 years Suspension 
by ligature 

 

Male Occipital 

Table 6.2: Details of controls used in the study of respiratory chain protein expression.  Key: 
SIDS=sudden infantile death syndrome. 

A. Occipital Lobe 

In the controls, GABAergic interneurons display equal expression and good co-

localisation of NDUFB8, COX1 and Porin. Data from controls 2, 3 and 8 were kindly 

provided by Dr. Hannah Hayhurst, as part of her project. In patient tissues, there is 

marked loss of NDUFB8 and COX1 immunoreactivity while Porin is maintained (see 

Figure 6.2). The quantitative data demonstrate that respiratory chain protein 

expression within GABAergic interneurons in control tissue is almost 100% normal 

displaying in the majority a z-score between -2 and +2, with only a minority of 

interneurons showing low expression (z-score<-2) or overexpression (z-score>2). 

(see Figure 6.3) 

However extensive respiratory chain protein deficiencies involving both complexes I 

and IV are observed in patients, distinguished by z-score<-3 and -4. Complex I was 

severely deficient in all four patients. Patient 1 (no POLG diagnosis), patient 3 

(p.(Ala467Thr)/p.(Gly848Ser)) and patient 6 (p.(Ala467Thr)/p.(Gly848Ser)), with all 

interneurons displaying z-scores below -3 and -4, suggestive of 100% complex I 

deficiency. Patient 5 (p.(Ala467Thr)/p.(Gly303Arg)) showed 8% of interneurons with 
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low complex I expression (z-score<-2), although the remaining were deficient (z-

score<-3 and -4) (see Figure 6.3A).  

With regards to complex IV expression, all interneurons from patient 5 

(p.(Ala467Thr)/p.(Gly303Arg)), showed a z-score<-4 and -3. Interneurons from 

patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) showed almost 100% deficiency of complex 

IV deficiency (98% of interneurons with z<-4). Patient 1 (no POLG diagnosis) showed 

also high levels of complex IV deficiency. Patient 3 (p.(Ala467Thr)/p.(Gly848Ser)) 

showed the milder complex IV deficiency from the patients considered, as a minority 

of interneurons showed low complex IV expression (z-score<-2 in 11% of 

interneurons) and normal complex IV expression (z-score<2 in 7% of interneurons) 

(Figure 6.3B). 

Quantitative analysis of respiratory chain deficiencies in pyramidal neurons of the 

occipital lobe was not feasible due to limited tissue availability.  
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Figure 6.2: Quadruple immunofluorescence showing respiratory chain deficiencies involving 
complexes I and IV in interneurons of the occipital lobe from patients with Alpers.  Sections 
were stained with GAD65-67 (interneurons), NDUFB8 (complex I subunit), COX1 (complex IV subunit) 
and Porin (mitochondrial mass). Representative images of the control tissue show a good co-
localisation of NDUFB8, COX1 and Porin within the GAD65-67 positive interneurons. All patients show 
reduced immunoreactivity of NDUFB8 and COX1, while Porin is maintained. Scale bar=10µm.  
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Figure 6.3: Extensive respiratory chain deficiency involving complex I and to a lesser degree 
complex IV in GABAergic interneurons of the occipital lobe in patients with Alpers. Data are 
represented as z-scores derived from the quantitative assessment of NDUFB8 and COX1 intensities 
relative to Porin intensities within GABAergic interneurons in patients and controls. The data 
demonstrate how much the complex I (A) and complex IV expression (B) deviate from normality. Here, 
a z-score>2 indicates overexpression, and a z-score<-2 indicates reduced expression. A z-score<-3 
shows deficiency and a z-score<-4 indicates severe deficiency. There is a severe complex I deficiency 
in all patients (A) and to a lesser extent, complex IV (B). 

  



170 
 

B. Parietal Lobe 

In control parietal lobe, GABAergic interneurons showed equal immunoreactivity of 

NDUFB8, COX1 and Porin and therefore good co-localisation. In patients, there is a 

marked decrease in NDUFB8 and COX1 while Porin is maintained (see Figure 6.4). 

Quantitative data demonstrate extensive complex I deficiency in patients 1 and 2 

(both without POLG diagnosis). The interneurons from patients 1 and 2 (both without 

POLG diagnosis) showed z-score<-3 and -4 in the majority, implying almost 100% 

complex I deficiency. Patient 3 (p.(Ala467Thr/p.(Gly848Ser)) showed only 21% 

deficiency (z-score<-3) involving complex I, while the majority of the interneurons 

showed low expression (60% of interneurons z<-2) and some interneurons 

expressed complex I at normal levels (19% of interneurons, z-score<2) (see Figure 

6.5A). 

With regards to complex IV, interneurons of patients showed some degree of 

complex IV deficiency, however to a lesser extent compared to complex I. Patients 1 

and 2 (both without POLG diagnosis) had the highest complex IV deficiency as with 

complex I. In contrast, patient 3 (p.(Ala467Thr)/p.(Gly848Ser)) displayed the lowest 

degree of complex IV deficiency from all patients analysed (see Figure 6.5B).  
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Figure 6.4: Quadruple immunofluorescence demonstrating complex I and IV respiratory chain 
deficiencies in patient interneurons from the parietal lobe of patients with Alpers. Sections 
stained with GAD65-67 (interneurons), NDUFB8 (subunit of complex I), COX1 (subunit of complex IV) 
and Porin (mitochondrial mass). Here, respresentative images show a good co-localisation of 
NDUFB8, COX1 and Porin within the interneurons of the control tissue. All patients show reduced 
immunoreactivity of NDUFB8 and COX1, while Porin is maintained. Scale bar=10µm.  
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Figure 6.5: Extensive respiratory chain deficiency involving complex I and to a lesser degree, 
complex IV in GABAergic interneurons from the parietal lobe of patients with Alpers.  Data are 
represented as z-scores derived from the quantitative assessment of NDUFB8 and COX1 intensities 
relative to Porin intensities, within GABAergic interneurons in patients and controls. The data 
demonstrate how much the complex I (A) and IV expression (B) (relative to Porin) deviate from 
normality. Here, a z-score <2 is indicative of normal protein expression and a z-score lower than −2 
indicates reduced expression. A z-score<-3 shows deficiency and a z-score<-4 indicated severe 
deficiency. There is severe complex I deficiency in all patients (A) and to a lesser extent, complex IV 
(B). 
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Pyramidal neurons in the parietal lobe showed equal immunoreactivity of NDUFA13 

and COX4I2 or COXI and Porin, which showed good co-localisation. There was a 

specific loss of NDUFA13 and COX1 in the patients despite the maintained 

Porin/COX4I2. Patients 1 and 2 (no POLG diagnosis) exhibited deficient (z-score<-3) 

and severely deficient complex I interneurons (z-score<-4), however this was milder 

compared to the interneurons of the parietal lobe, which were almost 100% complex I 

deficient. Pyramidal neurons from patient 3 (p.(Ala467Thr)/p.(Gly848Ser)) did not 

demonstrate any complex I deficiency (see Figures 6.6 and 6.8A). 

Complex IV deficiency (z-score<-3) was observed only in Patient 1 (no POLG 

diagnosis) who showed the most extensive complex I deficiency in pyramidal 

neurons. However complex IV deficiency was milder compared to complex I 

deficiency. Patient 2 (no POLG diagnosis) and Patient 3 

(p.(Ala467Thr)/p.(Gly848Ser)) had normal complex IV expression (z-score<2) (see 

Figures 6.7 and 6.8B). 
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Figure 6.6: Quadruple immunofluorescence demonstrating complex I respiratory chain protein 
expression in pyramidal neurons from the parietal lobe of patients with Alpers.  Sections were 
stained with Hoechst (nuclei), SMI-32P (pyramidal neurons), NDUFA13 (subunit of complex I) and 
COX4l2 (as a mitochondrial mass marker). Here, representative images show good co-localisation of 
NDUFA13 and COX4l2 within the pyramidal neurons of the control tissue. Patients 1 and 2 (both 
without POLG diagnosis) show reduced immunoreactivity of NDUFA13, when COX4l2 is maintained. 
Patient 3 (p.(Ala467Thr)/p.(Gly848Ser)) shows good co-localisation of NDUFA13 and COX4l2. Scale 
bar=10µm.   
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Figure 6.7: Quadruple immunofluorescence demonstrating complex IV respiratory chain 
protein expression in pyramidal neurons of the parietal lobe from patients with Alpers.  
Sections were stained with Hoechst (nuclei), SMI-32P (pyramidal neurons), COX1 (subunit of complex 
IV) and Porin (as a mitochondrial mass marker). Here, representative images show good co-
localisation of COX1 and Porin within pyramidal neurons of the control tissue. Patient 1 (no POLG 
diagnosis) shows reduced immunoreactivity of COX1 when Porin is maintained. Patients 2 (no POLG 
diagnosis) and 3 (p.(Ala467Thr)/p.(Gly848Ser)) show equal expression of COX1 compared to 
controls, when Porin is maintained. Scale bar=10µm. 
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Figure 6.8: Respiratory chain deficiency involving complex I and to a lesser extent, complex IV 
in pyramidal neurons of the parietal lobe from patients with Alpers. Data are represented as z-
scores derived from quantitative assessment of NDUFA13 and COX1 optical densities relative to 
COX4l2/Porin optical densities within pyramidal neurons in patients and controls. The data 
demonstrate how much the complex I (A) and complex IV (B) deviate from normality. Here, a z-
score<2 is indicative of normal protein expression. A z-score>2 indicates overexpression and a z-
score<-2 is indicative of reduced expression. A z-score<-3 shows deficiency and a z-score<-4 
indicates severe deficiency. (A) There is severe complex I deficiency in patients 1 and 2 (both without 
POLG diagnosis) but only low levels of complex I expression in patient 3 
(p.(Ala467Thr)/p.(Gly848Ser)). (B) Complex IV deficiency and low levels of complex IV expression 
were evident in the pyramidal neurons of patient 1 (no POLG diagnosis), however complex IV 
deficiency was milder compared to complex I. Pyramidal neurons of patients 2 (no POLG diagnosis) 
and 3 (p.(Ala467Thr)/p.(Gly848Ser)) showed normal complex IV expression. 
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C. Frontal lobe 

In the frontal lobe, the interneurons of control tissue showed good co-localisation of 

NDUFB8, COX1 and Porin. In controls, complex I and IV expression were almost 

100% normal. Patient 2 (no POLG diagnosis) showed normal complex I and IV 

expression (z-score<2), whereas patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) and patient 

7 (p.(Ala467Thr)/p.(Gly303Arg)) exhibited deficient (z-score<-3) and severely 

deficient (z-score<-4) complex I and complex IV interneurons (see Figures 6.9 and 

6.10). Patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) exhibited the most severe complex I 

and complex IV, to a lesser extent, deficient interneurons. Patient 7 

(p.(Ala467Thr)/p.(Gly303Arg)) showed a higher percentage of deficient (z-score<-3) 

and severely deficient (z-score<-4) complex IV interneurons than complex I (see 

Figures 6.9 and 6.10). This patient had the latest disease onset (2 years) and the 

longer survival (6 years).  
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Figure 6.9: Quadruple immunofluorescence demonstrating complex I and complex IV 
respiratory chain protein deficiencies in GABAergic interneurons from the frontal lobe of 
patients with Alpers.  Sections were stained with GAD65-67 (interneurons), NDUFB8 (subunit of 
complex I), COXI (subunit of complex IV) and Porin (mitochondrial mass). Representative images 
show a good co-localisation of NDUFB8, COX1 and Porin within the interneurons of the control tissue 
and patient 2 (no POLG diagnosis). Patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) shows reduced 
immunoreactivity of NDUFB8 and COX1, while Porin is maintained. Patient 7 
(p.(Ala467Thr)/p.(Gly303Arg)) shows decreased immunoreactivity of NDUFB8 and COX1 when Porin 
is maintained. Scale bar=10µm. 
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Figure 6.10: Respiratory chain deficiency involving complex I and to a lesser extent, complex 
IV in GABAergic interneurons of the frontal lobe from patients with Alpers.  Data are 
represented as z-scores derived from the quantitative assessment of NDUFB8 and COX1 intensities 
relative to Porin intensities within GABAergic interneurons in patients and controls. The data 
demonstrate how much the complex I (A) and complex IV (B) expression relative to Porin deviate from 
normality. A z-score<2 is indicative of normal protein expression, a z-score>2 indicates 
overexpression and a z-score<-2 indicates reduced expression. A z-score<-3 shows deficiency and a 
z-score<-4 is indicative of severe deficiency. (A) Patient 2 (no POLG diagnosis) displays normal 
complex I expression in the majority of interneurons, with some interneurons exhibiting 
overexpression. There is severe complex I deficiency in patients 6 (p.(Ala467Thr)/p.(Gly848Ser)) and 
7 (p.(Ala467Thr)/p.(Gly303Arg)), however patient 7 (p.(Ala467Thr)/p.(Gly303Arg)) shows complex I 
deficiency to a lesser extent compared to patient 6 (p.(Ala467Thr)/p.(Gly303Arg)). (B) Complex IV 
shows normal expression in the interneurons of patient 2 (no POLG diagnosis). Complex IV deficiency 
is evident in the interneurons of patient 6 (p.(Ala467Thr)/p.(Gly848Ser)), however to a lesser extent 
compared to complex I. Patient 7 (p.(Ala467Thr)/p.(Gly303Arg)) shows complex IV deficiency to 
similar levels to complex I.  
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With regards to pyramidal neurons of the frontal lobe, complex I expression was 

normal in the patients investigated (see Figures 6.11 and 6.13). Patient 7 

(p.(Ala467Thr)/p.(Gly303Arg)) exhibited a high degree of overexpressed complex I 

(48%). Complex I and IV expression was normal in Patient 2 (no POLG diagnosis), 

however patient 7 (p.(Ala467Thr)/p.(Gly303Arg)) exhibited 25% complex IV 

deficiency (see Figures 6.12 and 6.13). This patient exhibited complex IV deficiency 

at a similar extent in the interneurons of the frontal lobe. For patient 6 

(p.(Ala467Thr)/p.(Gly848Ser)), there was insufficient number of pyramidal neurons, 

therefore this patient was not included in the analysis. 

 

Figure 6.11: Quadruple immunofluorescence demonstrating complex I respiratory chain 
protein expression in pyramidal neurons from the frontal lobe of patients with Alpers.  Sections 
were stained with Hoechst (nuclei), SMI-32P (pyramidal neurons), NDUFA13 (subunit of complex I) 
and COX4l2 (as a mitochondrial mass marker). Representative images show good co-localisation of 
NDUFA13 and COX4l2 within the pyramidal neurons of control and patient tissue. Scale bar=10µm. 
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Figure 6.12: Quadruple immunofluorescence demonstrating complex IV respiratory chain 
protein expression in pyramidal neurons from the frontal lobe of patients with Alpers.  Sections 
were stained with Hoechst (nuclei), SMI-32P (pyramidal neurons), COX1 (subunit of complex IV) and 
Porin (mitochondrial mass). Here, images show good co-localisation of COX1 and Porin in the 
pyramidal neurons of control tissue. Patient 2 (no POLG diagnosis) shows increased immunoreactivity 
of COX1 when Porin is maintained. Patient 7 (p.(Ala467Thr))/p.(Gly303Arg)) shows reduced 
immunoreactivity of COX1, while Porin is maintained. Scale bar=10µm. 

  



182 
 

 

Figure 6.13: Respiratory chain protein expression of complexes I and IV in pyramidal neurons 
of the frontal lobe from patients with Alpers.  Data are shown as z-scores derived from the 
quantitative assessment of COX1 intensity relative to Porin intensity within pyramidal neurons of 
patients and controls. The data demonstrate how much complex I expression (A) and complex IV 
expression (B) deviate from normality. Here, a z-score<2 indicates normal protein expression, a z-
score>2 demonstrates overexpression, and a z-score<-2 indicates reduced protein expression. A z-
score<-3 indicates deficiency and a z-score<-4 shows severe deficiency. (A) Complex I expression in 
patient 2 (no POLG diagnosis) is normal in the majority of interneurons, with a low number of 
pyramidal neurons showing overexpression. Patient 7 (p.(Ala467Thr)/p.(Gly303Arg)) shows an equal 
number of interneurons with normal and overexpressed complex I expression. (B) In patient 2 (no 
POLG diagnosis) complex IV expression is comparable to complex I. Pyramidal neurons from patient 
7 (p.(Ala467Thr)/p.(Gly848Ser)) display complex IV deficiency.   
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 Mitochondrial DNA Copy Number in Brain Tissue  

To test whether mtDNA depletion due to POLG mutations is the underlying 

mechanism of respiratory chain deficiency seen in the brain of patients, mtDNA copy 

number was assessed in patients with POLG mutations and controls. However, the 

cases examined were adult and not paediatric, as this was the only frozen tissue 

available (see Table 6.3). Mitochondrial DNA depletion was assessed in brain 

homogenates from the occipital, parietal and frontal lobes from patients and controls 

using a quantitative real-time PCR assay. The method involves the amplification of 

the mitochondrial gene MT-ND1 and the nuclear gene B2M (see section 2.7.10). The 

mtDNA copy number in brain homogenate tissue from the three different lobes was 

calculated based on a standard curve from samples with known copy number. The 

absolute mtDNA copy number per cell was derived.  
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Patient/Control Patient 
Code 

Age at 
Death 

Gender Clinical 
Phenotype 

Genetic Defect Available 
Brain 

Region 

Patient 8 2001/0017 24 years Female Alpers p.(Ala467Thr)/p.(Trp748Ser) Occipital, 
Parietal, 
Frontal 

Patient 10 4217 45 years Female PEO and epilepsy p.(Ala467Thr)/p.(Trp748Ser) Frontal 

Patient 12 141-97 50 years Male CPEO and sensory 
neuronopathy 

p.(Ala467Thr) and p.(X1240Gln) Occipital 

Patient 13 958-10 79 years Male CPEO, Ataxia p.(Thr251Ile)/p.(Pro587Leu) and 
p.(Ala467Thr) 

Occipital 

Patient 14 224-11 55 years Male CPEO, epilepsy 
and ataxia 

p.(Trp748Ser)/p.(Arg1096Cys) 
and p.(Glu1143Gly) 

Occipital 

Patient 9 1997/0064 6 years Male  Encephalopathy 
similar to Alpers 
with liver failure 

IDH3A 
p.(Arg178His)/p.(Ala330Val) 

Occipital, 
parietal 

Patient 11 110-05 59 years Male Parkinsonism p.(Ser1104Cys)/p.(Gly848Ser) Occipital 

Control 9 1985-647 6 years Female  N/A Occipital, 
Parietal 

Control 10 729-10 70 years Male  N/A Occipital 

Control 11 118-09 55 years Male  N/A Occipital 

Control 12 891-11 81 years Male  N/A Occipital 
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Control 13 1993-173 19 years Male  N/A Parietal, 
Frontal 

Control 14 1993-179 27 years Male  N/A Parietal, 
Frontal 

Table 6.3: Details of patients and controls used in the study of mtDNA damage.  Key: CPEO=chronic progressive external ophthalmoplegia; IDH3A=isocitrate 
dehydrogenase 3A; N/A=not applicable.  
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A. Occipital Lobe 

The mtDNA copy number from five adult patients harbouring compound 

heterozygous mutations compared to controls and a paediatric patient (6 years old) 

with an encephalopathy similar to Alpers phenotype, with mutations in isocitrate 

dehydrogenase 3A (IDH3A), but without evidence of mutations in POLG. The mtDNA 

copy number in four patients with POLG mutations was dramatically reduced 

compared to controls. Patient 8 (p.(Ala467Thr)/p.(Trp748Ser)) and patient 14 

(p.(Trp748Ser)/p.(Arg1096Cys)) and p.(Glu1143GGly)) demonstrated mtDNA 

depletion (<30% of control mean), while patient 12 (p.(Ala467Thr) and p.(X1240Gln)) 

and patient 13 (p.(Thr251Ile)/p.(Pro587Leu) and p.(Ala467Thr)) showed a severe 

reduction in the mtDNA copy number. The mtDNA copy number in patient 9 

(mutations in IDH3A) and patient 11 (p.(Ser1104Cys)/p.(Gly848Ser)) was higher or 

comparable to controls (see Figure 6.14 and Table 6.4). Interestingly, patient 9 

(mutations in IDH3A) had encephalopathy similar to Alpers phenotype, with evidence 

of seizures, but did not harbour POLG mutations; whereas patient 11 

(p.(Ser1104Cys)/p.(Gly848Ser)) had a clinical picture of cognitive decline and 

Parkinsonism.  
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Figure 6.14: MtDNA copy number in the occipital lobe.  Patients 8 (p.(Ala467Thr)/p.(Trp748Ser)), 
12 (p.(Ala467Thr) and p.(X1240Gln)), 13 (p.(Thr251Ile)/p.(Pro587Leu)) and p.(Ala467Thr))) and 14 
(p.(Trp748Ser)/p.(Arg1096Cys) and p.(Glu1143Gly) show a dramatic reduction in the mtDNA copy 
number compared to the controls. Patients 9 (mutations in IDH3A) and 11 
(p.(Ser1104Cys)/p.(Gly848Ser)) show higher or similar mtDNA copy number to controls. Data 
represented as the mean absolute mtDNA copy number per cell ±SD (n=3). 

B. Parietal Lobe 

With regards to the parietal lobe, the tissue from patients 8 

(p.(Ala467Thr)/p.(Trp748Ser)) and 9 (mutations in IDH3A) was only available and 

compared to controls 13 and 14. Patient 8 (p.(Ala467Thr)/p.(Trp748Ser)) shows a 

moderate reduction (mtDNA copy number 55% of control mean). Patient 9 (mutations 

in IDH3A) shows normal mtDNA copy number (75% of control mean, see Figure 6.15 

and Table 6.4). The reduction in the mtDNA copy number in patient 8 

(p.(Ala467Thr)/p.(Trp748Ser)) is less severe than in the occipital lobe, where mtDNA 

is depleted. Patient 9 (mutations in IDH3A) showed some decrease in the mtDNA 

copy number in the parietal lobe, while in the occipital the mtDNA copy number was 

similar to controls (see Figure 6.15 and Table 6.4).  
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Figure 6.15: MtDNA copy number in the parietal lobe.  Patient 8 (p.(Ala467Thr)/p.(Trp748Ser)) 
shows a moderate decrease in the mtDNA copy number and patient 9 (mutations in IDH3A) shows no 
significant reduction in the mtDNA copy number compared to controls. Data represented as the mean 
absolute mtDNA copy number per cell ±SD (n=3). 

C. Frontal Lobe 

In the frontal lobe, patients 8 (p.(Ala467Thr)/p.(Trp748Ser)) and 10 

(p.(Ala467Thr)/p.(Trp748Ser)) were examined compared to controls 13 and 14. Both 

patients showed normal mtDNA copy number (90 and 84% of control mean 

respectively) compared to controls (Figure 6.16 and Table 6.4).  

 

Figure 6.16: MtDNA copy number in the frontal lobe of patients with POLG mutations.  Patients 
8 and 10 (both with (p.(Ala467Thr)/p.(Trp748Ser)) show no significant reduction in the mtDNA copy 
number when compared to controls. Data represented as mean mtDNA copy number per cell ±SD 
(n=3).   
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mtDNA copy number (% of control mean) 

Patient Occipital lobe Parietal lobe Frontal lobe Phenotype 

Patient 8 26.93 ± 1.25 

 

54.78 ± 3.86 94.04 ± 1.49 Alpers 

Patient 10 N/A N/A 87.95 ± 9.15 PEO and 
epilepsy 

Patient 12 35.89 ± 1.16 

 

N/A N/A CPEO and 
sensory 
neuronopathy 

Patient 13 47.41 ± 2.79 

 

N/A N/A CPEO, ataxia 

Patient 14 21.80 ± 1.61 

 

N/A N/A CPEO, ataxia 
and epilepsy 

Patient 9 122.55 ± 10.08 

 

75.62 ± 5.94 N/A Encephalopathy 
similar to 
Alpers’ and iver 
failure caused 
by IDH3A 
mutations 

Patient 11 117.39 ± 21.09 

 

N/A N/A Parkinsonism 

Table 6.4: Calculated percentage (%) mtDNA copy number relative to the control mean for 
occipital, parietal and frontal lobes.  Key: N/A=not applicable. 

 Mitochondrial DNA Deletions in Brain Tissue 

To assess mtDNA deletions a quantitative real-time PCR approach based on 

Taqman probes was used. This method involves the amplification of mitochondrial 

genes MT-ND1 and MT-ND4. The percentage of mtDNA deletions in the samples 

was calculated based on a standard curve and relative proportions of amplified MT-

ND4 to MT-ND1 (see section 2.7.10). The patients and controls used are 

summarised in Table 6.3. As with mtDNA copy number, samples from the occipital, 

parietal and frontal lobes were investigated. This method is inaccurate when 

measuring low levels of heteroplasmy, below 30% (Spendiff et al., 2013). 

A. Occipital Lobe 

In the occipital lobe patients 8 (p.(Ala467Thr)/p.(Trp748Ser)), 

9p.(Ala467Thr)/p.(Trp748Ser)), 11 (p.(Ser1104Cys)/p.(Gly848Ser)) and 12 

(p.(Ala467Thr) and p.(X1240Gln)) showed low levels of MT-ND4 deletions (within the 



190 
 

experimental error, <30%). All patients were adults with confirmed POLG mutations. 

Patient 9, a 6-year old patient with IDH3A mutations and no evidence of POLG 

mutations did not demonstrate any evidence of mtDNA deletions in the occipital lobe. 

Patient 13 (p.(Thr251Ile)/p.(Pro587Leu)) and p.(Ala467Thr)), showed high levels of 

mtDNA deletions (>30%). Patient 14 (p.(Trp748Ser)/p.(Arg1096Cys)) and 

p.(Glu1143Gly)), a showed evidence of MT-ND1 deletions (see Figure 6.17). The 

negative values obtained in control samples are indicative of no MT-ND4 deletions 

being present. 

 

Figure 6.17: MT-ND4 deletions in the occipital lobe of patients with POLG mutations.  Patients 8 
(p.(Ala467Thr)/p.(Trp748Ser)), 11 (p.(Ser1104Cys)/p.(Gly848Ser)), 12 (p.(Ala467Thr) and 
p.(X1240Gln) and 13 (p.(Thr251Ile)/p.(Pro587Leu) and p.(Ala467Thr)) demonstrate MT-ND4 deletions 
within the experimental error of the assay (<30%). Patient 12 (p.(Ala467Thr) and p.(X1240Gln)) 
demonstrated a high percentage of MT-ND4 deletions (>40%). Patient 14 
(p.(Trp748Ser)/p.(Arg1096Cys) and p.(Glu1143Gly)) shows evidence of possible MT-ND1 deletions. 
Data are represented as % mean MT-ND4 deletions ± SD (n=3). 

B. Parietal Lobe 

In the parietal lobe, MT-ND4 deletions were detected in patient 8 

(p.(Ala467Thr)/p.(Trp748Ser)) compared to controls, but at a frequency that was 

within the experimental error (<30%). The percentage of mtDNA deletions in this 

patient was higher than in the occipital lobe. Similar to the occipital lobe, patient 9 

(mutations in IDH3A) did not show evidence of mtDNA deletions compared to 

controls (see Figure 6.18).  
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Figure 6.18: MT-ND4 deletions in the parietal lobe of patients with POLG mutations. Patients 8 
(p.(Ala467Thr)/p.(Trp748Ser)) demonstrates low levels of MT-ND4 deletions (<30%), a percentage 
value within the experimental error of the assay. Patient 9 (mutations in IDH3A) did not show any 
evidence of MT-ND4 deletions in the parietal lobe. Data are represented as % mean MT-ND4 
deletions ± SD (n=3).  
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C. Frontal Lobe 

With regards to frontal lobe, patient 8 (p.(Ala467Thr)/p.(Trp748Ser)) showed low 

levels of MT-ND4 deletions (<30%). Patient 10 (p.(Ala467Thr)/p.(Trp748Ser)) 

showed evidence of high levels (>40%) MT-ND4 deletions compared to controls.  

 

Figure 6.19: MT-ND4 deletions in the frontal lobe of patients with POLG mutations.  Patients 8 
((p.(Ala467Thr)/p.(Trp748Ser)) demonstrates low levels of MT-ND4 deletions (<30%), a percentage 
value within the experimental error of the assay. Patient 10 (p.(Ala467Thr)/p.(Trp748Ser)) showed 
high levels of MT-ND4 deletions (>40%) in the parietal lobe. Data are represented as % mean MT-
ND1 deletions ± SD (n=3).  
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 Occipital lobe Parietal lobe Frontal lobe 

Case Copy 
number 

(% of 
control 
mean) 

MT-ND4 
Deletions 

Copy 
number 

(% of 
control 
mean) 

MT-ND4 
Deletions 

Copy 
number 

(% of 
control 
mean) 

MT-ND4 
Deletions 

Patient 8 26.93 
(depleti
on) 

Low levels 
(<30%) 

54.78 Low 
levels 
(<30%) 

94.04 Low 
levels 
(<30%) 

Patient 10 N/A N/A N/A N/A N/A High 
levels 
(>30%) 

Patient 12 35.89 High levels 
(>30%) 

N/A N/A 87.95 N/A 

Patient 13 47.41 Low levels 
(<30%) 

N/A N/A N/A N/A 

Patient 14 21.80 
(depleti
on) 

High levels 
of MT-ND1 
deletions 
(>30%) 

N/A N/A N/A N/A 

Patient 9 122.55 No 75.62 No N/A N/A 

Patient 11 117.39 Low levels 
(<30%) 

N/A N/A N/A N/A 

Table 6.5: Summary of mtDNA copy number and deletions. Key: N/A=not applicable.  
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6.4 Discussion 

This chapter investigated mitochondrial respiratory chain protein expression in the 

post-mortem brain of six patients with clinically and/or genetically defined Alpers 

syndrome. The study aimed to unravel the mechanisms causing neurodegeneration 

through investigating different cortical regions known to have variable involvement in 

Alpers’ syndrome including the occipital, parietal and frontal lobes. GABAergic 

interneurons of the occipital, parietal and frontal lobes exhibited extensive respiratory 

chain deficiencies involving complex I, and to a lesser extent, complex IV. The 

highest degree of respiratory chain deficiency was observed in the interneurons of 

the occipital lobe, while the frontal lobe demonstrated the lowest levels of respiratory 

chain deficiency. In pyramidal neurons, deficiencies involving complexes I and IV 

were observed in the parietal lobe but to a lower extent compared to interneurons. In 

the frontal lobe, pyramidal neurons generally showed a normal picture of respiratory 

chain protein expression.  

Epilepsy is a major neurological manifestation of mitochondrial disease and 

constitutes a salient feature of Alpers. However, its underlying aetiology remains 

unknown. Pathological changes in posterior areas including the occipital lobe and 

cerebellum have been well described. These changes are consistent with clinical and 

neuroimaging observations: the occipital lobe is predominantly affected and believed 

to be a major contributor of epilepsy and visual impairment, while the cerebellum is 

responsible for coordinating muscle movements. Thus, defects in the cerebellum may 

explain movement disturbances and ataxia seen in patients.  

The parietal and frontal lobes have not commonly been investigated in Alpers. 

However, pathology of such areas may underlie some common features of Alpers 

such as psychomotor regression and cognitive decline. Alpers is a rapidly 

progressive disorder, therefore I aimed to characterise respiratory chain deficiencies 

in the parietal and frontal lobes of patients to understand disease progression and 

the mechanism underlying the clinical neurological deficits seen in these patients.  

In all areas examined, the research focussed on two neuronal types: GABAergic 

interneurons and pyramidal neurons. Interneurons are responsible for modulating 

complex neuronal networks (Haider et al., 2006; Lax et al., 2016). As such they are 

believed to be the most energy consuming cells of the brain, and they require high 

expression of complex I and cytochrome c oxidase (COX) to maintain their metabolic 

activity (Kann et al., 2011; Whittaker et al., 2011). Interneuron pathology has been 
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associated with mitochondrial epilepsy, as interneuron dysfunction is believed to 

reduce the threshold for seizure generation (Maglóczky and Freund, 2005; Lax et al., 

2016). Pyramidal neurons are the major excitatory cells of the brain, which comprise 

about two thirds of all neurons present in the cerebral cortex and coordinate cognitive 

functions. In contrast to interneurons, the contribution of pyramidal cells in epilepsy 

and other neurological deficits seen in patients has not been well characterised.   

GABAergic interneurons generally exhibited extensive respiratory chain deficiencies 

involving both complexes I and IV in all the lobes examined, however these were 

more prominent in the occipital lobe, which is consistent with the clinical picture 

observed in patients with Alpers. Given the importance of GABAergic interneurons in 

generating gamma oscillations and modulating pyramidal cells which are responsible 

for the transmission of neuronal input to other areas of the cerebral cortex, 

mitochondrial dysfunction due to respiratory chain deficiencies may result to impaired 

neuronal oscillations, thereby leading to the neurological deterioration seen in 

patients with Alpers. 

These findings are in concordance with recently documented respiratory chain 

deficiencies within GABAergic interneurons of patients with mitochondrial disease 

and POLG mutations (Lax et al., 2016). Since all three brain regions were affected by 

respiratory chain deficiencies, mitochondrial dysfunction within GABAergic 

interneurons may not only contribute to epilepsy but also to cognitive decline and 

developmental regression, which characterise Alpers. 

Complex I deficiency was generally more severe than complex IV, a finding which is 

consistent in Alpers (Hakonen et al., 2008; Tzoulis et al., 2014) and other 

neurological conditions including temporal lobe epilepsy and Parkinson’s disease 

(Schapira et al., 1990; Kunz et al., 2000). The reasons behind preferential 

vulnerability of complex I is unclear. It has been suggested that it is the most affected 

complex due to it large size, as it contains the highest number of mtDNA-encoded 

subunits (Hakonen et al., 2005; Tzoulis et al., 2014). Another hypothesis suggests 

that complex I may be more vulnerable to deficiency because it functions close to its 

maximal capacity (Kann et al., 2011). Alternatively, it could serve as a mechanism to 

compensate for the acquired damage due to respiratory chain deficiency (Tzoulis et 

al., 2014). It is remarkable that three patients exhibited 100% deficient interneurons 

in the occipital lobe. As the samples used are post-mortem, limited by the fact they 

represent end-stage neurological features of Alpers, the observation that all 
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interneurons demonstrated mitochondrial dysfunction may highlight the importance of 

GABAergic pathology in end-stage Alpers disease.  

It is important to mention that I found severe complex I deficiency in the frontal lobe 

interneurons of patients 6 (p.(Ala467Thr)/p.(Gly848Ser)) and 7 

(p.(Ala467Thr)/p.(Gly303Arg)), which is incompatible with previous studies performed 

by Tzoulis et al., on the same patients and tissue, where they found 0% deficient 

neurons. However, I used a quantitative approach which selectively measured 

complex I expression within interneurons. In contrast, Tzoulis et al., performed semi-

quantitative immunohistochemistry approach, which may have underestimated 

complex I deficiency within neurons (Tzoulis et al., 2014). 

Interestingly, interneurons from patients 5 (p.(Ala467Thr)/p.(Gly303Arg)) and 6 

(p.(Ala467Thr)/(p.(Gly848Ser)) demonstrated 100% complex IV deficiency when 

complex I expression was severely compromised (90% and 100% respectively). The 

highly deficient respiratory chain in the interneurons of both patients may be 

associated with the short disease duration (less than 1 month and 2 months 

respectively). In addition, patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) displayed severe 

complex I deficiency in the interneurons of the frontal lobe, and as this patient has 

the shortest survival, this finding may be indicative of the rapid disease progression. 

Patient 7 (p.(Ala467Thr)/p.(Gly303Arg)) exhibited both complex I and IV deficiencies 

in the interneurons of the frontal lobe. This patient survived for 6 years, however the 

severe phenotype may be the result of prolonged disease duration, as the tissue is 

post-mortem and is indicative of end-stage disease. It is intriguing that patients with 

POLG mutations and patients without a confirmed diagnosis exhibited severe 

respiratory chain deficiencies. However, the limited number of cases did not allow 

any further correlations.  

Respiratory chain deficiencies were quantified in the pyramidal neurons of the 

parietal and frontal lobes only, as tissue availability was limited with regards to 

occipital lobe. Respiratory chain deficiencies in pyramidal neurons were milder 

compared to interneurons in the parietal and frontal lobes of the patients examined. It 

is important to mention that the respiratory chain deficiency was assessed in the 

remaining pyramidal cells, thus it is possible that the pyramidal neurons with 

extensive respiratory chain deficiencies had already died. Alternatively, pyramidal 

neurons are affected to a lesser extent compared to interneurons. The major 

limitation regarding respiratory chain protein expression in pyramidal neurons, is that 
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due to the clash of IgG isotypes, it was not possible to assess complex I and IV at the 

same time. Therefore, ths data represents respiratory chain protein expression within 

the same neuronal sub-population but not within the same pyramidal neuron. The 

study is also limited by the fact that SMI-32P antibody is specific to non- 

phosphorylated neurofilament, which is not selectively expressed by pyramidal 

neurons, therefore could detect false positive neurons. However, this antibody was 

selected for this study because other markers of excitatory proteins such a 

Calmodulin-dependent protein kinase II (CAMKII) are limited by their incompatibility 

with human tissue (Personal communication, Dr Nichola Lax).  

The findings demonstrate respiratory chain deficiencies involving complex I and to a 

lesser extent complex IV in the interneurons of the occipital, parietal and frontal lobes 

of patients with Alpers’ syndrome. In addition, some degree of respiratory chain 

deficiencies within pyramidal cells of the parietal and frontal lobes of the patients 

were detected. However, these were milder compared to interneurons. A highly 

robust, and reproducible, quadruple immunofluorescent approach was used, which 

has been previously described (Lax et al., 2016).  

Dysfunction of neuronal sub-populations including interneurons and pyramidal 

neurons have not been described in Alpers. This is the first evidence of mitochondrial 

respiratory chain deficiency within interneurons of Alpers patients which may 

contribute to seizure generation and cognitive impairment. It is intriguing that patient 

6 (p.(Ala467Thr)/p.(Gly848Ser)) had no normal complex I and IV in the occipital lobe, 

while in the frontal lobe the defects were milder. Although this was the only lobe-

matched patient. Further, my findings have shown severe respiratory chain 

deficiencies equally within interneurons of patients with POLG mutations and patients 

without a confirmed genetic diagnosis.  

In agreement with clinical observations, I have shown that respiratory chain 

deficiencies are more severe in the occipital lobe followed by the parietal and frontal 

lobes, although the lobes examined were not patient-matched. This provides insight 

into our understanding of disease progression, despite the fact that the post-mortem 

nature of the tissue used is representative of end-stage disease.  

The primary consequence of POLG mutations in Alpers is believed to be mtDNA 

depletion and mtDNA deletions, which are often associated with older patients. In this 

study both mtDNA depletion and deletions were assessed in brain homogenates 

from the occipital, parietal and frontal lobes of patients harbouring POLG mutations. 
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The majority of the patients included showed mtDNA depletion or severe mtDNA 

reduction in brain homogenate from the occipital lobe. The parietal lobe showed 

similar mtDNA copy number to controls or a moderate reduction. The frontal lobe was 

the least affected region, as mtDNA copy number was found to be within the normal 

range of controls. These findings suggest that mtDNA depletion appears to play an 

important role in POLG-related disease and neurons of the occipital lobe seem to be 

more susceptible, in agreement with the clinical features of Alpers and POLG-related 

epilepsy disorders.  

Moreover, the mtDNA copy number reduction appears to correlate with complex I 

deficiency in interneurons of patients 8 (p.(Ala467Thr)/p.(Trp748Ser)) and 14 

(p.(Trp748Ser)/p.(Arg1096Cys)) and p.(Ala467Thr)) (Lax et al., 2016). It is intriguing 

that patient 13 (p.(Thr251Ile)/p.(Pro587Leu)), who presented with a CPEO phenotype 

and no evident neurological involvement, showed a severe mtDNA copy number 

reduction in the occipital lobe and only a 9% complex I deficiency in the interneurons, 

as demonstrated by Lax et al (Lax et al., 2016). Patients 9 (mutations in IDH3A) and 

11 (p.(Ser1104Cys)/p.(Gly848Ser)) did not show any evidence of mtDNA depletion. 

Patient 9 (mutations in IDH3A) did not harbour POLG mutations, while patient 11 

(p.(Ser1104Cys)/p.(Gly848Ser)) demonstrated clinical signs of Parkinsonism. These 

findings suggest that other mechanisms may exist underlying these phenotypes.  

To date only a few studies on mtDNA depletion in brain tissue from patients with 

Alpers and other POLG-related epilepsy disorders exist. These studies have shown a 

non-significant reduction in the mtDNA copy number (70-75% of control mean) in 

cerebellum and frontal lobe homogenates (Ferrari et al., 2005; Hakonen et al., 2008), 

consistent with my findings in the frontal lobe of patients with POLG mutations. The 

findings of the current study showed evidence of mtDNA depletion in brain 

homogenates from the occipital and a non-significant or moderate reduction in the 

mtDNA copy number or in parietal lobes from patients with POLG-related disease.  

Tzoulis et al., have shown mtDNA depletion in micro-dissected neurons of patients 

with Alpers and older patients harbouring POLG mutations and the depletion 

remained unchanged regardless disease duration. The mtDNA depletion was 

significantly more severe compared to brain homogenates (Tzoulis et al., 2014). My 

study was performed on brain homogenates, as the availability of tissue with similar 

thickness was limited for further experimentation. Thus, my findings may be an 

underestimation of the mtDNA defect, as a mixture of neurons and glia, which are 
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more or less susceptible are included in the sample. Despite this limitation, the 

findings of the current study support the hypothesis that the occipital lobe is more 

susceptible to mtDNA depletion compared to the parietal and frontal lobes.   

Furthermore, mtDNA deletions have rarely been reported in Alpers and POLG-

related disease. Deletions were observed only in the older population and not the 

young infants with Alpers; suggesting that deletions accumulate with age and may be 

secondary to depletion (Tzoulis et al., 2014). In agreement with this observation I 

found evidence of deletions in four adult patients with POLG mutations. The limited 

tissue availability did not allow the investigation of younger patients with Alpers, thus 

it was not possible to compare mtDNA damage between different age groups.  

 Limitations 

This study is limited by the low number of cases, given the rarity of the disease and 

brain tissue availability. Therefore, a descriptive approach rather than parametric 

statistics was used in this study. The tissue studied is post-mortem and thus 

representative of end-stage disease Likewise, the brain regions investigated were not 

always patient-matched therefore direct correlations were challenging. Similarly, the 

availability of controls used in the study was limited and these were not always age-

matched. With regards to respiratory chain deficiency studies, the tissue used is post-

mortem, thus representative of end-stage disease. In addition, two of the controls 

used for assessment of the occipital lobe were disease controls, who died from 

sudden infantile death syndrome (SIDS).  

In the case of mtDNA damage investigations, frozen tissue was only available for 

adult patients with POLG mutations, thus mtDNA depletion could not be directly 

correlated with Alpers disease. Despite these limitations, this work achieved to reveal 

respiratory chain deficiencies in neurons of patients with Alpers and mtDNA depletion 

in adult patients with POLG mutations.  

 Future work 

Other neuropathological features of Alpers include astrocytosis and gliosis. Since 

astrocytes, and glial cells are important in normal brain functioning, an understanding 

of mitochondrial dysfunction within those cells may unravel the mechanisms lagging 

behind impaired neuronal dynamics. Mitochondrial deficiencies within these cells 

may contribute to the severity of the phenotype (Lax et al., 2016).  
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In addition, studies on frozen tissue could be used to study mtDNA depletion and 

levels of mtDNA deletions in micro-dissected interneurons and pyramidal cells using 

a QPCR protocol. It would be interesting to see whether mtDNA copy number within 

specific neuronal sub-populations correlate with respiratory chain deficiencies. This 

approach could be achieved for both young and older patients to unravel any 

differences in the pathomechanisms of Alpers and POLG-related epilepsy.  

 Conclusions 

For the purposes of these study, I used a quantitative quadruple immunofluorescent 

approach to investigate mitochondrial respiratory chain deficiencies in Alpers. I have 

shown that GABAergic interneurons demonstrate extensive respiratory chain 

deficiencies involving complex I, and to a lesser extent, complex IV in the occipital, 

parietal and frontal lobes of patients with clinically and/or genetically defined Alpers. 

Defects are most predominant in the occipital lobe. 

I have also shown mtDNA depletion in the occipital lobe homogenates of adult POLG 

patients; suggesting that mtDNA depletion is the underlying mechanisms of POLG-

related disease and may be a common in both young and adult patients.  

Overall, my findings support the hypothesis that POLG mutations cause respiratory 

chain deficiencies within interneurons, secondary to mtDNA depletion; leading to 

impaired neuronal oscillations, giving rise to the neurological deficits seen in patients 

with Alpers. 
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Chapter 7 Neuropathological Features in patients with Alpers 

7.1 Introduction 

The mechanisms underlying neurodegeneration in Alpers remain largely unknown, 

due to the rarity of post-mortem brain tissue. The first neuropathological report of 

Alpers was documented by Bernard Alpers in 1931, who described the disorder as 

‘diffuse progressive degeneration of the grey matter of the cerebrum’ accompanied 

by neuropathological changes including neuronal loss and gliosis (Alpers, 1931).   

Since then several reports describing neuropathological changes in Alpers have 

been published (reviewed in Chapter 3). Macroscopically, Alpers is characterized by 

atrophy, reduction of cortical thickness and cortical softening predominantly affecting 

the occipital lobes and to a lesser extent the parietal and frontal lobes (Kollberg et al., 

2006; Uusimaa et al., 2008; Sofou et al., 2012). Cerebellar changes and necrotic 

lesions can be variable. The changes are mostly observed in the grey matter, 

although recent studies have demonstrated myelin and axonal abnormalities in the 

white matter (Harding et al., 1995; Simonati et al., 2003; Bao et al., 2008). 

Microscopic studies have shown pathological changes including: neuronal loss, 

spongiosis, Purkinje cell loss and astrogliosis, characteristics often used for 

diagnosis. The most severe pathology is associated with posterior brain regions 

(Hunter et al., 2011; Sofou et al., 2012; Rajakulendran et al., 2016) rather than 

anterior regions, correlating with clinical and neuroimaging findings. Neuronal loss 

has been qualitatively assessed and the specific sub-neuronal populations affected 

have not been described in these studies.  

More recently, Lax and colleagues demonstrated interneuron loss, secondary to 

respiratory chain deficiency in adult patients with mitochondrial disease, including 

patients with POLG mutations. It was hypothesized that interneuron pathology may 

lead to impaired GABAergic neurotransmission, leading to an imbalance between 

inhibition and excitation, favouring increased excitability and thus seizure generation 

(Lax et al., 2016).  

In the case of Alpers’ syndrome, extensive respiratory chain deficiencies involving 

complexes I and IV in patient neurons from the frontal cortex, hippocampus and 

substantia nigra has been demonstrated (Tzoulis et al., 2014).  
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More recent work performed by Dr. Hayhurst and Dr. Lax in interneurons and 

pyramidal neurons of the occipital lobe as well as Purkinje cells of the cerebellum has 

shown extensive respiratory chain deficiencies involving complex I and IV coupled 

with neuron loss. Purkinje cell loss was evident in the cerebellum of patients, 

however this was to a lesser extent compared to the neuronal loss (including 

interneurons and pyramidal neurons) observed in the occipital lobe (courtesy of Dr. 

Hayhurst and Dr. Lax).  

The previous chapter demonstrated severe respiratory chain deficiencies involving 

complexes I, and to a lesser extent complex IV, in the occipital, parietal and frontal 

lobes of patients with Alpers. Interneurons exhibited more extensive respiratory chain 

deficiencies than pyramidal neurons. In addition, the work described on the previous 

chapter showed complex I ad IV deficiencies in the pyramidal neurons of patients, 

however these were milder compared to the interneurons. 

7.2 Aims and Objectives 

This chapter focuses on understanding the neuropathological changes underlying 

neurodegeneration in patients with clinically and/or genetically defined Alpers. The 

aim of this chapter is to examine the impact of the respiratory chain deficiencies, 

previously characterised (see Chapter 6), on interneuron and pyramidal neuron 

pathology and test the hypothesis of an imbalance between inhibition and excitation 

as a contributor to the neurological involvement seen in patients with Alpers. To this 

aim the specific objectives are to: 

1) Quantitatively assess the extent of interneuron and pyramidal cell loss in the 

occipital, parietal and frontal lobes of patients with Alpers compared to 

controls. 

2) Semi-quantitatively assess the degree of astrogliosis in patients with Alpers 

compared to controls. 
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7.3 Results 

 Patient Characteristics 

The gross neuropathology findings from seven patients with clinically and/or 

genetically defined Alpers were assessed. Molecular genetic diagnosis of POLG 

mutations confirmed the presence of POLG mutations in five patients. For patients 1 

and 2 genetic diagnosis was unavailable, as the patients died prior to POLG genetic 

testing. Frozen tissue was not available for these patients, while attempts of DNA 

extraction from paraffin-embedded tissue did not allow successful PCR amplification. 

The patient and control details used in this study are summarized in Table 7.1. 

Control details used in this study are summarized in Table 7.2. 
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Patient Age of Onset Age at Death Disease 
Duration 

Gender Genetic 
Defect 

Clinical 
Symptoms 

Brain Region 

Patient 1 2 months 5.5 months 3.5 months Male Unknown Epilepsy, 
developmental 
regression, heart 
and respiratory 
failure. 

Parietal 

Patient 2 4 months 13 months 9 months Male Unknown Epilepsy and 
pneumonia. 

Parietal, frontal 

Patient 3 11 months 14 months 3 months Female p.(Ala467Thr)/
p.(Gly848Ser) 

Epilepsy, 
developmental 
regression, liver 
failure. 

Parietal 

Patient 4 17 months 27 months 10 months Male p.(Ala467Thr)/ 
(p.Thr914Pro) 

Epilepsy and 
respiratory 
failure. 

Parietal 

Patient 5 11 months 13 months 2 months Male p.(Ala467Thr)/
p.(Gly303Arg) 

Epilepsy and liver 
failure. 

Occipital (Tzoulis 
et al., 2014) 

Patient 6 7.2 months 7.8 months <1 month Male p.(Ala467Thr)/
p.(Gly848Ser) 

Epilepsy and liver 
failure. 

Occipital, frontal 
(Tzoulis et al., 
2014) 

Patient 7 2 years 8 years 6 years Male p.(Ala467Thr)/
p.(Gly303Arg) 

Epilepsy Frontal (Tzoulis 
et al., 2014) 

Table 7.1: Patient details used in this study. 
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Control Age at Death Gender Cause of Death Brain 
Region 

Control 1 13 months Female Occipital 
porencephaly 

Parietal 

Control 2 22 years Female Poisoning Occipital, 
parietal 

Control 3 24 years Female Suspension by 
ligature 

Occipital, 
parietal 

Control 4 4.5 months Female SIDS Occipital, 
frontal 

Control 5 1 month Male SIDS Occipital, 
frontal 

Control 6 6 years Female Drowning Frontal 

Control 7 8 years Female Asphyxia Frontal 

Control 8 16 years Male Suspension by 
ligature 

Occipital 

Table 7.2: Control details used in this study.  SIDS=sudden infantile death syndrome. 

 Gross Neuropathology Findings 

Grey matter cortical ribbon thinning and neuronal loss was noted in the occipital, 

parietal and frontal lobes of the patients included. The gross neuropathology findings 

from qualitative assessment and neuropathology reports are summarized in Table 

7.3. In patients 5-7 focal energy-dependent neuronal necrosis (FENN) was observed 

in CA1 of the hippocampus and in Purkinje cells of the cerebellum. The term FENN 

was proposed by Tzoulis and colleagues (Tzoulis et al., 2014) and is derived based 

on neuropathological characteristics of the tissue, with lesions being described as 

focal, well-demarcated areas featuring neuronal loss and spongiform changes, 

accompanied by eosinophilia and increased inflammation. FENN lesions have often 

be referred to as stroke-like lesions due to their resemblance of lesions occurring as 

a result of an ischaemic stroke. With regards to mitochondrial disease, FENN lesions 

do not seem to have a vascular aetiology (Tzoulis et al., 2014; Hikmat et al., 2017), 

however its aetiology remains unclear. 
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Patient Occipital lobe Frontal lobe Parietal lobe Cerebellum Basal 
Ganglia 

Thalamus Hippocampus 

Patient 1 Atrophy of gyri. 
Severe 
narrowing of 
white matter. 

N/A Severe 
atrophy of 
gyri. Marked 
cell loss in 
layers I and II 
with marked 
spongiosis 
and 
astrogliosis. 

Atrophy with 
mild to 
moderate 
Purkinje cell 
loss. 

Marked 
gliosis in 
the 
putamen. 
Well 
preserved 
globus 
pallidus. 

Mild 
gliosis.  

N/A 

Patient 2 Atrophy of gyri. 
Gliosis. 

Atrophy of 
gyri. Severe 
neuron loss. 
Spongiosis. 

Atrophy of 
gyri. Gliosis.  

Astrogliosis 
in dentate 
nucleus.  

Preserve
d.  

Preserved Atrophic 
hippocampal 
formation. 

Patient 3 Mild 
spongiosis. 

N/A Mild 
spongiosis in 
superficial 
layers.  

Marked loss 
of Purkinje 
cells. 

N/A.  N/A Spongiform 
changes and 
marked gliosis.  

Patient 4 Atrophic gyri, 
gliosis and 
spongiform 
changes of 
layers II and III 
and marked 
loss of 
neurons.  

N/A Atrophic gyri, 
loss of 
neurons and 
neuropil 
degeneration.  

Marked loss 
of Purkinje 
cells. 

Caudate 
preserved
.  

N/A Spongiform 
changes and 
marked gliosis.  
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Patient 5 Atrophy of gyri. 
Spongiosis, 
capillary 
proliferation, 
neuron loss. 

N/A N/A FENN in 
cerebellar 
cortex with 
no evidence 
of gliosis. 

N/A N/A FENN in CA1. 

Patient 6 Severe atrophy 
of gyri. Neuron 
loss, 
spongiosis. 

Atrophy of 
gyri. 
Spongiosis 
and neuronal 
loss. 

N/A Mild 
neuronal 
loss and 
gliosis in 
cerebellar 
cortex.  

Mild 
neuronal 
loss and 
gliosis in 
substanti
a nigra.  

N/A FENN in CA1. 

Patient 7 N/A Severe 
atrophy of 
gyri, marked 
spongiosis 
and neuron 
loss.  

N/A FENN and 
mild 
neuronal 
liss and 
gliosis in 
cerebellar 
cortex.  

Mild 
neuronal 
loss and 
gliosis in 
substanti
a nigra 

Moderate 
neuronal 
loss and 
gliosis.  

FENN in CA1. 

Table 7.3: Gross neuropathology findings from patients with Alpers.  Key: FENN=focal-energy dependent neuronal necrosis. N/A=not applicable. 
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 Neuron loss  

Since respiratory chain deficiency was found in the neurons of the patients in this 

study, as discussed in Chapter 6, I aimed to investigate the consequences of these 

deficiencies on the two different neuronal sub-populations. A pre-validated 

immunohistochemistry protocol was used to detect interneurons (GAD65-67 positive 

cells) and pyramidal neurons (SMI-32P positive cells) by Dr. Hannah Hayhurst. 

Cortical neuronal densities encompassing cellular layers I-VI of patients and controls 

were distinguished as described in the section 2.6.4.  

A. Occipital cortex 

Occipital lobe tissue was available for patients 5 (p.(Ala467Thr)/p.(Gly303Arg)) and 6 

(p.(Ala467Thr)/p.(Gly848Ser)). These patients were compared to two paediatric age-

matched disease controls (who died from sudden infantile death syndrome (SIDS). 

The neuropathology of SIDS is characterised by: morphological changes of the 

brainstem and cerebellum accompanied by reactive astrocytes and reduced 

expression of serotonin in neuronal cell bodies (Matturri and Lavezzi, 2011; Mehboob 

et al., 2017). Since SIDS controls are considered as disease controls, additional 

control subjects (control, 2, 3 and 8) were included for comparison. The data from 

these controls were kindly provided by Dr. Hannah Hayhurst, as part of her project.  

Positive neurons were identified by dark brown chromogen immunostaining (Figures 

7.1 and 7.2). Control subjects 2 and 3 displayed higher neuronal densities compared 

to SIDS controls 4 and 5, especially in the case of pyramidal neurons (see Figure7.3 

and Table 7.4) Patient 5 (p.(Ala467Thr)/p.(Gly303Arg)) showed a marked reduction 

in interneuron density compared to all controls (28% of control mean). Patient 6 

(p.(Ala467Thr)/p.(Gly303Arg)) did not demonstrate interneuron loss when compared 

to SIDS controls 4 and 5. However when compared to healthy controls 2, 3 and 8 a 

reduction was observed (see Figure 7.3A). It is relevant to highlight this change 

particularly as controls 4 and 5 died from SIDS at 4.5 months and 1 month 

respectively. It is therefore possible that these controls have suffered from 

neurodevelopmental brain abnormalities including suboptimal neurogenesis, thus 

having lower neuron densities compared to healthy individuals. 

In the case of pyramidal neurons, SMI-32P positive neurons were higher in controls 

2, 3 and 8 compared to SIDS controls 4 and 5 (see Figure 7.3B). In patient 5 

(p.(Ala467Thr)/p.(Gly303Arg)) pyramidal neuron density was not different to SIDS 
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controls 4 and 5. However a mild reduction was observed when compared to healthy 

controls 2, 3 and 8. Patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) displayed a marked 

reduction in pyramidal neuron density when compared to all controls (13% of control 

mean) (see Figure 7.3B and Table 7.4). 

 

Figure 7.1: GAD65-67 immunostaining in occipital lobe from patients with Alpers. 
Representative images captured at 40x magnification from the occipital lobe of patients with Alpers. 
GAD65-67 positive interneurons are detected by dark brown chromogen immunostaining. There is a 
marked reduction in the number of positive GAD65-67 interneurons in patient 5 
(p.(Ala467Thr)/p.(Gly303Arg)) compared to the control. The number of positive GAD65-67 
interneurons in patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) are comparable to the control. Scale 
bar=100µm.  
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Figure 7.2: SMI-32P immunostaining in the occipital cortex of patients with Alpers. 
Representative images of pyramidal neurons at 40x magnification from the occipital cortex of patients 
with Alpers’ syndrome. SMI-32P positive pyramidal neurons are shown by dark brown chromogen 
immunostaining. The number of positive SMI-32P pyramidal neurons in patient 5 
(p.(Ala467Thr)/p.(Gly303Arg)) is comparable to the controls. Patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) 
shows a severe reduction in the number of positive SMI-32P pyramidal neurons when compared to 
the control. Scale bar=100µm.  
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Figure 7.3: Neuronal densities in occipital cortex of patients with Alpers’ syndrome.  (A) 
Quantification of interneuron densities in the occipital cortex of patients with Alpers’ syndrome. There 
is a marked reduction of interneuron density in patient 5 (p.(Ala467Thr)/p.(Gly303Arg)) compared to 
controls. The interneuron density in patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) is comparable to controls. 
(B) Quantification of pyramidal neuron densities in the occipital cortex of patients with Alpers’ 
syndrome. Pyramidal neuron densities in patient 5 (p.(Ala467Thr)/p.(Gly303Arg)) are not different to 
controls. Patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) shows a severe reduction in pyramidal neuron 
densities compared to controls. Neuronal densities are presented as bars with mean ± SD, determined 
from at least two cortical areas of 10mm2. For controls 2, 3 and 8 only one cortical area of 10mm2 was 
quantified. 
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B. Parietal cortex 

In the parietal cortex, the tissue from three healthy controls and four patients was 

investigated. Only patient 2 showed a marked reduction in GAD65-67 positive 

interneurons when compared to all controls (17% of control mean). However, 

patients 1 (no POLG diagnosis), 3 (p.(Ala46Thr)/p(Gly848Ser)) and 

(p.(Ala467Thr)/p.(Thr914Pro)) were not different when compared to controls (see 

Figures 7.4 and 7.6A).  

Pyramidal neuron density was reduced in all patients relative to controls (see Figures 

7.5 and 7.6B). Patients 1 and 2 (both without POLG diagnosis) showed the most 

severe pyramidal neuron loss (8% of control mean). In patient 3 

(p.(Ala467Thr)/p.(Gly848Ser)) pyramidal neuron loss was evident as pyramidal 

neuron density was 20% of the control mean (Figure 7.6B). 
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Figure 7.4: GAD65-67 immunostaining in the parietal cortex of patients with Alpers. 
Representative images of interneurons captured at 40x magnification from the parietal cortex of 
patients with Alpers’ syndrome. GAD65-67 positive interneurons are shown by brown chromogen 
immunostaining. Patients 1 (no POLG diagnosis), 3 (p.(Ala467Thr)/p.(Gly848Ser)) and 4 
(p.(Ala467Thr)/p.(Thr914Pro)) show no difference in GAD65-67 positive interneurons compared to the 
control.  Patient 2 (no POLG diagnosis) shows a marked reduction in the number of positive GAD65-
67 positive interneurons when compared to the control. Scale bar=100µm. 
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Figure 7.5: SMI-32P immunostaining in the parietal cortex of patients with Alpers. 
Representative images of pyramidal neurons captured at 40x magnification (from the parietal cortex of 
patients with Alpers syndrome. SMI-32P positive pyramidal neurons are shown by brown chromogen 
immunostaining. There is marked pyramidal neuron in all patients compared to the control. Patients 1 
and 2 (both without POLG diagnosis) show the most severe pyramidal neuron loss. Scale bar=100µm. 
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Figure 7.6: Neuronal loss in the parietal cortex of patients with Alpers.(A) Quantification of 
interneuron densities in the parietal cortex of patients with Alpers. There is a trend of interneuron loss 
in the patients compared to controls. (B) Quantification of pyramidal neuron densities in the parietal 
lobe of patients with Alpers. A marked reduction in pyramidal cell densities in the patients is observed, 
which is more severe compared to interneuron loss. Neuronal densities are presented as bars with 
mean ± SD, determined from at least two cortical areas of 10mm2. 
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C. Frontal cortex 

With regards to the frontal lobe, only patient 2 (no POLG diagnosis) showed a severe 

reduction in interneuron density (23% of control mean), suggestive of interneuron 

loss. Patients 6 (p.(Ala467Thr)/p.(Gly848Ser)) and 7 (p.(Ala467Thr)/p.(Gly303Arg)) 

did not demonstrate reduction in densities when compared to all controls (Figures 7.7 

and 7.8).  

Pyramidal neuron densities in the frontal lobe could not be assessed due to limited 

tissue availability.  

 

Figure 7.7: GAD65-67 immunostaining in the frontal cortex of patients with Alpers.  Here, 
representative images of GAD65-67 positive interneurons in the frontal cortex of patients with Alpers 
compared to the control are shown. Patient 2 (no POLG diagnosis) shows a marked reduction in the 
number of GAD65-67 positive interneurons compared to the control. Patients 6 
(p.(Ala467Thr)/p.(Gly848Ser)) and 7 (p.(Ala467Thr)/p.(Gly303Arg)) showed no difference compared to 
the control. Scale bar=100µm. 
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Figure 7.8: Interneuron densities in the frontal cortex from patients with Alpers.  Quantitative 
analysis of interneuron densities showed a marked loss of interneurons in patient 2 (no POLG 
diagnosis), suggestive of interneuron loss. Interneuron densities in patients 6 
(p.(Ala467Thr)/p.(Gly848Ser)) and 7 (p.(Ala467Thr)/p.(Gly303Arg)) were no different when compared 
to controls. Neuronal densities are presented as bars with mean ± SD determined from at least two 
cortical areas of 10mm2.  

To test the hypothesis of an imbalance between inhibition and excitation, I 

investigated whether the interneuron to pyramidal cell ratios are altered, as a 

consequence of neuronal loss.  

In the occipital lobe, all controls displayed an interneuron to pyramidal neuron ratio 

~1. Patient 5 (p.(Ala467Thr)/p.(Gly303Arg)) showed a decreased interneuron to 

pyramidal cell ratio compared to the controls, suggesting loss of interneurons. Patient 

6 (p.(Ala467Thr)/p.(Gly848Ser)) showed a high interneuron to pyramidal neuron ratio 

suggesting a loss of pyramidal neurons. In both cases interneuron to pyramidal cell 

ratios are indicative of an imbalance between inhibition and excitation (see Figure 

7.9A). 

In the parietal lobe, patients 1 (no POLG diagnosis), 2 (no POLG diagnosis) and 3 

(p.(Ala467Thr))/p.(Gly848Ser)) showed increased GABAergic interneuron density 

than pyramidal neuron density, as demonstrated by high interneuron to pyramidal 

neuron ratios, with patient 1 (no POLG diagnosis) demonstrating the highest ratio 

(see Figure 7.9B). The increase in interneuron density is markedly higher compared 

to the occipital lobe.  
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Figure 7.9: Interneuron to pyramidal neuron density ratios in occipital and parietal cortices of 
patients with Alpers.  (A) In the occipital cortex, all controls show a ratio of ~1. Patient 5 
(p.(Ala467Thr)/p.(Gly303Arg)) shows a decreased interneuron to pyramidal neuron ratio, suggesting a 
higher pyramidal neuron density and a loss of inhibitory interneurons. Patient 6 (p.(Ala467Thr)) 
demonstrates an increased ratio, suggestive of increased interneuron density and a loss of pyramidal 
neurons. Both cases are indicative of an imbalance between inhibition and excitation. (B) In the 
parietal cortex, all controls show a ratio of ~1. Patients 1 (no POLG diagnosis), patient 2 (no POLG 
diagnosis) and patient 3 (p.(Ala467Thr)/p.(Gly848Ser)) show an increased interneuron to pyramidal 
neuron density, suggesting loss of pyramidal neurons with patient 1 (no POLG diagnosis) showing the 
highest ratio.  
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 Astrogliosis 

Astrocytes are spider-like glial cells of the CNS, which have numerous dendritic 

projections and make contact to other cells of the CNS. Astrocytes, possess 

important functions in the CNS such as: repair of damaged tissue and support to 

neurons. Astrocytes respond to CNS injury via a process known as reactive 

astrogliosis, a well-characterised pathological feature. Three types of astrocytes exist 

including: protoplasmic, fibrous and radial. Protoplasmic astrocytes are found in the 

grey matter and give rise to a ‘globoid distribution’ (Sofroniew and Vinters, 2010). 

Fibrous astrocytes are found in the white matter and give rise to a branched network. 

Both astrocytic sub-types including protoplasmic and fibrous make contact to blood 

vessels. In contrast, radial glia are bipolar cells responsible for giving rise to 

progenitor cells (Sofroniew and Vinters, 2010). 

Astrogliosis (altered astrocytic morphology) has been reported as a pathological 

feature of Alpers (Sofou et al., 2012; Montassir et al., 2015). To characterise reactive 

astrocytic populations in the patients considered in the present study, an antibody 

against the glial fibrillary acidic protein (GFAP), which is expressed in astrocytes was 

applied by immunohistochemistry as described in section 2.4.3. A semi-quantitative 

assessment was performed based on the positive reactive astrocytes observed by 

dark brown chromogen. In the grey matter the scale -/+/++ was used which is defined 

as: normal astrocytic morphology (-), mild (+), moderate (++) and severe (+++) 

astrogliosis.  

White matter has higher normal physiological levels of GFAP as it is more densely 

populated by glial cells. Therefore, control tissue demonstrates a higher 

immunostaining when compared to the grey matter. As such evidence of high GFAP 

immunoreactivity was considered as normal astrocytic morphology in controls, and 

these were compared to the patients. For both grey and white matter, the 

morphology/size of astrocytes was also considered and compared to controls.  

A. Occipital cortex 

Control tissue was only available from individuals who died from SIDS. Control 4 

showed normal levels of astrogliosis, while control 5 showed mild (+) astrogliosis. In 

the white matter, normal GFAP immunostaining and normal astrocytic morphology. 

In the grey matter, Patient 5 (p.(Ala467Thr)/p.(Gly303Arg)) showed mild astrogliosis 

(+), however astrocytes demonstrated a swollen morphology (Montassir et al., 2015). 
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Patient 6 (p.(Ala467Thr)/p.(Gly848Ser)), demonstrated mild astrogliosis (+) in the 

grey matter, without any observable changes in astrocyte morphology compared to 

controls (Figure 7.10).  

In the white matter both patients showed normal astrocytic morphology (Figure 7.11).  
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Figure 7.10: Astrogliosis of the grey matter in the occipital lobe of patients with Alpers’ 
syndrome.  Representative images take at 2x magnification (left) and at a higher magnification (40x, 
right) showing astrogliosis in the occipital lobe of patients with Alpers’ syndrome. GFAP-positive 
astrocytes are visualised by dark brown chromogen immunostaining. The control shows normal 
sdtrocytic morphology. Patient 5 (p.(Ala467Thr)/p.(Gly303Arg)) shows mild astrogliosis (+) compared 
to the control. Patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) showed mild astrogliosis (+). Scale bar=100µm. 
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Figure 7.11: Astrogliosis of the white matter in the occipital lobe of patients with Alpers’ 
syndrome.  Representative images take at 40x magnification showing astrogliosis in the occipital lobe 
of patients with Alpers’ syndrome. GFAP-positive astrocytes are visualised by dark brown chromogen 
immunostaining. Both patients showed normal astrocytic morphology in the white matter. Scale 
bar=100µm. 



223 
 

B. Parietal cortex 

Control 3 was only available for assessment, which showed normal astrocytic 

morphology in the grey matter. Patients 1 (no POLG diagnosis) and 3 

(p.(Ala467Thr)/p.(Gly848Ser)) showed severe astrogliosis (+++) as evidenced by 

swollen/hypertrophic astrocytes. Patient 2 (no POLG diagnosis) showed normal 

astrocytic morphology (see Figure 7.12). 

In the white matter normal astrocytic morphology was observed in patients 2 and 3 

(no POLG diagnosis) (Figure 7.13). White matter was not available for analysis for 

patient 1 (no POLG diagnosis). 
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Figure 7.12: Astrogliosis of the grey matter in the parietal lobe of patients with Alpers.  
Representative images taken at 2x magnification (left) and at a higher magnification (40x, right) 
showing astrogliosis in the parietal lobe of patients with Alpers. GFAP-positive astrocytes are 
visualised by dark brown chromogen. Patients 1 (no POLG diagnosis) and 3 
(p.(Ala467Thr)/p.(Gly848Ser)) show severe astrogliosis (+++) compared to the control. Patient 2 (no 
POLG diagnosis) show normal astrocytic morphology. Scale bar=100µm.  
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Figure 7.13: Astrogliosis of the white matter in the parietal lobe of patients with Alpers. 
Representative images take at 40x magnification showing astrogliosis in the white matter of the 
parietal lobe of patients with Alpers. GFAP-positive astrocytes are visualised by dark brown 
chromogen. Patients 2 (no POLG diagnosis) and 3 (p.(Ala467Thr)/p.(Gly848Ser)) showed normal 
astrocytic morphology in the white matter. Scale bar=100µm.  
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C. Frontal cortex 

With regards to frontal lobe, controls showed normal astrocytic morphology in the 

grey matter. Mild astrogliosis (+) was evident in patient 2 (no POLG diagnosis). 

Patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) showed normal astrocytic morphology when 

compared to the control. Patient 7 (p.(Ala467Thr)/p.(Gly303Arg)) showed severe 

astrogliosis (+++) in the grey matter (see Figure 7.14)  

In the white matter, patients 5 (p.(Ala467Thr)/p.(Gly303Arg)) and 6 

(p.(Ala467Thr)/p.(Gly848Ser)) exhibited normal astrocytic morphology. Patient 7 

(p.(Ala467Thr)/p.(Gly303Arg)) showed mild astrogliosis (+) as evidenced by swollen 

astrocytes (see Figure 7.15).  
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Figure 7.14: Astrogliosis of the grey matter in the frontal lobe of patients with Alpers.  
Representative images take at 2x magnification (left) and at a higher magnification (40x, right) 
showing astrogliosis in the parietal lobe of patients with Alpers. GFAP-positive astrocytes are 
visualised by dark brown chromogen. Patient 2 (no POLG mutations) showed mild astroglisosis (+), 
Patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) showed normal astrocytic morphology. Patient 7 
(p.(Ala467Thr)/p.(Gly303Arg)) showed severe astrogliosis (+++) as evidenced by swollen astrocytes. 
Scale bar=100µm.  
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Figure 7.15: Astrogliosis of the white matter in the frontal lobe from patients with Alpers. 
Representative images taken at 40x magnification showing astrogliosis in the parietal lobe of Alpers 
patients. GFAP-positive astrocytes are visualised by dark brown chromogen. Controls and patients 5 
(p.(Ala467Thr)/p.(Gly303Arg)) and 6 (p.(Ala467Thr)/p.(Gly848Ser)) show normal astrocytic 
morphology in the white matter. Patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) showed large astrocytes 
compared to the control. Patient 7 (p.(Ala467Thr)/p.(Gly303Arg)) showed mild astrogliosis as 
evidenced by swollen astrocytes. Scale bar=100µm. 
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 Occipital lobe Parietal lobe Frontal lobe 

Case Mean IN 
density/

mm2 

Mean PC 
Density/m

m2 

Astrocytes Mean 
IN 

densit
y/mm2 

Mean PC 
density/m

m2 

Astrocytes Mean 
IN 

densit
y/mm2 

Mean 
PC 

densit
y/mm2 

Astrocytes 

Control 1 N/A N/A N/A 33.45 12.78 N/A N/A N/A N/A 

Control 2 65.44 53.53 N/A 43.82 20.88 N/A N/A N/A N/A 

Control 3 54.93 56.89 N/A 32.00 29.46 Normal astrocytic 
morphology in 
GM and WM.  

N/A N/A N/A 

Control 4 38.23 22.60 Normal in GM 
and WM 

N/A N/A N/A 34.38 N/A N/A 

Control 5 29.90 36.19 Mild 
astrogliosis in 
GM. Normal 
astrocytic 
morphology 
in WM.  

N/A N/A N/A 23.70 N/A N/A 

Control 6 N/A N/A N/A N/A N/A N/A 14.95 N/A Normal 
astrocytic 
morphology 
in GM and 
WM. 

Control 7 N/A N/A N/A N/A N/A N/A 20.30 N/A Normal 
astrocytic 
morphology 
in GM and 
WM. 

Control 8 74.96 76.31 N/A N/A N/A N/A N/A N/A N/A 
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Patient 1 N/A N/A N/A 22.83 1.77 Severe 
astrogliosis in 
GM. Normal 
astrocytic 
morphology in 
WM.  

N/A N/A N/A 

Patient 2 N/A N/A N/A 9.59 1.75 Mild astrogliosis 
in GM and normal 
astrocytic 
morphology in 
WM.  

5.41 N/A Mild 
astrogliosis 
in GM.  

Patient 3 N/A N/A N/A 19.71 4.23 Moderate 
astrogliosis in GM 
and normal 
astrocytic 
morphology in 
WM.  

N/A N/A N/A 

Patient 4 N/A N/A N/A 19.54 N/A N/A N/A N/A N/A 

Patient 5 11.97 39.49 Mild 
astrogliosis in 
GM. Normal 
astrocytic 
morphology 
in WM.  

N/A N/A N/A N/A N/A N/A 

Patient 6 29.90 6.57 Mild 
astrogliosis in 
GM. Normal 
astrocytic 
morphology 
in WM.  

N/A N/A  32.70 N/A Normal 
astrocytic 
morphology 
in GM. 
Normal 
astrocytic 
morphology 
in WM. 
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Patient 7 N/A N/A N/A N/A N/A  16.30 N/A Severe 
astrogliosis 
in GM. Mild 
astrogliosis 
in WM.   

Table 7.4: Summary of neuron loss and astrogliosis. Key: N/A=not applicable.  
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7.4 Discussion 

 Introduction 

This chapter investigated the neuropathological features of the post-mortem brain 

tissue from seven patients with clinically and/or genetically defined Alpers. Since 

respiratory chain deficiencies were evident in the neurons of patients with Alpers (as 

described in the previous chapter), this work sought to investigate the impact of 

respiratory chain deficiencies on the gross neuropathology and neuronal densities of 

these patients. The findings will be discussed for each lobe independently before 

inferences are made regarding the overall histopathological examination of brain 

tissue from patients with Alpers.  

A. Occipital cortex 

Quantitative analysis showed reduced densities of GABAergic interneurons in patient 

5 (p.(Ala467Thr)/p.(Gly303Arg)) without any evidence of pyramidal neuron loss. 

Consequently, the ratio of GABAergic interneurons to pyramidal neurons was also 

reduced, which suggests that inhibitory neurotransmission is reduced, thus lowering 

the seizure threshold. The findings reported in this study for patient 5 are in 

agreement with reduced interneuron densities in a cohort of adult patients with 

mitochondrial disease, including three patients with POLG-related disease (Lax et al., 

2016). 

Patient 6 (p.(Ala467Thr)/p.(Gly848Ser)) did not show loss of interneurons, however, 

there was a marked loss of pyramidal neurons. These findings taken at face value 

are in disagreement of the findings for patient 5 and could be interpreted as 

suggesting that pyramidal cell loss is independent from interneuron loss. 

Nevertheless, interneurons in both patients 5 and 6 have been shown to be highly 

respiratory chain deficient (Chapter 6), therefore it is likely that even when 

interneurons have survived the respiratory chain deficiency is sufficient to cause 

significant synaptic dysfunction and disinhibition. In turn, this would lead to higher 

excitatory activity and potentially seizures with secondary pyramidal cell loss even 

without interneuron loss. The theory proposed above has however to be considered 

with the necessary caution given the fact that it was only possible to examine tissue 

from two patients. 
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B. Parietal cortex 

In the parietal cortex, I found marked pyramidal neuron loss in all patients (patients 1, 

2 and 3), however interneuron loss was only evident in patient 2 (no POLG 

diagnosis). The interneuron to pyramidal cell density is remarkably increased which 

reflects the significant pyramidal cell loss with mostly preserved interneuron 

densities.  

Consistent with the results found in the occipital lobe, patients 1 and 2 (both without 

POLG diagnosis) had severe respiratory chain deficiencies and patient 3 

(p.(Gly8383Ser)) also demonstrated a degree of respiratory chain deficiency, albeit at 

a lower extent. In contrast, the respiratory chain deficiency in pyramidal cells was 

milder in patients 1 and 2 (without POLG diagnosis) and not present in patient 3 

(p.(Ala467Thr)/p.(Gly848Ser)).  

The mechanism proposed for loss of pyramidal neurons in the occipital lobe can also 

be applied to the parietal lobe, with respiratory chain deficiency in interneurons 

causing synaptic dysfunction and disinhibition followed by higher excitatory states, 

respiratory chain deficiency in pyramidal cells, seizures and finally pyramidal cell 

loss. The parietal cortex degeneration, as described above, is likely to contribute not 

only to epilepsy but also to the cognitive impairment seen in patients with Alpers. 

C. Frontal cortex 

In the frontal cortex, patient 2 (no POLG diagnosis) was the only patient in whom 

marked interneuron loss was evident. However, respiratory chain deficiency was 

absent in this patient. It is unclear as to why interneuron loss was seen in patient 2 

(no POLG diagnosis) without respiratory chain deficiency. However, this observation 

could result from the limitations of looking at post-mortem tissue and it is possible 

that respiratory chain deficiency was not identified due to the fact that those 

interneurons with respiratory chain deficiency were lost before the neuropathological 

investigation. Therefore, only the ones with normal respiratory chain function 

survived in this patient.  

Patients 6 (p.(Ala467Thr)/(p.(Gly848Ser)) and 7 (p.(Ala467Thr)/p.(Gly303Arg) did not 

show any significant difference compared to the controls in terms of interneuron 

density. In contrast to patient 2 (no POLG diagnosis), patients 6 

(p.(Ala467Thr)/p.(Gly848Ser)) and 7 (p.(Ala467Thr)/p.(Gly303Arg)) showed a picture 

of respiratory chain deficiency within interneurons. This observation may suggest that 
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respiratory chain deficiency in interneurons can be tolerated better than in pyramidal 

neurons, at least in some patients. 

 Astrogliosis 

This study investigated the degree of astrogliosis in patients with Alpers.  All patients 

demonstrated normal astrocytic morphology or astrogliosis. Given the fact that 

astrogliosis occurs as a response to injury or cell death (Burda and Sofroniew, 2014), 

I speculate that astrogliosis is a response to neuron loss, which was observed in all 

lobes examined.  

Interestingly, patients showed a picture of swollen, hypertrophic astrocytes in the 

grey matter independently from the brain region examined, however these do not 

fulfill the features of the previously described Alzheimer Type II glia (observable by 

pale nucleus and reduced GFAP immunostaining) in both grey and white matter 

(Kollberg et al., 2006; Sofou et al., 2012; Montassir et al., 2015). The changes in 

astrocyte morphology observed in the current study are therefore of unclear 

pathological significance and will warrant further investigation.  

Since astrocytes exert a function in glutamate transport, it can be hypothesized that 

excessive glutamate may result in astrocytic swelling, which may in turn alter the 

expression of glutamate transporters and lead to disruption of key astrocytic 

functions.  

Another cause of astrocytic swelling, is hyperammonemia as a result of impaired 

urea cycle during liver failure. The increase in ammonia will lead to uptake of 

ammonia by astrocytes which use ammonia to synthesise glutamine from glutamate. 

As a result, increased levels of glutamine may accumulate in the astrocytes resulting 

into astrocyte swelling and Alzheimer type II astrocytes a neuropathological feature 

also described in hepatic encephalopathy (Norenberg, 1987). Thus, the swollen 

astrocytes seen in patients with Alpers caused by altered glutamate handling may be 

secondary to liver failure (a predominant feature of Alpers). Alternatively, as shown in 

other neurodegenerative diseases, reactive astrocytes release inflammatory 

modulators which may be either neuroprotective or neurotoxic (Phatnani and 

Maniatis, 2015). Nevertheless, the role of astrocytes in neurodegenerative disease 

remain unclear.  
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 Limitations 

As described above there is a marked degree of variability in the result of neuronal 

density assessment in the patients examined and this study included a small number 

of patients and controls. In addition, this work is limited by the availability of lobe-

matched patient tissue. Furthermore, the scarcity of controls required that brain 

tissue from infants who had died from SIDS was included, which could have biased 

the results as these controls could have neurodevelopmental brain abnormalities 

including suboptimal neurogenesis.  

Consequently, the conclusions and hypothesis resulting from the present study would 

need further support from additional studies with higher number of patient and control 

samples. A major limitation of this work is the low number of cases and the 

unavailability of lobe-matched patient tissue. As such, the findings from this study 

should be interpreted with caution.  

 Future work 

An important function of astrocytes is glutamate transport, which is the major 

neurotransmitter required for excitatory synaptic transmission. To assess any 

alterations in glutamate, the expression of glutamate synthetase could be assessed 

by immunohistochemistry. Reduced expression of glutamate synthetase may indicate 

astrocytic dysfunction. Since astrocytes play a role in clearing up the excess 

glutamate, which results after repetitive firing by pyramidal cells, the assessment of 

glutamate transporters may also prove beneficial in understanding the role of 

astrocytes in the brain of patients with Alpers (Trotti et al., 1998).  

The present study did not consider white matter abnormalities in the brain of patients 

with Alpers’, as evidence of such abnormalities such as partial demyelination of the 

occipital lobe, has been reported rarely (Bao et al., 2008). However, to better 

characterise the neuropathology of Alpers patients it would be interesting in the 

future to examine myelin expression in the white matter.  

 Conclusions 

Here, I performed a reliable, quantitative assessment of interneuron and pyramidal 

cell densities in patients with Alpers. My findings show evidence of interneuron loss 

and pyramidal neuron loss, which is more severe compared to interneurons. This 

trend was observed in all the three lobes examined.  



236 
 

In addition, I report variable astrogliosis in the grey matter of patients with Alpers, 

which is most severe in the occipital and frontal lobes examined. Severe astrogliosis 

is consistent with interneuron and pyramidal neuron loss observed.  

Taken together, my findings support the hypothesis of reduced GABAergic 

neurotransmission, which results in an imbalance between inhibition and excitation, 

leading to increased excitability; which may contribute significantly to the hallmarks of 

Alpers including: epilepsy, cognitive decline and psychomotor regression.  

This is the first study which reports densities of interneurons and pyramidal neurons 

in tissue from the same patients with Alpers syndrome.  

In general, it has been observed that pyramidal cell loss is more severe than 

interneuron loss. However, in the majority of cases there is pronounced respiratory 

chain deficiency in the interneurons. These results are in support of a hypothesized 

mechanism in which respiratory chain deficiency leads to GABAergic interneuron 

synaptic dysfunction, thus causing an imbalance between inhibition and excitation, 

giving rise to neuronal death and the neurological deficits seen in patients with 

Alpers.  
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Chapter 8 Final Discussion 

8.1 Introduction 

Mitochondrial disorders represent the most common group of metabolic diseases, 

which are characterised by genetic and clinical heterogeneity (Chinnery, 2014). 

Neurological deficits represent the most common clinical manifestations associated 

with mitochondrial disease caused by defects in mitochondrial DNA (mtDNA) and 

nuclear DNA (nDNA). Epilepsy is the most commonly reported neurological deficit in 

patients with mitochondrial disease (Hikmat et al., 2017b). It has been estimated that 

seizures are present in 23% of adult and 40% of childhood cases with primary 

mitochondrial disease during the disease course (Gorman et al., 2015). Although 

neuropathological investigations have contributed significantly to our understanding 

of neurodegeneration in mitochondrial disease, the mechanisms underlying 

mitochondrial epilepsy remain unidentified. 

Mitochondrial disorders caused by mutations in the nuclear-encoded POLG 

represent a common form of mitochondrial disease and are characterised by 

epilepsy. To date, a total of 128 pathogenic POLG variants have been linked to 

epilepsy, with the majority of the patients harbouring at least one of the three most 

common mutations including: p.(Ala467Thr), p.(Trp748Ser) and p.(Gly848Ser) 

(Horvath et al., 2006; Tzoulis et al., 2006; Anagnostou et al., 2016). However, the 

ever expanding number of pathogenic POLG mutations identified and the clinical 

heterogeneity challenge genotype to phenotype correlations.  

Alpers’ syndrome results from early-onset autosomal recessive mitochondrial disease 

and constitutes the most severe form of POLG-related disorders (Cohen, 2014). 

Alpers is characterised by refractory epilepsy and liver dysfunction which eventually 

progresses to failure (Saneto et al., 2013). Alpers was first described 86 years ago 

(Alpers, 1931), however the first association with POLG was only established in 

1999, when POLG mutations were reported to be the underlying genetic defect of 

Alpers syndrome (Naviaux et al., 1999).   

To address the effect of POLG mutations on Alpers and human disease, several 

studies have been performed on different tissue types including liver, brain, muscle, 

blood and fibroblasts (reviewed in Chapter 3). Evidence suggests that POLG 

mutations cause a tissue specific effect, affecting primarily brain and liver, whereas 
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muscle, blood and fibroblasts are variably affected and to a lesser extent, which may 

depend on disease severity and progression (Ashley et al., 2008; Hunter et al., 2011; 

Schaller et al., 2011; Sofou et al., 2012; Horst et al., 2014). Nevertheless, the 

majority of the studies published are based on single-case reports.  

It has been accepted that POLG mutations cause mtDNA depletion and deletions (in 

post-mitotic tissues) resulting in respiratory chain deficiency, and downstream clinical 

disease (Tzoulis et al., 2014). However, both the underlying mechanisms and the 

factors which determine tissue-specificity remain largely unknown.  

Consequently, the pathogenesis of Alpers is poorly understood. This is mainly due to 

the lack of accurate in vivo and in vitro models and the limitations of post-mortem 

neuropathological studies. Understanding the mechanisms of epilepsy and 

neurodegeneration caused by POLG mutation will not only inform Alpers 

pathogenesis but also a wide spectrum of POLG-related disorders characterised by 

neurological deficits.  

The aim of this thesis was to further understand the pathogenesis of Alpers caused 

by POLG mutations, using two different approaches. The first approach involved the 

characterisation of mitochondrial function in POLG-mutant fibroblasts from patients 

with Alpers, prior to its transformation into induced neuronal progenitors (iNPC’s), in 

an effort to create an in vitro model of Alpers syndrome.  

In addition to in vitro studies, a post-mortem neuropathological study was also 

performed, to explore the mechanisms of epilepsy and neurodegeneration in patients 

with Alpers and correlate the results with the work performed on fibroblasts. Work 

focussed on the characterisation of neuronal mtDNA damage, respiratory chain 

deficiencies and neuropathological features in three different cortical brain regions 

from patients with Alpers.  

8.2 Major Findings 

 Characterisation of Mitochondrial Function in POLG-mutant Fibroblasts 

from Patients with Alpers 

During the course of this thesis POLG-mutant fibroblasts from patients with early-

onset and late-onset Alpers harbouring at least one of the common POLG 

pathogenic mutations including the p.(Ala467Thr) and p.(Trp748Ser) were assessed 

for mitochondrial dysfunction.  
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Fibroblasts from all patients considered did not reveal any significant changes when 

compared to controls in terms of mtDNA copy number, mitochondrial nucleoid 

morphology and dynamic mitochondrial networks, respiratory capacity and steady-

state POLG levels. These findings suggest that POLG mutations do not interfere 

significantly with POLG function, therefore POLG is capable of sufficiently 

synthesising mtDNA to maintain normal respiratory capacity and dynamic 

mitochondrial networks in fibroblasts. Although previous reports on POLG-mutant 

fibroblasts are limited (Ashley et al., 2008; Schaller et al., 2011; Horst et al., 2014; 

Rouzier et al., 2014), most are in agreement with the findings of this thesis, further 

supporting the hypothesis that POLG mutations exert their deleterious effects via 

tissue-specific mechanisms.  

This is the first detailed study of POLG-mutant fibroblasts which collectively assessed 

the expression of biochemical defects and baseline mitochondrial function in four 

patients with Alpers. Previous investigations on POLG-mutant fibroblasts have rarely 

been reported and these are mostly limited on mtDNA copy number quantification.  

This study provides evidence that POLG-mutant fibroblasts in baseline conditions do 

not recapitulate the biochemical phenotype of Alpers syndrome, thus POLG-mutant 

fibroblasts do not constitute a good in vitro model for the investigation of the 

molecular pathogenesis of Alpers’ syndrome.  

The findings of this thesis imply that POLG mutations may not exert sufficient 

dysfunction on fibroblasts for the biochemical defects to be detectable. Given the 

glycolytic nature of fibroblasts and evidence showing that deprivation of glucose to 

force energy production through oxidative phosphorylation can unmask mitochondrial 

defects (Voets et al., 2012; Carelli et al., 2015), POLG-mutant fibroblasts could have 

been cultured in galactose-medium to assess whether mitochondrial dysfunction is 

triggered by stress. A comparison between POLG-mutant fibroblasts cultured in 

glucose and galactose-medium would have been useful in understanding whether 

POLG-mutant fibroblasts mimic mitochondrial dysfunction seen in Alpers under 

stress.  

An alternative approach for investigating the mechanisms of POLG-mutations in 

fibroblasts may involve the exposure to ethidium bromide, an intercalating agent 

which causes mtDNA depletion. A report involving ethidium bromide induced mtDNA 

depletion in POLG-mutant fibroblasts has shown impaired mtDNA repopulation by 

kinetics assessment (Stewart et al., 2011). Therefore, treatment of POLG-mutant 
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fibroblast with ethidium bromide may be particularly useful when exploring 

mechanisms of mtDNA depletion secondary to POLG mutations. This approach may 

prove useful when dissecting the effect of the location of mutations within the POLG 

gene on its biological function.  

Overall the findings of the current work highlight the importance of investigating 

affected tissues in order to better understand the pathogenesis of Alpers secondary 

to POLG mutations. The development of patient-specific cell-based models through 

induced pluripotent stem cells (iPSC’s) (Li et al., 2015; Zurita et al., 2016) and direct 

differentiation (Lu et al., 2013; Meyer et al., 2014) technologies may unravel the 

identification of POLG tissue-specific effects and inform novel treatment strategies 

which are urgently needed.  

  In vitro Modelling of Alpers Syndrome Secondary to POLG Mutations  

Fibroblasts are easily accessible and can be converted into other cell lineages 

through gene reprogramming in order to be used for disease modelling. This thesis 

presents a picture of normal baseline mitochondrial function in POLG-mutant 

fibroblasts derived from patients with Alpers.  

Given the fact that the central nervous system (CNS) is predominantly affected, it 

was hypothesised that the effect of POLG mutations would be particularly severe in 

neurons which therefore may express the biochemical dysfunction responsible for 

Alpers. Hence, POLG-mutant fibroblasts were exposed to a direct differentiation 

approach for transformation into induced neuronal progenitor cells (iNPC’s). Direct 

differentiation was selected over induced pluripotent stem cell (iPSC) technology due 

to lower cost and time-efficiency.  

Although several attempts of converting POLG-mutant fibroblasts into iNPC’s were 

performed using two different protocols (see Chapter 5), the experiments failed at the 

stage of neurosphere expansion and did not yield iNPC colonies for further 

investigation. The result of this work revealed the influence of fibroblast passage 

number on direct differentiation, highlighting the need of low-passage fibroblasts 

when considering direct differentiation. Immortalising fibroblasts may overcome this 

limitation, however given the time constraints of this PhD this could not have been 

tested.  

Given the opportunity, I would have attempted the use early passage control 

fibroblasts (passage 1-5) which were not accessible during the course of this thesis, 
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and for direct differentiation alongside POLG-mutant fibroblasts. This would have 

been beneficial in understanding of whether successful conversion is dependent on 

early-passage or the nature of POLG mutations is responsible for the unsuccessful 

attempts of fibroblast conversion into iNPC’s.  

This work highlights the challenge of modelling Alpers using patient-specific 

fibroblasts harbouring POLG mutations. To overcome this challenge and develop in 

vitro models for studying POLG mutations in human disease, other routes exist which 

are beyond the time limits of the current PhD work.  

One approach, would involve the conversion of POLG-mutant fibroblasts into iPSC’s 

and further differentiation into neurons. Although conversion into iPSC is a lengthy 

and costly process, it may be used alternatively to iNPC’s and yield differentiated 

neuronal sub-types harbouring the mutations of interest, which could be used for 

further characterisation.  

Alternatively, CRISPR/Cas9 technology could be applied to mutate POLG in 

commercially available healthy human neurons or hepatocyte cell lines. This 

approach can result in the induction of specific POLG mutations, and thus enable in 

vitro modelling of Alpers. Although hepatocytes would not be useful in modelling the 

neurological aspects of Alpers in characterising mitochondrial dysfunction in 

hepatocytes, may unravel tissue-specific mechanisms caused by POLG-mutations, 

especially given the fact that hepatic dysfunction is a common feature of this disease.  

 Mechanisms of Epilepsy and Neurodegeneration in Alpers 

This thesis examined the hypothesis that neuronal energy failure due to respiratory 

chain deficiency, secondary to mtDNA depletion, represents the primary 

pathophysiology of Alpers encephalopathy. According to this hypothesis, respiratory 

chain deficiency would result in impaired neuronal circuitry contributing to an 

imbalance between inhibition and excitation, resulting in neuronal death, leading to 

the neurological deficits seen in patients with Alpers. 

Severe respiratory chain deficiencies involving complex I, and, to a lesser extent 

complex IV in all three cortices examined, moreover occipital interneurons showed 

the most extensive respiratory chain deficiency. This finding is consistent with 

neuroimaging data, which suggest disease predilection for the occipital lobe in 

Alpers. Nevertheless, it remains unclear why the occipital lobe is the most severely 

affected brain region. It has been hypothesised that the occipital lobe is the most 
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active brain region and thus the most vulnerable to energy failure, although this 

warrants further investigation (Tzoulis et al., 2014; Hikmat et al., 2017b).  

Complex I deficiency was generally more extensive than complex IV in all the 

cortices examined from patients with Alpers. This finding is consistent with a 

progressive loss of complex I expression in neurons of patients with POLG 

mutations, suggesting complex I deficiency as a pathological process of POLG 

encephalopathy (Tzoulis et al., 2014). The findings of the current thesis further 

support suggestions that complex I deficiency, is a contributory factor in the 

development of epilepsy (Rahman, 2012). It is intriguing that in the occipital lobe, all 

the interneurons of three patients were complex I deficient. The absence of normal 

interneurons in these patients is indicative of the vulnerability of the occipital lobe to 

extensive neuronal dysfunction in end-stage Alpers.  

Respiratory chain protein deficiencies in pyramidal neurons were identified in the 

parietal and frontal lobes of patients with Alpers, however deficiencies were milder 

compared to those observed in interneurons. It is important to mention that in this 

study the respiratory chain protein expression of the surviving neurons, consequently 

deficient pyramidal neurons may have been lost before the neuropathological study 

was performed, and thus extensive respiratory chain deficiencies involving 

complexes I and IV were not identified in the post-mortem analyses.  

The quantitative nature of the immunofluorescent technique applied, allowed the 

precise, reproducible and reliable assessment of mitochondrial respiratory chain 

proteins (Grunewald et al., 2014; Lax et al., 2016), which has not been previously 

described in Alpers.  

Respiratory chain deficiencies within neurons of patients with Alpers were coupled 

with pyramidal loss in all the brain regions examined, which was particularly severe 

when compared to interneurons. There was a severe loss of pyramidal neurons but 

the respiratory chain deficiency within the remaining pyramidal neurons was less 

profound compared to the interneurons. The basis for this may be that pyramidal 

neurons are more vulnerable to mitochondrial respiratory chain deficiencies, given 

their large size and long axons, and consequently die. Therefore, the surviving 

neurons show lower levels of respiratory chain deficiency.  

Interneuron loss was only evident in the occipital lobe of patient 5 

(p.(Ala467Thr)/p.(Gly303Arg)) and the parietal and frontal lobes of patient 2 (no 
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POLG diagnosis), which correlated with more severe respiratory chain deficiencies 

within the surviving interneurons. 

Since interneuron loss is not significant in the majority of the patients but the 

densities of pyramidal neurons are severely reduced in all lobes, it can be 

hypothesised interneurons tolerate energy failure better than pyramidal neurons. 

Interestingly, patients 5-7 showed a clinical picture of stroke-like episodes, a feature 

linked to epilepsy. Tzoulis and colleagues (Tzoulis et al., 2014) described lesions 

which they termed ‘FENN’ in CA1 and Purkinje cells in these patients. Patients who 

tend to develop FENN are often those who have epilepsy as part of their neurological 

condition. The term FENN was proposed to better account for the neuropathological 

characteristics and underlying mechanisms of their formation. Authors proposed that 

seizures, which are energy-demanding, increase the energy demand of neurons 

leading to acute lesions in the hippocampus, which is a driver for seizure generation. 

It is also suggested that cortical epileptic activity may increase the metabolic activity 

of the cerebellum, thus making large-sized Purkinje cells vulnerable to focal lesions 

(Tzoulis et al., 2014).  

Although this work provides evidence of interneuron dysfunction, it is unclear whether 

pyramidal loss is a result from increased excitation due to impaired dynamics or 

whether pyramidal neurons are more susceptible to respiratory chain deficiency 

leading to neuronal loss. These hypotheses require further investigation.  

MtDNA depletion due to POLG dysfunction has been suggested to be the underlying 

mechanism of neuronal energy failure. Here, I report a picture of mtDNA depletion in 

adult patients with POLG mutations in brain homogenates from occipital, parietal and 

frontal lobes. Consistent with energy failure identified in patient interneurons, mtDNA 

depletion was most evident in the occipital lobe, thereby highlighting the susceptibility 

of occipital lobe neurons to energy failure, secondary to mtDNA depletion caused by 

POLG mutations.  

Although the mtDNA copy number was quantified in tissue from adult patients with 

POLG mutations, the findings support the hypothesis that mtDNA depletion is a 

shared mechanism in early and late-onset Alpers. Interestingly, patient 9 (mutations 

in IDH3A), who had a clinical picture of Alpers did not demonstrate evidence of 

mtDNA copy number reduction in the occipital lobe. This finding suggests that 
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mtDNA copy number reduction is a result of POLG mutations in patients with POLG-

related disease and not a general feature of Alpers syndrome. 

Given the available resources within the time frame of this study, I was able to 

demonstrate a picture of compromised energy production in neurons from patients 

with Alpers, coupled with mtDNA depletion in brain homogenates of patients with 

POLG mutations. I propose a mechanism of impaired neuronal networks resulting 

from respiratory chain deficiency within interneurons and pyramidal neurons of 

patients with, due to mtDNA depletion (see Figure 8.1).  

The proposed mechanism involves a cascade of events: mtDNA depletion secondary 

to POLG mutations causes respiratory chain deficiencies within interneurons and 

pyramidal neurons. Energy failure of neurons coupled with neuronal loss results in 

impaired neuronal networks giving rise to disinhibition and hyperexcitation, thus 

triggering seizures. Since seizures increase the energy demands of neurons, many 

of which are respiratory chain deficient, a vicious cycle is created, where seizures 

further compromise the metabolic activity of the neurons and thus increase neuronal 

excitability and neuronal death.  

 

Figure 8.1: Proposed mechanism underlying epilepsy and neurodegeneration in Alpers 
modified from previously published hypotheses. Loss of mtDNA secondary to POLG dysfunction, 
results in respiratory chain deficiency leading to energy failure, making interneurons and pyramidal 
cells dysfunctional. As a result, neuronal oscillations are impaired, disrupting the careful balance of 
inhibition and excitation in the brain of patients with Alpers. As a consequence, neurons are lost or 
dysfunctional and disinhibition results in increased excitability, triggering seizure generation. As 
seizures are energy demanding, these further compromise neuronal function leading to a vicious 
cycle, further increasing neuronal excitability and neuronal death (Rahman, 2012; Zsurka and Kunz, 
2015). 
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If tissue was available, it would have been beneficial to assess respiratory chain 

deficiencies in the neurons of all the three lobes examined in the same patients. This 

would not only provide insight into the mechanisms of neurodegeneration in Alpers 

but also improve our understanding of disease progression.  

Furthermore, the assessment of mtDNA copy number and mtDNA deletions in 

patients with early-onset Alpers would not only allow comparison between early and 

late-onset cases but also contribute to our understanding of the mechanisms 

underlying POLG-related encephalopathy. The assessment of mtDNA damage in 

micro-dissected interneurons and pyramidal neurons would allow correlations with 

respiratory chain deficiencies within these neuronal populations and thus contribute 

to our understanding of the mechanisms governing POLG-related 

neurodegeneration.  

Despite the limitations of this study, this work presents a picture of interneuron 

dysfunction in Alpers which has not been reported to date and may be crucial in the 

pathogenesis of epilepsy seen in these patients. Further, the findings of this work 

support a disruption of the careful balance between inhibition and excitation (as 

discussed in Chapter 7), which may not only contribute to the development of 

epilepsy but also towards cognitive impairment and psychomotor regression, all 

characteristic features of Alpers.  

Understanding neuronal circuitry in post-mortem tissue is extremely challenging. The 

use of transgenic mouse models may partly address this issue and provide insight 

into disease progression and impaired neuronal dynamics. Currently, no animal 

model exists recapitulating the phenotype of POLG-related epilepsy and Alpers. 

Interestingly, a mouse model involving conditional knockout of NDUFS4, a gene 

encoding an important subunit of complex I has been reported to result in a fatal 

phenotype of encephalopathy and ataxia, accompanied with neuropathological 

changes including neuron loss, and activation of glia (Quintana et al., 2010; Quintana 

et al., 2012; Torraco et al., 2015). These features are similar to Alpers thus making 

this mouse model a potential candidate for future investigations of the mechanisms 

underlying Alpers neuropathology.  

Moreover, Adenine Nucleotide Translocase 1 (Ant1) knockout mice have been 

recently used to study mitochondrial dysfunction in interneuron and pyramidal neuron 

migration, suggesting significant disruption of interneuron migration in the presence 

of OXPHOS defects. As such the Ant1 transgenic mice may also be suitable for the 
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further characterisation of interneuron dysfunction, secondary to mitochondrial 

defects (Lin-Hendel et al., 2016). 

8.3 Limitations 

This study provided insight in our understanding of Alpers neuropathology and 

pathogenesis, however there are important limitations that need to be considered. 

These include: 

1) The in vitro studies were limited by the unavailability of early-passage, age-

matched, healthy control fibroblasts. 

2) Neuropathological investigation was limited by the low number of cases and 

availability of age-matched controls. 

3) Patient tissue was not lobe-matched for every case, therefore evaluation of 

changes during disease progression were not possible.  

4) Neuropathological investigation was based on post-mortem tissue, which is 

representative of end-stage disease. 

5) Neuronal degeneration is an early process, therefore relevant cells may have 

been lost, prior to the time of the neuropathological evaluation.  

6) The genetic diagnosis for two patients was not possible, hence diagnosis of 

Alpers was based upon the clinical histories and neuropathology findings. 

Therefore, findings regarding these patients should be interpreted with caution 

when considering POLG mutations as the pathogenic defect.  

8.4 Future Work 

This work explored mitochondrial function in POLG-mutant fibroblasts from patients 

with Alpers disease and the mechanisms underlying neurodegeneration in post-

mortem tissue from patients with clinical and/or genetically defined Alpers. Not all 

patients included in this study had confirmed POLG mutations.  

To validate the findings of the current study and better understand disease 

progression and neurodegeneration in Alpers, future work should focus on 

investigating multiple brain cortices from a larger cohort of patients with Alpers and 

confirmed POLG mutations.  

Moreover, to better understand the pathogenesis of Alpers, future work should 

include investigating the role of astrocytes. Since astrogliosis and Type II Alzheimer 

glia are neuropathological features of Alpers, it would be interesting to assess 

whether mitochondrial defects in astrocytes contribute to neurological impairments 
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seen in patients with Alpers. Specifically, astrocytes could be assessed for 

respiratory chain deficiency using a similar approach used in interneurons and 

pyramidal neurons.  

In addition, the assessment of mtDNA defects in microdissected interneurons, 

pyramidal neurons and astrocytes (from frozen tissue obtained from patients with 

Alpers) would provide insight into the molecular pathogenesis of Alpers caused by 

POLG-mutations.  

Cell-based studies, including iPSC and direct differentiation technologies (i.e. iNPC’s) 

may prove beneficial in understanding the mechanisms underlying respiratory chain 

deficiency. Direct differentiation technologies may allow the differentiation of 

interneurons, pyramidal neurons and glial cells with the potential of exploring in vitro 

mitochondrial dysfunction and interplay of neurons with glial cells in Alpers. 

8.5 Concluding Remarks 

In conclusion, the findings of the work presented in this thesis advance our 

understanding of the neuropathology and pathogenesis of Alpers. The mtDNA 

damage in brain homogenates from different brain cortices combined with extensive 

respiratory chain deficiencies within interneurons and pyramidal cells observed, and 

coupled with neuron loss and astrogliosis found in the tissue examined provide 

insight into the current understanding of POLG-specific mechanisms associated with 

intractable epilepsy and cognitive decline in patients with Alpers.  

Alpers’ syndrome is an incurable, devastating disease. Understanding brain micro-

circuitry in Alpers would provide insight into better understanding of the disease 

pathogenesis and may inform potential treatments. 
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Reference Number of 
patients in 

article 

Number of 
patients 
fulfilled 
criteria 

Patient case 

(Allen et al., 
2014) 

1 1 1 

(Ashley et al., 
2008) 

24 18 A,B,C,E,F,G,H,I,K,
L,N,O,Q,R,S,V,W,
X 

(Bao et al., 2008) 1 1 16 

(Bijarnia-Mahay 
et al., 2014) 

1 1 1 

(Blok et al., 2009) 21 13 1,6,7,8,9,10,11,12,
15,17,18,19,20 

(Boes et al., 
2009) 

1 1 1 

(Brinjikji et al., 
2011) 

2 2 1,2 

(Cardenas and 
Amato, 2010) 

1 1 1 

(Cheldi et al., 
2013) 

1 1 1 

(Davidzon et al., 
2005) 

4 4 1,2,3,4 

(Mousson de 
Camaret et al., 
2011) 

2 2 1,2 

(de Vries et al., 
2007) 

8 8 1,2,3,4,5,6,7,8 

(de Vries et al., 
2008) 

2 2 Patient-A, Patient-
B 

(Dhamija et al., 
2011) 

1 1 1 

(Engelsen et al., 
2008) 

19 19 1,2,3,4,5,6,7,8,9,1
0,11,12,13,14,15,1
6,17,18,19 

(Ferrari et al., 
2005) 

9 9 1,2,3,4,5,6,7,8,9 
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(Ferreira et al., 
2011) 

10 2 7, 8 

(Hakonen et al., 
2005) 

19 10 D1,D1S, 
D2,D2S,V,D6,D8,1
21,III-7,III-4 

(Hansen et al., 
2012) 

1 1 1 

(Hasselmann et 
al., 2010) 

1 1 1 

(Hinnell et al., 
2012) 

1 1 1 

(Horst et al., 
2014) 

1 1 1 

(Horvath et al., 
2006) 

38 17 1,2,3,4,5,6,7,8,9,1
0,11,12,13,14,22,2
3,37,38 

(Hunter et al., 
2011) 

31 12 1,2,3,4,5,6,7,8,9,1
0,11,12 

(Joshi et al., 
2009) 

1 1 1 

(Isohanni et al., 
2011) 

7 7 1,2,3,4,5,6,7 

(Khan et al., 
2012) 

1 1 1 

(Kollberg et al., 
2006) 

7 6 1,2,3,4,5,6 

(Komulainen et 
al., 2010) 

5 1 B1 

(Kurt et al., 2010) 4 4 1,2,3,4 

(London et al., 
2017) 

1 1 1 

(Lupashko et al., 
2011) 

1 1 1 

(Lutz et al., 2009) 2 2 1,2 

(Mangalat et al., 
2012) 

1 1 1 
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(Martikainen et 
al., 2012) 

1 1 1 

(McCoy et al., 
2011) 

4 4 1,2,3,4 

(McFarland et al., 
2009) 

1 1 1 

(Mohamed et al., 
2011) 

8 8 1,2,3,4,5,6,7,8 

(Montassir et al., 
2015) 

1 1 1 

(Naess et al., 
2012) 

1 1 1 

(Naimi et al., 
2006) 

8 3 PE, PL,PO 

(Navarro-Sastre 
et al., 2012) 

2 2 P9,P10 

(Naviaux and 
Nguyen, 2004) 

3 3 K1-II-1, K2-II-1, 
K2-II-2 

(Neeve et al., 
2012) 

68 37 1,2,6,8,9,10,11,16,
17,18,19,20,21,23,
24,25,27,33,34,36,
37,38,39,42,44,45,
46,48,50,51,52,53,
54,55,58,60,64 

(Nguyen et al., 
2005) 

6 6 A4.II.2,A3.II.4,A3.II
.3,A5.II.1,A6.II.1,A
6.II.3 

(Nolte et al., 
2013) 

2 2 1,2 

(Roels et al., 
2009) 

2 1 2 

(Roshal et al., 
2011) 

1 1 1 

(Rouzier et al., 
2014) 

8 5 8,9,10a,10b,12 

(Sarzi et al., 
2007) 

9 7 10,11,33,34,35,37,
38 

(Scalais et al., 
2012) 

1 1 1 
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(Schaller et al., 
2011) 

1 1 1 

(Simon et al., 
2014) 

1 1 1 

(Sofou et al., 
2012) 

6 6 1,2,3,4,5,6 

(Spinazzola et al., 
2006) 

19 2 4,8 

(Stewart et al., 
2009) 

14 8 4,6,9,10,11,12,13,
14 

(Stricker et al., 
2009) 

2 2 II.2, II.3 

(Taanman et al., 
2009) 

6 3 P2,P5,P6 

(Tang et al., 
2011) 

73 57 II-1, II-2,II-3, II-6,II-
7,II-9,II-10,II-11,II-
13,II-18,II-19,II-
20,II-21,II-22,II-24, 
II-26,II-29, II-31,II-
32,II-33,II-34,II-
35,II-37,II-38,II-
40,II-42,II-45,II-
46,II-47,II-48,II-
49,II-50,II-51,II-
52,II-56,II-57,II-
58,II-59,II-61,II-
63,II-65,II-66,II-
69,II-71,II-72,II-
74,II-75,II-76,II-
77,II-78,II-79,II-
80,II-83,II-84,II-
85,II-90 

(Tuladhar et al., 
2013) 

1 1 1 

(Tzoulis et al., 
2010) 

32 2 WS-6A,WS-7B 

(Tzoulis et al., 
2014) 

15 5 AT-1A,WS-8A,AL-
1A,Al-1B, AL-2A 

(Uusimaa et al., 
2008) 

3 3 1,2,3 

(Uusimaa et al., 
2013) 

8 8 1,2,3,4,5,6,7,8 
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(Van Goethem et 
al., 2003) 

2 1 II-1 

(Van Goethem et 
al., 2004) 

10 4 B1.II.3,B1.II.4,F1.II
I.4,F1.III.7 

(Visser et al., 
2011) 

1 1 1 

(Wiltshire et al., 
2008) 

1 1 1 

(Witters et al., 
2010) 

1 1 1 

(Wolf et al., 2009) 5 5 1,2,3,4,5 

(Wong et al., 
2008) 

33 21 1,3,4,5,6,7,8,9,10,
11,12,13,14,15,17,
18,19,20,21,22,23 

(Woodbridge et 
al., 2013) 

3 1 1 

(Zabalza et al., 
2014) 

2 1 I-1 
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